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Abstract
The cell cycle, with its highly conserved features, is a fundamental driver for the temporal 

control of cell growth and proliferation in tissues - while abnormal control and modulation 

of the cell cycle are characteristic of cancer cells, particularly in response to therapy. A 

central theme in cancer biology is to resolve and understand the origin and nature of 

innate and induced heterogeneity at the cell population level. Cellular heterogeneity - 

comprising structural, temporal and functional dimensions - is a confounding factor in the 

analysis of cell population dynamics and has implications at physiological, pathological 

and therapeutic levels.

There is an exceptional advancement in the applications of imaging and cell tracking 

technologies dedicated to the area of cytometric research, that demand an integrated 

bioinformatics environment for high-content data extraction and interrogation. Image- 

derived cell-based analyses, where time is the quality parameter also demand unique 

solutions with the aim of enabling image encoding of spatiotemporal cellular events 

within complex cell populations. The perspective for this thesis is the complex yet poorly 

understood nature of cancer and the opportunities offered by rapidly evolving cytometric 

technologies. The research addresses the intellectual aspects of a bioinformatics 

framework for cellular informatics that encompass integrated data encoding, archiving, 

mining and analysis tools and methods capable of producing in silico cellular fingerprints 

for the responses of cell populations to perturbing influences. The overall goal is to 

understand the effects of anti-cancer drugs in complex and potentially heterogeneous 

neoplastic cellular systems by providing hypothesis testing opportunities.

Cell lineage maps encoded from timelapse microscopy image sequences sit at the core 

of the proposed bioinformatics infrastructure developed in the current work. Through a 

number of data mining, analysis and visualisation tools the interactions and relationships 

within and between lineages have provided dynamic patterns for the modulation of the 

cell cycle in disease and under stress. The lineage data, accessible through databases 

implemented during the current study, has provided a rich repository for 

pharmacodynamic (PD) modelling and validation and has thus laid the foundation for 

fabricating a comprehensive knowledge base for linking both cellular and molecular 

behaviour patterns. These provide the foundation for meeting the aspirations of systems 

biology and drug discovery.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Bioinformatics -  turning biological information into 
knowledge
With the completion of the human genome project (HGP 2003) and scientific advances 

in the post-genomic era, the life sciences have witnessed an enormous volume of 

information generated by both biotechnological research and instrumentation 

development. Arising from the demand to apply information gathered to form knowledge 

and understanding for clinical and other benefits - a new interdisciplinary science of 

bioinformatics has evolved (Hagen 2000). The endeavour started in the early 1980s 

with the methods of DNA sequencing (Simpson 2001) and now encompasses genomics 

(Burley 2000; Lockhart and Winzeler 2000; McKusick and Ruddle 1987; Nadkarni 2002), 

proteomics (Abbott et al. 1998; Dove 1999; Ho et al. 2002; Jensen 2006; Twyman 2004), 

and in recent years metabolomics (Harrigan and Goodacre 2003; Joyce and Palsson 

2006). The advancement has been coupled with a continual development of 

experimental technology for the acquisition of molecular biology data quantitatively and 

accurately (Abbott et al. 1998; Bruggeman et al. 2007; Lincoln 2001). In parallel, 

information technology has also witnessed a major advancement in terms of data 

management and data access, e.g. the public use of the internet (Castells 2001). These 

parallel advancements have transformed bioinformatics from a data management 

technology to a discipline where the ultimate goal is to transform experimentally derived 

biological information into knowledge (Heidorn et al. 2007) and thus enable the 

discovery of new biological insights as well as to create a wider perspective from which 

unifying principles in biology can be discerned.

Until recent years, a significant part of bioinformatics was service-oriented (Foster 2005), 

focussed towards the common needs of information technologies in large-scale 

biological data. However, lately the drive towards transforming information into 

knowledge is prevalent in all areas of bioinformatics (Kanehisa and Brok 2003). For 

example, in the genomics area where primary databases like ‘Entrez Gene’ (Maglott et 

al. 2005) archive all the gene-related information, whereas secondary databases, like 

KEGG (Kanehisa 2002), integrate and cross-reference numerous databases in a multi­

species context and fabricate a better understanding about biological function from a
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Chapter 1: Introduction

genomic perspective. The same paradigm shift is also apparent in proteomics where, 

for example, secondary databases like BIND (Bader 2003) have been introduced that 

capture protein function, here defined at the molecular level as the set of other 

molecules with which a protein interacts or reacts along with the molecular outcome. 

Metabolomics is yet to keep pace with its other ‘-omic’ counterparts and encompasses 

primary databases like the Human Metabolome Database (Wishart 2007), which provide 

a comprehensive curated collection of human metabolite and metabolism information. 

The list of databases is growing at a fast pace and presently the number of molecular 

databases is over 1000 (Galperin 2008). These databases, with associated smart mining 

and analytical tools, e.g. BLAST (Altschul et al. 1990) provide both information and 

knowledge that directly contribute to our understanding of the molecular basis for 

disease as well as the structural and functional complexity of cellular processes that 

constitute the organ or organism.

1.2 Gene to organism -  issues of scale and complexity
A molecular basis for understanding organism behaviour started with the premise that 

organisms are assembly of different components which can be described in a 

hierarchical fashion according to their functionality, size etc. From a size perspective, an 

organism like a human can be described at many scales, and the lowest level is 

represented by a defined atomic/molecular description - for example the genome. Thus 

the genomic level can be assigned to the lowest level, which can define potential within 

an organism’s specific structure and function. From this level upwards everything is the 

product of causation from genes to cells, organs, systems and whole organism (Dawkins 

1976)
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Chapter 1: Introduction

Molecular ► Cellular ► Organism
____ _____-—— ------ ^

-______-— --------- "

nM MM m

Fig. 1-1 Scaling the building blocks o f life. The human as an organism is the product 
of different parts. From DNA or gene, which is at the nanometer scale; proceeding 
upward to the micrometer scale (cell) and finally the organism at the meter scale. The 
cell sits at the middle of this scale and acts as a bridge between genotypic constituents 
with phenotypic outcome (adopted from (Anderson et al. 2001)).

However this product-based premise could not be equivocally translated in terms of the 

scale of the complexity. As large scale data and knowledge emerge from genomics, 

proteomics and other ‘-omics’, it becomes apparent that they are not sufficient for 

understanding the higher complexity of biological systems (Kanehisa and Brok 2003). 

The prevalent bottom-up approach (Bruggeman et al. 2007) starts at the gene level and 

moves upwards, and involves 20,000 -  30,000 protein coding genes as elementary 

information units. The associated genetic networks involving gene sequences and the 

perception of an increasing number of sense-antisense transcription units and non­

coding co-regulatory RNAs (Valet et al. 2004) are precursors of millions of different 

proteins in different functional states leading to a combinatorial number of billions of
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Chapter 1: Introduction

possible interactions to test (Figeys 2004). Knowledge from these interactions could 

enable us to understand cellular and organismal phenotypes at the systems level (Wu 

and Bonner 1981). However, this understanding demands an unprecedented number of 

hypotheses, experimental work, mathematical model simulation and assimilation, which 

are largely beyond the capacity of present technologies (Allen etal. 2001).

Again from the experimental point of view, these large scale ‘-omic’ data are not bona 

fide representations of the innate cellular conditions, due to the methods of collection 

and exclusion of natural complexity and heterogeneity. For example, genomic and 

proteomic data are usually collected after destruction of cell integrity and cell 

environment in the original tissue, and the structural and functional parameters 

measured at these conditions may not reflect the in situ condition (Valet 2005b). 

Moreover the dependence of functionality on the context (such as experimental 

condition, cell status and environment) at present are mostly ignored (Kanehisa 2000). 

Last but not least, these data represent a snapshot or static interaction, which indeed is 

an incomplete view of the dynamic condition where all interactions as well as events are 

time-dependent. An example in this regard would be the failure of 3D protein structure 

prediction (Aloy et al. 2003) from the known amino acid sequences, despite substantial 

progress in computing potential and software development and intensive molecular 

biology research for over 30 years (Valet 2005a). Regardless of the acknowledgement 

that the bottom-up approach (Stransky et al. 2007), with its paradigm that the molecular 

basis of knowledge is the key for understanding the disease process and biology at the 

system level, has a biased and often limited view. For the past decade pharmaceutical 

industries have introduced a molecular target-based drug discovery approach, where a 

target is usually a single gene, gene product or molecular mechanism, in which the 

process of drug discovery begins with identifying the function of a possible therapeutic 

target and its role in disease (Kerns et al. 2003; Knowles and Gromo 2003; Lindsay

2003). This approach is different from the empirical physiology-based approach 

(Erickson 2003), where compounds are screened and profiled based on the readouts of 

the amelioration of a disease phenotype in an animal model or cell-based assay. 

Identification of the drug target and the mechanism of action would follow in later stages 

of the process by deduction based on the specific pharmacological properties of lead 

compounds. Even though these two approaches are not mutually exclusive, this 

paradigm shift not only caused a decrease in the number of new chemical entities (NCE)

4



Chapter 1: Introduction

discovered but more importantly new drugs, found to be pharmacology active at their 

molecular targets, impart toxicity through other targets at the system level (Sams-Dodd 

2005). Two such classic examples are the low-density lipoprotein cholesterol lowering 

anti-atherosclerosis drug cerivastatin (Lipobay) (Psaty et al. 2004) and the anti­

inflammatory cyclo-oxygenase 2 (COX2) inhibitors (Melnikova 2005). These experiences 

may induce a shift of efforts (Schneider 2004) towards the search for drugs effective on 

distributed targets as for example, salicylic acid acting on various molecular targets 

simultaneously (Rainsford 2007). The limitations of a bottom-up approach and the 

widening information gap -  how genes and molecules specify the systems behaviour, 

invoke the strong requirements for top-down views (Anderson et al. 2001): a living 

system is more than the sum of its parts and it acquires emergent properties that its 

individual components may not have (Zhang et al. 2002). Explaining these often 

counterintuitive properties in terms of the underlying components requires the cell to be 

placed as the irreducible and integrating unit that links molecular information with 

behavioural information.

1.2.1 Understanding biology at cellular level
According to the cell theory, a cell is the smallest living unit in any organism (Schleiden 

1838; Schwann 1839). The modern tenets of cell theory maintain that the cell is the 

structural and functional unit of all living organisms and is generated from the pre­

existing cells by a reductive or non-reductive division, where in each division hereditary 

information is passed from the mother cell to the daughter cells. According to 

differentiation status, cells represent the elementary functional units of multicellular 

organisms, and disease represents molecular alterations that impact upon the integrity 

and functions of cellular systems determined by both genotype and external or internal 

influences (Valet 2005a). Single cells thus integrate the structural and functional 

information from molecular pathways and networks to underpin the often asynchronous 

population (tissue) behaviour, which in turn generates physiological system function. 

Thus cells can be viewed as the middle level between molecular and whole organism 

behaviour, encapsulating all the molecular drivers (i.e. gene, proteins, metabolites and 

the functional networks) in a minimally bounded system capable of integrating extra 

cellular influences from neighbouring cells as well as environmental factors and 

hereditary influences maintained in a pedigree structure. Thus, the cell provides an 

opportunity for a middle-out-approach (Bray 2003; Brenner 2001; Noble 2002a; Noble
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Chapter 1: Introduction

2002b) for dealing with experimental data and intellectual concepts (Noble 2002b). 

However, even within the cellular level there are layers of complexity that are required to 

allow for integration of information and knowledge arising from both bottom -  molecular 

and top -  tissue/organ levels. Within this thesis three sublayers of complexity are 

described , to be transferred into an informatics framework.

Physiological systems and function 

'Top-down'

Level 3: Mulb cdhilar rebtionshpSystems

I  ~  Level 2: Lneage rctobonshp

Pathways

'Bottom-up' Level 1: Molecular relabonshp

Fig. 1-2 Interweaved levels o f bio-complexity. The left diagram schematically shows 
different approach for understanding biological systems [adopted from (Noble 2002b)] 
and the right diagram shows the sub-layers that exist within the cellular level that are 
necessary to assert the functional relationship. This establishs bridge between the 
molecular level and the tissue or organ level.

Within the cellular level the first sub-layer (L 1: Molecular relationship) addresses single 

cell structure, which encapsulates the molecular networks and pathways. Present 

endeavours for a systems level understanding of biology involve modelling such 

pathways and networks to gain knowledge about the higher systems or organism 

behaviour -  a ‘bottom up approach’ (Stransky etal. 2007). However this approach does 

not include the interactions of cells in a time dependent manner -  in other words 

dynamic ‘cytome’ behaviour. Where the cytome can be defined as cellular systems, 

subsystems and functional components of the organ and organism (Valet et al. 2004). 

Within these dynamic systems, cellular responses to perturbation or other environmental 

effects change with time and this time dependent behavioural variation can permit 

prediction of complex lineage behaviour -  the second sub-layer (L 2: Lineage
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relationship). In experimental terms, a cell lineage reflects the relationship between 

descendents from a common progenitor that was exposed to a given influence for a 

discrete period. The behaviour of both the progenitor and the evolving progeny reveals 

the time-integrated response (e.g. variation of multi-cyclic behaviour) to an influence 

such as a bioactive drug (i.e. the pharmacodynamic (PD) response). This would 

therefore have a direct relevance, to how cellular populations, that represent resistant 

fractions, might be maintained in drug-treated tumour cell populations. The third sub­

layer (L 3: Multi cellular relationship) addresses the multi-cellular system (cytome) that 

illustrates the dynamic interactions between cellular systems or subsystems and 

environment and provide opportunities to model and predict homogeneous and 

heterogeneous behaviour of the cytome. Sensitive yet high throughput technology for 

data acquisition of these multi-dimensional, multi-scalar dynamic data sets depicts an 

insightful description of living systems (Anderson et al. 2001) and the relationship among 

these data sets is a prerequisite for our understanding of biology at a systems level 

including disease processes (Pollok 2005).

1.2.2 The depth and breadth of single cell information
Single cell analysis by image or flow cytometric methods has reached high throughput 

capacity in recent years (Bullen 2008; Valet 2005b); High-throughput and indeed high- 

content cell-based screening systems, incorporating elegant reporter assays, have been 

effectively used to profile drugs based on simple stimulus-response readouts (Bullen 

2008; Terstappen et al. 2007). These include high throughput single cell microscopy 

(Bocsi et al. 2004a; Ecker et al. 2004a; Ecker et al. 2004b; Gerstner et al. 2004; Kantor 

et al. 2004; Mittag et al. 2005b; Perlman et al. 2004b; Schubert 2004) with data 

reconstituted, to single cell molecular 3D tissue architectures (tissomics) (Ecker and 

Tarnok 2005; Kriete and Boyce 2005; Schubert 1990, 2004). High throughput flow 

cytometry (Edwards et al. 2004) or flow and image hybrid systems (George et al. 2004) 

as well as chip-based flow systems (Palkova et al. 2004; Weston and Hood 2004; Wu et 

al. 2004), cellular genomics (Taylor et al. 2004), cellular proteomics by 

immunophenotyping (Casasnovas et al. 2003; Maynadie et al. 2002; Valet et al. 2003) 

and chemical cytometry (Arkhipov et al. 2005; Dovichi and Hu 2003; Wu et al. 2004) as 

well as cellular metabolomics (Dovichi and Hu 2003) constitute further facets of recent 

extensions in molecular cytomics. However the design of current high-throughput 

instrumentation discards biological heterogeneity, and most assays never contend with

7



Chapter 1: Introduction

dynamic processes. In the absence of detailed kinetic information, simple snap-shot or 

static high-content-assays provide an over-simplified and often skewed view of the 

cellular system.

Encoding and organizing cytometric information, especially image cytometry-derived 

kinetic information, and transforming that into pertinent knowledge within a 

bioinformatics context is the core theme of the present research. Cell theory informed 

levels of bio-complexity as outlined in figure 1-2 is the basis for this endeavour where the 

cell cycle is an underlying and driving force for this complexity due to its ubiquitous and 

dynamic nature and arguably the most fundamental process for eukaryotic cells (Nurse 

2000a). The premise of the current work is that mammalian cell cycle can provide the 

mechanistic driver (engine) for cellular dynamics and hence underpins the construction 

and temporal complexity as outlined as levels 1 and 2 in figure 1-2. This approach 

enables the incorporation of the important characteristics of proliferating cellular systems 

including: checkpoint controls, alternative cell cycles, asymmetry of division, lineage 

(multi-cycle) responses, cellular interactions and the evolution of drug resistance (innate 

and acquired). The ambition is to connect the nature and probability of cellular 

responses with the analysis of early molecular decision events -  linking origins and 

outcomes separated over wide timescales. The gap is considerable because of the 

problems of data acquisition in providing both informative and standardized single cell 

read outs and the bioinformatics challenges of encoding and interrogating the 

spatiotemporal cellular perturbations.

By developing a bioinformatics framework, this research aims to provide benefits by 

contributing to the current understanding of complex cellular dynamics and associated 

mathematical model building. Models that attempt to fabricate predictive cell response 

profiles will have use in pre-clinical drug screening, experimental therapeutics and 

hypothesis-driven research, a common interest shared by a wide range of life scientists 

(Carnero 2002; Malumbres and Barbacid 2001; Sampath and Plunkett 2001; Walker 

2001). The cell cycle has been the subject of intense and varied study over the past 100 

years (Nurse 2000b), and investigation of the basic molecular mechanisms is set to 

continue apace providing a long-term demand for linked bioinformatics solutions (Nurse 

2000b).
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1.3 Cell cycle -  the engine that drives population dynamics
In eukaryotes, the cell cycle involves numerous regulatory proteins that direct the 

somatic cell through a specific sequence of events culminating in mitosis and the 

production of two daughter cells while germ cell generation and gamete fusion are 

modulations of this theme (Smith et al. 2008). The precision with which cell cycle events 

are executed ensures the survival of living organisms, while loss of this precision 

increases genomic instability, an important factor in the formation of cancer (Nurse 

2000b). Various proteins regulate this progression through different stages of the cell 

cycle which, from a morphological aspect, can be divided broadly into two phases: 

interphase (I), during which the cell grows, accumulating nutrients needed for mitosis 

and duplicating its DNA, and mitosis (M) phase, during which the cell normally divides 

into two daughter cells.

1.3.1 Phases of the cell cycle
Soon after division each daughter cell begins the interphase of a new cycle, which again 

divides into subphases. Although these subphases of interphase are not easily 

distinguishable by morphology, each phase has a distinct set of specialized biochemical 

processes that prepares the cell for quiescence or a potential cell division event. The 

first subphase of interphase, which can be mapped from the previous M phase up to the 

beginning of DNA synthesis, is called G1 (G indicating gap). This phase is marked by 

synthesis of various enzymes required in for DNA replication in S phase. The duration of 

G1 is highly variable, even among different cells of the same species (Smith and Martin 

1973). The ensuing S phase starts when DNA synthesis commences; when it is 

complete, all of the chromosomes have been replicated, i.e., each chromosome normally 

having two (sister) chromatids. Thus, during this phase, the amount of DNA in the cell 

has effectively doubled. Rates of RNA transcription and protein synthesis are relatively 

low during this phase. An exception to this is histone production, most of which occurs 

during the S phase (Nelson et al. 2002a; Wu and Bonner 1981). The duration of S phase 

is relatively constant among cells of the same species (Ivan and Greulich 1963). The 

last subphase of interphase is G2, which lasts until the cell enters metaphase. 

Significant amounts of protein synthesis occur during this phase, mainly involving the 

production of microtubules, which are required during the process of mitosis. Inhibition of 

protein synthesis during G2 phase prevents the cell from undergoing mitosis 

(Stefansson and Brautigan 2007).
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After interphase the next phase is M (Mitosis) phase which is again divided into four 

subphases - prophase, metaphase, anaphase and telophase. During prophase, the 

replicated chromosomes, each comprising two identical chromatids, are condensed into 

compact packets and then released to the cytoplasm when the nuclear membrane 

breaks down. During metaphase and anaphase, the chromosomes are sorted, and 

each chromatid of a pair moves to opposite sides of the cell. The end of mitosis is 

marked by a re-formation of a membrane around each set of chromosomes which is 

designed as telophase. Division of cytoplasm, also known as cytokinesis, generates two 

daughter cells, each with a 2n complement of genetic material (Lodish et al. 2004).

After mitosis (cell division) both daughter cells again enter to a G1 interphase and from 

this phase not all “post-mitotic" cells may enter a subsequent S phase by respecting a 

G1 cell cycle check point, thus providing a non-proliferative fraction of cells in a GO state. 

GO cells may remain quiescent for long periods of time, possibly indefinitely (as is often 

the case for neurons) particularly following full differentiation. Some cell types in mature 

organisms, such as parenchymal cells of the liver and kidney, enter the GO phase semi­

permanently and can only be induced to begin dividing again under very specific 

circumstances; other types, such as epithelial cells, continue to divide throughout an 

organism's life. According to their location, state and function, cells may also be 

destined for programmed disposal through apoptosis - a highly regulated process by 

which an organism eliminates unwanted cells without eliciting an inflammatory response. 

Apoptosis is involved in many physiological processes including tissue homeostasis, 

embryonic development, and the immune response (Schwartzman and Cidlowski 1993). 

The timing and order of cell cycle events are monitored during cell cycle checkpoints that 

occur at the G1/S phase boundary, in S phase, and during the G2/M phases (Murray 

and Hunt 1993). These checkpoints ensure that critical events in a particular phase of 

the cell cycle are completed before a new phase is initiated, thereby preventing the 

formation of genetically abnormal cells. These checkpoints ensure that critical events in 

a particular phase of the cell cycle are completed before a new phase is initiated, 

thereby preventing the formation of genetically abnormal cells (King and Cidlowski 

1998).
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1.3.2 Regulation of the cell cycle
Because it is essential to identify and eliminate cells proliferating inappropriately, 

apoptosis and proliferation are tightly coupled, and cell cycle regulators can influence 

both cell division and cell death (Meikrantz and Schlegel 1995). Two key classes of 

regulatory molecules, cyclins and cyclin-dependent kinases (CDKs), determine a cell's 

progress and direction through the cell cycle (Nigg 1995) under the regulatory influence 

of CDK inhibitory molecules and processes that provide for specific activation and 

destruction. CDKs are serine/threonine protein kinases, with a wide range of target 

molecules involved in cell cycle progression, being activated through phosphorylation at 

specific points in the cell cycle. There are at least seven CDKs in mammalian cells 

(Pines 1995). The CDKs are critical for progression through the cell cycle because their 

inactivation prevents mitosis (Devault et al. 1991; Parker and Piwnica-Worms 1992; Van 

den Heuvel and Harlow 1993). Cyclins form the regulatory subunits and CDKs the 

catalytic subunits of an activated heterodimeric holoenzyme; cyclins have no catalytic 

activity and CDKs are inactive in the absence of a partner cyclin. When activated by a 

bound cyclin, CDKs perform a phosphorylation that activates or inactivates target 

proteins to orchestrate co-ordinated entry into the next phase of the cell cycle. There 

are several types of cyclins and most of them bind to a particular type of CDKs and are 

active at different phases of the cell cycle. However, there are several “orphan” cyclins 

which have no CDK partner, for example cyclin F is an orphan cyclin which is essential 

for G2>M transition (Fung and Poon 2005; Karp 2007; Lee and Zaho 2006).
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Fig. 1-3 The cell cycle and its regulation. Schematic representation of the mammalian 
cell cycle and its regulation. Activating and inhibiting influences are represented by blue 
arrows and red lines, respectively. In the inset of the schematic representation is a 
typical expression profile of a fluorescent (eGFP-linked cyclin B1) cell cycle phase 
marker (CCPM) for G2/M and associated cellular shape changes observed during a cell 
cycle. A t the end of S phase dim cytoplasmic fluorescence is observed and during G2 
phase this fluorescence becomes more intense. As the cell enters the early stages of 
mitosis (prophase) green fluorescent protein (eGFP) translocates to the nucleus. As 
mitosis proceeds the nuclear membrane dissolves and the cell rounds up and becomes 
intensely green. Finally, towards the end of mitosis the reporter is degraded so that the 
two daughter cells are non-fluorescent [adopted from (Abrous et al. 2005)].

The concentration of some cyclins like cyclin B1 varies in a cyclic fashion during a cell 

cycle in relation to their production or destruction. When the concentration of a particular 

cyclin is low it detaches from the corresponding CDKs, and inhibits its kinase activity, 

probably by causing a protein chain to block the enzymatic site (Bai et al. 1994; Kong et 

al. 2000). Cyclins and CDKs are valuable markers of cellular proliferation. The kinases 

are expressed differentially in cells undergoing cell cycle progression, and cyclins show 

phase-specific expression. These differential expression patterns act as proliferation 

indices, providing numerical values for subpopulations of cells in different phases of the 

cell cycle.
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Many drugs differentially target phases of the cell cycle and this heterogeneity in cellular 

responses presents a means of cell cycle-mediated drug resistance. For example, a 

cytostatic anticancer drug, exerting its effect at specific phases of cell cycle results in a 

modified and complex cell cycle traverse pattern - delay, arrest and checkpoint 

breaching. This PD response at the single cell level is governed by complex signal 

transduction and regulatory pathways, which in turn are determined by the prevailing 

pharmacokinetic (PK) response -  the form and fate of the perturbing agent within the 

biological system. The relationship between the PK and PD responses are complicated, 

usually requiring mathematical description, especially when the perturbed biological 

system expresses discrete events within a heterogeneous cellular population (Chappell 

et al. 2008). Here a more detailed understanding of cell cycle dynamics and their 

complexity has been categorized at three different levels and a prerequisite to this is the 

encoding of the interlinked structural and functional information within a standardized 

data format.

1.4 Cytometry - an analytical technology
Cytometry embraces all aspects of analytical approaches to the characterization and 

measurement of cells and cellular constituents for biological, diagnostic, and therapeutic 

purposes. Cell-based measurements can be used to inform aspects of heterogeneity 

including the asynchronous timing of specific processes and the spatial changes in 

participating molecules and structures (Smith 2004). Areas of research and diagnosis 

include: immunophenotyping (Gerstner et al. 2006; Mittag et al. 2005a; Perfetto et al. 

2004), rare cell detection (Bocsi et al. 2004b) and characterization in the case of stem 

cells (Bou-Gharios et al. 2004; Jovcic et al. 2004; Lovell and Mathur 2004; Rashid et al.

2004) and residual tumour cells (Shen and Price 2006; Steiner et al. 2000; Szaniszlo et 

al. 2004), tissue analysis (Ecker and Steiner 2004; Gerstner et al. 2004; Megyeri et al.

2005) and drug discovery (Van Osta 2006; Van Osta et al. 2006). The measurement 

principles used in cytometric systems can be varied (e.g. impedance, dielectrophoresis 

etc.) but usually employ light. Cytometry-based platforms have offered increasingly 

sophisticated levels of multiplexing, often based on the principle of light manipulation, 

can be broadly classified into two groups -  flow and image cytometry - both of which can 

be used to supply parameters for use in computational biology to support, for example, 

both the screening and development of molecular therapeutics (Smith et al. 2007b).
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1.4.1 Flow cytometry -  high throughput cross sectional data 
elucidating the cell cycle

Flow cytometry (FC) is a high precision technique for the rapid analysis and even sorting 

of cells. FC analysis of biological material by the detection of light-absorbing or 

fluorescent properties of cells or subcellular fractions, such as chromosomes, passing in 

a narrow stream through a laser beam. Usually the stream is organized to undergo 

hydrodynamic focusing to allow for optimal presentation of the suspended object in the 

stream to a focus of the laser beam. Cells can be counted and their laser scatter and 

fluorescence signals analysed (e.g. intensity, spectral quality and even life-time). A 

typical ‘jet-in-air1 system allows for the stream to be broken into droplets with different 

charges prior to passing through opposed electrostatic plates. In this configuration FC 

can be used automatically to sort droplets (i.e. fluorescence activated cell sorting; FACS) 

containing object of interest by deflection at the plates and the sorting of successive 

droplets of the stream into different fractions depending on the fluorescence emitted by 

each droplet. The correlated data sets obtained by FC also allow simultaneous multi- 

parametric analyses of the physical and/or chemical characteristics of single cells 

flowing through the optical and/or electronic detection apparatus The technique provides 

statistical accuracy and sensitivity, which is primarily attributed to its large sampling 

capability (105-106 cells/ml; >1000 cells per sec) and potential for robotic sample 

handling. Converting this voluminous multi-parametric data into information and 

eventually to knowledge is a discipline in its own right and produces a significant 

challenge (Watson 1991). The major applications of FC measurements include: the 

analysis of cell cycle, surface and internal epitome detection, apoptosis and cell death 

detection, functional studies on cellular subcompartments (e.g. mitochondria, lysosomes 

etc), intracellular signalling pathways (e.g. phosphoprotein expression), analysis of 

protein location, immunophenotyping (HIV profiling), detection of cellular pathogens (e.g. 

malaria parasites), cytoskeleton studies and stem cell detection. The measurement of 

the DNA content of cells was one of the first major quantitative applications of flow 

cytometry and involves fluorescence detection of nucleic acid content in cells pre­

labelled with an appropriate fluorescence tag (e.g. a cell permanent cationic dye such as 

Hoechst 33342 or DRAQ5 (Smith et al. 2000)) or a combination of labels (e.g. a cyclin 

reporter and a DNA content dye; Fig 1-4). FC can not only quantify the fluorescence 

signals but also use these to separate cells of interest from a mixed population based on
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some pre-selected characteristics (cell cycle phase and integrity) permitting the 

subsequent analysis of other molecular features.
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Fig. 1-4 Quantifying cell cycle from FC result. The plot here shows a typical FC 
output where green fluorescence protein (GFP) was tagged with cyclin B1, an 
endogenous cell cycle marker. Inset shows a histogram representing the proportion of 
cells present in different phases of the cell cycle.

In FC, multi-parameter measurements are typically performed to discriminate very 

specific cell populations to confirm or refute a hypothesis. These analyses provide an 

essential and cost-effective data source for mathematical modelling particularly in a 

limited high throughput screen (HTS) mode. However only a fraction of the available 

information is usually extracted by visual evaluation of multi-parametrically gated 

histograms or by quantification of marker positive or negative cells (Valet 2005a). This 

time consuming compartmental approach not only skews results but also lacks the 

interpretation of interlinked cellular behaviour. Taking repetitive samples of cells 

undergoing some kinetic process (e.g. drug uptake, drug efflux or enzymatic conversion 

of a fluorogenic substrate) can inform population kinetics and identify the presence of 

subpopulation responses. However, in conventional FC measurement it is not possible 

to track and extract cellular data continuously at the single cell level and therefore 

correlative or time series analysis on for a given cell cannot be achieved. Moreover the 

need to gate FC data sets, often subjectively, makes FC data qualitative and non­

standardized data (Ubezio and Rossotti 1987). These limitations have implications for

o j|§ C .. v .  cell, cycle 
&  * ;  • • reporting

j BESf r1- ? ;• ceils
g p ,  a * !  ♦

M s#.*--.1/ '

15



Chapter 1: Introduction

FC as an analytical tool for wider research and clinical use. Recent technological 

advances have seen the development of laser scanning cytometry, in which cells are 

scanned on a slide surface and can therefore be revisited at known locations, to allow 

for kinetic studies. Further, collaborative efforts are underway to establish standardized 

solutions for representing, collecting, annotating, archiving, analysing and disseminating 

flow cytometry, data (see: http://flowcyt.sourceforge.net/). Finally a major drawback is 

that flow cytometry in principle, is unable to analyse cells in their natural environment 

(e.g. tissues, cell cultures), and the need to reduce samples to single cell suspensions is 

a complication for adherence-dependent biology or the analysis of cellular interactions 

and relationships. Consequently other methods have been sought to analyse dynamic 

events in situ.

1.4.2 Timelapse microscopy -  potential for continuous single cell 
tracking

Cellular imaging involves the use of a system or technology capable of visualizing a cell 

population, single cell or sub cellular structure, applied in combination with image- 

analysis tools (Lang et al. 2006). Microscopes, in one form or another, constitute a 

considerable part of imaging technologies and usually generate two dimensional array of 

information (a digital image) extracted from a particular biological situation. Microscopy 

can employ different parts of the electromagnetic spectrum for image formation, with two 

common approaches being optical/visible light-based microscopy and electron 

microscopy. Both light and electron microscopy involves the diffraction, reflection, or 

refraction of radiation incident upon the subject of study, and the subsequent collection 

of radiation signals in order to build up an image. This process may be carried out in 

wide field mode (for example standard light microscopy and transmission electron 

microscopy) or by the scanning of a fine beam over the sample (for example confocal 

microscopy and scanning electron microscopy). Through different microscopic 

techniques it is possible to acquire images of cellular details at different levels of 

intricacy, and timelapse microscopy (TLM) is the repeated collection of a single field of 

view from a microscope at discrete time intervals through which dynamics, for example 

of cell division, can be captured. TLM enables tracking of single cell events or cellular 

responses in a population context with a liked time signature (Marquez et al. 2003) and 

can employ different microscopy modes.
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History of TLM
The application of timelapse imaging, to resolve events too complex or fleeting for 

examination by observation, parallels the development of photography. The pioneer, 

Eadweard Muybridge is famous for his split-second studies of motion which began in 

1872 with an attempt to capture the movement of a galloping horse. Initially, cellular 

timelapse image sequences were acquired using silver halide-based film, the resultant 

movies being instrumental, for example, in demonstrating the dramatic behaviour of cell 

motility (Bajer and Bajer 1972). Over the last 25 years, cell biology has benefited from 

improvements in electronic imaging technologies that have largely replaced silver-based 

film recordings. During the 1980s the use of analogue video technology greatly 

expanded the use of light microscopy as an analytical tool (lnou6 1986; lnou6 and 

Spring 1997; Salmon 1995). Over the last several years, the use of analog video­

capture systems has been largely replaced by computer-based digital image capture 

systems (Inoue and Spring 1997; Sluder and Wolf 2003). With their high quantum 

efficiency, low-noise characteristics and ease of use, imaging systems for digital 

microscopy have greatly improved the study and quantification of dynamic cellular 

behaviour.

Recent advances in imaging technology have been coupled to improvements in 

photochemistry/photobiology, with the development of sophisticated molecular probes 

that have allowed the visualization of discrete molecules within living cells (Lippincott- 

Schwartz et al. 2001; Rieder and Khodjakov 2003). These advances in probes have 

allowed sophisticated molecular interactions to be studied at the level of the individual 

cell (Cardullo and Parpura 2003). A major advance in the bio-imaging field has been the 

development of green fluorescent protein (GFP) (Lippincott-Schwartz and Patterson 

2003), which allows tagged proteins to be visualized and imaged. Chimeras made from 

a gene of interest coupled to GFP — or genetically engineered chromatic variations of 

GFP —  can be readily introduced into cultured cells as well as genetically tractable 

organisms such as yeast, flies, worms, and fish (Haraguchi 2002; Zhang et al. 2002). 

More often than not, these GFP fusions retain their native biological activity while 

becoming fluorescently tagged. Central to the assay is a fluorescent probe that consists 

of two main components (i) the targeting portion and (ii) the chromophore portion, which 

presents the signal to be measured. The robustness and dynamic range of the assay is 

dictated by the efficacy of the ligand-target interaction together with the quantum
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efficiency of the fluorophore. The choice of fluorescence detection instrument is 

determined by the nature of the intensity signal to be acquired and the required 

spatiotemporal resolution. Increasing sophistication in the design and application of 

biological models as well as the advent of novel fluorescent probes have led to new 

demands on molecular imaging systems to deliver enhanced sensitivity, reliable 

quantification, and the ability to resolve multiple simultaneous signals - multiplexed and 

multispectral imaging (Levenson et al. 2008)

Types of timelapse microscopy
Light microscopy involves passing visible light transmitted through, or reflected from, the 

sample through a single or multiple lenses to allow a magnified view of the sample 

(Abramowitz and Davidson 2007). There are multiple types of light microscopy, 

common approaches being: - bright field, dark field, oblique, phase contrast, differential 

interference contrast, fluorescence, confocal laser scanning and deconvolution 

microscopy. The focus of the present research involves the use of phase contrast and 

fluorescence microscopy and as such only these will be discussed in further detail. 

Within the time frame of this project it was only possible to cover these two basic 

approaches although it is acknowledged that other modes have common features and 

specific advantages or drawbacks.

Phase contrast microscopy
Phase contrast microscopy, a widely used mode for TLM, was developed on the 

methodology introduced by Zernike in early 20th century (Zernike 1942, 1955). Phase 

contrast (Goldstein 1982; Inoue 1986; Yamamoto et al. 2003; Zernike 1958) is a 

technique in which the influence of specimen thickness and refractive index on the 

phase of light passing through it is used for contrast enhancement by manipulating the 

phase and amplitude of the un-diffracted light relative to the diffracted light. This mode 

yields excellent contrast and axial resolution when used with video enhancement (Inoue 

1989, 1990; Inoue 1986). Transmission phase offers a probe-less contrast mode 

providing low resolution but highly informative outputs (e.g. cell shape and cell position) 

for tracking cell division, cell death and motility (Stephens et al. 2004). This approach 

has been successfully used in screenings (e.g. in 18-36 well formatted culture plates) to 

determine single cell cycle traverse, checkpoint breaching in response to drug 

perturbations (Marquez et al. 2003) and wound closure (Stephens et al. 2004); such a 

non-perturbing mode can be used for event/time-encoded cell-based assays.
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Fluorescence microscopy
Fluorescence microscopy has long been used to capture the details of molecular 

patterns, distribution and dynamic behaviour at single cell level (Dunn et al. 2004). The 

attributes, advantages, and uses of fluorescence microscopy are well documented 

(Agard et al. 1989; Arndt-Jovin et al. 1985; Axelrod 1989a; Axelrod 1989b; Axelrod 

1989c; Brakenhoff et al. 1990; Bright et al. 1989; Haugland 1992; Jovin and Amdt-Jovin 

1989; Pawley 1989; Taylor and Salmon 1989; Taylor et al. 1986; Tsien 1989; Wang and 

Taylor 1989). Advances in fluorescent probe design and synthesis (Haugland 1992; 

Loew 1988; Tsien 1989; Tsien and Waggoner 1990), and molecular biology and protein 

chemistry (Wang and Taylor 1989), coupled with technological improvements in 

microscopes and detectors have further enhanced the advantages and extended 

applications and performance. Molecular tagging using cell cycle (e.g. GFP-cyclin stealth 

fluorescent reporters (Thomas 2003)) can reveal underlying molecular events and offers 

a continuous readout for cell cycle and lineage mapping. Intercepting the continuously 

sampled process by fixing the culture and probes, using an ’in-cell’ molecular mapping 

approach, allows one to obtain a functional and structural fingerprint of linked dynamic 

data.

1.5 Cellular dynamics viewed through timelapse microscope
TLM has become an important mean to dynamically quantify single cell response to a 

perturbed situation in a population context (Lang et al. 2006). Multimode microscopy—  

defined several years ago as the automated combination of multiple modes of light 

microscopy, including fluorescence, luminescence and transmitted light modes (Farkas 

et al. 1993) — has emerged as a powerful tool in the dissection of molecular events 

within living cells. The coupling of multiple channels of fluorescence, whether 

independent (Plymale et al. 1999) or combined through ratio imaging (Pap et al. 1999), 

has been applied to a wide range of multimode applications. The resolution, and hence 

type of event, is determined by the contrast mode which includes phase, differential 

interference contrast, dark field and fluorescence imaging (White and Errington 2005). 

The past decade has witnessed an increase in the dimensionality of the cellular 

information that can be obtained with light microscope methodology (Taylor et al. 2001). 

The multimode microscope can acquire images at variable rates, at milli-pico second 

scale for the study of protein-protein and drug-protein interactions. Millisecond resolution 

is used for the study of ion transportation (e.g. calcium transportation and signalling)
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while imaging performed at the minute, hour or even day scale is used to track cellular 

behaviour in a population context (Marquez et al. 2003; White et al. 2005). 

Transmission/phase offers a probe-less and essentially non-perturbing contrast mode - 

providing restricted resolution but highly informative outputs on cellular behaviour (e.g. 

cell shape and cell position) facilitating assays that assess critical global cell PD 

responses such as the interruption of cell division, induction of cell death and changes in 

cell motility (Stephens et al. 2004).
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Fig. 1-5 Multimode timelapse m icroscopy capturing cellu lar dynamics. (I)
diagrammatic representation of a cell cycle, where a newly appeared cell at time 0 goes 
through different phases of the cell cycle and accordingly changes its shape and finally 
divides into two daughter cells -20  h. The green colour shade represents the intensity of 
cyclin B1 tagged with GFP, eGFP-cyclin B1. (II) An actual image sequence acquired via 
the multimode TLM in transmission phase, the black arrow within the image sequence 
indexing the cell under tracking. The change of cell shape corresponds to the 
diagrammatic representation. (Ill) Simultaneously acquired image sequence via 
fluorescence phase, the same cell is indexed by arrow but in this mode the resolution is 
higher and as such the shape of the cell could not be resolved but the tagged protein 
intensity (eGFP-cyclin B1) can be quantified easily from the image sequence. (IV) An 
event based plot showing a value of 1 when a cell divides into two daughter cells, based 
on the shape change visualized in II, number and time of events can be determined. (V) 
eGFP-cyclin B1 profile extracted from fluorescence image sequence and depicts the 
intensity at different phases of same cell cycle. From the intensity it is possible to profile 
the cyclin B1 expression which is an indicator for cell cycling positioning.
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The timelapse approach enables the determination of single cell cycle traverse, delay, 

arrest and checkpoint breaching in response to perturbations (Giuliano et al. 2005).

While the key events of cellular dynamics can be measured by transmission phase, 

fluorescence phase has been used to measure both the temporal and spatial dynamics 

of single and multiple proteins within populations of single cells (Taylor et al. 1984). 

Tagged protein-tracking provides sub-phase information on cell cycle progression, cell- 

cycle regulator dynamics in parallel with morphological landmarks and DNA content 

analysis. For example, the application of GFP and imaging techniques to cell cycle 

analysis has enabled significant advances to be made in understanding the timing of the 

molecular events that control the cell cycle. Fusing GFP with key cell-cycle control 

proteins (Arnaud et al. 1998; Huang and Raff 1999; Raff et al. 2002; Weingartner et al. 

2001; Zeng et al. 2000) and other cellular components (Kanda et al. 1998; Reits et al. 

1997; Tatebe et al. 2001) has been used to study the molecular organization behind the 

cell cycle. Tracking cells as they respond to pharmacologically active agents using a 

non-invasive approach provides a means of linking causative events with later outcomes 

at the molecular level, and forms the basis for molecular response fingerprint or 

pharmacokinetics (PK) response. Here, multimode microscopy -  transmission and 

fluorescence, has enabled us to visualize and parameterise cellular behaviour at 

different levels of feature resolution -  morphological, molecular and behavioural (e.g. 

event outcome of division, arrest, delay and death). These parameters collectively start 

to provide a comprehensive -  more holistic - map for the study of cellular dynamics 

which is yet to be fully exploited due to the hurdles of data management and informatics 

frameworks.

1.6 Converting images to numbers - data management issue
Advances in imaging technologies, in particular the development of high 

performance/low noise camera systems, and a parallel increase in computational power, 

have enhanced the ability to acquire and manage multi-parametric TLM data of 

increased complexity and quantity (Bullen 2008). Despite these advancements, image 

analysis has been held back substantially by limitations in the software used to store, 

process, and analyse such large volumes of information (Goldberg et al. 2005). Current 

software for microscopy automates image acquisition but fails to provide a robust data 

format through which these images can be annotated, stored and accessed. The
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primary reason has been that the derivation of information from images is completely 

dependent on contextual information that may vary from experiment to experiment 

(Goldberg et al. 2005) and that invokes a need to couple cellular descriptors with 

experimental descriptors in order to reveal complete information (metadata) about the 

dynamics. This is where cytomic data are fundamentally different other ‘omic’ data i.e. 

genomic data, which is independent of experimental variation. For example the form of 

a ‘correct’ DNA sequence is not dependent on the type of sequencer used and this 

feature is not included in sequence annotation. Moreover cellular information extracted 

from images, until recent years, were purely ‘expert driven’ and qualitative, demanding 

intensive effort. With the advent of commercial image analysis software (MetaMorph, 

ImagePro, MATLAB, GE Health Care) along with open source software like ImageMagic, 

transformation and to some extent obliteration the ‘qualitative’ aspect is achieved but the 

labour intensive aspect of image analysis still persists due to the lack of automation. So 

the key challenge remaining to-date is the development of image analysis algorithms 

that automatically extract information at single cell level (Price et al. 2002). Timelapse 

image analysis has been described as one of the greatest remaining challenges in 

screening (Echeverri and Perrimon 2006; Eggert and Mitchison 2006) and this field of 

biological science is also described as “very much in its infancy” (Murphy et al. 2005) 

and “lags behind the adoption of high-throughput imaging technology” (Perlman et al. 

2004b). Addressing this bottleneck caused by the qualitative and labour intensive nature 

of the technology, different open source projects like CellProfiler (Carpenter et al. 2006) 

and ImageJ-NIH (Collins 2007) have emerged, focusing on the development of analysis 

packages and algorithms that can extract image-derived cellular information. Such as 

morphological information, from fields of cells and can address a variety of biological 

questions quantitatively, including standard assays (for example, cell count, size, per-cell 

protein levels) and complex morphological assays (for example, cell/organelle shape or 

subcellular patterns of DNA or protein staining) in high content and through-put modes 

(Carpenter et al. 2006).

Cell-based assays are conveniently prepared in multi-well culture plate formats, such as 

96-well and 384-well plates, for high-throughput screening to facilitate the study of 

responses of a population of cells under different chemical, genetic, or radiation 

perturbations. However, in the absence of integrated solutions to image data 

management, it has become standard practice to migrate large amounts of data through
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multiple file formats as different analysis or visualization methods are employed. Once 

analysis is carried out, the results are usually exported to a spreadsheet program like 

Microsoft Excel for further calculations or graphing. Due to the lack of proper data 

management i.e. connectivity among different stages (image acquisition to data 

analysis), it has become almost impossible to coherently dissect or query all the 

elements of the data management environment. Moreover the data model used in any 

imaging system varies from site to site, depending on the local experimental and 

acquisition system. Finally, even within a particular site, data models change over time 

as new acquisition systems, imaging technologies, or even new assays are developed. 

The development and application of new imaging techniques and analytic tools will only 

accelerate, but the requirement for coherent data management and adaptability of the 

data model remain unsolved (Goldberg et al. 2005).

From this evolving demand for a new approach to microscopic image and image derived 

data management, OME Open Microscopy Environment (OME) (Goldberg et al. 2005) 

(also see: www.openmicroscopy.org) was established where the primary goal was to 

enable the automatic analysis, modelling, and mining of large image sets with reference 

to specific biological hypotheses. OME aims to manage and store the original image 

along with the metadata that specify the context or meaning of that image. Some 

metadata are devoted to describing the optics of the microscope, some to the 

experimental setup and sample, and some to information derived by analysis. Finally, 

OME aims to provide a flexible mechanism for incorporating new and existing image 

analysis routines and storing the output of those routines in a self-consistent and 

accessible manner. It thus forms an image informatics infrastructure where it would be 

possible to manipulate and share image data as readily as genomic data; from a 

genomic perspective, this approach can be compared to the MIAME approach (Brazma 

et al. 2001) which aimed to standardize microarray experimental descriptors and 

annotations. OME has defined general image information to be five dimensional (5D): 

coordinates X and Y, focal point Z, time T and wavelength or channel C. Through XML 

schema image information is tagged and thus supports systematic and quantitative 

image analysis as well as formulating primary standards for image data. Through OME- 

XML schema metadata and through OME-TIFF, image files are stored in a relational 

database, which can be shared via server protocols.
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The bottleneck of handling and analyzing large number of image data has prevented 

image analysis from being performed in a high content fashion. High content screening 

(HCS) is a powerful approach for disease diagnosis and prognosis, drug target 

validation, and compound lead selection (Zhou and Wong 2006). It has recently 

emerged as a promising solution to improve the quality of decision making in drug 

development (Bullen 2008). The challenge lies in how to convert all the images showing 

functions and interactions of macromolecules in live cells and tissues into quantitative 

values that can be analysed statistically (Zhou and Wong 2006). Bearing this in mind, in 

recent years a joint effort between CellProfiler and OME has been launched to 

implement a complete open-source infrastructure for organizing and analyzing images 

(Swedlow et al. 2003). Timely inception of such infrastructure and next generation HCS 

machines from instrument developers (GE Healthcare, Molecular Devices and Chipman 

Technologies) with longterm live cell culture modules, is set to make a significant 

contribution to cytometry based high content screening (HCS).

1.7 High content screening -  scaling up cell based assays
HCS has introduced a step forward to the current method of TLM similar to the 

advancement of automated DNA sequencing over manual sequencing methods. This 

has been accomplished by automating the major aspects of the imaging process, 

including analysing the huge numbers of arrayed cells that could be tested with a wide 

range of experimental treatments rapidly and without extensive human interaction. 

Automation of image acquisition, image processing, image analysis, image archiving, 

and image visualization has made it possible to prepare large numbers of microplates, 

placed in a stacker on the HCS instrument and with operator walk-away while the plates 

are processed by the system. This has permitted an accelerated approach to the 

process of producing data through to creating new knowledge from a massive number of 

cells in a matter of one day. HCS has the potential to fundamentally change the process 

of doing large-scale cell biology in basic biomedical research and drug discovery (Taylor 

2006). HCS has made large-scale cell biology a tractable approach to drug discovery by 

generating functional genomic information through the automated measurement of the 

temporal and spatial activities of genes, proteins, and other constituents in living cells 

(Abraham et al. 2004; Giuliano 2003; Giuliano et al. 1997). The foundation of HCS 

involves the strategic combination of instrumentation, imaging algorithms, reagents, and 

data visualization, archiving, and mining software to dissect the interrelationships
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between cellular processes and the effects chemical compounds, including potential 

therapeutic candidates, have on them (Giuliano 2003; Minguez et al. 2002; Wipf et al.

2000). It is important to note that HCS targets involve not only the direct site of drug 

interaction but also the multiple physiological processes that are invariably affected by 

drug activity (Giuliano et al. 2004). HCS assays in which multiple parameters are not 

only measured within single cells using multiple reagents and morphometries, but the 

relationship of these parameter values are calculated, analysed, and interpreted on a 

cell-by-cell basis (Taylor 2006). Exploiting this multiplexed cellular information has 

benefited the process of drug discovery by facilitating the early decision making on drug 

targets, lead selection, and late-stage attribution (Zhou and Wong 2006). Additionally it 

has also elevated our understanding of the complex biochemical and molecular 

processes, occurring in time and space, that dictate cell function and the complex 

behavioural responses of cells to natural environmental changes or experimental 

treatments -  a systems level understanding. By facilitating early decision making HCS 

is set to ease the bottlenecks in the early stages of drug discovery process which indeed 

of great importance for pharmaceuticals and from a research perspective the system 

level understanding of cellular behaviour.

A current trend in systems biology is the reverse engineering of networks to model gene 

regulatory or protein-protein interactions with a subsequent extraction of basic principles 

for biological organization and complex disease phenotypes (Schadt and Lum 2006). 

The ability of in silico representations to predict how a system in a particular state may 

react and adjust to perturbations has made systems biology an attractive component of 

basic research, drug development, and predictive medicine. However, computational 

systems biology are not adequately developed in dealing with the spatiotemporal 

properties of cells and multi-cellular architectures (Loging et al. 2007). Indeed, attempts 

to integrate and interconnect various levels of biological organizations, such as genes, 

proteins, cells, and tissues, are in their infancy (Kriete 2005). A recent study has used a 

timelapse video approach to allow for data linkage in studying the spatiotemporal 

dynamics of social amoeba (Dictyostelium) cell populations comprising more than 2,000 

mutant clones from a large mutagenesis collection. The dataset generated allows one to 

search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis 

(Sawai et al. 2007). Efforts have been made to utilize the cellular information to 

understand single cell-based response evaluation to drug treatment (Conrad et al.
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2004), pattern recognition of localized protein distributions that improve currently 

available ontologies (Boland et al. 1998), as well as analysis of changes of sub-cellular 

phenotypes due to systematic RNA interference (RNAi) (Perlman et al. 2004a).

Discarding the rich spatiotemporal context of cells within a complex tissue and assuming 

that each cell is a separate entity is a clear simplification in attempting to describe the 

systems behaviour of cells. At a tissue or organ level, a cell cannot be designated as an 

independent entity, since the behaviour of ‘a cell’ at ‘a time point’ is the result of many 

factors - environmental or experimental variability its predecessor had endured, number 

of generations that have elapsed since the last experimental or environmental 

perturbation, age or generation variation relative to surrounding cells and cell cycle 

phase variability comparative to its siblings. These factors govern the current behaviour 

of ‘a cell’ and impart asymmetry to an event outcome. In the somatic cell context, not all 

cells in the same cell lineage behave identically, i.e. do not divide or die at the same rate 

especially in disease states or perturbed situations.

Recently the MitoCheck project group (EMBL, Heidelberg) have demonstrated the 

impact of timelapse microscopy in a pilot automated platform assaying cell division 

(mitosis) and chromosome segregation to provide a time resolved phenoprint of mitotic 

gene knockdown (Neumann et al. 2006). They have demonstrated that phenotypic 

classification would be misinterpreted in corresponding endpoint assays, thus data on 

event patterns such as delayed versus and arrested is the basis for determining and 

understanding the subtleties through which occult cell cycle pattern become apparent. 

Moreover it is not only the cell cycle subtleties but also the event outcome that is also 

asymmetric and needs to be addressed in a relationship context. For example, an 

outcome event of two identical daughter cells may be opposite to each other (e.g. one 

daughter cell die while other daughter cell divide), and the asymmetry of events for 

somatic cells cannot be overlooked as random processes as these two levels of 

asymmetry ultimately lead to subpopulation heterogeneity. Indeed at some point during 

the development of an organism unicellular/unipotent and mitotically active cells 

acquired an ability to undergo an asymmetric division. Through this special type of cell 

division, these cells could divide to generate two different progeny or to self-renew and 

at the same time generate a progeny that is committed to become a cell different from 

the mother cell (Gaziova and Bhat 2007). The relationship of cells in a tissue construct
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and in an organ system needs to be exploited to understand the population dynamics, 

and again it is the cell cycle that remains the predominant driving force for this dynamic. 

Exploiting the molecular and spatiotemporal information within a context where 

relationships among all participating cells is recognised, lays the foundation for 

illustrating a truer reflection of cellular dynamics at a systems level.

1.8 Understanding cellular heterogeneity -  an analytical and 
modelling approach
The importance of spatiotemporal information is not only limited to systems biology or 

drug discovery but also is essential for understanding biological processes such as 

growth (Palaniappan et al. 2004a), tissue repair (Farooqui and Fenteany 2005), 

differentiation and metastatic potential (Ronot et al. 2000), and chemotaxis (Dufour et al.

2005). To understand how apoptosis is induced by anti-mitotic drugs that vary in their 

ability to capture cells in successive mitosis, or how a subpopulation of cancer cells 

evolve resistance to an anticancer drug by evading cell cycle directed toxicity, requires a 

metadata level understanding of the influence of perturbing agents on cell cycle 

progression. Kinetic cell-based assays derived from TLM, where time is the quality 

parameter, demand solutions enabling image encoding and interrogation of cellular 

behaviour in a population context (Marquez et al. 2003). Cellular kinetic measurements 

provide a route to revealing important time windows at cellular level to study the 

mechanism of action of individual agents and their response pathways and thus 

establish more precise, quantitative, and multi-parametric characterization of cell cycle 

mechanisms under different perturbed conditions (Lang et al. 2006). Given the role of 

the mammalian cell cycle in defining a proliferation response to a perturbing agent, many 

studies required in vitro synchronization to make coherent sense of population-based 

assays, and demand a novel data format that encapsulates the features of cell-cell 

heterogeneity and time-dependent events while maintaining inter cell relationship.

Another approach for understanding cell cycle dynamics is through mathematical 

modelling, since mathematical modelling of biological process has two distinctive 

advantages -  firstly, parameter estimation and optimisation which is a prelude for 

developing any model for revealing in-detail understanding and measurement of different 

occult features which otherwise would be difficult to quantify from experimental data 

alone. Secondly, through simulation, different scenarios and the consequental outcome
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can be visualized within fraction of time to that of experimental duration. In a cell cycle 

context although the knowledge of the biochemistry and the physical processes of the 

proteins that regulate the cell cycle is fairly recent, mathematical models of the cell cycle 

can be traced back to as early as the 1970s (Hastings et al. 1977; Tyson 1974/75; Tyson 

and Sachsenmaier 1978) and even with recent mathematical models (Aguda 1999; 

Aguda and Tang 1999; Chen et al. 2000; Qu et al. 2003; Tyson 2002) the complexity of 

cell cycle dynamics could not be comprehensively simulated (Csika'sz-Nagy et al. 

2006). A recent review (Clyde et al. 2006) suggests that the deficiency of experimental 

data is the main reason for the bottleneck and moreover the data need to be of “new 

kind" comprising higher temporal resolution and permissive for simultaneous multi- 

parametric quantitative comparisons. Such data need to embrace multiple factors: (i) 

the data need to embrace the relationship among cells within a system and thus can be 

used to develop mathematical models that depict complexity and cellular heterogeneity, 

(ii) these model outputs along with the experimental data should contribute to elevate 

our understanding of PK and PD response, (iii) the data can be segmented in different 

levels from single to sub population to whole population level, (iv) the data can also be 

segmented in relation to different time domains, e.g. in analysing the behaviour for a 

particular time period or for particular generation of cells, (v) the data can be easily 

accessed and shared among researchers and modellers alike, (vi) the data can be 

shared with other encoded data originating from variety of timelapse experiments (e.g. 

fluorescence, phase contrast) and other cytometric instruments e.g. flow cytometry. 

Retaining such multi-parametric complexity, heterogeneity within a relationship context 

invokes new data format and cell lineage is deemed as the most plausible approach in 

this regard, as cellular behaviour encoded through lineage format can encapsulate the 

important features like event, time etc. while maintaining the inter cell relationship. 

Moreover during data mining lineages can be segmented according to different levels of 

complexity and time windows.

1.9 Cell lineage -  embracing the complexity and heterogeneity
The study of cell lineages has been, and remains, of importance in developmental 

biology (Stern and Fraser 2001). The human body is made-up of over 100 trillion cells 

and understanding which lineage relationships might be informative for disease 

processes, among these vast numbers of cells is a fundamental challenge for 

developmental biology and other branches of biology (Alvarez-Buylla et al. 2001;
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Anderson et al. 2001; Ardavin et al. 2001; Clarke and Tickle 1999; Dor et al. 2004; Kim 

and Shibata 2002; Noctor et al. 2001; Stern and Fraser 2001) and medicine (Bernards 

and Weinberg 2002; Hope et al. 2004; Tang et al. 2003; Weigelt et al. 2003; Yamamoto 

et al. 2003). Studies with cell lineage began with Whitman's (Whitman 1878, 1887) 

description of cleavage patterns in leech embryos in the 1870s, and continued with 

descriptions of lineages in many invertebrate animals, including nematodes, sea urchins, 

and ascidians. Studies of cell lineages have been critical in our understanding of how 

cell fates are specified in development and how fates are correlated with cell division 

patterns (Chisholm and Hodgkin 1989). A full cell lineage of an organism is the 

sequence of cell divisions leading from a zygote to each differentiated cell, during 

development. The exact topology, cellular phenotypes and distribution of cell fates in a 

cell lineage— what Wood (Wood 1999) termed the ‘cell lineage hieroglyphics’ —  

encodes information about the sequence of molecular and cellular events that generated 

it (e.g. the activation and repression of particular genes, or the secretion of 

morphogens). Cell lineages have been most comprehensively described for 

Caenorhabditis elegans to elucidate developmental mechanisms and nematode 

evolution (Braun et al. 2003; Fitch and Emmons 1995; Sommer et al. 1994; Sternberg 

and Horvitz 1981, 1982; Vancoppenolle et al. 2000; Wiegner and Schierenberg 1998).

Apart from development biology, the potential of cell lineage on elucidating the complex 

interplay of cellular heterogeneity has rarely been exploited. Even though work on cell 

lineages in the somatic cell context started over two decades ago (Potel et al. 1979; 

Stywester and Dennis 1980), it saw little progress until recently. Multiple reasons can be 

attributed to this trend - underdeveloped image acquisition instrumentations along with 

labour intensive cell tracking and qualitative data extraction procedure are thought to be 

the rate limiting factors (Taylor 2006). Over the past two decades, considerable 

technological advancement of light microscopy has occurred (Bullen 2008; Taylor et al.

2001) and as mentioned earlier one of the challenges remaining to-date is algorithms 

that can efficiently track cells in image sequences (Price et al. 2002) and also 

subsequently recognize and distinguish different cellular phenotypes automatically, 

(Conrad et al. 2004; Roques and Murphy 2002). Cell/object tracking particularly in an 

automated manner remains a challenge that hinders the transformation of a cell lineage 

approach to a high content scale. Different object tracking methods like - centroid 

method, Gaussian fit method, correlation method, sum-of-absolute differences method,
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and interpolation method were used (Zhou and Wong 2006) in this context but were not 

successful primarily due to three reasons -  first, tracking cells after the bifurcation point 

(when the cell under investigation divides into two daughter cells), the second is tracking 

cells in an interactive cell-cell environment, finally low resolution image sequences 

(phase contrast) with ill-defined cell edge definition (Swedlow et al. 2003). Considering 

these current strength and limitations, studies have attempted and successfully 

produced cell lineages encoded from timelapse image sequences (Chu et al. 2004; 

Endlich et al. 2000; Forrester et al. 2000; Forrester et al. 1999; Prieur-Carrillo et al. 

2003) illustrating the viability and proliferation of uni-nucleated and multinucleated giant 

cells formed after X-irradiation or apoptotic-induction post-irradiation in p21 gene knock­

out cell lines. However, the lineage data format used in these experiments is exclusive 

for those experiments and cannot be translated or transposed to other experimental 

situations and is such a cul-de-sac approach.

Fig. 1-6 Screen shot of earlier attempts to encode image derived cell lineage data in 
Microsoft Excel. Individual cells were drawn and data was manually written. The cells 
or the nodes were then connected by manually drawn lines. This approach was both 
time consuming, subject to error and was not inappropriate for hypothesis-driven data 
mining.

Reviewing the chronological perspectives of encoding cellular information in a 

relationship context, the cell lineage was selected as the most appropriate solution for 

achieving the “new data” format, since the cell lineage resembles the in vivo cellular 

dynamics. If cellular dynamics are monitored for a specified time duration under certain 

conditions i.e. tumour or wound healing, one would expect that at the start of the 

experiment there would be a few or a small number of cells and with the passage of time
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the cell number starts to increase as a cell proliferates along with asynchronous division 

which ultimately leads to heterogeneous populations. This time-integrated cell 

behaviour (e.g. asymmetry in inter-generation cell division time or cell death) can only be 

successfully depicted via a cell lineage where each node of the lineage represents and 

stores event related information - division, death etc., while the inter-node link stores life 

span information (from the start of interphase to the end of metaphase). Finally linking 

this event and life span (cell cycle) information with experimental or environmental 

information should permit comprehensive links at various levels and thus establish the 

desirable multi-parametric relationship in cellular context. Once established this 

relationship will support metadata analysis, the absence of which restricts current 

lineage analysis to simple time-oriented analysis rather than a time-integrated 

relationship analysis.

1.10 Hypothesis and objectives
Acknowledging the impossibility of defining a ‘universal data format’ that could 

encompass all timelapse experimental variability and the unavailability of efficient 

automated cell tracking algorithm/software - the hypothesis is that encoding 

spatiotemporal cell kinetics data in a lineage format provides a pragmatic route to 

determining cellular dynamics at molecular, single cell, subpopulation and population 

levels. These encoded alphanumeric kinetic data integrate multi-scalar events that 

comprise innate and induced population heterogeneity in dynamic cellular systems and 

hypothesis-driven interrogation of these data at the metadata level opens a route to 

revealing the nature and time frames for the modulation of the cell cycle in disease and 

under perturbed conditions, and forms the foundation for developing mathematical 

models of cell cycle dynamics. In order to explore this hypothesis certain objectives must 

be addressed which are inter-dependent and can be broadly grouped into three stages:

1.10.1 Development stage
The objectives during this stage concern formulation and development of a novel data 

format that encompasses the cellular and experimental heterogeneity in a lineage 

context. Once formulated the next objective will be to develop encoding tools that can 

encode cell lineages from TLM within the formulated data format. The final objective 

during this stage is establishing databases that can archive the encoded data and 

provide subsequent access to the data, so that a researcher can mine the lineage data 

for hypothesis driven investigations. As a whole this stage aims to develop an
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infrastructure within which lineage data encoding, archiving and mining would be 

possible.

1.10.2 Validation stage
The objective at this stage is to validate the robustness and usefulness of such an 

infrastructure, especially the data format and accessibility aspects. Common data 

analysis results, such as cell proliferation rate will be compared between results 

obtained from encoded data and conventional event counting method (Marquez et al. 

2003). Inter cellular relationship -  the most critical aspect of the data format will be 

validated by producing results that illustrate the relationship at different levels (sub­

population, experimental conditions etc.). The results should enable a new insight into 

cellular dynamics and in this way the usefulness of such a data format can be validated. 

Accessibility to the database also requires validation and this can be achieved by 

performing typical and novel queries to the database and analysing the mined data. 

Web accessibility to the database is also an objective in order to validate the usefulness 

of such database in the public domain.

1.10.3 Evaluation stage
The objective at this stage is to evaluate and explore the effectiveness of this 

infrastructure, especially the data format in different experimental and biological 

scenarios. Understanding cellular dynamics at a metadata level is pertinent to a wide 

spectrum of biological processes and diseases, and cancer remains at the forefront in 

this regard. The lineage data will be subjected to various analyses to understand the 

origin of resistance in context of the widely used anti-cancer drug Topotecan (TPT) 

(Kollmannsberger et al. 1999). The primary reason for selecting TPT was due to the 

pre-existing knowledge of this topoisomerase inhibitors class of compounds (Pommier

2006) and local research interest. However the overall objective is to elucidate the 

method of investigating the dose-dependent cellular responses to this phase specific 

agent. Another anti-mitotic drug Taxol ®, which has a different mechanism of action, will 

also be investigated to illustrate the scope of the data format.

As stated earlier, mathematical models simulating cell cycle dynamics generally lack the 

support of experimental data. So, at this stage the objective is to explore what benefits 

such encoded data could provide to mathematical models. This objective will be 

explored and evaluated with mathematical/engineering research groups in a
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collaborative manner. The final and most intellectual challenging objective of this 

research is to explore the capability of integrating this image-based encoded lineage 

data with flow cytometric data. Since both image and flow cytometry attempt to 

elucidate the same cellular dynamics but in different dimensions, integrating such cross 

platform data could enhance our understanding of cellular dynamics.

While fulfilling these specific objectives, the overall aim to be addressed is the issue of 

‘generic applicability* - a decisive factor governing the future development and impact of 

this research. The infrastructure and the data format is required to accommodate not 

only a wide range of experimental scenarios but also biological processes and diseases 

like cancer, wound healing and senescence.

1.11 Bioinformatics Infrastructure -beneficiaries
The aim is to develop a prototype bioinformatics infrastructure that demonstrates both 

the reality of implementing the proposed hypothesis along with the prospect for further 

development. The infrastructure should have the informatics components that ease the 

burden of data encoding, data archiving, data sharing and consequently provide 

bioinformatics attributes such as hypothesis driven data mining and analytical algorithms 

that would make such an endeavour acceptable not only to cell biologists but also to 

mathematical modellers.
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The infrastructure that resulted from discussions with the local users groups and 

collaborators could be perceived as a construct of three consecutive layers (see figure 1- 

7). The first layer is image acquisition and arguably does not fall within the 

bioinformatics remit, but it is important to outline the versatility for experimental and 

instrument parameters and their incorporation within the data format. The second layer 

is the core of the infrastructure and includes tools for image viewing and lineage 

encoding; also included in this layer are the databases that archive the encoded data. 

The third and bottom layer includes data mining tools and algorithms interfacing with 

these databases which perform hypothesis-driven data mining. The aim is to explore the 

lineage data within the sphere of experimental variability and the time domain. The 

segmented spatiotemporal data acquired through these mining tools will be subjected to 

typical statistical analysis and compared with previously published results. Access to 

data will also be made available to the public via web access and especially to the 

mathematical modeller for exploring and exploiting the effectiveness of such encoded 

data for modelling cellular behaviour - an indicator for future development and 

prevalence of such infrastructure.

1.11.1 Element analysis
From the overview of the infrastructure it is clear that a novel data format lies at the core 

of this infrastructure along with lineage encoding tools, database, and mining 

tools/algorithms. However to formalize this development an element analysis is required 

which will outline the key elements that are essential to develop such infrastructure. 

Considering a typical timelapse experimental situation where image acquisition has 

already been completed by conventional means, the first informatics tool required would 

be an image viewer through which timelapse image sequences can be viewed. Once 

the image is viewed, the cells within the image sequence need to be tracked and image 

derived information (intensity, coordinates) extracted from the image. Consequently 

lineage-encoding tools will be required to organize these image derived data in a lineage 

format, additionally the encoding tools can provide a graphical representation of the 

lineage in order to orient users in the time domain. The database is essential to store the 

encoded lineage data while the final element is data mining and visualization 

tools/algorithms, through which knowledge will be gained.
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1.11.2 Specification evaluation
Based on the elements outlined in the previous section a detailed specification needs to

be established describing the specific needs of each element.

Image Viewer
i. The image viewer is required to play a wide rage of image files acquired from 

different acquisition instrumentations.

ii. Since not all image sequences will be of good quality, a wide range of 

capabilities needs to be in place to improve the image quality.

iii. Image viewer should have the option to play the image sequence in a forward as 

well as a backward direction.

iv. A wide range of cellular information e.g. intensity, coordinate etc needs to be 

extracted from any part of the image by positioning a pointer with a mouse.

v. The flexibility of using user-defined tags that can be incorporated with the 

extracted information is required.

vi. Extracted information along with the users defined tags needs to be parsed to the 

encoding tool. If the encoding tool is separate from the image viewer, then a 

bilateral dynamic data exchange (DDE) link needs to be in place through which 

data can be parsed on both directions. Moreover both image viewer and the 

encoding tool should have the bilateral executable right on different functionality, 

so that one software package can run different parts of the other software along 

with parameter exchange.

vii. Given the coordinates and time, the image viewer should find the specified cell 

from any part of the image sequence.

Cell tracking
i. Cell tracking is the prelude for encoding cell lineages, and therefore an ideal 

image viewer should have an automated functionality to track single cell within 

image sequences and consequently extract information. Moreover, the tracking 

algorithm also needs to have the capability to recognize different events (mitosis, 

death) commonly required in cell based assays.
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ii. The prime challenge of automated tracking is that most are specialized for single 

object tracking, however for cell assays the complication arises when the cell 

divides into two daughter cells. Bearing this in mind the tracking algorithm should 

be able to track both daughter cells after the bifurcation point.

iii. The amount of supervision needs to be minimized without compromising the 

quality of the data encoded, moreover it should be robust enough to encompass 

a wide range of image quality.

iv. When a cellular event occurs, the tracking algorithm should clearly distinguish 

the start and end point of that particular event.

Graphical view of lineage
i. Since encoding will be performed on a single cell basis, the process of evolving a 

lineage from a single cell needs to be drawn in real time fashion so that users get 

orientated with the dynamic process.

ii. Users need to have editing control over the lineage encoding process- delete, 

add any part or complete lineage.

iii. Options should be in place in the encoding tool, so that when users click any 

point on the lineage the related point in the image sequence can be viewed within 

the image viewer.

iv. Selecting the associated encoded information can redraw a previously encoded 

lineage.

Data format
i. A cell lineage is a set of cells that derive from a single cell often termed as the 

progenitor cell. The data format should be as such so that each lineage and the 

associated cells can be indexed uniquely. Moreover each cell and lineage should 

be interlinked so the relationship can be established at lineage as well as 

individual cell level.

ii. Data format should include cellular as well as experimental information. At the 

experimental level the data format should possess the flexibility to embrace 

different experimental scenarios and at the cellular level should include some 

basic yet vital information e.g. intensity, coordinates.
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iii. All possible event outcome (e.g. mitosis, death) needs to be addressed by the 

data format along with the capability to mark the start and end of each event.

iv. Data for a single lineage should be primary stored in a text file or XML file, with 

the ability to be later transferred into a relational database.

v. Once saved the written data can be changed by the encoding tools if editing on 

the lineage is done.

Data archiving, mining and visualizing
i. All encoded data saved in text or xml flat file format should be primarily achieved 

in folder structure.

ii. These files will be subjected to quality control to ensure that cellular and 

experimental descriptors are correctly encoded.

iii. Hypothesis driven data mining will primarily be performed on these quality 

checked text/XML files. This will give several advantages -  first new mining tools 

can be developed complementing novel ideas regarding data mining and through 

this process certain mining process will be identified as important and applicable 

to a wide range of experimental scenarios. Second, analyzing data locally will 

give the particular advantage of data security, an important aspect for 

pharmaceutical industries. Third, text/XML file formats will give the flexibility to 

adopt new mining/analysis tools and new visualization techniques.

iv. Once the mining, analysis and visualization processes are established, the 

mining technique will use a web accessible database with a relevant interface to 

provide public access to the encoded data along with ability to perform 

hypothesis driven data mining.

1.11.3 Domain analysis
The specification set forward invokes not only a complete image acquisition and analysis 

suite but also the functionality to develop a lineage construction ability along with data 

warehousing capability. In other words a complete infrastructure was specified which 

obviously was not available with any of the existing imaging technology. CellProfiler 

(Carpenter et al. 2006) a felexible and high-throughput image analysis software was 

useful for image based assays like cell count, cell size determination etc. It was also
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applicable for morphological assays like cell/organelle shape determination, quatification 

of subcellular patterns of DNA or protein staining. All these phenotypic or morphological 

assays could be peformed in an automated fashion sutiable for high-througput 

technology. However like other commercial software, CellProfiler did not have the 

analytical components that could be utilized for lineage contstruction from the quantified 

data, more importantly CellProfiler was more suitable for high content satic images 

rather than image sequences and thus was not suitable for this particular project. 

However it is to be imphasized that the open source nature and the modular structure of 

CellProfiler were in agreement with the outlined specifications and thus can be deemed 

as a model structure for this project.

A recent comparative study (O’Mahonya et al. 2005) of the four widely used image 

analysis software packages - NIH-lmage, IP Lab, Image Pro+ and MetaMorph in the 

assessment of the adhesion of micro-organisms to mucosal epithelium using confocal 

laser scanning microscopy indicated that MetaMorph had particular merit. The 

‘journaling’ feature, through which users can programme and easily build functionality for 

image, has made MetaMorph an outstanding informatics tools to develop bioinformatics 

infrastructure. Moreover in MetaMorph users can use their own defined tags and can 

attach that information along side the image derived information. From a specification 

point of view MetaMorph meets most of the ‘Image Viewer* section’s specifications and 

to some extent the ability to track cells within images with basic capability. However for 

MetaMorph and other image analysis software outlined, functionality of the software 

ends with transporting image derived information to popular spreadsheets packages and 

users perform all the analysis on those spreadsheet data. This does not address the 

bioinformatics challenges to organize the data in a particular data format i.e. lineage 

format as specified in this research and consequently does not provide hypothesis 

driven data mining. The only software that meets part of the specification outlined is 

Simi BioCell (see http://www.simi.com/en/products/biocell/index.html), a commercial 

software designed to develop cell lineages from image sequence. With Simi BioCell it is 

possible to capture and track the entire evolution of an embryo and to document it 

objectively. Starting with single cells, the capabilities of Simi BioCell go as far as 

studying the entire cellular evolution of a complete, complex organism. This commercial 

software is an excellent encoding tool with an embedded image viewer that supports 

wide range of image file format. However the tracking of the cell needs manual
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intervention and the data format by which the cellular information gets encoded is 

specific and applicable to stem cell research (Braun et al. 2003). Like most of the 

commercial software, the data format cannot be modified according to user specification 

and finally on the encoded data it is not possible to have a metadata search capability 

and as such hypothesis driven data mining is not possible.

After careful review of the software packages and their suitability in context to the 

specifications, it was found that MetaMorph was the most suitable software package to 

be used and the infrastructure i.e. tools, databases, analysis processes can be 

developed in association with MetaMorph. The flexibility that MetaMorph offers through 

journaling and the tag incorporation feature has made this a unique candidate for 

developing this type of infrastructure. Additionally MetaMorph being acclaimed as one of 

the most popular image acquisition and analysis software and was already in use within 

the laboratory at Cardiff where the research was carried out.

It is important to mention here that these specifications are formulated through a process 

of feedback and evaluation process, which involves Cardiff centric cell biologists as well 

as collaborators at Warwick University. The design of the infrastructure (see figure 1-7) 

is the final product of series of discussion sessions with cell biologists, computer 

scientists and mathematical modellers, same holds true for the specifications discussed 

earlier. Even though both the infrastructure and the specifications are neither optimal 

nor complete, it is envisaged that these specifications and the infrastructure suffices the 

basic requirements of the local user groups and collaborators and forms the foundation 

for future development.

1.12 Aim
The excitement and opportunities that digital imaging has introduced in recent years to 

cytometry, has reformed the process of transforming images to numbers. Management, 

quantification and understanding these numbers in a biological context remains a 

challenge and needs to be addressed by a wide range of expertise - cell biologist to 

mathematician. Incorporating such a wide spectrum of expertise requires a ‘common 

platform’, which in one hand converts data into information and on the other hand 

provides access and investigative methods, to gain knowledge from the information. 

Bioinformatics has proven to be successful in establishing such platforms in other ‘-omic’
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domains e.g. NCBI (See http://www.ncbi.nlm.nih.gov/) or EBI (See http://www.ebi.ac.uk/) 

and the cytomics context efforts are underway e.g. OME (Goldberg et al. 2005) , 

CellProfiler (Carpenter et al. 2006), Biolmage (see http://www.bioimage.org/) to name a 

few. Based on the hypothesis and associated objectives, this research aims to establish 

a bioinformatics infrastructure that has the components for future expansion.
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Chapter 2: ProgeniTRAK -  converting images into 
numbers

All the timelapse experiments and actual encoding using ProgeniTRAK were performed 

by Drs Nuria Marquez, Lee Campbell, Janet Fisher, Marie Wiltshire (Department o f 

Pathology, Cardiff University).

2.1 Introduction
Building a bioinformatics infrastructure that encompasses the specifications outlined in 

the previous chapter and particularly meeting the challenges of incorporating existing 

commercial image processing packages e.g. MetaMorph (MM), had invoked an in­

detailed scrutiny of timelapse microscopy derived data to determine both advantages 

and limitations. Currently TLM presents clear shortcomings for image interpretation and 

data management, furthermore the current availability of informatics resources is 

severely limited for “image” metadata handling (Goldberg 2005) particularly when 

deciphering basic cellular behaviour and cell relationship at different levels is concerned. 

The core challenge for formulating an informatics infrastructure that addresses the data 

management and metadata level interpretation is the design and implementation of a 

novel data format. The operational challenge is to develop encoding tools that extract 

data from image sequences and configure the image derived data into a predefined 

structure consisting of a meaningful language and vocabulary (designated by consensus 

from the a community of biologists). In short, TLM provides morphological information 

tracking of single cells, which marks linked key events and cellular responses, where the 

event resolution depends on the microscopy contrast mode and the spatiotemporal 

windows of data collection; importantly phase-contrast transmission offers a probe-less 

and non-perturbing microscopy mode providing outputs on cell behaviour (e.g. cell 

shape and position), changes in these two basic features facilitate assays describing 

critical global cell responses such as cell division and cell motility (Stephens et al. 2004). 

These and other outputs along with contextual data enables further interpretation of cell 

cycle checkpoints activities, induction of cell death or cell arrest due to acute exposures 

to a perturbing agent (e.g. such as those induced by anti-cancer drugs) with proliferation 

consequences for individual cells. Perturbation of a cellular system with continuous or 

bolus exposure to anti-cancer agents or other drugs provides the capability to convert
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these basic cell-assays into a quantified pharmacodynamic (PD) response. The process 

of encoding and encapsulating the detailed cellular response derived from transmission 

phase TLM within a lineage map is the focus of this chapter. While the fundamental 

philosophy of a cell lineage map has been described previously, this chapter illustrates 

the implementation of a lineage approach within an informatics infrastructure and in 

context of phase contrast microscopy. ProgeniTRAK is the outcome of this endeavour. 

Bearing in mind the generic nature of the data format as outlined in the specification, the 

primary focus area of ProgeniTRAK was implementing lineage map of human cancer 

cell-based assays, later it was used in experiments that addressed p53 gene-knockout, 

wound healing and mouse primary cell analysis.

2.2 Informatics illustration of a timelapse microscopic 
experiment
The data format that lies at the core of the informatics infrastructure should embrace 

descriptors that are essential to describe a typical TLM experiment and at the same time 

encapsulate the tracked cell behaviour while maintaining relationship within cells. As a 

result two levels can be identifies for the data format -  (i) experimental level and (ii) 

single cell level, and in combination they form the elements of the overall data format.

2.2.1 Experiment level descriptors
TLM is a widely used technique and covers a diverse range of research and 

experimental requirements. Formulating a standardized vocabulary that includes such 

diversity is a huge undertaking and requires large investment and research team like 

that underpinning the Open Microscopy Environment project (see 

http://www.openmicroscopy.org/index.html). For the current research the aim was to 

incorporate the basic features of a typical TLM experiment that are widely used across in 

common experiments, while always maintaining the view that the approach could be 

bolted onto or embedded in the future in to environments such as the OME (see chapter 

7 for further discussion). A typical instrument used for timelapse microscopy is shown 

(figure 2-1). Timelapse experiments can be viewed as a combination of interrelated 

entities and through minimalist approach, these entities and their relationship can be 

described in a hierarchical fashion (see figure 2-2). At the experiment level, at the top of 

this hierarchy is the experiment entity and at the bottom is progenitor cell entity. Each 

entity has its own attributes and relationship with its higher and lower level entity. For 

example each experiment (or screen) has date, operator name, gassing conditions and
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other attributes that describe the instrument settings; each experiment also employs 

culture vessels with multiple wells (ranging from 6 - 96) these elements having unique 

attributes viz. drug, dose, cell type etc. Again each well can comprise multiple fields of 

view (FV), another entity with a single attribute -  field dimensions. The last entity at this 

experimental level is the identification and location of each progenitor cell, - the original 

cell or cells present in the first frame of the image sequence. The progenitor cell 

therefore also has a few attributes like X, Y coordinates, and possibly the phase of the 

cell cycle (see later definitions).

Fig. 2-1 Typical timelapse microscope instrument used to capture typical longterm (48- 
120 hour) sequences. The instrument consists of a basic inverted microscope with an 
incubator system to keep cells at 37 °C and gassed at normoxic conditions (5% 002). 
The transmission lamp is fronted by a shutter for periodic image capture (5-20 minute 
time intervals). Inset: An automated addressable x,y,z stage holding a multi-well plate for 
undertaking screening experiments. It is these basic instruments and experimental 
descriptors that are incorporated into ProgeniTRAK.

The above is not a complete list of attributes for any of the entities but provides the basic 

framework to formulate a nomenclature for identifying each progenitor cells uniquely 

(see figure 2-2 for the complete attribute map). When these attributes are appended 

following the hierarchical structure -  a tag can be generated which identifies each 

progenitor cell uniquely. These attributes are selected manually by the user through a
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series of selection processes which at the end generates the tag, the implication of 

which in contributing further to the infrastructure will be discussed later in this chapter. 

The sequential selection process through a bespoke designed graphical users interface 

(GUI) ensures a relatively error free encoding of the tag which not only identifies all 

progenitor cells uniquely but is also generic enough to embrace a wide range of TLM 

experiments.

2.2.2 Cell level descriptors
The lowest and final level of the hierarchical structure is at the single cell level. As each 

progenitor cell divides a progeny map evolves to form the basic lineage structure. From 

a biological as well as an informatics perspective, each progenitor cell is also considered 

as a single cell and thus has the same attributes to that of a single cell -  name, 

coordinates, intensity etc. The cell level attributes serve multiple purposes -  primarily as 

an aid to identify the node of a single cell uniquely within a lineage and subsequently 

establishes the relationships among cells within a lineage. Secondly the attributes 

encapsulate the time-dependent birth and behaviour features which later can be 

analyzed for hypothesis driven data mining.
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Fig. 2-2 Schematic representation of different entities and attributes of a typical 
timelapse experiment.

These cell level attributes are directly encoded from the TLM via MetaMorph image 

analysis software as the PERL script of ProgeniTRAK (see Appendix III) is dynamically 

linked to MetaMorph. ProgeniTRAK organises these data into a correct order and
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associates additional tags like cell name, event type etc. to give context to the image 

derived data. These experimental and cell level attributes forms the basis of encoding 

the lineage. There are 23 attributes at the experimental level that define the lineage tag 

and this tag was used as the name of the lineage text file. In the specification it was 

mentioned that each lineage was required to be saved in a tab delimited text file where 

each text file represents a separate lineage. This facilitates easy access and mining as 

well as later conversion to a MySQL database.

Table 2-1 23 parameters that define the progenitor cell as well as forming the text file 

name.

Experiment Name

Operator

Date

Storage DVD number 

Type channel 1 

Exposure channel 1 

Type channel 2 

Exposure channel 2 

Gassing 

Magnification 

Time Interval 

Total frames /  field 

Total time 

Well Number 

Cell Line 

Drug

Concentration

Dose

Field Number 

Cell Number 

Coordinate X 

Coordinate Y 

Phase of cell cycle
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Exemplar text file name:
LeeLongTerm2_Lee_ 12052005_DVD561_Transmission_ 10_GFP_ 100_5C02_ 10_ 15_4 

52_6780_ C 1_ U20S_ TPT_1 OUM_ BBM60tO_ 7_20_287_469_ U

Single cell (including the progenitor cell) level attributes were encoded within the text file 

where each text file contains rows of tab delimited data fields and further each single cell 

constitutes a row and each row consists of 58 data points or attributes as illustrated in 

figure 2-2. In ProgeniTRAK data were encoded when a major event like cell division, 

death etc. occurred and for each event data were encoded at the start (S) and end (E). 

At each instance 24 attributes were extracted (for details see Appendix I) and 

ProgeniTRAK appended these 24 x 2 attributes or data points into a single row and 

added additional attributes e.g. canvas coordinate, step etc and standardized 

vocabularies to give a context to these 48 data points. Most importantly within each 

lineage or text file, each cell was given a unique name through a nomenclature - the 

progenitor cell is named as ‘B’ and if this cell divides into two daughter cells then they 

are named as ‘BN’ and ‘BS’ respectively, where ‘N’ refers to north and ‘S’ to south 

daughter. For a re-fused or polyploidy outcome the designation is ‘BE’. If three or four 

daughters were produced they are named as ‘BN’ ‘BE’ ‘BS’ or ‘BN’ ‘BU’ ‘BL’ ‘BS’ 

respectively. It is important to note that even though ‘N’, ‘S’, ‘E’ etc. directional letters 

were added to the suffix of the cell name, these did not indicate spatial orientation or 

direction, rather used solely to index each cell within a lineage uniquely.

2.3 The encoding infrastructure
By reviewing the specifications set forward in the introduction chapter and analyzing the 

data format, it was envisaged that the infrastructure can be broadly divided into two 

sectors - (i) an image sector which deals with image archiving, viewing and extracting 

information and (ii) an encoding sector which connecting with the image component via 

the dynamic data exchange (DDE) link provided by MM and organizing the image 

derived data to the predefined format as well as actually drawing the physical lineage 

onto a canvas. In the domain analysis, the usefulness of using MM in this context was 

justified, currently images are stored in a typical folder structure (each folder archives n 

number of image sequences as files), moreover MM archives ‘journal’ files in a 

designated folder which can be accessed, modified and executed by associated user 

defined button in MM. While MM constitutes the image sector of this infrastructure, in
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the encoding sector a novel encoding tool was required along with folders to which the 

experimental descriptors were archived and provided the archive for the encoded 

lineages as text files. Bearing this in mind a novel encoding tool- ProgeniTRAK was 

developed, written in PERL 5.8 this encoding tool was designed to parameterize phase- 

contrast timelapse microscopy image sequences. PERL was considered as the best 

programming language for writing ProgeniTRAK simply because PERL provided easy 

reading and writing capabilities with text, MS Excel and the MM Log file (where MM 

parses the image derived data through the DDE link), moreover PERL through its TK 

module (a widget development toolkit) can produced an effective GUI providing a 

dynamic for reproducing the lineages.

Experiment
Setup

Coordinate_Generator.plJournal

Pha**Con«t_Exp_S*tup.xl*Journal Files

Log File
Encoding

Buffer.logMetaMorph
ProgeniTRAK |

LineageImage

Encoded lineagesImage Files

Fig. 2-3 Folder structure o f encoding environment. Blue represents software while 
yellow and white represent folders and files respectively.

Figure 2-3 illustrates the different folders in two designated sectors of the infrastructure 

where the ‘LogFile’ folder provides the link between these two sectors. The left side of 

the figure comprises the image sector consisting of the 'Journal’ and ‘Image’ folder 

along with the software MM. The right side comprises the image sector with ‘Experiment
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Setup’, ‘Encoding’ and ‘Lineage’ folders along with the encoding software ProgeniTRAK 

and a small PERL script (‘Coordinate_Generator.pl’) as the main executable component. 

The ‘LogFile’ folder, which acts as the link between these two sectors, has a one-way 

link, implying that ProgeniTRAK can not execute or parse parameters to any of the 

journal files of MM. Conversely the MM Journal files can execute any of the functionality 

of ProgeniTRAK as well as parse image derived data via the DDE link. A brief overview 

of each folder is given bellow.

2.3.1 The image folder
In this folder image files were stored mostly in the proprietary format of MM (*.stk format) 

however any image sequence is acceptable. Each image file when acquired and 

archived in this folder was given a three parameters name format - 

ExpName_WellNum_FieldNum, so that from the file name the relevant image sequence 

file can be found during the uploading process.

2.3.2 The journal folder
In this folder journal files of MM were stored. These journal files were designed through 

a process of an iterative development specified by the users and can be executed by the 

button provided in the menu bar of MM. The process of encoding is directed by a series 

of buttons in MM as follows:

Image upload
The first button is to start the encoding process. This button opens a file upload dialog 

box through which user can select the image sequence file (field of view) they are 

interested of. The image files are kept in the Image folder. This button also actives the 

‘Regional Measurement’ feature of MM that lists the parameters for the data that need to 

be extracted from the image sequence.

Cell locator
The button helps to locate a cell within an image sequence. Given the frame number 

and coordinate the journal executed through this button can index a cell within the image 

by an arrow. This journal is valuable to find the bifurcation points of the lineage.

Log data
The button and linked journal executes the parsing of all the regional measurement 

parameters to the log file via the DDE link.
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Erase data
This button erases the last row of data from the log file.

LogFile Folder
This folder holds only the Buffer.log file where MM writes the image derived data 

dynamically as each region of interest is places over the image and clicked.

2.3.3 The experimental Setup Folder
The folder contains a single Excel file where all experimental descriptors were semi- 

automatically written by the user, routinely the user completes this record at the time of 

conducting the experiment and acts as a substantial record of the experiment as well as 

providing the basis for ProgeniTRAK. This Excel file contains the attributes of 

experiment, well, field of view (FV) and progenitor cells as outlined in figure 2-4 and 

each sheet of the Excel file represents an experiment and as such the name of the sheet 

is renamed according to the name of the experiment. Within each sheet the first twelve 

rows store the values of the 12 attributes (except experiment name) of experiment. 

From the thirteenth (14th) row each row represents a Well, i.e. Well attributes . The first 

five columns of each row stores the values for the five attributes of a single Well and 6th, 

7th and 8th column stores the - field number, linked to the image sequence of the FV 

and field size respectively. From the 9th column onwards each Excel cell stores the 

coordinates of the progenitor cell and the length of the row is variable depending upon 

the number of progenitor cell present in the first frame of the FV under consideration. 

Some parts of the information are encoded manually while other parts are encoded 

semi-automatically, for example in order to write the coordinates of the progenitor cells, 

the appropriate image file was opened in MM and a Region of Interest (ROI) was placed 

on the nucleus of each progenitor cell at the first frame of the image sequence and when 

clicked, the coordinates of the nucleus were parsed through a DDE link to a log file and 

a small PERL script was written to read the coordinates from the log file and writes them 

directly into the Excel file.

This Excel file was named as ‘PhaseConst_Exp_Setup.xls’ and acts as a ‘digital 

laboratory notebook’ that stores all experimental details and since each sheet represents 

a single experiment, one file is sufficient for storing all experiments of a laboratory.
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Fig. 2-4 Screen shot o f experimental descriptor PhaseConst_Exp_Setup.xls.

The details of different attributes are self explanatory except for the ‘Drug’ and ‘Drug 

Exposure’ for which a unique nomenclature was introduced. In timelapse experiment 

sometimes it is given that a combination of drugs are given and again this combination is 

applied in a different regime. For example if drug X and Y were given as a mixture or 

simultaneously then they would be tagged as XaY, however if they were introduced 

sequentially then XfY, which translates after given drug X, drug Y was administered. 

Any number and combination of drugs can be tagged by this nomenclature. Dose of the 

drug is written in two capital letter words, e.g. NM means nano molar. If a combination of 

drugs were used corresponding doses will be written with ‘a’ or T alphabet as used 

earlier.

Drug exposure reflects the duration (in min) the drug was present in the medium. In 

cytometric experiments drugs are administered in two ways - bolus and non-bolus 

(termed continuous). In a bolus scenario the medium is washed to remove the drug
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after a certain exposure time, while in non-bolus situation the drug remains in the 

medium throughout the experimental duration. Another major difference is the point in 

the experiment at which the drug(s) was administered i.e. before or after the start of the 

experiment. Based on these criteria of administration the following nomenclature was 

developed:

Table 2-2 drug exposure nomenclature (time duration is in minutes)

BBM (Bolus Before Mark) BBM60t0 Bolus given 60 min before 

the start of the experiment.

BAM (Bolus After Mark) BAM1440t1500 Bolus given 1440 min to 

1500 min after the start of 

the experiment.

DBM (Drug Before Mark) DBM120 Drug given 120 min before 

the start of the experiment.

DAM (Drug After Mark) DAM 1440 Drug given 1440 min after 

the start of the experiment.

Below is an example where two scenarios are encoded representing a unique drug, 

dose and exposure protocol.

Table 2-3 Exemplar drug dose combinations

Drug Dose Exposure Explanation

A 1NM BBM60t0 1 nano molar 

concentration of drug 

‘A’ was given as a 

bolus 60 minutes 

before the start of 

the experiment, (for 

how long)

AaBfD 1NMa2NMf0.1NM BBM 120t0D AM 1440 A mixture of drug A 

and B of 

concentration 1 nano 

molar and 2 nano
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molar was given as 

bolus for 120 

minutes before the 

start of the 

experiment followed 

by drug D which was 

given at 0.1 nano 

molar concentration 

at 1440 minutes after 

the start of the 

experiment.

2.3.4 The encoding Folder
This folder contains the encoding tool - ProgeniTRAK. The software is divided into three 

interlinked parts. The first part interacts with the digital laboratory notebook (figure 2-4) 

and directs users to a specific progenitor cell location, this part of the software also 

generates the tag through which the progenitor cell becomes indexed. The second part 

interacts with MM and draws the evolving lineage on a canvas. Finally, the third part 

writes the image-derived parameters associated with each cell of the lineage into a tab- 

delimited text file. A brief description of the encoding process (for details see Appendix 

II) will be given later in this chapter.
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Fig. 2-5 Design and different functions o f ProgeniTRAK (details of the software along 
with the source code can be found in Appendix III).
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The aim of the encoding process was to encode the cell associated parameters from the 

image sequence in the specified data format, moreover during encoding, a graphical 

representation of the evolving lineage also needs to be displayed. The flow diagram 

below illustrates the lineage encoding process.

Start of encoding

NO

Experimental Setup Excel 
tile

Sequential dsplay and 
selection of experimental 

parameters 
Exp*Well»FieM» Phase

Extract and write 
image parameters

Metamorph Log 
fileA new urvencoded 

progenitor cel on 
canvas

lineage wflh un- 
encodediteim mated 

daughter cells on

'Text file with a file name of 
23 experimental

FultyfPartially 
encodedIreages 

as text files in 
'Lineage' folder

ProgeniTRAK «  Metamorph 
Component Component

Fig. 2-6 Flow diagram of the encoding process by ProgeniTRAK in conjunction with MM 
(highlighted as green)
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Both MM and ProgeniTRAK are executed via a shortcut icon in the desktop (for detail of 

installing ProgeniTRAK see Appendix IV). At the start of the encoding process MM is 

opened by clicking the MM program icon on the desktop. In the journal folder six journal 

files have already been installed (see installation manual for detail in Appendix IV) with 

associated buttons in MM menu bar and will appear as follows.

% Upload Image

^  Log Data

Locate Cel

Erase Logged Data

fcO  Reset label Logged Data' Window

Reset for New Lineage

Fig. 2-7 Journal execution button at MM menu bar.

Once these buttons were found, then user selects the ‘Label Logged Data’ option from 

the ‘Log’ menu of MM. In the ‘Label Logged Data’ window, the user checks the 'All 

Labels in Use’ check button. In the ‘Label Logged Data’ window the first column should 

have the following tags in the pull down menu (second row) M2, M3,M4,P,R,D,L,S,V. If 

all tags are not available user types the tags sequentially. The tags represent all 

possible event that can occur to a cell, description of each tag is given in the following 

table:
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Table 2-4 Event tags used in ProgeniTRAK

Tag Description

M2 Mitosis 2 -  Cell divides into two daughters cells

M3 Mitosis 3 -  Cell divides into three daughters cells

M4 Mitosis 4 -  Cell divides into four daughters cells

P Polyploidy -  Cell divides to single daughter cell

R Refused -  Two divided cell fused back to one cell

D Dead -  Apoptosis or Necrosis

L Lost -  When cell is lost from the FV

S Survived -  A living cell at the last frame of the image sequence

V Unresolved -  If the image sequences ends before the end of a 

ensuing event

In order to find the desired image sequence/file the “Upload Image” button (figure 2-7) at 

the menu option is clicked, which allows the user to browse the appropriate image file in 

the ‘Image Folder*. Once uploaded MM is set for lineage encoding and the window 

should look as follows:
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Fig. 2-8 Screen shot o f MM as it  is set for encoding.

2.4 Creating a new progenitor cell
During the encoding process, MM provided all the facilities for image viewing, data 

extraction and parsing as described earlier. The encoding and organizing of the lineage 

were performed by ProgeniTRAK and was executed once MM was set for encoding. 

ProgeniTRAK was executed by clicking the icon provided at the desktop. In order to 

setup ProgeniTRAK for a new lineage, six sequential steps were followed that defines 

the process of encoding:

Step 1: Users select the ‘New’ option from the menu of ProgeniTRAK, this invokes a 

second GUI with the option for the selection of experiments. ProgeniTRAK interacts with 

‘PhaseConst_Exp_Setup.xls’ in real time and displays all the experiments registered in 

the Excel file.
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Step 2: From the drop down menu users select the appropriate experiment, the image 

file opened in MM should belong to the same experiment. Once selected this experiment 

window disappears and a new Well window appears with all the Well information for the 

selected experiment. Again ProgeniTRAK reads the information from the Excel file.

Step 3: The Well window is a graphical representation of multi-well plate, where each 

square represents a well and the associated information (cell type, drug etc.) is written 

on each Well. Also in the header the experiment level information are displayed and the 

title of the window displays the experiment name. Users select the Well within which lies 

the field of view, this in turn invokes the disappearance of the Well window and 

appearance of field of view (FV) window.

Step 4: The FV window gives the option of field numbers that belongs to the selected 

well and users select the appropriate field and this in turn invokes a digital 

representation of the FV.

Step 5: The digital FV contains small squares colour-coded buttons representing each 

progenitor cell. Violet square represents a completed encoded lineage, orange - a 

partially encoded lineage and grey represents an as yet uncoded lineage. It is important 

that this digital representation of progenitor cells resembles with the first frame of the 

actual image file opened at MM and once assured users select the desired progenitor 

cell to be encoded as a full lineage map by clicking on the cell.

Step 6: This final window gives users the option of attributing the cell cycle phase of the 

progenitor cell to be encoded. By default it is set as unknown ‘U \ but in certain 

experiments this can be better defined. When the selection is complete, a tag or header 

is assigned to the selected progenitor cell and a digital representation of the progenitor 

cell (in grey colour) is created in the canvas of ProgeniTRAK. The tag or header of each 

progenitor cell has 23 parameters associated with it, which makes it unique against all 

other progenitor cells encoded via ProgeniTRAK.
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Fig. 2-9 The principal six stages o f encoding. Illustrated above are represented with 
their associated GUI than leads towards generating a new cell lineages in the 
ProgeniTRAK canvas.

Since the header or the progenitor cell tag does not involve any manual typing, it is 

assumed to be less error prone, more over this sequential GUI representation orientates 

users in the experiment scenario including all the pertinent details and makes the data 

sharable amongst users. The nomenclature format means that anyone can interpret and 

negotiate the experiment, in other words it is not user specific. The progenitor cell tag 

was then used to name the text file providing the details of each encoded lineage. 

Constructing the file name or progenitor cell header through this sequential selection 

process and via a GUI structure ensures consistency of nomenclature and data 

encoding quality but also helped users to orient within the experimental context. This 

approach is considered to have a generic use and can be adopted for other experiments 

which does not even have to be image based since this approach mimics the ‘laboratory
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note book’ theme where all experimental descriptors are written and visited later for 

extracting or selecting certain information.

As described earlier a lineage comprising of one or more cells evolves from a common 

progenitor cell. Once the progenitor cell is created in the canvas of ProgeniTRAK 

Window (PTW) with the appropriate header tag, users start to follow/track the actual real 

counter part (actual cell) in the image (MM window; MMW) by playing the image 

sequence. When an event occurs (see figure 2-10) to the cell under tracking, the 

playing of image sequence is stopped and then rewend to the start point of the event 

which is usually a few preceding frames. To exemplify, if the cell under analysis goes 

through mitosis, the start of the mitosis is identified as the point of cell rounding. In the 

‘Labeled Log Data’ window of MMW the tag ‘M2’ is selected and in the image a ROI is 

placed on the nucleus of the cell and then the button “Log data” (figure 2-7) is clicked. 

The image sequence is forwarded up to the point when the cell splits into two daughter 

cells and again at the middle point the ROI is placed again and the button is clicked 

again. With each click, the ROI extracts 24 parameters from the image, and these 

include - Image Name, Image Plane, Image Date and Time, Elapsed Time, Stage Label, 

Wavelength, Z Position, Region Label, Area, Distance, Angle, Left, Top, Width, Height, 

Threshold Area, Threshold Area %, Threshold Distance, Average Intensity, Intensity 

Standard Dev, Intensity Signal/Noise, Integrated Intensity, Minimum Intensity and 

Maximum Intensity. The time, position and intensity parameters are pivotal for a wide 

range of cell based assays. In addition to the aforementioned parameter pairs, 5 further 

parameters are also encoded for each event and include cell name, event type, step 

number and canvas coordinates, 5 blank spaces are also encoded for each cell so that 

future annotations can be incorporated. Altogether these 24x2+5+5 = 58 parameters 

constitutes a row of data fields within the text file. Once these parameters are parsed to 

ProgeniTRAK via DDE link, ProgeniTRAK can acknowledge the event type and 

accordingly redraw the lineage, for this mitosis example two new cells appear in the 

canvas with two connecting lines. The north daughter is followed in the same manner 

and once a further event occurs the ROI is placed and parameters get encoded, the 

process continues until the end of a track is reached, i.e. tracking till the end of the 

image sequence.
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Fig. 2-10 Visualizing and encoding of an evolving cell lineage in ProgeniTRAK canvas.

Once a track is fully encoded, in order to encode the sister track, the mother cell of the 

last cell in the track is clicked which displays the frame number and the coordinate of the 

mother cell. By clicking the “Locate cell” button in MMW (figure 2-7), the user inputs the 

information which then indexes the mother cell in the image sequence and from that 

point the sister cell is tracked and encoded in the same manner. Once a lineage is 

complete (all tracks ended) then the save option in PTW ensures the whole lineage is 

saved as a text file in the ‘Lineage Folder*.
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Fig. 2-11 A complete lineage encoded from a real progenitor cell spanning up to five 
generations. Associated legends describe possible outcomes and tags which describe 
the cellular outcome.

Setting the ROI and selecting the type of event manually is indeed a rate-limiting step, 

but the user interaction ensures the highest quality of data encoding particularly the 

outcome of cell mitosis. A combination of automated and user-interactive bioinformatics 

software is what is suggested in a recent review (Giuliano et al. 2005) as the challenge 

and opportunity for next generation of high content screening (see chapter 7 for further 

discussions). At this point it is important that the quality of the encoding is high and this 

was best ensured by manual tracking. In order to encode another lineage from the 

same field of view, users does not need to go through the selection process again but 
rather just click “Reset button” (figure 2-7) in MMW, which invokes the digital FV again 

and users start the process from that point onwards. If an error is made and the user 
realizes the mistake the encoding can be corrected by using an “Erase button” in PTW 

which removes the last two entries in the log file. However if the user realizes the 

mistake earlier then the “Step Back” button in the PTW will redo the event encoding 

again. Through ProgeniTRAK it is also possible to encode and save a lineage partially 

and finish the encoding process at a later time; it is also possible to delete any portion of 
the lineage and edit the information as required.
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2.4.1 The lineage Folder
As of January 2008, 745 lineages were completely encoded from three separate 

experiments. The lineages were encoded by a wide user group and include - Drs. Lee 

Campbell, Nuria Marquez, Janet Fisher and Marie Wiltshire. Each lineage was saved as 

tab delimited text file, where the file name has 23 underscore separated parameters 

facilities to index the lineage or progenitor cell while in the text file each line comprise of 

58 data fields separated by tabs. All three experiments represented drug screens where 

anti-cancer agents were added to human osteosarcoma cells (U-2 OS cells) (for detail 

see Appendix V). At different time intervals the lineages were subjected to a visual and 

automated quality control check. This was done to ensure that while encoding users 

mistakenly did not assign the wrong tag to the cellular event. Small PERL scripts were 

written to ensure the integrity of extracted parameters while random visual check on 

events ensured the rigor and robustness of the manual encoding and assignment of the 

event tag. The lineage folder is considered as the primary database (called as ‘LDB’ 

hereafter) upon which preliminary data analysis was performed, this folder also 

facilitates various hypothesis driven data mining and provided a shared access to this 

folder, it was placed onto a shared drive on the network. Importantly the users were not 

able to place the data directly into this database - this was handled by a designated 

database master who would check the data quality and then enter the new data into the 

database.

2.5 The LDB inventory
Below is a summary of the database inventory, the first two rows represent the lineage 

data derived from two dose dependent topoisomerase I inhibitor screens (Feeney et al. 

2003) (i.e. topotecan) (Kollmannsberger et al. 1999), while the bottom row represents a 

different topoisomerase inhibitor screen (topoisomerase II) with ICRF and Taxol® 

screen.
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Control (192) 0.001 uMTPT (74) 0.01 uM TPT (4)

0.1 uM TPT (54)

5 nM Taxol (30)

1uM TPT (124) 10 uMTPT (207)

7 uM ICRF (30) * * * * * * * * *
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Fig. 2-12 The LDB inventory. Each pie chart represents a drug and dose as stated in 
the title of the pie chart and in the parenthesis the number of lineages encoded for that 
particular dose is mentioned. The purpose of the pie charts is to give an overall review 
of the predominant events associated with each treatment regimen. The colour 
represents individual events (event legends on right) and computed as percentages of 
the total events encoded for each dose.

Further analysis tabulating the events illustrate the actual number of each event against 

the number of lineages encoded was performed.

Table 2-5 Number of lineages and events at each dose.
Control 0.001 uM TFT 0.01 uM TPT 0.1 uM TPT 1 uM TPT 10 uM TFT 5nm Taxol 7uMICRF 5nm TaxoK 7uM ICRF

4 no 7A A CJ 4/17 *>A 7/)Lliwogo Hum 192 74 4 54 124 207 30 30 30
Mitosis 2 2822 1531 22 366 626 457 0 2 0
Mitosis 3 e 6 0 4 1 1 0 0 0
Mitosis A
Do Mb

i 0 0 0 0 0 0 0 0
274 247 4 69 96 177 1 3 0

o« 417 139 5 47 122 132 1 0
Polyploid 16 11 1 5 6 12 8 0 1
Pofusod • 2 1 1 < 1 1
S*viv«4 2336 1224 12 309 531 350 10 26 23
Unrtsofva 6 0 0 0 0 0 19 2 1
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From the inventory alone a dose dependent event pattern becomes evident, for the first 

two rows the percentage of cell death events increased with dose and furthermore upon 

Taxol® treatment the number polyploidy event increased.

Before setting out to undertake comprehensive or high-level data mining and analysis it 

is pivotal to validate the encoded data by performing simple data mining on the encoded 

data and to compare the database output results with results that were generated from 

completely different processes. Counting different cellular events manually is one of the 

common practice in cell based assays (Feeney et al. 2003; Marquez et al. 2003). The 

objective of such an endeavour is to establish the effect of drug and dose on the 

generation and/or abrogation of cellular events. Through this simple inventory, it was 

possible to quantify and visualize the drug and dose dependency on cellular event 

variation. However a manual vs. encoded cellular behaviour comparison was required 

to validate the data format before further mining and analysis; to this end Cell Density 

(CD) was identified as a suitable time-dependent output parameter because a CD index 

provides a measurement to quantify the level of artefact or noise dependent on cell 

movement particularly when counting cells manually. In timelapse experiments, living 

cells move due to their innate behaviour and this often causes migratory cells that were 

initially outside the field of view to move within the field of view. For instance a highly 

migratory cell moves into a field of view undergoes a mitotic event and these events or 

resultant cells are counted contributing noise to a straight cell count, therefore the assay 

is unbounded and is highly variable (this is particularly effected when anti-cancer agents 

have a dual effect on cell migration and cell proliferation i.e. the effect of Taxol®). 

However when using ProgeniTRAK, cells are not included in the assay if they appear 

mid-time course and as such noise is not added to the count. Validation was performed 

by comparing the cell density index derived from the lineage database and that obtained 

from manual counting. At a simple level the greater the difference between the cell 

density derived from the manual count and those derived from the lineage database, the 

higher the motility of the cells would be. Primarily the ability to compare provided the 

validity of the data format and secondly through the cell density index the extent of noise 

could be verified. Six FVs were selected from the two replicate screens using topotecan 

where all FV had an area of 512x512 pixels (approximately 400x400 pm) and contained 

U-2 OS cells in control conditions. The population count within this area at a particular
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time point was the basis of the CD index. CD indices for six FVs were measured at 113 

h both manually and from encoded lineages and the difference is plotted in the following 

graph. CD index for each FV was measured by:

CD index t =
N

512x512
x lO O

Eq.1

Where N is the number of cells present at time t=113 h of the experiment.

□  ProgeniTRAK 
■  Manual

Field of View (FV)-

Fig. 2-13 Cell density measurement. Bar plot showing cell density difference measured 
from encoded lineages (white) and by manual counting (grey) at the 113 h in six different 
FVs.

From the figure above, it was evident that in all instances the manual measured density 

was always an over estimation (with an average of 0.018 cells/100 pixel2) and can be 

attributed to the counting of migratory cells, i.e. noise. Although it is possible to ignore 

the contributing it would be difficult to compare cell types, and indeed the perturbing
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agent may affect the motility of cells. A series of data mining and analysis were 

performed which will be presented in the subsequent chapters which not only 

represented some common analytical procedures and results but also highlighted routes 

for revealing otherwise occult cellular behaviour. The knowledge gained from these 

analytical results when compared with the priori knowledge regarding the cell cycle 

action of topotecan (Feeney et al. 2003), showed a high degree of resemblance and this 

aspect was part of the validation of the data format as well as the infrastructure itself.

2.6 Concluding remarks - data mining using the lineage format
In simple terms the lineage can be viewed as a bifurcating (in most cases) map where 

each node represents an event while the line connecting two consecutive nodes 

represents time duration for a cell cycle and is termed as inter mitotic time (IMT) as it is 

the time between two sequential mitotic events (i.e. between mother and daughter cells). 

As a cell usually divides into two daughter cells, the mitosis of the mother cell could be 

colloquially referred to as the birth of the daughter cell, so that the IMT represents a 

complete cell cycle and would encompass all the phases of the cell cycle. For 

ProgeniTRAK no information was encoded according to the cell cycle time per se i.e. 

along the node connecting line and the only data being encoded was when an event 

occurred i.e. node-to-node. Each node also contains the start and end information of the 

event. It is important to note that IMT values were not encoded rather these are 

calculated on-the-fly during data mining routines and require two successive mitosis. If 

however the daughter cell undergoes cell death then the line connecting the mother and 

daughter cell does not represent IMT as the daughter cell did not undergone a complete 

cell cycle, the same holds true for any other event (lost, survived and unresolved); 

except mitosis (M2, M3 and M4).

Lineages provide rich multi-dimensional data, where the preliminary level involves 

vertical segmentation of the lineage and another level involves horizontal segmentation. 

Vertically each linage can be segmented in relation to time or generation along the x- 

axis and correspondingly in the y-axis the distribution of events can be measured.
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Fig. 2-14 Vertical segmentation o f lineages. Three exemplar lineages (I, II, III) were 
segmented vertically, A - in  relation to generations and B in relation to time. During data 
mining usually a set of lineages are filtered according to a set of criteria, i.e. drug and 
dose. For each lineage the type and number of events can be counted in relation to the 
generation (solid line) or time (dotted line) and as the number of different events 
accumulates, it can be presented as cumulative curve or distributions. It is not only the 
event count but also other measured values like the inter mitotic time that can also be 
presented as a disthbution (discussed later).

Lineages can also be segmented horizontally termed as tracks (i.e. direct lines of 

descent), which provide temporal resolution for cell division and cell death timing, 

forming a bifurcation map with nodes, branches and cul-de-sacs. Track-dependent 
information depicts multi-cycle dynamics of cellular behaviour in a relationship context. 

Variability of IMT when analysed in such a relationship context could provide a dose and 

drug class-dependent pedigree behaviour. Moreover it is not only the variability of IMT 

but also the displacement that can be quantified and utilized to illustrate cellular 

behaviour. Thus, each node of the lineage not only encapsulates time and event but 

also the coordinates, which can be utilized to measure inter mitotic displacement (IMD)
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which represents the total displacement (in pixels or microns) during one complete cell 

cycle (an event-to-event measurement). Like IMT, IMD also is not directly encoded but 

can be calculated in real-time from the encoded lineages.

Gen3 » " « v Gen5

Gen 2
Gen 1

GenO
(Progenitor)

Two dfferent tracks ended 
with surviving cells

■

—c=
a

—c r  
-- c:

113b

A complete cell cycle

Fig. 2-15 Horizontal segmentation o f a real lineage. Arrow showing a single track 
through different generations where each node represents an event. Hand drawn lines 
(green and orange) depicts two tracks of the lineage. IMT is represented as ‘A complete 
cell cycle’ and displacement of cell during this time period is termed IMD. According to 
generation IMT and IMD is designated as IMTn and IMDn where n is the generation 
number which is always >0, since progenitor cells (generation 0) do not have a complete 
cell cycle duration encoded i.e. the experiment started after the birth of the progenitor 
cell.

The relationship based information that a lineage provides when segmented horizontally 

is indeed a unique perspective to understand cellular dynamics temporally as well as 

spatially. The successive chapters explore this rich data source with an increasing
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complexity. The LDB is the primary source for these types of analyses and the initial 

analysis involves vertical segmentation of the lineages (see Chapter 3). Since event 

based analysis are predominant analysis techniques in cell based assays, where events 

are counted manually (as it happens in image sequence) and plotted in relation to time. 

These analyses simultaneously offered validation as well as demonstration of the 

pertinence and usefulness of such data format to elucidate cellular behaviour. Further 

advanced analysis based on horizontal segmentation of lineages was undertaken to 

elucidate patterns of inter-nodal track dimensions and lineage asymmetry, providing 

insights for drug resistance (see Chapter 4).
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Chapter 3: ProgeniDB -  A web-accessible lineage 
database
This part o f the work was carried out in collaboration with Peter Husemann, a visiting 

scholar from Bielefeld University, Germany.

3.1 Introduction
ProgeniTRAK has provided a systematic framework for converting images to numbers 

producing cell lineages objectively parameterised with unique tags. These encoded data 

were archived in tab delimited text files within a folder structure - LDB, however this 

simple format limits the accessibility of the data repository to local users only. Initially, 

the text files were stored on a shared drive, accessible by a small number of individuals 

at Cardiff and these text format did provide the means for validating the approach. The 

current chapter focuses on the next phase of development, to produce a web accessible 

database (ProgeniDB) with associated data mining tools enabling a public accessible 

database. Therefore the premise for building such a database was to give public access 

to the novel lineage data and data mining tools to segment cellular event data according 

to imposed experimental and biological constraints. This aspect of the work involved 

design and development of the database along with user interface for selecting and 

filtering the data to download. Furthermore the downloaded data were analyzed to 

interpret cellular behaviour. Simple validation studies were undertaken to ensure that 

database retrieval led to event analysis outputs that matched the original analysis 

approaches. Studies were performed to obtain the simple kinetic behaviour of the 

population.

3.2 Design and implementation of ProgeniDB
Peter Husemann, the visiting scholar, brought expertise in web enabled database 

development utilizing cgi, PERL and MySQL Using the existing ProgeniTRAK derived 

parameters an ER diagram was designed to imitate the text format hierarchy explained 

in earlier chapter and facilitated the development of the relational database -  ProgeniDB 

(Khan et al. 2007), that utilized the MySQL (see http://www.mysql.com/) database 

management system. This database had 5 separate tables defined as Experiment, 

Well, Lineage, Cell and Relations. Except for the RELATION table which basically 

stored the primary key for each table and LINEAGE table which represent the progenitor 

cell, all others tables were a representation of the data format introduced in figure 2-2.
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The attributes for each table were illustrated in the following ER diagram where PK 

refers to Primary Key and FK, Foreign Key. Each cell that participated (including the 

progenitor cell) was given a unique ID and the ID number was given in incremental 

order, the same applied to Experiment, Well, Lineage IDs.

WELL

Fig. 3-1 ER diagram of ProgeniDB.

A MySQL script called database_tables.sql was created which when first executed goes 

through a process of deleting the whole database and then re-creating it according to the 

ER diagram. Once created another PERL script populate_database.pl was executed to 

populate the database with data extracted from the text files held in a Lineage folder. 

This process guarantees that with every quarterly update the cell IDs do not become 

redundant as the Lineage folder holds previous as well as newly encoded lineages as 

text files.

At present ProgeniDB has over 622 lineages with 12,560 cells it is accessible through 

any standard web browser where a logical query and download of data can be achieved. 

The encoded lineage data at LDB were passed through rigid quality control as described 

in earlier chapter as such ProgeniDB ensured quality control passed lineage data. At 

present use of ProgeniTRAK was limited to a small number of users but a future growth 

was anticipated that invokes rigid protocol for encoding and centralized quality control,
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where lineages will be encoded at multiple sites following a rigid protocol and deposited 

to a central place where quality control check will be performed before archiving into 

ProgeniDB.

3.3 Mining and analyzing ProgeniDB
Generally, data mining (sometimes called data or knowledge discovery) is the process of 

interrogating data from different perspectives and summarizing it into a format for 

interpretation. Data mining is an analytical approach which enables users to analyze 

data from many different directions, and represents a multi-dimensional space that can 

contend with larger data sets, with less ’danger* for making inferences, and often uses 

data that was originally acquired for a different purpose or from a different perspective. 

A data mining approach differs from data analysis which is the process of looking at and 

summarizing data with the intent to extract useful information and develop conclusion 

(Abbott et al. 1998; Thearling 2008). Here both mining and analyzing ProgeniDB data 

were demonstrated, where the overall objective of the ProgeniDB mining process was to 

select (filter) a set of lineages based on a defined experimental or biological constraint 

with a dynamic web-page to guide users to query the database in three progressive 

stages. The first page of ProgeniDB gave user information including an overview of 

phase contrast microscopy and a diagrammatic outline of the lineage encoding process 

along with nomenclature and terminology used for defining a lineage structure. Informed 

users may then select to proceed to querying of the database by clicking the ‘Proceed 

Data Mining’ button. This button leads to the query page where the first stage of the 

query process is selection of experimental conditions, which includes the perturbing 

agent (typically a drug), the cell line, drug dose, experimental duration, sampling interval 

and plate gassing (typically 5% C 0 2 or N2). These experimental filters can only be 

selected one at a time and in a sequential order. Importantly, options within a current 

filter will depend on all previously selected filters, for example options of ‘cell line’ will 

depend on the previous selection of perturbing agent, therefore the user cannot select a 

combination of filters that don’t exist in the data. An information icon was provided 

alongside each filter which showed an explicit description of that filter if the user hovered 

above the icon. Also provided within brackets is the number of lineages selected under 

the filter conditions. These 6 consecutive selections led to the second stage of the query 

process -  called progenitor cell sub-population profiling. By default users were able to 

skip this stage of selection by pressing ‘next’ button, however this stage has two
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implications on the query process. First, from the drop down menu, it was possible for 
users to obtain the number of progenitor cells that deliver to mitosis against time. This 

effective count leading to rate of mitosis was an important output for obtaining cell 
cycle-related measurements of drug effects on progenitor cells as exemplified in the 

case study. The second implication was that through such profiling, it was possible to 

select a sub-set of lineages based on progenitor cell cycle position (or age) and to 

quantify the downstream impact of drug treatment at that cell cycle age on successive 

generations.
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Fig. 3-2 Screen shots to illustrate both the user interface and the logical query process 

through ProgeniDB.

Based on the filter selections at the previous two stages, the final query page displayed 

a list of experiment ID(s) where each experiment included the lineages that satisfy the 

selected filters. Important experimental attributes were displayed in a table format which 

gave a preview about the experiment(s), however if users wanted a detail description
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about the experiment, an information icon was provided along side each experiment 

which when clicked would give a detailed description about that experiment. By default 

all experiments were selected, but users can choose any number of the experiment(s)

pressed, 10 CSV (comma separated values) files are generated along with a README 

file. These files can then be downloaded as a zip-archived bundle by following the given 

download link.

3.3.1 Downloaded results
The downloaded zip-archived bundle contained event distribution data in relation to time 

and generation or in combination. As illustrated in the previous chapter lineages can be 

mined or segmented vertically as well as horizontally. Vertical segmentation can 

generate data that depict distributions of various nature with event distribution being 

predominant. At present in ProgeniDB only event distribution can be mined and the 

resulting CSV files can be subjected to data analysis for understanding cellular 

behaviour.

from the list. At the end of the query stage when the ‘Generate Results’ button was

» •  2008 02  20_ 14 31_09.zip a o l
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Fig. 3-3 Screen shot showing the downloaded CSV files.
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In an ‘event_count_generation_wise.csv’ file the count of all 9 types of events at each 

generation is listed. Generations were listed in the first column while different events 

were listed in the consecutive columns. Thus, each number represented a particular 

event at a designated generation. The second file ‘event_count_time_wise.csv’ 

accounted for all events counted against time (min). In this file, the first column 

represents time (mins) importantly only those time points were listed when an event 

occurs. The remaining CSV files were all generation based, therefore, for each 

generation the time for each event was listed. For example, in the file 

‘event_count_time_wise_gen0.csv’ the event distribution for generation 0 cells i.e. 

progenitor cells were listed against time and again only those times where a particular 

event has occurred. Data from these file packages were subjected to different event- 

based analysis to understand different aspects of cellular dynamics and the dose 

dependent effect of the anti-cancer agent topotecan (TPT). So far two simple aims have 

been achieved, (i) the database construction and subsequent data filtering demonstrated 

that data sieving serves an important role in selecting lineages with specific descriptors; 

(ii) the lineage filtering plays an important role in shaping the data mining questions and 

the hypothesis posed in examining the PD responses to therapeutics agents.

3.3.2 Understanding extent of TPT perturbation on population growth 
in the temporal domain

Time-to-event given by cumulative event curves provided kinetic fingerprints of cellular 

phenotypic behaviour in a tumour cell population (Feeney et al. 2003). These time-to- 

event curves could be considered as a collection of individual cell responses and 

therefore reflect the population as a whole. The shape of the event curves encompasses 

cell cycle delay (change in slope), cell cycle arrest (gaps in delivery profiles) and 

possibly the induction of cell death.
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Fig. 3-4 Cumulative event curves for U-2 OS celis derived from ProgeniDB. The
database was queried to obtain event counts from experimental drug screens o f U-2 OS 
cells in untreated conditions (A) and after a 1hour bolus exposure to 10pM TPT (B) 
treatment conditions. The tagged events in this query included mitosis (solid), cell death 
(dotted), lost (dashed) and all other active events (dash-dot; such as polyploidy, refused, 
mitosis 3 and mitosis 4). The event curves were subjected to a continuous local 
normalization filter ensuring an adaptation to the concomitant increase in cell number. 
Local slope changes (C) (4 hour time bin) plotted over time to demonstrate elements o f 
population dynamics, synchronization, and inter-mitotic perturbations. The local slope 
was calculated from the mitotic events, depicting oscillatory behaviour during normal 
growth and the consequences o f drug perturbation. Continuous normalization filter: The 
experimental acquisition time interval (tv) was 15 minutes (tv = 15) and therefore the 
value o f N was updated every 15 minutes using the formula described in Eq. 2. The 
number o f living cells, N, at the start o f the experiment (t = 0) equals the number o f 
progenitor cells present under the specified condition (in this example, the control 
condition has 156 progenitor cells and the 10 pM  TPT condition has 201 progenitor 
cells). From this time point, as the population starts to proliferate, N is recalculated as 
follows:

N t= N, +  Z  M itosis, T.(Death +  Lost), Eq. 2

The value o f N at time t was used to normalize each event curve, e.g. for mitosis
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Eq. 3

Local slope calculation: To determine local changes in the rate o f event delivery there 
was a requirement to calculate the local slope, this calculation was binned over 4 hour 
time windows providing sufficient sub cell cycle resolution.

Where A y = value of yt - value o f yM and A t = 4 hours.

ProgeniDB was queried with relevant filters to select a constrained set of lineages, 

representing a specific drug treatment regimen. In each instance within the downloaded 

result files, the ,event_count_time.csv’ file was used to calculate the cumulated events 

(mitosis, death, lost, and all other active events), a normalization step was added to 

provide a continuous adjustment for the number of cells present in the population. 

Previously a normalization filter was implemented with relation to the original number of 

progenitor cells (Marquez et al. 2003), this approach is effective for short duration 

screens (12-36 hours). However, for long term screening (> 48 h) a continuous 

normalization approach was implemented where the cumulative events at each time 

point were adjusted for concomitant increase in cell number and hence event potential 

(total number of cells) at a given time point. The normalized event curves in the control 

conditions (figure 3-4 A) showed a linear ramping of events, with mitosis being the 

predominant event. The event curves showed a dramatic perturbation effect on the 

mitotic event curve as a result of a 1 h bolus treatment with 10 uM TPT (figure 3-4 B); a 

triphasic response, with early events arriving, followed by a plateau phase between 8-20 

h and then a substantial recovery of mitotic events to approximately half the untreated 

conditions. This profile represents a complex interplay of pharmacodynamic effects. In 

this heterogeneous cell population, at any particular time, cells are positioned 

asynchronously in their cell cycle which is reflected in their event delivery for that time 

window; (i) the plateau phase represents cells actively replicating DNA during drug 

treatment, they are unable to contribute to the mitotic curve at the appropriate time; (ii) a 

drug resistant fraction becomes apparent originating at (>24 hours); (iii) an enhanced 

rate of cell death occurs (>40 hours), displaying an exponential profile. Figure 3-4 C 

showed a change of the calculated local slopes derived from the mitotic curves in both 

treatment regimen as the population grows. To reveal the cell cycle driven dynamics

Slope =  —

At
Eq. 4
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within the heterogeneous population, the mitotic event curves were segmented into 4 h 

time windows and the slope for each binned segment was calculated. In control 

conditions this yielded an oscillatory pattern, the period of the each oscillation 

represented the wave of cells delivering to mitosis for each generation in this case five 

completed cycles; and the sequential decay of the response reflected that population 

growth tends towards asynchrony. In the treated conditions (10 pM TPT), local 

perturbations became apparent using this readout approach. It demonstrated the gap or 

hole in the first cycle (at > 8 h) and a slow ramping up of the rate of mitotic delivery to 

approximately half that of the control counterpart (from >24 h to end). Interestingly this 

fraction which was termed as the drug resistant fraction recovered non-synchronously 

(no obvious oscillatory component), demonstrating a severely perturbed tumour 

population. The conversion of a linear temporal response to an oscillatory or frequency 

response by translating via local temporal texture analysis provides a route for 

mathematical modelling; and the incorporation of wavelet analysis to enable 

pharmacodynamic fingerprinting in the context of drug profiling.

3.3.3 Understanding the consequences of TPT action on sequential 
generations of population growth

ProgeniDB provided a unique opportunity to extract event-based analyses from the 

perspective of a lineage structure i.e. based on generation as opposed to time per se. 

Data analysis and visualization output using the downloaded 

‘event.count.generation.csv’ file in the same drug treatment conditions as above 

showed the effect of the drug from a generation perspective.
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Fig. 3-5 Generation derived event analysis. Simple histogram of percentages of 
mitotic and cell death events calculated for each generation in control and in treated 
condition.

The percentage distribution of mitosis and cell death was determined on a generation- 

basis. In control conditions the level of mitosis was on an average 10-fold greater than 

the level of cell death over all generations. After treatment, the level of cell death was 2- 

fold greater than the level of mitosis in the progenitor generation. This effect reverts to 

predominantly mitosis with an average 4-fold ratio over cell death for successive 

generations. At a simple level, this visualization provides a means for determining the 

generation specific cell responses to drugs specifically the behaviour of the resistant 

population.

3.3.4 Simple data visualization to compare signatures of drug action
To compare the pharmacodynamic response of a treated population with a control 

population on a generation basis and on a time scale basis, the data from figure 3-4 and 

3-5 was reconfigured to provide the following figure.
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Fig. 3-6 Comparing pharmacodynamic (PD) responses in context of cell death to drug 
perturbations. (A) Histogram depicting percentage difference of death in different 
generations. In each generation, percent difference for cell death was calculated by 
subtracting the control values from the drug treatment (10pM) values of (figure 3-5) (i.e., 
%Dtreated - %Dcontra)- (B) Using data from figure 3-4 A and B, ratio of Dtreated over Dcontm, at 
each time point was plotted against time.

Histogram plot (figure 3-6 A) showing the difference for cell death in treated conditions 

(10 jiM TPT) compared to control conditions was derived from data shown previously. 

The plot showed for TPT treated condition, that the percentage of death was always 

higher (i.e. positive) up to and including the forth generation. This revealed that while 

the response reduced over the consecutive generations the addition of TPT enhanced 

cell death throughout the integrated population lineage. Figure 3-6 B showed a 

continuous ratio plot for cell death over time, taken from figure 3-4. Cell death is 

considered as the critical events in this particular analysis. A ratio value of 1 indicated 

that the time-to-event index was equivalent in both conditions, while above 1 indicated a 

higher rate in drug-treated conditions and vice versa. The ratio for cell death stabilized
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after 20 h and slowly ramped up to a plateau mean value of 3.0 (SD ±0.73), therefore 

cell death originates from the progenitor cells, and is detected during the latter stages of 

the experimental period.

3.3.5 Querying the acute effects of Topotecan on the progenitor
population to decipher the cell cycle origin of drug resistance

In order to investigate the dose-dependent acute effect on progenitor cells only, 

ProgeniDB was re-queried for control, 1 jiM TPT and 10 pM TPT conditions and, in each 

instance, data downloaded from the ‘event_count_time_gen0.csv’ was analyzed. These 

files contain the time-to-event counts for all nine tagged events for progenitor cells only.
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Fig. 3-7 Distribution of mitotic proportion (in one hour time bins) for progenitor cells at 
three TPT doses (Control, 1 pM and 10 pM). For each condition, the proportion of 
mitosis a t every hour was calculated using the following formula:

M2h .
Ph = —  x 100

X M 2 o .
Eq. 5

'...70

Where M2 is the number o f mitosis during that time bin hour h and P is the proportion.
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The plots showed, that in control conditions within 24 h, 92% of the total progenitor cells 

have undergone mitosis, while for 1 pM TPT treated and 10 uM TPT treated conditions 

the value was 73% and 56% respectively, thus the spread or smearing of the distribution 

indicated the dose-dependent global cell cycle delay effects. Interestingly the shape of 

the distribution revealed underlying cellular dynamics. The mitotic event nadir seen 

previously (figure 3-7 6) between 8 to 18 h also occurred at 1pM TPT (with both doses 

operating at 5% of the total progenitor cells delivering during this time zone). However, 

at 1 pM TPT either side of the ‘hole’ (the duration of the nadir) a mini-mitotic surge 

occurred while for 10 pM TPT the response was flat and of a very long duration. To 

interrogate the impact of the drug on cells delivering to mitosis within specific time 

windows the histogram plot was partitioned into three zones. In essence these 

corresponded to cells delivering to mitosis from different origins in the cell cycle. In other 

words cells delivering to mitosis within the first 0 - 10 h zone could be considered to be 

in G2 during the drug treatment, S-phase if time to mitosis occurred between 11-18 h, 

and G1 if delivery to mitosis occurred during the final temporal zone (Errington et al. 

2006; Feeney et al. 2003). The dose-dependent breakdown into these three time zones 

were shown in the following table.

Table 3-1 Percentages of mitosis of progenitor cells in three different time sections.

Control 1 fiM TPT 10 uM TPT

0-10 Hours 37% 41 % 44%

11-18 Hours 42% 5% 6%

19-70 Hours 21 % 54% 52%

The results were consistent with the previous findings that TPT is an S-phase specific 

drug and that cells in G1 and G2 represent the potential source of a drug resistant 

fraction (Feeney et al. 2003; Pommier 2006). Late cell cycle (G2) effects could be 

dissected in detail from the event analysis data and previous studies have identified the 

G2 originating fraction within the original population, as cells that deliver to mitosis 

before the S-phase marked cells (Marquez et al. 2004; Smith et al. 2007a). The first 

cohort of cells (0-10 h) to deliver to mitosis was considered to be in G2 during the drug 

treatment. ProgeniDB has provided the opportunity to filter and select a sub-set of cell
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lineages based on progenitor cell time-to-mitosis. A data query was performed to only 

address these lineages. For the 10 jiM TPT condition, this represented 21 lineages or 

10% of the possible lineages (figure 3-8 A)
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Fig. 3-8 (A) In three different experimental conditions, the percentage o f progenitor cells 
that deliver to mitosis and a subpopulation o f progenitor cells that deliver to mitosis 
within 10 hours o f start o f the experiment. (B) Normalized rate o f mitosis o f progenitor 
cells divided within 10 hours o f start o f the experiment

The mitotic event curve for each corresponding G2 fraction of progenitor cells was 

normalized with respect to the total number of progenitor cells included in the assay for 

that condition. The addition of the drug abrogated the delivery of this fraction of cells to a 

similar extent at both drug doses. Therefore it can be concluded that the late G2- 

checkpoint is induced by TPT.

3.4 Concluding remarks
The ProgeniDB database introduced a new approach to access information on dynamic 

cell behaviour. Fundamental to the ProgeniDB concept is that the encoding process
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encapsulates critical features of cell-cell heterogeneity and time-dependent events. The 

multi-level descriptors and parameters attributed to each node within the resultant cell 

lineage maps provided a unique framework for applying bioinformatics-like query 

algorithms such as those used for genomic databases. The lineage map importantly 

provides generation and cell functional layer upon which other information can be linked, 

such as proteomic and genomic expression data.

It is important to note that all these results shown in previous sections utilizing the CSV 

files downloaded by querying ProgeniDB was also produced by querying the LDB. 

Since both database used same data but in different format the results were identical 

(data not shown). Indeed this process validates the design and implementation of 

ProgeniDB, however the mining and analysis on LDB was not performed with the 

intention to validate ProgeniDB rather these and other data mining (vertical and 

horizontal) and associated analysis were performed on LDB only because of the 

simplicity of tab delimited text file. Moreover the nature of this research was hypothesis- 

driven data mining that demands a “trail and error* based approach that again supports 

text file format contrary to MySQL format. In terms of work flow, once confidence was 

developed on a particular type of mining and analysis (e.g. event distribution) process, 

the associated mining and analytical algorithms were then implemented in MySQL 

format as in the case of ProgeniDB.

The future improvement of ProgeniDB depends on the mining and analytical complexity 

that can be achieved on LDB data. The next chapter illustrates a wide range of analyses 

that were performed on the LDB data to illustrate the level of complexity and 

understanding these encoded data can provide. These mining and analytical features 

will be incorporated to ProgeniDB in due course but present endeavour can be deemed 

as a proof of concept that demonstrates the operational reality as well as value of 

establishing such prototype database. ProgeniDB will not be a standalone database 

rather will be part of an unique e-science (Fox et al. 2003; Hey and Trefethen 2003) 

endeavour -  CyMART, which will be discussed in detail in the concluding chapter. 

ProgeniDB and other future databases that stores cellular data acquired through 

different microscopic technology (e.g. for fluorescence microscopy, FluorDB will be 

developed) will be incorporated in CyMART. These suite of databases will be the 

access point to retrieve cellular data pertinent to different research areas like cancer,
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wound healing etc, the viewpoint of such databases will be like that of NCBI or EBI, a 

web portal with arrays of databases like Entrez Gene (see

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) with mining facilities, analytical and 

visualization tools like BLAST (Altschul et al. 1990), Clustal W (Pearson 1990; Pearson 

and Lipman 1988). Construction and update of ProgeniDB and other cellular databases 

will also be achieved in a collaborative manner like NCBI, the process of encoded data 

contribution was outlined thematically earlier in this chapter.
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Chapter 4: Lineage maps: revealing interactions and 
relationships

The concept behind this investigation is that the progeny tree generated from progenitor 

cells provides the structure of the lineage map where access to data depict nodes of 

cellular behaviour that can be mined and analyzed from different perspectives. Cellular 

event analysis and distributions have remained the predominant form of analysis in cell 

based assays, where the basis was event counting (both manually and automatically). 

Previous chapters have illustrated access to such event information acquired from 

ProgeniDB (Khan et al. 2007). The information has been interrogated from different 

perspectives, in relation to time and generation which was achieved by segmenting 

lineages vertically (discussed earlier in chapter 2). However, these analyses did not 

exploit the core strength of the lineage data format, which is the inter-nodal relationship, 

where these aforementioned parameters like event type, IMT etc. could be analyzed 

within a pedigree structure. Lineage maps represent all events as nodes which are 

inter-connected by branches, if both nodes of a branch represent mitosis, branch length 

represents the inter mitotic time (IMT), in other words the complete cell cycle time. IMT 

would be considered the most significant parameter in these type of analysis and the 

variability of IMT, monitored from generation to generation (pedigree structure) after an 

insult or perturbation is a good indicator of the time-dependent action of a drug. 

Specifically, the pattern of the delay could provide a dose and drug class-dependent 

signature that can be mined from the lineage database (LDB). Moreover as these tracks 

represent direct lines of descent, behaviour of later progeny can be attributed to previous 

generations particularly the progenitor cell (the first cell or the root of the lineage). 

Relating later progeny behaviour with progenitor cell attributes, provides knowledge 

concerning the origin of drug resistance and facilitates the need to develop predictive 

algorithms and models of pharmacodynamic (PD) responses.

It is important to stress that the values of individual IMT or other inter-nodal data were 

not encoded within the text files and therefore were not stored in the LDB (folder 

structured database where encoded text files were archived initially) rather they were 

extracted from the lineage data ‘on-the-fly’ basis, during the data mining process by 

calculating the time difference between two (branch length) successive mitosis. From
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the LDB, through exploiting this inter-nodal relationship not only IMT but other 

parameters can be retrieved ‘on-the-fly’: Inter mitotic displacement (IMD) as described in 

chapter 2 is one such example. Another such parameter is intrA-Mitotic Time (AMT) 

which can be measured as the time difference between start and end of each mitosis. 

Since ProgeniTRAK encodes the start and end point of each event including mitosis, so 

this parameter can be mined from the encoded lineages which in biological terms 

represents the end of G2 phase and commitment to mitosis. AMT becomes an 

important parameter when aspects of the spindle-assembly checkpoint are being 

considered.

The overall objective of this chapter was to illustrate different data mining and analysis 

strategies using LDB through exploiting the lineage format. Mining and analysis were 

executed in two successive stages; the first stage included distribution analysis on 

parameters that can only can be measured ‘on-the-fly’. The second stage included 

horizontal segmentation, i.e. relationship based analysis to explore drug induced 

pedigree behaviour, origin of drug resistance and origin of population heterogeneity.

4.1 AMT -  representing M phase variability
Many cellular events, particularly mitosis have well defined start and end points, and this 

coincides with distinct morphological cellular changes; within this bioinformatics 

environment this time difference was designated AMT which was measured from the 

LDB ‘on-the-fly’ basis. The time window or phase (representing the M phase) of the cell 

cycle is important as various drugs interfere with this process to cause mitotic stalling 

and arrest, for example the Paclitaxels a mitotic inhibitor used in cancer chemotherapy 

Taxol® (Kraut et al. 1996). Taxol® stabilizes microtubules and the consequences are the 

capture and delay cells in the mitotic state as they stall at the spindle-assembly 

checkpoint (Abal et al. 2003; Allman et al. 2003). The extent of this delay is an 

indication of the PD response and as ProgeniTRAK encodes the start and end point of 

each event including mitosis, this aspect of a PD response can be measured and 

presented in a comparative manner within a drug screen.

The impact of Taxol® and TPT (two well studied anti-cancer agents) on AMT was 

evaluated, any perturbation of this phase of cell cycle was usually observed as an 

elongation of AMT value and a reflection of the spindle-assembly checkpoint in action.
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Using timelapse imaging, it has been previously revealed that the dynamics of taxol- 

related agents in altering mitosis are complex (Rosa et al. 2006). Mitosis can be 

prolonged but cells are still capable of dividing to produce either two or three cells 

(tripolar mitosis), thus explaining a sub G1 peak as aneuploidy rather than apoptosis. 

Furthermore, some cells are able to fuse back and then progress to mitosis, frequently 

producing three cells again before becoming arrested in the next cell-cycle interphase 

(Demidenko et al. 2008). The effect of drug on AMT was measured for (U-2 OS) 

progenitor cells that were exposed to 1 pM TPT, 10 jaM TPT and 5 nM Taxol® as well as 

in control condition. The aim was to seek long term stalling of mitosis, hence AMT values 

were binned according to their nearest hour and for each hour the percentage or 

proportion was calculated using the following formula:

Nt
Pt = ——— xlOO 

Z N Eq. 6

Where P is the proportion at time Xth hour and N is the number of mitotic events where 

mitotic events include mitosis 2 (M2), mitosis 3 (M3), mitosis 4 (M4), polyploidy (P) and 

re-fused (R) events.
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Fig. 4-1 Effect o f Taxol® and topotecan (TPT) on the AMT of progenitor cells.

The distribution of AMT in U-2 OS progenitor cells showed a marked elongation with 5 

nM Taxol ®, while with TPT no visible effect was observed. In addition to an elongation 

of AMT it was also observed that all mitotic events resulted in a polyploidy or re-fused 

event outcome (data not shown), this indicated a failed segregation of chromosomes or 

a furrow-regression event respectively. This multi-dimensional analysis (elongation 

coupled with event type) demonstrated an exemplar PD response in a comparative 

manner that is necessary for understanding the biological action of the drug. More over 

the PD behaviour from a well known drug i.e. Taxol® can be used as a signature to 

compare the PD response of new compounds, which in turn would facilitate the process 

of drug discovery and development. The encoded lineage approach enabled different 

timelapse experiments to be combined and mined based on the selection criteria (filter) 

of a single common descriptor, for instance in this example, based on the common cell 

line (U-2 OS) lineages from three experiments were included for analysis. The first two 

experiments were identical (with TPT) but the later one (with Taxol ®) was different with 

respect to experiment duration, sampling interval etc. It is worth noting here that the
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sampling interval applied during the timelapse acquisition dictates the sensitivity of the 

AMT assay, current sampling of data in the LDB consists of 15-20 minute intervals while 

the mitotic event for U-2 OS cells had an AMT duration of -  1.5 hours, indicating subtle 

perturbations would remain undetected. Comparing cellular behaviour in such an 

incorporated manner would facilitate collaborative research, as independent experiments 

(performed in different labs) derived lineages can be analysed and interpreted by single 

analysis.

4.2 Interlinking of cell cycle duration with cellular displacement
Both IMT and IMD are important parameters as they represent the duration of the cell 

cycle in context with displacement and their variation implies modulation of the cell cycle 

related events. Assays with TPT on U-2 OS cells (used to encoded lineages) showed 

that cultures reached confluency, after 100 hours particularly in control conditions (see 

Appendix VI for image sequence) -  affecting cell movement. The question was whether 

such confluency has an impact on IMT, as well as the inherent mobility dynamics of 

cells. To determine the co-effect of confluency, the mean IMT and IMD in successive 

generations was measured and presented in the following plot.
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Fig. 4-2 Stability of the IMT and IMD over five generations. The mean IMT (triangle) 
and IMD (square) values for five generations were plotted in a two axis graph, it was 
revealed that the IMD decreased 30.54% over a five generation assay period (~ 112 h), 
however the IMT remained stable during the whole assay period.
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From figure 4-2 it is evident that due to crowding the free movement (actual distance 

moved between two successive mitosis) decreased in generations 4 and 5 but the 

average IMT remained stable 20.5 h over the course of the entire experiment, indicating 

that crowding had not imparted upon cell cycle progression. Such an analysis could be 

an important indicator fo the evaluation of contact inhibition. Further, the analysis 

validates the assay design providing a standard value for IMT which remains unaffected 

by the cell crowding. Moreover from a bioinformatics point of view, this result 

exemplifies the implication of the data format by illustrating the relationship of IMT and 

IMD with experimental descriptors e.g. dose and generation.

The IMD is a good indicator for measuring the overall rate and directionality of cell 

movement over time; parameters of great importance for wound healing where a 

balance of proliferation and motility is required for wound closure. Feedback from 

biologists confirmed the importance and requirement of the IMD parameter, therefore a 

visualization GUI was developed where IMDs for a selected lineage can be viewed and 

quantified. The workflow was designed as follows: the user selected a particular field of 

view through a sequential selection process resembling lineage encoding process - 

experiment selection followed by well selection which led to a field of view (FV) 

selection. Within the selected FV visualisation of the progenitor cells (green dots in 

figure 4-3) were displayed. Each progenitor cell represents a single lineage, therefore 

when user selected a particular progenitor cell or green dot, all IMDs attributed to each 

node of the lineage were drawn as lines centred for the progenitor cell coordinate origin 

(starburst effect). Additionally, the lines were colour coded according to the generation 

of IMD they represent.
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Progenitor cells at a selected FV

Fig. 4-3 IMDs in different generations. Four progenitor cells were selected from the 
middle screen shot where each green dot represents a progenitor cell or root of the 
lineage. The progeny evolved from each progenitor cells (A-D) has associated IMD 
cluster which were depicted as lines centring to the origin (x,y coordinates of the 
progenitor cell).

Since these type of analyses provided both quantitative measurement and a visual 

representation, they naturally established their importance in simple and well established 

assays where colony formation pattern (size and number and potential sectoring) were 

parameterized. A standard method for assaying a population of tumour cells for drug 

sensitivity involved plating an equal number of cells with and without drug and then 

comparing the two groups on the basis of the number of colonies grown to 50 cells or 

more. Routinely this required a typical plating of 20 cells in a 60-mm tissue culture dish, 

incubation for 4-14 days, followed by a staining procedure for colony detection, counting 

and size determination (Mather and Roberts 1998). There were semi-automated 

platforms for extracting counts and analysis including mean colony diameter, area, 

density and distance to nearest neighbour, as well as colony size distribution (e.g. 
ColCount™, from Oxford Optronix). However the limitation of this classic approach was 

that cells have to be sparsely plated to identify the physical colony boundary, and a
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minimal seeding density is not appropriate for many cell types and normal plating 

conditions maximizes the growth of progenitors of interest (and their clonal progeny). 

Furthermore it may be informative to take into account clonal heterogeneity of growth 

rate (Kuczek and Axelrod 1987). The single-cell lineage-derived colony parameters 

described in this chapter form the basis for a multi-dimensional colony assay, 

incorporating the limitations of the classical colony assay approach and can be 

implemented using linked IMT-IMD parameters to embed growth rates.

It is important to note that cell directionality here represents the overall movement 

between lineage nodes (as in ProgeniTRAK data were encoded only when an event 

occurred). Even with this restriction, IMD is an important parameter as it relates cell 

movement and with cellular proliferation and other experimental descriptors - generation 

and time, this matrix of information provides the global analysis required for wound 

healing and metastasis (detail discussion in chapter 7).

4.3 Exploring cell cycle duration patterns: measuring the 
dissemination of perturbation effects through successive 
generations
The primary focus of the current chapter in the Intra Mitotic Time (IMT) (technically the 

inter-nodal distance) and the specific hypothesis was that this bioinformatics-derived 

parameter enabled the biologist to dissect out the mechanisms that underpin the 

dynamics of progenitor cell lineages. Furthermore this parameter represented the global 

analysis of the cell cycle engine. The first premise was that interrogating the IMT 

parameter using a multi-dimensional approach was now possible because of the lineage 

format. Single cell lineage tracks (i.e. direct lines of descent) provide temporal tracks for 

cell division and cell death timing, forming a bifurcation map with nodes, branches and 

cul-de-sacs. The duration of the IMT, monitored from generation-to-generation, after an 

insult, is a good indicator of the time dependent perturbation of cell cycle traverse in 

response to cell cycle delay-inducing drugs. The pattern of this delay from generation-to- 

generation could provide a dose and drug class-dependent signature. Lineage data 

encoded through ProgeniTRAK provides the unique opportunity to explore the existence 

of such signatures, which from a cancer research perspective has two clear benefits -  

first the pattern of PD response attributed to resistance sub-populations can be identified 

and second from the roots of these resistance tracks, the origin of resistance can be
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identified. Even though in the previous analysis it was shown that cell cycle positioning 

of the progenitor cells was an indicator for survival at high doses (1 pM and 10 pM TPT), 

it was shown that progenitor cells either positioned in G2 or G1 had higher survival 

percentages than cells positioned in S-phase (see figure 3-7), but from that analysis it 

could not be revealed the fate or behaviour of the successive progeny of this apparent 

resistant progenitor cell sub-population. In order to achieve this objective a reference or 

standard IMT from the control experimental condition was required against which other 

outcomes of cell cycle delay or early etc. could be scored. The approach is analogous 

with PAM or BLOSUM scoring matrices which specify the similarity or the distance of 

replacing one protein residue/base by another, based on the theory of evolution (Dayhoff 

1979; Henikoff and Henikoff 1992). These scoring matrices are used in BLAST to align 

unknown protein sequence with well annotated protein sequence in the database. The 

previous analysis with control population showed that the mean IMT remained almost 

constant over five generations (see figure 4-2), however the true distribution of the IMT 

has not been comprehensively evaluated through Johnson curve fit (Johnson 1949). A 

mini-project was devised to interrogate this aspect further, (see Appendix VII) 

undertaken as a Masters project by Chris Headley. The critical outcome from the study 

showed that the distribution followed a normal distribution and therefore the IMT control 

reference was designated as 20.5 h ± 5.02 SD.

It was decided that the pattern of IMTs for each track should include successive three 

IMTs because for treated condition (for this analysis with anti cancer drug TPT) if the 

progeny of cells continued to deliver even after three generations -  at least from the 

biological perspective these cells were designated as the resistant population. These 

would comprise the non-S-phase fraction as a priori knowledge indicated that S-phase 

specific progenitor cells did not deliver to mitosis at the two doses selected (1 pM and 10 

pM TPT). The mean IMT in control population for U-2 OS cell line was found to be 20.5 

± 5.02 SD. setting this IMT control reference value to 20.5 h or 1230 min a simple 

scoring schema was formulated.
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Fig. 4-4 IMT distribution o f over three generations. The mean IMT from generation 1 
to 3 was 21.20 h, 20.01 h and 20.26 h respectively depicted by green, blue and black 
lines respectively.

Variation of IMT or cell cycle duration was categorised into 7 distinct bins, where each 

bin has a time range of 180 min. If the IMT under consideration falls within a certain bin, 

that IMT was tagged and scored according to the score as outlined in table 4.1. These 

seven bins were given a score value form -1 to +1 scale with a 0.33 score interval. This 

score range (-1 to +1) was selected to set the data within a visualisation range 

compatible with microarray gene expression visualization technique visualisation used to 

visualise up and down regulation of gene (Kaushal 2004).

Table 4-1 Tagging and scoring schema for IMTs.

IMT duration (in minutes) Category (Tag) Score

<780 Severely Early (SE) -1

>780 but <960 Moderately Early (ME) -0.66

>960 but <1140 Lightly Early (LE) -0.33

>1140 but <1320 Normal (NR) 0

>1320 but <1500 Lightly Delay (LD) 0.33

>1500 but <1680 Moderately Delay (MD) 0.66

£1680 Severely Delay (SD) 1

Each bin comprised of 180 min range and setting 1230 min as the mid point of the 4th bin 

as well as the ‘Normal’ category bin, the normal IMT range was calculated to be £ 1140
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but <1320 min. Any IMT within this value was categorized as normal and was scored 0 

and given a tag ‘NR’. The choice of 180 min bin was derived from the 5.02 SD value of 

control condition. With this 180 min binning approach other bins were formulated and 

their associated scores were set. The lower and upper limit of 780 min and 1680 min 

respectively was selected as no IMT bellow or above this value was found within the 

encoded data.

For the three experimental conditions (Control, 1 nM and 10 îM TPT) using the same 

scoring schema only non-redundant tracks (figure 4-5) with at least 3 consecutive IMTs 

were selected.

mshi

Fig. 4-5 Exemplar lineage where two non-redundant tracks (red and green) up to three 
consecutive IMTs are highlighted. For these two tracks IMT 1 and IMT2 were identical 
but IMT3 was different.
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For each experimental condition, each track was given a searchable nomenclature 

comprising a 6 letter tag (2 letters for each successive IMT e.g. NRLENR representing a 

track where IMT1 was ‘Normal’, IMT2 was ‘Lightly Early’ and IMT3 was ‘Normal’) and 

written to a MS Excel file. For control condition 125 different types of tags were 

generated, and for 1 pM and 10 pM conditions 52 and 48 types were generated. In 

order to visualize the tags within a heatmap perspective conventional microarray data 

analysis software -  Genesis ® (Stum et al. 2002) was used. Even though the tags were 

ranked according to their prevalence but heatmap view gives a visual representation of 

the overall behaviour or pattern. In order to achieve this objective, the numeric 

counterpart (score) for each tag was inputted into Genesis software and was clustered 

using hierarchical clustering algorithm (Johnson 1967). A tag of ‘NRLENR* would have 

scores of 0, -0.33, 0 respectively in the three columns.

□
£

■

M H H
•1.0 1:1 1.0

»■ M  «  
»— »— ►— 
2  2  2

1.0 1:1 1.0

*- n  «  »— »— *— 
2  2  2

Fig. 4-6 Heatmap view o f three consecutive IMTs. For each experimental condition, 
each track of the lineage is represented by a row of the corresponding heatmap and 
again the three columns in the heatmap represents consecutive IMTs for that track - first 
column represent IMT 1, second IMT2 and third IMT3. If any of the IMT is delayed from 
the standard IMT, it is coloured as red while early as green. The heatmaps in control, 1 
pM and 10 pM TPT represents 1369, 286 and 155 tracks respectively. The average of 
the score in each column for all three conditions were calculated to indicate the average 
IMT of the cells at that generation and was presented as bar graph.
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The heatmap (figure 4-6) and the associated clustering were purely for visualization 

purpose since the underlying algorithm for clustering is specific for microarray analysis 

which usually has much higher number of genes in the analysis. However from this 

simple analysis it was apparent that for a high dose (10 juM TPT condition) that the 

resistant cells showed two distinct delay patterns. The first, where the tracks contained 

a severe delay specially at IMT1, while in the second pattern cells appear to be 

completely unaffected by the drug treatment. At the lower dose (1 TPT), a small 

delay occured in the first generation IMT (IMT1), with subsequent recovery. To 

investigate these findings further, an average of the score for each column was 

calculated for each condition and was presented in the inset graph. From this simple yet 

informative analysis a dose dependent behavioural pattern of the resistant population 

was revealed which also invokes further investigation to ascertain the origin of these 

resistant sub-fractions.

For all three experimental conditions, 125, 52 and 48 types of individual patterns were 

revealed by the analysis of 1369, 286 and 155 tracks respectively. These patterns were 

subjected to ranking in accordance to their prevalence and from these ranked pattern, 

the top 5 patterns from each condition was selected. In any condition these top 5 

patterns constitute 35-40% of all the patterns i.e. for control condition the top 5 patterns 

were LELELE, NRLELE, NRLENR, LELENR and LENRNR and cumulatively they 

constitute 34% of all the patterns. Interestingly these top five patterns were common to 

all or at least two of the experimental conditions, indicating resistant population in treated 

condition behave almost same as that of control condition.

Since the lineage provided a link to each tack with its progenitor cell, further investigation

was carried out to find whether these resistant population also benefited from the

positioning of the progenitor cell cycle. For each experimental condition, the track that

constitute any of the top 5 pattern was indexed and each time the positioning of the

progenitor cell was measured. For example, if a track in control conditions had a pattern

LELENR, it was indexed for the analysis and the division time of the progenitor cell of

this track was measured. Since a group of tracks belonging to the same lineage, thus

will refer to the same progenitor cell; Eventually a distribution of the division time for the 
%

progenitor cell was generated that was then presented as a bar graph.
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Fig. 4-7 Five most frequently occurring patterns of resistant populations and the 
distribution of their progenitor origin. Top panel showing the heatmap of the top five 
patterns in all three conditions while the bottom panel showing the progenitor that are G2 
(blue) or non-G2 (brown) origin.

As mitotic time of the progenitor cells retrospectively indicates the cell cycle position at 

time 0 (i.e. when drug was given) from the bar graph it was evident that for treated 

condition there were two types of progenitor cells that generated the resistant progeny. 

The two groups in treated conditions showed a clear gap between 10 to 20 h duration. 

Having 10 h as the demarcation time point, the progenitor cells could be separated into 

two groups -  progenitor cells that divide within 10 h of start of the experiments were 

labelled as G2 i.e. they were positioned in G2 of the phase of the cell cycle when the 

drug was administered and the rest were labelled as non-G2. The chart in the inset 
shows the percentages of these progenitor cells representing these two groups (figure 4- 

7). For control both G2 and non-G2 progenitor cells contributed equally to produce the 

most frequently occurring tracks, however in treated conditions the predominance of G2 

progenitor cells were evident with 10 pM being more predominant than 1 TPT. This 

result implies that with higher dose the resistant population predominantly evolved from 

progenitors that were positioned in G2 of the cell cycle when the drug was administered.
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From a statistical view point these analyses were not robust enough to establish any PD 

response related hypothesis and the prime reason being the small number of tracks 

available for analysis, specially in treated conditions. At a higher dose the number of 

tracks that had cell cycle traverse properties even within the third generation were 

indeed rare when considering the number of lineages. Such a small number of lineages 

indeed skewed the results in figure 4-6 as the surviving tracks refer to a small number of 

progenitor cells which leads to an over representation of some progenitor cells. 

However the objective of this analysis was not to discover the phase specific action of 

the drug, rather to demonstrate that such bioinformatics approach is a valid approach to 

investigate the PD response for unknown drugs or New Chemical Entities (NCE). 

Moreover through this analysis it was demonstrated that track wise information 

introduced a new perspective on understanding cellular dynamics as in this instance 

lineage data were segmented in horizontal fashion contrary to conventional vertical 

fashion. This linked information if acquired in large scale (which was not achieved in this 

analysis due to time and manpower constrain) could be utilized for different statistical 

analysis such as cluster analysis and through these metadata level analysis more 

complex biological hypothesis could be addressed which in turn would augment our 

understanding of cellular dynamics (temporal domain) and the extracting of in silico drug 

response.

4.4 Cell cycle positioning of progenitor cell and measuring its 
influence on behaviour of cells on successive generations
Statistical work of this section was carried by Dr. Valentina Moskvina (Biostatistics and 

Bioinformatics Unit, Cardiff University)

Previous lineage based analysis (section 4.2 and 4.3) has shown that the cell cycle 

position of the progenitor cell was a determinate for a resistant population to evolve. Not 

surprising since topotecan forms a ternary complex with topoisomerase-DNA, 

consequently collisions of DNA replication forks (during replication in S-phase) or 

progressing RNA polymerase molecules (during transcription in all the cell cycle) cause 

double strand breaks (Pommier et al. 2004) and evoke a DNA repair cascade. TPT is 

therefore considered an S-phase specific agent, with differential sensitivity on G1 and 

G2 cells (Feeney et al. 2003). Furthermore, previous analysis (section 3.3.5) has 

indicated that from 0-10 hours in a timelapse sequences the cells that deliver to mitosis
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during this time window could be considered as the G2 progenitor cells, after this time 

cells are classified as non-G2. Within the non-G2 group it was evident from both (figure

3-7 and figure 4-7) analysis that almost no progenitor cell delivered to mitosis between a 

~ 10 -  18 h window at different TPT doses. Again this refers to the well established 

understanding that S phase specific cells undergo apoptosis or become arrested due to 

the action of this anti-cancer drug (Feeney et al. 2003; Huang et al. 2003), in addition the 

late arriving progenitor cells (cell delivering to mitosis after ~ 18 h) could be classified as 

G1 cells, thus two distinctive sub-populations became evident in the TPT treated 

conditions which was primarily attributed to the asynchronous but cell cycle dependent 

delivery to mitosis by the progenitor generation. The impact of such an asynchronous 

mitotic delivery on successive generations has not been investigated in previous 

analysis; however, the encoded lineages provided the opportunity to investigate the sub­

population behaviour in successive generations and the principal influences. Based on 

the a priory knowledge that TPT is an S-phase (Feeney et al. 2003; Huang et al. 2003) 

specific drug (particularly at the high doses) and resistant progeny evolve from 

progenitor cells that were positioned to either G2 or G1 phase of the cell cycle when the 

drug was administered, an investigative data mining and statistical analysis was 

undertaken to measure the sub-population behaviour in the successive generations.

Lineages derived from each experimental condition (Control, 1 pM TPT and 10 pM TPT) 

were selected and for each condition the distribution of mitotic delivery in three 

successive generations were analyzed. In order to measure the mitotic delivery 

distribution for a particular generation under a particular experimental condition, all 

mitotic events at that generation were first accounted and then cells contributing to 

mitosis were categorized to either G2 or non-G2 origin according to the mitotic delivery 

time of the progenitor cell of the lineage in which cell under consideration belonged to. 

Once categorized, the percentages of mitosis were quantified using a 1 hour bin, i.e. 

percentages were calculated at each hour 0 to 112 h (experimental duration) using the 

following formula:

M2< xioo
Eq.7
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Where, Pt is the percentages of mitosis for a particular category, M2t is the number of 

successful mitosis occurred at tth h with cells belonging to that category. Z  M2gn is the 

summation of all mitotic events (both G2 and non-G2 category) that have occurred in 

generation (gn) under consideration.

The percentages for three successive generations in all three experimental conditions 

generated nine graphs depicting the distribution of mitosis (figure 4-8).
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Fig. 4-8 Distribution of mitotic delivery time in a resistant population. Top row of graphs 
(A-C) shows the mitotic event distribution over three generations in unperturbed (control) 
condition. Middle row (D-F) graphs after a 1pM TPT condition while the bottom row (G-l) 
graphs after a 10 pM TPT condition where solid lines represent progeny evolved from 
G2 origin and dotted line represented non-G2 origin.

The graphs showed two distinctive sub-populations in treated conditions (middle and 

bottom panel) since the S-phase population was removed providing a clear time gap 

between the G2 and the non-G2 fractions; with the passage of time (later generations) 

these fractions started to overlap (see 1 jiM TPT condition, Gen 3)., In drug-treated
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conditions as the S phase specific cell did not deliver to mitosis, therefore no progeny 

evolved which was represented by the gap within the distribution in progenitor 

generation, moreover the stress imparted by the drug still had a PD effect on cells 

delivering to mitosis; with the passage of time this gap became indistinctive as the cells 

in the later progeny delivering to mitosis in the resistant population (see figure 4-8 

F)..However for control conditions (top panel) these sub-populations were not 

distinguishable at any of the generations.

In order to provide a generalized view of the mitotic distribution simple mean values of 

both groups in all three generations and conditions were plotted (see Fig. 4-9).

□  Control □  1 nm TPT ■  10 tun TPT

120 G e n  1 120 Gen 2 120 Gen 3

■

£ . 90 00 90 ■
■ ■ ■  DQ) ■ □

£  60 .  60 - ■  □  60
y-

50
s□

■■□ 30

0 0 0
G2 non-G2 G2 non-G2 G2 non-G2

origin origin origin origin origin origin

Fig. 4-9 The mean value for the 18 different distribution present in Fig. 4-8 was plotted in 
three dot plots.

From the plots in Fig. 4-9, it is evident that on average, with the higher dose (10 jaM) the 

progeny delivered to mitosis later compared to lower dose (1 |iM), this was more evident 

with progeny of cells grouped as non-G2 progenitor origin. Interestingly, the cells from 

G2 origin showed a bigger delay in Gen2 (ie the G2 cell had to go through another cell 

cycle) after a 10uM TPT treatment. Altogether this implies that if the progenitor cells 

were positioned in non-G2 phase of the cell cycle when the drug was administered, the 

resistant progeny evolved will be more affected compared to cells positioned in G2 

phase of the cell cycle, hence providing a cell cycle dependent hierarchy for resistance. 

Again in relation to dose, the average mitotic time for 1 condition (violet) gradually 

became equal to that of control (yellow) and in 3rd generation both for G2 and non-G2 

group it was almost identical to control, indicating the drug induced stress disappeared in 

later generations. However, for a higher dose (10 îM) the apparent delays particularly 

for the non-G2 origin population still persisted even after three generations.
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4.4.1 Statistical analysis using a mixed model analysis
In order to explain these observations and the impending relationships that evolve 

through the lineages a statistical analysis, called a mixed model analysis, which provided 

a framework for analyzing data with dependent observations was undertaken in 

collaboration and input of the expertise of Dr. Valentina Moskvina (analysis was 

conducted with SPSS 16). The lineage data provide the unique advantage to consign 

mitotic time (delivery to mitosis) as a dependent observation since this variable could be 

linked with almost all other encoded parameters of the screen -  namely delivery to 

mitosis time of the mother cell, progenitor cell, sister cell, and other parameters such as 

those offered by the experimental descriptors such as drug-dose, field of view and well. 

As in all modelling critical assumptions were made. The initial delivery to mitosis of the 

progenitor cells were assumed to be independent of each other and accordingly lineages 

classified to G2 or non-G2 groups were assumed to be independent. This is probably 

not completely a valid assumption since there will be progenitor cells that could belong 

to the same ‘mother’ cell, however this designation would have occurred before the start 

of the timelapse experiment and cannot be deciphered. Thus in this case the possible 

mother dependency between two progenitor cells is ignored through this assumption. A 

second assumption was made which removed the dependency between delivery to 

mitosis time and Field of View (FV) or Well. From a statistical point of view we 

considered grouping of lineages according to FV or at least to Well, as shown in the 

Table 4-2, the number of lineages and mitosis were far from equal and to some extent 

limited. For example in FV1 of Well A1 in control condition of experiment 1, there were 

25 encoded lineages of which 23 progenitor cell delivered to mitosis and in successive 

generations 38, 58 and 94 mitosis were recorded. Within the same experiment 1, if 

FV10 within Well C2 was considered (10 pM TPT were given) it also had 29 lineages 

but only 5 progenitor cell delivered to mitosis and in successive generations 6, 6 and 8 

mitosis were recorded. To avoid such number discrepancy the level of dependency of 

lineages were assigned to dose, again even at this level the number of lineages and 

mitosis were not equal for all groups, i.e. in control condition the number of lineages that 

deliver to mitosis in successive generation was highest, while for 10 juM TPT it was 

lowest.
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Table 4-2 Number of mitosis with respect to different experimental and generation 
attributes.

Experiment Dose Well FV No. of 

lineages

No. of 

Mitosis 

GenO

No. of 

Mitosis 

Gen1

No. of 

Mitosis 

Gen2

No. of 

Mitosis 

Gen3

EXP 1 Control A1
1 25 23 38 58 94

2 27 25 38 58 92

3 34 28 49 83 132

EXP 2 Control C2
16 33 30 54 95 155

17 21 20 30 48 78

18 22 16 28 38 68

EXP 2 1 jiM B1
4 19 10 18 30 49

5 29 10 11 9 13

6 20 1 3 3 1

EXP 2 1 \iM A2
10 19 4 8 16 27

11 19 6 12 16 16

12 18 7 14 20 19

EXP 1 10 nM C2
10 29 5 6 6 8

11 28 9 12 17 10

12 28 4 7 8 10

EXP 2 10 *iM A1
1 20 5 7 7 6

2 15 6 11 16 21

3 23 5 7 11 9

EXP 2 10  jiM C1
7 20 7 10 15 17

8 24 6 9 11 13

9 20 7 6 11 15

Considering the limitations of these assumptions, the dependence of the mitotic delivery 

time on the progenitor origin and on the dose was investigated for each generation 

separately up to the 3rd generation. For the first generation the mitotic time was 

regressed against progenitor origin and dose. For the second and third generation, the
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dependence due to common mother (division time of sister cells), as well as mother’s 

division time were taken into account as a random effect and as a covariate, 

respectively.
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Fig. 4-10 Schematic to show the model analysis dependencies and influences. Delivery 
to mitosis time (ti, shown by the solid green line) of an exemplar 3rd generation cell 
(dotted black circle). The black dotted lines indicate the dependency that were taken 
into consideration (with TPT dose, progenitor origin, mother delivery to mitosis). Solid 
black line indicates the covariates (mother division time) and indexing two sister cells 
whose division time were considered as random effect. The dotted red line indicates 
further relationships and dependency that were not investigated (with grandmother, 
cousins delivery to mitosis time) for this analysis.

The dependence on grandmother was ignored for this analysis due to the fact that only 

the 3rd generation cells within this analysis had a grandmother (ie. generation 2 and 1 did 

not have grandmothers) and moreover these would invoke the consideration of cousin 

and second cousin delivery to mitosis time etc., which indeed would increase the 

complexity level of the analysis. Therefore the aim of this study was to first demonstrate 

the relevance of such a model analysis with lineage data, and secondly to explore 

simple lineage derived influences to reveal cell cycle dependent action of topotecan.
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Table 4-3 Mixed model analysis result

Generation Comparisons Progenitor TPT Dose Mother’s
Origin delivery to

(P values) (P values) mitosis time
(P values)

1 Control vs 1 jxM TPT <1x1 O'6 0.0002 N/A

2 Control vs 1 jxM TPT 0.953 0.331 <1x1 O'®

3 Control vs 1 ̂ M TPT 0.010 0.553 <1x10®

1 1p,M vs 10p.M TPT <1x1 O'6 0.0150 N/A

2 1 jiM  vs 10pM TPT 0.548 0.036 <1x10®

3 1|iM vs 10jj.M TPT 0.039 0.304 <1x10®

1 Control vs 10pM TPT <1x10‘6 <1x10*6 N/A

2 Control vs 10fiM TPT 0.707 0.390 <1x10®

3 Control vs 10jiM TPT 0.348 0.381 <1x10®

The analysis undertaken took into account three comparative scenarios, two of dose 

versus control conditions and the third between the two TPT doses. The outcome from 

this analysis showed that the ‘Progenitor Origin’ (G2 or non-G2) and the ‘Dose’ were 

significant predictors for the delivery to mitosis in the first generation for all comparisons. 

Therefore this shows that TPT caused an acute cell cycle dependent-delay however this 

dependency disappears for further generations, in other words there are no long term 

consequences originating from the Progenitor Cell classification. However, the ‘Mother’s 

Delivery to Mitosis Time’ always remained a significant predictor of the daughter mitotic 

time irrespective of comparisons and generations, therefore there is a local effect 

persisting from mother-to-daughter. In simple terms these results imply that both 

progenitor origin and dose have a significant effect on the cell division time of the first 

generation cells but with passage of time and with the production of later progeny the 

effect become indistinctive this is further backed up by previous analysis in section (Fig.

4-8 and 4-9). Therefore cell cycle position of the progenitor cell was a determinant factor 

for future survival of the progeny, i.e. if progenitor cells were positioned in G2 phase of
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the cell cycle during drug administration the subsequent progeny are less affected than 

those positioned in non-G2 (i.e. G1) phase.

The findings from this analysis provided for the first time cell-cell and cell cycle 

dependent relationship outcomes from a simple timelapse sequence, handled via the 

lineage format. In this case the outcomes were further validated by the considerable a 

priori knowledge of the action of TPT. The intention would be to use this approach to 

screen, quantify and visualize these emergent properties in a drug discovery format. 

The next tool development phase would require more intuitive and interactive features to 

interrogate the data in such a manner.

4.5 Cell cycle variation between daughter cells -  the origin of 
heterogeneity
Molecular, functional and structural asymmetry for daughter inheritance at cell division is 

observed in adult stem cells (Chang and Drubin 1996; Guo and Kemphues 1996; Horvitz 

and Herskowitz 1992; Huang and Raff 1999; Jan and Jan 1998; Kraut et al. 1996; 

Shapiro and Losick 1997) and perhaps early tumour formation (Wodarz and Gonzalez

2006). In conventional terms asymmetry within a lineage perspective refers to the 

consequence when one daughter cell delivers to mitosis (i.e. completes cell cycle) while 

the other daughter dies. This phenomenon may act to impose proliferation advantages 

or disadvantages acting to widen Darwinian fitness while limiting the divisional potential 

of a given part (proliferating part) of the lineage. Again within the surviving sub­

population, i.e. proliferating part the variation of cell cycling time (IMT) between daughter 

cells impose another level of asymmetry that leads to heterogeneity in proliferating 

population. In the previous section it was revealed that the delivery to mitosis of resistant 

progeny became synchronized with passage of generations, however the extent and 

origin synchronization between daughter cells was not investigated in that analysis. 

Considering IMT as a global parameter for the analysis of cell cycle traverse, this section 

aimed to investigate the degree of IMT asymmetry between daughter cells in relation to 

generation and different doses of TPT.

The lineage map not only facilitated the ability to visualize and compare asymmetry but 

provided the means for the identification of daughter cells (hence identified the paired 

cells) and measure their associated IMTs (paired IMT). LDB was used for this mining
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purpose and all lineages from the TPT related assays were grouped into three groups 

according to dose -  control, 1 |iM TPT and 10 nM TPT. For each group or dose, paired 

IMT up to 3 generations were identified and sub grouped according to generation. In 

total 9 dot plots (3 rows for dose and 3 column for generations) were plotted, where the 

X axis represent the IMT of one daughter cell, termed as South (an arbitrary name for 

tagging purpose only) while Y axis represents the IMT of the corresponding daughter 

cell, termed as North.
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Fig. 4-11 Assymetric cell cycle traverse. Scatter plots to visualize asymmetry of IMT 
between corresponding daughter cells over three generations and in three different 
experimental conditions.

Plotting the actual value of IMTs instead of ratio (0-1) served two purposes, primarily this 

showed the symmetry of the IMTs and secondly showed the dose dependent delay 

effect when viewed along a column. For example in treated conditions if a point fell
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outside the diagonal line (of symmetry) and towards the bottom-right of side, it can be 

explained as -  the south daughter becoming more delayed than its counterpart and vice 

versa (highlighted as red box in figure 4-10). In order to understand this asymmetry 

through a simple statistical analysis, the paired dataset was subjected to Spearman 

ranked correlation test (Spearman 1904). Spearman's rank correlation coefficient was 

used as a measure of linear relationship between two sets of ranked data, in other words 

it measured how tightly the ranked data clusters around a straight line. Unlike Pearson's 

correlation coefficient, where it was necessary to assume that both variables have a 

normal distribution, in Spearman’s rank correlation no such assumption was necessary. 

Spearman's rank correlation coefficient, like all other correlation coefficients, produces a 

value between -1 and +1. A positive correlation was one in which the ranks of both 

variables increase together, a negative was reversed. A correlation close to zero means 

there is no linear relationship between the ranks (Altman 1991).

Table 4-4 Spearman's rank correlation coefficient values obtained from the analysis.

IMT1 IMT2 IMT3

Control 0.702672 0.575950 0.444961

1HMTPT 0.458136 0.515487 0.730007

10jxM TPT 0.542874 0.816410 0.344143

Only in the control conditions; the correlation gradually decreased with the passage of 

generations. Two factors were thought to be responsible for this behaviour, firstly with 

the passage of time the number of data points increased, at 1st generation (IMT1) 101 

pairs were analyzed, IMT2 163 pairs and IMT3 275 IMT pairs were considered 

respectively. Secondly with a higher number of cells in the later generations the 

crowding effect as described earlier also contributed to this increasing asymmetry of cell 

cycle traverse. In 1 ^M TPT treated condition, at 1st generation correlation was not that 

evident, however with passage of generations the correlation increased and at 3rd 

generation (IMT3) showed a high correlation. Same holds for the 10 ĵ M TPT treated 

condition (except for the third generation) where up to the second generation there was 

a gradual increase of the correlation. It is important to note here that in both treated 

conditions, contrary to control conditions the number of IMT pairs decreased, which can 

be attributed to the increased number of cell death or arrest in later generations. This 

refers to event based (mitosis vs. death) asymmetry, i.e. predominant source of
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asymmetry that leads to proliferation advantages as discussed earlier. The sudden 

decrease of correlation value in the 3rd generation of 10 jxM TPT condition could not be 

explained in a biological context but may be due the small numbers of paired IMTs 

available for analysis. In this context it is also important to note that the number of IMT 

pairs analyzed under each group were not nearly equal and as such from statistical point 

of view was not comparable. Again this limitation is purely due to the small number of 

encoded lineages which again is directly linked with manpower limitation. 

Acknowledging these limitations, if the mean correlation value of the three doses were 

taken, a dose dependent increment of correlation coefficient value ( control 0.56; 1 jxM 

0.57; 10 jiM 0.62) was observed which can be explained as follows - for control and low 

dose the asymmetry of cell division time between daughter cells almost remained the 

same implying the innate behaviour of the cellular dynamics persists with low dose, but 

for high dose the cell cycling asymmetry became more correlated, implying that the cell 

cycle duration of the resistant population in higher dose was more synchronized and 

increased with time.

4.6 Concluding remarks
This chapter has introduced a new perspective of measuring and visualising cell 

dynamics that can be exploited in different research contexts and centers around the 

lineage data format. These ‘on-the-fly’ parameters (e.g. IMT, IMD, AMT etc.) revealed a 

time dependent, inheritance based analysis; where cellular behaviour of progeny could 

be rooted to the causative effect and behaviour of the previous generations, separated 

by a wide time window. This was important, since in a cellular context the molecular, 

functional and structural inheritance are the predominant factors that determined 

population behaviour. Through analysis as discussed in this chapter, it was 

demonstrated that cell cycle positioning of the progenitor cell was an important 

determinant for resistant progeny. These informatics-derived results were in agreement 

with previously found results (Feeney et al. 2003; Marquez et al. 2003) obtained through 

conventional analysis where overall population behaviour were related with major 

experimental descriptors to draw the conclusion (Bullen 2008; Lang et al. 2006).

The relationship based measurement provided the foundation for models to predict the 

future behaviour of cell population. The heatmap view (see figure 4-6 and 4-7) provided 

a novel approach to visualize the behaviour of a resistant population on successive
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generations -  a PD response in a pedigree format. These behavioural patterns could be 

utilized as drug signatures in a high content screening environment, where cellular 

behavioural pattern with unknown drugs could be compared against know drug patterns; 

which inherently invokes novel algorithms and analysis techniques to be incorporated. 

More interestingly instead of a drug signature approach, cell behavioural patterns could 

be examined for genetic manipulation, where cells would be genetically modified (e.g. 

gene knockout) and the subsequent behavioural pattern would be analyzed to correlate 

with the gene functions (Rines et al. 2006). This aspiration would open the avenue to 

integrate ‘-omic’ data with cellular data in a time integrated manner, a perquisite for 

systems biology (Systems Biology Report 2007).

The lineage data format not only facilitated to quantify the inheritance based behavioural 

pattern, but also the subpopulation behavioural pattern. In a heterogeneous cell 

population the overall population behaviour at any given time was the product of 

subpopulation behaviour (MacArthur et al. 2006), and through the lineage maps it was 

possible to identify and measure the behaviour of these subpopulations. As the criteria 

for selecting such subpopulation were not limited by the lineage map, this endeavour 

can be viewed as an opportunity to differentiate heterogeneous cell population behaviour 

in a hypothesis driven manner. Heterogeneity of a cell population was underpinned by 

the asymmetric cellular behaviour (e.g. variation of cell cycle time or cell motility), event 

outcomes (e.g. mitosis, death etc.) and lineage maps also provided the means to 

measure and link the extent of asymmetry in terms of cellular behaviour after each cell 

division point within subpopulation context. These discrete subpopulation behaviour 

fabricated the emergent properties of the multicellular community. The lineage map 

along with "microenvironmental" information (Shen et al. 2008) like extracellular matrix 

substrates, physical forces etc. could be exploited to recapitulate functions observed in 

native tissues, since exploring this cellular and multicellular form and function remains a 

fundamental challenge for both biology and tissue engineering (Liu and Chen 2007).

In terms of segmenting the lineage map, it was not limited within vertical and horizontal 

segmentation only, rather novel and intuitive segmentation and subsequent comparison 

of ‘on-the-fly’ parameters can be performed. One such example would be to segment 

the lineages into two hemi-spheres having the progenitor cell at the mid point (equator) 

and the effect of perturbing agents can be measured and compared between these two
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hemispheres. So, the opportunity of exploiting these relationship based data mining 

remains open-ended. However the prerequisite for all such analysis was the availability 

of large number of lineages, however manual encoding will always limit the scaling 

requirement and therefore is a genuine bottleneck. As lineages encoded through either 

ProgeniTRAK or FluorTRAK (presented in the next chapter) required substantial manual 

intervention especially for cell tracking and event recognition purpose, the manpower 

factor becomes the overriding limitation, which in turn constrains the number of lineages 

encoded. Another limitation that effected the current process of lineage analysis was the 

consequences of lost events (i.e. when a cell is lost from the field of view), which 

abruptly truncated part of the lineage, rendering the lineage incomplete. This artefact 

was different from the dead event that also abruptly truncated a lineage but had a 

biological significance attached to it. Previous lineage based analysis (Chu et al. 2002; 

Chu et al. 2004; Endlich et al. 2000; Forrester et al. 2000; Forrester et al. 1999; Prieur- 

Carrillo et al. 2003) addressed this issue and employed different statistical approaches 

dealing with missing data points. The next challenge for this project is to identify and 

incorporate the appropriate statistical approach that would be most pertinent to address 

this ‘lost’ cell issue. Work is in progress with statisticians and mathematicians (Prof. 

Paul Ress’s group at University of Wales, Swansea) to undertake a preliminary study in 

this regard.

In summary the studies presented in this chapter exploited the lineage data format for 

understanding multi-cellular interactions in a relationship context as outlined in figure 1- 

2. The future aim would be to incorporate these mining and analytical approaches with 

ProgeniDB; with an intention of widening the collaborative effort. This would put the 

lineage format at the centre of the data sharing concept.
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Chapter 5: FluorTRAK -  molecular tracking onto 
lineage maps

5.11ntroduction
Cell lineages encoded through ProgeniTRAK have demonstrated to be effective for 

addressing cellular behaviour and mapping dynamic cellular systems at different levels 

of complexity as outlined in figure 1-2. The consequences of drug perturbations on the 

inter mitotic time (IMT) parameter has been explored as a global readout of the cell cycle 

from generation to generation in the previous chapter to determine the 

pharmacodynamic (PD) responses to the perturbation caused by the addition of the drug 

topotecan, moreover cross-sectional data interrogation and merging have revealed cell 

cycle origins of drug resistance (detail in chapter 6). ProgeniTRAK was originally 

designed to encode lineages from low resolution image sequences acquired through 

phase transmission timelapse microscopy, where only major cellular event outcomes 

could be identified and encoded, however the next phase was to incorporate molecular 

responses preferably mapped onto the lineage data format at the single cell and progeny 

level.

Sydney Brenner (Nobel laureate, 2002) has always emphasized the importance of 

protein localization (Brenner 2003), and stated that the translocation of proteins within 

different cellular compartments or regions in a dynamic system is necessary for 

understanding the mechanisms underpinning many biological systems. In this regard he 

emphasized the urgency of novel reporters and tracking of tagged-proteins in different 

cell compartments (Yu et al. 2004). Preferably a continuous readout of protein 

localization at sufficient resolution is required to achieve this goal. Fluorescence 

microscopy enables the temporal and spatial measurement of single and multiple 

proteins at a relatively high temporal resolution. This approach has been exploited by 

many in the context of the cell cycle enabling the tracking of single cell checkpoint 

transitions in a non-invasive manner even within heterogeneous population. Green 

fluorescent protein (GFP)-based chimeric probes (Shaner et al. 2008; Tsien 1998) can 

be constructed to shadow the expression, location and destruction characteristics of 

endogenous proteins. A good example, appropriate for tracking events in the cell cycle
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has been based on a GFP shadow reporter (eGFP-cyclin B1) (Thomas and Goodyear 

2003), a non-perturbing stealth reporter validated using high content to high throughput 

detection platforms comprising multi-well high-throughput screen (HTS) imaging, single 

cell kinetic-tracking and multi-parameter flow cytometry (Thomas 2003; Thomas and 

Goodyear 2003). eGFP-cyclin B1 tracking provided sub-phase information on cell cycle 

progression, cell-cycle regulator dynamics in parallel with the lineage morphological 

landmarks and DNA content analysis. To explore and exploit the continuous molecular 

level readout for enhancing our understanding on cell cycle studies, a new data format 

with an incorporated encoding tool was required. The current chapter focuses on the 

process of developing such a molecular encoding tool -  FluorTRAK where the 

fluorescence levels of the GFP reporter was mapped onto a lineage structure. The later 

part of the chapter presents ongoing collaborations that exploit the analytical outputs 

from FluorTRAK and the implications of such data for mathematical modelling.

5.2 Single cell timelapse acquisition -  eGFP-cyclin B1 tracking
The encoding of the lineages using FluorTRAK was performed by Janet Fisher and 

Marie Wiltshire, School of Medicine, Cardiff University.

Fluorescence timelapse experiments over 48 hours were undertaken (for details see 

Appendix VIII) with the U-2 OS cell line expressing eGFP-cyclin B1. The fluorescent 

G2M Cell Cycle Phase Marker (GE Healthcare, UK) reporter system was regulated by 

the control of expression levels and location of eGFP-cyclin B1 as a cell progresses to 

the later cell cycle stages and negotiates mitotic entry and exit. This was achieved by 

using the functional components from cyclin B1 to confer switch-like properties to the 

shadow reporter. Expression was driven by the promoter region, removal via the 

destruction box (D-box) and translocation from the cytoplasm to the nucleus 

compartment via the cytoplasmic retention signal (CRS) (see figure 5-1). cyclin B1 

expression was tightly regulated and acts as a major control switch suitable for following 

the transition from S-phase through the G2 phase into mitosis. Importantly since the 

cyclin box was absent from the reporter it did not interfere with or perturb cell cycle 

progression (see figure 5-1).
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Fig. 5-1 Mapping the cell cycle against eGFP-cyclin B1 expression. Top panel, a 
schematic representation of a cell expressing the eGFP-cyclin B1 reporter as it 
progressed through the cell cycle to mitosis. Lower panel, real snapshots from a 
timelapse fluorescence sequence showing eGFP-cyclin B1 expression and hence cell 
cycle position and progression, the cell indexed by an arrow was tracked through 
interphase (G1,S and G2) and mitosis (divided into three sub-phases -  Prophase, 
Metaphase and Telophase), before successful cytokinesis into two daughter cells.

A timelapse microscopy image sequence acquired through a fluorescence channel 

showed cells traversing the cell cycle and concomitant fluorescence changes as the cell 

progressed to mitosis from G1, individual cells ramped up eGFP-cyclin B1 expression 

(became brighter), a translocation event (cytoplasm to nucleus) occurred just before 

mitosis (see figure 5-1 and for real timelapse sequence see Appendix IX). From an 

image informatics view an important aspect of the eGFP-cyclin B1 signal readout was 

whether it was amenable to parameterization and hence potentially incorporated into 

algorithms for automated analysis and signature identification.

5.3 Encoding cell lineages with a continuous molecular readout
FluorTRAK (the in-house encoding tool) in conjunction with MetaMorph was developed 

to encode cell lineages to maintain a continuous readout from the single cell while 

maintaining the lineage relationship similar to ProgeniTRAK. The major difference 

between these two encoding tools was that for FluorTRAK, data were encoded at each 

time point (on a frame-by-frame basis), while for ProgeniTRAK data were encoded only 

when a major cellular event occurred. The encoded single cell eGFP expression data at 
each time/frame interval when connected, yielded a continuous readout depicting the 

spatiotemporal properties of the tagged protein associated with all cellular events. The 

encoding infrastructure as described in figure 2-3 remained the same as that of 
ProgeniTRAK with the exception that in the ‘Encoding’ folder, FluorTRAK the encoding 

tool (also written in PERL see Appendix X) was added and in the ‘Experiment Setup’
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folder the new digital laboratory notebook for fluorescence based experiments -  

‘Fluorescent_Exp_Setup.xls’ was added. New Journal files were also added to the 

‘Journal’ folder that facilitated the selection and upload of the image sequence into 

MetaMorph with three defined ROIs. Another major difference between FluorTRAK and 

ProgeniTRAK was that at the single cell level, each cell had two levels of data -  i) cell 

data and ii) frame specific data. At the first level the cell data were similar to the 

ProgeniTRAK outputs and basically illustrated the event attributes of the lineage map; at 

the second level, frame-by-frame data illustrated the molecular readout extracted from 

the three ROIs and encoded the molecular fingerprint at each time point / frame (for lists 

of attributes see Appendix XI). This modification enabled linking of a continuous 

molecular readout with event information while maintaining the lineage relationship.

120



Chapter 5: FluorTRAK

Experiment 1-

 Storage DVD r a n te r

  Type channel 1

<$>
Gat

  C ell Type

has

Progenitor Cell }-

1—  For each Pane/FrameCell

Step number

Em pty
Event

B irth  pane m an  

End pane tu n  

IM T in  pane nun

II 3 (N ucleus, Cytoplasm  1, Cytoplasm  2)SD

Event end in ten ety  

InSra m to tic  (AMT) inter* 

C e l cycle m ean rrtens it; 

C e l cycle m in n ten s ity  

C e l cycle m as intensity

Fig. 5-2 Diagrammatic overview o f the FluorTRAK data format. At each frame, from 

3 ROIs (one placed over nucleus and two in the cytoplasmic regions), 3x10 further data 

points were collected and appended together to form the molecular fingerprint for each 

frame.
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The encoding process (for detail see Appendix XII) of FluorTRAK was also different from 

ProgeniTRAK and indeed was more labour intensive; basically for two reasons - firstly, 

the FluorTRAK data were encoded manually frame-by-frame for each time interval 

compared to that of ProgeniTRAK where only major events were recorded. Secondly, 3 

separate ROIs were used during the FluorTRAK process. Apart from these two major 

difference the overall encoding process for FluorTRAK was the same to that of 

ProgeniTRAK and therefore started with a progenitor cell location; the users would 

sequentially go through a process of assigning and selecting the experimental attributes 

based on the screen conditions, including the multi-well details, field descriptors and 

identifying cell position; additionally a graphical display of the multi-well plate facilitated 

users in navigating the sequential sieving process. FluorTRAK was designed to 

dynamically interact with the ‘Fluorescent_Exp_Setup.xls’ and from the Excel document 

generated the template and graphical display using PERL. For example, when a 

particular experimental screen was chosen by the user, FluorTRAK both read and 

displayed all information regarding each well within the specific screen, the process 

continued up until the cell level selection. Upon completion of the tagging process, a cell 

was created on the canvas of FluorTRAK; the corresponding raw image was then 

retrieved and located in the ‘real’ image data using the MetaMorph video display window 

and consequently tracked frame-by-frame. For each cell of interest, in each frame three 

regions-of-interest (ROIs) were used to extract parameters from the raw image 

sequence viewed in MetaMorph. The first ROI was always positioned on the nucleus 

and the other two ROIs were positioned on cytoplasmic regions, usually on the opposing 

sides of the nucleus of the cell of interest. For each ROI, MetaMorph extracted 10 

parameters from the raw image, the parameters included -  Frame number, X 

coordinate, Y coordinate, width of ROI in pixel, average intensity, Intensity standard 

deviation, intensity signal/noise ratio, integrated intensity, minimum intensity, maximum 

intensity. Once the ROIs were positioned, the cell of interest was tracked frame by 

frame starting from the 1st frame. Increment of the frame was automatic when the user 

presses the ‘Log Data’ button in the MetaMorph, for any frame if the cell of interest 

moved considerably from its last frame position, users would be required to reposition 

the ROIs manually. Additionally when ‘Log Data’ button was pressed, major and minor 

events were also logged for that frame. Both event types were displayed in the ‘Labelled 

Logged Data’ window of MetaMorph, by default the major event was ‘N’ and the minor 
event was ‘null’ meaning no major and minor event respectively. However with the
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progression of logging in a frame-by-frame manner, when morphological changes (e.g. 

rounding up) occurred users would change the minor event to ‘start’ from its default ‘null’ 

label indicating some event had started to occur and finally when the event (mitosis, 

death) ended users changed the major event label accordingly and minor event label to 

‘end’, indicating the major event had ended. MetaMorph was interfaced with FluorTRAK 

via the Dynamic Data Exchange (DDE) link and all extracted data along with the 

associated tags were parsed to FluorTRAK which then according to the major event and 

the time associated with it drew the lineage within its canvas. During encoding, it was 

often required to revisit the bifurcation nodes (where one cell divides into two daughter 

cells) in the image, since only one cell can be tracked at any given time. FluorTRAK has 

an additional feature through which any bifurcating point of a lineage can be indexed in 

the raw image sequence viewed under MetaMorph. Once a lineage for a progenitor cell 

was completely encoded it was saved as a text file. Any lineage can be selected and 

visualized just by selecting the appropriate lineage text file and indeed editing/revision 

would also be possible. The editing feature of FluorTRAK provided the opportunity to 

users to delete any part of the lineage and re-encode if required. These editing rights 

certainly contributed an added layer of encoding accuracy ensuring quality control of the 

encoded data. FluorTRAK provided complete flexibility as it can map lineages based on 

all possible outcomes of a cell division, for example unusual circumstances such as the 

generation of three or four daughters due to abnormal cytokinesis, or the generation of a 

polyploidy cell. Like ProgeniTRAK, FluorTRAK also assigned to each cell a unique 

identifier (name) like B, BS etc. As before this naming approach helped to establish and 

maintain the relationship between different cells within a lineage.

The semi-automated and user interactive encoding from the raw images was indeed 

labour intensive, depending upon (i) the size of the lineage, (ii) expertise of the user and 

(iii) cell density in the image, it took anything between a few minutes to an hour to 

encode a single lineage. The semi-automated manner of encoding was undeniably the 

rate limiting step but user intervention ensured the highest precision of the data being 

encoded. A combination of automated and user-interactive bioinformatics software has 

been suggested by a recent review as the challenge and opportunity for the next 

generation of high content screening (Taylor and Giuliano 2005) and recent endeavours 

(Shen et al. 2006) have demonstrated the potentials of such an approach. The principle 

problem with eGFP-cyclin B1 tracking using automated approaches is that during the
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time course the cells loose signal (i.e. in G1) and therefore segmenting a cell becomes a 

problem. A second fluorescence tag would need to be incorporated to guarantee robust 

tracking. Once the encoding of a lineage was complete, the lineage dataset was placed 

into a temporary database where all lineage data were stored in a tab delimited text file 

format. Like ProgeniTRAK, one lineage constituted a single text file and the name of the 

text file is the tag assigned to the progenitor cell. The tag or name of a lineage has 23 

parameters associated with it, which made it both unique and therefore distinguishable 

from all other lineages of the ‘Lineage folder’. Within the text file each row represented a 

cell at a particular frame and the 30 columns of data represented the data from all 3 

ROIs (10 data points for each ROI). The unique nomenclature assigned to each cell 

within a lineage enabled access to the data while maintaining intra-lineage relationships, 

and moreover the nomenclature of the lineage itself facilitated lineage classification 

based on user defined conditions, e.g. drug, dose. All lineages accumulated as text files 

were subjected to an automated but rigid quality control check which ensured that all 

lineages were stored in the correct data structure.

5.4 Results -  Continuous cell cycle tracking at the single cell 
level
Once the timelapse sequences were analyzed and fully encoded, cellular behaviour 

within these lineages were interrogated and extracted. To acquire a molecular fingerprint 

for multi-generation tracks, lineages were subjected to a track-wise (horizontal 

segmentation) interrogation (see chapter 2).
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Fig. 5-3 Encoded cell lineage. An exemplar lineage encoded from a progenitor cell (B), 
where the cell divides into two daughter cells (BN and BS) 5 hours after the start of the 
experimental screen. The north daughter (BN) again divides after 27.66 hours into two 
daughter cells (BNN and BNS) while the south daughter BS failed to divide within the 
experimental duration (48 h). Therefore the lineage consisted of three surviving /  living 
cells (BNN, BNS and BS) which at the end of the experiment yielded three tracks 
labelled as track 1, 2 and 3 respectively.
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The exemplar lineage (Figure 5-3) was analyzed to extract different parameters over 

time -  eGFP-cyclin B1 fluorescence intensity profile, motility and directionality of cellular 

dynamics.
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Fig. 5-4 Single cell tracking o f multi-scalar events: eGFP-cyclin B1 expression (cell 
cycle progression), distance moved (motility) and vectors (directionality) for each track 
derived from the lineage shown in figure 5-3. Upper panel depicts the eGFP-cyclin B1 
intensity profile along each track, three compartments were tracked - the nucleus (red 
line) and corresponding cytoplasm (two black lines for two ROIs). Middle panel depicts 
motility of the same cell (derived from position of nucleus). Motility (in pixels) was 
defined as the distance travelled by the cell between each consecutive frame (20 
minutes interval) and was calculated on-the-fly and was presented in a cumulative 
manner. Lower panel shows the average angular direction of the cell at every 4 hour 
time interval. Considering the nuclear position of each cell as the positional point, the 
tangent angle of each consecutive plane was measured and averaged for each 4 hour 
interval. NOTE when considering the motility along a particular track, an abrupt increase 
of the motility corresponding to M phase of cell cycle is observed which is solely 
attributed to a translation of the dividing cells (i.e. a mechanical artefact).
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5.4.1 Access to molecular fingerprints derived from a cell lineage 
map

A typical cell lineage over 48 hours illustrated a simple progression of a progenitor cell 

(B) dividing into two daughter cells and cellular information at two levels: (i) phenotypic 

behaviour (division and motility) and (ii) molecular readout (eGFP-cyclin B1, hence cell 

cycle position) at the single cell level (figure 5-4). For the first 5 hours all three tracks 

were identical, because they were represented by a single cell ‘B’ which was also 

termed a progenitor cell. A division occurred at the 5 h time point (node 1) and 

generated two daughter cells ‘BN’ and ‘BS’. ‘BN’ again divided into two daughter cells 

‘BNN’ and ‘BNS’ at 27.6 (node 2). From the point of node 1 to node 2 both track 1 and 

track 2 were the same and represented by the cell ‘BN’. The temporal distance between 

node 1 and node 2 illustrated a typical IMT of around 22 hours. The reporter tracking of 

the eGFP-cyclin B1 probe intensity in the cytoplasm started to rise 4 hours after node 1 

(in cell cycle terms this would correspond to late-G1), while the fluorescence intensity 

from the nucleus remained low until node 2 (in cell cycle terms this marks late-G2), the 

translocation (prophase) occurred just prior to the dramatic change in cell shape from flat 

to round at node 2. Node 2 marked the mitotic event and the eGFP-cyclin B1 intensity is 

switched-off and back to basal level both in the cytoplasm and nucleus. The 

translocation event at node 2 represented a major cellular commitment from G2 to 

mitosis (M). If the variation of intensity, motility and directionality between two sister 

cells (BN and BS) from node 1 were compared, no further major cellular event for BS 

was observed; and the eGFP-cyclin B1 profile remained flat compared to the increasing 

intensity of BN depicted both in track 1 and track 2. In cell cycle terms this was 

interpreted as a G1 arrest of BS; by extracting the cell motility it was demonstrated that 

with this arrest in G1 there was a corresponding halt in cell motility.

Defining cell motility, proliferation and differentiation events is important as they 

underpin basic biological processes such as growth (Palaniappan et al. 2004b), tissue 

repair (Farooqui and Fenteany 2005) and metastatic potential (Ronot et al. 2000). Cell 

motility is thought to be a critical factor for the process of metastasis (Cavanna et al.

2007), the spread of cancer from its place of origin to a secondary site. The molecular 

mechanism of metastasis is mostly unknown (Jonsson et al. 2006) and recent in vivo
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study has shown that metastatic tumour cells move 4.5 times as frequently as non­

metastatic tumour cells in the same tumour microenvironment (Sahai et al. 2005). It has 

also been suggested that only a subpopulation of cells from a tumour, rather than every 

cell in the tumour, becomes metastatic (Fidler and Hart 1982). Therefore, it is 

reasonable to suppose that the increased speed of migration of these subpopulations 

contributes to the increased metastatic potential. FluorTRAK encoded lineages offers 

both the measurement of cell motility as well as subpopulation segmentation, which 

would contribute towards investigating the process of metastasis. The potentiality of 

such multi-scalar cellular information in a wound healing context was also considered; as 

links between cell motility and cell cycle check point regulation is of great interest in 

wound closure and remodelling. Tracking single cell behaviour on induction of a 

wounding stimulus was a prime requirement that allowed the monitoring of wound 

repopulation while generating descriptors for directed cellular migration and proliferation. 

These descriptors can be later interrogated to investigate the interplay between i) cell 

types, ii) cellular interactions and the surrounding extra-cellular matrix (crucial in 

directing cellular responses) and iii) repair and remodelling events such as cellular 

differentiation. Parameterization of single cells in clusters within a complex wound 

arrangement is considered a challenging bioinformatics undertaking (Bunyak et al. 2006) 

and has wide applications from cell-based assays to systems biology (Frumkin et al. 

2005). It is envisaged that FluorTRAK or a modified version could contribute significantly 

in this regard as with the present status of FluorTRAK could address most of the 

challenges set forward in these research areas.

In order to explore the potentiality of the encoded lineage data, a range of data mining 

and visualization tools were developed using PERL and MATLAB (see 

http://www.mathworks.com/) and were sent (via email) to the collaborators at Warwick 

University and Mario Negri Institute for Pharmacological Research, Milan, Italy, for 

further analysis. These tools were accompanied with encoded lineages (as text files) 

and installation manual (for detail see Appendix XIII) which facilitated researchers at 

both sites to install and use these analytical tools. This process demonstrated a step 

forward towards the aspiration of collaborative research especially at biologist- 

mathematician interface. Apart from logistical containments (data format, database 

etc.), the bottleneck for such aspiration is to identify the “common ground” where 

expertise of both discipline can share ideas (the global objective) without understanding
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the detailed complexity of individual domain. Data sharing in a meaningful manner is the 

perquisite for such endeavour, which includes easy accessibility of the data and more 

importantly translating the biological needs into mathematical terms. Last but not the 

least translating the results in biological context is the concluding aspect of such 

collaborative effort.

5.4.2 Profiling the eGFP-cyclin B1 oscillation
This work was conducted in collaboration with Drs Paolo Ubezio and Monica Lupi, Mario 

Negri Institute for Pharmacological Research, Milan, Italy.

Extracting a molecular fingerprint with phenotypic behaviour at the single cell level was 

the first step towards understanding linked cellular responses and interactions suitable 

for mathematical modelling. Encoded lineages were used as experimental data to 

develop and validate such models, however the first step in this regard was to filter the 

lineages encoded through FluorTRAK that fulfilled certain criteria: (i) selected lineages 

consisted of at least one track ending with a cell that is alive and (ii) the track consisted 

of at least two successive mitosis (nodes), where the first node referred to the mitosis of 

a progenitor cell. These criteria ensured two aspects- first, effectively a ‘resistant 

population’ were selected (defined in our screen as the cohort that survive to the end of 

48 hour experiment) and secondly, the eGFP- cyclin B1 profile of a complete cell cycle 

(IMT) could be mined from the encoded lineage data. The analysis was performed 

separately for three experimental conditions -  control, 1 jaM TPT and 10 |iM TPT 1 hour 

bolus treatment. For each condition, irrespective of the generation, complete cell cycles 

were identified and the associated eGFP- cyclin B1 profile was extracted; 30, 14 and 6 

such complete cell cycles were identified for control, 1 TPT and 10 jiM TPT 

conditions respectively. Since the experimental duration was 48 h and the mean cell 

cycle duration for U-2 OS cell line was found to be ~ 20.5 h, the cell cycle generation 

identified was predominantly from the cell cycle of the first generation (in other words 

IMT1, see figure 4-5). The analytical tools assisted users to select or deselect relevant 

lineages as these provided the montage view of the lineages that were selected for 

certain experimental condition. Once selected the lineage tools automatically wrote the 

track wise intensity profile to a MS Excel file for further analysis.
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For each condition these intensity profiles were then plotted, aligned and normalized 

(detail in figure 5-5 legend) to depict the average dose dependent eGFP- cyclin B1 

profile.
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Fig. 5-5 Visualizing normalized average cytoplasmic eGFP-cyclin B1 profiles. Top
panel illustrated the plotting, re-aligning and normalization of the eGFP-cyclin B1 profile 
in control conditions only. 30 intensity profiles were plotted (panel I) with time on the x- 
axis. For each profile the peak intensity point was indexed as the point of mitosis and 
set as time 0. Since the duration of cell cycle varies, not all profiles had a peak point at ( 
1230 m »  20.5 h), so all the profiles were re-aligned to their respective time 0 and the 
last 400 mins up to mitosis of the profile was plotted (panel II). Again the peak intensity 
value at time 0 varied with individual profile and as such required further normalization. 
For each profile, setting the peak intensity value as 100, the previous 400 mins values 
were normalized and were plotted (panel III), the green line represented the average of 
these normalized profiles. Along the bottom row panel IV, V and VI represented the 
average normalized eGFP-cyclin B1 profile in control, 1 pM TPT and 10 pM TPT 
condition respectively using the identical process.

The eGFP-cyclin B1 intensity profile in the cytoplasm was a good marker to identify and 

quantify the phase duration for a complete cell cycle. The sudden spike of intensity 

represented the mitotic event itself and can be attributed to the morphological effect
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associated with translocation of cyclin B1 into the nucleus from cytoplasm. At this point 

the cell rounded up and it was difficult to distinguish the cytoplasm from nucleus and 

thus the fluorescence intensity at this point may not be the true representation of the 

cytoplasmic intensity, the rounding effect also provided an artefact spike of eGFP-cyclin 

B1 expression . Considering this artefact the last 20 mins of the normalized profile was 

excluded and -20 to -400 m the average of normalized intensity profiles from all three 

conditions were plotted in figure 5-5 IV-VI. Note that 400 minutes was the same as 

approximately six hours pre-mitosis and importantly for a control population this referred 

to the G2 cell cycle phase of the cell cycle (Cliby et al. 2002; Feeney et al. 2003; Huang 

and Raff 1999); therefore the purpose was to determine the dose dependent induction of 
the G2 checkpoint.
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Fig. 5-6 Continuous progression through G2. Normalized average eGFP-cyclin B1 
fluorescence intensity through G2 (omitting the final 20 m where translocation occurred) 
was plotted.

Both in control and 1 pM TPT conditions eGFP-cyclin B1 levels demonstrated a 

continuous progression and ramping through to mitosis, indicating the behaviour and 

engagement however the late G2-checkpoint was shown to be slower in 1 pM TPT 

treated conditions compared to control. From these two profiles it could be hypothesized 

that the constant synthesis of cyclin B1 was a good marker to predict the commitment to 

mitosis. However the flat profile from the higher dose (10 pM) where the ‘progression’ 

appeared to be nil, a surge occurred just before the commitment to mitosis this 

represented a different pattern of G2 progression and mitosis commitment. Interestingly
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this indicated that cyclin B1 level increase was no longer a good predictor of G2 

progression and in some cases not required for commitment to mitosis; i.e. cyclin B1 

increase became dissociated from the cell cycle clock (Lindqvist et al. 2004). At the 

high dose the cells showed a prolonged delay in G2 and the maximum levels of eGFP- 

cyclin B1 were sustained. G2 arrest of cells due to DNA damage in S phase must avoid 

entry into mitosis, with the concomitant risks of oncogenic transformation. According to 

current models, signals elicited by DNA damage prevent mitosis by inhibiting both 

activation and nuclear import of cyclin B1-Cdk1, the master mitotic regulator (Charrier- 

Savournin et al. 2004).

Arguably the encoded data had limitations as the data could be considered both 

qualitatively and quantitatively noisy data. From a qualitative perspective the profiles the 

image sequence did not provide a consistence output of fluorescence intensity. This 

was primarily due to the fact that not all cells expressed the same amount of construct 

and therefore the dynamic range of the reporter varied from cell to cell. From a 

quantitative view insufficient cell cycle profiles were included particularly at the high 

dose, which was in-adequate for robust statistical analysis. Despite these limitations, 

the impact of such enriched data was considered in the context of understanding some 

of the molecular responses and their complex interplay within the cell level information. 

Moreover this systematic access to cellular and molecular information can be utilized to 

develop new cell cycle mathematical models capable of simulating complex cell cycle 

behaviour.

5.4.3 Building mathematical models based on cell-based molecular 
readouts

This work was conducted in collaboration with Drs Michael Chappell, Neil Evans and 

Judith P 'erez-VeTazquez, Department of Engineering, University of Warwick.

The regulatory mechanism of the cell cycle as described in chapter 1 involves multiple 

proteins (see figure 1-3), many experimental studies have confirmed, that the DNA 

replication-division cycle in all eukaryotic cells is controlled by a common set of proteins 

interacting with each other by a common set of rules (Csika sz-Nagy et al. 2006). Again 

with the cyclin family of proteins, cyclin B1 regulates the transition from G2 phase to M 

phase (Kushner et al. 1999). Cyclin B1 binds to cdc25, which then becomes
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dephosphorylated and relocated to the nucleus (Li et al. 1997), ensuring the transition 

toward mitosis. Whereas the cdkl level is typically constant throughout the cell cycle, 

cyclin B1 expression is cyclic with a minimal expression in G1 phase, an increased level 

in S phase, and a peak at the G2-M transition (Norbury and Nurse 1992; Pines and 

Hunter 1994). The continuous molecular readout of cyclin B1 provides the fundamental 

experimental data for developing mathematical models enabling the simulation of the 

cell cycle and the focus of such theoretical studies ranges from phase transitions in the 

cell cycle (Alarcon and Tindall 2007; Novak et al. 1999) to the response of the cell cycle 

under unique conditions, such as those for cancer cells and the use of anti-cancer 

agents (Alarcon et al. 2004; Alarcon et al. 2006), including some cyclin B1 - based early 

models (Goldbeter 1991; Tyson 1991).

Using eGFP -  cyclin B1 readouts encoded via FluorTRAK, a mathematical model was 

developed which described the continuous tracking of cyclin B1 through the cell cycle at 

the single cell level, including interactions with the cyclin B1 inhibitor, p21 (P'erez- 

Vel'azquez et al. 2008). The model is an extended version of a transition state cell cycle 

model by Tyson and Novak (Tyson and Novak 2001) and had been linked with a model 

accounting for the inhibition dynamics of p21 on cyclin B1 (Pomerening et al. 2005; 
Pomerening et al. 2003).
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Fig. 5-7 Fitting model output with experimental data. Cyclin B1 intensity for one 
complete cell cycle was plotted, the solid line depicts the simulated model output while 
the dotted line represented the encoded intensity from FluorTRAK.
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FluorTRAK had multiple implications in the process of model development. Primarily, 

FluorTRAK provided the cyclin data to the mathematical modeller in a systematic 

manner, so that modeller had a good orientation and understanding about the 

experimental datasets. Secondly, the analytical package assisted the modeller to select 

a set of lineages for training and validating the model. Through exploiting this selection 

capability another mathematical model was developed that described the response of 

the growth of single human cells in the absence and presence of the anti-cancer agent 

TPT (Chappell et al. 2008). The model included a novel coupling of both the micro­

pharmacokinetics (PK) of TPT and cell cycle pharmacodynamic (PD) responses to the 

agent. The model offered the possibility of demonstrating both the dynamic and 

temporal interactions of active drug delivered to its DNA-associated molecular target and 

the downstream impact on cell growth and death.

The outputs of the cell cycle mathematical models lie with the ability to undertake 

parameter estimation, where essentially a fluorescence plot was converted into a 

molecular [CycB] profiles with 8 new estimated parameters that best described the 

underlying oscillatory pattern or cell response. The phase plots obtained from such 

integrated model attempted to predict the length of cell cycle position and variation of 

which was a marker to identify the amplitude of perturbation. In the previous chapter the 

amplitude as well as the pattern of IMT in response to different doses of TPT was 

illustrated (see figure 4-6 & 4-7), however the molecular drivers (parameters in modelling 

terms) or mechanism that dictate such a pattern could not be revealed. However through 

model simulation and fitting to experimental data, these occult parameters could be 

revealed. For example the cell cycle model implemented by P'erez-Vel'azquez et al. 

(P'erez-Vel'azquez et al. 2008) utilized cyclin B1 data encoded through FluorTRAK but 

described the role of p21 and through the study of the sensitivity of the parameters, it 

was possible to identify which (and how) parameters affect important features of the cell 

cycle, like time between mitotic events, time of first mitotic event and number of mitotic 

events. The same holds true for the PK-PD model which with its new 8 parameters 

provided a framework to investigate the role of the signals from damaged DNA to induce 

the arrest of cell cycle traverse by engaging molecular aspects of the cell cycle machine. 

It is important to note that the data format of FluorTRAK was generic as it consisted of a 

multiplex feature which could accommodate up to three simultaneous molecular profiles. 

This functionality has paved the foundation to analyze and model multiple molecules of
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interest which from a biological context may be necessary since almost all biological 

process involve a network of molecules (Wu et al. 2008). In the present context this was 

not required, but given the ability of present technologies for transfecting cells with 

multiple tagged molecules and at the same time the design of FluorTRAK has the ability 

to encode multiple channels simultaneously. The provenance of the new bioinformatics 

infrastructure provides a platform from which to develop complex mathematical models 

involving multiple molecules and feedback mechanisms.

5.5 Concluding remarks
FluorTRAK has provided a step change in our ability to encode and access information 

on a multi-scalar level. Kinetic measurements mapped onto lineage maps have 

provided an essential route to revealing the critical time windows and informative cells to 

study the mechanism of action of DNA damaging pharmacological agents. The 

encoding process encapsulated the critical features of cell-cell heterogeneity, molecular 

oscillations, phenotypic behaviour and time-dependent events. The multi-level 

descriptors and parameters attributed to each cell (and at each node), within the 

resultant cell lineage maps, provided a unique understanding about the high temporal 

resolution cell cycle phase traverse and checkpoint responses.

Exploiting the encoded lineage data, new mathematical models were achieved. 

However a number of unmet challenges remain in context of mathematical modelling, 

predominant of which is the incorporation of stochastic approaches that address the 

issue of asymmetric division and the inheritance of cell stress . Present models can 

simulate only one cell cycle under different experimental conditions, but fail to simulate 

sequential cell cycles addressing the issue of inheritance and stochastic aspects of cell 

division. This limitation is primarily attributed to the lack of experimental data that 

incorporates both bifurcation and asymmetry of cell division data. The lineage map 

provided by FluorTRAK provided a framework to access these features but has 

conveyed a molecular mapped onto a progeny tree and therefore provided a meaningful 

structure to the mathematical modellers. These continuous readouts of single or 

multiple molecules from one or multiple compartments (i.e. from nucleus and cytoplasm) 

have introduced the opportunity to formulate the next generation of models comprising 

cellular compartments (spatial) and bifurcation events (division) therefore leading to 

models that offer prediction in silico. From a bioinformatics point of view the next
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objective is to incorporate interactive features and a “live data sharing” environment 

(detail discussed in chapter 7) which would enable public access and essentially a 

community driven research environment.
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Chapter 6: Cytometric data linking -  the convergence 
of imaging and flow cytometry derived data to validate 
and optimize mathematical model
This work was conducted in collaboration with Drs Paolo Ubezio and Monica Lupi, Mario 

Negri Institute for Pharmacological Research, Milan, Italy.

6.11ntroduction
The previous chapter has established the fundamental concept that the encoded lineage 

format underpins both the operational (systematic data access) and intellectual 

(mapping the continuous cell cycle oscillator in a bifurcating system) framework for 

understanding proliferating cellular systems, leading to enhanced predictive 

mathematical models (Chappell et al. 2008; P'erez-Vel'azquez et al. 2008). The lineage 

format challenges the mathematical modellers to contend with heterogeneity, 

asynchrony and asymmetry in an evolving progeny tree; particularly when dealing with 

molecular perturbations such as DNA damage and repair. It was discussed that the 

development of a suitable predictive model cannot be directly coupled to every systems 

component (e.g. molecular, physiological and network based). Therefore a 

mathematical model that comprises the ‘virtual’ cell cycle, including compartmental, 

spatial and stochastic considerations, fluid dynamics, electrical activities and every gene 

involved in the regulatory network would not possible, necessary or even desirable 

(Clyde et al. 2006). Thus a common purpose required from a mathematical model could 

be defined as the need to deliver the simulation of both the structural and dynamical 

properties of the biological system. The higher purpose would be to enable a systematic 

description that reveals the emergent properties which would ordinarily be hidden when 

viewed from a reductionism point of view (Alfieri et al. 2007). However the principal 

prerequisite of developing such mathematical models is the availability of appropriate 

experimental data, generated from wide range of experimental conditions and acquired 

through different acquisition approaches. We consider diverse cytometric derived data 

from instrumentation that provided cell-based information at different temporal 

resolution.
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Specifically, data generated by timelapse microscopy with appropriate software like 

ProgeniTRAK has provided temporal-linked event maps at the single cell level; while 

flow cytometry data lack this temporal feature but the cross-sectional sampling of a 

population always gives statistically robust multi-dimensional parameters. Therefore the 

hypothesis states that the merging of these multi-plexed, multi-dimensional data 

provides the opportunity to integrate cellular data at the metadata level and also 

establishes a novel framework for developing a systems approach. Cross platform data 

convergence has been a long sought bioinformatics challenge and many efforts have 

been undertaken to converge genomic data with proteomic data in order to undertake 

computational modelling of regulatory systems in biology, encompassing the regulation 

of protein complex formation (Reif et al. 2004). However at the cellular level, very few 

attempts has been undertaken to converge different cytometry-derived data formats and 

these have been previously reviewed (Systems Biology Report 2007).

As described in previous chapters many studies have verified the utility of timelapse 

microscopy to determine the intricacies of single cell behaviour (such as heterogeneity, 

asynchrony and asymmetry) and how different factors may impact on population 

dynamics (Cervinka et al. 2008; Feeney et al. 2003; Marquez et al. 2003). Transmission 

phase microscopy offers a probe-less contrast mode providing low resolution but highly 

informative outputs (e.g. cell shape and cell position) for tracking cell division, cell death, 

motility providing both temporally and spatially resolved parameters (Farkas et al. 1993). 

Studies have successfully used the timelapse approach in a screening mode to 

determine single cell cycle traverse, checkpoint breaching in response to drug 

perturbations (Marquez et al. 2003; Marquez et al. 2004) and wound closure (Stephens 

et al. 2004). Furthermore the data have been used to develop mathematical models that 

simulate cell cycle responses in silico. Parallel to our work co-workers (led by P Ubezio, 

Milan) have previously developed a compartmental cell cycle model for ovarian cancer 

cells, using flow cytometry data (Montalenti et al. 1998). In essence the model provided 

an elegant platform for coupling flow cytometry experimental output to a computer 

simulation, enabling a complete quantitative analysis of the time and dose dependent 

cell cycle activity and control. This has led to a mathematical model (Lupi et al. 2004) 

that has reconstructed the traverse of a population of ovarian cells through cell cycle 

compartments, incorporating delays, and other cell routing such as to cell death and 

quiescence (GO). Through this model it has been possible to demonstrate that it was not
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only topotecan (TPT) induced inhibition of DNA synthesis that lead to the cell death, but 

involved also the induction of G1 and G2-M checkpoints, differential G1 and G2-M block 

and death, all of which contribute to a specific dose-dependent response. Overall the 

approach involved deciphering the experimental data (flow cytometric percentages and 

absolute cell number) by using a mathematical model. Each parameter derived from the 

model could be viewed as a quantification of the activity of a specific molecular network. 

The parameters were expressed in terms of probabilities so they were suitable 

descriptors of inter-cell heterogeneity. Thus in essence the mathematical model provided 

an intermediate level analysis between the underlying molecular pathways and cellular 

responses expressed by global parameters like population growth, percentage survival, 

or flow cytometric derived percentages of cell cycle location and also included cell cycle 

duration related parameter such as intermitotic time (IMT).

Therefore we undertook a study to determine how to exploit the clear overlap between 

the timelapse microscopy and the flow cytometry readouts. Model validation is an 

essential step in the model development process. Most of the mathematical models 

generated from experimental data are usually cross-validated using a conventional 

approach where at the preliminary stage, experimental data are split into two subsets -  

training data and verification data. The former subset is used to estimate the model 

parameters while the later used to verify the fitness of the model, i.e. validation. 

However, in this chapter we have taken a novel cross-platform validation approach to 

validate and constrain a newly constructed cell cycle model for human osteosarcoma 

cells (U-2 OS cells) (for full details of the U-2 OS model see Appendix XIV). In 

collaboration with the model originators (Drs Lupi and Ubezio) a detailed flow cytometry- 

based experimental programme was undertaken to derive the cell cycle model (COM) 

output parameters to simulate a U-2 OS population in normal and post-topotecan 

treatment. The objective of this cross-platform validation was to investigate how a time 

series derived from flow cytometry experiments; a time series derived from a Coulter 

Counter analysis and a time series derived from timelapse microscopy could be linked 

together to share overlapping descriptors and outputs and therefore could provide a 

legitimate means for cross-platform integration of data and validation of the model. The 

approach is based on the hypothesis that cellular cell cvcle properties quantified from 

different experimental data sources or mathematical model simulations (each termed as 

platform herein after) depict different aspects of the same cellular system and therefore
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share common descriptors, which can be exploited to link these platform independent 

data sources.

6.2 Process of cytometric data integration -  the overall schema
The mathematical model developed using flow cytometry data (e.g. bromo-2'- 

deoxyuridine (BrdUrd) incorporation, see Appendix XIV) remains at the core of this 

investigation and for simplicity purposes U-2 OS human cell line in unperturbed (control) 

conditions only was considered. Three types of cytometric data derived from three 

independent platforms were utilized (i) timelapse microscopy derived Encoded Lineage 

(EL) data -  from ProgeniTRAK, (ii) a time dependent cell count derived from Coulter 

Counter (CC), (iii) Flow Cytometry (FC) derived output. In conventional cross-validation 

(Bertuzzi et al. 1988) terms, the cell cycle model (CCM) would have been validated 

against FC data (the iii platform) alone, where the initial experimental FC data would had 

been divided into two subsets, one for model development and other for validation. 

However in this investigation, the model was not only compared or validated against the 

later subset (reffered as FC data) but also cross-interogated against other two types of 

data derived from EL and CC, to determine the similarity of two time-series signals 

(cross-correlation of sorts) and further applied to optimize and validate the CCM. The 

approach of cross-platform validation as well as integration offers three benefits. First 

the approach ensures robustness as well as experimental data independence, i.e. the 

model developed from one source of experimental data can be validated against data 

generated from different experimental source. Second, integration of cross platform 

cytometric data provides a means for different data sources to differentially constrain 

and define the boundaries of mathematical models. Finally parameter linking of cross- 

sectional molecular (i.e. snapshot BrdU incorporation) data with continuous data (i.e. 

lineage maps) alleviates the requirement and indeed the data burden for increasing 

amount of continuous outputs. In fact as described before with current technology, it is 

not possible to be able to track every cellular and molecular event simultaneously using 

imaging, and therefore the work conducted in this chapter has the higher purpose of 

addressing how cross-sectional data can inform on continuous data outputs and vice 

versa. The process of cytometric data integration which at the same time provided 

cross-platform validation for the cell cycle model, was achieved in two distinct steps.
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Fig. 6-1 Cytometric data integration and model optimization Comparison and 
integration of cytometric data generated from timelapse, flow and a bespoke 
mathematical model. Two different areas for integration are depicted (blue ovals) and 
within each oval different aspects of comparison and integration are listed. The first step, 
represented on the left, involves the comparison of the data generated from all three 
platforms (yellow coloured boxes) to optimize the model. The second step, represented 
by feeding into the linked area (blue oval on the right), involves exploitation of the 
optimized cell phase boundary values using these generated parameters as markers to 
assign cell age to cells within the encoded lineages.

The first step depicted by two ovals (blue) (figure 6-1) involved model optimization as 

well as cross platform cytometric data integration. The CCM had a number of input 

parameters (see figure 6-2) which was updated by changing the values for the 

parameters as well as incorporating new parameters. With updated input parameters 

the model generated a simulation which in turn spawned a set of output parameters (see 

figure 6-2). These output parameters were then subjected to comparison with 

experimental data generated from the three cytometric platforms: FC, CC and EL for
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comparison as well as optimization. However not all output parameters were compared 

against all cytometric platforms, rather a partly overlapping approach was adopted. To 

exemplify, the percentages of cells allocated to different phases of the cell cycle could 

be best measured from FC data (based on DNA content), but could not be measured 

from either EL or CC data. Accordingly percentages of cell phases generated from the 

model output could only be compared against the FC data (as depicted by the bottom 

left oval in figure 6-1). Again generation wise cell growth and IMT distribution parameters 

output could only be compared against EL data (as depicted by the upper left oval in 

figure 6-1) and overall cell growth parameter could be best compared against both EL 

and CC data (as depicted by the upper left oval).

The purpose of this step was to constrain and optimise the CCM by comparing model 

output parameters with cytometric data derived from the other three cytometric 

platforms. The simulation process works as a trial and error procedure where the 

iterative process continues until a set of parameters was achieved which yielded the 

‘best fit’ with all three platforms derived data (Figure 6-1). Here it is important to 

remember that both EL and CC data were not only from different platforms but also from 

distinct experiments so achieving a ‘good fit’ of the model output against these two 

platforms provided independent data and can be termed as a process of cross-platform 

validation. While achieving a ‘good fit’ against FC data can be termed a process of 

cross-validation. Both these validations were performed simultaneously and the 

collective process implies optimization of the model; once optimization was achieved, 

another level of input parameters such as cell phase boundary(s) (CPB(s)) (which 

defines the cell cycle phase durations) were then utilized in the next step of the 

integration process. CPB is an important and a highly sought parameter of cell cycle 

compartmentalisation that at present can only be quantified from an end point assay 

system e.g. flow cytometry. However, it is important to quantify CPB in a time 

dependent fashion and also the amplitude of variability in relation to drug treatment as 

this retrospectively provides details of drug action.

The second step (depicted by the right-hand side in figure 6-1) in the integration process 

involves exploitation of the optimized CPB value by using it as a marker to identify and 

assign the cell cycle phase and the age for cells within EL data (lineage data generated 

from ProgeniTRAK in this case). Once the age of the cells to EL data were assigned

142



Chapter 6: Cytometric data linking

the resultant distribution at each phase of the cell cycle was compared with that 

measured from model derived data.

6.3 Cell cycle model simulation and parameter estimation for U-2 
OS human osteosarcoma cells
An extensive flow cytometry experimental study was undertaken to establish the 

compartmental cell cycle model for U-2 OS cells (unpublished, see Appendix XIV for 

details). Briefly, the cell cycle model was developed on FC data represented as DNA 

content and bromo-2'-deoxyuridine (BrdUrd) incorporation (Maszewska et al. 2002); 

BrdUrd replaces thymidine during DNA synthesis, catching cells that are in S-phase only 

during the pulse. BrdUrd pulse-chase analysis (Higashikubo et al. 1996) was used to 

assist as a cell cycle marker to reveal the percentages of cells at different cell cycle 

phases along with many other parameters; and to determine the fate of S-phase cells 

within a highly sampled time series (0-72 hours) (Lupi et al. 2004). In addition for the 

first time, data derived from timelapse microscopy were considered together with cell 

count outputs and flow cytometric (FC) data processed via the U-2 OS cell cycle model 

(CCM). Overall we combined time-course measures with different experimental 

techniques and with the aid of a compartmental model simulating cell cycle progression. 

This mixed experimental-simulation approach enabled us to decode the dynamics for the 

unperturbed growth of U-2 OS cells (i.e. control conditions) (see figure 6.2). Initial input 

parameters were estimated. The determination of these parameters can be achieved 

with progressive levels of complexity:

1. Constant phase durations (TGi, Ts and TG2M). In this case it was assumed that 

there was no inter-cellular variation in the duration of phases and the cells 

proliferate without perturbations (for details see section 6.3.1).

2. Variable phase durations. Input parameters were the mean transit times in 

each of the cell cycle phases (TG1, Ts and TG2m ) and the inter-cellular spread of 

G1, S and G2M transit times, measured by the respective coefficients of variation 

CVG1, CVS and CVG2M (for details see section 6.3.2).

3. Variable phase durations and cell cycle perturbations. Additional parameters 

associated with cell cycle perturbations with an underlying biological significance
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were considered in this case (for details see section 6.3.3).

Inout Parameters

Mean time of 
phases

T0 i. Ts, T02

Coefficient of 
variation of the 
probability 
distribution

C V ^ .C V ..
cvW2

Cell Cycle Model (CCM)

Output Parameters

Number of cells N(l)
Percentage of cells 
in G1 phase 
(BrdUrd positive or 
negative)

%G,(l)
%G,(t)+
%Gfi)-

Percentage of cells 
in S phase 
(BrdUrd positive or 
negative)

%S(t) 
%S(t)+ 
%S(t)-

Percentage of cells 
in G2M phase 
(BrdUrd positive or 
negative)

%G2M(t)
%GlM0)+
%G2M(l)-

Fraction of BrdUrd 
labeled divided and 
undivided cells

FJV

Fig. 6-2 input and output parameters underpinning the cell cycle model. For 
detailed CCM see the appendix XIV.

6.3.1 Constant cell cycle phase duration
Assuming constant cell cycle phase duration, Steel’s formulae (Steel 1977) can be 

applied to determine the fractional duration of cell cycle phases from %G1, %S and 

%G2M obtained from flow cytometric analysis during exponential growth:

ia 2 = _ L |nr1 + ^ G 2i
Tc In2 L 100 J

Ja = J _ , J 1 + i%S + %Ga) l _ T ^
Tc In2 L 100 J Tc
TGi __ -j Ts TG2
Tc Tc Tc Eq Q

From these formulae the fraction of Tc spent in each inter mitotic phase starting from the 

knowledge of the percentage of occupation was obtained. Using cell count data, the 

doubling time and hence Tc can be independently calculated. Thus TGi, Ts and TG2M 

were estimated as TG1 = 5.6 h; Ts = 12.3 h and Tq2m = 7.2 h respectively and used as
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input parameters in CCM. The output plots are shown (figure 6-3) together with data 

obtained from other experimental platforms.

OG1 OS «G2MCCMO

0 12 24 36 48 60 0 12 24 36 46 60 0 12 24 36 40 60

Time (h)

Fig. 6-3 Panel A: Overall cell growth kinetics derived from multiple cytometric platforms. 
Normalized experimental cell counts from the Coulter Counter Output (CCO) [filled 
circles]. Normalized cell counts calculated from the Encoded Lineage output (ELO) [grey 
open circles]. Cell cycle model outputs (CCMO) [solid line]. Panel B: Comparison 
between cell generation distributions as obtained from ELO (symbols) and CCMO 
(lines). Panel C: Experimental FC data (symbols) were compared to CCMO (lines), 
obtained supposing that the cell population is asynchronously growing with a constant 
cell phase duration. As shown by the percentages of cells in G1, S and G2M at 0 h this 
assumption provides an adequate simulation of initial cell distribution, but the presence 
of additional effects needed to be taken into account in order to fit cell cycle 
percentages.

Population growth was independently measured from CCO and ELO. In simple terms 

cell growth was defined as the number of cells at any given time Nt. The CCO sampled 

every 3 hours provided the only direct experimental means for counting cells in 

suspension and was considered as the crucial output for integration as it gave an 

absolute measurement for U-2 OS cell number per ml at a given time point derived from 

a whole culture. In the case of ELO, analysis was performed at a time interval (tv) of 30 

minutes and at each time Eq. 2 was used again to calculate the value of Nt , where N is 

the number of live cells at time t.

Nt = Nt.tv + YMitosist - £(Death + Lost)t Eq. 2
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By considering that the rate of cell division or mitotic delivery actually drove the value of 

Nt and therefore contributed to a net increase, while the rates of cell death and loss 

decreased this value, even though, in controls, the contribution from cell death was 

considered negligible and the number of cells lost from the field of view can be replaced 

at any time by those coming in the same field of view. So while counting the A/, in case of 

ELO, the negative part of the equation (i.e. cell death and lost) was ignored. As shown 

in figure 6.3 A, a good correlation was found between ELO, CCO and CCM data, but this 

was not sufficient to consider the values obtained from Steel’s formulae a good 

estimation of cell cycle phase durations, i.e. TGi, Ts and Tq2m

Analyzing cell growth generation-by-generation provided another example of data 

convergence that was derived from CCM and EL only. It was only from the cell cycle 

model and the encoded lineages where generation-to-generation information was 

attributed to individual cell under consideration and thus overall population growth was 

segmented in terms of generation, both the Coulter Counter and experimental flow 

cytometry output data did not contain this resolution of information and as such were not 

included at this stage of comparison. The generation-based information provided the 

opportunity to explore and compare population growth at different generations in relation 

to time. The concept was that to estimate cell number at any one time and to assign this 

to an appropriate generation the following was true - when a cell proceeded through cell 

division, two new cells were added to the new generation and one cell was subtracted 

from the current generation (i.e. removing the cell completely from the analysis). Both 

the cell cycle model output and the encoded lineage output provided the number of cells 

delivered to mitosis at a designated time point together with associated generation 

information. Therefore by using the simple principle of counting and transferring a cell 

count from one generation to the next as they deliver to mitosis (M2), the time and 

generation dependent fraction of cells at each stage (percentage (%) of cells) was 

calculated and plotted (figure 6.3 B). It was evident that by taking this view of the data 

based on generation, the overall oscillatory nature of both the CCM and EL data were 

quite similar. The comparison of these data revealed a good agreement between the two 

data sources at generation 0, but started to subsequently diverge from generation 1 

onwards, the simulation output shifted in time such that the CCMO always followed the 

ELO.
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Despite the poor correlation of simulated data with experimental data it was clear that 

even at this simple level of convergence, the timelapse lineage data or indeed the 

Coulter Counter derived data could be used to constrain the mathematical model 

parameters. Therefore at this basic data resolution the result implied a depth at which 

data convergence of different cytometric data source could be achieved. A similar 

inference could be made from the figure 6.3 C, in this case CCM was able to reproduce 

the trend of cell cycle percentages as obtained by flow cytometry experimental data 

analysis of DNA content and bi-parametric DNA/BrdUrd data (see Appendix XIV) for up 

to 24 hours.

The distribution of inter mitotic time (IMT) provided another important data output that 

was derived from encoded lineage outputs and was compared with CCM. From the cell 

cycle model, at a single cell level the IMT value was calculated from summing the 

individual duration of the cell phases. Therefore cell cycle traverse time Tc for each 

individual cell was calculated as follows:

Tc =  Tgi +  Ts+Tg2m Eq. 9

The cell cycle traverse time Tc was defined as IMT (see chapter 4) and again the 

encoded lineage data provided access to this calculation. At a single cell level it was 

calculated as the difference between the first appearance time (A,) and dividing time

m

IMT = D t - At Eq. 10

Individual Tc and IMT calculated from each data source were binned to their nearest 

corresponding hour bin and the distribution was presented as a histogram normalized for 

5000 cells using the following formula:

N n o r m (t )  =  N ( , ) X 5 0 0 0 / N
Eq. 11
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where Nnorm is the normalized number of cells at the time t, Nt is the number of cells at 
time t as obtained from ELO or CCM and N is the total number of cells present during 

the whole experimental duration.

The model at this stage was not considering heterogeneity in Tc. The comparison of the 

experimental data with the IMT distribution as obtained from CCM (figure 6-4) followed 

the assumption of constant cell cycle phase duration and revealed the requirement to 

consider a normal distribution of Tc in order to fit that data derived from EL.

Fig. 6-4 Distribution o f IMT. Gray bar graph displaying the distribution of IMT extracted 
from EL data while the black bar represents the CCM generated output.

6.3.2 Inter-cell variability in ceil cycle phase duration
The mean transit times of each cell cycle phase TG1l Ts and TG2m and the inter-cellular 

spread of G1, S and G2M transit times, measured by the respective coefficients of 
variation CVGi, CVS and CVG2M were altered in CCM in order to fit CCO, ELO and FC 

data, but direct reproduction of IMT data was not feasible with the program. Thus the 

same frequency distributions of phase durations adopted in the model were used to 

generate TG1f Ts and Tq2m values with a Monte Carlo routine. A set of Tc = TG1 + Ts + 

TG2m values were obtained in this way, the generated frequency distribution was 

compared with lineage derived IMT distribution. Monte Carlo simulations demonstrated 

that a shorter Tc (20.1 h) and a CV around 30% in all phases (Table 6-1) provided a

5000 
2 4500 

*0  4000
®  3500 
f= 3000 
g  2500

T rm rrr rrrrr r in r n if

0 5 10 15 20 25 30 35 40 45

IMT (h)

148



Chapter 6: Cytometric data linking

better fit between the IMT data and CCM derived Tc data, at least for Tc that are not too 

long, as shown in the figure 6-5.

Table 6-1 Cell cycle phase duration with respective coefficient of variation

Phase
Duration

Coefficients 

of variation

TGi = 3.9h CVGi = 30%

Ts = 10.3h CVS = 30%

T G2M — 5.9h CVG2M = 30%

ao

%
E3C
~o
0
N
75

innrmrrTTTi1111111111 IT

5 10 15 20 25 30 35 40 45
IMT (h)

Fig. 6-5 Fitting o f IMT distribution. Solid line represent CCM data output, grey bar 
graph represents EL data.

Applying the new input values obtained in Table 6-1 into the CCM, a similar process was 

undertaken as before (figure 6-3) to reproduce output plots and was presented in figure 

6-6. When considering cell number increase over time figure 6-3 A and 6-6 A, the fit 

was poor (worse than before), however the fit of cell generation distributions was much 

improved (figure 6-6 B) and that of cell cycle percentages (figure 6-6C) was almost 
unchanged. These results imply that the consideration of CV was required but it is not 

sufficient and as such additional variable effects (perturbations) were required to fit well 
across all experimental data.
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Even in cell populations growing without the addition of any perturbing agent it is 

possible to observe the presence of a synchronized sub-population that moves slowly 

through the cell cycle. These differential sub-populations originate from many potential 

sources and can be ascribed to cell manipulation, especially when observed at short 

times after BrdUrd labelling, as BrdUrd labelling and washout may induce temporarily 

perturbation in cell growth (such as a slight accumulation of cells in a particular cell cycle 

phase) this effect was consider as "cell manipulation”. Again the differentiation of sub­

population may also caused by clonal variation within the population and confluency 

effects when observed after a few days of culture.

CCO ELO — CCMO OG1 OS #G2M
10000 '

9000'
g 8000'

7000' 
3  6000' 
*  5000' 
I  4000' 
°  3000' 

'  2000' 

10001

8
f .0 0

0>o

0 12 24 36 48 60 0 12 24 36 48 600 12 24 36 48 60

Time (h)

Fig. 6-6 Updated comparison. With new CV values the model was simulated again 
and was compared with experimental data as described in context of figure 6-3.

6.3.3 Variable phase durations and cell cycle perturbations - 
optimization of the cell cycle model

Considering all the results shown in the previous two sections, it became apparent that 

the outputs from the different cytometric platforms overlapped sufficiently but a further 

level of complexity needed to be considered for full integration. The parameter outputs 

from the encoded lineages (direct and calculated) provided an independent method for 

constraining and defining the cell cycle model parameters. The aim therefore was to 

achieve the best-fit against all experimental data and hence provide an independent 

multi-dimensional approach for cell cycle model optimization. The outputs from the CCM 

made no a priori assumptions and could be considered as the ‘raw’ outputs. To 

determine the extent of ‘good fit’ between the model and experimental data outputs,
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sum-of-squares error (SSE) were obtained (see Appendix XIV) and reported in Table 

6.3.

As highlighted from FC data and from EL data, even control cells growing in normal 

conditions were characterized by physiological phenomena that contributed to partial 

synchronization of the cell population. These were particularly evident if we took into 

account that cell phase distribution over time, a completely asynchronous cell population 

should be a flat line, whereas in this case a slight oscillatory trend was evident for the 

experimental data (FC data) in figure 6.6 C. This oscillatory trend was also evident in 

figure 3-4 C where local slope of the normalized cumulative growth curve for control 

condition was measured. As described before these oscillation represented the wave of 

cells delivering to mitosis for each generation; and the sequential decay of the response 

reflected that population growth tends towards asynchrony. Cell manipulation and 

quiescence factors probably determined the partial accumulation of cells in G1 phase at 

long times of observation, represented two of the effects observed even in control 

samples. In particular, it was decided to represent the effects of cell manipulation as a 

delayed progression through G1, S or G2M phase for undivided cells or for cells that 

have divided only once. With the passage of time, cells progress through the cell cycle 

and the effects of the manipulation tend to disappear leaving place to the creation of a 

subpopulation of quiescent cells. Considering all these assumptions, a new set of input 

parameters were introduced and the cell cycle model was optimized against 

experimental ELO, FCO and CCO.
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Fig. 6-7 Updated input parameter estimates to optimize the CCM describing the 
unperturbed growth of U-2 OS cells.

The set of parameters that enabled a good simulation of the experimental data derived 

both from EL and FC were determined using a non-linear fitting procedure. The 

constrained non-linear fitting was accomplished with the ‘Solver’ function associated with 

the MS Excel spreadsheet. The Solver function was based on the Generalized Reduced 

Gradient (GRG2) algorithm. This procedure enabled the optimization of the following 

parameters: G1, S and G2M delay rate for generation 0 and 1 and G1 quiescence 

probability for generation 1, 2 and 3 or more. In the following table, the final results of 

different attempts have been reported.

Table 6-2 The parameter matrix used to optimize the CCM

G1 Del S Del G2M Del G1 Del + S Del + G2M Del + G1 Q (+&-)

Generation 0 0.37 0.00 0.18 0.00 0.00 0.00 0.00
Generation 1 0.00 0.23 0.00 0.00 0.14 0.00 0.15

Generation 2 0.00 0.00 0.00 0.00 0.00 0.00 0.18

Generation 3 0.00 0.00 0.00 0.00 0.00 . 0.00 0.38
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G1 Del, S Del and G2M Del imply that a proportion of cells progressing inside each cell 

cycle phase were inhibited at each step, resulting in longer mean transit times. For 

instance: (i) G1 Del=0.37 meant that cells in generation 0 need a longer time to pass 

through G1. With this particular value of the delay the mean duration of G1 is about 5.4h. 

(ii) G2M Del=0.18 meant that cells in generation 0 presented a mean G2M duration of 

about 7.2h. (iii) S Del=0.23 or S Del+=0.14 meant that cells in generation 1 progress 

through S phase in 13.4h or 12.0h respectively. The symbol “+" meant that the 

parameters were related to BrdUrd-positive cells, when not specified we refer to data 

derived from BrdUrd-negative cells. G1 Q (+&-) represented the percentage of cells that, 

once entered in G1, became definitively quiescent.

To fit the cell number and flow cytometric percentages the Solver function was imposed 

to minimize the SSE, for cell cycle percentages, for absolute cell number and for cell 

generation distributions.

A
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Fig. 6-8 Comparison between simulated (continuous line) and experimental data 
(symbols). The simulation was obtained setting the parameters to the values listed in 
table 6.2.

A good correlation between model output and different cytometric platforms were 

obtained for all considered data. The SSE values after optimization compared to 

previous SSE values provided an overview on the data fit improvement (Table0.3).
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Table 6-3 SSE comparison before and after optimization.

SSE
(Only considering 

inter cell 
variability)

SSE
(After

optimization)

Comment

1.439 x 10' 1.284 x106 Between Coulter Counter and cell cycle 

model outputs

6.429 x103 6.047 x102 Summed SSE for each cell cycle phase 

between FC and cell cycle model outputs

5.075 x 10' 1.710 x 106 Summed SSE for each generation 

between Lineage and cell cycle model 

outputs

Cell cycle phase duration with respective coefficient of variance remains same as the 

previous simulation as presented in Table 6.1. These values, with the additional 

parameters describing the deviations from asynchronous growth (delays and quiescence 

parameters) enabled a complete fit of the data against all experimental platforms, and 

as such characterized the cell cycle of the control population in a platform independent 

fashion. This ability provided the advantage to utilize these parameters as platform 

independent units to measure cell cycle dynamics, and to exemplify such advantage, cell 

phase boundary (CPB) values obtained through the model were exploited to measure 

cell age distribution within the lineage data encoded by ProgeniTRAK.

6.4 Using the cell cycle phase boundary parameters to measure 
cell age
The aim of the following section was to assign cell cycle age to cells encoded by 

ProgeniTRAK by using the cell phase boundary (CPB) values or cell cycle phase 

duration parameters obtained from the cell cycle model. In a heterogeneous cell 

population at any one time the cells within the population consisted of cells at different 

phases of the cell cycle.

If we consider a cell featured within a lineage map, we know a limited amount of cell 

cycle information such as the time from the last mitosis and time to the next mitosis. The
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effective age therefore of the cell at any particular time point was defined as the time 

elapsed since last mitosis and therefore designated as absolute cell age (ageabs)- Cell 

age can also be defined as a relative term to the time elapsed since the last phase 

boundary was crossed. In other words in the case of determining relative age, we reset 

as a cell crosses each phase boundary, therefore we can identify two transitions: G1 > 

S-phase, S-phase > G2M phase, providing parameters designated as ageGi, ages, 

ageG2M respectively. It is important to note here that even though M was considered a 

separate phase from G2, due to the short duration M was included with G2 and 

designated as G2M phase, also flow cytometry approaches cannot distinguish between 

G2 and M.

To exemplify absolute age and relative age, let us consider a cellx> if cellx first appeared 

(from the mitosis of the progenitor cell) at 32.7 h after the start of the experiment and 

divided into two daughter cells at 52.8 h, the cellx would have a complete IMT value of 

20.1 h. Therefore when cellx was observed at 45 hours after the start of the experiment 

cellx would have an age^s of (45-32.7) = 12.3 h and ages of 8.4 h; ages was designated 

because according to table 6.1 the cell should have crossed the G1 > S boundary 3.9 h 

after mitosis at 32.7 h. So at (32.7+3.9) = 36.6 h the cell entered the S phase of the cell 

cycle and also at that time the relative age was reset to 0 h and accordingly at 45 h, the 

cell had an ages of (45-36.6) = 8.4 h. Again if cellx were viewed at 50 h, the 

reassignment would be age^ = 17.3 h and age<32M = 3.1 h respectively.

Oh 3.9 h 14.2 h
(Birth) (Divide)

G1 S G2M

  Absolute age ------►
  Relative age ------ >

n I  / ............  ' /  /

— Exp start — 32.7 h — 45 h — 52.8 h

Fig. 6-9 Diagram to illustrate the designation of absolute and relative cell age.
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So the relative age of cellx consisted of three attributes: (i) the age (in h) (ii) the cell cycle 

phase (iii) and generation information. As stated earlier since the EL and CCM only 

included the generation information, data from these two sources could be utilized for 

investigating the cell age. Another aspect for measuring cell age was the variation of cell 

cycle duration. In normal culture conditions not all cells have the same cell cycle 

duration IMT or Tc value of 20.1 h (see figure 6-5) inter cell cycle time variability was the 

prime cause for this phenomenon and the variation was innate and remained the primary 

source for population asynchrony and heterogeneity. Different aspects of this variation 

of cell cycle duration (IMT) in control conditions were analyzed in chapter 4. From the 

CCM the variation was artificially imparted by covariance indices and thus the output 

population also incorporated the heterogeneity of total cell cycle time, the mean CPB 

values as outlined in table 6.1 were G1 > S 3.9 h and S > G2M (3.9 + 10.3) = 14.2 h 

respectively. The objective of this section of the analysis was to exploit these CPB 

values to dissect the IMTs encoded through ProgeniTRAK and FluorTRAK and thus 

explore the implications of using model derived parameters to transform experimental 

data.

During the first stage the IMTs encoded through ProgeniTRAK were subjected for 

analysis, for each encoded cell the standard CPB values generated earlier were 

readjusted to define the cell specific CPB by a simple method. For example if the IMT 

for a particular cell was found to be 30 h, the CPB values would be readjusted to 3.92 x 

(30/20.1) = 5.9 h and S>G2M boundary to 14.2 x (30/20.1) = 21.2 h respectively. 

Through this simple readjustment the delay as well as early IMT was attributed evenly to 

all phases of the cell cycle, which arguably might not be biologically accurate as 

deviation from average cell cycle time (20.1 h) can be the product of many factors as 

implied in table 6.2 and would most likely differentially effect G1, S-phase and G2 

duration. However, despite this limitation each encoded cell that delivered to mitosis 

were subjected to cell age measurement reviewed at 6 time windows with a 9 h interval 

from time 0 to 54 h (e.g. at 9, 18, 27, 36, 45 and 54th h). At each time interval the first 

step was to index cells that could be included into the analysis, the criteria for a cell to be 

indexed was that the cell must have its first appearance before the time point under 

consideration as well as delivering to mitosis after that time point. A Perl script 

(analytical tool) was written that would determine these criteria automatically for each
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encoded cell. Once indexed the next step for the analytical tool was to measure the 

three attributes of relative age taking into account the readjustment of the CPB values. 

According to these attributes cells were binned to the nearest hour bin and plotted as a 

distribution. Each plot represented the distribution of cell age for a particular time point 

and generation.

For the CCM the output automatically index each cell at each time point with its 

generation, phase and relative age information and as such were binned and plotted 

with the same graph as that of EL data. For each graph the smooth line represented the 

CCM output while the noisy line represented the EL data (CCM had substantially higher 
number compared to EL).
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Fig. 6-10 Cell age distribution. Progressive graphs showing cell age distribution at 
specified time points (9,18,....54 h) for generation 1, 2 and 3. For each generation, the 
relative age distribution were segmented according to the phase of the cell cycle (G1 
blue, S pink, G2 green). With each graph the smooth line represents cell age distribution 
calculated from CCM while non-smooth line represents EL data. The Pearson’s 
correlation value between the two distributions was inserted into each graph.
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Figure 6-11 is a typical representation of the population dynamics where a population of 

cells undergoes cell cycle traverse and accordingly moving from one phase of the cell 

cycle to the next. For example, at 9 h after the start of the experiment, all the cells of 

generation 1 were assigned to G1 or S phase of the cell cycle (predominantly in G1 

phase) but no cells were in G2M. It is important to note here that progenitor cells 

(generation 0) could not be included in the analysis since the respective IMT was not 

available (reason explained in chapter 4). At 18 h much of these cells that were in G1 at 

9 h moved to S phase but cells that belong to S phase at 9 h had not yet entered the 

G2M phase. At 27 h, all cells that were in G1 phase at 18 h moved to S phase while 

cells that were in S phase at 18 h also moved to the final G2M phase. Also at 27 h some 

of the cells completed the first cell cycle and yielded the next (2nd in this case) 

generation of cells and indeed were in G1 phase. However as a small number of cells 

entered to the 2nd generation at 27 h the ageGi distribution was small as observed in the 

graph. At 36 h the cell population was very much heterogeneous as they encompassed 

not only cells from generation 1 and 2 but in terms of phase they were distributed across 

all three phases of the cell cycle. However if the matrix of graph in figure 6-11 was 

viewed in columnar fashion, i.e. at certain time points, it would be possible to distinguish 

a certain sub-population of cells that were predominant for that time point. For example 

at 36 h a heterogeneous population of cell belonging to both generation 1 and 2 and all 

three phases of cell cycle were observed, but the predominant sub-population of cells 

belonged to S phase of generation 2.

Acknowledging the cell number difference between CCM and EL data, the distribution of 

relative cell age was compared with a simple Pearson’s correlation coefficient that 

measures the strength of the linear relationship between two variables. The positive 

Pearson’s correlation value of each graph in figure 6-11 when coloured with 0-1 gradient 

scales, yielded a heat map where the maximum correlations (1.0) were shown with blue 

colour while minimum (0.0) with green colour.
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Fig. 6-11 Heat map view of relative cell age correlation between model and EL data.

This correlation heat map in figure 6-12 was a succinct visualization of the cytometric 

data integration process at the meta data level. A strong correlation was observed 

diagonally through time implying a synchronized population at this detailed resolution 

and also corresponded to previous results in figure 3-4 C, indicating a sub-population of 

cells cycling in a synchronized manner. The measurement and visualization approach 

assisted to assign generation and cell cycle phase tags to each cell in the lineage 

assays at a particular time point. For example if measured at 30 h via this schema, it 

can be stated that most of the living cells would belong to 1st generation and at the S- 

phase of their cell cycle and the distribution can be exploited as a signature of population 

heterogeneity and thus can be utilized to measure the effect of perturbation in population 

context. Moreover the matrix of progressive distributions demonstrated the population 

dynamics as it showed the passage of cells from one phase to another, as well as from 

one generation to the next, this time dependent population response would assist for 

better understanding the population dynamics in different experimental conditions.

6.5 Concluding remarks
We have investigated the idea of integrated cytometry and mathematical modelling. Cell 

cycle models at present aim to simulate cellular dynamics either through information 

about genes and protein networks involved in the cell cycle process (Alfieri et al. 2007), 

or through exploiting multi-parametric FC data that depict cell cycle kinetics and control 

mechanisms of the cell cycle (Pierrez and Ronot 2004), all cases the common goal has
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been to provide predictive models and consequently highlight the interactions and 

emergent properties of dynamic cellular systems. However, there is a consensus in the 

community (mathematicians and biologists alike) that cell cycle mathematical modelling 

has not yet reached this position (Sible and Tyson 2007), the principal reason being that 

there needs to be a better interweaving and convergence of experimental data, model 

derivation, simulation and validation. In addition, mathematical models are 

predominantly validated using the same data source as that used to develop the model 

(a cross-validation approach) (Bertuzzi et al. 1988; Sible and Tyson 2007). In the current 

work we suggest that the most plausible approach to overcome such limitations is 

through integrating data from different sources (i.e. acquisition platforms). We have 

shown that the cross-platform approach offers bilateral benefits: the compartmental cell 

cycle model (derived from flow cytometry data) obtained new constraints imposed by 

microscopy and Coulter Counter data (see Appendix XV). Equally, the optimized 

parameter outputs from the cell cycle model assisted to dissect and enrich the lineage 

maps -  this convergence provided new insights to progeny responses where the 

delivery to mitosis by a synchronized subpopulation of cells were identified. The next 

stage is to meet the challenge of building a continuous (not statistical) mathematical 

model that can contend with cell division nodes (bifurcation) within a lineage map, 

incorporating aspects of inheritance and memory. We are in a position to integrate 

cytometric outputs (cellular and molecular) to meet this objective. Essentially, the 

comprehensive data rich information addressing dynamic cellular systems could be 

considered to be scattered across many cytometric platforms; establishing a robust and 

far-reaching data integration process would meet the hitherto unmet need of multi-scalar 

large data acquisition to underpin cell cycle mathematical models (Systems Biology 

Report 2007).
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Chapter 7: Discussion -  impact of cellular informatics
The study presented in this thesis has established a prototype informatics infrastructure 

that enabled encoding, archiving, mining and the interpretation of timelapse image data 

comprising cellular behaviour. The cell lineage map provided the principal component of 

such an infrastructure representing the pedigree structure within the cell population. 

Here the cell was considered as an object and the object behaviour was influenced by 

many different factors including genetic and epigenetic influences on programmed 

behaviour; as well as external influences including environmental stress and others. The 

lineage map introduced through this research aimed to encapsulate the complexity of 

the proliferative responses and variability within populations associated with divisional 

events, and at the same time provided a generic framework for the application of 

bioinformatics techniques for both data management and information retrieval.

Previous studies have been carried out to depict and interpret cellular lineage behaviour 

predominantly with respect to stem cell dynamics (Braun et al. 2003; Dzierzak and 

Speck 2008; Geard and Wiles 2005; Karam 1999; Orkin and Zon 2008). Few efforts 

were also made in other somatic cell context (Chu et al. 2004; Endlich et al. 2000; 

Forrester et al. 2000; Forrester et al. 1999; Prieur-Carrillo et al. 2003), but these efforts 

have not encompassed the inheritance-based relationship within a population context as 

well as inter lineage or inter-nodal relationships, and therefore was not sufficient to 

depict intricate spatial and temporal dynamics of cells. Additionally, these encoded 

cellular behaviour parameters were not systematically linked with experimental 

descriptors and thus undermine the hypothesis driven data mining at the metadata level. 

This research attempted to overcome some of the limitations by introducing a novel data 

format which underpins the investigation and established not only intra and inter lineage 

relationships, but relationships substantiated with experimental descriptors. Such 

intricate relationships enabled metadata level data mining and subsequent facilitation of 

a better understanding on innate and acquired cellular processes and also revealed 

occult relationships that are separated over a wide time window, for example the 

influence of a topoisomerase inhibitor on progenitor cells and the overall impact on later 

generations. Another important aspect of the lineage data format was that it supported 

the visual representation of the progeny tree during and after the encoding process. 

Visual representation of the cell lineages, contrary to actual cells in the image
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sequences, can be correlated with visualizing the annotated genome map instead of the 

single DNA. A gene sequence even with detailed annotation gives a poor understanding 

from a genome perspective, but when represented within a genome map (see: NCBI 

Map viewer http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?taxid=9606&chr=1), 

the same annotations produce context sequence information. Thus the data format and 

the lineage structure simultaneously provided a computer readable map to explore the 

cellular behaviour through hypothesis driven data mining and a visual map for human 

interpretation as illustrated by the figure bellow.
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Fig. 7-1 Visual representation o f encoded data. Panel I shows how a lower order DNA 
sequence were organized and given a visual representation in the NCBI Map Viewer 
within a genome context. Panel II shows how a cellular behaviour image sequence has 
been given a visual representation through lineage map encoded via 
ProgeniTRAK/FluorTRAK.

Current software packages of both commercial and academic origin have improved our 

ability to convert “images to parameters” -  a goal shared by many disciplines including
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cell biology but subsequently has introduced new challenges for managing and mining 

these image derived numbers and directly translating the cellular behaviour to in silico 

models. Through a prototype infrastructure, the current research established encoding, 

archiving, mining and visualizing tools. The encoding process or tools encapsulated the 

critical features of cell-cell heterogeneity, molecular dynamics, phenotypic behaviour and 

time-dependent events. The multi-level descriptors and parameters attributed to each 

cell, or node within the resultant cell lineage maps, provided a unique framework for 

applying bioinformatics-like query algorithms. Further, the ability to locate molecular 

profiles of cell cycle phase traverse and checkpoint responses was also achieved by 

encoding high-resolution fluorescence image sequences (GFP-cyclin B1) in a lineage 

format. The two levels (experimental and single cell level) nomenclature embraced the 

ontology hierarchy as described in Fig 7-1 and a visual representation of the parameters 

at the experimental level facilitated users to select experimental parameters without 

manually typing the cell name. This process not only oriented the user within the 

experimental scenario but also provided an error free tagging of the lineages. At the 

single cell level the evolving lineage map with its associated colour tagged nodes 

oriented users to encode the lineages in an accurate manner and at the same time 

associated the image derived parameters to the correct single cell, node and hence 

lineage branch. This was important since visual orientation of complex yet dynamic data 

reduced the possibilities of error of encoding and provided the foundation for future 

automation. The encoding process embraced the document writing process such as 

that presented in everyday packages such as MS Word, where the visual representation 

of an evolving document was provided and at the same time has the features to editing, 

saving of the present and previous document. Both in ProgeniTRAK and FluorTRAK 

this philosophy of encoding was adapted, which indeed made the encoding process 

flexible and “user friendly”.

Archiving the encoded data became the next important feature and provided the 

fundamental shape of a developing infrastructure, therefore initially the decision was 

made to undertake a primary archive in tab delimited text files. There were three 

reasons for adopting a text file format -  first, the lineages were encoded following the 

philosophy of MS Word, where each document was saved as one file in the folder and 

likewise each lineage was saved as single text file in the “Lineage folder”. It is important 

to acknowledge here that within this general philosophy, lineages could be encoded in
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an XML format but defining the XML tag and constructing the associated XML parser, 

was not essential at this stage of development since the main focus of the research was 

to demonstrate the future prospect of encoding cell lineages from timelapse image 

sequences and exploring the relevancy and usefulness of these lineage derived data for 

hypothesis driven data mining. The second reason for selecting a text file format was 

due to its simple editing facilities (e.g. removing or introducing new column of data), 

which was extensively utilized during the developmental process. Third and finally the 

text delimited text file gave an extra advantage in terms of data mining and analysis as it 

was the simplest format that was easily readable by all common computer languages. 

Hypothesis driven data mining is always an ongoing process and therefore demanded 

new solutions at different time points. A number of PERL scripts were written according 

to the hypothesis or idea and since the data source was in text file format, the process of 

data mining was simplified.

One major limitation of text file format was data sharing, even though the “Lineage 

folder” which contained all the linage files were situated in the shared drive, but only 

limited users had access to the data i.e. locally-based. In order to provide multi-site 

accessibility, a web accessible database was introduced and chapter 3 illustrated the 

process of implementation and mining such database. ProgeniDB (Khan et al. 2007) 

provided event based data and from the perspective of complexity, this database may be 

categorised as a simple database, however this prototype database demonstrated 

multiple benefits of having public access encoded cellular behaviour database contrary 

to an image database (Marx 2002). The primary benefit was data reduction as image 

files consume more memory contrary to alphanumeric encoded data, so the ease of 

archiving and sharing data became very efficient (data reduction -100 GB to -100 KB). 

However the true benefit lies with the fact that encoded data did not require subjective 

interpretation, which makes encoded data readily interpretable and shared to cell 

biologists, mathematicians and statisticians alike.

In the near future relationship derived data like inter mitotic time and distance (i.e. IMT, 

IMD) will also be retrieved from ProgeniDB as new data mining interfaces will be 

introduced. At present ProgeniDB marked the completion of the infrastructure, even 

though at a small scale; the infrastructure demonstrated the possibilities and usefulness 

of cellular informatics. A major limitation of the encoding process was indeed the
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absence of cell tracking automation -  at present the encoding process can be 

categorized as a semi-automated process where cell tracking and event recognition 

were performed manually. Tracking cells after the bifurcation point within an image 

sequence, remained the overwhelming challenge and past decades have witnessed 

several attempts to resolve this challenge (Bao et al. 2006). Even though set out as a 

clear requirement and specification, the development of automated image processing 

algorithms were beyond the scope of this thesis. Tracking the cell object acquired in 

phase contrast transmission was not trivial, but it was clear that for the cell lineage 

approach to work in a high-through-put mode a better cell tracking approach has to be 

addressed. Therefore, the need for automation and a large dataset was acknowledged 

as the primary bottleneck of such an endeavour. Currently described image analysis 

tools do not contend adequately with the mitotic event particularly upon the generation of 

two daughter cells (bifurcation) (Braun et al. 2003). The simple premise is that that more 

information maybe available by analysing the mitotic event within a timelapse sequence 

using forward and backward filters (Hamahashi et al. 2005), the collaborative work aims 

to constitute an enabling technology providing capacity in data generation.

The metadata provided the means for a detailed analysis of encoded image data. 

Detailed analysis and interpretation of the data outputs were presented in previous 

chapters. Here the discussion covered the breadth and depth of such analysis; the 

primary reason was to investigate the benefits of extracting such dynamic outputs in 

fulfilling the knowledge gap that exists between molecular level and systems level 

information as shown in fig 1-2. Three cellular levels of complexity as outlined in the fig 

1-2 were addressed through the lineage data format.

7.1 Single cell level analysis
Analysis at the single cell level involved segmenting the lineage map in a vertical 

fashion, perpendicular to time, generation or both. The outputs of such a segmentation 

comprised population distribution behaviour that encompassed events such as IMT, 

IMD. These distributions when grouped according to time, generation or both generated 

a new level of knowledge particularly with respect to IMT as this parameter could not be 

directly quantified from the image sequences and as such has not been included in 

previous conventional analytical procedures. Cell cycle related parameters like IMT
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were designated as ‘on-the-fly’ derived parameters and exploited the inter-nodal 

relationships and patterns established through this lineage data format.

Even though these parameters and encoded events were regarded as discreet data 

points, but linked with multi-dimensions such as time, generation, drug, dose a 

comprehensive analysis was performed that ranged from common event curve to 

complex drug and dose dependent GFP-cyclin B1 profiling. These profiles not only 

generated detailed knowledge as they underpin the dynamic molecular process, but also 

provided the foundation for developing mathematical models as they encapsulated up to 

three tractable molecular profiles simultaneously. Even though the encoding process is 

time consuming and requires a high level of expertise for indexing the 3 ROIs at each 

time point (nucleus and cytoplasm in case of experiment involving GFP-cyclin B1). Due 

to this limitation a small number of lineages were encoded using FluorTRAK, but the 

implication of even a small number of lineages was emphasized by the publication of two 

peer-reviewed papers (Chappell et al. 2008; P'erez-Vel'azquez et al. 2008).

Encoded lineages also provided spatial data (cellular movement or motility etc) that can 

be retrieved from the lineages. The impact of these data were explained in terms of 

colony formation, directionality and motility of the cell. Further implications of these 

attributes were not investigated to the full potential as these data are more pertinent to 

wound healing research. However a collaborative pump-priming project has been 

initiated with Dr. Patricia Martin at Caledonian University, Glasgow to develop a modified 

version of encoding tool -  WoundTRAK to encode cellular behaviour in the context of a 

primary cultured 3D wound model.

7.2 Lineage level analysis
Both ProgeniTRAK and FluorTRAK established the relationship of cellular dynamics at 

the lineage level. The unique nomenclature of cells with ‘B\ ‘BS’, ‘BSN’ etc. provided a 

tagged nomenclature to maintain links between all progeny. IMT and IMD were the two 

most important inter- and intra- nodal readouts that were highlighted through the data 

format while maintaining relationships. IMT or cell cycle time remained the fundamental 

readout for describing the pharmacodynamic response that was a prime pre-requisite for 

the process of drug screening. The variation of IMT and its relationship with drug 

(derivative, dose, bolus) was measured from different perspectives -  in terms of
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generation-to-generation (vertical segmentation) and in a sequential manner (horizontal 

segmentation). The lineage structure when analyzed vertically provided the opportunity 

to quantify the distribution of IMT as per generation and in relation to drug parameters. 

When lineages were segmented and analyzed in a horizontal fashion, the cell cycle 

action of drugs could be quantified in a pedigree structure, which provided the means to 

quantify how the effect of the drug was cascaded from one generation, along with the 

asymmetric distribution of the effect between two daughter cells. These results 

generated from exploiting the relationship basis of the lineage or pedigree format, form 

the basis for developing predictive models. These predictive models could then be 

utilized to identify the cells that in future would generate the resistant progeny and if 

such identification were possible with certain confidence a rare opportunity to explore the 

genetic profile would be possible. Such a hypothetical situation would certainly 

contribute significantly to our understanding about the origin of resistance at the 

molecular level.

Through a lineage analysis approach a simple yet potential bioinformatics-scoring 

schema was introduced to score the track within a lineage. This theme for such a 

scoring schema evolved from the classical bioinformatics algorithms like BLAST and 

aimed to establish a comparative cellular behaviour algorithm, where cellular behaviour 

from a particular experimental condition (gene knockout, drug treated etc.) could be 

compared and scored against normal cellular behaviour, similar to that of an unknown 

sequence aligned against well annotated sequences to gain preliminary knowledge 

about the unknown sequence. This bioinformatics approach will benefit the process of 

drug discovery as PD response of a new chemical agent (NCE) can be scored and 

aligned against already known PD responses.

7.3 Multi-cellular level analysis
At this level of analysis heterogeneity of cellular behaviour within a population was 

analyzed. The hypothesis was that that the asymmetry of cell division time (IMT) 

provided the primary route for heterogeneity and comparative analysis of IMT between 

daughter cells figure. 4-10 reflected the consequences of drug treatment on the 

symmetry of the bifurcation. Since the relationship of cellular behaviour embedded in a 

lineage map can be explored from different perspectives as outlined in chapter 4, it was 

possible to integrate this multi-cellular heterogeneity not only to understand the tumour
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resistance but also wound healing, cell migration, cell attachment, cell proliferation, 

angiogenesis, senescence and other cellular processes. However, to achieve such 

ambitious objectives the primary criteria was to demonstrate the pertinence of such a 

bioinformatics infrastructure.

7.4 Assening the generic applicability -  indicators for future 
sustainability
Present applicability and future growth of any research depends on the generic nature 

and flexibility for improvement, probably this is even more important for bioinformatics 

research (bioinformatics is research not a ‘cottage industry1). Our collective 

bioinformatics endeavours encompassed both research and development; where 

research included delivery of novel algorithms, data format while development included 

implementation of tools and database. The overall activity addressed a wide range of 

yet unmet intellectual challenges that enveloped a spectrum of research interests and 

associated demands for tool development. Bearing in mind the multi-faceted nature of 

the current study; the thesis undertaking demonstrated its generic nature and future 

development potential, while addressing the hypothesis and objectives set forward. The 

hypothesis that spatiotemporal cell kinetics data in a lineage format provided an 

essential route to determining cellular dynamics is not only relevant to cancer research 

but showed to have shared benefits in all types of cell based research, like wound 

healing and senescence studies. A growing interest of using such an informatics 

infrastructure was convened during this research period and ProgeniTRAK was used in 

context of wound healing with Dr. Patricia Martin and demonstrated a considerable 

knowledge uplift, which has led not only to publications (manuscript under preparation) 

but also grant application (submitted with Dr. Patricia Martin, Glasgow Caledonian 

University) to formalize the future opportunities.
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Wound Closure Visualization and Quantification

Fig. 7-2 A prototype GUI showing the cellular dynamics o f wound healing. Gray 

lines show the actual movement of the cells from its origin. Black lines showing start to 

end point distance travelled and Cyan lines showing the minimum distance the cell 

should travel towards the wound bed.

Recently the infrastructure was also explored in several other contexts such as search 

for new drugs for late G2 checkpoint control (with Prof D Kipling, Pathology, Cardiff 

University); and more recently has been applied to work carried out with primary mouse 

embryonic fibroblasts (MEF) (Prof. Alan Clarke, Biosciences, Cardiff University).

Aside from these rolled out collaborative efforts, the most important testimony of the 

generic nature of the bioinformatics framework stemmed from the cytometric data 

convergence as discussed in chapter 6. Such convergence of cross sectional flow 

cytometric data with timelapse data not only reinforced the generic nature of this data 

format and the infrastructure as a whole but also showed the potentiality of formulating a 

comprehensive knowledge base for cytome behaviour that will be crucial for metadata 

underpinning of systems biology and drug discovery.
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7.5 Cellular informatics -  systems approaches to biological 
research
The aspiration of bioinformatics is to provide the operational and intellectual framework 

for a systems understanding of biology towards predictive in silico models. Although 

systems biology is in its relative infancy (Kitano 2002), the potential benefits are 

enormous in both scientific and practical terms. Systems biology invokes an 

interdisciplinary research community to develop detailed mathematical models to 

simulate cell regulation, pathways and interaction networks for molecules to provide 

systems level insights (Gibbs 2000; Noble 2002b; Sander 2000). Such models may help 

to identify feedback mechanisms that offset the effects of drugs and predict systemic 

side effects (Kitano 2002). Addressing such need, modelling “environments” are 

spawning that contain suites of tools necessary for model building, simulations, data 

fitting, and data management (Sible and Tyson 2007). Examples of such environments 

includes: Gepasi (Mendes 1993; Mendes and Kell 1997), Virtual cell (Moraru et al.

2002), JigCell (Allen et al. 2001) etc. In each of these environments there are tools to 

translate models into the Systems Biology Markup Language (SBML), a grammar that is 

becoming widely adopted by the biochemical network modelling community to exchange 

models (Sauro et al. 2003).

These endeavours indicate the ambitious transition occurring in biology from the 

molecular level to the systems level and as outlined in the introductory chapter, the 

complexity of dynamic cellular behaviour has remained at the centre of this transition 

process. At one end of the overall scale the purpose is to connect the nature and 

probability of a cellular response with the molecular networks that control such 

responses. At the other end, where the construction of mathematical models link multi­

scalar analysis, enabling the undertaking of rational predictions. Models serve many 

purposes leading to the understanding of systems behaviour and prediction of complex 

responses to perturbation. However prediction poses a significant challenge since the 

molecular profiling of cell populations rapidly looses resolving power and value once a 

perturbing influence affects population dynamics (Lahdesmaki et al. 2005). The solution 

is to understand through modelling how molecular interactions influence cellular 

dynamics to reveal the confounding aspects of temporal responses and heterogeneity. 

Conversely, the disassembly and drill-down achieved through modelling can be used to 

identify informative cells so that molecular and functional studies can be applied to
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defined arms of a complex response or targets for new drugs. Once a model has been 

developed to an appropriate level of complexity, it can be run repeatedly and function as 

a high-throughput hypothesis platform (Endy and Brent 2001; Tomita 2001).

Considering the mammalian cell cycle engine as the primary descriptor for cellular 

dynamics; multi-level cell cycle modelling is required and for a mathematical model of 

the cell cycle to hold credibility with the biology community, it should be of sufficient 

complexity to incorporate a minimum number of processes known to be involved in cell- 

cycle regulation, including growth and division, growth restriction, survival, programmed 

cell death, DNA checkpoint control and cellular damage response mechanisms (Clyde et 

al. 2006). Although a great deal of knowledge of the biochemistry and the physical 

processes of the proteins that regulate the cell cycle was fairly recent (P'erez- 

Vel'azquez et al. 2008), mathematical models of the cell cycle can be traced back to as 

early as the 1970s (Hastings et al. 1977; Tyson 1974/75; Tyson and Sachsenmaier 

1978). While considerable progress has been made in modelling methodology, and the 

discoveries emanating from the field of experimental biology are nothing short of 

remarkable, it is nevertheless the fact that, as things stand at present, there are very few 

quantitative models available, and none yet reached a level of accuracy and 

completeness required to engage effectively with translational research relevant to 

diseases of the cell cycle.

Multiple reasons contribute to this status of which the fundamental reason has been the 

poor understanding even from a qualitative perspective over the molecular drivers and 

their role to the process in a dynamic context. Quantitative and well annotated 

experimental data are required that identifies the molecular drivers responsible for the 

process, their heterogeneous distribution within a cell population and complex interaction 

in a dynamic context (Nelson et al. 2002b; Nelson et al. 2002c; Stirland et al. 2003). The 

development of methods for acquiring this quantitative knowledge is one of the greatest 

challenges for biology in the twenty-first century (Brent 2000). Even with the fulfilment of 

these ambitious requirements still the knowledge about cell signalling, feedback 

mechanisms, environmental effects and other parameters that define the cytome 

behaviour will be essential to formulate representative models for cell cycle.
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What is currently lacking, however, is a unified approach to the problem and an 

organizational overlay that could ensure that relevant research is directed efficiently into 

a structured format suitable for multi-scalar modelling (Clyde et al. 2006). The 

bioinformatics infrastructure introduced through this research with its data format, 

encoding tools, databases, mining and visualization tools all provide a step change 

towards achieving this goal. The infrastructure was able to provide a highly sought 

aspiration of a multi-dimensional data format that can incorporate higher temporal 

information as well as cross-sectional data and furthermore allowed for the simultaneous 

quantitative comparison of protein expression and translocation. Recent publications of 

mathematical models using data generated from this infrastructure has been a testimony 

of such a longterm goal, where the first model (P'erez-Vel'azquez et al. 2008) 

represented an extended version of the transition state cell cycle model by Tyson and 

Novak (Tyson and Novak 2001) and has been linked with a model accounting for the 

inhibition effect of p21 on cyclin B1 (Pomerening et al. 2005; Pomerening et al. 2003), 

the second model (Chappell et al. 2008) included a novel coupling of both the PK-PD 

responses in context of an anti-cancer agent. This has provided new interlinked 

predictive models and goes along way to provide system level insights into the 

interactive mechanisms of drug targeting with the cell cycle (Systems Biology Report 
2007).

As the pharmaceutical industry battles the escalating costs and time-frames to identify 

new lead agents; there is an urgent need for better pre-clinical decision making stages to 

understand targets, lead selection, and late-stage attribution. Until recently, the search 

for drug targets has focused on relatively small parts of the regulatory network under the 

assumption that key events can be controlled by targeting single pathways. Since it is 

now becoming clear that these early assumptions may not hold and successful 

treatments are likely to employ drugs that simultaneously target a number of different 

sites in the regulatory network, it is timely to redress this imbalance with mathematical 

models that represents complex biological regulatory system. Such models may help to 

identify feedback mechanisms that offset the effects of drugs and predict action as well 
non-desirable side effects.
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7.6 Cellular informatics - screening approaches for drug 
discovery
High-content screening (HCS) is a drug discovery approach that combines modern cell 

biology with automated high-resolution microscopy and robotic handling (Harrison 2008). 

HCS describes the use of spatially or temporally resolved methods to discover more in 

an individual experiment than one single experimental value. HCS allows functional 

analysis of targets and pathway modulation in cells by drug compounds in a high content 

manner. HCS has emerged as a promising solution to improve the quality of decision 

making in drug discovery and development (Liptrot 2001). However, tools required for 

processing and analyzing HCS data are rather immature but allow read outs to assess 

parameters such as cytotoxicity, apoptosis, and effects on cell cycle (Crouch and Slater 

2001; Liptrot 2001; Slater 2001). As a whole it provides an important link between 

molecular screening and functional cellular assays. A number of commercial software 

like MetaMorph from Molecular Devices Corporation (Sunnyvale, California) and open 

source software like CellProfiler (Carpenter et al. 2006) been developed and used for 

quantifying and analyzing cellular behaviour in HCS fashion.

7.6.1 Integrating static-dynamic and cross platform data
High-through-put (HTS) and indeed HCS, incorporating elegant reporter assays, have 

been effectively used to profile drugs based on simple stimulus-response readouts, 

however the design of current high-content instrumentation, discards biological 

heterogeneity and most assays never contend with dynamic processes (White and 

Errington 2005). In the absence of detailed kinetic information, simple snap-shot or static 

high-content-assays that measure drug effects provide an over simplified and often 

skewed view of the nature of resistant and sensitive cells. ProgeniTRAK and FluorTRAK 

address this need and output the lineage map that encapsulate kinetic data derived from 

image sources and consequently permit a coherent analysis of drug-induced 

perturbations in complex heterogeneous populations. Integrating these kinetics 

measurements with end-point results will generate a comprehensive view on drug effect 

on cellular behaviour. From a data volume perspective, arguably the kinetic 

measurements even with the automated tracking algorithms will never match the static 

HCS assays, but integration will establish the “missing link” between two successive 

static points and thus will enable us to understand the dynamics processes that lead 

from one static point to another.
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Again the rich ‘-omic’ data generated from different sources (e.g. Entrez, EBI etc.) are 

snap shot of the dynamic process and setting these data in cellular context requires 

lineage map which provides the opportunity to integrate genomic and or proteomic data 

and subsequently facilitates downward understanding -  from cell to molecule. For 

example, integrating cyclin B1 expression profile encoded through FluorTRAK with cyclin 

B1 gene expression profile measured through microarray technology, would provide a 

comprehensive knowledge about cyclin B1 in a dynamic context thus augmenting our 

present understanding about the role of cyclin B1 in cell cycle. Thus the lineage map 

provides the perspective to integrate information from downwards (‘-omic’ information) 

and upwards to the organism (see figure 1-1). Sydney Brenner (Nobel laureate, 2002) in 

his Nobel Laureate speech stressed the importance of integration of data at this cellular 

level -  “meso scale” for abstraction of knowledge about the dynamic process of life; and 

Mark Ellisman (University of Washington) in his recent (April 2008) speech on 7th annual 

symposium on Systems Biology and Engineering; scaled this meso scale within 1 nM to 

100 pM range within which different cellular components (synaptic cleft to whole cell) 

can be visualized and quantified through imaging technology.

7.7 Future perspectives - scaling up of the infrastructure to a 
community level resource

HCS and HTS are widely used in both a systems biology and drug discovery context as 

these technologies describe cell phenotypes which enable broad, quantitative and 

machine readable measures of the responses of cell population to perturbation (Eisen et 

al. 1998; Gavin et al. 2002; Ho et al. 2002; Uetz et al. 2000) analysis of the temporal and 

spatial changes in cells and cell constituents in cellular arrays (Palmer and Freeman 

2005) has the potential to create enormous systems biology knowledge bases. Moreover 

HCS is also been employed along with a range of early drug discovery platforms, 

including lead optimization where new knowledge is being used to facilitate the decision 

-  making process (Giuliano et al. 2005). It is clear that for cell-based analysis to keep 

pace with other HTS oriented applications such as microarray technologies and 

proteomics, significant inroads into toolbox development must take place. Through this 

infrastructure proving ground we have developed a strategy for overcoming the current 

lack of informatics frameworks in microscopy and image analysis, we focused not on the 

hardware solutions but on the embedded and linked informatics and minimal standards
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required for encoding cellular data into a lineage map format that encapsulates the multi­

scalar kinetic information of a living cell. This ‘proof-of-concept’ infrastructure and 

associated validation studies have indicated the effectiveness of a lineage map data 

format approach and for the first time have provided the scope to interrogate the 

complex interplay of cellular dynamics in different biological processes (eg cell cycle, 

stem cell biology and ageing). In addition these encoded lineages have facilitated a 

metadata level understanding, bridging the gap between biologists and mathematicians.

This current work has allowed us to identify the critical steps and bottlenecks required to 

scale-up such a prototype infrastructure to contemplate other HCS applications in this 

context. The manual image analysis approach adopted by ProgeniTRAK/FluorTRAK is 

indeed time consuming and tedious work although it allows for precise data encoding, 

particularly resolving the outcome of mitosis such as identifying abnormal outcomes 

(cells undergoing furrow regression and entering polyploidy). Therefore semi- to full- 

automation of cell tracking and lineage construction would enhance the through-put for 

data processing; this remains the current bottleneck for microscopy based cell assays. 

Phase-contrast transmission microscopy offers a probeless and non-perturbing contrast 

mode, providing low resolution but highly informative outputs on cell behaviour (e.g. cell 

shape and cell position). The changes in these two basic features facilitate assays 

describing critical global morphological cell responses such as cell division, cell death 

and cell motility (White and Errington 2005). The automation of cell tracking raises many 

challenges - the combination of low signal-to-noise ratio of phase contrast microscopy 

images, high and varying densities of the cell cultures, topological complexities of cell 

shapes, and wide range of cell behaviour poses many challenges to existing tracking 

techniques. With the recent advancement in tracking algorithms that addresses the 

principal challenges of single particle tracking (Li et al. 2008) it is evident that 

transforming of such prototype infrastructure to the HTS domain is indeed a reality.

However to achieve such ambitions, these algorithms must possess the ability identify 

each of the node information making up the lineage, the minimal information therefore is 

the ability to the cell division event and the associated outcomes, in addition a second 

event called cell death must also be identified. Therefore a self checking algorithm will 

also need to be developed to ensure the cells are tracked correctly, this will involve 

cross checking images tracked forward and backwards in time e.g. in reverse time
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sequence where the two daughter cells ‘merge’ to form the parent cell. In the initial 

stages further information such as frame-to-frame cell morphology could be considered 

as second level information; therefore removing the requirement of a cell edge 

segmentation algorithm thus alleviating the demands of tracking algorithms. This 

immediate raises the issue of the minimal standard associated with the lineage map.

Resolving tracking through-put will only put the HTS leverage to the infrastructure, and 

to scale it to a community based infrastructure, a standardised data format remains the 

critical focus, as sharing data requires adherence to standards (data format and 

semantics) and protocols (for access and exchange). Thus a requirement for a minimal 

standard needs to be modelled and validated, similar to the minimal information standards 

that have been used for microarray data (Brazma et al. 2001) and recently for flow cytometry 

data (Lee et al. 2008), the latter now reaching out to an international community under the 

auspices of ISAC (International Society for Analytical Cytometry). A proposed lineage 
minimal standard needs to interface with other minimal information standards such as 

MIFIowCyt (Minimal information about Flow Cytometry Experiments) (Lee et al. 2008); 
MIACA (Minimal Information About Cellular Assays); MIBBI (Minimum reporting guidelines 

for biological and biomedical investigations) (Taylor et al. 2008) and OME (Open Microscopy 

Environment) (Swedlow et al. 2003). Therefore a suggested minimal standard called - a 

Minimal Information about Cell Lineages And Dynamics (MICLAD) would build and 

interlink with the existing standards in cell-based analysis. MICLAD will be a hybrid data 

model that encompasses experimental, morphological and behavioural attributes of a cell in 

a lineage format and thus enabling organizing, analyzing, interpreting and sharing cellular 
dynamics data within such infrastructure. It is envisaged that such data format will utilize 

XML which facilitate both the data exchange and future extension of the data format. Such 

approach will facilitate data exchange not only within the users of such infrastructure but also 

with OME/CellProfiler/MIFIowCyt users, moreover will pave the foundation of interacting with 

mathematical modellers who utilize current XML based cell modelling and simulation 

approaches like Systems Biology Workbench (Sauro et al. 2003), CellML (Cuellar et al.

2003). Thus in combination with the cell tracking algorithms a standardized data format 

will transform the prototype infrastructure presented in this thesis to a level which not 

only will resonate with other HTS/HCS technologies, but also will provide the framework 

for a cohesive data sharing across the life sciences, engineering and mathematics 

disciplines alike.
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7.8 Concluding remarks
Transforming images to knowledge, the central dogma introduced and demonstrated 

through this bioinformatics infrastructure, has provided a new level of understanding 

about cellular processes. More importantly this has invoked another level of data 

perception as well as providing tools for complex hypothesis testing. At the basic level 

the bioinformatics framework developed in this thesis has provided the integrative 

environment encompassing the Modus Operandi of linking the biologist with the 

mathematicians. This thesis however goes further and addresses the concept that the 

cell lineage map represents the minimal unit for defining a dynamic cell system, reaching 

down to molecular networks while at the same time sustaining information that defines 

cellular relationships and interactions necessary for maintaining a multi-cellular 

community.
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