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Summary

Despite the benefit tamoxifen has provided for millions of breast cancer 

patients worldwide, almost all patients with metastatic disease and as many as 

40% of patients receiving adjuvant tamoxifen treatment will acquire resistance 

to the drugs inhibitory effect on breast cancer cell growth. Previous studies in 

the Tenovus Centre have demonstrated that the development of anti-oestrogen 

resistance in vitro is associated with aberrant growth factor signaling which 

facilitates a more aggressive cell phenotype. The aim of the present study was 

to determine whether the undesirable characteristics of tamoxifen resistant 

cells were maintained following withdrawal from the drug. Interestingly, the 

accelerated rate at which resistant cells proliferated was sustained following a 

6 month withdrawal period despite decreased expression of epidermal growth- 

factor receptor and reduced sensitivity to gefitinib. Following the assessment 

of long-term tamoxifen exposure on classically regulated oestrogen gene 

targets progesterone receptor and trefoil factor 1, it was apparent that the 

genes were no longer inducible by oestradiol following the acquisition of 

resistance. In contrast, when cells were co-treated with a demethylation agent 

in combination with oestradiol, genes were once again responsive to oestrogen 

stimulation, providing proof of principle that long-term tamoxifen exposure 

can silence oestrogen regulated gene expression through promoter hyper- 

methylation. Importantly, this combination treatment was shown to 

significantly reduce cell growth, inferring that a proportion of the genes that 

were reactivated by this treatment were associated with a tumour suppressive 

function. Using microarray technology, methylight analysis and polymerase 

chain reaction validation, several genes with tumour-suppressive ontology 

were identified as being silenced by promoter hypermethylation in tamoxifen- 

I withdrawn tamoxifen-resistant cells, including p53 gene target, prostate 

differentiation factor, and inhibitor of Ras signaling, Ras protein activator-like

1. It is therefore proposed that anti-hormone induced epigenetic modification 

of tumour-suppressor genes, alongside aberrant growth factor signaling, can 

promote resistant cell survival and progression.
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Chapter 1 Introduction

1. INTRODUCTION

1.1 Cancer

Cancer is a group of diseases characterised by the inappropriate management 

of the regulatory circuits that govern normal cell proliferation and 

homeostasis, permitting cells to divide uncontrollably and gain otherwise 

restricted metastatic function, leading to invasion and erosion of surrounding 

tissues. This phenomenon can occur within all major components of the 

human anatomy, with over 100 different forms of cancer identified which are 

further sub-categorised according to the specific organ affected. It has been 

estimated that cancer was the cause of 7.6 million deaths worldwide in 2007 

[American Cancer Society, 2007], which equates to around 20,000 cancer 

related deaths per day. In the UK, one in three people are expected to develop 

cancer [Office for National Statistics, 2007]. In 2005, 239,000 people were 

diagnosed with the disease which claimed the lives of 126,600 patients in the 

same year, accounting for 29% of all deaths in males and 24% in females 

[Office for National Statistics, 2007].

While cancer accounts for an increasing proportion of deaths in the UK due to 

the decline of other main causes such as heart disease, stroke and infectious 

disease, cancer-related mortality decreased by 12% for men and 9% for 

women between 1997-2006, with significant reductions in cervix, stomach, 

bowel, lung and breast cancer patient mortality [Cancer Research UK, 2008a]. 

Reduced cancer death is primarily the result of improved primary prevention
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Chapter 1 Introduction

of cancer, earlier detection and better treatment. However, the multitude of 

molecular events governing the genetic changes observed in cancer onset 

remains a hugely active area of scientific research. Insight into the underlying 

mechanisms that dictate malignant cell growth, commonly identified as self- 

sufficient growth signalling, insensitivity to growth-inhibitory signals, evasion 

of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis [Hanahan & Weinberg,

2000], will provide essential therapeutic targets; imperative to relinquishing 

the grasp cancer has on the health of global society.

1.2 Breast cancer- Incidence and risk factors.

Breast cancer is now considered the most prevalent cancer amongst women, 

with over 1 million cases diagnosed per year worldwide [Ferlay et al, 2005]. 

Approximately 44,000 women and 300 men are diagnosed with breast cancer 

every year in the UK, and 12000 female and 100 male breast cancer patients 

will die from the disease annually [Cancer Research UK, 2008b]. Over the 

twenty five year period between 1981 and 2005, the incidence rate increased 

by 57% [Cancer Research UK, 2008c]. This was, in part, due to the 

introduction of a national screening programme in 1988, leading to a transient 

additional increase in breast cancer incidence in women aged 50-64, as early 

undiagnosed cancers were detected [Quinn & Allen, 1995]. Approximately 

14,000 cases are annually diagnosed as a result of the NHS breast screening 

programme, and it is thought to have saved the lives of approximately 1400 

women per year [Advisory Committee on Breast Cancer Screening, 2006].

2



Chapter 1 Introduction

Indeed, since 1980, mortality rates have reduced by a third, and since 1999, 

breast cancer was superseded by lung cancer as the most common cause of 

death from cancer in women in the UK [Cancer Research UK, 2008d].

The greatest risk factor in the development of breast cancer is age; with 8 out 

of 10 newly diagnosed cancers in women over the age of 50 [Office for 

National Statistics, 2005]. There is considerable evidence that associates the 

increased breast cancer risk in individuals of this age with long-term exposure 

to elevated oestrogen levels [Key et al, 2001]. A catalogue of events over a 

women’s life time can contribute to this phenomenon; such as early menarche 

and late menopause [Kelsey et al, 1993], late first full-term pregnancy and 

reduced parity [Layde et al, 1989], and the choice not to breast-feed [Lipworth 

et al, 2000]. Oral contraceptives [Collaborative Group on Hormonal Factors in 

Breast Cancer, 1996] and oestrogen-replacement therapy [Beral, 2003] have 

also been implicated in breast cancer risk. In addition, other modifiable risk 

factors include obesity [Van den Brandt, 2000], alcohol consumption 

[Hamajima, 2002] and lack of exercise [Key et al, 2001], although their true 

involvement in breast cancer remains to be determined.

Although over 85% of women who develop breast cancer have no family 

history of the disease, evidence suggests that a genetic pre-disposition to 

breast cancer can be passed on through generations of women. An individual 

with one affected first degree relative (mother or sister) has approximately 

double the risk of breast cancer of a woman with no family history of the 

disease; if two (or more) relatives are affected, her risk increases further 

[Collaborative Group on Hormonal Factors in Breast Cancer, 2001]. Several

3



Chapter 1 Introduction

genes have been identified as major contributors to familial breast cancer, 

most significantly, the breast cancer susceptibility gene, BRCA1, which is 

aberrantly expressed in 2-5% of all breast cancer cases. Women carrying a 

BRCA1 mutation have a 50-80% chance of developing the disease [Ford et al,

1998].

Breast cancer incidence and mortality varies significantly across the world, 

with highest rates recorded in more economically developed areas such as the 

US and affluent European nations, where incidence is five-fold higher than in 

the less economically developed countries of Africa and Asia [Key et al,

2001]. Worryingly, in areas of the world with historically low rates of breast 

cancer, such as Eastern Europe and the Far East, incidence has begun to rise 

rapidly as countries adopt western ideals and consequently, the breast-cancer 

related risk factors associated with this way of life. Interestingly, migrants 

from low to high risk countries acquire the risk of the host country within two 

generations [Key et al, 2001], highlighting the role of life-style, socio­

economic status and environmental factors in the development of breast 

cancer.

1.2.1 Oestrogen and breast cancer.

The circulating oestrogens, of which 17(3-oestradiol (E2) is biologically the 

most important, are members of a unique family of aromatic steroids that are 

produced primarily by the aromatase enzyme system in the ovaries, as well as 

in other tissues such as the brain, liver and body fat, which become the main 

sites of oestrogen synthesis in women following the menopause [Dowsett et al
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2005]. Oestrogens serve to maintain the homeostasis of many different tissues, 

such as bone, blood vessels, urinogenital tissues, and breast [White and 

Parker, 1998]. Although the actions of oestrogen are primarily beneficial to 

health of normal female development, experimental and clinical data dating 

back over 100 years indicate that a significant proportion of breast cancers are 

dependent on oestrogens for their development. In 1896, George Beatson first 

demonstrated that removal of the ovaries resulted in regression of the primary 

tumour in a proportion of women [Beatson, 1896]. Four years later, a study 

reported by Stanley Boyd established that a third of patients could expect 

regression of their disease following this surgery [Boyd, 1900]. The 

mechanism by which this phenomenon occurred was not identified until 1962, 

when the first oestrogen receptor (ER) was described by Jensen and Jacobson 

in the uterus of rats [Jensen and Jacobson, 1962]. Following extensive 

biochemical analysis, Jensen and colleagues translated the basic science into 

clinical utility by formulating the first ER assay, to determine whether patients 

would respond to endocrine ablation either by oophorectomy in pre­

menopausal women, or by adrenalectomy in post-menopausal women [Jensen 

et al, 1971]. It was observed that women with ER-rich tumours responded to 

endocrine ablation, whilst women with ER negative breast tumours were 

unlikely to respond and were faced with a poorer prognosis [McGuire et al, 

1975]. It is now established that approximately 70% of breast cancers are 

initially dependent on oestrogen and functional ER for their growth and 

development [Clark et al, 1984].

5



Chapter 1 Introduction

1.3 The oestrogen receptor- Structure and activation.

There are two main forms of human ER, ERa and ER(3, both of which are 

members of the nuclear hormone receptor family. ERa was cloned and 

sequenced from MCF-7 human breast cancer cells in 1986 by Green et al 

[Green et al, 1986]. It was 10 years later that the second receptor, ERp, was 

identified and cloned from a rat prostate complementary DNA library [Kuiper 

et al, 1996]. The human ER a gene resides on chromosome 6q sub band 25.1 

and is transcribed as a single mRNA of 6.5kb that encodes a protein of 595 

amino acids, with an approximate molecular mass 66kDa. The ERp gene is 

located on chromosome 14q22-24 and encodes a protein of 530 amino acids, 

with a molecular mass of around 60kDa. Both receptors have been separated 

into six functional domains which were designated A -  F, from N- to C 

terminus and share substantial homology [Kumar et al, 1987] [Fig 1.1].

The A/B domain contains one of the two activation functions (AF1) present in 

ER, which is responsible for the activation of gene expression by ER in the 

absence of ligand. AF-1 is constitutively active and often works in synergy 

with the second, ligand-dependent activation function of ER (AF-2), to further 

activate gene transcription in a promoter- and cell -specific manner 

[Tzukerman et al, 1994]. However, post-translational modifications to AF-1 

such as phosphorylation can increase its activity, permitting independent 

activation of gene transcription [Chen et al, 1999]. The amino terminal A/B 

domain is the site of greatest variability between ERa and ERp, sharing a 

homology of only 18% [Hall and McDonnell, 2005]. A comparison of the AF- 

1 domain in the two ERs has revealed that AF-1 is very active in ERa on a
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variety of oestrogen responsive promoters, but under identical conditions, the 

activity in ERp is minimal [Barkhem et al, 1998].

The C region contains both the DNA binding domain (DBD) and the 

dimerisation domain. The DBD consists of two zinc-fingers that fold into two 

helical structures; one directly binds to the major groove of the DNA helix, 

while the other serves to support this interaction [Schwabe et al, 1993]. ER 

that lacks the DBD cannot bind DNA in-vitro or in-vivo which is crucial for 

genomic, ER-regulated gene activation [Kumar et al, 1987]. The dimerisation 

domain has been discovered equally critical for ER activation, as mutations 

that prevent or impede dimerisation result in receptors that are insoluble or 

transcriptionally inactive [Tamrazi et al, 2002]. The C-domain shares a 

homology of 97% between ERa and ERp, indicative of this regions 

importance in ER function [Hall and McDonnell, 2005].

The D domain functions as a hinge region between the DBD and the ligand 

binding domain (LBD), and also contains sequences for dimerisation, nuclear 

localisation signal (NLS) function and interactions with receptor co-activator 

and co-repressor proteins [Klinge, 2001].

The C- terminal E domain is the largest of the six regions and comprises of the 

LBD, which is intrinsically linked to the ligand-dependent activation function 

of ER, AF2, located in the same region [Parker et al, 1993]. The LBD has a 

compact three layer structure comprising of 12 a-helices, 5 of which (H3, H6, 

H8, H ll ,  and H I2) form a hydrophobic ligand binding pocket [Sommer and 

Fuqua, 2001]. Binding of endogenous ligand 17-P oestradiol (E2) to the LBD 

alters its conformation, with helix 12 forming a lid over the pocket that secures

7



Chapter 1 Introduction

the ligand. The agonist induced positioning of H I2, together the with amino- 

acid residues in H3, H4 and H5, provides an adequate co-activator interaction 

surface permitting the recruitment of the co-factors necessary for efficient AF- 

2 mediated, ER transcriptional activity [Brzozowski et al, 1997]. The E- 

domain also contains sequences for heat-shock protein 90 binding, ligand 

independent nuclear localisation signalling (NLS) function, and a dimerisation 

domain [Parker et al, 1993].

Though less is known about the F domain, it is thought to play a role in 

distinguishing between ER agonists and antagonists through interactions with 

cell specific factors [Klinge, 2001].

ERa and ERp share poor to moderate homology of these C-terminal domains; 

D - 24%, E - 58%, F - 12%, highlighting the potential for varying patterns of 

gene expression incurred following endogenous/exogenous ligand-dependent 

activation of ERa and ERp [Hall and McDonnell, 2005].

The understanding of the role of ERP in breast cancer is rapidly expanding, 

though still in its infancy compared to ERa; thus for the purpose of this thesis, 

ERa will be the focus of the investigation, and is hereafter referred to as ER.

8
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Fig 1.1 Comparison o f the ER-a and ER-(3 functional domains.
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1.3.1 Genomic oestrogen receptor signalling.

In the absence o f ligand, ER is sequestered in cell nuclei within a large 

inactive oligomeric complex containing heat shock proteins HSP90, HSP70, 

and cyclophilin-40 and p23 [Pratt and Toft, 1997]. E2 diffuses through the cell 

plasma-membrane, translocates to the nucleus, and binds to ER [Rao, 1981] 

causing conformational alterations to the LBD and phosphorylation o f ER 

residues, releasing o f ER from the inhibitory protein complex and permitting 

maximal AF-1 activity. Receptors rapidly dimerise and translocate to the 

oestrogen response element (ERE) in the promoter sequence o f an oestrogen 

responsive gene [Osborne and Schiff, 2005]. The ERE consists o f inverted 

repeats o f the sequence GGTCA separated by three variable nucleotides, e.g. 

5 ’- CAGGTCAnnnTGACCTG-3,’ however, most oestrogen-regulated genes
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contain imperfect, non-palindromic ERE sequences [Driscoll et al, 1998]. 

Once bound to the DNA, the receptor complex can either positively or 

negatively regulate target gene transcription through the specific recruitment 

of co-regulatory transcription factors. Co-regulators can influence the 

recruitment of general transcription machinery as well as other co-factors, and 

can also modify the chromatin environment surrounding the promoter of the 

targeted gene to further facilitate gene activation/inactivation (further 

discussed in section 1.3.1.1) [Klinge, 2001]. This is referred to as the classical 

model of ER signalling. Ligand bound ER can also regulate gene expression 

by tethering to other DNA bound transcription factors and acting as a co­

activator by strengthening DNA binding and recruiting other co-activators to 

the transcription-factor complex. For example, by associating with the c-fos 

and c-jun transcription factors, ER can promote the expression of genes that 

contain the AP-1 response element in their promoter region, such as cyclin D l, 

ovalbumin, collagenase, and the growth factor ligand IGF-1 [Kushner et al, 

2000].

1.3.1.1 Co-regulation o f  genomic oestrogen receptor activation.

Co-Activators

Co-activators (CoAs) are proteins that interact with steroid receptors and 

enhance transcription of their target genes by further facilitating recruitment of 

general transcription machinery and other CoAs, stabilising the transcription 

complex and importantly, some are capable of post-translational modification

10
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to the chromatin environment within which the target gene is organised, 

leading to efficient ER-regulated gene transcription.

Three related co-activators, collectively known as the p i60 co-activators, 

contribute to ligand bound ER activity through direct interaction with AF2; 

nuclear-receptor co-activator 1 (NCoAl; also known as SRC1), NCoA2 (also 

known as TIF2 or GRIP1) and NCoA3 (also known as P/CIP, ACTR, AIB-1, 

RAC3 or TRAM1) [McKenna et al, 1999]. They contain a conserved motif 

called the nuclear receptor (NR) box, which comprises of an a-helical LxxLL 

structure (L represents leucine and x represents any amino acid) in which the 

leucines create a hydrophobic surface that fits into the major groove of the 

receptor4 s AF-2 [Hall and McDonnell, 2005]. Other co activators contain NR 

boxes, including the SWI/SNF complexes [Sudarsanam & Winston, 2000], 

p300/CBP-associated factor (PCAF) [Vo & Goodman, 2001], and the 

TRAP/DRIP/SMCC complex [Ito & Roeder, 2001].

A common feature of the co-activators recruited by ER is that of intrinsic 

histone-acetylase (HAT) activity [Ogryzko et al, 1996; Spencer et al, 1997]. 

The positive charge on un-acetylated (tri-methylated) lysine residues of the 

histone protein-octamer round which DNA is tightly wrapped is highly 

attracted to the negatively charged DNA phosphate backbone, producing a 

compact chromatin state that limits access to general factors of transcription, 

and thus limits the efficiency of gene activation. HAT initiates local hyper- 

acetylation of the lysine-rich tails of histones H3 and H4, removing the 

positive charge and resulting in a less condensed chromatin environment, 

facilitating gene transcription [Tsukiyama & Wu, 1997]. Histone deacetylase

11
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(HDAC) removes the acetyl groups from the lysine residues, which reverses 

this process and reduces gene activation [Fig 1.2].

In addition to the CoAs that enhance receptor activity by interacting with the 

LBD, AF-1-interacting CoAs have also been described, specifically steroid 

receptor RNA-activator (SRA) and p68RNA helicase [Lanz et al, 1999; Endoh 

etal, 1999].

Co-Repressors

Co-repressors (CoRs) interact with nuclear receptors and serve to reduce 

transcription of the gene to which the receptor/CoR is tethered. This is 

achieved through a wide variety of mechanisms including chromatin 

remodelling, binding competition with CoAs, sequestration of ER in the 

cytoplasm, and interference with DNA binding [Dobrzycka et al, 2003]. The 

first CoRs to be identified were the nuclear receptor co-repressor (NCoR) 

[Horlein et al, 1995] and silencing mediator for retinoid and thyroid hormone 

receptor (SMRT) [Chen and Evans, 1995]. The interaction between these 

CoRs and the LBD is mediated by two NR-interacting domains (CoR-NR 

boxes) similar to those found in the NR boxes of CoAs [Hu and Lazar, 1999]. 

NCoR and SMRT both serve to suppress transcriptional activation of ER in 

the absence of ligand by the recruitment of other CoRs, such as mSin3 which 

associate with HDACs [Hu and Lazar, 2000]. Other recently described CoRs, 

including repressor of oestrogen receptor activity (REA) [Montano et al,

1999], interact with the ER at novel interaction sites, confirming the existence 

of additional binding motifs, other than CoR-NR boxes.
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NCoR and SMRT are functionally similar as they interact with un-liganded 

receptors, enhance repression, dissociate upon agonist binding, and contain 

intrinsic silencing domains [Horlein et al, 1995; Chen and Evans, 1995]. 

However, other CoRs of ER, such as nuclear receptor-interacting protein 1 

(RIP 140), associate with ligand bound ER, and occlude access of CoAs to the 

AF-2, whilst interacting with HDAC complexes [Smith & O’Malley, 2004]. 

Thus the existence of CoRs that moderate agonist activities of oestrogens 

provides an additional mechanism for the fine tuning of the expression of ER 

target genes and attenuating the physiological output in situations where there 

are chronically elevated levels of the hormone.
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Fig 1.2 N-terminal histone tails contain several lysine residues which have a 
positively charged amino group in their side chain. This amino group can be 
acetylated by histone acetyletransferase (HAT), a reaction that can be reversed 
by histone deacetylase (HDAC). The presence o f a positive charge on the 
lysine amino acids o f the histone tails increases electrostatic interactions with 
the negatively charged phosphate backbone o f the DNA, and hence serves to 
condense the chromatin environment. The removal o f this positive charge (by 
acetylation) opens the chromatin structure, permitting gene transcription. 
Thus, active genes are usually located in hyperacetylated chromatin, whilst 
inactive genes are found in hypoacetylated chromatin.

Condensed ‘ silent’ 
chromatin formation

Electrostatic binding

H4 N-terminus

DNA

Lysine

De-condensed ‘active’ 
chromatin formation

^ ■

e-N-Acetyl-
Lysine

H4 N-terminus

No binding

14



Chapter 1 Introduction

1.3.2 Non-nuclear oestrogen receptor signalling.

It is evident that in some oestrogen responsive tissues, such as bone and the 

epithelium, non-nuclear, membrane bound-ER is predominant in these cells 

[Nemere et al, 2003]. In breast cancer cells, data indicates that in addition to 

nuclear ER, cytoplasmic and membrane ER are present [Losel et al, 2003]. 

Significantly, GPR30, the newly described membrane ER, can activate key 

growth-factor signalling pathways, such as epidermal growth factor receptor 

(EGFR) [Filardo et al, 2000], to initiate a rapid primary cellular response to 

hormonal signalling [Gee et al, 2005; Levin, 2003]. Such interaction leads to 

the downstream activation of mitogen activated protein kinase (MAPK) and 

serine/threonine protein kinase (Akt) signalling pathways, which up-regulate 

the transcriptional activity of E2-bound nuclear ER by phosphorylating Seri 18 

and Seri 67 residues present within the AF1 domain of the receptor [Kato et al, 

1995; Martin et al, 2000]. Thus, non-nuclear ER can deliver pro- 

transcriptional signals to ER-responsive genes rapidly, and in a fashion 

complementary to nuclear ER activation through crosstalk with growth factor 

signalling.

The ER activation pathways are summarised in [Fig 1.3].
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Fig 1.3 ER Activation: Upon ligand binding (E), nuclear ER activates 
transcription either by direct DNA binding to its own response element (ERE) 
in the targeted gene promoter followed by co-activator (CoA) and general 
transcription factor (TF) recruitment (classical mode), or by tethering to other 
transcription factors, such as the Fos/Jun activating protein-1 (A PI) complex 
(non-classical mode). Ligand-bound membrane ER (GPR30) can interact with 
different signalling intermediates at the vicinity o f the membrane causing 
rapid induction o f key growth-factor-dependent kinases, which phosphorylate 
nuclear ER at specific residues in the AF-1, promoting receptor activity (non­
nuclear action).

mRNA

Membrane
receptor

Nuclear
receptor
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1.4 Oestrogen receptor activation of cell growth.

In order to achieve E2 mediated cell proliferation, the E2/ER transcription 

complex up-regulates the expression of a variety of genes which directly 

promote breast cancer cell growth, including key components of the insulin­

like growth factor (IGF) signalling system, IGF-1R and insulin-receptor 

substrate-1 (IRS-1) [Ye, 1998]. In addition, promoters of the cell-cycle, like 

cyclin D1 [Wilcken et al, 1997] and cMyc [Dubik et al, 1987] (which can also 

regulate genes associated with proliferation and/or apoptosis -  reviewed in 

Oster et al, 2002), genes associated with DNA synthesis, such as replication 

factor C4 (RFC4) and minichromosome maintenance genes (MCM2, MCM3, 

MCM6), and genes encoding proteins for anti-apoptotic signals, like survivin, 

are all up-regulated by E2 in ER-positive breast cancer cells [Frasor et al, 

2003].

In parallel to the up-regulation of oncogenes, recent studies have shown that 

the ability of the E2/ER transcription complex to act as a suppressor of gene 

expression also facilitates oestrogen activation of ER-positive breast cancer 

cell growth. In a study conducted by Frasor et al (2003), E2-induced 

enhancement of cell proliferation was shown to be significantly reliant on the 

down-regulation of numerous factors that are known to inhibit the cell cycle 

such as B-cell translocation gene 1 and 2 (BTG-1, BTG-2), and cyclin G2, a 

gene known to induce cell cycle arrest and to be up-regulated in cells during 

apoptosis [Frasor et al, 2003]. Other down regulated genes included 

transcriptional repressors, such as Max dimerization protein-4 (Mad4), which 

inhibits Myc action by competing for their binding partner Max [Grandori et
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al, 2000]. Thus, E2 could enhance Myc activity not only by up-regulating c- 

Myc, but additionally by down-regulating an inhibitor of Myc.

E2 was also shown to down-regulate the expression of growth factors that are 

known to inhibit cell proliferation, such as members of the transforming 

growth factor beta (TGF6) family members TGFJ3-3 and bone morphogenic 

protein 4 (BMP4), and pro-apoptotic genes, B-cell lymphoma protein 2 (BCL- 

2) interacting killer (BIK), BCL-2 antagonist/killer 1 (BAK-1), and caspase-9. 

These findings highlight the variety of molecular functions that activated ER 

manipulates to enhance cell growth, and in particular the emerging 

significance of E2/ER mediated gene suppression. The underlying molecular 

biology of this phenomenon remains poorly understood. One mechanism 

proposed is that the E2/ER complex enters into protein/protein interactions 

with further transcription factors (e.g. NFkB) leading to repression at diverse 

response elements [Stein and Yang, 1995]. There are also data to suggest that 

the E2/ER complex may recruit repressors to some gene promoters. For 

example, the E2/ER complex recruits NCoR and interestingly, HDACs to the 

promoter of the anti-proliferative gene cyclin G2, in association with release of 

RNA polymerase II and transcriptional repression of the gene’s oestrogen responsive- 

half-ERE [Stossi et al, 2006]. There is emerging data that such repressive events 

can occur at other ERE-bearing promoters in breast cancer cells [Kaipparettu 

et al, 2008; Ye et al, 2008].
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1.5 Anti-oestrogen therapy

Having established the extensive involvement of oestrogen in breast cancer, it 

is hardly surprising that traditional therapies for ER-positive breast cancer 

patients have included hormone-ablative surgery, such as oophorectomy, 

adrenalectomy and hypophysectomy. Such procedures have largely been 

superseded by current endocrine therapies which are based on the targeting of 

the ER signalling pathway by either partial antagonism of ER function with 

selective modulators of ER activity (SERMs), down-regulation of ER using 

pure anti-oestrogens (SERDs) or reducing oestrogen synthesis with aromatase 

inhibitors (AIs).

1.5.1 Clinical use of tamoxifen.

The most commonly used anti-hormone treatment for patients with ER- 

positive breast cancer is tamoxifen. Tamoxifen was first approved in the UK 

in 1973 and by the Food and Drug Administration (FDA) in the USA in 1977 

for the treatment of advanced breast cancer. The drug has since been approved 

as an adjuvant therapy with chemotherapy (1986), as a single adjuvant therapy 

in postmenopausal patients with metastatic disease (1988), and in pre- and 

postmenopausal ER-positive non-metastatic breast cancer patients [Park and 

Jordan, 2002]. Its widespread use over the last 30 years in all stages of ER- 

positive breast cancer has significantly contributed to the decrease in national 

breast cancer mortality rates observed during this period [Jaiyesimi et al, 

1995].
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1.5.2 Selective oestrogen receptor modulation by tamoxifen.

The ability of tamoxifen to act either as an agonist or antagonist in an 

oestrogen-sensitive cell specific context can be explained by the fact the 

tamoxifen only blocks ER activation through one of its two main activation 

functions. Contrary to the initial understanding that tamoxifen simply stopped 

ER activation upon receptor binding, it is now established that tamoxifen- 

bound ER is able to dissociate from its inhibitory protein complex and 

dimerise in a manner equivalent to E2-bound ER [Nicholson et al, 2002]. The 

binding of ER to its natural ligand causes a conformational change to the 

LBD, whereby H I2 of the LBD seals the ligand into the receptor, forming an 

active AF-2 domain by providing the necessary surface required to recruit 

general components and co-activators of transcription (see section 1.3). 

However, when tamoxifen binds to the LDB, helix 12 is prevented from 

sealing the binding pocket due to the bulky alkylaminoethoxyphenyl side 

chain of tamoxifen interacting with the Asp 351 residue of the LBD [Shiau et 

al, 1998]. Therefore co-facilitators of transcription cannot bind to the LBD of 

tamoxifen-bound ER and AF-2 activation of gene transcription is prevented. 

Furthermore, tamoxifen induced conformational changes to the LBD have 

been shown to facilitate the recruitment of co-repressors to the site of 

transcription, further repressing AF-2 gene activation [Lavinsky et al. 1998]. 

Tamoxifen however does not inhibit ER’s constitutively active, ligand 

independent activation function AF-1; therefore it has been proposed that for 

genes where AF-2 is required for ER transcriptional activity, tamoxifen 

functions as a pure antagonist, and conversely, genes for which AF-1 is
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sufficient for ER transcriptional activity, tamoxifen can act as an agonist 

[Tzukerman et al, 1994].

1.5.3 Tamoxifen resistance.

Despite the obvious benefit tamoxifen has provided for millions of breast 

cancer patients worldwide, almost all patients with metastatic disease and as 

many as 40% of patients receiving adjuvant tamoxifen will acquire resistance 

to the drugs inhibitory effect on breast cancer cell growth [Schiff et al, 2003]. 

Unfortunately, patients who experience disease relapse may develop a more 

aggressive form of the disease, and face a poorer prognosis and premature 

death [Hiscox et al, 2004]. The biological mechanisms underlying acquired 

resistance to tamoxifen are therefore of considerable clinical significance. 

Originally it was thought that the acquisition of anti-oestrogen resistance was 

caused by a loss or mutation of the ER, as is often the case in patients with 

intrinsic anti-hormone resistance [Ring, and Dowsett, 2004]. However, it has 

since been shown that breast cancer cell lines that have lost anti-oestrogen 

sensitivity can retain an ER positive phenotype with normal ER functionality 

[Brunner et al, 1993]. Indeed tamoxifen-resistant breast cancer remains 

sensitive to other hormonal therapies that target the ER such as the pure anti­

oestrogen fulvestrant (Faslodex®) [Robertson, 2001]; although it too is subject 

to the development of resistance mechanisms (see section 1.6).
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1.5.3.1 Positive growth signals up-regulated in tamoxifen resistant breast 

cancer.

Many mechanisms have been associated with tamoxifen resistance in ER 

positive breast cancer (reviewed in Ring and Dowsett, 2004). Significantly, 

the up-regulation of growth factor receptors, e.g. EGFR and HER2, and their 

downstream kinases, notably Ras/Raf/MAP kinases and phosphoinositide 3- 

kinase [PI3K]/Akt signalling, has been extensively associated with both de- 

novo and acquired tamoxifen resistant breast cancer cell growth [Gee et al, 

2005; Nicholson et al, 2007]. These growth factor signalling pathways can be 

directly and indirectly activated by tamoxifen binding to membrane-bound ER 

[Shou et al, 2004]. The subsequent activation of the multiple signalling 

kinases leads to the phosphorylation of nuclear ER at specific sites in the AF-1 

domain and promotes ER activity. Significantly, phosphorylation of ER serine 

118 by the MAPKs extracellular signal-regulated kinase (ERK) 1 and ERK2, 

down-stream components of the EGFR/HER2 pathway, and phosphorylation 

of serine 167 by ribosomal S6 kinase (RSK) (activated by ERK1 and ERK2) 

enhances sensitivity of the ER to oestrogenic stimulation and have been 

cumulatively implicated in promoting the agonistic behaviour of tamoxifen in 

resistance [Nicholson et al, 2004b].

Other activated kinases serve to phosphorylate co-regulators of ER, further 

propagating their ability to activate ER-regulated gene transcription. For 

example, NCoA3 is phosphorylated by multiple kinases including 

p42/44MAPK, which can be activated by HER2 [Font de Mora & Brown, 

2000]. Therefore, high levels of activated Co As like NCoA3 could profoundly
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limit the efficiency of anti-hormone treatment of tumours that also overexpress 

tyrosine kinase receptors [Osborne et al, 2003]. In contrast, phosphorylation of 

CoRs can result in their nuclear export, preventing their recruitment to the ER 

transcriptional complex, and therefore limiting gene suppression [Arpinol et 

al, 2008].

In addition to activation of ER-regulated growth pathways, some kinase 

activity can independently stimulate proliferation via activation of their 

associated gene networks. For example, Akt, which is directly activated as a 

consequence of ER interaction with the p85a regulatory subunit of PI3K, can 

promote cell growth, survival and motility [Vivanco & Sawyers, 2002].

EGFR and HER2 expression and activity have been found to be considerably 

increased in several in vitro models of tamoxifen-resistance, including the 

MCF-7 cell based model developed at the TCCR. The contribution to 

resistant-cell growth has been highlighted in studies using the EGFR specific 

tyrosine kinase inhibitor, gefitinib (Iressa®), and the HER2 monoclonal 

antibody trastuzumab (Herceptin®). Tamoxifen resistant cells exhibited 

significant growth inhibition in response to these agents compared to 

tamoxifen-responsive MCF-7 cells [Nicholson et al, 2001; Nicholson et al, 

2004a]. The use and success of these drugs in both experimental and clinical 

representations of anti-hormone resistant cancer are discussed in section 1.6.1.
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1.5.3.2 Inactivation o f  tumour suppressor genes in tamoxifen resistant breast 

cancer.

In addition to the activation of oncogenes, it has become clear that the in­

activation of tumour suppressor genes like p53 is at least as important in the 

development and progression of breast cancer. In many cases, gene 

inactivation is the result of genetic events such as of loss of heterozygosity and 

mutation, however, it also been shown that functional inactivation of tumour 

suppressor genes can be caused by epigenetic mechanisms [Jones and Baylin, 

2002]. Epigenetic changes differ from genetic changes mainly in that they 

occur at a higher frequency, are reversible upon treatment with 

pharmacological agents and occur at defined regions in a gene [Jones and 

Laird, 1999]. Epigenetic gene inactivation is a heritable trait that is not based 

upon a change in primary DNA sequence, but rather alterations that impact on 

chromatin organisation and gene promoter accessibility, like histone 

modification and DNA hypermethylation of promoter CpG islands.

Promoter hypermethylation has been revealed as one of the most frequent 

mechanisms of loss of gene function in human neoplasia, and in the specific 

example of breast cancer, genes involved in every step of tumour development 

have been shown to be silenced by this epigenetic mechanism (reviewed by 

Widschwendter and Jones, 2002).

CpG island methylation is catalysed by a family of DNA methyl-transferases 

(DNMTs) by use of the universal methyl donor S-adenosyl-methionine, and 

inhibits transcription by interfering with recruitment and function of basal 

transcription factors or co-activators [Tate & Bird, 1993]. It has also been
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suggested that the hypermethylation of CpG dinucleotides near the 

transcriptional regulatory region may initiate recruitment of members of the 

methyl-CpG binding domain (MBD) protein family, which may mediate 

silencing of genes through reducing chromatin accessibility to co-activating 

complexes [Wade et al, 2001].

Literature indicates that by suppressing E2-stimulated genes, long-term ER 

signalling disruption has the capacity to completely silence gene transcription 

through hypermethylation of CpG islands in their promoters [Leu et al, 2004]. 

Proof of principle studies describe the impact of ER siRNA on the ER- 

regulated genes progesterone receptor (PR) and trefoil-factor 1 (pS2), where 

initial repressive chromatin modifications with longer-term progressive 

accumulation of DNA methylation at the EREs of the promoters were 

observed. Their expression could be restored by treatment with a methylation 

inhibitor and E2 treatment. Subsequently, evidence has been generated to 

suggest that epigenetic modifications to E2-stimulated gene promoters can 

occur following long-term anti-hormone induced gene ER-signalling 

disruption [Badia et al, 2000]. In addition, a study conducted by Fan et al 

(2006) showed that 75% of genes that were identified as up-regulated in 

oestradiol treated wt-MCF-7 breast cancer cells (>2 fold increase in 

expression), were no longer inducible in the tamoxifen-resistant cell sub-line, 

highlighting the potential scale of this phenomenon.

In section 1.5.2, it was mentioned briefly that the conformational changes 

induced in the LBD by ER binding tamoxifen served to provide docking sites 

for co-repressors of transcriptional activity. Interaction studies showed that
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various corepressors including NCoR/SMRT [Lavinsky et al. 1998], REA 

[Montano et al, 1999], repressor of tamoxifen transcriptional activity (RTA) 

[Norris et al. 2002], scaffold attachment factor-Bl (SAFB1) [Oesterreich et al. 

2000], and Smad4 [Wu et al, 2003] which recruit different HD AC protein 

complexes as part of their co-repressive function, bind more strongly to ERa 

in the presence of tamoxifen. During tamoxifen-induced suppression of the 

classically regulated oestrogen responsive gene, pS2, the time course of 

recruitment of the HDAC complexes precisely coincided with that of 

deacetylation of histone H3 and H4 tails at the target promoter, providing 

crucial support for the hypothesis that tamoxifen functions as an antagonist in 

the breast cells by inducing epigenetic modification [Liu et al, 2004]. 

Interestingly, significant crosstalk between the histone code and gene 

promoter methylation has been established. DNMT-1 and DNMT3a/DNMT3b 

have been shown capable of binding HDAC2 and HDAC1 respectively to 

achieve effective gene silencing [Fuks et al, 2000; Rountree et al, 2000; 

Bachman et al, 2003]. Although several studies have shown that long-term 

tamoxifen treatment can induce distinct global gene expression and promoter 

DNA methylation profiles in breast cancer cells [Fan et al, 2006; Badia et al, 

2000], few studies have whether this event could contribute to anti-hormone 

resistant cell growth. Interestingly, a study by Treeck et al (2004) reported that 

long-term tamoxifen treatment of MCF-7 cells decreased levels of several pro- 

apoptotic genes and impaired subsequent apoptotic response to etoposide 

treatment. Another study conducted by Wu et al (2007) used SAGE analysis 

to show that the expression of the tumour suppressor gene retinoblastoma
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binding protein 8 (CtIP) was decreased in acquired tamoxifen resistant 

models, where its knockdown in MCF-7 cells promoted tamoxifen resistance, 

and induction restored response. Although promoter methylation of the 

tumour suppressor genes identified in these studies was not confirmed, data 

supports the concept of anti-hormonal silencing of potential tumour 

suppressors.

1.6 Over coming tamoxifen resistance in the clinic -  Alterative anti­

hormone therapies.

The successful use of tamoxifen over the last 30 years as first-line treatment 

for ER-positive breast cancer has established ER modulation as an effective 

therapeutic strategy for this disease. However, as discussed in section 1.5.3, 

approximately 40% of patients receiving tamoxifen acquire resistance to the 

drug, and frequently relapse with worsened outlook. Failure to continue a 

response to tamoxifen therefore, does not mean patients remain at the same 

prognostic level; they are faced with a more life-threatening disease. 

Consequently, huge efforts have been made to identify more effective 

alternative SERMs with better efficacy. First generation SERMs, like 

toremifene and idoxifene, were closely related to the chemical structure of 

tamoxifen and were entered into clinical trials in the early 1990s. Phase III 

trials showed postmenopausal women with advanced breast cancer treated 

with these agents produced similar objective response rates to tamoxifen 

[Pyrhonen et al, 1997; Arpinol et al, 2003]. Second generation SERMs, which 

featured an altered triphenylethylene ring structure, such as raloxifene and
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arzoxifene, were then introduced following preclinical studies that suggested 

that these agents possessed less agonist activity than tamoxifen [Black et al, 

1982; Sato et al, 1998]. Unfortunately these findings were not supported by 

Phase II trials with the drugs [Budzar et al, 1988; 2001]. Paradoxically 

however, the agonist effect of raloxifene helped to preserve bone mineral 

density and the drug is now used in the prevention of osteoporosis [Ettinger et 

al, 1999].

Having established that the new generation SERMs were no more effective 

than tamoxifen in advanced breast cancer, and that alternative SERMs shared 

a high level of cross-resistance with tamoxifen, attention was turned to 

developing other methods of ER signalling attenuation. One such method is 

the pure antagonism of ER signalling with the steroidal analogue of 17|3- 

oestradiol, fulvestrant (Faslodex®). Fulvestrant binds to the ER with a similar 

affinity (89%) to oestradiol, but unlike SERMs, it has no agonist potential due 

to the steric hindrance caused by the alkylsulphinyl side-chain [Howell, 2006]. 

This causes an abnormal conformation of the ER protein, inhibiting receptor 

dimerisation and nuclear localisation. In addition, the ER-fulvestrant complex 

is unstable and leads to the subsequent rapid degradation of ER [Osborne et al,

2004]; hence fulvestrant is classified as a selective oestrogen receptor down- 

regulator (SERD). Fulvestrant was the first pure anti-oestrogen to enter 

clinical development; disappointingly it failed to demonstrate superiority over 

tamoxifen or aromatase inhibitors (AIs) in the treatment of advanced breast 

cancer possibly due to delivery problems [Robertson et al, 2002; 2003]. 

However, fulvestrant is the only drug of its class to be licensed for the
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treatment of advanced breast cancer in postmenopausal women with disease 

recurrence or progression following anti oestrogen therapy, as both patients 

with acquired tamoxifen resistance and acquired Al-resistance, have been 

shown to gain clinical benefit from the drug when used as a second-line 

therapy [Howell et al, 2002; Ingle et al, 2006].

Aromatase inhibitors have been developed to suppress the activity of 

aromatase cytochrome P450, thereby reducing oestradiol synthesis [Smith & 

Dowsett 2003]. Through this mechanism AIs circumvent oestradiol-induced 

regulation of transcription via nuclear and non-nuclear pathways. They do not, 

however, directly target any contribution that oestrogen-independent ER 

activation may play in the development and progression of breast cancer. 

Although the first and second generations of aromatase inhibitors failed to 

show any statistical benefit compared to tamoxifen in clinical trials, the third 

generation of more potent aromatase inhibitors have now been developed that 

almost completely inhibit aromatase activity, leading to a substantial reduction 

in oestrogen production [Geisler et al, 2002]. These include the steroidal 

aromatase inhibitor exemestane (Aromasin®), which binds to the p450 site of 

the aromatase complex, and the non-steroidal aromatase inhibitors anastrazole 

(Arimidex®) and letrozole (Femara®), which bind to the enzymes substrate 

binding pocket [Lonning, 2004]. Data from the phase III ATAC (anastrazole, 

tamoxifen and combination) clinical trial suggested that adjuvant anastrozole 

was superior to tamoxifen in terms of disease-free survival, time to recurrence, 

time to distant recurrence and prevention of contralateral breast cancer in 

postmenopausal women with early ER-positive breast cancer [Howell et al,
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2005]. They are therefore set to challenge the status of tamoxifen as current 

first-choice treatment for these patients, pending further investigation into the 

effect that long-term inhibition of oestrogen synthesis has on other oestrogenic 

tissues. Interestingly, the combination treatment arm of tamoxifen and 

anastrozole showed no clinical benefit compared to tamoxifen alone, and was 

terminated early. This was thought to be due to the weak oestrogenic 

properties of tamoxifen activating growth signalling pathways, circumventing 

the growth inhibitory effect of oestradiol deprivation. AIs have also proven 

effective as a second-line therapy in post-menopausal patients with acquired 

tamoxifen resistant ER-positive breast cancer; although both fulvestant and Al 

acquired resistance have been reported in tamoxifen sensitive and resistant 

ER-positive breast cancer patients, as well as in numerous experimental 

models [Nicholson and Johnston, 2005].

1.6.1 Overcoming tamoxifen resistance in the clinic -  Growth factor signalling 

pathway inhibitors.

As mentioned in section 1.5.3.1, the growth of tamoxifen resistant MCF-7 

cells can be inhibited following the inactivation of the EGFR signalling 

pathway with gefitinib (Iressa®), or the inactivation of HER2 pathway using 

trastuzumab (Herceptin®). Pre-clinical studies in tamoxifen-resistant MCF-7 

cells (TAM-R) developed in the TCCR showed that gefitinib treatment 

subsequently induced a concentration dependent inhibition of TAM-R cell 

growth, where lpM  gefitinib reduced proliferation by approximately 60% in 

correlation with a loss of phosphorylated EGFR [Nicholson et al. 2002,
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2004b, Knowiden et al. 2003]. Phosphorylation of its heterodimerisation 

partner HER2 was also reduced in TAM-R cells together with pMAPK. Cell 

loss, however, was not achieved following gefitinib challenge, and ultimately 

resistance developed in association with a further gain in aggressive behaviour 

[Jones et al. 2004]. Treatment with trastuzumab similarly reduced pMAPK 

activity in TAM-R cells and temporarily inhibited cell growth. In the clinical 

setting, responses to trastuzumab as a single agent only occur in approximately 

30% of HER2+ patients, and again, relapse is inevitable [McKeage and Perry, 

2002].

The failure of sequential delivery of anti-hormone therapy followed by growth 

factor signaling inhibition to sufficiently block tumour progression has raised 

the possibility of combinational treatments being the most effective form of 

therapy for ER-positive breast cancer patients. In the specific example of 

tamoxifen and gefitinib combination treatment, the onset of tamoxifen 

resistance was significantly delayed in MCF-7 cells treated with both drugs, 

compared to cells receiving only tamoxifen; however, once again, cell loss 

was not achieved and resistance eventually developed [Gee et al, 2003]. 

Diverse clinical studies are also exploring the value of blocking downstream 

signalling components using including MAP kinase inhibitors, 

famesyltransferase inhibitors and mammalian target of rapamycin [mTOR] 

inhibitors, however, to date many of these studies have proved relatively 

disappointing, with therapeutic resistance again a pervading problem 

[Johnston et al, 2007].

31



Chapter 1 Introduction

It is therefore apparent that blocking the up-regulated growth pathways 

featured in tamoxifen resistant cells, either singularly or in combination, may 

not be sufficient to cause complete tumour regression. In this context it is 

therefore possible that the cells are able to continue to grow as a result of a 

concurrent loss of growth ‘braking mechanisms’, i.e. loss of tumour 

suppressor/pro-apoptotic gene expression. Although the loss of tumour 

suppressor genes is a phenomenon identified in all stages of breast cancer, it is 

the ability of anti-hormone treatment, specifically tamoxifen, to permanently 

alter the expression of such genes by epigenetic mechanisms, as a contributing 

factor to tamoxifen-resistant cell growth that provides the focus of 

investigation for this thesis.
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1.7 Aims

The aim of the current study will be to investigate whether the long-term 

tamoxifen treatment can cause the epigenetic silencing of oestrogen 

responsive genes associated with tumour suppressor / pro-apoptotic function, 

enhancing the cells ability to survive and potentially limiting the effect of 

second-line treatments.

In order to test this hypothesis, the following aims were pursued;

• The establishment of a tamoxifen-resistant cell sub-line, withdrawn 

from tamoxifen for up to 6 months, to determine the permanency of the 

aggressive tamoxifen-resistant cell phenotype, as assessed by cell 

morphology, growth and motility.

• The characterisation of ER, EGFR and IGF-1R mRNA and protein 

expression levels by real-time PCR, and Western 

blotting/immunocytochemistry (ICC) respectively, and their 

contribution to MCF-7, TAM-R and tamoxifen withdrawn TAM-R 

(TAM-Wd) cell growth using signalling inhibitors.

• The provision of proof of principle data to assess whether long-term 

tamoxifen treatment permanently silences well characterised, 

classically regulated ER-gene targets, pS2 and PR, using real-time 

PCR and ICC.

• The determination of whether genes silenced following long-term 

tamoxifen exposure could be re-expressed with the de-methylation
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agent 5-Azacytidine (5-Aza) +/- oestradiol (E2) using real-time PCR 

and ICC in correlation with methylight analysis.

• The determination of whether the re-expression/activation of 

demethylated genes in tamoxifen withdrawn TAM-R cells effects cell 

growth.

• The use of micro-array technology to identify oestrogen responsive 

genes whose ontology and array profiles following 5-Aza + E2 co­

treatment associate with cell growth (as determined above).

• The confirmation of gene expression profiles of the candidate genes 

identified in the microarray analysis, using semi-quantitative PCR.
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2. MATERIALS AND METHODS

The equipment and disposables used throughout this study are listed below 

alongside the supplier from which they were sourced. Equipment is only 

referenced once, but may have been used in more than one experimental 

procedure.

Tissue Culture

Equipment Manufacturer

0.2pm Supor membrane VacuCap 60 
filter unit

Gellman Laboratory Pall, Ann 
Arbour, USA

Aspiration pump Gardner Denver Alton Ltd, Alton, 
UK

Cecil CE 2041 Spectrophotometer CECIL, Cambridge, UK
Cell scrapers Greiner Bio-One Ltd, 

Gloucestershire, UK
Class II biological safety cabinet MDH Intermed Airflow from 

Bioquell, Andover, UK
Coming Standard Transwell® inserts 
(6.5mm diameter, 8pm pore size)

Fisher Scientific, Leicestershire, UK

Coulter Counter counting cups and 
lids

Sarstedt AG and Co., Numbrecht, 
Germany

Coulter Multisizer II Beckman, High Wycombe, UK
Cryo Storage Chamber Taylor Wharton, Alabama, USA
Denly BA852 Autoclave Thermoquest Ltd, Basingstoke, UK
Gilson Pipettes (l-10pl, 5-50pl, 20- 
200pl, lOOpl-1000ml and 500pl-5ml)

Gilson, Luton UK

Glass coverslips (thickness no. 2, 
22mm2)

BDH Chemicals Ltd, Poole, Dorset, 
UK

Hamamatsu C4742-96 digital camera Hamamatsu Photonics UK Ltd, 
HERTS, UK

Hoffman Condenser Leica Microsystems Imaging 
Solutions Ltd, Cambridge, UK

Improvision OpenLab V4.04 software Improvision, Coventry, UK
Jouan C312 Centrifuge Thermo Fisher Scientific Inc., MA, 

USA
Leica DM-IRE2 inverted microscope Leica Microsystems Imaging 

Solutions Ltd, Cambridge, UK
Multiskan MCC/340 plate-reader Titertek, USA
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Nikon Eclipse TE200 Phase Contrast 
Microscope

Nikon, Kingston-upon Thames, UK

PowerMAC G5 computer Apple Computer Inc., CA, USA
Quartz Cuvettes Sigma-Aldrich, Poole, Dorset, UK
Sanyo MCO-17AIC incubator Sanyo E&E Europe BV, 

Loughborough, UK
Sterile Syringe Needles (BD 
microbalance™ 3 characteristics: 25 
G5/8 (0.5 X 16)

Becton Dickinson (BD) Biosciences 
Ltd, Oxford, UK

Syringes (5ml and 10ml) Sherwood Medical Davis and Geek, 
Gosport, UK

Tissue culture plasticware (24, 96- 
well plates, filter flasks, 35mm, 
60mm and 100mm dishes)

Nunc Int., Roskilde, Denmark

Vacuum flask Gardner Denver Alton Ltd, Alton, 
UK

Semi-Quantitative and Real-time PCR

Equipment Manufacturer

Alpha Digidoc RT Densitometry 
Software

Alpha Innotech Corp. California, 
USA

GeneQuant RNA/DNA Calculator Biochrom Ltd Cambridge, UK
IBM Personal Computer IBM, UK
IEC Micromax RF Micro-centrifuge Thermo Electron Corporation, 

Hampshire, UK
Labconco Purifier PCR Enclosure GRI, Rayne, UK
Olympus 8mp Digital Camera Olympus, Oxford, UK
Opticon 2™ real-time PCR machine MJ Research Ltd, Massachusetts, 

USA
OpticonMONITOR™ Version 2.01 MJ Research Ltd, Massachusetts, 

USA
Powerpac 1000 power pack Bio-Rad Laboratories Ltd, HERTS, 

UK
PTC-100 thermocycler MJ Research Ltd, Massachusetts, 

USA
Sanyo 950W Microwave Sanyo Europe, Loughborough, UK
Sub-cell® Agarose Electrophoresis 
System

Bio-Rad Laboratories Ltd, HERTS, 
UK

UV Transilluminator Alpha Innotech Corp. California, 
USA
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SDS-PAGEAVestern Blotting

Equipment Manufacturer

HyperCassette™ developing cassette Amersham, Little Chalfont, UK
DRI Block DB2A - Heating block Techne, New Jersey, USA
IEC Micromax RF micro-centrifuge Thermo Electron Corporation, 

Hampshire, UK
Magnetic Stirrer Fisher Scientific UK Ltd, 

Loughborough, UK
Mini-Protean ® 3 electrophoresis 
apparatus

BioRad Laboratories Ltd 
(Hertfordshire, UK)

MXB Autoradiography Film (Blue 
Sensitive; 18 X 24 cm)

Genetic Research Instrumentation 
(GRI), Rayne, UK

Nitrocellulose membrane 
BA85(0.45|iM)

Schleicher and Schuell, Dassell, 
Germany

Platform Rocker STR6 Stuart Scientific, Bibby Sterilin Ltd. 
(Stone, UK)

Powerpac Basic™ power pack BioRad Laboratories Ltd 
(Hertfordshire, UK)

Roller Platform Stuart Scientific, Bibby Sterilin Ltd. 
(Stone, UK)

X-O-graph Compact X2 x-ray 
developer

X-O-graph Imaging System, Tetbury, 
UK

Immunocytochemistry

Equipment Manufacturer

Olympus BH-2 phase contrast 
microscope

Olympus, Oxford, UK

Olympus DP-12 digital camera 
system

Olympus, Oxford, UK
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Other Plastics and Disposables

Equipment Manufacturer

15-ml Phase Lock Gel (PLG) tubes Eppendorf, Hamburg, Germany
Bijou tubes (5ml) Bibby Sterilin Ltd., Stone, UK
Cryotube™ vials (1.8ml, starfoot, 
round)

Nunc Int., Roskilde, Denmark

Disposable Cuvettes Fisher Scientific UK Ltd, 
Loughborough, UK

Eppendorf tubes Eppendorf, Hamburg, Germany
Filter Paper (No. 4), Filter Paper 
(grade 3; 460 X 370mm)

Whatman, Maidstone, UK

General laboratory glass- and 
plasticware

Fisher Scientific UK Ltd, 
Loughborough, UK

Glass coverslips (thickness no. 2, 
22mm2)

BDH Chemicals Ltd, Poole, Dorset, 
UK

Glass slides Fisher Scientific UK Ltd, 
Loughborough, UK

Micro-centrifuge tubes (0.5ml and 
1.5ml)

Elkay Laboratory Products, 
Basingstoke, UK

Pipette Tips Greiner Bio-One Ltd, Gloucestershire, 
UK

Pipette tips Greiner BioOne Ltd, Gloucestershire, 
UK

Sterile disposable pipettes (5ml, 10ml 
and 25ml), Falcon tubes (50ml), 
Coulter Counter lids and cups

Sarstedt AG and Co., Numbrecht, 
Germany

Sterile Falcon tubes (15ml and 50ml) Sarstedt AG and Co., Numbrecht, 
Germany

Sterile universal containers (30ml) Greiner Bio-One Ltd, Gloucestershire, 
UK

Sterile, disposable serological 
pipettes (5ml, 10ml and 25ml)

Sarstedt AG and Co., Numbrecht, 
Germany

White 96 well qPCR plates and caps Bio-Rad Laboratories Ltd, HERTS, 
UK
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The chemicals and reagents used throughout this study are listed below 

alongside the supplier from which they were sourced. Chemicals are only 

referenced once, but may have been used in more than one experimental 

procedure.

Tissue Culture

Reagent Manufacturer

3-(4,5-dimethylthiazol-2-yl)-2,5- 
diphenyl-tetrazolium bromide (MTT)

Sigma-Aldrich, Poole, Dorset, UK

Activated charcoal Sigma-Aldrich, Poole, Dorset, UK
Amphotericin B (Fungizone) Invitrogen, Paisley, UK
Antibiotics (penicillin/streptomycin) Invitrogen, Paisley, UK
Bovine Trypsin Lome Laboratories Ltd, Reading, 

UK
Cell culture medium: RPMI 1640 and 
Phenol-red-free RPMI 1640

Invitrogen, Paisley, UK

Crystal violet Sigma-Aldrich, Poole, Dorset, UK
Dimethyl sulphoxide (DMSO) Sigma-Aldrich, Poole, Dorset, UK
Ethylene diamine tetraacetic acid 
(EDTA)

Sigma-Aldrich, Poole, Dorset, UK

Fibronectin (from Human Plasma; 
1 mg/ml in 0.05M TBS; pH 7.5)

Sigma-Aldrich, Poole, Dorset, UK

Foetal calf serum (FCS) Invitrogen, Paisley, UK
Isoton® II azide-free balanced 
electrolyte solution (sodium chloride at 
7.9g.l-l, disodium hydrogen 
orthophosphate at 1.9g.l-l, EDTA 
disodium salt at 0.4g.l-l, sodium 
dihydrogen orthophosphate at 0.2g.l-l 
and sodium fluoride at 0.3g. 1-1)

Beckman Coulter Ltd, High 
Wycombe, UK

L-glutamine Invitrogen, Paisley, UK
Phenol/Chloroform/Isoamyl (25:24:1) Sigma-Aldrich, Poole, Dorset, UK
Proteinase-K Sigma-Aldrich, Poole, Dorset, UK
Sodium Acetate (NaOAc) Sigma-Aldrich, Poole, Dorset, UK
Solvents (acetone, chloroform, ethanol, 
formaldehyde, isopropanol and 
methanol)

Fisher Scientific UK Ltd, 
Loughborough, UK

Sterile phosphate buffered saline 
(PBS)

Invitrogen, Paisley, UK

TRI-Reagent Sigma-Aldrich, Poole, Dorset, UK
Tris HC1 Sigma-Aldrich, Poole, Dorset, UK
Triton X-100 Sigma-Aldrich, Poole, Dorset, UK

39



Chapter 2 Material and Methods

Semi-Quantitative and Real-time PCR

Reagent Manufacturer

Agarose Bioline Ltd, London, UK
Di-thiothreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK
dNTPs (dGTP, dCTP, dATP, dTTP; 
lOOmM)

Amersham, Little Chalfont, UK

DyNAmo™ qPCR kit Finnzymes Oy, Espoo, Finland
Ethidium bromide (EtBr) Sigma-Aldrich, Poole, Dorset, UK
Glacial Acetic Acid Fisher Scientific UK Ltd, 

Loughborough, UK
Hyperladder™ I and Hyperladder™ 
IV

Bioline Ltd, London, UK

Magnesium chloride (MgC12) Sigma
Molony-murine leukaemia virus 
(MMLV) reverse transcriptase

Invitrogen, Paisley, UK

QIAquick PCR purification kit QIAGEN Ltd, Crawley, UK
Random hexamers (RH) Amersham, Little Chalfont, UK
RNase-free H20 Sigma-Aldrich, Poole, Dorset, UK
RNasin® ribonuclease inhibitor Promega, Southampton, UK

SDS-PAGEAVestern Blotting

Reagent Manufacturer

Acrylamide/bis-acrylamide (30% 
solution (v/v), 29:1 ratio)

Sigma-Aldrich, Poole, Dorset, UK

Ammonium persulphate (APS) Sigma-Aldrich, Poole, Dorset, UK
Aprotinin Sigma-Aldrich, Poole, Dorset, UK
Bio-Rad DC Protein Assay (Reagents 
A, B and S)

Bio-Rad Laboratories Ltd, HERTS, 
UK

Bovine serum albumen (BSA) Sigma-Aldrich, Poole, Dorset, UK
Bromophenol blue (BPB) BDH Chemicals Ltd, Poole, UK
Di-potassium hydrogen 
orthophosphate anhydrous (K2HP04)

Fisher Scientific UK Ltd, 
Loughborough, UK

Di-thiothreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK
Glycerol Fisher Scientific UK Ltd, 

Loughborough, UK
Glycine Sigma-Aldrich, Poole, Dorset, UK
Leupeptin Sigma-Aldrich, Poole, Dorset, UK
Lower buffer for SDS-PAGE Gels 
(Tris 1.5M, pH 8.8)

Bio-Rad Laboratories Ltd, HERTS, 
UK

N,N,N’,N’-tetramethylene-diamine
(TEMED)

Sigma-Aldrich, Poole, Dorset, UK
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Perbio Chemiluminescent 
Supersignal® West Pico, Dura and 
Femto

Pierce and Warriner Ltd, Cheshire, 
UK

Phenylarsine oxide Sigma-Aldrich, Poole, Dorset, UK
Phenylmethylsulfonyl fluoride 
(PMSF)

Sigma-Aldrich, Poole, Dorset, UK

Polyoxyethylene-sorbitan 
monolaurate (Tween 20)

Sigma-Aldrich, Poole, Dorset, UK

Rainbow protein size markers (10- 
250 kDa)

Amersham, Little Chalfont, England

Sodium chloride (NaCl) Sigma-Aldrich, Poole, Dorset, UK
Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Poole, Dorset, UK
Sodium fluoride (NaF) Sigma-Aldrich, Poole, Dorset, UK
Sodium molybdate (Na2Mo04) Sigma-Aldrich, Poole, Dorset, UK
Sodium ortho vanadate (NaV04) Sigma-Aldrich, Poole, Dorset, UK
Trizma (Tris) base Sigma-Aldrich, Poole, Dorset, UK
Upper buffer for SDS-PAGE Gels 
(Tris 0.5M, pH 6.8)

Bio-Rad Laboratories Ltd, HERTS, 
UK

Western Blocking Reagent Roche Diagnostics, Mannheim, 
Germany

Immunocytochemistry

Reagent Manufacturer

Anti-rabbit/Anti-mouse EnVision™+ 
System, Peroxidase (DAB) kits

DAKO, Cambridgeshire, UK

Di-butylpthalatexylene (DPX) Raymond A Lamb Ltd, Eastbourne, 
UK

Liquid DAB+ substrate chromogen 
system

DAKO, Cambridgeshire, UK

Methyl green Sigma-Aldrich, Poole, Dorset, UK
Sucrose Fisher Scientific UK Ltd, 

Loughborough, UK
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2.1 Tissue Culture

2.1.1 Cell Seeding from Cryogenically Stored Cell Reserves.

ER positive, MCF-7 breast cancer cells, kindly given to our laboratory by 

AstraZeneca Pharmaceuticals (Cheshire, UK), were stored in liquid nitrogen 

in RPMI-1640 based medium containing 5% (v/v) fetal calf serum (FCS), 

antibiotics (streptomycin (10pg/ml), penicillin (lOIU/ml), fungizone 

(2.5pg/ml) (RPMI+5%) with the addition of 7.5% DMSO. Upon removal 

from liquid nitrogen, 1ml aliquots of cell solution, containing approximately 

106 cells, were rapidly defrosted and vials were sterilised with 75% EtOH 

before opening. Cells were re-suspended in 9mls of RPMI+10% cell culture 

medium and were centrifuged at 1340g for 5 minutes at room temperature. 

The supernatant was aspirated and the cell pellet was re-suspended in 3ml of 

medium through gentle pipetting with a 10ml pipette until no clumping of 

cells was visible. The cell suspension was then seeded in a 12.5 cm filter flask 

and incubated at 37°C in a humidified atmosphere of 5% CO2 in air. The 

culture medium was refreshed the following day, and subsequently twice a 

week, until cell confluency was reached. Cells were then passaged at a ratio of 

1:2 with RPMI+5% medium until cell reserves were sufficient to permit 

routine culture (described below).
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2.1.2 Routine MCF-7 Cell Passage Procedure

All cells were routinely cultured in 75cm flasks (T75) containing 15mls of 

culture medium, refreshed twice weekly; upon reaching 70-80% confluency 

the cells were passaged as follows. The culture medium was aspirated and 

replaced with lOmls of pre-warmed (37°C) trypsin (0.05%)/EDTA (0.02%) in 

PBS. The flask was returned to an incubator at 37°C for approximately 5 

minutes, until the cells had detached from the flask surface. The trypsinised 

cell suspension was then mixed with an equal volume of pre-warmed 

RPMI+5% culture medium and centrifuged at 1340g for 5 minutes at room 

temperature. The supernatant was aspirated and the cells were resuspended 

into lOmls of RPMI+5% by gently pipetting through a 10ml pipette, ensuring 

no clumping of cells was visible. 1ml of cell suspension was then seeded into 

14mls of RPMI+5% in T-75 flasks and put in an incubator (5% CO2 at 37°C).

2.1.3 Experimental Cell Media and Passage procedure

T75 flasks containing MCF-7 cells at 70-80% confluency were trypsinised and 

centrifuged as described in the routine cell passage procedure. The pellet 

obtained was then resuspended in 10ml of oestrogen depleted experimental 

media. Experimental media was necessary to avoid the unwanted oestrogenic 

properties of both the phenol red in standard RPMI-1640 medium, and the 

steroidal hormones present in the standard FCS. Therefore, standard RPMI 

was replaced with a phenol red free equivalent medium (wRPMI), and FCS 

was charcoal-stripped to produce steroid-depleted FCS (csFCS). The csFCS 

was prepared by firstly aliquoting the standard FCS (100ml) and adjusting the
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pH to 4.2 using 5M HCL. This was then allowed to equilibrate for 30 minutes 

at 4°C. A charcoal/dextran solution was prepared using distilled water with 

Norit A (charcoal, 11.1%) and Dextran C (0.06%). This mixture was then 

stirred vigorously for 1 hour. 5ml of charcoal solution (5% v/v) was added to 

each 100ml aliquot of FCS and incubated with gentle agitation for 16 hours at 

4°C. The charcoal was then removed by centrifugation (12,000g for 40 

minutes) and the solution was filtered with filter paper (grade 4) to remove 

any traces of charcoal. The pH of the solution was then readjusted to pH7.2 

and sterilised by filtering with a 0.2pM membrane filter to remove fine 

impurities and contaminating micro-organisms. The experimental media for 

all cell-lines used in this study comprised of wRPMI containing 5% (v/v) 

csFCS, antibiotics (same as routine culture media) and glutamine (4mM) 

(wRPMI+5%).

To ensure that equivalent cell numbers were obtained for each experiment, the 

cells were counted and diluted appropriately prior to plating into the selected 

experimental receptacle. The cell pellet obtained by centrifugation was 

resuspended into lOmls of wRMPI+5% using a syringe with a 25 G5/8 0.5 X 

16 needle, to separate the cells and achieve a single-cell suspension. lOOpl of 

this solution was then added to 10ml of Isoton solution in a counting cup and 

counted using a Beckman Coulter counter Multisizer II. Cell counts were 

carried out in duplicate, and an average was calculated. An appropriate 

volume of RPMI+5% was then added to a known number of cells to obtain a 

suitable cell density.
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2.1.4 Establishment of the tamoxifen resistant cell-line (TAM-R).

A tamoxifen-resistant MCF7 cell-line was generated by the long-term culture 

of MCF-7 cells in wRPMI+5% containing 4-OH-tamoxifen (10‘7M) (TAM). 

During the first two months of this culture regime, cell growth was 

significantly inhibited. However, cell growth rate then began to steadily 

increase following the emergence of cells capable of overcoming the growth 

inhibitory effects of TAM. After six months culture, the resultant tamoxifen 

resistant-MCF-7 derived cell sub-line (TAM-R) was characterised [Knowiden 

et al, 2003; Hutcheson et al, 2003; Hiscox et al, 2004]. Large stocks were 

generated and cells were periodically brought up from frozen for experimental 

analysis. Cells were routinely cultured for up to 25 passages under the same 

conditions described for the MCF-7 cells (section 2.1.2), with wRPMI+5% 

+TAM medium.

2.1.5 Establishment of the tamoxifen withdrawn TAM-R cell-line (TAM-Wd). 

In order to establish a cell model representative of tamoxifen-resistant breast 

cancer cells which have subsequently been withdrawn from the drug, TAM-R 

cells were maintained in wRPMI+5% in the absence of tamoxifen for up to six 

months. Cells were frozen in liquid nitrogen after a tamoxifen withdrawal 

period of either 1, 3 or 6 months. Briefly, cells were harvested from T75 flasks 

and counted as previously described in section 2.1.3. The cell suspension was 

centrifuged and cells were resuspended in wRMPI+5% + 7.5% DMSO at a 

cell density of 106cells/ml. 1ml aliquots were transferred to freezer vials, 

labelled and placed into a lag box which was transferred to a -80°c freezer.
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Vials were transferred to liquid nitrogen storage after at least 24hours. The 

resultant tamoxifen-withdrawn TAM-R cell sub-lines, TAM-Wd 1 Month 

(TAM-Wd 1M), TAM-Wd 3M and TAM-Wd 6M, were simultaneously 

brought up from frozen (as described in section 2.1.1 with wRMPI+10%), and 

were routinely cultured (as described for MCF-7 cells in section 2.1.2) with 

wRPMI+5% medium for up to ten passages before being discarded. See 

Fig.2.1 for a time-line depicting the establishment of experimental cell- 

models.

Fig 2.1. Time-line of established experimental cell-lines.

6 Months + TAM -M - -6 Months - TAM-

MCF-7 TAM-R

1 Month 3 Month

TAM-Wd

6 Month
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2.2 Cell Behaviour Analysis

2.2.1 Morphology

T75 flasks containing cells at around 50-60% confluency were visualised at 

20x magnification using an inverted microscope fitted with a Hoffman 

condenser. Representative images of live cells were obtained using a digital 

camera and Improvision® OpenLab software.

2.2.2 Growth Assays

Cells from T75 flasks were passaged as described in section 2.1.3. The cell 

suspension was diluted to a suitable density (4xl04 cells/ml unless otherwise 

stated), and cells were seeded in 24-well plates (1 ml/well). Cells were 

incubated for 24 hours prior to treatment, with each condition and/or time- 

point allocated triplicate wells. Concentration-response assays were run for 7 

days, while growth assays were assessed over an 11-14 day period, typically 

taking cell counts every 2-3 days. In both instances, the medium was refreshed 

every 3-4 days. To record the number of cells per well, the medium was firstly 

removed and replaced with 1ml of trypsin solution. The plate was returned to 

the incubator until the cells could be detached with gentle rocking (usually 3-5 

minutes). Using a 5ml syringe with a 25 G5/8 0.5 X 16 needle, the detached 

cells were pipetted up and down twice to encourage a single-cell suspension 

for accurate analysis of cell number. 1 ml of Isoton solution was added to the 

well and the solution was pipetted up and down twice more before being 

drawn into the syringe. This process was repeated twice to give a total volume
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of 4ml. The cell suspension was transferred to a counting pot containing 6ml 

of Isoton, to give a final volume of 10ml. The number of cells in each pot was 

then determined in duplicate using the Coulter™ Multisizer II set to count the 

number of cells in 500pl. Pots were counted a minimum of twice, with gentle 

agitation between each count to resuspend the cells. Duplicate counts for the 

three wells/condition were averaged and multiplied by the dilution factor of 20 

to give the average number of cells per well. All growth/concentration- 

response assays were carried out as independent triplicate experiments unless 

otherwise stated. Treatments are summarised in table 2.1.

2.2.2.1 MTT Cell Proliferation Assay

Cells were harvested as previously described in section 2.1.3 and seeded into 

96-well plates at a density of 5x10 cells/well. Cells were incubated for 24hrs 

prior to treatment, with each condition allocated 8 wells. Following a further 7 

days of culture (with 1 medium change) medium was removed, and cells were 

washed gently with PBS. Sterile-filtered 3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyl-2H-tetrazolium bromide (MTT) in wRPMI (0.5mg/ml; 150pl) was 

added to the cells and plates were left to incubate at 37°C for 4 hours. During 

this time, the MTT compound was metabolised by mitochondrial 

dehydrogenase enzymes in the cells to produce insoluble purple formazan 

crystals. The MTT solution was then removed and cells were lysed in 10% 

(v/v) Trition-XlOO in PBS (150pl/well) for 12hrs at 4°C. Cell lysis causes the 

formazan crystals to dissolve and the absorbance of the resultant solution is 

proportional to cell number. Plates were warmed to room temperature and
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gently tapped before being read on a Multiskan® MCC/340 plate-reader at 

540nm.

2.2.3 Wound Healing Assay

Cells were harvested and seeded into 24-well cell-culture plates as described 

in section 2.2.2. After confluent cell mono-layers were established, cells were 

wounded by running a pipette tip across the diameter of the base of the well, 

manually removing cells. The well was rinsed with 1ml sterile PBS, refreshed 

with new medium, and incubated for a further 48 hours. Cells were then fixed 

with 3.7% formaldehyde, and stained with crystal violet (0.5% in PBS). Wells 

were visualized on a phase contrast-microscope and were photographed using 

a digital camera at x4 magnification. An allocation of wells that had not been 

wounded 48hours previous, were wounded on the day of fixing to provide a 

positive control. Three independent experiments were carried out for this 

analysis, with images presented representative of the average degree of wound 

recovery.

2.2.4 Cell Migration

To analyse a cells capability to migrate, 24-well plate inserts 6.5mm in

diameter with an 8 pm pore membrane, were basally coated with fibronectin

(lOpg/ml in wRPMI+5%) by submerging an insert into a well containing

200pl of fibronectin solution for 2 hours at 37°C. The inserts were then

washed with PBS and allowed to air-dry.
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Cells from T75 flasks were passaged as described in section 2.1.3 and the cell 

suspension was diluted with experimental medium to a density of 

2.5x105cells/ml. 200pl of cell suspension was seeded into the upper 

compartment of the insert. Each cell-line was seeded in duplicate per 

experiment, and independent experiments were carried out in triplicate. 650pl 

of media was then added to the lower compartment of each insert and the plate 

was incubated at 37 °C for 24 hours. The medium in the upper compartment of 

the inserts was then aspirated. Non-migratory cells attached to the upper- 

surface of the membrane were manually removed using a cotton swab. 

Migratory cells, attached to the basal membrane surface were fixed with 3.7% 

(v/v) formaldehyde in PBS for 10 minutes. Cells were then washed with PBS 

and stained with crystal violet (0.5% w/v in water) for 30 minutes. PBS was 

then used to thoroughly remove excess crystal violet stain and the inserts were 

air-dried at room temperature. Inserts were visualised at lOx magnification 

using a phase contrast microscope, and the number of migratory cells present 

in 5 random fields of view was recorded for each insert. Data is presented as 

mean cell count/field (n=3).
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Table 2.1 - Treatments Used in Cell Culture Procedures.

Treatments for Concentration-Response and Growth Assays

Treatment Classification Target Typical Cone. 
Used Vehicle Manufacturer

17P-Oestradiol Hormone ER InM EtOH Sigma-Aldrich

4-hydroxytamoxifen Anti-hormone ER lOOnM EtOH Sigma-Aldrich

Fulvestrant (Faslodex™) Anti-hormone ER lOOnM EtOH AstraZeneca

Gefitinib (Iressa™) Inhibitor EGFR lpM DMSO AstraZeneca

ABDP (4-anilino-5- 
bromo-2-[4-(2-hydroxy- 
3-(N,N-dimethy lamino) 

propoxy) anilino] 
pyrimidine)

Inhibitor IGF-1R lpM DMSO AstraZeneca

5-Azacytidine
De-methylation

agent - lpM dH20 Sigma-Aldrich

Treatments for RNA/DNA Extractions

Treatment Classification Target Typical Cone. 
Used Vehicle Manufacturer

17P-Oestradiol Hormone ER InM EtOH Sigma-Aldrich

4-hydroxytamoxifen Anti-hormone ER lOOnM EtOH Sigma-Aldrich

5-Azacytidine De-methylation
agent - lpM dH20 Sigma-Aldrich

Treatments for ICC Analysis

Treatment Classification Target Typical Cone. 
Used Vehicle Manufacturer

17P-Oestradiol Hormone ER InM EtOH Sigma-Aldrich

5-Azacytidine De-methylation
agent - lpM dH20 Sigma-Aldrich
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2.3 Gene Expression Analysis

Gene expression in wt-MCF7, TAM-R and TAM-Wd cell-lines was analysed 

using both semi-quantitative reverse transcription-polymerase chain reaction 

(RT-PCR) and real-time (quantitative) PCR (qPCR). For both procedures, 

RNA and DNA were prepared using RNA/DNase free reagents and autoclaved 

disposables, and ethanol rinsed gloves were worn at all times.

2.3.1 Cell Culture Procedure for RNA Harvest

Cells were harvested and counted as described in section 2.1.3, and 

resuspended in fresh experimental medium at cell density of 3xl06 cells/ml. 

lml of cell suspension was seeded into a 150mm petri-dish containing 9mls of 

pre-warmed wRPMI+5%. Cells were incubated at 37°C for 24hr before 

treatments were added (treatments are summarised in table 2.1). Cells 

remained in culture for a further six days before RNA harvest, with media 

typically refreshed every 2-3 days.

2.3.2 RNA Extraction

Media was drained from the petri-dish, and cells were rinsed with xl PBS 

three times to ensure removal of all traces of cellular debris and media 

components. Petri-dishes were drained thoroughly and lml of TRI-reagent 

was distributed across the cell-monolayer. Dishes were gently rocked to 

ensure total-surface coverage, and then left to incubate for 5 minutes at room 

temperature. Dishes were gently tapped to dislodge cells, and a cell scraper
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was used to ensure all cells had detached. The viscous cell solution was 

transferred to a 2-ml eppendorf tube and placed on ice (at this point, cell- 

lysates were stored at -80°C for at least 24 hours before the RNA extraction 

was carried out). 0.2mls of Chloroform was added to the cell lysate, and the 

solution was vortexed to ensure complete mixture. Samples were incubated for 

lOmins at room temperature before centrifugation at 13000g, 4°C for 10 mins. 

Samples separated into two phases; 0.5ml aliquots of upper (aqueous) phase 

which contained the RNA were transferred to fresh 1.5ml eppendorf tubes, to 

which 0.5ml isopropranol was added. Samples were vortexed for 5secs, and 

incubated for a further 10 mins at room-temperature before a repeat 

centrifugation step.

The supernatant was carefully removed and the remaining RNA pellet was 

resuspended in lml 75% ethanol (EtOH). Samples were centrifuged at the 

same speed and temperature as before for 5 mins, after which the EtOH was 

carefully removed. Pellets were briefly air-dried and re-dissolved into 50pl 

dH20. Samples were stored at -80°c prior to analysis.

2.3.3 RNA Quantification

Total RNA was typically diluted 1: 200 in TE buffer pH 8.0 (10 mM Tris-Cl, 

1 mM EDTA) and measured in a quartz cuvette using a spectrophotometer. 

Optical densities (OD) observed at wavelengths of 260 and 280nm were 

recorded and subsequently used to produce the A260/A280 ratio as an 

indicator of nucleic acid purity, with a ratio of 1.8-2.1 representing an 

acceptable RNA solution. The RNA integrity was checked by running RNA
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through a 2% agarose gel. The following calculation was used to obtain the 

RNA concentration:-

[RNA] = O D 260 x 200 x 40 = pg/ml (RNA - 40pg = 1 0 D 26o)

2.3.4 Reverse Gene Transcription

To generate complementary DNA (cDNA) from Total RNA obtained, lpg of 

total RNA was made up to 7.5pl with RNase-free H20. This RNA solution 

was then added to 1 lp l of RT master mix comprising 5pi dNTP (0.625mM of 

dGTP, dCTP, dATP and dTTP), 2pl 10X PCR buffer (containing 25mM 

MgCl2), 2pl di-thiothreitol (DTT; 0.1M) and 2pl random hexamer 

oligonucleotides (RH; lOOpM). Samples were placed in a thermal cycler and 

denatured by heating to 95°C for 5 minutes. Samples were then removed and 

cooled on ice for 5 min. 1 pi MMLV (reverse transcriptase enzyme (200U/pl) 

and 0.5pi RNase inhibitor (40U/pl) were added to each tube to give a final 

volume of 20pl. Tubes were mixed gently and centrifuged briefly to collect 

volume and then returned to the thermal cycler and reverse transcribed using 

the cycle program below. The resultant cDNA was stored at -20°C.
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Thermocycling Procedure for RT

1 Annealing

2 RT Extension

3 Denaturing

4 Short-term 
storage

Temp Duration

22°C 10 minutes

42°C 42 minutes

95°C 5 minutes

4°C No more than
12hrs

2.3.5 Polymerase Chain Reaction

The reaction mixture for the amplification of genes by semi-quantitative PCR 

consisted of 2.5pl lOx PCR buffer, 2pl dNTP mix (2.5mM), forward primer 

(20pM), 0.6pl gene reverse primer (20pM), 0.1 pi Taq polymerase (5U/pl) and 

0.5pl cDNA (equivalent to 25ng of RNA used in RT assuming 100% 

efficiency of reaction), with the final volume made up to 25 pi with sterile 

H2O. A negative control in which cDNA was substituted with an equal volume 

of sterile H2O was also run for each experiment. All primers used were 

synthesised at Invitrogen and were micro-column purified. Primer sequences 

for all genes amplified can be found in table 2.2. The reaction tubes were 

mixed gently, pulsed in a micro-centrifuge and placed in a thermal cycler. The 

PCR reaction was then run for the optimal cycle number for gene 

identification using the temperature cycling conditions stated below. PCR data 

was normalised using amplification of the P-actin housekeeping gene.
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Thermocycling Procedure for PCR:

Temp Duration

1 Denaturing 95°C 5 minutes

2 Annealing 55-60°C 1 minute

3 Extension 72°C 1 minute

4 Denaturing 95°C 1 minute
5 Annealing 55-60°C 1 minute
6 Extension 72°C 1 minute

7 Final Extension 72°C 10 minutes

8 Short-term 4°C No more than
storage 12hrs

j

x 1

x 24-32

2.3.6 Agarose Gel Electrophoresis and Gel Densitometry 

Samples were resolved using a 2% (w/v) agarose gel made up with Tris- 

Acetate-EDTA (TAE) buffer (Tris-base 2M, Glacial acetic acid 1M, EDTA 

0.05M (stock is 50x) -pH 8.3- made up to 1L with distilled H2O, diluted 1:50 

before use) containing ethidium bromide (lp l of a lOmg/ml solution per 

100ml gel solution). The agarose was firstly dissolved in the TAE buffer by 

heating in a microwave at full power for 1 minute, with intermittent mixing. 

The gel was left to cool to approximately 40°C and the ethidium bromide was 

added. The gel was cast and a comb was added and the gel was left to set. The 

solidified gel was then submerged in an electrophoresis tank containing TAE 

buffer, and lOpl of each PCR product was mixed with 5 pi loading buffer and

56



Chapter 2 Material and Methods

dispensed into a well of the gel. A lOObp DNA size marker was run in parallel 

with the samples. The gel was run at 100V constant voltage for approximately 

45-60 minutes. Gels were visualised using a UV trans-illuminator and 

photographed with a digital camera attached to a shroud for densitometric 

analysis. Using the spot density application within the Digidoc computer 

software, the light intensity of the UV fluorescence of ethidium-bromide 

chelated DNA was standardised and quantified relative to P-actin. 

Densitometry data is representative of 3 independent experiments. Single gels 

that reflect the observations from three independent experiments are also 

presented.

2.3.7 Real-Time PCR

Quantitative PCR (qPCR) uses fluorescence to measure the amount of DNA 

material present in a PCR reaction after each temperature cycle and, thus, 

follows the amplification of a gene in ‘real-time’ until the system becomes 

saturated. Following the reaction, the amount of starting template material in 

an unknown sample can be quantified by comparing its fluorescence at a 

suitable cycle number to that of a pre-defined standard curve. The present 

study used the DyNAmo™ SYBR Green qPCR Kit according to the 

manufacturer’s instructions. SYBR green is an intercalating DNA dye that is 

only fluorescent when bound to double-stranded DNA. Briefly, each reaction 

mix contained 12.5pl SYBR Green PCR Mastermix (hot start taq DNA 

polymerase, lx SYBR Green PCR buffer, SYBR Green 1, dNTPS, and 

MgCh), 0.375pl forward- and reverse specific primers (20pM) (table 2.2), and
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11.3 pi sterile H2O, giving a total volume of 24.5 pi of master mix which was 

aliquoted into the wells of a 96 well qPCR plate, to which 0.5pi of cDNA 

product (equivalent to 0.05 pg RNA starting material) was added. Serial 

dilutions of specific cDNA-amplicon preparations of known concentration 

were extracted from freshly purified PCR product using a QIAquick PCR 

purification kit according to manufacturer’s instructions. They were then 

quantified using a RNA/DNA calculator and used to produce a standard curve 

from which experimental samples could be quantified. Final standard 

concentrations ranged from 0.001-lOng/pl. Each standard/sample was 

analysed in duplicate. The wells of the plate were capped and gently tapped to 

ensure complete mixture of the reaction components. Plates were lightly 

pulsed in a centrifuge to collect volume and placed into an Opticon 2™ real­

time PCR machine. Throughout the set-up procedure, effort was made to 

protect the master-mix from light, due to the photo-sensitive nature of its 

constituents. The thermocycling protocol was as below. Each qPCR reaction 

was set to run for 50 cycles to ensure product saturation.
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Thermocycling Procedure for qPCR:

Temp Duration

1 Initial denaturing 
phase

95°C 15 minutes

2 Annealing 55°C 30seconds

3 Extension 72°C 30seconds

4 Denaturing 95°C 30seconds
5 Annealing 55°C 30seconds
6 Extension 72°C 30seconds

7 Final Extension 72°C 10 minutes

8 Cooling period 4°C _

x 1

x 50

Plate fluorescence readings were collected after each 72°C extension time. 

The concentrations of starting template material in the samples were 

extrapolated from the standard curve using Opticon 2™ computer software. 

The quantities of cDNA recorded were then corrected against B-actin 

expression to normalise the data. Data presented shows cDNA detected, 

normalised to actin for 3 independent experiments, run on the same qPCR 

plate. After each run, melting curves were inspected to ensure valid product 

specificity.
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Table 2.2. Primers used in Semi-Quantitative and Quantitative PCR

Primers Used in Semi-Quantitative PCR

Gene Primer Sequence Amplicon 
size (bp)

Annealing
Temp(°c)

Cycle
no.

ADCY9
For 5’- ctgctgcccttatccaacat -3’

60 28
Rev 3’- ctgggaaacactgagcacac -5’

4 5  /

p-Actin
For 5’- ggagcaatgatcttgatctt -3’

55 24ZUo
Rev 3’- ccttcctgggcatggagtcct -5’

CA12
For 5’- atgggatgcactctcagacc -3’

60 25
Rev 3’- aaagcttggagaagcagcag -5’

JUO

COL6a3
For 5’- tcaatccaaattccctctgg -3’

4 ^ 6 60 28
Rev 3’- gggcagggaatgaaaaagtt -5’

4 0 0

CXCL12
For 5’- agagatgaaagggcaaagac -3’

1 77 56 30
Rev 3’- cgtatgctataaatgcaggg -5’

1 j Z

GDF15
For 5’- actgctggcagaatcttcgt -3’

60 32
Rev 3’- cacatggtcacttgcacctc -5’

7 7 0

HBA2
For 5’- caagacctacttcccgcact -3’

4 7 60 25
Rev 3’- aggcagtggcttaggagctt -5’

KAZRIN
For 5’- ggcagaggatgtggtctgtt -3’

^47 60 29
Rev 3’- acaaacccagccaagacaag -5’

7 4 7

RASAL1
For 5’- ctgtgtgccttgagtccaga -3’

 ̂1 4 60 28
Rev 3’- cagctgtatccagcagctca -5’

7 1 4

RGC32
For 5’- ctgccactgtcactcctcag -3’

4 8 6 58 30
Rev 3’- ttgagtgcacgtctttgtcc -5’

4 o 0

ST6
For 5 ’ -tgttcaatataggacaccccagctt-3 ’

7 7 ^ 58 28
Rev 3 ’ -catcctgttggtgacaaggtggtga-5 ’

Z / 3

WISP2
For 5’ -ggtctgtctggacgagtatgg -3’

1 Q1 60 27
Rev 3’- ggactgcttgtcccatctcttgcc -5’

i y i
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Table 2.2. Continued

Primers Used in Quantitative PCR

Gene Primer Sequence Amplicon
size

Annealing
Temp(°c)

Cycle
no.

(3-Actin
For 5’- ggagcaatgatcttgatctt -3’

204 55 50
Rev 3’- ccttcctgggcatggagtcct -5’

EGFR
For 5’- caacatctccgaaagcca -3’

636 55 50
Rev 3 ’- cggaactttgggcgactat-5 ’

ERa
For 5’- ggagacatgagagctgccaac -3’

432 55 50
Rev 3’- ccagcagcagcatgtcgaagatc -5’

IGFR
For 5’- actgacctcatgcgcatgtg -3’

285 55 50
Rev 3’- ctcgttcttgcggcccccgt -5’

PR
For 5’- ccatgtggcagatcccacaggagtt -3’

320 55 50
Rev 3’- tggaaattcaacactcagtgcccgg -5’

pS2
For 5’- catggagaacaaggtgatctg -3’

336 55 50
Rev 3’- cagaagcgtgtctgaggtgtc -5’
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2.4 Protein Expression Analysis

Protein expression in wt-MCF7, TAM-R and TAM-Wd cell-lines was 

analysed using both SDS PAGE-Western blotting and Immunocytochemistry 

(ICC).

2.4.1 Cell Culture Procedure for Protein Harvest

Cells were harvested as described in section 2.1.3, counted and resuspended in 

fresh experimental media at a cell density of 2xl06 cells/ml. lml of cell 

suspension was seeded into a 100mm petri-dish containing 9mls of pre- 

warmed wRPMI+5%. Cells remained in culture until they had reached 

approximately 60-70% confluency (typically 6-7 days), with media refreshed 

every 3-4 days. Media was then aspirated and cells were washed twice with 

lxPBS (lOmls). Dishes were drained thoroughly and transferred to ice, and 

cells were lysed using 250pl of ice-cold lysis buffer (50mM Tris-HCL, 5mM 

EDTA, 150mM NaCl, 1% Triton X-100 (v/v) in distilled water, pH7.5) 

supplemented with protease and phosphatase inhibitors (2mM Na3V04, 

20mM NaF, ImM PMSF, 10 pg/ml leupeptin, 20pM phenylarsine oxide, 

lOpg/ml aprotinin and lOmM sodium molybdate), which was distributed 

evenly across the cell monolayer. Following 2 minute incubation on ice, 

cellular material was collected using a cell-scraper and transferred to a 1.5ml 

micro-centrifuge tube. The solution was homogenised briefly using a pipette 

and left on ice for 20 minutes, with occasional mixing. Lysates were then 

centrifuged at 13,000g for 15 minutes (4°C) to clear cell debris, and the 

supernatants were stored at -20°C until required.
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2.4.2 Protein Concentration Assay

The total protein concentration of the cell lysates was determined using the 

Bio-Rad DC Protein Assay kit. Lysates were diluted 1:4 in lysis buffer to give 

a final volume of 50pl, prepared in disposable cuvettes. A standard curve was 

constructed for spectrophotometric quantification using known concentrations 

of bovine serum albumin (BSA), diluted in lysis buffer to obtain 50pl of 

solution at protein concentrations of 0, 0.25, 0.5, 0.75, 1 and 1.45mg/ml. 250pl 

of reagent A (from BioRad kit) was added to each cuvette, supplemented with 

substrate S (20pl in lml of reagent A) followed by 2ml of reagent B. Each 

cuvette was then briefly vortexed and colour was allowed to develop for a 

minimum of 15 minutes. The absorbance at 750nm for each BSA sample of 

known concentration was then read on a spectrophotometer and a calibration 

curve was plotted (absorbance versus concentration). Each protein sample was 

then processed and its concentration was determined from the standard curve.

2.4.3 Sodium-Dodecyl-Sulphate-Polyacrylamide Gel Electrophoresis (SDS- 

PAGE)

Electrophoresis was carried out using Biorad Mini-Protean® 3 electrophoresis 

apparatus from BioRad Laboratories. Glass plates were thoroughly cleaned 

with ethanol and assembled to provide the gel cast. Resolving gel and stacking 

gel were prepared as follows; resolving gel: 7.5% acrylamide/bisacrylamide, 

375mM lower buffer (pH8.8), 0.1% (w/v) SDS, 0.1% (w/v) APS and 70pM of 

TEMED, stacking gel: 5% acrylamide/bisacrylamide, 125mM upper buffer 

(pH6.8), 0.1% (w/v) SDS, 0.05% (w/v) APS and 116pM TEMED.
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The constituents of the resolving gel, with the exception of TEMED, were 

added to a universal container and mixed thoroughly. TEMED was then 

added to the gel solution immediately before casting the gel as it catalyses the 

polymerisation and cross-linking of the acrylamide/bis-acrylamide, causing 

the gel to set. The gel was dispensed between the glass plates until the level 

reached approximately 1.5cm below the top of the exterior plate (to allow 

room for the stacking gel). 0.05% (w/v) SDS in H2O was carefully dispensed 

over the exposed gel surface to ensure the formation of a level gel front and 

the exclusion of any air bubbles. The gel was left for approximately 30 

minutes at room temperature to set.

The SDS solution was then removed from the resolving gel surface, and 

distilled water was used to rinse the gel. Excess water was drained with a strip 

of filter paper. The stacking gel solution was prepared and poured onto the 

resolving gel, filling the remaining volume of space between the glass plates. 

A 10-well comb was inserted into the stacking gel solution and the gel was 

allowed to set for 45-60 minutes at room temperature.

After the stacking gel had polymerised, the comb was gently removed and the 

casting apparatus was transferred to an electrophoresis tank, the upper and 

lower chambers of which the were then filled with running buffer (250mM 

Trizma base, 2M Glycine, 40mM SDS - pH8.8).

Forty pg of protein from each quantified protein sample was then mixed with 

lOpl of loading buffer (4% (w/v) SDS, 20% (v/v) glycerol, 120mM upper 

buffer (pH6.8), 0.1% (W/V) bromophenol blue, plus lOOmM DTT). The 

protein samples, combined with loading buffer, were heated to 100°C for 10
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minutes to denature and reduce the proteins in the sample and were allowed to 

cool before loading onto the gel. Rainbow protein marker (10-250 kDa) was 

loaded into the first lane of each gel. Electrophoresis was carried out at a 

constant voltage of 150volts until the dye front had reached the base of the gel 

(approximately 45 minutes).

2.4.4 Western Blotting

Proteins were transferred from SDS-PAGE gels to a nitrocellulose membrane 

using the Bio-Rad Mini-Protean® III transfer apparatus according to 

manufacturer’s instructions. Two pieces of grade 3 filter paper and one piece 

of nitrocellulose membrane (0.45 pm pore size) cut to the same size as the gel, 

along with two Teflon sponge pads, were pre-soaked in transfer buffer (0.2M 

of glycine, 25mM of Trizma base, 20 %(v/v) of methanol in distilled water, 

pH 8.3) for 30 minutes.

Gels were removed from the electrophoresis plates and carefully transferred to 

a tray containing distilled H2O to wash off any excess SDS. The stacking gel 

was gently separated from the resolving gel and discarded.

The resolving gel was assembled with the other components of the western 

blot transfer cassette according to the manufacturer’s instructions [Fig 2.2]. 

Gentle pressure was applied to the complete cassette assembly to ease out any 

air bubbles that may formed between the layers. The cassette was then placed 

into the transfer apparatus which was loaded into a tank along with an ice- 

block to prevent over-heating of the gel during transfer, and a magnetic flea.
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The tank was then filled with transfer buffer, placed on a magnetic stirrer, and 

the transfer was run at 100V constant voltage for 1 hour.

Afterwards, nitrocellulose membranes were blocked in a solution of 5% (w/v) 

skimmed milk in TBS-Tween (lOmM Tris, 0.1M NaCl, 0.05% (v/v) Tween 

20, pH 7.5) for at least 1 hr to prevent non specific binding. Blots were then 

incubated in the appropriate primary antibodies overnight. A list of the 

primary antibodies used in this study, along with their corresponding dilutions 

is shown in table 2.3.

Membranes were then washed three times with TBS-Tween at 5 minute 

intervals, and incubated for 1 hour with the required secondary antibody 

labelled with horseradish peroxidase (anti rabbit or anti mouse) diluted 

1/10000 in TBS-Tween (l:20mls). Membranes were then washed TBS-Tween 

(3xl0minutes).

Detection was performed by applying a thin film of enhanced 

chemiluminescence (ECL) reagent (Supersignal™ West Pico, Supersignal™ 

West Dura) to the membrane, which was then sealed within a plastic sheath in 

a development cassette. After 5 minutes, cassettes were taken to a dark room, 

where a sheet of x-ray film was placed on top of the sealed membrane. The 

cassette was closed, and left for a suitable duration of time until blots could be 

visualised on the developed film. Blots presented reflect the observations from 

three independent experiments and were standardised using (3-actin detection.
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Fig 2.2 Western Blot Transfer Cassette Assembly

____ ■

White Cassette Wall (+ electrode) 
Teflon Sponge Pad 
Filter Paper
Nitrocellulose Membrane
SDS-PAGE Gel
Filter Paper
Teflon Sponge Pad
Black Cassette Wall (- electrode)

2.5 Immunocytochemistry ICC

2.5.1 Experimental tissue culture

Cells were harvested as described in section 2.13, counted and resuspended in 

fresh experimental media at cell density of lxlO5 cells/ml. 1ml of cell 

suspension was seeded onto 22-mm2, 3-aminopropyltriethoxysilane (APES)- 

coated glass coverslips (coverslips were submerged in 2% APES in acetone 

for 60secs followed by 1x10 minute wash and 2x 1 minute washes with water- 

air-dried and sterilised at 180°C for 2 hours), resting in 35mm culture dishes. 

Dishes were incubated for 24hrs to allow cells to settle. Treatments were then 

applied where appropriate (see table 1 for treatments) and cells were routinely 

cultured for up to seven days. Media was then removed and cells were fixed 

by a procedure most appropriate to the immunocytochemical assay to be
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performed. All ICC antibodies and corresponding fixing methodologies used 

are shown in table 2.3.

2.5.2 Oestrogen-receptor immunocytochemical assay (ER-ICA) fixation. 

Coverslips were placed in a rack and submerged in a bath containing 3.7% 

(v/v) formaldehyde in PBS for 15 minutes. They were then transferred to a 

bath containing PBS at room temperature for 5 minutes to remove excess 

formaldehyde. Coverslips were then immersed in methanol (-10°C to -30°C) 

for 5 minutes, then acetone (-10°C to -30 °C) for 3 minutes. The coverslips 

were then washed in PBS at room temperature for at least 5 minutes and stored 

at -20°C in sucrose storage medium (SSM).

2.5.3 Formal-Saline (F/S) Fixation

Medium was removed from the coverslips and replaced with 1ml formal- 

saline solution (3.7% formal-saline -  4.5g NaCl, 50ml 37% Formaldehyde 

solution diluted in 450ml of tap water) for 10 minutes. The cells were then 

washed with 100% ethanol (5 minutes, followed by a quick ethanol rinse) and 

PBS (5 minutes, followed by a quick PBS rinse). Coverslips were stored in 

SSM at -20°C before use.

2.5.4 Phenol Formal-Saline (PFS) Fixation

Medium was removed from the coverslips and replaced with 2ml 2.5% phenol 

in formal-saline solution for 5 minutes. The cells were then washed with 

100% ethanol (5 minutes, followed by a quick ethanol rinse) and PBS (5
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minutes, followed by a quick PBS rinse). Coverslips were stored in SSM at - 

20°C before use.

2.5.4 Immunocytochemical processing of coverslips.

The SSM in which the fixed cells were stored was removed by gently rinsing 

with PBS. The coverslips were then submerged in PBS containing 0.02% 

(v/v) Tween-20 (PBS/Tween) for a few seconds to provide a surface that 

permits the primary antibody solution to spread evenly over the coverslip. 

50pl of primary antibody (diluted in PBS) was added to each coverslip and 

incubated in a humidified atmosphere at 23 °C. Antibody dilutions and 

incubation times varied between proteins (table 2.3).

Following primary antibody incubation, coverslips were washed with 

PBS/Tween ( 2 x 5  minutes) and incubated with DAKO EnVision+ system- 

HRP-labelled polymer, conjugated to goat anti-rabbit or goat anti-mouse 

immunoglobulins for up to 2hours at 23°C. Coverslips were washed with 

PBS/Tween ( 2 x 5  minutes), and staining was visualised using the DAKO 

Liquid DAB+ substrate and chromogen system. Colour development took 6- 

10 minutes depending on signal strength. Coverslips were rinsed with distilled 

water and cells were counter-stained with methyl-green (0.5% (w/v) in H2O) 

for 5 minutes. Coverslips were then thoroughly rinsed with distilled water to 

remove excess methyl-green. Coverslips were dried and mounted onto glass 

slides using DPX, a xylene-based mounting medium, and left to set over night 

at room temperature. They were later analysed with an Olympus BH2 phase-
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contrast microscope (at 20x magnification unless otherwise stated) and images 

were produced using a digital camera.

Table 2.3. Antibodies used in Western Blot and ICC procedures

Antibodies Used in Western Blot-Protein Detection System

Antibody Source Dilution Manufacturer

tEGFR Rabbit 1/1000 Cell Signaling Technologies

ERa Rabbit 1/10000 Santa Cruz Biotechnology

tIGFR Mouse 1/1000 Santa Cruz Biotechnology

p-actin Mouse 1/20000 Sigma-Aldrich

Antibodies Used in ICC Detection System

Antibody Source Dilution Incubation
Conditions Fixation Req. Manufacturer

tEGFR Mouse 1/140 Overnight at 23 °c Phe/Form/Sal NeoMarkers
ERa Mouse 1/75 90minutes at 23° ER-ICA Vector

tIGFR Rabbit 1/125 Overnight at 23 °c Form/Sal Santa Cruz

PR Mouse 1/75 60 minutes at 23° ER-ICA NovaCastra

pS2 Rabbit 1/500 90minutes at 23° ER-ICA NovaCastra
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2.6 Methylight Assay

The DNA material was generated in Tenovus as described below, and sent to 

Dr H. Fiegl o f the University o f Innsbruck for Methylight analysis.

2.61 Phenol / Chloroform / Isoamyl Alcohol extraction of DNA 

Cells were harvested and were seeded on to 100mm2 culture plates, as 

previously described in section 2.4.1. They were incubated at 37°C for 

24hours before treatments were added (see table 1). Cells were cultured for a 

further 7 days with media refreshed every 3-4 days. On the day o f harvest, 

media was removed from the dish and the cells were thoroughly washed twice 

with lOmls PBS. Dishes were drained, and 1.5 ml SDS lysis buffer (0.1 M 

EDTA, 0.5 % SDS, 100 pg/ml Proteinase K) was added. Dishes were 

incubated at room temperature for approximately 2 minutes before cells were 

scraped off with a sterile cell scraper. The viscous solution of cells was then 

transferred to a 15ml universal tube and incubated in a pre-warmed water bath 

at 65°C for two hours to allow Proteinase-K digestion.

An equivalent volume of alkaline-calibrated phenol (pH 7.9) was then added 

to the cell solution, which was then mixed gently. Samples were then 

centrifuged at 4000g for lOminutes at 4°C. The aqueous phase containing the 

genomic DNA was transferred to a fresh 15-ml phase lock gel (PLG) tube 

using a plastic pipette. The organic phase was back extracted by adding 1ml 

TE buffer pH 8.0 (10 mM Tris-Cl, 1 mM EDTA), mixing gently and re­

centrifugation. The aqueous phases were pooled, and an equivalent volume of 

Phenol/Chloroform/Isoamyl alcohol (25:24:1) solution was added to each
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sample, and mixed gently. Samples were then centrifuged for 4000g for 

lOminutes at 4°C, and supernatants were transferred to a fresh 15ml universal 

tube. 1/10 of the equivalent volume of NaOAc (2.5M, pH5.2) was added to the 

supernatant and mixed. Twice the equivalent volume of 100% EtOH was 

subsequently added. Gentle inversion of the tubes eluted fine DNA strands. 

Samples were then centrifuged (using the conditions described in the previous 

step) and the supernatant was discarded. Pellets were air-dried and re­

dissolved in 50-200pl DNAse and RNAse-free sterile H2O at 4°C overnight, 

then stored at -20°C prior to analysis.

2.6.2 DNA Quantification:

DNA extractions were allowed to thaw thoroughly. 5 pi of sample was 

transferred to a quartz cuvette containing 995pi TE buffer (pH8) (i.e. 1:200). 

The solution was gently inverted and optical densities (OD) were recorded at 

wavelengths of 260 and 280nm using a UV spectrophotometer. The 

A260/A280 ratio was calculated as an indicator of nucleic acid purity, with a 

ratio of 1.6-2.0 representing an acceptable DNA solution. The following 

calculation was used to obtain the DNA concentration for each sample:-

[DNA] = OD260 x 200 x 50 = pg/ml (DNA - 50pg = 1OD260)
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2.6.3 Methylight Assay -  Conducted by Dr H Fiegl at Innsbruck University 

Methylight is a sensitive, fluorescence-based real-time PCR technique that is 

capable of quantifying DNA methylation at a particular locus using DNA 

oligonucleotides that anneal differentially to bisulfite-converted DNA.

Briefly, DNA samples were firstly treated with sodium bisulphate which 

converts the unmethylated cytosine bases to uracil whilst methylated cytosines 

remain unaffected, using the EZ DNA Methylation-Gold Kit (Zymo Research, 

Orange, CA, USA) according to the manufacturer’s instructions. Methylight 

analysis was carried out as previously described by Eads et al (2000) using 

two sets of primers and probes, designed specifically for bisulfite-converted 

DNA; a set for the gene of interest and a set for collagen, type II, alpha 1 

(COL2A1), an internal reference gene, that would be amplified regardless of 

the methylation status of the DNA to normalise the differences in the amount 

of genomic template present in each reaction. Specificity of the reactions for 

methylated DNA was confirmed separately using CpG methylating enzyme 

Sssl-methylase (M.SssI) (New England Biolabs) treated human white blood 

cell DNA, which is heavily methylated. The percentage of fully methylated 

molecules at a specific locus was then calculated by dividing the 

GENE:COL2Al ratio of a sample by the GENE:COL2Al ratio of M.SssI- 

treated human white blood cell DNA (in which the gene of interest is fully 

methylated) and multiplying by 100.

Primer and probe sets for TFF1, PGR, COL2A1, SAT2, and ALU (markers of 

global DNA methylation) have been described recently [Widschwendter et al,
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2004; Weisenberger et al, 2005]. Primer and probe sets for ADCY9, CA12, 

CXCL12, GDF15, HBA2, Kazrin, RGC32 and ST-6 are listed in Table 4.



LA

Primers Used in Methylight Analysis

Gene Primer Sequence Primer Location Probe Oligo Sequence

ADCY9
For 5’- cctcgacgtcccaaaaacc -3’

Promoter 6F AM-ccgcccgaaatcccgaccct -BH Q1
Rev 3’- tttttacggtaggcgtttttaggt -5'

CA12
For 5'- ctctccaactacacaccgaaacc -3'

Exon-1 6F AM-cgtacgcgcaacctaaataccg -BH Q1
Rev 3’- aagggcggacgtattcgtt -5'

CXCL12
For 5’ -actcgccacctacc cgactt-3’

Promoter 6F AM-cgacgcaaccgccgacaaaact-BH Q1
Rev 3 ’ -gttac gttgattgtaaagac gggttt- 5 ’

GDF15
For 5’- cgactcgcctcgaccaaa -3’

Exon-1
6F AM-ccatacgacaaccacgaaaacaccaacaa-BH Q1

Rev 3’- gtaagaatttaggacggtgaatggttt -5’

HBA2
For 5’- ccgccccgacctaacac -3’

Promoter
6F AM-cgctaaacgcgcatcgactccaa-BH Q1

Rev 3’- gaagtttttcggttc gtattc gtt -5’

KAZRIN
For 5’- cgaacgaacgccgaaaact -3’

Promoter
6F AM-cgcgcgccaccaaacactctt-BH Q1

Rev 3’- cggcgaatggtaggttttattt -5’

RGC32
For 5’- taaatcctacgaaataacaaccgaaa -3’

Pro mote r/Exon-1
6F AM-aacttactatcccgcacacttcaaccctacca-BH

Q iRev 3’ -tttagga attc gagt c ggtggta- 5 ’

ST6
For 5’ -ctccccgcgcc ctaat-3’

Exon-1 6F AM-cctacgccctcccgctctacgct-BH Q l
Rev 3 ’ -tttgtttac ggttgtttgtt c gg- 5 ’
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2.7 Affymetrix gene analysis -  Conducted at Central Biotechnology Services, 

Cardiff University, Heath Park.

RNA extractions were prepared and quantified as described in sections 2.3.2 

and 2.3.3. 5pg of total RNA per sample was sent in triplicate to Central 

Biotechnology Services, who performed RNA integrity analysis, reverse- 

transcription and labelling and hybridisation of cDNA fragments to the HG- 

U 133A.2 Affymetrix® gene chip. The chip was washed and scanned and 

signal intensities were determined using Mas.5 Affymetrix software. Data was 

exported in a variety of file formats enabling subsequent uploading and profile 

analysis using Genesifter® on-line software.

2.7 Statistical analysis

Where data allowed, the statistical significance of the results obtained when 

comparing between cell-lines or when comparing treated cells versus controls 

was analysed using independent, two-tailed Student’s t-test. Where multiple 

data points were present, data were analysed using ANOVA with post-hoc 

tests. These analyses were conducted using the statistical analysis program, 

SPSS V12.0.2 (SPSS Inc.).
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3. RESULTS

The anti-hormone tamoxifen has been the gold standard therapy for the 

treatment of ER-positive breast cancer in post-menopausal women for almost 

thirty years. Although an estimated 50% of patients benefit from tamoxifen 

treatment, resistance to the anti-hormonal properties of this drug develops in a 

high proportion of initially responsive patients, leading to disease recurrence. 

The failure of tamoxifen to prevent tumour progression can be also be 

accompanied by the disease spreading to life threatening sites and hence a 

poorer patient prognosis; thus representing a significant obstacle in the 

treatment of breast cancer in the clinic. In order to investigate the changes that 

occur within breast cancer cells following the acquisition of tamoxifen 

resistance, the Tenovus Centre for Cancer Research has developed an in-vitro 

model of acquired tamoxifen resistance using the ER-positive MCF7 breast 

cancer cell-line.

MCF-7 cells, first derived by the Michigan Cancer Foundation in 1973 from a 

pleural effusion obtained from an invasive ductal carcinoma, are one of the 

most commonly used ER-positive breast cancer cell lines [Soule et al, 1973]. 

They display many characteristics of mammary epithelium, including the 

expression of oestrogen and progesterone receptors and the ability to 

synthesize and process oestradiol for growth, making them an ideal cell-model 

for the study of ER-positive breast cancer in-vitro. The tamoxifen resistant 

MCF7 cell-subline (TAM-R) was developed following the long-term culture
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of MCF7 cells in the presence of 4-hydroxytamoxifen as described in 

materials and methods (section 2.1.4). Previous ‘in-house’ characterisation of 

the TAM-R cell sub-line revealed fundamental changes in response to 

hormonal manipulation when compared to the parental MCF-7 cells. Although 

the TAM-R cells were found to be ER-positive, they were shown to be largely 

unresponsive to either the growth-stimulatory effects of E2 or to the growth- 

inhibitory effects of tamoxifen previously seen in the parental cell-line. 

However, TAM-R cells retained a partial role for ER in the regulation of cell 

growth, as evidenced by their sensitivity to receptor attenuation achieved 

through challenge with the pure anti-oestrogen, fulvestrant (Faslodex®) 

[Hutcheson et al, 2003].

Previous observations have also highlighted an essential role for growth-factor 

receptor signalling in TAM-R cells; with both EGFR and erbB2 being over­

expressed and demonstrating increased activity compared to the parental MCF 

cells [Knowlden et al, 2003]. Data suggests that TAM-R cells are significantly 

dependent on the EGFR/HER-2 signalling pathway to drive proliferation in 

contrast to the parental MCF-7 cells, as evidenced by considerable growth 

inhibition following challenge with EGFR-selective tyrosine kinase inhibitor, 

gefitinib (Iressa®), and HER-2 antibody, trastuzumab (Herceptin®). This 

contribution to cell growth may be amplified by cross-talk mechanisms that 

exist between growth-factor and ER signalling pathways and also, between 

different growth-factor signalling pathways, noticeably the IGF-1R pathway 

interplaying with EGFR via c-SRc [Knowlden et al, 2005].
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In parallel with the emergence of growth-factor signalling pathways in the 

MCF-7 cells following the acquisition of tamoxifen resistance, cells attain a 

more aggressive phenotype, demonstrating enhanced growth and motile 

capabilities [Hiscox et al, 2004]. In this chapter, we aim to determine whether 

the presence of tamoxifen is necessary to sustain these undesirable features of 

TAM-R cells, or whether permanent alterations to the cells phenotype have 

also occurred. In order to achieve this, TAM-R cells were withdrawn from 

tamoxifen for up to 6 months (as described in section 2.1.5). During this 

period, any agonistic contribution of the drug to TAM-R cell morphology, 

growth or motility would be depleted, whilst the effects of permanent heritable 

cell re-programming caused by the previous long-term tamoxifen treatment 

would remain. These tamoxifen-withdrawn (6-month) TAM-R cells (TAM- 

Wd), were then used to investigate the impact withdrawal had on the 

expression of components associated with the growth signalling pathways 

manifest in TAM-R cells, as well as analysing the effect that chronic 

tamoxifen exposure had on classically activated down-stream gene targets of 

the ER.
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3.1 Assessment of TAM-R cell behaviour following tamoxifen withdrawal.

3.1.1 Cell morphology.

The morphology of MCF7, TAM-R and TAM-R cells withdrawn from 

tamoxifen for a period of 1, 3 and 6 months was assessed by phase contrast 

microscopy using a Leica DM-IRE2 inverted microscope fitted with a 

Hoffman condenser, permitting image capture of live cells. In contrast to the 

MCF-7 cells, the TAM-R cells appeared more angular, featuring enhanced 

lamellipodia and filopodia formation; indicative of their highly motile and 

invasive phenotype [Fig 3.1]. In addition, MCF7 cells grew in tightly packed 

cell colonies, in contrast to the TAM-R cells, which tended to favour growing 

independently before being forced to combine to form loosely packed cell 

colonies when approaching confluency. Following the withdrawal of 

tamoxifen of up to 6 months, cells appeared to retain the morphological 

characteristics associated with the acquisition of tamoxifen resistance, 

demonstrating increased lamellipodia and filopodia formation, though cells 

appeared less angular than TAM-R cells, and grew in loosely packed colonies 

rather than independently.

3.1.2 Cell growth rate.

The growth rates of MCF7, TAM-R and TAM-Wd (1 ,3  and 6month) cell- 

lines were measured using anchorage dependent cell counting experiments as 

described in section 2.2.2. Growth curve analysis showed that compared to 

the parental MCF-7 cells, the TAM-R cell-line demonstrated a significantly
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elevated rate of growth from the fourth day of culture (pO.OOl), which 

continued until day 11, at which point the cells had reached confluency. This 

elevated growth rate was sustained in all TAM-Wd cell sub-types over the 14 

day culture period [Fig 3.2].

3.1.3 Cell Motility

Cell motility was assessed by the ability of MCF-7, TAM-R and TAM-Wd (6- 

month) cells to migrate through fibronectin coated, polycarbonate membranes, 

as a simulation of their affinity for matrix-components. Migratory cells were 

stained with crystal violet and quantified by counting the number of stained 

cells present in five random fields of view at lOx magnification for each insert. 

Fig 3.3 shows the number of migratory TAM-R cells observed exceeded that 

of the MCF-7 cells, with an approximate 4-fold increase in the number of 

stained cells counted over three independent experiments (pO.OOl). 

Following the tamoxifen withdrawal period of 6 months, the number of 

migratory cells fell (p<0.001), and cell counts were reduced to those recorded 

for the MCF-7 cells. Wound-healing assay analysis (see section 2.2.3) showed 

that TAM-R cells were significantly more able to achieve wound closure 

compared to both MCF-7 and tamoxifen withdrawn TAM-R cells, confirming 

the loss of TAM-R cell motility in the absence of tamoxifen [Fig 3.4] whilst 

cell proliferation was maintained [Fig 3.2]; emphasising the differential 

regulation of these events in breast cancer cells.
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Fig 3.1 Cell Morphology: Capture of live-cell images using a Leica DM-IRE2 
inverted microscope (20x magnification) fitted with a Hoffman condenser, as 
an assessment of morphological status in MCF-7, Tam-R, and Tam-Wd cells 
(1,3 and 6 months).

MCF-7 TAM-R

TAM-W d 1 Month

TAM-Wd 3 Month TAM-Wd 6 Month
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Fig 3.2 Anchorage dependent growth assay: MCF-7, TAM-R, and TAM-Wd 
(1,3 6 months) cells were seeded at a similar density (lxlO4 cells/ well) on 24- 
Well Coming Co-star plates. Cells were trypsinised and counted using Coulter 
Counter apparatus on days 2, 4, 7, 11 and 14. The data shown represents actual 
cell number/well recorded over 3 independent experiments. Counts recorded 
for all resistant cell-lines were greater than MCF-7 cell counts from day 4 of 
culture (*p<0.001).
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Fig 3.4 Wound Healing Assay: Monolayer cultures of MCF-7, TAM-R and 
TAM-Wd (6 month) cells were wounded by manual scratching with a pipette 
tip, washed with PBS and fresh medium was added. Some wells were fixed 
with 3.7% formaldehyde and stained with crystal violet directly after 
wounding to provide a timed control. After 48 hours, the remaining cells were 
fixed and stained and photographed to monitor wound closure at *4 
magnification.

Non-wounded

MCF-7 TAM-R TAM-Wd

Wounded

Healed
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3.2 Growth Pathway Analysis in Tam-R cells following Tamoxifen 
withdrawal

Having shown that despite the long-term withdrawal of tamoxifen, Tam-Wd 

cells proliferated at the same rate as the TAM-R cells, we sought to determine 

whether the expression of key growth regulatory elements previously 

identified in TAM-R cells, namely ER, EGFR and IGF-1R, had been retained 

following tamoxifen withdrawal. We also investigated how these signalling 

pathways contributed to cell growth using target specific inhibitors.

3.2.1 Oestrogen Receptor a:

Levels of ER mRNA present in MCF-7, TAM-R and TAM-Wd resistant cell 

sub-lines were compared by means of Real-Time PCR analysis. It was 

observed that in TAM-R cells, the quantity of transcribed ER was significantly 

reduced from that expressed in the parental MCF-7 cells (p<0.005). 

Importantly, tamoxifen withdrawal restored TAM-R cell ER mRNA 

expression (pO.OOl) to the level detected in the MCF-7 cells [Fig 3.5a]. 

Westem-blot and ICC analysis confirmed that this phenomenon was also 

observed at the protein level [Fig 3.5b].

Having shown that ER mRNA and protein were restored to wt-expression 

levels in the TAM-Wd cell line, concentration response analyses were 

conducted using oestradiol (E2) and tamoxifen (TAM) in order to determine 

whether cells had also regained sensitivity to E2 growth stimulation, or TAM 

induced growth inhibition. E2 was shown to be highly mitogenic to the MCF-
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7 cells since growth was significantly promoted over a concentration range of

i y 710' to 10' M (pO.OOl). In contrast, E2 was not shown to be significantly 

mitogenic to TAM-R (in the absence of tamoxifen) or TAM-Wd cells [Fig 

3.6a]. MCF-7 cells were shown to be sensitive to the growth inhibitory effect 

of TAM treatment in a dose-dependant manner. Unsurprising, the TAM-R 

cells were less sensitive to tamoxifen compared to MCF-7 cells, even at a 

concentration as high as 10'6M (pO.OOl). Interestingly, despite having been 

withdrawn from tamoxifen for 6 months, re-challenge of the TAM-Wd cells 

with the anti-hormone had no significant effect on cell growth [Fig 3.6b]. 

However, following the removal of functional ER protein, using the pure-ER 

antagonist fulvestrant (10’7M), cell growth was shown to be inhibited in MCF- 

7, TAM-R and TAM-Wd cell lines as assessed by a series of three 

independent growth assays [Fig 3.7]. Importantly however, the extent to which 

fulvestrant inhibited growth varied between cell lines. TAM-Wd cells were 

shown to be the least sensitive (TAM-Wd vs TAM-R pO.OOl, vs MCF-7 

pO.OOl) (30% growth inhibition), in comparison to TAM-R (60%) and wt 

(80%) cells (TAM-R vs MCF-7 pO.OOl) following 11 days of culture with 

the anti-oestrogen. The data implies that the significance of ER signalling as a 

contributor to breast cancer cell growth decreases following the acquisition of 

tamoxifen resistance (presumable due to the emergence of alternative growth 

pathways like EGFR/IGFR), and further decreases following the withdrawal 

of the drug.
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Fig. 3.5 ERa expression A: Real-Time PCR evaluation of ER mRNA 
concentration in MCF-7, TAM-R and TAM-Wd cells. Data shown was 
normalised to actin, hence was represented by an arbitrary unit (n=3). B: ICC 
staining and western blot for total ER in MCF-7, TAM-R and TAM-Wd cells.
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Fig 3.6 MCF-7, TAM-R and TAM-Wd cell concentration responses to E2 (A) 
and TAM (B). Cells were seeded in 24-well plates at an initial density of 
4xl04cells/well. After 24hrs, cells were treated, and cultured for a further 
7days. Cell number was assessed using Coulter Counter analysis. Data is 
shown as cell number as a percentage of the counts recorded for non-treated 
cells (n=3). (*p<0.001)
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Fig 3.7 Cell growth inhibition in response to fulvestrant: MCF-7, TAM-R, and 
TAM-Wd (6 months) cells were seeded on 24-Well Coming Co-star plates. 
Following 24hrs incubation in control media, cells were treated with 0.1 pM 
fulvestrant. Cell media was changed every 4 days. Subsequent counts were 
taken on days 4, 6, 8 and 11 using Coulter counter apparatus and the data 
shown represents the percentage cell number relative to non-treated control 
cells, as a measurement of growth inhibition (*p<0.001).

Cell Growth
(% of 

Control)

□  MCF-7

■  TAM-R

■ TAM-Wd

4 6 8 11

DAY

90



Chapter 3 Characterisation o f  Cell-lines

3.2.2 EGF-R Signalling Pathway

EGF-R expression has been previously shown to be elevated in TAM-R cells 

and represents a major determinant of their growth. In order to examine 

whether this signalling pathway contributes to cell growth in tamoxifen 

withdrawn TAM-R cells, levels of EGFR mRNA were assessed by Real-Time 

PCR in the TAM-Wd cell sub-line, relative to MCF-7 and TAM-R cells [Fig 

3.8a]. Analysis confirmed that in the TAM-R cells, the quantity of EGFR 

mRNA was significantly increased from that expressed in the parental MCF-7 

cells (p=0.012) and this phenomenon was also observed at the protein level as 

assessed by ICC and western blotting [Fig 3.8b]. Interestingly, it was observed 

that in TAM-Wd cells, EGFR expression at both the mRNA and protein level 

was reduced compared to the TAM-R cells, although values remained slightly 

higher than those seen in the MCF-7 parental cell line.

Having shown that EGFR expression was greatly reduced in tamoxifen 

withdrawn TAM-R cells, dose response and anchorage dependent growth 

studies were performed to determine the extent to which EGFR-signalling 

contributed to MCF-7, TAM-R and TAM-Wd cell growth, using the EGFR- 

specific tyrosine kinase inhibitor, gefitinib.

Significantly, while the highly EGFR-positive tamoxifen resistant cells 

showed a substantial (albeit incomplete) inhibitory response to gefitinib with a 

50% growth inhibition being achieved at lpM  (p<0.001), tamoxifen 

withdrawal was associated with a reduced sensitivity to TKI. Indeed, the 

growth inhibition achieved in the tamoxifen withdrawn TAM-R cells and 

MCF-7 cells was significantly lower than in the TAM-R cells (p<0.001) [Fig
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3.9]. This observation was confirmed in growth assays in which all cell-lines 

were cultured with gefitinib at lpM  for up to 11 days, taking cell-counts at 

days 4, 6, 8 and 11 [Fig 3.10]. TAM-R cells clearly demonstrated the greatest 

sensitivity to the drug, showing a 5-fold decrease in cell number compared to 

non-treated control cells by day 8 (p<0.001). MCF-7 and TAM-Wd cells again 

demonstrated their reduced sensitivity to gefitinib compared to the TAM-R 

cells following 11 days of culture (p<0.001).

Therefore, the withdrawal of tamoxifen from TAM-R cells caused a reduction 

of the EGF-R mRNA/protein expression detectable in these cells, which 

directly correlated with their loss of sensitivity to gefitinib, however, it is clear 

that their cell growth rate was not impeded [Fig 3.2]. Interestingly, the 

withdrawal of tamoxifen was also shown to reduce the motile capacity of the 

TAM-R cells [Figs 3.3 and 3.4], though the association of this event with 

reduced EGFR expression/signalling was not investigated.
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Fig. 3.8 EGFR expression A: Real-Time PCR evaluation of EGF-R mRNA 
concentration in MCF-7, TAM-R and TAM-Wd cells. Data shown was 
normalised to actin, hence was represented by an arbitrary unit (n=3). B: ICC 
staining/western blot analysis for total EGF-R in MCF-7, TAM-R and TAM- 
Wd cells.

EGFR mRNA
(Gene/Actin

Ratio)

25

20

15

10

5

0

p=0.012

□ MCF-7
□ TAM-R 
■ TAM-Wd

B

MCF-7 TAM-R
■

* •« *' i s' * ; > 
C . *

t V  I  *■jJt* f

TAM-Wd

EGFR

MCF-7 TAM-R TAM-Wd

175kDa

Actin 42kDa

93



Chapter 3 Characterisation o f  Cell-lines

Fig 3.9 Gefitinib concentration response: MCF-7, TAM-R and TAM-Wd cells 
were seeded in 24-well plates at an initial density of 4xl04cells/well. After 
24hrs, cells were treated, and cultured for a further 7days. Cell number was 
assessed using Coulter counter analysis. Data is shown as cell number as a 
percentage of the counts recorded for non-treated cells (n=3) (pO.OOl).
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Fig 3.10 Cell growth inhibition in response to gefitinib: MCF-7, TAM-R, and 
TAM-Wd (6 months) cells were seeded on 24-Well Coming Co-star plates. 
Following 24hrs incubation in control media, cells were treated with lpM 
Gefitinib. Cell media was changed every 4 days. Subsequent counts were 
taken on days 4, 6, 8 and 11 using Coulter counter apparatus and the data 
shown represents the percentage cell number relative to non-treated control 
cells, as a measurement of growth inhibition.

Cell Growth
(% of 

Control)

140

□  MCF-7 
TAM-R 
TAM-Wd

120

100

80

60

40

20

1 1

DAY

95



Chapter 3 Characterisation o f  Cell-lines

3.3.3 IGF-1R Signalling Pathway

Having established that EGFR expression was reduced in tamoxifen 

withdrawn TAM-R cells in parallel with the loss of their sensitivity to gefitinib 

growth inhibition, the role of IGF-1R signalling was next examined, since 

over-activation of this pathway has previously been associated with anti­

hormone resistant cell growth [Knowlden et al, 2005]. The expression levels 

of IGF-1R mRNA present in MCF-7, TAM-R and TAM-Wd cell sub-lines 

were compared by means of Real-Time PCR analysis. It was observed that 

IGF-1R mRNA was significantly reduced in TAM-R cells compared to wt- 

MCF-7 cells (p=0.013), though levels still remained detectable. Following 

tamoxifen withdrawal, IGF-1R expression increased in the TAM-R cells 

(p=0.005) (in concurrence with the decrease in EGFR expression [Fig 3.8a]) to 

a level similar of that detected in the wt-cells [Fig 3.11a]. Westem-blot and 

ICC analysis showed that this phenomenon was also seen at the protein level 

[Fig 3.1 lb].

Significantly, whilst tamoxifen withdrawal served to reverse the down- 

regulation of IGF-1R expression in TAM-R cells, this did not translate to an 

increased dependence on this signalling pathway for the growth of these cells. 

Concentration response analysis using IGF-1R inhibitor ABDP showed that 

compared to MCF-7 cells (which have higher IGF-1R expression than TAM-R 

cells), the TAM-R cells were less sensitive to the drugs growth inhibitory 

effect at a concentration of 0.25 pM, though were similarly effected at a dose 

of 0.5pM. Despite the restoration of IGF-1R expression following tamoxifen 

withdrawal, TAM-Wd cells were less sensitive to ABDP than wt-cells at both
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concentrations (p=0.002 for 0.5 pM), inferring tamoxifen withdrawn TAM-R 

cells maybe less sensitive to IGF-1R blockade [Fig 3.12].

3.4 Summary

In total, we have observed that tamoxifen withdrawal renders TAM-R cells 

less sensitive to growth inhibition in response to ER, EGFR and IGF-1R 

inhibitors, yet the elevated rate of TAM-R cell growth remains. This leads us 

to investigate other possible mechanisms by which long-term tamoxifen 

exposure could permanently alter rate of cell proliferation. In addition to 

tamoxifen up-regulating components associated with cell growth, such as 

EGFR, tamoxifen could also permanently suppress previously oestrogen- 

responsive pro-apoptotic or tumour suppressive genes, as part of the 

mechanistic events governing the acquisition of tamoxifen resistance.

In light of this, the focus of the remaining chapters was to determine whether 

tamoxifen was capable of permanently silencing the expression of genes 

previously up-regulated by oestrogen, and whether such changes in gene 

expression could contribute to cell growth in addition to alternate growth 

factor signalling.
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Fig. 3.11 IGF-1R Expression A: Real-Time PCR evaluation of IGF-1R 
mRNA concentration in MCF-7, TAM-R and TAM-Wd cells. Data shown was 
normalised to actin, hence was represented by an arbitrary unit (n=3). B: ICC 
staining/western blot analysis for total IGF-1R in MCF-7, TAM-R and TAM- 
Wd cells.
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Fig 3.12 ABDP Concentration Response: MCF-7, TAM-R and TAM-Wd cells 
were seeded in 24-well plates at an initial density of 4xl04cells/well. After 
24hrs, cells were treated, and cultured for a further 7days. Cell number was 
assessed using Coulter counter apparatus. Data is shown as cell number as a 
percentage of the counts recorded for non-treated cells (n=3).

Cell Growth
(% of 

Control)

120

100

80

60

40

20

0.1

□ MCF-7 
M TAM-R 
■ TAM-Wd

p=0.002

0.25 

ABDP (pM)

0.5

99



Chapter 4 Tamoxifen Silences ER-Regulated Genes

4. RESULTS

The inactivation of tumour suppressor genes is central to the development of 

all common forms of cancer. This inactivation often results from epigenetic 

silencing associated with promoter hypermethylation rather than intrinsic 

mutations [Widschwendter and Jones et al, 2002]. Hypermethylation of gene 

promoters associated with tumour suppressor factors, such as p53, has been 

shown to directly contribute to carcinogenesis in a wide range of tumours and 

as such, inhibitors of DNA methylation, such as 5-Azacytidine, are being 

investigated as a potential therapeutic avenue. In human cells, the mechanisms 

underlying locus-specific or global methylation patterns remains unclear, 

however, in the present study, current data has led us to investigate the 

possibility that chronic tamoxifen exposure may serve to permanently silence 

classically regulated ER gene targets, previously associated with pro-apoptotic 

or tumour suppressive function, as a contributing factor to tamoxifen-resistant 

cell survival.

4.1 Oestrogen receptor gene targets can be silenced following chronic 

tamoxifen exposure in MCF-7 cells.

To provide proof of principle that downstream oestrogen-receptor gene targets 

could be permanently silenced following tamoxifen exposure, real-time PCR 

and ICC analyses were conducted to assess pS2 and progesterone receptor
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(PR) expression in MCF-7, TAM-R, and TAM-Wd cells, pre-and post- 

oestradiol challenge. Interestingly, although all three cell lines shared a 

similarly low basal mRNA expression, pS2 and PR were up-regulated in the 

MCF-7 cells by 4 (p=0.049) and 40-fold (p=0.032) respectively following 

oestradiol challenge; in contrast to the TAM-R and TAM-Wd cells, in which 

no significant increase in pS2 or PR mRNA was detected (Figs 4.1a and 4.2a). 

Concurrently, ICC analysis showed that pS2 and PR protein staining was 

homogenous in all cell-lines, and that expression was only elevated in MCF-7 

cells following oestradiol challenge [Fig 4.1b and 4.2b]. This infers that the 

suppression of ER activation of these genes is maintained in the absence of 

tamoxifen following long-term exposure to the drug.

To investigate promoter methylation as the mechanism of this apparent gene 

inactivation, MCF-7 and TAM-Wd cells were exposed to the de-methylating 

agent, 5-Azacytidine (5-Aza) at a concentration of lpM, which has previously 

been used by other groups to provoke an effective DNA de-methylation 

response with minimal cell cytotoxicity [Van Agthoven et al, 1994; Sadikovic 

et al, 2004], for five days prior to E2 challenge (48hrs). Real-time PCR 

analyses showed that in TAM-Wd cells treated with 5-Aza, pS2 and PR 

mRNA expression increased 4 (p=0.001) and 16 fold (p<0.001) respectively 

following oestradiol challenge, in contrast to non-5-Aza treated cells, for 

which little up-regulation of these genes were observed with E2. The 

expression of both genes was up-regulated to a similar degree in E2-treated 

MCF-7 cells (compared to non-E2 treated cells) both in the presence and 

absence of 5-Aza [Fig 4.3a and 4.4a].
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5-Aza treatment alone appeared to have little effect on basal expression of pS2 

or PR, though it had restored oestrogen responsiveness at these gene promoter 

sites in TAM-Wd cells, permitting functional protein transcription [Fig. 4.3b 

and 4.4b], in contrast to E2-alone treated TAM-Wd cells [Fig 4.1b and 4.2b]. 

As part of an international collaboration with Dr Heidi Fiegl of the Medical 

University of Innsbruck, Austria, it was confirmed that 5-Aza was achieving 

the desired effect of gene promoter de-methylation using DNA samples 

harvested from similarly treated TAM-Wd cells. The methylation status of 

ALU and SAT-2 gene repeats, whose methylated status are highly correlative 

with global DNA methylation measurements, was assessed in TAM-Wd cells 

using a quantitative Taq-man based real-time PCR system. The expression of 

methylated ALU and SAT-2 (p=0.004) detected in TAM-Wd cells cultured 

with 5-Aza was reduced compared to non-treated cells (calculated as the 

percentage of methylated reference (PMR)) [Fig 4.5]. The presence of E2- 

alone in both treatment groups had no influence on gene methylation status. 

Methylight reactions to pS2 and PR were conducted in parallel to the 

assessment of global methylation markers to confirm their methylated status in 

TAM-Wd cells. Methylated pS2 gene promoter was readily detectable in non­

treated TAM-Wd cells, in contrast to the 5-Aza (+/- E2) treated cells, in which 

expression was reduced by approximately 4 fold (p<0.001) [Fig 4.6]. PR 

proved undetectable in the Methylight system since the quantity of PR 

expressed in these cells was too low.
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Control

+ E2

Fig. 4.1 Expression of pS2: A. Real-Time PCR evaluation of pS2 mRNA 
concentration in MCF-7, TAM-R and TAM-Wd cells ± E2 at 10‘9M for 48hrs. 
Data shown represents cDNA detected normalised to actin, hence was 
represented by an arbitrary unit (n=3). B. ICC analysis of pS2 in MCF-7, 
TAM-R and TAM-Wd cells ± E2.
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Fig. 4.2 Expression of PR: A. Real-Time PCR evaluation of PR mRNA 
concentration in MCF-7, TAM-R and TAM-Wd cells ± E2 at 10'9M for 48hrs. 
Data shown represents cDNA detected normalised to actin, hence was 
represented by an arbitrary unit (n=3). B. ICC analysis of PR in MCF-7, 
TAM-R and TAM-Wd cells ± E2.
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Fig. 4.3 Expression of pS2: A. Real-Time PCR evaluation of pS2 mRNA 
concentration in MCF-7 and TAM-Wd cells ± 5-Aza for 5 days ± E2 at 10’9M 
for 48hrs before cell harvest. Data shown represents percentage increase in 
pS2 cDNA detected in cells ± 5-Aza, following E2 challenge. B. ICC analysis 
of pS2 protein expression in TAM-Wd cells treated with 5-Aza ± E2.
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Fig. 4.4 Expression of PR: A. Real-Time PCR evaluation of PR mRNA 
concentration in MCF-7 and TAM-Wd cells ± 5-Aza for 5 days ± E2 at 10'9M 
for 48hrs before cell harvest. Data shown represents percentage increase in PR 
cDNA detected in cells ± 5-Aza, following E2 challenge. B. ICC analysis of 
PR protein expression in TAM-Wd cells treated with 5-Aza ± E2.
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Fig. 4.5 Promoter methylation profile for global methylation marker genes, 
SAT2 and ALU, in TAM-Wd cells: MethylLight data specific for methylated 
SAT2 (A) and ALU (B), detected in cells cultured in the presence or absence 
of 5-Aza for 5 days, ± E2 for 48hrs before cell harvest (data expressed as 
percentage of methylated reference (PMR)) (*p=0.004).
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Fig. 4.6 Promoter methylation profile for pS2 in TAM-Wd cells: Methyl Light 
data specific for methylated pS2 detected in cells cultured in the presence or 
absence of 5-Aza for 5 days, ± E2 for 48hrs before cell harvest (data expressed 
as PMR) (*p<0.001).
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4.2 The methylation of genes following chronic tamoxifen exposure 
contributes to TAM-Wd cell proliferation.

Having demonstrated that chronic tamoxifen exposure can be associated with 

diminished oestrogen-regulated gene expression through promoter 

methylation, a potential role for this phenomenon to contribute to the 

increased capacity of the TAM-Wd cells to proliferate was assessed. To 

determine whether E2-activation of gene promoters that were demethylated in 

TAM-Wd cells in response to 5-Aza treatment could effect cell growth, it was 

first necessary to assess the effect that 5-Aza (lpM ) had on cell growth when 

used as a single agent, due to its associated cytotoxic functions. Growth curve 

analysis over a 7 day period (taking counts at days 2 and 7) showed that 5-Aza 

did not effect TAM-Wd cell growth [Fig 4.7]. Concentration response 

experiments were then carried out using TAM-Wd cells cultured in the 

absence or presence of 5-Aza at lpM  for 7 days, to determine whether the 

presence of the demethylation agent had any effect on E2 response over a 

concentration range of 10‘12M to 10’7M. Surprisingly 5-Aza facilitated the role 

reversal of E2 as a mild mitogen, to an inhibitor of TAM-Wd cell growth. The 

maximal dose of E2 was shown to cause a 50% reduction in the number 5-Aza 

treated cells detected following 7 days culture compared to non-E2 (5-Aza) 

treated cells (p<0.001). In contrast, cells cultured in the absence of 5-Aza 

showed a 40% increase in cell number with E2 at 10'7M (compared to non-E2 

non-5-Aza treated control cells) (p<0.001) [Fig 4.8]. A concentration response 

to 5-Aza (0, 0.5 and lpM) showed that the magnitude of the growth inhibitory
n

response to E2 in TAM-Wd cells (10' M) increased in correlation with 5-Aza
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concentration [Fig 4.9]. Further experiments showed that the addition of 

tamoxifen (10’7M) to TAM-Wd cells cultured with 5-Aza (lpM ) and E2, 

reversed growth suppression [Fig 4.10].

Interestingly, growth analysis of MCF-7 cells treated +/- 5-Aza and E2 over 

the same concentration range indicated that E2 was unable to inhibit the 

growth of these cells despite the presence of the demethylation agent, as 

assessed by MTT cell detection assays [Fig 4.11].

TAM-Wd cells cultured with 5-Aza, 5-Aza and either E2 or tamoxifen, or 

both, were grown for two weeks, taking cell counts at days 4, 7, 10 and 14 to 

determine the extent of the growth inhibition achieved by activating de- 

methylated oestrogen responsive genes. Following the two week culture 

period, the number of cells treated with 5-Aza and E2 had fallen to 

approximately 60% of the cell seeding density (4xl04). Although cell counts 

appear to drop for 5-Aza and 5-Aza/E2/Tam treated cells after day 10 of 

culture (perhaps due to the initiation of cytotoxic events), cell populations 

remain significantly greater than the numbers recorded for 5-Aza + E2 treated 

cells at day 14 [Fig 4.12].

In total, these data provide evidence to suggest that a proportion of the genes 

silenced by promoter methylation as a consequence of pro-longed tamoxifen 

exposure are associated with a tumour-suppressive and/or pro-apoptotic 

function, and that demethylation and activation of such genes (using 5-Aza 

and E2 respectively) can induce tamoxifen-resistant cell growth inhibition.

110



Chapter 4 Tamoxifen Silences ER-Regulated Genes

Fig 4.7 Anchorage dependent growth assay: TAM-Wd cells were seeded at a 
density of lx l0 4 cells/ well in 24-well plates. After 24hrs, cells were treated 
+/- 5-Aza (day 0), and cultured for a further 7days. Cell number was assessed 
using Coulter counter analysis. The data shown represents actual cell 
number/well recorded over 3 independent experiments.
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Fig. 4.8 Concentration response to oestradiol: TAM-Wd cells were seeded in 
24-well plates at an initial density of 4xl04cells/well. After 24hrs, cells were 
treated ± 5-Aza and E2 at a concentration ranging from 10'12M to 10'7M. Cell 
number was assessed on day 7 of culture using Coulter counter analysis. Data 
shown represents E2-treated cell counts as a percentage of count recorded for 
non-E2 treated control cells ± 5-Aza (Significantly different to control 
(100%); *p<0.001, +p=0.002, °p=0.017).
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Fig. 4.9 Concentration response to 5-Aza: Tam-Wd cells were seeded in 24- 
well plates at an initial density of 4xl04cells/well. After 24hrs, cells were 
treated ± E2 (10'7M) and 5-Aza at a concentration of 0, 0.5 or lpM. Cell 
number was assessed on day 7 of cell culture using Coulter counter analysis. 
The data shown represents actual cell number/well recorded over 3 
independent experiments.
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Fig. 4.10 Concentration response to oestradiol in 5-Aza treated TAM-Wd cells 
in the presence and absence of tamoxifen: TAM-Wd cells were seeded in 24- 
well plates at an initial density of 4xl04cells/well. After 24hrs, cells were 
treated with 5-Aza +/- tamoxifen and E2 at a concentration ranging from 10' 
12M to 10'7M. Cell number was assessed on day 7 of culture using Coulter 
counter analysis. Data shown represents E2-treated cell counts as a percentage 
of counts recorded for non-E2 treated control cells. (Significantly different to 
control (100%); *p<0.001, +p=0.002, °p=0.026).
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Fig 4.11 MCF-7 cell concentration response to oestradiol: MCF-7 cells were 
treated ± 5-Aza and E2 at a concentration ranging from 10'12M to 10*?M. Cell 
number was assessed on day 7 by MTT cell detection assay (n=3). Data shown 
represents E2-treated cell counts as a percentage of counts recorded for non- 
E2 treated control cells.
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Fig. 4.12 TAM-Wd cell growth response to E2 +/- tamoxifen in the presence 
of 5-Aza: TAM-Wd cells were seeded on 24-well plates at a density of 
4xl04cells/well. Following 24hrs incubation in control media, cells were 
treated with 5-Aza, 5-Aza + E2 or 5-Aza + E2 + TAM. Cell media was 
changed every 4 days. Subsequent cell counts were taken on days 4, 7, 10 and 
14 using Coulter counter apparatus. The data shown represents actual cell 
number/well recorded over 3 independent experiments (*p<0.001).
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5. RESULTS

5.1 Identification of potential tumour-suppressor genes silenced in 

tamoxifen withdrawn TAM-R cells using an Affymetrix gene array 

approach.

Having demonstrated that the combination of 5-Aza and E2 causes TAM-Wd 

cells to proliferate at a slower rate than 5-Aza-treated (or E2 treated) controls 

and furthermore cause cell loss over a 14 day period, we sought to identify 

genes that were being up-regulated specifically by E2 challenge in the 

presence of the demethylation agent which could be associated with this 

growth suppressive phenomenon. According to the hypothesis, these genes 

would have to be readily up-regulated by E2 in the parental MCF-7 cells, not 

up-regulated or expressed below basal level following initial (10 day) TAM 

challenge, and have a comparable or ideally reduced basal expression in the 

TAM-R cell sub-type, in a similar fashion for that shown for pS2 and PR. 

Genes would also have to be shown to be free from EGFR-regulation, i.e. 

expression should not be reversible with EGFR inhibition, to confirm that 

gene suppression was independent from EGFR signalling input.

Using an existing Affymetrix database (HG-U133A platform) available to 

Tenovus, previously created from triplicate samples of MCF-7 cells treated to 

reflect the transition from anti-hormone responsive to cells with acquired
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resistance (in this instance tamoxifen) we were able to create a gene shortlist. 

A pattern navigation analysis was conducted using online Genesifter™ 

software to reveal genes that were up-regulated by E2 and suppressed by TAM 

in wt-MCF-7 cells, and also down-regulated in TAM-R cells relative to wt- 

MCF-7 (ie, wt=l, wt + E2 >2, wt + TAM <1 and TAM-R <1 with regards to 

fold-change relative to wt-cell gene expression), at a statistical cut off of 

p<0.001 using ANOVA. This analysis produced a list of 51 gene probes, 

although probes called ‘absent’ in the wt-MCF-7 cells were subsequently 

withdrawn from the list, leaving 33 potential gene probe candidates [Fig 5.1].
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Fig 5.1 Genesifter™ pattern navigation analysis: Identification of probes that 
were up-regulated by E2 and suppressed by TAM in wt-MCF-7 cells, and 
down-regulated in TAM-R cells relative to wt-MCF-7 (wt=l, wt + E2 >2, wt 
+ TAM <1 and TAM-R <1 (p<0.001). This analysis produced a list of 51 
probes, 33 of which were called ‘present’ in the wt-MCF-7 cells. ‘Absent’ 
called were discarded (gene names highlighted in grey). Data is represented by 
profile heatmaps, where green indicates gene suppression (-2) and red 
indicates up-regulation (+2) relative to wt-expression (black).

-2 +2

Gene Identifier Gene Title

1 AF061812 Keratin 16

2 NM_005978 SI 00 calcium-binding protein A2

3 NM_003881 WNT1 inducible signaling pathw ay protein 2

4 AI935123 AHNAK nucleoprotein 2

5 ABO 17493 Core promoter element binding protein

6 AF133207 Protein kinase H 11

7 BE675435 Kruppel-like factor 6

8 NM _006334 Olfactomedin 1

9 AF207990 Fer-1 (C.elegans)-like 3 (myoferlin)

10 U90304 Iroquois hom eoboxprotein 5

11 NM_030941 Exonuclease NEF-sp

12 AI812030 Throm bospondin 1

13 BC003629 RNA, U2 small nuclear

14 AF064771 Diacylglycerol kinase, alpha (80kD)

15 U26744 Dystrobrevin, alpha

16 NM _017459 M icrofibrillar-associated protein 2
17 NM _015675 Growth arrest and DNA-dam age-inducible, beta

18 NM _013451 Fer-1 (C.elegans)-like 3 (myoferlin)
19 U19495 Stromal cell-derived factor 1

20 NM_020672 SI 00-type calcium binding protein A 14

21 NM _014400 GPI-anchored m etastasis-associated protein homolog
22 AI826799 EGF-containingfibulin-like extracellular matrix protein 1

23 NM_012101 Tripartite m otif-containing29

24 AK000300 ATPase, C a++transporting, cardiac muscle, slow tw itch 2
25 AB002301 Microtubule associated serme/threonke kinase family member 4
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Fig 5.1 (Continued)

-2 +2

Gene Identifier Gene Title

26 NM_006 456 Sialyltransferase

27 BE972774 Unc-84 hom olog A (C. elegans)

28 ABO 11092 Adenylate cyclase 9
29 NM_006332 Interferon, gamma-inducible protein 30

30 U90339 Adenosine kinase

31 AI923984 Small pro line-rich protein 1A

32 AF280094 Interferon- indue e d protein 41, 30 kD

33 BE222901 Calmodulin regulated spectrin-associated protein 1

34 N M JJ21796 Placenta-specific 1

35 N3 6 408 FOS-like antigen 2

36 L42612 Keratin 6B

37 AI796169 GAT A binding protein 3

38 NM_004360 Cadherin 1, type 1, E-cadherin (epithelial)

39 AF131833 Family with sequence similarity 5, member B
40 B F 110421 Multiple EGF-like-do mains 9
41 A V 712733 Filamin B, beta (actin binding protein 278)
42 NM_017763 Ring finger protein 43

43 BF247371 CDNA clone IMAGE:4181418

44 NM _013440 Paired immunoglobulin-like receptor beta
45 NM_000602 Serpin peptidase inhibitor, clade E (nexin,

plasminogen activator inhibitor type 1), member 1
46 R38389 Olfactomedin 1
47 NM_003246 Thrombospondin 1
48 NM_000299 Plakoplulm 1 (ectodennal dyspksia/skin fragility syrdrome)

49 NM_004030 Interferon regulatory factor 7
50 NM_016337 RNB6

51 NM_024071 Zinc finger, FYVE dom ain contain ing21
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In addition, a global sweep of the Affymetrix database was carried out in order 

to identify any potential targets which had been overlooked due to the 

statistical stringency of the pattern navigation analysis. To do this, genes 

whose expression were significantly altered with 10-day E2 challenge versus 

wt-MCF-7 (p<0.05) were first selected using a T-test (n= 4376 probes). Only 

E2 induced genes were then selected from the list using the same selection 

process (n= 1691 probes). Heatmaps for these probes were then manually 

inspected and genes whose expression were not further induced or fell in 

TAM-R versus wt-MCF-7 cells were selected (n=202 probes). These probes 

were further filtered to select genes with a reported association with 

growth/proliferation, cell survival/cell death/apoptosis or transcriptional 

regulation using the “ontology” function available in Genesifter. A more 

detailed ontological selection was then carried out for probes specifically with 

any reported evidence of negative ontology (e.g. pro-apoptosis/cell cycle 

inhibitor, transcriptional silencing, co-repressor) or reported to be subject to 

hyper-methylation in any disease state using online Medline software (n=75 

probes). This list of 75 probes was fed into the previously-described pattern 

navigation with no statistical parameters applied, and heatmaps were then 

manually selected for those probes not showing any up-regulation in TAM 

treated-MCF-7 versus wt-MCF-7 cells (but E2 regulation and also minimal 

expression in TAM-R cells). This left 18 probes, 8 of which were called 

present in MCF-7s [Fig 5.2]. Seven of these 8 probes had not been identified 

using the pattern navigation analysis.
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Heat-maps were then generated for the list of 33 probes obtained by pattern 

navigation and the 7 additional probes from the broad sweep (40 probes in 

total) to analyse how their expression changed following gefitinib challenge in 

TAM-R cells. Genes showing any indication of recovery of expression in 

TAM-R + gefitinib versus TAM-R cells were discarded leaving 25 probes (24 

genes) [Fig 5.3].
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Fig 5.2 Heatmap expression profile for the 75 gene probes selected from the 
broad Affymetrix database analysis, in wt, wt + E2, wt + TAM and TAM-R 
cells (with no statistical stringency). Probe profiles were manually selected to 
identify probes that showed no up-regulation in response to TAM in wt cells, 
and that were called ‘present’ in wt-cells (high-lighted in green n=8 probes). 
Probes that were not up-regulated by TAM, but were called absent in wt-cells 
are high-lighted in grey (n=10).

-2 +2

H Gene Identifier Gene Title
i NM_002307 Lectin, galactoside-binding, soluble, 7 (galectin7)
2 AI824012 Nuclear receptor interacting protein 1
3 NM_006850 Interleukin 24
4 NMJ003489 Nuclear receptor interacting protein 1

HH 5 AW043713 Sulfatase 1
6 NM_016567 BRCA2 and CD KN1 A-inter acting protein

H I 7 NM_002894 Retinoblastoma-binding protein 8
8 NM_025180 Centrosomal protein of 63 kDa
9 NM_005815 Kruppel-type zinc finger (C2H2)

H I 10 NM_004430 Early growth response 3
11 NM_018976 Amino acid transporter 2
12 NM_018573 Solute carrier family 38, member 2
13 NM_016265 GIOT-3 for gonadotropin inducible transcription repressor-3

■ ■ 14 NMJD14720 Ste20-related serine/threonine kinase
■ ■ 15 NM_005885 M embrane- as s o ciate d ring finger (C 3 HC 4) 6

16 NM_014034 ASF1 anti-silencing function 1 homolog A
17 AWD43713 Sulfatase 1

H I 18 BE748755 Chro moboxhomolog3
19 AL132665 BCL2/adenovirus E1B 19 kD-interacting protein 3-like
20 ABO02306 Chro mo domain helic as e DNA binding protein 9

H I 21 NM_014035 Sorting nexin 24

h h 22 NM_002639 Serpin peptidase inhibitor, clade B (ovalbumin), member 5

H I 23 AI967961 Tripartite motif-containing 33
■ ■ 24 NM_006135 Capping protein (actin filament) muscle 2-line, alpha 1

H I 25 NM_001123 Adenosine kinase
26 NM_003358 UDP-glucose ceramide glucosyltransferase

WM 27 NM_016587 Chro mob ox homolog 3 (Drosophila HP 1 gamma)
■ n 28 D28586 CD58 antigen, (lymphocyte function-associated antigen!)

29 HM_005433 V-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
30 NM_024612 DEAH (Asp-Glu-Ala-His) box polypeptide 40
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Fig. 5.2 (Continued)
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Gene Identifier Gene Titlemm 31 NM_017927 Mitofusin 1

H H H I 32 NMJ014415 Zinc finger protein
33 AW612574 Acidic (leucine-rich) nuclear phosphoprotein 32 family, member E
34 NM_004972 Janus kinase 2 (a protein tyrosine kinase)
35 NM_005802 Tumor protein p53-binding protein
36 NM_014899 Rho-relatedBTB domaincontaining3

37 NMJ06472 Thioredoxin interacting protein
38 AF208012 Tumor protein D 5 2-like 1
39 AU160695 BUB3 budding uninhibited by benzimidazoles 3 homolog
40 AL080111 NIMA (never in mitosis gene a)-related kinase 7
41 NMJJ04052 BCL2/adenovirus El B 19kD-interacting protein 3
42 NM_022133 Sorting nexin 16

43 Y09703 Pinirt, desmosome associated protein, some similarity to MDR protein
44 NM_012311 Antigenic determinant of recA protein (mouse) homolog
45 NM_015515 Type I intermediate filament cytokeratin
46 NM_000314 Phosphatase and tens in homolog (mutated in multiple advanced cancers 1)mm 47 NM_002956 Restin (Reed-Steinberg cell-expressed intermediate filament-associated protein

I f lH H il 48 BG253119 Dystonin

i 49 NMJD00321 Retinoblastoma 1 (including osteosarcoma)
50 BC000278 Carbonic anhydrase XII

IH H H H 51 NMJ24948 Chromosome 10 open reading frame 97
52 AI913365 Methyl-CpG binding domain protein 4
53 U83410 Cullin2
54 AF003934 Prostate differentiation factor

55 NM 000700 AnnexinAl
56 NM_016626 Mex-3homologC (C. elegans)
57 AF051851 Supervillin
58 NMJ04415 Desmoplakin (DPI, DPII)
59 NM_001909 Cathepsin D (lysosomal aspartyl protease)
60 AI084226 Fas apoptotic inhibitory molecule 3

61 NM_012101 Tripartite motif-containing 29
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Fig 5.2 (Continued)

Gene Identifier Gene Title
62 AW170602 Regulator of G-protem signaling 12
63 NM_002031 Fyn-related kinase (or RAK)
64 NM_004848 Basement membrane-induced gene
65 NM_022131 Calsyntenin-2

66 ABO 50468 Ortholog of mouse integral membrane glycoprotein LIG-1
67 BF514079 Kruppel-like factor 4 (gut)
68 NM_014890 Downregulated in ovarian cancer 1
69 NM_000165 Gap junction protein, alpha 1, 43kD (connexin 43)
70 NM_001562 Interleukin IS (interferon-gamma-inducing fact or)
71 AWD43713 Sulfatase 1

72 NM_006456 Sialyltransferase
73 NM_001218 Carbonic anhydrase XII
74 BC001012 Carbonic anhydrase XII
75 AI378979 Plakophilin 1
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Fig 5.3 Heatmap expression profiles for the 33 probes obtained by pattern 
navigation and the 7 additional probes from the broad sweep in wt, TAM-R 
and TAM-R cells + gefitinib (with no statistical stringency). Probe profiles 
were manually selected to identify probes that showed no up-regulation of 
expression in TAM-R cells treated with gefitinib (vs non-treated cells). Probes 
that were up-regulated by gefitinib were discarded (high-lighted in grey n=15).

oI
P-l
O
2 Gene Identifier Gene Title

NM_005978 SI 00 calcium-binding protein A2
NM_003881 WNT1 inducible signaling pathway protein 2
AB017493 Core promoter element binding protein
AF133207 Proteinkinase H ll
B E67 5 435 Krupp el- like factor 6
AF207990 Fer-1 (C.elegans)-like 3 (myoferlin)
U90304 Iroquois homeobox protein 5
AI812 03 0 Thrombospondin 1

AF06 4771 Diacylglyc erol kinas e, alpha (8 OkD)
NM_015675 Growth arrest and DNA-damage -inducible, beta
NM_013 451 F er-1 (C. e le gans)-like 3 (myofe rlin)
U19495 Stromal cell-derived factor 1
NM_020672 SI 00-type calcium binding protein A14
NM_014400 GPI-anchored metastasis-associated protein homolog

AI826799 EOF-containing fibulin-like extracellular matrix protein 1
NM_012101 Tripartite motif-containing29
AK000300 ATP as e, Ca++ transporting, cardiac muscle, slow twitch 2
BE972774 Unc-84 homolog A (C. elegans)
ABO 11092 Adenylate cyclase 9
NM_006332 Interferon, gamma-inducible protein 30

U90339 Adenosine kinase
AF280094 Interferon-induced protein 41, 30kD
BE222901 Calmodulin regulated spectrin-associated protein 1
NM_02179 6 Plac enta- sp e cific 1
N3 6 408 FOS-like antigen 2
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Fig 5.3 (Continued)

+ Gene Identifier Gene Title
AI796169 GAT A b inding protein 3
NM_004360 Cadherin 1, type 1, E-cadhetin (epithelial)

BF 110421 Multiple EOF-like-do mains 9
AV712733 FilaminB, beta (actinbinding protein 27S)
BF247371 CDNA clone 1MAGE:4181418
NM_003246 Thrombospondin 1
NM_016337 RNB6
AF003934 Prostate differentiation factor

NM_000700 Annexin A 1
NM_001909 Cathepsin D (lysosomal aspartyl protease)
BF.314079 Kruppel-like factor 4 (gut)
NM_014890 Dowmegulatedin ovarian cancer 1
NM_000165 Gap junction protein, alpha 1, 43kD (connexin43)
NM_006436 Sialyltransferas e

NM_001218 Carbonic anhydrase XII
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In parallel to this study, another Affymetrix database was created later in this 

project using triplicate TAM-Wd cell mRNA samples, reverse transcribed and 

hybridised to a HG-U133A2 platform. TAM-Wd cells were treated with 5- 

Aza, E2, 5-Aza + E2 or 5-Aza + E2 in combination with TAM (versus non­

treated cells) for six days. The 25 probes (24 genes) identified from the first 

Affymetrix database were profiled within the new data set [Fig 5.4]. Out of the 

24 genes, 8 were shown to follow the expected expression profile in relation to 

the tumour-suppressor hypothesis, i.e. highest expression in 5-Aza + E2 

treated TAM-Wd cells, reversible with the co-addition of TAM. All of these 

genes (namely myoferlin, diacylglycerol kinase-a, unc-84 homolog A, 

interferon gamma-inducible protein 30, FOS-like-antigen 2, prostate 

differentiation factor, cathepsin-D and carbonic anhydrase XII) were taken 

forward as high-priority candidates.

In addition, a broad sweep of the second array database was then conducted in 

order to identify genes matching the desired profile, which could then be 

subsequently analysed to determine their status in MCF-7 cells treated with E2 

and TAM and TAM-R cells, ensuring all genes with a strong trend toward the 

required profile were taken forward for consideration for PCR analysis. The 

project was filtered for all gene probes significantly induced in TAM-Wd cells 

challenged with 5-Aza + E2 versus non-treated TAM-Wd cells (n=744 probes, 

p<0.05). Genes were further filtered by selecting probes whose expression 

were further induced with E2 + 5-Aza versus 5-Aza alone (n=240 probes), and 

subsequently, those genes whose re-expression could be reversed with TAM 

challenge (n=159) by manually selecting heatmaps. This 159 probe set was
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visualised in the first Affymetrix data set to identify the genes that showed a 

degree of suppression in TAM-R cells versus wt-MCF-7 (n=108 probes). Of 

these 108 probes, 43 probes (34 genes) were found to be regulated by E2 in 

MCF-7 cells [Fig 5.5]. On inspection it was observed that there was a degree 

of overlap between the 8 genes selected from the first method of analysis, and 

the 34 identified from the second, with 5 genes being present in both lists. 

Using a multi-layered points system produced in collaboration with Dr Julia 

Gee, the 37 genes were scored and filtered according to the classifications 

summarised in table 5.1. Total scores at this stage ranged from 2.5-12, out of a 

possible 13. Genes scoring 8 or higher, of which there were 13, were taken 

forward to a second scoring system based on information from screening the 

genes in the Oncomine online database. Genes were awarded scores for 

evidence of down-regulation in normal vs cancer (+1), relation to clinical 

profile and good prognosis (+1), evidence of E2 induction in-vitro and anti­

hormone suppression (+1) -  i.e. on a 0-3 scale. Total overall scores for the 13 

selected genes ranged from 9-13 (table 5.2).

The 8 highest scoring genes were selected for their confirmation of expression 

profile by semi-quantitative PCR and promoter methylation status by 

methylight assay. The final list of 8 genes consisted of 2 identified in both 

rounds gene of selection, prostate differentiation factor (GDF15) and carbonic 

anhydrase XII (CA12), and 6 from the second round of gene selection 

adenylate cyclase-9 (ADCY9), Kazrin (KIAA1026), haemoglobin alpha-2 

(HBA2), RAS-protein activator-like-1 (RASAL-1), collagen type VI alpha3 

(Col6a3) and response gene to complement-32 protein (RGC32).
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Fig 5.4 Heatmap expression profiles for the 25 probes identified from the first 
Affymetrix database in the TAM-Wd cells, + E2, +5-Aza, +5-Aza +E2 and + 
5-Aza +E2 + TAM (with no statistical stringency). Probe profiles were 
manually selected to identify probes that were most highly up-regulated by 5- 
Aza + E2 and down-regulated with TAM co-treatment (high-lighted in green 
n=9).

-2 +2

Gene Identifier
1 NM_005978
2 NM_003881
3 ABO 17493
4 AF133207
5 BE675435
6 AF20799
7 AF064771
8 NM_013451

9 NM_020672
10 NM_014400
11 NM_012101
12 AK000300
13 BE972774
14 ABO 11092

15 NM_006332
16 NM_021796
17 N3 6408
18 NM_016337
19 AF003934
20 NM_000700
21 NM_001909
22 BF514079
23 NM_000165
24 NM_006456
25 NM 001218

Gene Title
S 100 c ale ium-b inding protein A2
WNT1 inducible signaling pathway protein 2
Core promoter element binding protein
Protein kinase H ll
Kruppel-like factor 6
Fer-1 (C.elegans)-ike 3 (myoferf-h)
Diacylgjycerol kinase, alpha (SOkD)
Fer-i (C.elegans>Eke 3 (myoferlin)
SI 00-type calcium binding protein A14
GPI-anchored metastasis-associated protein homolog
Tripartite motif-containing 29
ATP ase, Ca++transporting, cardiac muscle, slowtwitch2 
Unc-34 homolog A (C. elegans)
Adenylate cyclase 9

Interferon, gamma-inducible protein 30
Placenta-specific 1
FOS-like antigen 2
RNB6
Prostate differentiation factor
Annexin A 1

CathepsiriD (lysosomal asp artyl protease)
Kruppel-like factor 4 (gut)
Gap junction protein, alpha 1, 43kD (connexin43) 
Sialyltransferas e 
Carbonic anhydrase XII
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Fig 5.5 Heatmap expression profiles for the 43 probes identified as being most 
highly expressed in the 5-Aza + E2 treated TAM-Wd cells, and down- 
regulated with TAM co-treatment from a broad sweep o f the second 
Affymetrix database (shown on left o f gene list). Probes were also profiled in 
MCF-7 cell +/- E2, and TAM-R cells (heatmaps on right o f gene list) to 
provide evidence o f E2 regulation in wt-cells. Genes that were also identified 
from previous rounds o f analysis are highlighted in yellow.
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Gene Identifier

NM_005253

23 BC000529

24 NM _000558

25 AF105974

26 AF349571

27 T50399

28 V00 489

29 BC005931

30 NM _006332

31 NM_001555

32 ABO28949

33 NM _015715

34 M 60411

35 AWD58148

36 NM _004658

37 N M _014059

38 NM_003051

39 AL162079

40 NM_Q03236

41 NM _024164

42 D87292

43 AL049370

Gene Title

FOS-like antigen 2 

Prostate differentiation factor 
Haemoglobin, alpha 2 

Haemoglobin, alpha 2 

Haemoglobin, alpha 2 

Haemoglobin, alpha 2 

Haemoglobin, a lp h a2 

Haemoglobin, alpha 2 

Interferon, gam ma-inducible protein 30 

Im m unoglobulin superfamily, m em ber 1 

Kazrin
Phospholipase A2, group III 

Phospholam ban

Recom bination activating gene 2 

RAS protein activator like 1 (GAP 1 like) 

RGC32 protein

Solute carrier fam ily 16, mem ber 1 

Solute carrier fam ily 16, m em ber 1 

Transform ing growth factor, alpha 

Tryptase beta 2

Thio sulfate sulfurtransferase (rhodanese) 
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Table 5.1. Classifications for gene scoring system.

Classification Scoring

E2 induced in MCF-7 and E2/AZA induced 

in TAM-Wd cells +1 Yes, 0 No

Anti-hormone suppressed in MCF-7 cells

+ 1 Yes 

+ 0.5 Conflicting probes 

ONo

Scored according to Literature Ontology (i.e. 

tumour suppressive/growth inhibitory 

ontology).

No, possibly, yes, strongly 

yes - score 0-3

Replicate probe profile
-1 if conflicting, +1 if profile 

adequate, 2 if profile good

TKI regulation
-1 Up-regulated, +1 

Unaffected or down-regulated

TAM-R heatmap colour vs MCF-7 for all 

probes

+2 Green, +1 Black, 0 mixed 

including Red

Present (p), marginal (m) or absent (a) call 

over MCF-7 E2, TAMR, Tam-Wd, Tam- 

Wd+E2+5aza groups.

+1 pppp or aaaa or mmmm or 

aapp or aamm or mmpp (poor 

call profile);

+2 papp or mapp or pamm or 

pmpp (adequate call profile); 

+3 mamp or paap or aaap or 

aaam or maap (good call 

profile)
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Table 5.2 Total scores awarded to the list of 37 genes identified by Affymetrix 
analysis, following first and second round classifications. Genes scoring 8 or 
more points in the first round were carried over to the second round and are 
high-lighted in the table below (n=13) (green: highest 8 scoring genes carried 
forward for PCR analysis (n=8), blue: remaining 7 genes scoring 8 or over that 
were not selected for PCR.)

Gene Title 1st Round 2nd Round Total
Score Score

M itogen-activated protein kinase kinase kinase 2 4 -
Adenylate cyclase 1 (brain) 3.5 -
A denylate cyclase 9 9 3

Adenosine A2b receptor 7
Artemin 7 -
ATP as e, Ca++ transporting, plasma membrane 4 7 -
Carbonic anhydrase XII 10 8
Cathepsin D (lysosomal aspartyl protease) 7

Cero id-lip ofuscino sis, neuronal 6, late infantile, variant 5.5 -
Human BRCA2 region, mRNA sequence CG030. 7 -
CCR4-NOT transcription complex, subunit 8 2.5 -
Collagen, type VI, alpha 1 4 -
C o l l a g e n .^ M i a B a B ^ I > ^  M M  H 1 |  1 8 3 m m :..
Cytochrome P450, family 1, subfamily B, polypeptide 1 7 -
Diacylglycerol kinase, alpha (80kD) 6 -
Dual specificity phosphatase 7 4 -
Epidermal growth factor receptor substrate EPS15R 7 -
Epiregulin 8 1 9
Fer-l-like 3, m yoferlin(C . elegans) 6 -
Filamin B, beta (actin binding protein 278) 3 -
FOS-like antigen 2 7

1 n
-

Prostate diireientiatiun fa tte r  stMHIiBHHiUiaaaaBaaaoriBtfmHmHHmmOUnUi 1U
in

11
naeruogiooin, axpna^ ru
Interferon, gamma-inducible protein 30 9 0 9

Immunoglobulin superfamily, member 1 9 1 10

I l i i l l M M M f f l M i l M M M M o 3 11
Phospholipase A2, group III 7
Phospholamban 2.5 -
Recombination activating gene 2 9 1 10

RAS protein activator like 1 (GAP! Eke) 12 0 H H  i
m— BBHMHwawBBiggaKflttaaatigagiaHflHHgHBaggagiiiiiiirniiiiiiiiiiiiiiiiiiiiiniiniin 8 3 l i
Solute carrier family 16, member 1 7
Transforming growth factor, alpha 5 -
Tryptase beta 2 3 -
Thiosulfate sulfurtransferase (rhodanese) 7 -
Unc-5 hom ologB (C. elegans) S 1 9

Unc-84 hom olog A (C. elegans) 7 -
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5.2 Semi-Quantitative PCR for 8 candidate genes.

Triplicate samples of mRNA obtained from TAM-Wd cells treated with E2, 5- 

Aza, E2 and 5-Aza and E2 5-Aza and TAM were reversed transcribed and 

amplified using primers designed to the candidate gene fragment expressed on 

the HG-U133A Affymetrix array platform in a semi-quantitative PCR. 

Corresponding DNA extractions were sent to Dr Heidi Fiegl of the University 

of Innsbruck for Methylight analysis.

Of the 8 genes, the expression profile of 4 was shown to correlate with the 

corresponding array profile, as assessed by semi-quantitative PCR and 

densitometry. GDF-15, RGC-32, HBA2 and CA12 were all most highly 

expressed in TAM-Wd cells treated with E2 and 5-Aza, and were down- 

regulated with the co-addition of TAM [Fig 5.6b to 5.9b]. Methylight 

reactions performed for GDF-15 and HBA-2 showed a significant reduction in 

methylated gene promoter detected in TAM-Wd cells cultured with 5-Aza (± 

E2) compared to non-treated and E2 treated cells. Furthermore, the addition of 

TAM to 5-Aza + E2 cultured cells appeared to partially restore the methylated 

status of GDF-15, and to a less significant extent, HBA2 [Fig 5.6c and 5.8c]. 

Methylight assays showed that no methylated CA12 promoter was detected in 

TAM-Wd cell DNA, and signals for RGC-32 were too weak for accurate 

detection.

The PCR profile recorded for RASAL-1 and Col6a3 exhibited little 

resemblance to the array profile, both showing highest expression in cells co­

treated with E2, 5-Aza and TAM [Fig 5.10b and 5.11b]. The PCR profile for
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ADCY9 and Kazrin also did not match the corresponding array profile, as 

both genes were partially up-regulated by E2 (+/- 5-Aza) compared with non­

treated cells. Contrary to the array data, the highest expression of both genes 

was again observed in the E2, 5-Aza and TAM co-treated cells [Figs 5.12b 

and 5.13b].

Methylight reactions for ADCY9 showed no promoter methylation was 

detected in the DNA samples and signals for Kazrin were too weak for 

accurate readings. Reactions were not carried out for RASAL-1 and Col6a3.
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Fig 5.6 Prostate Differentiation Factor -  GDF-15: A Heatmap profile and gene 
probe box-plot from the Affymetrix database, to assess GDF-15 expression in 
TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM 
treated cells. B: PCR validation of array profile and corresponding 
densitometry data (n=3).
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Fig 5.6 C: Promoter methylation profile for GDF-15 in TAM-Wd cells: 
Methylight data specific for methylated GDF-15 promoter detected in TAM- 
Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM 5-Aza 
(data expressed as PMR).

GDF-15 DNA
methylation (PMR)
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Fig 5.7 Response gene to complement 32 protein - RGC32. A: Heatmap 
profile and gene probe box-plot from the Affymetrix database, to assess RGC- 
32 expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza 
+ E2 + TAM treated cells. B: PCR validation of array profile and 
corresponding densitometry data (n=3).
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Fig 5.8 Haemoglobin alpha 2 - HBA2 A: Heatmap profile and gene probe 
box-plot from the Affymetrix database, to assess HBA2 expression in TAM- 
Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated 
cells. B: PCR validation of array profile and corresponding densitometry data 
(n=3).
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Fig 5.8 C: Promoter methylation profile for HBA2 in TAM-Wd cells: 
Methylight data specific for methylated HBA2 promoter detected in TAM-Wd 
cells, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM 5-Aza 
(data expressed as PMR (*p<0.001).
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Fig 5.9 Carbonic Anhydrase XII -  CA12 A: Heatmap profile and gene probe 
box-plot from the Affymetrix database, to assess CA12 expression in TAM- 
Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated 
cells. B: PCR validation of array profile and corresponding densitometry data 
(n=3).
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Fig 5.10 RAS-protein Activator Like 1- RASAL-1 A: Heatmap profile and 
gene probe box-plot from the Affymetrix database, to assess RASAL-1 
expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + 
E2 + TAM treated cells. B: PCR validation of array profile and corresponding 
densitometry data (n=3).
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Fig 5.11 Collagen type VI alpha 3 - COL6a3 A: Heatmap profile and gene 
probe box-plot from the Affymetrix database, to assess Col6a3 expression in 
TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM 
treated cells. B: PCR validation of array profile and corresponding 
densitometry data (n=3).
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Fig 5.12 Adenylate Cyclase 9 - ADCY 9 A: Heatmap profile and gene probe 
box-plot from the Affymetrix database, to assess ADCY9 expression in TAM- 
Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated 
cells. B: PCR validation of array profile and corresponding densitometry data 
(n=3).
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Fig 5.13 KIAA1026 - Kazrin A: Heatmap profile and gene probe box-plot 
from the Affymetrix database, to assess Kazrin expression in TAM-Wd, +E2, 
+ 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated cells. B: 
PCR validation of array profile and corresponding densitometry data (n=3).
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5.3 De-methylation of genes associated with tumour progression.

Although the cell growth analysis from the previous chapter showed that the 

cumulative effect of 5-Aza and E2 co-treatment in TAM-Wd cells was 

reduced cell growth [Fig’s 4.8-4.10 and 4.12], it should be noted that due to 

the nature of 5-Aza as a non-targeted de-methylation agent, it is inevitable that 

not all genes affected will be associated with the reduction of cell growth 

observed. Interestingly, amongst the gene set selected following the pattern 

navigation of the Affymetrix database [Fig 5.1], i.e. genes up-regulated by E2, 

suppressed by TAM in MCF-7 cells and suppressed in TAM-R cells, there 

were a number of genes whose up-regulation have been associated with 

tumour progression, eg WNT1 inducible signalling pathway protein-2 (WISP- 

2) [Saxena et al, 2001; Banerjee et al, 2003; Davies et al, 2007], stromal-cell 

derived factor-1 (CXCL12) [Luker & Luker, 2006, Kang et al, 2005a; 2005b], 

sialyltransferase (ST6) [Schneider et al, 2001; Lloyd et al, 1996], 

diacylglycerol kinase (DAGK) [Filigheddu et al, 2007], LY6/PLAUR domain 

containing 3 (LYPD3) [Fletcher et al, 2003; Paret et al, 2007; Hansen et al, 

2008] and SI00 calcium binding protein A14 (S100A14) [Yao et al,2007]. 

Indeed, it has been documented that anti-hormones can suppress genes that 

may advance tumour-progression as part of their protective effect [Frasor et al, 

2003, Fan et al, 2006], and therefore there is a possibility that such genes 

could be silenced by promoter methylation following long-term treatment. 

Thus, the expression profiles of three of these genes (CXCL-12, WISP-2 and 

ST-6) in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 +
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TAM treated cells was assessed using the Affymetrix data and PCR 

verification, and methylight reactions were carried out to determine promoter 

methylation status.

CXCL-12 was shown to be up-regulated in TAM-Wd cells cultured with E2 as 

assessed by both PCR and array analysis. Although the array data shows that 

5-Aza and E2 treated cells show a higher expression of CXC1-12 than non­

treated cells, the up-regulation is lower than that induced by E2 alone [Fig 

5.14a]. This observation differs from the PCR data, where up-regulation is 

similar for both treatments, and reversed when E2 and 5-Aza are used in 

combination with TAM [Fig 5.14b]. Interestingly, methylight analysis showed 

a significant reduction of CXCL-12 promoter methylation in all 5-Aza treated 

cells compared to non-5-Aza treated cells (p<0.001) [Fig 5.14c].

WISP-2 was partially induced in TAM-Wd cells challenged with E2 in both 

PCR and array data sets. The addition of 5-Aza and E2 further increased 

expression over E2-only treated cells however; the addition of TAM caused no 

reversal of expression in the array data, and further increased expression in the 

PCR data [Fig 5.15].

In a similar fashion, ST6 was partially induced in TAM-Wd cells challenged 

with E2 in both PCR and array data sets. The addition of 5-Aza and E2 

marginally further increased expression compared to E2-only treated cells in 

the array profile, though not in the PCR profile. The addition of TAM caused a 

further increase in ST6 expression in both data sets [Fig 5.16]. Methylight 

assays showed that no methylated ST6 promoter was detected in TAM-Wd 

cell DNA, and primers for accurate WISP-2 detection could not be designed.
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Interestingly, two EGFR ligands were present in the list of 37 genes identified 

as being most highly up-regulated in TAM-Wd cells treated with 5-Aza + E2 

(compared to non-treated, E2, 5-Aza + E2 + TAM treated cells) [Fig 5.5], 

namely epiregulin and transforming growth factor alpha (TGFa). This 

prompted further investigation of the impact 5-Aza + E2 co-treatment has on 

EGFR expression, and expression of other EGFR ligands. Heatmap profiles 

were selected for all 6 EGFR probes, 3 TGFa probes, and the single 

amphiregulin and epiregulin probes present on the HG-U133A Affymetrix 

chip. 2 of the 6 EGFR probes [Fig 5.17], 2 of the 3 TGFa probes [Fig 5.18] 

and the epiregulin probe [Fig 5.19] were most highly expressed in 5-Aza + E2 

treated cells compared to non-treated cells, E2, 5-Aza and 5-Aza + E2 + TAM 

treated cells. Amphiregulin was up-regulated by E2 +/- 5-Aza [Fig 5.20].

The up-regulation of EGFR expression in TAM-Wd cells in response to 5-Aza 

+ E2 was confirmed by real-time PCR (n=2). In the presence of 5-Aza, 

expression was up-regulated by 150% with E2-co-treatment, in contrast to E2- 

only treated cells, in which EGFR expression was down-regulated by 

approximately 50% (n=2) [Fig 5.21]. Parallel analysis of the MCF-7 cells 

showed that EGFR expression remained suppressed by E2 (approximately 

50%) despite the presence of the de-methylation agent.
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Fig 5.14 Stromal Cell Derived Factor 1 -  CXCL-12 A: Heatmap profile and 
gene probe box-plot from the Affymetrix database, to assess CXCL12 
expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + 
E2 + TAM treated cells. B: PCR validation of array profile and corresponding 
densitometry data (n=3).
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Fig 5.14 C: Promoter methylation profile for CXCL-12 in TAM-Wd cells: 
Methylight data specific for methylated CXCL-12 promoter detected in TAM- 
Wd cells, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM 5- 
Aza (data expressed as PMR) (*p<0.001).
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Fig 5.15 WNT1 Inducible Signalling Pathway protein-2 -  WISP2 A: 
Heatmap profile and gene probe box-plot from the Affymetrix database, to 
assess WISP2 expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 
and +5-Aza + E2 + TAM treated cells. B: PCR validation of array profile and 
corresponding densitometry data (n=3).
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Fig 5.16 Sialytransferase -  ST6 A: Heatmap profile and gene probe box-plot 
from the Affymetrix database, to assess ST6 expression in TAM-Wd, +E2, + 
5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated cells. B: PCR 
validation of array profile and corresponding densitometry data (n=3).
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Fig 5.17 Epidermal Growth Factor Receptor -  EGFR: Heatmap profiles and 
gene probe box-plots from the Affymetrix database, to assess EGFR 
expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + 
E2 + TAM treated cells (n=6).
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Fig 5.17 EGFR continued
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Fig 5.18 Transforming Growth Factor alpha - TGFa: Heatmap profiles and 
gene probe box-plots from the Affymetrix database, to assess TGFa 
expression in TAM-Wd, +E2, + 5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + 
E2 + TAM treated cells (n=3).
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Fig 5.19 Epiregulin: Heatmap profile and gene probe box-plot from the 
Affymetrix database, to assess epiregulin expression in TAM-Wd, +E2, + 5- 
Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated cells (n=T).
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Fig 5.20 Amphiregulin: Heatmap profile and gene probe box-plot from the 
Affymetrix database, to assess amphiregulin expression in TAM-Wd, +E2, + 
5-Aza, + 5-Aza, +5-Aza + E2 and +5-Aza + E2 + TAM treated cells (n=l).
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Fig 5.21 Expression of EGFR: Real-Time PCR evaluation of EGFR mRNA 
concentration in MCF-7 and TAM-Wd cells ± 5-Aza ± E2 at 10’9M for 6 days. 
Data shown represents percentage increase of EGFR detected in cells ± 5-Aza, 
following E2 challenge (n=2).
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6. DISCUSSION

It is now widely accepted that the acquisition of anti-hormone resistance is 

associated with a variety of molecular mechanisms which serve to not only to 

compensate for the growth inhibition caused by decreasing oestrogen receptor 

activity, but also further enhance the aggressiveness of the breast cancer 

phenotype [Hiscox et al, 2003; 2004]. Preliminary analysis of our cellular 

model of ER-positive tamoxifen-resistant breast cancer has shown that 

resistant MCF-7 cells possess enhanced proliferative and invasive capacities 

compared to wt-MCF-7 cells. The increased activation of a growth-factor 

receptor signalling network featuring EGFR, HER-2 and IGF-1R [Nicholson, 

et al, 2005] has been shown to contribute to both the accelerated rate of 

growth, and to a lesser extent, the motile and invasive potential of these cells. 

Interestingly however, although inhibition of these growth factor receptors, 

either alone or in combination, can provoke some growth inhibition, the 

effects on cell proliferation are incomplete and rarely promote cell kill 

[Nicholson et al, 2001; Knowiden et al, 2003; 2005]. Consequently, breast 

cancer cells survive drug treatment and resistant cell growth resumes within 

several months. The apparent shortfall of such inhibitors to meet their 

expected effectiveness in the experimental setting is indicative of additional 

mechanisms mediating the tamoxifen-resistant breast cancer cell phenotype. In 

light of this it is noteworthy that tamoxifen, through its genomic mechanism of 

action, classically acts to reduce expression of ER-regulated genes, where
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conformational changes induced by tamoxifen binding to ER provides docking 

sites for corepressors such as NCoR/SMRT [Lavinsky et al. 1998], REA 

[Montano et al, 1999], RTA [Norris et al 2002], SAFB1 [Oesterreich et al. 

2000], and Smad4 [Wu et al, 2003]. This in turn can facilitate the recruitment 

of HDACs to ERE-bearing genes causing the condensation of the surrounding 

chromatin environment and gene suppression [Hu & Lazar, 2000]. Since gene 

promoters that are silenced by histone modifications are considered vulnerable 

to permanent silencing through hypermethylation of CpG islands in their 

promoter sequences [Cheng et al, 2008], it is possible that epigenetic alterations 

(such as histone code modification and promoter hyper-methylation) to 

oestrogen regulated tumour suppressor gene promoters may contribute to the 

development of tamoxifen resistance. Although at first sight this may appear 

incongruent since oestrogens are considered mitogenic to many breast cancer 

cell-lines, the proliferative actions of oestrogens are not limitless and 

exponential cell growth in culture rapidly ceases, possibly due to the induction 

of growth suppressive pathways [Stender et al, 2007; Safe, 2001]. Oestrogen 

has been shown to induce apoptosis in other breast cancer cell models 

including oestrogen deprived cells [Song et al, 2001; Lewis et al, 2005] and 

ER-negative cells stably transfected with ER [Levenson et al, 1994; Licznar et 

al, 2003]. Furthermore, high doses of synthetic oestrogens, such as 

diethylstilbestrol (DES), have been used effectively to treat postmenopausal 

women with ER-positive breast cancer, and cause tumour-regression 

[Peethambaram et al, 1999]. Cumulatively, these reports indicate that under 

certain circumstances oestrogen can positively influence tumour suppressor/
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pro-apoptotic gene networks, and infer that the loss of function of these 

estrogen responsive genes may facilitate tumour progression.

The focus of the present study, therefore, was to determine whether oestrogen 

responsive genes associated with tumour-suppressor function, were silenced 

by promoter methylation in TAM-R cells as a direct consequence of long-term 

tamoxifen treatment, and whether re-activation of such genes could provide a 

potential therapeutic avenue for the management of tamoxifen-resistant breast 

cancer.

6.1 Long-term tamoxifen exposure is associated with a permanent 

alteration to breast cancer cell phenotype.

In order to assess the extent to which the presence of tamoxifen contributed to 

the TAM-R cell phenotype, cells were withdrawn from tamoxifen for up to 6 

months. It was reasoned that during this period, any agonistic contribution of 

the drug to TAM-R cell morphology, growth or motility would be depleted, 

whilst the effects of permanent heritable cell re-programming caused by the 

previous long-term tamoxifen treatment would remain.

6.1.1 Growth and Invasion

Significantly, following a tamoxifen withdrawal period of 1, 3 and 6 months, 

it was noted that the enhanced growth rate of the TAM-R cells compared to 

the parental MCF-7 cells was sustained in the absence of tamoxifen, as were 

features of their morphological appearance; with Tam-Wd cells demonstrating
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increased lamellipodia and filopodia formation. In contrast to these 

observations, the motile capacity of the TAM-R cells was significantly 

reduced following tamoxifen withdrawal. The divergence between the effects 

of tamoxifen withdrawal on proliferation and motility emphasises the 

differential regulation of these events in breast cancer cells and suggests that 

although the suppression of anti-invasive genes has been described in breast 

cancer [Yang et al, 2007], in this instance, it is unlikely that they have been 

permanently down-regulated in TAM-R cells by long-term tamoxifen 

treatment.

6.1.2 Assessment of the effects of tamoxifen withdrawal on ER and growth 

factor signalling.

In light of the continued proliferation of the tamoxifen withdrawn tamoxifen- 

resistant cells, their expression and use of ER, EGFR and IGF-1R signalling 

pathways was reassessed. In general terms, tamoxifen withdrawn cells were 

less sensitive to inhibitors of these pathways.

6.1.2.1 Oestrogen Receptor

Numerous reports suggest that the oestrogen receptor may be silenced through 

promoter methylation in a variety of cancers, including lung [Issa et al, 1996], 

colon [Issa et al, 1996], prostate [Sasaki et al, 2002], ovarian [O'Doherty et al, 

2002] and breast [Ottaviano et al, 1994]. Recent studies have shown that this 

phenomenon can contribute to the ER-negative status of both de-novo ER- 

negative cells, and cells that have acquired ER-negative status as a result of
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long-term anti-hormone exposure, and can facilitate an anti-hormone resistant 

phenotype. The use of 5-Aza resulted in demethylation of the ER promoter 

and re-expression of ER mRNA and functional protein in both MBA-231 ER- 

negative cells, and ER-depleted, fulvestrant-resistant-MCF-7 cells [Ferguson 

et al, 1995; Yang et al, 2001]. In the specific example of tamoxifen resistance, 

ER expression is rarely lost, though long-term tamoxifen treatment of MCF-7 

cells has been shown to irreversibly inhibit the expression of oestrogenic 

genes through chromatin remodelling [Badia et al, 2000]. In the present study, 

ER mRNA expression was reduced in the TAM-R cell-line compared to the 

anti-hormone sensitive parental cell-line; however, withdrawal of tamoxifen 

restored ER expression, suggesting no permanent gene suppression had 

occurred. Significantly, the loss of ER expression in TAM-R cells has been 

observed in cells cultured in the anti-hormone for longer periods of time. This 

occurs through a reduction in mRNA transcripts from the A, B and C ER 

promoters (Abdel Bensmail -  personal communication). This effect is 

reversible on tamoxifen withdrawal and may account for the raised ER 

expression in the TAM-Wd cells used in the present study.

Despite their increased ER expression levels, TAM-Wd cells showed reduced 

sensitivity to Faslodex (40% growth inhibition), in comparison to TAM-R 

(60%) and wt (75%) cells. They do not respond to tamoxifen re-exposure and 

are relatively insensitive to the growth promoting actions of oestradiol. 

Importantly, hyper-sensitivity to E2 stimulation was not observed in either 

TAM-R or TAM-Wd cells, contrary to findings from other groups using 

models of anti-hormone resistance, in which oestrogen can be apoptotic [Yao
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et al, 2000; Jordan et al, 2007]. In total, these data imply a diminishing 

significance for ER signalling in the tamoxifen withdrawn model.

6.1.2.2 EGFR andIGF-1R

An increased reliance of breast cancer cells on EGFR and IGF-1R has been 

linked to the development of anti-hormone resistance [Nicholson et al, 2001] 

and gefitinib resistance [Jones et al, 2004] respectively and can occur by ER 

dependent or independent mechanisms. It was deemed feasible therefore, that 

changes in the usage of these growth factor receptors in the tamoxifen 

withdrawn tamoxifen resistant cells might underpin their continued growth 

rate. This, however, was not the case since the withdrawn cells showed 

reduced sensitivity to gefitinib and ABDP, selective inhibitors of these 

pathways. Interestingly, the reduced sensitivity to gefitinib in the tamoxifen- 

withdrawn cells was associated with a parallel reduction in EGFR expression, 

indicating tamoxifen was maintaining EGFR levels; while the reverse was true 

for the expression of IGF-1R, which increased on tamoxifen withdrawal. 

Although the precise molecular mechanisms associated with this differential 

response remain to be established in the tamoxifen withdrawn cells, they are 

consistent with the cellular actions of tamoxifen in MCF-7 cells, where it 

rapidly promotes EGFR expression through the repression of oestrogen 

induced negative regulatory elements in the first intron of the EGFR gene 

[Wilson & Chrysogelos, 2002], whilst repressing the positive regulation of 

IGF-1R expression by oestradiol [Guvakova et al, 1997].
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6.2 Proof of principal that epigenetic silencing of ER regulated genes 

occurs in tamoxifen withdrawn tamoxifen resistant cells.

In concordance with observations of other research groups [Badia et al, 2000; 

Fan et al, 2006], the TAM-R cells used in the present study show significantly 

reduced E2-induction of the classically regulated, oestrogen responsive genes, 

PR and pS2, compared to the MCF-7 cells. Critically however, their 

suppression was maintained in the tamoxifen withdrawn cells, suggesting that 

the effect may be epigenetic in nature. The loss of oestrogen-regulation of 

these genes in TAM-R and TAM-Wd cells was further illustrated by their lack 

of response to oestradiol at a dose which up-regulated PR and pS2 by 40 and 4 

fold in MCF-7 cells.

Confirmation of the epigenetic nature of the suppression of PR and pS2 was 

shown by the reversal of the oestrogen induction of their expression by the 

DNA de-methylating agent 5-Aza, which enabled oestradiol to increase their 

levels 18 and 7 fold in the tamoxifen withdrawn TAM-R cells. Methylight 

assays, performed through collaboration with Dr. H. Fiegl (Medical University 

of Innsbruck), showed that the pS2 promoter was methylated in the tamoxifen- 

withdrawn TAM-R cells, and that the quantity of methylated promoter 

detected was reduced 4-fold by 5-Aza treatment. The quantity of PR expressed 

in these cells, which was observed at a much lower level than pS2 under basal 

conditions, proved undetectable in TAM-Wd cells using the Methylight 

system. In accordance with studies carried out using ER siRNA to induce 

signalling disruption [Leu et al, 2004], these data indicate that epigenetic
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silencing of classically E2-regulated genes can arise as a result of ER- 

signalling disruption caused by long-term tamoxifen challenge, and that this is 

apparent in the emerging resistant state.

6.3 Relationship between epigenetic silencing and tumour cell growth.

Although the studies on PR and pS2 clearly demonstrate that epigenetic 

silencing of ER regulated genes occurs in TAM-R cells, these genes are not 

considered to be significant regulators of cell growth. Experiments were 

conducted to determine whether other genes specifically activated in TAM- 

Wd cells by 5-Aza + E2 co-treatment in TAM-Wd cells could be associated 

with growth regulation. Care was taken to select a dose of 5-Aza which was 

not growth inhibitory since high doses of this drug can be severely cytotoxic. 

A dose of lpM  5-Aza was chosen since it had little growth inhibitory effect, 

yet, as discussed above, it reversed promoter methylation of the pS2 gene. 

Importantly, subsequent studies revealed that 5-Aza treatment of TAM-Wd 

cells switched oestradiol from being mildly mitogenic into a growth inhibitory 

agent. Thus, in contrast to oestradiol promoting an approximate 40% increase 

in cell numbers when used as a single agent, in combination with 5-Aza, cell 

number was reduced by 50% at 7 days, and had fallen below the initial 

seeding density after 14 days culture. This previously unidentified 

phenomenon appears to be ER related, since it was reversible by tamoxifen 

co-addition and was not evident in MCF-7 cells, implying it was associated 

with long-term tamoxifen treatment. Evidently, long-term tamoxifen treatment
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of breast cancer cells is able to suppress the expression of oestrogen regulated 

genes that inhibit cell growth and/or cell death. Significantly, two previous 

studies are supportive of the concept of anti-hormonal silencing of potential 

tumour suppressors. SAGE studies revealed that expression of CtIP (or 

retinoblastoma binding protein 8) was decreased in acquired tamoxifen 

resistant models, where its knockdown in MCF-7 promoted tamoxifen 

resistance, while its induction restored response [Wu et al, 2007]. Secondly, a 

study by Treeck et al, (2004) has reported that long-term tamoxifen treatment 

of MCF-7 cells decreased levels of several pro-apoptotic genes and impaired 

subsequent apoptotic response to etoposide treatment. To our knowledge, only 

two other groups have reported oestrogens to be growth inhibitory to anti­

hormone resistant breast cancer cells [Liu et al 2003; Yao et al, 2000], and 

these particular instances occurs, the growth inhibitory effect observed was 

thought to be due to cells becoming ‘addicted’ to the increased growth factor 

signalling that oestrogens subsequently suppress. Critically, our novel 

observation directly links anti-hormone induced hypermethylation of 

oestrogen regulated tumour suppressor gene promoters to anti-hormone 

resistant cell proliferation. Importantly, data suggested that this process is 

reversible with co-treatment of 5-Aza and E2, and thus the identification of 

genes associated with phenomenon could provide valuable insight into the 

mechanisms that govern the tamoxifen-resistant cell phenotype.
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6.4 Identification of oestrogen regulated genes potentially associated with 

5-Aza induced inhibition of cell growth.

Having demonstrated that the combination of 5-Aza and E2 caused the TAM- 

Wd cells to proliferate at a slower rate than 5-Aza-treated controls and 

furthermore cause cell loss over a 14 day period, we sought to identify genes 

that were being up-regulated specifically by E2 challenge in the presence of 

the demethylation agent which could be associated with this phenomenon. 

This was achieved by Affymetrix profiling of our cells, examining for 

potential tumour suppressor/pro-apoptotic genes that had the following profile:

• Oestradiol induced and anti-hormone suppressed in wt-MCF-7 cells.

• Suppressed in TAM-R and tamoxifen withdrawn TAM-R cells.

• Not induced by Gefitinib in TAM-R cells.

• Induced by E2 + 5Aza co-treatment (but not by single agent treatment) 

and reversed by tamoxifen in tamoxifen-withdrawn TAM-R cells.

Candidate genes carried forward from our microarray study for PCR 

verification and promoter methylation analysis included GDF-15, ADCY9, 

CAX11, KIAA1026, HBA2, RASAL1, COL6a3 and RGC32, and are distinct 

from the pro-apoptotic genes identified as suppressed by Treek et al (2004). 

Two of the candidate genes, namely GDF-15 and RGC32, have been shown to 

be down-stream targets of the putative tumour-suppressor, p53 [Tan et al, 

2000; Saigusa et al, 2006]. P53 functions to eliminate and inhibit the
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proliferation of abnormal cells, thereby preventing neoplastic development 

[Gasco et al, 2002]. It remains the most commonly mutated gene in many 

human cancers, with mutations (principally, but not exclusively, mis-sense) 

estimated to occur in 50% of all cancers. Interestingly, although the frequency 

of p53 mutation is lower in breast cancer than in other solid tumours; various 

regulators of p53 activity and some downstream transcriptional targets of p53 

have been reported to be silenced by both genetic and epigenetic mechanisms, 

leading to the mismanagement of this pathway in breast cancer cells, and 

hence promoting cell survival [Gasco et al, 2002]. The identification of p53 

gene targets that have been silenced by promoter hypermethylation as a result 

of long-term tamoxifen treatment is a novel observation which could have 

value in the diagnosis, prognostic assessment and, ultimately, in the treatment 

of tamoxifen resistant breast cancer.

6.4.1 Growth Differentiation Factor-15

Growth Differentiation Factor-15 (GDF-15), which is also known by other 

names including prostate-derived factor, macrophage inhibitory cytokine 1, 

placental bone morphogenetic protein, placental transforming growth factor B, 

and nonsteroidal anti-inflammatory drug-activated protein 1, is a member of 

the type |3 transforming growth factor (TGF-B) superfamily and was first 

isolated from a subtracted cDNA library enriched for genes associated with 

macrophage activation [Bootcov et al, 1997]. It has since been reported to 

inhibit prostate epithelial proliferation, induce colon and mammary epithelial 

cancer cell apoptosis in vitro and inhibit colon and glioblastoma tumor growth
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in vivo [Tan et al, 2000; Baek et al, 2001; Li et al, 2000; Graichen et al, 2002; 

Albertoni et al, 2002]. Tan et al (2000) identified GDF-15 as a p53 target gene 

that inhibits tumour cell growth via the TGFp signalling pathway. Studies 

revealed that p53 activation is mediated through two p53 binding sites in the 

promoter of GDF-15 in a p53 dose- as well as p53 binding site-dependent 

manner by wild-type p53, but not by several p53 mutants. The p53 binding 

and transactivation of the GDF-15 promoter was enhanced by etoposide, a p53 

activator, and was largely blocked by a dominant negative p53 mutant. GDF- 

15 was found to be a secretory protein, associated with the inhibition of 

tumour cell growth via p53-induced G1 arrest in both the cells secreting it 

(autocrine), and their neighbouring cells (paracrine). Indeed, conditioned 

medium collected from GDF-15-over expressing cells, but not from the 

control cells, suppressed tumour cell growth. Growth suppression was not, 

however, seen in cells that lack functional TGF-p receptors or Smad4, 

confirming that GDF-15 acts through the TGF-p signalling pathway. It is 

therefore apparent that this gene is an important link between p53 activation 

and TGFP-mediated growth suppression, and that the loss of this gene could 

contribute to tumour cell proliferation. Interestingly, Ibanez de Caceres et al 

(2006) identified GDF-15 gene promoters as being silenced by hyper- 

methylation in renal cancer cells compared to normal cells, and demonstrated 

that this gene could be de-methylated following 5-Aza treatment.

The microarray data obtained from the present study shows that GDF-15 is an 

oestrogen regulated gene in wt-MCF-7 cells, which is suppressed following 

the acquisition of tamoxifen resistance. Using Methylight technology, we have
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shown that GDF-15 gene promoter was significantly methylated in the 

tamoxifen withdrawn TAM-R cells, and that 5-Aza could be used to reverse 

the promoter’s methylated status. Indeed, microarray and PCR verification 

showed that GDF-15 was most highly expressed in tamoxifen withdrawn 

TAM-R cells treated with 5-Aza and E2 compared to non-treated, 5-Aza or E2 

treated cells. Intriguingly, the addition of tamoxifen caused a reduction in 

GDF-15 expression, in parallel with an increase in methylated promoter 

detected; indicating that silencing of GDF-15 by tamoxifen induced promoter 

methylation may indeed contribute to tamoxifen-resistant breast cancer cell 

growth.

6.4.2 Response gene to complement 32 protein.

The response gene to complement (RGC)-32 gene was first cloned from rat 

oligodendrocytes by differential display during a search conducted by Badea 

et al (1998) for genes that were differentially expressed in response to 

complement activation. Since then, several studies have reported changes in 

RGC-32 expression in a wide range of cell lines and tissues in response to a 

variety of stimuli including steroid hormones and growth factors [Vlaicu et al, 

2008; Chen et al, 2005]. It has also been reported that RGC-32 transcription is 

directly regulated by p53 in glioblastoma/astrocytoma, osteoblastic, and colon 

cancer cell lines [Saigusa et al, 2007]. The expression of RGC-32 mRNA was 

dramatically increased by exogenous p53 in p53-mutant glioma cells, and also 

by endogenous p53 in response to DNA damage in colon-cancer cells over­

expressing p53, but not in p53-deleted cells. Transiently and stably
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overexpressed RGC-32 suppressed the growth of glioma cells through the 

suspected formation of a protein complex with polo-like kinase-1 (Plk-1), thus 

inhibiting its activity. Plk-1 is a key regulator of mitosis [Barr et al, 2004], but 

is also associated with oncogenesis since expression and kinase activity of 

Plk-1 is elevated in many kinds of cancers [Takai et al, 2005]. Inactivation of 

Plk-1 by a variety of methods has caused cell-cycle arrest at mitosis and/or 

apoptosis in cancer cells of several types [Elez et al, 2000; Spankuch-Schmitt 

et al, 2002], indicating that inhibition of Plkl function might be a promising 

approach to cancer therapy [Gumireddy et al, 2005]. As RGC-32 binds to and 

is phosphorylated by Plkl in vitro, it is possible that RGC-32 may inhibit 

G2/M progression through interaction with Plkl in tumour cells. RGC-32 

expression is down-regulated in invasive prostate cancer, multiple myeloma, 

and drug-resistant glioblastoma [Vlaicu et al, 2008]. Furthermore, Takai et al 

(2005) identified RGC-32 as suppressed in 5 out of 6 endometrial cancer cell 

lines as part of a study conducted to reveal novel tumour-suppressor genes that 

are epigenetically silenced in this disease. However, other studies have shown 

that RCG-32 expression is up-regulated in cutaneous T cell lymphoma and 

colon, ovarian, and breast cancer tissue, and can act as a substrate and 

regulator of cell division cycle 2 (CDC2) kinase activity, and thus induce S- 

phase entry and mitosis in tumour cells [Vlaicu et al, 2008]. Although there is 

no evidence to explain the discrepancies between the reported findings, it is 

possible that RGC-32 may function differently among different types of cells 

depending on which activation targets were available. Further examination 

will be needed to clarify the significance of RGC-32 in anti-hormone resistant
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breast cancer, however, preliminary investigations using our microarray 

database show that Plk-1 expression is significantly up-regulated in tamoxifen 

resistant MCF-7 cells versus wild-type cells, whilst CDC2 expression remains 

consistently low in both cell-lines (data shown at the end of chapter - Fig 6.1), 

highlighting the possibility that RGC-32 could contribute to the inhibition of 

proliferation by deactivating Plk-1 in tamoxifen-resistant cells. Microarray 

data from the present study shows that RGC-32 expression is up-regulated in 

E2 challenged MCF-7 cells, and suppressed following the acquisition of 

tamoxifen resistance. Microarray and PCR verification showed that RGC-32 

was most highly expressed in tamoxifen withdrawn TAM-R cells treated with 

5-Aza and E2 compared to non-treated, 5-Aza or E2 treated cells. The addition 

of tamoxifen caused a reduction in RGC-32 mRNA expression in cells co­

treated with 5-Aza and E2; suggesting the up-regulation of Plk-1, combined 

with the epigenetic silencing of RGC32, may facilitate TAM-R cell growth 

and the re-activation of RGC-32 could serve to reverse this phenomenon.

6.4.3 Ras protein activator type 1

Another oestrogen regulated gene identified from the present study as 

potentially associated with 5-Aza induced inhibition of cell growth, is Ras 

protein activator type 1 (RASAL-1). Unlike GDF-15 and RGC-32, RASAL-1 

is not activated by p53; instead its activity is promoted in response to agonist- 

induced, intracellular Ca2+ oscillations [Walker et al, 2004]. RASAL-1 is a 

GTPase-activating protein (GAP) which is reported to normally terminate Ras 

activation, a GTP-ase oncogene which is constitutively active in
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approximately 30% of all human tumours [Downward, 2003]. As with other 

small GTPases, Ras switches between two distinct conformations, an inactive 

GDP-bound state and active GTP-bound complex. Once in the GTP-bound 

conformation, Ras engages a number of effectors that couple this GTPase to 

the regulation of multiple signalling cascades important for cellular 

proliferation, differentiation, and survival [Mitin et al, 2005]. RASAL-1 

enhances the intrinsic GTPase activity of Ras, thereby leading to its 

inactivation through the conversion of GTP into GDP. In a study conducted by 

Jin et al (2007), RASAL-1 was identified as being suppressed in several 

breast, lung, nasopharyngeal, hepatocellular and oesophageal tumour cells 

compared to normal-cells, and was subsequently found to be silenced by 

promoter hyper-methylation in a large proportion of the tumour cells, and 

corresponding tissue samples. They showed that ectopic expression of 

catalytically active RASAL-1 led to growth inhibition of these tumour cells by 

Ras inactivation, and hence provided evidence that epigenetically silencing of 

this gene represents a new mechanism of aberrant Ras activation in certain 

cancers.

In our models of anti-hormone resistant breast cancer, it has been established 

that Ras is an important transactivation target of EGFR, and it’s activation of a 

down-stream signalling cascade involving Raf, MEK and ERK, can contribute 

to TAM-R cell proliferation and survival. The loss of Ras regulators could 

therefore potentiate this event and hence, it is reasonable to assume that re- 

introduction of RASAL-1 in TAM-R cells could compromise Ras down­

stream signal transduction, and diminish the associated growth activation.
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Microarray data from the present study shows that RASAL-1 expression is up- 

regulated in MCF-7 cells in response to E2, down-regulated by tamoxifen 

treatment and potentially suppressed following the acquisition of tamoxifen 

resistance. Microarray data also showed that for all 3 gene probes, RASAL-1 

was most highly expressed in tamoxifen withdrawn TAM-R cells treated with 

5-Aza and E2 compared to non-treated, 5-Aza or E2 treated cells. The addition 

of tamoxifen caused a reduction in RASAL-1 mRNA detected in cells co­

treated with 5-Aza and E2; suggesting that long-term tamoxifen exposure may 

indeed cause epigenetic silencing of this gene, a mechanism by which cell 

growth could be facilitated. PCR verification of this observation was not 

achieved; however, the microarray gene probe profiles in question are so 

convincing, work has started on alternative RASAL-1 primer design due to the 

significant implications this observation would have on the understanding of 

the mechanisms that govern the growth of anti-hormone resistant breast cancer 

cells.

6.5 Potential induction of adverse genes by 5-Aza.

Although the cell growth analysis showed that the cumulative effect of 5-Aza 

and E2 challenge in TAM-Wd cells was reduced cell growth, it is noteworthy 

that due to the nature of 5-Aza as a non-targeted de-methylation agent, it is 

likely that not all induced genes affected will be associated with the reduction 

of cell growth observed. Indeed, EGFR, which was down-regulated following 

tamoxifen withdrawal from TAM-R cells, was greatly up-regulated by 5-Aza
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and E2 co-treatment versus E2 alone. Importantly, this was observed for 2 of 

the 6 EGFR probes on the micro-array chip, and was complemented by 

increased expression of its ligands TGFa (2 of 3 probes) and epiregulin (1 of 1 

probe). The data, subsequently confirmed by real-time PCR, contrasts with 

both the suppressive effects of E2 on EGFR levels in wt-MCF-7 and 

tamoxifen withdrawn TAM-R cells in the absence of 5-Aza, and the inability 

of E2 to induce EGFR in wt-MCF-7 cells in the presence of 5-Aza. Clearly the 

acquisition of anti-hormone resistance followed by tamoxifen withdrawal has 

facilitated a (5-Aza sensitive) reduction in the expression of the EGFR; 

presumably at a promoter site which oestrogens positively regulate the 

expression of this gene. In this context, it is noteworthy that early reports on 

the effects of oestrogens on EGFR expression suggested it was biphasic, with 

oestrogen first rapidly stimulating EGFR expression, and then inhibiting it 

[Yarden et al, 1996]. Whatever the mechanism, it is conceivable that the 

induction of EGFR (together with its ligands) in 5-Aza and E2 treated 

tamoxifen withdrawn cells may facilitate limited growth and survival 

signalling to counteract the induction of tumour suppressor/pro-apoptotic 

genes and that much greater inhibitory responses might be achieved by the 

concurrent targeting of the EGFR.

It is noteworthy that of the 24 genes selected from the first round of 

microarray analysis (i.e. up-regulated in MCF-7 cells in response to E2, down- 

regulated or suppressed in tamoxifen treated and tamoxifen resistant cells, no 

EGFR regulation), 6 adverse genes were potentially down-regulated (to the 

point of epigenetic silencing) by tamoxifen treatment, possibly as part of the
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anti-hormone’s protective effect. Genes included WISP-2 [Saxena et al, 2001; 

Banerjee et al, 2003; Davies et al, 2007], CXCL12 [Luker & Luker, 2006, 

Kang et al, 2005a; 2005b], ST6 [Schneider et al, 2001; Lloyd et al, 1996], 

DAGK [Filigheddu et al, 2007], LYPD3 [Fletcher et al, 2003; Paret et al, 

2007; Hansen et al, 2008] and S100A14 [Yao et al, 2007]. If these genes were 

indeed methylated in TAM-Wd cells, restoration of their expression could also 

limit the effectiveness of 5-Aza and E2 co-treatment. However, no evidence 

was produced to suggest that the expression any of the 3 genes selected for 

further analysis, namely CXCL-12, WISP-2 and ST-6, was significantly up- 

regulated by 5-Aza +E2 co-treatment (compared to E2 treated cells) in 

tamoxifen withdrawn TAM-R cells, suggesting they were free from epigenetic 

regulation. Interestingly however, CXCL-12 gene promoter was found to be 

significantly methylated in non-5-Aza compared to 5-Aza treated tamoxifen- 

withdrawn TAM-R cells as assessed by Methylight assay, despite the lack of 

any significant increase in mRNA expression in 5-Aza +E2 co-treated cells as 

assessed by microarray and PCR analysis. It may well be the case that 5-Aza 

has caused the demethylation of a promoter sequence that is free from 

oestrogenic regulation, and hence its reactivation in this instance is 

inconsequential.

In total, although the adverse gene candidates selected for PCR verification 

did not demonstrate sensitivity to 5-Aza + E2 co-treatment, it is likely that this 

event will occur (as is the case with EGFR). Interestingly, chromatin 

remodelling drugs (e.g. HDAC and methylation inhibitors) are of clinical 

interest in cancer although many researchers remain cautious regarding the
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broader genomic impact of such agents [Miyamoto & Ushijima, 2005], and 

thus potential restoration of tumour suppressors on an individual basis may 

prove more desirable if this can ultimately be achieved through alternative 

strategies.

6.6 Oestrogen repression of tumour suppressors: a potential role in breast 

cancer and development and progression.

Classically, E2 acts to induce expression of genes whose target promoters bear 

oestrogen response elements (EREs). However, it is transcriptional repression 

of genes that has been reported to comprise the bulk (70%) of expression 

changes associated with E2 challenge of ER-positive breast cancer models. In 

a study conducted by Frasor et al, 2003, a significant proportion of the genes 

identified as being down-regulated by E2 in breast cancer cells were 

associated with anti-apoptotic/growth-regulatory function, and therefore are 

presumably down-regulated as part of the E2-mediated activation of MCF-7 

cell growth. However, there is emerging literature to indicate that the gene- 

suppressive effects of E2 at tumour suppressors may, in some instances (e.g. 

RUNX3, Jiang et al. 2008), culminate in their epigenetic silencing and 

possibly advance breast cancer progression. Studies of several E2-repressed 

genes, including the tumour suppressor gene cyclin G l, indicate that alongside 

corepressors such as N-CoR, the E2/ER complex can recruit HDACs to gene 

promoters, creating a repressive chromatin conformation that inhibits gene 

expression [Stossi et al, 2006] and renders the promoter sequence vulnerable
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to CpG-hyper-methylation. Therefore it is reasonable to assume that de- 

methylation agents such as 5-Aza could be used in these cells to provoke re­

expression of E2-silenced tumour-suppressor genes, and consequentially 

induce growth inhibition. However, when we treated MCF-7 cells with 5-Aza 

at a concentration of 1 pM, no growth inhibition was observed and in contrast 

to the tamoxifen-withdrawn TAM-R cells, E2 remained mitogenic despite the 

presence of the de-methylation agent. It could be suggested that the gene 

promoters that are aberrantly methylated by long-term E2 exposure in MCF-7 

cells will again be suppressed by E2 despite their de-methylated status, 

rendering them unable to make an impact on the regulation of cell growth. In 

contrast, in the case of the tamoxifen-withdrawn TAM-R cells we have 

determined that tumour suppressor genes that were previously activated by E2 

in MCF-7 cells can be epigenetically silenced by long-term tamoxifen 

exposure, and that following the de-methylation of gene promoters (using 5- 

Aza), gene expression can once again be up-regulated by E2 to provoke cell- 

growth inhibition. These data therefore indicate that if the genes that were de- 

methylated by 5-Aza in MCF-7 cells were activated (by an anti-hormone) 

rather than suppressed by E2, an inhibitory growth response may be achieved. 

However, evidence from studies of Slug, an E2-repressed gene with pro 

invasive ontology indicates that adverse signalling genes can equally be 

subject to E2-driven silencing [Ye et al, 2008] and interference with such 

events could prove undesirable in the context of cancer development and 

progression.
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6.7 Might the development of tamoxifen resistance be prevented by 5-Aza 

and tamoxifen co-treatment?

In the present study, it has been shown that oestrogen-regulated tumour- 

suppressor genes have been epigenetically silenced in our MCF-7 breast 

cancer cells following long-term tamoxifen treatment; and that this event may 

contribute to anti-hormone resistant cell growth. It has previously been 

suggested that co-treatment of MCF-7 cells with 5-Aza + tamoxifen (as 

opposed to tamoxifen alone), may extend the time-taken to achieve anti­

hormone resistant cell growth, as the presence of the de-methylation agent will 

prevent such genes from becoming silenced. However, consistently throughout 

the study, we have shown that 5-Aza alone has little effect on gene expression 

itself, and merely acts to provide access for transcriptional regulation of the 

de-methylated promoter. Thus, if 5-Aza was used in combination with 

tamoxifen to prevent the onset of resistance, the de-methylation agent would 

presumably prevent epigenetic silencing of genes down-regulated by 

tamoxifen. As we have shown for GDF-15 and RGC-32 however, in our 5- 

Aza +E2 treated tamoxifen withdrawn TAM-R cells, due to the affinity of the 

anti-hormone for ER compared to physiological concentrations of oestrogen, 

the presence of tamoxifen would still cause gene suppression. Therefore, the 

presence of 5-Aza would be inconsequential and have little effect on the time 

taken to develop anti-hormone resistance. Indeed, in a study conducted by Van 

Agthoven et al (1994), the application of 5-Aza was able to accelerate the 

emergence of an EGFR-positive tamoxifen resistant cell-phenotype in ZR75-1
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breast cancer cells. Although data from the present suggests a possible 

explanation as to why 5-Aza did not prevent the emergence of an EGFR- 

positive tamoxifen resistant phenotype, it does not offer any explanation as to 

why 5-Aza accelerated this process. One possible explanation is that long-term 

5-Aza exposure could ultimately induce hypo-methylation at promoters of 

genes associated with tumour development in anti-hormone sensitive cells, 

including potential growth inducing elements. Hypo-methylation has been 

closely associated with genomic instability and the development of a multitude 

of tumours [Lund & Van Lohuizen, 2004].

6.8 Conclusion

Alongside anti-hormone-induced compensatory signalling, the data presented 

in this thesis indicates that the silencing of various E2-regulated tumour 

suppressor genes could play a significant role in limiting the growth inhibitory 

effects achieved by long-term tamoxifen treatment, and promote resistance. It 

has been shown that the growth of tamoxifen withdrawn TAM-R cells is 

inhibited following co-treatment with 5-Aza and a physiological concentration 

of oestradiol, and that this occurs in parallel with the de-methylation and 

activation of p53-activated tumour-suppressor genes GDF-15 and RGC-32, as 

well as other genes such as RASAL-1, that could serve to suppress anti­

hormone resistant cell growth and/or promote apoptosis. To date the concept 

that anti-hormones silence growth inhibitory genes has not been examined in
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clinical breast cancer, although the reversal of epigenetic events is being 

examined [Miyamoto & Ushijima, 2005].

Importantly, however, the data presented in the thesis also shows that due to 

the un-targeted mechanism of action of this combination treatment, it may also 

serve to up-regulate genes which may limit the growth inhibition achieved, in 

particular EGFR. Therapeutically, a combination of 5-Aza + E2 and gefitinib 

might be used to overcome this problem, and could even improve the growth 

inhibition realised by 5-Aza + E2 in tamoxifen-resistant breast cancer cells. 

This however is only one example of an adverse gene that was re-activated by 

5-Aza + E2 co-treatment and it is inevitable that there will be others. How this 

phenomenon might affect other aspects of the breast cancer cell phenotype 

long-term remains to be determined.

The data from this study add evidence to the theory that anti-hormones are not 

passive bystanders during the acquisition of resistance; they directly promote 

adverse compensatory mechanisms within tumour cells. This ‘dark side of 

anti-hormonal action’ has been recently reviewed by Gee et al (2008), and 

adds weight to the argument that perhaps after 30 years service, we need to 

take a new look at the way we use anti-hormonal drugs and how we treat anti­

hormone resistance, possibly moving away from single agent therapy to 

intelligent combinations of drugs targeting various aspects of the complex 

anti-hormone-induced resistance mechanism.
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6.9 Future Work

In addition to the PCR-verification of RASAL-1 as an oestrogen regulated 

gene potentially associated with 5-Aza induced inhibition of tamoxifen 

resistant cell growth, and the assessment of the effect that gefitinib has on 5- 

Aza + E2 mediated growth inhibition in these cells (which have already been 

discussed); the following lines of investigation will be pursued to further 

assess the significance of the novel observations identified in the present 

study:

Examination o f  expression and promoter methylation status o f  GDF-15, RGC- 

32 and RASAl-1 in further models o f  endocrine resistant and insensitive breast 

cancer.

The tissue culture unit of the Tenovus Centre routinely maintains multiple 

models of anti-hormone resistance/insensitivity, and it is our intention to 

screen those cell lines for the expression of the candidate genes. Where the 

genes are suppressed, we will once again assess the methylation status of their 

promoters in the presence and absence of 5-Aza, and determine the effects of 

5-Aza and oestradiol on cell growth.
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Examination o f  the functional significance o f the candidate genes in anti­

hormone resistant/insensitive cells.

It is our intention to reduce cellular levels of candidate gene mRNA using 

SiRNA knockdown. This will be primarily undertaken in our tamoxifen- 

withdrawn TAM-R cells treated with 5-Aza and oestradiol, using reversal of 

the growth inhibitory response associated with this co-treatment as the initial 

marker of biological reference of this gene. More detailed studies on the 

mechanism of reversal will subsequently be undertaken using FACS analysis, 

to determine the proliferative and apoptotic events associated with the use of 

the siRNAs, and by signalling studies, which will be driven by what is 

currently known about the genes and the availability of reagents.

Assessment o f  the importance o f  the candidate suppressor genes in clinical 

breast cancer.

The Tenovus Centre for Cancer Research and the University of Nottingham 

have enjoyed a longstanding collaboration associated with the translation of 

experimental observations into clinical studies and trials. Significantly this 

joint interest has mostly focused around the use of various endocrine therapies 

and as such, multiple breast cancer specimens relevant to our current work 

have been accumulated. These include frozen and paraffin embedded samples 

from anti-hormone treated patients, removed before, during and at relapse. 

Such material will be examined for the expression of the candidate genes
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using quantitative PCR and immunohistochemical procedures to determine 

clinical relevance.

Fig 6.1 Polo-like kinase (Plk-1) and cell division cycle 2 protein (CDC2) 
Affymetrix gene probe expression profiles (boxplots and heat-maps shown) in 
MCF-7 and TAM-R cells.
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