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ABSTRACT
Recent advances in the therapeutic management of rheumatoid arthritis 

have identified that selective targeting of inflammatory cytokines represents 

a valid approach to the treatment of rheumatoid arthritis (RA). Although 

blockade of the inflammatory response at its inception by anti-TNFa agents 

has shown considerable clinical promise, this approach is not without its 

drawbacks. Consequently, identification of novel therapeutic strategies is 

essential. In recent clinical trials, favourable results were found with 

modalities that block interleukin-6 signalling. However, it is unclear whether 

blockade of IL-6 bioactivity offers a true advantage over anti-TNFa 

therapies, and raises the possibility of combination therapies for selected 

patient cohorts. The ultimate objective of this thesis was to provide proof of 

concept that combination TNFa and IL-6 blockade may offer true 

advantages in selected RA patient cohorts.

To elicit a response from a target cell, IL-6 must first form a complex with its 

receptor. It was found that neutrophils and macrophages within the RA joint 

had lower levels of IL-6R expression than neutrophils and macrophages 

obtained from matched blood samples in the same patients. Stimulation of 

neutrophils with TNFa led to rapid shedding of cell surface IL-6R. TNFa and 

IL-6 trans-signalling interacted to modulate chemokine production 

(particularly CCL2 macrophage chemo-attractant) and adhesion molecule 

expression (ICAM-1) on RA synovial fibroblasts. This could lead to 

significant effects on leucocyte recruitment in the RA joint.

A murine model of arthritis (collagen induced arthritis) was used to 

investigate the efficacy of combination therapy with sgp130:Fc and 

etanercept on clinical and pathological outcomes of disease. Combination 

therapy for rnCIA resulted in reduction in clinical disease severity. 

Macrophage recruitment was reduced and all parameters of histological 

damage. It appears that there is now proof of concept for the theory that 

combination therapy with etanercept and sgp130:FC may be effective in 

selected patients with rheumatoid arthritis.



ABBREVIATIONS
Ab Antibody

ACR American College of Rheumatology

ACR 50 American College of Rheumatology 50% response

ADAM A disintegrin and metalloprotease

AIA Antigen induced arthritis

BSA Bovine serum albumin

BSR British Society for Rheumatology

CIA Collagen induced arthritis

COMP Cartilage oligomeric protein

CRP C reactive protein

DAS Disease activity score

dH20 Distilled water

DMARD Disease modifying anti-rheumatic drug

DMEM Dulbecco’s modified eagle’s medium

DS Differentially spliced

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme linked immunoabsorbent assay

EMSA Electrophoretic mobility shift assay

ESR Erythrocyte sedimentation rate

FITC Fluorescein isothiocyanate

FCS Fetal calf serum

gp130 glycoprotein 130

H&E Haematoxylin and eosin

HLA Human leucocyte antigen

ICAM Intracellular adhesion molecule

I FA Incomplete Freund’s adjuvant



IP Intra-peritoneal

IL- Interleukin

IL-6 Interleukin 6

IL-6R Interleukin 6 receptor

MMP Matrix metalloproteinase

NBFS Neutral buffered formalin saline

NFkB Nuclear factor-kappa B

NS Not significant

OA Osteoarthritis

OA-SF Osteoarthritis synovial fibroblasts

PBS Phosphate buffered saline

PC Proteolytically cleaved

PE Phycoerythrin

PMN Polymorphonuclear leucocyte

RA Rheumatoid arthritis

RA-SF Rheumatoid arthritis synovial fibroblast

SD Standard deviation

SEM Standard error of mean

SF Synovial fluid

SIL-6R Soluble Interleukin 6 receptor

STAT Signal transducer and activator of transcription

TBS Tris buffered saline

TNFa tumour necrosis factor alpha

TACE Tumour necrosis factor cleavage enzyme

TMB T etramethylbenzidine

VC AM Vascular cell adhesion molecule

VEGF Vascular endothelial growth factor



CHEMOKINE NOMENCLATURE

Current nomenclature

CXCL8

CCL5
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Previous name

IL-8 (Interleukin 8)

Rantes (Regulated on 
activation normal T Cell 
expressed and secreted)

M CP-1 (Macrophage 
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1 INTRODUCTION

1.1 Background

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease 

affecting approximately 1% of the population (Silman 1998). It is 

characterised by widespread symmetrical arthritis together with tendonitis, 

serositis and systemic malaise. The primary site of pathology is within the 

synovial lining of the joint. Within the joint, the synovial lining proliferates 

and becomes inflamed forming pannus which erodes into cartilage, bone 

and surrounding ligaments leading to joint damage and subsequent 

deformities.

The clinical manifestations can be very broad and there is some overlap 

between RA and other inflammatory conditions. Symptoms of RA may 

begin abruptly or evolve over weeks, months or years (Jacoby et al 1973). 

Common patterns of disease are:

a) Disease of small or medium joints particularly metacarpophalangeal 

(MCP) and proximal interphalangeal (PIP) joints of the hands, 

metatarso-phalangeal joints of the feet, wrists and ankles. There may 

also be variable large joint disease;

b) Predominantly large joint disease;

c) Disease involving only a few joints, or sometimes only one joint;

d) Less common presentations include pain and stiffness affecting the

shoulder and hip girdles (polymyalgic presentation); systemic 

symptoms such as weight loss and joint pain without a true arthritis; 

intermittent short-lived attacks of arthritis (‘palindromic arthritis’).

The course of RA is heterogeneous and variable. Within 2 years of 

diagnosis, patients usually experience moderate disability and a meta­

analysis of functional activity suggested that over time 42% of patients with 

rheumatoid arthritis are in Steinbrocker functional class III or IV. Functional
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class III is classified as limited and IV as incapacitated largely or wholly 

confined to bed or wheelchair and with little or no ability to self care 

(Steinbrocker et al 1949). This does not appear to have changed in recent 

years despite the advent of more effective therapies for RA (Scott and Steer 

2007). Approximately a third of patients cease work because of disease, 

and life expectancy in RA is reduced (Fex eta! 1998).

1.2 Rheumatoid Arthritis Historical Perspective

Skeletal remains from North America suggest that RA was present over 

4000 years ago (Rothschild and Woods 1990). In Europe paleo-pathology 

has failed to identify characteristic rheumatoid changes although other forms 

of arthritis are commonly seen.

In Europe the first pictorial representation of RA began to appear in Dutch 

art in the early 17th century (Dequeker 1977).

The first recognised description of RA came from Garrod in 1859. He 

described arthritis and used the phrase rheumatoid to distinguish it from the 

well-known forms of arthritis gout and rheumatic fever (Garrod, 1892).

In 1957 RA was described definitively and separated from other 

inflammatory conditions by Charles Short. The American Rheumatology 

Association devised criteria for the diagnosis of RA which were revised in 

1987 to the following:

a) Morning stiffness in and around joints lasting at least 1 hour before

maximal improvement*

b) Soft-Tissue swelling (arthritis) of 3 or more joint areas observed by a

physician*

c) Swelling (arthritis) of the proximal interphalangeal (PIP),

metacarpophalangeal (MCP) or wrist joints*

d) Symmetric arthritis*
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e) Subcutaneous nodules

f) Positive test for rheumatoid factor (RF)

g) Radiographic erosions or periarticular osteopenia in hand or wrist

joints

* present for at least 6 weeks

To be classified as having RA, a patient must meet four or more criteria. 

These criteria demonstrate 92% sensitivity and 89% specificity for RA when 

compared to control subjects with non-RA rheumatic disease (Arnett et al 

1988).

These RA classification criteria were derived from studying a group of 

patients who had already been diagnosed with RA and had well-established 

disease. They have limited utility in routine practice and most clinicians 

diagnose RA without formal reference to such criteria. Many patients do not 

meet formal criteria particularly at onset of disease. However they are 

extremely useful for research purposes.

1.3 Aetiology

Despite extensive research the cause of RA remains unknown. It is likely to 

be a multifactorial process with genetic and environmental factors playing 

roles. HLA-DRA4 positivity correlates strongly with RA and other 

susceptibility genes have recently been identified (Thomson et al 1993, 

Gregerson 1999; Mackay et al 2002). However, twin studies show a 

concordance of only 5-21% in monozygotic twins suggesting that an 

environmental trigger is likely (Silman etal 1993; Bellamy et a /1992).

An infectious trigger is widely postulated to lead to RA and the evidence for 

this includes declining incidence with successive birth cohorts and a shift 

towards older age at diagnosis consistent with a decline in early life 

infections. Clustering studies and studies of family size have displayed 

inconclusive results (Carty e ta l2004).
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Suggested candidates for an infectious agent include bacteria. Studies 

have identified fragments of bacterial DNA within the joint although no 

consistent relationship between organism and disease is apparent (Rook et 

al 1993; Bahr et al 1988).

Viruses such as Epstein Barrr virus (EBV) and retroviruses have been 

suggested as putative causative organisms. There are high levels of EBV 

positivity in RA patients and evidence of EBV within synovial biopsies (Takei 

et al 1997; Takeda et al 2000). More recent work suggests that this may be 

due to abnormal T cell responses in established RA leading to persistence 

of infection rather than a causative role for EBV (Toussirot et al 2000). It is 

unlikely that any one infectious trigger will be identified which leads to 

disease in all RA patients.

1.4 Pathogenesis

The pathological processes causing RA have not been clearly elucidated 

although recent work has led to great advances. An uncertain pathological 

trigger results in dys-regulation of the immune system.

Leucocyte recruitment, predominantly that of T-lymphocytes (specifically 

Th1 cells) and macrophages occurs to sites of inflammation predominantly 

within synovial joints. Leucocyte recruitment is orchestrated by the specific 

pattern of chemokines produced following stimulation of cells by the up- 

regulation of pro-inflammatory cytokines (Tarrant et al 2006).

Synovial hyperplasia and inflammatory reaction of synovial tissue occurs 

accompanied by an inflammatory exudate within the joint cavity. Synovial 

fluid is produced in large quantities and is highly cellular containing a 

predominance of polymorphonuclear cells (PMN) with some T cells and 

macrophages. The normal joint lining layer consists of 1 or 2 cell layer 

thickness of fibroblastic-like cells without a basement membrane. Within the 

RA joint blood vessels multiply and populations of activated cells such as 

fibroblasts, T lymphocytes, plasma cells (antibody producing cells) and cells 

resembling macrophages are recruited. Aggregates of lymphoid tissue
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resembling lymph nodes may also be found in synovial tissues (Freemont 

1995; Sweeney & Firestein 2004).

Activated fibroblast and leucocytes develop into an invasive structure known 

as pannus which can be up to 10 cells thick. This pannus develops new 

blood vessels via angiogenesis allowing growth and invasion of other 

tissues to occur. Pannus erodes cartilage and bone directly via the 

secretion of mediators which breakdown cartilage and bone, e.g. Matrix 

Metalloproteinases (MMPs) and Aggrecanases. In addition B-lymphocytes 

are thought to produce pathological antibodies, e.g. rheumatoid factor. 

(Sweeney & Firestein 2004). Bone and cartilage damage leads to erosions 

which can compromise the structure and function of the joint.

1.4.1 Role of Fibroblasts in Rheumatoid Arthritis Pathogenesis

Human joints can be divided up into fibrous, cartilaginous and synovial. The 

most common form and that which is predominantly affected by RA is the 

synovial joint. Examples of synovial joints include hips, knees and 

shoulders.

Synovial joints consist of the articular surfaces of two bones which are 

covered by hyaline cartilage. The joint space is enclosed by a fibrous 

capsule and lined by a synovial membrane which secretes synovial fluid. 

The synovial fluid provides lubrication to the joint and provides oxygen and 

nutrients to the cartilage.

The synovial membrane is composed of connective tissue which is made up 

of a variety of cell types. The major cell types are macrophages and 

modified fibroblasts (fibroblast-like synoviocytes). The synovial fibroblasts 

resemble fibroblasts from other organ systems but have specific ultra- 

structural and metabolic actions. The fibroblasts have long cytoplasmic 

processes which overlap and entwine and appear morphologically similar to 

dendritic cells. They are mesenchymal, non-vascular, non-epithelialised 

cells and do not express CD45 (Seki et al 1998; Lindhout et al 1999).
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The specialised metabolic functions of synovial fibroblasts include synthesis 

of hyaluronic acid which contributes to the lubricating properties of the 

synovial fluid. In addition fibroblasts provide nutrients for cartilage.

The synovium has a rich blood supply and is infiltrated by a network of 

capillaries and venules. It is also supplied with lymphatic drainage and 

sympathetic nerve fibres.

In addition to their ultra structural properties fibroblasts have been shown to 

have high proliferative rates with loss of contact inhibition. This allows 

adhesion between fibroblasts and other cell types contributing to cell 

signalling (Konttinen 2000). Fibroblasts express cytokine mRNA and protein 

(Bukala et al 1991). Fibroblasts have been shown to release pro-angiogenic 

cytokines including vascular endothelial derived growth factor(VEGF) this is 

expressed constitutively and its excretion is up regulated in response to 

stimulation including hypoxia and cytokine stimulation, e.g. Interleukin 1 (IL- 

1) (Jackson et al 1997). New vessel formation (angiogenesis) occurs within 

inflamed tissue and is a feature of the hypertrophied synovium found within 

RA joints.

1.4.1.1 Pro-inflammatory Cytokine Production in Rheumatoid Arthritis

Pathogenesis

Fibroblasts can release chemo-attractant cytokines (chemokines), e.g. 

macrophage inflammatory protein 1 alpha (Mipla), monocyte chemotactic 

protein-1 (CCL2) in response to stimulation by pro-inflammatory cytokines 

which attract leucocytes into the joint. This contributes to synovial 

hypertrophy and continuing inflammation.

In addition the fibroblasts are capable of production of other pro- 

inflammatory cytokines, e.g. IL-15 which promotes T cell activation and 

expansion (Harada 1999), macrophage inhibitory factor (MIF) which can 

induce TNF-a production and enhance macrophage phagocytosis (Leech 
1999).
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1.4.1.2 Matrix Degradation

Fibroblasts can produce both pro and anti- resorptive signals depending on 

specific conditions within the joint. IL-1 and TNF-a have both been shown to 

promote cartilage degradation via their effects on synthesis and secretion of 

matrix metallo-proteinases (MMPs) by fibroblasts (Migita et al 1996)). 

Fibroblasts can also produce TIMPs which are the naturally occurring 

inhibitors of MMPs (Wright 1991). The balance between matrix production 

and degradation depends upon the environment within the joint.

1.4.1.3 Bone Remodelling

Erosions of bone occur as a specific feature of RA. Although fibroblasts 

have no direct role in bone resorption they have been shown to produce 

macrophage colony stimulating factor (M-CSF) and receptor activator of 

NFkB ligand (RANKL) which are necessary for the formation of osteoclasts 

from progenitor cells (Romas e ta l2002; Takayanagi e ta l2000).

1.4.2 Leucocytes in Rheumatoid Arthritis

Establishment of chronic synovitis in RA is facilitated by influx of neutrophils 

and macrophages regulated by cell adhesion molecules. Reduction in E- 

selectin, ICAM-1 and VCAM-1 expression in synovial biopsies has been 

shown in responders to DMARD therapy (Smith et al 2001). Leucocyte 

infiltration within the synovium in particular macrophage, and lymphocytes 

results in a switch from acute to chronic inflammation with subsequent up- 

regulation of pro-inflammatory cytokine, chemokine and growth factor 

production. The leucocyte infiltrate is largely responsible for the degradation 

of the cartilage and peri-articular bone.

1.5 Cytokines in Rheumatoid Arthritis

Both TNFa and IL-6 are pleotrophic (act on many cell types) cytokines which 

exert their stimulatory effects on cells that bear appropriate cell surface 

receptors. Cytokines are intercellular mediators which regulate cell survival,
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growth, differentiation and various effector functions. Cytokines are not 

stored as pre-formed molecules but are secreted by cells usually after 

stimulation. Each molecule is important in arthritis induction and recent 

observations suggest that both IL-6 and TNFa may be acting independently 

within synovial tissue. TNFa drives recruitment including neutrophil 

infiltration in the early acute phase of joint inflammation (Feldmann 1999). 

IL-6/slL-6R modulates leucocyte recruitment causing a change in cells 

recruited from neutrophil to monocyte and lymphocyte (McLoughlin et al 

2003; McLoughlin et al 2004). In addition clearance of inflammatory cells is 

altered by the effects of IL-6/slL-6R signalling leading to impaired apoptosis 

with subsequent persistence of cellular infiltrate within the joint. This results 

in chronic inflammation leading to synovitis (Nowell et al 2003). Murine 

models of arthritis also provide evidence for distinct roles for TNFa and IL-6 

in the pathogenesis and severity of arthritis (Alonzi et al 1998; Takagi et al 

1998; Hata e ta l2004).

1.5.1 Role of TNF-g in the Pathogenesis of Rheumatoid Arthritis

TNF was initially identified in 1975 as a soluble factor that induced necrosis 

of tumour and was later identified as a catabolic hormone. Two forms of 

TNF are recognised TNFa and TNF6 (or lymphotoxin). TNFa has a half-life 

of 6 to 7 minutes and is produced largely by activated macrophages. 

Lymphotoxin is produced primarily by lymphocytes (Goeddel et al 1986; 

Beutler and Cerami 1989; Grunfeld and Palladino 1990).

Synovial fluid and serum levels of TNFa are increased in RA and particularly 

those with severe or active disease (Tetta et al 1990). In addition patients 

with high levels of TNFa have been shown to have higher ESR and synovial 

leucocyte counts (Saxne et al 1988); and higher DAS scores (Petrovic- 

Rackov 2006). Unlike TNFa, lymphotoxin has not been detected in synovial 

fluid or in serum of patients with RA (Saxne et al 1988). Therefore, it is 

likely that the TNFa is more important in the pathogenesis of RA than 
lymphotoxin.
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TNFa is synthesised as an inactive pro-hormone and released by activated 

macrophages as a single unit (monomer) by the actions of TNFa cleavage 

enzyme (TACE). When activated three identical sub-units combine to form 

a trimer. TNFa signals via a cell surface receptor system (Beutler and 

Cerami 1989).

Two separate TNF receptors are found on the cell surface which can be 

divided on the basis of their molecular weight into 55 kd TNF Receptor 1 

(p55 receptor) and 75 kd TNF Receptor 2(p75 receptor). Two cell-surface 

receptors either p55 or p75 combine when TNFa binds to the cell surface. 

Each cell surface receptor appears to promote the same biological activities 

but TNFa binds with greater affinity to p55 receptor than p75 receptor. p55 

receptor is expressed ubiquitously but p75 receptor expression appears to 

be confined to endothelial cells and haemopoetic cells (Kollias et al 1999). 

The 2 receptors, whilst displaying similar extra-cellular domains, signal via 

distinct intra-cellular pathways. p55 receptor contains a death domain not 

found in p75 receptor. p55 receptor signalling via MAP-kinase pathways 

can result in apoptosis (Bazzoni et al 1996). Studies from p55 receptor 

deficient mice and in human fibroblast cell lines demonstrate that p55 

receptor is essential for formation of lymphoid tissue and defence against 

micro-organisms including bacteria and viruses (Wong et al 1992; Kollias et 

al 1999). The p75 receptor has been reported to mediate cytokine secretion 

together with effects on cell proliferation and cytotoxicity (Tartaglia et al 

1993; Tartaglia et al 1991; Herbein et al 1998).

TNFa binding triggers a variety of biological processes which include 

release of other pro-inflammatory cytokines (e.g. IL-1, IL-6 ), trans-epithelial 

migration of leucocytes, activation of macrophages, T-Lymphocytes and 

other immune cells and release of enzymes (such as matrix metallo- 

proteinases and aggrecanases) which contribute to tissue breakdown 

(Migita et al 1996).

These cell surface receptors may also be shed from the cell-surface. This 

provides a mechanism for inhibition of TNFa activities as these soluble 

receptors (sTNF-R) competitively inhibit cell surface binding of TNFa.
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sTNF-R levels are increased in active disease and appear to be a natural 

homeostatic regulator of TNFa activities (Aderka 1996). Murine models 

demonstrate that defective shedding is associated with the development of 

spontaneous auto-immune disease.

TNFa was first suggested as a prime cytokine in the pathogenesis of RA in 

the early 1990s following the discovery of high levels of macrophage and 

cytokine derived factors within the joint (Firestein et al 1988). Biologically 

active tumour necrosis factor was measured in synovial fluid of patients with 

several rheumatic diseases (Di Giovine et al 1988). Feldmann and Maini 

demonstrated presence of mRNA for pro-inflammatory cytokines including 

TNFa within RA synovium (Buchan et al 1988; Brennan et al 1989 a). 

Subsequent work by Feldmann and Maini led to the discovery that 

antibodies targeted against TNFa could also down-regulate production of 

other pro-inflammatory cytokines such as IL-1 and IL-6 in an RA co-culture 

model (Brennan et al 1989 b). These observations led to the use of 

cytokine inhibitors in animal models and latterly RA patients which have 

provided the majority of our insights into the function of TNFa in RA.

1.5.2 Treatment With Agents Directed Against TNFa

Treatment with agents directed against TNF-a provides clinical benefit 

together with a reduction in tender and swollen joint counts and prevention 

of on-going joint destruction. Inflammatory parameters including ESR and 

CRP are normalised (Elliott 1993). Successful treatment is associated with 

a sustained reduction in levels of pro-inflammatory cytokines such as IL-1 

and IL-6 (Charles efa/1999).

Treatment has also been demonstrated to reduce leucocyte trafficking to 

affected joints. This is as a result of down-regulation of adhesion molecule 

expression, e.g. intracellular adhesion molecule 1 (ICAM-1) and E-Selectin. 

This has been demonstrated by quantitative analysis of serum levels 

together with immuno-histochemical analysis of serial synovial biopsies 

(Paleolog et al 1996; Tak et al 1996).
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Treatment with anti-TNF agents has also been shown to reduce levels of 

certain pro-inflammatory chemokines including CXCL-8 and CCL-2. Levels 

of vascular endothelial growth factor (VEGF) have also been shown to 

reduce following treatment with assumed beneficial effects in prevention of 

angiogenesis (Paleolog ef a/1998).

1.5.3 lnterleukin-6 in Rheumatoid Arthritis

lnterleukin-6 is a pleotrophic cytokine which can be produced by a variety of 

cell types. Its molecular mass is 21-28 kDa. It is part of the family of long- 

chain four-a helical cytokines. Other members of the IL-6 family include 

oncostatin-M, IL-11, leukaemia inhibitory factor, cardiotrophin-12 and IL-27.

IL-6 has many varied actions and targets genes involved in differentiation, 

survival, apoptosis and cell proliferation. It has been demonstrated to have 

both pro-inflammatory and anti-inflammatory properties and is involved in 

the acute phase response to infection and inflammation. Studies in IL-6'A 

mice suggest that IL-6 is a critical cytokine in the production of fever. IL-6 is 

involved in the induction of acute phase proteins such as serum amyloid A 

(SAA) and C reactive protein (CRP). IL-6 has also been demonstrated to 

play a role in auto-antibody generation. When acting as an anti­

inflammatory cytokine, IL-6 provides protection against septic shock and can 

promote resolution of acute inflammation.

IL-6 has been postulated to be an important cytokine in RA for some time. 

Many investigators have demonstrated high levels of IL-6 in synovial fluid in 

RA and other inflammatory arthropathies (Robak et al 1998; Polgar et al 

2000; Desgeorges et al 1997). Within the joint, many cell types including 

fibroblast-like synoviocytes and chondrocytes are capable of producing IL-6. 

Although there is some evidence of a basal level of production the majority 

is stimulated by other pro-inflammatory cytokines, e.g. IL-1 and TNFa.

IL-6 signals via a receptor complex consisting of two distinct membrane- 

bound glycoproteins; a cognate IL-6 receptor (80 kd) with limited cellular 

expression and a ubiquitously expressed gp130 signal-transducing element.
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In general, resident cells within the joint lack the cognate receptor, but can 

be made responsive to IL-6 via a soluble IL-6 receptor (slL-6R) (Jones

2002). This is in contrast to the actions of TNFa where the soluble receptor 

prevents TNFa signalling by competitive inhibition. Significantly, the sIL- 

6R/IL-6 complex is able to activate cells via interaction with membrane- 

bound gp130, allowing cells which do not express cognate IL-6 receptor to 

be made responsive to IL-6 (Nowell et al 2003). This ability of IL-6 to 

stimulate cells which do not express cognate receptor is known as ‘trans- 

signalling’. gp130 activation also occurs by other IL-6 related cytokines 

including IL-11, oncostatin M and cardiotrophin-1 (Taga et al 1997). slL-6R 

is found in the plasma of healthy individuals but levels are 2-3 times higher 

than in those with inflammatory diseases such as RA (Robak et al 1998; 

Polgar et a /2000; Desgeorges eta l 1997).

Two distinct isoforms of the slL-6R have been identified which are produced 

by proteolytic cleavage of the cognate receptor from the cell surface (PC- 

SIL-6R) or by differential mRNA splicing (DS-slL-6R). The DS-slL-6R 

isoform is found only in RA fluids and not in osteoarthritis (OA) (Nowell et al

2003). It appears that the release of the two different isoforms is regulated 

independently. Work within our group examining the biological 

characteristics of slL-6R showed that a complex of IL-6 with either DS-slL- 

6R or PC-slL-6R resulted in identical pattern of chemokine induction. Both 

forms activate the Janus kinase-STAT pathway through gp130 and were 

found to be similar in their ability to regulate neutrophil infiltration 

(McGloughlin et al 2004). It is not yet known whether the two isoforms have 

identical actions in the pathogenesis of RA.

1.5.4 IL-6 Trans-signalling in Rheumatoid Arthritis

Evidence for the importance of IL-6 interactions with IL-6R in arthritis 

pathogenesis has come from animal models. In antigen induced arthritis 

(AIA), IL-6 deficient mice (IL-6'7') have been shown to be resistant to arthritis 

(Ohshima et al 1998). Administration of HYPER-IL-6 (IL-6/slL-6R fusion 

protein) restored arthritis severity to that of wild type mice (Nowell et al
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2003). This did not occur if the mice were treated with IL-6 alone, showing 

that the presence of the soluble receptor is essential. Treatment of wild- 

type (IL-6+/+) mice with soluble gp130 (a natural antagonist to IL-6/slL-6R 

complex which acts by competitive inhibition of membrane bound gp130) 

showed a reduction in all parameters of disease severity (Nowell et a /2003). 

This data provides indirect evidence for the role of IL-6/slL-6R complex and 

gp130 in the pathogenesis of RA. Experiments using gp130 fusion proteins 

have been performed which prove that sgp130 exclusively inhibits IL-6 

responses mediated by the soluble receptor and does not affect cognate IL- 

6 signalling via membrane bound receptor (Atreya et al 2000).

Proof of concept studies in colitis indicate that sgp130:Fc treatment reduced 

the severity of colitis. This provides further evidence of benefit from 

sgp130:Fc in other inflammatory diseases (Atreya et al 2000).

Figure 1.1 - IL-6 trans-signalling and its inhibition with sgp130

(Figure reproduced and adapted with the permission of Dr S A Jones)

A B
Classical IL-6 signaling IL-6 trans-signaling

sgp130

^  SIL-6R

Activation Activation No Activation

A Classical IL-6 signalling.

B IL-6 trans-signalling and its specific inhibition using sgp130
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1.5.5 Treatment With Agents Directed Against IL-6 or IL-6R

Antibodies directed against IL-6 have been used in RA patients but despite 

initially promising results they have not reached clinical practice (Wendling 

et a /1993).

In contrast when IL-6R has been targeted results have been promising in 

trials in RA patients. In initial open label trials 13/15 patients obtained ACR 

20 responses at 13 weeks (Nishimoto et al 2003). In further larger double­

blind placebo-controlled trials blocking IL-6R showed significant 

improvements in disease activity and inflammatory markers (Choy et al 

2002; Nishimoto et al 2004). The anti-IL6R antibody has been named 

Tocilizumab.

The results of several large phase III studies have been published. In a 

large, multi-centre Japanese trial patients with poorly controlled RA were 

treated on a 4 weekly basis with 8 mg/kg Tocilizumab infusions. At 1 year, 

patients in the therapy group had significantly less progression in 

radiographic damage than patients in the control group. Significant 

improvements in DAS score were also achieved (Nishimoto et al 2007). The 

results of the first and second of five large, multi-national studies have also 

been published recently.

The OPTION study in patients with inadequate clinical response to 

methotrexate found a significant improvement in ACR-20 responses at 24 

weeks in patients treated with 4 or 8 mg/kg doses of Tocilizumab compared 

to placebo (Smolen et al 2008).

The TOWARD study, a multi-national double-blind trial compared 

Tocilizumab 8mg/kg or placebo in combination with stable DMARD therapy. 

At week 24, the proportion of patients achieving ACR20 was significantly 

greater in the tocilizumab plus DMARD group than in the control group. 

Secondary end points including ACR50/70 responses, DAS28, DAS28 

remission responses and systemic markers including CRP and haemoglobin
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showed improvement in the Tocilizumab treated patients (Genovese et al 

2008). Tocilizumab will be available commercially in the near future.

Despite the promising results, potential side effects of blockade of cognate 

IL-6 signalling have become apparent. Abnormalities in liver function tests 

(LFT) and a rise in serum cholesterol have both been reported from the 

trials. 44% of patients had a rise in serum cholesterol following treatment 

with MRA (Tocilizumab) (Nishimoto et al 2004). This is likely to have 

detrimental implications in RA where patients already have an increased risk 

of cardio-vascular and cerebro-vascular disease as a result of their RA (Erb 

et al 2004; Stevens et al 2005). Altering the lipid profile in these patients 

may well further increase their cardio-vascular risks.

Malignancies were reported to have occurred in 3 patients in the treatment 

arm of the most recent study with none seen in the control group. No further 

information was given about site or likelihood of evidence that Tocilizumab 

was responsible (Nishimoto et a /2007).

As predicted, an increase in infection with IL-6R directed therapies has been 

reported. In the OPTION study more people receiving Tocilizumab than 

those receiving placebo had at least one adverse event. The most common 

serious adverse events were serious infections, reported by six patients in 

the 8 mg/kg group, three in the 4 mg/kg group, and two in the placebo group 

(Smolen et al 2008). Additionally, in the TOWARD study, grade 3 

neutropenia occurred in 3.7% of patients receiving Tocilizumab and none of 

the patients in the control group (Genovese et a /2008).

Specifically targeting IL-6 trans-signalling could be considered as an 

alternative strategy which would spare cognate receptor signalling and may 

address these potential side-effects.

1.6 Synergistic Interactions Between TNFa and Other Cytokines

Although TNFa and IL-6/slL-6R have both been demonstrated to have 

significant importance in the pathology of RA evidence is only now 

beginning to emerge of their interactions.
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Evidence for a synergistic effect between TNFa and IL-6/slL-6R was 

demonstrated in a study which examined the induction of VEGF in cultured 

RA fibroblasts. A clear synergistic effect of the two cytokines on VEGF 

production was seen, which was prevented by an anti-IL-6R antibody but it 

could not be prevented by anti-TNFa alone (Nakahara et al 2003).

IL-1 and IL-6/slL-6R complex also act together synergistically to up-regulate 

metalloproteinase production by chondrocytes (Rowan et al 2001 ;Flannery 

etal 2000).

1.7 Treatment of Rheumatoid Arthritis

Conventional drug therapy for RA relies on varying combinations of the 

following four classes of drugs:

• Non-steroidal anti-inflammatory drugs (NSAIDs)

• Analgesics

• Corticosteroids such as prednisolone and methylprednisolone

• Disease modifying anti-rheumatic drugs (DMARDs)

Current practice is that therapy with DMARDS should be started as soon as 

possible in order to prevent occurrence of erosions and to attempt to 

achieve remission (defined as 5 or more of the following criteria for 2 

consecutive months: morning joint stiffness of less than 15 minutes, no 

fatigue, no symptoms of joint pain, no joint tenderness or pain on motion, no 

swelling of joints or tendon sheaths, and ESR less than 20 or 30 depending 

on sex) (Pinals RS et al 1981).

DMARDs are slow acting drugs, which provide symptomatic relief and may 

take several weeks or months to work. They also have the potential to 

induce disease remission and a potential for reducing the risk of joint 

damage in progressive RA.
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Major aims of treatment include control of joint pain and inflammation, 

reduction in joint damage and disability, improvement in physical function 

and maintenance or improvement in quality of life (Scott et al 1998).

To be called a DMARD, a drug must be capable of changing the course of 

RA for at least 1 year as evidenced by sustained improvement in physical 

function, decreased synovitis and slowing or prevention of structural joint 

damage (Bird K 2002).

1.7.1 DMARD Therapy

1.7.1.1 Methotrexate (dihvdrofolate reductase inhibitor)

Methotrexate exerts its beneficial effects in a variety of ways. It is likely that 

its role as a dihydrofolate reductase inhibitor results in down-regulation of 

metabolically active reduced folate leading to a subsequent reduction in 

purine formation and prevention of cell turnover (Cutolo et al 2001; 

Smolenska et al 1999).

In addition it can inhibit AICAR (5-aminoinidazole-4-carboxamide riboside) 

transformylase which causes an increase in intracellular AICAR which 

stimulates the release of adenosine. Adenosine has anti-inflammatory 

properties and in addition is an inhibitor of neutrophil function (Cronstein et 

al 1991; Cronstein et al 1993).

Methotrexate is currently the standard first line therapy for RA because of its 

efficacy and safety profile. A meta-analysis of treatment termination has 

shown that continued drug use at 60 months is higher for methotrexate than 

other DMARDs although the median duration of methotrexate use remains 

only 41 months (Maetzel etal 2000).

1.7.1.2 Sulohasalazine

Actions of sulphasalazine are less clear. Sulphasalazine is a combination of 

an antibiotic sulphapyridine with an anti-inflammatory linked with an azo 

bond. Bacterial enzymes in the large intestine digest the sulphasalazine
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into its biologically active constitutive parts. Its action is largely unknown 

although it is known to affect gut bacteria (Neumann et al 1987), 

inflammatory cell function, cytokine and antibody production together with 

an increase in free radical scavenging activity (Comer 1988; Symmons et al 

1988). Sulphasalazine concentrations within the synovial fluid have been 

shown to be only slightly less than that in plasma (Farr et al 1985).

1.7.1.3 Leflunomide

Leflunomide is an inhibitor of pyrimidine synthesis and has been shown in 

trials to be comparable to methotrexate and sulphasalazine in reducing 

signs and symptoms of RA (Mladenovic et al 1995; Strand et al 1999). T 

and B lymphocytes have only low reserves of pyrimidine nucleotides making 

them very sensitive to leflunomide. Lymphocyte division is arrested at G1 

phase of the cell cycle (RQckemann et al 1998; Cherwinski et al 1995). 

There is good clinical evidence for efficacy.

1.7.1.4 Cyclophosphamide

This is an inactive pro-drug which is activated via the hepatic cytochrome 

p450 enzyme system to become a DNA alkylating agent. This results in 

cross-linking of DNA with subsequent reduction in DNA synthesis and 

increase in apoptosis. Its effects are most marked on rapidly dividing cells, 

resulting in reduction in B and T Lymphocytes. Due to its significant toxicity 

the use of cyclophosphamide in RA is predominately confined to those 

patients who develop systemic vasculitis in conjunction with their RA.

1.7.1.5 Corticosteroids

Recent evidence has emerged that steroids should be considered as 

DMARDs because there is a significant reduction in radiological progression 

when given in combination with standard DMARD therapy (Kirwan and 

Power 2007, Goekoop-Ruiterman et al 2005, Verhoeven et al 1998).
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1.7.1.6 Other Traditional DMARDs

Other drugs which have been used include Azathioprine, cyclosporin, 

hydroxychloroquine, D-penicillamine and intra-muscular myocrisin (Gold). 

These medications have a variety of effects on the immune system and 

varying degrees of efficacy. In addition cyclosporin in particular has many 

side-effects including gum hypertrophy and renal impairment. Their use has 

been largely superseded by the more effective DMARDs listed above and 

biological therapies in resistant disease.

1.7.2 Biologies

Biologic agents which target specific cytokines, chemokines and co­

stimulatory molecules have now been developed and are rapidly becoming 

the gold standard for RA therapy. Agents targeting TNFa and Rituximab 

(anti CD20) which targets B cells are the only agents used in routine clinical 

practice but other biological therapies are in clinical trial and under 

development.

1.7.2.1 Anti-TNFa

Therapies directed against TNFa have been shown in clinical trial to be 

effective in both early and late stages of disease. In the UK, the British 

Society of Rheumatology (BSR) guidelines restrict its use. These guidelines 

were accepted in full by the National Institute for Clinical Excellence (NICE).

The BSR Guidelines state that anti-TNF therapies (Adalimumab, Infliximab 

and etanercept) may be used in patients who:

a) Satisfy ACR (American College of Rheumatology) classification for 
RA;

b) Have active disease as defined by as Disease activity Score (DAS) of

5.1 or higher. (The DAS score is a validated composite score 

consisting of weighted swollen and tender joint counts, ESR and 

patient functional visual analogue score);
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c) Have previously failed on methotrexate and one other DMARD. A 

minimum 6 month period on each standard therapy at clinically 

effective doses should be required unless withdrawal was due to 

toxicity;

d) Treated patients should be entered on a central register, with drugs, 

dose, outcomes and toxicity reported on a quarterly basis.

Contra-indications include:

a) Pregnancy or breastfeeding;

b) Active infection;

c) Patients at high risk of infection including:

(i) Chronic leg ulcers;

(ii) Previous Tuberculosis unless a full course of anti-TB therapy

completed;

(iii) Septic arthritis within 12 months or indefinitely if a prosthetic 

joint remains in-situ;

(iv) Bronchiectasis;

(v) Indwelling urinary catheter;

d) Malignancy or pre-malignancy (excluding BCC or malignancies > 10 

years earlier where chance of cure is high).

1.7.2.2 Infliximab

Infliximab (Schering-Plough) is a chimeric human-murine monoclonal 

antibody directed against TNFa. The TNFa binding region is murine and 

comprises 30% of the amino acid sequence of infliximab. The remainder is 

a human lgG1 heavy chain and kappa chain constant region.
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The recommended dose of Infliximab for RA is 3 mg/kg body weight given 

as an intravenous infusion followed by further infusion, at the same dose, 2 

and 6 weeks later. Thereafter infusions are given at 8-week intervals. 

Infliximab must be given with methotrexate. Infliximab binds with high 

affinity to cell-bound TNFa and soluble TNFa monomers and trimers and 

forms stable complexes. Infliximab inhibits binding of TNFa to TNF-R1 and 

TNF-R2 and it may dissociate TNFa already bound to TNFR. Unlike 

etanercept, infliximab does not bind or inhibit lymphotoxin (Jobanputra et al

2001).

1.7.2.3 Adalimumab

Adalimumab (Abbott Laboratories) is a human-sequence antibody that binds 

specifically to TNFa and neutralizes the biological function of TNFa by 

blocking its interaction with cell-surface TNFa receptors. It also modulates 

biological responses that are induced or regulated by TNFa, including 

changes in the levels of adhesion molecules responsible for leukocyte 

migration. Adalimumab is licensed for the treatment of moderate to severe, 

active RA in adults when the response to DMARDs, including methotrexate, 

has been inadequate, and for the treatment of severe, active and 

progressive RA in adults not previously treated with methotrexate. In order 

to ensure maximum efficacy manufacturer’s guidelines stipulate the 

Adalimumab should where possible be given in conjunction with 

methotrexate. It is generally given as a subcutaneous injection of 40 mg on 

alternate weeks although dosing frequency may need to be increased to 

once weekly particularly when given as monotherapy.

1.7.2.4 Etanercept

Etanercept (Wyeth) is a combination protein consisting of the extra-cellular 

portion of two of the 75 kd-TNF receptors (TNF-R2) for TNF combined with 

a human Fc portion of human lgG1. Etanercept binds soluble TNFa and 

lymphotoxin by competing with TNF receptors (TNFR). It has a 50-fold 

higher affinity for TNF than monomeric TNFR, in vitro. It is distributed to 

bone, liver, spleen and kidney and probably penetrates synovial tissue. It is
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administered as a twice-weekly sub-cutaneous injection of 25 mg or once- 

weekly 50 mg dose in RA (Personal communication from Wyeth).

1.7.2.5 Efficacy of anti-TNFa Agents

Efficacy for all agents appears to be similar. There have now been many, 

high quality, randomised controlled trials examining these agents. The 

overall clinical response rate appears to be approximately 60%. If an 

adequate response is deemed to be an ACR 50 (50% reduction in number 

of swollen and tender joints) then approximately 20-50% of patients treated 

will achieve this (Maini et al 1999; Maini et al 1998; Moreland L et al 1997).

1.7.2.6 Side-Effects of anti-TNFa Agents

The major side effects associated with the use of anti-TNF agents appear to 

be an increased risk of infection including serious infections. This has been 

apparent from randomised control trial data. Dixon et al at the BSR 

biologies register noted an increased risk of infection particularly serious 

skin and soft tissue infections with an incidence rate ratio (IRR) of 4.28. 

There was no significant difference in risk between therapies. Analysis of 

the German biologies register demonstrated a relative risk of 2.2 for all 

serious infections with etanercept and 2.1 with infliximab (Listing et a /2005). 

Reactivation of latent tuberculosis also continues to be a concern 

particularly in those treated with Infliximab.

The potential increase in tumours which was postulated has not been 

apparent from the BSR biologies register. However, a recent meta-analysis 

looking at results from long-term clinical trials found an increased risk of 

tumours in particular lymphomas (Relative Risk 3.3 compared to control 

population) (Bongartz et al 2006). This meta-analysis has caused 

controversy due, in part, to the failure of the authors to include etanercept 

trials and, secondly, due to the lower than expected levels of malignancy 

seen in the control populations in these trials (Dixon and Silman 2006).
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1.7.3 Biologies Targeting Molecules Other Than TNFa

1.7.3.1 Anti-IL-1

Anakinra is a recombinant non-glycosylated human IL-1 receptor antagonist 

which inhibits the activity of IL-1. It is given by once daily subcutaneous 

injection in combination with methotrexate. Clinical trials show an 

improvement in ACR 20 response rates when compared to placebo and 

there is some evidence of a slowing in radiographic damage as measured 

by serial Sharp scores (Bresnihan et al 1998; Cohen et al 2002). However, 

in clinical practice results have been disappointing. NICE guidelines 

suggest that anakinra should not be used routinely as is likely to be 

significantly less effective than medications targeted against TNFo.

1.7.3.2 Rituximab

Rituximab is a chimeric monoclonal antibody against CD20 expressed on 

mature B lymphocytes. The role of B Lymphocytes in RA pathogenesis is 

unclear but putative mechanisms include an antigen-presenting function,

secretion of pro-inflammatory cytokines, production of rheumatoid factor,

and co-stimulation of T cells. Clinical trials in anti-TNF non responders have 

demonstrated significant improvements in symptoms and ACR20 and 50 

responses when compared to placebo. The dosing schedule consists of 2 

IV injections on day 0 and day 15 in combination with IV Methylprednisolone 

and continued methotrexate (Cohen et al 2006). It has recently been 

licensed for use in RA in patients who have previously failed on anti-TNF 

medications. Larger clinical trials in anti-TNF naive patients are currently 

underway.

1.7.3.3 Anti-Cvtotoxic T-lvmphocvte Antigen-4 (CTLA-4)

Abatacept -  a recombinant fusion protein comprising the extra cellular 

domain of human CTLA4 fused with a fragment of the Fc portion of human 

lgG1 has also been administered to patients with RA, with beneficial effects. 

Abatacept prevents the interactions between antigen presenting cells and T
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cells at sites of inflammation in particular within the synovial joint. In phase 

1 clinical trial 44% of the patients in the 2 mg/kg group and 53% in the 10 

mg/kg group achieved an ACR20 response at 12 weeks (the primary 

outcome of the study) as compared with 32% in the placebo arm. 

Response was seen across all of the components in the ACR core set, with 

the two highest dose treatment groups for each compound exhibiting a 

consistently higher percentage improvement than placebo. The 10 mg/kg 

dose of abatacept was generally more effective than 2 mg/kg (Moreland LW

2002). In recent phase II b and III trials, abatacept produced statistically 

significant improvements in patients who still had active disease in spite of 

adequate methotrexate therapy (Schiff etal 2007;Kremer et al 2005).

1.7.3.4 Anti-IL-6 Receptor Therapies

See section 1.5.5.

1.8 Combination Therapies

Combination therapy is commonly used in RA. Combined DMARDs, 

DMARD and biologies and combined biologies have been used.

1.8.1 Non-Biologies

Combination therapy with methotrexate, sulphasalazine and 

hydroxychloroquine in patients with long-standing RA resulted in significant 

improvement when compared to monotherapy (O’Dell et al 2002; Korpela et 

al 2004). A recent study in poor prognosis early RA in contrast failed to 

demonstrate any significant superiority of combination therapy over 

monotherapy (Proudman et al 2000). The sample sizes in all these cases 

have been small and Tugwell estimated that a sample size of 3000 would be 

needed in order to ensure that a study is adequately powered to detect 

small differences between monotherapy and combination treatments 

(Tugwell 1996).
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Usual practice in the UK is either a step-up approach where DMARDs are 

added if an adequate clinical response is not achieved or alternatively 

switching from one DMARD to another in order to improve outcomes. There 

are some advocates of a step-down approach whereby a combination of 

DMARD with or without steroid is introduced as soon as diagnosis is made 

with the aim of reducing treatment later. There is little good quality evidence 

for this approach.

1.8.2 Combination Therapy With Methotrexate + Biologies

1.8.2.1 Infliximab + Methotrexate

Infliximab is always given with methotrexate in RA. This is in order to 

prevent the development of human anti-chimeric antibodies (HACA) which 

result in reduction of clinical efficacy. Maini et al in 1998 demonstrated that 

although initially treatment without Methotrexate resulted in improvement 

this effect was lost by 8 weeks. If given in combination with methotrexate 

efficacy continues beyond the 8 week timepoint (Maini et al 1998).

Results from the BEST study demonstrated that combination therapy in 

early arthritis with either prednisolone or Infliximab resulted in earlier 

functional improvement and less radiographic damage at 1 year than 

sequential monotherapy or step-up combination therapy (Goekoop- 

Ruiterman etal 2005).

1.8.2.2 Etanercept + Methotrexate

Weinblatt et al published results in 1999 of a randomised controlled trial 

comparing etanercept + methotrexate with placebo -i-methotrexate. ACR20 

responses of 71% compared favourably with those of etanercept 

monotherapy where ACR20 of 59% in the 25mg dose group was achieved 

at 6 months (Weinblatt 1999; Moreland 1999).

Results from the TEMPO study comparing methotrexate monotherapy with 

etanercept monotherapy and combination of the two therapies at 2 years
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demonstrated significantly lower withdrawal rates in the combination group 

together with significantly greater improvements in ACR20, 50 and 70 

responses and a reduction in radiographic progression (van der Heijide et al 

1992).

1.8.2.3 Adalimumab + Methotrexate

The PREMIER Study (Breedveld et al 2006) was a 2 year multi-centre 

randomised control trial which demonstrated significantly better ACR 

responses and reduction in radiographic progression in patients treated with 

combination therapy when compared to adalimumab monotherapy or 

methotrexate monotherapy. Improved outcomes with combination therapy 

were also noted in a longitudinal observational study from Norway (Heiberg 

etal 2006).

1.8.3 Anakinra + Anti-TNFa

Combination therapy with etanercept and anakinra demonstrated no benefit 

over that of etanercept alone with no significant difference in ACR 50 

response at 6 months following 6 months of standard dose therapy. There 

was an increase in serious infections (3.7-7.4% for combination group cf 0% 

in etanercept group), injection site reactions and neutropaenia (Genovese et 

al 2004). The lack of significant improvement with combination therapy is 

probably due to the similar modes of action of IL-1 and TNFa.

1.9 Experimental Models of Rheumatoid Arthritis

Animal models for RA are now well established and provide a useful 

strategy to test in-vitro observations prior to the use of new therapies in RA 

patients. Animal models are used in order to dissect further the 

pathophysiology of disease and to test therapeutic strategies at specific 

defined stages of disease.

Evaluation of disease is possible under tightly controlled circumstances 

which allow multiple comparisons to be made at specific time-points in
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disease. Tissue sampling is easy and allows molecular, cellular and tissue 

variables to be studied. The use of models allows mechanisms and 

response to treatment to be studied without having to allow for individual 

variability between patients. No single model exists which can be used as a 

perfect model for RA. Each model has features which are similar to and 

different from RA. The models used most commonly are described in detail 

below.

1.9.1 Adjuvant Arthritis

This was the first animal model for arthritis and was noted to occur in rats 

after the injection of spleen extracts emulsified in Freund’s complete 

adjuvant (Stoerk et al 1954). This model has been described mainly in the 

rat but can be used in the mouse too (Knight et al 1992). This model was 

used extensively to test drugs such as aspirin, phenylbutazone and gold 

(Newbould 1963). The major problem with this model is the fact that 

disease is very short-lived. Symptoms occur around 10-12 days after 

disease induction but disappear as early as 20 days after induction 

(Billingham 1990). Secondly, drugs which display disease modifying effect 

in this model such as NSAIDs do not behave in this way in RA (Billingham 

1990).

1.9.2 Antigen Induced Arthritis

This model was first described as a model for RA following the production of 

synovitis in rabbits after intra-articular injection of fibrin (Dumonde and Glynn 

1962). It can also be induced in mice, guinea pigs and rats. Disease in 

rabbits in particular appears histologically similar to human RA (Pettipher

1988). The major limitation of this model is its lack of systemic features.

1.9.3 Bacterial Cell Wall Induced Arthritis

This model was first described in 1970 when chronic erosive polyarthritis 

was induced following intra-peritoneal injection of a suspension of cell wall 

extracts from group A streptococcus (Jones 1970). The arthritis is
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characterized by polyarticular flares which eventually progress to joint 

destruction (Cromartie et al 1977). A mono-articular variant has also been 

described (Esser et al 1995). The major limitation of the systemic disease is 

the unpredictable course of disease.

1.9.4 Collagen Induced Arthritis

Collagen induced arthritis was first described in 1977 and has been induced 

in many species including rats, mice and primates (Trentham et a /1977).

Murine collagen induced arthritis (rnCIA) has been chosen as a model for a 

variety of reasons. In particular, the histological features and systemic, 

predictable nature of the disease which make it possible to intervene at 

defined time-points (Sewell and Trentham 1993). The similarities between 

rnCIA and RA will be discussed in greater detail in table 1.1 and section 

5.1.1). In mice disease is more severe and the time-course more 

predictable than in rats providing a better model for human disease.
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Table 1.1 -  Comparison of various animal models of rheumatoid arthritis (adapted from Henderson et al)

Adjuvant
Arthritis

Collagen
Arthritis

Cell wall 
arthritis

Antigen
Induced
Arthritis

Rheumatoid
Arthritis

Species Rat Mice/rat/monkey Rats, mice Rabbit 
mouse rat 
Guinea pig

Humans

Genetic Linkage + + + + +

Sex Predilection M/F M/F F - F

Remitting/relapsing - - + - +

Peripheral joints + + + Local +

Axial joints + - - - +

Erosions/pannus + + + + +

Periosteal reaction + - - -

Antibody
dependence

- + ? + ?

T-cell dependence + + + + +

Antigen Mycobacterium Type II collagen Group A 
Streptococcal 
cell wall

Methylated
Bovine
serum
albumin

Unknown
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1.10 Murine Collagen Induced Arthritis

1.10.1 Similarities Between rnCIA and Rheumatoid Arthritis

rnCIA is an auto-immune polyarthritis. Immunisation with type II 

collagen results in a combined humoral and cellular response primarily 

within synovial joints. In common with RA, susceptibility is confined to 

specific MHC haplotypes and only certain strains of mice are affected 

(DBA-1 most successfully although other groups have demonstrated 

disease in C57BL/6 mice and other strains (Campbell 2000). 

Histopathologically, there is synovial proliferation with progression to 

pannus formation leading to marginal bone erosions and cartilage 

destruction (Stuart et al 1985). Radiographs show erosive changes. 

Progressive arthritis leads to joint deformity and dysfunction.

In common with RA, auto-antibodies are found (in mice to type II 

collagen). Levels of pro-inflammatory cytokines in particular TNFa are 

high throughout the course of arthritis (Piguet et al 1992; Takai et al

1989).

As with the clinical manifestations of RA , mice develop a poly-articular 

erosive disease with synovitis, periostitis, and infiltration of sub- 

synovial tissue with inflammatory cells pannus, exudates of 

inflammatory cells into the joint space, cartilage fragmentation and 

bony erosions (Stuart et al 1985).

1.10.2 Differences Between Murine Collagen Induced Arthritis and 

Rheumatoid Arthritis

In contrast to RA, disease only occurs following immunisation with type 

II collagen and does not occur spontaneously. No evidence of extra- 

articular disease, e.g. subcutaneous nodule formation and pulmonary 

fibrosis has been shown in mice. Unlike in RA, which is more common 

in females (M:F ratio 1:3), males have greater susceptibility to rnCIA 

and testosterone appears important in its induction (Holmdahl et al
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1986). RA distribution is different to that of rnCIA where arthritis 

predominantly affects ankle joints and small joint of the paws. 

Although knee involvement has been reported the incidence appears 

low (Caulfield et al 1982).

1.10.3 Therapy in CIA

rnCIA is well established as a model for testing therapeutics. It has 

been used to demonstrate efficacy of anti-TNFa antibodies, soluble 

TNF receptors, IL-1 receptor antagonists and many other therapies 

(Piguet et al 1992; Wooley et al 1993). This will be discussed in 

greater detail in chapter 5.

1.11 Summary

In RA it is recognised that early diagnosis and intervention improves 

disease management. The novel biologies such as the anti-tumour 

necrosis factor alpha (TNFa) agents can antagonise the effects of this 

particular cytokine and produce significant suppression of inflammation 

with associated clinical improvement. Although this approach has 

validated specific targeting of inflammatory cytokines as a successful 

clinical strategy, there remains concern over the long term safety and 

efficacy of these agents. If one sets the response criteria as achieving 

an ACR50, up to 50% of patients will fail to achieve this. Agents that 

inhibit IL-6 or its receptor have now entered phase II clinical trials. 

Specifically blocking anti-IL-6 receptor antibody (Tocilizumab) has 

shown favourable results in clinical trials however safety data has 

revealed evidence of increased incidence of infection and 

abnormalities in lipid profile. However, it remains to be determined 

whether the blockade of IL-6 bioactivity offers a true advantage over 

anti-TNFa therapies.

We propose that selective blockade of IL-6 trans-signalling may 

facilitate resynchronisation and resolution of the inflammatory response 

without significant disruption of normal host defence. This project will
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examine the relationship between TNFa and IL-6 trans-signalling in 

order to ascertain whether combination TNFa and trans-signalling 

blockade may offer true advantages in selected RA patient cohorts.

1.12 Aims of Thesis

The ultimate aim of this thesis is to provide novel proof of concept data 

to support our hypothesis that combined blockade of TNFa and IL-6 

trans-signalling may offer true advantages in selected RA patient 

cohorts.

The hypothesis that TNF and IL-6/slL-6R interact to modulate 

leucocyte recruitment in inflammatory arthritis was addressed through 

the following specific aims:

Aim 1 - Establish the regulatory effects of IL-6/slL-6R complex on 

TNFa bio-activity in-vitro.

Aim 2 - Determine the effect of combined TNFa and IL-6 trans­

signalling blockade in experimental arthritis.

Aim 3 - Examine the effect of anti-TNFa treatment on IL-6 trans­

signalling in RA patients.
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2 MATERIALS AND METHODS

2.1 Chemicals

All general laboratory chemicals and reagents were obtained from 

Fisher scientific UK, Loughborough, LF11 5KG.

Dulbecco’s modified Eagle’s media (DMEM), phosphate buffered saline 

(PBS), L-glutamine and other reagents for tissue culture and NUNC 

immuno-modules were obtained from Gibco, Invitrogen, Paisley, PA4 

9RF.

Foetal calf serum was obtained from Biosera, West Sussex.

Radioisotope 32P was obtained from Amersham Lifescience, 

Amersham, Buckinghamshire.

2.2 Antibodies and cytokines (see specific methods)

The following antibodies were used:

MAB 227 (anti IL-6 receptor) from R and D Sytems

F4/80 (rat anti mouse) from Serotec

Fox P3 (rabbit anti mouse) Santa Cruz

PE-conjugated anti-IL-6R (551850; BD Biosciences)

FITC-conjugated CXCR1 (neutrophils), CD14 (Monocytes), CD3 (T 

lymphocytes), CD4 (T lymphocytes) and CD19 (B lymphocytes) (BD 

Biosciences), FITC conjugated anti-ICAM-1(BD Pharmingen) and anti- 

VCAM-1. (Amersham Pharmacia Biotech)

The following cytokines were used

TNFa, IL-6, slL-6R, IL-1 (R and D systems)
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2.3 General Buffers

Distilled water for the preparation of buffers was obtained from a 

millipore reverse osmosis system followed by filtration through a 

charcoal resin and two ion exchange resin columns using a millipore 

Milli-Q system.

PBS used for FACS buffer was sterile and supplied diluted from Gibco, 

Invitrogen, Paisley. PBS used for wash buffers was supplied in tablet 

form by Oxoid, Basingstoke, UK. One tablet was dissolved per 100 ml 

of dH20.

FACS Buffer: 5 g of BSA was dissolved in 500 ml PBS to make a 1% 

solution. 0.4 g of sodium EDTA was added and 0.01% sodium azide. 

The solution was stored at 4°C.

Cell Lysis Buffer: 2.4 g Tris and 7.56 g of ammonium chloride (NH4 

Cl) was dissolved in 750 ml of distilled water (dH20). The pH of the 

solution was adjusted to 7.2 with HCI and then made up to 1 litre with 

dH20.

Wash Buffer: PBS contained 0.05% or 0.1% Tween-20.

Citrate Buffer (0.2M): 8.4 g citric acid, was dissolved in 200 ml dH20  

then pH adjusted to 3.95 by the addition of a potassium hydroxide 
solution.

Tetramethylbenzadine (TMB): 240 mg of TMB was dissolved at a 

concentration of (0.1 M) in 5 ml of dimethyl sulphoxide (DMSO) and 5 

ml of ethanol, and stored at 4°C.

ELISA Developing Buffer: was freshly prepared on each occasion by 

the addition of 10 pi Hydrogen Peroxide and 100 pi TMB to 10 ml of 

Citrate Buffer per 96 well plate.
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Tris Buffered Saline (X10): was prepared by dissolving 61 g of TRis 

and 90 g of NaCI into 1 litre of distilled H20. pH was adjusted to 7.6 

using concentrated HCI.

Na Citrate Buffer for antigen retrieval: was prepared by dissolving 

2.94 g of anhydrous tri-sodium citrate in 1 litre of distilled H20. pH was 

adjusted to 6.0 using concentrated HCI and then 0.5 mis Tween-20 

added before mixing.

2.4 Buffers for Western Blotting and EMSA

Buffer A for cytosolic protein extraction for 100mls contained 10 

mis of 100 mM HEPES pH 7.9, 10 mis of 15 mM MgCI2,10 mis 100 mM 

KCI, made up to 100 mis with distilled H20. Immediately before use 

protease inhibitors were added.

Dithiotrietol (DTT) to final concentration of 0.5 mM, PMSF to a final 

concentration of 0.5 mM, Aprotonin to a final concentration of 5 pg/ml, 

Pepstatin to a final concentration of 5 pg/ml, Leupeptin to a final 

concentration of 30 pg/ml.

Buffer C for Nuclear Extraction contained 20 mis 100 mM HEPES (4- 

(2-hydroxyethyl)-1-piperazineethanesulfonic acid) pH 7.9, 10 mis 15 

mM MgCI2, 10 mis 100 mM KCI, 10 ml 2mM EDTA, 25 mis glycerol, 

2.45 g NaCI, made up to 100 mis with distilled H20. Immediately 

before use protease inhibitors were added Dithiotrietol (DTT) to final 

concentration of 0.5 mM, PMSF to a final concentration of 0.5 mM, 

Aprotonin to a final concentration of 5 pg/ml, Pepstatin to a final 

concentration of 5 pg/ml, Leupeptin to a final concentration of 30 pg/ml.

Buffer D for Storage of Nuclear Extracts contained 8 mM Hepes pH 

7.9, 25 mM Kcl, 0.1 mM EDTA, 8% Glycerol, 0.5 mM DTT.
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2.4.1 Reagents for Running EMSA

5X TBE was prepared by dissolving 54 g Tris and 27.5 g Boric acid in 

980 ml of dH20.and 20ml of 0.5M EDTA (18.6 g in 100 ml of dH20) 

was added. The solution was checked to ensure pH8.

5X Reaction buffer stock mix was prepared by adding 50 pi 1M 

HEPES, 250 pi 1M KCI, to 500 pi 100% Glycerol and 90 pi dH20.

5X Binding buffer was prepared by mixing 89 pi 5X reaction buffer 

stock, 10 pi 10 mg/ml Acetylated BSA, 0.5 pi 1M DTT, 1.0 pi 0.1 M 

PMSF.

2.5 Histological Buffers & Stains

The following stock solutions were used routinely for all histological 

staining procedures:

Neutral Buffered Formalin Solution (NBFS) Tissue specimens were 

fixed in NBFS fixative comprised of 100 ml of 10x PBS, 100 ml of 37% 

w/v formaldehyde and 800 ml of dH20. The pH was adjusted to 7.0 by 

the addition of a potassium hydroxide solution.

Decalcification Buffer Specimens were decalcified in a 10% formic 

acid solution, comprised of 100 ml of formic acid (Fisher, 

Loughborough, Leicestershire, UK), 50 ml of 37% w/v formaldehyde 

and 850 ml of dH20.

Tris Buffered Saline (TBS) TBS was prepared by dissolving 61 g of 

TRIS (0.5M), 90 g of NaCI (1.5M) in 1 litre of dH20. The pH of TBS 

was adjusted to pH 7.6 by the addition of HCI.

May-Grunwald modified Wright -Giemsa stain May-Grunwald stain 

was prepared by adding 25 ml May-Grunwald stain (Sigma 

diagnostics) to 25 ml Phosphate buffer pH 6.8 (Merck) (1/2 dilution). 

Giemsa was prepared by adding 45 ml Phosphate buffer to 5 ml 

Giemsa (Sigma diagnostics)(1/10 dilution).
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Eosin (1%) 10 g of Eosin (Fisher, UK) dissolved in 1 litre of dH20.

Scott’s Tap Water 3.5g of NaHC03 and 20g of MgS04 dissolved in 1 

litre of dH20.

Fast Green (0.02%) 80mg of fast green (Sigma-Aldrich) dissolved in 

400 ml of dH20.

Safranin-0 (0.1%) 400mg of safranin-0 (Sigma-Aldrich) dissolved in 

400 ml of dH20.

1% acetic acid 4mls of glacial acetic acid (Fischer, UK) diluted in 400 

ml of dH20.

2.6 Cell Viability

2.6.1 Alamar Blue

Cell viability was assessed at the end of each fibroblast experiment 

using an alamar blue cell viability assay. Supernatant was removed 

from each well then 200 pi of alamar blue diluted 1:10 in serum free 

DMEM was added to each well. The samples were incubated at 37°C 

for 4 hours. 10OpI of alamar blue was also incubated without cells.

Supernatant was transferred to a 96 well ELISA plate and read on a) 1 

sec fluorescent and b) 2 wavelength settings (570 and 600 nm).

% Reduction was calculated.

reading ... cells... treated -  w e ll... w ith o u t... cells . _ _ 2---------------------------------------------------------- xlOO
reading ... con tro l... cells -  w e ll... w itho u t... cells

2.6.2 Trypan Blue

Cell viability for non-adherent cells was assessed using Trypan Blue 

exclusion. 50 pi of Trypan Blue solution was added to 50 pi cells. 

Total cell count and cell count of blue stained cells was performed. 

Non-viable cells stain blue as they are not capable of Trypan Blue
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exclusion and therefore take up the blue stain. Percentage of non- 

viable blue cells was calculated.

2.7 Patient Samples

Paired synovial fluid (SF) and serum samples were obtained from 

patients with RA (fulfilling the American College of Rheumatology 

[formerly the American Rheumatism Association] 1987 revised criteria) 

presenting with a joint effusion. Informed consent was obtained and 

ethical approval from Bro Taf and Bro Morgannwg research ethics 

committees was obtained (Ref numbers 02/4692, 02/4382 and 2005- 

035).

The samples were spun at 2000 rpm for 10 minutes at 4°C. 

Supernatant plasma and synovial fluid was removed and aliquots were 

stored at -70°C. Pellets obtained were resuspended and prepared for 

analysis by flow cytometry.

2.7.1 Collection of Samples from Patients Treated with Anti-TNF-g 

Therapies

In order to assess whether slL-6R levels have any bearing on response 

to anti-TNFa directed therapies, it was decided to measure slL-6R 

levels in an inception cohort starting on anti-TNFa therapies. Baseline 

levels prior to commencement of therapy and week 14 samples were 

taken to assess whether these slL-6R levels were altered in response 

to treatment. Disease activity scores (DAS) were used to assess the 

efficacy of treatment and to stratify patients into levels of response, i.e. 

good, reasonable or poor/treatment failures.

All patients starting on anti-TNFa therapies from May 2006 were invited 

to take part in this study. Any patients in agreement were consented. 

All patients commencing anti-TNFa therapies had a baseline serum 

sample taken prior to drug administration. Samples were spun
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immediately at 2000 RPM for 10 minutes at 4°C and the serum 

obtained was frozen at -80°C until needed.

All patients had a DAS score at baseline which in all cases was >6.3 in 

accordance with BSR guidelines for the administration of anti-TNFa 

therapy in RA.

Further blood samples were taken at week 14 when patients attended 

for their initial efficacy assessment. slL-6R ELISAS were performed as 

previously described.

2.8 Flow Cytometry

2.8.1 Red Cell Lysis

5 mis 7% dextran solution was added to 5 mis of blood mixed and left 

on ice for 40 mins then supernatant removed into a fresh tube. 

Supernatant obtained was spun at 1500 rpm for 10 minutes at 4°C. 

The pellet obtained was washed with cell Lysis buffer (5 mis) then left 

on ice for 5 minutes and finally spun again. Cells were then 

resuspended in FACS buffer and a cell count performed.

Cells were resuspended at a concentration of 1X107/ml in a 1/10 

dilution of mouse serum in FACS buffer in order to reduce non-specific 

staining.

2.8.2 Antibody Staining

100 pi of cells were placed in a round bottomed 96 well plate. 4 pi of 

appropriate antibody was added to each well. Cells were labelled with 

PE-conjugated anti-IL-6R (551850; BD Biosciences). To determine the 

distribution of IL-6R on leucocyte sub-populations, the cells were 

stained with FITC-conjugated specific cell surface markers and gated 

according to their expression of CXCR1 (neutrophils), CD14 

(monocytes), CD3 (T lymphocytes), CD4 (T lymphocytes) and CD19 (B

39



lymphocytes) (BDBiosciences). Appropriate isotype controls were 

used.

Samples were incubated for 30 minutes at 4°C in the dark. Samples 

were centrifuged to remove excess antibody (1300 G for 3 minutes at 

4°C). Supernatant was tapped off and cells washed 3 times in FACS 

buffer. Cells were resuspended in 500 pi and analysed using a Becton 

and Dickinson Cytometer. The instrument was set to analyse 

appropriate cell type and compensation set using single stained wells. 

Data was acquired from 10,000 events and analysed using Cellquest 

Pro software.

2.9 Cytospin Preparations

Cells were suspended at a concentration of 400 cells/mm3 in isotonic 

saline and spun at 400 rpm for 30 minutes using a Shandon Cytospin 

3. The cytospin preparations were then allowed to dry.

2.9.1 Morphological Analysis of Cytospin Preparations using Mav- 

Grunwald method

The slides were fixed in methanol for 15 minutes and then placed into 

May-Grunwald solution for 15 minutes, then into Giemsa solution for 15 

minutes. The slides were washed in phosphate buffer for 2 minutes 

then air dried. The dry slides were mounted in DPX and examined 

under microscope.

2.10 Enzyme Linked Immunosorbent Assay (ELISA)

In all cases 100 pi coating antibody solution was incubated in a 96 well 

plate overnight at 4°C (10 pi of capture antibody diluted in 10 mis PBS).

2.10.1 IL-6. CXCL8

Plates were washed with PBS containing 0.1% Tween. 300 pi of 0.5% 

BSA solution was added to each well and left at room temperature for 2
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hours. Following washing serial dilutions of antibody standard 

(sensitivity range: 1000 pg/ml-15.625 pg/ml) were added to the plate 

together with dilutions of samples to be tested. These were tested in 

duplicate or triplicate. 50 pi detection antibody diluent (4 pi of detection 

antibody diluted in 5.5 mis DMEM/F12) were added to each well and 

incubated for 2 hours at room temperature on a varishaker. Following 

washing 100 pi of Strepdavidin HRP diluent was added to each well 

(1/4000 for IL6 and 1/8000 for CXCL8) and incubated for 30 minutes. 

After further washing 100 pi of developing buffer was added to each 

well. The reaction was stopped with 50 pi of 10% sulphuric acid. The 

plate was read in a plate reader at OD 540 nm.

2.10.2 CCL5. CCL2, slL-6R

Plates were washed with PBS containing 0.05% Tween. 300 pi of 1% 

BSA solution was added to each well and left at room temperature for 1 

hour. Following washing serial dilutions of antibody standard 

(sensitivity range 2000 pg/ml - 31.5 pg/ml) were added to the plate 

together with dilutions of samples to be tested. These were tested in 

duplicate or triplicate and incubated for 2 hours at room temperature on 

a varishaker. The wells were then washed X3 in PBS/Tween and 100 

pi of biotinylated secondary antibody added to each well at a 

concentration of 100 ng/ml. The plate was washed and 10OpI of a 

1/200 dilution of Strepdavidin added to each well for 20 minutes. After 

further washing 100pl of developing buffer was added to each well. 

The reaction was stopped with 50 pi of 10% sulphuric acid. The plate 

was read in a plate reader at OD 540 nm.

2.11 Neutrophil Extraction

In separate experiments whole blood was obtained from healthy 

consenting volunteers and RA patients for neutrophil extraction.

Red cells (RBC) were removed with 6% dextran on ice for 60 minutes. 

Leucocyte enriched plasma obtained was overlaid on Ficoll-Hypaque
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(Sigma-Aldrich) and centrifuged at 400G for 30 minutes. 

Contaminating RBC were removed by hypotonic lysis as above.

The pellet obtained was resuspended in Hanks balanced salt solution 

(HBSS) and washed. Cell viability was assessed using trypan blue 

exclusion method. Samples which had fewer than 5% stained cells 

were counted as viable. Purity was confirmed using morphological 

analysis of cytospin preparations.

PMN were resuspended at a concentration of 2x106/ml and stimulated 

with increasing concentrations of TNFa (0-10 ng/ml) for 30 minutes at 

37QC in a humidified incubator containing 5% C02. The cells were then 

separated by centrifugation. Cell surface expression of IL-6R, L- 

Selectin (BD Biosciences) and CXCR1 was assessed by flow 

cytometry using method as described above.

2.12 Immuno-histochemistry on Frozen Rheumatoid Arthritis 

Sections

Synovial tissue samples were taken at joint replacement and 

immediately frozen in preparation for histological analysis. Tissue was 

frozen in isopentane on dry ice and stored at -20°C. Frozen sections 

were then cut using a cryostat and after drying, fixed in 100% cold 

methanol. 2-colour immuno-fluorescence on serial sections was 

carried out to identify location of cell nuclei in relation to vascular 

markers. CD31 was used as an endothelial marker. CD90 was used 

as an endothelial/ fibroblast marker. DAPI was used as a nuclear 

stain. Using this technique it was possible to differentiate vascular 

structures, fibroblasts and leucocytes.

A two step process was used for antibody staining; sections were 

incubated with 200 pi of a primary antibody (diluted in PBS/1 % BSA 

with azide) at 37°C for 2 hours. Monoclonal mouse anti-CD31 and 

mouse anti-CD90 were used at a dilution of 1/200 (BD Biosciences) 

and then incubated with 200 pi fluorescent conjugated secondary
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antibody (Alexa 594 Rhodamine red fluorescent labelled antibody at a 

dilution of 1/1000) or 4-6-Diamidino-2-phenylindole (DAPI) blue 

fluorescent which was used at 1/1000 as a nuclear counter-stain for 1 

hour in a humid chamber at 37°C. Slides were mounted using 

vectashield and checked using appropriate filters (Rhodamine used 

filter N2.1 and DAPI: filter A). Images were analysed using lab 309 

software.

2.12.1 Detection of IL-6R Expression

Serial sections were then stained for IL-6R using the same technique in 

order to localise the site of IL-6R expression within the joint and to 

identify whether IL-6R expression was confined to leucocytes. Mouse 

anti-IL-6R (MAB 227) (1 mg/ml) was used at dilutions from 1/10 to 

1/100 using the protocol described above.

2.13 Synovial Fibroblast Culture

Ethical approval was obtained from Bro-Taf Ethics Committee (Ref.02- 

4692). RA fibroblasts were obtained from synovial tissue of patients 

with RA and OA undergoing joint replacement surgery. Using a sterile 

scalpel and scissors the tissue was chopped into small pieces. 

Collagenase (750 iu/ml) (Sigma-Aldrich) was prepared and filtered 

through a 0.2 pm filter with a 20 ml syringe. 30 ml of Collagenase 

solution was added to the tissue pieces and placed in a shaking water 

bath at 37°C for 2 hours. After leaving to settle all liquid was pipetted 

into a fresh centrifuge tube and remaining tissue discarded. Cell 

suspension was topped up to 50 mis with Dulbecco’s modified Eagle’s 

medium (DMEM F12 (1:1)) containing 10% Fetal Calf serum (Life 

Technologies Invitrogen, Paisley). The cell suspension was spun at 

1000 RPM for 10 minutes and cells obtained suspended in media. The 

cell supernatant was respun as before and further cell pellets obtained. 

Cells obtained were placed into T25 flasks and cultured at 37°C with 

10% C02. Cells obtained were cultured in DMEM F12 (1:1) containing 

10% Fetal Calf serum, 1% L-Glutamine, 1% Insulin-transferrin-
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selenium, 10 iu/ml penicillin and streptomycin. The cells were fed twice 

a week by replacing media with 10 ml fresh media on each occasion. 

Once cells reached confluence they were removed from the flask using 

1/10 dilution of Trypsin-EDTA in sterile PBS. The cell suspensions 

were spun at 1000 RPM for 5 minutes and resuspended in culture 

media. Each T25 flask was placed into a T75 flask. Each T75 flask 

was subsequently split into 2 T75 flasks. The cells were taken to fourth 

passage then the fibroblasts were plated out at a standard 

concentration of 5x104/ml in appropriately sized plates for each specific 

experiment, grown to confluence then growth arrested for 48 hours in 

serum-free media.

2.14 Cytokine Production by Synovial Fibroblasts

The cells were taken to fourth passage then the SF were plated out at 

2.5x104/well in 48 well plates, grown to confluence then growth 

arrested for 48 hours in serum-free media.

The SF were stimulated with TNFa (0-1 ng/ml) and IL-6 with slL-6R (0- 

200 ng/ml) (R & D Systems). Cells were stimulated by each cytokine 

singly and in combination. A dose response and time-course was 

performed for each cytokine. Viability was assessed at the end-point of 

each experiment using Alamar blue method. Cell supernatants were 

stored at -70‘C until required. Cytokine production was assayed using 

ELISA methods detailed in section 2.10.2.

2.14.1 Inhibition of Cytokine Production in Rheumatoid Arthritis 

Fibroblasts

In further experiments cells were stimulated with 100 pg/ml TNFa and 

50 ng/ml IL-6 with slL-6R as above.
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2.14.1.1 TNF-a Inhibition

The action of TNFa was blocked using 0-0.1 |jg/ml etanercept (TNF 

receptor fusion protein) (Wyeth) in order to provide complete and 

incomplete blocking of TNFa.

2.14.1.2 IL-6 Inhibition

Action of IL-6/slL-6R complex was blocked using 50-500 ng/ml 

MAB227 (anti IL-6R antibody) (R&D Systems). The inhibitors were 

added at the same time as the stimulating cytokines.

The supernatants were removed after 20 hours and analysed using 

paired antibody ELISA for chemokine expression. CXCL8 (BD 

Pharmingen.), CCL5 and CCL2 (R&D Systems) were measured using 

commercially available kits as described in sections 2.10.1 and 2.10.2.

2.14.2 Adhesion Molecule Expression in Synovial Fibroblasts

SF at passage four were obtained as described in section 2.13. Cells 

were grown to confluence in 6 well plates in order to obtain sufficient 

numbers for flow cytometry. Cells were stimulated with10 pg/ml and 1 

ng/ml TNFa and 100 ng/ml IL-6 with slL-6R. Following removal of the 

supernatants cells were harvested washed and prepared for flow 

cytometry. Cells were resuspended at 1X106/ml. 100 pi of cell

suspension was labelled with 4 pi FITC conjugated anti-ICAM-1 (BD 

Pharmingen) and 4 pi anti-VCAM-1 (Amersham Pharmacia Biotech).

2.15 Electrophoretic Mobility Shift Assay (EMSA)

EMSA techniques were used in order to identify which cell signalling 

cascades were stimulated by particular cytokines and the effect of 

blocking cytokines on cell signalling was assessed.
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2.15.1 Nuclear Protein Extraction

Initial results obtained using a laboratory method optimised for NFkB 

expression produced disappointing results for STAT signalling 

therefore the extraction protocol was changed following discussion with 

colleagues.

2.15.2 Method 1

2.15.2.1 Materials

Buffer A, C and D (see section 2.4)

Dithiotrietol (DTT) 0.5 mM, PMSF 0.5 mM, Aprotonin 5 pg/ml, Pepstatin 

5 pg/ml, Leupeptin 30 pg/ml

2.15.2.2 Method

Cells were stimulated for 1 hour. Stimulation was terminated by the 

addition of 1 ml ice cold PBS. PBS was aspirated and replaced with a 

further 1 ml of ice cold PBS. Cells were removed by scraping with a 

rubber spatula and pelleted in the micro-centrifuge (3000 rpm for 5 

minutes). Pellet obtained was washed then resuspended in 200 pi 

buffer A with protease inhibitors added and left on ice for 5 minutes. 5 

pi IPEGAL was added and mixed with a pipette. Samples were spun at 

13000 RPM for 5 minutes. The supernatant obtained was the cytosolic 

extract which was stored at -70° C until required. The cell pellet was 

resuspended in 50 pi cold buffer C containing protease inhibitors and 

vortexed. The sample was mixed on the varishaker at 4° C for 1 hour 

with frequent vortexing. The sample obtained was then spun at 13000 

RPM for 5 minutes and supernatant kept as nuclear extract. 150 pi 

buffer D containing PMSF was added to the sample for storage at -70° 

C.
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2.15.3 Method 2 (Optimised for STAT)

Phosphatase inhibitors were added to Buffers A and C (2 pi sodium 

orthovanadate and 10 pi sodium fluoride were added to 1 ml of each 

buffer respectively).

Cytosolic extraction occurred in 20 pi Buffer A for 10 minutes. Nuclear 

extraction occurred in 20 pi buffer C for 20 minutes. The samples were 

stored without the addition of Buffer D. A flow diagram detailing the 

final method used is shown in figure 2.1.

2.15.4 Pierce BCA Protein Assay

Protein concentrations were measured before use in order that 

equivalent amounts of sample could be added to a gel.

BSA standard at 2 pg/ml was used. Doubling dilutions were performed 

in a 96 well plate. 10 pi of each dilution was transferred across to the 

first 2 columns to act as a standard. Samples to be tested were diluted 

1:2 ,1:4, 1:8,1:16, 1:32 and 1:64 in PBS.

200 pi of BCA solution (50 parts reagent A to 1 part reagent B) was 

added to each standard and sample. Samples were incubated at 37 °C 

and plate read at 30 minutes and 1 hour. High protein levels resulted 

in a colour change from green to purple. Samples were read in the 

plate reader at 540nm. A standard curve was plotted and protein 

concentration calculated.
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Figure 2.1 - Flow diagram showing final method for nuclear 

extractions

Fibroblasts stimulated for 30 minutes

Reaction stopped with 2 ml ice cold PBS

Sample spun at 1000 RPM for 5 minutes to pellet

▼

20 pi Buffer A + Phosphatase and Protease inhibitors added to pellet. 

Placed on ice for 10 minutes. 5pl IPEGAL added and vortexed

immediately

▼

Samples spun in microcentrifuge at 13000 RPM for 5 minutes 

Supernatant removed (Cytosolic Extract) and stored at -70°C

▼
20pl Buffer C plus protease and phosphatase inhibitors added to 

remaining sample for high salt extraction of nuclear protein. Samples

After 30 minutes sample centrifuged at 13000g for 5 minutes 

Supernatant removed is nuclear extract and stored at -70°C until

thawed for use.

kept on ice and vortexed regularly
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2.15.5 Radio-Labelling Double-Stranded Oligonucleotide Probes for

EMSA

Double-stranded oligonulceotide probes were generated by annealing 

complementary oligonucleotide primers with overhangs labelled with 

Klenow fragment of DNA polymerase. The method is described below.

2.15.5.1 Annealing Oligonucleotide Primers for Use as an EMSA 

Probe

Reverse complementary oligonucleotide primers containing the 

transcription factor binding site of interest or region of gene promoter to 

be studied were ordered containing short 5’ of 3 to 4 bases overhangs 

containing the complement base of the label deoxynucleotide (A for 

[32P]a-dTTP). The primers were resuspended at 1 pg/pl in double 

distilled water.

To anneal the primers, the following reaction mix was made in a 1.5 ml 

Eppendorf.

a) Sense primer (1 pig/pil) 10pl

b) Antisense primer (1pg/pl) 10pl

c) 1M NaCI 10pl

d) dH20 70|il

The annealing mix was heated to 95°C for 10 mins in a water bath then 

allowed to cool to room temperature overnight. The annealed 

oligonucleotide probe (1 OOng/pil) was then stored at -20 °C. Before use 

it was diluted 1:10 in dH20  to 10 ng/pl.
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2.15.5.2 Labelling of Oligonucleotide Probe

Several hours before use the lead-lined pot containing [32P]a-dTTP 

was removed from the freezer and allowed to thaw. Labelling reaction 

mixture was prepared (minus radionucleotide and Klenow fragment), 

by adding 2.5 pi oligonucleotide probe, 1 pi (2.5 mM) of unlabelled mix 

of dNTPs (dATP, dCTP, dGTP), 5 pi of 10x Klenow buffer, 5 pi of 1 M 

NaCI to 32.5 pi of double distilled water. Radionucleotide (3.0 pi of 

32Pa-dTTP) and 1.0 pi Klenow fragment (2 5 U/pl) were added to the 

labelling reaction in the hot lab workstation behind a perspex shield, 

using a pipette with a disposable barrel. The covered perspex box was 

used to hold the Eppendorf containing the labelling reaction. This 

made a total of 50 pi of labelling reaction.

The mixture was then incubated at room temperature for 10-20mins. 

The reaction stopped by adding 2.0 pi 0.5 M EDTA (pH 8) and STE

50.0 pi. Labelled probes were purified using probe quant micro­

columns (Amersham). The end was broken off the column and the cap 

loosened then placed in a 1.5 ml Eppendorf without a lid and spun at 

3000 rpm in a microfuge for 1 min before placing the column into a 

fresh 1.5 ml Eppendorf. 50 pi labelling reaction was then added and 

spun at 3000 rpm for 2 mins. The column was then discarded into 32P 

waste. The labelled probe was placed into a fresh labelled Eppendorf 

and stored at -20°C in a labelled yellow lead-lined container.

2.15.6 Electrophoretic Mobility Shift Assay (EMSA)

Polyacrylamide gels were prepared to the following recipe, poured 

between an outer and inner glass plate separated by plastic spacers 

and left to set for approximately 15 mins. A teflon comb was inserted 

into the gel in order to form sample wells. Wells were washed 

thoroughly with 0.5X TBE buffer and filled with fresh 0.5X TBE buffer.
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2.15.6.1 Recipe for Mini-Gel

IX 2X

dH20 29.5ml 44.5ml

Acrylamide stock (40%)6% or 8% 7.5ml/10ml 11.25/15ml

5x TBE 5ml 7.5ml

50% Glycerol 5ml 7.5ml

10% Ammonium Persulphate 0.5ml 0.75ml

TEMED 40(jl 60pl

Radio-labelled probe was removed from lead pot behind perspex 

shield, placed in the covered perspex box and allowed to thaw for 30 

mins.

Binding reaction was prepared by adding 10 pg of nuclear extract to a 

pre-mix of 5x binding buffer, 1 pi (1 mg/ml) of non-specific DNA 

competitor (polydldC) and double distilled water. The resulting mixture 

was vortexed and incubated at room temperature for 10 mins. For 

supershift assays 2-10 pi antibody against proteins of interest or 

irrelevant control antibody were also added at this stage.

The next steps were performed behind the perspex shield with the 

samples in a covered perspex box. 2pl 32P-labelled probe was added 

to samples, vortexed and incubated at room temperature for 20 mins.

Binding reaction was stopped by addition of 1/10 volume of 6X DNA 

loading buffer. Gels were loaded with gel loading tips then connected 

to the power supply and run at 180 V for 3 hrs& 30 minutes for NFkB 

and STAT probes. After disconnecting the power, the gel was stopped 

and transferred to 3M Whatman paper. The gel was covered with 

Saran Wrap and dried on the vacuum drier at 80°C for 2 hrs. The dried
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gel was then exposed to X-ray film (overnight to 72 hrs for NFkB and 

STAT) and developed by autoradiography.

2.16 Induction of Murine Collagen Induced Arthritis

Murine collagen induced arthritis (rnCIA) was used as a model for RA 

in order to investigate therapeutic strategies. The model is widely 

recognised as the gold standard for the testing of therapies in particular 

biological reagents. The predictable and reproducible clinical course 

provides an ideal opportunity to treat animals prior to disease onset 

and in early or well established disease.

Male DBA/1 mice aged 7-8 weeks old were purchased from Harlan. 

Mice were housed in cages of up to 10 animals at Biomedical Services, 

Heath Park. Mice were allowed free access to food and water and kept 

in light/dark cycles of twelve hours.

Arthritis was induced following a published protocol with ethical 

approval and procedure outlined in home office licence PPL 30/1820.

2.16.1.1 Preparation of Freund’s complete adjuvant (CFA)

CFA was prepared by grinding 100 mg heat-killed M. tuberculosis 

(Difco laboratories Detroit) in 20 ml Incomplete Freund’s Adjuvant 

(Sigma chemicals).

2.16.1.2 Preparation of Emulsion

a) Type II chicken collagen (MD Biosciences) at 2 mg/ml was 

dissolved overnight in 10 mmol glacial acetic acid at 4 ^  and 

stirred constantly with a magnetic stirrer (8 mg collagen + 4.0 ml 
acetic acid).

b) Equal volumes of dissolved chicken collagen solution and CFA 

were mixed in a glass syringe until a stiff emulsion was formed.
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Mice were anaesthetized with isofluorane/oxygen and immunized on 2 

occasions (day 0 and day 21). Mice were injected intradermally with 

an emulsion of type II collagen in complete Freund’s adjuvant (50 pi) 

into 2 sites in the flank. At Day 21, animals received a second booster 

immunisation with type II collagen via the intradermal route (50 pi 

emulsion in complete Freund’s adjuvant). Experiments were 

performed using 6 mice per condition. Clinical scores were performed 

daily together with paw diameter measurements using a spring-loaded 

micrometer. Animals were sacrificed at day 34 or earlier if severity 

limits were reached. Maximum severity limits allowed under terms of 

project licence 30/2361 were a score of 5 in any single paw or a 

combined score of 14 in all 4 paws.

2.17 Treatment of Arthritis

2.17.1 Arthritis Prophylaxis Experiment

Arthritis was initiated as above. Mice were injected with soluble- 

gp130:Fc fusion protein (a kind gift from Dr Stefan Rose-John, Kiel 

University), etanercept (10 mg/kg by l-P injection) and a control group 

with phosphate buffered saline (PBS) at day of first collagen injection 

(Day 0) and then twice-weekly until Day 21 (See section 5.2.1 for full 

experimental details). This experiment allowed examination of the 

effect of therapeutic strategies in prevention of disease onset.

Sgp130:Fc was produced by fusion of the extra-cellular portion of 

gp130 to the constant portion of a human lgG1 antibody protein as 

described by Jostock. It was demonstrated in this experiment that due 

to steric hinderance sgp130 had no access to membrane bound IL- 

6/slL-6R and therefore specifically targeted trans-signalling. It was 

also shown that sgp130 provided only weak inhibition of oncostatin M 

and LIF responses (Jostock et a /2001).

The dose of etanercept was chosen as a result of a literature review. It 

was hoped that the dose chosen might provide incomplete resolution of
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disease in order to mimic the human situation where arthritis severity 

may be reduced without remission occurring.

2.17.2 Treatment of Established Disease with sgp130:Fc or 

Combination Therapy with Etanercept and sgp130:Fc

In RA, therapy would not be administered except in established 

disease. Therefore, in order to provide a more appropriate 

representation of clinical practice, therapy was not initiated until clinical 

signs of arthritis were present.

Arthritis was initiated as described above. When 75% of mice 

displayed clinical signs of arthritis (generally day 27) therapy with 

etanercept, sgp130:Fc fusion protein or PBS was commenced. sgp130 

was added to etanercept after a few days in order to examine the 

effects of addition of sgp130 to therapy where TNFa had been partially 

suppressed (Experiment design is discussed in section 5.2.2).

Animals were scored then divided into 4 equal scoring groups:

• Group 1 - PBS

• Group 2 - etanercept 2.5 mg/kg/mouse on alternate days

• Group 3 - sgp130;Fc 2.5 mg/kg/mouse on alternate days

• Group 4 - Initially etanercept 2.5 mg/kg/mouse on alternate

days. After 3 days sgp130:Fc (2.5 mg/kg) was added to their
treatment

2.17.3 Effect of High Dose sgp130:Fc Monotherapy and in 

Combination with Etanercept in Established rnCIA

Following clinical scoring from previous experiments the protocol for 

therapeutic administration was altered. Animals were dosed daily and
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the dose of sgp130 was increased to 5 mg/kg per mouse (experiment 

design discussed in section 5.2.3).

• Group 1 - PBS

• Group 2 - etanercept 2.5 mg/kg/mouse daily

• Group 3 - sgpl 30;Fc 5 mg/kg/mouse daily

• Group 4 - Initially etanercept 2.5 mg/kg/mouse daily. After 3

days sgp130:Fc was added to their treatment

2.17.4 Early Intervention with Combination Therapy in rnCIA

Having shown that combination therapy affected the clinical course of 

disease without necessarily affecting histological endpoints it was 

decided to perform an experiment in which combination therapy was 

tried from the outset rather than after 3 days of etanercept therapy 

alone. Additionally, in order to maximise the possibility that therapies 

could affect histological outcome, therapies were commenced in each 

animal when it first developed signs of arthritis (see section 5.2.4).

• Group 1 - PBS

• Group 2 - etanercept 2.5 mg/kg/mouse daily

• Group 3 - sgpl 30;Fc 2.5 mg/kg/mouse daily

• Group 4 -  etanercept 2.5 mg/kg + sgp130:Fc 2.5 mg/kg/mouse 

daily

2.18 Assessment of Arthritis Severity

2.18.1 Clinical Gradation of Arthritis Severity.

The severity of arthritis was judged using an established in-house 

clinical scoring system (0-5 for any one paw) coupled with diameter 

measurements of paw volume using a digital micrometer.
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Paw Scores

0 Normal

1 Mild/moderate erythema and swelling

2 Severe erythema and swelling affecting entire paw or joint

3 Up to 3 joints affected by arthritis

4 Greater than 3 joints affected by arthritis

5 Deformed paw or joint with ankylosis

Severity limits were reached when a total score of 14 or 5 in any joint 

was reached.

2.18.2 Histological Assessment of Arthritis Severity

2.18.2.1 Sample Preparation

At experimental end point, mice were sacrificed and the limbs prepared 

for histological examination.

Joints were fixed in neutral buffered saline for 1 week then decalcified 

with 10% formic acid in neutral buffered formaldehyde (NBFS) at 4°C 

for 3-4 weeks. The decalcifying solution was changed twice a week.

2.18.2.2 Ammonium Oxalate Test For Decalcification

3 ml of decalcifying solution was removed from mouse joints and 

placed in a test tube. Fluid was neutralized by the addition of 

concentrated ammonia solution until just neutralised. 3 ml of saturated 

ammonium oxalate solution was added to the solution and left to stand 

for 10 minutes. Precipitate was assessed after 10 minutes. Once no 

precipitate was visible samples were ready for processing.
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2.18.2.3 Shandon Tissue Processor Cycles

Murine Knee Joints: 70% alcohol (30mins), 90% alcohol (1 hour), 

100% alcohol (1 hour), 100% alcohol (1 hour), 100% alcohol (1 hour), 

100% alcohol (1 hour), 100% Alcohol (1 hour), xylene (1 hour <g> 37‘C), 

xylene (1 hour @ 3 7 ^ ), xylene (1 hour @ 45°C), wax (1 hour @ 

60°C), wax (1 hour @ 60^0), wax (1 hour @ 60°C), wax (1 hour @ 

60 °C).

2.18.2.4 Tissue Embedding

Joints were removed from cassettes and embedded in paraffin wax at 

60°C. Cassette tops were replaced on sample. Samples were placed 

on cold plate for 2 hours then stored at 4 ^  until sectioning.

2.18.2.5 Sectioning of Joints Embedded in Paraffin Wax Blocks

Sections were trimmed and 7 pm serial sections were cut using a 

microtome. Superfrost plus slides were used. Slides were placed in a 

37^0 incubator overnight then stored at room temperature until used.

2.18.3 Analysis of Histological Changes to the Joint

2.18.3.1 Haematoxvlin and Eosin (H and E) Staining

H and E staining was used to assess leucocyte infiltration, synovial 

hyperplasia and joint and bone destruction. Slides were de- 

paraffinised with 3 changes of xylene (5 minutes each) then 

descending grades of alcohol (100%x2, 90%, 70% for 3 minutes each) 

and then washed in running tap water for five minutes.

Slides were then rinsed in distilled water followed by staining in Harris’s 

haematoxylin for 90 seconds. Slides were washed well in running 

water for 5 minutes then rinsed in distilled water. Slides were then 

blued in Scott’s tap water and examined under microscope (Excess 

haematoxylin was removed if necessary with 1% acid alcohol).
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Slides were washed well in running tap water, rinsed in distilled water 

then stained in eosin for 2-5 minutes, washed quickly in running tap 

water then dehydrated in ascending grades of alcohol (90%, 100% x3 

for 2-3 minutes each). Slides were then cleared in xylene x3, 5 

minutes per wash. Slides were kept in xylene until mounted in 

Ralmount and cover slip applied in charcoal filter extractor. Slides 

were then left in 45°C oven overnight then scored.

2.18.3.2 Histological Scoring

The sections were graded subjectively by 2 or 3 independent observers 

who were blinded to treatment allocation for each animal section. Each 

parameter was scored as below:

Hyperplasia (0-3)

Infiltrate (0-5)

Exudate (0-3)

Bone and Cartilage erosion (0-3)

Maximum possible score-15

The components were added to give a composite score or arthritis 

index (Al).

2.18.3.3 Safranin-O Fast Green Staining

In order to demonstrate cartilage depletion within the joint Safranin-0 

fast green staining was used. Within healthy cartilage proteoglycans 

(PG) and glycosaminoglycans (GAGS) stain red with safranin-O. In 

areas of cartilage damage depletion of PG and GAGS is demonstrated 

by a loss of bright red staining.

Slides were de-paraffinised with 3 changes of xylene (5 minutes each) 

then descending grades of alcohol (100 x2, 90%, 70% for 3 minutes 

each) and then washed in running tap water for 5 minutes. Xylene 5
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mins x3 followed by brief immersion in distilled water. Slides were then 

stained in haematoxylin for 2 minutes, placed in 0.05% acid alcohol for 

10 seconds then washed in running water for 5 minutes. Slides were 

then immersed briefly in distilled water before staining in 0.02% fast 

green for 3 minutes, rinsed in 1% acetic acid for 10 seconds then 

stained in Safranin-O for 5 minutes. Slides were washed in running 

water for 5 minutes, immersed briefly in distilled water then dehydrated 

in ascending grades of alcohol (90%, 100% x3 for 2-3 minutes each). 

Clearing in 3 xylene washes each of 5 minutes was then carried out.

For the second alcohol run, specific Safranin-0 alcohols were used in 

order to avoid contamination of stock alcohols. Slides were then 

mounted in Ralmount and left overnight at 37°C.

2.18.3.4 Tartrate Resistant Acid Phosphatase (TRAP) Stain

To identify areas of osteoclast activity, staining for Tartrate resistant 

acid phosphatase was carried out. This is an enzyme which is 

produced specifically by osteoclasts within the murine joint.

Samples were deparaffininised in xylene as above then hydrated in 

alcohol and water.

0.2M acetate buffer (in a 50 ml coplin jar sufficient for 5 slides) was 

prepared by adding 0.82 g of sodium acetate and 0.58 g of L(+) tartaric 

acid to 50 ml of deionized water. The solution was stirred using a stir 

plate until dissolved, then pH was adjusted to 5 with NaOH.

Slides were placed in 0.2 M Acetate buffer at room temperature for 20 

minutes. At the end of 20 minutes to the same buffer was added 0.5 

mg/ml naphthol AS-MX phosphate (25 mg) and 1.1 mg/ml fast red TR 

salt (55 mg). Slides were incubated in this solution for 3-4 hours at 

37^0 until osteoclasts stained bright red. The slides were then placed 

in de-ionised water at 37°C for 5 minutes. Slides were counter-stained 

in haematoxylin for 90 seconds and then placed in dH20  for 5 minutes, 

followed by Scott’s tap water for 30 seconds. Slides were rinsed in
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running tap water then mounted with Crystalmount and a cover slip 

applied.

2.18.4 Immuno-Histochemistrv

The distribution of specific leucocyte subsets within murine joints was 

assessed using immuno-histochemical techniques. Macrophages were 

identified using an anti-F4/80 antibody, regulatory T-cells using an anti 

Fox-P3 antibody. In addition, an anti-CD4 antibody was tried to 

attempt to identify CD-4 positive T cells. All immuno-histochemical 

procedures were performed upon sections mounted on superfrost plus 

slides.

2.18.4.1 F4/80 Staining

R & D Systems’ rat cell and tissue staining kit was used for all steps 

where indicated. Sections were de-paraffinised by immersing slides in 

3 changes of xylene (5 minutes), then washed in descending alcohols 

(100%, 100%, 90%, 70% x3 minute washes). Slides were rehydrated 

by washing in running tap water for 5 minutes, washed in distilled water 

for 5 minutes and then washed in TBS for 5 minutes. Antigen retrieval 

was carried out using Trypsin-EDTA 0.1% diluted 1 in 5 in TBS at 37°C 

for 30 minutes. Slides were washed in TBS (5 minutes x2) then 120 pi 

of peroxidase blocking reagent was added to the slides (5 minutes 

room temperature, R & D Systems). Slides were rinsed with TBS prior 

to gentle washing in TBS (5 minutes). Sections were incubated with 

120 pi of serum blocking reagent G (15 minutes, room temperature, R 

& D Systems Europe). Slides were rinsed with TBS, prior to gentle 

washing in TBS (15 minutes). Avidin and biotin blocking steps were 

carried out according to the manufacturer’s instructions. Following 

rinsing in TBS, the sections were incubated with rat anti-mouse F4/80 

antibody (diluted 1/50 in TBS) or appropriate isotype control (1/400) 

overnight at 4°C. Sections were washed in TBS (15 minutes X3) and 

the excess TBS removed prior to incubating sections with biotinylated 

secondary antibody (rabbit anti-rat) for 1 hour at room temperature (R
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& D Systems Europe). Sections were again washed in TBS (15 

minutes X3) before adding 120 pi of HSS-HRP (high sensitivity 

streptavidin conjugated to horseradish peroxidase) for 30 minutes at 

room temperature. Sections were then developed using 3 drops of 

freshly prepared diaminobenzidine substrate (DAB) according to 

manufacturer’s instructions and incubated for 20 minutes at room 

temperature. Sections were washed in distilled water, counterstained 

with haematoxylin and ‘blued’, in Scott’s tap water, rinsed in dH20  then 

dehydrated by immersion in ascending alcohol washes (90% 1 minute, 

100%, 100%, 100% 3 minutes) and xylene ( 2 x 5  minutes). Slides 

were mounted using Ralmounts.

2.18.4.2 Fox-P3 Staining

Fox-P3 was used as a regulatory T cell marker. R & D Systems’ rabbit 

cell and tissue staining kit was used for all steps where indicated. 

Sections were prepared for staining as above and were incubated with 

rabbit anti-Fox-P3 antibody (diluted 1/200 in TBS) or appropriate 

isotype control (1/400) overnight at 4 ^ .  Sections were washed in TBS 

(15 minutes X3) then the excess TBS removed prior to incubating 

sections with biotinylated secondary antibody (swine anti-rabbit) for 1

hour at room temperature (R & D Systems Europe). The strepdavidin

and DAB steps were then carried out as previously described before 

sections were counterstained, dehydrated and mounted.

2.18.4.3 CD4 Staining

CD4 staining was attempted using the previous protocol. No staining 

was obtained and therefore a further antigen retrieval step was 

attempted after the de-waxing step using sodium citrate buffer. Slides 

were immersed in 0.01 M citrate buffer heated to 90°C for 10 minutes, 

stood for 15 minutes and then allowed to cool. Unfortunately no 

staining was identified using this further antigen retrieval step.
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2.19 Statistical Analysis And Presentation Of Results

All results were expressed as the mean ±SEM. All statistical 

differences determined in this study used the paired means student’s t- 

test. p values of <0.05 were considered significant, with values of 

<0.01 considered highly significant.
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3 ARE INFILTRATING LEUCOCYTES THE

SOURCE OF SIL-6R IN RHEUMATOID 

ARTHRITIS?

3.1 Introduction

In a normal joint synovial fluid is a hypocellular, avascular, liquid 

connective tissue in free connection with synovium and cartilage 

(Freemont and Denton 1991). In normal disease-free states fluid is 

present in small amounts, is viscid and contains less than 100 

cells/mm3. The majority of cells in the fluid are synoviocytes or 

chondrocytes with low numbers of lymphocytes or macrophages seen 

(Freemont 1985). In diseased joints there is a large increase in the 

volume of synovial fluid produced and its composition and cellularity 

alter. During acute flares of RA, at which time the joint is most likely to 

be aspirated, the nucleated cell count rises to between 1500 and

50,000 cells/mm3. The majority of cells found within the joint effusion 

are polymorphs (55-90% of cells) together with a mixed lymphocyte 

population, macrophages, mast cells and synoviocytes (Davis and 

Freemont 1990).

Synovial leucocytes are known to be abundant during flares of RA. 

slL-6R levels have been shown to correlate with leucocyte recruitment 

in RA. It is not clear whether infiltrating leucocytes were the source of 

slL-6R in the RA joint. This chapter addresses whether leucocytes 

produce IL-6R on entry into the joint and whether TNFa may be partly 

responsible for this production.

It would appear that leucocytes within the synovial fluid of RA patients 

are different to those found at other sites of inflammation. Polymorphs 

containing phagocytosed immune complexes are clearly recognisable 

in the synovial fluid of RA patients. This specific population of 

polymorphonuclear cells are known as rhagocytes (Hollander et al
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1965). Within the synovial fluid neutrophils appear resistant to normal 

apoptotic processes which impede their subsequent clearance from the 

joint. The mechanisms whereby neutrophils evade apoptosis have 

been investigated. Neutrophils derived directly from synovial fluid have 

resistance to apoptosis by neutrophils and lymphocytes even in very 

early disease (duration less than 3 months). The authors postulate that 

this is likely to be due to high levels of anti-apoptotic cytokines found 

within the joint in early disease (Raza et al 2006). Neutrophils from 

healthy volunteers incubated in the presence of RA synovial fluid 

demonstrate resistance to apoptosis which is thought to be mediated 

by the presence of pro-inflammatory cytokines and adenosine within 

the synovial fluid (Ottonello e ta l2002).

It is still unclear whether the neutrophils within the joint are intrinsically 

different to circulating neutrophils and whether neutrophils obtained 

from healthy volunteers can be made to behave in the same way as 

those from RA patients. It appears that resistance to apoptosis may be 

partly due to the presence of synovial fluid and the unique cytokine and 

chemokine environment found within the inflamed joint. However, this 

does not exclude the possibility that neutrophils obtained from synovial 

fluid are structurally different to circulating cells. In addition, it is not yet 

clear whether this failure of normal apoptosis results in tissue damage 

although in support of this neutrophils can be seen to aggregate at 

sites of joint erosion.

Granulocyte and monocyte colony stimulating factor (GM-CSF) 

stimulation has been shown to rapidly increase oncostatin M 

production by circulating neutrophils from both RA patients and normal 

volunteers. However, GM-CSF could not up-regulate oncostatin-M 

production by SF neutrophils. The authors postulate that this is 

because SF neutrophils have already released and secreted 

oncostatin-M within the joint accounting for elevated intra-articular 

levels found in disease (Cross e ta l2004).
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Although the pathogenic processes underlying RA are not explained 

fully, the importance of leucocyte recruitment in RA pathogenesis is 

clear. Leucocyte recruitment within the joint is a highly regulated 

process controlled by chemokines (chemo-attractant cytokines) and 

adhesion molecule expression (Springer 1994). These processes are 

orchestrated by the specific cytokine environment in inflammatory 

disease which control the magnitude and phenotype of leucocytes 

recruited to the joint (Feldmann and Maini 1999; Taylor et al 1999; 

Taylor et al 2000; Buckley 2003a). Levels of IL-6 and soluble IL-6 

receptor (slL-6R) levels in RA have been shown to correlate with the 

degree of leucocyte infiltration into the joint (Desgeorges 1997; Polgar 

2000). The presence of IL-6 and slL-6R in synovial fluid would indicate 

the likelihood of IL-6 trans-signalling being involved in leucocyte 

recruitment and this would be attributable to the induction of specific 

chemokines (Nowell 2003).

The synovial infiltrate is predominantly composed of lymphocyte and 

macrophages (Sweeney and Firestein 2004). In acute synovitis with 

joint effusion the cell infiltrate within the effusion is mainly composed of 

neutrophils, with high percentage of macrophages but generally few 

lymphocytes (Davis et al 1988). Establishment of chronic synovitis in 

RA appears to be facilitated by influx of neutrophils, lymphocytes and 

macrophages together with disruption of normal apoptotic mechanisms 

leading to accumulation of leucocytes within the joint (Buckley 2003 b ) . 

Leucocyte infiltration within the synovium results in chronic 

inflammation and causes up-regulation of cytokine, chemokine and 

growth factor production (Firestein et al 1990; Koch eta l 1991; Kasama 

et al 2001). In addition neutrophils are partly responsible for bone and 

cartilage degradation within the joint by release of lysozomal enzymes 

and generation of oxygen free radicals (Edwards and Hallett 1997).

Nowell et al showed that native cells within the joint (specifically 

fibroblasts and chondrocytes) do not express IL-6R although these 

cells, particularly fibroblasts, produce the majority of IL-6 in the joint.
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Therefore, the actions of IL-6 on these cells must occur via the trans­

signalling mechanism (An alternative signalling mechanism which 

utilises SIL-6R is discussed in section 1.5.4). In order for trans­

signalling to occur a source of slL-6R is required for IL-6/slL-6R 

complex generation.

To date, the source of slL-6R in RA has not been identified 

conclusively. It has been shown that CRP, neutrophil activating CXC 

chemokines, complement components, leukotrienes (LTB4) and the 

lipid mediator PAF can stimulate slL-6R production by human 

neutrophils through shedding of cognate IL-6R from the cell surface 

(Jones 1999; Jones 2001; Hurst e ta l 2001, Marin et al 2001, Marin et 

al 2002; McLoughlin et al 2004). More recently neutrophils were 

shown to shed IL-6R in response to apoptosis. This is less likely to be 

relevant within the joint where, as has been discussed already, 

neutrophils are relatively protected from apoptosis (Chalaris et al 

2007). CRP levels are generally high in active RA and the level of 

CRP required for receptor shedding (50 pg/ml) correlates well with 

levels found in RA serum and synovial fluid (Rowe et al 1987). 

Although all the molecules that have been shown to cause IL-6R 

shedding may be implicated in RA pathogenesis; it is generally 

considered that TNFa plays a key role in leucocyte recruitment and 

activation in RA. The actions of TNFa on neutrophil IL-6R shedding 

have not been studied.
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The specific aims of this chapter therefore were to:

1. Characterise the nature of infiltrating leucocytes within the RA 

joint using phenotypic markers and by morphological analysis.

2. Quantify IL-6R expression on each specific leucocyte subtype 

within the joint and compare this to IL-6R expression in matched 

whole blood samples.

3. Determine local and systemic slL-6R levels in RA patients.

4. Assess the effects of TNFa on neutrophil IL-6R expression and 

consequent generation of slL-6R.
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3.2 Results

3.2.1 Optimisation of Protocols for Phenotypic Analysis of Leucocyte 

Populations

Initial experiments were undertaken to quantify IL-6R expression using 

circulating leucocytes obtained from healthy volunteers. Leucocyte 

specific phenotypic markers were used to identify leucocyte subsets. 

CD14 was used as a macrophage marker, CD3 and CD4 for T cell 

subsets, CD19 as a B cell marker and CXCR1 as a neutrophil marker. 

Although CXCR1 (CXCL8 receptor) is not expressed solely on 

neutrophils, the level of expression on neutrophils is much higher than 

on other leucocyte sub-groups and therefore can be used to identify 

this population of cells. LAP (leukocyte acid phosphatase) was also 

tried as a neutrophil marker but expression was low and levels were 

not well replicated between experiments. IL-6R expression was 

quantified on leucocytes using a PE conjugated antibody.

Following optimisation of single staining the distribution of IL-6R on 

leucocyte sub-populations in normal whole blood samples was 

determined. The cells were stained with FITC-conjugated specific cell 

surface markers and gated according to their expression of CXCR1 

(neutrophils), CD14 (monocytes), CD3 (T lymphocytes), CD4 (T 

lymphocytes) and CD19 (B lymphocytes). Leucocyte subtypes were 

confirmed by morphological analysis of cytospin preparations.

In order to assess the effects of sample storage upon expression of 

markers leucocytes were stained and left overnight in FACS buffer 

containing 10% Para formaldehyde prior to analysis by flow cytometry. 

When compared to fresh cells there were significant differences in cell 

morphology and IL-6R expression. Therefore fresh samples were used 

for all studies reported.
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3.2.2 Characteristics of Rheumatoid Arthritis Patient Cohort

All patients fulfilled ACR criteria for diagnosis of rheumatoid arthritis. 

The mean age of the patients was 58 years and, of them, 63% were 

female.

For those patients whose leucocyte phenotypes had been analysed; 

further clinical information was obtained from medical records. Mean 

disease duration was approximately 8 years but 2 patients had disease 

duration of less than 2 years. The mean age of this patient sub-set 

was 59.8 years. There were equal numbers of patients with 

monoarticular and polyarticular flares. The mean level of CRP was 25 

mg/l. The mean ESR was 44mm/hour although ESR measurements 

were not available for all cases. Patient medications included NSAID, 

oral prednisolone, sulphasalazine, methotrexate and 

hydroxychloroquine. Only 1 patient was treated with anti-TNFa 

therapy.

During the course of the research there was a large reduction in 

numbers of RA patients presenting with symptomatic joint effusions. 

Numbers of samples collected and stored reduced considerably during 

the course of the project (Table 3.1).

Table 3.1 - Synovial fluid samples collected

YEAR RA OA

2002 15 4

2003 27 1

2004 14 3

2005 7

2006 1
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3.2.3 Quantification of 1L-6R Expression on Local and Systemic 

Leucocytes Subtypes in Rheumatoid Arthritis Patients

Paired SF and blood samples were obtained from RA patients (n=12) 

with a symptomatic joint effusion. Samples were collected and 

analysed using the methods described previously in sections 2.7 and 

2.8. The percentage (%) of each specific leucocyte subtype 

expressing IL-6R was calculated using Cell Quest Pro software. 

Leucocyte sub-types were confirmed by morphological analysis of 

cytospin preparations (see Figure 3.1).

Neutrophils were the predominant cell type in these effusions 

comprising 62% of cells (range 48-75%). Macrophages accounted for 

7% of cells seen (range 2-11%). CD19 and CD 4 lymphocytes were 

less than 3% (range 0.5-5%).

There was significant reduction in cell surface IL-6R expression 

(mean+SEM %) on synovial fluid CD14+ macrophages and CXCR1 + 

neutrophils (18±4% and 21 ±3% respectively; p<0.05) when compared 

to cells obtained from peripheral blood (See Table 3.2 and Figure 3.2). 

There was no significant difference in IL-6R expression on CD3+, CD4+ 

or CD19+ lymphocytes between synovial fluid and blood (see Figure 

3.1). Representative flow cytometry plots are shown in Figures 3.3 and 

3.4.
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Figure 3.1 - Cytospins of paired blood and synovial fluid samples
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Cytospins of paired blood and synovial fluid leucocytes from an RA 
patient stained with a modified Wright Giemsa stain confirming cell 
types identified by flow cytometry

Table 3.2 - IL-6R expression on leucocyte subsets from 

rheumatoid arthritis patients

Phenotypic
Marker

IL-6R Expression 
Blood (%)

IL-6R Expression
SF (%)

MeantSEM MeantSEM P
value

CXCR1 88±11 69±13 £0.005

CD14 84±7 69±12 <0.005

CD3 24±20 21±12 NS

CD4 26±18 17±7 NS

CD19 2±2 1±0 NS
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blood and synovial fluid samples from rheumatoid arthritis 
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Figure 3.3

Representative flow cytometry pictures demonstrating IL-6R 
expression and specific phenotypic markers on leucocyte subsets in 
paired blood and synovial fluid samples. Total leucocyte population is 
gated according to cell morphology based on forward and side scatter. 
Gate 1(R1) (red) is neutrophil subset; Gate 2(R2)(green) is 
macrophage subset. PE labelling (FL-1) corresponds to IL-6R 
expression. FIT-C labelling (FL-2) corresponds to leucocyte specific 
markers within gated area. Data was acquired from 10,000 gated 
events.

A IL-6R expression on CXCR1 cells in blood

B IL-6R expression on CXCR1 cells in SF

C IL-6R expression on CD14 cells in blood

D IL-6R expression on CD14 cells in SF
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Figure 3.3 - Representative flow cytometry plots demonstrating IL- 
6R expression on neutrophils and macrophages in paired blood 
and synovial fluid samples
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Figure 3.4

Representative flow cytometry pictures demonstrating IL-6R 
expression and specific phenotypic markers on leucocyte subsets in 
paired blood and synovial fluid samples. Total leucocyte population is 
gated according to cell morphology based on forward and side scatter. 
Gate 3 (R3) (pink) is lymphocyte subset. PE labelling (FL-1) 
corresponds to IL-6R expression. FIT-C labelling (FL-2) corresponds 
to leucocyte specific markers within gated area. Data was acquired 
from 10,000 gated events.

A IL-6R expression on CD19 cells in blood

B IL-6R expression on CD19cells in SF

C IL-6R expression on CD4 cells in blood

D IL-6R expression on CD4 cells in SF
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Figure 3.4 - Representative flow cytometry plots demonstrating IL- 
6R expression on CD19 and CD4 lymphocytes in paired 
rheumatoid arthritis blood and synovial fluid samples
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3.2.4 Measurement of IL-6R Levels in Paired Serum and Synovial

Fluid Samples from Rheumatoid Arthritis Patients

After removal of leucocytes for flow cytometry, levels of slL-6R in 

paired serum and synovial fluid samples (n=18) were measured by 

ELISA. The aim of this investigation was to determine whether the 

reduction in IL-6R expression on leucocytes derived from synovial fluid 

led to an increase in slL-6R levels in SF and that this was attributable 

to shedding of receptor.

In RA patients there was no significant difference between serum and 

synovial fluid levels of SIL-6R (mean ± SEM) although mean serum 

level was higher) (13.20± 0.84 ng/ml and 11.1 ± 0.74 ng/ml). SF levels 

of slL-6R were higher than blood levels in 3 of the 18 patients studied 

(see Figure 3.5A). There were no differences in mean length of 

effusion, number of joints affected or proportion of each leucocyte 

subtype noted between these patients and the RA population as a 

whole. However, the numbers of patients studied was small. Of note, 

the effusion in a single patient with highest SF slL-6R levels had been 

present for 18 months. Interestingly, there was a significant correlation 

between slL-6R concentrations in serum and synovial fluid using 

Pearson’s test (p<0.005, r=0.63561) (Figure 3.5B). This shows that 

where serum levels are high; it is also the case for SF levels and may 

be a marker of disease activity or may be useful to identify those 

patients where trans-signalling is most important.

Having noted that mean levels of slL-6R were unexpectedly lower in 

SF than in serum we speculated that SIL-6R might be binding to 

fibrinous components of viscous synovial fluid preventing its detection 

by ELISA. A review of the literature suggested that pre-treatment of SF 

with hyaluronidase could cause release of slL-6R from matrix 

components like hyaluronic acid. Therefore, samples were assayed 

with and without the addition of hyaluronidase and levels of SIL-6R 

compared (n=4).
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In these samples there was no significant increase in serum or SF sIL- 

6R levels as a result of treatment with hyaluronidase. Blood levels 

increased from 532±42 pg/ml to 594±81 pg/ml. Synovial fluid levels 

without hyaluronidase were 293±53 pg/ml which increased to 347±49 

pg/ml following addition of hyaluronidase (see Figure 3.6).

3.2.4.1 Detection of PS slL-6R Isoform in Rheumatoid Arthritis 

Serum and Svnoviai Fluid

slL-6R can be generated by 2 separate mechanisms resulting in 2 

distinct isoforms. Proteolytic cleavage occurs when cognate IL-6R is 

cleaved from the cell surface (PC-slL-6R). Additionally, slL-6R may be 

produced by up-regulation of differential mRNA splicing (DS-slL-6R). 

Previous work by our group has demonstrated that the DS-slL-6R 

isoform is only found in RA fluids and not in osteoarthritis (OA). It 

appears that the release of the two different isoforms is independently 

regulated and it is not yet known whether the two isoforms have similar 

actions in the pathogenesis of RA. Levels of DS and total slL-6R were 

therefore measured in the SF and serum of 10 RA patients.

In both serum and SF samples levels of DS slL-6R were low 

(mean±SEM). In serum 288± 138 pg/ml was detected whilst in SF, the 

level was 284± 72 pg/ml. When hyaluronidase was added to SF 

samples prior to DS-slL-6R quantification we noted a significant 

(p=0.003) increase in levels to 487±70 pg/ml (see Figure 3.7). The 

addition of hyaluronidase had no significant effect on mean serum 
levels.
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Figure 3.5 - slL-6R levels in paired serum and synovial fluid 

samples from rheumatoid arthritis patients
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A Matched serum and synovial fluid levels of slL-6R from RA patients. 
Horizontal lines represent the mean value of 18 patients.

B Synovial fluid sll_-6R were correlated with levels of serum slL-6R 
(N=18, r=0.63561, t=2.604, P<0.05).
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Figure 3.6 - Detection of synovial fluid slL-6R following addition of 

hyaluronidase
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Graph showing effect of addition of hyaluronidase to synovial fluid 
samples on detection of SIL-6R (n=4). There is no significant 
difference in detection of slL-6R with the addition of hyaluronidase to 
samples.
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Figure 3.7 - Effect of hyaluronidase on detection of DS-slL-6R in 

paired serum and synovial fluid samples from Rheumatoid 

Arthritis patients (n=10)
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Graph demonstrating effect of addition of Hyaluronidase to paired 
samples. Black bars show mean value in 10 samples. Error bars 
show SEM. ** shows significant difference between SF levels with and 
without hyaluronidase (p=0.003).
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3.2.5 Effects of TNFa on Leucocyte Shedding

The loss of cognate IL-6R from macrophage and neutrophil cell surface 

within the synovial fluid (noted in section 3.2.3) was presumed to be 

due to proteolytic cleavage from the cell surface. In support of this 

notion, the inflammatory environment within the joint contains many 

molecules which are known to induce proteolytic cleavage including 

CRP and CC chemokines. However, the effects of TNFa on slL-6R 

generation have not been established.

We therefore assessed the effect of TNFa stimulation upon IL-6R 

shedding by neutrophils isolated from blood of healthy volunteers. In 

separate experiments cells were stimulated with IL-6 to test whether 

the effects seen with TNFa could be replicated with another pro- 

inflammatory cytokine and, specifically, whether IL-6 could induce 

production of its own receptor.

Neutrophils were extracted from whole blood and kept at 37 °C for 30 

minutes in a humidified atmosphere at constant C02 tension. Following 

stimulation, the cell surface expression of IL-6R was quantified. slL-6R 

was analysed in the supernatant harvested at endpoint to determine 

whether any loss of cell surface receptor was due to shedding rather 

than internalisation of receptor. (Methodology was described in section 

2 .11).

In normal volunteers, after 30 minutes in culture, 71% of neutrophils 

expressed IL-6R. Following stimulation with 1 ng/ml TNFa there was 

loss of cell surface receptor and only 46% of cells expressed receptor. 

There was a further loss of receptor (37% expression) as stimulation 

dose of TNFa was increased to 10ng/ml (Figures 3.8 and 3.9).

In RA patients only 57% of cells expressed IL-6R after 30 minutes in 

culture. Stimulation with TNFa (1 ng/ml) resulted in further significant 

shedding of IL-6R: 39% of cells expressed IL-6R. There was no further
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loss of cell surface receptor as a result of increase in TNFa stimulation 

dose.

IL-6R expression (mean± SEM) on RA neutrophils and normal 

neutrophils was comparable at baseline (57.60±19.95% and 70.86%± 

12.64) (see Figures 3.8 and 3.9). Cell viability assays indicated that 

greater than 95% of cells were viable following stimulation.

ELISA analysis of slL-6R levels in culture supernatants demonstrated 

that loss of cell surface receptor was likely to be due to shedding of 

cognate receptors from the cell surface as there was a dose dependent 

increase in supernatant levels of slL-6R with increasing doses of TNFa. 

Neutrophils extracted from RA patients produced significantly more sIL- 

6R than normal neutrophils after 30 minutes in culture at 3 7 ^  (213±63 

and 93±27 pg/ml respectively p<0.05: figure 3.10). 10 ng/ml TNFa 

significantly increased slL-6R generation in both RA and normal 

neutrophils (295±63 and 198±41 pg/ml respectively, p<0.05: Figure 

3.10). However, slL-6R shedding remained greater in RA samples 

than in normal samples.

Interestingly stimulation with IL-6 did not cause any significant increase 

in slL-6R generation in neutrophils from 3 normal volunteers (mean 

production 66.15 pg/ml). This suggests that shedding of slL-6R is 

specific to TNFa and not the result of stimulation by any inflammatory 

cytokine. IL-6 is unable to cause shedding of its own receptor.
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Figure 3.8 - Effect of TNFa on normal neutrophil cell surface IL-6R 
expression
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Representative flow cytometry scatter plots showing loss of surface- 
bound IL-6R expression on CXCR1+ PMN following stimulation with 
5ng/ml TNFa. Data was acquired from 10,000 gated events
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Figure 3.9 - Stimulation of neutrophils with TNFa results in loss of
cell surface IL-6R expression
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Effect of TNFa on IL-6R expression from RA-PMN from patients with 
well controlled disease (N=9) and N-PMN (N=8) following 30 minutes in 
culture. Graph demonstrates dose-dependent loss of cell surface IL- 
6R from CXCR1+ RA and normal PMN in response to TNFa quantified 
by flow cytometry. Data represents the mean (%) ± s.e.m. *p<0.05,
**p<0.01, *** p<0.001

normal
RA

85



Figure 3.10 - Effect of TNFa on slL-6R production by neutrophils
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Dose-dependent release of slL-6R from CXCR1+ RA (N=9) and normal 
PMN (N=7) in response to TNFa after 30 minutes. slL-6R levels were 
quantified by ELISA. There is a significant difference in basal PMN-slL- 
6R (Ong/ml TNFa) between RA patients and normal volunteers 
(*=P<0.05). Data represents the mean ± s.e.m.
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3.3 Discussion

In this cohort of RA patients the infiltrating cells within the synovial fluid 

were mainly neutrophils with lesser numbers of macrophages and 

small numbers only of lymphocytes. This concurs with previous 

published work where 55-90% of cells within RA joint effusions were 

found to be polymorphs (Davis and Freemont 1988).

Levels of slL-6R have been shown to be elevated in RA patients when 

compared to OA patients suggesting that trans-signalling may be 

specifically up-regulated in inflammatory arthritis (Nowell et al 2003). 

In previous work it was shown that levels of slL-6R correlate with the 

severity of joint destruction (Kotake et al 1996). In this study loss of 

cognate IL-6 receptor from the cell surface of infiltrating neutrophils and 

macrophages within the joint was demonstrated. This is likely to be 

due to shedding of receptor from the cell surface. This provides a 

potential source of slL-6R within the joint which would ultimately allow 

cells that do not express cognate IL-6 receptor to be made responsive 

to IL-6 via membrane-bound gp130.

Although we were unable to demonstrate a local increase in slL-6R 

levels in RA synovial fluid over matched serum samples; it is likely that 

slL-6R produced in this way would be used up quickly within the joint. 

The half-life of slL-6R within the joint is at present uncharacterised. 

However, IL-6 levels in both RA and systemic JIA have been shown to 

be several fold higher than slL-6R levels suggesting that the rate 

limiting step for trans-signalling is slL-6R generation (Peake et al 

2006). In JIA it has also been demonstrated that slL-6R levels are 

higher systemically than within the joint (Peake et a /2006).

We demonstrated in PMN that cleavage of IL-6R occurs rapidly (within 

30 minutes following stimulation). The majority of joint effusions 

aspirated in this study had been present for a week or more.
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In separate work by our group looking at acute inflammation in 

peritoneal infection, peak levels of slL-6R are seen at day 2 of infection 

with levels subsiding rapidly over the following 5 days. Soluble levels 

correlated with initial PMN infiltrate (Hurst et al 2001; Robson et al 

2001). Therefore, it is likely that the initial PMN infiltrate providing a 

source of slL-6R would have occurred some days previously.

slL-6R is also produced by hepatocytes within the liver allowing 

cognate IL-6 signalling to occur. This may have implications for 

systemic features of disease such as CRP generation and nodule 

formation since RA is a systemic disease and not solely confined to the 

joint.

Adding hyaluronidase to SF had no significant effect on detection of 

slL-6R but did increase detection of DSslL-6R. As levels of DS were 

low, the small amount released by addition of hyaluronidase was 

significant. Other authors found no effect on Interleukin 2 detection or 

detection of chemotactic inhibitors (Egeland 1987; Matzner 1983). It 

has also been suggested that addition of hyaluronidase to SF affects 

mononuclear cell recovery and function (Geborek 1987). Therefore, it 

was felt that, on balance, addition of hyaluronidase was unnecessary.

CRP, neutrophil activating CXC chemokines, complement components 

and the lipid mediator PAF can stimulate slL-6R production in human 

neutrophils by shedding of cognate IL-6R from the cell surface (Jones 

2001 Jones 1999, McLoughlin et al 2004). CRP levels are generally 

high in active RA and the level of CRP required for receptor shedding 

(50 pg/ml) correlates well with levels found in RA serum and synovial 

fluid (Saxne et al 1988). It has now been demonstrated that TNFa can 

induce a similar magnitude of IL-6R shedding to CRP. Synovial fluid 

levels of TNFa are also known to be elevated in active disease (Kumon 

et al 1997). This provides an additional potential mechanism for the 

shedding of IL-6R seen in synovial fluid as a consequence of the 

inflammatory environment within the joint. TACE (ADAM 17) and 

probably ADAM 10 have roles in generation of IL-6R (Jones et al

88



2005). These members of the ADAM family are types of 

metalloproteinase which, in addition to causing shedding of IL-6R, also 

allow release of TNFa and cause shedding of other inflammatory 

molecules including L-selectin from cell surfaces. Levels of MMP have 

been shown to correlate with the severity of joint destruction in RA 

(Yamanaka et al 2000; Green et al 2003). However, levels of ADAM 

17 have not been studied in this context.

TNFa is considered to be the driving cytokine in the acute inflammatory 

phase when neutrophil recruitment is marked. It is likely that influx of 

neutrophils in the presence of TNFa and other inflammatory mediators 

and cytokines leads to shedding of IL-6R from neutrophils.

IL-6 did not appear to cause an increase in slL-6R generation in normal 

volunteers. This suggests that the presence of IL-6 alone is not 

sufficient to generate the receptor needed for trans-signalling and that 

other inflammatory mediators such as TNFa or CRP are essential for 

trans-signalling to occur.

In this study, RA patients who provided blood for neutrophil extraction 

were patients attending the methotrexate monitoring clinic and were 

well controlled on methotrexate monotherapy. Patients treated with 

anti-TNFa therapies were excluded. It is possible that these patients 

would have a different neutrophil response to TNFa with either up or 

down-regulation of shedding. These patients could be studied as a 

separate group in the future.

In order to compare the effects of TNFa on IL-6R shedding between 

normal volunteers and RA patients circulating blood neutrophils were 

used. It was shown that neutrophils within the SF have already shed 

IL-6R and therefore may not have responded to stimulation in the same 

way. It would be interesting to replicate this experiment in RA patients 

with neutrophils extracted from SF.

The reduction in joint effusions obtained over the course of my 

research has made work of this sort harder to carry out. The impact of
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anti-TNF directed therapies has obviously reduced the numbers of 

poorly controlled patients presenting with multiple recurrent joint 

effusions. Additionally, the increasing use of high doses of 

methotrexate with rapid dose escalation has resulted in improvement in 

disease control. However, even newly diagnosed patients appear less 

likely to present with joint effusions. Possible reasons for this include 

earlier detection of disease with earlier referral to specialist services or 

alternatively a true reduction in severity of RA.

It has been suggested that the incidence of RA is falling (Silman 2002; 

Jacobsson 1994; Doran M 2002). This would result in fewer new 

referrals with RA.

Other groups suggest that RA is milder in the new millennium. This 

work was conducted by postal questionnaire of patients on the Oslo RA 

register. In its population cohort DMARD use increased from 36.5% in 

1994 to 51.8% in 2004. In addition, by 2004, 11.8% of patients were 

on TNF-blocking agents. The authors concluded that improvement in 

health status was most likely due to better and more aggressive RA 

treatment (Uhlig T 2008). Other groups suggest that the prevalence of 

extra-articular manifestations of RA; which tend to be associated with 

more severe disease do not appear to be reducing (Turesson 2003; 

Turesson 2004).

In order to identify conclusively whether RA is indeed becoming a less 

severe disease then severity of disease over time must be assessed. 

The most comprehensive study of this kind looked at patients referred 

to the early arthritis clinic in Nijmegen. Patients presenting from 1985 - 

2005 were divided into 4 sub-cohorts and severity of disease at 

presentation compared. In this study DAS-28 at baseline improved 

over time but patient perception of disease as measured by HAQ score 

did not. The authors concluded that RA is becoming milder over time. 

Unfortunately as this was a hospital-based study this may have been 

as a result of a change in referral patterns from the community over 

time with earlier referral from primary care (Welsing et al 2005).
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Therefore the question of whether RA is becoming less severe remains 

to be answered by a long term population-based inception cohort 

studies.

In summary, we identified that infiltrating leucocytes within the RA joint 

are predominantly neutrophils with lesser numbers of macrophages 

and lymphocytes. Neutrophils and macrophages within the RA joint 

have lower levels of IL-6R expression than neutrophils and 

macrophages obtained from matched blood samples in the same 

patients. We presume that the reduction in IL-6R expression is likely to 

be due to shedding of IL-6R. We did not demonstrate a significant 

increase in SF slL-6R as a result of this presumed shedding but did 

demonstrate a significant correlation between matched serum and SF 

slL-6R levels. Stimulation of neutrophils with TNFa results in loss of 

cell surface IL-6R expression and was accompanied by an increase in 

slL-6R levels in cell supernatants. slL-6R production was significantly 

higher in neutrophils extracted from RA patients when compared to 

normal healthy volunteers.
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4 EFFECT OF TNFA AND IL-6 TRANS­

SIGNALLING UPON CHEMOKINE 

PRODUCTION AND ADHESION MOLECULE 

EXPRESSION BY RHEUMATOID ARTHRITIS 

SYNOVIAL FIBROBLASTS

4.1 Introduction

Having identified leucocytes as a source of slL-6R within the RA joint 

and noted the effects of TNFa on slL-6R production; we wished to 

identify whether other TNFa and IL-6 trans-signalling interactions 

occurred within the joint. Resident cells within the joint play a clear role 

in leucocyte recruitment. We wished to identify how interactions 

between TNFa and IL-6 trans-signalling might modulate interactions 

between leucocytes and resident cells, namely fibroblasts within the 

joint.

Evidence is accumulating that tightly controlled interactions between 

fibroblasts and leucocytes are responsible for the propagation of 

inflammation. Leucocyte recruitment is orchestrated by cytokine 

effects on endothelial cells leading to chemokine production, up 

regulation of adhesion molecule expression and alteration of leucocyte 

phenotype.

Leucocyte recruitment is a multi-step process which involves initial 

attraction under the control of cytokines followed by rolling, activation, 

adhesion and finally emigration from the blood vessel into the area of 

inflammation (the joint in RA).

The initiation of inflammation in RA occurs following an unknown insult. 

This results in activation of cells within the synovial lining which then
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leads to up-regulation of the adaptive immune response in genetically 

susceptible individuals (Firestein and Zvaifler 1990). The major 

hallmark that distinguishes RA from acute arthritis is the transition from 

acute self-limiting inflammation which can be cleared by the host 

defences to a state of chronic inflammation with subsequent intense 

proliferation of the synovial lining and eventual damage to the joint.

Interactions between endothelial cells or fibroblasts with circulating 

leucocytes lead to further leucocyte recruitment. This process of 

leucocyte recruitment and subsequent synovial proliferation has been 

implicated in the transition to chronic inflammation. Up-regulation of 

interferon y (IFNy) production with its subsequent effects on 

macrophage activation is also involved in the switch from acute to 

chronic inflammation.

Examples of interactions that are well described include the effects of 

TNFa production by synovial macrophages. This results in fibroblast 

proliferation and an increase in production of other pro-inflammatory 

cytokines and chemokines leading to activation and recruitment of 

more macrophages which in turn results in further TNFa production. 

This therefore leads to an inflammatory cascade (Sweeney and 

Firestein 2004). High levels of TNFa and other pro-inflammatory 

cytokines cause up-regulation of IFN y receptors with further increase 

in macrophage activation (Wijngaarden et a /2004).

In addition to their specialised ultra structural properties and 

morphology, RA synovial fibroblasts demonstrate over-expression of 

pro-inflammatory genes (e.g. IL-6) and matrix proteins such as 

metalloproteinases (e.g. MMP-3). This allows localisation of immune 

cells within the joint (Buckley et al 2003a and b). Direct cell to cell 

contact between fibroblasts and T lymphocytes has been shown to 

result in up-regulation of chemokine and adhesion molecule 

expression. Direct contact between the cell types appears essential for 

this process as separation of the cell types whilst allowing free passage
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of soluble mediators prevents up-regulation occurring (Buckley 2003 a 

and b; Fox et al 1997; Bombara et al 1993).

Co-culture of RA fibroblasts and PMN resulted in induction of VEGF 

expression and proliferation of endothelial cells (Kasama et al 2001). 

This may cause neo-vascularisation of the pannus with progressive 

joint destruction.

Fibroblasts from RA joints, in addition to their role in cell recruitment via 

expression of adhesion molecules and chemokine synthesis, may also 

play a role in the retention of cells within the joint through effects on cell 

survival. T lymphocyte survival can be prolonged by co-culture with RA 

fibroblasts without the addition of extrinsic cytokine support. In contrast 

PMN survival is only marginally increased by co-culture with RA-SF. 

However, in the presence of pro-inflammatory cytokines (e.g. TNFa), 

neutrophil survival is significantly enhanced. The increase in cell 

survival appears to be due to impaired apoptosis (Filer et al 2006). It 

appears that improvement in T lymphocyte survival may be an intrinsic 

property of fibroblasts. In contrast, survival of PMN is only enhanced 

by the presence of pro-inflammatory cytokines as may be seen during 

an acute flare of arthritis when neutrophil recruitment is also most 

marked.

TNFa has a well characterised role in leucocyte fibroblast interactions. 

It is known to cause up-regulation of chemokine production and 

adhesion molecule expression in addition to having effects on 

neutrophil survival as described above (Akahoshi et al 1993; 

Rathanaswami et a /1993; Taylor et a /2000; Filer et al 2006).

The role of IL-6 in this process is less clear. As stated previously, 

structural cells within the joint lack cognate IL-6R and therefore, all IL-6 

signalling by these cells requires the presence of slL-6R. The most 

likely source of slL-6R in the RA joint appears to be shedding from 

infiltrating leucocytes possibly under the influence of TNFa as 

described in chapter 3.
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Evidence for interplay between TNFa and IL-6/slL-6R has been 

demonstrated recently with a clear synergistic effect of the two 

cytokines on VEGF production in RA fibroblasts. Using RA-SF cultured 

for 72 hours in the presence of IL-6/slL-6R and TNFa alone and in 

combination it was shown that whilst IL-6/slL-6R alone could induce 

production of VEGF that this production was significantly up-regulated 

by the addition of TNFa. Interestingly, TNFa on its own was unable to 

induce VEGF production (Nakahara et al 2003). An interaction 

between IL-1 and IL-6/slL-6R has also been reported. IL-1 and IL- 

6/slL-6R complex act synergistically to up-regulate proteinase 

production by chondrocytes (Rowan et al 2001; Flannery et al 2000). 

However, the effect of cytokine synergy on leucocyte- fibroblast 

interactions has not been assessed in these studies.

Since IL-6/slL-6R has been shown to affect both TNFa and IL-1 

induction of mediators we questioned whether TNFa and IL-6/slL-6R 

could elicit additive/synergistic effect on resident cells from the joint, 

specifically RA synovial fibroblasts. We were particularly interested in 

interactions that affected chemokine and adhesion molecule 

expression that could lead to modulation of leucocyte trafficking within 

the joint.
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The specific aims of this chapter were therefore:

1. To study the role of IL-6/slL-6R and TNFa alone and in

combination upon chemokine production by RA synovial

fibroblasts (RA-SF).

2. To compare chemokine production by RA-SF with chemokine

production in a non-inflammatory joint disease (i.e.

Osteoarthritis) using OA-SF.

3. To quantify RA-SF adhesion molecule expression in response to 

cytokine stimulation with TNFa and IL-6/slL-6R.

4. To assess in vitro whether combined inhibition of TNFa and IL-6 

has greater efficacy for the inhibition of chemokine production 

and adhesion molecule expression than mono-therapy.
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4.2 Results

4.2.1 Immuno-histochemistrv on Frozen Rheumatoid Arthritis 

Sections

We aimed to identify whether IL-6R could be directly visualised in 

frozen sections of synovium taken from RA patients in order to 

determine which cells within the joint expressed IL-6R.

Synovial tissue samples were taken at joint replacement and frozen 

immediately in preparation for histological analysis. Tissue was frozen 

in isopentane on dry ice and stored at -20 °C. Frozen sections were 

then cut using a cryostat and after drying, fixed in 100% cold methanol. 

A 2 step process was used for antibody staining; sections were 

incubated with a primary antibody at 37 °C for 2 hours and then 

incubated with fluorescent conjugated secondary antibody.

2-colour immuno-fluorescence on serial sections was carried out to 

identify the location of cell nuclei in relation to vascular markers. CD31 

was used as an endothelial marker. CD90 was used as an endothelial/ 

fibroblast marker. DAPI was used as a nuclear stain. Using this 

technique it was possible to differentiate vascular structures, fibroblasts 

and leucocytes (Figure 4.1 A and B).

Serial sections were then stained for IL-6R using the same technique 

to localise the site of IL-6R expression within the joint and to identify 

whether IL-6R expression was confined to leucocytes. IL-6R 

expression could not be visualised in frozen tissue specimens using 

MAB-227 (a monoclonal anti-human IL-6R antibody) using this 

technique. It was not clear whether the antibody was unsuitable for 

purpose or whether there was no IL-6R expression in frozen RA 

synovial tissue samples (Figure 4.1 C).

In order to test whether this antibody was able to stain IL-6R; whole 

blood leucocytes were concentrated on to glass slides using a
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cytospin. After drying, the slides were fixed in 100% cold methanol. 

Sections were then incubated with MAB227 (anti-IL-6R antibody) at 

37 °C for 2 hours and then incubated with fluorescent conjugated 

secondary antibody. Whole blood leucocytes had been shown to 

express IL-6R by flow cytometry using this particular antibody. Primary 

antibody (MAB227) was added at dilutions from 1/20 to 1/200 but no 

positive staining was visualised. It was concluded that either the 

antibody available was not suitable for this technique or that leucocytes 

lose IL-6R cell surface expression as a result of sample preparation for 

this process.

4.2.2 Chemokine Production by Rheumatoid Arthritis Synovial 

Fibroblasts

RA-SF were extracted and grown to confluence as described 

previously (section 2.13). The cells were growth arrested for 48 hours 

prior to stimulation with TNFa (0-1000 pg/ml), IL-1 (0-1000 pg/ml) and 

IL-6/slL-6R (0-200 ng/ml). IL-6 production was measured to identify 

whether in addition to generation of SIL-6R noted in Chapter 3 TNFa 

could also induce production of IL-6. CCL2, CXCL8 and CCL5 were 

measured in order to assess the effects of stimulation on macrophage, 

neutrophil and mixed leucocyte (including T cell) chemo-attractants.

Stimulation of RA-SF with TNF-a resulted in dose-dependent up- 

regulation of IL-6, CCL2, and CXCL8 production after 24 hours. At 24 

hours, TNFa 1000 pg/ml produced 4449.97±1692 pg/ml IL-6 (Figure 

4.2), 1772± 227 pg/ml CCL2 (Figure 4.3B), 434.5± 81 pg/ml CXCL8 

(Figure 4.4) and 57.91 ± 11 pg/ml CCL5 (Figure 4.6A).

When cells were stimulated with IL-1 in order to compare the effects of 

another pro-inflammatory cytokine CCL2 production was comparable to 

that induced by TNFa (Figure 4.3B). However CXCL8 production 

induced by IL-1 was significantly higher than that induced by TNFa (p< 

0.001) (Figure 4.4).
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Stimulation with IL-6/slL-6R resulted in dose dependent increase in 

CCL2 production. IL-6/slL-6R 100 ng/ml produced 370±35 pg/ml CCL2 

(Figure 4.3A). Stimulation of RA-SF with IL-6/slL-6R had no effect on 

CXCL8 (Figure 4.4) or CCL5 production which remained the same as 

in unstimulated cells.

In summary, TNFa stimulation resulted in induction of IL-6, CCL2, 

CXCL8 and CCL5 production. IL-1 stimulation resulted in up-regulation 

of CCL2 to levels similar to that produced by TNFa. IL-1 induced 

CXCL8 production was greater than that induced by TNFa. The effects 

of IL1 on IL-6 and CCL5 production were not assessed. IL-6/slL-6R 

stimulation resulted in up-regulation of CCL2 production but had no 

effect on CXCL8 or CCL5 production.

4.2.3 TNFa and IL-6 / slL-6R Causes Synergistic Increase in 

Chemokine Production by RA-SF

Combining TNFa (0.01-1 ng/ml) and IL-6/slL-6R (30-200 ng/ml) 

resulted in significant synergistic up-regulation of CCL2, CCL5 and 

CXCL8 (Figures 4.5-4.7). At doses of TNFa 1000 pg/ml + IL-6/slL-6R 

100 ng/ml, expected additive production of CCL2 was 2013 ±338 pg/m. 

Actual production was 3104 ±309 pg/ml (Figures 4.5A and B).

At doses of TNFa 1000 pg/ml + IL-6/slL-6R 100 ng/ml, expected 

additive production of CCL5 was 58± 11 pg/ml. Actual production was 

121 ± 14 pg/ml. Interestingly, at higher doses of IL-6/slL-6R, the 

synergistic up-regulation of CCL5 by TNFa was lost and in fact, IL- 

6/slL-6R induced a dose-dependent decrease in CCL5 production in 

concentrations above 50ng/ml (Figure 4.6A and B).

At doses of TNFa 1000 pg/ml + IL-6/slL-6R 100 ng/ml, expected 

additive production of CXCL8 was 434± 81 vs. actual production of 

591 ± 103 pg/ml). However, at doses greater than 100 ng/ml, there was 

no further synergistic increase in CXCL8 production (Figure 4.7A and 

B).
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Figure 4.1 - Rheumatoid arthritis synovial tissue sections
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RA synovial tissue sections obtained at joint replacement. Serial 
sections were stained for the presence of vascular structures, 
fibroblasts and IL-6R. Cell nuclei were visualised using blue counter 
stain DAPI. CD31, CD 90 and IL-6R were counterstained with Alexa 
594(Red). A demonstrates vascular structures within the synovium, B 
demonstrates fibroblasts within the synovium, C shows leucocyte 
infiltrate within the synovium but no staining for IL-6R is seen.
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Figure 4.2 - IL-6 production by TNFa stimulated fibroblasts
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IL-6 production by RA synovial fibroblasts was quantified by ELISA. 
Cells were stimulated with TNFa (0-1000 pg/ml) in serum-free media 
then supernatants removed at 24 hours. Values shown are mean± 
SEM (n=4 cell lines).
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Figure 4.3 - Dose dependent up-regulation of CCL2 production
following stimulation with IL-1, TNFa and IL-6/SIL-6R
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CCL2 production in RA-SF was quantified by ELISA. Cells were 
stimulated with A) IL-6/slL-6R, B) IL-1 and TNFa respectively. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Values shown are mean±SEM (n=4 cell lines).
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Figure 4.4 - Dose dependent up-regulation of CXCL8 production
following stimulation with IL-1 or TNFa but not IL-6/SIL-6R
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CXCL8 production in RA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R, IL-1 and TNFa respectively. Stimulations 
were carried out in serum free media and supernatants removed at 24 
hours. Stimulation with IL-1 or TNFa resulted in dose dependent up- 
regulation of CXCL8. Stimulation with IL-6/slL-6R had no effect on 
CXCL8 production. Values shown are mean±SEM (n=4 cell lines).
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Figure 4.5A - CCL2 production by RA-SF following stimulation 

with TNFa and IL6/SIL-6R
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CCL2 production in RA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Addition of IL-6/slL-6R to TNFa resulted in dose- 
dependent synergistic up-regulation of CCL2 production throughout the 
dose range. Values shown are mean±SEM (n=5 cell lines).
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Figure 4.5B - Synergistic effect of combined cytokine stimulation
on CCL2 production
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Synergistic effect of IL-6/slL-6R on TNFa-induced chemokines in RA- 
SF. Black bars represent expected additive value for chemokine 
production, white bars show actual up regulation. Statistical analysis 
was carried between actual and expected values. (* = P<0.05, ** = 
P<0.01)
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Figure 4.6A - Effects of combined TNFa and IL-6/slL-6R
stimulation on CCL5 production by RA-SF

200

150 -1

O) !
S  100 i 
3  i

0 200 400 600 800 1000

TNFa Stimulation (pg/ml)

— ♦  — TNF alone — □—  +IL-6/slL-6R 30 (ng/ml)

— A —  +IL-6/SII-6R 50 (ng/ml) X +IL-6/slL-6R 200 (ng/ml)

CCL5 production in RA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Addition of IL-6/slL-6R to TNFa resulted in dose- 
dependent synergistic up-regulation of CCL5 production at doses of 30 
and 50 ng/ml but inhibition of CCL5 production at 200 ng/ml. Values 
shown are mean±SEM (n=5 cell lines).
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Figure 4.6B - Synergistic effect of combined cytokine stimulation
on CCL5 production
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Synergistic effect of IL-6/slL-6R on TNFa-induced chemokines in RA- 
SF. Black bars represent expected additive value for chemokine 
production, white bars show actual up regulation. Statistical analysis 
was carried between actual and expected values. (* = P<0.05, ** = 
P<0.01)
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Figure 4.7A - Effects of combined TNFa and IL-6/SIL-6R
stimulation on CXCL8 production by RA-SF
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CXCL8 production in RA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Addition of IL-6/slL-6R to TNFa resulted in dose- 
dependent synergistic up-regulation of CXCL8 production at doses of 
30 and 50 ng/ml but no further synergy increase in CXCL8 production 
was seen at 200 ng/ml. Values shown are mean±SEM (n=5 cell lines).
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Figure 4.7B - Synergistic effect of combined cytokine stimulation
on CXCL8 production
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Effect of IL-6/slL-6R on TNFa-induced chemokines in RA-SF. Black 
bars represent expected additive value for chemokine production, white 
bars show actual up regulation. Statistical analysis was carried 
between actual and expected values. (* = P<0.05, ** = P<0.01). 
Although addition of IL-6/slL-6R appears to increase CXCL8 production 
this is only statistically significant at a single point.
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4.2.4 Investigating the Role of Cytokine Synergy in Osteoarthritis

Synovial fibroblasts were cultured as described in section 2.13 from 

synovial tissue obtained from patients with osteoarthritis undergoing 

joint replacement. These cells were used as representative fibroblasts 

from a non-inflammatory, non-immune mediated joint disease.

At 3rd passage OA-SF were stimulated with TNFg over a dose range 

(0-1000 pg/ml) and IL-6/slL-6R (0-200 ng/ml). After 24 hours 

stimulation, tissue culture supernatants were harvested and chemokine 

production quantified by ELISA (CCL2, CXCL8 and CCL5 were 

measured).

Stimulation with TNFa resulted in dose dependent up-regulation of 

CCL2, CCL5 and CXCL8 in OA fibroblasts. Maximum CCL2 

production was obtained following stimulation with TNFg 1000 

pg/ml+IL-6/slL-6R 200 ng/ml (5266±1266 pg/ml compared to RA 

4103±414 pg/ml; Figure 4.8). Maximum CCL5 production (141 ±48 

pg/ml compared to 156±20 pg/ml by RA cell lines) was obtained 

following stimulation with TNFg 1000 pg/ml+IL-6/slL-6R 30 ng/ml 

(Figure 4.9). Maximum CXCL8 production was stimulated by TNFg 

1000 pg/ml+IL-6/slL-6R 50 ng/ml (782±197 pg/ml compared to 

591±103pg/ml in RA cells; Figure 4.10). In these experiments there 

was no significant difference between mean amounts of chemokine 

produced by RA (n=5) and OA fibroblasts (n=4).

In addition there was no clear synergistic increase in chemokine 

production as a result of adding IL-6/slL-6R to TNFg. This may be 

partly explained by the large variability seen in chemokine production 

by OA fibroblasts. In some cell lines there was minimal chemokine 

production as a result of cytokine stimulation. However, in other cell 

lines (possibly those where there was a more inflammatory component 

to disease) the levels of chemokine produced approached and even 

exceeded those produced by RA cell lines.
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Figure 4.8 - Effects of combined TNFa and IL-6/slL-6R stimulation
on CCL2 production by OA-SF
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CCL2 production in OA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Values shown are mean±SEM (n=4 cell lines).
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Figure 4.9 - Effects of combined TNFa and IL-6/slL-6R stimulation
on CCL5 production by OA-SF
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CCL5 production in OA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Values shown are mean±SEM (n=4 cell lines).
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Figure 4.10 - Effects of combined TNFa and IL-6/slL-6R
stimulation on CXCL8 production by OA-SF
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CXCL8 production in OA-SF was quantified by ELISA. Cells were 
stimulated with IL-6/slL-6R and TNFa separately and in combination. 
Stimulations were carried out in serum free media and supernatants 
removed at 24 hours. Values shown are mean±SEM (n=4 cell lines).
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4.2.5 Inhibition of Cytokine Production in RA-SF Using Etanercept 

and MAB227 (anti-IL-6R antibody)

RA synovial fibroblasts were grown to confluence in 48 well plates as 

described in section 2.13. Cells were growth arrested for 48 hours 

prior to stimulation in serum free media. Initial experiments were 

carried out at 37 X) on a varishaker in order to ensure adequate mixing 

of all cytokines and inhibitors. Unfortunately the lack of humidity and 

constant CO2 led to death of cells and very low levels of chemokine 

production (Data not shown). Therefore, stimulation of cells was 

carried out in the incubator where a humidity and constant C02 

controlled atmosphere was present as previously described (section 

2.13). Cells were growth arrested and stimulating cytokines plus 

inhibitors mixed in an eppendorf for 30 minutes prior to addition of 

mixture to cells.

Initial dose finding experiments for anti-human IL-6R antibody 

(MAB227) were carried out using doses of 50 and 200 ng/ml, i.e. equal 

to and 4 times in excess of IL-6/slL-6R concentration used to stimulate 

the cells. These doses provided dose dependent inhibition of CCL2 

production and were therefore selected as appropriate for further study.

In order to provide an alternative method for neutralising IL-6 trans­

signalling, sgp130 (a natural antagonist to IL-6/slL-6R complex which 

acts by competitive inhibition of membrane bound gp130) was added to 

cells together with stimulating doses of IL-6/slL-6R. Unfortunately no 

inhibition of chemokine production was seen (Data not shown). 

However, when sgp130 was added to fibroblasts stimulated with IL- 

6/slL-6R STAT signalling was inhibited at 30 minutes but without any 

downstream effect on chemokine production (Figure 4.11). It is 

possible that despite initial reduction in STAT up-regulation that this is 

quickly overcome due to dynamic un-coupling of IL-6/slL-6R and 

sgp130 and that over the 24 hour time-course of this experiment there
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is sufficient stimulation from IL-6/slL-6R complex to up-regulate 

chemokine production.

Dose finding experiments using combination etanercept and anti IL-6R 

were carried out. Initial doses of etanercept chosen (0.5-1 ng/ml), i.e. 

up to 100x in excess of stimulating TNFa doses resulted in almost 

complete inhibition of chemokine production. Therefore, further 

experiments were carried out using etanercept (0.001-0.01 ng/ml), i.e. 

up to 10x in excess of stimulating TNFa dose.

Once the optimum doses had been chosen, further experiments were 

carried out in 8 separate cell lines. Cells were grown to confluence in 

48 well plates as previously described. Cells were then growth 

arrested for 48 hours prior to stimulation with TNFa (100 pg/ml), IL- 

6/slL-6R (50 ng/ml) ± etanercept (0.001 ng/ml) ± anti IL-6R (500 

ng/ml). Supernatants were removed after 20 hours and chemokine 

production quantified by ELISA. In these particular cell lines very little 

CCL5 production occurred at this time point so further analysis was not 

done on this chemokine.

Treatment of TNFa (100 pg/ml) and IL-6/slL-6R (50 ng/ml) stimulated 

RA-SF with etanercept (0.001 ng/ml) resulted in significant reduction in 

CCL2 production (3707±841 pg/ml to 796±146 pg/ml, Figure 4.12A 

P<0.001). Treatment with anti IL-6R (500 ng/ml) also resulted in a 

reduction of CCL2 but was not significant (2676±409 pg/ml; Figure 

4.12A p>0.05). Treatment with a combination of etanercept (0.001 

ng/ml) and anti IL-6R (500 ng/ml) resulted in further additive down- 

regulation of combined cytokine-induced CCL2 production (666±140 

pg/ml; Figure 4.12A (p<0.001).

In contrast, treatment of stimulated RA-SF with etanercept resulted in 

almost complete inhibition of CXCL8 production (743±160 pg/ml to 

14±25 pg/ml P=0.0003). Treatment with anti IL-6R had no effect on 

CXCL8 production (711 ±156 pg/ml). Combination of anti IL-6R with 

etanercept provided no further inhibition (Figure 4.12B).
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Figure 4.11 - Anti IL-6R and sgp130 down regulate STAT activation 
in IL-6/SIL-6R stimulated RA-SF

STAT activation

A B C D

Fibroblasts were grown as previously described. At passage 3, cells 
were grown to confluence in flasks. Once confluent, stimulations were 
performed in serum free media. Cells were stimulated for 30 minutes 
then harvested for nuclear extraction. Protein assays were performed 

and 10pg of protein added to each well. Experiments were performed 
in 4 cell lines and a single representative figure is shown. Binding 
reactions were performed using 4pg of nuclear protein and a32-dTTP- 

labelled oligonuceotide containing a STAT-binding consensus 
sequence (SIE-m67).

A = control un-stimulated cells 

B = IL-6/slL-6R stimulated cells 

C = IL-6/SIL-6R+ mAb 227 

D = IL-6/slL-6R+sgp130

116



Figure 4.12 - Effect of blockade of TNFa and IL-6R on chemokine

production in RA-SF
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Etanercept or anti IL-6R were used respectively to block effect of TNFa 
and IL-6R on chemokine production in RA-SF (n=8). At the time of 
combined cytokine stimulation, growth-arrested RA-SF were co-treated 
with either 0.01 ng/ml etanercept (TNF receptor fusion protein), 500 
ng/ml MAB227 (anti total IL-6R antibody) or a combination of both and 
chemokines quantified by ELISA after 20 hours. Data represents the 
mean ± s.e.m. A CCL2 production. B, CXCL8 production measured.

117



4.2.6 Time-Course for Chemokine Production in Rheumatoid

Arthritis Cell Lines

All chemokine levels were measured after 16-20 hour stimulations 

following on from previous work in the department which suggested 

that this was the optimal time point for chemokine measurement. 

However, at this time point CCL5 levels were very low in tissue culture 

supernatants making it difficult to assess the effects of cytokine 

inhibition on this particular chemokine. Consequently further time- 

course experiments were carried out using fewer doses to assess the 

optimal time-point for measurement of CXCL8, CCL5 and CCL2 

production by growth-arrested fibroblasts.

CXCL8 was detected as early as 8 hours after stimulation with TNFa. 

At this early time point there was no synergistic increase noted by the 

addition of IL-6/slL-6R to the cells. However, after 24 hours, additional 

CXCL8 production was noted in the wells that had been dual 

stimulated (Figure 4.13 A).

In contrast, CCL5 production was detected at very low levels until 48 

hours after stimulation when it markedly increased. In these 

experiments there was no evidence of any synergy between TNFa and 

IL-6/slL-6R in CCL5 production even at the 72 hour time-point where 

CCL5 production was maximal (Figure 4.13B).

Production of CCL2 increased from 16 hours to levels above basal 

production. There was clear synergistic up-regulation from 24 hours 

and levels continued to rise up to 72 hours when the experiment was 

concluded (Figure 4.14).
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Figure 4.13 -  Time-course of CXCL8 and CCL5 production by RA- 
SF
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Time-course of CXCL8 (A) and CCL5 (B) production by RA-SF 
quantified by ELISA. Cells were stimulated with TNFa and IL-6/slL-6R 
separately and in combination. Stimulations were carried out in serum 
free media and supernatants removed from separate wells at 4, 8, 16, 
24, 48 and 72 hours. Values shown are mean±SEM (n=5 cell lines).
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Figure 4.14 -  Time-course of CCL2 production by RA-SF
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Time-course of CCL2 production by RA-SF quantified by ELISA. Cells 
were stimulated with TNFa and IL-6/slL-6R separately and in 
combination. Stimulations were carried out in serum free media and 
supernatants removed from separate wells at 4, 8, 16, 24, 48 and 72 
hours. Values shown are mean±SEM (n=5 cell lines).
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4.2.7 Adhesion Molecule Expression bv Rheumatoid Arthritis

Fibroblasts

Fibroblasts were grown to confluence at passage 3 as previously 

described in section 2.13. Cells were then plated out into 6 well plates 

in order to obtain sufficient numbers for flow cytometry. Doses of TNFa 

chosen were the minimum and maximum used in chemokine 

stimulation experiments (10 and 1000 pg/ml). A single dose of IL- 

6/slL-6R was chosen (50 ng/ml) which was in the physiological range 

noted for RA patients.

Stimulation of RA-SF with TNFa for 24 hours resulted in a dose 

dependent increase in ICAM-1 and VCAM-1 expression on RA-SF. 

Treatment with IL-6/slL-6R (50 ng/ml) did not affect expression of 

either adhesion molecule. However, addition of IL-6/slL-6R to TNFa 

resulted in a significant increase in ICAM-1 expression (p<0.05) (Figure 

4.15 A and C) but VCAM-1 expression was unaffected (Figure 4.15 B 

and D). Etanercept completely inhibited the up-regulation of adhesion 

molecule expression induced by TNFa in combination with !L-6/slL-6R 

(4.15 E and F and 4.16).
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Figure 4.15

Effect of combined cytokine stimulation and etanercept inhibition on 
adhesion molecule expression on RA-SF (n=8). Representative flow 
cytometry plots are shown. Data was acquired from 5,000 gated 
events. Unstimulated control RA-SF expression is represented as the 
filled histogram plots. A.ICAM-1 production following stimulation with 
TNFa 10 pg/ml and IL-6/slL-6R 50 ng/ml. B VCAM-1 production 
following stimulation with TNFa 10 ng/ml and IL-6/slL-6R 50 ng/ml. C 
ICAM-1 production following stimulation with TNFa 1 ng/ml and IL- 
6/slL-6R 50 ng/ml. D VCAM-1 production following stimulation with 
TNFa 1 ng/ml and IL-6/slL-6R 50 ng/m. E ICAM-1 production following 
stimulation with TNFa 10 pg/ml and IL-6/slL-6R 50 ng/ml and addition 
of etanercept (0.01 pig/ml). F VCAM-1 production following stimulation 
with TNFa 10 pg/ml and IL-6/slL-6R 50 ng/ml and addition of 
etanercept (0.01 pg/ml).
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expression by RA-SF
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Figure 4.16 - Mean fluorescence intensity of ICAM-1 expression on 
RA-SF in response to stimulation with TNFa and IL-6/slL-6R
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Mean fluorescence intensity values of ICAM 1 on RA-SF in response to 
stimulation. Cells were stimulated overnight with TNFa (10 pg/ml) and 
IL-6/slL-6R (50 ng/ml) ± addition of etanercept (0.01 ng/ml). Cells were 
removed and ICAM-1 expression quantified by fluoroscopic analysis. 
Data represents the mean ± s.e.m. of 8 samples. (* p<0.05 **p<0.01).
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4.3 Discussion

TNFa is considered to be the driving cytokine in acute inflammation 

when neutrophil recruitment is marked (Kumon and Loose 1997). It is 

likely that influx of neutrophils to the joint in the presence of TNFa, 

other inflammatory cytokines and mediators leads to shedding of IL-6R 

from neutrophils (as described in chapter 3).

It is probable that this slL-6R then binds with IL-6 already within the 

joint leading to fibroblast activation and an increase in CCL2 and CCL5 

production with a subsequent increase in macrophage and T-cell 

recruitment respectively. These events may contribute to the 

persistence of inflammation and chronic synovitis.

It was not possible to demonstrate IL-6R within the RA frozen sections 

or methanol fixed cytospins. This may be explained by the rapid 

shedding of IL-6R from leucocytes (within 30 minutes) which was 

demonstrated in the previous chapter. Alternatively, it may be that the 

antibody used was not suitable for use in immuno-histochemistry. This 

antibody has previously been shown to work in ELISA or flow 

cytometry only. There are no published reports of IL-6R receptor 

staining in frozen tissue sections. As no specific leucocyte stain was 

used it is also conceivable, although unlikely, that there were no 

infiltrating leucocytes within these synovial biopsies.

Although CCL2 and CXCL8 production appear to be synergistically up- 

regulated in a dose dependent fashion by the combination of TNFa and 

IL-6/slL-6R, this was not the case for all chemokines. CCL5 production 

was inhibited when RA-SF were stimulated with TNFa in combination 

with high doses (200 ng/ml) of IL-6/slL-6R complex. This provides 

further evidence for the hypothesis that TNFa and IL-6/slL-6R complex 

have different roles in the initiation and maintenance of inflammation in 

RA. This observation may also be relevant to the partial response 

observed in RA patients following anti-TNFa therapy. If TNFa is only 

partially blocked, persisting low levels may interact with IL-6/slL-6R
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allowing an increase in chemokine production and further leucocyte 

recruitment leading to persistent synovitis.

Work published previously by our group showed down-regulation of 

CXCL8 (neutrophil chemo-attractant) together with synergistic up- 

regulation of CCL2 (macrophage stimulating chemokine) production by 

peritoneal mesothelial cells stimulated with combination of TNFa and 

IL-6/slL-6R. They suggested that the influx of neutrophils facilitated 

formation of IL-6/slL-6R complex leading to a switch in chemokine 

production from CXCL8 to CCL2 with subsequent macrophage infiltrate 

and resolution of acute infection (Hurst et a /2001).

Although we did not show inhibition of CXCL8 production the effect on 

CCL2 with its potential for macrophage recruitment was more marked 

suggesting that CCL2 was preferentially induced by the combination of 

TNFa and IL-6/slL-6R. It is clear that chronic inflammation is present in 

RA. It is possible that the normal process of chemokine switching used 

to resolve acute inflammation is disordered in RA leading to 

propagation of chronic inflammation. During RA flares neutrophils and 

CXCL8 levels remain high within the joint suggesting that resolution of 

acute flare does not happen rapidly (Troughton et al 1996; Endo et al 

1991). This is in contrast to CXCL8 levels in acute infection which 

return to normal within 2 days (Hurst et al 2001). In arthritis it is likely 

that CXCL8 serves not only as a neutrophil chemo-attractant but may 

have other separate roles. When CXCL8 was injected into normal 

rabbit knee joints rapid neutrophil recruitment occurred (by 4 hours). In 

addition, at 24 hours the synovium was observed to be thickened due 

to increase in synovial fibroblasts and macrophages (Endo et al 1991). 

It is probable that the neutrophil influx resulted in production of other 

cytokine and chemokines.

My time-course experiments showed that production of each 

chemokine is independently regulated. CXCL8 is produced early. This 

allows initial neutrophil infiltrate into the joint as described in other 

previous work (Szekanecz et al 1998). Production of CCL2 occurs
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later after a longer more sustained exposure to TNFa and IL-6/slL-6R 

(at approximately 24 hours in our experimental system). CCL5 

production occurs even later (at 72 hours in vitro). Since the majority 

of the experiments to measure chemokines were carried out after 24 

hours exposure to TNFa this would account for the low levels of CCL5 

seen. The early production of CXCL8 and the later increase in other 

chemokines corresponds with the initial neutrophil influx seen in 

synovial fluid with the subsequent development of macrophage and 

lymphocyte infiltrates within pannus in the context of chronic synovitis 

and inflammation (Sweeney and Firestein 2004).

OA synovial fibroblasts also produced CCL2, CXCL8 and CCL5 in a 

dose dependent manor following stimulation with TNFa (Figures 4.8 - 

10). There was no clear evidence of a synergistic effect on chemokine 

production as a result of addition of IL-6/slL-6R, however, there is a 

greater variability in chemokine production by OA cell lines when 

compared to RA cell lines. This may mean that a true synergistic effect 

would not be picked up due to the large variability in chemokine 

production. A small synergistic effect could be missed due to the 

inherent variability in the system. These experiments could be 

repeated in further cell lines in order to clarify this point.

OA-SF have previously been shown to produce CCL2 in response to 

TNFa stimulation. There appeared to be less variability in chemokine 

production in this report however cells did not appear to be stimulated 

in serum-free media and only synovial samples deemed to be 

inflammatory by histological assessment were included (Fiorito et al 
2004).

In RA cell lines treatment with etanercept resulted in significant 

reduction of CCL2 levels which were further reduced by the addition of 

anti IL-6R antibody. In contrast treatment with etanercept alone 

abolished all CXCL8 production again providing evidence that TNFa 

and IL-6/slL-6R complex have different roles in the pathogenesis of 
RA.
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Conflicting reports have occurred regarding the effect of IL-6/slL-6R on 

adhesion molecule expression. Our group has shown previously that 

human synovial fibroblasts do not express ICAM-1 or VCAM-1 in 

response to stimulation with IL-6/slL-6R complex (Nowell et al 2003). 

However, adhesion molecule expression has been reported to be IL- 

6/slL-6R responsive with up-regulation of ICAM-1 in umbilical vein 

endothelial cells. Other reports suggest up-regulation of ICAM-1 and 

VCAM-1 (Modur et al 1997; Romano et al 1997). In contrast to our 

work these experiments were performed in serum which may have 

contained endogenous cytokines including TNFa or IL-1. It is now 

evident from my work that combination of IL-6/slL-6R with TNFa results 

in greater up-regulation of ICAM-1 expression than TNFa alone. 

VCAM-1 was not further up-regulated by the addition of IL-6/slL-6R. 

This represents differential regulation of these adhesion molecules.

Although VCAM-1 is up-regulated in active RA; blockade of VCAM-1 in 

rnCIA did not result in disease improvement (Carter et al 2002). In 

contrast ICAM-1 deficient mice are resistant to rnCIA. Anti ICAM-1 

antibody therapy was associated with clinical improvement in phase I/ll 

trials in RA patients suggesting that ICAM-1 may be more important in 

the regulation of leucocyte trafficking in RA (Bullard et al 1996; 

Kavanaugh et al 1996).

In summary, we demonstrated that TNFa and IL-6 trans-signalling 

interact to modulate leucocyte recruitment via effects on chemokine 

production most marked on CCL2 (macrophage chemo-attractant). In 

addition we demonstrated that TNFa and IL-6 trans-signalling also up- 

regulate ICAM-1 expression on synovial fibroblasts potentially leading 

to significant effects on leucocyte recruitment in the RA joint. The 

differing actions of these TNFa and IL-6/slL-6R in leucocyte 

recruitment together with the evidence that combined blockade in-vitro 

is beneficial provides good evidence for an in-vivo study using 

combined cytokine blockade in an animal model of arthritis.
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5 THERAPEUTIC EFFICACY OF COMBINED 

SGP130 AND ETANERCEPT THERAPY IN 

MURINE COLLAGEN INDUCED ARTHRITIS

5.1 Introduction

We have demonstrated that TNFa and IL- 6  trans-signalling interact to 

modulate leucocyte recruitment via effects on chemokine production 

and adhesion molecule expression potentially leading to significant 

effects on leucocyte recruitment in the RA joint. The differing actions of 

these TNFa and IL-6 /slL-6 R in leucocyte recruitment, together with the 

evidence that combined blockade in-vitro is beneficial, provides good 

evidence for an in-vivo study using combined cytokine blockade in an 

animal model of arthritis.

5.1.1 Experimental Models of Arthritis

There are a number of published experimental models of RA reported 

in the literature. Each model has merits and weaknesses. A brief 

summary of the most popular methods is provided.

Antigen induced arthritis (AIA) is induced by 2 subcutaneous injections 

of methylated bovine serum albumin (mBSA) in complete Freund’s 

adjuvant 7 days apart. 14 days later arthritis is induced in a single joint 

by intra-articular injection of adjuvant (mBSA).. Although AIA is 

pathologically similar to RA, it is monoarticular and confined to the 

injected joint. This model is useful for assessing 

histological/pathological changes and can also be used for local 

administration of therapeutics. However, it is not a systemic disease 

and therefore does not provide optimal conditions for testing 

therapeutics which are given by parenteral means.

129



Pristane induced arthritis is polyarticular but primarily affects large 

joints, i.e. ankles and wrists. Histologically, arthritis exhibits synovitis, 

periostitis and erosions. However, the incidence of arthritis is low and 

the time course un-predictable. Even in the maximally susceptible 

population, only 50% of mice displayed signs of arthritis at 120 days 

following injection. Maximum incidence of 65% was reached at 200 

days (Vigar et al 2000). Because the timecourse is unpredictable and 

the course of disease very variable, it is difficult to identify a suitable 

time-point for administration of therapeutics. Any experiment using 

pristane induced arthritis to test therapeutics would require large 

numbers of animals and would also take several months.

Collagen induced arthritis was felt to be the most appropriate model for 

this project and the reasons for choosing it are discussed below. 

Collagen induced arthritis (CIA) is a good model for RA. It displays the 

majority of features of RA including synovitis, erosions and 

inflammatory infiltrate (described in section 1.10). The disease is 

polyarticular and systemic. It can be induced in rats or mice; however 

the induction schedule differs between species. In rats, arthritis is 

generally induced by a single intra-dermal collagen injection in 

Freund’s incomplete adjuvant. Disease is usually evident by 1 2  days 

after the intra-dermal injection but may occur at any time within a 3 

week window. In mice, disease is induced by 2 intra-dermal collagen 

injections in Freund’s complete adjuvant. The disease course is more 

predictable in mice and in our hands there is generally a 1 0 0 % 

incidence by day 27. This minimises the number of animals needed in 

order to achieve experimental endpoints. The disease is more severe 

in mice than rats providing a better model for human disease. rnCIA 

has also been well established as a model for testing therapeutics 

including anti-TNFa antibodies, soluble TNF receptors, soluble IL-15 

receptor a-chain therapy, soluble IL-1 receptors, IL-18 binding protein 

C and many other therapies (Wooley et al 1993 b; Ruchatz et al 1998; 

Smeets et al 2003).
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5.1.2 Anti-cvtokine Therapy in rnCIA

rnCIA has been used to demonstrate the efficacy of agents directed 

against TNFa and was essential in the development of biological 

therapies for RA. Williams et al in a prophylaxis experiment gave anti- 

TNF antibodies by intra-peritoneal (i.p.) injection once weekly for 4 

weeks starting the day before the first collagen injection. This resulted 

in significant reduction in paw swelling and improvement in severity of 

joint histology. Interestingly, no effect was seen on incidence of 

arthritis or clinical score. Anti-TNF antibodies were then used in 

established disease. Animals were injected twice weekly from the first 

signs of clinical disease which led to a significant reduction in clinical 

score and improvement in histology. They did not comment on effect 

on leucocyte infiltrate (Williams efa/1992).

Piguet et al used soluble TNF receptors and anti-TNF antibodies in a 

prophylactic experiment to prevent development of arthritis. Their 

induction regime differed from ours, as collagen in CFA was given on 1 

or 2  occasions 14 days apart. They described an arthritis which initially 

developed after 1 month and slowly increased for 2-3 months. 

Significant reduction in foot-pad thickness as a result of therapy was 

noted. No benefit was obtained from treatment in established disease 

(Piguet et al 1992).

Wooley et al used a recombinant soluble TNF receptor:Fc fusion 

protein by i.p injection in both preventative and therapeutic 

experiments. In the preventative protocol, arthritis severity and 

incidence were both reduced. In the therapeutic trial, the severity of 

arthritis was reduced. There was no histological assessment in this 

trial (Wooley et al 1993 a).

5.1.2.1 Targeting IL-6 as Therapy in rnCIA

IL- 6  can signal in 2 separate ways. During classical IL- 6  signalling, IL- 

6  is bound to cognate IL-6 R on the cell surface (circulating leucocytes
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and hepatocytes), signal transduction then occurs via gp130 signal 

transduction protein which is universally expressed (See sectionl .5.4).

Cells which do not express the cognate IL-6 R can be made responsive 

to IL- 6  via interaction/binding to slL-6 R in a process known as trans­

signalling. This occurs where IL- 6  binds to slL-6 R and then forms a 

hetero-dimer which then signals via cell surface bound sgp130.

This allows 2  separate therapeutic options:

a) Total blockade of both classical IL- 6  signalling and trans­

signalling via antibodies directed against IL- 6  or IL-6 R; or

b) Specifically blocking trans-signalling only using sgp130 which 

will bind to the IL-6 /slL-6 R complex preventing activation of 

membrane bound gp130.

These will be discussed in detail below.

5.1.2.2 Total Blockade of Both Classical IL-6 Signalling and 

Trans-signalling via Antibodies Directed Against IL-6 or 

IL-6R

Blockade of IL- 6  has been tried in clinical studies with varying degrees 

of success. Initial murine studies using knock-out mice showed that IL- 

6  was essential for the development of collagen and antigen-induced 

arthritis (Alonzi et al 1998; Boe et al 1999). There are no published 

reports of therapeutic blockade of IL- 6  in CIA. Antibodies directed 

against IL- 6  have been used in RA patients but despite initially 

promising results they have not reached clinical practice (Wendling et 

al 1993).

Results obtained in initial animal studies using antibodies directed 

against IL-6 R are comparable with those obtained in trials of anti-TNF 

therapies. In the first study using a rat anti-mouse IL-6 R, antibody was 

administered daily for 2  weeks. Incidence of arthritis was reduced by
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approximately 33% and severity of arthritis reduced. This effect was 

seen only when therapy was started on day 0 or 3 after collagen 

immunization and not in established disease. In a second experiment 

animals were treated with a single dose of anti mouse IL-6 R antibody 

over a dose range (0.5 - 8 mg) and at differing time points (Days 0-21).  

It was found that anti IL-6 R antibody suppressed arthritis severity in a 

dose-dependent manner but only when given prior to the onset of 

clinical disease (Yoshzaki et al 1998; Takagi et al 1998; Williams et al 

1992).

5.1.2.3 Blocking Trans-signalling Specifically Using sap 130

Targeting trans-signalling would prevent IL- 6  directed events within the 

RA joint; specifically those mediated by resident cells such as 

fibroblasts and chondrocytes but would allow cognate IL- 6  signalling to 

continue unaffected. It is likely, therefore, that this will allow IL- 6  

mediated activities such as CRP generation and production of fever to 

occur as normal. Targetting trans-signalling should also prevent the 

occurrence of abnormalities in LFT and cholesterol seen in the trials of 

Tocilizumab in RA patients discussed in detail in section 1.5.5.

sgp130 is an agent that could be used to target trans-signalling 

specifically as this molecule will only bind to IL-6 /slL-6 R which is 

already complexed. It cannot bind to either IL- 6  or slL-6 R which is not 

complexed. A sgp130:Fc fusion protein has been developed in order 

to improve the half-life and bio-availability of sgp130 within the 

circulation (Atreya et al 2000). This sgp130:Fc was investigated as a 

therapeutic in Crohn’s disease where IL- 6  is also considered a major 

driving cytokine. The authors do not state what improvement in half life 

was obtained by adding Fc fusion protein. Local experience has 

shown that when producing therapeutics aimed at neutralizing 

complement that addition of an Fc fusion protein extends half life from 

2 0  minutes to 33 hours (Harris et al 2 0 0 2 ).
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Results in an animal model of Crohn’s disease showed that targeting 

trans-signalling by sgp130:Fc resulted in reduction in clinical features 

of disease (weight loss) together with an improvement in histology. 

There was a trend towards further improvement with a combination of 

antibodies directed against IL-6 R and TNFa although this did not reach 

statistical significance (Atreya ef a/2000).

Use of sgp130:Fc in arthritis has been limited to antigen induced 

arthritis. Nowell et al demonstrated a significant improvement in 

histological scores of disease severity in mice treated with a single 

dose of sgp130:Fc by i.a. injection (5 ng) at the same time as arthritis 

induction. Improvements were seen in synovial hypertrophy, exudate 

and in cellular infiltrate. A reduction in CCL2 staining was 

demonstrated in sections from the knees treated with sgp130:Fc 

compared to the arthritic knees of untreated animals (Nowell et al 

2003).

IL- 6  trans-signalling has also been targeted using recombinant protein 

gp130-RAPS (gp-130 of the rheumatoid arthritis antigenic peptide- 

bearing soluble form; a 50 kd soluble gp130 found naturally in the 

synovial fluid and plasma of RA patients). This peptide was initially 

described by Tanaka et al who also described presence of neutralizing 

antibodies to it in RA (Tanaka e ta !2000).

Treatment of antigen induced arthritis with a single intra-articular 

injection of gp130-RAPS at time of arthritis induction resulted in 

significant improvement in histological disease severity including 

synovial infiltrate and cellular exudate (Richards et al 2006). Both 

these papers demonstrate the importance of trans-signalling in RA and 

animal models of RA.

5.1.3 Mechanism of Action of sgp130:Fc in Experimental Models

Nowell and Richards demonstrated a reduction in leucocyte infiltrate in 

antigen induced arthritis as a result of targeting IL- 6  trans-signalling.
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My own work has demonstrated that both CCL2 and CCL5 production 

are synergistically up-regulated by the combination of TNFa and IL- 

6 /slL-6 R complex and that this increase is abrogated by therapy with 

etanercept and anti IL-6 R antibody. Therefore, we surmised that the 

effect on leucocyte recruitment seen in AIA may be due to inhibition of 

chemokine production, i.e. CCL5 and CCL2 with subsequent effects on 

T cell and macrophage infiltration. The efficacy and mechanism of 

action of sgp130:Fc in rnCIA are at present unknown and will be 

assessed in this project.

5.1.4 Factors Driving Pathological Change in rnCIA

5.1.4.1 Macrophages in Pathogenesis of CIA

Andren et al, using an Fcgamma Rill deficient mouse which was 

resistant to the development of CIA, demonstrated that disease could 

be initiated by adoptive transfer of Fcgamma Rill positive peritoneal 

macrophages. It was concluded that Fcgamma Rlll-expressing 

macrophages, producing pro-inflammatory cytokine and T helper type 

1 differentiating factor, are the major effector cells in the induction of 

rnCIA (Andren et a /2006).

Ogata et al, using rat collagen induced arthritis, examined the 

distribution of CCL2 positive cells. It was noted that MCP-1 (CCL2 ) 

peaked within the joint 2 weeks after initial collagen injection. Although 

MCP-1 staining was not specific for macrophages injection of a 

neutralizing monoclonal antibody against rat MCP-1 significantly 

decreased the number of exudate macrophages with no significant 

effect on other cell types within the joints and reduced the ankle 

swelling by about 30 per cent compared with controls. They suggested 

that MCP-1 plays a critical role in this model in the recruitment of 

monocytes and in the development of arthritis (Ogata et al 1997).
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In a study investigating leucocyte recruitment in murine collagen 

induced arthritis it was noted that three distinct phases of leucocyte 

recruitment could be defined:

1 ) Early infiltration of T cells and appearance of class II expressing 

macrophages in the synovial lining layer;

2) Profound infiltration of granulocytes and oedema formation; and

3) Pannus formation containing activated macrophages, 

granulocytes, T cells and dendritic cells.

This suggested that macrophages must be important in the 

pathogenesis of rnCIA (Holmdahl et al 1991).

Van Lent et al used clodronate to deplete macrophages from synovial 

lining. Using a single dose of inta-articular liposomal clodronate, a 

significant reduction in inflammatory cell infiltrate in the injected knees 

was noted. In a further experiment a reduction in chondrocyte death in 

clodronate injected knees was also noted in rnCIA. Knee involvement 

is not universal in rnCIA and therefore mice were also given LPS at day 

28 following collagen injection. These results may not be truly 

representative of rnCIA because of the LPS injections (van Lent et al 

1996; van Lent et al 1998).

5.1.4.2 Effect of Macrophage Chemokine Blockade

Other groups have shown that blockade of CCL2 (using a CCL2 

antagonist at 2 mg/kg per day) in MRL-1pr mice prior to disease 

induction prevents arthritis but once disease is established then 

blockade of both CCL2 and Gro-a (Neutrophil chemottractant) was 

needed to inhibit arthritis (Gong et al 1997; Gong et al 2004). A CCR2  

receptor antagonist has recently been shown to reduce macrophage 

infiltrate in murine-hypersensitivity when an oral CCR2 antagonist (30- 

1 0 0  mg/kg) was given at the same time as i.p. thioglycate. This CCR2  

antagonist given orally at a dose of 1 0 0  mg/kg twice daily from day 9
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after adjuvant injection; was also shown to be effective at reducing 

severity of rat adjuvant arthritis both clinically and histologically 

(Brodmerkel et al 2005). However, despite stating that CCR2 inhibition 

is effective in collagen induced arthritis; this data has never been 

published.

In conclusion it appears that macrophage recruitment is important in 

the pathogenesis of rnCIA.

5.1.4.3 T Cells in the Pathogenesis of rnCIA

The importance of T cells in the pathogenesis of rnCIA is undisputed 

and rnCIA is generally considered to be a T cell driven disease. Using 

anti-CD4 antibodies, Williams et al demonstrated that depleting anti- 

CD4 antibodies were only effective in rnCIA when given around the 

time of first collagen injection. When given prophylactically around the 

second collagen injection, prior to development of arthritis, therapy was 

ineffective (Williams RO 1996). In contrast, when anti-CD4 antibodies 

were given in conjunction with anti-TNF, there was a greater 

improvement in cellular infiltrate and histological score than when 

either therapy was given alone (Marinova-Mutafchieva et al 2000). The 

failure of anti-CD4 therapy may in part be due to the effect on 

suppressor T cells, e.g. regulatory T cells as well as effect on 

pathogenic T cells. Therefore, the effects of therapy on regulatory T 

cells should be studied.

5.1.4.4 Effect of T Cell Chemokine Blockade

Blockade of CCL5 activity by a selective chemokine receptor 

antagonist (metRANTES) at a dose of 50 or 100 pg three times per 

week starting from week one post immunisation with type II collagen 

was shown in 1997 to reduce disease incidence and day of onset in a 

dose dependent manner. These animals also had significantly lower 

clinical scores than un-treated animals. MetRANTES was found to 

inhibit MIP-1a as well as RANTES (CCL5) (Plater-Zyberk et al 1997).
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Met-RANTES has also been shown to be effective at reducing 

incidence and severity of rat antigen-induced arthritis when given 

before onset of clinical disease. Macrophage infiltrate demonstrated by 

anti-CD6 8  antibody was also significantly reduced (Shahrara et al 

2005).

Barnes et al, using a RANTES specific antibody (at unspecified dose) 

with no chemokine cross-reactivity, demonstrated significant reduction 

in clinical score and histological scores, specifically leucocyte 

infiltration. Reduction in erosions as demonstrated by radiography was 

also seen (Barnes et al 1998).

5.1.4.5 Regulatory T Cells In rnCIA

Initiation of auto-immune disease requires that normal self-tolerance is 

lost. If reactive T cells are present in the peripheral circulation then 

initiation of auto-immune disease can occur. The major cell type which 

is usually responsible for the suppression of self-directed immune 

responses is known as a regulatory T cell (T-Reg). The cell surface 

markers of T-Regs are CD4+ and CD25+ and they may also be 

recognised by their expression of intra-cellular Fox-P3 protein (a fork 

head / winged-helix protein which is a transcriptional regulator crucial 

for murine T cell development and function).

Regulatory T cells were first discovered in animal models of auto­

immune disease in 1971 when a population of T cells which 

suppressed other T cells were discovered. Later, Sakaguchi et al 

demonstrated that transfer of CD4+ T cells which had CD25 depleted 

developed organ specific auto-immune disease. If CD4+/CD25+ cells 

were co-administered then auto-immune disease did not occur. 

Depletion of regulatory T cells appeared to exacerbate auto-immune 

diseases including rnCIA (Sakaguchi et al 1995). Absence of 

regulatory T cells results in faster, more aggressive development of 

arthritis in the K/BxN model (Nguyen et al 2007). Adoptive transfer of 

regulatory T cells has been shown to slow disease progression in
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rnCIA (Morgan at al 2005). More recently, reports have emerged that 

improvement in rnCIA is due to induction of regulatory T cells by 

specific therapeutics.

5.1.5 Transcription Factors in rnCIA

5.1.5.1 NF kappa B

NFkB proteins are ubiquitously expressed transcription factors which 

are known to be up-regulated by pro-inflammatory signals, e.g. 

cytokines such as TNFa or IL-ip or alternatively by antigen receptor 

binding. These transcription factors are involved in the regulation of 

expression of numerous genes involved in the inflammatory response. 

Many studies have examined the contribution of the NFkB signalling 

pathways to the pathogenic process seen in RA including inflammation, 

cartilage degradation, cell proliferation, angiogenesis and pannus 

formation (Roman-Blas et al 2006; Bondeson 1999; Feldmann et al 

2002).

NFkB activation has been shown to be critical in the initiation of rnCIA. 

Seetharamanan et al demonstrated that trans-genic mice expressing 

an NFkB inhibitor in their T cell lineage had lower incidence and less 

severe rnCIA than their non-transgenic littermates (Seetharaman et al 

1999).

Gerlag at el showed that treatment with an NFkB inhibitor (10 mg/kg 

per animal per day given by ip Injection from day of second intra- 

dermal collagen injection) resulted in significant reduction of disease 

severity in rnCIA as measured by clinical score. Using EMSA, they 

demonstrated that this reduction in disease severity was associated 

with down-regulation of NFkB activation within murine ankle joints 

(Gerlag eta l 2000).
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5.1.5.2 STAT Signalling

IL- 6  has been demonstrated to signal via the Janus kinase and signal 

transducer and activator of transcription pathway (Jak-STAT). This is 

also the signalling target pathway of many other pro-inflammatory 

cytokines including Interferon y; Interleukins 12, 4, 7 and 15 together 

with other Interleukin - 6  family members, i.e. Oncostatin-M and LIF. At 

present seven members of the STAT family have been identified 

(Walker et a /2006).

T cell activation in mice appears to require gp130 mediated STAT 3 

activation with no evidence of involvement of STAT1 (McLoughlin et al 

2005). Although IL- 6  knock-out mice (IL-6 7) have been shown to be 

resistant to the development of experimental arthritis; it is not yet clear 

whether this is due to impaired STAT activation (Nowell et a/2003).

5.1.5.3 STAT Inhibition in Murine Models of Arthritis

Shouda et al identified that STAT3 was activated in the synovial tissue 

of RA patients but not those with OA. Therefore, they examined the 

effects of targeting STAT3 signalling in rnCIA. They cloned a cytokine 

signal regulator SOCS3/CIS3 compound which inhibited JAK tyrosine 

kinase activity and had a negative regulatory role on STAT3 (CIS3). 

The effect of delivery of an adenovirus carrying CIS3 on rnCIA was 

examined. rnCIA was induced by immunization with bovine type II 

collagen in Freund’s complete adjuvant on 2 occasions, 21 days apart, 

together with intra-peritoneal LPS at day 28. Adenovirus was 

administered by peri-articular injection on day 28 after first collagen 

injection. CIS3 injection resulted in significant reduction in clinical 

score and histological joint destruction - in particular, bone erosion and 

inflammatory cell infiltrate.

In a subsequent experiment, adenoviral gene transfer of CIS3 was 

administered in established disease (Day 32). CIS3 strongly blocked 

progression of disease as assessed by clinical score, paw thickness
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and redness and was also stated to Improve histology (Shouda et al 

2001).

5.1.6 Summary

In summary, rnCIA was chosen as the most relevant model for our 

experiments. The efficacy of sgp130:Fc has been proven in mAIA by 

local injection however its efficacy in a systemic model, i.e. rnCIA is not 

yet known. The aim of this chapter was to identify the effects of 

targeting trans-signalling with sgp130 by intra-peritoneal injection and 

to gain some insight into its mechanism of action via effects on 

macrophages, T cells and cell signalling pathways.

Anti-TNF therapies have been shown to be effective in rnCIA. The use 

of anti-TNF therapies in clinical practice has, without doubt, greatly 

improved outcomes and quality of life for many patients with RA but 

there remains a cohort of patients for whom they are either 

inappropriate or ineffective. This has been addressed to some extent 

with the development of other biologies including Rituximab and 

Abatacept. There is a role for more biologic therapies and we hope to 

examine the efficacy of sgp130:Fc as a biologic for inflammatory 

arthritis.

Combination therapy is well recognised as a useful tool in RA 

management. In recent years, triple therapy with Methotrexate, 

Sulphasalazine and Hydroxychloroquine has been shown to be almost 

as effective as biological therapies in improvement of symptoms and 

signs of disease together with prevention of disease progression 

(O’Dell eta l 2 0 0 2 ).

Combination biological therapy has been used with agents directed 

against TNFa and IL-1. These cytokines have very similar modes of 

action. Unfortunately, as might be predicted from their biological 

actions, this resulted in an increase in side effects and specifically,
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serious infections without improvement in clinical efficacy (Genovese et 

al 2004).

By modelling patients with a sub-optimal response to anti-TNF therapy 

the effect of addition of sgp130:Fc was studied in order to identify 

whether there was added benefit from combination therapy. The 

differing effects of IL- 6  trans-signalling and TNFa in biological 

processes and disease pathology allowed us to speculate that blocking 

these 2  cytokine pathways could reduce disease activity and improve 

outcome without causing an increase in morbidity.
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The specific aims were:

1. To establish a dose of soluble gp130:Fc that would exert significant 

therapeutic benefit when administered prior to disease onset in 

rnCIA (Disease prophylaxis).

2 . To identify a dose of etanercept which resulted in 50% reduction in 

clinical score in rnCIA when compared to control animals after 7 

days of therapy (to model sub-optimal response to therapy).

3. To characterise the effects of targeting trans-signalling with soluble 

gp130:Fc in established rnCIA.

4. To assess the efficacy of combination therapy directed against 

TNFa (etanercept) and IL- 6  trans-signalling (sgp130:Fc) in 

established rnCIA.

5. To study the effects of etanercept and sgp130:FC as monotherapy 

and in combination upon relevant mechanisms of disease and to 

relate these findings to pathological outcome.
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5.2 Results

5 .2 .1  Effect of Blockade of IL- 6  Trans-signalling and Sub-optimal 

Dose of Etanercept on Disease Prophylaxis

Previous preliminary dose ranging experiments conducted in the 

laboratory demonstrated that 0.1 mg/kg sgp130:Fc had no effect upon 

the progression of rnCIA when administered by i.p. injection on 

alternate days. At 0.5 mg/kg, sgp130:Fc elicited a mild but insignificant 

improvement in clinical score over the 34 day time course of the 

experiment (Figure 5.1). As a consequence of this data we speculated 

that increasing the dose to 2.5 mg/kg might exert significant therapeutic 

benefit in rnCIA. Consequently, in our first experiment to determine 

whether sgp130:Fc could significantly improve disease outcome 

measures in rnCIA, a dose of 2.5 mg/kg was assessed.

Figure 5.1 - Graph showing dose response of clinical scores for 
mice treated with prophylactic doses of sgp130:Fc from time of 
arthritis induction (data courtesy of Dr P Richards)

12 n

0  *  I I I I----------- 1-------1---------------- 1----------- 1------------j----------- 1------------1----------- 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34

Days post 1st i.d. collagen injection

PBS —■—0.1 mg/kg - ± -  0.5 mg/kg
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Arthritis (rnCIA) was induced as described previously in section 2.16. 

Briefly, mice were injected intra-dermally with an emulsion of type II 

collagen in complete Freund’s adjuvant (100 pi) into 2 sites in the flank. 

At Day 21, animals received a second booster immunisation with type 

II collagen via the intradermal route (100 pi emulsion in complete 

Freund’s adjuvant). Animals received intra-peritoneal PBS (1 OOpI) or 

sgp130:Fc (2 .5 mg/kg) in equivalent volume of vehicle on alternate days 

from day 21 (n= 6  per treatment allocation). The disease time-course is 

shown in table 5.1.

Clinical scores were assessed daily together with paw diameter 

measurements using a spring-loaded micrometer. Animals were 

sacrificed at day 34 or earlier if severity limits were reached. Maximum 

severity limits allowed under terms of project licence 30/2361 were a 

score of 5 in any single paw or a combined score of 14 in all 4 paws. 

Typical appearance of murine paws affected by arthritis is shown in 

figure 5.2.

Table 5.1 Arthritis incidence in PBS controls and sgp130:Fc 
therapy animals over disease time course (disease prophylaxis)

Day number % Incidence- 
PBS

% Incidence- 
sgp130:Fc

2 1 0 0

26 50 17

29 1 0 0 50

34 1 0 0 50
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Figure 5.2 - Animals displaying signs of arthritis 

A

rnCIA was induced as described above. A depicts arthritis affecting 
forepaws. Left forepaw scores 3, right forepaw scores 2. B depicts 
arthritis affecting hind-paws. Left hind-paw scores 2, right hind-paw 
scores 3.
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5.2.1.1 Clinical Disease Severity in sqd130:Fc Treated Animals

and Control Group (Arthritis Prophylaxis Experiment)

At time of initiation of therapy on day 21, none of the animals receiving 

PBS or sgp130:Fc exhibited signs of arthritis and were allocated 

clinical score of 0. By day 26, clinical scores (mean±SEM) in PBS and 

sgp130:Fc treated animals had increased to 1.67±0.83 and 0.67±0.46. 

There was no significant difference between the groups at this point. 

Clinical scores increased steadily in the PBS treated animals reaching 

7±1.78 on day 29. At this point clinical scores in the sgp130:Fc treated 

animals were significantly lower (1.67±0.88 p< 0.05). By day 34 

severity limits, as defined in our PPL, had been reached which 

necessitated termination of the experiment. Mice receiving PBS 

recorded clinical scores of 11.5±2.13 at endpoint. These were 

significantly higher than clinical score values in sgp130:Fc treated mice 

(3.16±0.95 p< 0.05).

In the PBS group, paw diameters (mean±SEM,mm) increased from 

2.11 0.03 at baseline to 2.2710.11 at day 26. In the gp130:Fc group, 

paw diameters at day 26 were 2.06+ 0.09. There was no significant 

difference between the groups at this point. Paw diameters in the PBS 

treated animals rose steadily reaching 2.591 0.15 on day 29. At this 

point paw diameters in the sgp130:FC treated group were significantly 

lower (2.18+0.09 p<0.05). By day 34 the severity limits defined in our 

PPL were reached which necessitated termination of the experiment. 

Mice receiving PBS recorded paw diameters of 2.9610.09 at endpoint. 

These were significantly higher than paw diameters in sgp130:Fc 

treated mice (2.410.11 p< 0.05) (Figure 5.3).

sgp130:Fc demonstrated significant efficacy in improving clinical 

disease severity when given prior to disease onset.
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Figure 5.3 - Assessment of arthritis by clinical score and paw 

swelling in animals treated with sgp130:Fc compared to control
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Graphs demonstrating clinical score and paw diameters from day 21 
until experimental endpoint. Animals received intra-peritoneal PBS 
(100pl) or sgp130 (2.5 mg/kg) on alternate days from day of second 
intra-dermal injection. Graphs show mean of 6  mice per treatment 
allocation! SEM. * shows p< 0.05, ** shows p<0.001.
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5.2.1.2 Identification of a Dose of Etanercept which Resulted in

50% Reduction in Clinical Score

From the outset our principal aim was to determine whether sgp130:Fc 

therapy would provide a suitable adjunct in RA patients failing on 

monotherapy with a TNFa antagonist. We tried to model the scenario 

in vivo using rnCIA. Firstly, it was necessary to determine a sub- 

optimal dose of a TNFa antagonist which would result in a 50% 

reduction in clinical score after 7 days of therapy. This experiment was 

run in parallel with the sgp130:Fc prophylaxis experiment for 2  

reasons:

a) To share control animals thereby minimising animal usage 

through unnecessarily high control numbers;

b) To provide appreciation of efficacy by direct comparison with 

sgp130:Fc.

Etanercept was chosen because it is the most commonly used anti- 

TNFa agent. Supplies were also readily available. The doses of 

etanercept chosen resulted from a review of the literature of anti-TNFa 

therapy in rnCIA. A variety of protocols and dosing regimens had been 

used so direct comparison between all trials was not possible (See 

table 5.2). Disease course varied between experiments as did regime 

for initiating disease. Doses of anti-TNF used varied from 20 pg/ day to 

1.5 mg/week. Treatment regimes included once weekly to continuous 

infusion via a mini-pump. The i.p. route was used in all cases (Piguet 

et al 1992, Williams et al 1992; Wooley et al 1993; Shealy et al 2002). 

The aim of these experiments had also been to abolish disease rather 

than to reduce disease severity. The dose of etanercept chosen of 2.5 

mg/kg per mouse on alternate days (50 pg/mouse) appeared to be an 

appropriate starting dose. Arthritis was initiated as described in section 

2.16 and etanercept given at a dose of 2 . 5  mg/kg per mouse on 

alternate days by i.p. injection from day 2 1  (n= 6  per treatment 

allocation).
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Table 5.2 - Comparison of doses of anti-TNFa therapies used in murine experiments

Ref Species Arthritis Drug Prevention / 
Treatment Dosing Regime Results

Piguet
1992 DBA/1 Footpad 1/12 

after collagen

Anti-TNF ab Prevention 2 and 3 weeks after immunisation 1.5 mg i.p. no arthritis

TNF receptor Prevention Implant 15 days after immunisation i.p. 
minipump 20 pg/day for 15 days no arthritis

Anti-TNF ab T reatment 1.5 mg weekly from 8/52 after immunisation No benefit

Williams 
et al 1992 DBA/1 Onset day 28 Anti-TNF ab

Prevention
once/week for 4/52 from day before collagen 
i.p. 250pg (10mg/kg)

6/9 arthritis

Did not prevent or delay arthritis 

jseverity-joint count &swelling

Treatment

From onset of arthritis X2/week i.p. 
300pg/mouse

2nd expt 50, 300 or 500

^clinical score &swelling, histology 
better

Wooley
1993

DBA/1
40% at day 
45. 90% at 
day55

TNFR:Fc 
fusion protein

Prevention 50 pg/mouse i.p. days 21 - 28
0 at day 45. 25% at day 55. 
Severity 50% joint count],

Treatment Disease onset 50pg/mouse i.p. daily for 14 
days

Less severe disease, fewer paws 
affected. Significant at 7.5 weeks 
after onset

Shealy
2002 TG197

Spontaneous
progressive

Anti-TNF Ab
Treatment 10 mg/kg weekly i.p. from clinical score>2 I  clinical score

Prevention 10 mg/kg weekly from wk4 i.p. I  clinical score
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The incidence of rnCIA in PBS and etanercept treated mice is shown in 

table 5.3.

Table 5.3 - Incidence of arthritis in etanercept treated mice compared 
to PBS controls (disease prophylaxis)

Day number % Incidence- 
PBS

% Incidence- 
etanercept

2 1 0 0

26 50 17

29 1 0 0 83

34 1 0 0 83

At time of initiation of therapy on day 21, none of the animals receiving 

etanercept exhibited signs of arthritis and were allocated clinical score of 0 . 

By day 26, clinical scores in etanercept group had increased to 0.17±0.18. 

At this point clinical score in the PBS treated animals were significantly 

higher (1.67±0.83 p< 0.05). When the clinical scores at day 28 were 

compared in order to assess whether 50% inhibition in disease severity had 

been achieved mean score in PBS group (5.16±1.78) remained significantly 

higher than in etanercept group (1±0.69 p< 0.05). By day 34, the severity 

limits defined in our PPL had been reached which necessitated termination 

of the experiment. Mice receiving PBS recorded clinical scores of 11.5±2.13 

at endpoint. This was not significantly higher than clinical score values in 

etanercept treated mice (9.83±2.45 NS).

In the PBS group, paw diameters increased from 2.1 ± 0.03 at baseline to 

2.27±0.11 at day 26. In the etanercept group, paw diameters at day 26 

were 2.08± 0.08. There was no significant difference between the groups at 

this point. Paw diameters in the PBS treated animals rose steadily reaching 

2.51 ± 0.12 on day 28. At this point paw diameters in the etanercept treated 

group were significantly lower (2.19±0.09 p<0.05). By day 34, severity limits 

as defined in our PPL had been reached which necessitated termination of 

the experiment. Mice receiving PBS recorded paw diameters of 2.96±0.09
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at endpoint. These were not significantly higher than paw diameters in 

sgp130:FC treated mice (2.78±0.10) (Figure 5.4).

The reduction in clinical score at day 28 was greater than the 50% inhibition 

aimed for. However when the experimental time course was assessed the 

dose of etanercept chosen was felt to be appropriate (Clinical score was 

reduced by 25-75% between days 27 and 30).
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Figure 5.4 - Graph demonstrating clinical score and paw diameters in 
etanercept treated mice
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Graph demonstrating paw diameters from day 2 1  until experimental 
endpoint. Animals received intra-peritoneal PBS (100pl) or etanercept (2.5 
mg/kg) in equivalent volume of vehicle on alternate days from day of second 
intra-dermal injection. Graphs show mean of 6  mice per treatment 
allocation! SEM.

153



5.2.1.3 Assessment of Pathological Damage in rnCIA After Treatment

with saol30 :Fc and Etanercept

At end-point, fore paws were frozen and hind paws prepared for histological 

analysis. Hind paws were fixed in NBFS for 1 week then decalcified using 

formic acid. Following adequate de-calcification, measured using 

ammonium oxalate test for decalcification (see section 2.18.2.2.), paws were 

processed in an automated Shandon tissue processor before being 

permeated with paraffin wax. Feet were then embedded in wax blocks 

using a Shandon histo-centre. Serial mid-sagittal (7pm) sections were cut 

with a microtome and placed on slides.

Haematoxylin and eosin stained sections were prepared as described in 

section 2.18.3.1. Sections were scored by 3 blinded observers according to 

an established in-house system and the mean value calculated. Each slide 

was scored for the following parameters: hyperplasia (0-3), infiltrate (0-5), 

exudate (0-3), bone and cartilage erosion (0-3). The components were 

added to give a composite score or arthritis index (Highest possible score - 

14).

Mouse skeletal anatomy is shown in Figure 5.5A and sections from a normal 

mouse are shown in Figure 5.5B In the normal joint there was no evidence 

of arthritis. The synovial lining was, at most, 2 cells thick with no leucocyte 

infiltrate. The tibio-talar joint space remained empty with no cellular exudate 

and there was no evidence of bone or cartilage damage. Representative 

sections from each treatment group are shown in Figure 5 .6 .

In the PBS treated group the joints showed signs of severe arthritis (Figure 

5.6A). In the tibio-talar joint there was evidence of marked synovial 

hypertrophy with a heavy leucocyte infiltrate evidenced by dense nuclear 

staining. The joint space had a leucocyte rich exudate and there was 

marked bone and cartilage damage with loss of normal joint contours. The 

mean arthritis index in the PBS treated group was 9.32±1.03.
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In the sgp130:Fc group (Figure 5 .6 B), histological severity of arthritis was 

much reduced. There was no evidence of synovial hypertrophy; there was 

only mild cellular infiltrate and the joint space was free from leucocyte 

exudate with no bone or cartilage damage. The mean arthritis index in the 

sgp130:Fc fusion protein treated group was 4.57±1.27.

In the etanercept treated group (Figure 5.6C), histological damage was less 

severe than in the PBS group. There was a degree of synovial hyperplasia 

with a moderate cellular infiltrate and some leucocyte exudate within the 

tibio-talar joint space. Cartilage damage and bony erosions were seen but 

without complete destruction of the joint. The mean score in the etanercept 

treated group was 8.08±1.25.

There was a significant difference in scores between the PBS control group 

and the sgp130:Fc therapy group (p<0.05). There was no significant 

difference in arthritis index between PBS controls and etanercept treated 

group (Figure 5.7).

5.2.1.4 Effect of Therapy with sgp130:Fc and Etanercept on Cartilage 

Depletion

Sections were also stained with Safranin-O/Fast Green to assess extent of 

cartilage damage. Proteogylycan depletion results in loss of bright red stain. 

Staining intensity was compared by eye between groups.

In the PBS group there was marked reduction in intensity of red staining on 

the articular surface as a result of almost complete proteoglycan depletion. 

In the sgp130:Fc therapy group there was protection from cartilage 

destruction assessed by intensity of safran in-O/fast green staining. In the 

etanercept treated animals there was reduction in intensity of staining with 

some evidence of proteoglycan depletion and partial protection from 

cartilage destruction. Representative sections are shown in Figure 5.8.
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5.2.1.5 Effect of Therapy with sqd130:Fc and Etanercept on Bone

Erosion

Sections were stained for tartrate resistant alkaline phosphatase (TRAP) to 

identify presence of osteoclasts which were used as a marker for bone 

erosion. Red staining intensity was compared between treatment groups. 

In the PBS therapy group there was evidence of osteoclast activity. In the 

sections taken from the sgp130:Fc treated group there was little evidence of 

osteoclast activation as measured by the presence of TRAP positive cells. 

There was some osteoclast activity in the sections from the etanercept 

treated group but this appeared subjectively less than in the PBS control 

samples. Representative sections are shown in figure 5.9.

5.2.1.6 Effect of sqd130:Fc and Etanercept on NFkB and STAT 

Signalling Pathways in Murine Joints Affected by rnCIA

EMSA was used to assess the effects of targeting IL- 6  trans-signalling and 

TNFa on NFkB and STAT signalling pathways. Nuclear extracts were 

prepared as described in section 2.15 from frozen mouse fore paws which 

were taken on day 34, i.e. at experimental endpoint. Binding reactions were 

performed using 4 pg of nuclear protein and a32-dTTP-labelled 

oligonuceotide containing either an NFkB or STAT-binding consensus 

sequence (SIE-m67).

Non-arthritic mice showed little evidence of NFkB activation in their fore 

paws. Endstage arthritis was associated with up-regulation of NFkB 

activation. This was reduced by therapy with sgp130:Fc or etanercept (see 

Figure 5.1 OA). NFkB activation correlated with clinical score, i.e. reduction 

in disease activity resulted in lower NFkB activation (Figure 5.11). The 

mean densitometry measurement was 21041 in PBS group, 11861 in 

sgp130:Fc and 12725 in etanercept treated group. Supershift assays 

showed that the P50 and to a lesser extent P65 sub-units were activated 

(Figure 5.1 OB).
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Figure 5.5 - Anatomy and histology of mouse hind paw 

A
Fibulore —  

(calcaneum)
Intermedium (astragalus)

Tibiale4th and 5th distol tarsals—  
Centrale

3rd distal tarsal------------------
1st distal tarsal 

2nd distal tarsal

Metatarsal

  Phalanges

Adapted from http://www.informatics.jax.org/cookbook/figures

B.-Haematoxylin and Eosin stained normal mouse hind paw with no 
evidence of arthritis

—  Tibia 
—Joint space

— Intermedium (astragalus) 
Peri-articular adipose tissue

— Fibulare (calcaneum)

Skin
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Figure 5.6 - Histological sections demonstrating key features of arthritis. 
Typical scoring sections for each treatment group

A PBS Control X4 magnification

Hyperplasia (3/3) 
Infiltrate (4/5) 
Exudate (2/3) 
Erosion (3/3)

Total score 1 2

B sgp130:Fc treated X4 magnification

Hyperplasia (0/3) 
Infiltrate (1/5) 
Exudate (0/3) 
Erosion (0/3)

Total Score 1

C etanercept treated X4 magnification

Hyperplasia (1/3) 
Infiltrate (3/5) 
Exudate (1/3) 
Erosion (1/5)

Total Score 6
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Figure 5.7 - Mean Arthritis Index comparing PBS control group with 
sgp130:Fc fusion protein and etanercept treated groups.
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Values shown are mean of 3 independent blinded observers (n= 1 2  sections 
for PBS and sgp130:Fc and n= 1 1 for etanercept). * = significant difference 
when compared to PBS control group (p<0.05). Individual scores are shown 
by black circles. Mean values for group shown by horizontal line.

159



Figure 5.8 - Cartilage damage shown by Safranin-O/Fast green staining
A PBS treated X20

' ■ i" '. V

+—  c

B Sgp130:Fc treated X2 0

C Etanercept treated X20

Cartilage depletion is demonstrated by loss of Safranin-O (red stain).
A Strong intensity staining demonstrates little evidence of cartilage loss.
B Partial loss of cartilage shown by reduction in intensity of Safranin-O.
C Almost complete loss of cartilage.
JS = joint space, C = cartilage layer.

160



Figure 5.9 - Tartrate resistant alkaline phosphatase(TRAP) staining

A PBS treated X2 0

TRAP staining

B sgp130:Fc treated X2 0

TRAP staining

C Etanercept treated X2 0

Red stain delineates areas of TRAP staining. This enzyme shows 
osteoclast activity and hence is a marker for bone erosion. Representative 
sections from each treatment group are shown.
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There was no evidence of STAT activation in paws taken from control 

animals without arthritis. In PBS treated mice which developed rnCIA there 

was evidence of up-regulation of STAT activation in 2 animals. Supershift 

showed that it was predominantly STAT3 which was activated. Although in 

these paw samples there was evidence of STAT activation; this was at far 

lower levels than seen in samples from other murine models. sgp130:Fc 

reduced STAT activation. It is clear that etanercept had no effect on STAT 

activation. There was no correlation between clinical score and level of 

STAT activation.

In summary in this experiment, a dose of sgp130:Fc (2.5 mg/kg) was 

ascertained which resulted in significant reduction in disease severity. 

Therapy with sgp130:Fc from time of arthritis induction resulted in 

improvement in clinical disease severity together with a significant reduction 

in histological disease severity including cartilage damage and bone 

erosion. Reduction in clinical disease severity was associated with a 

reduction in NFkB activity and therapy with sgp130:Fc also reduced STAT 

activation.

In addition, a sub-optimal dose of etanercept (2.5 mg/kg/ mouse) was 

chosen which resulted in reduction in disease severity when given from the 

time of arthritis induction. This allowed us to model the effects of addition of 

sgp130:Fc to animals in which arthritis had been partially treated. There 

was no significant reduction in arthritis index in the etanercept therapy 

animals although there was a reduction in cartilage depletion and bone 
erosion.
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Figure 5.10

EMSA gels demonstrating NFkB and STAT activation within murine paws 

affected by collagen induced arthritis. Fore paws were frozen at the 

termination of experiment and nuclear extracts collected as described in 

section 2.15. An equal amount of protein was added to each well, gels run 

and developed as described. Specific protein under investigation is seen as 

a black band at appropriate place on the gel. Molecular weight determined 

how far specific bands ran. Intensity of protein band translates into thicker 

more intense band on X-Ray. Density was assessed semi-quantitatively 

using Image J analysis software and correlated with paw score and 

treatment group.

A NFkB activation

B NFkB supershift

C STAT activation

D STAT supershift

N - Normal control animal (no arthritis), P - PBS treated arthritis, E - 

etanercept treated arthritis, g - sgp130:FC treated arthritis.

For supershifts, C = control with no antibody or irrelevant control antibody 

added. P50, 52 and 65 refer to NFkB sub-units, S1 - STAT1, S3 - STAT3, 

S5 - STAT5
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STAT band

Figure 5.10 - EMSA showing NFkB and STAT activation within murine 
paws affected by collagen induced arthritis

A NFkB

B Supershift

C P65 P50 P52 C

C STAT

N P , P P g g g E  E E

D STAT supershift

«r®

C S1 S3 S5 C
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Figure 5.11 - Correlation between NFkB activity and disease activity

A NFkB Densitometry vs Paw score
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Graph showing densitometry of individual paws plotted against clinical paw 
score for each specific paw. Graph shows mean±SEM where 3 or more 
paws have equal clinical scores.

B Gel 1 NFkB
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Bar chart showing mean densitometry plotted against treatment group for 
samples shown in figure 5.12A. No error bars are shown as there were less 
than 3 samples in some treatment groups. N = normal mice with no arthritis, 
P = PBS treated controls with rnCIA, E = etanercept treated, G = sgp130:Fc 
fusion therapy.
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5.2.2 Treatment of Established Disease with sap130:Fc or Combination

Therapy with Etanercept and sgp130:Fc

In the previous experiment, a dose of sgp130:Fc (2.5 mg/kg) was 

ascertained which resulted in significant reduction in disease severity. In 

addition, a sub-optimal dose of etanercept (2.5 mg/kg/ mouse) was chosen 

which resulted in reduction in disease severity when given from the time of 

arthritis induction. Intervention in established disease was proposed. The 

reason for using established disease was that this is more reminiscent of the 

clinical situation in which patients are treated once disease is apparent.

The two specific aims of this section were to identify whether sgp130:Fc had 

a significant therapeutic effect in established disease and to identify whether 

sgp130:Fc in combination with etanercept was more effective than 

etanercept monotherapy. Therapies were given on a daily basis by intra- 

peritoneal injection at a dose of 2.5 mg/kg/mouse to give the best 

opportunity for improving clinical score in aggressive established disease.

Arthritis was induced as described in section 2.16. Mice were assessed 

daily from day 24. At day 27 when arthritis incidence was 100% animals 

were divided into matched groups on the basis of clinical score. Incidence 

of arthritis is shown in Table 5.4

Table 5.4 - Incidence of arthritis prior to initiation of therapy 

(established disease)

Day number % Incidence-

24 25

25 45

26 92

27 100
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6  mice were assigned to PBS and sgp130:Fc treatment groups respectively. 
1 2  mice were allocated to etanercept group, 6  to be maintained on 
etanercept alone and 6  had sgp130:Fc added to their treatment at day 30 
which was intended to model the effect of adding sgp130:Fc in those failing 
on anti-TNFa treatment (Figure 5.12 shows pictorial representation of 
dosing schedule in therapy groups).

Figure 5.12 - Pictorial representation of dosing schedule for etanercept 
and sgp130:Fc alone and in combination in established mClA

“  t t t 1 1  t T I  t t t t t t 1 1
etanercept

Day 27 28 29 30 31 32 33 34

In the PBS treated controls, clinical score increased on a daily basis from 
5.5±0.96 at day 27 on initiation of therapy to a maximum on day 35 when a 
score of 1 1± 1.54 was recorded. On day 33 a single mouse was sacrificed 
because the severity limits defined in our Home Office PPL was reached. 
As a consequence only 5 out of original 6  controls survived to day 35. Paw 
diameters were also measured on a daily basis. On day 27, paw diameters 
of 2.86 ±0.12 were measured. Values increased steeply over the next 3 
days reaching their maximum by day 29 (3.06 ±0.10 mm). Interestingly, 
paw diameters then dropped slightly falling to 2.76± 0.08 mm at endpoint.

i

In sgp130:Fc treated mice, clinical score on initiation of therapy was 
5.5±2.95; this was not significantly different from PBS controls. Clinical 
score increased steadily over the next 5 days reaching a maximum of 
9.5±1.95 on day 32. Thereafter, arthritis in the sgp130:Fc treated animals 
improved; indeed clinical scores decreased to 6±1.97 by day 35.
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Unfortunately a single mouse in the sgp130:Fc therapy group did not 

respond to treatment reaching severity limits on day 33. Therefore, It was 

sacrificed at this point. It is unlikely that the significant improvement in 

disease activity at day 35 can be attributed entirely to the death of this 

animal as clinical score did decline from day 33 to day 35 after it was 

removed from the experiment. There was a significant reduction in clinical 

score at endpoint when sgp130:Fc group were compared to control animals 

(6±1.97 vs 11 ±1.54 p<0.05) (Figure 5.15).

Paw diameters in the sgp130:Fc treated group increased from 2.49±0.14 on 

day 27 to a maximum of 2.68±0.15 on day 33 then steadily decreased to 

2.51 ±0.15 at experimental endpoint. Treatment with sgp130:Fc resulted in a 

significant difference in paw diameters between treatment group and control 

animals from day 30 (3.04±0.11 vs 2.68±0.26) which remained significant 

until day 34 (Figure 5.13). This difference in paw diameters cannot be 

attributed to the sacrifice of the non-responding mouse as paw diameters 

declined from day 30 onwards and the non-responding mouse was 

sacrificed at day 33. Sgp130:Fc (2.5 mg/kg) was effective at reducing 

clinical disease severity when given in established disease.
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Figure 5.13 -  Time course of paw swelling in mice treated with 

sgp130:Fc or placebo in established disease

24 26 28 30 32 34 36

Days post 1st i.d. collagen injection
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i

Graphs demonstrating clinical scores and paw diameters in millimetres from 
day 24 until experimental endpoint. Graphs show mean of 6  mice± SEM. 
Therapy was initiated at day 27. Significant differences between groups are 
shown by *= p<0.05.
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5.2.2.1 Effect of Addition of saol30:Fc to Etanercept Monotherapy on

Clinical Disease Parameters in Established mClA

On day 27, when therapy was initiated, the clinical score (mean±SEM) in the 

etanercept group was 5.42+ 1.88. There was no significant difference 

between groups at this point (PBS 5.5 ±2.17, sgp130:FC 5.5±2.95). Clinical 

score in the etanercept treated group increased slowly from day 27 reaching 

a score of 7.83±1.87 on day 30. This was not significantly different to 9±1. 6  

in the PBS group. Paw diameters increased from 2.65±0.51 on day 27 to 

2.57±0.16 on day 30. This was already significantly lower than in the PBS 

group (3.04±0.10; p^0.05).

At day 30, the etanercept group was divided into those receiving etanercept 

alone and those to receive combination therapy. Clinical score 

(meaniSEM) in combination group was 7± 2.68 and in etanercept alone 

group was 7.83± 4.17. These differences were not statistically significant. 

Mean paw diameter in combination group was 2.71 ±0.36; whilst the mean 

diameter in etanercept alone group was 2.57 ±0.52 (differences not 

significant).

The mean clinical score in the etanercept therapy group decreased from a 

maximum of 7.83±4.17 on day 30 when groups were split to 6.17±1.78 at 

endpoint. The addition of sgp130:Fc appeared to provide an adjunct to 

etanercept monotherapy as the mean clinical score in the combined therapy 

group decreased from 7±2.68 at initiation of combined therapy to 4±0.94 at 

experimental endpoint. A single animal was found dead on day 32. His 

clinical score on day 31 was 6 . There was no significant difference between 

clinical scores at any time point. However, there were only small numbers 

of animals assessed with marked variability in response to therapy.

When change in clinical score from day 30 (when combination therapy was 

initiated) was measured; the mean fall in score in the etanercept group was 

-0.66±0.73 vs -3.20±1.19 in the combination group. There was a significant 

difference in change in clinical score between groups (p< 0.05; Figure 5.15).
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The mean paw diameters in the etanercept group decreased from a 

maximum of 2.57±0.16mm on day 30 to 2.48±0.12mm at experimental 

endpoint. Paw diameters in the combination therapy group increased from 

2.71 ±0.10mm on day 30 to a maximum of 2.75±0.10mm on day 31 and then 

decreased to 2.52±0.06mm at experimental endpoint. There was no 

significant difference in paw diameters between the etanercept and 

combination therapy groups at any time point.

When sgp130:Fc monotherapy was compared to combination of etanercept 

and sgp130:Fc; clinical scores at endpoint were lowest in the combination 

therapy group (6±1.97 vs 4±0.94). Differences did not reach significance. 

There was no significant difference in paw diameters between sgp130:Fc 

monotherapy and etanercept+sgp130:Fc groups at endpoint.

In summary, sgp130:Fc monotherapy was effective in improving clinical 

disease severity in rnCIA. Addition of sgp130:Fc to sub-optimal etanercept 

therapy resulted in a significant change in clinical score when compared to 

continuing on etanercept monotherapy. Combination therapy did not appear 

to be better than sgp130:Fc. However, the timeframe for combination 

therapy was only 5 days and only small numbers of animals were assessed.
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Figure 5.14 -  Time course of clinical score and paw swelling in mice 
treated with etanercept or combination of sgp130:Fc added to 
etanercept in established disease
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Graph demonstrating clinical score and paw diameters (mm) from day 24 
until experimental endpoint. Graphs show mean of 6  mice± SEM. Therapy 
was initiated at day 27. Additional sgp130:Fc therapy was initiated at day 
30 in 50% of the etanercept group. There was no significant difference in 
clinical score or paw swelling between etanercept and combination treated 
groups.
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Figure 5.15 - Graph showing daily change in mean clinical score from 

initiation of combined therapy
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Graph shows mean change in clinical score on a daily basis in the 
etanercept treated and combination therapy treated groups from day 29 
when combination therapy was instituted in 50% of the etanercept treated
group. X shows combination therapy. ♦ shows etanercept therapy. * 
shows significant change in mean score between therapy groups (p<0.05).
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5.2.2.2 Histological Assessment of Arthritis Severity

H and E stained sections were prepared as described in section 2.18.3.1. 

Sections were scored by 2  blinded observers according to an established in- 

house system and a mean score calculated. Each slide was scored for the 

following parameters: hyperplasia (0-3), infiltrate (0-5), exudate (0-3), bone 

and cartilage erosion (0-3). The components were added to give a 

composite score or arthritis index (Highest possible score -14).

In the PBS group, the mean arthritis index from sections taken at 

experimental endpoint was 9.9±1.0. Joints showed signs of severe arthritis. 

In the tibio-talar joint there was evidence of marked synovial hypertrophy 

with a heavy leucocyte infiltrate evidenced by dense nuclear staining. The 

joint space had a leucocyte-rich exudate and there was marked bone and 

cartilage damage with loss of normal joint contours.

The mean arthritis index in the sgp130:Fc fusion protein treated group was 

8.4±1.73. Similar histological features of arthritis were seen with large 

numbers of infiltrating cells, synovial membrane hypertrophy together with a 

leucocyte rich exudate within the joint space. Bone erosions were seen. 

There was no significant difference in scores between PBS controls and 

sgp130:Fc therapy.

The mean score in the etanercept treated group was 7.08±1.33. 

Histological damage was less severe than in the PBS group. There was a 

degree of synovial hyperplasia with a moderate cellular infiltrate and some 

leucocyte exudate within the tibio-talar joint space. Some cartilage damage 

and bony erosions were seen but without complete destruction of the joint. 

Etanercept therapy was significantly better than PBS at preventing joint 

destruction (p<0.05).

In contrast, the mean score in the etanercept +sgp130:Fc group was 

10.6±1.33. The histological changes seen were similar to the PBS group 

with large numbers of infiltrating cells shown by synovial membrane 

hypertrophy and a dense cellular infiltrate together with a leucocyte-rich
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exudate within the joint space. Etanercept therapy alone was superior to 

combination therapy (p^0.05).

There was no difference seen between PBS and sgp130:Fc treated or 

combination groups (Figure 5.17). Representative pictures for each 

experimental group are shown (Figure 5.16).

When arthritis index was divided into respective components and mean 

score for inflammatory infiltrate (total leucocyte infiltrate) compared between 

groups, there was no significant difference in leucocyte infiltrate. My in vitro 

work in chapters 3 and 4 suggested that TNFa and IL-6 /IL-6 R together led 

to synergistic up-regulation of specific macrophage and T cell chemo- 

attractants, i.e. CCL2  and CCL5. This led us to surmise that although total 

leucocyte numbers did not appear to be affected by therapy; there may have 

been an alteration in leucocyte phenotype. Therefore, specific leucocyte 

markers were analysed by immuno-histochemistry to determine whether 

therapy had an effect on leucocyte sub-sets.

5.2.2.3 Immuno-histochemical Analysis of Leucocyte Infiltrate

Antigen retrieval was carried out using Trypsin-EDTA retrieval. Peroxidase 

and biotin were blocked (method is described in full in section 2.18.4). 

Sections were stained with anti-F4/80 (1/50) as a macrophage marker or 

anti-Fox-P3 (1/200) as a regulatory T cell marker overnight at 4°C and 

antibody binding detected using biotin-conjugated rabbit anti-rat and swine 

anti-rabbit IgG followed by StrepABcomplex. Sections were then developed 

using diaminobenzidine substrate, counterstained with haematoxylin.

Numbers of F4/80 positive cells (macrophages) per high power field were 

counted for 3 animals per therapy group. In the PBS group the mean 

number (±SEM) of F4/80 positive cells was 10±6.16. In the sgp130:Fc 

treated group there were a complete absence of F4/80 positive cells. In the 

etanercept therapy group there were a mean number of 10.67± 1.63 F4/80 

cells per field. In the combination group there were 0.67± 0.82 F4/80 

positive cells per high power field. There was a significant difference in
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number of F4/80 positive cells in the sections taken from animals treated 

with sgp130:Fc either alone or in combination with etanercept (p<0.05). 

Etanercept monotherapy had no effect on macrophage infiltrate (Figure 

5.18).

Numbers of Fox-P3 positive cells (Regulatory T cells) per high power field 

were counted for 3 animals per therapy group. In the PBS group, the mean 

number (±SEM) of Fox-P3 positive cells was 2.5±1.2. In the sgp130:Fc 

treated group there were 4±2.5 cells. Sections from etanercept therapy 

animals had 2 ±1 . 2 2  cells per field and in the combination group there were 

3±0 positive staining cells per high power field. Although Fox-P3 positive 

cells could be identified, the numbers of cells present were low. In this small 

sample there was no significant difference seen in Fox-P3 expression 

between treatment groups although there appeared to be a trend towards 

an increase in the sgp130:Fc therapy groups (see Figure 5.19).

In summary, we had identified a dose of sgp130:Fc which significantly 

improved clinical outcome in established disease. This improvement in 

clinical outcome was associated with a significant reduction in macrophage 

infiltrate but this did not result in an overall improvement in disease 

histology. It was clear that because of the aggressive nature of arthritis that 

sgp130:Fc therapy was less effective in established disease than when 

given prior to the onset of clinical disease. Therefore, further experiments 

were designed to assess whether a higher dose of sgp130:FC or therapy 

given earlier in disease might be even more effective.
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Figure 5.16 ■ Representative histological sections for each therapy 
group (treatment of established disease)

A PBS x4 magnification

B sgp130:Fc X4 magnification

C etanercept X4 magnification

Hyperplasia (2/3) 
Infiltrate (4/5) 
Exudate (3/3) 
Erosion (3/3)

Total score 12

Hyperplasia (3/3) 
Infiltrate (5/5) 
Exudate (3/3) 
Erosion (3/3)

Total score 14

Hyperplasia (1/3) 
Infiltrate (2/5) 
Exudate (1/3) 
Erosion (0/3)

Total score 4

D etanercept + sgp130:Fc X4 magnification

I Hyperplasia (1/3) 
Infiltrate (2/5) 
Exudate (2/3) 
Erosion (2/3)

Total score 7
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Figure 5.17 - Mean arthritis index comparing PBS control group with 
sgp130:Fc and etanercept monotherapy to combination therapy
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Histology scores show mean of 2 blinded observers for each treatment 
group (n=10 for PBS and sgp130:Fc, n=11 for combination group and n= 1 2  

for etanercept group). Individual paw scores are shown by black circles and 
mean of each treatment condition by a horizontal line. * shows significant 
difference in mean when compared to PBS control group.
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Figure 5.18

Representative sections from each therapy group demonstrating F4/80 

expression within synovial infiltrate. Sections were stained with F4/80 rat 

anti-mouse antibody following antigen retrieval then antibody detected using 

biotin-conjugated rabbit-anti rat antibody. Sections were developed using 

diaminobenzidine substrate counterstained with haematoxylin. F4/80 

positive cells are stained brown. Sections shown are original magnification 

X 40

A) PBS control

B) sgp130:Fc therapy

C) etanercept therapy

D) etanercept + sgp 130: Fc

E) Numbers of F4/80 positive cells per 20 infiltrating leucocytes.

Graphs show mean of 3 sections ± SEM for each treatment condition.

**demonstrates significant difference in number of F4/80 cells when 

compared to PBS control group (F<0.001).
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Figure 5.18 -  Immuno-histochemical staining showing F4/80 
expression within the joints of mice affected by mClA.
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Figure 5.19 -  Immuno-histochemical staining showing regulatory T cell 
distribution demonstrated by the presence of Fox-P3 positive cells.

w m m

D Etanercept + sgp 130:Fc X40

+ve stain 

C etanercept X40

+ve stain

Representative sections from each therapy group demonstrating FOX-P3 
expression within synovial infiltrate. Sections were stained with FOX-P3 
rabbit anti-mouse antibody following antigen retrieval then antibody detected 
using biotin-conjugated swine-anti rabbit. Sections were developed using 
diaminobenzidine substrate counterstained with haematoxylin. Fox-P3 
positive cells are shown by nuclear brown staining.

A) PBS control B) sgpl 30:Fc therapy C) etanercept therapy
D) etanercept + sgp130:FC

When analysis of numbers of FOX-P3 positive cells was carried out there 
was no significant difference in numbers of Regulatory T cells between 
treatment groups.
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5.2.3 Effect of High Dose sap130:Fc Monotherapy and in Combination

with Etanercept in Established mClA

A further experiment was carried out in established mClA using sgp130:Fc 

at 5 mg/kg per mouse in order to determine whether a higher treatment 

dose improved clinical and histological scores of arthritis. Arthritis was 

initiated as described previously. Mice were assessed daily from day 2 1 . 

Incidence of arthritis prior to initiation of therapy is shown in Table 5.5.

Table 5.5 Incidence of arthritis in high dosesgp130:Fc experiment

Day number % Incidence-

2 1 2 1

23 2 1

25 71

26 75

In this experiment, therapy was started from day 26 as the arthritis appeared 

more severe and incidence was higher at this point than in the previous 

experiment. Animals were divided into matched groups on the basis of 

clinical score. 6  mice were assigned to PBS and sgp130:Fc treatment 

groups respectively. 1 2  mice were allocated to etanercept group, 6  to be 

maintained on etanercept alone and 6  had sgp130:Fc added to their 

treatment at day 29 which was intended to model the effect of adding 

sgp130:Fc in those failing on anti-TNFa treatment (Figure 5.20).

Etanercept and sgp130:Fc were administered daily by intra-peritoneal 

injection at a dose of 5 mg/kg/mouse (sgp130:Fc) and 2.5 mg/kg/mouse 

(etanercept). Clinical scores and assessments were carried out daily. The 

experiment was terminated at day 34 in accordance with project licence 

terms. Hind paws were fixed for histological assessment. Fore paws were 

frozen in liquid nitrogen for future protein extraction.
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Figure 5.20 - Pictorial representation of dosing schedule for etanercept 
(2.5 mg/kg) and sgp130:Fc (5 mg/kg) alone and in combination in 

established mClA
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There was no significant difference between treatment groups in clinical 
scores at start of treatment. Clinical score (mean±SEM) in PBS group was 
2.33±1.2 2 ; 3±1.57 in sgp130:Fc group; 4.16±1.88 in etanercept group and 
4.16±1.63 in combined therapy group.

At day 29 when sgp130:Fc was added to etanercept in the combination 
therapy group mean paw diameter in combination group was 2.68±1.3 whilst 
the mean diameter in etanercept alone group was 2.86±0.08. Mean clinical 
score in combination group was 7.5±2.25 and the mean score in etanercept 
alone group was 6±0.69. These differences were not statistically significant.

5.2.3.1 Effect of sad  30:Fc on Clinical Parameters of Disease Severity

in Established mClA

In the PBS treated controls, clinical score increased on a daily basis from 
2.8±1.38 at day 26 on initiation of therapy to a maximum of 9±1.41 on day 
31 then decreased to 7.6±1.4 at experimental endpoint. Paw diameters 
were also measured on a daily basis. Diameters increased from 2.31 ±0.18
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on day 27 to a maximum mean paw diameter of 2.93±0.07 mm at day 32 

and then decreased to 2.76±0.05mm at endpoint.

In the sgp130:Fc group, mean clinical score on initiation of therapy was 

4.5±1.67. This was not significantly different from PBS controls. Clinical 

score increased steadily over the next 5 days to a maximum of 7.5±1.91 on 

day 31. Thereafter, arthritis in the sgp130:Fc treated animals improved and 

clinical score decreased to 6.33±1.78 at experimental endpoint. Paw 

diameters increased from 2.43±0.17 on day 26 to a maximum of 2.79±0.13 

on day 31 and then decreased to 2.64±0.13 at experimental endpoint. 

There was no significant difference between PBS and sgp130:Fc treated 

animals in measurements of clinical score or paw diameter at any time point 

(Figure 5.21).

5.2.3.2 Effect of Addition of High Dose sap130:Fc to Etanercept 

Monotherapy on Clinical Disease Parameters in Established 

rnCIA

On day 27 when therapy was initiated the mean clinical score in the 

etanercept group was 4.16±1.13. There was no significant difference 

between groups at this point (PBS 2.8±1.39, sgp130:Fc 3±1.57). Clinical 

score in the etanercept treated group increased slowly from day 27 reaching 

a score of 6±1.59 on day 29 which was not significantly different to the score 

of 7.2±1.35 obtained in the PBS group. Paw diameters increased from 

2.65±0.08 on day 26 to 2.87±0.11 on day 29. This was already significantly 

lower than in the PBS group (2.75±0.10; p^0.05).

At day 29 when etanercept group were divided into those receiving 

etanercept alone and those to receive combination therapy, clinical score 

(mean±SEM) in combination group was 7.5±2.25 and in etanercept alone 

group was 6±0.69. These differences were not statistically significant. The 

mean clinical score in the etanercept therapy group increased from a score 

of 6±1 on day 29 when groups were split to a maximum score of 6.33± 0.69 

on day 30. Mean score then decreased to 4.5±0.62 at endpoint. The
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addition of sgp130:Fc appeared to provide an adjunct to etanercept 

monotherapy as the mean clinical score in the combined therapy group 

decreased from 7.5±2.25 at initiation of combined therapy to 5.33±1.71 at 

experimental endpoint. There was no significant difference in clinical score 

between groups at any time point.

The mean paw diameters in the etanercept group increased from 

2.87±0.11mm at initiation of combined therapy to a maximum of 

2.89±0.08mm on day 30 and then decreased to 2.77±0.08mm at 

experimental endpoint. Paw diameters in the combination therapy group 

increased from 2.68±0.13mm to a maximum of 2.72±0.13mm on day 30 and 

then decreased to a minimum of 2.46±0.10mm at experimental endpoint. 

There was a significant difference between paw diameters (2.76±0.08mm in 

etanercept group vs 2.45±0.1mm in combination group) at end point. 

However, the mean paw diameter in the etanercept group was also lower in 

the combination therapy group at the time sgp130:Fc was initiated. This 

difference was not significant (2.87±0.11mm vs 2.68±0.13mm NS). The 

groups were matched on the basis of clinical score but could not be 

completely matched for paw diameters (Figure 5.22).

When sgp130:Fc monotherapy was compared to combination of etanercept 

and sgp130:Fc there was no significant difference in clinical scores at 

endpoint (5.5±1.28mm vs 5.34±1.71mm). There was no significant 

difference in paw diameters between sgp130:Fc monotherapy and 

etanercept + sgp130:Fc groups at endpoint (2.63±0.13mm vs 2.45±0.11 mm 

NS).

In summary, this experiment showed sgp130:Fc monotherapy (5 mg/kg) 

was not effective in improving clinical disease severity in rnCIA. Addition of 

sgp130:Fc to sub-optimal etanercept therapy did not result in a significant 

change in clinical score when compared to continuing on etanercept 

monotherapy. Combination therapy did not appear to be better than 

sgp130:Fc.
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Figure 5.21 -  Time course of clinical score and paw swelling in mice 

treated with high dose sgp130:Fc or placebo in established disease
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Graph demonstrating clinical score and paw diameters in millimetres from 
day 23 until experimental endpoint. Graphs show mean of 6  mice± SEM. 
Therapy was initiated at day 26. There was no significant difference in 
clinical score or paw swelling at any time point in the therapy group when 
compared to PBS controls.

186



Figure 5.22 -  Time course of paw swelling in mice treated with 
etanercept or high dose sgp130:Fc added to etanercept in established 
disease
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Graphs demonstrating paw diameters from day 23 until experimental 
endpoint. Graphs show mean of 6  mice± SEM Therapy was initiated on day 
26. Additional sgp130:FC therapy was initiated at day 29 in 50% of the 
etanercept group. Paw swelling at endpoint was significantly lower in 
combination therapy treatment groups than in etanercept alone therapy 
group. Shown on graph by * (p< 0.05).
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5.2.3.3 Histological Analysis of Disease Severity

Sections were cut and stained as described previously. Sections were 

scored by a single blinded observer using in-house scoring system as 

described above. In the PBS group, the mean arthritis index from sections 

taken at experimental endpoint was 9.2±3.6 (values shown are mean ± SD). 

Joints showed signs of severe arthritis. In the tibio-talar joint there was 

evidence of marked synovial hypertrophy with a heavy leucocyte infiltrate 

evidenced by dense nuclear staining. The joint space had a leucocyte rich 

exudate and there was marked bone and cartilage damage with loss of 

normal joint contours.

The mean arthritis index in the sgp130:Fc fusion protein treated group was 

9±4.6. Histological features of severe arthritis were seen with synovial 

hypertrophy, leucocyte infiltration and exudate within the joint space 

together with bone and cartilage erosion. There was no significant 

difference in scores between PBS controls and sgp130:Fc therapy.

The mean score in the etanercept treated group was 8.5±2.5. Similar 

histological features of arthritis were seen with large numbers of infiltrating 

cells shown by synovial membrane hypertrophy and a dense cellular 

infiltrate together with a leucocyte rich exudate within the joint space. 

Cartilage and bone erosions were seen.

The mean score in the combination therapy group was 6.5±3.6. 

Combination therapy was significantly better than PBS control in preventing 

histological damage. Although arthritis was still present, histological 

changes were less marked with a reduction in the degree of synovial 

hyperplasia together with a reduction in leucocyte infiltrate and bone and 

cartilage damage.

Etanercept and sgp130:Fc monotherapy did not prove significantly better 

than control therapy. There was no significant difference between

etanercept monotherapy and combination therapy in preventing histological 

damage (representative sections shown below in Figure 5.23).
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Figure 5.23 - Representative sections for each treatment group (high

Hyperplasia (3/3) 
Infiltrate (4/5) 
Exudate (3/3) 
Erosion (3/3)

Total score 13

dose sgp130:Fc experiment)
A PBS control

Hyperplasia (2/3) 
Infiltrate (3/5) 
Exudate (3/3) 
Erosion (2/3)

Total score 10

Hyperplasia (1/3) 
Infiltrate (2/5) 
Exudate (2/3) 
Erosion (1/3)

Total score 6

Hyperplasia (0/3) 
Infiltrate (2/5) 
Exudate (2/3) 
Erosion (1/3)

Total score 5

B gp130:Fc therapy

C etanercept therai

D etanercept+sgpl 30:Fc therapy
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Figure 5.24 - Mean Arthritis Index comparing PBS control group with 
sgp130:Fc fusion protein (high dose) and etanercept monotherapy to 
combination therapy.
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Histology scores show results of 1 blinded observer for each treatment 
group.(n= 10 for PBS and n= 1 2  for all other treatment groups). Individual 
paw scores are shown by black circles and mean of each treatment 
condition by a horizontal line. * p<0.05 shows significant difference in mean 
when compared to PBS control group.
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5.2.3.4 Effect of sao130:Fc and Etanercept Therapy in Established

Disease on NFkB and STAT Signalling Pathways in Murine 

Joints Affected by mClA

EMSA was used to assess the effects of targeting IL- 6  trans-signalling and 

TNFa on NFkB and STAT signalling pathways. Nuclear extracts were 

prepared as described from frozen mouse fore-paws. Paws were taken 

from mice at experimental end-point. Binding reactions were performed 

using 4 pg of nuclear protein and a32-dTTP-labelled oligonuceotide 

containing either an NFkB or STAT-binding consensus sequence (SIE-m67) 

(Method described in section 2.15.6).

Non-arthritic mice showed little evidence of NFkB activation in their fore­

paws. Endstage arthritis was associated with up-regulation of NFkB 

activation. Up-regulation in PBS controls and sgp130:Fc treated animals 

was seen (sample EMSAs shown in Figures 5.25A and B). Therapy with 

etanercept abolished NFkB activation. Interestingly, addition of sgp130:Fc 

appeared to negate the effect of etanercept and combination therapy 

animals had high levels of NFkB activation (sample EMSA shown in Figure 

5.25A).

In contrast to the disease prophylaxis experiment; in this experiment there 

was no correlation between clinical score and NFkB activation. There was 

no correlation between treatment group and activation. However, control 

mice with no arthritis had low levels of activation as did animals treated with 

etanercept alone (Figure 5.27A). Supershift assays showed that the P50 

and P65 sub-units were activated (Figure 5.25C)

Positive control samples taken from mice with SES induced peritonitis had 

high levels of STAT activation (Figure 5.26A). In mice which developed 

rnCIA there was evidence of up-regulation of STAT activation but this was 

not as prominent as in peritonitis. Supershift showed that STAT activation 

was predominantly STAT1 and STAT3 in this particular experiment (Figure 

5.26C). Animals treated with combination of etanercept and sgp130:Fc
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therapy showed activation of STAT. Etanercept therapy alone did not affect 

STAT activation. There was a reduction in STAT activation in some mice 

treated with sgp130:Fc monotherapy (Figure 5.26B). There was no 

correlation between clinical score or treatment group and STAT activation 

when intensity of STAT band was compared by densitometry.

In summary, this experiment showed sgp130:Fc monotherapy (5 mg/kg) 

was not effective in improving clinical disease severity in rnCIA. There was 

no improvement in disease histology as a result of sgp130:Fc therapy.

Addition of sgp130:Fc to sub-optimal etanercept therapy did not result in a 

significant change in clinical score when compared to continuing on 

etanercept monotherapy. Combination therapy did not appear to be better 

than sgp130:Fc alone. Combination therapy was significantly better than 

PBS control in preventing histological damage.

Assessment of cell signalling pathways showed that endstage arthritis was 

associated with up-regulation of NFkB activation. Therapy with etanercept 

abolished NFkB activation. Interestingly, addition of sgp130:Fc appeared to 

negate the effect of etanercept and combination therapy animals had high 

levels of NFkB activation. There was no correlation between clinical score 

or treatment group and STAT activation when intensity of STAT band was 

compared by densitometry.
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Figure 5.25

EMSA gels demonstrating NFkB activation within murine paws affected by 
collagen induced arthritis. Forepaws were frozen at the termination of 
experiment and nuclear extracts collected as described in section 2.15. An 
equal amount of protein was added to each well, gels run and developed as 
described. Specific protein under investigation is seen as a black band at 
appropriate place on the gel. Molecular weight determines how far specific 
bands run. Intensity of protein band translates into thicker more intense 
band on X-Ray.

A NFkB activation

B NFkB activation

C NFkB supershift

P - PBS treated arthritis, E - etanercept treated arthritis, g - sgp130:Fc 

treated arthritis. C - control mouse with no arthritis.

In this experiment there was no correlation between clinical score and NFkB 
activation. There was no correlation between treatment group and
activation. However, control mice with no arthritis had low levels of
activation as did animals treated with etanercept alone.

For supershifts, C = control with no antibody or irrelevant control antibody 

added. P50, 52 and 65 refer to NFkB subunits.

C supershift showing that NFkB activation activation is predominantly P50 

and P65 subunits.
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Figure 5.25 - NFkB activation from forepaws of mice affected with
murine collagen induced arthritis
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Figure 5.26

A and B STAT activation in fore paws from mice with and without arthritis.

P = PBS treated, E = etanercept treated, g = sgp130:Fc treated, C = control 
mouse with no arthritis, +ve = control sample from SES peritonitis where 
STAT is known to be up-regulated.

In this experiment there was no correlation between clinical score and STAT 
activation. There was no correlation between treatment group and
activation. However, control mice with no arthritis had low levels of
activation. SES peritonitis mice had higher levels of activation.

C Supershift showing that STAT activation is predominantly STAT1 and 
STAT3 in this particular experiment.

S1 -STAT1 , S3-STAT3, S5-STAT5
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Figure 5.26 - STAT activation in forepaws of mice affected by murine
collagen induced arthritis
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5.2.4 Early intervention with Combination Therapy in rnCIA

Despite initially promising results with sgp130:Fc in disease prophylaxis 

experiments; using sgp130:Fc in established disease did not prove as 

beneficial as we had predicted. Increasing the dose of sgp130:Fc did not 

improve clinical or histological outcomes and it was decided to intervene in 

early disease to maximise the effect of therapy in rnCIA which is an 

aggressive disease. The original dose of 2.5 mg/kg sgp130:Fc was used as 

there was no evidence that 5  mg/kg dose was effective in the previous 

experiment.

In this experiment combination therapy was given from the initiation of 

therapy to assess the effect of combination therapy given from disease 

onset. This is in contrast to modelling the effects of adding sgp130:Fc to 

animals with sub-optimal response to etanercept described in the previous 

experiments.

We wondered whether severe damage had already occurred to the joints by 

day 27. This might provide an explanation for the failure of therapy initiated 

at day 27 to make an impact on disease histology. The first 6  mice that 

developed arthritis were sacrificed at this time-point in order to compare 

histological damage comparison at the time-point in which therapy had been 

initiated in previous experiments.

Therapy was initiated in each mouse at the first sign of clinical arthritis and 

continued for 7 days in total. It was not possible to match animals for 

clinical score as some animals developed arthritis in more than one joint 

when arthritis first occurred. Animals were assigned randomly to each 

treatment group in turn: sgp130:FC (2.5 mg/kg); etanercept (2.5 mg/kg); and 

combination therapy (sgp130:FC + etanercept each at 2.5 mg/kg and PBS 

control. A single animal did not develop arthritis and therefore there were 

only 5 animals in the PBS control group.
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Table 5.6 Range of clinical scores at initiation of therapy (early 

intervention)

Day number Number of mice 
developing arthritis Range of clinic

24 1 2

25 2 1

26 1 2 1 - 8

27 8 1 - 1 0

28 3 2-3

29 2 2

30 2 1

At baseline there was no significant difference between groups in paw 

diameter or clinical score.

5.2.4.1 The Effect of Early Intervention with sqd130:Fc Compared to 

PBS Control

At initiation of therapy in the PBS treated controls, clinical score was 

3.8±1.29 which increased on a daily basis to a maximum of 11.8±2.25 prior 

to dose 7 and remained at 11.8±2.48 at experimental endpoint. In the 

gp130:Fc group, mean clinical score increased on a daily basis from 

2.33±0.83 at initiation of therapy to a maximum of 10.67±1.85 at 

experimental endpoint. There was no significant difference between PBS 

and sgp130:Fc treated animals in measurements of clinical score at any 
time point (Figure 5.27).

In the PBS group, paw diameter increased from 2.18±0.14mm at initiation of 

therapy to a maximum mean paw diameter of 2.75±0.18mm prior to dose 6  

and decreased to 2.66±0.13mm at endpoint. In the sgp130:FC treated 

animals paw diameters increased from 2.08±0.08mm at initiation of therapy 

to a maximum of 2.65±0.16mm prior to dose 6  and decreased to
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2.61 ±0.1 Omm at endpoint. There was no significant difference in paw 

diameters between control and sgp130:Fc treated animals at any time point. 

There was, therefore, no significant improvement in disease severity as a 

result of sgp130:Fc therapy given in early arthritis.

5.2A.2 Etanercept Monotherapy Compared to Combination Therapy 

in Early Disease

In the etanercept therapy group, clinical score increased on a daily basis 

from 3.33±1.0 on initiation of therapy to a maximum of 6.83±1.11 prior to 

dose 6  then decreased to 5.67±0.92 at endpoint.

In the combined therapy group, mean clinical score on initiation of therapy 

was 1.83±0.34. This was not significantly different from etanercept 

monotherapy group. Clinical score increased to 4.5±1.32 prior to dose 3 

then remained steady until dose 6  when a maximum score of 4.5±1.67 was 

reached. Clinical score then reduced to 3.83±1.83 at experimental endpoint.

Paw diameters were also measured on a daily basis. The mean paw 

diameters in the etanercept group increased from 2 .0 1 ±0 .1 0 mm at initiation 

of combined therapy to a maximum of 2.28±0.13mm at experimental 

endpoint. Paw diameters in the combination therapy group increased from 

1.98±0.09mm to a maximum of 2.24±0.14mm prior to dose 6  and then 

decreased to 2.17±0.14mm at experimental endpoint (Figure 5.28).

Although there was a trend towards improvement in all parameters of clinical 

disease in the combination group compared to etanercept alone, this did not 

reach statistical significance at any time point. However, when individual 

paw scores were compared there was a significant improvement in paw 

score when compared to etanercept alone (1.13±0.25 vs 1.71±0.24 prior to 

dose 6  and 0.96±0.25 vs 1.54±0.23 prior to dose 7; p<0.05; data not 
shown).

When combination therapy was compared to sgp130:Fc monotherapy, there 

was a significant difference in clinical scores from prior to dose 4 (4.16±1.25
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vs 9.33±0.92; p<0.05) which persisted until experimental endpoint when 

scores were 3.84±1.43 in the combination therapy group compared to 

10.67±1.85 in sgp130:Fc therapy group (p<0.05).

When sgp130:Fc monotherapy was compared to combination of etanercept 

and sgp130:Fc, there was significant difference in paw diameters from prior 

to dose 4 (2.06±0.12mm vs 2.55±0.14mm; p<0.05) which persisted until 

experimental endpoint when paw diameters were 2.16±0.14mm and

2.61 ±0.1 Omm respectively (p<0.05).

In conclusion, there was a trend towards clinical improvement in all 

parameters in the combination group compared to etanercept alone. 

Although this was not statistically significant, it is likely that if greater animal 

numbers were used there would be a significant difference. Etanercept and 

sgp130:Fc in combination were significantly better than sgp130:Fc 

monotherapy.

5.2.5 Histological Assessment of Effect of Intervention in Early Arthritis

Sections were cut and stained as previously described. Sections were 

scored by a blinded observer using an in-house scoring system as 

previously described (section 2.18).

In the samples from PBS control mice sacrificed at day 27 the mean arthritis 

index was 8.25±1.61 (Values shown are mean ± SD). By day 27 after 

initiation of disease there was already evidence of cellular infiltrate with 

leucocyte infiltrate and exudate into the joint space. There was significantly 

less synovial hypertrophy when compared to PBS treated animals sacrificed 

at experimental endpoint (1.67±0.37 vs 2.8±0.21 p<0.05). In addition there 

appeared to be a reduction in bone and cartilage erosion (1.75±0.39 

compared to 2.3±0.32) although this did not reach statistical significance. 

There was no significant difference in arthritis index between animals 

sacrificed at day 27 and animals sacrificed at endpoint.
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In the samples from animals sacrificed at experimental endpoint mean 

arthritis index for PBS controls was 11.2±1.18. There was severe arthritis in 

all joints with evidence of marked synovial hypertrophy with a heavy 

leucocyte infiltrate evidenced by dense nuclear staining. The joint space 

had a leucocyte rich exudate and there was marked bone and cartilage 

damage with loss of normal joint contours.

Changes seen in the sgp130:Fc therapy group were similar with marked 

synovial hypertrophy and a heavy leucocyte infiltrate evidenced by dense 

nuclear staining. The joint space had a leucocyte rich exudate and there 

was marked bone and cartilage damage with loss of normal joint contours. 

The mean arthritis index was 11 ±0.71 which was not statistically different 

from arthritis index in the PBS group.

In contrast, in the etanercept group, arthritis was milder with an arthritis 

index of 6.75±1.41. Joints showed a reduction in all parameters of 

histological damage with only mild synovial hypertrophy, less leucocyte 

infiltrate and a reduction in bone and cartilage erosion. The arthritis index 

was significantly lower than in the PBS controls (p<0.05).

In the combination therapy group, the mean arthritis index was also 

significantly lower than in the PBS controls (6.55±1.72; p<0.05). Arthritis 

appeared milder with less synovial hypertrophy, less leucocyte infiltrate and 

a reduction in bone and cartilage erosion.

Both etanercept monotherapy and combination therapy were significantly 

better than PBS control in preventing histological damage. There was no 

significant difference between etanercept monotherapy and combination 

therapy in preventing histological damage (Figure 5.30). Representative 

sections are shown below in Figure 5.29.

In conclusion, combination therapy with etanercept and sgp130:Fc shows a 

trend towards improving clinical score when compared to etanercept 

monotherapy and significantly improves disease pathology, as shown by 

improvement in all parameters of histological assessment and arthritis index 

when compared to PBS controls.
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Figure 5.27 - Effect of sgp130:Fc on clinical score and paw swelling in 

early arthritis
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Graph demonstrating clinical score and paw swelling in millimetres from day 
of first clinical signs of arthritis until experimental endpoint when mice had 
received 7 doses of therapy or severity limits reached. Mice were treated 
with 2.5 mg/kg sgp130:Fc on a daily basis or PBS. Graphs show mean of 6  

mice±SEM in treatment group and mean of 5 mice±SEM in PBS control 
group. There was no significant difference seen between groups.
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Figure 5.28 - Effect of low dose etanercept alone and in combination 
with sgp130:Fc on clinical score and paw swelling in early arthritis
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Graph demonstrating clinical score and paw swelling in millimetres from day 
of first clinical signs of arthritis until experimental endpoint when mice had 
received 7 doses of therapy or severity limits reached. Mice were treated 
with 50 pg of etanercept alone or in combination with 2.5mg/kg sgp130:Fc 
on a daily basis. Graphs show mean of 6  mice±SEM per treatment 
condition. There was no significant difference seen between groups.
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Figure 5.29 - Representative histological sections from each therapy 
group following intervention in early arthritis.
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Figure 5.30 - Effect of early intervention with sgp130:Fc and etanercept 
singly and in combination on histological parameters of disease
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Histology scores show results for each treatment group scored by a blinded 
observer. Individual paw scores are shown by black circles and mean of 
each treatment condition by a horizontal line. * shows significant difference 
in mean (p<0.05) when compared to PBS control group. There was no 
significant difference between etanercept and combination therapy groups.
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5.3 Discussion

sgp130:Fc therapy given from time of arthritis induction led to a 50% 

reduction in incidence of rnCIA. This compares favourably with results 

obtained in anti-TNFa therapeutic trials where 6 6 % of animals developed 

disease (Williams et al 1992). The results are similar to those described by 

Wooley et al where incidence of arthritis in anti-TNF treated animals was 

55% by day 55. In their control group there was 40% incidence at day 45 

and 90% incidence at day 55 (Wooley et al 1993). The time course of rnCIA 

described by Wooley is very different to our local experience where 100% 

incidence is generally seen by day 28 and severity limits are reached with 

termination of experiment normally between day 35 and 40.

In this prophylaxis experiment, disease severity in those animals which did 

develop arthritis was significantly reduced. Treatment with sgp130:Fc 

resulted in a significant improvement in all parameters of joint degradation 

when assessed histologically, i.e. Infiltration, exudate, hyperplasia and bone 

and cartilage erosion. Therefore, Aim One (which was to establish a 

therapeutic dose of soluble gp130:Fc for disease prophylaxis) was 

achieved.

The second aim of this chapter was to identify a dose of etanercept which 

resulted in 50% inhibition in disease activity in rnCIA. The dose of 

etanercept chosen (2.5 mg/kg) reduced incidence of arthritis to 83%. 

Clinical scores were reduced by 25-75% between days 27 and 30. 

Therefore, Aim Two was achieved with the selection of an appropriate dose 

deemed to be suitable for further combination therapy experiments.

The mechanism of therapeutic efficacy was assessed using histological 

staining. Tartrate resistant acid phosphatase staining (TRAP) was 

demonstrated at joint margins in sites of bony erosions but also within the 

bone marrow. This suggests that osteoclasts can be formed both locally at 

erosion site and also within neighbouring bone marrow. TRAP activity was 

also demonstrated within the bone marrow by other groups in murine
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inflammatory arthritis (Cawston et al 2005). Erosions may occur both from 

the joint surface inwards and also from the bone marrow outwards.

Both NFkB and STAT signalling pathways are up-regulated in the presence 

of arthritis as measured by EMSA in nuclear extracts obtained from mouse 

fore paws. NFkB activation appeared to be predominantly that of P50 and 

to lesser extent P65 sub-units. NFkB activation correlated fairly well with 

clinical score and was also reduced by etanercept treatment even in paws 

where clinical score remained high. Reduction in disease severity has been 

shown previously to be associated with reduction in NFkB activation within 

murine ankle joints but specific sub-units were not assessed (Gerlag DM et 

al 2 0 0 0 ).

STAT activation appeared to be predominately STAT 3. Levels of activation 

were low even in markedly arthritic paws (scoring 4). Therefore, it appears 

likely that, in end-stage disease, STAT activation is less important than 

NFkB activation in rnCIA. It would be useful to assess signalling at other 

earlier time-points. It is known that IL- 6  levels in rnCIA peak at day of first 

collagen injection, i.e. prior to onset of clinical disease. This is likely to be 

the time at which STAT activation is also maximal (Takagi et a /1998).

The effect of therapy on STAT activation was less clear cut. STAT activity 

was not up-regulated in all arthritic paws. However, sgp130:Fc appeared to 

be more effective at reducing STAT activation than etanercept therapy.

Richards et al showed reduction in STAT-3 staining by immuno- 

histochemistry in paraffin wax sections from mice with AIA treated with 

gp130-RAPS (an alternative method for blocking IL- 6  trans-signalling) 

(Richards et al 2006). It is likely therefore that therapeutic effects of 

etanercept occur via inhibition of NFkB activity, whilst blockade of IL- 6  trans­

signalling is likely to occur via its effects on STAT 3 activity.

Atreya et al demonstrated a reduction in STAT 3 activation in-vitro in T cells 

from patients with Crohn’s disease cultured with anti IL-6 R antibody. They 

also demonstrated a reduction in STAT3 activity in spleen cells obtained 

from colitic T cell reconstituted severe combined immunodeficiency (SCID)
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mice following treatment with anti IL-6 R. It is not clear from their paper at 

what stage in disease STAT 3 was measured (Atreya et al 2000). This 

would suggest that blockade of IL- 6  directly also results in down-regulation 

of STAT 3 signalling and that this is not a pathway activated solely by trans­

signalling mechanism.

In RA, STAT 1, 3 and 4 have been shown to be up-regulated in the 

synovium. STAT 3 has been shown to promote survival of RA synovial 

fibroblasts (Krause 2002). Treatment of RA synovial fibroblasts with IL- 

6 /slL-6 R also results in significant up-regulation of STAT 1 and STAT 3 

when measured by EMSA (Deon et al 2001). Therefore, a therapy which 

down-regulates STAT 3 may well be effective in RA.

Following the successful use of sgp130:Fc in prophylaxis of arthritis; the 

effect of sgp130:Fc in established disease was then assessed. Therapy 

was initiated at day 27 when arthritis incidence was 100%. Mice were 

treated with either PBS (control), sgp130:Fc or etanercept. At day 30, 50% 

of the etanercept group had sgp130:Fc added to their therapy in order to 

model the addition of a second therapy in those who may be achieving sub- 

optimal benefit from anti-TNFa therapy.

sgp130:Fc therapy resulted in significant improvement in clinical disease 

parameters. The improvement was comparable to that achieved in trials of 

anti-TNF directed therapies in established disease. Wooley et al reported a 

reduction of approximately 30% in clinical score in established disease with 

soluble TNF receptor (Wooley et al 1993).

When combination therapy was compared to etanercept monotherapy, there 

was a trend towards improvement in clinical scores at endpoint. When 

change in arthritis index was compared from time of initiation of combination 

therapy, the combination therapy group had significantly less disease 

progression. Unfortunately, the improvement in clinical scores did not result 

in improvement in gross histology. Only etanercept treated animals had 

significantly lower histology scores than the PBS control group.
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Reduction in macrophage numbers and staining intensity were seen in 

sgp130:Fc and combination therapy treatment groups when compared to 

PBS controls as assessed by immuno-histochemistry. Numbers of 

macrophages were decreased significantly in sgp130:Fc treated animals 

when compared to control or etanercept treated groups even when total 

leucocyte numbers did not appear to be affected. This correlates with my 

data shown in chapter 3 where anti-IL6 R therapy does down regulate 

production of CCL2 (macrophage chemo-attractant). Interestingly, from my 

in-vitro studies, etanercept also appeared to down-regulate CCL2 but this 

has not translated into a reduction in macrophage infiltrate in rnCIA.

The effects on regulatory T cell numbers were less clear cut. There 

appeared to be an increase in regulatory T cell numbers in sgp130:Fc 

treated animals although this was not significant. There did not appear to 

be an increase in regulatory T cell numbers in etanercept monotherapy or 

combined therapy groups. It was not possible to stain for any other T cell 

markers so it is still unclear whether the possible change in T reg numbers 

was due to an alteration in total T cell numbers or due to specific induction 

of T regs by sgp130:Fc treatment. As functional activity was not assessed, 

it was not possible to determine whether the increase in T-Reg numbers led 

to improvements in functional activity, i.e. suppression of cytokine 

production.

Work from Doganci et al looking at the effect of IL-6 R blockade on 

regulatory T cell function in asthma showed that regulatory T cell numbers 

could be locally up-regulated using inhaled antibodies against IL-6 R but 

again found no difference in T-Reg numbers after administering sgp130:Fc 

systemically. Therefore, sgp130:Fc may not exert its beneficial action via 

effects on regulatory T cell numbers (Doganci A et al 2005). In recent work 

Dominitzki et al identified that addition of hyper IL- 6  to stimulated T cells 

obtained from murine splenocytes prevents induction of Fox-P3. However, 

they did not look at the capacity of sgp130:Fc to block this IL- 6  trans­

signalling capacity (Dominitzki et al 2007). Further work is therefore needed
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to assess the ability of sgp130:Fc to affect regulatory T cell numbers and 

function in rnCIA.

The function of regulatory T cells in RA has also been studied. Conflicting 

reports exist regarding the proportion of T Regs in the peripheral circulation 

in RA compared to normal. This appears to depend on whether all CD25+ 

cells were analysed or whether only CD25 bright cells were included (Van 

Amelsfort 2004; Ehrenstein et al 2004). There does appear to be a 

significant correlation between peripheral T Reg numbers, ESR and CRP 

(Van Amelsfort 2004). T Reg numbers have been shown to be increased in 

synovial fluid when compared to peripheral blood (Cao et a /2003).

Ehrenstein et al suggested that although T Reg numbers in RA are 

increased; paradoxically their function is compromised and they are unable 

to suppress production of pro-inflammatory cytokines. They demonstrated 

that, following anti-TNFa treatment, the capacity of cells to inhibit cytokine 

function was restored. Treatment resulted in a significant rise in peripheral 

blood levels of T regs (Ehrenstein et al 2004). However, this increase in 

regulatory T cell numbers was not noted in other studies (Dombrecht et al 

2006; Vigna-Perez et al 2005). More recently, Nadkarni et al showed that 

whilst Infliximab therapy induced a new population of T regulatory cells 

lacking CD-62 ligand that natural CD62L+cells remained deficient (Nadkarni 

et a/2007).

Recent work has shown a possible role for IL-6 /slL-6 R in the function of 

regulatory T cells. Using an animal model of asthma, Doganci et al 

demonstrated induction of regulatory T cells following treatment with anti-IL- 

6 R antibody (Doganci et al 2005). Using an in-vitro assay of regulatory T 

cell function, addition of hyper-IL- 6  (soluble IL- 6  receptor/IL- 6  fusion protein) 

resulted in marked reduction of suppressor capacity of regulatory T cells 

(Oberg et a /2006).

Therefore, whilst T Regs appear to display a suppressive role in the 

development of murine models of arthritis; their role in RA appears more 

complex. The presence of large numbers of cells in the synovium in the
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absence of a clear suppressor role may be due to overwhelming of this host 

mechanism by large numbers of reactive T cells or alternatively to specific 

conditions within the joint in human disease which prevent the action of 

these T Regs. Further work is obviously needed to determine the role of 

regulatory T cells in RA and the effect of therapy on their function.

Whilst sgp130:Fc was effective in established disease, the aggressive 

nature of the condition meant that the dose of 2.5 mg/kg, which was very 

effective when given for disease prophylaxis, was less effective in 

established disease. A further experiment was therefore planned using 5 

mg/kg sgp130:Fc to assess whether a higher dose might be more clinically 

effective. Unfortunately, sgp130:Fc was no more effective than PBS control 

in this experiment. The course of disease seen in this experiment was 

different to that seen normally. Arthritis was earlier in onset, i.e. 5/24 mice 

had signs of arthritis on day 21. The incidence was 71% at day 25 and 2 

mice had a score of 12 at this point. It was necessary to dispatch 2 mice 

before the end of the experiment due to severity limits being reached which 

affected the final analysis. After initial severe disease onset, there was 

some improvement in the control group disease severity before the end of 

the experiment meaning that it was harder to pick out improvements due to 

therapy.

Interestingly, when anti-IL6 R antibodies were used in established disease in 

rnCIA, it was also found that there was only therapeutic benefit when 

therapy was administered shortly after collagen immunisation rather than in 

established disease (Yoshizaki et al 1998). Work from this group showed 

that IL- 6  levels peaked at day one following first collagen injection and had a 

second smaller peak at day 28. This may explain why IL- 6  targeted therapy 

is more effective at disease initiation as this would coincide with timing of IL- 

6  peaks (Takagi et al 1998). It has also been shown previously that IL- 6  is 

essential for the development of collagen-induced arthritis (Alonzi et al 

1998) and, therefore, if IL- 6  is sufficiently suppressed at time of arthritis 

induction then rnCIA will not develop.
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There was also no improvement in paw scores or clinical scores when 

etanercept and sgp130:Fc were given in combination compared to 

etanercept monotherapy. In contrast, there was an improvement in 

histological joint damage in the combination therapy group when compared 

to PBS which did not occur in either monotherapy group. When individual 

components of arthritis index were assessed, it appeared that this 

improvement was mainly due to a reduction in cartilage and bone erosion 

and exudate. Similar levels of hypertrophy and infiltrate were seen in all 

therapy groups.

Direct comparisons with histological outcomes in other studies are difficult 

as different scoring systems are used in each experiment. Williams et al 

showed reduction in severe histological damage characterised by synovitis, 

extensive erosions and disruption of joint architecture but did not separate 

into specific components (Williams et al 1992). Other groups did not look at 

histology (Piguet et al 1992; Wooley et al 1993).

rnCIA resulted in up-regulation of NFkB primarily P65 sub-unit with lesser 

P52 involvement. Etanercept monotherapy abolished this up-regulation. 

Combination therapy and sgp130:Fc did not prevent up-regulation. The 

failure of sgp130:Fc to suppress disease and the loss of etanercept effect 

on NFkB may be due to inefficacy of sgp130:Fc. Alternatively, it is possible 

that this batch of sgp130:Fc may have been contaminated with a substance, 

e.g. LPS which worsened arthritis and resulted in NFkB activation.

In this experiment STAT 1 and 3 both appeared to be up-regulated in active 

arthritis. This was less than the level of activation which occurs in SES 

induced peritoneal inflammation. Activation appeared lower in all therapy 

groups than in PBS controls. STAT activation appeared higher in the 

combination therapy group than in animals treated with etanercept or 

sgp130:Fc monotherapy. As discussed earlier in the chapter, day 35 is 

probably not the best time point to assess STAT activity in rnCIA.

Interactions between IL-1 or TNFa and IL-6 /slL-6 R resulting in down- 

regulation of STAT activation have been described (Deon D et al 2001).
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This provides an explanation for low levels of STAT activation seen at 

disease end-point. TNFa is assumed to be up-regulated in end-stage 

disease (Wooley et al 1993). This may explain why high STAT levels were 

seen in the combination therapy group where TNFa activity was reduced 

therefore removing inhibitory effect of TNFa on STAT activity.

In a final experiment designed to maximise the effects of therapy, treatment 

was started at the first sign of clinical disease in order to model intervention 

in early RA as opposed to end-stage disease when it was likely that much 

joint damage had already occurred. Both therapies were given 

simultaneously to assess the effects of combination therapy rather than 

modelling inadequate response to TNFa monotherapy.

sgp130:Fc did not improve clinical disease severity. Both etanercept and 

combination therapy were significantly better than PBS at improving clinical 

markers of disease severity.

Combination therapy was superior to monotherapy at all time points in 

reducing paw swelling, paw scores and arthritis index but this reached 

significance at doses 6  and 7 only. It is likely that if greater numbers of 

animals had been treated that statistical significance would have been 

reached at endpoint.

Histological analysis again showed significant improvement in all 

parameters when etanercept and combination were compared to PBS 

controls. There was no significant difference between etanercept 

monotherapy and combination with sgp130:Fc. It is possible that if greater 

numbers of animals had been treated that statistical significance would have 

been reached.

In summary, although sgp130:Fc did not appear to be effective when given 

in established disease; the results were not dissimilar to the effects of anti 

IL-6 R in rnCIA which did not have any benefit when given later than 3 days 

after disease initiation (Takagi et al 1998). Although this was the case, anti 

IL-6 R therapies have been shown to be effective in established disease in 

humans (Nishimoto et al 2004; Choy et al 2 0 0 2 ). It is likely that IL- 6  levels

213



are more dynamic in RA than in rnCIA. Indeed both serum and synovial 

fluid IL- 6  levels have been shown to undergo diurnal variation. Levels in 

serum and SF appear to be independently regulated (Perry et al 2006). IL- 6  

levels are high in active disease, even in long-standing arthritis (Charles et 

al 1999). There is, therefore, a reasonable expectation that targeting IL- 6  

trans-signalling in established RA may well be beneficial.

The efficacy of combination therapy and its mechanisms of action were 

studied in these experiments. It is likely that sgp130:Fc exerts some of its 

effect by modulating leucocyte recruitment, specifically macrophage 

recruitment. There may be an additional effect on T cell function which 

could not be fully assessed in this experimental model. Although it appears 

that NFkB and STAT activation are affected in this model, further 

experiments at different time points would be necessary to fully elucidate the 

effects of therapy on these signalling pathways.

Combination therapy for rnCIA appeared to be tolerated by mice and 

resulted in reduction in clinical disease severity. Its effects may be mediated 

by modulating macrophage recruitment preventing chronic inflammatory 

changes. It is likely that therapy would need to be started early in disease to 

prevent histological damage. It appears that there is now proof of concept 

for the theory that combination therapy with etanercept and sgp130:Fc may 

be effective in selected patients with rheumatoid arthritis.
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6 IMPLICATIONS FOR IL-6 SIGNALLING IN

RESPONSE TO ANTI-TNFA THERAPY

6.1 Introduction

In previous chapters I demonstrated that the functions of IL-6 /slL-6 R and 

TNFa are closely linked in the pathogenesis of RA. TNFa, in levels similar 

to that found in the RA joint, elicited shedding of IL- 6  from the surface of 

infiltrating leucocytes which would allow trans-signalling to occur within the 

joint. TNFa and IL- 6  trans-signalling activities then cause up-regulation of 

chemokine and adhesion molecule expression by RA fibroblasts with further 

effects on leucocyte recruitment and propagation of inflammation. Having 

demonstrated that functions of TNFa and IL- 6  trans-signalling within the joint 

are closely linked; we speculated that response to therapy with TNFa 

antagonists may also be affected by IL- 6  trans-signalling in RA.

The majority of patients commenced on anti-TNFa therapies have an 

excellent response to treatment. However, there are a significant minority 

who fail to respond adequately or, who after initially promising response, 

have disease relapse. Studies have been performed to assess whether it 

may be possible to identify those patients who are less likely to have a good 

clinical response.

This would be useful both to prevent wastage of expensive drugs in a 

situation where they are unlikely to succeed and also to choose the most 

appropriate therapy which is likely to help an individual patient.

Proteomics, with its focus on comparing individual gene and protein 

expression patterns with clinical features, may eventually be of use in 

predicting which therapies are most likely to be effective in each individual 

patient. However, at present, research in this area is not far enough 

advanced to utilise this technology.
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In RA, clinical response can be defined in several ways. For the purposes 

of BSR/NICE recommendations, a fall in DAS score of 1.2 or to below 3.2 is 

needed in order to stay on therapy.

ACR response criteria have been used in the majority of clinical trials. Most 

commonly, ACR 20 (20% improvement from baseline) as the primary 

endpoint but ACR 50 and 70 have also been assessed.

When considering anti-TNFa treatment, the following factors which might be 

considered to predict clinical response have been investigated;

a) Clinical predictors

Work from the BSR registry looking retrospectively at clinical data and 

outcomes in 2879 patients concluded that a higher baseline HAQ score 

correlated with a lower response rate; whilst a better response was 

associated with the current use of NSAIDs and the use of methotrexate 

(MTX). There was a lower response rate among current smokers. Age, 

disease duration, rheumatoid factor and the previous number of disease- 

modifying anti-rheumatic drugs (DMARDs) did not predict response to anti- 

TNF therapy. Females were less likely to achieve remission. They 

suggested that the inability of other baseline disease characteristics to 

predict the outcome suggests that other factors, including potential genetic 

differences in drug metabolism, may be influencing the response to anti- 

TNF-alpha therapies (Hyrich etal 2006).

b) Genetic predictors

Many other studies have focussed on the role of TNFa gene polymorphisms 

in predicting response to anti-TNFa therapies. There were no consistent 

findings between these studies which used a variety of therapies and a 

variety of methods for assessing outcome. Seitz et al found that those 

patients with a G/G phenotype were more likely to have a good response to 

therapy irrespective of the underlying disease (Seitz et al 2007). An earlier 

study from 2003 also concluded that patients with a TNFa -308G/G
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genotype were better infliximab responders than are patients with A/A or 

A/G genotypes (Mugnier et a /2003).

In contrast, another study from 2004 compared patients with G/G and A/G 

phenotypes. Both groups showed a significant improvement with treatment 

in all variables studied (Cuchacovic et a /2004).

Finally, a meta-analysis incorporating six studies showed a significant 

association between the TNFa promoter -308 A/G polymorphism and 

responsiveness to anti-TNF therapy, suggesting that the individuals with RA 

who carry the A allele have a poorer response to anti-TNF therapy than 

those with the G allele (Lee et a/2006).

Polymorphisms associated with other cytokine genes were assessed in a 

single study. 123 patients with active RA were commenced on etanercept. 

Genotyping was carried out for TNF (-308 TNFA), interleukin 10(IL-10), 

transforming growth factor Beta 1 (TGFpi), and IL-1 receptor antagonist (IL- 

1 RA). Response was defined by ACR20 or DAS 28 response criteria. 20% 

of patients did not achieve response. None of the recorded alleles was 

associated with responsiveness to treatment. However, a certain 

combination of alleles (-308 TNF1/TNF1 and -1087 G/G) was associated 

with good responsiveness to etanercept (p<0.05). In addition, a 

combination of alleles influencing interleukin 1 receptor antagonist (IL1Ra) 

and TGFpi production (A2 allele for IL1 RN and rare C allele in codon 25 of 

TGFpi gene) was associated with non-responsiveness (Padyukov et al 

2003).

c) Laboratory measurements predicting response

A Scandinavian group studied 35 RA patients initiating treatment with 

Infliximab. They defined response to treatment as an improvement of at 

least 20% in ACR 20 at 2  weeks, i.e. after a single infusion of Infliximab. 

They noted significantly higher numbers of CCR3 positive CD8  cells and 

higher numbers of CCR5 positive CD4 cells at baseline in non-responders.
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Responders had increased numbers of CD3 cells following treatment. This 

increase was not seen in non-responders. No other difference between 

responders and non-responders was seen (Nissinen et al 2004).

In 2006, a cohort was described in which anti-CCP antibodies were 

measured prior to treatment with Infliximab. Anti-CCP and IL- 6  levels 

decreased in those patients who responded to treatment but initial anti-CCP 

levels did not correlate with likelihood of response to treatment (Braun- 

Moscovi et al 2006). These findings were disputed by a second study 

assessing response to Adalimumab where there did not appear to be any 

relationship. The positive finding from this study was that patients with low 

serum cartilage oligomeric protein (COMP) levels (<10 U/l) at baseline 

showed a significantly higher ACR70 response (>50%, p<0.02) within 3 

months, and also at 6  months, than patients with higher COMP values 

(ACR70 < 20%) (Morozzi G et a /2007).

It therefore appears that at present the best predictor of response to therapy 

is being a non-smoker with ability to tolerate methotrexate. Whilst there is 

some evidence for genetic polymorphisms predicting response to therapy, 

other bio-markers would be useful.

IL- 6  appears important in RA pathogenesis and it has been shown that IL- 6  

falls rapidly following treatment with Infliximab (Charles et al 1999). 

However, in initial clinical trials of patients receiving low dose Infliximab 

therapy (1 mg/kg) there was a subsequent increase in IL- 6  levels over the 

following 28 days (Charles et a /1999).

There is no published data on the effect of anti-TNF directed therapies on 

IL- 6  levels at week 14. Since this is the point at which decisions are taken 

regarding whether therapy should be continued or not it would be interesting 

to assess IL- 6  levels at this point. The effect of anti-TNF directed therapies 

on slL-6 R levels has not been assessed.

We identified previously that stimulation of neutrophils with TNFa results in 

loss of cell surface IL-6 R expression and was accompanied by an increase 

in slL-6 R levels in cell supernatants. TNFa and IL- 6  trans-signalling interact
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to modulate leucocyte recruitment via effects on chemokine production most 

marked on CCL2 (macrophage chemo-attractant). Additionally, we 

demonstrated that TNFa and IL- 6  trans-signalling also up-regulate ICAM-1  

expression on synovial fibroblasts; potentially leading to significant effects 

on leucocyte recruitment in the RA joint. We also identified that 

combination therapy with sgp130:Fc and Etanercept results in improvement 

of clinical and histological features of rnCIA. This led us to surmise that 

TNFa and IL- 6  trans-signalling are closely linked in the pathogenesis of RA 

and that measurement of IL-6 /slL-6 R levels may be useful in predicting 

response to anti-TNFa therapies.

The hypothesis that IL-6 /slL-6 R may be useful markers to predict response 

to anti-TNFa therapies was examined through the following specific aims:

1. To study an inception cohort of patients commencing anti-TNFa 

therapy;

2. To measure serum IL- 6  and slL-6 R levels pre and post anti-TNFa 

therapy;

3. To identify whether there was any correlation between response 

to anti-TNFa therapy and IL-6 /slL-6 R levels.
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6.2 Results

All patients commencing anti-TNFa therapy from July 2006 at UHW were 

invited to take part in this study to identify whether there is any correlation 

between IL-6 /slL-6 R levels and response to anti-TNFa directed therapies. 

Any patient starting a second biologic drug, or who had a diagnosis other 

than RA was excluded. Samples were collected at baseline and at 14 week 

assessment. DAS scores were calculated prior to treatment on 2  separate 

occasions 1 month apart and again at 14 weeks in accordance with BSR 

guidelines. Previous DMARD therapy was noted together with age and sex. 

Therapy was chosen as a result of consultant and patient preference. The 

gender, therapy and age of the 9 patients utilised in this small pilot study are 

tabulated below (Table 6.1).

Sample collection is ongoing but results of first 9 patients were assessed to 

identify whether there is any correlation between IL-6 /slL-6 R levels and 

response to anti-TNFa directed therapies.

Table 6.1 - Patient characteristics of anti-TNFa inception cohort

Sex

CLCLCL CL
a.

Age 44 44

6 .2 .1  DAS Scores

The mean pre-treatment DAS score was 6.7±0.7. All patients had a mean 

pre-treatment DAS score of greater than 5.1, in accordance with BSR 

guidelines for prescription of anti-TNFa therapy. Mean DAS score at week 

14 assessment was 4.65±0.90. BSR guidelines define response to therapy
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as a DAS score of ^3 . 2  or a fall in DAS of greater than 1 .2 . This occurred for 

all patients except patient 6  who had a reduction of 0.19 from mean pre­

treatment DAS. Patient 7 had a fall in DAS of 1.13 from mean although a 

fall of 1.53 from final pre-treatment DAS. Mean fall in DAS score for the 

entire patient population was 2.05±0.92 (Figure 6.1).

6 .2 . 2  Serum IL- 6  Levels

In this patient population the mean pre-treatment IL- 6  level was 569±330 

pg/ml with week 14 levels rising to 747±483 pg/ml. IL- 6  levels were 

detectable in serum of all bar one of the patients pre-treatment. Following 

anti-TNFa treatment, IL- 6  was not detectable in sera of three patients. 

Levels of IL- 6  fell in five patients; remained undetectable in one patient and 

rose in three. This did not correlate with response to therapy. However, the 

patient with highest initial level of IL- 6  (2828 pg/ml) also had the poorest 

response to therapy and the largest rise in levels following therapy (to 4030 

pg/ml). IL- 6  levels are shown in Figure 6.2A.

6.2.3 Serum slL-6 R Levels

slL-6 R was detectable in the sera of all the patients pre and post treatment.

Mean pre-treatment slL-6 R level was 48±6.67 ng/ml with post treatment

levels of 51 ± 3.38 ng/ml. Levels following anti-TNF therapy rose in five 

patients and fell in four patients. There were too few patients to identify 

whether slL-6 R levels were associated with response to therapy, however 

levels did appear lower in non-responders (Figure 6.2B).
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Figure 6.1 - DAS scores pre and post anti-TNFa therapy
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Patient ID

Graph showing mean pre-treatment DAS score±SD and week 14 DAS 
score. Black bars show pre-treatment score and white bar week 14 score. 
Patient 6  did not have a fall in DAS greater than or equal to 1 . 2  (fall from 
mean DAS = 0.19). Patient 7 had a fall in DAS of 1.13 from mean although 
a fall of 1.53 from final pre-treatment DAS. Mean fall in DAS score for 
patient population was 2.05±0.92.
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Figure 6.2 - IL-6 and SIL-6R levels pre and post anti-TNFa therapy
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Graphs showing pre and post treatment serum IL- 6  and slL-6 R levels. 
Black bars show pre-treatment levels and white bar week 14 levels. Mean 
pre-treatment IL- 6  level was 569±330 pg/ml with post treatment levels of 
747±483 pg/ml. Mean pre-treatment slL-6 R level was 48±6.67 ng/ml with 
post treatment levels of 51 ±3.38 ng/ml.

223



6.2.4 Correlation Between Response to Therapy and Serum Levels of IL-

6  and SIL-6 R

Response to therapy was calculated according to NICE/BSR guidelines, i.e. 

a fall in DAS score of 1. 2  or to below 3.2. Patients 6  and 7 were classified 

as non-responders according to the BSR guidelines. There was no clear 

pattern between response to therapy and IL- 6  or slL-6 R levels pre-therapy. 

However, the numbers of patients, in particular non-responders, were low 

(Table 6.2 shows levels in responders compared to non-responders). 

There was no correlation between type of anti-TNF therapy used and effect 

on IL- 6  or slL-6 R levels although greater numbers of patient samples would 

need to be examined.

Table 6.2 - Correlation between response to therapy and serum levels 

of IL-6 and slL-6R

Responders Non responders

Pre-treatment siL-6R (ng) 52.72±18.34 31.82±12.35

Post-treatment SIL-6R 53.69±9.64
NS

41.86±1.24 
NS

Pre-treatment IL-6 (pg) 320±438 1440±1963

Post-treatment IL-6 382±670
NS

202512835
NS
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6.3 Discussion

Levels of IL- 6  and their variability measured in our patient population were 

similar to those noted in previous published work. Robak et al noted mean 

IL- 6  levels of 52.7±53.2 pg/ml in their patient population (Robak et al 1998). 

Desgeorges et al noted levels of IL- 6  of 82.7±71 pg/ml in their patient 

population (DesGeorges et al 1997). Although the mean level in our study 

was 569 pg/ml, there was high disease activity in all patients as evidenced 

by their need for anti-TNFa therapy. The median pre-treatment value in our 

series was 168 pg/ml and post-treatment 80 pg/ml. The work of Feldmann 

et al suggests that patients entering trials of Infliximab had elevated levels of 

IL- 6  in the region of 100 pg/ml (Feldmann eta l 1998).

Trials of anti-TNF therapies suggest a rapid normalisation of IL- 6  levels in 

most patients by day one which appears to last up to 28 days. However, 

levels past this point have not been reported and only the change in median 

values were quoted (Charles et al 1999). Although there was a drop in IL- 6  

levels in some patients in our series, this was by no means universal. 

However, there was a change in median IL- 6  values at week 14.

Levels of slL-6 R seen in our patient series also correlate well with those in 

the published literature: DesGeorges - approx 25 ng/ml; Robak et al -

49.7±14.5 ng/ml (DesGeorges et al 1997; Robak et al 1998). Mean pre­

treatment values in our cohort were 48±6.67 ng/ml with post treatment levels 

of 51 ± 3.38 ng/ml.

In practice, there is great variability in IL- 6  and slL-6 R levels. Perry et al 

demonstrated circadian variation in serum and SF levels of IL- 6  in patients 

with RA with an overnight variability of approximately 2 fold in serum values 

(Perry et al 2006; Perry et al 2008). IL- 6  levels, and more recently slL-6 R 

and sgp130 levels, have also been shown to increase with exercise (Gray et 

al 2008). Sleep strongly enhances slL-6 R levels with an increase of up to 

70% with peak levels shortly after morning wakening (Dimitrov et al 2006). 

Therefore, in order to accurately compare IL- 6  and slL-6 R levels over time 

and between patients further information would be useful regarding exercise
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and sleep patterns. If possible, samples should be taken at the same time 

of day for all patients.

Although in this patient population it has not been possible to identify IL- 6  or 

trans-signalling factors which may be used to identify response to anti-TNFa 

directed therapies; it would be useful to continue this study in a larger 

patient cohort to identify whether any true differences do exist. .In addition, 

the failure of patients with high IL- 6  levels to reduce these with therapy 

suggests that there may well be a role for IL- 6  directed therapies singly or in 

combination in selected patient cohorts.
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7 GENERAL DISCUSSION

Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterised 

by persistent, symmetrical inflammation of synovial tissue. Much is known 

about the processes which lead to the recruitment of cells into synovium, the 

maintenance of chronic inflammation and the destruction of bone and 

cartilage. Chemokines, cytokines and proteolytic enzymes have been 

identified although their precise contribution to RA pathogenesis is not fully 

known.

Recent advances in the therapeutic management of rheumatoid arthritis 

have identified that selective targeting of inflammatory cytokines represents 

a valid approach to treatment of rheumatoid arthritis. Although blockade of 

the inflammatory response at its inception by anti-TNFa agents has shown 

considerable clinical promise, this approach is not without its drawbacks. 

Consequently, identification of novel therapeutic strategies is essential. In 

recent clinical trials, favourable results have been found with modalities that 

block interleukin 6  (IL-6 ) signalling. However, it is unclear whether blockade 

of IL- 6  bioactivity offers a true advantage over anti-TNFa therapies, and 

raises the possibility of combination therapies for selected patient cohorts. 

To provide insight into the validity of this approach we investigated the 

hypothesis that TNFa and IL-6 /slL-6 R interact to modulate leucocyte 

recruitment in inflammatory arthritis. This hypothesis was addressed in 

order to provide proof of concept for the possibility that combination TNFa 

and IL- 6  blockade may offer true advantages in selected RA patient cohorts.

In the studies presented in chapter 3, neutrophils were identified as the 

predominant cell type in RA joint effusions comprising 62% of cells. 

Macrophages were the next most prevalent cell type and small numbers of 

lymphocytes were also seen. There was significant reduction in cell surface 

IL-6 R expression on synovial fluid macrophages and neutrophils when 

compared to cells obtained from peripheral blood. In RA patients there was 

no significant difference between serum and synovial fluid levels of slL-6 R 

although mean serum level was higher. Stimulation of neutrophils, obtained
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from peripheral blood, with TNFa, resulted in loss of cell surface IL-6 R 

expression and was accompanied by an increase in slL-6 R levels in cell 

supernatants. slL-6 R production was significantly higher in neutrophils 

extracted from RA patients when compared to normal healthy volunteers. In 

summary, the experiments detailed in chapter 3 demonstrate that infiltrating 

leucocytes within the RA joint are the most likely source of slL-6 R needed 

for trans-signalling within the joint and that the high levels of TNFa found 

during RA flares are likely to contribute to the production of slL-6 R.

In chapter 4 we sought to address aim 1 which was to establish the 

regulatory effects of IL-6 /slL-6 R complex on TNFa bio-activity in-vitro. 

Using RA synovial fibroblasts, experiments were carried out to assess the 

effects of TNFa and IL-6 /slL-6 R on resident cells from the joint and to 

assess whether these interactions lead to modulation of leucocyte trafficking 

within the joint.

We demonstrated that TNFa stimulation of RA fibroblasts led to up- 

regulation of CCL2 , CCL5 and CXCL8 . IL-6 /slL-6 R led to up-regulation of 

CCL2 production. Interactions between TNFa and IL-6 /slL-6 R modulated 

chemokine production with a synergistic increase in CCL2 production most 

markedly and, to a lesser extent, CXCL8  production. Effects on CCL5 

production were more complex with synergistic up-regulation at low levels of 

IL-6 /slL-6 R and down-regulation of CCL5 production at higher doses.

We also conducted parallel experiments using OA fibroblasts. In these 

experiments there was no significant difference between mean amounts of 

chemokine produced by RA and OA fibroblasts. In OA, there was no clear 

synergistic increase in chemokine production as a result of adding IL-6 /slL- 

6 R to TNFa. This may be partly explained by the large variability seen in 

chemokine production by OA fibroblasts. In some cell lines there was 

minimal chemokine production as a result of cytokine stimulation. However, 

in other cell lines, possibly those where there was a more inflammatory 

component to disease, the levels of chemokine produced approached and 

even exceeded those produced by RA cell lines.
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Adhesion molecule expression in RA fibroblasts was also studied. 

Combination of IL-6 /slL-6 R with TNFa in RA fibroblasts resulted in greater 

up-regulation of ICAM-1 expression than TNFa alone. VCAM-1 was not 

further up-regulated by the addition of IL-6 /slL-6 R. This indicated differential 

regulation of these adhesion molecules in RA synovial fibroblasts by TNFa 

and IL- 6  trans-signalling.

Having identified up-regulation of chemokine and adhesion molecule 

expression in RA synovial fibroblasts by TNFa and IL- 6  trans-signalling, the 

effect of inhibiting TNFa and IL-6 /slL-6 R was then assessed. Treatment of 

TNFa and IL-6 /slL-6 R stimulated RA fibroblasts with etanercept resulted in 

significant reduction in CCL2 production. Treatment with anti-IL-6 R also 

resulted in a reduction of CCL2 but was not significant. Treatment with a 

combination of etanercept and anti IL-6 R resulted in further additive down- 

regulation of combined cytokine-induced CCL2 production. In contrast, 

treatment of stimulated RA-SF with etanercept resulted in almost complete 

inhibition of CXCL8  production. Treatment with anti IL-6 R had no effect on 

CXCL8  production. Combination of anti IL-6 R with etanercept provided no 

further inhibition. Adhesion molecule up-regulation was completely 

abolished by etanercept monotherapy.

In order to provide an alternative method for neutralising IL- 6  trans­

signalling sgp130 was added to cells together with stimulating doses of IL- 

6 /slL-6 R. Unfortunately, no inhibition of chemokine production was seen. 

However, when sgp130 was added to fibroblasts stimulated with IL-6 /slL-6 R 

STAT signalling was inhibited at 30 minutes but without any downstream 

effect on chemokine production. It is possible that despite initial reduction in 

STAT up-regulation, this is quickly overcome due to dynamic un-coupling of 

IL-6 /slL-6 R and sgp130. Over the time-course of the experiments there was 

sufficient stimulation from IL-6 /slL-6 R complex to up-regulate chemokine 

production.

Aim 1 of the thesis was achieved by the work described in chapters 3 and 4. 

We identified a source of slL-6 R receptor within the joint and identified that
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TNFa and IL-6 /slL-6 R had the potential to interact to modulate leucocyte 

recruitment in RA via effects on chemokine and cell adhesion molecules.

We then tested whether these observations could be translated in vivo. Aim 

2 of the thesis (to determine the effect of combined TNFa and IL- 6  trans­

signalling blockade in experimental arthritis) was investigated using an 

experimental model of RA (murine collagen induced arthritis).

rnCIA was used to assess in vivo the effects of targeting trans-signalling with 

sgp130:Fc and to gain some insight into its mechanism of action via effects 

on macrophages, T cells and cell signalling pathways. By modelling 

patients with a sub-optimal response to anti-TNF therapy, the effect of 

addition of sgp130:Fc was studied to identify whether there was added 

benefit from combination therapy.

A dose of sgp130:Fc (2.5 mg/kg/mouse/day) was identified that exerted 

significant therapeutic benefit when administered prior to disease onset in 

rnCIA. Following a review of relevant literature, a dose of etanercept was 

chosen to model sub-optimal response to therapy. This dose, although 

resulting in greater than 50% reduction in clinical score in rnCIA when 

compared to control animals after 7 days of therapy, was felt to be a suitable 

dose for further experiments. Using EMSA to assess the effect of therapy 

on cell signalling pathways demonstrated that NFkB was up-regulated in 

active disease and was down-regulated by etanercept therapy. NFkB up- 

regulation was also less in those animals treated with sgp130:Fc who had 

low clinical scores. This suggests that a reduction in disease activity is the 

best predictor of NFkB activity. In contrast, STAT activation was less 

marked in active disease than might have been expected. Further review of 

the literature suggested that STAT activation is most marked in the 10 days 

after disease onset and that therefore disease endpoint (day 35) is probably 

not a good time point at which to examine STAT activity (Shouda ef a/2001; 

Sharara et al 2003).

When trans-signalling was targeted with sgp130:Fc in established rnCIA; 

sgp130:Fc monotherapy was effective in improving clinical disease severity
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in rnCIA. There was no improvement in overall disease histology. There 

was a significant difference in macrophage infiltration in joints of animals 

treated with sgp130:Fc. The effect of therapy on regulatory T cells was 

assessed by staining for Fox-P3. Although Fox-P3 positive cells could be 

identified, the numbers of cells present were low. In this small sample there 

was no significant difference seen in Fox-P3 expression between treatment 

groups although there appeared to be a trend towards an increase in the 

sgp130:Fc therapy groups.

Addition of sgp130:Fc to sub-optimal etanercept therapy resulted in a 

significant change in clinical score when compared to continuing on 

etanercept monotherapy. Combination therapy did not appear to be better 

than sgp130:Fc. However, the timeframe for combination therapy was only 

5 days and only small numbers of animals were assessed. There was no 

improvement in disease histology as a result of any therapy other than 

etanercept monotherapy. There was a significant difference in macrophage 

infiltration in joints of animals treated with sgp130:Fc in combination with 

etanercept.

A further experiment was carried out with an increased dose of sgp130:Fc 

which we anticipated would further improve disease outcome. 

Unfortunately, when this higher dose (5 mg/kg) was used, sgp130:Fc 

monotherapy (5 mg/kg) was not effective in improving clinical disease 

severity in rnCIA. Addition of sgp130:Fc to sub-optimal etanercept therapy 

did not result in a significant change in clinical score when compared to 

continuing on etanercept monotherapy. When histological parameters were 

compared, targeting trans-signalling had no effect on pathology. 

Combination therapy did reduce histological damage although arthritis was 

still present. There was a reduction in the degree of synovial hyperplasia 

together with a reduction in leucocyte infiltrate and bone and cartilage 

damage.

A final experiment was carried out to mimic intervention in early arthritis 

which we predicted would provide the best chance of preventing 

pathological damage. Targeting trans-signalling alone had no effect on
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clinical or histological disease severity. There was a trend towards clinical 

improvement as a result of combination therapy with sgp130:Fc and 

etanercept compared to etanercept alone. Although this was not statistically 

significant, it is likely that if greater animal numbers were used there would 

be a significant difference. Etanercept and sgp130:Fc in combination were 

significantly better than sgp130:Fc monotherapy. There was also significant 

improvement in disease pathology, as shown by improvement in all 

parameters of histological assessment, when combination therapy was 

compared to PBS control. Thus, aim 2 of the thesis was achieved.

Having demonstrated that functions of TNFa and IL-6 trans-signalling within 

the joint are closely linked, we speculated that response to therapy with 

TNFa antagonists may also be affected by IL6 trans-signalling in RA. This 

led to the development of aim 3 of the thesis, which was to examine the 

effect of anti-TNFa treatment on IL-6 trans-signalling in RA patients.

In chapter 6, experiments were described in which all patients commencing 

anti-TNFa therapy from July 2006 at UHW were invited to take part. Blood 

samples were collected at baseline and at 14 week assessment. DAS 

scores were calculated prior to treatment on 2 separate occasions 1 month 

apart and again at 14 weeks in accordance with BSR guidelines.

A pilot study assessing small numbers of patients found that IL-6 was 

detectable in the serum of all the patients bar one prior to treatment with 

anti-TNFa. Following anti-TNFa treatment, IL-6 was not detectable in the 

sera of three patients. Levels of IL-6 fell in five patients; remained 

undetectable in one patient and rose in three. This did not correlate with 

response to therapy. However, the patient with highest initial level of IL-6 

(2828 pg/ml) also had the poorest response to therapy and the largest rise 

in levels following therapy (to 4030 pg/ml). slL-6R was detectable in the 

sera of all the patients pre and post treatment. Levels following anti-TNFa 

therapy rose in five patients and fell in four patients. There were too few 

patients to identify whether slL-6R levels were associated with response to 

therapy. However, levels did appear lower in non-responders.
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In practice, there is great variability in human IL-6 and slL-6R levels. Perry 

et al demonstrated circadian variation in serum and SF levels of IL-6 in 

patients with RA with an overnight variability of approximately two fold in 

serum values (Perry et al 2006; Perry et al 2008). IL-6 levels and more 

recently slL-6R and sgp130 levels have also been shown to increase with 

exercise (Gray et al 2008). Sleep strongly enhances slL-6R levels with an 

increase of up to 70% with peak levels shortly after morning wakening 

(Dimitrov et al 2006). Therefore, in order to accurately compare IL-6 and 

slL-6R levels over time and between patients further information would be 

useful regarding exercise and sleep patterns. If possible, samples should 

be taken at the same time of day for all patients. Future work could be done 

using questionnaires providing more detailed information from patients 

including information on sleep patterns, exercise and other therapies taken 

for conditions other than RA.

The work described in chapter 6 to address aim 3 of the thesis showed that 

further work is needed to identify whether IL-6 trans-signalling is implicated 

in the response to anti-TNFa therapies.

In conclusion, achievement of aims 1, 2 and 3 of this thesis provides proof 

of concept that combination TNFa and IL-6 blockade may offer true 

advantages in selected RA patient cohorts.
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8 FUTURE DIRECTIONS FOR RESEARCH

Other resident cells within the joint are important in RA pathogenesis apart 

from fibroblasts and leucocytes. It would be interesting to assess the effect 

of combined TNFa and trans-signalling on other resident cells within the 

joint specifically chondrocytes. IL-1 and IL-6/slL-6R complex interact to up- 

regulate metalloproteinase production by chondrocytes but the effect on 

production of other mediators responsible for bone and cartilage pathology 

is as yet unstudied (Rowan e ta !2001; Flannery e ta/2000).

In order to identify fully the mechanism by which sgp130:Fc exerts its 

actions, cell signalling at earlier time points in disease, i.e. disease induction 

and very early arthritis must be studied. Assessment of the effect of therapy 

on regulatory T cell function would also be very useful.

Recent reports have identified interactions between IL-6 trans-signalling and 

TGF|3 in the induction of regulatory T cells (Dominitzki et al 2007). It would 

be interesting to identify whether further interactions between TGF(3 and IL-6 

trans-signalling may occur. This would have relevance for diseases in which 

TGFp appears prominent in pathogenesis, i.e. scleroderma where IL-6 

levels have also been shown to be elevated (Scala et al 2004). slL-6R and 

gp130 have also been shown to be elevated in those patients with limited 

cutaneous scleroderma (Nagaoka et al 2000).

Despite the promising results obtained with combination therapy, our results 

were not statistically significant. It would be useful to repeat the early 

intervention study with an increased number of animals to determine 

whether combination therapy offers a significant advantage over etanercept 

monotherapy. In addition, I would like to repeat the experiments with a 

higher (therapeutic) dose of etanercept to identify if there is advantage in 

combination therapy with what is assumed to be a full therapeutic dose of 

etanercept. Obviously, the eventual aim of this work would be to test 

sgp130:Fc as a therapeutic in RA. More work would be needed in terms of 

studies of toxicity, increased animal numbers and testing in healthy
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volunteers before this could take place. However, this thesis provides proof 

of concept that combination TNFa and IL-6 blockade may offer true 

advantages in selected RA patient cohorts.
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