
Architecture for Grid-Enabled

Instrumentation in Extreme

Environments

Philip Taylor

Dissertation submitted for the Degree of Doctor of Philosophy

School of Earth. Ocean and Planetary Sciences,

Cardiff University, UK

March 2008

C a r d if f
UNIVERSITY

P R IF Y SG O L

CaERDY|§>
EPSRC

Engineering and Physical Sciences
Research Council

UMI Number: U584320

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584320
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract
Technological progress in recent decades has led to sensor networks and robotic

explorers becoming principal tools for investigation of remote or “hostile” environments

where it is difficult, if not impossible for humans to intervene. These situations include

deep ocean and space environments where the devices can be subject to extreme

pressures, temperatures and radiation levels. It is a costly enterprise to deploy an

instrument in such settings and therefore reliable operation and ease of use are requisite

features to build into the basic fabric of the machine.

This thesis describes the design and implementation of a modular machine system based

on a peer-to-peer, decentralised network topology where the power supply and

electronic hardware resources are distributed homogeneously throughout a network of

nodes. Embedded within each node is a minimal, low-power single board computer on

which a real-time operating system and MicroCANopen protocol stack are operating to

realise a standard interface to the network. The network is based on a grid paradigm

where nodes act as resource producers and consumers, sharing information so that the

machine system as a whole can perform tasks. The resulting architecture supports

“plug-and-play” flexibility, to allow users or system developers to reconfigure or

expand its capabilities by adding/removing nodes at a later time.

An immediate application of this instrument is in-situ sampling of microbes in extreme

aqueous habitats. The microbial sampler is targeted at providing improved sampling

capabilities when performing physical, chemical and biological investigations in deep-

ocean hydrothermal vent environments. At these depths the instrument is subject to

immense pressures of many thousand pounds per square inch, where superheated,

corrosive, mineral-loaded vent fluids mix with near-freezing seawater. In the longer

term, it is anticipated that this flexible, open interface architecture on which the

microbial sampler instrument is based will be applicable more generally to other

sectors, including commercial and scientific markets.

Architecture for Grid-Enabled Instrumentation in Extreme Environments ii

In Memory of my sister

Emily Taylor

June 1973 - August 1975

Architecture for Grid-Enabled Instrumentation in Extreme Environments

Acknowledgements
The university has provided an inspiring environment in which to meet people from

other research disciplines, form new friendships and share ideas, all of which have been

of great benefit in catalysing the development of this project. I would like to thank

fellow researchers in Cardiff and Oregon State Universities for their help, suggestions

and support over the course of this project. I am especially indebted to Gwen Pettigrew

for assistance in assembling much of the prototype electronic hardware and fabricating

mechanical parts for the motor positioning systems; Oluseyi Odiende for developing

firmware code to drive low-level hardware devices and suggesting CAN bus as a

network solution for this grid-based instrument; Siarhei Smolau for sharing his

knowledge and insights which led numerous, useful contributions to both hardware and

firmware development; Daniel Wisdom of Oregon State University for his meticulous

work cleaning and assembling the valves; John Daniels at Megatech of Oregon for

doing an excellent final assembly of the printed circuit boards; Ian Bell o f Maxon for

his advice in specifying suitable motors for valve and pump assemblies and saving a

substantial amount of money in the project budget; Andew Kalman of Pumpkin Inc for

developing the fantastic Salvo RTOS and his ongoing technical support and advice

which went beyond the call o f duty.

I would like to express my gratitude to my industrial supervisor, Adam Schultz of

Oregon State University for securing funding and some splendid opportunities to test

and validate the instrument subsystems at sea. Also, to my academic supervisor,

Xiangwei Wang at Manufacturing Engineering Centre, School of Engineering, Cardiff

University for his friendship and assistance, especially during the period over which the

bulk of this dissertation was written up.

Nor must I omit to express special thanks to my lecturers at the School of Electrical

Engineering, Colchester Institute, UK especially Pat Thaiss, Roger Wheeler and

Richard Matthews for instilling their knowledge, wisdom and pragmatism in many

facets of electronics.

Finally, I like to thank my mum for encouraging my early interest in science and my

wife; Sam for being such a fantastic mum for Molly and Emily, holding the household

Architecture for Grid-Enabled Instrumentation in Extreme Environments iv

together and a host of practical and essential tasks of life, too numerous to mention and

putting up with my moody and anti-social behaviour during the write-up of this

dissertation.

This PhD Studentship is sponsored by Engineering & Physical Sciences Research

Council (EPSRC) and Earth-Ocean Systems Ltd. Research. Funding for the

development of this project has been provided by Natural Environment Research

Council (NERC) Marine and Freshwater Microbial Biodiversity (M&FMB), National

Aeronautics and Space Administration (NASA) Ames Research Center and European

Commission.

Phil Taylor

March, 2008

Architecture for Grid-Enabled instrumentation in Extreme Environments v

Contents

A b s t r a c t .. ii

A c k n o w l e d g e m e n t s ... iii

C h a p te r 1 In tro d u c tio n .. l

1.1 Reaching the Unreachable.. 1

1.2 Scope of Project... 2

1.3 Thesis Overview... 4

C h a p te r 2 B a c k g r o u n d ..7

2.1 Why Study Microbes?.. 7

2.1.1 Scientific Importance..7

2.1.2 Discovery and Early Research.. 9

2.1.3 Origins, Evolution and Adaptation... 10

2.2 Technological Developments in Microbial Sampling...............................12

2.2.1 Early Sampling Apparatus... 12

2.2.2 UnderPressure.. 13

2.2.3 Beneath I c e ... 13

2.3 A New Instrument for Sampling Microbes .. 14

2.3.1 Engineering O verview .. 14

2.3.2 A pplication ... 15

2.3.3 Design Advantages...16

2.3.3.1 Importance of Standardisation...16

2.3.3.2 Case for a Decentralised Architecture...................................... 17

2.3.3.3 Benefits of Modular D e s ig n .. 18

C h a p te r 3 C om m unication S y stem .. 22

3.1 Selecting an Appropriate Data Communication B u s 22

3.1.1 Bus Specification requirements..22

3.1.2 Brief Overview of B u s e s .. 24

3.1.3 RS-485 25

Architecture for Grid-Enabled Instrumentation in Extreme Environments vi

3.1.3.1 RS-485 Physical L a y e r ... 25

3.1.3.2 RS-485 P ro to co l... 25

3.1.4 Universal Serial Bus (U S B)...26

3.1.4.1 USB Physical Layer ...26

3.1.4.2 USB Protocol.. 27

3.1.4.3 USB Error Detection and Handling..28

3.1.5 Ethernet.. 29

3.1.5.1 Ethernet Physical Layer... 29

3.1.5.2 Ethernet Protocol... 29

3.1.5.3 Ethernet Error Detection and Handling.................................. 30

3.1.6 Controller Area Network (C A N) ...31

3.1.6.1 CAN Physical L a y e r ... 32

3.1.6.2 CAN Protocol... 33

3.1.6.3 Deterministic Latency... 36

3.1.6.4 Fault Tolerance..37

3.1.6.5 CAN Error Detection and H andling..................................... 37

3.1.7 Conclusion... 38

3.2 Evaluation of Higher Layer Protocols (HLP) for C A N39

3.2.1 HLP Requirements O utline... 40

3.2.2 OSI Model Limitations.. 41

3.2.3 CAL (CAN Application L ayer).. 42

3.2.4 C A N open ...43

3.2.5 SDS (Smart Distributed S y s te m)...44

3.2.6 CANKingdom..45

3.2.7 CAN A erospace.. 46

3.2.8 CAN-SU (CAN for Spaceflight U s a g e) .. 47

3.2.9 NMEA2000 ... 48

3.2.10 Conclusion...48

C h a p te r 4 CAN and C A N open ...50

4.1 CAN Hardware Configuration... 50

4.1.1 Bus Length ... 50

4.1.2 Oscillator Tolerance..51

Architecture for Grid-Enabled Instrumentation in Extreme Environments vii

4.1.3 Bit Timing...52

4.1.4 Programming Time Segments..53

4.1.4.1 Synchronisation Segm ent...53

4.1.4.2 Propagation Segm ent... 53

4.1.4.3 Phase Buffer Segment... 54

4.1.5 Sample Point..56

4.1.6 Synchronisation...56

4.1.6.1 Hard Synchronisation... 56

4.1.6.2 Resynchronisation.. 57

4.1.7 Transmit and Receive Buffers..58

4.1.8 Error Detection M echanism s.. 59

4.2 CANopen Implementation.. 61

4.2.1 The Object Dictionary Concept...62

4.2.2 Communication Entries...66

4.2.2.1 Device Type Entry [0x1000] 67

4.2.2.2 Error Register Entry [0x1001]..67

4.2.2.3 Heartbeat Consumer Time Entry [0x1016, Oxii]67

4.2.2.4 Heartbeat Producer Time Entry [0x1017]...............................68

4.2.2.5 Identity Entries [0x1018, Oxii]..68

4.2.3 Manufacturer Specific Entries ...69

4.2.3.1 RTC Time & Alarm Entries [0x2000, 0x08; 0x2001, 0x08] 71

4.2.3.2 ADC Entries [0x2002] 71

4.2.3.3 Actuator Control Parameters Entry [0x2003]........................73

4.2.3.4 Hardware Error Entry [0x2004].. 73

4.2.3.5 Set Compensator Pressure Entry [0x2005]........................... 74

4.2.3.6 Bottle Pressure [0x2006] 74

4.2.3.7 Set Pump Speed Entry [0x2007].. 74

4.2.3.8 Valve Position Entry [0x2008] 75

4.2.3.9 Delta T Entry [0x2009].. 75

4.2.3.10 Battery Voltage Entry [0x200A].. 75

4.2.3.11 RS-232 Baudrate Entry [0 x200B]...75

4.2.3.12 Count POR (power-on reset) [0x200C].................................. 75

4.2.3.13 Data Representation Entry [0x200D]..................................... 75

Architecture for Grid-Enabled Instrumentation in Extreme Environments viii

4.2.3.14 Measurement Entries [0x200E, 0x200F, 0x2010]................. 76

4.2.3.15 Calibration Entries [0x2010, 0x07]... 76

4.2.4 Service Data Objects (S D O) ..78

4.2.5 Process Data Objects (P D O) ..81

4.2.5.1 PDO Linking..82

4.2.5.2 Assigning CAN Message Identifiers......................................85

4.2.5.3 PDO Communication Parameters.. 88

4.2.5.4 PDO Mapping Parameters...90

4.2.5.5 Message Contents.. 91

4.2.6 Network Management (NMT) .. 92

4.2.7 H eartbeat...94

Chapter 5 Firmware Architecture ... 98

5.1 Design Considerations... 98

5.1.1 More on Partitioning... 99

5.2 Node Infrastructure...100

5.2.1 Node M o d e l.. 100

5.2.2 Node S y stem s.. 101

5.2.2.1 Real Time Operating System (R T O S)................................ 101

5.2.2.2 Communication System (C S) .. 102

5.2.2.3 Data Acquisition System (D A Q S)....................................... 102

5.2.2.4 Motor Positioning System (MPS).. 102

5.2.2.5 File System (F S) ...102

5.2.2.6 Power Management System (PMS)...................................103

5.2.2.7 Human-Machine Interface (H M I)104

5.2.2.8 Hardware Abstraction Layer (H A L)....................................104

5.3 Implementing MicroCANopen... 105

5.3.1 Hardware Driver Interface ... 105

5.3.1.1 CanGetStatus Driver Function..105

5.3.1.2 Canlnit Driver Function.. 105

5.3.1.3 CanSetFilters Driver Function.. 106

5.3.1.4 CanPushMessage Driver Function....................................... 106

5.3.1.5 CanPullMessage Driver Function.. 106

Architecture for Grid-Enabled Instrumentation in Extreme Environments ix

5.3.1.6 CanGetTime Driver Function..106

5.3.1.7 CanlsTimeExpired Driver F unction 107

5.3.2 Application Level Interface.. 107

5.3.2.1 MCO Init API Function .. 107

5.3.2.2 MCO Init RPDO API Function..108

5.3.2.3 MCO Init TPDO API Function..108

5.3.2.4 MCO ProcessStack API Function...................................... 109

5.3.2.5 MCO ResetApplication Call-Back Function..................... 110

5.3.2.6 MCO ResetCommunication Call-Back Function 110

5.3.2.7 MCOFatalError Call-Back FunctionI l l

5.3.2.8 Configuration of the Process I m a g e I l l

5.4 Implementing Salvo RTO S... 113

5.4.1 The Multitasking RTOS A p proach ... 114

5.4.2 OSTimerO.. 115

5.4.3 M ain()... 115

5.4.4 T a s k s ... 116

5.4.4.1 TaskStrobe()... 116

5.4.4.2 TaskFluidSample()...117

5.4.4.3 TaskMeasure()..119

5.4.4.4 TaskStream()... 121

5.4.4.5 TaskRS2320 ... 123

5.4.5 OSIdleHookO... 124

5.5 Putting it all T ogether .. 124

C h a p te r 6 Electronic Hardware Platform ..126

6.1 Single Board Computer (S B C).. 126

6.2 Central Processing Unit (C P U).. 127

6.3 Serial Peripheral Bus (SPI) Bus ... 128

6.4 Real-Time Clock (R T C)...130

6.5 Analogue-to-Digital Converter (A D C) ...130

6.6 Transducer ..132

6.7 Controller Area Network (C A N)...133

6.8 Power S u p p ly .. 135

Architecture for Grid-Enabled Instrumentation in Extreme Environments x

6.9 Motor Controller .. 138

6.10 E n cod ers..139

6.11 Ferro-electric Random Access Memory (F R A M)................................ 140

6.12 Secure Digital/Multi-Media Card (SD/MMC) Mass Data Storage . 141

6.13 Liquid Crystal Display (L C D) ... 142

6.14 Watch Dog Timer (W D T).. 142

6.15 Input/Output (I O) ..143

6.16 Printed Circuit Board (P C B).. 144

6.17 In Circuit Serial Programming (ICSP)...145

6.18 Sum m ary..145

Chapter 7 Testing and R e su lts .. 146

7.1 Validation of Node Operation...146

7.1.1 Valve Control Consumer N o d e .. 146

7.1.2 Temperature Sensor Producer N o d e ... 148

7.1.2.1 Temperature Calibration...148

7.1.2.2 Flow-rate Calibration.. 149

7.1.2.3 Accuracy and Precision Issu es.. 151

7.1.2.4 Sea-Trial...155

7.1.3 Data Storage Consumer N o d e ... 156

7.1.4 Performance and Reliability...159

7.2 Node Communication on the N e tw o r k ..160

7.2.1 Bus Loading... 161

7.2.2 Message Integrity ...162

7.2.3 “Plug-and-play” Capability ..163

7.3 Sum m ary..164

Chapter 8 Conclusion ... 166

8.1 Current State ...166

8.2 Future W ork.. 168

8.2.1 Short-term ... 168

8.2.1.1 Communication System (C S) .. 168

8.2.1.2 Data Acquisition System (D A Q S)....................................... 170

Architecture for Grid-Enabled Instrumentation in Extreme Environments xi

8.2.1.3 Motor Positioning System (MPS)...170

8.2.1.4 File System (F S) ...171

8.2.1.5 Power Management System (PMS).......................................172

8.2.1.6 Human-Machine Interface (H M I)173

8.2.1.7 Hardware Abstraction Layer (H A L)....................................174

8.2.2 Long Term ..174

8.2.2.1 Electronic Data Sheet (EDS) ..174

8.2.2.2 CAN Bootloader.. 175

8.3 Benefits for External P a rties ... 176

8.4 A final Word ..177

A p p e n d ix A R e fe r e n c e s .. 179

A p p e n d ix B D ata S h e e t s ...190

A p p e n d ix C S B C S ch em a tic D iagram ... 192

A p p e n d ix D S B C Bill Of M aterials (BOM) .. 193

A p p e n d ix E SB C P ow er B u d g e t ...195

A p p e n d ix F C A N open V endor ID R e g istra tio n 197

A p p e n d ix G M icroC A N open F lo w c a r t s .. 198

G.l MicroCANopen Protocol Stack.. 198

G.2 Handle RPDO message..199

G.3 Handle TPDO transmit ..200

G.4 Handle RPDO Transmit Inhibit Time Processing201

A p p e n d ix H CAN M e ss a g e D e f in it io n s .. 202

H.l Node #1 (Valve A) .. 202

H.2 Node #3 (Valve B) .. 203

H.3 Node #5 (Pump) ... 204

Architecture for Grid-Enabled Instrumentation in Extreme Environments xii

H.4 Node #6 (Temperature Sensor)...206

H.5 Node #7 (Host PC) .. 206

A p p e n d ix I S B C C om m and Line O p e r a t io n .. 208

A p p e n d ix J T oolchain Directory S t r u c t u r e ... 211

A p p e n d ix K M akefile ...212

K.l Generic Makefile.. 212

K.2 Project-Specific build file ...214

A p p e n d ix L PIC Include F iles ... 215

A p p e n d ix M PIC Library R ou tin es by C a t e g o r y 217

A p p e n d ix N PIC L ib r a r y ..219

A p p e n d ix O S o u rc e C o d e L i s t i n g ...302

O.l Driver Burr-Brown ADS 1243 SPI A D C ...305

0 .2 Driver for Microchip MCP2515 SPI CAN controller 315

Q.3 Driver for RAMTRON 64K SPI FRAM317

0 .4 Interrupt Service Routine... 318

0 .5 LED output driver routines..318

0 .6 Driver for SanDisk SD / M M C ...319

0 .7 Driver for SPI motor controller...326

0 .8 SPI protocol & opcodes for motor controller327

0 .9 RS-232 serial port driver...329

0.10 Functions for number conversion and storage allocation................. 331

0.11 Pinout for P IC .. 333

0.12 Driver for Maxim MAX6902 SPI real time c lo c k335

0.13 Generic Serial Peripheral Interface (SPI) d river 338

0.14 Watch Dog Timer c o n tr o l..341

0.15 Small footprint FAT16 ... 342

0.16 Terse Command-Line Interface...352

Architecture for Grid-Enabled Instrumentation in Extreme Environments xiii

Figures

Figure 2.1 Phylogenetic tree showing the speculated common ancestry

o f all three domains o f life. Bacteria are coloured blue,

eukaryotes red, and archaea green (Science 2006) 8

Figure 2.2 Robust, fault-tolerant fluid sampler system that can gather

data in ocean-floor extreme environm ents...14

Figure 2.3 Titanium fluid sampling bottle manufactured at MEC,

Cardiff University, U K ... 15

Figure 2.4 Centralised topo logy ... 17

Figure 2.5 Decentralised topology..18

Figure 2.6 Node electronics and pressure case housing manufactured at

Cardiff University, U K ..19

Figure 2.7 Standalone data-logger in s tru m e n t..20

Figure 2.8 Simple two-node temperature profiler.. 20

Figure 2.9 Prototype fluid sampling in s tru m e n t..20

Figure 2.10 NASA fluid sampling instrum ent... 20

Figure 2.11 NERC fluid sampler with integrated third party s e n s o r s 21

Figure 3.1 Bus categories..24

Figure 4.1 Temperature stability characteristics of CAN controller

hardware surface mount resonator (reference temperature = 25°C) . . 52

Figure 4.2 Bit-time partition ing ...53

Figure 4.3 CAN Buffers and Protocol E n g in e ..59

Figure 4.4 CAN Controller Error state diagram ..60

Figure 4.5 Node m o d e l..62

Figure 4.6 Device Type entry format..67

Figure 4.7 Error Register entry fo rm at.. 67

Figure 4.8 Heartbeat Consumer Time entry fo rm a t.. 68

Figure 4.9 Vendor ID entry f o r m a t ..68

Figure 4.10 Revision Number entry fo rm a t ...69

Figure 4.11 Format o f entries containing ADC configuration param eters 71

Figure 4.12 Actuator control parameters entry f o rm a t ...73

Figure 4.13 Hardware error entry f o r m a t ...73

Architecture for Grid-Enabled Instrumentation in Extreme Environments xiv

Figure 4.14 Set pump speed entry... 74

Figure 4.15 Data representation entry f o r m a t ... 75

Figure 4.16 Format o f entries containing REAL32 data t y p e s 77

Figure 4.17 Generalised structure o f an SDO m essage...78

Figure 4.18 TSDO Configuration... 80

Figure 4.19 Conversion of numerical values greater than one b y t e 80

Figure 4.20 PDO communication m o d e l .. 82

Figure 4.21 Default PDO linking for a four node system (Master-Slave

model) ...82

Figure 4.22 Optimised, direct PDO linking for a four-node sy stem83

Figure 4.23 Default PDO linking for NASA seven-node system (Master-

Slave model) ..84

Figure 4.24 Optimised, direct PDO linking for NASA seven node system 85

Figure 4.25 Structure o f CANopen m essage... 86

Figure 4.26 COB-IDs assigned to PDOs in seven-node NASA system for

default linkage.. 87

Figure 4.27 COB-IDs assigned to PDOs in seven-node NASA system for

direct l in k a g e .. 88

Figure 4.28 COB-ID configuration p a ra m e te rs ..89

Figure 4.29 Structure of a 32-bit Mapping P a ra m e te r ...91

Figure 4.30 Message contents for R P D O I V A L V E A .. 92

Figure 4.31 Message contents for R P D 0 2 V A L V E A .. 92

Figure 4.32 Modified node network management (NMT) state m achine............... 93

Figure 4.33 Heartbeat producer times for three nodes in the system network. . . 95

Figure 4.34 Overlap between communication p artn ers .. 97

Figure 5.1 Generalised model of a n o d e .. 100

Figure 5.2 Node su b -sy stem s.. 101

Figure 5.3 Task s ta tes.. 114

Figure 6.1 Single Board Computer (S B C) ...126

Figure 6.2 SPI Master with independent slave d e v ic e s ...129

Figure 6.3 Schematic diagram of RTC and support circuitry......................................130

Figure 6.4 Schematic diagram showing DAQS h a rd w are ... 131

Figure 6.5 Prototype calorimetric flow sensor and schematic d iag ram 133

Architecture for Grid-Enabled Instrumentation in Extreme Environments xv

Figure 6.6 Schematic diagram showing CAN hardw are...133

Figure 6.7 CAN bus c o n n e c to r ...134

Figure 6.8 Pin-out o f CAN bus connectors.. 134

Figure 6.9 Rechargeable battery p a c k ..136

Figure 6.10 PMS schematic d ia g ra m ... 137

Figure 6.11 Maxon motor/gear box assembly and prototype controller

hardware undergoing test at Cardiff University, UK (2003)............... 138

Figure 6.12 Motor controller schematic diagram ... 139

Figure 6.13 Absolute position encoder and schematic d iag ram140

Figure 6.14 Schematic diagram showing FRAM used for non-volatile

d a ta s to ra g e ...141

Figure 6.15 Schematic diagram o f SD/MMC hardware .. 141

Figure 6.16 Schematic diagram of watchdog timer c ir c u i try 142

Figure 6.17 RS-232 interface schematic d ia g r a m ..143

Figure 6.18 Schematic diagram showing L E D s ... 144

Figure 6.19 SBC (mainboard), enoder and sensor PCB silkscreen.............................. 144

Figure 6.20 Ten of sixty assembled SBC circuit boards...145

Figure 7.1 Preparing the instrument for d e p lo y m e n t...147

Figure 7.2 Instrument MPS testing at sea. The “Elakha” heading away

from Hatfield Marine Science Centre (OSU) on the Pacific148

Figure 7.3 Temperature Calibration Characteristic Curve for PT100 RTD . . . 149

Figure 7.4 Flow Sensor Calibration C u rv e ...150

Figure 7.5 Thermal stress damage to sensor deployed at Mohns Ridge 155

Figure 7.6 Improved sensor element custom manufactured by

RdF Corporation, USA ... 156

Figure 7.7 The author with chief scientist, Pierre-Marie Sarradin

installing the node and sensor on ROV V ic to r ... 157

Figure 7.8 Sensor-head deployed on a mussel assemblage on Menez

Gwen (M A R) ..158

Figure 7.9 Menez Gwen Victor Dive 287 12th August 2006................................. 158

Figure 7.10 Four-node system under t e s t .. 160

Figure 7.11 Pin-out for CAN Serial C o n n e c to r ... 161

Figure 7.12 Bus Status W in d o w ...161

Architecture for Grid-Enabled Instrumentation in Extreme Environments xvi

Figure 7.13 Output W in d o w ..162

Figure 7.14 History List W indow ...163

Figure J .l Message contents for RPDO I VALVE A ...209

Figure J.2 Message contents for R P D 0 2 V A L V E A ...209

Figure J.3 Message contents for TPDO I VALVE A ...209

Figure J.4 Message contents for T P D 0 2 V A L V E A .. 209

Figure J. 5 Message contents for RPDO I V A L V E_B .. 210

Figure J. 6 Message contents for RPD0 2 VALVE B .. 210

Figure J. 7 Message contents for TPDO I VALVE B .. 211

Figure J.8 Message contents for TPDO_2_VALVE_B.. 211

Figure J.9 Message contents for RPDO I P U M P ... 211

Figure J.10 Message contents for R PD O _2_PU M P... 211

Figure J. 11 Message contents for RPD0 3 P U M P ... 211

Figure J. 12 Message contents for TPDO l P U M P ..212

Figure J .l3 Message contents for T PD O _2_PU M P..212

Figure J .l4 Message contents for TPDO I S E N SO R .. 213

Figure J . l5 Message contents for RPDO l P C ...213

Figure J . l6 Message contents for R PD O _2_PC ...213

Figure J.17 Message contents for TPDO I P C ...214

Figure J. 18 Message contents for TPD0 2 P C ...214

Tables
Table 3.1 Ethernet fram e...29

Table 3.2 CAN f r a m e .. 35

Table 4.1 Data rate verses bus le n g th ... 51

Table 4.2 Driver switching characteristics..54

Table 4.3 CANopen Object Dictionary o v e rv ie w ... 64

Table 4.4 Object Dictionary entries defining data t y p e s .. 65

Table 4.5 Communication Entry o v e rv ie w ..66

Table 4.6 Communication Entries implementation ..66

Table 4.7 Product Codes for the nodes that constitute the “Isosamplef ’ system . 69

Table 4.8 Manufacturer Specific Entries implementation...70

Table 4.9 Detailed register configurations for the A D C ...72

Architecture for Grid-Enabled Instrumentation in Extreme Environments xvii

Table 4.10 Detailed actuator control register configurations.......................................73

Table 4.11 Detailed pump speed control register configurations................................74

Table 4.12 Valve position entry c o d e s ... 75

Table 4.13 Detailed pump speed control register configurations................................76

Table 4.14 C O B -ID s .. 86

Table 4.15 RPDO and TPDO Communication Parameters...89

Table 4.16 Format o f a PDO Mapping R e c o rd .. 91

Table 4.17 RPDO mappings for Node #1 (Valve A) ... 92

Table 4.18 Heartbeat periods for seven-node system developed for NASA . . . 95

Table J .l RPDO mappings for Node #1 (Valve A) .. 209

Table J.2 TPDO mappings for Node #1 (Valve A) .. 210

Table J.3 RPDO mappings for Node #3 (Valve B) .. 210

Table J.4 TPDO mappings for Node #3 (Valve B) .. 211

Table J.5 RPDO mappings for Node #5 (P um p)...212

Table J.6 TPDO mappings for Node #5 (P u m p)...212

Table J. 7 TPDO mappings for Node #6 (S e n s o r) ...213

Table J.8 RPDO mappings for Node #7 (P C) .. 213

Table J.9 TPDO mappings for Node #7 (P C) .. 214

Listings

Listing 5.1 initpdos.h contains the RPDO and TPDO in itialisations...................... 109

Listing 5.2 MCO_ResetApplication fu n c tio n ... 110

Listing 5.3 MCO_ResetCommunication fu n c tio n .. I l l

Listing 5.4 MCO_FatalError f u n c t io n .. I l l

Listing 5.5 Node #1 (Valve A) Mapping Entries for RPDOs and TPDOs 112

Listing 5.6 Process image offset definitions... 113

Listing 5.7 Calling OSTimer() at the System Tick R a t e 115

Listing 5.8 M ain().. 116

Listing 5.9 TaskStrobe().. 117

Listing 5.10 TaskFluidSample() implementation for “Valve Node A” 118

Listing 5.11 TaskFluidSampleQ implementation for “Valve Node B” 118

Architecture for Grid-Enabled Instrumentation in Extreme Environments xviii

Listing 5.12 TaskFluidSample() implementation for “Pump Node”119

Listing 5.13 TaskMeasure() .. 120

Listing 5.14 T a sk S tre am ()... 123

Listing 5.15 TsLskRS232Q ..123

Listing 5.16 Memory usage m a p ...125

Listing 7.1 Data File F o rm at..157

Architecture for Grid-Enabled Instrumentation in Extreme Environments xix

Chapter 1 Introduction

1.1 Reaching the Unreachable

Oceans cover over seventy percent o f the Earth's surface, containing approximately 97

percent o f the planet’s water to support a diverse range ecosystems (NOAA 2008) and

provide many varied habitats for marine life. In some places they extend down to depths

o f seven miles, making the ocean floor one o f the most difficult and inaccessible

frontiers to investigate. For thousands o f years our observations have been limited to

what could be seen from the sea-surface or the seashore because the immense pressures

and total darkness were an insurmountable barrier to exploration of this region.

Although over three hundred men and women have journeyed into space and twelve

men have walked on the surface o f the moon, only two people have descended and

returned in a single dive to the deepest parts of the ocean, and they spent less than thirty

minutes in a cloud of sediment on the ocean bottom (Baird 2005). And even though the

waterless surfaces of Venus, Mars and our moon have been mapped in great detail, the

National Oceanic and Atmospheric Administration estimates that well over 95 percent

of the ocean floor still remains unexplored (NOAA 2008) and we have barely just

begun to penetrate the sub-surface ocean and 'plumbing system' that lies beneath.

Technological advances in recent decades have led to unprecedented access of the

ocean depths to reveal a myriad o f strange and exotic life along with many other

startling and unexpected discoveries, including confirmation o f plate tectonics, deposits

of methane ice, hydrothermal vent fields and microbes flourishing in sub-seafloor

oceans and deep within rocks below. Many o f these findings have overturned long

established beliefs regarding the fundamental nature of the Earth, in particular our huge

underestimation of the depth extent of the biosphere and the variety of energy sources

that fuel the chemistry o f life. It is now understood that microbes living in and beneath

the ocean-floor makeup a substantial part o f the Earth's biomass (D’Hondt 2002) where

populations flourish several kilometers below the surface. These che mo synthetic

organisms live in dark, increasingly hot, oxygen-depleted rocky cracks and caverns,

habitats that are completely de-coupled from the sun, deriving their energy from the

oxidation of hydrogen sulphide, methane or ammonia, rather than sunlight as

photo synthetic plants do on the Earth’s surface. Discovering communities of life

Architecture for Grid-Enabled Instrumentation in Extreme Environments 1

adapted to survive in such conditions has greatly strengthened the case for the possible

existence o f life on other planetary bodies within our solar system, especially Jupiter's

moon Europa and, more recently, Saturn's tiny moon Enceladus where speculated

analogous aquatic habitats exist.

A major limitation imposed on deep ocean exploration is the sheer cost of gaining

access to the depths. Substantial support resources and infrastructure are required to

deploy an instrument on the sea floor, meaning that any equipment failures during

deployment will be expensive. The more inaccessible, remote and nastier the

environment, the greater the price of being there; making ease of use and reliable

operation requisite features to build into the basic fabric of the machine. Our

explorations are pushing into ever more extreme environments and opening up new

frontiers that present a new challenge to our determination, resourcefulness and abilities

in science and engineering. Past speculations have often proved too narrow or just

wildly inaccurate, indicating that present-day hypothesises as to what else remains to be

discovered and its potential scientific or commercial value can only be validated by

engaging in continued, and hopefully augmented, exploration efforts in these remote

and hostile settings. There is little doubt that the development of sophisticated new tools

will play an important role in future investigations to perhaps help answer long sought-

after questions on the origins and evolution o f life, on Earth and its possible existence

on other planets.

1.2 Scope o f Project

This dissertation outlines the interface standards, methodologies, and tools leveraged to

develop and construct a decentralised machine system targeted specifically for use in

extreme environmental conditions. These situations include: high pressure, very high or

very low temperature, corrosive environments, the marine environment and even

difficult industrial settings such as nuclear reactors or steel plants. Some example

applications include: monitoring and telemetering temperature and pressure data sensors

within a steel mill smelter or environmental monitoring sensors within a benthic

observatory in the deep ocean to observe model factors governing climate change. Here

the technology is specifically applied to the construction of a microbial fluid sampling

apparatus capable of collecting water samples from in and around hydrothermal vent

Architecture for Grid-Enabled Instrumentation in Extreme Environments 2

fields several thousand meters below the sea surface. At these depths the instrument is

subject to immense pressures of many thousand pounds per square inch, where

superheated , corrosive, mineral-loaded vent fluids mix with near-freezing seawater.

Partitioning and redundancy methodologies are utilised build a machine system that is

made up from a group o f individual machines (nodes) that coordinate their activities to

work together concurrently to accomplish a given task. The network architecture is

based on a peer-to-peer grid paradigm. There is some disagreement on the definition of

a grid (Foster 2002) and the field is undergoing change, however for this application the

nodes act as resource providers and consumers, transmitting and receiving information

(commands, sensor data, etc) between each other over a shared communication

network. Additionally the nodes are not subject to centralised control and utilise

standard, open, general-purpose protocols and interfaces to facilitate communication.

This modular approach leads to much improved flexibility, as the instrument can

quickly and easily be reconfigured to satisfy mission-specific requirements by simply

adding/removing nodes to/from the network. Additionally, the open architecture

encourages seamless integration of third-party nodes into the system framework as and

when they become available.

Academic groups and research institutes, such as Ifremer, France are motivated to find

strategies and technical solutions that will facilitate cross-compatibility and tool sharing

procedures for manned, remote and autonomous vehicles and benthic observatories

(MoMARETO EXOCET/D WP5, 2004). Further to this, MBARI, California are

investigating methods of simplifying network buses within autonomous underwater

vehicles (AUVs) to make the wiring more organised and easier to maintain in an effort

to improve machine reliability and ease of use (Yin 2003). Consequently, a substantial

part o f this research effort attempts to address these ongoing initiatives to develop a

standard framework for “smart" decentralised transducer networks. There is presently a

huge demand for off-the-shelf network technology with “plug-and-play” support

capability where nodes, such as input/output modules, sensors and actuators from

different manufacturers are interchangeable with one another (Pfeiffer 2003). In

general, instrument manufacturers and end-users are seeking simple interface solutions

that will allow them to interconnect their instruments and reconfigure them.

Instruments, such as fluorometers (Wetlabs 2008), microbial fluid samplers (Twose et

Architecture for Grid-Enabled Instrumentation in Extreme Environments 3

al. 2000; Behar et al. 2006; Taylor et al. 2006), methane sensors (Capsum 2005),

pressure sensors (Seabird 2008), etc are constantly being developed for specialised

research investigations. These designs are often insular solutions and not easily

integrated into other system frameworks; for example as part of a permanent ocean

floor observatory network (Amaud 2004; Delany 2000) or into an ROV. These

instruments exhibit limited flexibility and are not directly interoperable with equipment

from other manufacturers with little opportunity to modify or expand their capabilities

to accommodate any new mission specific requirements that arise.

To summarise, the features and subsequent new benefits to the end-user of this research

project are listed below:

• Decentralised Modular Topology - The instrument may be configured with a

variable number o f nodes. For example, additional fluid sample bottles can be

integrated into the framework subject to the requirements of the experiment or

payload limitations of the ROV/HOV used for deployment.

• “Plug-and-play” Functionality - The end-user can remove or add new nodes to

re-configure the instrument to meet specific mission requirements.

• Open Architecture - Compatibility facilitates integration of third party nodes

such as fluorometers and methane detectors into the machine infrastructure and

addition o f “bridge” nodes to connect the instrument to the internet or host

computer system.

• Serviceable - The system is relatively easy to service as repair o f the machine is

simply a matter o f replacing faulty or damaged nodes.

1.3 Thesis Overview

The structure of this dissertation follows a top-down approach, working down from the

highest levels o f abstraction, so the reader can “drill-down” to reach the desired level of

detail. Each chapter addresses a particular level o f abstraction, beginning with scientific

motivation, then specific application of the technology, followed by the frameworks and

methodologies used to specify the architecture, the development of control firmware

and support hardware to give a complete description of the machine system. The work

is presented in the following chapters:

Architecture for Grid-Enabled Instrumentation in Extreme Environments 4

Chapter 2 Background - Provides some general scientific context and insight into the

motivations for undertaking the development of a new microbial sampling instrument

based on a decentralised machine architecture. The first section outlines the discovery

and significance of microbes. This is followed by a brief history o f technological

developments in microbial sampling apparatus and a discussion on the latest challenges

o f sampling in extreme habitats. The chapter concludes, by describing the benefits of

applying the methodologies and technology developed herein to construct a new

instrument for sampling microbes in aqueous habitats.

Chapter 3 Communication System - The first section of this chapter evaluates

possible buses on which to base the network and highlights the strengths and

weaknesses o f each type and concludes with a justification for choosing Controller Area

Network (CAN) bus. The second section is concerned with selecting an appropriate

higher layer protocol (HLP) to manage machine system behaviour. Existing CAN HLPs

are investigated and their suitability for this application is discussed in detail.

Chapter 4 CAN and CANopen - Describes configuration o f the CAN low-level

hardware and which features of the CANopen protocol are utilised to support the

network. This is followed with a detailed description o f how node functionality is

specified and implemented through the CANopen Object Dictionary (OD) and Process

Data Objects (PDOs) to realise an optimised network solution for the machine system

architecture.

Chapter 5 Firmware Architecture - This chapter explains in detail how a minimal

CANopen implementation (MicroCANopen) and a custom designed hardware

abstraction layer (HAL) are integrated into the real-time operating system framework

(Salvo RTOS). Several methodologies are applied to fully specify, design and document

the system in an effort to realise a maintainable firmware infrastructure. Top-level

system decomposition and partitioning methodologies are used in all aspects of the

design in an effort to "design-frr flexibility and robustness into the machine system

architecture.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 5

Chapter 6 Electronic Hardware Platform - Details the conceptualisation, design,

construction and testing of the electronic hardware and systems. It concludes with a

brief summary o f its current state.

Chapter 7 Testing and Results - The first section of this chapter discusses the tests

performed on the node sub-systems and is followed by a performance assessment of the

instrument in sea-trials. The second section then progresses to describe the approach

taken to integrate these nodes into a system network to realise a fully decentralised

machine architecture and evaluates the results of the tests that followed.

Chapter 8 Conclusion - Evaluates what has been achieved of the machine and outlines

possible recommendations for future development of the instrument.

Appendices (on CD ROM) - Containing bibliography, component data sheets,

schematic diagrams, instrument power budget, a bill o f materials (BOM), firmware

reference manual containing a description o f function libraries, functions prototypes and

call graphs.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 6

Chapter 2 Background

This chapter provides some general scientific context and insight into the motivations

for undertaking this research and development project. It begins with a perspective on

the discovery and significance of microbes, in particular their adaptation to colonise a

diverse range o f habitats, subsequent influence over the biosphere and implications for

origins of life on Earth and other planets. The next section briefly outlines the history

of technological developments in microbial sampling apparatus and discusses the latest

challenges o f sampling in extreme habitats. It concludes, by describing the benefits of

applying the methodologies and technology developed herein to construct a new

instrument for sampling microbes in extreme aqueous habitats.

2.1 Why Study Microbes?

2.1.1 Importance

As far as documented history goes back, mankind has sought to understand our place in

the scheme o f things. Many early attempts to create some kind of order, generally put

forward views that humanity were in a unique position at the centre of the universe and

held a special status above the rest of animal kingdom. These views were gradually

supplanted by a more mature understanding o f the natural world, as exponents of

philosophy and scientific enquiry developed powerful new methodologies for rational

analysis. Looking outwards, astronomy and cosmology established that our planet is in

orbit around an average sized star on the outer rim o f one of countless galaxies in an

unimaginably huge, old and ever expanding universe. Looking closer to home, biology

and palaeontology produced great bodies of physiological, morphological, fossil and

genetic evidence supporting and demonstrating evolutionary theory - that cellular life

began soon after the formation of the Earth and adapted and colonised the planet giving

rise to all organisms inhabiting the biosphere.

Until relatively recently, the extent of the biosphere and the diversity of life it contains

have been largely underestimated. This was partly because of technological limitations

in molecular biology in gene manipulation and the availability of suitable technology

for exploration o f inaccessible environments. Advances during the last few decades in

Architecture for Grid-Enabled Instrumentation in Extreme Environments 7

both these fields have been instrumental in the development of an improved

phylogenetic classification system that puts life into three domains: bacteria, archaea

(similar in appearance to bacteria, however with notably different molecular machinery)

and eukaryotes (organisms whose cells contain nucleus a and organelles). Prior to this,

classical taxonomy approaches based on morphology and biochemical methods divided

life into three great “kingdoms" of Plants. Animals and Fungi. In the new taxonomy,

however, these kingdoms shrink to fit on one small, trilurcating branch on the

phylogenetic tree, showing that life on Earth is overwhelmingly microbial. Each node

with descendants represents the most recent common ancestor of the descendants and

the edge lengths correspond to time.

Firmicutes
Chlamydiae

Animals

Plan,s
Planctomycetes

Protozoa Actinobacteria

Euryarchaeota
Fusobacteria

CyanobacteriaCrenarchaeota

Proteobacteria

Figure 2.1 Phylogenetic tree showing the speculated common ancestry o f all three
domains o f life. Bacteria are coloured blue, eukary otes red. and archaea green
(iTOL generated tree using methods described by Ciccarelli FD. Science 2006).

It is presently estimated that the Earth supports between three and thirty million species

of organisms, of which, approximately 1.4 million have been described by science.

Microbial life represents a huge untapped reservoir of biodiversity with enormous

potential for biotechnological exploitation. It is anticipated that the novel biochemistry

these tiny organisms, evolved in response to a wide range of environmental conditions,

including extreme temperatures, high pressure, low oxygen and low nutrient

environments will find uses in many diverse commercial applications. For example, the

replacement of toxic catalysts used in industrial processes or within the pharmaceutical

industry and the development clean and efficient newr fuel cell technologies for energy

storage. There are also strong applied interests in horizontal gene transfer and chemical

Architecture for Grid-Enabled Instrumentation in Extreme Environments 8

signalling systems at the molecular level, and the wide range of symbioses in which

microbes are components.

2.1.2 Discovery and Early Research

The existence of microbes was suspected during the late Middle Ages (Avicenna, 1020),

however it was the ingenuity o f Robert Hooke and Antoni Van Leeuwenhoek in

fabricating and using microscopes that allowed the first direct observations to be made.

In 1665, Hooke presented the first published depiction of a micro-organism, the

microfungus Mucor, which was soon followed by descriptions of microscopic protozoa

and bacteria by Leeuwenhoek. Despite these encouraging initial findings, many years

passed and it was not until the beginning o f the industrial revolution that the necessary

resources became available to allow significant progress to be made in the

understanding of these tiny creatures. Leeuwenhoek had discovered organisms invisible

to the naked eye, however further investigations by Lazzaro Spallanzani and Louis

Pasteur would explain the link between microbes and processes such as grapes turning

into wine, milk into cheese, or food turning bad.

Spallanzani researched the established belief about the spontaneous generation of

cellular life in 1768. His experiment proved that microbes come from the air and that

they could be killed through boiling. This work paved the way for further research in

1859 by Louis Pasteur. Pasteur expanded upon Spallanzani's work by exposing boiled

(sterilised) nutrient broths to the air, some of which contained a filter to prevent all

particles from passing through to the growth medium. These important experiments

finally put an end to the long-held misconception that life could spontaneously arise

from non-living matter (Aristotle) and also supported germ theory, which postulated

that microbes are the cause of many diseases.

In 1876. Robert Koch validated this causal link between microbes and disease when he

observed that the blood of cattle that were infected with anthrax ahvavs had large

numbers of Bacillus anthracis. Koch also found that he could transmit anthrax from one

animal to another by taking a small sample o f blood from the infected animal and

injecting it into a healthy one, causing the healthy animal to become sick. He also found

that he could growr the bacteria in a nutrient broth, inject it into a healthy animal, and

cause illness. These experiments became known as Koch's postulates and have become

Architecture for Grid-Enabled Instrumentation in Extreme Environments 9

a cornerstone of modem medicine and clinical microbiology, leading to such important

innovations as antibiotics and hygienic practices.

2.1.3 Origins, Evolution and Adaptation

Over the course of billions of years microbes adapted to colonise a diverse range of

habitats on the planet, mediating a wide range of chemical transformations instrumental

to driving global biogeochemical cycles. Over this immense time-span, single-celled

plants and animals, bacteria, archaea and other microbes have exerted a powerful

influence on the climate, changing composition of the ocean and atmosphere to

transform the planet's surface to shape the Earth we see today. These tiny organisms

pervade almost every environment on the Earth and are found in the air, on land, in

fresh or salt-water environments and also coexist as symbionts within other organisms.

For example, there are over a thousand different species of human gut flora residing

inside the intestinal tract, contributing to gut immunity, synthesising vitamins such as

folic acid, vitamin K, as well as fermenting complex undigestible carbohydrates, whilst

at the same time inhibiting the growth of potentially pathogenic bacteria. Other species

o f microbes are decomposers, breaking down detritus into its constituent nutrients, some

o f which they utilise and some of which are released into the ecosystem to be recycled.

Microbes are also found on plant roots carry out the role of nitrogen fixation, converting

nitrogen gas into nitrogenous compounds to provide an easily assimilated form of

nitrogen for many plants, which are incapable of fixing nitrogen themselves.

There are many species of microbes that not only survive, but flourish in extremes of

pressure, pH and temperature and can even tolerate high radiation levels or high levels

of toxicity; habitats that were once considered inhospitable to life as we knew it. Heat-

loving microbes were discovered living in hot springs in Yellowstone National Park,

Wyoming and later on the Galapagos Rift mid-ocean ridge 2.5 km beneath the ocean

surface off the coast of Ecuador. This was the first of many such findings that

subsequently uncovered hydrothermal vent fields harbouring microbes that thrive at

around 100°C temperatures, in high acidity under hundreds of atmospheres pressure in

Pacific, Atlantic and, more recently, Artie ocean ridges (Pedersen et al. 2004). Further

to this, core samples from both ocean and continental drilling programs also revealed

microbes living deep within rock several kilometers down in the Earth's crust.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 10

There is a growing body of evidence supporting the hypothesis that the early chemistry

o f life began not in warm oceans, but on mineral surfaces near deep submarine vents in

sulphurous, anaerobic, high temperature (near 100°C), high pressure conditions. This

idea correlates closely with the discovery o f hydrothermal vent ecologies associated

with mid-ocean ridges and a recent extension of the iron-sulphur model

(Wachtershauser 2000). This model attempts to explain how polymerisation and

complex chemistry arose from simple inorganic matter to form the first protocells inside

“black smokers” on the ocean-floor (Martin and Russell 2002). Given that the Earth’s

surface was undergoing intense meteor bombardment, likely to have melted the crust

and vaporised the ocean, the subsurface vents may have provided a relatively stable

environment in which life could develop over four billion years ago (Nibet and Sleep

2001).

Moving to the other temperature extreme, there are microbes that inhabit sea ice, riddled

with tiny channels and pores filled with high-salinity water, remaining biologically

active at temperatures of several tens o f degrees below zero (Deming 2007). Finding life

in such environments has provided significant impetus to the search for life beyond

Earth as the conditions required to sustain life are much wider than previously thought -

temperatures ~50±70°C, a relatively small range of elements, liquid water, and an

energy source. It is hypothesised that analogous conditions exist in the permafrost

beneath the surface of Mars, the ice of Jupiter's moon Europa and almost certainly in

other places in the universe.

Finding microbes in extraterrestrial habitats will undoubtedly provide fascinating new

insights and perspectives of relevance to the origin and evolution life on Earth. It may

be that during the formation of the solar system, where the process of accretion allowed

cross coupling between habitats, that life on the inner planets shares a universal

common ancestor. In this case, the phylogenetic tree would need to be extended again to

accommodate the new relationships. Alternatively, examination of biomarkers and

homochirality (molecular left or right-handedness) of extraterrestrial biochemistries

could prove that life arose in parallel and completely independently on other planetary

bodies in the solar system. Either way, the research will help to establish a more

accurate estimate of life in the universe and, no doubt give rise a host of other questions

for which we will be driven to seek yet more answers.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 11

2.2 Technological Developments in Microbial Sampling

Early seafarers made some of the first explorations of the seafloor when they devised a

number of ingenious methods for measuring, sampling, and viewing the ocean’s depths.

Viking sailors measured ocean depth and sampled sediments with sounding weights

made from of a lead weight with a hollow bottom attached to a line. Once the weight

reached the ocean bottom and collected a sample of the seabed, the line was hauled back

onboard ship and measured in the distance between a sailor’s outstretched arms (a unit

that became known as a fathom).

2.2.1 Early Sampling Apparatus

Later, in the 1800’s oceanographers made use o f ships as platforms for exploration,

mapping and sampling o f the ocean. The researchers used wire-line soundings to

determine depths and collect biological samples. The sounding weights, called Baillie

sounding machines, were provided with a tube into which a sample of the seabed was

forced when the weight hit the bottom o f the ocean. The need to undertake more

sophisticated microbial investigations in deep ocean habitats, catalysed the development

of various types of device for collecting wrater samples during the second half of the

20th century.

The study of the ecology, diversity and function of microbes requires the use of

molecular DNA sequencing and manipulation to determine the important members o f the

community and culture-dependent techniques to understand their physiology and

functioning. It is therefore essential that any samples obtained are free from cross

contamination by microbes and microbial DNA from locations other than the site of

sampling. In an effort to prevent contamination, the first samplers were based on a

hydrowire design (e.g., Zobell 1963; Niskin 1962) that used sterile evacuated bottles,

bellows-like polyethylene bags or rubber bulbs to contain the fluid sample. Later, much

improved designs w'ere constructed that were able to collect samples with reduced cross

contamination (Jannasch and Maddux 1967). These devices mechanically drew samples

into sterile syringes away from the hydrowire, into a sterile dialysis bag that was

removed from the sterile inlet prior to sampling.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 12

2.2.2 Under Pressure

For sampling in deep ocean environments, particularly in hydrothermal vent fields where

changes in hydrostatic pressure could potentially affect microbial viability and growth,

numerous designs have been developed to acquire fluid samples without loss of

compression. Examples include single sample versions with (Jannasch and Wirsen 1977)

and without (Tabor et. al. 1981) sample inlet protection to reduce the potential for

contamination. An improved sampling system was constructed that is able to take vent

fluid samples and maintain both in-situ temperature and pressure of the sample collected

(Malahoff et.al. 2002). Once aboard ship sub-samples can be transferred to multiple

incubators without change in either pressure or temperature. Phillips et. al., 2003 also

designed a sampler for the capture, temperature monitoring and in-situ incubation of hot

smoker fluids under vent conditions.

2.2.3 Beneath Ice

There are presently various ongoing initiatives to develop sampling robots capable of

exploring inaccessible environments such as sub-glacial lakes such as Lake Vostok in

Antarctica, which lies beneath a 4-kilometer thick ice sheet. For example, NASA are

motivated to investigate the nature and origin o f the lake, obtain evidence o f long-term

climatic change associated with it and identify a site suitable for in-situ microbiological

exploration. It is estimated that this habitat has remained isolated from the surface

biosphere for tens of millions of years and potentially contains many unique species of

microbial life. In such a difficult situation, reliable operation of the instrument is

essential, but it is equally important that the device can aseptically penetrate the ice sheet

without introducing contaminants into the pristine environment, when sampling the water

column and sediments (Blake and Price 2002).

It is possible that Lake Vostok will serve as a natural laboratory to aid in gaining

valuable insights regarding the ocean posited to exist beneath the thick covering o f ice on

Jupiter's moon, Europa (e.g., Carsey et. al. 2000; French et. al. 2001). It is conjectured

that any life in these environments would have evolved along unique lines to adapt and

survive there. The study of such environments is pushing existing technology beyond its

limits and NASA Jet Propulsion Laboratory is presently examining the feasibility of

developing a “cryobot” vehicle for investigation o f such habitats. The cryobot would

penetrate the thick icy crust to release an autonomous “hydrobot” probe to explore

Architecture for Grid-Enabled Instrumentation in Extreme Environments 13

subterranean waterways in a search for signs of microbial life there. Exploration o f this

kind of remote and hostile environment presents a particularly difficult challenge for

machine reliability, as there is no opportunity for direct operator control or human

intervention should something go wrong.

2.3 A New Instrument for Sampling Microbes

2.3.1 Engineering Overview

The main objective of this engineering

effort is to develop an appropriate network

technology that can be immediately applied

to the construction o f an improved

microbial fluid sampler instrument with

several additional new features o f benefit to

investigations o f extreme aqueous habitats.

Part of this dissertation involved a

comparison and evaluation to access the

suitability of current state-of-the-art bus

network technologies and protocols on
Figure 2.2 Robust, fault-tolerant fluid sampler system which tO base this distributed instrument
capable o f gathering data in extreme marine environments.

system. The next phase of the development

process was the design and construction o f an embedded single board computer (SBC)

hardware platform capable of fulfilling the specialised instrumentation needs for this

application. These requirements include reliable, micro-power operation and supporting

the communication system along with other dedicated hardware essential for

measurement and control purposes. A commercial real-time operating system was

leveraged and a bespoke hardware abstraction layer written to allow direct access and

control of low-level hardware from the upper application layer. The hardware and

firmware were developed concurrently from the beginning of the design process to

achieve a high level of integration to yield the best possible performance characteristics

in terms of power consumption and operational stability. Each node in the instrument is

based on a pressure case containing its own internal power supply and dedicated SBC,

Architecture for Grid-Enabled Instrumentation in Extreme Environments 14

so that they can communicate with one another to realise the decentralised fluid sampler

system shown above [figure 2.2].

2.3.2 Application

The instrument under development will provide

improved in-situ physiochemical and

microbiological sampling, as well as incubation

capabilities to aid the scientific community with

investigations into the phylogenetic relationships

and physiological diversity between marine

microbes. It is anticipated that the system will find

wide applicability as a sealed-pressure fluid

sampling apparatus, operable to a maximum depth

of 6000m in the water column, to acquire samples

within a temperature range of 0°C to 200°C. Fluids

and aqueous suspensions of light sediments are

collected by means of a sampling head connected to a set of 1000ml flow-through

bottles [figure 2.3] and pump. The bottle manifold/assembly is housed within an

aluminium cage designed to sit inside the basket of a manned submersible (HOV) or

remotely operated vehicle (ROV). The sampling head can be positioned on a point of

fluid outflow using the HOV or ROV robot arm to take one or more discrete fluid

samples whilst measuring the various flow properties. A fluid flow-rate sensor is

integrated into the head for measuring vertical effluent velocities over a range of 0.1 -

lOOOmm/s and temperatures to an accuracy of better than 0.5°C with 0.1°C resolution.

The internal environment of the sealed bottles is susceptible to pressure changes in

response to changes in ambient or internal temperature and hydrostatic pressure, for

example as the instrument returns to the surface. An additional pressure compensator

node can maintain samples under isobaric conditions to the environment in which they

were acquired to maximise the viability of any microbes present. The bottles then

function as bioreactors allowing incubation of microbes and once returned to the

laboratory; the instrument permits the introduction of new chemistry and extraction of

samples under isobaric conditions for further biochemical analysis. Every effort is made

to keep samples free of contamination by utilising chemically non-reactive and

Figure 2.3 Titanium fluid sampling bottle
manufactured at MEC, Cardiff University, UK.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 15

biologically inert materials in the instrument construction. The high-pressure sample

bottles, pressure cases and valve bodies are all fabricated from tough titanium alloy

(90% Ti, 4% V, 6% Al) and the internal construction of the valves consist o f a titanium

ball valve and high performance polyaryletheretherketone (PEEK) seal rated to 250°C.

The standardised communication interface will facilitate connection o f the instrument

directly to an equivalent ROV bus or further integration into a permanent undersea

observatory via a “bridge” node. In the first instance, the instrument may be operated

interactively (via a serial data link) as a sampling tool from the ship on the surface. The

operator has direct control to select any bottle (or combination of bottles) and the pump

switched on to acquire a fluid sample. In this mode, the instrument simultaneously

captures a continuous real-time stream of physical data representing the flow and

temperature conditions o f the sample fluids. Secondly, the instrument can be deployed

using a winch in a pre-programmed mode, where it may be left to operate autonomously

on the ocean floor for an extended period o f time (days-to-months) to obtain time series

samples or serve as a network-enabled node in a permanent ocean floor observatory

system.

2.3.3 Design Advantages

2.3.3.1 Importance of Standardisation

A significant effort has been invested in adopting standard network interfaces and open

protocols for inter-node communication. This approach has the advantage of not having

to reinvent the wheel, but using existing solutions, set down in established standards,

which have already been well considered and validated. Adhering to widely accepted

standards provides a stable framework within which continuous development can take

place and ensures longer-term prospects for the project. For example, toy Lego bricks

made in 1963 still interlock with those recently manufactured in 2008 because all the

bricks are precision-machined to the same high tolerance, to eliminate significant

variations in thickness and even colour - one of the significant factors that makes Lego

such a successful and enduring toy.

Another advantage is the availability of commercial diagnostic and development tools,

as well as extensive documentation. These tools aid with design and testing of node

Architecture for Grid-Enabled Instrumentation in Extreme Environments 16

firmware, speeding-up the development phase and help to ensure correct conformance

to standards during final integration o f nodes into the system framework.

Standardisation allows efficient working within the scope of the project, by repeatedly

reusing the same solution throughout the design. It also creates the potential for future

opportunities to collaborate with any industrial partners and academic establishments

utilising the same technologies and standards. To this aim, extensive documentation on

the machine system infrastructure is presented here to make it possible to maintain and

adapt this technology for wider application [see Appendices].

2.33.2 Case for a Decentralised Architecture

Conventional centralised system networks rely on a master-slave model for data

exchange between nodes, where a single node acts as the master controller of all slaves

on the network [figure 2.4] polling them to detect their insertion or removal and

M aster

C ontro ller

T e m p e ra tu re

S e n s o r

P re ss u re

C o m p e n sa to r

P um p

Figure 2.4 Centralised topology.

configuring them. In this scenario, slaves cannot typically communicate by themselves

or with each other; only the master may initiate communication with slaves responding

when requests are received from the master - although the network is distributed, it is

not decentralised. In practice, this means each component has its own line of

communication with the main computer, for example within a CTD where strategic

placement of a given component is critical. This becomes particularly problematic when

attempting to integrate new devices into the network at a later date. Often reorganisation

of the devices onboard is required in order to add new components, and this often leads

to convoluted cabling, as parts need to be disconnected, moved, and then reconnected.

Additionally, because leaks are particularly prevalent around connectors, when parts are

disconnected, moved, and reconnected, there is a possibility o f making a bad connection

between components.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 17

An inherent weakness o f the centralised machine (Baker, 2003) approach is that if the

master controller node fails then the whole system fails. Failure can be catastrophic,

meaning that the machine cannot continue to operate and fulfill its mission. At best, the

master is a bottleneck when transfer of information to higher levels is required; at worst,

it places the entire system network in jeopardy. In comparison, with a master-less or

peer-to-peer communication model, nodes exchange information directly and efficiently

without the overhead of routing messages via a master controller [figure 2.5]. The

widespread availability of low-power, low-cost microprocessors and bus interface

T e m p e ra tu re

S e n so r
V alve

P re s s u re

C o m p e n sa to r
P um p

Figure 2.5 Decentralised topology.

controllers has made it possible to embed the necessary intelligence in node to allow

this kind o f de-centralised control.

Adding distributed intelligence to nodes also yields benefits to application designers and

system integrators. The self-identifying capabilities o f “smart” transducers and nodes

can provide maintenance engineers with immediate feedback from device failures in the

network when replacement parts are required. Failure and recovery schemes in

distributed networks can be achieved gracefully; for example, if the system detects a

faulty node, it can respond by possibly starting a redundant node to replace the lost

functionality. The resulting decentralised network topology has several advantages over

conventional centralised machine architecture, in that the system is modular, more

easily maintained, extensible and more importantly, much more robust, as nodes have

the capacity for independent and autonomous operation.

2.3.3.3 Benefits of Modular Design

A modular design containing discrete, partitioned functional units (or nodes) offers

significant advantages over an integrated solution where all functions are implemented

within one operational unit. Overall reliability is much improved for the simple reason

Architecture for Grid-Enabled Instrumentation in Extreme Environments 18

that it would require malfunction of all nodes within the network to cause total and

catastrophic system failure. This scenario is highly improbable and a more realistic

situation would be that only one or two node(s) develop faults. These could be intrinsic

design faults, human errors during operation or unforeseen external environmental

factors. Examples of fault occurrences in instruments whilst performing deep ocean

fluid sampling, include failure of o-ring seals because of poor installation or an

undetected manufacturing defect in a pressure case causing it to fail under pressure. A

modular system there allows for the possibility of confinement of the fault to one

subsystem, leaving the reminder to continue functioning and partially fulfill mission

requirements or for another redundant system to substitute for the lost functionality.

Modularising the instrument and standardising the

interface between nodes results in much improved

flexibility as it opens up the opportunity to support

**Plug-and-play” capability. Figure 2.6 shows a

practical implementation of a single node in the system

which is based on a pressure case housing that contains

its own dedicated single board computer (SBC), power

source and communication interface. Users can link

these nodes together in Lego-brick fashion to build

their own custom-made instrument to satisfy mission-

specific application requirements. This allows any

number of sample bottles to be used, depending on

frame dimension and undersea vehicle payload

capacity; typical configuration for NASA, United States is two or three bottles; for

NERC, United Kingdom up to six bottles. The simplest configurations could be a stand

alone. one node data-logger [figure 2.7] or perhaps a two-node temperature profiler

connected to a host PC [figure 2.8]. A more sophisticated in-situ fluid sampling

instrument would be based on systems containing from six [figure 2.9] up to

approximately thirty nodes [figure 2.117, depending on the capacity of the undersea

vehicle used for deployment. Standard, open protocols and interfaces have been adopted

to allow users and developers the opportunities of seamlessly integrating third-party

tools into the system at a later date. These tools may include salinity meters.

Figure!.6 Node electronics and pressure
case housing manufactured at Cardiff
University. UK.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 19

fluorometers, methane detectors, spectrometers or other tools for geochemical and

microbiological analysis of fluids.

Data Logger

Figure 2.7 Standalone
data-logger instrument.

Temperature

Sensor Node

Host
PC

CAN Bus
Figure 2.8 Simple two node
temperature profiler.

Bottle 1

Valve
Node

CAN Bus

Valve Host

Node PC

I
Figure 2.9 Prototype fluid
sampling instrument.

Bottle 1 Bottle 2

Valve
Node

Vatve
Node

Valve
Node

Valve
Node

CAN Bus

HostPump
Node

Temperature

Sensor Node

Figure 2.10 NASA fluid sampling instrument.

The examples above show how it is feasible to construct instruments with a variable

number of fluid sample bottles, to reduce the instruments’ physical size and satisfy

payload restrictions of a particular the ROV used for deployment. Additionally, the

modular approach provides a high degree of flexibility and allows the end-user the

opportunity to modify the experiment. For example, the instrument can be adapted to

meet mission-specific requirements by adding third party nodes such as fluorometers

and methane detectors into the machine infrastructure and it is even feasible to build

new configurations that were not anticipated by the original designer. The system is also

relatively easy to service, as repair of the machine is simply a matter of replacing faulty

or damaged nodes or use “bridge” nodes to connect the instrument to a host PC running

diagnostic software. The ultimate goal is to achieve the simplicity of a Lego set where

the functional units (bricks) can be linked together to achieve results quickly and easily

without specialist knowledge or specialised tools.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 20

Bottle 1

Valve
Node

Pressure

Compensator
Node

Valve
Node

Bottle 2

Valve
Node

Pressure

Compensator
Node

Valve
Node

I I
Pump
Node

Bottle 3

Valve
Node

Pressure

Compensator
Node

Valve
Node

Bottle 4

Valve
Node

Pressure

Compensator
Node

Valve
Node

I
Bottle 5

Valve
Node

Pressure

Compensator
Node

Valve
Noderr^r

Bottle 6

Valve
Node

Pressure

Compensator
Node

Valve
Noderrn

CAN Bus

Methane CAN to
Temperature Fluorometer

Sensor Ethernet
Sensor Node Sensor Node

Node Bridge

Figure 2.11 NERC fluid sampler with integrated third
party sensors.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 21

Chapter 3 Communication System

A key objective of this thesis was to develop a machine system composed of individual

nodes that communicate with each other according to an agreed, preferably open

standard. An appropriate communication system (CS) must be in place to allow nodes to

operate collectively to accomplish tasks as a group. The CS can be divided into two

subsystems: the data communication bus (physical layer) and higher level protocol

(HLP). The first section of this chapter evaluates potential buses on which to construct

the CS and summarises the strengths and weaknesses of each type. It concludes with a

justification for selecting Controller Area Network (CAN) bus as the backbone for the

network. The second section is concerned with selecting an appropriate HLP to manage

machine system behaviour. Existing CAN HLPs are investigated and their suitability for

this application is discussed in detail.

3.1 Selecting an Appropriate Data Communication Bus

3.1.1 Bus Specification Requirements

A physical transmission medium is required to support broadcast of messages (data and

control commands) between nodes. In computer architecture, this transmission medium

is a known as a bus. The machine system depends on the logical correctness and timing

of commands transmitted on the bus to accomplish a given task. In a hard real-time

system, the completion of an operation after its deadline is considered useless and may

even lead to a complete system failure, whereas a soft real-time system can tolerate such

lateness. For example, collecting a water sample would require two valve nodes on a

flow through bottle to open and a pump node to switch on. A sensor node would then

measure fluid flow rate and temperature and after a period for a few minutes the pump

would be switched off and the valves closed. This task can tolerate jitter in the order of

many milliseconds. On the other hand, tight control loops require low jitter and

deterministic latency i.e. hard real-time performance. For example, an active pressure

compensator control sub-system made up of a pressure sensor and piston actuator

connected to each other over CAN bus to form a closed control loop. It is proposed that

the sensor and actuator are housed in within the same node as a self contained unit. This

Architecture for Grid-Enabled Instrumentation in Extreme Environments 22

relaxes hard real-time specification requirements, significantly reduces bus traffic and

widens options for leveraging a COTS HLP.

The bus network must satisfy the specification requirements outlined below:

• True peer-to-peer network.

• Support real-time performance.

• Perform reliably in an electrically noisy environment. This system architecture is

intended for use in mission and safety critical applications. It must be able to

tolerate electromagnetic interference (EMI) noisy supply lines and even hard

radiation.

• Perform reliably in mechanically harsh environments. These situations include:

high pressure, vacuum, very high/low temperature, operations in corrosive

environments, in the marine environment, in difficult industrial settings such as

nuclear reactors and steel plants. Also the system should be capable o f operating

in aerospace environments where it can be exposed to high acceleration,

sustained vibration conditions, dust and dirt.

• Micro-power consumption. In the near future it is anticipated that this system

will be integrated into permanent seafloor observatories where it can remain

dormant for periods of many months waiting on an external trigger event to

wake it up. Also the HLP must be efficient in terms o f clock cycles required for

each byte transfer.

• Fault tolerance. The malfunction o f one node should be isolated to the failure of

only that node (fault confmement). The rest of the system should ideally be

unaffected. In the event of large sections of the system failing then any data

collected by the remaining functional part of the system should be recoverable

once the system resumes operation.

• Ease o f repair. Should a node fail and require replacement, it should simply be a

matter of unplugging the node and replacing it with another with little or no

system reconfiguration.

• Physically compact, lightweight with minimum cabling and low pin count.

Reliability and cost issues with marine connectors.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 23

3.1.2 Brief overview of buses

Buses fall broadly into two main categories as shown in the class diagram below.

Parallel buses transport data words striped across multiple wires, whereas serial buses

transport data in bit-serial form. At high data rates (above 400MHz) parallel buses

become susceptible to signal skew and cross talk. Serial buses are inherently immune to

this problem and can consequently be operated at higher data rates in daisy-chain or hub

topologies (e.g. USB). Multi-drop connections do not work quite as well at high data

rates because of reflections occurring on the bus. The addition of extra power and

control connections, differential drivers, and data connections in each direction means

that serial buses often have a few more conductors than the PC (2-wire) serial or Dallas

1-wire buses.

1-Wire

SPI Bus

Serial

Internal

Parallel

Internal ExternalExternal

Bus networks

USB
FireWire (IEEE 1394)
RS-485
Ethernet

ATA
Centronics parallel
GPIB (IEEE-488)
PCMCIA (PC card)
SCSI

ISA
Multibus
NuBus (IEEE 1196)
PCI
SBus (IEEE 1496)
VESA Local Bus
VMEbus,
STD Bus for 8 & 16-bit microsAS-lnterface

CAN
DeviceNet
FOUNDATION Fieldbus
HART Protocol
Industrial Ethernet
Interbus
LonWorks
Modbus
PROFIBUS

Figure 3.1 Bus categories

Computers utilise both internal and external buses for moving data around. An internal

bus connects all the internal peripherals o f a computer with the motherboard or

components, such as the microprocessor and memory on the motherboard itself. An

external bus connects peripherals such as mouse or a printer to a computer and hence to

the motherboard inside. The buses considered for this application are now described in

further detail in the pages that follow.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 24

3.1.3 RS-485

RS-485 (now EIA-485) was developed to overcome the transmission limitations of

single-ended, point-to-point RS-232 communication. At higher data rates, or over long

cable runs in electrically noisy environments, single-ended methods were often

inadequate. Differential balanced data transmission yields higher signal integrity

because it effectively cancels ground shifts and induced noise signals that can appear as

common mode voltages on a network.

3.1.3.1 RS-485 Physical Laver

RS-485 satisfies the requirements for a true multi-point communications network, and

the standard specifies up to 32 drivers and 32 receivers on a single (2-wire) bus. With

the introduction of repeaters and high-impedance drivers/receivers this can be extended

to hundreds o f nodes on a network. In contrast RS-422 is multi-drop, that is, it does not

allow multiple drivers but only multiple receivers. RS-485 therefore enables the

configuration of inexpensive local networks and multi-drop communications links. It

offers high data transmission speeds (35 Mb/s up to 10m and 100 Kb/s at 1200m).

3.1.3.2 RS-485 Protocol

RS-485 only specifies electrical characteristics of the driver and the receiver. It does not

specify or recommend any data protocol. Data-link layer must be implemented by the

HLP designer, increasing firmware size, complexity and the development time required.

Examples o f HLPs that are implemented on RS-485 include SCSI, as well as the

following fieldbus standards: ARCNET (Attached Resource Computer Network),

Modbus, Profibus (Process Field Bus), European Installation Bus (EIB) and Interbus

(Felser and Sauter 2002).

Strengths

• High data transfer rates

• Low pin count

Weaknesses

• Data Link Layer must be implemented in firmware, increasing size and

complexity.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 25

• Data collisions are destructive.

3.1.4 Universal Serial Bus (USB)

USB was developed as a low-cost bus solution to allow computer peripherals to be

inter-connected without the need to plug expansion cards into the computer's ISA or

PCI backplane. Its open architecture facilitates plug-and-play capabilities, allowing

peripherals to be connected or disconnected without powering down or rebooting the

computer.

3.1.4.1 USB Physical Laver

USB physical layer consists of a four wires; two are power (+5V & GND) with the

remaining being a twisted pair for differential balanced data transmission. The bus has a

characteristic impedance o f around 90Q and must be terminated with suitable

impedance matching resistors on the signal lines. The clock is transmitted, encoded

along with the differential data which is encoded non-return-to-zero, inverted (NRZI).

Bit stuffing is also used for logic ‘1’ transmission more than five bits long (put logic ‘O’

after five bits o f logic ‘1’). NRZI encoding method does not change the signal for

transmission of a logic ‘ 1 ’, but the signal level is inverted for each change to a logic’O’.

Three data rates are supported:

• High-speed (USB 2.0) at 480Mb/s, uses a 17.78mA constant current to reduce

noise.

• Full-speed (USB 1.1) at 12 Mb/s

• A limited capability, low-speed mode at 1.5Mb/s requiring reduced EMI

protection

Devices are physically connected to a host controller using a tiered star topology.

Attachment points are provided by a special class o f device called a hub which allows

branching into a tree structure, subject to a limit of 5 levels o f branching per controller.

Up to 127 devices may be connected to a single host controller. Although physical

connection of devices is tiered star, the host controller communicates with each logical

device as if it were connected directly.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 26

3.1.4.2 USB Protocol

The host controller polls the bus in a round-robin fashion and initiates all data transfers.

When a device is connected to the bus the host controller assigns it a unique address.

Devices may be added or removed from the bus at any time and enumeration o f device

addresses is an ongoing activity for the system software.

Bus transactions involve the transmission of up to three data packets. A transaction

begins when the host controller transmits a ‘token’ packet describing the type and

direction of the transaction, the USB device address and endpoint number. During a

transaction, data is transferred to or from the addressed peripheral. The source of the

transaction then transmits a data packet or indicates it has no data to transfer and the

destination responds with a handshake packet.

The USB data transfer model between a source or destination on the host controller and

an endpoint on a device is referred to as a pipe. The pipes are synonymous to byte

streams, such as in the pipelines o f Unix. The endpoints and pipes are enumerated from

0 to 15 in each direction, so a device can have up to 32 active pipes, 16 in to and 16 out

of the host controller. Each endpoint can transfer data in one direction only, either into

or out of the device. Endpoint 0 is reserved for bus management in both directions and

requires 2 of the 32 endpoints - the USB specification states that all devices must

implement endpoint 0. Data is transferred along the pipes in variable length packets (see

picture o f USB frame). Each pipe has a maximum packet length, typically 2n bytes, so a

USB packet will typically contain something in the order of 8, 16, 32, 64, 128, 256, 512

or 1024 bytes.

The pipes are categorised into the following types:

• Control transfers - typically used for short, simple commands to the device, and

a status response, used e.g. by the bus control pipe number 0, when a device is

connected the host controller needs to learn about it and configure it.

• Isochronous transfers - at some guaranteed speed but with possible data loss.

The required bandwidth is reserved for the device with less attention to the

success of the transfer (whether or not the whole data arrived on time) since the

Architecture for Grid-Enabled Instrumentation in Extreme Environments 27

traffic included in this transfer type has a high tolerance for errors, e.g. real-time

audio or video.

• Interrupt transfers - devices that need guaranteed quick responses (bounded

latency), e.g. mouse and keyboards.

• Bulk transfers - large sporadic transfers using all remaining available bandwidth

(but with no guarantees on bandwidth or latency). Bandwidth allocated in each

transaction of the transfer varies according to the bus resources at the time. Bulk

transfers are done in reliable mode - there is great deal of awareness to errors

e.g. file transfers.

3.1.4.3 USB Error Detection and Handling

The USB specification assumes that the bit error rate of the USB transmission medium

is similar to that of a computer backplane and that any electrical glitches are transient in

nature. To provide protection against such transients, token and data packets are

protected by CRCs. In token packets the CRC protected region is only 11 bits, so a
r ^ A t t

CRC-5 (G(x) = x + x + x) provides adequate protection and also aligns the packet to

byte boundary. USB data payload packets can be to 1023 bytes in length, so a CRC-16

(G(x) = x16 + x15 + x2 + x°) is used to provide reasonable protection o f the data payload.

Both these CRCs are capable of detecting single and double bit errors.

Errors can be handled in hardware or software. In hardware errors can be reported and

failed transfers retransmitted. The host controller will attempt retransmission up to three

times before informing the software of the failure. System software can be designed to

recover in an implementation-specific way.

Strengths

• High data transfer rates

• Low pin count

• Variable frame size

• Plug-and-play capability

• Limited real-time performance in that the protocol can allocate bandwidth for

data transfer in isochronous mode and low latencies.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 28

Weaknesses

• USB is a polled. No node can transfer data on the bus without making an explicit

request to the host controller - a centralised topology.

• Protocol is complex to implement.

• Developed as a bus replacement for computer PCI and ISA parallel bus, i.e.

house/office environment.

3.1.5 Ethernet

Ethernet is a local-area network (LAN) bus architecture developed by Xerox

Corporation in cooperation with DEC and Intel in 1976. It was originally developed as

an inexpensive way o f moving data quickly between computers connected together in a

single room or building. The Ethernet specification served as the basis for the IEEE

802.3 standard, which specifies the physical and lower software layers.

3.1.5.1 Ethernet Physical Laver

The original Ethernet specification required coaxial cable (10Base5 and 10Base2) as the

transmission medium, however this has been superceded with more economical twisted

pair cables terminated with standard RJ-45 connectors. The network is based on a star

topology with a hub or switch in the middle. All nodes attached to a hub share the total

bandwidth whilst switches provide each sender and receiver pair with the full bandwidth

and are significantly faster than hubs. Fibre-optic cable is also used as a transmission

medium (100BaseT and Gigabit Ethernet) and more recently, wireless Ethernet

(802.11b) technology became available. The following description of Ethernet protocol

refers to a bus based on copper transmission medium.

3.1.5.2 Ethernet Protocol

Ethernet is a frame based protocol. The frame format is as follows:

Field Name Length (bits) Description

Destination A ddress 48 MAC address (not u sed in Data Link Layer)

Source A ddress 48 W here the m essag e is going

Type 16 Not used in Data Link Layer

D ata Payload 3 6 8 -1 2 0 0 0 4 6 - 1 5 0 0 bytes

Fram e Check

S eq u en ce
32 32 bit Cyclic R edundancy Check

Table 3.1 Ethernet frame.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 29

Each frame has a source and destination address, both of which are identified in the

frame's header. A frame placed on the bus eventually propagates to all nodes. Ethernet

also has limited message broadcast capability in that all frames with a destination of

zero are processed by all receiving nodes.

Carrier Sense Multiple Access/Collision Detect (CSMA/CD) scheme is implemented to

manage bus arbitration and simultaneous demands on the network. Carrier sense (CS)

describes the fact that a transmitter listens for the presence of a carrier wave signal

before attempting to transmit a frame onto the bus. If a carrier is sensed, the node waits

for the transmission in progress to finish before initiating its own transmission. Multiple

access (MA) means that multiple nodes can transmit and receive data on the same bus.

CSMA/CD is a layer 2 protocol in the OSI model.

Collision detection (CD) is used to enhance CSMA performance by terminating

transmission as soon as a collision is detected. If two nodes transmit a frame

simultaneously, an abnormal voltage will be present on the bus. Both nodes detect this

collision at the end of a message transmission (Baker 2003) and “back-off’ for a

random period before retransmitting. Neither node has priority, so the first node to

retransmit gains control o f the bus. If the messages transmitted by the nodes collide

again or collide with a message transmitted by a third node, there will be further delay.

Every time a transmission fails, back-off times are increased using a truncated binary

exponential back-off algorithm. These delays account for part of the overall system

latency and this non-deterministic component in the bus architecture, is impossible to

compensate for it at higher software levels. A well managed Ethernet network must be

operated well below full capacity, to reduce the chance of such collisions. Even so there

will always be an inherent, non-deterministic time delay (latency) component in system

communications which has a relationship to the number of nodes on the bus, the back

off algorithm and amount of traffic on the bus at a given time. Since the original

colliding messages are destroyed, this situation is called destructive arbitration.

3.1.5.3 Ethernet Error Detection and Handling

A CRC-32 (G(x) = x 32 + x26 + x23 + x22 + x16 + x 12 + x11 + x 10 + x8 + x7 + x5 + x4 + x2 +

x1 + x°) is added to the end o f the frame to provide error detection in the event of

Architecture for Grid-Enabled Instrumentation in Extreme Environments 30

transmission collisions occurring. Any frame with an invalid CRC is discarded by the

receiver without further processing. This CRC exhibits very poor error detection

properties in terms of Hamming distance per given block size. Error handling at the data

link level is limited to detection of bit errors in the physical medium, and the detection

and recovery from collisions. Provision of a complete error control mechanism is

relegated to higher network layers (Ethernet Specification 1980).

Ethernet only provides “best effort delivery” of frames (Ethernet Specification 1980).

This means that the network does not provide any guarantee that data is delivered or

that a user achieves a certain quality o f service or priority. Features such as recovery of

lost or corrupted data are not implemented so that the network can operate more

efficiently and make nodes inexpensive. To be more specific, the data link layer

protocol does not provide any mechanism to recover corrupted frames which will be

lost if they collide with one another or if the bus is subjected to sporadic bursts of

electrical noise. It is up to the high-level protocol that is sending data over the network

to ensure that frames are correctly received at the destination node.

Strengths

• Very high data throughput

• Variable frame size

• Standardised protocol

• Excellent noise tolerance and immunity.

Weaknesses

• Complex higher layer protocol.

• No real-time performance.

• High power consumption.

• Data collisions are destructive.

• A weak CRC-32 polynomial is used to protect the data payload.

3.1.6 CAN

The demands placed on a bus in a machine control environment are different from

office networks, where Ethernet predominates. Certain activities require short,

Architecture for Grid-Enabled Instrumentation in Extreme Environments 31

guaranteed, deterministic latencies e.g. communication between a sensor and actuator

node in a control loop. The Ethernet data link protocol provides no support for priority

node operation (Ethernet Specification 1980) and it is therefore not possible of use it for

such purposes. However, CAN fieldbus was developed specifically as an industrial

network system for real-time distributed control and is widely used for this type of

application.

CAN bus was originally conceptualised by Robert Bosch GmbH, Germany in 1986

(Bosch 1991) when they were requested to design a robust serial communication system

between three electronic control units (ECUs) in vehicles by Mercedes. The CAN

protocol became an ISO standard (ISO 11898) for serial data communication and now

dominates the European automotive industry with manufacturers in the U.S. beginning

to adopt it. CAN bus has also gained widespread popularity in industrial automation,

aerospace (Stock 1998), medical equipment and marine instrumentation where it has led

to a significant reduction in wiring loom weight and complexity (Fredriksson 1994).

3.1.6.1 CAN Physical Laver

It is possible to implement CAN bus on several different types of physical layers; the

most common one is defined by the CAN standard, part ISO 11898-2. This is a

balanced (differential) 2-wire interface (Richards 2002) running over either a shielded

twisted pair (STP), unshielded twisted pair (UTP). For the physical layer, a twisted pair

multi-drop cable is specified with a length ranging from 1,000m at 40Kbps to 40m at

1Mbps. The bus must be terminated with a single resistor at each end, which works as a

load for the open-coHector transceivers. Also, at higher data rates and longer cable

lengths the resistor is required to minimise signal reflections (Richards 2002). Without

termination resistors, fast driver edges can cause multiple reflections causing data

corruption. Termination resistors also reduce electrical noise sensitivity due to the lower

impedance. The value of each termination resistor is equal to the cable impedance

(typically, 120G for twisted pairs).

When the data transfer rate is kept below 125Kbps, the bus has some degree of fault

tolerance, so that signaling can continue even if one bus wire is cut or shorted to ground

or the power supply rail. The motivation for this design is that the bus may continue to

Architecture for Grid-Enabled Instrumentation in Extreme Environments 32

operate after a car crash has severed one of the lines. In this mode, noise tolerance is

reduced. Each node continues to monitor the faulty line and will resume dual-wire

operation if the fault condition is removed. In mission critical, aerospace and satellite

applications, fault tolerance and reliability are paramount. Fail-safe operation and

system redundancy are achieved with an architecture consisting of a secondary CAN

bus connected in parallel with the primary bus (Stock, 1998).

CAN bus has excellent noise tolerance and immunity. Information is carried on the bus

as a voltage difference between the two lines. If both lines are at the same voltage, the

signal is a recessive bit. If the CAN H line is higher than the CANJL line by 0.9V, the

signal line is a dominant bit. There's no independent ground reference point for these

two lines (Richards, 2002). The bus is therefore immune to any ground noise, which in a

vehicle can be considerable. The signals on the two CAN lines will both be subject to

the same electromagnetic influences, and so the difference in voltages between the two

lines will not vary. Because of this, the bus is also immune to electromagnetic

interference.

3.1.6.2 CAN Protocol

CAN communication is based on a carrier sense multiple access/bitwise arbitration

(CSMA/BA) scheme. Every bit transmitted on the bus is defined as recessive or

dominant (maps to logic T or '0'). All nodes can monitor the bus (carrier sense) and

transmit at the same time (multiple access). If more than one node is transmitting, the

result will carry a dominant bit if at least one node is transmitting a dominant bit. When

a node transmits a dominant bit, it will see a dominant bit on the bus. In this case, the

node will not know if another was attempting to transmit. If a node transmits a recessive

bit, but senses a dominant bit then the node knows that someone else is on the bus.

The smart part of CAN bus arbitration is the first node's decision to “back-off’ if

another node transmits a dominant bit the first time the first node sends a recessive bit

(bitwise arbitration). The identifier is the first part of the message transmitted; by the

time the identifier has been sent, all nodes bar one will have backed off. The message

identifier is called the arbitration field because it decides which messages get priority.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 33

All nodes transmit a single, dominant bit when starting a message; start o f message

(SOM) bit. Listening nodes see bus activity and do not attempt to start a transmission

until the current packet is complete. So the only possibility for collision is between

nodes that simultaneously send an SOM bit. These nodes will remain synchronized for

the duration o f the packet or until all but one of them backs-off. After the SOM bit, the

arbitration field is transmitted. The “winning” node will always be the one with the

arbitration field of the highest value, because it's the one that will transmit a dominant

bit first, while the other nodes are transmitting recessive bits. The numerical value o f the

arbitration field can be considered to be the message priority.

This is non-destructive bus arbitration, since the highest priority message is not

destroyed. The transmitting node doesn't even know that a collision occurred. The only

mechanism for a node to detect a collision is if it senses a different logic level on the

bus from what it transmitted. So the successful node and any other listening nodes never

see any evidence of a collision on the bus. Non-destructive bus arbitration occurs

without corruption or delay o f the higher priority message. The highest priority message

always gets through, but at the expense o f the lower-priority messages.

If a number of nodes clash, one will win out. After that message has completed, all o f

the “losers” will try again. In this second round, the next highest value arbitration field

will win out, and the process will repeat. There's nothing to stop the highest value

arbitration field from being transmitted again. This is similar to the situation in a pre

emptive real-time kernel where a high priority task could choose to run continuously

and thereby prevent some lower priority tasks from completing their work. In both

cases, it would be bad design to lock out lower priorities in this way, but it's important

to realise that the CAN bus doesn't prevent this scenario. It is the responsibility o f the

system designer to ensure that no one message type monopolises the bus.

The arbitration field may be eleven or twenty-nine bits long, depending on whether the

standard or extended messaging protocol is used. The first few bits are used for message

priority and the remaining bits for identifying the message type. The CAN standard does

not associate any meaning with those bits, but the many higher level protocols that sit

on top of CAN do define them. For example, the J1939 standard allows one portion of

the bits to represent a destination address, since the CAN protocol itself specifies a

Architecture for Grid-Enabled Instrumentation in Extreme Environments 34

source address for all packets, but doesn't mandate a destination address. This is quite

reasonable since much of the traffic on an automotive bus consists of broadcasts of

measured information, which isn't destined for one specific node.

Like Ethernet, CAN is a message (or frame) based protocol [see table 3.2]. Embedded

in the CAN frame itself is both the priority and the contents of the data being

transmitted. All nodes in the system receive all frames broadcast on the bus and

acknowledge if the frame was properly received. Each node in the system determines

whether the frame received should be immediately discarded or stored for processing at

a later time. A single frame could be destined for one particular node to receive, or

many nodes based on the network and system implementation. For example, an

automotive airbag sensor can be connected via CAN to a safety system router node

only. This router node takes in other safety system information and routes it to all other

nodes on the safety system network. Then all the other nodes on the safety system

network can receive the latest airbag sensor information from the router at the same

time, acknowledge if the frame was received properly, and decide whether to act on this

information or discard it.

Length
Field name

(bits)

Start-of-fram e 1

Identifier 11

R em ote transm ission request (RTR) 1

Identifier extension bit (IDE) 1

R eserved bit (rO) 1

D ata length code (DLC) 4

D ata Payload 0-64

CRC 15

CRC delimiter 1

ACK slot 1

ACK delimiter 1

E n d -o f-fram e(E O F) 7

Description

D enotes the start of fram e transm ission

A (unique) identifier for the data

Must be dom inant (0)

1 Must be dom inant (0)

R eserved bit (it m ust be se t to dom inant (0), but

accep ted a s either dom inant or recessive)

Num ber of bytes of d a ta (0-8 bytes)

Data to be transm itted (length dictated by DLC

field)

Cyclic redundancy check

Must be recessive (1)

Transm itter se n d s recessive (1) and any receiver

can a s se r t a dom inant (0)

Must be recessive (1)

M ust b e r e c e s s iv e (1)

Table 3.2 CAN frame.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 35

CAN protocol also allows a node to request information from other nodes (Gamiz et al.

2003). This is called a remote transmit request (RTR) where the node transmits a

specific request for data to be sent to it. For example, a safety system in a car gets

frequent updates from critical sensors like the airbags, but it may not receive frequent

updates from other sensors like the oil pressure sensor or the low battery sensor to check

they are functioning properly. The safety system can periodically request data from

these other sensors to perform a built in self test (BIST). The system designer can utilise

this feature to minimise bus traffic while still maintaining network integrity.

One additional benefit of this frame based protocol is that new nodes can be connected

to the grid without the necessity to reconfigure other nodes to recognize this addition.

This new node will start receiving messages from the grid and, based on the message

ID, decide whether to process or discard the received information.

3.1.6.3 Deterministic Latency

Latency for a single message transmission is in the order o f 300ps for an Ethernet

network operating optimally, i.e. below full capacity. This figure increases non-linearly

as the amount of available bandwidth on the bus decreases (Cheshire 1996). On the

other hand CAN messages have a predictable maximum latency time which is because

it detects message collisions at the beginning of the transmission and systematically

resolves them (Baker 2003). A trigger message with no data and the highest priority can

have a maximum latency time o f 54ps on the bus if IMb/s transfer rate is used

(Fredriksson 2000).

CANs real-time properties are analogous to those of a pre-emptive real-time kernel. In

each case, the objective is to ensure the high priority work gets completed as soon as

possible. It's still possible to miss a hard real-time deadline; however a high priority job

should never miss its deadline because it was waiting for a low priority task to

complete.

Practical investigations of CAN bus have been performed to ascertain its worst-case

latency in-situ i.e. in a real machine system (Gamiz 2003). These investigations are of

value to the system designer in the development phase o f a project. Also computer

simulations have been made of CAN and Ethernet to compare and evaluate the

Architecture for Grid-Enabled Instrumentation in Extreme Environments 36

performance of Ethernet as an embedded communication network (Hendry 1999) in

softer real-time applications. The results predict that an Ethernet networks average

latency is actually shorter than CAN. This is entirely down to the fact that the data

transfer rate of Ethernet is more than a magnitude greater than that of CAN.

3.1.6.4 Fault Tolerance

CAN provides a number of fault tolerance mechanisms. One is the inclusion of a 2-bit

acknowledgment field. During the acknowledgment time after each packet is sent, the

transmitter sends a recessive bit while any receivers send a dominant bit. The

transmitter can thus determine that at least one node has received the packet. This

prevents a disconnected node from continuing its transmission, when there is no one

listening.

CAN nodes have the ability to determine fault conditions and transition to another

operating mode depending on the severity o f the problem. They are able to recognise

the differences between short-term disturbances and permanent failures and modify

their behaviour accordingly. CAN nodes are capable of transitioning from normal mode

(transmitting and receiving messages) to shutting down completely based on the

severity of the errors detected. This is known as fault confinement and it prevents faulty

nodes from monopolising the bandwidth on the network (Pazul 1999). It is therefore

possible for the HLP layer to exercise control over the node and prevent it from

becoming a “babbling idiot*’ (Bell 2002).

3.1.6.5 CAN Error Detection and Handling

CAN is high reliability, with the chance of an undetected error being calculated at less

than 4.7 x 10'11 (Bosch, 1991), which equates to one error every 1000 years. This is

partly because a frame consists of a small data payload (8 data bytes maximum)

protected by a strong CRC-15 (G(x) = x15 + x14 + x10 + x8 + x7 + x4 + x3 + x°). This

guarantees a Hamming bit length of 6 (Kooperman 2004), meaning that up to 5

consecutive corrupted bits can be detected by any node on the bus. In an evaluation of

CAN SAE J1939 conducted by the US National Highway Safety Administration, no

failures were recorded in 71 million transmissions during a 4000Km trip, despite the bus

being purposefully loaded to capacity (Marsh 2000).

Architecture for Grid-Enabled Instrumentation in Extreme Environments 37

Strengths

• Very high reliability.

• Excellent noise tolerance and immunity.

• Reasonably high data throughput.

• Real-time performance - prioritised messages with deterministic latency.

• Low and micro power capability with standby and sleep modes for transceiver

and controller hardware.

• CAN controller devices provide an efficient and simple hardware

implementation of the physical and data link layer transport scheme.

• Data payload is protected by a strong CRC-15 polynomial.

• CAN is message based. All nodes receive all frame broadcasts.

Weaknesses

• Fixed frame size

3.1.7 Conclusion

USB is ubiquitous with computer peripheral connectivity and was therefore considered

desirable for this application because of its pervasiveness, as well as “plug-and play”

capabilities. However, the data link layer and protocol were originally developed for the

purpose o f replacing the ISA and PCI backplane in computers in the home/office

environment, i.e. not intended for use in the field. The electrical characteristics o f the

physical bus and checksum strength reflect this. Additionally, it is a polled bus that

exhibits the fundamental weakness of being a centralised topology.

Ethernet, although capable o f huge data through-put, does not support any kind of real

time performance and provides no guarantee that data will be reliably transferred

between nodes, only best effort of delivery (Intel and Zerox Digital. 1980). Finally, in

its 1 OBase-T configuration it requires a central hub.

Within the spectrum of bus networks, CAN lies somewhere between multi-point RS-

485 and Ethernet communication systems. Unlike RS-485 which leaves timing and

protocols to the system developer, CAN handles these details in neatly and cleanly in

hardware, reducing development time and code complexity. And unlike Ethernet which

Architecture for Grid-Enabled Instrumentation in Extreme Environments 38

requires the huge overhead of a complex, multi-layer protocol such as TCP/IP, the CAN

protocol provides a simple transport scheme. There are numerous commercial low-

power CAN controller devices available that implement this transport scheme in silicon.

They are ideally suited for this type of embedded systems application where processor

resources and battery power are at a premium.

The CAN protocol is optimised for systems that need to transfer data reliably between

nodes connected on the bus (Stanczyk 2002). The CSMA/BA mechanism ensures that

nodes have equal opportunity to gain access to the bus and packet collisions are handled

efficiently and is transparent to the upper protocol layers. Efficient, robust message

transfer with fault confinement is also a big plus for CAN because faulty nodes will

automatically drop off the bus and no single node can bring the network down. This

guarantees bandwidth will always be available for critical messages to be transmitted.

Since the protocol is message-based, not address based, all nodes on the network

receive all messages and acknowledge all messages, regardless o f whether in needs the

data or not. This allows the CAN to operate in node-to-node or broadcast messaging

formats without having to send different types of messages. CAN is an event-driven

protocol, which means there are no restrictions imposed on when nodes are allowed to

place messages on the bus. It is concluded that CAN satisfies the requirements for a

reliable, micro-power, homogeneous, peer-to-peer bus architecture on which to base the

communication system.

3.2 Evaluation o f Higher Layer Protocols (HLP) for CAN

A node may be connected to another node or even to the outside world via the CAN

bus. To effectively manage system complexity a HLP is required to handle data

transmission and reception between nodes on the network. The HLP resides on top of

the physical and data link layers outlined in the original CAN specification (Bosch

1991).

The purpose of the HLP is best explained by using the following analogy. Functionality

provided by CAN is similar to Latin letters in human communication. It is the base for

writing a language, but is not enough to enable efficient communication. To specify a

language, a stockpile of words, as well as grammar are required to construct sentences.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 39

A system designer may specify their own CAN based language or choose from one of

the existing, standardised CAN HLPs (Lennartsson and Fredriksson 2005). Returning to

the analogy, the use of a dictionary and grammar is not an effective aid for ordering a

drink in a foreign country. For such simple tasks phrase-books are available. They use a

sub-set of the language and propose pre-defmed sentences for specific situations, e.g. in

a restaurant or hospital. In technical communication systems these phrase-books are

called profiles.

3.2.1 HLP Requirements Outline

The HLP must fully support a decentralised network with “plug-and-play” capabilities

for the nodes. For example, when a node is connected to the system it must have

sufficient intelligence to continuously sense and discover the presence of other nodes

and react appropriately. The ultimate outcome o f this is that the machine system is

capable o f adapting its behaviour in response to external environmental factors. For

example, whilst performing in-situ temperature monitoring, there may be a sudden

increase in the ambient temperature. If this occurs, it may be useful to increase the

sampling rate or perhaps open valves and turn on the pump to acquire a water sample.

Specification requirements for the HLP are shown below:

• Block memory transfers e.g. data file transfer

• Predefined start-up behaviour

• Soft real-time performance

• Plug-and-play capability (dynamically adding/removing nodes to the network)

• Global clock synchronization

• An event scheduler

• Support third-party OEM nodes on the network

• Remote firmware upgrades

• Remote access and control of hardware on the nodes for diagnostics and manual

override.

Since the conception of CAN more than twenty years ago a number of standardised

HLPs have been introduced for use as transport and application layers for use in

Architecture for Grid-Enabled Instrumentation in Extreme Environments 40

embedded system communication networks. The HLP for this application must satisfy

the list o f specification requirements outlined above otherwise a proprietary protocol

will have to be developed instead. Many system designers still insist on “rolling their

own” HLPs (Snowdon 2002; Amer 2002), however this practice should avoided for the

following reasons:

• The proprietary protocol must be extensively documented, otherwise it can only

be used by the people who created it.

• New team members have no other sources for learning other than the in-house

documentation and possibly in-house cross training.

• Incompatibility with HLPs installed on third party OEM modules.

• No third party, off-the-shelf development and test tools are available for the

protocol; they must be developed in the house

For embedded networking applications a standardised HLP is preferred as it avoids the

pitfalls listed above (Olaf 2003). The benefits of adopting a standard HLP include huge

savings in research & development time (Ganssle 1992) and allow the designer to

maintain a degree of system compatibility with other equipment manufacturers (OEMs).

3.2.3 OSI Model Limitations

Many of the CAN HLPs are based on the Open Systems Interconnection (OSI)

Reference Model. It is important to be aware that the OSI model was originally

developed to describe the functionality of communication systems on the basis of a

hierarchically layered architecture (Momut 2000). Its main purpose is to connect two

nodes (clients) with each other so they can exchange information. The full OSI

implementation has fundamental limitations when used for a machine system requiring

reliable, real-time performance because it does not specify how long it takes data to

propagate through the abstraction layers, resulting in a non-deterministic latency. This

means there is no way for the system designer to precisely specify when an event will

occur during the design phase (Fredriksson 1994). By its nature the CAN data link layer

(layer 2) inherently supports multicasting i.e. all nodes receive all messages. Contrast

this to a typical real-world OSI implementation, where TCP/IP is used to connect two

clients in a communication network allowing them to share information. In this case,

Architecture for Grid-Enabled Instrumentation in Extreme Environments 41

point-to-point protocol (PPP) acts as a data link layer to establish a direct connection

(using an address to specify the destination) between two nodes. Such networks are

intended to be accessed by users (unknown at the design phase) during runtime. Not

only does OSI ignore CANs broadcast capability it also means that each node requires

some knowledge about the other nodes connected to the network to perform its function

(Fredriksson 2005). This increases the size and complexity of code embedded on each

node.

What follows is a brief discussion and evaluation of CAN HLPs commonly used in

harsh environments including space, marine, military and industrial process control

applications.

3.2.3 CAL (CAN Application Layer)

CAL was developed in 1993 by Philips Medical Systems and later adopted by the CAN

in Automation (CiA) group. The protocol is based on a three-layer model, specifically

designed for real-time control applications, and provides an application layer,

communication and device profiles that standardise node functionality and system

administration. These layers constitute a collapsed form of the seven-layer OSI model

mapping onto the physical, data link and application layers (Woolever 1999). The

intermediate layers are not needed because a fieldbus network usually consists of a

single network segment only (no need for Transport and Network Layer, layer 3 and 4)

and has no notion of “sessions’* (layer 5) or a need for different internal data

“presentation” (layer 6) (Boferenbrood 2005).

Advantages

• Supports transmission of larger data blocks between CAN devices

• Initialise and monitor nodes

• Protocol is well established and developed

Disadvantages

• Heavy OSI based protocol

Architecture for Grid-Enabled Instrumentation in Extreme Environments 42

3.2.4 CANopen

CANopen was developed in an Esprit project under the guidance of Bosch, and in 1995

the specification was handed over to the CAN in Automation (CiA) international users’

and manufacturers’ group. The communication profile is based on the CAL protocol

(Boferenbrood, 2005) and finds use in medical equipment, off-road vehicles, maritime

electronics, public transportation, building automation, etc.

CANopen specifies an application layer, communication and device profiles. It also

provides communication objects for real-time data (Process Data Objects, PDO),

configuration data (Service Data Objects, SDO), and special functions (time stamp, sync

message, and emergency message) as well as network management data (boot-up

message, NMT message, and error Control). These abstractions free the system designer

from dealing with low level CAN details such as bit-timing and implementation-specific

functions to focus on interchangeability of nodes and their integration into the network.

A full CANopen implementation requires substantial processor resources (40KB-60KB

of code and 600 or more bytes of RAM). A minimal implementation is commercially

available, known as MicroCANopen, which requires as little as 4KB of code and about

170 bytes of RAM. MicroCANopen is well suited for minimal CANopen slaves that are

pre-configured and do not need to be re-configured during operation. A regular

CANopen network would expect the presence o f a CANopen network management

(NMT) master to actually start and monitor the nodes. In deeply embedded applications

where all nodes are pre-configured and know what they need to do, a master might not

be required. MicroCANopen protocol assumes that no master is present and that all

nodes startup automatically after power-up. CAN baud rate, the node ID and all PDO

parameters are defined and hard-coded into the module. This lends itself well to this

application and a COTS (commercial off the shelf) solution is appealing to facilitate

system development and cross-compatibility.

Advantages

• Same advantages as CAL.

• Upon startup, each node transmits a boot-up message and continues to regularly

transmit a heartbeat message in the specified heartbeat time interval.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 43

• Nodes can be pre-configured and therefore no NMT is required during the start

up phase.

• MicroCANopen COTS implementation, tools, and protocol stacks are available.

• Widely adopted, which means it is possible to add COTS OEM nodes to the

machine system.

• No royalties on deployed products.

• Documentation and support.

Disadvantages

• A full CANopen stack implementation and would require a more powerful

microprocessor.

3.2.5 SDS (Smart Distributed System)

SDS was developed by Honeywell as a bus system to facilitate connection of intelligent

sensors and actuators in industrial environments. These transducer nodes feature

advanced device-level functions, system and device diagnostics.

Like CAL and CANopen, SDS is based on a minimal, three-layer OSI reference model

implementation.

Advantages

• Small and effective way to connect small devices to a master controller.

• Master has 100% control of all nodes.

• Well established and widely used.

Disadvantages

• No support for communication between modules without a master PLC (a

centralised topology).

• Limited to 64 nodes and a maximum o f 126 addresses.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 44

3.2.6 CAN Kingdom

The first version o f CAN Kingdom was released by Kvaser in 1991 and the standard is

currently being revised (V4.0). The protocol was developed for machine control

purposes requiring hard real-time performance and high safety demands e.g. industrial

robots, mobile hydraulics, power switchgears, etc.

Can Kingdom separates the system level as far as possible from the node level

(abstraction). This is shortens development time, because it allows nodes to be

developed in parallel by different teams while the system design is still in a very early

stage (Fredriksson 1995). Nodes do not require prior knowledge about the network;

however, a NMT master (the “King” in Can Kingdom terminology) must be present

during configuration phase. During this phase, the “King” node, which contains

complete knowledge about the system, coordinates all node activities. The “King” may

not be involved in runtime communication between working applications in different

nodes and so it is possible to remove it once the network configuration phase is

complete.

CAN Kingdom, DeviceNet and SDS HLPs are discussed in further detail in “CAN HLP

Brief Comparison” (Lemartson and Fredriksson 2005).

Advantages

• The system designer has full access and control of all nodes via the “King”

node.

• The nodes serve the network. No system knowledge is required within any

single node.

• Supports “plug-and-play” capabilities in a safe manner.

• Supports up larger data transfers.

• It is possible to pre-configure nodes and therefore the “King” is not required

during the start-up phase.

• Number of nodes in a system is only limited by the CAN hardware.

• Supports a global clock.

• Full utilisation of the priorities in the CAN protocol for hard real-time control.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 45

• Firmware implementation has a relatively small RAM and ROM footprint

(typically 500-1500 byte code and 24-48 byte RAM), when compared to other

HLPs.

• Nodes designed for some other higher layer protocols can be integrated into a

CAN Kingdom network e.g. SDS and DeviceNet

• Open standard.

3.2.7 CANaerospace

The CANaerospace was developed by Stock Flight Systems (Stock 1998) in Germany

and later standardised by NASA as a next generation general aviation bus within the

Advanced General Aviation Experiments (Agate) program in 2001.

The protocol/data format definition is extremely light and designed for highly reliable

communication between microcomputer-based systems in airborne applications. Its

purpose is to create a standard for applications requiring efficient data flow monitoring

and easy time-frame synchronisation within redundant systems. The definition is kept

open to allow implementation o f user-defined message types and protocols.

CANaerospace has found use in several interesting applications, including the Sunrise

Telescope, a UV telescope for solar observations that circles Antarctica at 35 to 40Km

altitude, hanging from a stratospheric balloon. Also in the Stratospheric Observatory

For Infrared Astronomy (SOFIA), a NASA/DLR program for high altitude infrared

astronomy. It is used in Eurocopter all-weather rescue helicopter and Eurofighter to

network system flight state sensors and cockpit instruments and in Airbus A380 as test

system.

Advantages

• Designed for flight or mission critical applications.

• Presently installed in several aircraft since 1998 and has demonstrated excellent

reliability in a harsh environment.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 46

Disadvantages

• A substantial part of the protocol definition is only relevant to airborne

applications

3.2.8 CAN-SU (CAN for Spaceflight Usage)

CAN for Spaceflight Usage (CAN-SU) is a relatively simple higher layer protocol

developed by Surrey Satellite Technology Limited (SSTL) in England. CAN-SU forces

peer-to-peer addressing and is optimised for telemetry, telecommand and buffer

transfer. It is designed to be scaleable, capable of large volume telemetry and to

facilitate repeat build of spacecraft sub-systems for different missions (Woodroffe

2004).

Nodes are connected with a primary and redundant CAN bus architecture. On power up,

a relay in each node switches to communicate on the primary bus. I f a node does not

receive a CAN message after five minutes, it assumes bus failure and switches to the

redundant bus.

CAN-SU has been tested in LEO (low earth orbit) where it is exposed to radiation levels

in the order of lKrads. SSTL is pushing this technology forward to develop a latch-up

immune, SEU (single event upset) tolerant, 1 OOKrad bus architecture (RadCAN) for use

in GEO (geo-stationary earth orbit). A 300Krad tolerant CAN controller device is also

manufactured by the Atmel Corporation (AT7908E ATMEL CAN Controller for Space

Application 4268B-AERO-10/04, 2004).

A substantial engineering effort has been invested in CAN to create a bus that is capable

of tolerating high radiation levels. This is an essential requirement for any system used

for control and monitoring of nuclear power plants or space applications, such as

satellites. In such environments radiation levels are far above the typical 0.1 rad/year

dose the surface of Earth is exposed and would cause permanent damage to unprotected

electronic components. To survive these conditions, electronic systems must be

radiation hardened using techniques such as silicon oxide or sapphire insulated

substrates, wide band gap substrates, shielding, error correction, redundancy and

watchdog timers.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 47

Advantages

• Forces peer-to-peer addressing by placing the “From ID” in the CAN data field.

This allows the receiving node to know where to acknowledge the request.

• Incorporates buffer transfer scheme to speed up larger data transfers.

• Features a redundant bus.

• Proven track record in extreme environments.

Disadvantages

• Redundant bus increases hardware size and complexity. Also, relays, being

electro-mechanical devices are prone to failure and consume more power.

3.2.9 NMEA 2000

NMEA 2000 was developed by National Marine Electronics Association Committee

(NMEA) in 1990 as data communication standard for ship-board electronic devices. The

NMEA Standards Committee Working Group 2000 decided to use the CAN protocol as

data link layer, and high-speed transceivers according to ISO 11898-2 as physical layer.

The chosen higher-layer protocol is based on J1939 and ISO 11783. Some marine-

specific additions were defined within the NMEA 2000 communication and application

profile specification.

Disadvantages

• HLP is a closed standard.

• Only utilises a small part of CANs functionality.

3.2.10 Conclusion

Since the conception o f CAN bus, over twenty years ago, there has been a requirement

for an open HLP that would enable any node to be seamlessly integrated into a system

network. This is reflected by the fact that CAL, J1939, NMEA2000, MilCAN and SDS

protocols are based on either CANopen or DeviceNet, providing profiles and command

sets for a specific application. Today, the CiA are working to further extend the

CANopen standard in order to enable the use of TTCAN hardware within CANopen (an

OSI based HLP) system networks. Kvaser took a more direct approach to avoid the

Architecture for Grid-Enabled Instrumentation in Extreme Environments 48

mismatch caused when imposing the OSI architecture on top of the CAN data link layer

(implemented in hardware) by developing CAN Kingdom.

Both CANopen and Can Kingdom satisfy system requirements for CAN bus real-time

performance for this application. Although CANopen is a widely adopted open

standard, its large protocol stack demands a more powerful microprocessor than is

otherwise necessary. However, the MicroCANopen stack (a minimal CANopen

implementation) is targeted for use on microprocessors with limited RAM and ROM

resources. MicroCANopen also constrains the system designer to pre-configure nodes at

compile time with the additional benefit o f improved system reliability as no NMT

master in required during initialisation and operational phases of the machine system. It

is also possible to pre-configure nodes in this way with CAN Kingdom and avoid the

use of a “King” node.

Having evaluated the available options, the decision was made to utilise

MicroCANopen as an HLP for machine system control. The protocol is light, well

suited for this application and CANopen has been widely adopted in the science and

engineering community (Etschberger 2008; Boferenbrood 2000; Yin 2003). There is

substantial support in terms of documentation and development tools available

(Embedded Systems Academy, Inc. 2008; Vector Informatik GmbH. 2008; National

Instruments 2008). This provides a significant advantage over CAN Kingdom, as

networking compatibility is maintained with more widely available third-party nodes

that adopt this more commonly used and open standard. Finally, MicroCANopen also

allows for possible future upgrade to full CANopen implementation without any

changes to the communication channels.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 49

Chapter 4 CAN and CANopen

With an appropriate bus network technology and higher layer protocol definition in

place, it is possible move forward and develop a communication system based on a grid

paradigm. This chapter gives a detailed explanation of how the low-level CAN

controller hardware is configured and the measures taken to ensure it operates to

maintain a safe, reliable and transparent communication link between nodes in the

system network. It then goes on to describe which aspects of MicroCANopen, a

minimal implementation of CANopen protocol, are leveraged in this deeply embedded

application. The purpose is to demonstrate the feasibility of building a machine system

where functionality is distributed evenly and homogeneously across many low-

performance microprocessors on the network. This eliminates the fundamental

weakness of a central controller unit, which is a single point of failure.

4.1 CAN Hardware Configuration

4.1.1 Bus Length

Configuring CAN controller hardware is not an arbitrary process. The final performance

reliability o f the system network is limited by component tolerances that affect bit

timing. For example, the maximum allowable bus length will be reduced if oscillators of

low accuracy or poor stability are used. Conversely, if maximum bus length is desired,

the oscillator tolerances must be minimised. Data rates must also be considered because

this third variable determines maximum bus length and maximum allowable oscillator

tolerances.

Chapter 3 outlined how the CAN protocol is based on a non-destructive bitwise

arbitration scheme so that multiple nodes are able to arbitrate for control of the network.

This means it is necessary for all the nodes to detect and sample the bits within the same

bit time. The relationship between propagation delay and oscillator tolerance can limit

both the data rate and the bus length (Richards 2001). Table 4.1 shows a selection of

commonly accepted bus lengths versus data rates.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 50

Bit Rate (Kb/s) Bus Length (m)

1000 30

500 100

250 250

125 500

62.5 1000

Table 4.1 Data rate verses bus length.

The anticipated data traffic on the bus network for this control application is light and

the nodes are located in close physical proximity to one another as they are mounted in

a frame system that can be deployed by an ROV or manned submersible. This relaxes

the network specification requirements somewhat, so that a nominal bit rate of 125 Kb/s

and a total bus length of less than 3 m are considered more than adequate for this

application.

4.1.2 Oscillator Tolerance

The bit timing for each node in the system network is derived from a surface mount

ceramic resonator (foSC = 1 6 MHz). In this situation, non-ideal resonator performance

causes phase shifting and consequently drift will occur between nodes. The initial

frequency accuracy o f the resonator has to be considered as well as its long term and

temperature stability to ensure it satisfied the CAN specification. The specification

stipulates a worst-case oscillator tolerance of 1.58% (Bosch 1991) which must be

conformed to for consistent, reliable communication between nodes. The manufacturer

of this resonator (AVX Corp.) specifies an initial frequency accuracy tolerance of

±0.5% at a temperature of 25°C (Elliot 1995). It therefore follows that the maximum

possible combined percentage deviation between two different resonators on the

network will be a total of 1.0%. In addition to the frequency tolerance temperature

stability quoted as being ±0.3% (deviation is a maximum of 0.6% between two

individual resonators) over a temperature range of -20°C to ±80°C. These two figures

are added to yield the maximum theoretical deviation from the initial oscillation

frequency,

Oscillator tolerance = frequency accuracy + temperature stability

= 0.5 + 0.3 = 0.8% (' 4 ' 1 '>

Also,

foscMin = 16M H z - (16MHz • 0.8 /100) = 15.872MHz, (4.2)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 51

And,

foscMax = 16 MHz + (16 MHz -0.8 /100) = 16.128 MHz, (4.3)

, where f OScMm and f OScMax are the minimum and maximum deviations of frequency from

the specified resonator frequency.

The graph in figure 4.1 shows the resonator’s temperature stability characteristics (Elliot

1995) and indicates that it will remain within the required tolerances for reliable

performance in this application.

Frequency
deviation

-0.2 -

-0.4

-0 .6 -

-40 -20 0 20 40 60 80 100 120
Tem oerature. °C

Figure 4.1 Temperature stability characteristics o f CAN controller
hardware surface mount resonator (reference temperature = 25°C).

4.1.3 Bit Timing

For communication to occur, all nodes the network must be configured to transmit and

receive serial data at the same nominal bit rate. The CAN protocol uses non-return to

zero (NRZ) coding where a logic ‘1’ bit is represents a high value and a logic ‘0’

represents a low value. As no clock signal is encoded within the data stream, it is

possible that long sequences of consecutive bits with the same value may occur (i.e.

because there is no logic transition, there is no edge) making it difficult for the receiving

node to synchronise to the transmitter clock frequency and successfully decode the

incoming data. Also, oscillator frequencies and transmission time can vary from node to

node, causing phase distortion and signal skew, so the receiver must have some type of

Phase Lock Loop (PLL) that responds to both the frequency and the phase o f the input

signals, automatically raising or lowering the frequency o f the receiver oscillator until it

is matched to the transmitter in both frequency and phase. Finally, since the data is NRZ

Architecture for Grid-Enabled Instrumentation in Extreme Environments 52

coded, it is necessary to include bit stuffing to ensure that an edge occurs at least every

six bit times, so that the PLL can maintain this synchronisation.

The CAN controller hardware implements a DPLL that is configured to provide

nominal timing and synchronise to the incoming serial data stream. The DPLL

decomposes each bit time into multiple segments made up of minimal periods of time

called the time quanta. Bus timing functions executed within the bit time frame, such as

synchronisation to the local oscillator, network transmission delay compensation, and

sample point positioning, are defined by the programmable bit timing logic of the

DPLL. The nominal bit rate is the number of bits transmitted per second assuming an

ideal transmitter with an ideal oscillator, in the absence of resynchronisation. The CAN

standard states the maximum allowable nominal bit rate i f bit) is IMb/s.

4.1.4 Programming Time Segments

The nominal bit time can be considered as being made up from non-overlapping

discrete time segments as shown in figure 4.2 below.

<-- 1 Bit T im e--

[Sync Propagation Segment * Phase Segment 1 .: Phase Segment 2

i i i i i i i i I i I i | i i i
Sample Point

Figure 4.2 Bit time partitioning.

The time segments are divided into the following component segments:

4.1.4.1 Synchronisation Segment

The length of this segment is always 1 TQ. If there is a bit state change between the

previous bit and the current bit, then the bus state change is expected to occur within

this segment by the receiving nodes.

4.1.4.2 Propagation Segment

The phase buffer segment is used to compensate for physical delays within the network,

i.e. signal propagation time on the bus line and the internal delay times of the nodes.

This segment may be 1 to 8 TQ long. The system propagation delay (tpr0p) is calculated

as being the signal’s roundtrip on the bus network (tbus), the input comparator delay

(tem p), and the output driver delay (td rv)- All the nodes in the system have similar

Architecture for Grid-Enabled Instrumentation in Extreme Environments 53

component delays, so the propagation delay can be expressed mathematically in the

following formula,

prop 2 * (t b Us "P te m p td r v) (4.4)

The typical propagation delay expected from a bus cable (hus) is in the order of 5 ns/m

(Burr-Brown Products, SN65HVD230 3.3V CAN Transceivers SLOS346E, 2001). The

output and driver delays can be deduced from the fragment of the CAN transceiver data

sheet shown below

Parameter Description Min Typ Max

tPLH Propagation delay time, low-to-high-level output - 35 ns 85 ns

tpHL Propagation delay time, high-to-low-level output - 70 ns 120 ns

tsk(p) Pulse skew (tpHL - tpw) - 35 ns -

tr Differential output signal rise time 25 ns 50 ns 100 ns

tf Differential output signal fall time 40 ns 55 ns 80 ns

Note: CL = 50 pF, RL = 6 0 0

Table 4.2 Driver switching characteristics.

Given a bus length of 3 m, tbus = 3 • 5 = 15 ns. Also, from the transceiver device data,

the worst case propagation delay for is during a logic ‘1’ to ‘O’ transition setting, tdrv —

70 nS and the comparator delay, tdrv = 55 ns, so

tprop = 2 • (15 + 70 + 55) = 280 ns (4.5)

4.1.4.3 Phase Buffer Segments

The phase buffer segments are used to compensate for edge phase errors on the bus.

Phase segment 1 can be lengthened and phase segment 2 can be shortened by the

resynchronisation process to optimally locate the sampling point of the received bit

within the nominal bit time. The sampling point occurs at the end of phase segment 1.

Phase segment 1 is programmable from 1 TQ to 8TQ in duration. Phase segment 2

provides delay before the next transmitted data transition and is also programmable

from 1 TQ to 8 TQ in duration, or it may be defined to be equal to the greater of phase

segment 1 or the Information Processing Time (IPT).

The nominal bit time can be defined as:

T bit tsyncSegment tpropSegent tphaseSegmentl tpbaseSegmentl (4.6)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 54

These time segments can be further decomposed into discrete units of time called time

quanta (TQ). The length of each time quantum is based on the oscillator period (tosc).

The base TQ equals twice the oscillator period. The TQ length equals one TQ Clock

period (hrpdk), which is configured through a programmable baud rate prescaler

(Richards 2001). This is described by the following equation:

TQ = 2 • (BRP + 1) • = 2 • (BRP+ 1) / f osc, (4.7)

, where BRP is the prescaler, a binary value represented by the CNF1.BRP<5:0>

register in the controller hardware (see page 39 MCP2510 Datasheet). The nominal bit

time (tbn) for this application is defined as:

Thu = 1 / fbu = 1 /125000 = 8 us, (4.8)

Also

Tosc = 1 /fosc - 1/16,000,000 = 0.0625 ps, (4.9)

, where f osc is the resonator frequency (16 MHz).

Setting BRP to 3 (CNF1.BRP<5:0> binary value = ObOOOOl 1 = 0x03) gives:

TQ = 2 • (3 + 1) • 0.0625 = 0.5 (4.10)

The lengths of the time segments are set to the following values:

Synchronisation Segment = 1 TQ (time quantum)

Propagation Segment = 7 TQ

Phase Segment 1 = 4 TQ

Phase Segment 2 = 4 TQ

From Eq. (4.6) the total duration of one bit is calculated as:

Tbn = TQ • (Synchronisation Segment + Propagation Segment

+ Phase Segment 1 + Phase Segment 2) (4.11)

= 0.5 * (1 + 7 + 4 +4) = 8 ps

It can be seen that this value for tbn agrees with that from Eq. (4.2) confirming that the

hardware is configured for correct operation.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 55

4.1.5 Sample Point

The sample point is the point of time at which the bus level is read and value o f the

received bit is determined. If the bit timing is slow (i.e. the bit rate is low) and contains

many TQ, it is possible to specify multiple sampling of the bus line at the sample point.

The value o f the received bit is determined to be the value of the majority decision of

three values. The three samples are taken at the sample point, and twice before with a

time of TQ / 2 between each sample. The sampling of the bit takes place at

approximately 70-80% of the bit time. In this case:

Sampling point = 100 -100 • Phase Segment 2 / (Synchronisation

Segment + Propagation Segment + Phase Segment

1 + Phase Segment 2)

= 100- 1 0 0 -4 /(1 + 7 + 4 + 4) = 75%

The Information Processing Time (IPT) is the time segment, starting at the sample

point, that is reserved for calculation of the subsequent bit level. The CAN specification

(Bosch 1991) defines this time to be less than or equal to 2 TQ. The CAN controller

hardware defines this time to be 2 TQ. Thus, phase segment 2 must be at least 2 TQ

long.

4.1.6 Synchronisation

To compensate for the resonator frequency drift between nodes on the network, the

CAN controller hardware must be able to synchronise to the relevant edge of the

incoming signal to ensure an incoming message is decoded correctly. This

synchronisation is achieved using two different mechanisms.

4.1.6.1 Hard Synchronisation

Hard synchronisation is performed only when there is a recessive to dominant edge

transition (logic ‘1’ to ‘0’) during a bus idle condition, indicating the start of frame

(SOF). The bit timing counter is reset to force the edge to lie within the synchronisation

segment. At this point, all o f the receivers are synchronised to the transmitter. Hard

synchronisation occurs only once during a message. Also, resynchronisation may not

occur during the same bit time (SOF) that hard synchronisation occurred.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 56

4.1.6.2 Resvnchronisation

Resynchronisation allows a receiver node to maintain the initial synchronisation that

was established by the hard synchronisation. Without this, receiving nodes can get out

of synchronisation due to oscillator frequency drift between nodes. Resynchronisation is

achieved by the DPLL which compares the actual position of a recessive-to-dominant

edge on the bus to the position of the expected edge (within the synchronisation

segment) and adjusting the bit time as necessary. As a result of resynchronisation, phase

segment 1 may be lengthened or phase segment 2 may be shortened. The amount of

lengthening or shortening of the phase buffer segments has an upper bound given by the

Synchronization Jump Width (SJW). The value of the SJW will be added to phase

segment 1 or subtracted from phase segment 2. The SJW represents the loop filtering of

the DPLL. The SJW is programmable between 1 TQ and 4 TQ.

Clocking information will only be derived from recessive to dominant transitions. The

property that only a fixed maximum number of successive bits have the same value

ensures resynchronisation to the bit stream during a frame. The phase error of an edge is

given by the position of the edge relative to synchronisation segment, measured in TQ

(Microchip MCP2510 Data Sheet, 1999).

For typical applications an SJW of 1 TQ is used, however if resonator frequencies of

different nodes on the network is inaccurate or unstable a larger value may be required.

Given that Eq. (4.1) calculates the selected resonator tolerance at 0.8% and from Eq.

(4.2) the nominal bit rate is 8 ps then the allowable minimum SJW can be calculated

using the following formula:

10t(bi,A) > 10t(bUB) + tsj\Y(B). (4.13)

, where tburs) = bit time of node “A” and tsjw(n) = SJW of node “A”.

The oscillator tolerance between the slowest node and the fastest node is used to

determine the minimum SJW. The equation assumes that node A is the slow node

(longest bit time) and node B is the fast node (shortest bit time). The bit-stuffing rule

guarantees that no more than five like bits in a row will be transmitted during a message

frame. The only exception is at the end of the message that includes ten recessive bits

(one ACK delimiter, seven end-of-frame bits, and three inter-frame space bits). Eq.

Architecture for Grid-Enabled instrumentation in Extreme Environments 57

(4.6) is derived from the fact that resynchronisation only occurs on recessive-to-

dominant edges which implies that there can be a maximum of ten bits between

resynchronisation due to bit stuffing (Richards 2001).

From Eq. (4.8), the nominal bit time for the two nodes A and B is 8 ps and from Eq.

(4.1), the resonator tolerance is 0.8%, the worst case difference in nominal bit times for

the nodes can be determined as follows:

tbit(A) = 8 + (8 - 0.8/100) = 8.064 gis, (4.14)

And

tbu(B) = 8 - (8 • 0.8/100) = 7.936 /j s (4.15)

Given that each bit is composed of 16 time quanta

TQ(a) = 8.064 /1 6 = 504 ns

and

TQ<bj = 7.936/16 = 496 ns

Rearranging Eq. (4.13) gives:

tsjw(B) > 10t(bitA) -10t(buB) = 10* 504 — 10 • 496 = 80 ns (4.18)

The number of time quanta in the synchronisation jump width is calculated as:

T Q s j w ~ tsjw(B) / TQ(B) = 80 / 496 = 0.16 — 1 TO (4-19)

Confirming that reliable data transfer for this application is satisfied by implementing

basic SJW resynchronisation.

4.1.7 Transmit and Receive Buffers

The CAN controller hardware contains three transmit and two receive buffers [see

figure 4.3]. Each of the transmit buffers occupies 14 bytes of SRAM and they are

mapped into the hardware memory. Five bytes are used to hold the standard and

extended identifiers and other message arbitration information. A further eight bytes

contain the data payload of the message to be transmitted. The two receive buffers have

(4.16)

(4.17)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 58

multiple acceptance filters and there is also a separate message assembly buffer (MAB)

which functions as a further receive buffer.

The hardware acceptance filters are typically configured to pre-select which messages

will be allowed into the receive buffers RXBO or RXB1 (Richards 2001). The low

bandwidth requirements for this project make it feasible to utilise just one receive (and

one transmit) buffer, therefore keeping firmware complexity and size to a minimum. In

this case, the control register bits are cleared, which ensures that the node receives all

messages in RXBO (RXB1 is not used). Transmit buffer TXBO is used to hold all

outgoing messages.

Buffers
jAocestartce Mas*
! RXMt

I Acceptance Fihe;
! RXF2

TXBO

=«i Iesse £
.

* 7 ____ JT i
* » t

Message
Queue
Control

TS / 7 < y

- Transmit Byte Sequencer

Acceptance Mask
RXMO

! A? ceplatx-e m S
S RXF3

Acceptance Filter
RXFO

 Acceptance Filter
RXF1

C3L

f Acceptance FSS? I
I _ _ RXF4 f

f Acceptance Fate? j
! Rxrs 1

■NT
Z \

Protocol Engine
I z

Transmit<7:0>

Shift<14:0>
{Transmit<5:0>, Receive<8:0>}-

I IE
Receive<7:0> V-

Comparator

D—1

Receive L ^ R E C
Error f V

Counter \ XEC

Transmit
Error

Counter

T
BitTransmit

Logic Timing
Logic

‘

—» ErrPas
BusOff

Protocot I
Finite j
State i

Machine i

Clock
Generator

1
Configuration

Registers

Figure 4.3 CAN Buffers and Protocol Engine.

4.1.8 E rror Detection Mechanisms

The CAN controller hardware within each node fully implements a data link layer

protocol to facilitate reliable data transfer between nodes on the network (physical

layer) and minmise the requirement for error management at the application program

level. There are numerous factors (environmental and intrinsic electrical noise,

radiation, etc) that may cause unreliable data transfer across the network and the CAN

Architecture for Grid-Enabled Instrumentation in Extreme Environments 59

data link layer provides the functional and procedural means to detect and possibly

correct errors that may occur in the physical layer. These mechanisms include cyclic

redundancy check (CRC), flow control, error checking, frame acknowledgments and

retransmission.

In low-level hardware, each node actively monitors the system network and checks the

CRC of every message received. The CRC protects the entire frame from the first bit of

the message identifier up to the last bit of the last data byte, with the calculated 15-bit

checksum being transmitted after the last data bit. All nodes which receive the data

frame calculate its checksum and then compare it with one sent with the frame. If the

checksums match, the acknowledgement bit is set to the dominant state to confirm

successful reception o f the frame. However, if an error is detected by any of the

receiving nodes, regardless of whether the message was meant for it or not, the current

transmission is aborted by transmission of an active error frame from at least one of

these nodes and the message is retransmitted as soon as possible. This mechanism

guarantees that all nodes in “error-active” mode [see figure 4.4] on the network has

received the message correctly because a single mismatch condition would have

destroyed the faulty message.

REC < 127 or REC > 127 or
TEC > 127TEC < 127 REC < 1 2 7 or TEC < 1 2 7

Error

Active

Error

Passive

REC > 127 or TEC > 127

TEC > 255
R eset

Bus

Figure 4.4 CAN Controller Error State Diagram.

Each CAN node is in one of the three error states “error-active”, “error-passive” or

“bus-off’ depending to the value of the internal error counters. The error-active state is

the usual state where the node can transmit messages and active error frames (made of

dominant bits) without any restrictions. In the error-passive state, messages and passive

error frames (made of recessive bits) may be transmitted. The bus-off state makes it

Architecture for Grid-Enabled Instrumentation in Extreme Environments 60

temporarily impossible for the station to participate in the bus communication. During

this state, messages can neither be received nor transmitted.

The CAN controller hardware implements two error counters: the Receive Error

Counter (REC) and the Transmit Error Counter. These are incremented with each error

detected by the node, where the more severe the error, the greater the increment value.

The counters are decremented when a message is successfully received or transmitted.

If either of the two counters reach 127, the node switches into the error-passive state. In

this state, the node can still send and receive messages, however will not actively

destroy message frames on the network. It is possible for the node to self-recover and

autonomously switch back to error-active state if the counters decrement below 127.

If the transmit error counter continues to increment and overflows then the node

switches into the bus-off state forcing the node to shutdown and cease communication,

until the bus-off recovery sequence is received. The bus-off recovery sequence consists

of 128 occurrences of 11 consecutive recessive bits.

The node application program monitors the status of the controller hardware and if the

bus-off state occurs it performs a controlled shutdown of the node systems, so that the

remainder of the machine system can continue to function with minimal impact from

the failed node.

4.2 CANopen Implementation

One of the huge benefits o f a higher layer protocol is the guarantee of interchangeability

between the same type of off-the-shelf devices (or nodes) from different manufacturers.

This ensures interoperability between all devices that comply with this networking

standard, thus simplifying the task of system integration. The documents that constitute

the CANopen device profiles describe in detail how to use CANopen for a particular

type of device, what communication parameters are available and how the object

dictionary is set up (Pfeiffer 2003). Several CANopen services, such as service data

objects, process data objects and network management, are implemented in this project

to support tasks such as data transmission/reception between nodes on the system

Architecture for Grid-Enabled Instrumentation in Extreme Environments 61

network, control the connection procedures and monitor nodes on the network. The

central point o f connection for these communication objects is the Object Dictionary,

which acts as a standard communication interface for every node on the system

network.

A model representation of a node is shown below in figure 4.5 to illustrate the

relationships between the CANopen objects, node sub-systems and how they interface

with the bus network.

Application Program

RTOS

Sub-systems

Object Dictionary

0x0000
0x0001

0x1000

0x2000

0x6000

OxFFFF

c = >

Communication

Service Data
Objects (SDO)

Process Data
Objects (PDO)

Network
Management

(NMT)

CAN Bus

A

V
Figure 4.5 Node model.

4.2.1 The Object Dictionary Concept

All nodes implement their own Object Dictionary which is a table containing node

specific configuration and process data parameters in a standard format. The Object

Dictionary is formal representation of data each node requires to operate and contains

information about:

• Device Type Information

• Error Register

• Heartbeat Consumer Time

• Heartbeat Producer Time

• Identity Object

1. Vendor ID

2. Product Code

3. Revision number

4. Serial Number.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 62

• NMT Startup (autostart)

• Time and Date

• Effluent temperature

• Effluent temperature + heating (flow rate sensing)

• Sea temperature

• Sample rate

• ADC Configuration (gain, buffer and offset)

• Valve Position (inlet, outlet, closed, unknown)

• Pump (on/off)

• Heater (on/off)

• Sensor calibration coefficients

• Sensor calibration formula

• State machine initialisation registers.

The structure o f the Object Dictionary is mapped onto silicon (i.e. non-volatile registers

in FRAM, ADC and RTC hardware) and makes it possible to access all important data,

parameters and functions of a node using a logical addressing system (index, sub-index)

from the "outside", i.e. via the network. An entry in the Object Dictionary is addressed

using a hexadecimal index, which is 16 bits in size, allowing a maximum of OxFFFF

entries. Each entry is further subdivided into a maximum of OxFF sub-entries (8-bit sub

index). Sub-entries are typically used to combine values of the same type, such as with

an array, or to access connected values, such as with a data record. An Object

Dictionary entry therefore has a 24-bit address, made up of the 16-bit index and 8-bit

sub-index. The Object Dictionary can be sub-divided into blocks of 0x1000 entries

each to define standardised regions as shown in the table below.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 63

Index Object

0x0000 Reserved

0x0001 -0x001 F Static data types

0x0020 - 0x003F Complex data types

0x0040-0x005F Manufacturer specific data types

0x0060-0x007F Device profile specific static data types

0x0080 - Ox009F Device profile specific complex data types

OxOOAO - OxOFFF Reserved for future use

0x1000-0x1 FFF Communication entries (specified in DS-301)

0x2000-0x5FFF Manufacturer specific entries

0x6000-0x9FFF Standardised device entries

OxAOOO - OxFFFF Reserved for future use

Table 4.3 CANopen Object Dictionary' overview.

The Object Dictionary allows for structuring of node data (parameter values) as entries

that are referenced through an index/sub-indexing system. Every entry in the object

dictionary can be modified (if write access is permitted) using service data objects

(SDO) or process data objects (PDO). These communication objects allow a node to be

configured and controlled, as an object dictionary entry can also directly represent a

property or a function of the node (e.g. the absolute position of a valve). With read

access to an object dictionary entry, the node returns the parameter value of the entry.

The data type and meaning of the value must be known to the enquirer. For this reason

the object dictionary can also be represented in a standardised textual form, called an

electronic data sheet (EDS), which describes each object dictionary entry with address

index/sub-index), parameter name, data type, access type and default value. Other

advantages include availability tools for checking EDS to ensure CANopen

conformance of the design.

If an entry stores only one data parameter, then only one sub-entry is required at sub

index 0x00, however multiple data parameters are stored in separate sub-entries along

with the highest sub-entry at sub-index 0x00. For example, if index 0x2000 stores a

single 8-bit data parameter then:

Index 0x2000, sub-index 0x00 = 8-bit value

Architecture for Grid-Enabled Instrumentation in Extreme Environments 64

And if index 0x2001 stores two 8-bit values then:

Index 0x2001, sub-index 0x00 = 0x02 (number o f highest sub-entry)

Index 0x2001, sub-index 0x01 = first 8-bit value

Index 0x2001, sub-index 0x02 = second 8-bit value

It is not necessary or practical to develop a node that maintains an entire object

dictionary with all entries. Certain regions of the object dictionary are non-critical and

can be purposefully left out, leaving gaps in the table. For example, the entries with

indexes 0x0000 to OxOFFF are not implemented in this application.

The table below lists the first seven entries from the object dictionary that represent a

small part of the region from 0x0001 to OxOFFF which specifies commonly used data

types. These entries do not store any data parameters, however if physically

implemented in a node; a read operation would return the data size of that data type in

bytes. CANopen also supports definition o f application specific data types and these

would be stored in region 0x0040 to 0x005F.

Index Data Type
Parameter Value

(size in bytes)

0x0001 BOOLEAN 1

0x0002 INTEGER8 1

0x0003 INTEGER16 2

0x0004 INTEGER32 4

0x0005 UNSIGNED8 1

0x0006 UNSIGNED16 2

0x0007 UNSIGNED32 4

Table 4.4 Object Dictionary entries defining data types.

Although the region of the object dictionary that describes data types is not

implemented here, references are made to the data type definitions by entries in the

table beyond 0x1000. These entries are allocated for variable storage where; for

example, if an entry is specified to be of type ‘UNSIGNED8’ then the parameter value

in the corresponding object dictionary field will be 5.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 65

4.2.2 Communication Entries

The communication entries in the object dictionary contain parameter values that

describe most aspects of CANopen communication behavior of the node.

Index Obj ect Name Data type Attribute
0x1000 Variable Device type UNSIGNED32 RO
0x1001 Variable Error register UNSIGNED8 RO
0x1002 Variable Manufacturer status register UNSIGNED32 RO
0x1003 Array Pre-defined error field UNSIGNED32 RW
0x1005 Variable COBID of Sync object UNSIGNED32 RW
0x1006 Variable Communication cycle period UNSIGNED32 RW
0x1007 Variable Synchronous window length UNSIGNED32 RW
0x1008 Variable Device name VISIBLE_STRING CONST
0x1009 Variable Hardware version VISIBLE_STRING CONST
OxlOOA Variable Software version VISIBLE_STRING CONST
OxlOOC Variable Guard time UNSIGNED16 RW
OxlOOD Variable Life time factor UNSIGNED8 RW
0x1010 Array Store parameters UNSIGNED32 RW
0x1011 Array Restore default parameters UNSIGNED32 RW
0x1012 Variable COBID of TimeStamp object UNSIGNED32 RW
0x1013 Variable High resolution time stamp UNSIGNED32 RW
0x1014 Variable COBID of emergency object UNSIGNED32 RW
0x1015 Variable Inhibit time for emergency

obj ect UNSIGNED16 RW
0x1016 Array Consumer heartbeat time UNSIGNED32 RW
0x1017 Variable Producer heartbeat time UNSIGNED16 RW
0x1018 Record Identity object UNSIGNED32 RO

0x1200 . . .
0xl27F Record 1st ... 128th server SDO S ERVER_S DO_PARAMETE

RS RW
0x1280 ... Ox

12FF Record 1st ... 128th client SDO CLIENT_SDO_PARAMETE
RS RW

0x1400 ...
0x15FF Record 1st ... 512th receive PDO RXPDO_COMMUNICATION

_PARAMETERS RW
0x1600 ...

0xl7FF Array 1st ... 512th receive PDO
mapping

RXPDO_MAPPING_PARAM
ETERS RW

0x1800 ...
0xl9FF Record 1st . .. 512th transmit PDO TXPDO_COMMUNICATION

_PARAMETERS RW
OxlAOO ... Array 1st ...512th transmit PDO TXPDO_MAPPING_PARAM RWOxlBFF mapping ETERS

Table 4.5 Communication Entry overview.

It should be noted that entries [0x1000, 0x00], [0x1001, 0x00], [0x1018, 0x00] and

[0x1018, 0x01] are mandatory i.e. for CANopen conformance, all nodes must

implement these entries their object dictionary

Index Sub-
index Description Data type Attribute Default

Value
0x1000 - Device type UNSIGNED32 CONST 0x00000000
0x1001 - Error register UNSIGNED8 RO 0x00
0x1008 - Device name VISIBLE_STRING CONST "ISOSAMPLER"
0x1016 - Heartbeat consumer time UNSIGNED8 RO Oxii
0x1016 0x00 1.01s x 2 = 2.02s (2020ms) for node 1 UNSIGNED32 CONST 0x000107E4
0x1016 0x01 1.03s x 2 = 2.06s (2 060ms) for node 2 UNSIGNED32 CONST 0x0002080C
0x1016 0x02 1.07s x 2 = 2.14s (214 0ms) for node 3 UNSIGNED32 CONST 0x0003 085C
0x1017 0x03 Node N (add other nodes within

communication group)
the

0x1017 0x00 Heartbeat producer time 1. 09s 1090ms) UNSIGNED16 CONST 0x0442
0x1018 - Identity - - -
0x1018 0x00 Number of entries UNSIGNED8 RO 0x04
0x1018 0x01 Vendor ID UNSIGNED32 RO 0x00000000
0x1018 0x02 Product code UNSIGNED32 RO OxOOOOOOii
0x1018 0x03 Revision number UNSIGNED32 RO OxOOOOOOii
0x1018 0x04 Serial Number UNSIGNED32 RO OxOOOOOOii
0xlF80 0x00 NMT Startup (Nodes that autostart

report 0 in this entry) UNSIGNED8 CONST 0x00

Table 4.6 Communication Entries implementation.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 66

4.2.2.1 Device Type Entry rOxlOOOl

This entry stores the number of the device profile and also provides additional

information (defined in the Device Profile Specification) about which features of the

device profile are utilised in the node. The entry has the following structure:

Additional information Device profile number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.6 Device Type entry format.

If the node does not use a device profile then the Device Profile Number is zero and the

additional information value field is left undefined or set to zero as well. The Device

Type entry is mandatory and can be used as a way of dynamically scanning for nodes

connected to the network.

4.2.2.2 Error Register Entry 10x10011

When bits are set in the error register this indicates occurrences of certain types of

errors as shown below:

o o —1 < o OQj CD CD O CD o_ c CD3 CO < 3 3 S'COCD
3C

S
CD
3

o'CD 3c
T3CD CD3 CD

O*o Q_ "O 3 3 CD CD CDc
CD
CO"OCDO

'oT
O)*<CO
COCD

CD"
Q .CD
S 5
3CD

o'Q>
o'3
CD
O

c
ci>
CD
§

O O O

o Q.
CD
O

S
o

CD
3

7 6 5 4 3 2 1 0

Figure 4.7 Error Register entTy format.

The Generic Error field is a mandatory for full CANopen compliance and indicates the

occurrence of any type of error in the node systems. The other fields are optional;

however the “voltage” field is used as a flag that the node battery is low and the

“temperature” field is used to flag that the electronic hardware is overheating, for

example if the node were placed in a high temperature environment such as a

hydrothermal vent plume.

4.2.2.3 Heartbeat Consumer Time Entry [0x1016. Oxiil

Nodes that work together as communication partners constantly monitor the heartbeat

messages generated by other nodes within their group. The heartbeat consumer entry

within each node’s object dictionary specifies the maximum time that the receiving

Architecture for Grid-Enabled Instrumentation in Extreme Environments 67

node will wait (in milliseconds) for a heartbeat message from a specific transmitting

node before generating an event. If no heartbeat is received within the specified period

then the receiving node records it as being absent. Each 32-bit sub-index specifies the

heartbeat consumer time for a specific node and has the following structure:

Reserved Node ID Heartbeat consumer time (ms)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.8 Heartbeat Consumer Time entry format.

For example, if node #1 has a producer heartbeat time of 907ms then nodes within its

communication group are configured to expect the heartbeat within 200% of this period

i.e. 907 • 2 = 1814ms. Therefore,

Heartbeat consumer time = 0x00010716 (0x0716 = 1814 ms)

4.2.2.4 Heartbeat Producer Time Entry f0x10171

The value o f this entry specifies the time between transmission of the heartbeat

messages in milliseconds. A value of zero disables transmission of heartbeat messages

by a node. For example,

Heartbeat producer time = 0x03A0 (0x03A0 = 928 ms)

CANopen defines the attribute of heartbeat producer and consumer time entries as being

writable i.e. the parameter value can be modified dynamically during runtime, however

for security and in the interests of reducing code size these values are defined as

constants.

4.2.2.5 Identity Entries fOxl018> Oxii]

The Identity entry contains basic information about the node in order to provide a

standard method of distinguishing between different versions of a node.

The Vendor ID is a unique ID assigned to each CANopen vendor by CiA group to allow

the source of the node to be identified. This Vendor ID entry is a numeric value of type

UNSIGNED32 and consists of a unique number for each registered company and

optionally for each department of that company (but only if required) as shown below.

Department Company
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.9 Vendor ID entry format.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 68

A copy o f the CiA registration form is included in Appendix F. It is proposed that the

company be registered as “Cardiff University” and the department as “School of Earth,

Ocean and Planetary Sciences”.

The Revision Number entry has the following format:

Major Revision Number Minor Revision Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.10 Revision Number entry format.

Where the minor revision number identifies different versions of the node where the

CANopen behaviour has not changed and the major revision number identifies different

versions o f the node where the CANopen behaviour has changed. For example, if there

are any differences in CANopen messages and object dictionary entries then major

revision number should be incremented:

0x00030001 = Revision number 3.1

The Product Code and Serial Number entry field formats are manufacturer specific. For

this application only the least significant byte is utilised all the rest are cleared to zero.

Product codes are defined in accordance with the table below:

Node Type Parameter Value
NMT 0x00000000
Temperature sensor 0x00000001
Pump 0x00000002
Pressure compensator 0x00000003
Master valve 0x00000004
Slave valve 0x00000005
Bridge 0x00000006

Table 4.7 Product Codes for the nodes that constitute the
“ Isosampler" system.

4.2.3 Manufacturer Specific Entries

This region of the Object Dictionary is used extensively by the node application

program for storage of parameter values, representing node-specific data and

configuration settings that are outside the CANopen standard. For example, each node

features a real time clock where the current time of each node is made available in an

object dictionary entry so that other nodes on the system network can read it. This

achieved by defining the Object Dictionary in the manufacturer specific region as

shown below:

Architecture for Grid-Enabled instrumentation in Extreme Environments 69

Index 0x2000, sub-index 0x00 = 0x03 (number o f highest sub-entry)

Index 0x2000, sub-index 0x01 = seconds (UNSIGNED8)

Index 0x2000, sub-index 0x02 = minutes (UNSIGNED8)

Index 0x2000, sub-index 0x03 = hours (UNSIGNED8)

A full implementation o f the manufacturer specific entries in a typical node is shown in

the table below.

Index Sub-
index Description Data type Attribu

te
Default
Value

0x2000 - RTC time parameters - - -
0x2000 0x00 Number of entries UNSIGNED8 RO 0x08
0x2000 0x01 Seconds UNSIGNED8 RW 0x01
0x2000 0x02 Minutes UNSIGNED8 RW 0x01
0x2000 0x03 Hours UNSIGNED8 RW 0x01
0x2000 0x04 Date UNSIGNED8 RW 0x01
0x2000 0x05 Month UNSIGNED8 RW 0x01
0x2000 0x06 Day UNSIGNED8 RW 0x01
0x2000 0x07 Year UNSIGNED8 RW 0x7 0
0x2000 0x08 Control (write protect) UNSIGNED8 RW 0x00
0x2001 - RTC alarm parameters - - -
0x2001 0x00 Number of entries UNSIGNED8 RO 0x08
0x2001 0x01 Seconds alarm threshold UNSIGNED8 RW 0x7F
0x2001 0x02 Minutes alarm threshold (bit 7 alarm

state) UNSIGNED8 RW 0x7F
0x2001 0x03 Hours alarm threshold UNSIGNED8 RW OxBF
0x2001 0x04 Date alarm threshold UNSIGNED8 RW 0x3F
0x2001 0x05 Month alarm threshold UNSIGNED8 RW OxlF
0x2001 0x06 Day alarm threshold UNSIGNED8 RW 0x07
0x2001 0x07 Year alarm threshold UNSIGNED8 RW OxFF
0x2001 0x08 Clock Burst UNSIGNED8 RW 0x3F
0x2002 - ADC parameters - - -
0x2002 0x00 Number of entries UNSIGNED8 RO 0x04
0x2002 0x01 Setup Register UNSIGNED8 RW OxiO
0x2002 0x02 MUX (multiplexer control) UNSIGNED8 RW 0x01
0x2002 0x03 ACR (analogue control register) UNSIGNED8 CONST 0x5 0
0x2002 0x04 ODAC (offset DAC) UNSIGNED8 CONST 0x00
0x2003 - Actuator control UNSIGNED8 RW Oxii
0x2004 - Hardware error register UNSIGNED8 RO Oxii
0x2005 - Set compensator pressure (1 atmosphere) UNSIGNED32 RW 0x47C5E680
0x2006 - Bottle pressure UNSIGNED32 RO Oxiiiiiiii
0x2007 - Pump speed UNSIGNED8 RW Oxii
0x2008 - Valve position UNSIGNED8 RO OxOi
0x2009 - Delta T (seconds) UNSIGNED8 RW Oxii
0x200A - Battery voltage UNSIGNED8 RO Oxii
0x200B - RS-232 Baudrate UNSIGNEDl6 RW 0x4B00
0x200C - Count POR (power-on reset) UNSIGNED8 RO Oxii
0x200D - Data representation register UNSIGNED8 RW Oxii
0x200E - Pressure case temperature REAL32 RO OxOOiiiiii
0x200F - Effluent temperature REAL32 RO OxOOiiiiii
0x2010 - Fluid flow velocity REAL32 RO OxOOiiiiii
0x2011 - Calibration parameters - - -
0x2011 0x00 Number of entries UNSIGNED8 RO 0x07
0x2011 0x01 Polynomial coefficient Cl (1.13287E-06) REAL32 RW Oxiiiiiiii
0x2011 0x02 Polynomial coefficient C2 (6 .12723E-04) REAL32 RW Oxiiiiiiii
0x2011 0x03 Polynomial coefficient C3 (2.39747) REAL32 RW Oxiiiiiiii
0x2011 0x04 Polynomial coefficient C4 (247.0073) REAL32 RW
0x2011 0x05 ADC resolution (24-bit = 2-24) UNSIGNED3 2 CONST OxOOOFFFFF
0x2011 0x06 ADC reference volts (1.000 V) REAL32 CONST 0x3F800000
0x2011 0x07 RTD excitation current (0. 0002 A) REAL32 CONST 0x3951B717

Table 4.8 Manufacturer Specific Entries implementation.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 70

4.2.3.1 RTC Time and Alarm Entries r0x2000. 0x08; 0x2001. 0x081

The alarm entries are used to set a pre-defined time that will trigger valves to open and

the pump to activate to acquire a sample in the bottle. Time data is stored as BCD

(binary coded decimal).

4.2.3.2 ADC Entries r0x20021

The Setup and MUX entries are used to control the gain and channel selection for the

data acquisition system. The ODAC and ACR are configured at compile time and

unchangeable.

Setup MUX ODAC
o o o

B
O

C
S

ID

IPG
A

2

TJ
CD>

Ip
g

a
o

7

CD 5 4 3 2 1 0

ACR
oZX}

U
/B COTJ CD CD^ —i

zo>

D
R

'

o
zoO-< mu 3 o zo u m ZO

CDm

7

CO 5 4 3 2 1 0

■ D ' D T J ' D Z Z Z Zc o c nc nc o c o c nc o c om m m m m m m m

7 6 5 4 3 2 1 0

o o o o o o o
CO CO CO CO CO CO CO
m m m m m m m

7 6 5 4 3 2 1 0

Figure 4.11 Format o f entries containing ADC
configuration parameters.

Name

BOCS

PGA2:PGA1:PGA0

PSEL3: PSEL2: PSEL1:PSEL0

Settings

0 = Disabled (default)
1 = Enabled

ObOOO = 1 (default)
0b001 = 2
0b010 = 4
0b011 = 8
0b100 =16
0b101 =32
0b110 = 64
0b111 =128

ObOOOO = AIN0 (default)
0b0001 = AIN1
0b0010 = AIN2
0b0011 = AIN3
0b0100 = AIN4
0b0101 = AIN5
0b0110 = AIN6
0b0111 = AIN7

Description
When the burnout current source bit is set, two current
sources are enabled. The current source on the
positive input channel sources approximately 2pA of
current. The current source on the negative input
channel sinks approximately 2pA. This allows for the
detection of an open circuit (full-scale reading) or short
circuit (0V differential reading) on the selected input
differential pair.

The programmable gain amplifier (PGA) can be
configured for gains of 1, 2, 4, 8, 16, 32, 64, or 128 to
improve the effective resolution of the ADC for a given
gain range.

Positive channel select. The input multiplexer provides
for any combination of differential inputs to be selected
on any of the input channels which allows for eight true
differential input channels.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 71

Ob 1 xxx = Reserved

NSEL3: NSEL2: NSEL1: NSELO

ObOOOO = AINO
0b0001 = AIN1 (default)
0b0010 = AIN2
0b0011 = AIN3
0b0100 = AIN4
0b0101 = AIN5
0b0110 = AIN6
0b0111 = AIN7
Ob 1 xxx = Reserved

Negative channel select.

DRDY RO (read only)
This bit duplicates the state of the data ready (DRDY)
signal.

U/B
0 = Bipolar (default)
1 = Unipolar
0 = fMOD = fosc /128

Data format.

SPEED (default)
1 = fMOD = fosc / 256

Modulator clock speed.

BUFN

0 = Buffer Disabled
(default)
1 = Buffer Enabled

The input impedance of the ADC without the
buffer is 5MQ / PGA. With the buffer enabled the
input voltage range is reduced, and the analog
power-supply current is higher.

BIT ORDER

0 = Most Significant Bit
Transmitted First
(default)
1 = Least Significant Bit
Transmitted First

Data is always shifted into the part most significant
bit first. Data is always shifted out of the part most
significant byte first. This configuration bit only
controls the bit order within the byte of data that is
shifted out.

RANGE

0 = Full-Scale Output
Range Equal to ± V re f

(default).
1 = Full-Scale Output
Range Equal to ±y2
V ref

Range select.

DR1: DRO

SIGN

OSET6: OSET5: OSET4:
OSET3: OSET2: OSET1:
OSETO

ObOO = 15Hz (default)
0b01 = 7.5Hz
0b10 = 3.75Hz
0b11 = Reserved

0 = Positive
1 = Negative
See ADS 1243 data
sheet for details.

Data conversion rate. The modulator runs at a clock
speed (fMOD) that is derived from the external clock
(fosc). The frequency division is determined by the
SPEED bit in the SETUP register. Note: fosc =

2.4576MHz, SPEED = 0
The offset digital to analogue converter (ODAC)
register is an 8-bit value. The MSb is the sign
The input to the PGA can be shifted by half the full-
scale input range of the PGA using the ODAC register.
The seven LSbs provide the magnitude of the offset.

Table 4.9 Detailed register configurations for the ADC.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 12

4.2.3.3 Actuator Control Entry f0x2003]

This single byte entry is used at to trigger RTOS tasks that are responsible for high-level

,< ,T> T> o < <1 1 c m o u u—1 zo o
—1
ZO
CD

—1
ZOo "O

>—i e:
~u

o

7

<o 5 4 C
O 2 1

F
\

Figure 4.12 A ctuator control entry format.

coordination of pump and valve nodes to acquire a fluid sample. The entry also contains

several bit fields for direct manual control o f actuator nodes on the network.

Name Settings Description
V TRIG COS trigger Trigger slave valve control task (in slave valve)
P_TRIG COS trigger Trigger pump control task (in pump node)

M_TRIG COS trigger
Manual triggering of the data acquisition system (DAQS) (in temp
sensor node)

PUMP 0 = on; 1 = off (default) Switch pump on/off.
HEAT 0 = on; 1 = off (default) Switch heater on/off in flow velocity sensor.
COMP 0 = on; 1 = off (default)

ObOO = Closed
0b01 = Inlet open

Disable/enable pressure compensator.

VP1:VP0 0b10 = Outlet open
0b11 = Reserved

Sets valve position.

Table 4.10 Detailed actuator control register configurations.

4.2.3.4 Hardware Error Entry [0x20041

When bits are set to logic ‘ 1 ’ in the Hardware Error Entry, this indicates occurrences of

various error conditions as shown below:

< D < D m ^ O < D c Q>
CO </> ZJ Z3 =3
a> CD 5 =52 2 R
CD CD ^ . _
Q . Q . o CO

03 — 91

O " O CD " O <D

— ^ ^ 5T 5T

Q)

7 6 5 4 3 2 1 0
Figure 4.13 Hardware error entry format.

The nodes within a communication group must be “aware” of each other’s operational

status when cooperating to perform a task The Hardware Error Entry is essential to

facilitate some form of error handling by the machine system in the event possible node

sub-systems failure during operation. Its purpose is to ensure that hardware failures can

be at least be detected so that the appropriate measures can be taken to minimise the

impact the error has on the entire machine system. If a master node or host PC

Architecture for Grid-Enabled Instrumentation in Extreme Environments 73

connected to the network, this can be configured for use as diagnostic tool to detect and

flag errors, so that repairs or node replacements can be made.

Also, with such a failure detection mechanism in place, it is feasible to handle errors at

various levels within the system architecture. For example, if a node that detects an

internal error, it should shut-down damaged sub-systems [see Chapter 6 for a detailed

description o f node subsystems] and, if still capable of external communication, the

error transmitted to the commanding node within its communication group. If the failed

node is essential to the operation of the group, then the group is no longer capable of

fulfilling its mission objectives. In this scenario, the whole group should perform an

autonomous and controlled shut-down (without the requirement for intervention from a

master controller or host) to preserve network bandwidth and conserve power.

4.2.3.5 Set Compensator Pressure Entry r0x20051

This entry holds the target pressure to which the pressure compensator should maintain
"Jin N/m (Pascals). Default value is one atmosphere (101,325 N/m). The parameter

value can be dynamically changed via another node, for example for controlled

depressurisation of the fluid within the bottle to remove or transfer a sample.

4.2.3.6 Bottle Pressure [0x20061

This entry indicates the hydrostatic pressure within the sealed sampling bottle.

4.2.3.7 Set Pump Speed Entry [0x20071

This entry can be modified to change the default pump speed and direction if required.

o CO CO CO CO CO CO CO
M o > t n A CO r o ->■ o

7

CD 5 4

CO 2 1 0
Figure 4.14 Set pump speed entry.

Name Settings Description

DIR
0 = forward (default)
1 = reverse

Pump direction.

SP6: SP5: SP4:
0x00 = minimum
0x7F = maximum (default)SP3: SP2: SP1:

SPO
Pump Speed.

Table 4.11 Detailed pump speed control register configurations.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 74

4.2.3.8 Valve Position Entry [0x2008]

This is a read only entry containing the physical position of the valve.

Valve Position Parameter Value
Closed 0x00
Open to inlet 0x01
Open to Outlet 0x02
Unknown 0x03

Table 4.12 Valve position entry codes.

4.2.3.9 Delta T Entry r0x20091

Sets the data acquisition system (DAQS) sampling rate between 1 and 255 seconds. A

zero value in this field disables sampling.

4.2.3.10 Battery Voltage Entry r0x200A1

This entry contains a single byte value representing the voltage across the battery

terminals. This gives a basic indication o f the state o f the internal battery pack in a node.

4.2.3.11 RS-232 Baudrate Entry [0x200B]

Legacy RS-232 UART allows direct connection of any node to a host PC for

development and diagnostics. Communication rates o f 4800 and 9600 and 19,200 baud

are supported.

4.2.3.12 Count POR (power-on reset) r0x200C1

This register entry keeps track of occurrences of power-on/reset events. This is useful

for diagnostic purposes to detect if the node systems are being inadvertently re

initialised, e.g. by an intermittent battery connector fault.

4.2.3.13 Data Representation Entry 10x200D]

o
>
-<I—
>

Figure 4.15 Data representation entry format.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 75

Name Settings Description

DASYLAB

HEX

0 = hexadecimal (default)
1 = DASYLab

0 = text (default)
1 = hexadecimal

To maintain compatibility with DASYLab:
1. Add channel number to allow DASYLab to identify the
channels.
2. Pad with an extra padding byte so sample is of type
UNSIGNED32 (32-bits).
3. Store "Ittle endian” format.
Data format is unprocessed hexadecimal or human readable
text.

MEM_STREAM 0 = off (default)
1 = on Stream data to SD/MMC memory storage media.

RS232_STREAM 0 = off (default)
1 = on Stream data to RS-232 port.

CAN_STREAM 0 = off (default)
1 = on

Stream data to CAN bus.

Table 4.13 Detailed pump speed control register configurations.

4.2.3.14 Measurement Entries r0x200E. 0x200F. 0x2010]

Each node functions as a “smart transducer” producing fully calibrated flow velocity

and temperature measurements from raw hexadecimal data and presenting these values

as entries in the Object Dictionary where it can then be consumed by other nodes. For

example, the pump node can use data from fluid flow velocity entry generated by the

sensor node to monitor fluid flow rate and adjust its speed appropriately.

4.2.3.15 Calibration Entries r0x2010, 0x071

A temperature sensor node is capable of calculating and exporting fully calibrated

temperature measurements onto the network for consumption by pump or host nodes.

The first stage of the calibration procedure is to convert the ADC output to a real

voltage (V0ut) using the following formula:

Vout = Vref value / resolution (4.20)

Where:

resolution = 2nllmh" ° lbi,smADC = 224

Vref = ADC reference voltage = 1.000 V

The actual voltage input (Vjn) to the ADC can now be calculated using:

Vin = Vout/gain (4.21)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 76

Where:

gain = ADC can be configured to amplify a signal by 1, 2, 4, 8, 16, 32, 64 or

128 times

The next stage is to convert the voltage into the physical resistance of the RTD

measuring device:

r = Vin / RTD excitation current (4.22)

Where:

RTD excitation current = 0.0002 A

r = RTD resistance in Q

Finally, the polynomial to convert the ADC output voltage to an accurate calibrated

temperature reading.

temperature (°C) = r (Cl • r2 + C2 • r + C3) - C4 (4.23)

The coefficients have the following values:

Cl = 1.13287E-06

C2 = 6.12723E-04

C3 =2.39747

C4 = 247.0073

This polynomial was developed specifically for the application of temperature

measurement in hydrothermal vent environments and its accuracy is greater than ±0.1 °C

within a temperature range of -50°C to 500°C.

All entries REAL32 data types conform to IEEE-754 32-bit single precision floating

point format as shown below:

Sigr Exponent Fraction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.16 Format o f entries containing REAL32 data ty pes.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 77

, where the most significant bit represents the sign; bits 30 to 23 represent an 8-bit

exponent which is stored as excess 127 i.e. the exponent is biased by 2e 1 - 1; and bits

22 to 0 represent the mantissa minus the most significant bit i.e. there is an implied bit

to the left o f the radix which is always one except for a zero value. The actual floating

point value is calculated from the following formula:

(. I f * • 2<elponeru' ,27> ■ l.mantissa

So, as an example, the parameter value for entry [0x2010, 0x07], which represents RTD

excitation current, can be calculated manually as follows:

The sign bit is zero; the biased exponent is 114, so the exponent is 114 - 127 = -13.

Take the binary number to the right of the decimal point in the mantissa, convert this to

decimal and divide by 223, where 23 is the number of bits taken up by the mantissa, to

give 0.6384000 and then add 1 to this fraction. The floating-point value is given by:

(_1)° . 2 -13 . 1.6384000 = 0.0002

Working backwards from this result is more involved, however there are numerous

online tools available that can perform the task of decimal floating point to 32-bit and

64-bit IEEE-754 hexadecimal representations along with their binary equivalents.

4.2.4 Sendee Data Objects (SDO)

An SDO message consists of a COB-ID and data payload containing eight bytes as

shown below.

Sub-index
COB-ID Index | ______ Data ______

ByteO Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

ccd idx_L idx_H sidx d3 d2 d1 dO

4 bits 7 bits

Command code
3 bits 1 bit 2 bits 1 bit 1 bit
css R N E S

Figure 4 .17 Generalised structure o f an SDO message.

The data payload itself consists of:

Architecture for Grid-Enabled Instrumentation in Extreme Environments 78

• The command code (ccd), in which the SDO message type and length of the data

value being transmitted are encrypted.

• The index and sub-index which point to the object whose data are being

transported in the SDO message.

• From one up to four data bytes.

The ccd can be further reduced into the following component parts

• css (ccd<7:5>) is the client command specifier of the SDO transfer, this is 0 for

SDO segment download, 1 for initiating download, 2 for initiating upload, 3 for

SDO segment upload and 4 for aborting an SDO transfer.

• R (ccd<4>), reserved bit. Always set to 0.

• N (ccd<3:2>) is the number of bytes in the data part of the message which do

not contain data, only valid if e and s are set. So, ObOO = 4 bytes, ObOl = 3 bytes,

OblO = 2 bytes and Obi 1 = 1 byte represent data payloads.

• E (ccd<l>), if this bit is set, indicates an expedited transfer, i.e. all data

exchanged is contained within the message. If this bit is cleared then the

message is a segmented transfer where data does not fit into one message and

multiple messages are used.

• S (ccd<0>), if set, indicates that the data set size is specified in “N” (if “E” is

set) or in the data part of the message.

The following, is a specific application example showing how to calculate the COB ID

and data payload field in a TSDO that writes system time data into the object dictionary

of node # 2 on the system network. The time is represented by three data bytes (seconds,

minutes and hours) and is stored in binary coded decimal format. The COB-ID is

calculated as 0x582 [described in section 4.2.5.2 Assigning CAN Message Identifiers].

The hexadecimal value for ccd is calculated by bit-shifting and then performing an OR

operation on its constituent bit fields as follows:

css (ccd<7:5>) = ObOOlOOOOO (1 decimal for initiating download)

R (ccd<4>)

N(ccd<3:2>)

E (ccd<l>)

S (ccd<0>)

= ObOOOOOlOO (3 byte data payload)

= ObOOOOOOlO (transfer is expedited)

= ObOOOOOOOl (size o f data payload is

= ObOOOOOOOO (not used)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 79

represented by “N ”)

Therefore:

ccd = ObOOlOOOOO \ ObOOOOOOOO \ ObOOOOOlOO | ObOOOOOOlO \ ObOOOOOOOl

= ObOlOOOl11

= 0x27

ByteO Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x27 - - - secs mins hours -

4 bits 7 bits

0b1011 0b10
COB-ID(Ox582) | Index | Data

Command code Sub-index

Figure 4.18 TSDO Configuration.

Index and data payload is stored “Little Endian” format where the low value byte is

transmitted first meaning that the data must be packed and unpacked byte by byte before

and after transmission [figure 4.19].

ByteO Byte 1 Byte 2 Byte 3 Byte 4 1| Byte 5 j Byte 6 Byte 7
0x27 - - - ! 35 i 15 | 12 | -

r - fS
0x12 0x15 0x35

Figure 4.19 Conversion o f numerical values greater than one byte.

Service data objects (SDOs) allow access to entries in the object dictionary through the

index and sub-index. Each node not only implements it own object dictionary, it also

implements a server that handles read and write requests of parameter values to the

object dictionary. The SDO is typically used by a master node or configuration tool

which acts as client. For example, the current time and date parameter values for a

specific node or all nodes on the network can be configured before instrument

deployment with a configuration tool running on a host PC. The client-server

communication is initiated by the client in order to transfer parameter values to the

server or fetch them from the server. In both cases, the client initiates communication

and receives a response from the server. Data are transmitted by means of a TSDO in

the client or server-SDO, and received by means of a RSDO.

SDOs have a higher COB-ID (the CAN identifier arbitration field) than PDOs and are

therefore transmitted on the network with a lower priority i.e. if there is a collision

between SDO and PDO messages on the network, the PDO will reach its destination

Architecture for Grid-Enabled Instrumentation in Extreme Environments 80

and the SDO will be destroyed and then retransmitted as the PDO has more dominant

bits in its COB-ID field.

SDOs are not essential to the operation of the instrument, i.e. there are no requirements

for dynamic reconfiguration of nodes during deployment, as the machine system

behaviour is defined and fixed in the pre-compilation development phase. For this

reason no effort has been made to implement them at the node level because of the large

coding and processor overheads required to support them. However, the CANopen is an

open protocol and therefore the possibility of integrating SDO support, should there be a

demand for more sophisticated run-time behaviour, is not precluded later on. The

mechanism for the exchange of process variables on this project is built entirely on

optimised, direct PDO linkings between nodes with message transmission (PDO

production) being purely event triggered.

4.2.5 Process Data Objects (PDO)

PDOs provide a more direct method for communication than SDOs for real-time

exchange of process data between nodes. Transmission is fast and efficient because

there is no additional overhead o f administration data and no response is required from

the receiver. The flexible data payload length o f a PDO message also facilitates

conservation of network bandwidth and allows greater data throughput. The data

payload is a maximum of eight bytes, however if only two bytes are required then only

two bytes are transmitted.

Data exchange with PDOs is based on a producer-consumer model (Foster 2002) and

can be time or event triggered where a distinction is made between transmit process data

objects (TPDOs) and receive process data objects (RPDOs). This terminology indicates

whether a PDO is produced or consumed by a node. For each PDO in the system there

is one node producing it (a TPDO) and at one or more nodes consuming it (an RPDO)

as illustrated in figure 4.20 below.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 81

NODE 2
Object DictionaryObject Dictionary

NODE 1

Figure 4.20 PDO com m unication model.

4.2.5.1 PDO Linking

In order to establish common ground for communication a default state for usage of the

message identifiers is typically implemented. This is referred to as the pre-defmed

connection set and determines which COB-IDs should be used by which node by

default (Pfeiffer 2003). The simple four node system outlined in Chapter 2 is used to

exemplify how PDO linking can be established between nodes to form a small group of

communication partners that can operate collectively to perform the task of acquiring a

fluid sample.

Valve Node A

Host PC (master)

Valve Node B

Pump Node

TPDO_1_VALVE_A
RPDO_1 _VALVE_A

TPDO_1_PUMP
RPDO_1_PUMP

TPDO_1 _VALVE_B
RPDO_1_VALVE_B

RPDO_1_PC
TPDO_1_PC
RPDO_2_PC
TPDO_2_PC
RPDO_3_PC
TPDO_3_PC

Figure 4.21 Default PDO linking for a four
node system (M aster-Slave model).

In this design topology there is no overlap of any specified TPDOs with RPDOs, that is,

by default, none of the RPDOs utilise the same COB-ID as the TPDOs and therefore no

PDO is directly linked. Only the master is able to receive all the TPDOs and only the

master may generate the RPDOs to the slave nodes. Control of all the slave nodes is

centralised to the host PC node (master) which bears the main computational burden

and is responsible for ensuring the correct control sequencing of opening/closing both

valves and switching the pump on and off to fulfill the task of successfully acquiring a

fluid sample.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 82

The centralised communication model described is not an optimal solution for this

application for reasons discussed in Chapter 3. However, because CAN is a multicast

protocol, where any node can send/receive a message at any time, it is possible to

configure TPDOs and RPDOs to share the same COB-ID. Direct links can therefore be

established between nodes to create a more decentralised communication topology as

shown below.

Host PC Pump Node___
TPD0_1_PC
RPD0_1_PC

Valve Node B Valve Node A
TPD0_1_VALVE_B

TPD0_2_VALVE_B
RPD0_1 _VALVE_B
RPD0_2_VALVE_B

Figure 4.22 Optimised, direct PDO linking
for a four node system.

From this diagram, it is apparent that the TPDOs and RPDOs are more uniformly

distributed between nodes, which implies that the computational burden will also be

more evenly spread throughout the system network. In this topology the host PC is used

as a configuration tool to initialise the system and can be removed when the system is

being deployed. The two valve nodes and pump node are communication partners.

Valve Node A utilises its internal RTC to keep track of time and wait until the preset

alarm time is reached (configured via the host PC). Upon the alarm being triggered

Valve Node A opens and simultaneously sends a TPDO to Valve Node B commanding

it to open as well. Valve node B then sends a TPDO to the pump node commanding it to

turn on. Valve Node B then waits for a default preset time (approximately 5 minutes

duration) before sending a TPDO to the pump node commanding it turn off. Finally,

Valve Node B closes, completing the fluid sampling cycle.

This approach has several other advantages. As described earlier, the host PC node is

only required during the configuration phase and can be removed after initialisation is

completed. In this scenario, the grouping of two valve nodes and pump node to operate

autonomously as a tightly knit unit of communication partners. This optimised, direct

PDO linking topology is highly scaleable as behaviour of nodes in the system is

RPD0_1 _VALVE_A
RPD0_2_VALVE_A
TP D0_ 1 _VAL VE_A
TP D0_2_ VAL VE_A

RPD0_1_PUMP
TPD0_1_PUMP

Architecture for Grid-Enabled Instrumentation in Extreme Environments 83

partitioned into groups that are virtually independent of each other for operation of the

overall system.

To illustrate this point further, figure 4.23 shows a seven node implementation based on

a default PDO linking. The computational burden placed on the host PC node is now

considerably greater and, in fact, will continue to increase approximately in proportion

with the addition of nodes to the system network. The host node will require more

resources in terms o f processor power, number of lines of code and power consumption,

to meet the increasing demands of new nodes as they are introduced to the network.

Valve Node A

Valve Node B
Host PC (master)

Pump Node

Valve Node C

Valve Node D

Temperature Sensor Node
TPDO_1_SENSOR |

TPD0_1_VALVE_B
RPD0_1 _VALVE_B

TPD0_1_VALVE_D
RPDO_1_VALVE_D

TPDO_1_VALVE_A
RPDO_1 _VALVE_A

TP D0_ 1 _VAL VE_C
RPD0_1_VALVE_C

TPD0_1_PUMP
RPDO_1_PUMP

RPDO_1_PC
TPD0_1_PC
RPD0_2_PC

TPD0_2_PC
RPD0_3_PC

TPDO_3_PC
RPD0_4_PC

TPD0_4_PC
RPDO_5_PC

TPD0_5_PC
RPD0_6_PC

Figure 4.23 Default PDO linking for NASA
seven node system (M aster-Slave model).

Figure 4.24 below shows an optimised PDO linking, where again the computational

burden is more uniformly distributed across the network.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 84

Valve Node D Valve Node C

Host PC
Pump Node

Temperature Sensor Node

TPDO_1_SENSOR

Valve Node B Valve Node A

RPDO_1 _VALVE_C
RPDO_2_VALVE_C
TPDO_1 _VALVE_C
TP D0_2_VALVE_C

RPDO_1 _VALVE_A
RPDO_2_VALVE_A

TPDO_1_VALVE_A
TP DO_2_VAL VE_A

TPDO_1 _VALVE_D
TP DO_2_VAL VE_D
RPDO_1 _VALVE_D
RPDO_2_VALVE_D

TP DO_ 1 _ VAL VE_B
TP DO_2_ VAL VE_B
RPDO_1 _VALVE_B
RPDO_2_VALVE_B

TPDO_1_PC
TPDO_2_PC
RPDO_1_PC
RPDO_2_PC

RPDO_1_PUMP
RPDO_2_PUMP
RPDO_3_PUMP
TPDO_1_PUMP
TPDO_2_PUMP

Figure 4.24 Optimised, direct PDO linking
for N ASA seven node system.

It is possible for system integrators, to further improve the reliability of the machine

system by introducing additional nodes onto the network therefore adding additional

redundancy. For example another pump node could be added to the network. Valve

node are configured to receive a RPDO containing the status of the pump node and, if

an error is detected, they can act on it to shutdown the primary pump node and default

to using the secondary pump node.

Now that relationships have been clearly defined for communication between nodes on

the system network it is possible to move forward and begin assigning CAN message

identifiers (and priorities) to further elucidate their linkages with one another.

4.2.5.2 Assigning CAN Message Identifiers

For work with CANopen objects and data exchange, the CAN message can be

expressed in a more simplified form, as many of the bits are used only by data link layer

in the CAN controller hardware to ensure that data transmission is error-free. These bits

are automatically inserted/removed from transmitted/received messages by the data link

layer. The “Identifier” and “Data” bit fields constitute the simplified CANopen

message. The “Identifier” corresponds to COB-ID (communication object identifier)

and the “Data” field to the data payload of a CANopen message. The COB-ID defines

transmission priority and identifies the communication object.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 85

Start bit RTR bit
X Identifier X Control Data CRC

Acknowledge
1 End bits

1 11 1 6 0...8 bytes 16 1 1 1 7 >=3

c o b - id \ Data Payload
4 bits 7 bits ByteO Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

d7 d6 d5 d4 d3 d2 d1 dO

Function
Code

Node ID

1 2 | 3 4 1 | 2 | 3 | 4 5 | 6 7

Figure 4.25 Structure o f CANopen message.

Communication objects are classified according to their function code which also

controls the message priority. Objects with a low value function code are assigned high

priority in transmission, e.g. an object with the function code ‘1’ will be transmitted

before an object with function code ‘3’, if both access the bus simultaneously.

All nodes are assigned a unique, 7-bit address (Node-ID) between 1 and 127 at compile

time. Address ‘O’ is reserved for broadcast transmissions, in which messages are sent to

all nodes on the system network.

The table below shows the COB-IDs for CANopen communication objects, including

the transmit process data objects (TPDOs), receive process data objects (RPDOs) and

network management services (NMTs) used to build this system network.

Communication
Object

Function
Code

Node Address
(Node-ID) COB-ID (hex) Slave Nodes

NMT node control 0000 0000000 0x000 Receive only
Sync 0001 0000000 0x080 Receive only

Emergency 0001 xxxxxxx 0x080 + NodelD Transmit
0011 xxxxxxx 0x180 + NodelD TPDO 1
0100 xxxxxxx 0x200 + NodelD RPDO 1
0101 xxxxxxx 0x280 + NodelD TPDO 2

PDOs
0110
0111

xxxxxxx
xxxxxxx

0x300 + NodelD
0x380 + NodelD

RPDO 2
TPDO 3

1000 xxxxxxx 0x400 + NodelD RPDO 3
1001 xxxxxxx 0x480 + NodelD TPDO 4
1010 xxxxxxx 0x500 + NodelD RPDO_4

SDOs
1011 xxxxxxx 0x580 + NodelD Transmit
1100 xxxxxxx 0x600 + NodelD Receive

NMT node monitoring 1110 xxxxxxx
0x700 + NodelD Transmit

(heartbeat)
NMT Services 1111 110XXXX - -

Table 4.14 COB-IDs.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 86

If number values are assigned to the nodes as shown below:

Node# Description

1 Valve Node A

2 Valve Node C

3 Valve Node B

4 Valve Node D

5 Pump Node

6 Temperature Sensor Node

7 Host PC

, then the COB-ID for the TPDO_l of Valve Node C (node # 2) can be calculated as

follows:

N ODEADDRE S S T P D O l + NODE-ID = 0x180 + 2 = 0x182

The default PDO linkings for the NASA seven-node machine system can now be

methodically calculated and COB-IDs assigned as shown in figure 4.26.

0x184
0x284
0x204
0x304

0x187
0x287
0x207
0x307

Valve Node D (#4)
TPDO_1_VALVE_D

TPD0_2_VALVE_D
RPD0_1_VALVE_D
RPDO_2_VALVE_D

Host PC (7)
TPD0_1_PC
TPDO_2_PC

RPD0_1_PC
RPDO 2 PC

Temperature Sensor Node (#6)
0x186 | TPD0_1_SENS0R

0x183
0x283
0x203
0x303

Valve Node B (#3)
TPDO_1_VALVE_B
TP D0_2_VAL VE_B
RPD0_1 _VALVE_B
RPDO 2 VALVE B

Valve Node C (#2)

RPDO_1_VALVE_C

RPDO_2_VALVE_C
TP DO_1 _VAL VE_C
TPDO 2 VALVE C

0x202
0x302
0x182
0x282

Pump Node (5)
RPD0_1_PUMP 0x205
RPDO_2_PUMP 0x305
RPDO_3_PUMP 0x405
TPD0_1_PUMP 0x185
TPDO 2 PUMP 0x285

Valve Node A (#1)
RPDO_1_VALVE_A
RPDO_2_VALVE_A

TP DO_1 _ VALVE_A
TPDO 2 VALVE A

0x201
0x301
0x181
0x281

Figure 4.26 COB-IDs assigned to PDOs in 7 node N ASA
system for default linkage.

There is no overlap of any TPDOs and RPDOs in this default connection, which implies

there no specified RPDO uses the same identifier as any TPDO and therefore no PDO is

Architecture for Grid-Enabled Instrumentation in Extreme Environments 87

directly linked. The efficiency and reliability o f default PDO linkages described above

can be improved by further optimisation to allow nodes to directly listen to the process

data message they need to receive to perform their work. For example,

R P D 0 2 V A L V E B of node #3 is configured to directly consume

T P D 0 2 V A L V E A of node #1 by changing its COB-ID from 0x303 (default receive

ID for RPDO_2_VALVE_B of node #3) to 0x281 (transmit ID for

T P D 0 2 V A L V E A of node #1). Making changes to the appropriate RPDOs in the

whole system yields a more optimal solution for communication as shown in figure

4.27.

0x184
0x284
0x185
0x282

0x187
0x287
0x182
0x181

Valve Node D (#4)
TPDO_1 _VALVE_D
TP DO_2_VAL VE_D
RPDO_1 _VALVE_D
RPDO 2 VALVE D

Host PC (7)
TPDO_1_PC
TPD0_2_PC
RPDO_1_PC
RPDO 2 PC

Temperature Sensor Node (#6)
0x186 I TPDO 1 SENSOR

0x183
0x283
0x285
0x281

Valve Node B (#3)
TPDO_1 _VALVE_B

TPDO_2_VALVE_B
RPDO_1 _VALVE_B
RPDO 2 VALVE B

Valve Node C (#2)
RPDO_1_VALVE_C
RPDO_2_VALVE_C
TP DO_1 _VALVE_C
TPDO_2_VALVE C

0x187
0x284
0x182
0x282

Pump Node (5)
RPDO_1_PUMP 0x184
RPDO_2_PUMP 0x183
RPDO_3_PUMP 0x186
TPD0_1_PUMP 0x185
TPDO 2 PUMP 0x285

Valve Node A (#1)
RPDO_1 _VALVE_A
RPDO_2_VALVE_A
TP DO_1 _VALVE_A
TPDO 2 VALVE A

0x287
0x283
0x181
0x281

Figure 4.27 COB-IDs assigned to PDOs in 7 node N A SA
system for direct linkage.

Now that CAN identifiers are assigned, the next stage of the communication definition

is to create mappings for the appropriate process data from the individual Object

Dictionaries of nodes onto the message contents of their defined PDOs. The setup of the

communication and mapping parameters for the PDO mappings are located in the

Object Dictionary as outlined in the following two sections.

4.2.5.3 PDO Communication Parameters

In the Object Dictionary the index range from 0x1400 to 0x15FF is reserved for RPDO

communication parameters and the range from 0x1800 to 0x19FF for TPDO

communication parameters. These ranges allow a possible maximum of 512 (0x200)

RPDOs and TPDOs can be configured in the Object Dictionary of a single node. The

Architecture for Grid-Enabled Instrumentation in Extreme Environments 88

parameters for the first RPDO (RP DOl) are located at index 0x1400, the second at

0x1401 (RPD02), the third at 0x1402 (RPD03), etc and the parameters for the first

TPDO (TPDO l) are located at index 0x1800, the second at 0x1801 (TPD02), the third

at 0x1802 (TPD03) and so on.

The parameters for RPDOs and TPDOs are accessed via a sub-index as shown in the

table below:

Sub-index Description Data type

0 Number of entries UNSIGNED8

1 COB-ID UNSIGNED32

2 Transmission type UNSIGNED8

3 Inhibit time UNSIGNED16

4 Reserve UNSIGNED8

5 Event time UNSIGNED16

Table 4 .15 RPDO and TPDO Com m unication Parameters.

It can be seen that there are a maximum o f five entries for a PDO that can be supported.

It is typical to implement the first two entries for an RPDO and in this application

“Number of entries” is set to a value of 0x02 (there are two entries). The COB-ID entry

is calculated by selecting the desired PDO from figure 4.27 and setting the appropriate

bits from the bit field below.

A B C 29-bit identifier MSbits (unused) COB-ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.28 COB-ID configuration

Where bit “A” is cleared to ‘O’ to select an 11-bit COB-ID, bit “B” is set to ‘1’ to

indicate remote transmit requests are not allowed for the PDO and bit “C” is cleared to

indicate that the node utlises this PDO, so the bit field (most significant 3 bits) has a

value of ObO 1000000000000000000000000000000 = 0x04000. As an example, the

COB-ID entry for TPDO I VALVE A (0x181) is configured by performing an OR

operation with this field to yield a value of, 0x4000 | 0x181 = 0x4181.

For a TPDO one extra parameter, defined by the “Transmission type” entry, is required

to specify how the message transmission is triggered. So “Number of entries” is set to a

value of 0x03 and again the COB-ID value is taken from figure 4.27. A decision was

made to base inter-node message transmission on only event driven (COS, change of

state) trigger methods and not to implement time, polled and synchronised group polling

Architecture for Grid-Enabled Instrumentation in Extreme Environments 89

methods. The defined PDO linkings rely strictly on event triggered PDO transmission

and there is no requirement to utilise the other types of communication methods

supported by CANopen. Constraining communication behaviour in this way, with all

nodes adopting the same method, reduces system complexity and aids in minimising the

length of final system testing once nodes are integrated into the network. Ultimately,

this will allow system developers to focus all test procedures on the chosen

communication method, avoiding the additional test procedures required if multiple

methods are mixed on one network (Pfeiffer 2003). Finally, in accordance with

CANopen specification, the “Transmission type” entry for a TPDO is set to a value of

OxFE to indicate that the conditions that trigger message transmission are “manufacturer

specific” events, for example, an alarm event from real-time clock hardware.

4.2.5.4 PDO Mapping Parameters

Within the Object Dictionary, the index range from 0x1600 to 0x17FF is reserved for

the RPDO mapping parameters, and the area from 0x1 A00 to OxlBFF is reserved for

TPDO mapping parameters. The communication parameter index range size is identical

to the mapping parameter index range, which ensures straightforward correlation of a

given PDOs’ mapping and communication parameter values. The CANopen PDO

mapping parameters determine which Object Dictionary entries are mapped or placed

within a TPDO or RPDO. These mappings allow PDO contents to be customised to

meet the specific communication requirements of the machine system so that it can

perform its tasks efficiently. The mappings provide substantial flexibility in that they

can be either dynamic or static, where dynamic mappings can be re-configured during

runtime operation by using a system configuration tool or master. However, for this

type of deeply embedded application, where reliability is paramount, this kind of

flexibility is considered an unnecessary risk factor as it opens up possibilities for

inadvertent changes to be made to CAN message structure that could result in a

catastrophic system failure. In this case, the additional CANopen flexibility is a

potential liability and therefore static PDO mappings are implemented by hard-coding

them into the firmware of each node. This introduces a degree of protection because it

constrains the machine system from the possibility of incorrect reconfiguration during

runtime operation. A further benefit of static PDO mapping is that fewer resources in

terms of microprocessor time, code and data space are required for its implementation.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 90

The CANopen PDO mappings are designed to work with Object Dictionary data at both

the byte and bit level, making it possible to map single data bits into a CAN message up

to a maximum of 64 bits per data payload. There is a processing penalty associated

when storing data in bit level format because of the additional overhead of having to

pack/unpack each bit in/out of each data byte. Despite this, extensive use is made of bit

level data is made here as many o f the hardware devices within each node implement

initialisation registers that operate at this level.

A PDO mapping parameter associates a specific Object Dictionary entry with its

parameters index, sub-index and length (in bits). These three parameters are coded into

one 32-bit value as shown below.

Index Sub-index Length (bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.29 Structure o f a 32-bit M apping Parameter.

A PDO mapping is composed of one or more o f these mapping parameters. The 64-bit

PDO is filled entry-by-entry with the data from the Object Dictionary entries specified

in the single mapping parameters as shown below.

Sub-index Description Data type

0 Number of entries UNSIGNED8

1 1st OD entry mapped UNSIGNED32

2 2nd OD entry mapped UNSIGNED32

3 3rd OD entry mapped UNSIGNED32

64 64th OD entry mapped UNSIGNED32

Table 4.16 Format o f a PDO M apping Record.

4.2.5.5 Message Contents

Now that the concepts of PDO mapping and communication parameters are established,

it is possible to proceed and associate or map the required data parameters from the

Object Dictionary entries into the PDOs to define the CAN message contents. No

formal methodologies or smart analytical techniques presently exist for doing this, and

the only approach to define PDOs is that of iterative refinement. One of the challenges

is to decide which process variables can be best combines within one PDO. Typically,

one would send command bytes from one node to several others. A decision must be

Architecture for Grid-Enabled Instrumentation in Extreme Environments 91

made whether to send the bytes one by one i.e. one separate PDO for each receiving

device or should they still be combined into one PDO and sent together. The latter

approach optimises the use of available network bandwidth, however has the

disadvantage that each receiving node receives data that it does not need. In general, the

benefit of bandwidth optimisation outweighs the disadvantage of handling some

additional unnecessary data. CANopen supports receiving such unwanted data by using

dummy mapping. A receiver may map unwanted data of an RPDO directly to so-called

dummy entries, meaning the unwanted data is ignored. Mappings for Node #1 (Valve

A) are shown below and a complete set of mapping definitions for the NASA 7-node

instrument are given in Appendix J.
Data PayloadCOB-ID

4 bits | 7 bits ByteO Bytel Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x283 Hardware
Error

Valve
Position Unused Unused Unused Unused Unused Unused

COB-ID

Figure 4.30 Message contents for RPDO_l_VALVE_A.

Data Payload
4 bits | 7 bits ByteO Bytel Byte 2 ByteS Byte 4 Byte 5 ByteS Byte 7

0x287 Seconds Minutes Hours Date Month Day Year Unused

Figure 4.31 Message contents for RPDO_2_VALVE_A.

Sub- Description Attribu DefaultIndex index Data type te Value
0x1400 - RPDO_l_VALVE_A communication parameters RECORD - -
0x1400 0x00 Number of entries UNSIGNED8 CONST 0x02
0x1400 0x01 COB-ID (= 0x4000 | 0x283) UNSIGNED32 RO 0x4283
0x1400 0x02 Transmission type UNSIGNED8 RO OxFF
0x1401 - RPDO_2_VALVE_A communication parameters RECORD - -
0x1401 0x00 Number of entries UNSIGNED8 CONST 0x02
0x1401 0x01 COB-ID (= 0x4000 | 0x287) UNSIGNED32 RO 0x4287
0x1401 0x02 Transmission type UNSIGNED8 RO OxFF
0x1600 - RPDO_l_VALVE_A mapping RECORD - -
0x1600 0x00 Number of mapped entries UNSIGNED8 CONST 0x02
0x1600 0x01 PDO mapping (Hardware error = 0x2004 0x00 0x08) UNSIGNED32 RO 0x20040008
0x1600 0x02 PDO mapping (Valve Position = 0x2008 0x00 0x08) UNSIGNED32 RO 0x20080008
0x1601 - RPDO_2_VALVE_A mapping RECORD - -
0x1601 0x00 Number of mapped entries UN SIGNED 8 CONST 0x07
0x1601 0x01 PDO mapping (RTC seconds = 0x2000 0x01 0x08) UNSIGNED32 R0 0x20000108
0x1601 0x02 PDO mapping (RTC minutes = 0x2000 0x02 0x08) UNSIGNED32 R0 0x20000208
0x1601 0x03 PDO mapping (RTC hours = 0x2000 0x03 0x08) UNSIGNED32 RO 0x20000308
0x1601 0x04 PDO mapping (RTC date = 0x2000 0x04 0x08) UNSIGNED32 RO 0x20000408
0x1601 0x05 PDO mapping (RTC month = 0x2000 0x05 0x08) UNSIGNED32 RO 0x20000508
0x1601 0x06 PDO mapping (RTC day = 0x2000 0x06 0x08) UNSIGNED32 RO 0x20000608
0x1601 0x07 PDO mapping (RTC year = 0x2000 0x07 0x08) UNSIGNED32 RO 0x20000708

Table 4.17 RPDO mappings for Node #1 (Valve A).

4.2.6 Network Management (NMT)

Each node in the network system implements a NMT state machine which allows it to

exist in different operating states [figure 4.32]. Some of these state transitions can be

made autonomously by the node by itself and others can only be made on receiving a

control message from a NMT master node. The NMT master message can be targeted at

Architecture for Grid-Enabled Instrumentation in Extreme Environments 92

an individual node or broadcast to all nodes on the network simultaneously and contains

the new state that the node(s) should switch to.

Power-On
Reset

R eset
Node R eset

NodeR eset
Node

Initialisation

Auto-start

R eset
Communication

R eset
Communication Pre-operational

C Operational Stopped

Figure 4.32 M odified node network
management (NM T) state machine.

A NMT master node can switch nodes back and forth between the three major states:

pre-operational, operational and stopped. In the pre-operational state a node participates

in all communication related to SDOs, emergencies, timestamps and heartbeats. The

operational mode adds PDO communication, allowing the node to exchange and work

with process data. In the stopped state a node stops all communication, except for

minimal NMT services.

The NMT master can also request two different reset actions. Upon receiving the “Reset

Communication” command a node will reset the CAN/CANopen interfaces, switching

the node into its initialisation state where it transmits a boot-up message. In this state the

node does not consume any messages. The “Reset Node” command effectively re-boots

the node sub-systems by forcing a reset of its hardware, all peripherals and firmware.

The DS301 CANopen specification does not provide a mechanism for a node to switch

from the pre-operational to operational state without waiting for a message from a NMT

master. This is problem for deeply embedded networks, such as this one where it is not

possible for the NMT master to gain access to the system. One solution is to implement

a minimal NMT master node that broadcasts the NMT “Go Operational” message to get

the network system up and running. A decision has been made to ignore this aspect the

Architecture for Grid-Enabled Instrumentation in Extreme Environments 93

standard by allowing nodes to auto-start. This allows the machine system to operate

autonomously without the presence o f a NMT master in deployment situations. Control

is distributed as evenly as possible throughout the nodes on the network in an effort to

maximise reliability. There are, however two scenarios where a NMT master is

advantageous and even essential for operation, for example the NMT master could act

as a sentinel, watching over all nodes to check they remain within operational

parameters to improve the ability o f the system to cope with mission threatening

scenarios. If a node fails or an alarm/emergency message is received it can initiate the

appropriate recovery or shutdown procedures. Also, a host PC NMT master is required

to initialise certain parameters during startup such as times for specific action to be

triggered.

4.2.7 Heartbeat

All nodes advertise their presence on the system network by periodically transmitting a

heartbeat which consists of a single byte CAN message containing their current NMT

state. A decision was made to implement heartbeat rather than node guarding services to

decentralise “plug-and-play” functionality. With node guarding it is the NMT master’s

responsibility to poll (“guard”) all nodes for their current NMT state information and if

a node does not respond within a specified time, the NMT master can take appropriate

action. The NMT master is essential and its failure would result in the entire machine

system ceasing to function. This is not the case with the heartbeat method, as no single

node is essential to the continued operation of the heartbeat mechanism. Another

advantage of the heartbeat method over node guarding is that the network bandwidth

required for monitoring is halved as no polling is required.

The heartbeat producer time is set by configuring OD entry [0x1017, 0x00]; its value is

a 16-bit integer and represents the heartbeat period in milliseconds. The heartbeat

producer times of each node are set to individual prime number values to minimise the

frequency of message collisions [figure 4.33]. Although the CAN data link layer is

implemented in hardware and resolves such collisions automatically, it is good

engineering practice to take steps avoid message collisions, wherever the opportunity

arises to optimise available network bandwidth and improve system efficiency.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 94

Node 1 Theartbeat = 0.7s Tim e

4 Node 2 » Theartbeat * 1.1s

4 Node 3 ► Theartbeat = 1.3s

Figure 4.33 Heartbeat producer times for three nodes in the system network.

A nominal base heartbeat period in the region of one second is chosen, as it offers a

reasonable compromise between system responsiveness in detecting addition/removal of

nodes and maintaining the number of heartbeat messages on the network within

manageable levels, so they are not consuming excessive bandwidth. All node operating

systems implement a timer with 10 ms resolution, which puts a minimum limit on the

granularity of heartbeat message transmissions.

Node # Description Heartbeat Frequency (s)

1 V alve N ode A 1.01

2 V alve N ode C 1.03

3 V alve N ode B 1 .07

4 V alve N ode D 1.09

5 P um p N ode 1.13

6 T em p era tu re S e n so r N ode 1 .27

7 H ost PC N ot im p lem en ted

Table 4.18 Heartbeat periods for 7 node system developed for NASA.

Setting heartbeat producer times to prime number values will not necessarily eliminate

heartbeat collisions completely because of imperfections in the node systems hardware

and firmware. Inter-node resonator clock drift and the fact that the heartbeat message

can be delayed while higher priority tasks take precedence will introduce “jitter’' which

will cause heartbeat producer times to vary form the ideal. This allows the possibility of

collisions between producer heartbeat messages, however further measures can be taken

to minimise this by spreading the heartbeat periods around i.e. selecting prime numbers

that are further apart will decrease the frequency of message collisions.

Architecture for Grid-Enabled Instrumentation in Extreme Environments

Within the network there are sub-groups of nodes that must detect and respond to each

other’s presence in order to cooperate and work together so that the overall machine

system can function correctly. For example, a fluid pump node would need to

synchronise its activity with a bottle assembly containing two valve nodes. This kind of

behaviour is supported and it is common practice to for CANopen nodes to monitor all

the heartbeats from direct communication partners, where a node transmitting a PDO

would listen to the heartbeat o f all the consumers to ensure they are operational and

therefore capable of processing the PDO (Pfeiffer 2003).

The seven node system for NASA contains several such sub-groups working as

communication partners [figure 4.27]. In some cases there some overlap between sub

groups, for example the pump is shared between the two valve sub-groups, A + B and

also forms a group with the temperature sensor node (sub-group C). Valve Node A

requires the presence o f Valve Node B and the Pump Node to fulfill its function and

therefore monitors heartbeat messages generated by them to confirm they are

operational. This also applies to Valve Node C and its communication partners, Valve

Node D and the Pump Node. It is useful for the Pump Node to monitor fluid

temperature and flow rate so that it can self-regulate its pumping rate, so that a known

volume of fluid passes through bottle to ensure it is properly flushed and an

uncontaminated sample is acquired.

To monitor the heartbeat of a node, the consumer’s time is set in the range of 150% to

200% of the producer’s time. The consumer’s time functions as a time-out and the

heartbeat is considered lost if it does not occur within the set time (OD entry [0x1016,

Oxii]).

Architecture for Grid-Enabled instrumentation in Extreme Environments 96

TPD0_1 _VALVE_D
TPD0_2_VALVE_D
RPD0_1 _VAL VE_D
RPDO 2 VALVE D

RPDO_1 _VALVE_C
RPDO_2_VALVE_C
TP DO_1 _VALVE_C
TPDO 2 VALVE C

Sub-group 8
Host PC

TPDO_1_PC
TPDO_2_PC
RPDO_1_PC
RPDO 2 PC

Pump Node
RPDO_1_PUMP
RPDO_2_PUMP
RPDO_3_PUMP
TPDO_1_PUMP
TPDO 2 PUMPSensor Node

TPDO 1 SENSOR

Valve Node B

Sub-group A

Valve Node A
TP DO_1 _VALVE_B
TPDO_2_VALVE_B
RPDO_1 _VAL VE_B
RPDO_2_VALVE_B

RPDO_1 _VAL VE_A
RPDO_2_VALVE_A
TPDO_1_VALVE_A
TPDO_2_VALVE_A

Figure 4.34 Overlap between communication partners.

Architecture for Grid-Enabled instrumentation in Extreme Environments 97

Chapter 5 Firmware Architecture
An important objective of this thesis is to specify and develop a manageable and

scalable instrument architecture, striving to create a non-obsolescent or “future-proof’

design. In many ways, these two requirements are at odds with one another, creating a

conflict, which makes the task of developing the firmware infrastructure a challenging

undertaking that requires some consideration and forward planning in the early stages of

the project design.

This chapter explains how top-level system decomposition and partitioning

methodologies are used in many aspects of the design in an effort to “design-in”

robustness into the system architecture and build maintainable firmware infrastructure.

It then goes on to describe in detail how a commercially available, minimal CANopen

implementation (MicroCANopen) and custom designed hardware abstraction layer

(HAL) are integrated into the real-time operating system framework (Salvo RTOS) to

realise a node system.

5.1 Design Considerations

Computer programming is a relatively new field and in many ways can still be regarded

as being in its infancy. To quote H.M. Deitel (1999), "Just as architects design buildings

by employing the collective wisdom of their profession, so should programmers design

programs. Our field is younger than architecture is, and so our collective wisdom is

considerably sparser.". However, despite its short history, much insight has been gained

about structured programming and a substantial body of information and techniques are

available to aid the system developer in producing programs that are easier to test,

debug, modify and even prove correct in a mathematical sense. Several of these

methodologies are employed here to impose some structure and order over the

development process, including decomposition, a high degree of modularisation,

extensive partitioning and standardisation within various levels of both the electronic

(hardware) and code embedded within the hardware (firmware). It is useful to

deconstruct node systems in this way during certain phases of its design process as they

are entirely different disciplines, therefore this chapter is devoted to the firmware

architecture and Chapter 6 outlines the hardware design considerations.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 98

The firmware is written in ANSI ‘C’ (Kerningham & Ritchie 1988) and adheres to

standards documentation (Ganssle 2000) based on the established Borland Turbo ‘C’

Reference libraries style. Abstraction and partitioning are achieved using a hardware

abstraction layer (HAL), commercial off the shelf real-time operating system (RTOS)

and layered models. The functionality is described with system state diagrams, flow

charts and textual descriptions. Appendix N contains a reference manual with detailed

function descriptions, call graphs and the source code listing for this project can be

found in Appendix O.

5.1.1 More on Partitioning

Firmware complexity scales non-linearly with size (Ganssle 2000) and also arises from

having a large number of dependencies between firmware modules. The Constructive

Cost Model (COCOMO) is frequently used to estimate the effort it will take to develop

a software product (Boehm 1981). The effort is measured in number of programmer-

months and is proportional to the number of lines of code (NOC) in the project source

files. To flatten the COCOMO complexity curve (Ganssle 2000) a high degree of

partitioning (Holub 1995) is used here to minimise cross linkage (and therefore

dependencies) in both firmware and hardware domains. The following partitioning

techniques (Ganssle 2000) are used extensively in this project to flatten the

complexity/size curve as far as possible:

• Partition by encapsulation. Functions are written to implement specific tasks.

Where possible their size is limited to around 30 lines or so (enough to fill the

text editor screen) which makes them easier to maintain and reuse. If a function

gets substantially longer than this then it is possibly becoming over-complicated

and it may be worth examining it to see if it can be broken down into two or

more separate sub-functions.

• Partition by adding hardware. Three microprocessors are used on each node, as

well as dedicated hardware blocks for communication, measurement, timing and

control purposes [see Chapter 6 Electronic Hardware Platform].

• Partition by using an RTOS. The commercial RTOS allows an application to be

defined in terms of tasks that communicate with one another using defined

messaging mechanisms.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 99

• Partition by feature management and incremental development. The RTOS

kernel encourages incremental development because features can be added

incrementally to the application. A basic test harness was designed and installed

on the target processor. This consisted of the RTOS kernel and tasks for LED

control, serial communication with a host PC and kicking the watchdog. Once

this was up and running, the system was built-up by incrementally adding

drivers for hardware (ADC, RTC, etc) and testing as we went along.

• Finally, partition by top-down decomposition as described above. When there is

cross linkage between modules, then interfaces are defined or established

protocols are adopted wherever possible. Top-level system decomposition and

tools like UML allow the system designer an overview and elucidate module

inter-relationships and dependencies.

A more structured approach can now be taken to the design and organisation of the

system architecture.

5.2 Node Infrastructure

5.2.1 Node Model

The node internal architecture closely follows the generalised model for a “smart

transducer” as shown below.

CAN Bus

Power
Data Storage

Transducer Communication
Control

Application

Local User
Interface

NODE

Figure 5.1 Generalised model o f a node.

By definition, a smart transducer features integrated intelligence closer to the point of

measurement and control, basic computation capability and the ability to communicate

data and information in a standardised digital format, i.e. in this case, the CANopen

specification. This approach is not only lends itself well to the development of a grid

Architecture for Grid-Enabled Instrumentation in Extreme Environments 100

architecture, but also has further benefits of faciltating more cost effective integration

and maintenance of the completed machine system network during its operational life.

5.2.2 Node Systems

The internal architecture of a node can also be considered using a process of ordered

hierarchical (top-level) decomposition, where the system is deconstructed into its

component subsystems. A diagrammatic representation of the node subsystems and the

relationship between firmware and hardware is shown in figure 5.2.

1 '
HAL

HAL

HAL

CAN

RS232

HOST PC
BATTERY

GRID

RTOS MPS♦
HAL HAL

MOTOR
ENCODER

HALHAL

ADC

SENSORFILES
HAL

RTC

TIME

KEY

FIRMWARE

HARDWARE

OBJECTS

Figures. 2 Node sub-systems.

This overview of the system architecture is a guide for specifying cross-linkages

between these subsystems and how they are expected to interact during the operational

phase. The node subsystems are listed below and described in further detail in the

sections that follow.

5.2.2.1 Real Time Operating System (RTOS)

The RTOS has emerged as one of the dominant paradigms for embedded systems

programming and is a great aid to simplifying the way the code is structured when an

application is managing multiple processes and devices. Code is partitioned in the time

domain, with activities running concurrently, and procedurally where each task is

dedicated to one specific function. Any mechanism that breaks the code into small

independent blocks reduces algorithmic complexity (Lewis 2000) and yields better

programs faster (Ganssle 2001). Application performance can be characterised in a

relatively straightforward manner, regardless of size and complexity, making it easier to

Architecture for Grid-Enabled Instrumentation in Extreme Environments 101

add and test conceptual additions to the kernel as they are developed encouraging a

system architecture that is scaleable and easier to maintain. Extensive use of this RTOS

capability was made in this project, where firmware was incrementally integrated into

the kernel framework to test the hardware and develop the sub-systems outlined below.

5.2.2.2 Communication System (CS)

A communications system can be described as a facility capable of providing data

transfer between persons and equipment. The system usually consists of a collection of

individual communication networks, transmission systems, relay stations, tributary

stations, and terminal equipment capable of interconnection and interoperation so as to

form an integrated whole. These individual components must serve a common purpose,

be technically compatible, employ common procedures, respond to some form of

control, and generally operate in unison (Weik 1989). The CS electronic hardware is

composed of a CAN controller, transceiver and non-volatile FRAM devices [Chapter 6

Electronic Hardware Platform] along with CANopen Object Dictionary and support

firmware.

5.2.2.3 Data Acquisition System (DAOS)

The data acquisition system (DAQS) acquires data by digitising analog channels and

storing the data in digital form. A DAQS can be a standalone system or interfaced to a

host computer as is the case with a node. The node DAQS is composed of the

temperature sensing transducer, ADC, microprocessor and control firmware.

5.2.2.4 Motor Positioning System (MPS)

The motor positioning system (MPS) is required for motor control in the gear pump, 3-

way valve and isobaric pressure compensator nodes. The MPS is composed of the

motor, gearbox, position encoders, intelligent H-bridge microprocessor and control

firmware. This combination of hardware allows complete control of the motor speed

and position.

5.2.2.5 File System (FS)

A file system (FS) can be described simply as a method for storing and organizing

computer files to make them easily accessible, however it can also be considered as a

set of abstract data types that are implemented for the storage, hierarchical organisation,

Architecture for Grid-Enabled Instrumentation in Extreme Environments 102

manipulation, navigation, access, and retrieval of data. This kind of abstraction is a

powerful tool and implementing a FS frees the system designer to think of information

in terms o f files containing data without having to constantly be concerned with

management the mechanisms responsible for the correct functioning of the storage

media.

The decision was made to implement a file allocation table (FAT) FS because it is

relatively uncomplicated and is supported by virtually all existing operating systems for

personal computers. FAT is often used to share data between several operating systems

booting on the same computer (a multi-boot environment). It is also used on solid-state

memory cards and other similar devices. The most common implementations have a

serious drawback in that when files are deleted and new files written to the media, their

fragments tend to become scattered over the entire media making reading and writing a

slow process. De-fragmentation is one solution to this, but is often a lengthy process in

itself and has to be repeated regularly to keep the FAT FS clean.

The FAT 16 FS on each node is utilised for storage o f measurements acquired by the

DAQS in hexadecimal or text format and is capable o f addressing storage media cards

from 32MB to 4GB capacity. Files stored in (8.3 name format). Also, the HLP will

support direct transfer of sensor data from node to PC over the network as it may be

impossible to gain physical access to the machine system in some environments.

5.2.2.6 Power Management System fPMS)

When connected to the network, nodes are capable of utilising an external power source

(if it is available) to fast-charge their internal rechargeable batteries. The battery pack

acts as power reservoir and is effectively a non-interruptible power supply, buffering

nodes from external spurious power surges and longer term power interruptions. Once

the batteries are fully charged the PMS switches to trickle-charge mode to prevent

“gassing” and cell damage. The internal SPI bus gives the master CPU access to

registers on the slave containing status information such as battery voltage and charge

rate. Some o f these registers are mapped into the object dictionary so they are accessible

by other nodes on the network.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 103

5.2.2.7 Human-Machine Interface (HMD

To work with the machine system, a mechanism must be in place to facilitate operator

control and access its status information. This mechanism is formally called the human-

machine interface (HMI). A text based user interface (presentation layer) was developed

to interpret a terse script language and decompose it to bytecode, which the machine

system would then be capable o f implementing.

This open design architecture does not preclude the possibility o f adding a graphical

user interface (GUI) on the host PC at a later date. The GUI or web browser based

interface could be developed using Borland Builder or perhaps one of the virtual

instrumentation or dataflow languages such as DASYLab® or LabVIEW™. The GUI

would use the same clearly defined syntax to communicate with the machine system,

eliminating the potential requirement for huge changes to the firmware code residing on

the nodes.

5.2.2.8 Hardware Abstraction Laver (HAL)

A hardware abstraction layer (HAL) is system o f firmware device drivers that reside

between the physical hardware o f a computer and the RTOS that runs on the

microprocessor. The drivers integrate into the RTOS framework and are called by tasks.

Operating systems having a defined HAL are easily portable across different hardware.

This is especially important for embedded systems that run on numerous types of

microprocessors.

Device drivers encapsulate and bind data to a function so that it is hidden from higher

firmware levels. Device drivers are written in a consistent programming style that

follows a documented firmware standards manual (Ganssle 2000). Ultimately the

intention is to build a library o f device driver routines that can be integrated into other

projects. A library is also desirable because the firmware development is now “frozen”,

that is, complete. Also, the build time from libraries is faster than from source files

which must be compiled before they are linked together to produce the downloadable

hex for the target.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 104

5.3 Implementing MicroCANopen

MicroCANopen was introduced by Embedded Systems Academy as a minimal

CANopen implementation targeted at deeply embedded applications with limited

resources (requiring as little as 4 KBytes of program space and about 170 Bytes of

memory). The designers built an API (application programmers interface) with two

software communication interfaces. At the lowest level, there is an interface between

the MicroCANopen protocol stack and the CAN controller hardware and at the highest

level, an interface to the user application.

5.3.1 Hardware Driver Interface

The hardware driver interface (defined in c a n .h) provides basic functionality to

transmit/receive CAN messages and manages all microprocessor specific issues that

occur in the embedded application. This includes real-time performance issues, such as

CAN interrupt service routines and supporting transmit and receive buffers for CAN

messages. Appendix 0 .2 contains a detailed source code listing and a brief overview of

the functions that are implemented by the hardware driver is given below.

5.3.1.1 CanGetStatus Driver Function

This function is defined as follows:

UNSIGNED8 CanGetStatus(void);

This function returns the global status variable. The status variable can be changed

anytime by this module, for example from within an interrupt service routine or by any

of the other functions in this module.

5.3.1.2 Canlnit Driver Function

This function is defined as follows:

UNSIGNED8 Canlnit(UNSIGNED 16 baudrate);

This function implements the initialisation of the CAN interface. Allowed values for the

baudrate are: 1000, 800, 500, 250, 125, 50, 25 or 10. The system baudrate is initialised

to 125.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 105

5.3.1.3 CanSetFilters Driver Function

This function is defined as follows:

UNSIGNED8 CanSetFilters(UNSIGNED16 CAN_ID);

This function implements the configuration of CAN controller hardware mask and filters

for receive buffers.

5.3.1.4 CanPushMessage Driver Function

This function is defined as follows:

UNSIGNED8 CanPushMessage (CAN_M SG *pTransmitBuf) ;

“CanPushMessage” function implements a CAN transmit queue. With each function

call a message is added to the queue, where the function returns ‘1’ if message was

added to the transmit queue and ‘O’ if queue is full, i.e. the message was not added. The

MicroCANopen stack will not try to add messages to the queue “back-to-back”. With

each call to MCO_ProcessStack () , a maximum of one message is added to the

queue. The network load is low for this application, so the firmware queue is configured

to hold just one message.

5.3.1.5 CanPullMessage Driver Function

This function is defined as follows:

UNSIGNED8 CanPullMessage (CAN_MSG *pTransmitBuf) ;

The “CanPullMessage” function implements a CAN receive queue, where each function

call pulls a message from the queue. If a CAN message was pulled from receive queue

the function returns ‘1’, otherwise ‘O’. Only one receive buffer is utlised in the CAN

controller hardware and a minmal software queue of length ‘1’.

5.3.1.6 CanGetTime Driver Function

This function is defined as follows:

UNSIGNED16 CanGetTime (void) ;

Architecture for Grid-Enabled Instrumentation in Extreme Environments 106

“CanGetTime” typically reads a 1 ms timer tick. To ensure data consistency, the timer

interrupt incrementing the timer tick is disabled while executing this function. Systems

that do not have capability to support a 1ms tick can increment the timer tick as a

multiple of this to conserve processing resources. Section 5.4.2 briefly outlines how the

system interrupt service routine is configured to provide a timer with a minimum

granularity o f 10ms.

5.3.1.7 CanlsTimeExpired Driver Function

This function is defined as follows:

UNSIGNED8 CanGetTime (UNSIGNED16 timestamp) ;

This function compares a UNSIGNED!.6 timestamp to the internal timer tick and returns

‘ I ’ if the timestamp expired/passed. The maximum timer runtime measurable is 0x8000

(about 32 seconds).

5.3.2 Application Level Interface

Both shared data memory (process image) and function calls are used to implement an

interface between MicroCANopen the application program. The application interface

consists of two sets of functions. There is a set of API functions (defined in mco .h)

that can be called from within the application to initialise the MicroCANopen and to

pass process data to the communication stack. The second set of functions are call-back

functions that MicroCANopen calls to inform the application of important events or the

reception of process data.

5.3.2.1 MCO Init API Function

This function is defined as follows:

void MCO_Init (
UNSIGNED16 Baudrate,
UNSIGNED8 Node_ID,
UNSIGNED16 heartbeat

) ;

, and is used to initialise the MicroCANopen protocol stack. It is called from within the

user call-back function MCO ResetApplication which is called by MicroCANopen

upon receiving a Reset command. The baud rate may be one of the values 1000, 800,

500, 250, 125, 50, 25 or 10. The node ID may be in the range of 1 to 127 and the

Architecture for Grid-Enabled Instrumentation in Extreme Environments 107

heartbeat time is specified in milliseconds. For example, to generate a heartbeat

message once every 2 seconds, the value is set to 2000.

5.3.2.2 MCO Init RPDO API Function

This function is defined as follows:

void MCO_InitRPDO (
UNSIGNED8 PDO_NR,
UNSIGNED16 CAN_ID,
UNSIGNED8 len,
UNSIGNED8 offset

) ;

This function initialises a receive PDO. Once initialised, the MicroCANopen stack

automatically writes received data to the destination pointer location. The parameter

PDO_NR represents the number of receive RPDOs implemented by the node and is

within the range of 1 to 4, the CAN_ID can be set to 0x0000 if the CANopen default ID

should be used. The variable, len defines the number o f data bytes in RPDO and

o f f set to data location within the process image

5.3.2.3 MCO Init TPDO API Function

This function is defined as follows:

void MCO_InitTPDO (
UNSIGNED8 PDO_NR,
UNSIGNED16 CAN_ID,
UNSIGNED16 event_tim,
UNSIGNED16 inhibit_tim,
UNSIGNED8 len,
UNSIGNED8 offset

) ;

This function initialises a transmit PDO by placing one or more variables into one CAN

message as described in Appendix H. The application can directly change the data at

any time, however to ensure data consistency, the it must not write to the data while

function MCO_ProcessStack () executes. A change-of-state (COS) triggering

mechanism is utilsed here to initiate PDO transmission. This is implemented by setting

event_tim to zero and inhibit_tim to a no-zero value that represents a minimal

timeout period between message transmissions in milliseconds. Listing 5.1 shows the

initialisation of RPDOS and TPDOs in “initdos . h” for Node #1 (Valve A).

Architecture for Grid-Enabled Instrumentation in Extreme Environments 108

/* to use pure change-of-state (COS) transmission, the parameter "event time" must be
zero. * /

#define INITPDOS_CALLS \
/* Node #1 (Valve A) * /

MCO_InitRPDO(l, 0x283, 2, P2 00400_HARDWARE_ERROR_); \
MCO_InitRPDO(2, 0x287, 7, P2 00001_RTC_SECONDS_); \

MCO_InitTPDO(2, 0x281, 0, 0, 1, P2 003 00_ACTUATOR_CONTROL_) ; \
Listing 5.1 initpdos.h contains the RPDO and TPDO initialisations

5.3.2.4 MCO ProcessStack API Function

This function is defined as follows:

UNSIGNED8 MCO_ProcessStack(void);

, and implements the main CANopen protocol stack. It is called at frequent intervals

from within the f o r (; ;) in main to ensure that CANopen communication is not high

priority, whilst, at the same time minimising CAN message latency. Once initialised, the

CANopen stack automatically handles transmitting of PDOs.

The flowcharts in Appendix G fully describe the operation o f the CANopen protocol

stack. The main function is illustrated in [Appendix G.1J which checks whether this is

the first time the function is called, it then polls the next receive message from the

driver. If a message was received and it is a NMT master message or an RPDO

message, the associated code section are executed as shown in Appendix G.2, G.3 and

G.4. If no message is received or the message received is not for the local node to

handle, MCO_ProcessStack () continues with potential transmissions that are

eligible. First, the TPDO transmissions are checked and if no TPDO transmission is

eligible, the heartbeat producer time is verified. If it is expired, a heartbeat message is

generated.

Only one TPDO per call to MCO_ProcessStack () is checked for transmission. This

done to avoid bursts of back-to-back TPDOs that may be ready for transmission. When

using an Event Time (i.e. TPDO is transmitted every fr ’ milliseconds), the handling of

the TPDO is simple. If the time is expired, re-set the timer and transmit the TPDO.

However, if COS detection is used with an Inhibit Time, the first step is to check if the

TPDO is already due for transmission and is just waiting for the Inhibit Time to expire.

If that is not the case, the last transmitted data needs to be compared with the current

data (trying to detect the COS). If data changed, it needs to be copied to the transmit

Architecture for Grid-Enabled Instrumentation in Extreme Environments 109

buffer. However, it can only be transmitted if the Inhibit Time has already expired -

otherwise transmission needs to wait. The Inhibit Time is reset with every transmission

of the TPDO.

When handling a receive PDO, the stack runs through a loop checking all configured

RPDOs to see if the identifier of the message received matches any of the identifiers

used for the RPDOs. If a match is found, the data received is copied to the appropriate

process variable.

5.3.2.5 MCO ResetApplication Call-Back Function

This function resets the application and is called from within the CANopen protocol

stack, if a NMT master message was received that demanded “Reset Application”. A

while (1) infinite loop is used to implement a “watchdog trap” which guarantees a

reliable hardware reset of the embedded microprocessor.

void MCO_ResetApplication(void)
{ /* Call-back function to reset application. */

while (1)
{ : * waits until watchdog hardware causes the processor to reset */

/ * Watchdog hardware will reset processor reset within 250 ms*/
}

}
Listing 5.2 MCO ResetApplication function.

5.3.2.6 MCO ResetCommunication Call-Back Function

This function both resets and initialises both the CAN interface and the CANopen

protocol stack. It is called from within the CANopen protocol stack, if a NMT master

message was received that demanded “Reset Communication”. This function calls

MCO_Init and MCO_InitTPDO/MCO_InitRPDO.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 110

void MCO_ResetCornmunication (void)
{
UNSIGNED!.6 can_bps = 125; /* Note: This version always uses 125 Kbps */
UNSIGNED8 node_id = NODE_ID;

EA = 0;

/* NOTE: Serial number must be present in process image at location */
/* gproclmg[P1018Q4_SERIAL_NUMBER] */

MCO_Init(can_bps,node_id,1000);

if (node_id != 0)
{ / * Node #1 (Valve A) */
MCO_InitRPDO(1, 0x283, 2, P2 00400_HARDWARE_ERROR_);
MCO_InitRPDO(2, 0x287, 7, P2 00001_RTC_SECONDS_);
/* Note: TPDO 1 is reserved for future use */
MCO_InitTPDO(2, 0x281, 0, 0, 1, P2 00300_ACTUATOR_CONTROL_);

}
}

Listing 5.3 M C O R esetC om m unication function.

5.3.2.7 MCO FatalError Call-Back Function

This function is called if a fatal error occurred. Error codes of m cohw xxx. c are in the

range of 0x8000 to 0x87FF. Error codes of m co . c are in the range of 0x8800 to

0x8FFF. All other error codes may be used by the application.

void MCO_FatalError(UNSIGNED16 ErrCode) /* the error code */
{ / * Turn on red LED to indicate an error has occured */

error_state i ErrCode & OxFF); * /
PIN_RED = ON;

}
Listing 5.4 M C O F ata lE rro r function.

5.3.2.8 Configuration of the Process Image

In order to offer a generic method for addressing and exchanging the data

communicated via CANopen, process data is organised into a process image. The

process image is implemented as an array of bytes and is used as shared memory to

facilitate access for MicroCANopen as well as from the application program. The

process image contains all process data variables that are communicated via CANopen.

Access functions are provided to allow the application program to read or write data

from or to the process image. The length of the process image in bytes is defined by a

constant, PROCIMG_SIZE in file “procimg.h" and must be in the range of 0x01 to

OxFE (values 0x00 and OxFF are reserved).

A single variable of the process image can be addressed by specifying an offset and a

length. The offset specifies where in the process image the first byte of a variable is

stored and the length specifies how many bytes are used to store the variable. The offset

Architecture for Grid-Enabled Instrumentation in Extreme Environments 111

may have a value from 0 to OxFE. Using an offset of OxOFF indicates that the offset is

invalid or unused. If numeric values are stored in multiple byte variables, then the

default byte order is CANopen compatible: Little Endian - the lower bytes are stored at

the lower offset.

The process image variable definitions are contained in the header file “p im g .h ”,

where each Object Dictionary entry Index and Sub-index is assigned to a variable and

the PDOs are configured to contain one or multiple process data variables. Figure 5.5

below shows mapping entry definitions for RPDOs and TPDOs by node #1 (valve A).

#ifndef _PIMGH_
♦define _PIMGH_

/ * Maximum number of receive PDOs */
#define NR_OF_RPDOS 2

/* Maximum number of transmit PDOs */
#define NR_OF_TPDOS 2

/* Mapping entries for P.FDOl [14001 * /

/* [2004,00] UNSIGNED8 V
#define P200400_HARDWARE_ERROR_ 0x00 0000 00
/* [2008,00] UNSIGNED8 */
♦define P200800_VALVE_POSITION_ 0x00000001

/* Mapping entries for RPDC2 [1401] */
‘ [2000,01] UNSIGNED3

♦define P2 00001_RTC_SECONDS_ 0x00000002
/* [2000,02] U1T SIGNED 8 * I

♦define P200002_RTC_MINUTES_ 0x00000003
/* [2000,03] UNSIGNED8 */
♦define P200003_RTC_HOURS_ 0x00000004

[2000.04] UNSIGNED8 */
♦define P2 00004_RTC_DATE_ 0x00000005

[2000.05] UNSIGNED8 */
♦define P2 00005_RTC_MONTH_ 0x00000006
/* [2000,06] UNSIGNED8 */
♦define P2 00006_RTC_DAY_ 0x00000007

[2000,07] UNSIGNED8
♦define P2 00007_RTC_YEAR_ 0x00000008

/* Mapping entries for TPDOi [18001 V
/ * Reserved - not in use * /

Mapping entries for TPD02 [1801] * /
/* [2003,00] UNSIGNED8
♦define P2 003 00_ACTUATOR_CONTROL_ 0x00000009

♦endif /* #ifncle£ PIMGH * /
Listing 5.5 N ode #1 (Valve A) M apping Entries for RPDOs and TPDO s

To simplify accessing the process image and to allow for easy reconfiguration of

process images, # d e f i n e statements are used to define the offsets to the individual

variables in the process image. These are defined in the file “p r o c im g .h ” that is

included to all code modules requiring access to the process image.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 112

i f n d e f _PROCIMG_H
♦ d e f in e _PROCIMG_H

/* DEFINES: Definition of the process image
Modify these for your application. */

/ * Define the size of the process im age * /
♦define PROCIMG_SIZE 10

/* Define process variables: offsets into the process image */

♦ d e f in e HARDWARE_ERROR 0x00
♦ d e f in e VALVE_POSITION 0x01

♦define RTC_SECONDS 0x02
♦define RTC_MINUTES 0x03
♦define RTC_HOURS 0x04
♦define RTC_DATE 0x05
♦define RTC_MONTH 0x06
♦define RTC_DAY 0x07
♦define RTC_YEAR 0x08

♦define ACTUATOR_CONTROL 0x09

♦endif /* #ifndef PROC_IMG_H * /

Listing 5.6 Process im age offset definitions.

All variables mapped into a CAN message (PDO) must be located consecutively in the

process image so that the entire contents of a PDO can copied byte-by-byte from/to the

process image. The application program directly accesses the data in the process image.

For example, gProcImg[offset] = x

5.4 Implementing Salvo RTOS

The firmware architecture for each node is based on a commercially available RTOS

developed by Pumpkin Inc. (Kalman 2003) which is expressly designed for low-cost

embedded systems with severely limited ROM (Read Only Memory) and RAM

(Random Access Memory) resources. Typical applications use between 1 and 2 KBytes

ROM and 50 to 100 Bytes RAM. The RTOS is highly configurable (Valenti and

Kalman 2001) and scalable, with a full set of run-time features including priority based,

cooperative multitasking, event services (semaphores, messages, message queues and

event flags), real-time delays and elapsed-time services. Multitasking is priority based,

with support for fifteen different priority levels where tasks with the same priority

execute in a round-robin fashion. Salvo is written in ANSI C, with only a small number

of processor-specific extensions, facilitating portability o f any programs.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 113

5.4.1 The Multitasking RTOS Approach

In this paradigm, tasks operate concurrently rather than in the conventional main super

loop and interrupt service routine running in the background with undefined or

unpredictable latency (where latency is defined as the time delay between the moment a

task is initiated, and the moment a task actually begins). The RTOS maintains each task

in one of a number of states as shown in figure 5.3 below.

running

stopped waiting

Figure 5.3 Task states

Tasks can exist in many different states; periodic tasks are likely to be delayed at any

particular instant, low-priority tasks may be eligible but unable to run because a higher

priority task is already running and some tasks are likely to be waiting for an event. It is

the responsibility of the scheduler to manage all these tasks and ensure that each task

runs when it should. A more detailed explanation of Salvo RTOS can be found in Salvo

User Manual (Kalman 2003). This high level of abstraction lends it self well to the

challenge of developing smart or complex machine behavior encourages efficient use of

limited microprocessor resources and clock cycles. Because the RTOS is event driven, it

is possible to minimise power consumption while maximising use of the

microprocessor. This solution is also advantageous because it embraces the important

principle of code reusability and is supplied with comprehensive documentation.

These sophisticated messaging mechanisms facilitate reliable and safe communication

between tasks without having to resort to using global variables. Using global variables

is especially bad practice in a mission critical application like this because they are

available to all functions. This practice means firmware is vulnerable to potential

conflicts if tasks attempt to modify global variables simultaneously.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 114

5.4.2 OSTimer()

Node firmware makes extensive use of Salvos delay services, to delay a tasks or

sequences of functions within a given task. The listing below shows part of the interrupt

service routine that implements a 10ms timer by calling OSTimer () at a periodic rate

of approximately 100Hz. The periodic rate is derived from the processor hardware timer

overflow, which generates an interrupt.

#define TMRO_RELOAD 157 /* for 1 0 0 H z (lOns) ints § 20MHz TMO prescaler 1 : 4 */

void interrupt IntVector(void)
{

if (TOIE && TOIF)
{ /* System timer */

TOIF = 0;
TMRO -= TMRO_RELOAD;
OSTimer();

}
}

Listing 5 .7 Calling OSTim erQ at the System Tick Rate.

5.4.3 MainO

The firmware code within all nodes contains the main () function essential part to any

‘C’ programs. The first few lines of code in main () make calls to several functions

responsible for initialising and configuring the PIC processor hardware, RTOS and

MicroCANopen protocol stack. PICInit () configures the processor digital I/O pins

as inputs or outputs and assigns names to them [Appendix 0.11]. OS Init () initialises

all the RTOS data structures, pointers and counters (this function must be called before

any other calls to RTOS functions are made or unpredictable behaviour can occur). The

then code drops into an infinite f or () loop where the scheduler (OSSchedO)
operates in a tight loop checking for eligible tasks. Only tasks which are in the eligible

state can run, and each call to OSSched () results in the most eligible task running until

the next context switch within that task. In order for multitasking to continue,

OSSched () must be called repeatedly (Kalman 2003). Finally, the MicroCANopen

operates as a background task by calling the protocol stack

(MCO_ProcessStack ()). This is done in order to avoid CANopen communication

being a high priority within the system.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 115

Void main(void)
{
PICInit () ; /* Initialise PIC ports, serial, SPI
puts(Nodelnit(buf, &systemRegister)); /* Initialise system to a known state
newLine();
MCO_ResetCommunication() ; /* Initialise CANopen protocol stack
OSInit(); /'* Initialise RTOS

OSCreateTask((OStypeTFP)TaskStrobe, (OstypeTcbP)TASK_STROBE_P,
(OstypePrio)PRIO_TASK_STROBE);
OSCreateTask(TaskRs232In, TASK_GET_KEY_P, PRIO_GET_KEY);
OSCreateTask(TaskBist, TASK_BIST_P, PRIO_BIST);
OSCreateTask(TaskDump, TASK_DUHP_P, PRIO_DUMP);
OSCreateTask(TaskAdcSample, TASK_ADC_SAMPLE_P, PRIO_ADC_SAMPLE);
OSCreateTask(TaskFlashlnit, TASK_FLASH_INIT_P, PRIO_FLASH_INIT);
OSCreateEFlag(EFLAG_SYSTEM_P, EFLAG_SYSTEM_CB_P, (BIT_ADC_BUSY | BIT_BIST));

OSEi(); / * Enable interrupts */
for (;;)
(
i f (gProcImg[P2 0 0 3 0 0_ACTUATOR_CONTROL_])
{ / * T r i g g e r DAQS t o m a ke a m e a s u r e m e n t * /
OSSetEFlag(EFLAG_SYSTEM_P, BIT_MEASURE);

}
i f (gProcImg[P2 0 0 3 0 0_ACTUATOR_CONTROL_])
{ /* T r i g g e r MPS t o a c q u i r e f l u i d s a i r p l e * /
OSSetEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE);

}
if (BIT_FLASH_DET & systemRegister.porState)
{ / * Simple user semaphore to detect insertion of flash card */
GIE = 0;
SystemRegister.porState &= (UNSIGNED8)~BIT_FLASH_DET; / * Clear the flag */
GIE = 1;
OSSetEFlag(EFLAG_SYSTEM_P, BIT_FLASH_INIT); /* Wake task */

}
MCO_ProcessStack(); / * Operate on CANopen protocol stack */
OSSched(); / * Run highest-priority eligible task */

}
}

Listing 5.8 Main()

5.4.4 Tasks

5.4.4.1 TaskStrobeO

The primary purpose of this task is to periodically strobe or “kick” the watchdog timer

hardware. It has the highest priority of all tasks, as it is essential that the delay time

between strobes is no greater than 250 ms or the watchdog will reset node hardware.

It is also responsible for timekeeping duties that trigger events in node sub-systems.

This part of the code is implementation dependent as there are some functional

differences between nodes. For example, some nodes utilise the RTC to trigger

temperature measurements or to control the open of a fluid sampling bottle, whereas

other nodes rely on incoming CAN messages to trigger them and therefore have no

requirement for time keeping. The listing below is a generic sample o f code found in the

node firmware.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 116

Void TaskStrobe(void)
{ /* K i c k w a t c h d o g every 250m s a n d t r i g g e r a n y e l i g i b l e t a s k s . P r i o r i t y 2 * /
static char tock, tick;
static unsigned int secs;
for (;;)
{
PIN_GREEN = ! PIN_GREEN; /* T o g g l e LED o n ' ' o f f */
Strobe();
RtcGets(&rtcTime);
Tick = (BcdToBin(rtcTime.seconds) & 0x01); /* Use m a sk t o s e e i f L S b i n ETC h a s

if ((tick ~ tock))
{ /* Derive system ticks from change of state of LSb */
secs++; /* I n c r e m e n t s e c o n d s c o u n t e r * /
tock = tick;

}
if (secs >= systemRegister.deltaT)
{ /* T r i g g e r DAQS t o m a k e a m e a s u r e m e n t * /
OSSetEFlag(EFLAG_SYSTEM_P, BIT_MEASURE);
Secs = 0x0000; / * R e s e t s e c o n d s c o u n t e r V

}
if (RtcGetBitAlarmStatus())
{ /* T r i g g e r MRS t o a c q u i r e f l u i d s a m p l e * /
OSSetEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE);

}
OS_Delay(T_STROBE, TaskStrobel); /* 250m s d e l a y * /

Listing 5.9 TaskStrobeQ

5.4.4.2 TaskFluidSampleO

This task is responsible for acquiring a fluid sample. Referring back to Chapter 4, it can

be seen that “Valve Node A”, “Valve Node B” and the “Pump Node” operate as a

subgroup of communication partners with “Valve Node A” acting as the timekeeper and

having the responsibility of initiating the activity to acquire the fluid sample [see

section 4.2.5.1 PDO Linking]. Each node in the subgroup implements this task, however

there are some essential differences in the implementation. The code for “Valve Node

A” is shown below [listing 5.10]. In this case the task is triggered by the event flag

(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE), where TaskStrobe () polls the

RTC alarm every 250 ms to check if it has been set and communicates with

TaskFluidSample () via the event flag to signal when the alarm is set.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 117

Void TaskFluidSample(void)
{ /* T h i s c a s k u s e s MFS t o a c q u i r e a f l u i d s a m p l e . P r i o r i t y 5 * /
for (; ;)
{ /* T r i g g e r t a s k when 3 1 T_FLUID_SMiPLE i s s e t */'
OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE, OSANY_BITS, OSNO_TIMEOUT,

TaskFluidSamplel);
OSClrEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE);
MotorPutc((UNSIGNED8) (VALVE | (UNSIGNED8)VALVE_OPEN_INLET)) ; /* Open m a s t e r

v a l v e * /
/* Open s l a v e v a l v e - CAN m e s s a g e t r a n s m i t i s triggered on COS * /
gProc Img [P2 0 0 3 0 0_ACTUATOR_TRIGGER_] | = 0x80; / * S e t V_TRIG b i t i n a c t u a t o r c o n t r o l

reg. */
0S_Delay(T_VALVE, TaskFluidSample2); / * W a i t f o r 6 m i n u t e s * /
MotorPutc((UNSIGNED8) (VALVE | (UNSIGNED8)VALVE_CLOSE)); /* C l o s e m a s t e r v a l v e V
GProcImg[P200300_ACTUATOR_TRIGGER_] &= 0x7F; /* Clear V_TRIG b i t i n a c t u a t o r

c o n t r o l r e g . * /
}

}

Listing 5.10 TaskFluidSam pleO im plem entation for “Valve N ode A”

In “Valve Node B” the situation is a little different [listing 5.11]. Here the task is still

triggered by the event flag (EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE), however

an incoming CAN message (from “Valve Node A”) sets BIT_FLUID_SAMPLE within

the event flag.

Void TaskFluidSample(void)
{ •'* T h i s t a s k u s e s UPS t o a c q u i r e a f l u i d s a m p l e . P r i o r i t y 5 * /
for (; ;)
{ T r i g g e r t a s k when 3IT_FLUID_SAMPLS i s s e t * >'
OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE, OSANY_BITS, OSNO_TIMEOUT,

TaskFluidSamplel);
OSClrEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE);
MotorPutc((UNSIGNED8)(VALVE | (UNSIGNED8)VALVE_OPEN)); Open v a l v e * /
OS_Delay(T_VALVE, TaskFluidSample2); /* W a i t 30 s e c o n d s f o r v a l v e s t c o p e n * /
/ * S w i t c h pump on - CAN m e s s a g e t r a n s m i t i s t r i g g e r e d on COS * /
gProc Img [P2 0 0 3 0 0_ACTUATOR_TRI GGER_] | = 0x40; •'* S e t P_TF.IG b i t i n a c t u a t o r c o n t r o l

r eg . V
OS_Delay(T_VALVE, TaskFluidSample3); /* W a i t f o r 5 m i n u t e s a n d 30 s e c o n d s * /
MotorPutc ((UNSIGNED8) (VALVE | (UNSIGNED8) VALVE_CLOSE)) ; / »• C l o s e v a l v e */
GProcImg[P200300_ACTUATOR_TRIGGER_] &= OxBF; /* C l e a r P_TR1G b i t i n a c t u a t o r

c o n t r o l r e g . */
}

}

Listing 5.11 TaskFluidSampleO implementation for “Valve N ode B”

The implementation of TaskFluidSampleO within the pump node is shown below.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 118

void TaskFluidSample(void)
{ /* T h i s t a s k u s e s MPS t o acquire a f l u i d s a m p le . P r i o r i t y 5 * /
for (;;)

OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE, OSANY_BITS, OSNO_TIMEOUT,
TaskFluidSamplel);

OSClrEFlag(EFLAG_SYSTEM_P, BIT_FLUID_SAMPLE);
MotorPutc((UNSIGNED8)(PUMP_ON)); /* Switch pump on */
OS_Delay(T_PUMP, TaskFluidSample2); /* Pump f l u i d f o r 5 m i n u t e s * /
MotorPutc((UNSIGNED8)(PUMP_OFF); /* Switch pump off */

}
}

Listing 5.12 TaskFluidSampleO implementation for “Pump N ode”

From the above listings, it is apparent that these nodes all rely on some type of event to

trigger various actions which are localised to themselves or to one other communication

partner, effectively sharing the computational load evenly amongst the subgroup, i.e. the

control is decentralised. This modular approach is highly scaleable and maintainable

because the number of lines of code within any one node is limited to a few thousand

lines and it does not increase excessively as new nodes are added to the network [see

Chapter 4, CANopen Implementation].

5.4.4.3 TaskMeasureO

This task is implemented in the temperature sensor node only, where its purpose is to

perform accurate, high resolution temperature measurements. This activity involves

coordination the data acquisition system ADC and RTC hardware, where an ADC

measurement is triggered on an event flag (EFLAG_SYSTEM_P, BIT MEASURE) set

by the RTC.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 119

void TaskMeasure(void)
{ /* This task is part of the DAQS a n d c o n t r o l s t h e r a t e o f m e a s u r e m e n t. P r i o r i t y 5 * /
for (;;)
{
OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_MEASURE, OSANY_BITS, OSNO_TIMEOUT, TaskAdcSamplel);
OSClrEFlag(EFLAG_SYSTEM_P, BIT_MESASURE); /* T r i g g e r t a s k when BIT_MEASURE i s set */

OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_ADC_BUSY, OSANY_BITS, OSNO_TIMEOUT,
TaskAdcSample2);

OSClrEFlag(EFLAG_SYSTEM_P, BIT_ADC_BUSY); / * M u tu a l e x c l u s i o n l o c k i n g o f ADC

PIN_RTD_ON = LOW; /* E n a b le t h e REF2 G0 20QuA c u r r e n t e x c i t a t i o n & V r e f V
PIN_ADC_ON = HIGH; /* P o w e r -u p ADC */'

OS_Delay (4, TaskAdcSample3) ; /* T im e f o r C21 t o c h a r g e up a n d s t a b i l i s e * /

AdcConvert(EFFLUENT_FLOW);
OS_De1ay(T_ADC, TaskAdcSample4); / * T im e f o r c o n v e r s i o n t o c o m p l e t e (minimum

AdcGetData((UNSIGNED8 *)&(adcChannel.one));

AdcConvert(EFFLUENT_TEMP);
OS_Delay(T_ADC, TaskAdcSample5); /* Tim e f o r c o n v e r s i o n t o c o m p l e t e (minimum

34n's) * /
AdcGetDataf(UNSIGNED8 *)&(adcChannel.two));

AdcConvert(PCB_TEMP);
OS_Delay(TADC, TaskAdcSample6); /* Tim e f o r c o n v e r s i o n t o c o m p l e t e (minimum

AdcGetData((UNSIGNED8 *)&(adcChannel.three));

PIN_RTD_ON = HIGH; / * D i s a b l e t h e REF200 200uA c u r r e n t e x c i t a t i o n & V r e f */'
PIN_ADC_ON = LOW; /* S h u td o w n ADC * /
OSSetEFlag(EFLAG_SYSTEM_P, BIT_ADC_BUSY); /* F i n i s h e d u s i n g ADC */
OSSetEFlag(EFLAG_SYSTEM_P, BIT_DUMP); /* Trigger task to store/display data */

}
}

Listing 5.13 TaskMeasureQ

The ADC hardware requires a minimum duration of 40ms to perform a complete

measurement conversion on one channel before it can store the acquired sample as an

array of three bytes. Rather than simply waiting in a delay loop and doing nothing,

TaskMeasure() is put into a delayed state for 40ms where context switching causes the

code to jump back into the OS scheduler so the processor is free to undertake other

duties. For perspective, a delay of 40ms wastes a considerable quantity of clock cycles

when using a 20MHz resonator with this processor architecture, as calculated below:

fosc = Resonator Frequency / 4 = 20M H z/4 = 5MHz (5.1)

tosc = 1 / f o s c = I / 5MHz = 200ns (5 -2)

The computational core is based RISC architecture where one instruction is processed
every clock cycle, therefore,

Number o f instructions processed = Delay time/instruction cycle time - i i

= 40 ms /200ns

Architecture for Grid-Enabled Instrumentation in Extreme Environments 120

= 200,000 instructions

This task also deals with controlled power-up and shutdown of ADC excitation current

source and the ADC to keep power consumption of these devices to a minimum.

The services offered by the RTOS support management of resources by use of binary

semaphores or event flags. In this case, event flags are utilised to implement mutual

exclusion or locking of the on board ADC to prevent tasks from simultaneously

attempting to access it, which would result in unpredictable behaviour.

Before exiting from this task an event flag (EFLA G SY STEM P, BIT DUMP) triggers

TaskStreamQ.

5.4.4.4 TaskStreamO

This task is implemented by the temperature sensor node, where its function is to stream

measurement data to a memory storage device (Secure Digital or Multimedia Card), to

the RS-232 comms port or onto the CAN bus. There is also capability to configure the

temperature sensor node to output the stream in different formats, including calibrated

measurement data as text, raw hexadecimal and in DASYLab compatible format. In

this case, the task performs a mass data storage function, however it could also be

utlised for logging status of a node or to keep a track of activities and events to maintain

a history or operational profile.

void T a sk S tr ea m (void)

//static UNSIGNED8 fileCount = 0x00; / * O p t i o n t o w r i t e d a t a t o a s e r i e s o f s e v e r a l
s e p a r a t e f i l e s . A l l t h e s e f i l e s s h a r e t h e sauna r o o t r a r e (b e tw e e n 4 a n d 7 c h a r a c t e r s)
f o l l o w e d b y c o n s e c u t i v e numbers a u t o m a t i c a l l y a s s i g n e d b y t h e program. * /

//static WORD blockCount = OxFFFF; / * C o u n t o f b l o c k s w r i t t e n t o f i l e . When
b l o c k C o u n t = = b l o c k S i r e c l o s e f i l e a n d o p e n a new f i l e . V

//static UNSIGNED8 fileHeader[1] ; / * TODO: s t r u c t u r e c o n t a i n i n g i n f o r m a t i o n
a b o u t t h e f i l e *'

DATA t e x t ;

f o r (; ;)
{

OS_WaitEFlag(EFLAG_SYSTEM_P, BIT_DUMP, OSANY_BITS, OSNO_TIMEOUT, T askD um pl);
OSClrEFlag(EFLAG_SYSTEM_P, BIT_DUMP);

/ / if (BIT_HEX & systemRegister.porState)
// { /* Hex format */
// if (BIT_DASYLAB & systemRegister.porState)
// { /* Discard timestamp in DASYLab compatible mode */
// text.time[0] = rtcTime.seconds;
// text.time[1] = rtcTime.minutes;
// text.time[2] = rtcTime.hours;
// text.time[3] = rtcTime.day;

Architecture for Grid-Enabled instrumentation in Extreme Environments 121

/ / text.time[4] = rtcTime.month;
// text.time[5] = rtcTime. year;
// text.time[6] = '\0'; /* Append terminating null */
/ / }

/ *
To maintain compatibility with DASYLab:
1. Add channel number to allow DASYLab to identify the channels
2. Pad with an extra padding byte so sample is of type DWORD (32bits)
3. Store 'little endian' format
*/

// text.temperature.one [0] = 0x01; /* Channel number */
// text.temperature.one [1] = adcChannel.one[2]; /* LSB * /
// text.temperature.one[2] = adcChannel.one[1]; /* */
// text.temperature.one[3] = adcChannel.one[0]; /* MSB */
// text. temperature.one [4] = 0x00; /* Padding byte */
// if (BIT_DASYLAB & systemRegister .porState) text. temperature. one [5] = '\0';
/* Don't need terminating null on string in DASYLab mode */

// text.temperature.two[0] = 0x02;
// text.temperature.two[1] = adcChannel.two[2];
// text.temperature.two[2] = adcChannel.two[1];
// text.temperature.two [3] = adcChannel.two[0];
// text. temperature.two[4] - 0x00;
// if (BIT_DASYLAB & systemRegister.porState) text.temperature.two[5] = '\0';
/* Don't need terminating null on string in DASYLab mode */

// text.temperature.three[0] = 0x03;
// text. temperature. three[1] = adcChannel. three[2];
// text.temperature.three[2] = adcChannel.three[1];
// text.temperature.three[3] = adcChannel.three[0];
// text.temperature.three[4] = 0x00;
// if (BIT_DASYLAB & systemRegister .porState) text.temperature.three[51 =
'\0'; /* Don't need terminating null on string in DASYLab mode */

/ / }
// else

{ /* Text format */
//ClearBuf((UNSIGNED8 *)& (text.temperature.three)) ;
TimeToString(&rtcTime, (UNSIGNED8 *)&(text.time));
TemperatureToString(adcChannel.one, (UNSIGNED8 *)&(text.temperature.one),

(systemRegister.porState & BIT_UNITS));
TemperatureToString(adcChannel.two, (UNSIGNED8 *)&(text.temperature.two),

(systemRegister.porState & BIT_UNITS));
TemperatureToString(adcChannel.three, (UNSIGNED8

*)&(text.temperature.three), (systemRegister.porState & BIT_UNITS));
}

if (BIT_RS232_STREAM & systemRegister.porState)

puts((UNSIGNED8 *)&(text.time));
puts((UNSIGNED8 *)&(text.temperature.one));
puts((UNSIGNED8 *)&(text.temperature.two));
puts((UNSIGNED8 *)&(text.temperature.three));
putch(';'); newLine();

}

if (BIT_FLASH_STREAM & systemRegister.porState)

/ / i f (blockCount++ >= (systemRegister.blockSize - 1))
// { /* Chain file series */
// char index[3];
// blockCount = 0x0000;
// CharToHex(fileCount, index); /* Convert file size to text format */
// systemRegister.filename[6] = *(index + 0);
// systemRegister.filename[7] = *(index + 1);
// systemRegister.filename[9] = 'a';
// systemRegister.filename[10] = 's';
// systemRegister.filename[11] = 'c';
// if (BIT_HEX & systemRegister.porState)
/ / {
// systemRegister.filename[9] = 'h';
// systemRegister.filename[10] = 'e';
// systemRegister.filename[11] = 'x';
/ / }
// systemRegister.filename[12] = '\0';
// fclose(out); /* Close */
// fopen(systemRegister.filename, out);
// fputs(fileHeader, out);

Architecture for Grid-Enabled Instrumentation in Extreme Environments 122

/ / puts (systemRegister. filename); newLine (); /* Display filename on
filename increment */
// fileCount++; /* */
/ / }

p u t c h n e w L i n e ();
fputs((UNSIGNED8 *)&(text.time), out); /* T im e s ta m p V
fputs((UNSIGNED8 *)&(text.temperature.one), out); /* C h a n n e l o n e * /
fputs((UNSIGNED8 *)&(text.temperature.two), out); /'* C h a n n e l tw o * /
fputs((UNSIGNED8 *)&(text.temperature.three), out); /* C h a n n e l t h r e e * /
fputc(';', out); /* D e l i m i t e r * /
fputc((char)CR, out); fputc((char)LF, out); /* n e w L i n e !) ; * /

i f (BIT_CAN_STREAM & s y s t e m R e g i s t e r . p o r S t a t e)
{ / * S t r e a m d a t a t o CAN b u s * /
CanPushMessage (pTransmitBuf) /* S e n d CNN m e s s a g e * /

}
/ / 0 S C 1 r E F l a g (E FLA G _SAM PLE _P, RECORD) ;

}
}

Listing 5 .14 TaskStream Q

5.4.4.5 TaskRS2320

T askR s232 () supports terse a command line interface for communication via legacy

RS-232 interface for test and diagnostic purposes.

void TaskRs232(void) /* TaskRs232 Priority 4 */
{
static char key;
for (;;)
{
if (kbhit())
{ /* If there are characters in the F I FO */
key = toupper(getch()); /* Some basic input validation. Make uppercase */
if (CR == key)
{ /* Parse the command-line and process */
newLine();
CliParse(buf, &command, argument);/* Parse the command-1ine */
ClearBuf(buf); /* Clear all characters in the buffer * /

CliProcess(command, argument); /* Process the command-line */
ClearBuf(argument); /* Clear all characters in the buffer */
command = 0x00;
//newLine(); //putch(command); putch(' '); puts(argument); newLine();

Display corrmand & argument */
}
else
{ /* Build the command-line */
if (isprint(key))
{
putch(key); /* Display the key pressed */
CliBuild(key, buf); /* Build the command-1ine */

}
}

}
OS_Delay(T_KEYSCAN, TaskGetKeyl);

}
}

Listing 5.15 TaskRS232()

This task makes use of another useful RTOS service is the queue, which is configured

as a first in first out (FIFO) buffer for short term storage of characters received on the

UART. When a character is received, a short interrupt service routine (ISR) quickly

Architecture for Grid-Enabled Instrumentation in Extreme Environments 123

inserts it into the buffer. Every 250ms a task within the RTOS checks the FIFO and

removes any characters within the buffer.

5.4.5 OSIdleHook()

Salvo’s scheduler normally runs in a tight loop when no tasks are eligible to run, i.e.

when it is idling. Use is made of the “Idle” function hook service to switch on an amber

LED to indicate that the operating system is busy. The ultimate aim is to utilise this

service to decrease clock speed or put the processor into sleep mode while the processor

is idle to reduce power consumption to conserve battery life and extend deployment

duration capability.

5.5 Putting it all together

MAKE files are utilised to describe how source code modules are compiled, assembled

and linked to build the final ROM image that resides on the target processor, effectively

acting as a blueprint for building the ‘C’ source code and translating it into machine

code that will run on the target microprocessor. They also describe the tools used to

build the final executable. These MAKE files allow repeatable, documented and

portable firmware builds and the source code can rapidly be recompiled for other

processor targets. For example, this powerful technique is used for test and development

purposes, where hardware-specific header files are replaced so that test code can be

compiled to run as an executable on the PC rather than downloading it to the target

microprocessor. This speeds up the development cycle and promotes more thorough

testing of the code. Project specific information (i.e. source code files, target, etc) is

located in a project file (is o s a m p .p j t) . This allows code to be built for different

target processors by altering the “PROCESSOR” and “COMPILER” options. A full

description of the tool chain is given in the project MAKE files header section with

command-line syntax for driving the compiler, linker, boot-loader, programmer and

terminal emulator. Appendix K shows the MAKE files used to build the firmware that is

downloaded into each node.

The test compilation listed below shows resource usage for a full system build that

includes the Salvo RTOS kernel, RS-232 command line interface, all drivers in the HAL

and the MicroCANopen protocol. Despite the fact that this build incorporates more

Architecture for Grid-Enabled Instrumentation in Extreme Environments 124

functionality than a typical node will require, there is ample program and memory space

available for further development work with this particular processor core

Program ROM $000000 - $000003 $000004 (4) bytes
Program ROM $000008 - $000057 $000050 (80) bytes
Program ROM $000096 - $0005FF $00056A (1386) bytes
Program ROM $000844 - $003FFD $0037 BA (14266) bytes
Program ROM $004000 - $0070FB $0030FC (12540) bytes

$006E74 (28276) bytes total Program ROM

RAM data $000012 - $0001F6 $0001E5 (485) bytes
RAM data $000396 - $0005FF $00026A (618) bytes

$00044F (1103) bytes total RAM data

Near RAM $000000 - $00000F $000010 (16) bytes total Near RAM
Near bits $000080 - $00008B $00000C (12) bits total Near bits
ROM data $000058 - $000095 $00003E (62) bytes
ROM data $000600 - $000843 $000244 (580) bytes

$000282 (642) bytes total ROM data

Config Data $300000 - $30000D $00000E (14) bytes total Config Data

Program statistics:

Total ROM used
Total RAM used

28918 bytes (88.3%
1121 bytes (73.0% Near RAM used

Listing 5.16 Memory usage map

18 bytes (14.1%)

Architecture for Grid-Enabled Instrumentation in Extreme Environments 125

Chapter 6 E l e c t r o n i c H a r d w a r e P la t fo rm

Reliability and micro-power operation specification requirements played a large part in

shaping the final electronic hardware solution for the nodes in the machine system

network. To this end, a custom single board computer (SBC) was developed at Cardiff

University, UK [figure 6.1] to be embedded within each node. This chapter gives an

overview of the features of the SBC and a detailed description of the design and

function of the on-board low-level hardware infrastructure.

6.1 Single Board Computer (SBC)

A SBC is a complete computer built on a single printed circuit board (PCB), including

microprocessor, random access memory (RAM), input/output (IO), real-time clock

(RTC) and networking capability via Bosch controller area network (CAN) bus.

RS-232 MOTOR CONTROL

SD/MMC

3

g
yht 2004 eos I to

ADC RTC WDT FRAM
Figure 6.1 Single Board Computer (SBC)

A high level of integration, reduced component and connector count make this SBC

small, light, power efficient in comparison to many other commercially available SBCs.

The hardware and firmware were developed concurrently and integrated early on in the

design process to yield the best possible performance in terms of power consumption

and stability. For example, “Windows XPe” (embedded) or Linux operating systems

running on a commercially available SBC may not have direct access to shutdown

various hardware devices to conserve power unless the platform specifically supports it

and a driver has been created. The SBC hardware architecture is designed with the aim

Architecture for Grid-Enabled Instrumentation in Extreme Environments 126

of maximising system reliability and reducing power consumption to an absolute

minimum. This is achieved by partitioning the hardware into separate functional blocks

where each block is dedicated “slave” device optimised to assist the master in

completing a specific task. In this application the tasks are communication, time

keeping, measurement, motor positioning and power management. These blocks are

sometimes referred to as hardware accelerators because they operate concurrently with

the “master” CPU to improve speed performance of the system. The master

communicates with the slaves via a dedicated serial bus (serial peripheral interface,

SPI), interrupt and power enable pins. Slave blocks can raise interrupts to signal

occurrence of internal and external events (such as a measurement being completed or

an incoming message) to trigger the master, which takes appropriate action to process

the interrupt request. The ISR (interrupt service routine) firmware residing in the master

(and some slaves) can configure the system according to its instantaneous

computational requirements by means of power enable pins. These control pins are used

to gate supply voltages to components as and when they are required by the system to

achieve certain tasks. This event-driven, modular architecture allows fine granularity of

power management, as unused resources are completely shutdown when not in use. A

spreadsheet was created [see Appendix E] to enable accurate calculations to be made of

expected system power requirements for different deployment scenarios. Finally, the

form factor of the SBC was determined by the physical dimensions of other components

within the pressure case such as the battery pack and motor/gearbox.

6.2 Central Processing Unit (CPU)

A critical step in the research & development of the SBC is the selection of a suitable

CPU or computational core on which to base the hardware platform. Each node is

battery powered and is expected to function reliably for many months, so a low power,

low-performance microprocessor is an appropriate core for this application. The term

*'low-performance” is typically used to describe 8 or 16-bit microprocessors with

limited program, data memory and hardware resources). For longer duration

deployments, the capability to switch the device into sleep mode becomes essential. The

device should obviously have adequate program space to accommodate the existing

firmware code, but also space for any future improvements or features. The ability to

Architecture for Grid-Enabled Instrumentation in Extreme Environments 127

program the device in a high-level language, such as ‘C’ when embedded in the circuit

is useful for testing purposes and for future firmware upgrades.

An enhanced RISC (reduced instruction set computer) Microchip 18-bit core PIC

(Peripheral Interface Controller) microprocessor was selected as the core on which to

base each SBC. This low-power device is equipped with on-board services such as

serial communication UARTS, timers, PWM and a total of 28 pins, of which 22 are

available for general purpose digital input/output. The enhanced RISC architecture

provides fast computation and enables code to be executed at the microprocessors

internal clock speed (five million instructions per second with an external 20MHz

crystal). This microprocessor also has a C compiler optimised architecture/instruction

set.

6.3 Serial Peripheral Interface (SPI) Bus

There are two realistic propositions for a local serial communication bus between

devices on a node circuit board, the SPI bus and the I2C (Inter-IC) bus. SPI was chosen

because of its relatively low protocol overhead compared to the I2C bus and also

because of the wider selection o f low voltage (3.3 V) SPI devices currently available on

the market to choose from. The SPI bus is a very loose standard for controlling almost

any digital electronics device that accepts a clocked serial stream of bits. SPI is cost

effective, in that it does not take up much real-estate on an integrated circuit (IC), and

effectively multiplies the pins, the expensive part of the IC. It is easily implemented by

“bit-bashing” in firmware and a few standard 10 pins of a microprocessor. It is the most

flexible choice when many different types of serial peripheral devices may be present,

and there is a single “master” microprocessor.

The microprocessor on the SBC accesses peripheral hardware via the local SPI bus and

chip-select scheme [figure 6.2]. In this scheme the microprocessor acts as a “master”

and selects a “slave” using the 3:8 de-multiplexer (74HC138 3-to-8 Line Decoder

DS005120 Fairchild Semiconductor Corporation, 1983). Only the selected slave device

drives its output, all other slaves are in a passive high impedance state. The output

remains active as long as long as the slave is selected by its address. This approach

rigidly enforces bus arbitration at the hardware level by ensuring exclusive selection of

Architecture for Grid-Enabled instrumentation in Extreme Environments 128

only one slave at any time. The 3:8 de-multiplexer also reduces the number of digital

control pins (AO. A1 and A2) the master needs to dedicate to the task of chip selection.

All the SPI peripheral devices used in this circuit design are low power, operating at

SLAVE 4
(BAT)

SCK
SDI
SDO

SLAVE 7
(FLASH)

SCK
SDI
SDO

SLAVE 5
(MOT)

SCK
SDI
SDO

SLAVE 3
(LCD)

SCK
SDI
SDO

SCK
SDI
SDO

SLAVE 1
(ADC)

SCK
SDI
SDO

SLAVE 2
(CAN)

SCK
SDI
SDO

A2 CS2
CS3
CS4
CS5
CS6
CS7

AO CSO

SLAVE 0
(RTC)

SCK
SDI
SDO

MASTER
(CPU) A0

SCK
SDI
SDO

Figure6.2 SPI Master with independent slave devices

3.3V and can be put into “sleep” mode by the master microprocessor to further reduce

power consumption to make them true “micro-power” devices. In sleep mode a node

would be drawing an immeasurably small current from the batteries. Self-discharge, due

internal cell resistance of the battery would be the predominant cause of power drain.

Partitioning the hardware by use of task specific devices that communicate over a

common SPI bus presents the master with a well-defined and uniform interface. This

simplifies firmware design and reduces the number of lines of code (NOC) required to

implement the internal bus control algorithm.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 129

6.4 Real-Time Clock (RTC)

The RTC is central to the node design and is

utilised by the on board DAQS to create

formatted timestamps when samples are

acquired and by the file system when data files

are created. The RTC (IC9) is a micro-power

device (Maxim Integrated Products, MAX6902

SPI-Compatible Real Time Clock in SOT-23

19-2134 Rev. 0.0, 2001) with it's own power

supply back-up capacitor (C23) to keep it

“ticking” in the event of a brownout

(momentary dip in the voltage supply) or

longer term power interruptions to the node battery power supply [figure 6.3]. It can

handle spurious and long-term breaks in power for up to two days. It is possible to

implement clock and calendar functions performed by the RTC in firmware, however a

dedicated external RTC frees the “master” microprocessor for higher level duties and

reduces the number of lines of code (NOC) required. The HLP supports RTC register

updates, meaning nodes are capable of synchronizing their RTC to an external time

source.

6.5 Analogue-to-Digital Converter (ADC)

The ADC (Burr-Brown Products, ADS 1242/1243 24-bit Analogue-To-Digital

Converter SBAS235, 2001) is an integral part of the DAQS hardware [figure 6.4],

where it is required to digitise voltage signal outputs from the sensors. In this

application the sensor is a thin-film platinum resistance temperature device (RTD),

however other types of transducers may be connected with suitable signal conditioning

to ensure that the input voltage to the ADC (IC4) stays within a 0 to 3V range. The

ADC is an eight channel, 24-bit delta-sigma type with 1024 tap finite impulse response

(FIR) comb digital filter with notches in the frequency response 50Hz and 60Hz to

reject mains induced noise. There is an onboard programmable gain amplifier (PGA)

that can be set for gains from 1 to 128 times in power of two steps and selectable high

impedance (5MQ) buffer. The ADC also has sleep and stand-by mode capability to

minimise power consumption when not in use. To further reduce power consumption to

VDD

3.3V

32.768KHCZ3
IC9

c s XIN
>SCK xotrr
SOX
SDO v c c

8

37.0X 3

R24
lKOhm_5%

MAX6902 C23. C20

o . i r 100nF

\ 7

Figure 6.3 Schematic diagram o f RTC and support
circuitry.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 130

an absolute minimum the 200pA power source can also be switched off by the DAQS

via an analogue switch (IC13).

Vb*tt«ry

200uA RTD source

IRCT2OOA0

rC21
IC10A 7 IC10B

® Tiiw*ir R*r2O0APj

1 lOOuA 2 lOOuA v

IC12

10

. IU.
10.0k0h»_l%

K2
■VW-
0Otw_S%

c o m IH l
HOI NCI
»♦ <JHD
N02 NC2
c o m t m

Nu<m

Heater PSU

O.SOtu*_5 I

ootwu*

RTD3 Its
-Wv-

1.0OkOh*_l%

HDR1X12
SENSOR

ClIF
10pF x«[*!I4. I152MB£ZZ1

C2,

iopr

XC4

13
14

10
11
12

XIN c s
XOOT SCK<
VWBT4 SOI
VRKF- SDO

JUNO DftOY
JU N l ON
h lH 2
h i m
h i m
AIMS
h i m
h i m

14
II
17
18

,20
4

ABS1243

Figure 6.4 Schematic diagram showing DAQS hardware.

Internal buffering can be selected to provide very high input impedance (5MG) for

direct connection of the low-level voltage signal generated by the RTD sensing element.

The programmable gain amplifier (PGA) allows the DAQS to be configured for use in

different environments. For example, a high PGA gain would be used when performing

high-resolution temperature profiling throughout a water column. Conversely, the

temperature measurements of water temperature taken at the mouth of a hydrothermal

Architecture for Grid-Enabled Instrumentation in Extreme Environments 131

vent require a wider dynamic range and lower resolution, so the PGA gain would be

lowered to accommodate the larger signal output from the RTD.

6.6 Transducer

A transducer is a device that transforms one form of energy into another. In this case,

temperature and fluid flow rate are converted into an electrical signal or voltage. The

inaccessible and harsh marine environment in which the transducer must function is

similar to some industrial and commercial applications. It must be able to withstand

high temperatures, pressures and some unpleasant chemistry, so reliability is paramount.

The measurement point is not in the same place as the indication or control point and

there is a requirement for further processing of the measurement in controllers, loggers

or computers. There are three types of transducer commonly used in industrial process

and control: resistance temperature devices (RTDs), thermistors and thermocouples.

A PT100 DIN IEC-751 thin-film RTD was selected for this application because it has a

relatively linear response over a wide temperature range offers excellent accuracy, best

long-term stability with the ultimate benefit that sensors will be interchangeable. In

many industrial processes, for example, cracking towers in petroleum refineries, a group

of temperature measurements must be related to one another. A series of platinum RTDs

that sense slow changing temperatures can be configured into a resistive ladder (Linear

Technology Corporation, LTC2404/LTC2408 4/8-Channel 24-Bit pPower No Latency

AE*™ ADCs, 1999). This approach allows a single excitation current passed through the

entire ladder, reducing total supply current consumption and eliminating current source

mismatch and drift errors. An accurate 200pA constant current source (REF200 Dual

Current Source/Current Sink PDS-851D Burr-Brown Corporation, 1988) excites the

RTDs and a precision reference resistor. The resistance of any of the RTDs is

determined by measuring the voltage across it, as compared to the voltage drop across

the reference resistor. The accuracy of a measurement from this ratiometric

implementation is dependent on the reference resistor having a low temperature

coefficient. High precision 100R and 200R resistors may be inserted in series with the

RTDs in ladder. Insertion of two known source resistors into the ladder makes it

feasible for the DAQS to perform a full self-calibration for offset and gain correction.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 132

The RTDs are bonded to pure gold “thermal windows” with high thermal conductivity

epoxy resin and the complete sensor probe assembly is encapsulated in thermally

resistive epoxy. Although these RTDs are capable of operation over -200°C to 650°C

temperature range, the resins are only rated to a 250°C maximum. The sensor probe and

schematic are shown in figure 6.5 below.

Sensor Element J12

RTD1

lOQOhraJL*

Figure 6.5 Prototype calorimetric flow sensor and schematic diagram.

6.7 Controller Area Network (CAN)

The CAN hardware interface is based on a dedicated CAN controller device (Microchip

Technology Inc., MCP2510 Stand-Alone CAN Controller with SPI DS21291E, 2002)

and low voltage, low-power transceiver (Burr-Brown Products, SN65HVD230 3.3V

CAN Transceivers SLOS346E, 2001). This controller handles the CAN protocol,

message packets and data collisions, freeing the master microprocessor from these

lower level duties. Because the CAN hardware manages the entire packet, including

CRC checks, the overhead on the processor is far less than it would be for an equivalent

serial port. Failed messages are retried automatically, with no software interaction.

More detailed information on the CAN bus protocol can be found in Chapter 3

Communication System Design.

IC15

CAN

HDR1X3

CANH ON
CAUL D
Vr«f R
5N65HVD230

X2
XI

GND X2

IC6

-So

-So
8

TXCAN CS
RXCAN
CLKOUT
TXORTS

SDI
SDO

TX1RTS INT
TX2RTS RST
XIN RX0BF
XOUT RXIBF

.16
13
14
15

,12
,17
,11
*10

MCP2510ISO16MHz_Reconator

Figure 6.6 Schematic diagram showing CAN hardware.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 133

CAN bus was originally developed for the automotive market where power

consumption and battery life are important. For this reason the CAN controller has a

sleep mode, where it is be awakened when a message is received on the bus. CAN is

desirable for this application because it is fault tolerant and its message transmission

error rate is low (Bosch 1991) with fantastically reliable data transfer calculated at one

error every thousand years.

For this specific marine application the SBC J

computer is housed in a titanium pressure case and

the physical bus interface between nodes is a

specialised four-pin [figure 6.8], sub-miniature,

deep-sea connector that is pressure-rated to 10,000

PSI [figure 6.7]. The titanium pressure cases and

connectors underwent further certification (up to

9,500 PSI external pressure) in the laboratory with a

pressure chamber rig. Two o f these bulkhead connectors are mounted on the base of

every node pressure case housing to facilitate daisy-chaining of nodes. Nodes can easily

be added and removed from the system network for repair or re-configuration of the

instrument without the need for significant re-wiring or disruption the rest of the bus.

One disadvantage of this topology is that damage to the cable could cause a break in the

bus and loss of the termination resistor at one end of the data lines, so more errors will

occur. However, the CAN protocol supports lower data rates (125Kbps) where the

termination resistor is not so critical. It is therefore possible for the instrument to

continue functioning as two independent units if suitable error detection and adaptive

system firmware is implemented.

Pin # Description G U I D E PIN

1 GND

2 +5V

3 CAN_H

4 CAN_L

4 CONTACT
Figure 6.8 Pin-out o f CAN bus connectors.

A shielded twisted pair inter-connecting cable is recommended, if the instrument is

operating in an electrically harsh environment where it would be exposed high levels of

.75 HEX

0-RING
2-014

7/16-20 UNF-2A
12’TEFLON
LEADS

Figure 6.7 CAN bus connector.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 134

electromagnetic interference (EMI) or radio frequency interference (RFI). However,

this is not an essential requirement for typical marine deployments.

6.8 Power Supply

A decision was made early on in this project to use a 3.3V power supply rail for all the

digital electronics on the SBC. This was dictated by the voltage requirements of suitable

flash memory devices available at the time with the benefit of a significant decrease in

power consumption compared with 5V. The 3.3V rail is derived from a low drop out

linear voltage regulator (STMicroelectronics, LEOOAB/C Series Very Low Drop

Voltage Regulators with Inhibit, 1998) which provides a stable output from wide

voltage input, allowing the SBC to operate from a power source with 3.6V to 6V range.

Several different rechargeable battery technologies were considered for powering node

electronics including, nickel-cadmium, lead-acid and lithium-ion chemistries:

• Nickel-Cadmium - NiCd batteries are capable o f supplying high currents, have a

long service life and exhibit a relatively flat discharge characteristic over time. The

most appropriate charging method is constant current and pulse charging. A

periodical full discharge is important to prolong life. The major disadvantage of

NiCd technology is low energy density and self-discharge.

• Lead-Acid - Lead-acid batteries have one of the lowest self-discharge rates of all

rechargeable battery chemistries, making them appropriate for standby applications.

Charging method requires a constant voltage. Disadvantages are low energy density

and limited number of full discharge cycles. Also terminal voltage should not be

allowed to drop below 2.1V or irreversible damage will occur because of insoluble

lead sulphate deposition on the plates inside the cell.

• Lithium-Ion - Li-Ion offers high energy density, low weight and low self-discharge

in comparison to NiCd batteries. High terminal voltage of 3.6V means that the SBC

could be powered from a single cell. The major limitation of Li-Ion batteries is the

requirement to maintain voltage and current within safe operating limits during

charge/discharge cycle. Batteries are prone to failure after two or three years even

when not in use.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 135

Although Li-Ion technology offers high energy density it was rejected because of

longevity and safety issues when used in the deep marine environment. Li-Ion (and

lead-acid) batteries are all too easily damaged because of neglecting to keep

charge/discharge currents within safe operational limits. NiCd batteries are more

forgiving to this kind of mal-treatment, however all chemistries are damaged by

overcharging because the cells begin to loose electrolyte via “gassing” and plates may

even buckle if overheating occurs. Ni-Cads have the capacity to deliver high

instantaneous currents (higher than their Ni-Mh replacements), making them well suited

for motor start applications such as this. For these reasons they were selected as a power

source for node electronic systems.

A battery stack was specified [figure 6.9] consisting o f three high temperature

conformance NiCd cells to deliver a nominal 3.6V to the voltage regulator input.

Nominal output voltage: 3.6V
Capacity (energy storage): 2.5Ah
Battery technology,: Nickel Cadmium (NiCd)
External length / height: 150mm
Diameter: 26mm
Maximum operating temperature: 65°C
Minimum operating temperature: -20°C
Terminal type: Solder tag
Weight: 216g
Internal impedance: 15 ~ 22 mQ / cell
Cycle life: >500

Figure 6.9 Rechargeable
battery pack

A built-in power management system (PMS) based on a 12-bit core PIC microprocessor

(Microchip Technology Inc., PIC12F629/675 Data Sheet 8-Pin FLASH-based 8-bit

CMOS Microcontrollers DS41190C, 2003) continuously monitors battery voltage and

supervises the amount the charging current. There is no SPI hardware support on

PIC12F675 microprocessor, so SPI is implemented using “bit-bashing” code.

1

2

3

Architecture for Grid-Enabled Instrumentation in Extreme Environments 136

3.3VIC2C Battery Charger

R22 R6

TR4

1C18

■♦a
Battery C8

22uF
-#B

Vin Vout ACJ

CS 7NM
>SCK
SOI
SCO VBAT

3V3 Digital Power Supply
VDD

3.3V

CIO

lOOnF

Cll
lOOnP

C12

XOOnF

Cl 3

lOOnF

C14

lOOnF
Iels cie

lOOnr lOOnF
X

C17

lOOnF

C18

lOOnF

Clf

lOOnF

F igure 6.10 PMS schem atic diagram.

The charger circuit is built around a LM317 (national Semiconductor,

LM117/LM317A/LM317 3-Terminal adjustable Voltage Regulator DS009063, 2006)

constant current charging circuit under the direct control of the slave microprocessor

[figure 6.10]. The voltage between the adjustment terminal and the output terminal of

the LM317 (IC20) is always 1.25V, so by connecting the adjustment terminal to the

battery load and placing a resistor (R7) between the battery and the output terminal, a

constant current of 1.25/R is established. A value of 3 . 3 for R7 sets the maximum

possible charging current at about 350mA. A diode is used in series with the input to

prevent the batteries from applying a reverse voltage to the regulator when the external

power is not available. The microprocessor (IC19) can control the charging current with

a PWM pin which is tied high via R22, to turn TR4 on and disable charging. This safety

precaution prevents the batteries from being overcharged if the microprocessor fails for

any reason. By varying the duty cycle of PWM it is possible to adjust the charging rate.

IC18 provides a regulated 3.3V supply rail to all active digital devices, which are

decoupled with lOOnF capacitors situated in close proximity to them.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 137

6.9 Motor Controller

The motor controller circuit [figure 6.12] is a

sub-system of the MPS and comprises an

intelligent H-bridge device (Allegro

Microsystems, Inc., 3953 Full-Bridge PWM

Motor Driver 29319.8, 1995) and second

slave PIC microprocessor (Microchip

Technology Inc., PIC 16F818/819 Data Sheet

18/20-Pin Enhanced Microcontrollers with
Figure 6.11 Maxon motor/gear box assembly and
prototype controller hardware undergoing test at Cardiff nano Watt Technology DS39598C, 2002).
University, UK (2003).

The slave microprocessor is programmed to

accept single bytecode SPI commands (from the CPU master microprocessor), interpret

them to drive pins on the H-bridge device and ultimately actuate the motor [figure

6.11]. This architecture minimises cross-linkage and effectively encapsulates motor

control tasks (valve positioning, pump control, etc) within a functional block to free the

main microprocessor to handle higher level duties such as communications and

management of node systems. It also completely partitions the code in the slave from

the master during the development stage making it easier to maintain and encouraging

better, faster, cheaper and more reliable firmware.

Maxon motors and planetary gearboxes were chosen for this application because of then-

low start/operating currents, compact size, low electrical noise characteristics and

proven track record in extreme environments. This meant that the batteries and the H-

bridge controller could to be de-rated leading to an overall reduction of the pressure

case dimensions and cost for a complete node. The H-bridge device features safety

over-current protection and dynamic braking capability. A pulse width modulation

(PWM) control scheme is used to set motor speed for “soft-starting’' and accurate

positioning. This drastically reduces power consumed by the motor and electrical noise

from the point at which the brushes contact the rotating commutator.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 138

r S -
R20
tW -

lSOOttf^.5%

R21 ■VW-
150©h*_3< r

XCX7A J8
<Ofcr

74BCX32M

XCX78 .

. R48

Ei i coder
.R49

R47
•W r

R51
—vw-

IC17C

-tt-
08

< O sr
74BC132M , R30

3.3V

XCS

XC13

14

CS
>BCK
SOX
SOO
ROT
OH

VDO

RST

SZKSEA t>
SENSES 3----

COQKT 3 ^ "
ENC.ON >
ENABLE >-

PHASE P r ?
BRAKE
HOOE

BEATER

IN I
NCI
CUD
NC2
IN2

corn
KOI
V*

N02
C0K2

10

BDR1X3
Count

10KOba_5»

PIC16LT819

XCX4
V b * tt* ry

X 4.

ENABUBOOTA
PHASE OOTB

AVBAT1
^VBATX
RET
RC SENSE

10
19

16
8DR1X2
Motor

XX

A3953SLB

<3.H C O tou9«c4 R3X>:X.0o£

R27
—VA---
10bm_5«

R28
-VW---
10hn_5«

120K0(uO%

XCX7D.ZZT-,12
“ C S

748C132H

Figure 6.12 M otor controller schematic diagram.

6.10 Encoders

To achieve accurate movement and speed control of the motor shaft some form of

sensor is required to feedback position information to the slave processor. The MPS

uses two totally independent optical encoder circuits to achieve this reliably and a level

of redundancy. For example, firmware has been written to open and close a valve with

either of the encoder circuits. One incremental encoder counts motor shaft revolutions.

This data is further processed to give information about motor speed and position. A

second encoder [figure 6.13] after the gearbox gives absolute positions for either of the

two valve ports being open or in the closed position.

Architecture for Grid-Enabled instrumentation in Extreme Environments 139

SENSE A SENSE B

lo u r
T C 2 T 8 0 1 2

Figured. 13 Absolute position encoder and schematic diagram

Low-power matched infra-red optical detector/emitter pairs are used in both encoders.

Being non-contact sensors, they offer good immunity to mechanical noise (foreign

particles such as dust ingress or condensation), vibration and electrical noise (voltage

spikes from the motor stopping and starting). The signal from the detector is post

processed by feeding it through a complementary metal oxide semiconductor (CMOS)

Schmitt trigger [refer back to figure 6.15] to introduce a little hysteresis and eliminate

multiple edge transitions; this ensures a clean CMOS logic level signal is presented to

the microprocessor digital inputs. A solid-state switch (Maxim. Fast, Low-Voltage.

Dual 4Q SPDT CMOS Analog Switches MAX4636, 2003) is used to completely shut

the encoder circuitry down when not in use to further reduce power consumption when

the MPS is not in use.

6.11 Ferro-electric Random Access Memory (FRAM)

A SPI FRAM device (Ramtron International Corporation, FM25CL64 64Kb FRAM

Serial 3V Memory Rev. 2.1. 2003) functions as a non-volatile storage medium and

contains the Object Dictionary; a formal representation of node configuration settings

and process data [Chapter 4 Implementing CAN and CANopen] that is accessible to all

nodes connected to the network. The complete structure of the Object Dictionary is

described in the CANopen standard (Pfeiffer 2003). The configuration settings play an

important role during power on reset (POR) to ensure that state machine initialises the

system in a known state i.e. its previous state after power-down or reset.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 140

Figure 6.14 Schem atic diagram showing
FRAM used for non-volatile data storage.

FRAM was chosen over electrically erasable programmable read-only memory

(EEPROM) because of its superior electrical performance in terms of low-power

consumption, speed and durability. It is an extremely durable device for this purpose as

it has virtually unlimited write cycles and zero wait states for writing - for comparison

EEPROM has a maximum o f 1,000,000 write cycles (Microchip 1993). This also

simplifies firmware design.

6.12 Secure Digital/ Multi-Media Card (SD/MMC) Mass Data Storage

The SD (SanDisk Corporation, Secure Digital Card Product Manual 80-13-00169 Rev.

1.9, 2003) or MMC (SanDisk Corporation, MultiMediaCard Product Manual 80-13-

00089 Rev. 5.1, 2002) card constitutes part of the file system (FS). The card is used for

storing large amounts of data acquired by the DAQS in hexadecimal or text format in

files. Data files can be recovered by physically removing the SD/MMC and inserting it

into a personal computer (PC) or personal data appliance (PDA). The master CPU can

detect insertion/removal of the card via an interrupt line and perform the appropriate

action.

IC7

FLASH_DET
D14

VDD

3.3V
MuIt iMadiaCardR44
------------ W V

Figure 6.15 Schematic diagram o f SD/MM C hardware.

Although the Interfacing the SD/MMC card to the SPI bus [figure 6.15] was a relatively

simple part of the hardware design, implementing the FAT 16 FS and SD/MMC driver

Architecture for Grid-Enabled Instrumentation in Extreme Environments 141

required several thousand o f lines of support code and took many months to debug so

that it functioned correctly [see Chapter 7 Results].

6.13 Liquid Crystal Display (LCD)

There is the facility to connect an external LCD via an SPI connector on the main circuit

board. The main purpose o f this is to aid test and debugging, however the SPI can also

be used for interfacing another board to add more functionality at a later time.

6.14 Watch Dog Timer (WDT)

The WDT will perform a hard reset o f a system unless some sequence is performed that

generally indicates the system is alive, such as a write operation from an onboard

processor. During normal operation, firmware strobes the WDT at regular intervals to

prevent the timer from running out. WDT duties are performed by dedicated external

hardware (Dallas Semiconductor, DS1832 3.3 volt MicroMonitor Chip 112099), rather

than the microprocessors internal one, for high system reliability. The WDT is strobed

every 250ms in a controlled manner by a single task within the RTOS framework. This

hardware can also detect low voltage (brownout) conditions and reset the PIC

microprocessor to prevent the system behaving in an unpredictable manner.

I C l VDD

R39 D4

RST PBRST
/R S T TD
ST TOL

3 .3V

DS1832
IC 2

SI 1
R e s e t ?

K7
RST
ALE

Figure 6.16 Schematic diagram o f w atchdog tim er circuitry.

The importance of a dependable WDT cannot be over emphasised. It is a crucial

component o f the hardware and firmware in high reliability embedded systems and a

mechanism to restart the program if it wanders off or the hardware fails (Gannsle 1992).

For example, in 1994 the Clemantine spacecraft deployed to map the moon was

abandoned after its software crashed causing it to turn on thrusters and dump fuel. A

WDT was not used because of objections by the lead designer. In contrast the

Pathfinder mission was saved by a WDT when its firmware crashed. The team found

the bug and uploaded new code to a target system 40 million miles away on Mars

(Ganssle 2004).

Architecture for Grid-Enabled Instrumentation in Extreme Environments 142

The WDT is an essential component of any radiation hardened system. If radiation

causes the processor to operate incorrectly, it is unlikely the firmware will work

correctly enough to clear the WDT. The watchdog is the last line of defence and

eventually times out to force a hard reset to the system.

6.15 Input/Output (IO)

A legacy serial RS-232 interface [figure 6.17] allows each node to be directly connected

to a host computer or PC. It supports data transfer rates up to 19,200 Baud. The host

acts as a HMI to facilitate system configuration for autonomous use or direct manual

operation.

VDD
XI3.3V

10
R S -2 3 2

J3
IC16

18 RX
TX
VDC

17
20

D15 C3 j D5DS276S
22 uF

XI
GHD X2

RXin RXout
TXout TXin
Vdrv-Vdrv+

Figure 6 .17 RS-232 interface schematic diagram

Several light emitting diode (LED) indicators are included on the circuit for system

diagnostics. This is common practice and extremely useful in the test and debugging

stage as it gives a simple and clear visual indication of the systems operational status.

The green LED flashes every time the WDT is strobed. Yellow LED indicates when the

system is busy, or more accurately when the RTOS scheduler is busy. The red LED

indicates if an error condition has occurred and will remain lit until the error is cleared

or fixed. Typical error conditions include external hardware failure, write errors and

timeouts. There are also two orange LEDs to indicate the status of the valve position

encoder [refer back to figure 6.12].

Architecture for Grid-Enabled Instrumentation in Extreme Environments 143

VDD
3 .~3V

R11

D3

RIO
> 68(>hin_51

Error
D2

R9
560hm_51

Busy
D1

f

680hro_5%

Pass
4

IC2
-iq

2
RST
ALE

-C GREEN
-C YELLOW
-C RED

Figure 6.18 Schem atic diagram showing LEDs.

6.16 Printed Circuit Board (PCB)

The PCB is of two-layer, fibre-glass reinforced epoxy design with plated through holes

finished in tin with green solder resist mask. Much of the bottom layer is a ground plane

and a substantial amount o f copper on top layer is used as a 3.3V power rail.

Components were placed on both sides o f the board in order to keep PCB size to a

minimum. Standard pitch surface mount components (SOIC and 0805 outline) are used

predominantly with some fine-pitch and through-hole devices. This was a deliberate

decision to allow high component density yet retain the ability to re-work and modify

the board in-house without requiring specialist tools. The high component density made

the task of constraining component layout on a two layer PCB challenging, however it

has the advantages of being less expensive to manufacture and easier to debug, as there

are no “buried” vias or hidden tracks.

ffigrv P P oi—n

□5 □i'wii r |
□ s Is

|jh m -ft
MotorL_|ji

2 S S 3 8 SHI
SPI D iopU y

I 1 BS C H
s a s i
i a :

Si| k I pas-)
I ™ 1 1 (n t i l R»d B l» « |—|—IR.91 [*][-][-][■!!CCJopyriaht 2083 TO* ltd .

Figure6.19 SBC (m ainboard), enoder and sensor PCB silkscreen.

The PCB was drawn with the aid of Electronics Workbench's “Ultiboard” CAD

software to create gerber design files. It underwent three revisions over an eighteen

month period before the final batch o f production boards was built. Prototypes were

assembled by hand, tested and modified at COAS, Oregon State University and

PCBFabExpress fabricated the full production run of sixty PCBs. To minimise costs all

Architecture for Grid-Enabled Instrumentation in Extreme Environments 144

four boards (SBC. encoders and sensor) were placed on a single wafer in the design file

Irfigure 6.19]. Megatech of Oregon undertook final assembly of the production PCBs.

6.17 In-Circuit Serial Programming (ICSP)

ICSP facilitates the production and development process by making debugging easier

and future upgrades of the firmware possible. A SIL (single in-line) connector and

isolation circuitry were included on the PCB design to allow firmware updates on the

CPU master and motor controller slave PIC microprocessors when they are soldered in

place. An “MELabs” serial programmer with command-line control capability was used

to download hex files into the target processors. It connected directly to the USB port on

the host development PC running the programmer software under “Windows”

98/Me/NT/2000/XP. A makefile was written to control the programmer and automate

the process as described in Chapter 5.

6.18 Summary

A series of three prototype SBC circuit board revisions were developed and tested

before proceeding to manufacture a complete batch of sixty production PCBs. Megatech

of Oregon did an excellent job o f soldering components onto these PCBs during the

final assembly. A visual

inspection and electrical test

(performed using a basic RTOS

kernel with) was made on a

sample selection of ten boards

[figure 6.20] and revealed zero

manufacturing defects. Complete

schematics for the SBC and a

detailed bill of materials (BOM)
Figure 6.20 Ten o f sixty assembled SBC circuit boards.

can be found in Appendix C.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 145

Chapter 7 Testing and Results

The preceding chapters outlined the conceptualisation, development and implementation

of an open and flexible network architecture capable of supporting reliable machine

operation in extreme environments. The “lego-brick” modularity made it possible to

build and test instrument sub-systems incrementally in the laboratory and in real sea-

trials where both useful engineering and science data were obtained. The first section of

this chapter gives a detailed description of the experimental work and the performance

results obtained from applying various node sub-systems to geophysical monitoring and

sampling fluids in the deep ocean. The second section then progresses to describe the

approach taken to integrate these nodes into a network to realise a decentralised “plug

and play” machine system architecture and the results of the tests that followed.

7.1 Validation o f Node Operation

Before any sea-trials were undertaken, the node electronic hardware was tested in the

workshop. Firmware drivers were written and incrementally introduced into the RTOS

framework. During this stage, the driver firmware typically underwent two or three

revisions; initially to establish communication with a device and then further refinements

to reduce size, efficiency and readability o f the code. Once confidence had been gained

with the hardware/firmware interaction, it was possible to move forward and test the

various sub-systems in real sea trials. This section describes the bench tests performed

and the results obtained from practical deployments at sea.

7.1.1 Valve Control Consumer Node

A test harness was initially constructed in 2003 whilst working at Cardiff University

[shown in figure 6.11 of Chapter 6/ to circumvent the immediate requirement for writing

a functional firmware driver and facilitate immediate testing of motor controller

hardware. The harness was used to test that the H-bridge device and battery power source

were capable o f supplying adequate current to drive the motor/gearbox combination

under full load i.e. with the valve assembly connected. Also, tests were undertaken to

ensure that the gearbox had enough mechanical advantage to physically open and close

the valve. Under nominal load the motor draws 250mA i.e. when the valve is rotating,

however during start-up requires at least 400mA to overcome physical friction of valve

Architecture for Grid-Enabled instrumentation in Extreme Environments 146

ball. This figure could conceivably be greater if the valve is subjected to temperature

extremes, as mismatches in expansion coefficients of valve parts manufactured from

different materials (some are PEEK and some titanium) will affect clearances. To

compensate for this, some de-rating was applied in the H-bridge over-current protection

circuit, which was set to trip at 500mA.

Full device driver firmware code was completed several months later at Oregon State

University, US where further bench tests were undertaken to validate the complete MPS

hardware and firmware. The tests checked that SPI communication between the master

processor and slave was reliably established and that the byte commands were interpreted

correctly [source code for SPI slave and master devices is given in Appendix Q.7, Q.8

and Q.13J. Partitioning the motor control firmware within a second slave processor and

coupling it to the master via a standardised SPI communication protocol proved

advantageous, as it allowed code changes to be made to the master without perturbing the

stability of the motor control firmware. Finally, the driver code utilised the absolute

position encoder for sensing the valve state when opening and closing the valve; the

incremental encoder is reserved for monitoring motor speed.

In order to ascertain how the valve nodes performed in real

situation, a sea-trial was arranged so that a single bottle

assembly could be deployed several hundred meters below the

Pacific from the oceanographic vessel “Elakha" [figure 7.1]

during 2004. Unfortunately, the system failed to function under

water because of incorrect mechanical assembly with the

consequence of allowing seawater into the pressure case. This

caused severe corrosion damage to the electronics, motors and

batteries and it was not possible to service them. Despite this

setback, further tests were performed in a sealed pressure test

chamber in the laboratory, at 9500 PSI. Test procedures were

more limited because it was not possible to communicate

directly with the system and the water temperature in the test chamber was warmer than

on the seabed (typically 4°C), however it was established that the MPS functioned

correctly in a high- pressure aqueous environment. Tests confirmed seal integrity, that

the motor/gearbox had sufficient mechanical advantage to open and close the valve and

Architecture for Grid-Enabled Instrumentation in Extreme Environments 147

Figure 7.1 Preparing the
instrument for deployment.

that the control electronics and power supply could deliver adequate current to drive the

motor.

Figure 7.2 Instrument MPS testing at sea. The ‘‘Elakha" heading away
from Hatfield M arine Science Centre (OSU) on the Pacific Ocean.

7.1.2 Temperature Sensor Producer Node

A substantial part of the temperature sensor node development effort involved the

investigation and implementation of calibration procedures. The calibration protocol

was then embedded within the CANopen Object Dictionary so that node could produce

processed measurement data with inherent meaning, whilst also ensuring that

calibration was traceable. This follows the present trend of embedding signal processing

within the node housing to realise a “smart transducer'. This section gives a detailed

description of temperature and flow-rate calibration tests and the results obtained.

7.1.2.1 Temperature Calibration

The PT100 RTD response is approximately linear over a narrow temperature range,

however this assumption yields significant errors over wider ranges. For example,

between 0 and 100°C, the error at 50°C would be 0.4°C. To enable precision

measurement over a wide range, it was necessary to correct the resistance to give a more

accurate representation of temperature. This correction was made in firmware by

applying the polynomial (from DIN IEC-751) given in Eq. 4.23 as shown in figure 7.3

below.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 148

220
— Linear

C orrected200 -

c2 140 -

120 -

100

0 50 100 150 200 250 300

T em perature (°C)

Figure 7.3 Tem perature Calibration Characteristic Curve for PT100 RTD.

The accuracy of the ADC hardware and conversion routine was initially validated by

substituting the RTD sensor element with precision reference resistors of value 100, 200

and 300Q. The table below shows calibration results after gain and offset calibration has

been performed.

D um m y L oad R e s is ta n c e (Q) M e an M e a su re d T e m p e ra tu re (°C)

100 0.1 (0 .0)

2 0 0 2 6 5 .9 (2 6 6 .0)

30 0 559 .1 (5 5 8 .0)

Once it was established that the DAQS was functioning correctly the dummy load was

replaced with the sensor head so that basic calibration tests could be performed. The

overall accuracy of the system was tested by first placing the sensor head into ice water

(0°C) to obtain the ice point resistance (100Q) and then into boiling distilled water

(100°C) where the RTD resistance is 138.5Q. In each case the sensor head was given

five minutes to reach equilibrium with the environment before recording the

measurement. A standard laboratory mercury thermometer was used as a reference to

establish accuracy within 0.5°C.

7.1.2.2 Flow-rate Calibration

Flow measurements are based on a calorimetric principle where the two matched

PT100 devices are housed in the sensor probe tip and thermally insulated from each

other. One of these devices monitors the reference media temperature while the other is

Architecture for Grid-Enabled Instrumentation in Extreme Environments 149

indirectly heated several °C above this. As fluid moves across the sensor, heat is carried

away from the PT100 resulting in a resistance change i.e. an output signal that is

proportional to flow-rate [figure 7.4].

110

100 flow rate (mm/s)

Poly, (flow rate (mm/s))
90 -

80 -

70 -

2 50 -
i_o

b. 40 -

30 -

20 -

y = 57.765x - 253.58x + 278.17
R2 = 0.9995

10 -

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

ADC o/p (V)

Figure 7.4 Flow Sensor Calibration Curve.

This method can work in any fluid irrespective of its electrical conductivity, density,

viscosity and contamination, and within a wide range of temperatures and pressures.

Accuracy of operation depends on the sensor converting a specific flow-rate into a

consistently equivalent voltage. PT100 DIN IEC-751 thin-film RTDs were specified for

this sensor because they have closely matched temperature response curves. This is

important because the response curves of the PT100 devices must be kept close to

parallel to achieve low temperature drift to give an accurate flow-rate measurement.

Also the thermal path coupling both devices to the external flow environment should be

identical or a mismatch will be introduced; again causing the response curves to deviate

from each other.

One shortcoming of this particular implementation was that the heater is energised with

a constant voltage source and the total power dissipation in the heater element changes

with ambient temperature. This effect has been minimised by using a precision resistor

with a low temperature coefficient for the heater element. Use of a constant power

source, where the calorific power of the sensor is kept constant, can further reduce this

effect. A precision 0.5Q resistor (R4) was included on the circuit for the purpose of

Architecture for Grid-Enabled Instrumentation in Extreme Environments 150

monitoring heater current to allow power dissipation to be calculated and corrections

made. There was not the time to develop firmware to perform the heater flow

correction, however a system calibration was performed and the results plotted on a

graph to obtain a characteristic curve shown above in figure 7.4.

7.1.2.3 Accuracy and Precision Issues

For a 1°C change in temperature, a PT100 RTD sensor responds with a 0.385Q change

in resistance. The implication of this is that even a small error in measurement of the

resistance, such as the resistance of the wires leading to the sensor, will cause a large

error in the measurement accuracy. For this reason, a modified version of the precision

four-wire implementation was implemented (as described in section 6.6) with dedicated

wiring for the excitation current, and separate wiring to measure the voltage across the

sensor element. The output voltage was sampled using a 24-bit delta-sigma ADC with

built-in differential programmable gain amplifier with high input impedance buffer to

minimise loading on PT100 sensor [section 6.5]. It was found that performing

measurements with the buffer disabled resulted in significant errors because o f the

significant loading effect of the unbuffered amplifier input stage (Burr-Brown Products,

ADS 1242/1243 24-bit Analogue-To-Digital Converter SBAS235, 2001).

Another potential source of error that should be given consideration, are external and

internal electromagnetic noise sources that add an unknown voltage in series with the

PT100 voltage resulting in overall degradation of DAQS accuracy and resolution. This

effect was kept to a minimum by selecting a high-specification ADC and using

dedicated return (or reference) and power supply planes on the circuit board. The

overall performance of the DAQS that proved to be accurate with high resolution, where

the best test equipment available in the workshop could only determine that the

resolution was better than 0.1 °C with an accuracy better than 0.5°C - well below the

expected performance of the DAQS.

It should also be noted that the excitation current (Iref) through the sensor causes some

self-heating: for example, a current of 1mA through a 100Q resistor will generate

1 OOpW of heat. If the sensor element is unable to dissipate this heat, its resistance will

increase which will add a positive error voltage resulting in it registering an artificially

high temperature. To minimise this effect the heater current is kept as low as possible at

Architecture for Grid-Enabled Instrumentation in Extreme Environments 151

Iref = 200pA. This approach results in a trade-off of resolution against accuracy.

Reducing the excitation current improves the accuracy, however the sensitivity is lower

and therefore poorer resolution. Conversely, increasing the current reduces accuracy

(because of the self-heating effect), however there is increased sensitivity resulting

improved signal noise ratio and therefore better resolution. Fortunately, the sensor is

embedded in an aqueous environment in good thermal contact with its environment as

water has a high specific heat capacity. The sensor is therefore well coupled to an

effective heatsink, removing a substantial part of this residual heat. Again, this effect

was so small it was not possible to measure it with the test equipment available.

A 1.0V reference voltage (Vref) was chosen to make best possible use of the available

resolution ADC. The voltage reference defines the allowable voltage range of across the

ADC inputs and also sets the size of the LSB. A smaller voltage for Vref means that all

the output codes are constrained to a smaller voltage range and that the LSB will be a

smaller voltage. With a lower reference voltage, more of the output codes are used with

the smaller range of input voltages. This is the same as providing gain in the ADC. For

example, a nominal voltage reference is 5V; however with a Vref o f 2.5V the effect is a

gain of 2 times, and a Vref of 1.25 V would be equivalent to a gain of 4 times.

The reference voltage for the ADC is generated by sourcing 200pA through a 5KQ (Rl)

precision resistor (Rref). This was the most precise and stable resistor that could be

obtained, however, it should be noted that the quoted resistance tolerance is ±0.01% and

drift is 10ppm/°C. Although no suitable equipment was available to test the effect these

errors can introduce the DAQS accuracy, they were calculated to give an indication of

expected performance. For example, the initial resistance of Rref can be calculated as

follows:

R r e f = 5000 ±0.01% = 5000Q±0.5Q (7.1)

This gives a reference voltage error of,

V e r r o r = I r e f * R r e f = 0. 0002 * 5000 ±0.5 = 1. 0000 ±0. 0001 VoltS (7.2)

The reference voltage drift is proportional to ambient temperature. For example, for a

20°C temperature change, the maximum deviation in the reference resistance would be:

Architecture for Grid-Enabled Instrumentation in Extreme Environments 152

R r e f = 5000 ± (5000 -2 0 '1 0 /1000000) = 5000Q ±1Q (7.3)

This gives a reference voltage error of,

Verror = Iref ' Rref = 0.0002 ' 5000 ± 1 = 1.000 ±0.0002 VoltS (7.4)

The total voltage error is given by the addition o f the errors from Eq. (7.2) and Eq. (7.4)

Vtotaierror = 1.000 ±(0.0001 ± 0.0002) V olts = 1.000 ±0.0003 Volts (7.5)

This error is too small to have any significant effect on DAQS precision, however will

limit the ultimate measurement accuracy to ±0.03%.

The ADC itself is also subject to offset error (7.5 ppm o f full-scale = 0.00075%), offset

drift (0.02% of full-scale/°C) and gain error drift (0.5 ppm/°C). These errors can be

calculated in a similar manner as described above. Finally, the current source has an

initial accuracy o f 200pA ±0.5% and drift o f 25 ppm/°C, however the ratiometric sensor

architecture nullifies this potential source o f error.

During sea-trials the instrument, was deployed with the ADC input buffer enabled, an

amplification gain of 16 (PGA = 16) times and 1.0V reference voltage. This information

was used in conjunction with the typical characteristics for the ADC, given in the data

sheet to calculate the expected dynamic range and resolution o f the complete DAQS. For

this particular configuration the effective resolution or effective number of bits (ENOB)

for the ADC is 17. The PGA setting and Vref introduce two gain factors that allow the

ADC to achieve 23-bit resolution because PGA = 16 is equivalent to 4 bit-shifts and

reducing Vref is equivalent to just over 2 bit-shifts. This gives a total of 6 extra bits (17 +

6 = 23-bits). The system voltage resolution is calculated as:

V oltage R eso lu tio n = (Vref/P G A) / 2ENOB = (1/16) / 2n = 4 7 7 n V (7.6)

Now, a 0.385Q change (AR) in PT100 resistance corresponds to a 1°C temperature

change, which translates to a ADC voltage input change of:

A V = (Iref • AR) ' PGA = (200f±4 • 0.385) • 16 = 1.232mV (7.7)

, when using 200pA excitation current. So it follows that (for this particular ADC

configuration with PGA = 1 6 and buffer enabled) the DAQS will be capable o f resolving

a temperature change of:

Architecture for Grid-Enabled Instrumentation in Extreme Environments 153

Tresoiution = 477nV / 1.232mV= 0.0004°C (7.8)

It is also important to establish the dynamic range of the instrument. The maximum

allowable analogue input voltage for ADC is:

V re f / P G A = 1 / 1 6 = 6 2 . 5 m V (7.9)

, which translates to an RTD resistance of:

R r t d = V / I r e f = 6 2 . 5 m V / 2 0 0 f j A = 3 1 2 . 5 Q . (7.10)

Again, using the linear relationship for conversion of resistance to temperature, this sets

an upper limit on the measurable temperature of:

T max = (3 1 2 . 5 - 1 0 0) / 0 . 3 8 5 = 5 5 2 ° C (7.11)

, at this PGA setting. Altering the PGA setting will change this upper limit, for example a

PGA setting of 32 would reduce the upper limit by a factor of two (276°C). The

excitation current is common to all PT100 devices in the sensor ladder network [as

described in Section 6.5] and the current source (REF200 Dual Current Source/Current

Sink PDS-851D Burr-Brown Corporation, 1988) voltage is derived from the battery

terminals (Vbat = 4.5V). This gives enough voltage headroom for the current source

compliance and allows all PT100 devices in the ladder to attain the 1.0V required to

represent full-scale temperature (552°C).

Examining the lower limit o f the scale, it should be noted that the minimum allowable

analogue input voltage level for the ADC is +0.05V (50mV) with the input buffer

enabled. To maintain the voltage input above this, a 1KQ resistor was inserted at the

bottom of the ladder to offset the voltage by:

Voffset = I re f * Roffset = 200f j A • 1 K O = 200mV (2.12)

This puts the signal well within the analogue input voltage range of the ADC, allowing

the DAQS to measure temperature down to the limits of the PT100 (below -200°C).

Architecture for Grid-Enabled Instrumentation in Extreme Environments 154

7.1.2.4 Sea-Trial

In 2005, one SBC was embedded within a pressure case to make a data logger

instrument that was then integrated into the ROV “Bathysaurus” on board the

Norwegian research ship G.O. Sars. Communication was established via an RS-232

interface, which allowed the operator to control of parameters, such as system sample-

rate and ADC gain and telemeter real-time data to the surface. Incoming data was

displayed, plotted and logged using a DASYLab® worksheet running on a PC in the

ROV control room. The instrument was initially configured to perform high-resolution

fluid flow-rate and temperature measurements at Mohns Ridge vent system (near Jan

Mayen) in the Arctic Ocean during several “BioDeep” dives. Deployments were made

on diffuse flow areas where the instrument successfully telemetered data from 540

meters below sea level back to the ship above. Fluid outflow was detected from

chimney structures at +0.5°C, against ambient background temperatures of -0.3°C. Flow

anomalies were also identified on top o f extensive bacterial mats or mounds (Schultz

2005).

Further dives were made which led to the

discovery of a hydrothermal vent field (“Soria

Moria”) where attempts were then made to

measure the temperature and flow rate of

effluent directly above a “white smoker”. The

sensor was deployed directly above the vent

chimney and indicated temperatures of 260°C.
t-,* • . j •, • j - ,• Figure 7.5 Thermal stress damage to sensor deployedThis was repeated at another site, indicating at M ohns Ridge,

that the fluids were venting at the point of

phase separation and “smoker” plume flow-rates of approximately 0.5m/s were

measured (Schultz 2005). These temperatures were outside operational limits of the

epoxy resins used for the sensor manufacture and consequently one of them suffered

fracture damage [figure 7.5], possibly due to mismatch expansion coefficients of

materials used in fabrication.

Heater element

Architecture for Grid-Enabled Instrumentation in Extreme Environments 155

These valuable results led to further development

and an improved sensor design shown in figure

7.6. The coiled sensor element was manufactured

by inserting a helical platinum coil into a

powder-filled, insulating mandrel. This

construction minimises the mismatch of

coefficients of thermal expansion between

different materials producing a strain-free sensing

element. The result is a tougher sensor element

with a higher temperature coefficient, improved stability and accuracy. This cylindrical

geometry also improves calibration accuracy as the sensor is less orientation dependent.

7.1.3 Data Storage Consumer Node

The code required to support the file system (data storage on FAT16 formatted

SD/MMC media cards) was by far the most complex firmware driver developed for this

project. The task of merely establishing SPI communication with the media cards was

more complex than for other SPI devices, as their native mode of operation is a

propriety “Multimediacard mode” protocol - the card must first be initialised to work in

SPI mode. There was a further overhead of “housekeeping” to maintain a data buffer

data in SRAM, as the media card read/write operate on data blocks of 512 byte length.

Additionally, the support code required to maintain and update the FAT, opening and

closing files, writing to files at the byte and string level (no functions were developed

for reading data from files) and converting file information into human readable time

and date format introduced another considerable overhead.

The file format was designed so that it could be imported seamlessly into MS Excel

spreadsheets or read as a data stream by DASYLab® virtual instrumentation data-flow

language (Note: the file header is required to maintain full compatibility with

DASYTfl^). Data within the file was stored as text as shown in listing 7.1. Although this

is not the most efficient or compact method of storing data, it is human readable in the

event of file corruption and can be read using a basic text editor, such as “Notepad”.

Platinum
sensing wire

Manganin heater

Figure 7.6 Improved sensor element
custom manufactured by RdF
Corporation. USA.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 156

Recording Date : 12/08/2006;19:04:20
Block Length :
Delta : 5
Number of Channels : 3
Date;Time;Chan 0;Chan l;Chan 2;
12/08/2006;18:05:10;37.796;56.523;29. 367 ;
12/08/2006;18:05:15;37.835;56.773;28.906;
12/08/2006;18:05:20;37.640;56.671;28.921;
12/08/2006;18:05:25;37.695;56.328;29 .125 ;
12/08/2006;18:05:30;37.656;56.585;29.148;

Listing 7.1 Data file format

The single board computer file system was given a thorough '‘shakedown” as part of the

final integration and validation phase of the EXOCET/D project during the first leg of

the MoMARETO cruise on board the French oceanographic research vessel “Pourquoi

Pas?” in August 2006. The main objective of the science cruise was to study the spatial

and temporal dynamics o f hydrothermal vent communities colonising the MoMAR

zone, located on the Azores Triple Junction. A part of this objective relied on the

implementation of dedicated instrumentation for in-situ temperature and flow-rate

measurement of “smoker” effluent.

It was assumed that it would be possible to

integrate the node into the communication

framework of ROV Victor via the RS-232

interface, which would have allowed real

time control and telemetry as on the

previous Norwegian cruise. Once on board

“Porquoi Mois!” a custom interface cable

was spliced together to allow the RS-232

interfaces on the node to be connected to

those on ROV Victor. All attempts at

establishing communication failed because

of an unforeseen incompatibility issue

between the two different RS-232 interface implementations. A quick decision was

taken to deploy the instrument in autonomous logging mode so that it would acquire the

measurement data and store it on internal memory storage media card without the

requirement for interaction with a control operator. This scenario highlights the

advantages of adopting a commonly accepted standard interface and protocol to

Figure 7.7 The author with chief scientist. Pierre-Marie
Sarradin installing the node and sensor on ROV Victor.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 157

facilitate communication between scientific instruments developed by different

manufacturers and research institutions.

Several ROV dives were made to the

ocean floor to various sites along the

Mid-Atlantic Ridge (MAR) close to the

Azores, where the instrument was

operated in autonomous mode. Within

the duration of each dive, there were

several opportunities to deploy the

sensor head using the ROV robot arm.

Figure 7.8 illustrates the measurement

of diffuse effluent flow through a

mussel assemblage on Menez Gwen. Upon the completion of each dive, the instrument

was recovered from the ROV and taken to the laboratory space aboard the vessel and

the pressure case was opened so that the 32MB media card could be removed. The card

was then plugged into a portable computer so that the data file could be imported into

an MS Excel spreadsheet for post-processing and presentation. The instrument

flawlessly recorded temperature and flow-rate data files during all dives and a sample

plots is shown below.

60

50

40

0

1 30
8.
H

20

10

0

Figure 7.9 Menez Gwen Victor Dive 287 12th August 2006

t ambient

t heated

t press, case

T! *P.N N N N N H
•in • 0\
cn o —
8 S S 8 8

m ^ 0\ CTi r-> 0\
8 8

Time

Figure 7.8 Sensor-head deployed on a mussel assemblage on
Menez Gwen (MAR).

Architecture for Grid-Enabled Instrumentation in Extreme Environments 158

For this particular session, the sample distance is 5 seconds and the resulting data set is

composed o f almost 40,000 datum measurements. The time history represents

temperature profiles for a complete dive for ROV Victor being deployed at 10-00pm in

the evening and then retrieved at the following morning at around 10-30am. The “t

ambient” plot displays a continuous time history of the ambient sea temperature, with

individual sensor deployment events centered at 5-30am, 7-00am and 7-45am. The “t

heater” plot displays the temperature o f the indirectly heated temperature sensor used for

calorimetric flow-rate measurement. This tracks approximately parallel to “t ambient”

with an offset component o f around 5°C in a zero flow-rate water regime, however in air

the offset increases to around 30°C. This change can be seen at the beginning and end of

the time history while the ROV is out of the water. Finally, “t pressure” shows the

temperature within the pressure case. The pressure case is decoupled from the external

aqueous environment and is an effective low-pass filter. Consequently the trace is

smoother with reduced temperature fluctuation than measurements taken outside the

pressure case.

7.1.4 Performance and Reliability

Considerable effort was focused on testing and validating node sub-systems, especially

the DAQS and file system. These sub-systems are core sub-systems required to build an

instrument with useful data logging capability. It was important that the instrument could

capably acquire accurate, high-resolution temperature and flow-rate measurements.

These specification requirements were met by the use of precision analogue electronic

hardware and giving careful consideration to the circuit design and layout to achieve

stability and low-noise performance. Also, the DAQS underwent calibration to ensure it

reproduced representative measurements during deployment. It was not possible to fully

validate the DAQS because of the lack of availability of precision test equipment,

however any shortfalls in empirical test data have been supported with calculations to

predict expected performance in a practical situation. The file system, by its nature a

complex sub-system, required substantial development and processor resources to realise

a viable data storage medium. Although it would have been quicker and easier to

implement a hexadecimal data storage algorithm, storing data in textural format offers

benefits to the end-user in that the file is human readable and can be accessed across

different computer platforms.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 159

All the single board computer (SBC) systems preformed within specification with no

unpredictable behaviour or firmware “lock-up” scenarios being encountered. As a last

line of defence against such events a hardware watchdog timer was also incorporated into

the system design at an early stage in the development. This forces a hard reset of the

system in the event of unpredictable firmware “lock-up” and ensure that control can be

reestablished. This approach is itself not a complete guarantee against system failure,

however provides a substantial improvement over not implementing a watchdog at all.

7.2 Node Communication on the Network

The preceding tests validated the

correct functioning of node electronic

hardware (single board computer) and

firmware (kernel and drivers). The

next stage involved connecting

several nodes together to establish

communication and test how they

interact with one another. Extensive

use was made of Microchip's CAN

controller development kit as a tool to

aid in establishing inter-node

communication. The software

allowed direct manipulation of the

MCP2510 at the bit and byte levels

with a Register Template, while providing high-level control with a second Basic

Template. One node was controlled by the PC, which operated as a microprocessor using

the provided software, and a second node was controlled by an embedded microprocessor

pre-programmed to monitor bus traffic. The two nodes were connected via a CAN bus

that was also routed off-board through a 9-way serial connector, allowing external nodes

to be added to the network. The development board was modified [figure 7.11] so that

this connector also supplied power for external nodes, enabling them to be “daisy-

chained” together.

Figure 7.10 Four-node system under test.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 160

Figure 7.11 Pin-out for CAN Serial Connector.

The Basic Template was utilised as a high-level diagnostic tool for testing network

communication, these tests included monitoring bus loading, logging and displaying

received messages and also transmitting messages.

7.2.1 Bus Loading

The CAN controller on the development board is configured to receive all messages by

default which makes it possible to continuously monitor bus loading (or traffic). The

“Bus Status" window was used to display nominal load on the CAN bus as a percentage

and the total number of messages received and transmitted. Figure 7 .12 shows a typical

experimental run where a single sensor producer node was connected to the network and

configured to transmit three channels of temperature data every second.

Bus Statistics | Bus Parameters |

-Bus Load— — -----------
0 % i-----------------------------------

Total
RX messages: 7878
TX messages: 108

Per Second
3
0

@ Overrun

^ Clear

-B us Parameters---
Bus Speed: 125,000 kbit/s
Bit timing: Q=8, Sl=5, S2=3, SP=62,5%, 5JW=1

1 Go On Bus

X So Off Bus

0 On Bus
O off Bus

O Error Passive

O Error Warning

Figure 7.12 Bus Status Window

It can be seen that three messages are received every second and that the bus loading is

so low that it registers zero. As discussed in Chapter 3, network traffic for this

application is low even at moderately high sampling rates (a typically sampling rate

would be 15 seconds). This accurately reflects the volume of network traffic in a real

system, such as the proposed NASA and NERC sampling instruments. However, there is

Architecture for Grid-Enabled Instrumentation in Extreme Environments 161

the possibility o f normal operating scenarios where the bus traffic would rise to high

levels for brief periods if mass data transfer capability is implemented, for example

download o f measurement data from a storage device (MMC/SD). In this case, the COB

ID for messages containing this type o f data would be assigned a relatively low priority

to prevent the node producing them from monopolising the bus. This priority based bus

arbitration mechanism is one o f the significant strengths that the CAN protocol exhibits

over other bus technologies (such as Ethernet, for example) especially in the context of

mission critical applications.

7.2.2 Message Integrity

The “Output” window gives a more detailed view o f the contents of received (and

transmitted) CAN messages. To aid readability of the CAN message contents, this

window was configured to display data in hexadecimal format rather than decimal. This

feature was utlised to check that communication medium was functioning reliably, i.e.

message contents were not corrupted or that any messages were “lost”. Figure 7.13

shows messages being received from the temperature sensor producer node.

■ mmm Iliillii H H H - i n i x j
Id e n fc F i g L e n DO . . . i 2 . - . 3 . . . 4 s ' . T im e D i r

0 1 8 6 4 01 5 7 DE 6F 2 6 9 0 .2 7 2 R -±J
0 1 8 6 4 02 5 7 D6 2E 2 6 9 0 .2 7 2 R
0 1 8 6 4 03 5 7 FK 4C 2 6 9 0 .2 7 6 R
0 1 8 6 4 01 5 7 DB OD 2 6 9 1 .2 7 7 R
0 1 8 6 4 02 57 DS 3C 2 6 9 1 .2 7 7 R
0 1 8 6 4 03 5 7 FF 6B 2 6 9 1 .2 8 1 R
0 1 8 6 4 01 57 DD 92 2 6 9 2 .2 8 1 R
0 1 8 6 4 03 57 FD 9F 2 6 9 2 .2 9 8 R
0 1 8 6 4 0 1 5 7 DF 53 2 6 9 3 .2 9 2 R
0 1 8 6 4 02 57 D3 F4 2 6 9 3 .2 9 2 R

0 1 8 6 4 03 57 FE OB 2 6 9 3 .2 9 5 R

0 1 8 6 4 01 57 DC D1 2 6 9 4 .2 9 6 R

0 1 8 6 4 02 5 7 D6 28 2 6 9 4 .2 9 6 R

0 1 8 6 4 03 57 FF 83 2 6 9 4 .3 0 0 R

0 1 8 6 4 01 57 DB BE 2 6 9 5 .3 0 1 R

0 1 8 6 4 02 57 D3 65 2 6 9 5 .3 0 1 R i - J
0 1 8 6

H I----------------
4 03 57 FA 5E

I
2 6 9 5 .3 0 5 R ▼ 1

3

Figure 7.13 O utput W indow

Nodes were left on “soak-test” for a thirty-minute period in an effort to detect

missing/corrupted messages, however no problems were observed.

Further tests were undertaken by introducing two additional nodes into the network as

shown in figure 7.10 above. The first o f these nodes was compiled and programmed as a

producer node to asynchronously transmit a messages with COB-ID 0x287 (647

decimal) via user control onto the bus. The second was programmed as a consumer

Architecture for Grid-Enabled Instrumentation in Extreme Environments 162

node to process only messages that match the COB-ID (0x287) from the first node and

ignore all other bus traffic. The consumer node acknowledged reception of this message

by flashing a red LED. The CAN controller development board was also utilised as

producer node in this test to transmit the same COB-ID and message contents in an

attempt to force a data collision on the bus. The figure below shows the “History List”

window, which was used to transmit a predefined message continuously at defined

interval or in "one-shot" mode when the send button is pressed.

- I n i * 1

Send All

Send Selected

Load...

Q Save...

X Clear

Figure 7.14 History List Window.

This window also made it possible to collect transmitted messages by saving them to a

file to facilitate analysis of bus traffic. Again, CAN proved to be a reliable and

transparent transmission medium with no observed data corruption.

7.2.3 “Plug-and-Play” Capability
With the CAN data link layer in place it was possible to progress and implement higher

level functionality, where nodes can be added and removed dynamically to the network

and exchange data with one another. The RTOS and MicroCANopen stack provided the

framework for defining this behaviour. The freely downloadable version of

MicroCANopen utlised imposed several restrictions in that it does not support heartbeat

consumer and only a 254-byte Object Dictionary. Despite this there were adequate

resources to construct and test a minimal system consisting of a temperature sensor and

data-logging nodes.

A temperature sensor node was configured to produce TPDO (a CAN message

containing temperature process data) once every second. A data-logger node was then

directly linked to consume these messages by mapping its RPDO to the same COB ID.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 163

A small amount of additional code was required within the data-logger node so that it

could unpack the data payload from the incoming CAN frame and transfer it to the 32MB

media card [see section 7.1.3]. This direct linking between the nodes was monitored by

the CAN development board that operated as a third node monitoring bus traffic.

Additionally, a PC was connected to the RS-232 interface on the data-logger node to

check that the node was receiving and interpreting the CAN frames correctly.

Further tests were made by disconnecting/reconnecting the temperature sensor node from

the network to confirm that nodes could be dynamically removed/added from/to the

network without adversely affecting the operation of other nodes. For example corrupting

messages or stopping the network. The physical bus wiring had to be modified to

accommodate this testing, as the daisy-chain topology would have been broken

communication when removing nodes. A temporary “backbone” loom was constructed

with termination resistors and connector spurs to facilitate this. A separate power bus was

also used to ensure that power was supplied to nodes when they were removed from the

communication network to prevent them resetting. The monitoring tools indicated

reliable communication between nodes on the network. Upon disconnecting the sensor

node the data-logger stopped storing data and on reconnecting started again

demonstrating a level o f “plug and-play” capability as expected.

7.3 Summary

The first section of this chapter described the tests undertaken in the workshop and

during sea-trials to evaluate the electronic hardware (single board computer) and

firmware drivers (hardware abstraction layer) that constitute the node sub-systems.

These drivers were incrementally integrated into the RTOS kernel so that their operation

and interaction could be clearly evaluated. The resulting computational platform proved

to be stable, exhibited low power consumption [see Appendix E SBC Power Budget]

and operated as intended during deployment at sea where it produced useful scientific

data (Schultz 2005).

This platform was utilised to test and interface a demonstration of MicroCANopen

higher level protocol (HLP) to the existing CAN controller driver and further integrate it

into the RTOS framework. Several single board computers were taken and programmed

Architecture for Grid-Enabled Instrumentation in Extreme Environments 164

to function as producer and/or consumer nodes to evaluate the feasibility of the grid-

enabled instrument architecture. It was established that the single board computer

platform had the necessary resources to adequately support the communication system

and required HLP features on which to base a viable decentralised instrument system.

Several tests were performed to assess and validate reliable communication between

nodes, where the results indicated that the CAN data link layer handled communication

effectively and transparently with no corruption or loss of data. Additionally, data was

inserted/removed from CAN frames allowing information to reliably propagate between

nodes to realise “plug-and play” capability.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 165

Chapter 8 Conclusion

This thesis has presented the case for adopting a decentralised network topology as an

appropriate framework on which to base a grid-enabled machine system for use in

inaccessible or “hostile” environments. To achieve this objective, commercial off-the-

shelf technologies and standards were leveraged wherever possible. The physical and

data link layers o f the communication system were implemented in CAN hardware with

high level control being established under the MicroCANopen protocol stack and Salvo

real-time operating system kernel. This strategy helped to expedite the development

process and ensure the work does not become obsolete in the near future, as widely

accepted, documented standards are adhered to. It also opens up the opportunity for

end-users to directly connect the instrument to modules developed by other

manufacturers (who adopt the same standards) to form aggregate systems without the

prerequisite for any specialised knowledge regarding the interface.

8.1 Current State

Much of this research effort has been focused on developing a standardised framework

to support the development o f robust instrumentation systems. To this end, a body of

documentation was produced, including a library of firmware routines and

methodologies for integrating them into an RTOS kernel, running on a custom-built

single board computer. The construction o f the single board computer itself was based

on modular hardware architecture to enable it to meet the micro-power and high reliably

specification requirements o f this project. This electronic hardware and firmware

infrastructure developed herein was then utilised to build a decentralised microbial

sampler instrument (the machine system) composed of a group of nodes (individual

machines) that coordinate their activities to work together concurrently to accomplish a

given task. The power supply and processor resources were distributed homogeneously

throughout a network o f nodes to yield an inherently robust and reliable system.

Additionally, the use o f open interface and communication standards create an

extensible architecture where it will be possible to fully support “plug-and-play”

functionality, so that nodes can be dynamically added or removed to/from the network

to meet mission-specific requirements or for repair of faulty nodes.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 166

The electronic hardware and low-level firmware drivers that constitute the node

subsystems have gone through several test and development iterations. These

subsystems were observed to function and interact in a stable and predictable manner

when integrated within the RTOS kernel running on the single board computer

platform. The adoption o f standardised interfaces and modularisation of components at

the node and sub-node level have made it feasible to assemble decentralised machine

systems that can do useful work. These findings are supported by the application of this

technological development to the construction of a new microbial sampler instrument.

Subsystems from the instrument were tested at in several different situations to evaluate

their performance at-sea. The DAQS and file system were successfully validated on

hydrothermal vent fields, “Soria Moria” on Mohns ridge (Schultz 2005) in the Arctic

Ocean (“BioDeep” cruise, 2005) and “Lucky Strike” and “Menez Gwen” on the Mid-

Atlantic ridge (MoMARETO EXOCET/D cruise 2006). The motor positioning system

test failed at sea because o f improperly installed seals, however testing in a pressure

chamber established the valve positioning and pump control algorithms worked

according to specification. Further funding is expected to become available in 2008

from ChEsSo (Biogeography o f Deep-Water Chemosynthetic Ecosystems in the

Southern Ocean), a newly funded UK Consortium Bid for the exploration and

investigation o f chemo synthetic habitats in the Antarctic region with cruises planned for

2009/2010 in Bransfield Strait. It is anticipated that this opportunity will allow a full

system test to take place with the aim of obtaining viable microbial samples.

Although the sea-trials have confirmed that the instrument subsystems function within

design specification, in its current state, it still requires specialist-engineering support

during preparation, deployment, recovery and post-cruise refurbishment. This to be

expected with any sophisticated new instrumentation system, however it does limit the

utility o f the system and the contribution it can afford to the scientific community as it

is difficult and costly to deploy. The next challenge is to find a solution that ensures that

resulting instrument systems are easier and more accessible to use. A step towards

realising this goal is to develop the technology to a state where it would be possible for

a system integrator to bring together the component subsystems into one system,

without having to resort to direct low-level code manipulation. Taking this strategy

further to its ultimate conclusion, the ideal goal is to create instrumentation systems that

can be modified by end-users (scientists, researchers and marine technicians) to fulfill

Architecture for Grid-Enabled Instrumentation in Extreme Environments 167

mission-specific requirements. The next section puts forward a development “roadmap”

in an effort to resolve this ease o f use issue.

8.2 Future Work

8.2.1 Short-term

In the immediate short-term there are several additions that can be made to the node

electronic hardware and firmware to improve the overall system reliability performance

and ease of use. These additional features and the benefits they will offer are outlined

below.

8.2.1.1 Communication System (CS)

The CAN hardware performed within specification during bench testing, providing a

reliable and transparent communication medium for data transfer between nodes.

However, one concern was raised during the 2006 EXOCET/D cruise, where an engineer

from the French research institute, Ifremer highlighted the issue of equipment isolation.

Ifremer stipulate that all marine electrical equipment should be isolated to prevent

electrolytic corrosion, which can result from external current sources, such as a ship

battery or power supply. The current that causes the electrolytic action is referred to as a

"stray current" and usually emanates from a poorly installed electrical circuit or an

inadequate earth (ground) arrangement. This could be the result of a poorly installed

electrical circuit or a current leak due to damp connections.

These stray currents can be eliminated by galvanically isolating the CAN hardware

interface on all nodes to prevent ground loops to stop the flow of current. This is

achieved by placing two opto-coupler devices between the CAN controller logic levels

and the CAN transceiver. The transceiver then requires an isolated power supply, either

supplied through a small DC/DC converter on each board or by running a common

power supply through the cable that all the boards share. Similar work had been carried-

out for Ifremer several years ago to build a stand-alone data-logger with a galvanically

isolated RS-232 interface. The principle for galvanically isolated CAN is the same and

the hardware implementation is almost equivalent for both interfaces.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 168

During the bus network testing and debugging phase, nodes were configured to receive

all messages by default and message filtering was performed in firmware to establish that

the COB-IB could be reliably packed and unpacked into the CAN frame. The data link

layer in the CAN controller hardware should ultimately be utilised for this purpose, as it

frees the application layer to enable the whole process to be handled more cleanly and

efficiently. In fact, the single board computer hardware supports interrupts from the CAN

controller to the main processor, which makes it feasible to shut the main processor down

to minimise pow er consumption and rely on the interrupt to “wake” the node up upon the

reception o f a valid COB-ID.

Moving up from the data link layer to the MicoCANopen higher layers, further work

should be undertaken to formalise the method o f communication between the

MicroCANopen protocol stack and the Salvo RTOS tasks [see Section 5.4]. This first

revision o f the firmware was put together to enable nodes to trigger one another when

an event occurs. Presently, the communication mechanism relies on RTOS event flags

and MicroCANopen change o f state (COS) triggering to transfer bit-level control

information from an RTOS task running on one node to another task within another

node on the network. This seems to be a valid approach, however the event flag and

Object Dictionary definitions certainly need formalising as presently, duplicate

information is held in more than one place in memory. It is therefore desirable to

modify some o f the variable definitions and perhaps represent the data in structures, to

optimise the code and make it more readable. On the other hand, there may be a more

logical or efficient way o f implementing this communication mechanism and perhaps

further research could be undertaken to investigate this.

The system would benefit from some additional code to support the existing PDO

definitions, specifically the “Hardware Error” register entry, which should be utilised to

propagate status information between communication partners [as described in section

4.2.3.4 Hardware Error Entry [0x2004]]. Adding support code for this mapping would

endow the machine system with capability to autonomously handle hardware failures in

a graceful manner. Finally, one or two new PDO definitions are also needed to support

some additional functionality in the machine system. For example, the system would be

easier to use if the system clock embedded within every node on the network could be

set simultaneously from the host computer. The broadcast capability of the CAN

Architecture for Grid-Enabled Instrumentation in Extreme Environments 169

protocol supports this kind o f behaviour as all nodes on the CAN bus can receive all

messages.

8.2.1.2 Data Acquisition System (DAOS)

Much effort was focused on producing an accurate, high-precision DAQS with wide

dynamic range to meet the demands o f temperature and flow-rate measurement in the

marine environment. On one hand, substantial dynamic range was required to

encompass temperatures from just below 0°C (e.g., on the Arctic ocean floor) to above

400°C (e.g., within a “smoker” plume) and, on the other, high-resolution, to enable

milli-degree precision temperature measurement (e.g., profiling within the water

column). Experimental results and assertions based on calculation confirmed that the

DAQS hardware and firmware meets these specification requirements, however further

work should be undertaken to quantify the performance of the sensor element and

housing assembly (sensor head). The sensor head was custom manufactured and

presently there is no data on its bulk thermal response time, which is required to

establish how long it takes to reach equilibrium with the environment. This data is

required to ensure that measurements can be performed properly and that accurate

measurements can be obtained.

It was assumed that sensor element and its housing (sensor head) exhibited a first order

Bessel filter response, where the transition from the pass band to the stop band is wide

before the final -6dB/octave roll-off is achieved. This could be accomplished by a

simple test to determine the impulse response o f the sensor head. To establish this, the

firmware would be modified to achieve a sampling rate about 1/10 second and data

logged on to memory card. The sensor head would be taken from room temperature and

plunged into a beaker o f hot water. The data obtained from this experiment could then

be imported into DASYLab where a Fourier analysis can be applied to calculate the

impulse and frequency response o f the sensor head.

8.2.1.3 Motor Positioning System fMPS)

Work on the MPS firmware was completed sometime before the author acquired any

knowledge or experience in performing embedded firmware compilations based on

Salvo RTOS kernel. The present code implementation is therefore built on the more

Architecture for Grid-Enabled Instrumentation in Extreme Environments 170

“traditional” main “superloop” with interrupt service routine running in the background.

Although, experimental tests revealed that this approach worked adequately in practice

as a valve and pump controller, experience indicated that significant improvements

could be obtained, in terms o f reliability and ease of code maintenance, by introducing

RTOS paradigm onto target processor (PIC16F819). The application layer requirements

are not excessively demanding for motor control in terms of processor resources (the

PIC16F819 ROM is limited to 3.5KBytes with only 256 Bytes of RAM) and a

compilation o f the RTOS kernel with drivers was successfully made to test the

feasibility o f this approach. Introducing RTOS services, such as time-outs and inter-task

communication mechanisms would increase the level o f security for variable data

(defensive programming) and allow for finer granularity of control through

multitasking. This code revision would not be a huge undertaking and require

approximately 2-3 weeks to complete.

8.2.1.4 Files System (FS)

The FS is a complex subsystem that utilises a large proportion of processor memory and

program space resources for its implementation. Despite this, significant work still

remains to be undertaken to develop this minimal implementation so that it can satisfy

requirements:

• Generalise the FAT driver so that it can work with all types of media cards. In it’s

current state, it has been used with 32MB SanDisk MMC. The next stage should be

to develop the drivers to work with other SanDisk MMCs (8MB, 16MB and 64MB)

and then move onto different manufacturers. Finally, generalise the driver to operate

with SD cards. Some o f this work has already been completed and the FAT can

recognise both MMC and SD cards and read the directory structure.

• Rather than storing one single contiguous file to memory, it would more secure to

break it up into a “chain” series of files. A natural extension o f this would be to

support multiple files being opened for reading and writing. This would allow more

sophisticated instrument behaviour.

• Implement functions (fgetc and fgets) for reading data from files. This extra

functionality would make it possible to store node configuration settings on the

media card in the form o f an initialisation file (isosamp.ini). These setting could

include sampling rate, file names and other system settings.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 171

• Capability to allow the system to format the media card. Presently cards must be

formatted on an external computer.

• Improve the robustness o f the data storage algorithm. In some ways the

requirements o f this minimal FAT implementation are more demanding than a

typical full implementation found on a personal computer (PC). For example, if

there is a power failure or “brown-out” on a PC then the file that is being written to

disk will be corrupted and the data may be impossible to retrieve the data. When the

machine boots-up again, there is no record that the event happened, let alone any

mechanisms in place to prevent loss o f data. Obviously there is no way predict a

power failure before it happens, however measures can be put in place to minimise

its impact should it occur. For example, breaking the file up into a chain series

prevents loss o f all the data and memory persistence allows the event to event to be

recognised. Counters should be implemented to keep track of resets and the current

file. Count should be held in non-volatile memory so that the FS can keep track of

the currently open file and pick-up where it left off in the event of a power failure.

These extra requirements constitute such a large overhead, that the main computational

core on the single board computer simply cannot support all o f this additional

functionality. The core (PIC18F252) features 32KBytes of program space (ROM) and

1536 Bytes o f memory space (RAM) o f which a total of 28918 Bytes (88.3%) ROM

and 1121 Bytes (73.0%) RAM are being used for the current compilation. Any

significant conceptual additions will almost certainly push requirements beyond the

available resources. An upgrade path exists and during the span of this project an

improved core (PIC18F4685) became available. This new device has the same pin-out

and physical package, however with considerably more ROM (96 KBytes) and over

twice the RAM (3328 Bytes). This is an 18-bit core, which is part of the same family

and should present no significant problems when porting the existing C code to the new

platform.

8.2.1.5 Power Management System fPMS)

Project time constraints did not allow for the opportunity to begin development of the

PMS firmware. This system would manage changing of batteries from external power

available on the bus, measure battery voltage and allow this information to be accessed

by the application layer so that the appropriate action can be taken in the event of any

Architecture for Grid-Enabled Instrumentation in Extreme Environments 172

problems with the batteries. No RTOS test compilations have been undertaken

involving RTOS and no drivers have been ported to for the target (PIC12F675).

Although ROM and RAM resources are severely limited on this core, at 1Kbyte and 64

Bytes respectively, the Salvo user manual indicates that it is practical to implement the

RTOS on this core and application notes support this with examples of applications

being developed for other “low-performance” PIC cores. Also, there is no hardware SPI

interface, so this would need to be implemented in by “bit-bashing” in firmware.

Previous experience gained in assembly language bit-bash implementations for a similar

application (RS-232 data receive and transmit on a PIC16F84) indicates that the SPI

reception and transmission routines would require in the region of 50 to 80 instructions

ROM space. Data reception is slightly more complex than transmission to implement.

Working in such a limited programming environment has the advantage of constraining

code complexity and can yield an elegant solution that is an optimally “good fit” for this

type of application.

8.2.1.6 Human-Machine Interface fHMI)

Two different approaches were taken to designing an interface to facilitate user

interaction with the instrument in the field, both utilising RS-232 interface for

communication. A HMI was initially developed using DASYZa6 data-flow language to

construct a virtual front-panel for control of the instrument and data display. DASYLab

made it possible to develop a worksheet that would allow an operator to configure the

instrument and manipulate/display incoming data in real-time as charts, digital meters

and even perform calibration “on the fly”. This approach was initially appealing,

however despite its ease o f use and professional appearance limitations were

encountered trying to coerce DASYLaZ? to perform certain operations. For example, it

was not possible to develop a worksheet to set/read the onboard system clock using

DASYZa^s’ visual programming language. The language ultimately proved to be too

restrictive, as it was optimised for data manipulation and presentation, not for

reading/writing data bytes to or from specific hardware registers.

As a consequence of this a terse command line interface based communication protocol

was developed to allow better access to configuration registers and control of the

instrument. In this case, a text editor (“TeraTerm”) application running on the host PC

was used to communicate with the instrument. Although not as visually impressive as

Architecture for Grid-Enabled Instrumentation in Extreme Environments 173

the DASYLab graphical user interface (GUI), the command line protocol does not

preclude the use o f a custom GUI at a later time that shares the same communication

protocol definition. The next stage is to map this onto CAN messages (PDOs) to allow

access and control o f any node on the network from the host computer.

8.2.1.7 Hardware Abstraction Laver fHALi

After undergoing several revisions, it is considered that the device drivers that makeup

the HAL are in a state where no further development o f the firmware is required. A

reference manual was written to support these driver functions, containing a systematic

and documented library o f the routines [Appendices M and N] . The final step would be

to compile the source code to object files and then combine them into a single library

file. This requires the use o f a librarian program to create the library file (file.lib) and

the process is explained in the PICC ANSI C Compiler User Guide (Hi-Tech Software

2002). This library would add a significant level o f security to the HAL by preventing

accidental modification o f the driver functions and also speed up the compilation

process.

8.2.2 Long-term

With completion o f the design improvements outlined above, the firmware framework

can now be considered as an application programmers interface (API) that a software

programmer could utilise to develop a fully operational machine system. However,

further work is required to develop off-the-shelf technology that supports “plug-and-

play” capability where nodes, such as input/output modules, sensors and actuators from

different manufacturers are interchangeable with one another, to allow a systems

integrator to assemble a fully functioning system from the subsystem components. The

proposed IEEE 1451.6 standard (Kang 2000) goes partway to addressing these

challenges, in that it provides a basic communications link for transducer nodes;

however does not support dynamic programming of the nodes. The section below

describes some o f the available tools and methodologies that can be utilised to aid the

process of system integration.

8.2.2.1 Electronic Data Sheets TEDS)

In this context, electronic data sheets are files that define the capabilities of CANopen

nodes. EDS files offer a standardised way of specifying supported Object Dictionary

Architecture for Grid-Enabled Instrumentation in Extreme Environments 174

entries to describe how CANopen nodes can be integrated into system networks and

also provide in-house documentation o f the node. This standard electronically readable

file format has facilitated the development o f application software tools such as bus

monitors, analysers and configuration tools that are capable of recognising which

Object Dictionary entries are available in CANopen nodes. Any manufacturer of a

CANopen node or module should supply the EDS when selling or making it available to

third parties to aid system integrators in assembling the system.

The EDS is a text file similar to the ".ini" files used on “Microsoft Windows” operating

systems and a regular ASCII text editor such as “Notepad” could be used to read and/or

modify it. This is not recommended practice, however, as in order to maintain

CANopen conformance, entries must not only have the appropriate parameters but some

are also cross-referenced. There are commercially available software tools that support

the creation and maintenance of EDS files by allowing the system designer to

add/remove Object Dictionary entries to the “drag and drop” level. One such tool is

“CANopen Architect” which allows set-up and specification of Object Dictionaries as

well as generation of EDS files and even the necessary ‘C’ code header files and tables

for use by MicroCANopen. Finally, another useful tool developed by National

Instruments, utilises the EDS file for the CANopen Conformance Test. This test not

only validates CANopen compliance, but also tests if a given node implements all the

Object Dictionary entries specified in its EDS file.

8.2.2.2 CAN Bootloader

The feasibility of installing a bootloader within each node should be investigated. This

would enable faster programming and firmware updates to be made remotely over the

CAN bus (Foster 2003) from a host computer or configuration tool. This facility makes

it possible to retrospectively reprogram the device to fix any errors or update it with the

latest firmware version. For example, the recent Cassini-Huygens Titan mission

experienced severe difficulties (Oberg 2004) which could have been more easily

overcome with the ability to be reprogrammed remotely.

Providing bootloading capability over a CAN bus network is non-trivial and requires

some forethought. For example, a system with a number of nodes may have identical

firmware in several nodes. Again, the broadcast nature of the CAN protocol means that

Architecture for Grid-Enabled Instrumentation in Extreme Environments 175

all nodes on the CAN bus can receive all messages, therefore it might be more efficient

to program these identical nodes in a single pass. However, in other cases where a node

or many nodes are unique, it may only be necessary to establish peer-to-peer

communications to program the device. Another interesting situation is bootloading in

an active and functioning system. In this scenario, one or more of the nodes are taken

off-line to update their firmware, yet the functionality of the entire system is not

completely disabled. These issues are discussed in greater depth in Microchip

Application Note 247 “A CAN Bootloader for PIC18F CAN Microcontrollers” (Foster

2003).

8.3 Benefits for External Parties

This research effort has set out to establish a methodology for development of flexible

and robust instruments capable o f operating nominally under extreme environmental

conditions. The hydrothermal vent environment was targeted for the reason that

academic and industrial partners provided the scientific motivation and access to the

necessary deep-ocean research vehicles and platforms to allow the development of

technology that could be applied to the construction o f a microbial fluid sampling

instrument. It is anticipated that this technology can be generalised and adapted for

wider applications. For example, conventional oceanographic instruments, such as

remotely operated vehicles (ROVs), Conductivity, Temperature and Depth (CTD)

arrays, autonomous underwater vehicles (AUVs) would all benefit from a decentralised

“plug-and-play” architecture. Such an approach would guarantee compatibility between

instruments from different manufacturers and standardardisation would extend their

useful working life (standards endure for decades, whereas technology can arrive and

disappear within a decade).

Also, there is an emerging market for modular “plug-an-play” wiring harnesses and rad-

hardened hardware/software interfaces for use on spacecraft (which embraces micro

satellites, space probes and multistage vehicles, such as rockets and space planes) in the

commercial and military sectors. An application was submitted to the Department of

Defense (DoD) in 2005 for funding from the Small Business Innovation Research

program (Ref: SBIR AF05-031). The SBIR program funds early-stage R & D in small

technology companies and is designed to stimulate technological innovation and

Architecture for Grid-Enabled Instrumentation in Extreme Environments 176

increase private sector commercialisation of federal R & D. More specifically, SBIR

AF05-031 related to the design, build, and test an innovative, modular micro-satellite

bus with interfaces to reduce system integration and facilitate rapid integration of a

variety of payloads.

O n this occasion the application was unsuccessful, however there is clearly an ongoing interest

by the D oD in this type o f technology, as a recent literature SBIR search found a funding

program pursuing mechanical attachment solutions that allow for the rapid, on-demand

assembly o f satellites built from stocked components (Ref: SBIR AF071-288). Looking at other

aerospace sectors, the emerging commercial space access industry will undoubtedly drive this

technology forward, as reliable modular bus technology is required for space vehicles, such as

multistage rockets, an intrinsically electrical noisy and mechanically harsh environment. Finally,

looking beyond sub-orbital and low-earth orbit missions, NASA Aimes Research Centers’

astrobiological research program (Flynn 2003) are motivated to continue developing this fault-

tolerant bio-containment technology for deep space exploration. The ultimate goal of finding

life on Earth in environments that are similar to conditions posited to exist on other planetary

bodies such as Mars and Jupiter’s moon, Europa.

8.4 A Final Word

Several ambitious concepts have been proposed in this thesis, which began with an

evaluation of the feasibility of a union of “low-performance” PIC microprocessor core with

Salvo real-time operating system and MicroCANopen protocol stack. These technologies

were then leveraged to develop a low-power single board computer with system resources

capable of supporting an open, peer-to-peer network with “plug-and-play” capability. A

formal methodology was documented which describes how to utilise this new computational

platform and distribute the firmware evenly across a network of nodes to construct a grid-

enabled decentralised machine system. In practice, this modular approach to implementation

proved beneficial within the university research and multidisciplinary science cruise context,

as it was possible to incrementally test the instrument and acquire useful science data during

development of the project.

Experimental testing confirmed that, CAN bus and CANopen higher level protocol operated

as a reliable and transparent communication medium, making it possible to perform a basic

proof of the grid concept and decentralised control. The research has raised interesting

Architecture for Grid-Enabled Instrumentation in Extreme Environments 177

questions on how to partition machine control amongst the nodes in the system and

exchange information efficiently between them to maximise reliability of the system as a

whole. Also, it became apparent that a more formal methodology would be useful to aid in

maintaining the firmware for the different types of nodes within the system. The electronic

data sheets partly address this in that they provide a system level mechanism to define the

Object Dictionary, however more systematic housekeeping is also required for the source

code files. Although these ideas require further investigation and refinement before the

“Holy-Grail” solution o f an off-the-shelf instrument is realised, it is hoped that the

issues addressed in this work will contribute to the future development of machines for

scientific and commercial exploration.

Architecture for Grid-Enabled instrumentation in Extreme Environments 178

Appendix A References

Alicke, F.; Bartholdy, F.; Blozis, S.; Dehmelt, F.; Forstner, P.; Holland, N.;

Huchzermeier, J. 2000. Comparing Bus Solutions Application Report SLLA067 Texas

Instruments. [Online]. Available at: http://www.ti.com. [Accessed: 12 August 2008].

Amer, W. 2002. Design o f a PIC Microcontroller based Analogue Data Acquisition and

Processing System. MSc Thesis, Cardiff School of Engineering.

Arnaud, B. 2004. An Integrated Approach to Ocean Observatory Data

Acquisition/Management and Infrastructure Control Using Web Services. Marine

Technology Society Journal, Vol. 38, No. 2, pp. 155-163.

Baird, S .L. 2005. Deep Sea Exploration: Earth’s Final Frontier: Only a Portion of the

Potential o f the Oceans Has Been Tapped, but It Is Clear That Exploring and Improving

Our Understanding of the Ocean and Its Influence on Global Events Are among Our

Most Important Challenges Today. Journal Article : The Technology Teacher Journal.

Vol.65.

Baker, B. C. 2003. Ease into the Flexible CANbus Network DS21837A. [Online].

Available at: http://www.microchip.com. [Accessed: 12 August 2008], pp. 1.

Behar, A.; Matthews, J.; Venkateswaran, K.; Bruckner, J. 2006. A Deep Sea

Hydrothermal Vent Bio-Sampler for Large Volume In-Situ Filtration o f Hydrothermal

Vent Fluids. Pasadena, CA: JPL, NASA.

Bell, J. 2002. Network Protocols used in the Automotive Industry. University o f Wales,

Aberystwyth. [Online]. Available at:

http://www.aber.ac.uk/compsci/research/mbsg/fmeaproiects/softfrneatechreports/svstem

s/protocoIs.pdf, July 2002 [Accessed: 12 July 2008], pp. 3.

Blandin, J. and Leon, P. 1998. Network Architectures for Underwater Systems: Two

Applications o f the CAN bus. OCEANS '98 Conference Proceedings, 28 Sep-1 Oct

1998, Vol. 1. Nice, France, pp. 503-507.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 179

http://www.ti.com
http://www.microchip.com
http://www.aber.ac.uk/compsci/research/mbsg/fmeaproiects/softfrneatechreports/svstem

Boehm, B. 1981. Software Engineering Economics. Prentice Hall.

Boferenbrood, H. 2000. Design and Implementation of the ATLAS Detector Control

System at CERN. IEEE Transactions on Nuclear Science, Vol. 51. Issue 3, pp. 495-501.

Bosch, R. 1991. CAN Specification Version 2.0. [Online]. Available at:

http://www.semiconductors.bosch.de/pdt/can2spec.pdf. pp. 8-9, 25-26.

CAN-in-Automation, 1996. CAL (CAN Application Layer) for Industrial Applications

Version 1.1, CiA Draft Standard DS-201 to DS-207.

Capsum. 2005. METS Underwater Methane Sensor data sheet. [Online]. Available at:

http://www.capsum.com/capsum_online/mets.html [Accessed: 10 August 2008].

Cheshire, S. 1996. I t ’s the Latency, Stupid. [Online]. Available at:

http://www.stuartcheshire.org/rants/latencv.html [Accessed: 20 August 2008], pp. 2.

Deitel, H. M. and Deitel P. J. 1999. C: How To Program. Second Edition Prentice Hall,

p p .126-133.

Deming, J. W. 2007. Of Ice and Microbes. American Astronomical Society Meeting,

Seattle, 10-14 January 2007.

Delany, J. R. 2000. Neptune: Real-time Ocean and Earth Sciences at the Scale o f a

Tectonic Plate. Oceanography, Volume 13, No.2, pp. 71-79.

D’Hondt, S. 2002. Metabolic Activity o f Subsurface Life in Deep-Sea Sediments.

Science, 15 March 2002, Vol. 295, No. 5562, pp. 2067-2070.

Elliot, P. 1995. Surface Mount Ceramic Resonators. ANX Corporation , pp. 3.

Embedded Systems Academy, Inc. 2008. P CANopen Inspector. [Online]. Available at:

http://www.canopenstore.com/test-tools.html [Accessed: 11 August 2008].

Architecture for Grid-Enabled Instrumentation in Extreme Environments 180

http://www.semiconductors.bosch.de/pdt/can2spec.pdf
http://www.capsum.com/capsum_online/mets.html
http://www.stuartcheshire.org/rants/latencv.html
http://www.canopenstore.com/test-tools.html

Embedded Systems Academy, Inc. 2008. CANopen Architect EDS. [Online]. Available

at: http://www.canopenstore.com/configuration-and-analvsis-tools.html [Accessed: 11

August 2008].

Etschberger, K. 2008. A Failure Tolerant CANopen System fo r Marine Automation

Systems. [Online]. Available at:

http://www.canopensolutions.com/english/articles/ar 2 e.shtml [Accessed: 25 August

2008].

Felser, M. and Sauter, T. 2002. The Fieldbus War: History or Short Break Between

Battles. Factory Communication Systems, pp.73-80.

Foster, I. 2002. What is the Grid? A Three Point Checklist. GRIDtoday, Vol. 1, No. 6.

July 2002.

Fredriksson, L. 1994. Controller Area Networks and the Protocol CAN for Machine

Control Systems. [Online]. Available at: http://www.kvaser.com/index.htm [Accessed:

10 August 2008].

Fredriksson, L. 1995. A CAN Kingdom Rev 3.01. [Online]. Available at:

http://www.kvaser.com/index.htm [Accessed: 10 August 2008].

Fredriksson, L. 2005. On the Difference between CANopen and CAN Kingdom.

[Online]. Available at: http://www.kvaser.com/index.htm [Accessed: 10 August 2008].

Gamiz, J.; Samitier, J.; Fuertes, J.M.; Rubies, O. 2003. Practical Evaluation of

Messages Latencies in CAN. Emerging Technologies and Factory Automation, Vol. 1,

Sept 2003, pp. 185-192.

Ganssle, J. G. 1992. The Art o f Programming Embedded Systems. Academic Press, Inc.,

pp. 45-51,51-53.

Ganssle, J. G. 2000. The Art o f Designing Embedded Systems. Newnes Butterworth-

Heinemann, pp. 37-48, 51, 83-85, 203-221.

Architecture for Grid-Enabled instrumentation in Extreme Environments 181

http://www.canopenstore.com/configuration-and-analvsis-tools.html
http://www.canopensolutions.com/english/articles/ar
http://www.kvaser.com/index.htm
http://www.kvaser.com/index.htm
http://www.kvaser.com/index.htm

Ganssle, J. G. 2005. Embedded Systems at Sea. [Online]. Available at:

http://www.ganssle.com/articles.htm [Accessed: 10 August 2008].

Ganssle, J. G. 2004. Great Watchdogs Version 1.2. [Online]. Available at:

http://www.ganssle.com/articles.htm [Accessed: 10 August 2008].

Ganssle, J. G. 2005. Keep it small - Get the Product out Faster by Better Partitioning.

[Online]. Available at: http 7/www. ganssle.com/articles.htm [Accessed: 10 August

2008].

Hawthorne, M. J. and Perry D. E. 2004. Architectural Styles for Adaptable Self-Healing

Dependable Systems Empirical Software Engineering Lab (ESEL), pp. 3.

Hendry, G. R. 1999. Standard Ethernet as an Embedded Communication Network.

MSc, Department of Electrical and Computer Engineering, Carnegie Mellon University,

pp. 1,24-28,31-32.

Holub, A. I. 1995. Enough Rope to Shoot yourself in the Foot McGraw-Hill, pp. 3.

Jannasch, H. W. and Maddox, W. S. 1967. A Note on Bacteriological Sampling in

Seawater. Journal o f Marine Research, Vol. 25, pp. 185-189.

Jannasch, H. W. and Wirsen, C. O. 1977. Retrievel of Concentrated Un-decompressed

Microbial Populations from the Deep Sea. Applied and Environmental Microbiology,

Vol. 33, pp. 642-646.

Kalman, A. 2004. Salvo Real Time Operating System User Manual Pumpkin Real Time

Software. [Online]. Available at: http://www.pumpkininc.com [Accessed: 2 June 2005].

Kleinknecht, H. 1999. CAN Calibration Protocol. Version 2.1. Association for

Standardisation of Automation and Measuring Systems. [Online]. Available at:

http://www.asam.net [Accessed: 21 July 2008].

Architecture for Grid-Enabled Instrumentation in Extreme Environments 182

http://www.ganssle.com/articles.htm
http://www.ganssle.com/articles.htm
http://www.pumpkininc.com
http://www.asam.net

Kooperman, P. and Chakravarty T. 2004. Cyclic Redundancy Code (CRC) Polynomial

Selection for Embedded Networks. Proceedings o f the International Conference on

Dependable Systems and Networks, June 2004, pp 145.

Lee, K. 2000. Distributed Measurement and Control Based on the IEEE 1451 Smart

Transducer Interface Standard. IEEE Transactions on Instrumentation and

Measurement. Vol. 49 No.3, June 2000, pp. 2-3.

Lennartsson, K. F. and Fredriksson, L. 2005. CAN HLP Brief Comparison. [Online].

Available at: http://www.kvaser.com/index.htm [Accessed: 10 August 2008].

Lewis, J. P. Large Limits to Software Estimation. ACM Software engineering Notes

Vol. 26, No. 4, July 2001, pp. 54-59.

Malahoff, A.; Gregory, T.; Bossuyt, A.; Donachie, S.; Alam, M. 2002. A Seamless

system for the Collection and Cultivation o f Extremeophiles from Deep-Ocean

Hydrothermal Vents. IEEE Journal o f Oceanic Engineering, Vol. 27 No. 4.

Marsh, D. 2000. Drive by wire fuels network-highway race EDNEurope, [Online].

Available at: http://www.edn.com/article/CA83747.html [Accessed: 10 August 2008],

pp. 178.

Martin, W. and Russell, M. 2004. The Rocky Roots of the acetyl-CoA Pathway.

Trends in Biochemical Sciences, Vol. 29, No. 7, July 2004, pp. 358-363.

Maxim Integrated Products. 2002. AN58 Crystal Considerations with Dallas Real-Time

Clocks (RTCs). [Online]. Available at: http://www.maxim-ic.com. [Accessed: 12

August 2008].

Microchip Technology Inc., 1992. AN536 Basic Serial EEPROM Operation data sheet

DS00536C. [Online]. Available at: http://www.microchip.com. [Accessed: 12 August

2008].

Architecture for Grid-Enabled Instrumentation in Extreme Environments 183

http://www.kvaser.com/index.htm
http://www.edn.com/article/CA83747.html
http://www.maxim-ic.com
http://www.microchip.com

Microchip Technology Inc. 1993. AN537 Everything a System Engineer Needs to Know

About Serial EEPROM Endurance data sheet DS00537A. [Online]. Available at:

http://www.microchin.com. [Accessed: 12 August 2008].

Momut, R. January 2000. Open Systems Interconnection (OSI) Reference Model.

Arescomlnc., pp 1-3.

Naganuma, T.; Kyo M.; Ueki, T.; Takeda, K.; Ishibashi, J. 1998. A New, Automatic

Hydrothermal Fluid Sampler Using a Shape-Memory Alloy. Journal o f Oceanography,

Vol. 54, pp. 241-246.

National Instruments. 2008. CANopen LabView Library. [Online]. Available at:

http://sine.ni.eom/nips/cds/view/p/lang/en/nid/202614 [Accessed: 17 August 2008].

Nibet, E. G. and Sleep, N .H. 2001. The Habitat and Nature of Early Life. Nature, Vol.

409, 22 Feb 2001, pp. 1083-1091.

Niskin, S. J. 1962. A Water Sampler for Microbial Studies. Deep Sea-Research, Vol. 9,

pp. 501-503.

NOAA. 2008. National Oceanic and Atmospheric Administration. [Online]. Available

at: http://www.noaa.gov/ocean.html. [Accessed: 5 July 2008].

Nolte, T. January 2000. Reducing Pessimism in CAN response time analysis.

Malardalem Real-Time Research Centre. Department of Computer Engineering,

Sweden.

Oberg, J. 2004. Titan Calling - How a Swedish Engineer saved a once-in-a-lifetime

mission to Saturn’s Mysterious Moon. IEEE Spectrum. October 2004. pp.33.

Oplustil, V.; Gaspar, L.; Svacina, D.; Szabo, S. 2004. COTS (Commercial Off The

Shelf) Distributed System for Critical Application. Proceedings o f the I I th IEEE

International Conference and Workshop on Engineering o f Computer based Systems, pp

464-468.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 184

http://www.microchin.com
http://sine.ni.eom/nips/cds/view/p/lang/en/nid/202614
http://www.noaa.gov/ocean.html

Pazul, K. 1999. AN713 Control Area Network (CAN) Basics Microchip Technology

Inc., pp. 3. [Online]. Available at: http://www.microchip.com. [Accessed: 12 August

2008].

Pedersen, R. B.; Thorseth, I. H.; Hellevang, B.; Schultz, A.; Taylor, P.; Knudsen, H. P.;

Steinsbu, B. O. 2005. Two Vent Fields Discovered at the Ultraslow Spreading Arctic

Ridge System. American Geophysical Union.

Person, R.; Blandin, J.; Stout, J.M.; Briole, P.; Ballu, V.; Etiope, G.; Ferentinos,

G.; Masson, M.; Smolders, S.; Lykousis, V. 2003. ASSEM: a new concept of

observatory applied to long term seabed monitoring o f geohazards. OCEANS 2003

Conference Proceedings.

Vol. l,pp . 86-90.

Person, P.; Aoustin, Y.; Blandin, J.; Marvaldi, J.; Rolin, J. 2006. From Bottom Landers

to Observatory Networks. Anals o f Geophysics. Vol. 49. April/June 2006.

Pfeiffer, O. 2003. Approximating CANopen - Embedded Systems Design. British

Library Direct, Vol. 16, Part 9, pp 28-35.

Pfeiffer, O. 2003. Embedded Networking with CAN and CANopen. RTC Books pp. 27,

83-91, 114.

Rajbharti, N. 2001. AN738 PIC18C CAN Routines in 'C\ [Online]. Available at:

http://www.microchip.com. [Accessed: 12 August 2008], pp. 1.

Rajbharti, N. 2002. The Microchip TCP/IP Stack DS00833B. [Online]. Available at:

http://www.microchip.com. [Accessed: 12 August 2008], pp. 30.

Richards, P. 2002. AN228 A CAN Physical Layer Discussion. [Online]. Available at:

http://www.microchip.com. [Accessed: 12 August 2008], pp. 1, 3, 9.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 185

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Richards, P. 2000. Using the CAN Developer's Kit. [Online]. Available at:

http://www.microchip.com. [Accessed: 12 August 2008].

Richards, P. 2001. AN739 An In-depth Look at the MCP2510. [Online]. Available at:

http://www.microchip.com. [Accessed: 12 August 2008].

Richards, P. 2001. AN754 Understanding Microchip's CAN Module. [Online].

Available at: http://www.microchip.com. [Accessed: 12 August 2008], pp 1-6.

Richey, R. 1997. AN606 Low Power Design Using PICmicro Microcontrollers

DS00606B. . [Online]. Available at: http://www.microchip.com. [Accessed: 12 August

2008], pp. 1.

Sarradin, P.M. Sarrazin, J. Allais, A.G. Almeida, D. Brandou, V. Boetius, A.

Buffier, E. Coiras, E. Colaco, A. Cormack, A. Dentrecolas, S. Desbruyeres, D.

Dorval, P. du Buf, H. Dupont, J. Godfroy, A. Gouillou, M. Gronemann, J.

Hamel, G. Hamon, M. Hoge, U. Lane, D. Le Gall, C. Leroux, D. Legrand, J.

Leon, P. Leveque, J.P. Masson, M. Olu, K. Pascoal, A. Sauter, E. Sanfilippo, L.

Savino, E. Sebastiao, L. Serrao Santos, R. Shillito, B. Simeoni, P. Schultz, A.

Sudreau, J.P. Taylor, P. Vuillemin, R. Waldmann, C. Wenzhofer, F. Zal, F. 2007.

EXtreme ecosystem studies in the deep OCEan: Technological Developments.

IEEE/OES Oceans 2007 Conference - Europe. 18-21 June 2007, pp. 1-6.

Schultz, A.; Pedersen, R. B.; Thorseth, I. H.; Taylor, P.; Flynn, M. 2005. Fluid Flow

Rate, Temperature and Heat Flux at Mohns Ridge Vent Fields: Evidence from

Isosampler Measurements for Phase Separated Hydrothermal Circulation Along the

Arctic Ridge System. American Geophysical Union.

Seabird. 2008. Submersible Pump data sheet. [Online]. Available at:

http://www.seabird.com/products/spec sheets/5Tdata.htm [Accessed: 10 August 2008].

Seabird. 2008. SBE 3S Oceanographic Temperature Sensor. [Online]. Available at:

http://www.seabird.com/products/spec sheets/modular.htm [Accessed: 10 August

2008].

Architecture for Grid-Enabled Instrumentation in Extreme Environments 186

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.seabird.com/products/spec
http://www.seabird.com/products/spec

Seabird. 2008. SBE 50 Digital Oceanographic Pressure Sensor. [Online]. Available at:

http: // www. seabird. com/pro ducts/spec sheets/ 5 Odata. htm [Accessed: 10 August 2008].

Snowdon, D. 2002. Hardware and Software Infrastructure fo r the Optimisation o f

Sunswift II. BEng, School o f Electrical Engineering & Telecommunications, University

of New South Wales.

Stanczyk, M. 2000. AN212 Smart Sensor CAN Node using the MCP2510 and

PIC16F876. [Online]. Available at: http://www.microchip.com. [Accessed: 12 August

2008], pp. 1, 3.

Stock, M. 1998. CAN Aerospace Interface Specification fo r Airborne CAN Stock Flight

Systems. [Online]. Available at: http://www.a2tech.eu/CANaerospace001 .html

[Accessed: 10 August 2008], pp. 53.

Tabor, P.S., Deming, J. W., Ohwada, K., Davies, H., Waxman, M., Colwell, R. R. 1981.

A Pressure-Retaining Deep Ocean Sampler and Transfer System for Measurement of

Microbial Activity in the Deep-Sea. Microbial Ecology, Vol. 7, pp. 51-65.

Taylor, C.D.; Dohertyb, K.W.; Molyneauxa, S. J.; Morrison, A.T.; Billingsd, J.D.;

Engstromb, I.B., Pfitschb, D.W.; Honjob, S. 2006. Autonomous Microbial Sampler

(AMS), A Device for the Uncontaminated Collection of Multiple Microbial Samples

from Submarine Hydrothermal Vents and other Aquatic Environments. Biology

Department, Woods Hole Oceanographic Institution. Deep Sea Research Part I:

Oceanographic research Papers Volume 53, Issue 5, May 2006, pp. 894-916.

Twose, C.; Parker, R.; Okabe, T.; Kirihara, K.; Nakata, H.; Kondo, T.; Karasawa, H.;

and Cappetti, G. 2000. Development of a High Temperature Borehole Fluid Sampler

and its Field Experiments in the Larderello Geothermal Field, Italia Proceedings World

Geothermal Congress. Published by International Geothermal Association.

Compaq, Intel, Microsoft & NEC Corporation, pp. 17, 1998. Universal Serial Bus

Specification Revision 1.1.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 187

http://www.microchip.com
http://www.a2tech.eu/CANaerospace001

Valenti, C. and Kalman, A. 2001. AN777 Multi-Tasking on the PIC16F877 with the

SALVO RTO SD SO O lll’B Microchip Technology Inc. [Online]. Available at:

http://www.microchip.com. [Accessed: 5 May 2006], pp. 1.

Vector Informatik GmbH. 2008. Solutions fo r your CANopen Networking. [Online].

Available at: http://www.canopen-solutions.com/canopen index en.html \Accessed: 11

August 2008].

Vig, J. R. 2005. Quartz Crystal Resonators and Oscillators fo r Frequency Control and

Timing Applications. [Online]. Available at: http://www.rakon.com.

Wachtershauser, G. 2000. Origin o f Life: Life as We Don’t Know it. Science, Vol. 289,

No. 5483, 25 Aug 2000, pp. 1307-1308.

Weik, M. H. 1989. Communications Standard Dictionary. Second Edition. New York:

Van Nostrand Reinhold.

Wetlabs. 2008. ECO Fluorometer User’s Guide Revision AF. [Online]. Available at:

http://www.wetlabs.com/products/eflcombo/fl.htm [Accessed: 10 August 2008].

Wetlabs. 2007. WETStar User’s Guide Revision N. [Online]. Available at:

http://www.wetlabs.com/products/wetstar/wsx.htm [Accessed: 6 August 2008].

Woodroffe, A. and Madle, P. Application and experience o f CAN as a low cost OBDH

bus system. Surrey Satellite Technologies Ltd. [Online]. Available at:

http://www.klabs.org/mapld04/abstracts/woodroffe a.pdf [Accessed: 16 November

2004].

Woolever, B. 1999. SDS Physical Layer Specification — Version 2.0. Honeywell Inc.

MICRO SWITCH Division.

Yin, E. 2003. Implementing CANopen in Autonomous Underwater Vehicles. Stanford

University. [Online]. Available at:

Architecture for Grid-Enabled Instrumentation in Extreme Environments 188

http://www.microchip.com
http://www.canopen-solutions.com/canopen
http://www.rakon.com
http://www.wetlabs.com/products/eflcombo/fl.htm
http://www.wetlabs.com/products/wetstar/wsx.htm
http://www.klabs.org/mapld04/abstracts/woodroffe

http://www.mbari.org/education/internship/Q3intems/03papers/EYin.pdf [Accessed: 7

October 2004], pp. 1-2.

Zeltwanger, H. 2004. Cascadable Sensor Network. Sensors & Transducers Magazine,

Vol.41, Issue 3, March 2004, pp. 197-200.

Zobell, C .E. 1941. Apparatus for Collecting Water Samples from Different Depths for

Bacteriological Analysis. Journal o f Marine Research, Vol. 4, pp 173-178.

Architecture for Grid-Enabled Instrumentation in Extreme Environments 189

http://www.mbari.org/education/internship/Q3intems/03papers/EYin.pdf

