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ABSTRACT

Polyethyleneglycol (PEG) conjugates of peptides, proteins and an aptamer are in 

routine clinical use as first generation nanomedicines. Here a new family of polymer 

therapeutics based on PEG conjugates containing a coiled-coil peptide motif as a 

molecular switch are proposed. The coiled-coil motif is adopted by many naturally 

occurring proteins/peptides, including transcription factors key to cancer progression 

(E2F1/AP-1) and Ebola virus proteins (VP35/GP2). These were chosen as the first 

targets, however there is potentially a much wider role for this novel family of 

therapeutics.

First studies selected coiled-coil motif peptide sequences (using computational 

prediction software and published literature) that were then synthesised using a solid 

phase approach, purified and characterised. To facilitate subsequent PEGylation, 

peptides were engineered to include an N-terminal cysteine residue. mPEG-maleimide 

(-5,500 g mol'1) was then conjugated site-specifically via the cysteine thiol. A 

purification method optimised using cation-exchange chromatography enabled the 

removal of both unreacted mPEG-maleimide and free peptide; purity was > 95 % for 

each conjugate.

Proof of concept was obtained with mPEG-FosWc, which was designed to 

inhibit coiled-coil heterodimerisation of native c-Jun and c-Fos proteins (AP-1). *H, 

15N HSQC spectroscopy confirmed target hybridisation of heterodimeric coiled-coils 

FosWc : c-Jun and mPEG-FosWc : c-Jun. In addition, both NMR and CD spectroscopy 

showed that both heterodimers adopted very similar structures under physiological 

conditions, irrespective of the presence or absence of PEG. Further studies using 

fluorescently labelled conjugates investigated cellular uptake in MCF-7 cells, and 

biological activity was assessed using the MTT assay with and without the use of a 

cationic transfection reagent.

These studies demonstrate the potential of mPEG-coiled-coil motifs as 

therapeutic agents. However, demonstrating reproducible biological activity was not 

possible with the intracellular targets. Investigating the biological activity of the 

conjugates designed to target the extracellular Ebola virus fusion proteins remains an 

exciting prospect.
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CHAPTER 1: General Introduction

1.1 Introduction

Worldwide, cancer, with 7.6 million attributed deaths in 2005 is one of the top 

ten leading causes of mortality (World Health Organisation (WHO) Fact Sheet No. 297, 

2006). In the UK alone, over 250,000 people are newly diagnosed with cancer each 

year (Office for National Statistics, 2008). Most common among these are breast, lung, 

colorectal, and prostate cancer (Figure 1.1a). Although new treatments such as the 

monoclonal antibody Herceptin® (www.herceptin.com) offer hope to carefully selected 

Human Epidermal growth factor Receptor 2+ (HER2+) cohorts, astonishingly breast 

cancer remains the leading cause of death for adult women; for women in their late 30s 

it is responsible for approximately 10 % of all deaths in high income countries and rises 

to 14 % for women in their 50s (World Health Statistics, 2008).

Chronic diseases have now overtaken infectious diseases as the leading cause of 

death globally (Abegunde, 2005) (Figure 1.1b). However the “.. .book has not yet been 

closed on infectious disease” despite infamous words to the contrary by the then 

Surgeon General o f the United States, William H. Stewart in his 1969 annual report 

(cited in Nelson, 2003). O f recent concern is the spread of endemic zones of infectious 

diseases with climate change (Kuhn et al, 2005). Pathogens such as Ebola (Peters & 

LeDuc, 1999), avian influenza (Claas et al, 1998; Ungchusak et al, 2005), Severe Acute 

Respiratory Syndrome (SARS) coronavirus (Eichelberger, 2007) and multi-drug 

resistant bacteria (Enright et al, 2002) pose not only a psychological but a real threat to 

human health. Furthermore, as a result of the recent political climate, infection is not 

limited only to the ‘natural’ spread of pathogens but there is also the fear of such agents 

being used in bio-terrorism (Bray, 2003; Peters, 2005).

The aim of this research was to capitalise on the growing understanding of the 

regulatory importance of coiled-coil motifs present in many proteins (Lupas et al, 1991) 

and develop a new therapeutic class of conjugates containing coiled-coil peptide motifs 

as putative molecular switches for a diverse range of pathologies (Figure 1.2).

The hypothesis proposed is that polymer-coiled-coil motif therapeutics will be 

able to dock with target proteins in a highly specific manner and induce a clinically 

significant biological response. As large, multi-component, macromolecular entities

2
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Figure 1.1 Global deaths by cause and UK cancer statistics. Panel (a) The 20
most commonly diagnosed cancers (excluding non-melanoma skin cancer), in the 
UK, 2004. Adapted from (ht tp ://info. cancerres earchuk. org/cancers t at s/incidence 
/commoncancers). Panel (b) shows the total global deaths by cause in 2005, adapted 
from Abegunde et al, (2005), chronic diseases are shown in black, infectious diseases 
are shown in white.
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instance a dimeric transcription factor is shown. Protein structure file was obtained 
from the Protein Data Bank (PDB), DOI:10.2210/pdblfos/pdb, editing and 
rendering was conducted using MacPy MOL.
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these conjugates differ from the small molecules Nobel Laureate, Ehrlich first proposed 

as drugs ‘chemotherapy’ towards the end of the 19th Century 

(http://nobelprize.org/nobel_prizesAists/all). Although much progress was made in the 

treatment of disease in the last century the ‘magic bullet’ as proposed by Ehrlich was 

not realised until the development of monoclonal antibodies in the 1970s (Kohler & 

Milstein, 1975). Despite being widely studied over the three decades since, there is still 

only one nanoparticle, one antibody-drug conjugate and a small number of liposomal 

products in routine clinical use (reviewed in Duncan, 2005). Polymer therapeutics 

(Duncan, 2003; Duncan 2006) however, especially PEG-protein conjugates (Davis, 

2002; Harris & Chess, 2003; Veronese & Harris, 2008), with at least nine products in 

the clinic, have proven the most successful first generation nanomedicines (see section 

1.3). The key developments in the fields of polymer therapeutics and those of the 

coiled-coil motif are summarised in Figure 13.

In order to fully comprehend the rationale for this study, an introduction to the 

coiled-coil motif, peptide synthesis, polymer-therapeutics, cellular delivery and the 

biological targets selected for proof of principle research is required. Each of these 

topics are reviewed and discussed in the following pages.

1.2 The Coiled-Coil M otif

Firstly, it is necessary to define the coiled-coil motif, briefly review its role in 

the regulation of protein function and explain the rationale for its use as the therapeutic 

entity.

The coiled-coil motif was first described over 50 years ago (Crick, 1953; 

Pauling & Corey, 1953). Since then, a large number of proteins have been discovered 

that either contain coiled-coils or interact via the formation of a coiled-coil. It has been 

estimated that approximately 2 to 3 % of amino acids found in natural proteins form 

coiled-coil motifs (Berger, 1995; Lupas et al, 1991). However, it is now considered 

likely that these estimates are conservative since they were predicted before genomic 

sequence data was complete or even available for many species. Whereas pre-1990 the 

number of published journal articles describing the term “coiled-coil” was less than 80 

per year, in the last two decades this has increased rapidly to over 700 articles per year 

(Figure 1.4). In order to identify coiled-coil motifs that may be of interest for

5
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development as the therapeutic component of a polymer-coiled-coil conjugate one 

needs to understand, at least in brief the structure of the coiled-coil.

The Molecular Structure o f  the Coiled-Coil Motif

The coiled-coil is an evolutionary conserved structural domain consisting of 

between two and five, amphipathic a-helices (Figure 1.5) that wrap around each other 

to form a supercoil (Lupas et al, 1991). The a-helices may be arranged in either a 

parallel or anti-parallel conformation, and the composition of the domain may be either 

hetero or homo oligomeric. Most commonly, each a-helix consists of a seven residue 

(heptad) repeat sequence with each residue denoted a, b, c, d, e, f  and g. However, very 

rarely, 11-residue (undecad) repeat sequences have also been observed (Hicks et al, 

1997). In these structures, unlike the heptad repeat, the turn of the supercoil is right- 

handed i.e. the same as the underlying a-helices.

a-Helices with heptad repeats consist, generally, of hydrophobic amino acids at 

the first (a) and fourth (d) positions. This results in the formation of a hydrophobic 

seam that winds around each a-helix; it is along this seam that two or more a-helices 

associate (Figure 1.6) thus forming the most entropically favourable structure. Crick 

referred to the arrangement of hydrophobic amino acid side chains in a dimer as 

“knobs-into-holes packing” (Crick, 1953). This is the accepted hallmark of a coiled- 

coil and very accurately described the interaction that is, in part, responsible for the high 

stability o f coiled-coil structures. Further stabilisation of the structure is often the result 

of amino acids at positions (e) and (g) forming ionic bonds or covalent disulphide 

bridges. The remaining amino acids (b, c and f) that constitute the heptad are generally 

polar or hydrophilic residues and thereby increase the solubility of the domain in 

aqueous environments. For further reading, the structures of coiled-coils have been 

reviewed previously (Lupas, 1996; Woolfson, 2005), more extensively and in more 

detail than is intended here.

It is important to note that coiled-coils found in nature often do not fit the 

mathematically ideal model described (Crick, 1953). For example, lysine, a hydrophilic 

amino acid, has been found', not uncommonly, to occupy positions (a) or (d) (Lupas et 

al, 1991). Furthermore, hydrophobic amino acids may be present in positions (b, c, e, f  

or g) thereby resulting in poor aqueous solubility of the peptide (Watanabe et al, 2000).
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(a)

F ig u re  1.5 C ro ss  s e c t io n a l  a n d  s e c t io n a l  views o f  (a) a  d im e r ic  coiled-coil a n d  

(b) a  t r im e r ic  co iled-co il.  Higher order oligomers do exist including tetra and 
pentameric coiled-coils, however since they do not feature in this thesis they are not 
shown here. Protein structure files were obtained from the PDB, (a) 
DOI:10.2210/pdblfos/pdb and (b) DOI:10.2210/pdb2ebo/pdb, editing and rendering 
was conducted usingM acPyM OL.

(b)
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c A

F ig u r e  1.6 H e lica l-w hee l  i l l u s t r a t i o n  o f  (a) d im e r ic  a n d  (b) t r im e r ic  co iled-  

co ils .  The schematic illustration shows the hydrophobic ‘seams’, depicted in dark 
blue, while the electrostatic interactions which help to further stabilise the coiled- 
coil structures are shown with arrows. An example o f such an interaction is shown 
in panel (a) and depicts the ionic bond between charged lysine and aspartic acid side- 
chains at heptad positions gand e’, respectively.
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The Role o f  the Coiled-Coil M otif in Regulation o f Protein Function

Many biological signalling networks (Zhang et al, 2000), viral docking 

(Watanabe et al, 2000) and intracellular transport processes (Gillingham & Munro, 

2003) rely upon protein-protein interactions for regulation including activation or 

deactivation. Specificity of these interactions is governed by the length and 

conformation of the interaction domains. The coiled-coil motif was chosen for 

development as a therapeutic entity because of its ability in nature to mediate highly 

specific interactions of medical significance, ease of synthesis and structural stability.

Following a review of the literature, a summary of coiled-coil motifs with 

potential for development as therapeutics is provided in Table 1.1. From this summary 

it is clear that there is a diverse range of diseases in which coiled-coils play a key role in 

pathogenesis from mediating oligomerisation in cancer (Shaulian & Karin, 2002) and 

viral infection (Bianchi et al, 2005; Reid et al, 2005), probing transmembrane pores as 

antimicrobial agents (Mohanty et al, 2003) to mediating Golgin-Rab membrane fusion 

(Barr & Short, 2003).

Use o f the Coiled-Coil as a Therapeutic Entity

Remarkably, considering their functions in high profile diseases such as cancer 

and human immune deficiency virus (HIV), to date, the author has found few instances 

whereby a coiled-coil motif has been suggested as a novel therapeutic (Bianchi et al, 

2005; Mason et al, 2006). Usually, where research has identified the coiled-coil motif 

as an essential component of pathogenesis, authors point towards the development of 

small molecule inhibitors (Joshi et al, 2003). However, it is worthy of note that the 

concept of using short peptide sequences, sometimes described as “miniature proteins” 

with therapeutic or structural characteristics comparable with those of the original 

protein from which they were derived has been discussed previously (Gamer & 

Harding, 2007). Furthermore, coiled-coils have been utilised to stabilise antibody 

fragments (Amdt et al, 2001) and generate pH responsive hydrogels (Wang et al, 1999).

The use of the coiled-coil motif as a therapeutic, to drive the oligomerisation of 

one or more proteins into either an active or inactive complex is new, and in this context 

they may be considered molecular switches since pharmacological intervention, using a 

coiled-coil motif may make it possible to turn a pathway on or off with a high degree of 

specificity. In the clinic, it has been shown that it is possible to competitively inhibit or

11



Table 1.1 Summary of biological proteins that contain coiled-coil motifs with potential for therapeutic intervention.

Protein Biological Function Cellular Location and Structural 

Summary

Proposed Therapeutic 

Intervention/Use

References

AP-1 Oncogenic transcription factor Heterodimeric complex of proteins Competitively inhibit the Shaulian &

from the Jun and Fos. Monomeric formation of the heterodimer Karin, 2002;

- proteins located in cytosol/nucleus, and thus down-regulate AP-1 Eferl & Wagner,

dimer is formed in nucleus. mediated transcription. 2003; Mason et 

al, 2006

Multi-Drug EmrA binds with TolC to form a Protein is anchored in cell membrane, Prevent action of efflux pump Borges-

Resistance complex that acts as an efflux whilst coiled coil motif extends into with a synthetic peptide; Walmsley et al,

Protein A: pump. Mechanism of bacterial, the periplasmic space. 18-residue increase effectiveness of 2003; Zgurskaya

EmrA multi-drug resistance. dimeric/trimeric coiled- coil motif current anti-biotic therapy. &Nikaido, 1999

(Escherichia mediates binding with TolC.

coli - E. coli)

BRCA1 Binds to JunB to regulate 34-residue dimeric coiled-coil motif Breast and/or ovarian Hu & Li, 2002;

transcription and suppress exists in the ADI domain of BRCA1. carcinoma suppression with a Hu et al, 2000

tumour growth. In various synthetic peptide

cancers the coiled-coil motif is corresponding to ADI coiled-

mutated preventing dimerisation. coil.
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Table 1.1 Summary of biological proteins that contain coiled-coil motifs with potential for therapeutic intervention.

Protein Biological Function Cellular Location and Structural 

Summary

Proposed Therapeutic 

Intervention/Use

References

E Colicins 1- All bind to E. coli outer > 100-residue dimeric coiled coil is Delivery of bacteriocidal Cao & Klebba,

9 membrane cobalamin transporter part of a tripartite structure consisting therapeutics. ‘Hair-pin’ of 2002; Mohanty

BtuB. Membrane depolarising of receptor binding, translocation and coiled-coil may have et al, 2003

(1), DNase activity (2, 7, 8 and toxin domains connected by coiled bacteriocidal activity.

9), RNase activity (3,4, 5,6). coils.

E2 factor DNA transcription factor. Two pairs of potential heptads exist in Suppression of transcription Joshi et al,

(E2F) a sequence of 54 amino acids in the with a synthetic peptide would 2003; Stevaux &

Transcription ‘marked box domain’ of the protein, be a novel treatment for cancer Dyson, 2002;

Factor separated by a sequence of 20 amino and proliferative disorders. Wang et al,

Family acids. Possibly a dimeric or trimeric 1999

coiled-coil. Nuclear.

Ebola Virus Drives apposition of host cell Each GP2 protein is composed of a C- Competitive inhibition of GP2 Watanabe et al,

Glycoprotein and viral membranes to enable terminal and an N-terminal a-helix. trimerisation using a synthetic 2000.

-2 (GP2) virus entry into cell. The latter drives the formation of a coiled-coil motif to inhibit viral

homotrimeric coiled-coil. fusion.
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Table 1.1 Summary of biological proteins that contain coiled-coil motifs with potential for therapeutic intervention.

Protein Biological Function Cellular Location and Structural Proposed Therapeutic References

Summary Intervention/Use

Ebola Virus, Interferon (IFN) a  and p down- 37 residue trimeric coiled-coil. Prevent oligomerisation with Basler et al,

Viral regulation. Coiled-coil domain Following viral infection of cell the an inhibitory, coiled-coil 2003; Basler et

Polymerase may mediate viral RNA coiled-coil motif mediates homo- peptide. Previous research has al, 2000; Reid et

Protein 35 synthesis. trimerisation. Cytoplasmic location. shown that this could decrease al, 2005

(VP35) VP35 activity by 100 fold.

HTV HIV gp41 is essential for fusion 48-residue trimeric coiled-coil. HR1 Coiled-coil peptide has been Bianchi et al,

gp41HRl and entry into host cells. is an N-terminal heptad repeat, it shown to inhibit fusion of HIV 2005

mediates trimerisation of gp41. to host cells.

Laminins 1- Cell adhesion, e.g. coiled-coil 50-80 residue, parallel trimer is a Incorporation into a drug Rousselle et al,

12. mediated agrin binding. structural component of laminin delivery system as a targeting 1995; Sanz et al,

protein. moiety. Immobilise on surfaces 2003; Tunggal

to promote cell adhesion. et al, 2000

Macrophage Receptor mediated endocytosis 22-residue trimeric coiled-coil is Design of a synthetic system Frank et al,

Scavenger of a range of ligands e.g. located in extracellular component of using the pH sensitive coiled- 2000; Suzuki et

Receptor lipopolysaccharide (LPS) and protein, a decreased pH induces a coil to clear LPS from gram -  al, 1997

(MSR) I & II. low-density lipoprotein (LDL). conformation change to release ligand, ve bacteria during sepsis.



Table 1.1 Summary of biological proteins that contain coiled-coil motifs with potential for therapeutic intervention.

Protein Biological Function Cellular Location and Structural 

Summary

Proposed Therapeutic 

Intervention/Use

References

PI 15

PIGEA-14

Prohibitin

(PHB)

Forms a hetero-oligomer with 

Rabl. The homo-oligomer 

promotes the formation of 

syntaxin-5 containing SNARE 

bundles.

Forms homo-oligomers, also 

hetero-oligomers with

polycystin-2 and GM130. It 

affects the intracellular 

distribution of polycystin-2. 

Hetero-oligomerisation with all 

transcriptionally active members 

of the E2F family (1-5) thus 

preventing transcription.

28-residue, parallel dimers exist in 

four regions of predicted coiled-coil 

structure between an N-terminal 

globular head and C-terminal acidic 

domain. Cytoplasmic location. 

59-residue coiled-coil. Cytoplasmic 

location. Approximately half of the 

protein exists as a coiled coil motif.

41-residue protein, possibly forms a 

dimer and / or trimer. Cytoplasmic 

location.

Modulate Rabl signalling. Beard et al,

May have potential in 2005

treatment of lysosomal storage 

diseases.

Only present in renal tissue, Hidaka et al, 

therefore drug targeting 2004

potential. Treatment of 

polycystic kidney disease.

A peptide corresponding to the Joshi et al, 2003 

coiled-coil motif induces 

apoptosis and growth 

suppression in cell culture.

Novel therapeutic for cancer 

and proliferative disorders.



Table 1.1 Summary of biological proteins that contain coiled-coil motifs with potential for therapeutic intervention.

Protein Biological Function Cellular Location and Structural 

Summary

Proposed Therapeutic 

Intervention/Use

References

Prostate Under expression: cancers of the 38-residue dimeric coiled-coil. Treatment of Alzheimer’s with Guo et al, 1998;

Apoptosis colon, prostate and kidney. Protein is predominantly a coiled-coil a peptide that forms a homo­ Chakraborty et

Response High levels: neurone death, at C-terminus. Classified as a leucine oligomer, thus preventing al, 2001; El-

Factor (Par- Alzheimer’s disease. Forms zipper. pathogenic hetero­ Guendy &

4) homo and hetero-oligomers, oligomerisation. Rangnekar,
coiled-coil motif recently shown 2003; Guo &

to be inactive as a tumour Xie, 2004; Xie

suppressor. & Guo, 2005

Stat3 One of a family of latent 191 residue tetrameric coiled-coil. Utilisation of nuclear Ma et al, 2003;

transcription factors. It has dual Cytoplasmic transcription factor localisation signal. Zhang et al,

functions, acting as a signalling containing a coiled-coil motif between 2000

molecule and transcription the N-terminal domain and DNA

factor. Forms heterooligomers. binding domain.

TRK-T3 Oncogenic thyroid protein. 20-30 residue trimeric coiled-coil. Prevent homo-oligomerisation Greco et al,
Oncogenicity is mediated via Cytoplasmic protein. with an inhibitory, coiled-coil 1998

homo-oligomerisation. peptide.
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disrupt coiled-coil oligomerisation by introducing an a-helical peptide with a higher 

affinity than the wild-type and it has been suggested that the 36-amino acid synthetic 

anti-HIV peptide Fuzeon (Enfuvirtide) (Fletcher, 2003) inhibits fusion of HIV-1 with 

CD4+ cells in this way.

The underlying premise of this research is that judicious selection and/or 

engineering of the coiled-coil sequence will allow design of monomethoxyPEG 

(mPEG) conjugates that could (i) neutralise infectious diseases (e.g. the Ebola virus) in 

the circulation, (ii) prevent cellular entry/activity (e.g. HIV or the Ebola virus), or (iii) 

interrupt nuclear or cytosolic biochemical pathways (e.g. activator protein-1 (AP-1) 

transcription factor in cancer) (Figure 1.7).

A Note on the Nomenclature o f  Coiled-Coils

Often, in the literature, sequences that form a coiled-coil are referred to 

interchangeably as peptides or proteins. Since there is not universal agreement as to 

what defines a polypeptide as a protein or peptide this is not surprising. In this thesis, 

polypeptides of fewer than 50 amino acid residues are typically referred to as peptides, 

those that are larger are referred to as proteins. A further point of confusion is that 

peptides with the propensity to form a coiled-coil are referred to as “coiled-coil 

peptides” (Joshi et al, 2003). In fact, they are a-helical peptides and should only be 

considered a coiled-coil following homo or hetero-oligomerisation. As such, in this 

thesis “coiled-coil peptides” are referred to as ‘coiled-coil motifs’ and the resultant 

hetero/homo-oligomer a ‘coiled-coil’ for clarity.

Synthesis o f  Coiled-Coil Motifs

In order to understand the rationale for the choice of protein targets in section 

1.5 from the many summarised in Table 1.1, it is important to introduce the principles 

and limitations of peptide synthesis here. More detail is provided in Chapter 3.

Many methods have been published with respect to the synthesis of peptides and 

proteins and most, if not all, may be applied to the synthesis of coiled-coil motifs. The 

advent of solid phase peptide synthesis (SPPS) has made it possible to create synthetic 

coiled-coils with relative ease. Current protocols however limit the chain length of 

amino acids synthesised to less than 50 (Chan & White, 2000). Yet, in order to obtain a 

high yield it is preferable to keep below 40 amino acids. The cost of new therapeutics is 

an essential consideration that should be bome from the very beginning stages of design
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E b o la  VP35 
C y to s o l ic  ta rg e t Ebola G P2 

E ndosom al t a r g e t

Ebola  G P2 
E x t r a c e l lu la r  t a r g e t

P E G

C oiled -co il

C a n c e r  - AP-1 o r  E2F1 
N u c le a r  t a rg e ts

J  FosWc
N uclcus

mPFG

mPEG-FosWc : c-Jun 
Heterodimer

Ebola  V iru s

F ig u re  1.7 C a r to o n  to  i l l u s t r a t e  th e  c e l l u l a r  lo c a t io n s  o f  th e  coiled-coil 
p ro te in s  ta rg e ts .  The cellular location o f the target will influence the design of 
polymer-coiled-coil therapeutic and design o f in vitro experiments since local 
conditions such as pH will vary. Protein structure files were obtained from the 
PDB, illustrations o f EbGP2 and EbVP35 were adapted from 
DOE 10.2210/pdb2ebo/pdb, while illustration o f the nuclear target AP-1 was 
adapted from DOE 10.2210/pdblfos/pdb, editing and rendering was conducted using 
M acPyM OL.
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(Sato et al, 2006). Therefore when reviewing the targets summarised in Table 1.1, a 

primary consideration was that the sequences chosen for synthesis should be less than 

40 residues in length.

Caveats and Limitations o f  Therapeutic Peptides

As drugs, peptides have inherent limitations including their short plasma half- 

life, susceptibility to proteolytic degradation and the challenge of delivery to the target 

(Sato et al, 2006). As PEGylation is already a well-established method of improving 

plasma half-life, biological stability and reducing proteolysis and imunogenicity of 

covalently bound peptides and proteins this approach has real potential to generate 

therapeutically useful mPEG-coiled-coil therapeutics (Davis, 2002; Harris & Chess, 

2003; Veronese & Harris, 2008). This concept is discussed in the following section.

1.3 Nanomedicine and Polymer Therapeutics

Research emanating from the field of Nanomedicine, has the potential to 

contribute some of the greatest developments of the 21st Century. In 2005 the European 

Science Foundation (ESF) Forward Look on Nanomedicine document (ESF, 2005) 

defined the field of nanomedicine as:

“ ...the science and technology of diagnosing, treating and preventing disease 

and traumatic injury, of relieving pain, and of preserving and improving human health, 

using molecular tools and molecular knowledge of the human body. It embraces five 

main sub-disciplines which are in many ways overlapping and are under-pinned by 

common technical issues.”

Nanomedicine may be sub-divided into five disciplines including the 

development of novel therapeutics and drug delivery systems i.e. nanopharmaceuticals. 

This term has also been defined in the ESF report:

“Nanopharmaceuticals can be developed either as drug delivery systems or 

biologically active drug products. This sub-discipline was defined as the science and 

technology of nanometre size scale complex systems, consisting of at least two 

components, one of which is the active ingredient. In this field the concept of nanoscale 

was seen to range from 1 to 1000 nm.” (ESF, 2005).

“Polymer therapeutics” can be considered one class of nanopharmaceuticals 

according to this definition. This umbrella term was coined in the mid 1990s (Duncan
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et al, 1996) and it describes the field of research encompassing the development of 

“ ...polymeric drugs (Donaruma, 1975), polymer-drug conjugates (Duncan, 1992), 

polymer-protein conjugates (Harris & Chess, 2003), polymeric micelles to which drug 

is covalently bound (Yokoyama, 1990) and multi-component polyplexes being 

developed as non-viral vectors (Kabanov, 1998)” (reviewed in Duncan, 2003).

The landmark historical events in this field are illustrated in Figure 1.3. Over 

the past 50 years we have observed increasingly rapid progress in the transfer of 

polymer therapeutics into routine clinical use. Pioneering events in the field began with 

the first clinical evaluation of the synthetic polymeric anticancer agent 

divinylethermaleicanhydride (DIVEMA) in the 1960s (reviewed in Regelson & Parker, 

1986), Ringsdorfis vision of the ideal polymer chemistry to effect drug conjugation 

followed by the concept of the targeted polymer drug-conjugate (Ringsdorf, 1975) and 

the PEGylated proteins first proposed by Davis and Abuchowski in the 1970s (reviewed 

in Veronese & Harris, 2008). The “market approval of the first polymer-protein 

conjugates (PEG-adenosine deaminase, PEG-L-asparaginase and styrene maleic 

anhydride neocarzinostatin (SMANCS)) in the early 1990s was a landmark step 

(Fuertges & Abuchowski, 1990). Promising results from clinical trials involving 

polymer-anticancer-drug conjugates (reviewed in Duncan, 2005) has given further 

credibility to the field of polymer therapeutics which is now growing exponentially 

(reviewed in Duncan, 2003).

Polymer-Protein/Peptide Conjugates

In the context of this thesis, the polymer-coiled-coil motif conjugates may be 

considered a sub-type of polymer-protein conjugates. Polymer-protein conjugates were 

the first polymer therapeutics to enter the clinic as anti-cancer agents in the 1990s. Less 

than 20 years on, many polymer-protein conjugates are now used routinely in the clinic 

as anti-cancer agents, and additionally for an ever-growing range of indications (Table 

1.2).

The first polymer-protein conjugate to enter the clinic with market approval was 

Adagen® (PEG-adenosine deaminase) in 1990 for the treatment of severe combined 

immunodeficiency (SCID) syndrome. Since then many polymer-protein conjugates 

have been developed and progressed to market with many more at various phases of 

clinical trial (Table 1.2). Shortly after Adagen®, Oncaspar® (PEG-L-asparaginase), was 

approved by the FDA in 1994, for the treatment of acute lymphoblastic leukaemia
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Table 1.2 Polymer-protein conjugates in the clinic or late stage clinical trials.

Polymer-Protein Conjugate Indication Phase

Adagen® SCID Syndrome Clinic

Neulasta® Non-Myeloid Malignancies Clinic

Oncaspar® Acute Lymphoblastic Leukaemia Clinic

PEGASYS® Hepatitis C Clinic

PEG-INTRON® Hepatitis C, clinical evaluation in 

cancer, multiple sclerosis (MS) and 

HIV/AIDS

Clinic

Somavert® Acromelagy Clinic

Zinostatin Stimalamer Hepatocellular Carcinoma Clinic

(SMANCS)

Macugen™ Age-related macular degeneration Clinic

Cimzia® Rheumatoid arthritis and Crohn’s 

disease

Clinic

CDP791 Solid tumours expressing vascular 

endothelial growth factor receptor-2 

(VEGFR-2)

Phase II
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(ALL) (reviewed in Graham, 2003).

In Japan, the polymer-protein conjugate SMANCS, was developed by Maeda 

and colleagues by covalently linking two styrene maleic anhydride (SMA) polymer 

chains to neocarzinostatin (NCS), an anti-tumour protein (reviewed in Maeda & Konno, 

1997). SMANCS was developed for use in patients with advanced liver cancer and 

administered via injection into the hepatic artery. Polymer modification of the NCS 

protein generated a conjugate that was sufficiently hydrophobic to enable dispersion in 

the phase contrast agent Lipiodol (Iwai et al, 1984, Konno & Maeda, 1987), this made it 

possible to administer the agent with the aid of X-Ray imaging. With few other 

effective agents available and the prognosis for primary liver cancer being so poor, the 

remarkable activity seen with SMANCS resulted in approval being granted in Japan for 

the treatment of advanced and recurrent hepatocellular carcinoma (reviewed in Abe & 

Otsuki, 2002). Unlike most other drugs currently in use as anti-cancer agents, 

SMANCS was used most successfully when administered as a ‘patient-individualised 

therapy* i.e. dosing was adjusted in each patient according to tumour size (area) and 

further injections only given if the tumour was not seen to regress. Although in concept 

well ahead of its time, this treatment strategy, coupled with the complex protocol for 

reconstitution has resulted in failure to meet the regulatory standards required for 

approval by the FDA and European Medicines Agency (EMEA). Another very 

significant discovery that was made by Maeda et al was that polymer-protein conjugates 

passively target tumour tissue via the “Enhanced Permeation and Retention” (EPR) 

effect (Matsumura & Maeda, 1986). Essentially, this effect is due to the vascular tissue 

in tumours being ‘leaky’ as a result of rapid, unordered proliferation. Therefore 

increasing the concentration of conjugate at the target and reducing the potential for 

dose limiting toxicity.

PEG-interferon followed, with the development of PEGASYS (reviewed in 

Wang et al, 2002) and PEG-Intron (Bukowski et al, 2002) as agents for the treatment of 

Hepatitis. When used in combination with the drug Ribavirin against Hepatitis C, 

sustained virological response is seen in at least 50 % of patients, as such PEGylated 

IFN is now the gold standard treatment (reviewed in Cross et al, 2008). Both forms of 

PEG-IFN are now being investigated for the treatment of other diseases and have 

recently shown great promise in the treatment of stage III melanoma (Eggermont et al, 

2008). While only a few of the now many polymer-protein conjugates on the market
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have been discussed here, it is fair to say that PEG conjugated proteins have been the 

most successful polymer-protein conjugates to date.

1.3.1 PEGylation

The concept of covalently attaching one or more PEG molecules to, for 

example, a protein or peptide is now widely referred to as “PEGylation”. First 

described by Davis and Abuchowski in the 1970s (reviewed in Veronese & Harris, 

2008), it has proven the most successful technique for the synthesis of polymer-protein 

conjugates. Today, at least 11 such conjugates (Table 1.2) are now either in the clinic 

or progressing through clinical trials. Thus giving credence to the pharmaceutical 

applicability of the technique. As such, for preliminary proof of concept studies, PEG 

with appropriate functionalisation will be used as the polymer to which the coiled-coil 

motif is conjugated.

What Characteristics make mPEG suitable fo r Conjugating to Coiled-Coil Motifs?

Whilst many polymers are now used in the design of polymer therapeutics it is 

necessary to consider the specific physicochemical and biochemical characteristics 

make only a select few polymers suitable for use in the development of polymer-coiled- 

coil motifs conjugates. These characteristics relate to solubility, functionality, size, 

heterogeneity, toxicology, immunogenicity, cost and ease of synthesis. It is pertinent to 

recognise that the specifications for each of these criteria relate not only to the polymer, 

but also to the final polymer-peptide conjugate.

PEG has been shown to increase protein solubility and stability as well as reduce 

potential immunogenicity (reviewed in Harris & Chess, 2003; Pasut et al, 2004). PEG 

is highly soluble in aqueous media at physiological pH (7.4) and temperature (37 °C), 

and is non-toxic, and non-immunogenic following repeated administration. 

Furthermore, the biocompatibility, haemocompatibility and immunocompatibility of 

PEG have been well studied and documented (Rihova & Riha, 1985).

The pharmacokinetic (PK) profile of a protein is improved following 

PEGylation as a function of reduced renal clearance. PEG is particularly useful here as 

its hydrodynamic radius is 5-10 times greater than a globular protein of a similar
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molecular weight as a result of a highly hydrated structure. The prolonged plasma-half- 

life results in less frequent dosing and greater convenience to the patient.

One potential caveat, however, is that non-biodegradable polymers such as high 

molecular weight PEG (> 40,000 g mol*1) which exceed the threshold for renal 

clearance may accumulate within the body (reviewed in Robinson et al, 1990). Should 

these polymers accumulate within lysosomes then there is a theoretical risk of inducing 

lysosomal storage disorders (reviewed in Vellodi, 2005; Garnett & Kallinteri, 2006). 

As such PEG-conjugates are probably best used for diseases that require acute phases of 

treatment such as cancer rather than long-term chronic infections e.g. arthritis.

Another advantage of PEG is that it is commonly available as a semitelechelic 

polymer (mPEG), i.e. it has only one reactive functional group. This simplifies the 

process of synthesising monoPEGylated coiled-coil motif conjugates without the risk of 

cross-linking occurring. Where this thesis differs from the design of many other (pre- 

Cimzia®) polymer-protein conjugates is that attachment of mPEG or other polymer to 

the coiled-coil motif must be via either the N or C terminus or an amino acid side chain 

positioned at one of the termini, and not via a random amino acid side chain. 

Conjugation to the latter would likely disrupt the a-helical structure of the motif and 

abrogate the ability of the peptide to form a coiled-coil. This is discussed in more detail 

in Chapter 4.

Previous collaborative research has given some insight into the possibilities of 

PEGylating coiled-coil motifs (Vandermeulen et al, 2003; Vandermeulen et al, 2004; 

Vandermeulen et al, 2005). Conjugation via the assembly of smaller units using simple 

chemistries often referred to as ‘click chemistry’ (Kolb et al, 2001) becomes less 

favourable with large monofunctional polymers such as mPEG > 5,000 g mol'1 due to 

poor kinetics and unacceptably low reaction yields. This is not entirely unexpected as 

one is trying to react two macromolecules via a single reactive group on each. 

Alternative chemistries and methods of conjugation exist and will be explored in the 

course of this thesis. An interesting approach is to synthesise the coiled-coil motif from 

the amine terminus of a 3,000 g mol*1 PEG bound by a cleavable linker to a polystyrene 

resin, or the reverse, whereby mPEG (in excess) is reacted with peptides still attached to 

the solid-phase support (resin) as conducted by Vandermeulen et al, (2005). Another 

option could be to investigate the use of thiol (R-SH) chemistry to site-specifically 

conjugate mPEG with the coiled-coil motif peptide via the formation of a thioether 

linker (Dosio et al, 1998). The ideal linker chemistry is one that allows site-specific
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conjugation of the PEG chain to the peptide with the resultant bond stable to 

degradation under physiological conditions and is non-toxic, the pros and cons of the 

approaches described above are discussed in more detail in Chapter 4.

A Note on the Units Used to Describe Polymers

One of the most important descriptors used for polymers is molecular size. 

Various physical quantities may be used; most commonly these refer to molecular 

weight or particle size. The latter is more often used when describing solid micro- or 

nano-particulate systems. However molecular weight is favoured for polymers since it 

gives a more precise measure of the composition of the molecule. In the context of this 

thesis, the terms molecular weight and molar mass may be considered synonymous. 

The units of molecular weight are commonly expressed as either g mol'1 or Daltons 

(Da); references to molecular weight in biology often use kDa (1,000 Da) when 

describing proteins or peptides. In polymer science however, it is more common to 

express molecular weight in g mol'1. Assuming an average isotopic abundance, 1 Da = 

1 g mol"1, for consistency the latter will be used throughout this thesis when referring to 

polymers, peptides or polymer-peptide conjugates. Unlike peptides, proteins and 

nucleic acids, which have discrete molecular weights, synthetic polymers do not have 

one unique value, rather it is an average of a distribution. There are many ways in 

which the average molecular weight can be calculated; the two most commonly used are 

the number average molecular weight (Mn) and the weight average molecular weight 

(Mw). Mn is the arithmetic mean and thus represents the total weight of the polymer 

molecules present, divided by the total number of polymer molecules. It is most often 

used when describing thermodynamic properties e.g. osmotic pressure where the 

number of molecules is an important consideration. Mn values are highly sensitive to 

small molecules in the mixture, whereas Mw, which is a weight average considers the 

mass of the polymer molecules and therefore gives greater importance to the heavier 

molecules in the distribution. Therefore, Mw is always greater than Mn. The 

distribution of polymer molecules will depend upon the manner in which the polymer is 

prepared and the quality of the synthesis and purification methods used. The molecular 

weight distribution is expressed in terms of Mn and Mw (Mw/Mn) and is termed the 

polydispersity index. If Mw/Mn = 1 the polymer is monodisperse, however, for real 

polymers Mw/Mn is always greater than 1. The amount to which it is greater is a 

measure of the polydispersity.
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1.4 Challenges Associated with the Delivery of Polymer-Coiled-Coil M otif 

Conjugates

Many of the coiled-coils identified as potential therapeutic targets are of an 

intracellular location (Table 1.1). For this thesis, biological targets of differing cellular 

localisation were selected (Figure 1.7) such that, if intracellular delivery became 

difficult to realise it would be possible to investigate the biological activity of coiled- 

coil motifs acting in an extracellular environment. Four protein targets were selected 

for study and are discussed in more detail in the following section (1.5), three of these 

targets: E2F1, c-Jun and EbVP35 are of an intracellular location. More specifically, as 

transcription factors, E2F1 and c-Jun, are predominantly located in the nucleus while 

EbVP35 has been shown to be located in the cytoplasm following host cell infection by 

the Ebola virus (Bjomdal et al, 2003).

The priority for this thesis was to achieve intracellular delivery, not to determine 

exactly which mechanisms of uptake were necessarily involved. However, if such 

information could be acquired in the process, and the mechanisms alluded to then this 

would obviously be considered advantageous. In order to ascertain whether delivery of 

the mPEG-coiled-coil motif conjugate to the site of the target protein was achieved an 

understanding of the barriers to delivery and the main mechanisms of intracellular 

uptake was deemed important.

Cell Membrane

The cell membrane is a semi-permeable amphipathic-lipid bilayer found in all 

eukaryotic cells (Alberts et al 2002). It is primarily composed of phospholipids, 

arranged such that the hydrophilic phosphate head groups shield the hydrophobic tails 

from the aqueous environment by the formation of a continuous bilayer. The 

abundance of the phosphate head groups at both the extracellular and intracellular 

membrane results in a highly charged anionic surface. By virtue of their charge, anionic 

molecules have great difficulty in crossing the membrane (discussed in Chapter 6). 

Furthermore, the compact structure of lipids, proteins and carbohydrates renders the cell 

membrane impermeable to most molecules > 1,000 g mol'1 (reviewed in Bareford & 

Swaan, 2007). In order for cells to internalise large or highly charged molecules, a 

process involving invagination of the cell membrane followed by engulfing of the

26



CHAPTER 1: General Introduction

macromolecule(s) in a lipid membrane vesicle is used. This vesicle, or “endosome” 

may then be trafficked within the cell.

Endocytosis

The term “endocytosis” is used to broadly describe the many mechanisms by 

which living cells internalise and traffic macromolecules in the maintenance of 

homeostasis (Figure 1.8). Endocytosis is essential to the healthy function of all cells 

since it enables the transport of molecules too large or to diffuse through the lipid- 

bilayer to be sent to various organelles for processing. Xenobiotics, such as polymer 

therapeutics are known to be endocytosed (Duncan & Kopecek, 1984) using 

mechanisms similar to those for transferrin (Watts, 1985) or low-density lipoprotein 

(Anderson et al, 1977).

At least six types of encapsulation and internalisation by mammalian cells have 

been defined and are classified according to their requirements for caveolin, clarithryn, 

dynamin and lipid rafts (reviewed in Conner & Schmid, 2003). It is important to note 

that whilst the majority of uptake of a given macromolecule may be via one mechanism 

it cannot be said with any degree of certainty that uptake via a minor route is not 

responsible for the observed biological effect. Whilst elucidation of vesicle 

composition and encapsulation route would be interesting it is considered to be outside 

the remit of this thesis. As demonstrated in Figure 1.8, the process of endocytic uptake 

and subsequent trafficking is highly dynamic. As such, it is dangerous to make 

assertions about particular components without considering the ‘big picture’ i.e. the 

whole cell.

Endosomotropic Drug Delivery

Delivery o f a macromolecule such as a polymer-coiled-coil motif conjugate 

from an endosome into the cytosol of a cell constitutes endosomotrophic drug delivery. 

In the context of this thesis, this is particularly desirable since the peptide coiled-coil 

motif is likely to be degraded by the many proteolyic enzymes and/or low pH present in 

lysosomes (Seaman & Luzio, 2001; Luzio et al, 2007) (Figure 1.8).

Endosomes are the first compartments entered following internalisation at the 

plasma membrane. The local environment is mildly acidic (pH ~ 6.5) however does not 

contain proteolytic enzymes (Seaman & Luzio, 2001). The proposed mPEG-coiled-coil 

motif conjugates are unlikely to escape from endosomes into the cytosol unless the

27



CHAPTER 1: General Introduction

Internalisation by a coated pit 
or other mechanism

Exocytosis

Recycling

t1/2 = 2 min^i

Cytosolic 
entr^ .

Sorting 
endosome 
(pH ~ 6)

t1/2 = 2 min

Recycling

t1/2 = 45 min
in )5 0

Late 
endosome 
(pH 5-6)

11/2 = ^ min

Lysosome 
(pH 4.5-5.5) 

&
proteolytic

enzymes

M Cytosolic 
entiy

N ucleus

t t1/2 = 12 min

Endocytic 
recycling 

compartment 
(pH ~ 6.5)

Trans-Golgi
Network

F ig u r e  1.8 An overview  o f  endocy tic  t ra f f ic k in g  in  n o n -p o la r is e d  m a m m a l ia n  

c e l l s .  The t 1/2 values are approximate and are cell-type dependent. Adapted from 
Maxfield and McGraw, 2004.

28



CHAPTER 1: General Introduction

peptide coiled-coil motif has an innate endosomolytic feature. Some peptides, e.g. 

HIV-Tat are able to mediate cytosolic entry by penetrating the cell membrane either 

directly or during endocytosis (Richard et al, 2003; reviewed in Wagstaff & Jans, 

2006). It is likely that the large number of positively charged residues (arginine and 

lysine) in the peptide are responsible for facilitating this process, however the exact 

mechanisms are not well understood. The use of transfection reagents e.g. cationic 

peptides and lipids is discussed in more detail in Chapter 6.

1.5 Biological Targets

Many of the proteins reviewed (Table 1.1) contained sequences that fulfilled the 

selection criteria, to test the concept of developing polymer-coiled-coil motifs as novel 

therapeutics. An important selection criterion was that the protein should be involved in 

the pathology of a disease with medical significance. As such, proteins involved in the 

pathogenesis of cancer, in particular breast cancer, were desirable targets.

The E2 factor (E2F) family of transcription factors are fundamental to the 

control of cell division (Dimova & Dyson, 2005) and function to regulate whether a cell 

will arrest in G1 or enter S-phase (reviewed in DeGregori, 2002). Furthermore, 

deregulation of E2F activity has been shown in numerous studies to correlate with 

human cancers, particularly those with a poor prognosis (Nevins, 2001; Gorgoulis et al, 

2002; Ebihara et al, 2004; Foster et al, 2004; Feber et al, 2004; Oeggerli et al, 2004). 

Recently, a peptide corresponding to the putative coiled-coil motif of the tumour 

suppressor protein prohibitin (PHB) has been shown to induce apoptosis possibly via a 

coiled-coil type interaction with E2F1 (Joshi et al, 2003). However, since a coiled-coil 

interaction was inferred rather than shown to exist using either CD or nuclear magnetic 

resonance (NMR) spectroscopy (see Chapter 3 for discussion) it was deemed necessary 

to select other target proteins to be sure of testing the hypothesis proposed. It would be 

too risky to focus this research entirely on PHB/E2F1 only to discover later that the 

peptide motif identified by Joshi et al, (2003) was not active as a coiled-coil.

As such the transcription factor, activator protein-1 composed of the proteins c- 

Jun and c-Fos was chosen for study (section 1.5.2) (reviewed in Shaulian & Karin, 

2002). The crystal structure of c-Jun and c-Fos bound to DNA obtained by Glover and 

Harrison (1995) demonstrated conclusively, that the active complex was formed via a 

dimeric coiled-coil between the c-Jun and c-Fos proteins. Furthermore numerous
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studies have shown the involvement of either c-Jun or c-Fos in breast, amongst many 

other cancers (Wang et al, 2000; Ameyar-Zazoua et al, 2005; Lu et al, 2005). As 

transcription factors, both E2F1 and AP-1 are predominantly located in the nucleus, 

therefore the delivery of polymer-coiled-coil motif conjugates is likely to be a challenge 

(discussed in section 1.4). Thus, two additional targets were selected on the basis of 

having different cellular locations.

Many viruses utilise coiled-coil proteins to control key processes fundamental to 

their pathogenesis. The Ebola virus uses at least two proteins, VP35 (Reid et al, 2005) 

and glycoprotein 2 (GP2) (Watanabe et al, 2000) with coiled-coil motifs that are active 

in the cytosol and at the cell surface/endosomal membrane, respectively. The functions 

of these proteins are discussed in more detail in sections 1.5.3 and 1.5.4, respectively.

1.5.1 E2F1 and PHB, the Tumour Suppressor Protein

Introduction and Pathophysiology o f E2F1/PHB

A therapeutic with the ability to suppress E2F mediated transcription would be a 

‘blockbuster’ of the 21st Century. It would be indicated, not only for numerous cancers 

but potentially other proliferative disorders e.g. smooth muscle growth in 

arteriosclerosis (Morishita et al, 1995). There is, at present, a huge amount of interest in 

the E2F family. Coregentech for example, a US biotechnology company is developing 

decoy oligonucleotides to prevent over-proliferation of vein grafts following surgical 

implantation.

PHB is protein with potential tumour suppressor activity. It acts by forming a 

hetero-oligomeric complex with an E2F transcription factor (Joshi et al, 2003). There 

are six members of the E2F family, five of which are transcriptionally active (E2F1-5). 

PHB has been shown to suppress the activity of all five, active members (Wang et al, 

1999; Stevaux & Dyson, 2002). Furthermore, the putative coiled-coil motif has also 

been shown to facilitate homo-dimerisation of PHB, though the biological significance 

of this has not been determined.

Recently, a synthetic peptide corresponding to the 41 amino acid coiled-coil 

motif of PHB was shown to suppress E2F1-mediated transcription in TD47 breast 

cancer cells (Joshi et al, 2003). Furthermore, it was also shown to have apoptotic 

activity in HAEC, MCF-7, WI-38 and TD47 cells (Joshi et al, 2003). The authors 

demonstrated that apoptotic activity involves caspase activation, not a particularly 

astounding observation since caspases are always activated during apoptosis (Martin &
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Green, 1995). A more intellectual question would have been “which caspase?” The 

answer to this would then allude to the precise mechanism by which the peptide is 

exerting its effect in vitro. Interestingly it is only the synthetic coiled-coil motif that 

induced apoptosis, whereas full-length PHB induced only growth arrest. Another claim 

made was that, “it is likely that [the peptide] is affecting the functions of [fos/jun and 

Bcl2] as well as leading to apoptosis.” Although these proteins also interact via coiled- 

coil motifs it is thought unlikely that their peptide is having such non-specific activity, 

the amino acid sequences that constitute the motifs are all very different.

Molecular Structure o f  the PHB Protein

PHB is a 272-residue, 29,804 g m ol1 protein, with a predicted (PAIRCOIL) 

coiled-coil motif between amino acids 177 and 217 (inclusive). Up to two mutations 

have been observed in patients with breast carcinoma, however the coiled-coil motif is 

conserved as these mutations involve residues numbered 8 8  and 105 (Sato et al, 1992; 

Sato et al, 1993). The minimum sequence required to interact with E2F1 is between 

amino acids numbered 185 and 214 (inclusive) (Wang et al, 1999).

The binding domain in the E2F1 transcription factor was found to be between 

amino acids numbered 304 and 357 (Wang et al, 1999). Interestingly, computational 

analysis of the whole E2F1 sequence indicates the presence of a possible coiled-coil 

domain between residues 200-240 (see Chapter 3). However, there is not a significant 

prediction of a coiled-coil motif between residues 304-357 i.e. the domain by which 

PHB supposedly interacts. Therefore the primary aim is to determine the nature of the 

interaction (target hybridisation) between a PHB derived coiled-coil motif and the 

purported binding domain in the E2F1 protein. Since the shortest PHB sequence 

required to bind to E2F1 was found to be 30 amino acids it should not be necessary to 

synthesise the full 41-residue peptide used by Joshi et al, (2003).

1,5,2 AP-1 (Jun/Fos) Transcription Factor

Introduction and Pathophysiology o f  AP-1

The AP-1 transcription factor is ubiquitously expressed in human cells and as 

one of the first human transcription factors to be described (Angel & Karin, 2001) its 

oncogenic role has long been known (reviewed in Eferl & Wagner, 2003; Shaulian & 

Karin, 2002). More recently, it was discovered to play a key role in defining the 

invasive phenotype of metastatic cancers (Ozanne et al, 2007).
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The coiled-coil domain of AP-1 was chosen, as a second target to test the 

hypothesis that “a polymer-coiled-coil motif conjugate could hybridise with a target 

coiled-coil motif and exert a measurable biological response.” The key consideration in 

selecting the coiled-coil domain of AP-1 as a second target to establish proof of 

concept, was that the crystal structure of AP-1 had been previously determined (Glover 

& Harrison, 1995). It was therefore known with certainty (unlike E2F1 - section 1.5.1) 

that a coiled-coil was not only present but also essential for the function of the 

transcription factor.

Molecular Structure o f  AP-1

The AP-1 transcription factor is not a single protein but a dimeric protein 

complex composed of members of the Jun (c-Jun, JunB and JunD), and Fos (c-Fos, 

FosB, Fra-1 and Fra-2) families (reviewed in Milde-Langosch, 2005). It is known to 

regulate many genes that are important mediators of metastasis, apoptosis, invasion, 

proliferation, differentiation, angiogenesis and hypoxia (Figure 1.9). As a result of 

.these apparently opposed functions, it has been described as a “double edged sword in 

tumourigenesis” (reviewed in Eferl & Wagner, 2003). The specific promoters with 

which AP-1 binds are dependent upon, among other factors, the composition of the 

dimer (van Dam & Castellazzi, 2001). This in part explains why AP-1 is associated 

with such a wide-range of often opposing effects.

AP-1: The c-Jun:c-Fos Heterodimer

The oncogenic c-Jun/c-Fos heterodimer was first identified following the 

discovery of the viral oncoproteins v-Jun and v-Fos from the Finkel-Biskis-Jinkins 

osteosarcoma virus and avian sarcoma virus 17, respectively (reviewed in Vogt, 2002). 

The prefix “c-” denotes the cellular origin of c-Jun and c-Fos, both of which are derived 

from the proto-oncogenes bearing the same names.

c-Jun and c-Fos are responsible for regulating a large number of target genes 

with key roles in cancer, including upregulation of genes responsible for proliferation, 

angiogenesis and invasiveness and downregulation of apoptotic genes (Table 1.3). The 

picture is complicated somewhat however by the observations that FASL (Kasibhatla et 

al, 1998) and BIM (Whitfield et al, 2001) (gene products that stimulate apoptosis) are 

upregulated either by c-Jun, c-Fos or both. These are only two exceptions however,
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(2005).
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Table 1.3 AP-1 target genes in tumour development and suppression. Adapted 

from Eferl & Wagner, 2003.

Gene Product Activity Main

Regulator

Reference(s)

DNMT DNA Methylation c-Fos (fl) Bakin & Curran, 1999

EGFR Stimulates proliferation c-Jun (ft) Zenz et al, 2003

HB-EGF Stimulates proliferation c-Jun (ft) Park et al, 1999

GM-CSF Stimulates proliferation c-Jun (It) Szabowski et al, 2000

KGF Stimulates proliferation c-Jun (ft) Shaulian et al, 2000

Cyclin D1 Stimulates proliferation c-Jun (ft) Bakiri et al, 2000

WAF-1 Inhibits proliferation c-Jun (ft) Shaulian et al, 2000

P53 Inhibits proliferation 

Stimulates apoptosis

c-Jun (ft) Bakiri et al, 2000

INK4A Inhibits proliferation 

Stimulates apoptosis

c-Jun (ft) Passegue & Wagner, 

2 0 0 0

FAS Stimulates apoptosis c-Jun (ft) Ivanov et al, 2001

BCL3 Inhibits apoptosis c-Jun (ft) Rebollo et al, 2000

VEGFD Angiogenesis c-Fos (ft) Marconcini et al, 1999

Proliferin Angiogenesis c-Jun (ft) Toft et al, 2001

MMP1 Invasiveness c-Fos (ft) Hu etal, 1994

MMP3 Invasiveness c-Fos (ft) Hu etal, 1994

CD44 Invasiveness c-Fos (ff) 

c-Jun (If)

Lamb et al, 1997

Cathepsin L Invasiveness c-Fos (It) Hennigan etal, 1994

MTS1 Invasiveness c-Fos (It) Hennigan etal, 1994

KRP1 Invasiveness c-Fos (It)

TSC36/FRP Invasiveness c-Fos (It) Hennigan et al, 1994

Ezrin Invasiveness c-Fos (ft) Jooss & Muller, 1995

Tropomyosin 3 Invasiveness c-Fos (It) Jooss & Muller, 1995

Tropomyoson 5b Invasiveness c-Fos (ft) Jooss & Muller, 1995
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compared with the 23 gene products regulated in an oncogenic manner as indentified in 

Table 1.3.

Molecular Structure o f the c-Jun and c-Fos Proteins

Each protein is composed of three distinct domains, an N-terminal 

transactivating domain, a basic region that binds to a specific promoter in the major 

groove of a DNA molecule and a C-terminal dimerisation domain (Yao et al, 1998). 

The latter domain is a specific type of coiled-coil motif, known as a leucine zipper due 

to the predominance of leucine residues at position ‘d’ of the heptad repeat. The 

abbreviation bZIP (basic leucine zipper) is commonly used to describe proteins with 

this characteristic structure.

The c-Jun/c-Fos heterodimeric complex is large; the unprocessed precursor of c- 

Fos is composed o f 380 amino acids (40,695 g mol'1) and c-Jun 331 amino acids 

(35,676 g mol'1) (www.expasy.org). As discussed in section 1.4, delivery of large 

therapeutic proteins is potentially challenging, particularly if the target resides in an 

intracellular location. Therefore the use of (smaller) peptides that could disrupt 

formation of the AP-1 complex by competitively binding to the coiled-coil domain 

would make attractive anti-cancer agents.

c-Jun/c-Fos Derived Coiled-Coil Peptides as Potential Therapeutics

Peptides corresponding to the coiled-coil domain would result in therapeutic 

candidates approximately a 10th of the size of full-length c-Jun or c-Fos proteins. Such 

peptides have been previously proposed (discussed in Chapter 6 ) and some have been 

shown to be cytotoxic in the low pM range when transfected into MCF-7 cells using the 

cationic lipid Tfx-50™ (Yao etal, 1998).

The rationale for choosing to use peptides derived from c-Fos rather than c-Jun 

is an important one. Only two transcriptionally active dimeric complexes are possible, 

c-Jun : c-Fos heterodimers (Glover & Harrison, 1995) and c-Jun homodimers (Junius et 

al, 1996); c-Fos does not form homodimeric complexes that mediate transcription 

(O’Shea et al, 1989). Interestingly, overexpression of both c-Jun (Bossy-Wetzel et al, 

1997) and c-Fos (Lu et al, 2005), have been shown to induce apoptosis or have negative 

effects on cell proliferation.' The development of metastases is a key factor in tumour 

development that generally leads to a poor clinical prognosis (Ramaswamy et al, 2003). 

A hallmark of metastasis is the transformation of tumour cells from an epithelial to
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mesenchymal morphology, often referred to as the epithelial-mesenchymal transition 

(EMT). Whilst c-Jun and c-Fos are both known to induce EMT in mammary epithelial 

cells, i.e. those responsible for breast carcinoma (Reichmann et al, 1992; Fialka et al, 

1996). Only c-Fos, (not c-Jun) has been shown to induce EMT in cells in collagen gels. 

This indicates that c-Fos may have a more important role than c-Jun in the later stages 

of tumour development (Reichmann et al, 1992).

Furthermore, experiments were recently conducted to design a Fos peptide with 

a higher affinity for c-Jun than wild-type c-Fos as a potential therapeutic (Mason et al, 

2006). A semi-rational design approach was used to generate a library of peptides from 

which a “winning” peptide was selected. Using CD spectroscopy, the authors showed 

that the peptide, FosW, had a significantly higher affinity for the model c-Jun peptide 

than wild-type c-Fos with Tm values of 63 and 16 °C, respectively (Mason et al, 2006). 

The authors of this work noted that there was greater scope for generating an improved 

Fos peptide (FosW) than there was for a Jun derived peptide (JunW). This is discussed 

in more detail in Chapter 3.

1,5,3 Ebola Virus VP35 Protein

Introduction and Pathophysiology ofEbVP35

The Ebola virus, o f which there are four sub-types is a member of the filoviridae 

family. Three o f the four sub-types: Zaire, Sudan and Cote d’Ivoire have been 

identified as aetiological agents responsible for causing severe haemorrhagic fever (HF) 

in humans (Bowen et al, 1977). The initial symptoms are akin to those associated with 

any other type of fever: weakness, headache, sore throat etc. However, this is followed 

by diarrhoea, vomiting, impaired organ (kidney and liver) function, internal and 

external bleeding. The latter is due to the opening of endothelial tight junctions as a 

result of excessive cytokine release induced by infected macrophages (Hensley et al, 

2002; Stroher et al, 2001; Villinger et al, 1999). Statistics from the WHO indicate that 

fatality ensues in 50-90 % of cases (Figure 1.10a). Of the four sub-types known, Zaire 

has been associated with the most outbreaks and the highest percentage of fatalities 

(Figure 1.10b). There are at present, no anti-viral treatments or vaccines available.

The exceptional virulence of Ebola is largely mediated by the ability of the virus 

to down-regulate the immune response of the host. During the course of infection a 

number of virus-encoded proteins are released, one of these is EbVP35. EbVP35 has a 

number of functions essential to the pathophysiology of Ebola HF. Initially, research
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Figure 1.10 Ebola outbreaks since 1976 and fatality rates for each sub-type.
Panel (a) shows the number of deaths (black) as a fraction of cases reported each 
year since records began in 1976. Arrows indicate infections resulting from the 
Zaire subtype. *Some outbreaks spread into two separate years, in which case the 
year the outbreak started is indicated. Panel (b) shows a comparison of case 
fatalities (%) recorded for each of the four known sub-types. Source: WHO, 2008.
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demonstrated that VP35 functions as a type IIFN antagonist (Basler et al, 2000). More 

recently however, VP35 has been shown instead to inhibit the intracellular activation of 

interferon regulatory factor 3 (IRF-3) (Basler et al, 2000). IRF-3 is essential for the up- 

regulation of IFN a/p  synthesis in response to viral infection. Thus with the most 

powerful component of the innate immune response compromised the virus is able to 

replicate rapidly before the adaptive immune response can counter the infection.

Molecular Structure o f Ebola VP35

The Zaire strain o f EbVP35 has been sequenced, though not crystallised. 

Crystallisation is the focus o f a current Ph.D. project supervised by Professor E. 

Sapphire at the Scripps Research Institute, California. EbVP35 is a 340-residue, 37,362 

g mol' 1 protein. The coiled-coil domain is predicted (COILS) to be between amino 

acids 82-118 (inclusive) (discussed in Chapter 3). Recently the coiled-coil domain has 

been shown to be essential for EbVP35 to form homo-trimers and possibly higher order 

oligomers (Reid et al, 2005). In the same paper it was demonstrated that the trimeric 

form is two degrees of magnitude more potent at down-regulating IFN a/p  synthesis. 

Furthermore, it has also been speculated as to whether the coiled-coil may be 

biologically active with regard to mediating viral RNA synthesis.

The aim is to inhibit or reduce the activity of EbVP35, thereby enabling the host 

immune system to mount a more effective innate response to viral infection. This is to 

be achieved by the design and synthesis of a coiled-coil motif with high affinity for the 

VP35 coiled-coil domain. The proposed action of this synthetic coiled-coil is two-fold: 

(i) inhibition of IFN down-regulation by blocking EbVP35 oligomerisation and (ii) 

inhibition of viral RNA synthesis by dimerisation with the EbVP35 coiled-coil. 

Polymer conjugation may stabilise the binding and additionally, shroud the biologically 

active C-terminus of the pathogenic protein. If the conjugated polymer abrogates the 

activity of the peptide then the design will be altered such that the coiled-coil motif is 

released at the site of action.

1,5,4 Ebola Virus GP2 Protein

Pathophysiology o f Ebola GP2 (EbGP2)

An introduction to the Ebola virus and Ebola HF was given in section 1.5.3 

above. EbGP2 is thought to be key to fusion of the virus with the host cell membrane 

and subsequent cytosolic entry (Chan et al, 2000; Watanabe et al, 2000). The key
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advantage of this target is its extracellular location. This makes it a much easier target 

to access with a polymer-coiled-coil motif therapeutic compared with the intracellular 

targets discussed in sections 1.5.1-1.5.3.

Molecular Structure o f  Ebola GP2

GP2 is a component of the Ebola virus GP which protudes as a trimeric spike 

from the virion surface and is essential for receptor binding, membrane fusion and 

subsequently cell entry (Takada et al, 1997; Wool-Lewis & Bates, 1998). The protein 

exists in at least three conformational states, one of which, the “trimer-of-hairpins” is 

thought to form at lowered pH (e.g. in the endosome) and results in driving apposition 

and fusion of the cell and viral surface membranes (Yang et al, 2000; Wahl-Jensen et al, 

2005). The trimer-of-hairpins structure is a trimeric coiled-coil, formed from the homo- 

trimerisation of three GP2 proteins with a further three a-helical domains stabilising the 

structure. This is a very large macromolecular structure as each GP2 subunit is a 676- 

residue, 74,464 g mol' 1 protein (www.expasy.org).

In light of the successful development of fusion-inhibitor peptides against HIV-1 

(Chan et al, 1998), Watanabe et al, (2000) proposed the use of peptides to disrupt the 

formation of the GP2 trimeric coiled-coil complex as a possible therapeutic strategy. 

Two peptides, GP555 and GP610, corresponding to GP2 amino acid residues 555 to 

589 and 610 to 633, respectively were synthesised by Watanabe et al, (2000). The first 

peptide, GP555, was found to be insoluble in all but organic solvents, and precipitated 

in aqueous tissue media, as such no further experiments could be conducted (Watanabe 

et al, 2000). The second peptide, GP610 however showed promise by reducing the 

infectivity of an Ebola GP virus mutant in a dose-dependent manner (Watanabe et al, 

2000). It is proposed that PEGylation of the GP555 peptide will resolve the solubility 

issue and make testing of the peptide as a potential therapeutic agent possible, 

furthermore PEGylation of the peptide GP610 may make it more effective as the PEG- 

chain may also interfere with the viral fusion mechanism.

1.6 The Future, from Laboratory to Clinic

Over the last decade the number of macromolecular drugs and biotechnology 

products licensed by the US FDA has been steadily increasing. Recently they 

succeeded small drug molecules in terms of the number of new licences granted per
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annum. Furthermore, at the start of this Ph.D. thesis numerous market research reports 

estimated the worldwide protein therapeutics market to gross over $ 60 billion (2005).

Nonetheless, it remains important that the cost-effectiveness of new treatments 

is considered. Put simply, the larger the market the more likely a commercial return can 

be made on the product and therefore make the investment in the technology more 

appealing. Novel therapeutics for cancer or infectious diseases such as HIV are more 

likely to be profitable, particularly where they present a risk to the health of populations 

in developed nations. Therapeutic agents against diseases such as Ebola and other 

filoviral infections do not have the same potential market size, however they are 

attractive for development as no effective treatments currently exist, and in the recent 

political climate there is fear that such organisms could be used for bio-terrorism (Bray, 

2003).

Only recently has the pharmaceutical industry started to make steps towards 

developing in house “biotech” products as opposed to concentrating research funding on 

small molecules and formulation science. It may be reasoned that until recently the 

latter have been more costly to research and develop with a greater profitability 

associated risk. However this approach is short sighted and will enable smaller 

biotechnology companies with more innovative research programs to steal market share. 

Pfizer, the largest pharmaceutical company in the world has only recently finished 

implementing a $4 billion restructuring program that aims to give greater focus to 

oncology and to incorporate more biotechnology products into its research pipeline.

Almost all polypeptide drugs, until recently, were administered via parenteral 

routes. The formulation of insulin as a dry powder for inhalation and its approval by 

the US FDA in 2005 marked a significant milestone. However, its withdrawal only a 

few months later demonstrated the volatility and high risks still associated with the use 

of cutting-edge drug-delivery technology. Perhaps, in the near future, it will be possible 

to administer polymer-polypeptide drugs via this route, thus increasing their 

attractiveness further.

1.7 Thesis Aims and Objectives

The global aim of this research was to determine whether it is possible to 

synthesise bio-responsive polymer therapeutics containing coiled-coil motifs with 

clinical potential. In order to test the hypothesis outlined on page 1, mPEG-coiled-coil
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motif therapeutics will be designed with the potential to interact with one of four protein 

targets, either E2F1 or c-Jun in cancer pathogenesis, or the viral proteins VP35 or GP2 

which are thought to be key to the underlying pathogenesis of Ebola HF. These targets 

were identified from an extensive literature review (Table 1.1) as having 

pathophysiologies mediated by coiled-coil interactions.

Design and Synthesis o f  the Coiled-Coil Motifs

First, it was necessary to design, synthesise, purify and characterise peptides for 

each of the four targets described (Chapter 3). This work was conducted during two 

visits to EPFL in Switzerland, firstly from February to April 2006 and later followed by 

a one-month visit in November/December. Since the ultimate goal was to design a 

novel polymer therapeutic that could be transferred from the laboratory to the clinic 

certain requirements must be satisfied. Foremost is perhaps the ability to scale-up 

manufacture. Thus once work has progressed from proof of principle, all syntheses will 

be planned whilst considering the feasibility of large-scale manufacture. 

Characterisation must be to stringent pharmaceutical standards. This is more of a 

challenge with polymer therapeutics as they are large (circa 40-50,000 g mol'1), multi 

component systems, and as such the heterogeneity is higher than that of small (100-600 

g mol*1) drug molecules. Synthesis with minimal heterogeneity is however, highly 

desirable since it would facilitate the interpretation of biological data and later the 

process of regulatory approval.

PEGylation o f  the Coiled-Coil Motifs

In addition to synthesis of the coiled-coil motifs, preliminary experiments were 

to be conducted to investigate the feasibility of conjugating low molecular weight PEG 

to the coiled-coil motifs, this work is described at the beginning of Chapter 4. Research 

pertaining to site-specific PEGylation, purification and subsequent characterisation was 

conducted at the Welsh School of Pharmacy, Cardiff and constitutes the bulk of data 

discussed in Chapter 4. In parallel to the synthetic work it was also necessary to 

develop a “tool-kit” of analytical techniques in particular, though not exclusively 

including, reverse-phase high-pressure liquid chromatography (RP-HPLC), electrospray 

ionisation time of flight mass spectrometry (ESI-TOF MS) and matrix-assisted laser 

desorption/ionisation (MALDI-) TOF MS. As such purity of the coiled-coil motif and 

subsequent mPEG-conjugates could be assessed following purification with the aim of
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obtaining samples of purity > 95 %. For the preparation of all conjugates, mPEG with a 

low polydispersity index (< 1 .1) as determined by size-exclusion chromatography 

(SEC) will be used.

Biophysical Characterisation

Once prepared and characterised, experiments were to be conducted using NMR 

and CD spectroscopy to determine whether, in a model physiological environment, the 

mPEG-coiled-coil motif conjugates could hybridise with their respective targets. 

Furthermore, to investigate what differences were observed between coiled-coil motif 

and mPEG-coiled-coil motif target hybridisation. It was envisaged that such studies 

may require the preparation of recombinant proteins should it not be possible to 

synthesise the target domains using standard peptide chemistry. This work is detailed in 

Chapter 5.

Biological Characterisation

Following proof of concept studies with model targets in vitro biological 

characterisation of the mPEG-coiled-coil conjugates was to be an essential component 

of this thesis. In order to aid interpretation of the proposed cytotoxicity experiments it 

would be necessary to conduct cellular uptake experiments using fluorescently labelled 

mPEG-coiled-coil motifs. It has been previously demonstrated that a synthetic, 41 

amino acid peptide, corresponding to the coiled-coil motif of the protein PHB may enter 

cells, in the absence of a carrier molecule (Joshi et al, 2003). Therefore it is of interest 

to see if a similar observation can be made in this study. In the case of c-Fos derived 

peptides, previous studies have documented the need to use transfection reagents such 

as the cationic lipid Tfx™-50 (Yao et al, 1998). Should biological activity of either 

conjugate be demonstrated, re-design of the conjugate could be investigated to develop 

a system that is active without the need for additional transfection reagents. 

Cytotoxicity experiments using the MCF-7 human breast carcinoma cell line were to be 

conducted using the MTT assay, and non-specific toxicity assessed with the red blood 

cell (RBC) lysis assay. This work is detailed in Chapter 6 . There are no papers 

describing the synthesis, or biological behaviour of a synthetic peptide corresponding to 

the coiled-coil sequence of the Ebola VP35 protein. If mPEG-coiled-coil motif 

conjugates can be synthesised and characterised to the required standards (detailed in
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Chapters 3 and 4) with potential activity against either VP35 or GP2 collaborative 

studies will be sought.
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CHAPTER 2: Materials and General Methods

2.1 MATERIALS AND EQUIPMENT

This section details the materials, and equipment used in this thesis. 

Experimental work was conducted in laboratories in three different countries (UK, 

Spain and Switzerland). For clarity, information pertaining to the materials has been 

listed in Table 2.1 and equipment in Table 2.2 with sub-headings identifying the 

laboratory in which the reagents were used. If not listed, standard laboratory grade 

reagents were used. Double distilled water (ddKbO) was obtained from either Elga 

Option 7 or MilliQ purification units. With the exception of N-methylpyrrolidone 

(NMP), which was distilled prior to use, all reagents were used as received. The 

competent E. coli strains DH5a, TOP 10 and BL21 (DE3) used in Cardiff were a kind 

gift from Dr Simon Richardson while BL21 (DE3) pLysS E. coli were obtained from 

Marc Kelly. Competent BL21-CodonPlus (DE3) E.coli for use at CIPF were obtained 

from Novagen, Barcelona, Spain.

2.2 GENERAL METHODS

This section details the general methods used in these studies. General 

analytical techniques are provided first (section 2 .2 .1), followed by chromatography 

(section 2.2.2), while protocols related to cell culture are provided later (section 2.2.3). 

Detailed descriptions regarding the application of each of these methods given here are 

provided in the relevant chapters. Furthermore, since many of the techniques used in 

this thesis required significant optimisation, the full methods are given in the respective 

chapters.

2.2.1 General Analytical Techniques

2.2. LI Determination of Concentration by UV Spectroscopy

Where possible, sample concentrations were determined by UV spectroscopy. 

This was of particular importance when determining the concentration of peptides and 

proteins due to their high propensity to bind H2O and salts. For bacterial cultures the 

UV absorbance/optical density (OD) at k m  was measured using UV grade plastic
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Table 2.1 Materials used in this study.

Compound Abbreviation Cat. No. Supplier

Materials used at Cardiff University , Cardiff UK.

2 -mercaptoethanol n/a M6250 Sigma-Aldrich, Gillingham, Dorset, UK

Dimethyl sulphoxide ACS spectrophotometric DMSO 154938 Sigma-Aldrich, Gillingham, Dorset, UK

grade

Foetal calf serum FCS 10106-169 Invitrogen, Inchinnan Business Park, Paisley, UK

HPLC grade trifluoroacetic acid TFA 91797 Fluka, via Sigma-Aldrich

MCF-7 human breast carcinoma cells MCF-7 n/a Tenovus Centre for Cancer Research, Cardiff, UK

Methylthiazolyldiphenyl-tetrazolium bromide MTT M5655 Sigma-Aldrich, Gillingham, Dorset, UK

mPEG-amine, Mn = 5,000 g mol' 1 mPEG-NH2 06679-1G Sigma-Aldrich, Gillingham, Dorset, UK

mPEG-maleimide, Mn = 5,522 g mol' 1 mPEG-Mal ME-050MA NOF Corporation, Tokyo, Japan

Oregon Green® 488-X, succinimidyl ester *6 - OGSE488-X 06185 Invitrogen, Inchinnan Business Park, Paisley, UK

isomer*

RPM I1640 Medium (lx) liquid RPMI 1640 21875-034 Invitrogen, Inchinnan Business Park, Paisley, UK

RPM I1640 Medium (lx) liquid without WRPMI1640 11835-063 Invitrogen, Inchinnan Business Park, Paisley, UK

Phenol Red

Sodium Fluoride NaF 71518 Fluka, via Sigma-Aldrich
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Table 2.1 Materials used in this study.

Compound Abbreviation Cat. No. Suppher

Tfx™-50 Reagent Tft™- 50 E1811 Promega, Science Park, Southampton, UK

Trypan Blue solution 0.4 % w/v - T8154 Sigma-Aldrich, Gillingham, Dorset, UK

Trypsin-0.53 mM ethylenediaminetetraacetic Trypsin-EDTA 25-300-062 Invitrogen, Inchinnan Business Park, Paisley, UK

acid (EDTA) 0.05 % w/v

Materials used at EPFL, Lausanne, Switzerland

1,8-diazabicyclo(5.4.0)undec-7 -ene DBU 33482 Sigma-Aldrich, Buchs SG, SWITZERLAND

2-(6-Chloro-1 H-benzotriazole-1 -yl)-1,1,3,3- HCTU RL-1031 Iris Biotech, Marktredwitz, GERMANY

tetramethylaminium hexafluorophosphate

9-fluorenylmethyloxycarbonyl-protected Fmoc-amino acids 04-12-1006 NovaBiochem, Laufelfmgen, SWITZERLAND

amino acids

Acetic anhydride n/a 45830 Sigma-Aldrich, Buchs SG, SWITZERLAND

Anhydrous 1-hydroxybenzotriazole HOBt RL-1034 Ms Biotech, Marktredwitz, GERMANY

Dichloromethane DCM 2630575 SDS, Servion, SWITZERLAND

Diethyl ether Et2 0 3230104 SDS, Servion, SWITZERLAND

N,N-diisopropylethylamine DIPEA 387649 Sigma-Aldrich, Buchs SG, SWITZERLAND

N-methylmorpholine NMM 67869 Sigma-Aldrich, Buchs SG, SWITZERLAND

N-methylpyrrolidone NMP n/a Schweizerhall Chemie AG, Basel, SWITZERLAND
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Table 2.1 Materials used in this study.

Compound Abbreviation Cat. No. Supplier

Piperidine n/a 80640 Sigma-Aldrich, Buchs SG, SWITZERLAND

Rink Amide AM resin (200-400 mesh) n/a 01-64-0038 NovaBiochem, Laufelfingen, SWITZERLAND

Trifluoroacetic acid (HPLC grade) TFA 302031 Sigma-Aldrich, Buchs SG, SWITZERLAND

Trifluoroacetic acid (non-HPLC grade) TFA 91700 Sigma-Aldrich, Buchs SG, SWITZERLAND

Triisopropylsilane TIPS 92095 Sigma-Aldrich, Buchs SG, SWITZERLAND

Materials used at CIPF, Valencia, Spain.

15N Labelled ammonium chloride I5NH4C1 NLM-467-10 Cambridge Isotope Labs, Andover, USA

Acetic acid (glacial) - A9967 Sigma-Aldrich, SPAIN

Ammonium chloride NH4C1 168320 Merck, Barcelona, SPAIN

Ammonium persulphate for electrophoresis > n/a A3678-100G Sigma-Aldrich, SPAIN

98 %

Ampicillin Amp A9518-25G Sigma-Aldrich, SPAIN

Bromophenol blue sodium salt n/a B6131-25G Sigma-Aldrich, SPAIN

Calcium chloride CaCl2.2H20 208291 Calbiochem, Barcelona, SPAIN

Chloramphenicol Cam C0378-5G Sigma-Aldrich, SPAIN

Complete EDTA-ffee protease inhibitor n/a 11873580001 Roche, Barcelona, SPAIN

tablets
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Table 2.1 Materials used in this study.

Compound Abbreviation Cat. No. Supplier

Coumassie Brilliant Blue R n/a B0149-25G Sigma-Aldrich, SPAIN

D(+)-Glucose Glucose 1.08337.100 Merck, Barcelona, SPAIN

DNase I n/a 1284932 Roche, Barcelona, SPAIN

Glycerol 87 % v/v n/a 1.04094.100 Merck, Barcelona, SPAIN

Glycine n/a 1.04201.500 Merck, Barcelona, SPAIN

Imidazole Imd 12399-500G Sigma-Aldrich, SPAIN

Isopropyl-beta-D-thiogalactopyranoside IPTG 15502-10G Sigma-Aldrich, SPAIN

Lysozyme from hen egg white Lysozyme 62971 Sigma-Aldrich, SPAIN

MES n/a M3671-50G Sigma-Aldrich, SPAIN

Methanol MeOH 1.06009.500 Merck, Barcelona, SPAIN

N,N,N',N'-T etramethylethylenediamine TEMED 1.07320.100 Merck, Barcelona, SPAIN

SDS-PAGE molecular weight standards n/a 161-0317 Bio-Rad, Barcelona, SPAIN

(broad range)

Sodium dodecyl sulphate SDS 1.13760.0100 Merck, Barcelona, SPAIN

Sodium fluoride NaF 71518 Sigma-Aldrich

TALON® metal affinity resin n/a 635504 BD Biosciences, Madrid, SPAIN

Thiamine hydrochloride n/a 5871 Merck, Barcelona, SPAIN
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Table 2.1 Materials used in this study.

Compound Abbreviation Cat. No. Supplier

Tobacco etch virus protease TEV protease n/a Dr A.K. Schott
Trace elements n/a n/a Prepared by Dr A.K. Schott, CIPF
Trizma base n/a T1503-1KG Sigma-Aldrich
Trizma HC1 n/a T3253-1KG Sigma-Aldrich

Tryptone n/a 1612.00 CONDA, Torrejon de Ardoz-Madrid, SPAIN

ULTRA PURE ProtoGel® 30 % w/v ProtoGel® (37.5:1) CSEC8901 Sumilab / Pronadisa, Valencia, SPAIN

acrylamide: 0.8 % w/v bis-acrylamide (37.5:1)

Vivaspin 2,000 molecular weight cut-off n/a VS02H91 Sartorius, Barcelona, SPAIN

(MWCO) centrifuge tubes

Vivaspin 6  10,000 MWCO centrifuge tubes n/a VS0602 Sartorius, Barcelona, SPAIN

Yeast extract n/a 1702.00 CONDA, Torrejon de Ardoz-Madrid, SPAIN



Table 2.2 Equipment used in this study.

Instrument/Equipment Model Suppliers)

Equipment used at Cardiff University, Cardiff, UK,

Analytical RP-HPLC Comprised of two PU-980 Intelligent HPLC pumps, a 717 plus Jasco Ltd, Dunmow, Essex, UK

autosampler, C18 reverse phase pBondapak column and Waters Ltd., Borehamwood, Hertfordshire,

* spectroflow 783 UV detector. Data were acquired using UK, Kratos Analytical, Manchester,

PowerChrom hardware and software (v.2.0.7). Lancashire, UK and AD 

Chalgrove, Oxfordshire, UK.

Instruments,

Cell culture cabinets Bioair and Bioquell Microflow class II laminar flow cabinets Siziano, Italy and Andover, UK, respectively

CD spectrometer AVIV model 215 spectrometer. Spectra were acquired using AVIV, Lakewood, New Jersey, USA.

Kaleidagraph software v3.09.

ESI-TOF MS LCT Premier XE QTOF used in conjunction with a 1525 pL 

binary HPLC pump and 2777C sample manager. Spectra were 

acquired and processed using Masslynx™ 4.0 Global Mass 

Informatics software.

Waters Ltd., Borehamwood, 

UK.

Hertfordshire,

Flow Cytometer Becton Dickinson FACSCalibur cytometer equipped with an 

argon laser (488 nm) and emission filter for 550 nm. Data 

acquisition and analysis were conducted using CELLQuest™ 

v3.3 software.

Franklin Lakes, USA



Table 2.2 Equipment used in this study.

Instrument/Equipment Model Suppliers)

Fluorescence Plate Reader FLUOstar OPTIMA fluorescence plate reader. BMG Labtechnologies GmbH, Offenburg, 

GERMANY.

Fluorescence Amnico-Bowman series 2 luminescence spectrophotometer. Spectronic Instruments, Leeds, UK

Spectrophotomoeter

Analytical SEC - Fast Protein Akta™ FPLC chromatography system comprising pumps, fixed Amersham Biosciences, Little Chalfont,

Liquid Chromatography L280nm UV detector, conductivity detector and fraction collector Buckinghamshire, UK.

(FPLC) (Frac-950). Data was acquired using Unicom v3.20 software 

and analysed using FPLC director® vl.10 software.

Analytical SEC Aqueous system equipped with a single JASCO HPLC pump 

and two TSK-gel columns in series (4000 PW followed by 

3000 PW) and a guard column (progel PWXL). A differential 

refractometer (Gilson 153) and a UV spectrometer (UV Severn 

Analytical SA6504) were connected in series. Data analysis 

was conducted using PL Caliber Instrument software v7.04.

Polymer Laboratories, Church Stretton, UK.



Table 2.2 Equipment used in this study.

Instrument/Equipment Model Suppliers)

Ion-exchange Akta™prime “one-box” chromatography system comprising Amersham Biosciences, Little Chalfont,

chromatography pumps, fixed tasonm UV detector, conductivity detector and 

fraction collector. The unit was connected to a pre-packed 

Superdex 75 HR 10/30 column. Data were acquired using 

PrimeView™ software.

Buckinghamshire, UK.

MALDI-TOF MS MALDI Micro MX™, Micromass MS technologies. Spectra Waters Ltd., Borehamwood, Hertfordshire,

were acquired and processed using Masslynx™ 4.0 Global UK.

Mass Informatics software.

UV plate reader Sunrise Touchscreen Tecan, Reading, Berkshire, UK.

UV spectrometer Cary 1G UV spectrometer, equipped with a Cary temperature 

controller. All spectra were acquired using Cary WinUV 

software v2 .0 .

Varian Ltd., Walton On Thames, Surrey, UK.

Equipment used at EPFL, Lausanne, Switzerland.

SPPS automated synthesiser PSW 1 1 0 0 Chemspeed Technologies AG, Augst, 

SWITZERLAND

Centrifuge Biofuge Primo R Heraeus, Hanau, GERMANY
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Table 2.2 Equipment used in this study.

Instrument/Equipment Model Suppliers)

RP-HPLC Comprised of a Waters 600 automated gradient pump 

controller module, Waters Prep Degasser, Waters 2487 dual X 

absorbance detector and a Waters Fraction Collector with an 

Atlantis® dQs OBD™ 5 pm, 30 x 150 mm column.

Waters Corporation, Massachusetts, USA

ESI-TOF MS SSQ 710C mass spectrometer equipped with an ESI source. 

Data were acquired and processed using ICIS software.

Finnigan MAT, California, USA

UV spectrometer Cary 1G UV spectrometer, equipped with a Cary temperature 

controller. All spectra were acquired using Cary WinUV 

software v2 .0 .

Varian AG, Steinhausen, SWITZERLAND

CD spectrometer J-715 CD spectrometer in conjunction with a Jasco PTC- 

348WI temperature-controlled cell

Jasco GmbH, GroB-Umstadt, GERMANY

Equipment used at CIPF, Valencia, Spain,

UV spectrometer Jasco-V-530 spectrometer Jasco Ltd., GroB-Umstadt, GERMANY

CD spectrometer Jasco-810 spectrometer with a Peltier temperature controller. Jasco Ltd., GroB-Umstadt, GERMANY

NMR spectrometer Bruker Avance Ultrashield Plus 600 MHz spectrometer 

equipped with a 5 mm single-axis gradient TCI cryoprobe. 

Data were acquired and processed using Topspin 1.3 software.

Bruker GmbH, Karlsruhe, GERMANY
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CHAPTER 2: Materials and General Methods

cuvettes, otherwise all measurements were performed in quartz cuvettes. Mass 

concentrations were calculated using equation [1 ] and pmolar concentrations calculated 

using equation [2]. Molar extinction coefficients used were as follows: tyrosine = 1480 

M*1 c m 1 (280 nm), trptophan = 5540 M' 1 cm*1 (280 nm) (Pace et al, 1995) and Oregon 

Green® succinimidyl ester 488-X (OGSE488-X) = 81,000 M*1 cm*1 (494 nm).

. , r_u XDFMWConcentration {mg mL ) - --------------  [1]
le

Concentration (fiM) « --------------------------------- [2]
le

Where X = absorbance at either 280 or 494 nm, DF = dilution factor, 1 = path 

length and e = molar extinction coefficient, MW = molecular weight.

2,2.1.2 Agarose Gel Electrophoresis

The gel-casting tray was prepared by first cleaning with ddH20  and then sealed 

at either end using autoclave tape. Two combs were inserted and the tray was tested for 

leaks by adding ddH20 . 0.5x tris-borate-EDTA (TBE) buffer (1 L) was prepared from a 

5x TBE stock solution (54 g Tris Base, 27.5 g boric acid, 40 mL of 0.25 M EDTA, up to 

1 L with ddH20). The agarose gel (2 %) was prepared by adding agarose (2 g) to 0.5x 

TBE buffer (100 mL) in a conical flask and heating the flask to 100 °C for 1 minute. 

The solution was left to cool until it reached approximately 60 °C, it was then poured 

into the gel-casting tray and left to set for 40-50 min. To enable visualisation of the 

DNA, an aliquot (16 pL) of ethidium bromide (EtBr) solution (10 mg mL*1) was added 

to 0.5x TBE buffer (800 mL); final EtBr concentration was 0.2 pg mL*1. Once the gel 

had set, the combs and autoclave tape were removed from the gel and EtBr containing 

buffer (c.a. 700 mL) was added to the electrophoresis tank; ensuring that the gel was 

completely covered with buffer solution.

Samples were prepared by adding an aliquot (2 pL) of loading buffer (ddH20  

containing 40 % w/v sucrose and 0.25 % w/v Bromophenol Blue) to each sample (10 

pL). DNA ladders were prepared in the same manner and an aliquot (5 pL) of each was
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loaded onto the gel. The gel was run at 80 V for 1 h 40 min then imaged using the UV 

dock (BioRad). Images were exported as .jpeg files.

2.2.1.3 SDS-PAGE

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

used extensively in the analysis of recombinant protein expression (Chapter 5). 12 % 

gels were used in all instances; these were prepared freshly for each experiment. With 

the exception of ammonium persulphate ( 1 0  % w/v), which was prepared fresh on each 

day of use, solutions A and B were prepared in advance and stored for up to 3 months. 

Solution A consisted of tris base (1.5 M) containing SDS (0.4 % w/v) in ddH20  

adjusted to pH 8 .8 , while solution B consisted of tris base (0.5 M) containing SDS (0.4 

% w/v) in ddH20  adjusted to pH 6 .8 . The set-up and basic operation of the BIO-RAD 

equipment was conducted as detailed in the manufacturers instructions. Once 

assembled the casting chambers were filled with ethanol to check for leaks. The 

quantities of reagents detailed below were sufficient to prepare two gels.

The separating gel was prepared by mixing, ProtoGel®(37.5:l) (3.2 mL), 

solution A (2 mL), ddH20  (2.8 mL), ammonium persulphate (40 pL) and TEMED ( 8  

pL) in the order given. The solution was inverted gently several times to ensure mixing 

of the solutions without introducing any air bubbles. This solution was immediately 

transferred to the casting chambers, filling up to a line that marked 1 - 2  mm below the 

resting point of the sample comb. A thin layer (c.a. 2 mL) of isopropanol was added 

above the separating gel to prevent oxidation since co-polymerisation of the acrylamide 

and bis-acrylamide is unable to proceed in an oxidative environment. The 

polymerisation was left to proceed for approximately 30 min, during which time the 

stacking gel was prepared.

For the stacking gel, ProtoGel®(37.5:l) (600 pL), solution B (800 pL), ddH20  

(1950 pL), ammonium persulphate (10 pL) and TEMED (10 pL) were combined in the 

order given and mixed carefully. The isopropanol was removed from the casting 

chambers and the stacking gel added. A sample comb was immediately added to each 

chamber, with care taken to ensure that no air bubbles were introduced. Polymerisation 

of the stacking gel was complete after a further 30-40 min. Once cast, combs were left 

in place until the gel was required. Best results were obtained using gels prepared 

freshly on each day of use. '
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Samples were prepared by adding an aliquot of 5x loading buffer, typically 50 

pL, to an aliquot of sample or protein marker solution (200 pL). The 5x loading buffer 

was prepared in advance and stored at -20 °C in aliquots of 0.5 mL. It was comprised 

of bromophenol blue (0.2 % w/v), tris HC1 1 M, pH 6 .8  (12 % v/v), glycerol (10 % 

w/v), SDS (2 % w/v), 2-mercaptoethanol (10 % v/v) in dcfflfeO. Once mixed with 

loading buffer, the sample tubes were sealed and heated for 5 min at 100 °C, then frozen 

for > 1 h at -20 °C, then thawed at room temperature.

Prior to adding the sample solutions to the gel, the assembly was placed into a 

tank filled with running buffer. This was prepared from a 5x stock solution, which 

consisted of Tris Base (1.5 % w/v), SDS (0.5 % w/v) glycine (5 % w/v) in ddH2 0 . 

Wells were filled with up to 50 pL of sample solution, while an aliquot (10 pL) of 

molecular weight marker solution was added generally to the first well. Once all the 

samples had been added, the unit was connected to a power supply and the gel run for 1 

h a t 200 V.

To image the gels, they were removed from the glass plates and placed in plastic 

trays containing a solution of Coumassie Brilliant Blue gel staining solution (150 mL), 

this comprised of Coumassie Brilliant Blue (0.25 % w/v), glacial acetic acid (10 % v/v), 

methanol (MeOH) (45 % v/v) and ddKfeO (45 % v/v). After 1 h of gentle agitation, this 

solution was removed and replaced with a strong de-stain solution (20 % v/v MeOH, 5 

% acetic acid in ddH2 0 ) and again, gently agitated. The de-stain solution was replaced 

several times until the background became clear and protein bands could be clearly 

visualised. All gels were scanned and images saved as .tiff files.

2.2.1.4 CD Spectroscopy

Measurements were performed at EPFL, CIPF and in Cardiff; the equipment 

specifications for each instrument were detailed in section 2.1. In all instances the 

instruments were previously calibrated with an aqueous solution of (+)-1 0 - 

camphorsulfonic acid. Samples were prepared in a phosphate buffer derived from the 

Sorenson method; Na2HP0 4 /NaH2P0 4  (10 mM, pH 7.4) containing NaF (100 mM) and 

spectra recorded between 30 min and 3 h after preparation. Concentrations were either 

determined gravimetrically or by using a UV spectrometer (section 2.2.1.1).

Spectra were acquired in one of two ways; fixed temperature, variable 

wavelength or fixed wavelength, variable temperature. Fixed temperature scans were 

performed in either 0.02 or 0.1 cm quartz cuvettes. CD signal was recorded from 260 to
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180 nm (dynode voltage permitting). Data acquisition was stopped when the dynode 

voltage exceeded 500 V. Spectra were acquired using a 1 nm bandwidth, 0.2 nm 

increments with a recording time of 2 s per point. Fixed wavelength scans were 

acquired at A.222 nm, with a 2 nm bandwidth, temperature increment of 0.5 °C and mean 

heating rate of approximately 20 °C h'1. Temperature was increased from 4 °C to 95 °C 

or until the measured ellipticity had reached a stable plateau. All data are shown with 

the buffer baseline subtracted. Ellipticity was reported as the mean residue ellipticity 

([0]) and calculated as:

[®H®1
1 0  1 C Molar «

[3]

Where [0]OT = ellipticity measured in millidegrees, n = the number of amide 

bonds in the main chain of the peptide, c = the total concentration of the sample in mol 

L'1 and / is the optical path length of the cell in centimeters.

2.2.2 General Chromatography Techniques

A range of chromatography methods were employed in this study to both purify 

and characterise coiled-coil motif peptides and polymer-coiled-coil motif conjugates. 

The basic principles of the three techniques; reverse-phase, size-exclusion and ion- 

exchange chromatography that were used in these studies are illustrated in Figure 2.1. 

RP-HPLC was used extensively for the purification and characterisation of peptides and 

as such its use is detailed in Chapter 3. The use of high-pressure size exclusion and ion- 

exchange chromatography is detailed in Chapter 4 as both approaches were investigated 

for the purification and characterisation of the mPEG-coiled-coil conjugates.

Low-pressure size-exclusion chromatography using Sephadex® G-15 and G-25 

media was used for the purification and analysis of OG-labelled conjugates described in 

Chapter 6. A summary of the preparation and use of these columns is given in the 

following sections.

2,2,2,1 Preparation o f  Sephadex® G-15 Chromatography Columns

Columns containing Sephadex® G-15 media were necessary for the purification 

and analysis of OG-labelled peptides, as the molecular weights of the peptides
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(a) R e v e rse -p h a se  (RP) c h ro m a to g ra p h y

Hydrophobic peptides adsorb more strongly 
with the C l8 solid phase.

Peptides that are more hydrophilic remain in 
the mobile phase or adsorb less strongly and 
therefore elute faster.

C l8 chains (solid phase)

(b) S iz e - e x c lu s io n  (SE) c h ro m a to g ra p h y
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(c) Io n -e x c h a n g e  (ca tion) c h ro m a to g ra p h y
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Small molecules (black) transit 
through the cross-linked 
polymer beads therefore elute 
more slowly.

Larger molecules (orange) take 
a direct route through the 
media; flowing around the bead 
matrix and so elute more 
rapidly than the small 
molecules which transit 
through the cross-linked 
polymer beads on their way.

©
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Positively charged molecules adsorb onto the negatively charged solid-phase, while 
negatively or uncharged molecules are washed off. Elution o f the target molecule is 
then effected by the addition o f salt e.g. NaCl.

F ig u re  2.1 T h e  basic  p r in c ip le s  o f  (a) RP, (b) S E  a n d  (c) Io n -e x c h a n g e  

c h ro m a to g ra p h y .  Arrows on left indicate direction o f flow through column media.
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synthesised in Chapter 3 were below the 5,000 g mol*1 cut-off of the commercially 

available PD-10 columns. Preparation of the columns in accordance with this method 

made it possible to use them in exactly the same manner as described for the 

commercially available PD-10 columns (section 2.2.2.2). The quantities of materials 

detailed here were sufficient to prepare two 8.3 mL settled bed-volume chromatography 

columns.

Dry Sephadex® G-15 gel ( 8  g) was weighed into a sterile plastic tube (50 mL). 

This quantity was calculated on the basis of 1 g of dry gel swelling to a bed volume of 

between 2.5 and 3.5 mL. Phosphate buffered saline (PBS), pH 7.4 (30 mL) was added 

and the tube gently inverted 2-3 times to hydrate the gel. The tube was then sealed and 

incubated for 1 h at 90 °C to allow the gel to swell. During heating, the tube was 

inverted 5-6 times to ensure even mixing of the beads in the buffer. Once swelled, the 

suspension was allowed to cool at room temperature for 1 0  min, following which the 

supernatant was carefully decanted. PBS, pH 7.4 ( 8  mL) was added to prepare a 75 % 

suspension of gel. Filters were inserted into the bottom of empty PD-10 column tubes 

and gel suspension (11.1 mL/tube) was added. Once settled, wetted top filters were 

pushed into place and the columns were ready for use.

2.2.2.2 Use of Sephadex G-15 and G-25 Media for the Purification and Analysis of 
OG-labelled conjugates

Sephadex® G-15 columns were used to purify and characterise OG-labelled 

peptides, while purification and analysis of mPEG-OG and mPEG-peptide-OG 

conjugates were conducted using the commercially available PD-10 desalting columns 

(pre-filled with Sephadex® G-25 media). It was first necessary to ascertain whether the 

G-15 columns performed in the same manner as the G-25 columns by analysing the 

elution profile of free (un-reacted OG).

Columns were first equilibrated with PBS, pH 7.4 (25 mL). OGSE488-X (5 mg) 

was dissolved in MeOH (1 mL) to prepare a stock solution (5 mg mL'1) from which an 

aliquot (20 pL) was diluted with PBS, pH 7.4 (1980 pL) to prepare a sample solution (2 

mL). Aliquots (1 mL) were then added to each column, the first 0.5 ml eluted to waste. 

Subsequently, aliquots (0.5 mL) of PBS, pH 7.4 were added to each column and the 

eluting fractions collected (40 fractions in total). A sample (100 pL) of each fraction 

was transferred to a black 96-well microtitre plate and the fluorescence emission 

measured using a fluorescence plate reader (FLUOstar OPTIMA) with excitation and
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emission filters set at K* = 485 nm and Km = 520 nm, respectively. These filters were 

chosen as they were closest available to the published K* (max) and Km (max) for OGSE 

(www.invitrogen.com). The elution profiles for OGSE488-X in Sephadex® G-15 and 

G-25 media are shown in Figure 2.2.

Purification of the conjugates prepared in Chapter 6  and analysis of the % free 

OG content was conducted using this method.

2.2.3 Cell Culture

Cell culture was performed in accordance with the United Kingdom Co­

ordinating Committee on Cancer Research (UKCCCR) guidelines (Masters et al, 1999). 

An aseptic environment was maintained within the incubator by spraying all equipment 

with ethanol 70 % v/v in ddH20  prior to use. Non-sterile equipment was sterilised 

either by (i) autoclaving (120 °C, 15 lbm'2, 15 min) e.g. ddH20 , PBS, glassware and 

some plastics, (ii) microfiltration (0 .2  pm filter) of solutions not suitable for autoclaving 

or by (iii) UV irradiation (30 min).

2.2.3.1 Defrosting o f  Cells

Cells were stored under liquid nitrogen in vials containing a suspension (1 mL) 

of cells. Vials were thawed in a water bath at 37 °C and the suspension was transferred 

by pipette into a universal containing RPMI 1640 80 % v/v in FCS (9 mL). The 

suspension was centrifuged at 1000 rpm, 20 °C for 5 min. The supernatant was 

removed by aspiration and the cells re-suspended in RPMI 1640 95 % v/v in FCS (5 

mL), (i.e. complete media). This suspension was then transferred to a 25 cm2 flask and 

incubated at 37 °C, 5 % C 0 2 for 24 h. After this time the media was aspirated and the 

cells washed three times with PBS (10 mL) to remove non-viable cells. Fresh media 

was added and the cells incubated at 37 °C, 5 % C 0 2 until 80 % confluency was 

reached and they could be passaged.

2.2.3.2 Cell Maintenance and Passaging

Cells were passaged at 80 % confluency (approximate determination by light 

microscopy). The media was removed by aspiration and the cells washed three times 

with PBS (10 mL). The cells were lifted by incubating with Trypsin-EDTA solution 

(1.5 mL) at 37 °C, 5 % C 0 2 for 3 min. Complete media (8.5 mL) was added, the
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Figure 2.2 Elution profiles for OG from Sephadex® G-15 and G-25 columns.
Panel (a) shows the elution of free OG in G-15 media and panel (b) shows the 
elution profile in G-25 media (pre-packed PD-10 column).
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suspension was transferred to a universal and centrifuged at 1000 rpm, 20 °C for 5 min. 

The supernatant was aspirated and the cells re-suspended in fresh complete media (5 

mL). New flasks were prepared by diluting an aliquot (1 mL) of this suspension with 

compete media. When MCF-7 cells were used for assays, media without phenol red 

(WRPMI 1640) was used (referred to as clear complete media) as the pH indicator has 

been shown to have mitogenic activity and as such may interfere with the oestrogen 

pathway (Devleeschouwer et al, 1992).

2,2,33 Counting and Seeding Cells

Cell cultures were washed with PBS and re-suspended as described (section 

2.2.3.2). To ensure a homogenous suspension of cells the suspension was passed 

through a 23 G needle under pressure. An aliquot (100 pL) of this suspension was 

diluted with Trypan Blue 0.2 % w/v in PBS (100 pL). A sample of this solution was 

placed on a haemocytometer and cells from ten 0 .1  mm3 squares (five from each 

chamber of the haemocytometer) were counted. Non-viable cells i.e. those stained 

blue/black with Trypan Blue were not counted. The concentration (cells mL'1) was 

determined using the following formula:

Concentration (cells mL'1)  = Arithmetic Mean x  2 x  e4 [4]

Where, 2 accounts for the trypan blue dilution and e4 accounts for the 

conversion of 0.1 mm3 to mL. Once determined, the suspension was diluted with clear 

complete media to obtain the concentration required for the appropriate seeding density 

used in the assay.

2.2.4 General Biological Assays

Detailed methods for the biological assays used are provided in Chapter 6 , 

however the general methods for two of the techniques used are given here.

2,2,4.1 Quantification of Cell Growth Using the MTT Assay

The MTT assay was used as a method to assess cell growth and viability. 

Reduction of the soluble MTT reagent in response to mitochondrial respiration 

generates the insoluble formazan salt (Figure 2.3). Cell viability may then be 

determined by measuring the UV absorbance at X550 nm (Mosmann, 1983).
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Figure 2.3 Scheme to show the mechanism by which soluble MTT is reduced 
to form the insoluble formazan salt.
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Cells were seeded in a 96 well plate at a density of 40,000 cells mL'1 and 

incubated for 24 h at 37 °C, 5 % CO2. An aliquot (20 pL) of a sterile, filtered solution 

of MTT in PBS (5mg mL'1) was added to each of six wells. The plate was then 

incubated for 5 h at 37 °C, 5 % CO2. Following this, the media and MTT solution were 

aspirated and an aliquot (100 pL) of DMSO was added to each of the six wells. After 

the plate had been incubated for 30 min at 37 °C, 5 % CO2 the UV absorbance was 

measured at X550 nm (Sunrise, Tecan). The DMSO solution was removed by aspiration 

and PBS (200 pL) was added to each well. The plate was returned to the incubator and 

the whole procedure repeated every 24 h. The UV absorbance was plotted against time 

to generate a “growth curve” for the MCF-7 cell line (Figure 2.4).

2.2.4.2 Determination of Cytotoxicity by the MTT Assay

Cells were seeded in a 96 well plate at a density of 40,000 cells mL'1 using clear 

complete media and incubated for 24 h at 37 °C, 5 % CO2. After 72 h, test compounds 

were prepared at a range of concentrations, typically 0, 0.001 0.01, 0.05, 0.1, 0.5 and 1 

mg mL'1, in clear complete media. Aliquots (100 pL) of each in replicates of 6 were 

added to the respective wells. Plates were then incubated for 67 h, following which an 

aliquot (20 pL) of a sterile, filtered solution of MTT in PBS (5mg mL'1) was added to 

each well. The plate was then incubated for a further 5 h at 37 °C, 5 % CO2. Following 

this, the media and MTT solution were aspirated and an aliquot (100 pL) of DMSO was 

added to each of the six wells. After the plate had been incubated for 30 min at 37 °C, 5 

% CO2 the UV absorbance was measured at 550 nm (Sunrise, Tecan). Cell growth as % 

was determined relative to the control cells i.e. those incubated with only clear complete 

media.

treated cells
CellViability (% )----- — -------------------x 100 [5]

A550 nm untreated cells

2.2.1.3 Use of Flow cytometry to Measure Cellular Uptake of Fluorescent Probes

Flow cytometry was used in Chapter 6 to study the uptake of OG labelled 

peptides and mPEG-peptide conjugates in MCF-7 cells. Cells were seeded into 6-well 

(1 mL) plates at a concentration of 5 x 105 cells mL'1 in clear complete media and 

incubated for 24 h at 37 °C, 5 % CO2. Cells were treated with samples using a fixed
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Figure 2.4 Growth curve for the MCF-7 cell line. Cells were seeded at a density 
of 4 x 104 cells mL'1. Data shown represents the arithmetic mean absorbance at 550 
nm (n=6) ± SD.
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concentration of OGSE488-X (1.5 pg mL*1), optimised in previous studies, and 

incubated at 37 °C. At the end of the incubation period, the plates were placed on ice 

and the cells washed with cold (4 °C) PBS, pH 7.4 (1 mL) three times. An aliquot (1 

mL) of PBS, pH 7.4 was then added to each well and the adherent cells were scraped 

from the plate surface and transferred to falcon tubes. The samples were centrifuged at 

4 °C for 5 min at 1000 g. Finally, the supernatant was removed and the cells were re­

suspended in cold (4 °C) PBS, pH 7.4 (200 pL) and analysed using a Becton Dickinson 

FACSCalibur cytometer equipped with an argon laser (488 nm) and emission filter for 

550 nm.

Data were acquired using 1024 channels with band pass filter FL-1 (530 nm ± 

15 nm) and collected with 10,000 cell counts in the gated region per sample and 

processed using CellQuest™ v3.3 software. The gated region was set to exclude cells 

that were very small or of a highly granular nature i.e. those that showed in the bottom 

left of the acquisition dot-plot (Figure 2.5a). To remove the cell autofluorescence from 

acquired data, control cells (cells that had been incubated with only clear complete 

media) were measured in each experiment.

There are several ways of expressing the fluorescence data acquired in a flow 

cytometry experiment. The majority of flow cytometers acquire fluorescence data on a 

logarithmic scale by default such that the entire population distribution of cells with a 

bright fluorescence signal (e.g. OG) is displayed without some of the points going off 

scale (Figure 2.5b). When acquired on a logarithmic scale the geometric mean (anti­

log of the arithmetic mean of log data) is the most appropriate measure of central 

tendency assuming an approximate Gaussian distribution. The alternative measure is 

the median, in the past this may have been used for frequently as it was much easier to 

compute than the geometric mean, however, this is no argument today. The only real 

advantage is that it is not influenced as much as the geometric mean by values that are 

far out of the “normal” range, this is probably only of benefit where the distribution of 

data is heavily skewed or counts pile at one end of the measurement scale. Three 

methods of interpreting the data were assessed. In the first, the fluorescence of the cell 

population was estimated using the geometric mean and the second using the median. 

In these studies little or no difference was seen when the data were processed using 

either the geometric mean or median.

The third method enabled analysis of only the cells that associated with the 

fluorescent probe. This was achieved by defining a region that covered 98 % of the
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F ig u re  2.5 F low  cy to m e try  do t-p lo t  a n d  a c q u is i t io n  h is to g ra m  show ing  th e  

typ ica l  d is t r ib u t io n  o f  a con tro l  cell p o p u la t io n .  Panel (a) shows a typical 
acquisition dot-plot for a control cell sample. Panel (b) shows the corresponding 
acquisition histogram, where region M 1 defines a region of the histogram that 
includes 98 % of the cells acquired, and M 2 designates cells with a higher 
fluorescence than M 1.
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control cell population, this was marked Ml (Figure 2.5b). The second region (M2) 

was designated to represent the measured fluorescence greater than M l. Thus as cell 

associated fluorescence increased so too would the number of events in the M2 region. 

Measuring only the % of cells in the M2 gate would be too insensitive to differentiate 

between the populations almost exclusively within the M2 gate. Therefore, the % of 

cells in the M2 gate was multiplied by the geometric mean to improve the statistical 

resolving power. All data expressed in this thesis make use of this approach with cell- 

associated fluorescence reported as defined by equation [6]:

^  a • . jt -i M2 Geometric Mean x M2 % Gated Cells r „Cell Associated Fluorescence = ----------------------------------------------------  [61
100

2.2.5 Statistics

All data were expressed as mean ± SD (Zaugg, 2003). Minimum statistical 

significance was set at p < 0.05. Where more than two groups of data, grouped by one 

factor were compared one-way analysis of variance (ANOVA) with a Bonferroni or 

Tukey post hoc test. The disadvantage of the Bonferroni test is that it is very 

conservative and it is therefore possible to miss very small, yet real differences. In the 

analysis of the data presented in Chapter 6 no difference in significance was observed 

using either post hoc test. Where more than two groups of data, grouped by two factors 

were compared a two-way ANOVA was conducted and selected pairs of data compared 

with the Bonferroni test. All statistical calculations were conducted using GraphPad 

Prism, version 4.0c for Macintosh, 2005.
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3.1 Introduction

Following identification of the protein targets (described in Chapter 1, section 

1.5), it was first necessary to select and/or design peptide sequences for synthesis. 

Therefore, the aims of this study wore, firstly, to use open-source coiled-coil prediction 

software to predict the probability of coiled-coil formation for each peptide sequence. 

Subsequently, it was necessary to synthesise peptides of acceptable purity (> 95 %) for 

use in biological and biophysical studies, and in parallel it was crucial to ensure that the 

peptides were engineered in such a way that they would be suitable for subsequent 

PEGylation. Finally, it was necessary to develop techniques for peptide purification 

and characterisation, namely preparative and analytical RP-HPLC, and ESI-TOF MS. 

A brief introduction to each of these areas is given in the following sections (3.1.1 to 

3.1.4).

3.1.1 Rational Design, Selection and Prediction o f Coiled-Coil Motifs

Intellectual, rational design and/or selection of coiled-coil motifs to target the 

proteins, E2F1 (Joshi et al, 2003), AP-1 (Mason et al, 2006), EbVP35 (Reid et al, 2005) 

and EbGP2 (Watanabe et al, 2000) was an essential first-step for this study. It was vital 

that coiled-coil motifs could be accurately predicted, as one of the defining features of 

this thesis was to be the evaluation of polymer-coiled-coil motifs (rather than just 

polymer-peptides) as potential therapeutic agents. A number of techniques are available 

that either predict, identify and/or characterise coiled-coil domains in proteins and 

peptides. These fall into two distinct categories, i.e. computational and biophysical 

analysis. A summary of the pros and cons of the computational programmes available 

for use for the prediction of coiled-coils is given in Table 3.1. The biophysical 

techniques used for characterisation are discussed in detail in Chapter 5.

The first coiled-coil prediction programme to be published was “COILS” in the 

early 1990s (Lupas et al, 1991), since then, a number of programs have been developed 

including “Paircoil” (Berger et al, 1995), “LeamCoil-VMF” (Berger & Singh, 1997) 

“MultiCoil” (Wolf et al, 1997) and “Paircoil2” (McDonnell et al, 2006), each using 

differing algorithms and/or protein databases. A caveat of their use however was that 

the output was predictive and therefore although a good starting point, reliability of the
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Table 3.1 A summary of the five computational programmes available to identify 

and predict coiled-coil motifs in proteins.

Programme Year o f 

Release

Pros Cons

COILS 1991 Allows scan for 14,21 or 28 Highest frequency of

residues. false positives.

Paircoil 1995 Fewer false positives than Only identifies

COILS. dimeric coiled-coils.

Superseded by

Paircoil2

LeamCoil-VMF 1997 Specifically for viral coiled- False negatives with

coil fusion proteins short sequences

MultiCoil 1997 Distinguishes between dimeric More false positives

and trimeric coiled-coils. than Paircoil/Paircoil2

Paircoil2 2006 Superior performance over all Limited to parallel

other prediction programs coiled-coils.
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data could not be assured. Furthermore previous studies had shown that each program 

gave different predictive outputs for the same protein/peptide sequences. This 

compounded the difficulty of making accurate and reliable judgments as to the 

existence of coiled-coils in the protein targets. Thus, for any given sequence a 

judgment was made following sequence analysis using as many of the programs as 

possible (four or five depending upon the protein type). LeamCoil-VMF was designed 

specifically to identify coiled-coil domains in viral membrane fusion proteins, therefore 

was only used here to assess the sequence of EbGP2. With this exception, the 

remaining programs (COILS, Paircoil, MultiCoil and Paircoil2) were used to give 

predictions for all the other proteins. The way that these programmes were used in 

these studies is described in the methods (section 3.2.1). It is pertinent to note that, AP- 

1 and EbGP2 were chosen as targets not simply because o f their roles in carcinogenesis 

and Ebola, respectively, but also because the structures of the proteins had been 

previously solved by X-Ray crystallography (Glover & Harrison, 1995; Weissenhom et 

al, 1998). This technique is considered by many to be the ‘gold-standard’ for 

determining protein structure. Therefore, as a positive control, predictive data was 

acquired for EbGP2.

Following identification of the protein targets and the peptide sequences that 

would likely form coiled-coil motifs (using the programs described above), it was 

necessary to consider the various methods by which the peptides might be synthesised.

3.1.2 Peptide Synthesis

The aim of this thesis was to investigate whether polymer-coiled-coil motif 

conjugates could be designed as novel therapeutics that might act as molecular switches. 

Therefore, it was necessary to synthesise the desired coiled-coil motifs for subsequent 

PEGylation (Chapter 4). However, it was never the intention to spend a lot of time 

optimising a methodology for peptide synthesis, though it was considered very 

important to generate peptides of high purity (> 95 %) and on a scale appropriate for 

subsequent experimentation (> 30 mg).

Peptides may be synthesised either biologically using recombinant E. coli 

systems (reviewed in GrSslund et al, 2008), or alternatively by a number of different 

chemical synthesis methods (reviewed in Chan & White, 2000). The most significant 

advantage offered by chemical synthesis and used in this study was the ability to make
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alterations to the primary structure using either natural or synthetic amino acids with 

relative ease. With a recombinant methodology it would be necessary to prepare a new 

expression plasmid and optimise the culturing conditions each time one desired a 

different peptide primary structure. Thereby making it a much slower, and more costly 

approach. In this chapter chemical peptide synthesis was used exclusively, however it 

may be noted here that a recombinant approach was used later (Chapter 5), for the 

preparation of a 15N labelled ([15N]) peptide. A brief history, and an introduction to 

SPPS as was used in this study is given below.

3.1.2.1 Solid Phase Peptide Synthesis (SPPS)

In 1963, R. B. Merrifield pioneered a new method of for peptide synthesis and 

described the approach now widely known as SPPS. The following year, synthesis of 

the ennea-peptide, bradykinin (an endogenous vasodilator) by SPPS (Merrifield, 1964) 

heralded a breakthrough that triggered a paradigm shift in the peptide synthesis 

community and enormous interest in this methodology.

In brief, SPPS is a synthetic approach whereby peptides are “grown” on a solid 

support, typically a polystyrene resin, by the sequential reaction of amino acids with 

chemically protected amines and side-chain moieties (reviewed in Chan & White, 

2000). Amino acids are then sequentially linked via reaction of the carboxylic acid (R- 

COOH) with the exposed amine (R-NH2) on the polystyrene support. Following the 

formation of an amide (peptide) bond, the amine-protecting group from the end of the 

“growing” peptide chain is removed and the next amino acid added. Once the sequence 

is complete, the peptide is cleaved from the resin and the side-chain protecting groups 

are removed. The general principle of SPPS is illustrated in Figure 3.1.

The Fundamental Components o f  SPPS

When planning a synthesis using a SPPS approach there is a plethora o f 

apparatus and reagents that one must consider, namely the:

■ Solid support (resin)

■ Amine protecting chemistry (Boc/Fmoc)

■ Amino acid side-chain protecting groups

■ Acid-activation chemistry and coupling conditions

■ Capping (N-Terminal Acetylation)
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■ Cleavage and side-chain deprotection

Solid Support (Resin)

There are two key factors that must be considered when choosing the solid 

support: (i) the functionalisation chemistry and (ii) solvent compatibility. The polymer 

matrix of the trialkoxybenzhydrylamine (Rink Amide AM) resin used throughout this 

work is composed of copoly(styrene-l % divinylbenzene) with the Rink Amide linker 

attached via norleucine to aminomethylpolystyrene (Figure 3.2) (Rink, 1987). This 

functionalisation had been previously shown to enable the synthesis of C-terminal 

amide modified coiled-coil motif peptides (Vandermeulen et al, 2003). Furthermore, 

the study demonstrated the compatibility of the resin with the solvents DCM and NMP. 

NMP, rather than dimethylformamide (DMF) was used in all syntheses described here 

due to its superior safety profile.

Amine Protecting Chemistry

In order to ensure that each amino acid being coupled reacts only with the amine 

of the resin support, or growing peptide chain, rather than uncoupled amino acids it is 

necessary to use amino acids with a protected amine moiety. There are two commonly 

used chemistries, t-butoxylcarbonyl (Boc) and Fmoc (Figure 3.3). The original, Boc 

protecting strategy (Merrifield, 1963; Merrifield 1964) required the use of the rather 

hazardous, liquid hydrogen fluoride for deprotection of the Boc moiety and as such has 

been largely superceded by Fmoc-SPPS. The Fmoc protecting strategy was first 

proposed by Carpino in the early 1970s (Carpino & Han, 1972) and utilises basic 

conditions to effect removal of the Fmoc moiety during the deprotection step. Although 

probably the most significant development in SPPS since its introduction, it wasn’t until 

the early 1990s when an independent comparison of the Boc and Fmoc methodologies 

(Fields et al, 1993) demonstrated the superiority of the Fmoc approach that Fmoc-SPPS 

was universally accepted as the preferred method.

Amino Acid Side-Chain Protecting Groups

Side-chain protecting groups are necessary to prevent undesirable side-reactions 

from occurring during the process of chain elongation in SPPS. Today, many types of 

protecting groups exist, each with their individual pros and cons. A summary of those 

available for the amino acids used in this study is given in Table 3.2. Previous work
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Figure 3.2 The chemical structure of Rink Amide AM Resin.
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Table 3.2 A summary of commonly used side-chain protecting groups. The

protecting groups highlighted (in bold) were used in this study.

Amino Acid Side Chain Protecting Group

Alanine N/A

Arginine 4-Methoxy-2,3,6-trimethylbenzenesulphonyl (Mtr) 

(2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl) (Pbf)

2,2,5,7,8-Pentamethylchroman-6-sulphonyl (Pmc)

Asparagine Trityl (Trt)

Aspartic Acid /-Butoxy (/BuO)

Cysteine Acetamidomethyl (Acm) 

/-Butyl (/Bu)

/-Butylthio (/Buthio) 

Trityl (Trt)

Glutamic Acid /-Butoxy (/BuO)

Glutamine Trityl (Trt)

Glycine N/A

Histidine /-Butoxymethyl (Bum) 

Trityl (Trt) 

/-butoxycarbonyl (Boc)

Isoleucine N/A

Leucine N/A

Lysine /-butoxycarbonyl (Boc)

1 -(4,4-Dimethyl-2,6-dioxocyclohexylidene3-methylbutyl (Ddiv)

Methionine N/A

Phenylalanine N/A

Proline N/A

Serine /-Butyl (/Bu)

Trityl (Trt)

Threonine /-Butyl,(/Bu)

Tryptophan /-butoxycarbonyl (Boc)

Tyrosine /-Butyl (/Bu)

Valine N/A
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had identified the optimal protecting chemistries for the synthetic protocol used here 

(Vandermeulen et al, 2003; Vandermeulen et al, 2004; Vandermeulen et al, 2005).

Acid-Activation Chemistry and Coupling Conditions

In order to effect efficient coupling (of amino acid) to the amine of the peptidyl- 

resin it is necessary to activate the carboxylic acid group. There are two main 

categories of activating chemistries in common use: carbodiimides and triazoles

(reviewed in Valeur & Bradley, 2009). Carbodiimides have been used longer than the 

latter and are highly reactive, however as a result of such high reactivity racemisation of 

the amino acid is common. Triazoles, for example HOBt, as used in this study have 

become more popular as the active ester they form is less reactive and therefore there is 

a lower risk of racemisation.

Capping (C-Terminal Amidation andN-Terminal Acetylation)

With a SPPS approach it is possible to synthesise peptides with a variety of C- 

and N-terminal functionalities. C-terminal amidation was effected as described earlier 

with the use of Rink Amide AM resin. N-terminal acetylation was performed using 

acetic anhydride. These modifications were carried out to improve both the biophysical 

and pharmacokinetic properties of the coiled-coil motif peptides. Since all of the 

peptide sequences described here have been identified from inner protein domains, 

charged C- and N-termini would not exist in the native systems. As described in 

Chapter 1, ionic charges play an important role in the stabilisation or destabilisation of 

coiled-coils. Amidation and acetylation remove the terminal charges that could have a 

detrimental effect upon coiled-coil formation and target hybridisation. Furthermore, 

these modifications have been reported to make peptides more resilient to degradation 

by endopeptidases and exopeptidases (Landon et al, 2004).

Cleavage and Side-Chain Deprotection

Cleavage and deprotection is perhaps the most critical step of peptide synthesis. 

Rather than one straightforward reaction, the incubation of the peptidyl-resin with a 

“cleavage cocktail” is a series of competing reactions. Without the appropriate 

selection of reagents and reaction conditions the peptide may be irreversibly damaged.
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There are numerous cleavage and deprotection protocols described in the 

literature that have been utilised for peptides synthesised with an Fmoc-SPPS strategy 

(Fields & Noble, 1990; Grant, 1992; Guy & Fields, 1997; Chan & White, 2000). The 

vast majority of these methods are TFA-based, however, they differ according to 

concentration, type of nucleophilic reagent (scavenger) and reaction time used. A 

‘standard’ cocktail was used for all reactions in this study (section 3.2.2.3). This was 

supplemented with ethanedithiol (EDT) to assist in the removal of the Trt protecting 

group when deprotecting peptides with N-terminal cysteine residues (Chan & White, 

2000).

Caveats and Limits o f SPPS

Despite widespread use SPPS is not without caveats and limitations. Of 

particular relevance to this study, is the difficulty in synthesising very long peptides (> 

50-residues) due to the effect of accumulated coupling errors on final product yields 

(discussed in Chan & White, 2000). Furthermore, as the peptide becomes longer the 

increased number of side-chain protecting groups can adversely affect the solubility 

thus making subsequent couplings more difficult (Tam & Lu, 1995). Peptides with long 

stretches of hydrophobic amino acids have the potential to aggregate even as early as 

the fifth residue (Bedford et al, 1992) and/or form beta-sheet structures that can further 

complicate the synthesis. The size of the resin ‘mesh’ chosen will govern the space 

available for the peptides to ‘grow’ during synthesis. If this is too small the resin will 

become congested, and a high % of truncation mutants will result.

3.1.3 Engineered Modifications to Wild-Type Peptide Sequences

The use of SPPS in this study afforded the opportunity to introduce new amino 

acids into the primary structures of the peptides synthesised. Three modifications were 

of particular importance to this study. Firstly, C-terminal amidation and N-terminal 

acetylation (discussed previously in section 3.1.2.1), second, the insertion of a UV 

chromophore to facilitate analysis, and finally addition of an N-terminal cysteine 

residue to enable site-specific conjugation. All peptides synthesised in this study were 

prepared with amidated C-termini and acetylated N-termini. Following initial studies 

with the synthesis of a PHB derived peptide all other peptides were modified so that 

they contained a UV sensitive chromophore (section 3.1.3.1). Since some of the
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peptides synthesised here were to be used to model the coiled-coil binding domains of 

the target proteins, these were prepared without N-terminal cysteine residues. The 

peptides that were synthesised as the ‘therapeutic’ coiled-coil motifs for subsequent 

PEGylation were prepared with N-terminal cysteine residues (section 3.1.3.2).

3,1.3.1 Insertion of Tyrosine as a UV-Chromophore into Peptide Sequences to Aid 
Characterisation

Accurate determination of peptide concentration was considered essential, 

particularly for CD spectroscopy experiments (Chapter 5). A number of techniques can 

be used, for example, amino acid analysis (AAA), UV spectrometry and colorimetric 

assays e.g. the bicinchoninic acid (BCA) assay. Gravimetric determination of peptide 

concentration is widely known to be unreliable. This is largely due to the hygroscopic 

properties of peptides, however, further error may be introduced due to salt molecule 

co-ordination with charged amino acid side chains. Previous work by collaborators 

(Klok et al, personal communication) demonstrated that colorimetric assays such as the 

BCA assay were not sufficiently accurate for CD measurements. AAA can be 

considered the ‘gold standard’ technique for the determination of peptide concentration 

however facilities were not available in either Cardiff or Lausanne.

Thus UV spectroscopy was investigated as a practical alternative. 

Determination of peptide concentration by UV requires a chromophore with an 

absorbance wavelength sufficiently red-shifted from that of the peptide bond (c.a. 210- 

220 nm). The naturally occurring aromatic amino acids, tryptophan (W), tyrosine (Y) 

and phenylalanine (F) have absorbance maxima at 280, 274 and 257 nm, respectively. 

If the chain-length of the peptide (and hence number of peptide bonds) is too great the e 

of phenylalanine is often too weak and insufficiently red-shifted to allow accurate 

concentration determinations to be made. Tyrosine has a smaller, less hydrophobic and 

less immunogenic side-chain than tryptophan, furthermore it’s use in synthetic peptides 

as a chromophore for UV spectroscopic measurements is well documented (Mach et al, 

1992; Pace et al, 1995). In all instances, other than where either tyrosine or tryptophan 

existed in the native sequence, tyrosine was engineered into the penultimate N-terminal 

position. Ideally one should choose a solvent exposed position for insertion of the 

tyrosine residue (Mason et al, 2006). Since the peptides were expected to form a- 

helices and not fold into a globular structure positioning near either the N- or C-termini 

was considered acceptable.
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It was advantageous to insert tyrosine as the penultimate N-terminal residue as a 

dual wavelength detector could be used to monitor the absorbance at 214 and 274 nm 

during HPLC purification and analysis. Truncated peptides i.e. those without tyrosine 

would only show an absorbance at 214 nm, not 274 nm. Furthermore, insertion of 

tyrosine into the peptide primary sequence would be useful in the characterisation of the 

mPEG-coiled-coil motif conjugates as it would enable analysis of free and PEG bound 

peptide using instruments with a fixed wavelength (280 nm) detector (Chapter 4).

3.1,3,2 N-terminal Cysteine Tagging of Peptides for Site-Specific Conjugation

The majority of studies to date, describing protein/peptide conjugates utilise 

non-specific chemistries to conjugate the protein/peptide to polymers and fluorescent 

probes of interest (Satchi et al, 2001). Since retention of the coiled-coil motif structure 

is essential for the preservation of biological activity, it was necessary to use a method 

of site-specifically attaching the polymer (mPEG) to the peptide in these studies. 

Furthermore, such an approach enables the synthesis of a well-defined therapeutic 

conjugate, rather than a heterogeneous mixture. Numerous methods of achieving site- 

specific conjugation have been documented; these are discussed at length in Chapter 4.

In brief, one approach uses the lower pKa of a non-acetylated N-terminal amine 

(8.9) compared with that of a lysine (K) side-chain (pKa = 10.5) (Selo et al, 1996) to 

facilitate site-specific N-terminal conjugation. However, there is still potential for non­

specific attachment to other amines with this method if the pH is not strictly controlled, 

moreover, reaction times are very long; Vandermeulen et al, (2003) found that the 

PEGylation of coiled-coil motifs using a similar approach required a reaction time of up 

to 5 days.

An alternative method requires tagging of the protein/peptide with the amino 

acid cysteine (C). The highly nucleophilic thiol (R-SH) of the cysteine side-chain will 

react specifically with the unsubstituted C=C double bond of a maleimide for example. 

At pH 7.0 or lower this reaction is approximately 1000 x as fast as the maleimide-amine 

reaction due to protonation of the later (Hermanson, 2008). Using this approach, site- 

specific conjugation with far fewer non-specific reactions is possible in a much shorter 

time. As such, to facilitate polymer-conjugation peptides were designed with a single 

cysteine residue at the N-terminus. In principle, it would have been possible to engineer 

the cysteine residue at the C-terminus, however racemisation is more likely, thus 

resulting in a product of lower purity (Sieber, 1987; Fujiwara et al, 1994).
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3.1.4 Post-Synthesis Purification and Characterisation of Peptides

As outlined in section 3.1.2, a high level of purity (> 95 %) was desired for all 

coiled-coil motif peptides synthesised here to facilitate the biophysical structural and 

binding assays planned with CD and NMR spectroscopy (Chapter 5). Techniques 

including RP-HPLC and ESI-TOF MS were developed to purify the crude peptides post 

Fmoc-SPPS, then characterise the ‘pure’ coiled-coil motif peptide with respect to purity 

and correct molecular weight.

3.1.4.1 Reverse-Phase High Pressure Liquid Chromatography

RP-HPLC has become the mainstay of peptide purification (reviewed in Mant 

et al, 2007). Most protocols use a linear gradient system (AB) where A = water and B = 

ACN, each containing TFA as an organic modifier. A preparative system operating 

under these conditions was used in Lausanne whilst an analytical system was set-up in 

Cardiff for use in these studies.

Synthetic peptides are usually generated as a TFA salt as a result of its use in 

HPLC purification. Prior to 1999, little consideration had been given to the potential 

toxicity of TFA, and as such toxicity may therefore have been wrongly attributed to the 

peptide studied. TFA toxicity at concentrations of 10'8 to 10'7 M has since been 

observed in at least three cell lines; osteoblasts, articular chondrocytes and neonatal 

mouse calvariae (Cornish et al, 1999). The authors suggest that all peptides containing 

basic residues are converted to a biocompatible salt form e.g. hydrochloride (HC1) prior 

to use in biological assays. The procedure outlined was used for all peptides containing 

basic amino acids (section 3.2.5).

3.1.4.2 Electrospray Ionisation Time-of-Flight Mass Spectroscopy

ESI-TOF MS and MALDI-TOF MS have both been widely used in the 

characterisation of peptides since their inception (reviewed in Zhou & Veenstra, 2008). 

ESI-TOF MS results in more complicated spectra due to fragmentation of molecules 

into so called ‘molecular ions’, however it is a rapid technique that tolerates well the 

solvent systems used in RP-HLPC. MALDI-TOF (discussed in detail in Chapter 4) 

often displays a non-fragmented mass, thus making the spectra easier to interpret. 

However the technique is laborious with regard to sample preparation, and instrument 

calibration. As such ESI-TOF was utilised predominantly to identify the correct peaks
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in the preparative and analytical RP-HPLC chromatograms. Facilities were used both in 

Lausanne and Cardiff.

3.1.5 Experimental Aims

In summary, the aims of this study were to:

■ Identify the regions of the proteins PHB, E2F1, c-Jun, c-Fos, EbGP2 and 

EbVP35 that are likely to form coiled-coil motifs and in parallel assess and 

compare the outputs of the five open source coiled-coil prediction programmes 

reviewed in section 3.1.1.

■ Use the information gained from the computational analysis to design peptide 

sequences that would likely form coiled-coil motifs.

■ Synthesise the coiled-coil motif peptides by Fmoc-SPPS on a sufficiently large 

scale (> 30 mg) to permit further studies, including PEGylation, and for use as 

controls in biophysical and biological assays.

■ Optimise a purification protocol using RP-HPLC for each of the coiled-coil 

motif peptides to obtain samples of high purity (> 95 %).

■ Characterise each coiled-coil motif peptide with respect to correct mass using 

ESI-TOF MS.

Synthesis and RP-HPLC purification of the coiled-coil motif peptides was 

conducted exclusively at EPFL, Lausanne. Final characterisation, using analytical RP- 

HPLC and ESI-TOF MS was conducted in Cardiff.

3.2 M ethods

The general method for determining peptide concentration using UV- 

spectroscopy was detailed in Chapter 2 (section 2.2.1.1); all other methods used in this 

study are described here.
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3.2.1 Prediction of Coiled-Coil Motifs Using COILS, Paircoil, LearnCoil- 

VMF, MultiCoil and Paircoil2

Amino acid sequences for the proteins PHB, E2F-1, c-Fos, c-Jun, EbVP35 and 

EbGP2 were obtained from the Expert Protein Analysis System (ExPASy) proteomics 

server of the Swiss Institute of Bioinformatics (www.expasy.org). The amino acid 

sequences (in one-letter code) were subsequently copied to the input boxes for each of 

the coiled-coil prediction programs. Each program was operated in accordance with the 

instructions provided on their respective websites; a brief description of the parameters 

selected for each of the programs is given in Table 3.3. In all instances data was 

exported and processed using GraphPad Prism v.4.0. Servers were accessed between 

October 2005 and September 2008.

3.2.2 Synthesis of Peptides by Fmoc-SPPS

All peptides were synthesised by SPPS on Rink Amide AM resin (200-400 

mesh, loading 0.71 mmol g"1) using an Fmoc protection strategy with an automated 

peptide synthesiser (Chemspeed PSW 1100). A MS Excel worksheet was used to 

facilitate the calculation of reagents for each synthesis, a summary of the calculations is 

provided in Tables 3.4 and 3.5 for a typical synthesis. Descriptions and sequences for 

each of the peptides synthesised are given in the results, since these were obtained with 

the aid of the computational analysis programmes described above.

3,2.2.1 Distillation o f  NMP

Peptide synthesis grade NMP was purified in advance by distillation of NMP 

over calcium hydride (C a ty . NMP (1.5 L) was added to a glass distillation vessel (3 

L) containing CaH2 (c.a. 50 g). The vessel was placed into an insulated electric heating 

shell, and a magnetic stirring bar was added to aid agitation. The heating shell was then 

placed over a magnetic stirrer. A reflux column with a glass condensing tube that led to 

a glass collection vessel (2 L) was attached to the top of the distillation vessel. A 

vacuum was applied to the whole system (10 mBar), the stirrer turned on (400 rpm) and 

the heating shell set to level 1 (100 °C ± 0.5 °C) for 2 h 15 min. Freshly distilled NMP 

was stored over 4 A molecular sieves prior to use.
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Table 3.3 A summary of the usage parameters and URLs for each of the coiled- 

coil prediction programmes accessed.

Program

Name

Usage Parameters URL

COILS Window width: All http://www.ch.embnet.org/soft

Matrix: MTIDK ware/COILSform.html

Input sequence Format: Plain text

Paircoil Probability cut-off: 0.5 (default) http://groups.csail.mit.edu/cb/p

aircoil/cgi-bin/paircoil.cgi

LeamCoil- Used exclusively for the EbGP2 http://groups.csail.mit.edu/cb/le

VMF sequence as it is specific to viral amcoil-vmf/cgi-bin/vmf. cgi

fusion proteins.

MultiCoil Default program options were used. http://groups.csail.mit.edu/cb/rn

ulticoil/cgi-bin/multicoil.cgi

Paircoil2 Minimum search window length: 28 http://groups.csail.mit.edu/cb/p

Probability cut-off: 0.5 aircoil2/paircoil2.html
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Table 3.4 Preparation of amino acid solutions for the parallel synthesis of c-Jun, 

FosWc and EbGP2609-63o. Molecular weights given are those of the side-chain 

protected amino acids, “frequency” denotes the summed number of each amino acid for 

the three peptides synthesised in this example.

Amino acid MW 

(g mol'1)

Frequency Mass to weigh 

(mg)

Vol. of NMP 

(mL)

Fmoc-Ala-OH 311.30 15 2984 19.17

Fmoc-Asn(T rt)-OH 596.68 5 1906 6.39

Fmoc-Asp(7BuO)-OH 411.45 3 789 3.83

Fmoc-Cys(Trt)-OH 585.68 2 748 2.56

Fmoc-Gln(Trt)-OH 610.68 11 4292 14.06

Fmoc-Glu(/BuO)-OH 425.48 14 3806 17.89

Fmoc-Gly-OH 297.31 3 570 3.83

Fmoc-Ile-OH 353.42 5 1129 6.39

Fmoc-Leu-OH 353.40 21 4742 26.84

Fmoc-Met-OH 371.50 1 237 1.28

Fmoc-Lys(Boc)-OH 468.53 7 2096 8.95

Fmoc-Phe-OH 387.40 3 743 3.83

Fmoc-Ser(tBu)-OH 383.40 4 980 5.11

Fmoc-Thr(But)-OH 397.48 7 1778 8.95

Fmoc-Tyr(But)-OH 459.54 3 881 3.83

Fmoc-Val-OH 339.39 2 434 2.56

Fmoc-Arg(Pbf)-OH 648.80 8 3317 10.22
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Table 3.5 Preparation of the reaction solutions for the parallel synthesis of c-Jun, 

FosWc and EbGP2609-63o«

Solution Concentration

(M)

Mol. Eq. Aliquot per AA

W

Volume to prepare 

(mL)

Coupling 0.5 3 639 150

Base 2 6 320 75

Deprotection n/a 2 1598 450

Capping 0.5 3 1598 10
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3.2.2.2 Preparation of Reactants and Automated Fmoc-SPPS Protocol

This method describes a typical synthesis of three peptides (c-Jun, FosWc and 

EbGP2609-63o). Fmoc-protected amino acids were weighed, dissolved in NMP (final 

concentration 0.5 M), and transferred to glass vials, then sealed with a teflon cap and 

placed in the peptide synthesiser (Table 3.4). Vessels containing the “deprotection 

solution” (450 mL) (piperidine 1 % v/v, DBU 2 % v/v and HOBt 10 % w/v in NMP), 

“base solution” (75 mL) (NMM 1.5 M, 6 mol. eq. in NMP), “coupling solution” (150 

mL) (HOBt 0.25 M, 1.5 mol. eq., HCTU 0.5 M, 3 mol. eq. in NMP) and “capping 

solution” (acetic anhydride 0.5 M, 3 mol. eq., HOBt 1.5% w/v and DIPEA 2.2 % v/v in 

NMP) were prepared (all in excess) and then placed in the designated wells in the 

peptide synthesiser (Table 3.5). Rink Amide AM resin (150 mg) was weighed into a 

glass reaction vessel and connected to the peptide synthesiser. This quantity of resin 

equated to a 0.1 mmol synthesis (resin loading = 0.71 mmol g'1). The instrument was 

primed and the programmed method started. The mixing of the resin with the various 

reagents was facilitated by agitation (c.a. 500 rpm).

The first step of the automated programme involved swelling of the resin by the 

addition of an aliquot (1800 pL) of DCM to each reaction vessel for 20 min. Once 

complete, two washes with NMP (1800 pL) were conducted (2 min each). The 

sequential addition of each amino acid was conducted in accordance with the coupling 

protocol shown in Table 3.6. Once the amino acid chain was complete, the termination 

protocol (Table 3.7) was applied to acetylate the N-termini of the resin bound peptides, 

then wash in preparation for the deprotection step.

3.2.2.3 Resin Cleavage and Removal of Amino Acid Side-Chain Protecting Groups

The reaction vessels containing the peptide-loaded resin were removed from the 

peptide synthesiser and transferred to a fume cupboard. Peptides without cysteine 

residues were treated with a cleavage solution (3 mL) of TFA:TIPS:ddH20 (95:2.5:2.5, 

v/v) for 3 hours to simultaneously cleave the peptide from the resin and remove all side- 

chain protecting groups. For peptides containing cysteine residues a cleavage solution 

(3 mL) containing EDT was used (TFA:TIPS:EDT:ddH20, 94:2:2:2, v/v). Agitation 

was provided to ensure mixing of the solution with the peptide-loaded resin. Once 

complete, the solution containing the cleaved peptides was transferred to a 

polypropylene centrifuge tube (50 mL) using a glass syringe fitted with a glass-fritted
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Table 3.6 Amino acid coupling protocol for Fmoc-SPPS.

Programmed Step Reagent/solution Volume

(pL)

Time

(min)

Deprotection Fmoc-deprotection solution 1598 5

Deprotection Fmoc-deprotection solution 1598 5

Wash NMP 1800 2

Wash NMP 1800 2

Aliquot amino acid Amino acid solution 639 -

Aliquot coupling Coupling solution 639 -

Aliquot base Coupling solution 320 -

Wait coupling 30

Wash NMP 1800 2

Aliquot amino acid Amino acid solution 639 -

Aliquot coupling Coupling solution 639 -

Aliquot base Coupling solution 320 -

Wait coupling 25

Wash NMP 1800 2

Wash NMP 1800 2
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Table 3.7 Termination (N-terminal acetylation) protocol for Fmoc-SPPS.

Programmed Step Reagent/solution Volume

(pL)

Time

(min)

Deprotection Fmoc-deprotection solution 1598 5

Deprotection Fmoc-deprotection solution 1598 5

Deprotection Fmoc-deprotection solution 1598 5

Wash NMP 1800 2

Capping Capping solution 1598 15

Wash NMP 1800 2

Wash NMP 1850 2

Wash DCM 1900 4

Wash DCM 1950 4

Wash DCM 2000 4

Final wash DCM 2000 2
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filter to exclude the insoluble resin. Crude purification and extraction from the TFA 

solution was achieved by precipitating the cleaved peptides in cold Et20 (c.a. 40 mL) 

and centrifuging for 10 min at 4000 rpm. The supernatant was carefully removed and 

this process repeated a further two times. After the third precipitation, the peptides 

were suspended in ddHiO and lyophilised.

3.2.3 Purification and Analysis of Peptides by RP-HPLC

Post-lyophilisation peptides were purified by preparative RP-HPLC. Peptide 

solutions were prepared by dissolving the crude peptide lyophilisate in buffer A (ddH20 

containing 0.1 % v/v TFA). Final concentration was typically 5 mg mL'1 depending 

upon solubility of each peptide sample. A linear AB gradient (A = ddH20, B = 

acetonitrile (ACN), both containing 0.1 % v/v TFA) with a flow rate of 20 mL min'1 

over 25 min and UV absorbance detectors set to 214 and 274 nm was used for the 

purification of all crude peptide samples. To optimise the gradient for each peptide 

sample, aliquots (1 mL) of crude peptide in buffer A were injected and the 

chromatograms analysed using MassLynx v4.0 software. Typically, five runs were 

required to optimise the gradient conditions; the optimal gradients used for the 

purification of each peptide are given in the results and discussion (section 3.3.2). Once 

optimised, larger volumes (5-8 mL) of sample solution were injected and the eluate 

collected for mass spectral analysis by ESI-TOF MS (section 3.2.4). ACN was 

evaporated from the eluate under pressure (Buchi Rotavapor®) and the purified samples 

were lyophilised.

Peptide purity was determined by analytical RP-HPLC using the same protocol 

described above. Chromatograms were obtained using a gradient of 5-95 % ACN over 

25 min, with a flow rate of 1 mL min'1 and a sample volume of 50 pL (1 mg mL'1). 

Data were processed using PowerChrom software v2.0.7 and exported as .xls files.

3.2.4 Characterisation of Peptides by ESI-TOF MS

Characterisation of peptides was performed in two ways. Firstly, peak 

identification was carried out in Lausanne using an SSQ 710C mass spectrometer in 

parallel to preparative RP-HPLC experiments to ensure that the eluate corresponding to 

the full-length coiled-coil motif peptide was collected. A sample (0.5 mL) of eluate was 

collected from the RP-HPLC and an aliquot (50 pL) injected into the spectrometer. It
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should be noted that the solvent was the mobile phase in which the peak eluted from the 

RP-HPLC system (a mixture of ddH20 and ACN containing 0.1 % v/v TFA). All 

spectra were acquired in the positive ion mode in the range of 400 - 2000 m/z; the 

instrument was pre-calibrated with myoglobin. The electrospray conditions were as 

follows: capillary voltage, 4.5 kV, source temperature, 200 °C and ESI nebulisation and 

drying gases were nitrogen. All data were acquired and processed using ICIS software. 

Final characterisation was performed in Cardiff using a Waters Q-TOF Micro mass 

spectrometer. Samples were prepared at a concentration of 1 mg mL'1 of which an 

aliquot (20 pL) was injected into the spectrometer by means of an autosampler. All 

experiments were performed in positive ion mode under the same conditions specified 

above. All spectra were processed using MassLynx v4.0 software and exported as .xls 

files. Data are shown as m/z (mass/charge) versus relative abundance (%). z-values 

were confirmed by measuring the peak cluster ratios. Data are shown as either

deconvoluted or raw spectra, the latter was preferable, however earlier data was only

collected in the form of deconvoluted spectra.

3.2.5 TFA/HC1 Buffer Exchange

Peptides containing basic residues (histidine, lysine and arginine) were 

converted from the TFA salt to the HC1 salt. This method was adapted from that 

described by Cornish et al, (1999). Purified coiled-coil motif peptides (10 pmol) were 

dissolved in hydrochloric acid (3 mM, 50 pL) and mixed for 1 h at room temperature, 

after which they were lyophilised. Peptides were then either frozen at - 20 °C for long 

term storage or diluted to a concentration of 2 mg mL'1 and stored in aliquots (1 mL) at 

- 80 °C for up to 28 days.

3.3 R esults & D iscussion

This section is divided into two parts, the first (section 3.3.1) describes the 

identification of the coiled-coil domains in the target proteins using the coiled-coil 

prediction programmes summarised in Table 3.3. The second (3.3.2) discusses the 

design and/or selection of suitable peptide sequences alongside the synthesis, 

purification and characterisation of each of the coiled-coil motif peptides by Fmoc- 

SPPS.
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3.3.1 Prediction of Coiled-Coil Motifs in the Proteins E2F1, PHB, EbVP35 

and EbGP2 by computational analysis.

For the target protein E2F1, all four programmes predicted the existence of a 

coiled-coil motif in the same region, albeit with differing degrees of probability (Figure 

3.4). Assuming a 0.5 probability cut-off, all scanning windows using the COILS 

programme predicted a coiled-coil motif between residues 201 and 226, inclusive. The 

probability scores obtained with Paircoil, Multicoil and Paircoil2 are much lower 

however all agree on a similar region, ranging between residues 199 and 240. None of 

the programmes predicted the existence of a coiled-coil motif between residues 304 and 

357 i.e. the domain that Wang et al, (1999) identified as the binding site for PHB.

Similarly, for PHB all four programmes predicted the existence of a coiled-coil 

motif in the same region (Figure 3.5). Again, COILS gave the highest score of the four 

programmes with a coiled-coil motif predicted between residues 177 and 216 using 

either a 21 or 28-residue window. Use of the 14-residue window skewed the predictive 

output towards the lower numbered residues in the same frame, with the highest 

prediction between residues 184 and 197. It should be noted that Lupas et al, (1991) 

recommend that the 14-residue window should only be used in the analysis of known 

coiled-coil domains, not for speculative predictions. Paircoil predicted a coiled-coil 

motif with a high probability score (> 0.8) between residues 181 and 210, while the 

programmes Multicoil and Paircoil2 predicted a coiled-coil motif in a similar region 

albeit with lower probability scores (< 0.5).

As seen for the previous two proteins (E2F1 and PHB) COILS gave the highest 

probability score for the existence of a coiled-coil motif in Zaire EbVP35 (Figure 3.6). 

Predictions varied in probability score depending upon the size of window used. Use of 

14, 21 and 28-residue windows predicted a coiled-coil motif between residues 103-119, 

96-116, and 88-116, respectively. This was slightly different to the 82-118-residue 

region quoted by Reid et al, (2005). A similar pattern to the COILS prediction was seen 

in the predictive outputs of Paircoil, Multicoil and Paircoil2, with all programmes 

agreeing upon the same region as COILS but with low probability scores of 0.28, 0.11 

and 0.42, respectively.

The proteins c-Jun, c-Fos and EbGP2 have been shown in previous studies using 

X-Ray crystallography to contain coiled-coil motifs (Chapter 1, section 1.5). However, 

using the EbGP2 sequence as an example, a comparison of the predictive outputs for
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Figure 3.4 Coiled-coil prediction for the 437-residue target protein E2F1.

Panels a-d show a comparison of the predictive outputs for each of the four 

programmes (a) COILS, (b) Paircoil, (c) MultiCoil and (d) Paircoil2, respectively, 

using the human E2F1 sequence (Expasy primary accession no. Q01094).
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Figure 3.6 Coiled-coil prediction for the 340-residue protein EbVP35. Panels 
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each of the five programmes was conducted to illustrate the marked differences seen for 

each programme (Figure 3.7). Of the five programmes used to predict of coiled-coil 

motifs in Zaire EbGP2, two (Paircoil and Paircoil2) gave a zero probability score for the 

entire sequence. COILS predicted coiled-coil motifs in two regions using a 14-residue 

window, the first was between residues 291 and 304 and had a high probability score (>

0.8), the second, between residues 556 and 570 had a much lower score (0.1). Scanning 

the sequence using the larger windows (21 or 28) failed to predict any coiled-coil motif 

regions. The programme LeamCoil-VMF, developed specifically for viral fusion 

proteins predicted (probability > 0.97) that residues 555 to 596 would form a coiled-coil 

motif. A similar prediction was made by MultiCoil but with a much lower probability 

score (0.043).

In summary, consensus sequences were identified as “likely to contain” coiled- 

coil motifs using the predictions given by computational analysis in conjunction with 

published data, detailed descriptions are provided in the following section.

3.3.2 Design and Synthesis of Coiled-Coil M otif Peptides

For ease of reference, the sequences for all of the peptides designed and 

subsequently synthesised by Fmoc-SPPS in this study are summarised in Table 3.8.

3,3.2,1 Design and Synthesis ofPH B and E2F1 Derived Peptides

Design of peptides corresponding to the binding domain of the E2F1 protein and 

the putative coiled-coil domain of PHB utilised information gleaned from two studies 

by Wang et al, (1999 & 2002) and a later study by Joshi et al, (2003). In the first study, 

Wang et al, (1999) demonstrated that a region in the PHB protein between residues 185 

and 214 was essential for binding to E2F1 and mediating the tumour suppressor activity 

ofPHB. The second study identified a 54-residue region within the E2F1 protein with 

which PHB hybridised (Wang et al, 2002). This region was between residues 304 and 

357, interestingly the computational analyses shown in Figure 3.4 failed to predict a 

coiled-coil in this region: The study by Joshi et al, (2003) used a computational 

analysis (Paircoil) to assert that the PHB domain which hybridised with E2F1 formed a 

coiled-coil domain, however provided no further biophysical evidence with either CD 

or NMR spectroscopy. At this point it is important to note that neither protein has been 

crystallised in the regions of interest here. Two possibilities exist, first that PHB 

hybridises with E2F1 via the formation of a coiled-coil as depicted in Figure 3.8a.
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Figure 3.7 Coiled-coil prediction for the 676-residue protein EbGP2. Panels a- 
d show a comparison o f the predictive outputs for each o f the five programmes (a) 
COILS, (b) Paircoil, (c) LeamCoil-VMF (d) Multicoil and (e) Paircoil2, 
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Table 3.8 Summary of amino acid sequences for the peptides synthesised in this study.

Peptide Sequence Length Molecular Weight*

abode f  g a b c d e f  g a b c d e fg a b c d e fg a b c d e f (residues) (g mol'1)

E2F1 and PHB derived peptides

Phb 185-214 AKQVAQQE AERARFWEKAEQQKKAAIIS A 30 3367.83

Phbyi85-214 YAKQVAQQEAERARFWEKAEQQKKAAIISA 31 3531.01

PhbcY185-214 C YAKQVAQQEAERARFWEKAEQQKKAAIISA 32 3634.15

E2Flat YPGKTPSQEVTSEEENRA 18 2063.15

E2Flbf YLTTDPSQSLLSLEQEGG 18 1979.11

c-Jun and c-Fos derived peptides

c-Jun* ASIARLEEKVKTLKAQNYELASTANMLREQVAQLGA 36 3987.57

FosWc CASLDELQAEIEQLEERNYALRKEIEDLQKQLEKLGA 37 4358.87

 ̂Peptides that represent target domains for use in in-vitro binding assays.

# Theoretical molecular weight based upon the average isotopic abundance of naturally occurring elements. 

N.B. Apolar residues in positions “a” and “d” are shown in bold type font.
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Table 3.8 Summary of amino acid sequences for the peptides synthesised in this study.

oto

Peptide Sequence Length Molecular Weight*

abode  f  g ab cd e  f  gab cd e  f  gab cd e  f  gabcde  f  gab (residues) (g mol'1)

EbVP35 derived peptides

EbVP3582-ii9 ' SFEEWQTLASLATWQQQTIASESLEQRITSLENGLK 38 4189.66

EbVP35CY88-119 CYQTLASLATWQQQTIASESLEQRITSLENGLK 34 3697.18

EbGP2 derived peptides

ab cd e  f  g ab cd e  f  gabcde  f  gab cd e  f  g ab cd e  f

EbGP26o9-630 CIEPHDWTKNITDKIDQIIHDF 22 2723.04

EbGP2cY557-589 CYGLRQLANETTQALQLFLRATTELRTFSILNRKA 35 4082.72

EbGP2cy557-595 C YGLRQLANE TTQALQLFLRATTELRTF SILNRKAIDFLLQ 41 4812.59

EbGP2cY566-589 CYTQALQLFLRATTELRTFSILNRKA 26 3099.63

N.B. Apolar residues in positions “a” and “d” are shown in bold type font (*heptad positions are not assigned for peptide EbGP2609-63o as is an a- 

helix, not strictly a coiled-coil motif).
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(a)

• vv. .*
• •

'  \  • # •

Target Protein:
E2F1 transcription factor

Binding Protein:
PHB tumour suppressor protein

The two proteins are known to interact via residues 304-357 (Wang et al, 
2002) in the E2F1 protein and residues 185-214 (Wang et al, 1999) in the 
PHB protein. However whether the interaction is via the formation of a 
coiled-coil is not known.

(b) Design o f peptides to model the E2F1 binding domain 

Purported PHB binding domain (E2F1304.357)

GGIS PGKT P S QE VT S EEENRATD S AT 3

Figure 3.8 Design of E2F1 and PHB-derived peptides for synthesis by Fmoc- 
SPPS. Panel (a) shows an illustration o f possible E2F1:PHB hybridisation. Panel 
(b) shows the sequence o f the E2F1 binding domain and the peptides E2Fla and 
E2Flb chosen for synthesis. Underlined residues indicate tyrosine tags.

abedefgabedefg

E2FlbE2Fla

YPGKTPSQEVTSEEENRA

Proline (P) rich region unlikely to 
form a coiled-coil and difficult to 
synthesise by Fmoc-SPPS
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Second, that the two proteins hybridise via an alternative 3D structure and it is co­

incidental that the PHB has a predicted coiled-coil domain in the same region. Indeed, 

Joshi et al, (2003) have shown that the PHB coiled-coil domain may mediate homo- 

dimerisation, thus one could speculate that the coiled-coil domain is responsible for 

holding PHB in an inactive dimeric state that cannot bind to E2F1. Nonetheless in an 

effort to deepen the understanding of the E2F1 : PHB interaction peptides were 

designed for synthesis by Fmoc-SPPS. The design and synthesis of peptides in this 

section can be divided into two sub-sections, first synthesis of peptides corresponding to 

the coiled-coil domain of PHB (to be used as “therapeutic” coiled-coil motifs), and 

second, synthesis of “target” peptides to represent the binding domain in the target 

protein E2F1.

Synthesis o f “Therapeutic” Peptides Derived from the PHB Coiled-Coil Domain: 

Phb 185-214, Phbyi85-2i4 and PhbcYm-214

As the whole region purported necessary for hybridisation with E2F1 (Wang et 

al, 1999) was 30-residues in length it was possible to design the complete region for 

synthesis. The peptide, Phbi 85-214 was shorter than the 41-residue peptide described by 

Joshi et al, (2003), however, it was not seen necessary to include the extra residues and 

make the synthesis more challenging by virtue of it being a longer peptide. Moreover, 

upon closer inspection Joshi et al, (2003) do not actually give the exact peptide 

sequence that they used in the study, rather they note that a 41-residue peptide was 

derived from the 177-217 region.

A single batch (0.1 mmol) of the peptide Phbig5-2 i4 was synthesised. The crude 

peptide was visualised upon precipitation in cold diethyl ether, found to be soluble in 

ddH20 and lyophilised. When dry, the crude yield was 330 mg (92 %) and the peptide 

had the appearance of a white, “fluffy” powder that was easily soluble. As the only 

aromatic residue in the peptide Phbi85-2i4 was phenylalanine the second detector on the 

preparative RP-HPLC was set to 257 nm. Multiple peaks were observed in both 

chromatograms (Figure 3.9a), however subsequent analysis by ESI-TOF MS confirmed 

that peak 1 matched the theoretical molecular weight of full-length Phbi85-2 i4 peptide 

(data not shown). A gradient of 25-35 % ACN was found to be optimal for purification 

by RP-HPLC. Analysis using the same RP-HPLC set-up showed a single predominant 

peak (Figure 3.9b). Analysis of the purified peptide by ESI-TOF MS confirmed the
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Figure 3.9 Purification and characterisation of Phb185_214. Panels (a) and (b)
show RP-HPLC chromatograms of crude peptide and pure Phb185.214 (post-
purification), respectively. Panel (c) ESI-TOF MS spectrum of pure Phb185_214.
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theoretical molecular weight of 3367.83 g mol'1 expected for full-length Phbig5-2i4 

peptide (Figure 3.9c). Purity was >95%  and the final yield was 75 mg (21 %).

It was originally anticipated that it would be possible to use the UV- 

chromophore of the phenylalanine residue to determine the concentration of the peptide 

using UV spectroscopy (section 2.2.1.1). However, the weak intensity of the UV 

absorbance at 257 nm provided by the single phenylalanine residue relative to that of 

the 29-peptide bonds which absorb at 214 nm made it impossible to make an accurate 

determination of concentration (data not shown). Thus, a tyrosine residue was 

introduced at the N-terminus of the peptide sequence yielding Phbyi85-214- The crude 

peptide was freely soluble in ddH20 and when dry the yield determined to be 345 mg 

(92 %). Its physical appearance was indistinguishable from Phbig5-2i4. Only one well- 

resolved peak was observed in the overlaid RP-HPLC chromatograms (Figure 3.10a). 

However the irregular baseline (in particular at 214 nm) indicated the presence of 

numerous truncated peptides. ESI-TOF MS confirmed that the predominant peak 

represented full-length PhbYi 85-214 (data not shown). The optimal purification gradient 

was found to be 26-31 % ACN. The single peak observed in the analytical RP-HPLC 

chromatogram demonstrated that the peptide was > 95 % pure (Figure 3.10b). The 

later elution time compared with that seen for Phb 185-214 was likely due to the 

hydrophobic nature of the tyrosine residue. Deconvolution of the three peaks seen in 

the ESI-TOF mass spectrum confirmed that the purified sample was of the correct 

theoretical molecular weight (3531.01 g mol'1) (Figure 3.10c). The final yield was 82 

mg (22 %).

The third PHB derived peptide, PhbcYi85-2 i4 was designed with the addition of a 

cysteine residue at the N-terminus to facilitate thiol directed PEGylation (Chapter 4). A 

successful synthesis was conducted on the same scale as the previous PHB derived 

peptides and in physical appearance the peptide PhbcYi85-2i4 was indistinguishable. The 

crude yield was determined to be 375 mg (97 %). Upon analysis by RP-HPLC two 

peaks were identified with retention times of 12.72 and 13.02 min, respectively (Figure 

3.11a). These were present in both chromatograms (214 and 274 nm), however the 

chromatogram obtained from the 214 nm detector showed the presence of a many other 

contaminants, likely truncated peptides. ESI-TOF MS confirmed that peak 1 

represented full-length PhbcYi85-2i4 (data not shown). The optimal purification gradient 

was found to be 27-37 % ACN. Post-purification a single peak was observed in the 

analytical RP-HPLC chromatogram and demonstrated that the peptide was > 95 % pure
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Figure 3.10 Purification and characterisation of Phby185_214. Panels (a) and (b)
show RP-HPLC chromatograms of crude peptide and pure PhbYi85.2i4 (post­
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(Figure 3.11b). The rising baseline, although not seen before is fairly typical of a 

ddH20:ACN gradient, since ACN often has a higher UV absorbance than ddH20  at 214 

nm. Deconvolution of the four peaks seen in the ESI-TOF mass spectrum confirmed 

that the purified sample was of the correct theoretical molecular weight (3634.15 g mol' 

l) (Figure 3.11c). The final yield was 35 mg (9 %).

Synthesis o f “Target” Peptides Derived from the E2F1 Binding Domain: E2Fla and 

E2Flb

The peptide sequence for the E2F1 binding domain (E2F1304-357) is shown in 

Figure 3.8b. Whilst COILS failed to predict a coiled-coil domain in this region, the 

programme did assign possible heptad repeat sequences in two sub-regions with each 

comprising two heptads. These formed the basis of the peptides E2Fla and E2Flb 

selected for synthesis. Tyrosine residues were added to the N-termini of both sequences 

to facilitate analysis as described in section 3.1.3.1. Two glycine residues were added 

to the C-terminus of the E2Flb peptide sequence since proline easily cyclizes to form a 

diketopiperazine if it is first residue coupled to the solid phase resin (Chan & White, 

2000). Ideally it would have been possible to synthesise this entire region by Fmoc- 

SPPS, however at 54-residues it was considered too long; moreover the sequence 

contained a 7-residue region which contained five proline residues. Such a sequence 

would be very challenging to synthesise (Klok et al, personal communication). 

Furthermore it is well documented that proline residues can disrupt coiled-coil 

formation (Chang et al, 1999). Indeed, it was of concern that the occurrence of proline 

residues within the heptad repeat sequences might indicate that the COILS predictions 

were incorrect. However the only way to answer such speculations was to synthesise 

the peptides.

The first attempt at synthesising peptides E2Fla and E2Flb yielded peptides 

that did not correspond to their theoretical molecular weights when analysed by ESI- 

TOF MS (data not shown). A second attempt at the synthesis of each peptide failed due 

to an unknown error in the programming of the automated peptide synthesiser. A third 

attempt at the synthesis was successfully conducted on a smaller scale (0.05 mmol).

E2Fla was soluble in ddH20  with the aid of vigorous agitation, post- 

lyophilisation, the crude yield was 120 mg (82 %). Analysis of the crude peptide 

showed the presence of multiple peaks in both chromatograms (Figure 3.12a). The first 

peak in the second cluster was identified as full-length E2Fla using ESI-TOF MS (data
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Figure 3.12 Purification and characterisation of E2Fla. Panels (a) and (b) show
RP-HPLC chromatograms of crude peptide and pure E2Fla (post-purification),
respectively. Panel (c) ESI-TOF MS spectrum of pure E2Fla.
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not shown). An isocratic gradient of 18 % ACN was found to be optimal for 

purification. Purity was determined to be > 95 % as judged by the analytical RP-HPLC 

chromatogram (Figure 3.12b). Interestingly, a number of smaller peaks eluted between 

20 and 25 min that were not seen in the original RP-HPLC chromatograms. 

Deconvolution of the three main peaks seen in the ESI-TOF mass spectrum (annotated z 

= 2, 3 and 4) confirmed that the purified sample was of the correct theoretical molecular 

weight (2063.15 g mol'1) (Figure 3.12c). The final yield was 20 mg (14 %).

E2Flb was only soluble in dcfflfeO with the aid of vigorous agitation; post- 

lyophilisation the crude yield was 115 mg (82 %). When the sample was prepared in 

ddHiO containing 0.1 % TFA for injection into the RP-HPLC sediment was observed to 

form, indicating that some of the crude peptide was insoluble in the injection buffer. In 

this instance the crude peptide was of higher purity than seen for E2Fla as judged by 

the singular peak in the RP-HPLC chromatogram (Figure 3.13a). The raised baseline 

(between 8 and 13 min) seen in the chromatogram for the 214 nm detector suggested the 

presence of truncated peptides that lacked the N-terminal tyrosine residue of full-length 

E2Flb. The singular peak was identified as full-length E2Flb using ESI-TOF MS (data 

not shown). An 18-30 % ACN gradient was found to be optimal for purification. 

Purity was determined to be > 95 % as judged by the analytical RP-HPLC 

chromatogram (Figure 3.13b). Deconvolution of the single peak seen in the ESI-TOF 

mass spectrum confirmed that the purified sample was of the correct theoretical 

molecular weight (1979.11 g mol'1) (Figure 3.13c). The final yield was 11 mg (8 %).

33.2.2 Design/Selection and Synthesis o f c-Jun and c-Fos Derived Peptides

As discussed in Chapter 1 (section 1.5.2) a coiled-coil domain that drives the 

heterodimerisation of c-Jun and c-Fos proteins has been shown to exist using X-Ray 

crystallography (Glover & Harrison, 1995). The structure of the bZIP coiled-coil region 

is shown in Figure 3.14a. As such it was not necessary to perform a computational 

analysis of the sequence to predict possible coiled-coil domains. Mason et al, (2006) 

developed a synthetic mutant of c-Fos (FosW) that had a higher affinity for the bZIP 

coiled-coil domain of the c-Jun protein as a potential therapeutic agent. This sequence 

was used here (Table 3.8), but with further engineering to introduce an N-terminal 

cysteine residue (FosWc) for site-specific PEGylation and removal of the C-terminal 

proline to aid large-scale synthesis (Figure 3.14b). The c-Jun sequence was also 

modified to remove the C-terminal proline (Table 3.8). The tyrosine residues that had
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Figure 3.13 Purification and characterisation of E2Flb. Panels (a) and (b) show
RP-HPLC chromatograms of crude peptide and pure E2Flb (post-purification),
respectively. Panel (c) ESI-TOF MS spectrum of pure E2Flb.
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(a) AP-1 (c-Jun:c-Fos) transcription factor comp lex bound to DNA

(b) Structures o f FosWc and c-Jun peptides derived from the bZIP coiled-coil o f AP-
1. Modifications made to the structure o f FosWc by Mason et al, (2006) are shown 
in red, those made to c-Jun are shown in white.

F ig u re  3.14 S t ru c tu re s  o f c -Ju n :c -F o s  a n d  c -Ju n :F o W c coiled-coil com p lexes.

Panel (a) shows the crystal structure of the c-Jun and c-Fos heterodimer bound to 
DNA. Panel (b) shows the structures o f the modified FosWc and c-Jun peptides 
synthesised in this study. The protein structure file was obtained from the PDB, 
DOI:10.2210/pdblfos/pdb, editing and rendering was conducted using MacPyMOL.
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been engineered into both peptides by Mason et al, (2006) to allow quantitation by UV 

spectroscopy are identified in Figure 3.14b. As the structure clearly shows, both 

tyrosine residues were positioned in solvent exposed “b3” positions away from the 

hydrophobic seam where they might interfere with coiled-coil driven hybridisation.

A single batch (0.1 mmol) of the peptide c-Jun, to be used for target 

hybridisation studies, was successfully synthesised. Precipitation in cold ether showed 

the presence of ample crude peptide in the form of a white semi-solid suspension. 

Subsequent lyophilisation generated a dry white, “fluffy” crude peptide powder (435 

mg) that was easily soluble. This equated to a crude yield > 100 % suggesting that the 

powder was either not fully dry, or comprised some peptides that had not been 

completely deprotected. Upon analysis by RP-HPLC two peaks were identified with 

retention times of 14.02 and 14.32 min, respectively (Figure 3.15a). The 

chromatograms obtained at 214 and 274 nm were almost super-imposable between 

12.80 and 15.13 min indicating that the peptide(s) eluting in this range all contained the 

tyrosine chromophore. Unfortunately in this instance, since the tyrosine residue was 

positioned in position “b” of the third heptad (b3) and not at the N-terminus it was not 

possible to confirm with the RP-HPLC chromatogram that the peptides eluting within 

this range corresponded to full-length c-Jun. Analysis by ESI-TOF MS (data not 

shown) demonstrated that peak 1 corresponded to the theoretical molecular weight 

(3987.57 g mol'1) of full-length c-Jun. A gradient of 30-45 % ACN was found to be 

optimal for purification and once dried the yield of pure peptide was determined to be 

91 mg (21 %). Analysis of the purified peptide by RP-HPLC showed a single peak 

eluting at 13.53 min, suggesting a purity of > 95 % (Figure 3.15b). Analysis by ESI- 

TOF MS confirmed that the purified sample of c-Jun peptide was of the correct 

molecular weight (Figure 3.15c). The three peaks observed in the mass spectrum all 

corresponded to full-length c-Jun peptide.

Two successful syntheses of FosWc were conducted, each on the same scale as 

for c-Jun (0.1 mmol). Precipitation in cold ether yielded a white semi-solid suspension 

of crude peptide that was easily solubilised in ddH20 prior to lyophilising. The total 

crude yield of white, “fluffy” powder was determined to be 879 mg (95 %). As for c- 

Jun, two predominant peaks were observed in the preparative RP-HPLC chromatograms 

(Figure 3.16a). Analysis of the HPLC eluate by ESI-TOF MS (data not shown) 

confirmed that the first of these (peak 1) corresponded to full-length FosWc with a 

molecular weight of 4358.87 g m ol1. The optimum gradient for purification of full-
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Figure 3.15 Purification and characterisation of c-Jun. Panels (a) and (b) show
RP-HPLC chromatograms of crude peptide and pure c-Jun (post-purification),
respectively. Panel (c) ESI-TOF MS spectrum of pure c-Jun.
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Figure 3.16 Purification and characterisation of FosWc. Panels (a) and (b)
show RP-HPLC chromatograms of crude peptide and pure FosWc (post­
purification), respectively. Panel (c) ESI-TOF MS spectrum of pure FosWc.
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length FosWc using RP-HPLC was 38-55 % ACN. A single peak was observed in the 

analytical RP-HPLC chromatogram (Figure 3.16b). However the peak shape was not 

quite symmetrical at the base, suggesting the possibility of a very small degree of 

truncated peptide contamination. No disulphide bonded FosWc was visible in the 

chromatogram. Deconvolution of the four predominant peaks shown in the ESI-TOF 

mass spectrum confirmed that the purified sample of FosWc peptide was of correct 

mass (Figure 3.16c). However, in this instance the mass spectrum showed the presence 

of a number of other small peaks (< 20 % relative abundance), this indicated that there 

might have been compounds of differing molecular weight present in the sample. 

Nonetheless, the purified sample of FosWc was likely to be > 95 % as judged by the 

analytical RP-HPLC chromatogram. The final yield of purified FosWc peptide was 192 

mg; at 22 % the reaction efficiency was similar to that seen for c-Jun.

3.3.2.3 Design and Synthesis o f EbVP35 Derived Peptides

As discussed in Chapter 1 (section 1.5.3), the EbVP35 protein found in the Zaire 

strain of the Ebola virus has been sequenced, however at the time of writing, a crystal 

structure had not been published. Reid et al, (2005) were the first to suggest that the 

EbVP35 protein possessed a putative coiled-coil domain that was essential to the 

biological activity of the protein. This assertion by Reid et al, (2005) was based upon a 

computational analysis of the EbVP35 sequence using COILS. As shown in Figure 3.6 

(and discussed in section 3.3.1) three other computational analysis programmes agreed 

with this prediction, albeit with varying probability outputs. Reid et al, (2005) also 

demonstrated that the EbVP35 protein formed homo-oligomers, most likely homo- 

trimers, and then subsequently proved that the coiled-coil domain (Figure 3.17a) was 

essential for their formation. Furthermore, the trimeric form of the EbVP35 protein was 

found to be 100-fold more active than the monomeric form at downregulating IRF-3 

(Reid et al, 2005). In this study, two peptide variants (EbVP3582-ii9 and EbVP35cY88- 

1 1 9) corresponding to the coiled-coil domain were designed (Figure 3.17a). The first 

peptide EbVP3582-ii9 corresponded to the full coiled-coil domain described by Reid et 

al, (2005) with an additional lysine residue from the native EbVP35 sequence to 

improve solubility at the C-terminus.

The crude peptide obtained from the synthesis of EbVP3582-ii9 was seen to 

precipitate in cold ether as for all the previous peptides. However it did not appear to be 

soluble in ddH2<3 when diluted in preparation for lyophilisation. Furthermore, the
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(a) Design of EbVP35 derived coiled-coil motif peptides 

EbVP35 Protein

Predicted 
Coiled-Coil Domain

Coiled-coil sequence (EbVP3 5 82.119) 
suggested by Reid et al, (2005)

S F E E W Q T L A S L A T W Q Q Q T IA S E S L E Q R IT S L E N G IK

t
(SFEEV) sequence was removed and replaced 

with (CY) to generate EbVP3 5 ^ 8 .119

C-terminal (K) residue was 
included with the aim o f 

improving solubility

C Y Q T L A S L A T W Q Q Q T IA S E S L E Q R IT S L E N G L K

(a) Hydrophilicity plots for (i) EbVP3 582_119 and (ii) EbVP3 588_ll9. 
Green and red bars represent hydrophilic and hydrophobic 
res idues, resp ect ively.

(i) EbVP3582_119

(ii) EbVP3 5 88_119

F ig u re  3 .17 D esign  o f th e  EbVP35 d e riv e d  p ep tid es  EbVP3582.119 a n d  EbV P3588_

119. Panel (a) shows a schematic of the EbVP35 sequence and sequences of the 
putative coiled-coil motif peptides. Panel (b) shows hydrophilicity plots for each 
peptide calculated using the Innovagen peptide property calculator.
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sample (post-lyophilisation) had an entirely different appearance to the other peptides 

synthesised. It had dried into a hard, crystalline powder that could only be solubilised 

in 100 % TFA. Attempts at solubilising the peptide in a range of solvents including 

DCM, ddH20  (± 0.1 % TFA), ACN (± 0.1 % TFA), ACN (50 % in ddH20  ± 0.1 % 

TFA) MeOH, Ethanol (EtOH) and NMP were made to no avail. Further attempts at 

solubilisation were conducted by first preparing a solution of crude peptide in TFA 

followed by dilution with each of the above solvents also failed. As the peptides could 

not be solubilised in a solvent compatible with ESI-TOF MS, MALDI-TOF MS or RP- 

HPLC, the crude peptide could not be characterised. This was surprising since there 

was a fairly equal balance between hydrophilic and hydrophobic residues in the 

structure as seen by the hydrophilicity plot (Figure 3.17b).

The second peptide EbVP35cY88-ii9 was synthesised however the same problems 

were encountered. Whilst the hydrophobicity of this peptide was higher than the 

EbVP35g2-ii9 due to the addition of the cysteine and tyrosine residues at the N-terminus 

the hyrdophilicity plot estimated the ratio of hydrophilic amino acids to be 44 % of the 

total (Figure 3.17b). This was not thought to be too low to result in such poor 

solubility. It was postulated that either peptide might have been insufficiently 

deprotected and that the hydrophobic protecting groups were responsible for the poor 

solubility. Both peptides were incubated with the cleavage cocktail for a second time, 

then precipitated in ether and lyophilised. However no improvement in solubility was 

seen and so no further characterisation could be conducted.

3.3.2.4 Design and Synthesis o f EbGP2 Derived Peptides

Unlike EbVP35, a crystal structure had been determined for the Zaire strain of 

the Ebola GP2 protein (Weissenhom et al, 1998). The homo-trimerisation of GP2 is 

driven by the N-terminal a-helix in each protein that subsequently forms a central 

homo-trimeric coiled-coil (Figure 3.18a) (Weissenhom et al, 1998). While the C- 

terminal a-helix does not form a coiled-coil, it packs against the trimeric coiled-coil 

further stabilising the structure.

A C-terminal peptide (EbGP2609-63o) was designed first (Figure 3.18b) and was 

very similar to the peptide GP610 synthesised by Watanabe et al, (2000). However the 

extra three C-terminal residues included in the GP610 sequence that are not in the 

crystal structure were not included in the EbGP26o9-63o sequence synthesised here.
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(a) Structure of the EbGP2 Protein

EbGP2 Monomer EbGP2Trimer

C-terminal
a-helix

N-terminal 
a-helix

(b) Structure of EbGP2609.630

N-terminal 
cysteine

Tryptophan

%
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(c) Structures o f (i) EbGP2 CY557.589,
(ii) EbGP2CY557-595 and (iii) EbGP2CY566.5g9
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(iii)

I
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N-terminal cysteine residues are shown in 
yellow, tyrosine in white.

Figure 3.18 Design of EbGP2 derived peptides. Panel (a) shows the structure of 
the EbGP2 protein, as a monomer and the coiled-coil driven homotrimer. Panel (b) 
shows the structures of the four peptides synthesised in this study. Protein 
structure files were obtained from the PDB, DOI:10.2210/pdb2ebo/pdb, editing and 
rendering was conducted using M acPy M OL.
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Furthermore, to facilitate thiol-directed PEGylation a single cysteine residue was 

introduced at the N-terminus of the peptide.

Post-synthesis, precipitation in cold ether yielded a white semi-solid suspension 

of crude peptide that was easily solubilised in ddH20  prior to lyophilisation. When dry, 

the crude peptide had the appearance of a white, “fluffy” powder and the mass was 

determined to be 332 mg (114 %). This suggested that the peptide was very 

hygroscopic and had adsorbed ddH20  preventing its loss on drying. Analysis of the 

crude peptide using the preparative RP-HPLC set-up showed the presence of multiple 

peaks in the 214 nm chromatogram (Figure 3.19a). When the chromatogram obtained 

using the 280 nm detector was overlaid, it was clear that peak 1 was most likely to be 

full-length EbGP2609-630. Peaks 2, 3 and 4 did not show at 280 nm, this suggested that 

they lacked the tryptophan residue responsible for absorbing UV light at the higher 

wavelength. Analysis of the HPLC eluate by ESI-TOF MS (data not shown) confirmed 

that peak 1 corresponded to full-length EbGP2609-63o with a molecular weight of

2723.04 g mol'1. Purification was optimised and conducted using a 40-55 % ACN 

gradient. Analysis of the purified peptide showed a single peak in the analytical RP- 

HPLC chromatogram confirming purity > 95 % (Figure 3.19b). Deconvolution of the 

three peaks shown in the ESI-TOF mass spectrum confirmed that the purified sample of 

EbGP2609-63o peptide was of correct mass (Figure 3.19c). The final yield of purified 

EbGP2609-63o peptide was 128 mg; at 44 % the reaction efficiency was more than double 

that seen for the other peptides synthesised in this study.

Three N-terminal peptides were designed (Figure 3.18c). The first (EbGPcY557- 

589) used the same sequence as the GP555 peptide prepared by Watanabe et al, (2000) 

with two amendments to the N-terminal residues. The N-terminal isoleucine residue 

was replaced by cysteine and the penultimate cysteine residue was replaced by tyrosine. 

However, post-synthesis the crude peptide was found to be insoluble in ddH20  when 

the sample was prepared for lyophilisation, nonetheless the insoluble suspension was 

lyophilised. Once dry the crude peptide was found to be equally insoluble in all except 

TFA. It had the physical appearance of a hard, crystalline solid, very similar to the 

insoluble EbVP35 peptides described above (section 3.3.2.3). As EbGPcY557-589 could 

not be solubilised in a solvent compatible with ESI-TOF MS, MALDI-TOF MS or RP- 

HPLC, the crude peptide could not be characterised.
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Figure 3.19 Purification and characterisation of EbGP2609.630. Panels (a) and (b)
show RP-HPLC chromatograms of crude peptide and pure EbGP2609_630 (post­
purification), respectively. Panel (c) ESI-TOF MS spectrum of pure EbGP2609_630.
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The second peptide (EbGPcY557-59s) included an additional six residues at the C- 

terminus. Synthesis of a second N-terminal a-helical peptide (EbGP2cY557-595) was 

attempted, this derivative was slightly longer and comprised an additional 6-residues 

from the fifth heptad at the C-terminus of the peptide. However, the crude product 

again could not be solubilised and hence characterisation was not possible.

In an effort to generate a soluble peptide, a third peptide (EbGPcY566-589) that 

was shorter than the previous two and comprised only three heptads was designed 

(Figure 3.18). As with the other peptides, cysteine and tyrosine residues were added to 

the N-terminus. After vigorous shaking (1-2 h), it was possible to dissolve the crude 

peptide in ddH20 containing 0.1 % TFA. Analysis using the preparative RP-HPLC set­

up showed the presence of multiple peaks in the 214 nm chromatogram (Figure 3.20a). 

Peak 1 was identified as corresponding to full-length EbGPcY566-589 using ESI-TOF MS 

(data not shown). After removal of ACN and subsequent lyophilisation the purified 

peptide was dissolved in ddH20  containing 0.1 % TFA, however, as solution was 

slightly cloudy it was decided against injecting the sample into the analytical RP-HPLC. 

ESI-TOF MS confirmed the expected molecular weight of 3099.63 g mol'1 (Figure 

3.20b). The yield of purified peptide was 35 mg, (8 %). Assuming that the purification 

was as effective as with earlier peptides, the purity was estimated to be > 95 %.

3.3.3 General Challenges in the Identification of Coiled-Coil Domains

Accurate prediction and identification of coiled-coil domains was a key 

objective of this study. Comparisons of the predictions made by the computational 

analysis programmes demonstrated that the outputs vary greatly according to which 

programme is used. It was therefore surprising that the studies published by Joshi et al, 

(2003) and Reid et al, (2005) each presented the data obtained from only one 

programme, Paircoil and COILS, respectively. There remains an inherent risk of 

overstating the probability of a coiled-coil by taking this approach. Computational 

analysis is essentially a predictive tool and thus a good starting point. However the 

predictions should ideally be supported by biophysical studies such as those outlined in 

Table 3.9. As discussed in section 3.1.1, X-Ray crystallography is the gold-standard 

technique for determining the structures of large protein complexes, though advances in 

the use of 2D NMR spectroscopy make this a very good alternative (reviewed in 

Chapter 5, section 5.1.2.2).
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Figure 3.20 Purification and characterisation of EbGP2 CY556_589. Panel (a) 
shows the RP-HPLC chromatogram of crude peptide and panel (c) shows the ESI- 
TOF MS spectrum of pure EbGP2CY566_589.
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Table 3.9 Pros and cons of the biophysical techniques used to identify and characterise coiled-coil motifs.

Technique Pros Cons Reference

CD spectroscopy Relatively simple to use. Instant data, 

i.e. complex interpretation is not 

necessary for a “look see” type 

experiment.

Infers a coiled-coil as a result of ratio 

between minima at 208 and 222 nm.

Vandermeulen et al, 2004

Fourier Transform-Infra Red 

(FT-IR) spectroscopy

Direct spectrographic detection. Measurements may require the 

instrument to be nitrogen cooled. 

Samples must be prepared in D2O. 

Complex interpretation of data.

Heimburg et al, 1996

Fluorescence spectroscopy Possible to determine whether coiled- 

coil is parallel or anti-parallel.

Each complementary alpha helix must 

be synthesised and dye-labelled.

Daugherty, 1999

X-Ray crystallography Gold standard. Shows only one conformational state. 

Complex and very time consuming.

Weissenhom et al, 1998

NMR spectroscopy Detailed data gives exact 3D structure 

of solution conformation.

Data can be very complex to interpret, 

particularly for large proteins.

Dames et al, 1998
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3.3.4 Challenges in the Preparation of Synthetic Peptides

Previous basic research studies designed a novel library of LAEIEAK based 

coiled-coil sequences that were used to synthesise PEG-^-peptide hybrid block co­

polymers with self-assembly properties (Vandermeulen et al, 2003; Vandermeulen et al, 

2005). These studies demonstrated that the PEGylated coiled-coil conjugates retained 

their ability to form coiled-coils. However, CD spectroscopy and other techniques 

showed that self-organisation could be described as a two-state equilibrium between 

discrete monomers and dimeric coiled-coil aggregates.

The aim of this study was to identify novel coiled-coil sequences from the 

literature that would have real potential for further development as a new sub-category 

of polymer-therapeutics. Then make synthetic modifications to the primary peptide 

sequence to facilitate PEGylation. It was considered essential to select/design peptides 

that would preferentially form discreet hetero-oligomers with the target domains. 

Coiled-coil motif peptides that form homo-oligomers may not readily interact with the 

target domain and so may be less effective therapeutic agents.

The synthesis of the PHB derived peptides was a fairly straightforward process. 

All the sequences designed were easily solubilised, a characteristic that facilitated 

purification and later analysis. The observation that the UV absorbance of the single 

phenylalanine residue was too weak relative to the strong absorbance of the peptide 

bond resulted in all subsequent peptides being tagged at the N-terminus with a tyrosine 

residue if one was not already present in the structure. The only exception was 

EbGP26o9-63o as the peptide already contained the aromatic residue tryptophan. From a 

biological perspective the incorporation of tyrosine or tryptophan may not be ideal due 

to the potentially increased immunogenicity (Sela et al, 1962). However, the 

advantages conferred i.e. the ability to accurately determine mass/concentration 

outweighed this potential disadvantage. Preliminary investigations revealed that 

gravimetric determinations of mass were overestimating the true quantity of peptide by 

up to 50 %. Thus if solutions were prepared, the actual concentration of peptide may 

have been much less than expected. This should be considered a caveat to those 

working with small proteins and peptides if using gravimetric methods of sample 

preparation.
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The E2F1 derived peptides, E2Fla and E2Flb were more challenging to 

prepare. Significant amounts of both peptides precipitated out of solution prior to 

purification, this is perhaps why the % yields were markedly lower than those seen for 

other peptides in this study.

The purity of the peptides c-Jun and FosWc was comparable the synthesis of the 

similar peptides c-Jun and FosW prepared by Mason et al, (2006). No mention of 

synthesis scale was made in the study; however judging by the size of the RP-HPLC 

column used and the flow rate applied it is likely that it was much smaller than the 0 .1  

mmol scale used here. The large-scale synthesis of FosWc was particularly important 

since it was needed for PEGylation (Chapter 4).

Disappointingly it was not possible to synthesise a soluble EbVP35 peptide. As 

none have been described to date in the literature, this would have been a very 

interesting coiled-coil motif peptide to study. It may still yet be possible to prepare a 

soluble EbVP35 peptide if a semi-rational design approach is taken to thoroughly 

optimise the sequence as performed by Mason et al, (2006) in the preparation of FosW.

Synthesis of EbGP2609-630 was achieved with relative ease and very high yield 

(44 %). Furthermore, since the sequence already contained both an N-terminal cysteine 

and mid-sequence tryptophan residue it was not necessary to engineer either of these 

into the peptide. All concentration determinations for subsequent studies could then be 

made using the molar extinction coefficient of tryptophan. Other methods such as 

chemo-selective ligation (reviewed in Tam et al, 2 0 0 1 ) were considered an alternative 

synthesis method for EbGP2 cy.557.595 due to the high potential for inter-chain H- 

bonding. However since the shorter EbGP2cy-566-589 peptide was found to be soluble 

this approach was deemed unnecessary.

Notes on Interpretation o f ESI-TOF mass spectra and RP-HPLC chromatograms

Differences in the clarity of the ESI-TOF mass spectra should not be viewed as 

an indication of purity since some compounds will ionise easier than others. As such, 

the technique should only be used to determine whether the peptide is of the correct 

molecular weight as used here.

Discrepancies were seen in the elution times for many of the peptides when 

comparing the preparative and analytical chromatograms. In most cases these were 

relatively small and may be explained by the differing proportions of the C-18 columns 

used. Ideally, an analytical Atlantis™ column (matching the Atlantis™ preparative
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column) would have been used to perform the final characterisation, however such a 

column was not available.

3.3.5 Conclusions

It has been possible to synthesise the desired peptides for each of the cancer 

models to be studied. The analytical data demonstrate that despite the long length of 

many of the peptides, synthesis was possible by a standard chain elongation 

methodology (reviewed in Chan & White, 2000). Target peptides (E2Fla, E2Flb and 

c-Jun) required to study the E2F1 : PHB and c-Jun:FosWc interactions were synthesised 

and purified (> 95 %) in sufficient quantities to permit characterisation by CD and 

NMR spectroscopy (Chapter 5). Moreover, sufficient Phbcyi85-214 and FosWc were 

prepared for PEGylation (Chapter 4). A summary of the characterisation data for each 

peptide synthesised is provided in Table 3.10.

It was not possible to synthesise a soluble EbVP35 peptide, however it may be 

possible to conjugate the crude peptides to polymers to confer solubility then use size 

exclusion chromatography to remove the lower molecular weight peptide contaminants. 

This will be investigated in Chapter 4.

Successful synthesis of a C-terminal a-helical peptide (EbGP2609-63o) and a 

coiled-coil motif peptide (EbGPcY566-589) will enable PEGylated conjugates to be 

prepared in Chapter 4 as the first polymer-therapeutic viral fusion inhibitors.
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Table 3.10 Summary of synthesis data for each of the peptides prepared in this study.

Peptide Batch No. Crude Yield RP-HPLC Gradient Pure Yield Length Molecular weight

mg % % ACN mg % (residues) g mol'1

E2F1 and PHB derived peptides

Phbi85-214 01 330 92 25-35 75 21 30 3367.83

Phbyi85-214 01 345 92 26-31 82 22 31 3531.01

PhbcY185-214 01 375 97 27-37 35 9 32 3634.15

E2Fla 03 120 82 18f 20 14 18 2063.15

E2Flb 03 115 82 18-30 11 8 18 1979.11

c-Jun and c-Fos derived peptides

c-Jun 01 435 99 30-45 91 21 36 3987.57

FosWc 01 879 92 38-55 192 22 37 4358.87

' Isocratic gradient.

Theoretical value confirmed by ESI-MS
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Table 3.10 Summary of synthesis data for each of the peptides prepared in this study.

Peptide Batch No. Crude Yield RP-HPLC Gradient Pure Yield Length Molecular weighf

mg % % ACN mg % (residues) g m ol1

EbVP35 derived peptides

EbVP3582-ii9 01 434 97 Insoluble n/a n/a 38 4189.66

EbVP35cY88-119 01 419 107 Insoluble n/a n/a 34 3697.18

EbGP2 derived peptides

EbGP26o9-63o 01 332 114 40-55 128 44 22 2723.04

EbGP2cY557-589 01 358 85 Insoluble n/a n/a 35 4082.72

EbGP2cY557-595 01 457 89 Insoluble n/a/ n/a 41 4812.59

EbGP2cY566-589 01 412 94 40-60 35 8 26 3099.63
J T "  '

Theoretical value confirmed by ESI-MS
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CHAPTER 4: Site-Specific PEGylation

4.1 Introduction

In parallel to the design and synthesis of the coiled-coil peptides described in the 

previous chapter, it was necessary to develop a methodology for site-specific 

PEGylation and subsequently purification and characterisation of the final mPEG- 

coiled-coil motif conjugates. To aid the selection of appropriate methods, each of these 

areas was reviewed and summarised in sections 4.11 to 4.14.

The overall rationale for using PEG as a model polymer in these studies (from 

both a biological and chemical perspective) was discussed in Chapter 1. Current state 

of the art PEGylation chemistry permits the synthesis of polymers with very low 

polydispersity (c.a. 1.01), low diol content and molecular weights in the range of 100 to 

60,000 g mol'1. Other advantages include the ability to engineer physiologically stable 

or cleavage linkers, using either mono or homo/hetero bifunctional PEG molecules of 

pharmaceutical grade. Finally, a key advantage is the availability of a wide range of 

reactive chemistries, some of which permit site-specifc, rather than random conjugation 

of PEG. For a more detailed background, these features have been discussed in a 

number of excellent reviews, including those by Roberts et al, 2002; Harris & Chess, 

2003; Veronese & Harris, 2008. A brief discussion of the developments that have led to 

the advanced PEGylation chemistry available today is given below.

4.1.1 The Chemistry of PEGylation

Covalent attachment of PEG to a peptide, protein or small drug molecule 

requires the PEG chain to be activated at either one or both termini. With more than 30 

years of research devoted to this field it is now possible to obtain PEG commercially 

with almost any type of end group functionalisation desired. An increasing number of 

companies now exist that offer a wide range of functionalised PEG molecules for 

example, Nektar (www.nektar.com) and NOF (www.peg-drug.com).

Peptides and proteins possess N- and C-terminal amines and carboxylic acids 

and a number of reactive side chain groups including R-NH2 (arginine and lysine), R- 

COOH (aspartic acid and glutamic acid) and R-SH (cysteine), which may be exploited
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for the purpose of conjugating PEG (reviewed in Roberts et al, 2002). A summary of 

the PEG derivatives used in each of the FDA approved PEG-protein/drug conjugates is 

given in Table 4.1. Early PEGylation chemistry utilised the amine reactive 

succinimidyl carbonate group for conjugation (Abuchowski et al, 1984), for example, in 

the preparation of the FDA approved conjugates Adagen®, Oncaspar®, PEG-INTRON® 

and Somavert® (Table 4.1). Succinimidyl carbonates were used as they reacted 

preferentially with the R-NH2 side-chain of lysine residues to form carbamate linkers. 

However carbamate linkers have also been shown to result from reactions with the side- 

chains of histidine and tyrosine residues (Zalipsky et al, 1992; Miron et al, 1993). 

Therefore, the resultant conjugates are heterogenous mixtures, with mPEG chains 

potentially attached at a range of different sites. Furthermore, all of these early mPEG- 

protein conjugates were developed using mPEGs of low molecular weight .(< 12,000 g 

mol'1).

Second generation PEGylation chemistry sought to improve product 

heterogeneity by using mPEGs with site-specific reactive chemistries and a low-diol 

content (to reduce the potential for protein/peptide cross-linking). Furthermore, these 

efforts were conducted using mPEGs of higher molecular weight (c.a. 20,000 g mol'1). 

The first FDA approved conjugate to utilise a method of site-specific conjugation was 

Neulasta® in 2002 (Table 4.1). This conjugate was synthesised using a 20,000 g mol'1 

aldehyde-activated mPEG to effect N-terminal PEGylation. Selectivity of the 

conjugation reaction was achieved by virtue of the lower pK* of the N-terminal a-amine 

relative to that of the other side-chain nucleophiles (Kinstler et al, 1996). However, 

whilst conjugate homogeneity was improved using this approach, near complete 

selectivity of the reaction was not possible using this chemistry.

The first commercially available product to be prepared using site-specific 

chemistry that generated a single species was the mPEG-aptamer conjugate Macugen®. 

In this case, site-specific PEGylation at the 5’ end of the aptamer was achieved using an 

N-hydroxysuccinimide (NHS) activated mPEG derivative. Furthermore, this was the 

first time a branched PEG,,consisting of two 20,000 g mol'1 mPEG chains was used for 

conjugation. Whilst this approach demonstrated the site-specific conjugation of mPEG- 

NHS to an aptamer, synthesis of the mPEG-interferon conjugate, PEGASYS, showed 

that it was not possible to use the same mPEG derivative to site-specifically PEGylate
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Table 4.1 Summary of PEG characteristics used in the synthesis of the eight FDA approved PEG-protein conjugates.

FDA Approval Drug Trade Name PEG MW PEG Functionalisation Site of Number of PEG Reference

(Year) (g mol'1) Conjugation chains

1990 Adagen^ 5,000 mPEG-succinimidyl carbonate
0

Random 11 to 17 Reviewed in Pasut 

& Veronese, 2007

m PEG— 0 — C— 0 — N

1994 Oncaspar® 5,000

O

mPEG-succinimidyl carbonate Random Several Reviewed in Pasut
i-̂
4̂, et al, 2008

2001 PEG-INTRON® 12,000 mPEG-succinimidyl carbonate Random 1 Wang et al, 2002

2002 PEGASYS® 40,000 mPEG2-NHS Random amine 1 Rajender Reddy et

mPEG ||

Z -0-
mPEG

°V
-O—N |

y

al, 2002

2002 Neulasta® 20,000 mPEG-aldehyde N-terminus 1 Nektar
O
II

m PEG—■C— H

(www.nektar.com)
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Table 4.1 Summary of PEG characteristics used in the synthesis of the eight FDA approved PEG-protein conjugates.

FDA Approval Drug Trade Name PEG MW PEG Functionalisation Site of Number of Reference

(Year) (g mol’1) Conjugation PEG chains

2003 Somavert® 5,000 mPEG-SPA (succinimidyl- 

propionate)

V ,
mpEG> ^ Y a “ Nv

o <?

Random amine 4-5 Parkinson et al, 

2003

2004 Macugen® 40,000 mPEG2-NHS
O

mPEGv  n\ — c—O—N 
mPEG \ —

O

5’ of aptamer 1 Nektar

(www.nektar.com)

2008 Cimzia® 40,000 mPEG-MAL Thiol 1 Chapman et al, 

1999
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peptides or proteins with the same reagent as the NHS group can react with many 

different side-chain nucleophiles (Hermanson, 2008).

Of the amino acids mentioned above that have potentially reactive side-chain 

groups, the thiol of cysteine is the strongest nucleophile. Therefore, thiol-directed 

PEGylation has the greatest potential to yield, well-defined (single-product) mPEG- 

peptide conjugates. Towards this end, mPEG functionalised with iodoacetamide, 

maleimide, orthopyridyl and vinylsulphone chemistries were developed with each 

having particular pros and cons (Goodson & Katre, 1990; Kogan, 1992; Woghiren et al, 

1993; Morpurgo et al, 1996). While progress had been made in the development of 

mPEG derivatives, until recently, the major limitation of mPEG-conjugation via the 

cysteine thiol was that the protein or peptide of interest needed to have an accessible 

cysteine residue not involved in an intra-molecular disulphide bond. Since few 

naturally occurring proteins/peptides have free thiols, molecular biology is now being 

used to circumvent this problem by introducing cysteine residues into recombinant 

proteins to facilitate site-specific conjugation (Doherty et al, 2005). With peptides, it is 

possible to introduce cysteine residues either using the same recombinant approach or 

by Fmoc-SPPS as described in Chapter 3. An alternative, rather elegant approach 

described by Balan et al in 2007 involves the attachment of a mPEG chain across a 

native disulphide bond. This method first requires reduction of the native disulphide 

bond, followed by bis-alkylation with a three-carbon bridge linker to which mPEG is 

attached.

The only marketed product to use site-specific, thiol, chemistry for PEGylation 

is the mPEG-anti-TNF Fab conjugate Cimzia®, which was approved by the FDA in 

April 2008 for the treatment of Crohn’s disease. In this instance, a single 40,000 g mol' 

1 maleimide activated mPEG was conjugated to a cysteine residue engineered into the 

antibody fragment. The mPEG-MAL derivative is highly reactive towards the 

nucleophilic thiol and at pH < 8, the reaction is reported to be approximately 1000 fold 

faster than seen with an a-amine nucleophile (Hermanson, 2008), as such conjugation is 

highly efficient and yields a homogenous product.

4.1.L1 Importance o f Site-Specific Conjugation

Over the years there has been a clear trend towards the use of site-specific 

PEGylation, and products like Cimzia® are now a benchmark standard for future 

conjugates entering the clinic. As discussed in Chapter 1, it was considered very
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important here to synthesise mPEG-coiled-coil motif conjugates site-specifically to 

ensure a well-defined 1:1 structure. Furthermore, it was envisaged that random and/or 

multi-site conjugation would likely disrupt the ability of the coiled-coil motif to fold 

and thus interact with the target domain. For a typical peptide it would be possible to 

effect conjugation via a range of amino acid side-chains or via the N and C-termini. 

However, C-terminal amidation and N-terminal acetylation of the coiled-coil motifs 

prepared in Chapter 3 had removed the charged termini and therefore left only the 

amino acid side chains as possible PEGylation sites (Figure 4.1). For this reason, a 

review of the possible synthetic strategies that would enable site-specific conjugation of 

mPEG to the coiled-coil motif was conducted; the two approaches used in this study are 

discussed below.

4.1.1,2 Solid and Solution Phase Methodologies fo r  Site-Specific PEGylation

Before describing the two site-specific conjugation approaches considered in 

this study it is important to appreciate that the position of the PEG acronym in the 

naming of the conjugates indicates the site of PEGylation. Peptide sequences, by 

convention are written from N to C (since this is the direction of ribsosomal synthesis) 

and as such the PEG acronym was placed at the start (prefix) to indicate N-terminal 

conjugation or at the end (suffix) to indicate C-terminal conjugation. For example, 

PEG-(peptide) indicates N-terminal PEGylation, whereas (peptide)-PEG indicates C- 

terminal PEGylation. Furthermore, it should be noted that it was not possible to use 

mPEG for the synthesis of the conjugates using the solid-phase approach detailed 

below, instead the free PEG had a hydroxyl functionality and as such (m) is omitted 

from the acronym where appropriate.

In the first approach, the coiled-coil motif could be synthesised directly on a 

PEG modified resin using the same Fmoc-SPPS chemistry described in Chapter 3. This 

methodology is a solid-phase approach and is illustrated in Figure 4.2; it offers the 

advantage that preparation of the conjugates can be obtained in a single synthesis step. 

Use of a PEG modified resin such as TentaGel™ PAP (PEG-attached-products) (Figure 

4.2) would make it possible to prepare C-terminal coiled-coil motif-PEG conjugates 

(Rosier et al, 2003). Alternatively, N-terminal PEG-coiled-coil motif conjugates can be 

prepared by synthesising the peptides using Fmoc-SPPS and subsequently reacting PEG 

with the N-terminus of the peptide chains prior to acid cleavage (Vandermeulen et al, 

2003). The main disadvantage of this solid phase approach is that the conjugates
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(2) Lysine 
amine

,SH (1) Cysteine 
thiol

.NH

(3) Arginine 
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Amidated

C-terminusHN

Reactive functionality

mPEG

F ig u re  4.1 T h e o re tic a l  co iled -co il m o tif  P E G y la tio n  s ite s . Cartoon to illustrate 
the possible sites o f polymer conjugation to a coiled-coil motif, (1) cysteine thiol, 
(2) lysine amine and (3) arginine amine. N-terminal acetylation and C-terminal 
amidation preclude these as possible conjugation sites.
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Figure 4.2 Two-step solid phase methodology for the synthesis of C-terminal 
coiled-coil motif-PEG conjugates.
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prepared would likely be a heterogeneous mixture, containing peptides of different 

lengths due to inefficient coupling of amino acids inherent in SPPS. As such a 

purification method with the ability to resolve each different conjugate would need to be 

developed.

A second approach allows solution-phase conjugation. This is a two-step 

process whereby peptides would be first synthesised by SPPS, cleaved from the resin, 

purified and characterised then subsequently PEGylated (Figure 4.3). This has the 

main advantage that the peptides used for conjugation have much greater purity, 

typically > 95 %, thus yielding very well defined single-product conjugates. 

Furthermore, all of the PEG conjugates that have already received FDA approval were 

synthesised using this solution phase approach. As discussed in Chapter 3, the coiled- 

coil motif peptides developed here were synthesised with engineered N-terminal 

cysteine residues. This enabled the use of thiol-reactive mPEG derivatives to effect 

site-specific PEGylation. The mPEG-MAL derivative used to prepare Cimzia® was 

used in this study, though an mPEG of a lower molecular weight (c.a. 5,000 g mol'1) 

was used. A nucleophilic addition reaction allows the thiol to react stoichiometrically 

with the S+ve carbon atom of the maleimide to yield a stable thioether linked conjugate 

(Figure 4.4). In these studies, the protocol used for solution-phase conjugation was 

adapted from a method described previously to conjugate mPEG-MAL to cysteine 

terminated poly(lysine) peptides (Chen et al, 2004). However, it was necessary to 

optimise the reaction conditions for the coiled-coil motifs and mPEG-MAL used here. 

This was achieved with the aid of a colorimetric assay to qualitatively determine the 

disappearance of free thiol with time.

4.1,1,3 Ellm an’s Assay fo r Free Thiols

The colorimetric assay commonly known as “Ellman’s assay for free thiols” was 

originally designed to determine tissue R-SH concentrations (Ellman, 1959), however it 

has subsequently been used to analyse the R-SH concentration of proteins and peptides 

(Bulaj et al, 1998). Ellman’s reagent (5,5’-dithiobis(2-nitrobenzoic acid) - DTNB) was 

designed to react in a stoichiometric manner with free R-SH to yield a 3-carboxylato-4- 

nitrothiophenolate anion with a UV-absorption maximum at 412 nm (Figure 4.5). 

Therefore it was postulated that a decrease in the optical density at this wavelength 

could be used here to measure the R-SH/MAL PEGylation. Once conjugates were 

prepared it was then necessary to consider the potential methods for purification.
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Figure 4.3 Proposed solution phase methodology for site-specific thiol- 
directed PEGylation.
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4.1.2 Assessment of the Methods for Conjugate Purification

The purification of PEG-peptide conjugates poses a number of challenges. For 

the solution-phase conjugate synthesis, it is necessary to resolve the product (i.e. mono- 

PEGylated-coiled-coil motif peptide) from both unreacted PEG and the free peptide. In 

the case of conjugate synthesis by the solid phase methodology, it was necessary to 

consider a method capable of resolving the desired product from any PEG-conjugated 

truncated peptides.

The three most commonly used methods of purifying polymer-peptide and 

polymer-protein conjugates are RP, SE and ion-exchange chromatography; the 

principles of each technique were discussed in Chapter 2 (Figure 2.1). Each of these 

approaches was investigated here with the aim of establishing a methodology that could 

be used to purify, and characterise with respect to purity, any of the mPEG-coiled-coil 

motif conjugates synthesised in this study.

4.1.3 Use of MALDI-TOF MS for mPEG-Coiled-Coil Motif Conjugate 

Characterisation

MALDI-TOF MS is one of the most important techniques used in polymer 

characterisation (reviewed in Hanton, 2001) and is frequently used to determine end- 

group functionality, absolute molecular weight and polydispersity (reviewed in Weidner 

et al, 1998; Nielen, 1999; Hanton, 2001). However, since different chain-lengths of 

polymer are likely to ionise with more or less ease, one must be extremely careful not to 

overstate the reliability of data pertaining to the polydispersity of the sample. For the 

same reason (and as for ESI-TOF MS discussed in Chapter 3) it is also inappropriate to 

attempt to quantify the acquired spectra and make assertions regarding the purity of the 

sample.

To conduct a MALDI-TOF analysis, the sample is first crystallised on a 

stainless steel plate (Figure 4.6a). Once loaded, effective ionisation of the sample 

matrix (Figure 4.6b) is key to the success of the experiment. The instrumentation used 

in this study enabled spectra to be acquired using either a reflection or linear detector 

(Figure 4.6c). In theory the reflectron detector generates spectra of a higher resolution 

due to improved separation afforded by the electrostatic mirror. Nevertheless the 

technique is limited to analysis of samples with a molecular weight of < 8,000 g mol'1. 

A linear mode detector is capable of analysing samples of much higher molecular
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Figure 4.6 Characterisation by MALDI-TOF MS. Panel (a) shows the stainless 
steel plate upon which the samples were prepared. Panel (b) shows the ionisation 
of the crystalline sample matrix. Panel (c) shows a schematic of the MALDI-TOF 
M S equipment.
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weight (theoretically up to 500,000 g mol'1). Both modes were used in the course of 

this study.

The most challenging aspect of MALDI-TOF analysis is sample preparation. Of 

the numerous preparation methods that have been described in the literature (reviewed 

in Murgasova & Hercules, 2002; Pasch & Schrepp, 2003), the “dried droplet” and “thin 

layer” approaches are perhaps the most common. The dried droplet method requires 

pre-mixing of three solutions, typically analyte, salt and matrix. This mixture is then 

spotted onto the MALDI plate (Figure 4.6a) and dried under an air current (Chaudhary 

et al, 1996; Whittal et al, 1997; Rashidzadeh et al, 2000; McEwen & Peacock, 2002). 

The thin layer technique requires each of the solutions to be spotted onto the MALDI- 

plate separately and dried before application of the next layer. This approach has been 

widely used in the analysis of peptides and proteins (Dai et al, 1999; Garcia et al, 2002; 

Miliotis et al, 2002) as well as synthetic polymers (Linnemayr et al, 1998; Meier & 

Schubert, 2003). Meier and Schubert (2003) were the first to optimise a specific 

protocol for the analysis of PEGs up to 35,000 g mol'1.

The thorough optimisation of the multi-layer technique described by Meier and 

Schubert (2003) formed the basis of the characterisation of the mPEG-coiled-coil motif 

conjugates described here. Meier and Schubert (2003) investigated and compared 

numerous combinations of analyte, salt and matrix and their order of application to the 

MALDI plate, with respect to “relative signal intensity” and “signal to noise ratio”. 

Meier and Schubert (2003) demonstrated that:

“ ...the order of spotting the three layers (matrix, sample and doping salt) greatly 

influenced the quality of the obtained MALDI spectra”

They concluded that optimum order of application to the MALDI plate was first 

the matrix, then salt and finally PEG solution (Meier and Schubert, 2003). In particular, 

when using a matrix of dithranol saturated in chloroform (CHCI3), a saturated salt 

solution of sodium iodide (Nal) in acetone and PEG dissolved in DCM (25 mg mL'1) 

the relative signal intensity was twice that of the “dried droplet” preparation and the 

signal to noise ratio was markedly improved (Meier and Schubert, 2003). This 

methodology was a significant advance (compared with previously reviewed protocols 

Nielen, 1999; Hanton, 2001) since it enabled the acquisition of MALDI-TOF spectra for 

PEG up to 35,000 g mol'1.
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4.1.4 Use of 2D DOSY for mPEG-Coiled-Coil Motif Conjugate Characterisation

2D diffusion ordered spectroscopy (DOSY) is an NMR diffusion experiment 

that provides a method of separating compounds according to their differing diffusion 

coefficients. As the diffusion coefficient is proportional to the molecular 

size/hydrodynamic radius of the molecule (Baijat et al, 1995), this technique may be 

considered akin to chromatographic separation. However, unlike the techniques 

discussed in section 4.1.2, it is possible to conduct the DOSY analysis in almost any 

solvent and without need for the time-consuming optimisation of a chromatographic 

method. Moreover, it avoids the need for complex, and often empirical, sample 

preparation associated with characterisation by MALDI-TOF MS. The use of DOSY 

analysis for the characterisation of polymer therapeutics was first demonstrated with the 

model conjugate dextrin-trypsin (Duncan et al, 2008).

4.1.5 Experimental Aims

In summary, the specific aims for this study were to:

■ To establish a methodology for the site-specific mono-PEGylation of the desired 

coiled-coil motif peptide sequences.

■ To determine an optimal time for the solution phase reaction of mPEG-MAL 

with cysteine tagged coiled-coil motif-peptides using Ellman’s assay to measure 

the disappearance of free thiols.

■ To identify the optimal chromatographic technique to allow isolation of the 

synthesised conjugates to an acceptable level of purity (> 95 %). In particular, 

to develop a method that would enable the removal of both unreacted mPEG and 

coiled-coil motif peptide.

■ To develop and optimise a methodology for the characterisation of mPEG- 

coiled-coil motif conjugates by MALDI-TOF MS.

■ To investigate the use of 2D DOSY for the characterisation of mPEG-coiled-coil 

motif conjugates.
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4.2 Methods

The general methods, including UV spectroscopy (section 2.2.1.1), RP-HPLC 

(section 2.2.2) and SEC (section 2.2.2) used in this study are detailed in Chapter 2. For 

ease of navigation, an overview of the experiments conducted in this study is provided 

(Figure 4.7)

4.2.1 Synthesis of Phbyi85-2i4-PEG and EbVP35y88-i 19-PEG Using Solid-Phase C- 

terminal PEGylation with TentaGel PAP Resin

Early studies investigated the potential of using a TentaGel resin to prepare the 

C-terminal conjugates Phbyi85-2i4-PEG and EbVP35ys8-i 19-PEG (Figure 4.2).

The protocol used to prepare the conjugates was very similar to the one detailed 

in Chapter 3 (section 3.2.2) for the synthesis of peptides by Fmoc-SPPS. Instead of 

Rink Amide AM resin, TentaGel PAP resin (200 mg, PEG-NH2 loading 0.24 mmol g'1) 

was used as the solid phase. The resin was first swelled with DCM (1.5 mL), then the 

automated peptide synthesis protocol described in Chapter 3 (section 3.2.2.2) was used 

to synthesise Phbyi85-2i4 and EbVP3 5 y88-ii9 from the PEG-NH2 of the TentaGel PAP 

resin. Acetylation of the N-terminal a-amines was conducted as previously described 

(section 3.2.2.2). Cleavage of the Phbyi85.2 14-PEG and EbVP35y88-i 19-PEG conjugates 

from the resin and concomitantly side-chain deprotection were effected using cleavage 

cocktail “A” which consisted of TFA:TIPS:ddH20  96:2:2 v/v (3 mL). Each reaction 

was left to proceed for 3 h with vigorous agitation. The reaction mixtures were then 

transferred to glass round-bottomed flasks containing cold (-20 °C) Et20  (c.a. 50 mL) 

using a fritted glass pipette to ensure the TentaGel PAP resin was left behind. The 

flasks were stored at -20 °C overnight (16 h) to allow the conjugates to precipitate. The 

supernatant was decanted and the precipitate washed two times with cold Et20  after 

which the conjugates were suspended in ddH20  and lyophilised. The lyophilisate was 

dissolved in ddH20  containing 0.1 % v/v TFA and purification by RP-HPLC (as 

described for peptides in Chapter 3, section 3.2.3) was investigated.
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Figure 4.7 Overview of the experiments conducted in this study.
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4.2.2 Synthesis of mPEG-PhbcYi85-2i4> mPEG-FosWc, mPEG-EbGP2609-63o and 

mPEG-EbGP2CY566-589 Using Solution-Phase Thiol-Directed PEGylation

The second method of synthesising mPEG-coiled-coil motif conjugates 

employed a solution phase approach as illustrated in Figure 4.3. Whilst reactant 

quantities were varied, the ratios of each remained the same for each conjugation 

reaction. A summary of the quantities of each reactant is given for each synthesis in 

Table 4.2, whilst a typical method is described below.

Conjugates were prepared by reacting mPEG-MAL (Mn 5,520 g mol-1, Mw/Mn

1.1) with peptide at a 1.5:1 molar ratio in phosphate buffer (10 mM, pH 7.0) for 2 h. 

Typically, peptide (3.7 pmol) was dissolved in 0.1 % v/v TFA (0.4 mL) and added to 

mPEG-MAL (5.5 pmol) dissolved in degassed phosphate buffer (1.6 mL) (adapted from 

Chen et al, 2004). Progress of the reaction was monitored using Ellman’s (DTNB) 

reagent for free thiols as described below (section 4.2.3).

In a control study with mPEG-MAL and EbGP26o9-63o, aliquots (25 pL) were 

taken at time points of 2 min, 1 h and 3 h and immediately frozen in liquid N2 (- 196 

°C). The study demonstrated that there was little change in the reaction after 1 h (see 

results) therefore, for all the other PEGylation reactions aliquots (25 pL) were taken at 

time points of 2 min and 2 h. At the end of the reaction the mixture was frozen in liquid 

N2 and lyophilised prior to analysis and purification.

4.2.3 Ellman’s Assay for Free Thiols

A stock solution of DTNB reagent consisting of sodium acetate (NaAc) (50 

mM) and DTNB (2 mM) in ddH20  was first prepared. Typically 5 mL of reagent was 

freshly prepared for each analysis. All samples were prepared directly in a quartz 

cuvette (1  cm pathlength) and mixed thoroughly as follows.

An aliquot (50 pL) of DTNB reagent was mixed with Tris buffer pH 8 , 1 M 

(100 pL) and ddH20  (840 pL) followed by the addition of sample (10 pL). After 5 min 

equilibration time, measurements of UV absorbance were made across a wavelength 

range of 600 to 200 nm for the trial synthesis of EbGP26o9-630, for subsequent reactions 

readings were acquired at 412 nm. All measurements were performed in duplicate, 

hence 25 pL of sample was'collected at each time point during the PEG-MAL/thiol- 

peptide conjugation reaction as described above in section 4.2.2. Spectra were also 

recorded for each of the starting materials (peptide and mPEG-MAL) as positive and
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Table 4.2 Summary of reactants and solvents used in the solution-phase synthesis of the four conjugates listed.

Conjugate name Peptide mPEG-maleimide

Mass pMoles 0.1 % TFA Mass pMoles Phosphate buffer, pH 7.0

(mg) (mL) (mg) (mL)

mPEG-EbGP2609-630 50 18 1.0 152 28 4.0

mPEG-FosWc 80 18 1.6 152 28 6.4

mPEG-PhbcYi85-2i4 25 7 0.5 56 10 2.0

mPEG-EbGP2cY566-589 30 10 0.6 120 15 2.4
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negative controls, respectively.

4.2.4 Purification of mPEG-Coiled-Coil Motif Conjugates by Cation-Exchange 

Chromatography

Cation-exchange chromatography was developed and optimised for each of the 

conjugates synthesised by varying the composition and pH of the elution buffers used 

(see results, section 4.3.2.3, Table 4.3). These changes were necessary since the iso­

electric point of each of the peptides was different. Iso-electric points were calculated 

using the Innovagen peptide property calculator (http://www.innovagen.se/custom- 

peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp) (see 

results, section 4.3.2.3, Table 4.3).

The HPLC system was comprised of an AktaPrime™ unit equipped with a fixed 

wavelength detector (280 nm) and a pre-packed MacroCap SP cation-exchange column 

(5 mL). All solvent solutions were filtered (0.2 pm filter) then degassed (bath 

sonication) for 30 min prior to use. During storage the system was equilibrated with a 

solution of 20 % EtOH in dcUHLO. The unit was primed prior to each use by washing 

(flow rate = 5 mL min'1) with 10 column volumes (50 mL) of dcfflfeO, then 5 column 

volumes of buffer A (25 mL), 5 column volumes (25 mL) of buffer B, and finally 5 

column volumes of A:B (50:50, 25 mL). A programmed method (running time =15 

min, 75 mL) was developed using a linear AB gradient (flow rate = 5 mL min'1) to 

resolve each of the species in the crude reaction mixture (see Figure 4.8). Using this 

method it was expected that the unreacted mPEG-MAL would elute as the sample was 

injected onto the column and during wash phase 1. mPEG-coiled-coil motif conjugates 

were expected to elute as the % of buffer B was increased i.e. during phase (d) (see 

Figure 4.8). Before injection of the crude reaction mixture a blank run was conducted 

to ensure a stable baseline.

Prior to injection, the lyophilised samples of crude reaction mixture (see above, 

section 4.2.2) were first reconstituted in buffer A. A partial filling method of sample 

injection was used whereby buffer A (25 mL) was used to purge the injection loop (total 

volume 5 mL), followed by injection of sample, typically 2.5 mL. Fractions (1 mL) of 

eluate were collected and those corresponding to peaks of interest were collated and 

lyophilised to reduce the sample volume. Each sample of lyophilisate was desalted by 

centrifugation using a Centriprep YM-3 tube and spun for 45 min at 3,000 g. The 

supernatant was washed with ddH20  and centrifuged a second time. This process of
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Table 4.3 Summary of buffers required for purification, yield and molecular weights for the four conjugates synthesised.

Conjugate name Iso-electric Buffer for cation-exchange Yield Estimated molecular weight^ Molecular weight by

point chromatography MALDI-TOF MS

Salt pH Molarity % mg Mn (g mol'1) Mw (g mol'1) m/z (±1 0 0 )

mPEG-EbGP2609_63o 4.5 Citrate 3.2 20 mM 39 59 8,245 8,411 8,265

mPEG-FosWc 4.2 Citrate 3.2 20 mM 38 6 8 9,881 10,047 9,890

mPEG-Phbc y i 85-2 i 4 1 0 .2 Phosphate 6 .2 lOmM 52 30 9,156 9,322 ~ 3,000 and -5,900

mPEG-EbGP2cY566-589 1 2 .1 Phosphate 7.0 10 mM 29 24# 8,622 
___ i-k i

8,788 -  3,000 and -5,900

^Summed molecular weight of mPEG-maleimide (Mn = 5,520 g mol' 1 and Mw = 5,688 g mol'1) and respective peptide (Chapter 3, Table 3.8) 

#Peak 1 fraction = 7 mg, peak 2 = 17 mg.
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mPEG-coiled-coil 
motif conjugates
were expected to 
elute in phase (d)

100i

75- Unreacted mPEG- 
maleimide was 
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Figure 4.8 Gradient elution method used for cation-exchange 
chromatography purification and analysis of the mPEG-coiled-coil motif 
conjugates. The schematic illustrates each phase of the programmed method: (a) 
equilibration volume, (b) sample injection volume, (c) wash phase 1 , (d) gradient 
elution 0-100 % B, (e) wash phase 2, and (f) re-equilibration.
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washing and centrifugation was repeated a third time. The peptide concentration of the 

final product was determined by UV spectroscopy as described in Chapter 2 (section

2.2.1.1). Aliquots of each conjugate were stored at -80 °C.

4.2.5 MALDI-TOF MS Characterisation of mPEG-Coiled-Coil Motif Conjugates

Preliminary studies assessed both the “dried droplet” and thin layer methods of 

sample preparation, each approach was investigated using a range of different matricies, 

salts and solvents; a summary is provided in the results (section 4.3.2.3, Table 4.4). 

The optimised sample preparation method used in this study is described as follows.

Stock solutions (5 mL) of dithranol saturated (10 mg mL'1) in CHCI3 (matrix), 

and Nal (2 mg mL'1) dissolved in ACN:ddH2 0  (50:50) (salt) were first prepared. 

mPEG-MAL and/or conjugate solutions were freshly prepared by dissolving the sample 

(1 mg) in DCM (40 pL) to give a final concentration of 25 mg mL'1. Aliquots (1 pL) of 

each solution were then applied to the MALDI plate and dried under an air current 

(approx. 1 min) before application of the next layer. The spotting order of the 

respective layers was first matrix then salt and finally sample. Data were acquired once 

the vacuum pressure had equilibrated to approximately 2 xlO'6. Spectra were acquired 

using the following input values: laser power = 250, pulse = 1400, detector = 2749 

(max) and suppression = 1000. Data were exported as .xls files and processed using 

GraphPad Prism v4.0.

4.2.6 Characterisation of mPEG-FosWc Using 2D Diffusion-Ordered NMR 

Spectroscopy (DOSY)

Samples (500 pL) were prepared at a peptide concentration of 75 pM in 

NaH2P0 4 /Na2HPC>4 (10 mM) containing NaF (100 mM) in ddFLO containing D20  (5 % 

v/v). Proton NMR spectra were acquired with 16 K complex points and a spectral 

width of 8.4 kHz. The total number of scans was 256, with a repetition delay of 1.5 s. A 

WATERGATE scheme was used to suppress the water signal. DOSY was performed 

with a stimulated echo sequence using bipolar gradient pulses (Brand et al, 2005) and 

with a WATERGATE scheme to suppress the water signal. The lengths of pulses and 

delays were held constant, and 20 spectra of 64 scans each were acquired with the 

strength of the diffusion gradient varying between 5 and 100 %. The lengths of the 

diffusion gradient and the stimulated echo were optimized for each sample. Typical
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Table 4.4 Summary of attempts to acquire MALDI-TOF spectra of mPEG-coiled-coil motif conjugates

Matrix Matrix

solvent

Salt Salt solvent Analyte solvent 

and [analyte]

Method(s) of 

preparation

Spectra successfully 

acquired

a-Cyano-4- ddH20:ACN ± silver ddH20:ACN ddH20:ACN (1:1) Thin layer and X

hydroxycinnamic acid (1 :1) trifluoroacetate ( 1 :1) (5 mg mL'1) dried droplet

(10 mg mL'1) (2 mg mL'1)

Dithranol (10 mg mL'1) CHC13 Nal Acetone DCM Thin layer and X

(2 mg mL'1) (25 mg mL'1) dried droplet

Dithranol (10 mg mL'1) CHCI3 Nal ddH20:ACN DCM Thin layer in ✓
(2 mg mL'1) ( 1 :1) (25 mg mL'1) specific order

Dithranol (10 mg mL'1) CHCI3 Nal ddH20:ACN DCM Dried droplet X

(2 mg mL'1) ( 1 :1) (25 mg mL'1)

DHB(10mgm L'1) DCM - n/a THF (5 mg mL'1) Thin layer and X

dried droplet

DHB (10 mg mL'1) DCM:THF - n/a DCM:THF Thin layer and X

(5 mg mL'1) dried droplet

DHB (10 mg mL'1) ddH20:Et0H ±NaCl ddH20 ddH20 Thin layer and X

(9:1) (2 mg mL'1) (5 mg mL'1) dried droplet
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values were (6) 4-5 ms and (A) 60-110 ms. Processing and analysis of the data were 

performed with the DOSY protocol included in the Topspin 1.3 software package.

4.3 Results

4.3.1 Preparation of C-terminal PEG Conjugates: Phbyi85-2i4-PEG and 

EbVP35Y88-ii9-PEG

It was not possible to solubilise the crude product from the synthesis of 

EbVP35Y88-119-PEG. After precipitation in cold Et2 0  it formed a very sticky off-white 

substance that could only be solubilsed with the addition of 100 % TFA. As for the 

attempted synthesis o f the EbVP3 5 cY88-ii9 peptide it was not possible to characterise the 

crude product any further.

The crude product obtained from the synthesis of Phbvi85-2 i4-PEG was easily 

soluble in ddKhO containing 0.1 % TFA and so initial characterisation was conducted 

using RP-HPLC. The RP-HPLC chromatograms obtained (Figure 4.9) following 

injection o f the Phbyi85-2 i4-PEG crude reaction mixture (2 mL, 5 mg mL'1) showed the 

presence of multiple peaks in the UV absorbance traces at 214, 274 and 257 nm. Post­

initialisation (0-5 min) the first peaks eluted at 13.6 and 14.9 min, absorbing strongly at 

214 nm, while lacking any absorbance at 257 and 274 nm. This suggested that these 

poorly resolved peaks corresponded to truncated peptide-PEG conjugates where the 

peptides were < 1 4  residues in length (phenylalanine was positioned at residue 15). The 

largest peak in the trace at 257 nm eluted at 15.24 min, the low absorbance at 214 nm 

suggested this was a truncated peptide > 15-residues, present in very small amounts 

relative to the other truncations. The peak with greatest intensity in the 214nm was next 

too elute (16.10 min), it is likely that this was again a truncated peptide > 15-residues, it 

was not full-length since the absorbance of at 274 nm attributable to the N-terminal 

tyrosine was very low.

The peak that most likely corresponded to the full-length peptide-conjugate 

eluted at 22.89 min. A strong signal was detected at 274 nm (N-terminal tyrosine 

residue), this corresponded with a poorly resolved peak at 214 nm. However, no signal 

was detected in the 257 nm trace suggesting the possibility that phenylalanine was not 

present. The baseline continued to rise at 274 nm until the end of the run. Subsequent 

efforts to obtain a clean baseline trace by repeating the run without injecting any sample
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Figure 4.9 C haracterisation of crude Phb-PEG by semi-preparative RP-HPLC.
Panel (a) shows the absorbance at 274 and 214 nm. Panel (b) shows the absorbance 
of a second sample at 257 nm. Atlantis® dC18 OBD™ 5 pm, 30 x 150 mm column.
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showed the presence of multiple peaks at 214 and 257 nm. This indicated that peptide- 

PEG conjugates were “adsorbing” or getting trapped in the column matrix and it took 

several attempts using high % ACN washes to clean the column. In light of these 

observations RP-HPLC was not used again in this study to purify PEGylated peptides 

for fear of damaging the columns used. Furthermore the study highlighted the 

difficulties in resolving truncated peptide-PEG conjugates that had high affinity for the 

Cl 8 media of the RP column. Subsequent studies detailed here describe solution-phase 

synthesis o f the mPEG-coiled-coil motif conjugates followed by the evaluation of size- 

exclusion and ion-exchange chromatography as alternative purification methods.

4.3.2 Preparation of N-terminal mPEG-Coiled-Coil Motif Conjugates Using 

mPEG-MAL

4.3.2A Characterisation ofmPEG-MXL by SEC and MALDFTOF MS

Prior to conjugation to each of the respective coiled-coil motif peptides it was 

necessary to characterise the commercial mPEG-MAL obtained with respect to 

molecular weight and purity. Using SEC, the mPEG-MAL obtained from NOF and 

Fluka eluted at approximately 17.6 and 17.7 mL, respectively (Figure 4.10). The Fluka 

product showed the presence of an additional broad, higher molecular weight 

“shoulder” (14.3-16.7 mL) and a second peak at 19.8 mL of much lower intensity, 

compared to the NOF product, which had a much cleaner trace. The latter showed good 

peak symmetry with no “shoulders” or other peaks in the chromatogram.

In these studies the Fluka product was only used in an early trial synthesis of 

mPEG-EbGP2609-630- All other conjugates were prepared using the NOF mPEG-MAL 

due to its greater purity. Prior to the synthesis of these conjugates, further 

characterisation of the NOF mPEG-MAL was conducted using MALDI-TOF MS 

(Figure 4.11). Spectra were acquired in both reflectron (Figure 4.11a) and linear mode 

(Figure 4.11b) (data shown for m/z values o f 4250 to 7250). No other peaks were 

detected between 1,000-10,000 m/z. The Gaussian distributions in both spectra were in 

good agreement, showed similar resolutions and signal to noise ratios, and as expected 

the interval between each peak corresponded an m/z of 44 (molecular weight of the 

PEG monomer). Moreover, assuming that z=l, the peaks of each Gaussian distribution 

were in excellent agreement'with the Mw of 5688 g mol’1 (Mn = 5522 g mol'1) 

determined by SEC (provided by NOF).
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Figure 4.10 SEC characterisation of the NOF and F luka mPEG-maleimide 
interm ediates. Chromatogram was obtained using two TSK-gel SEC columns 
(G4000 and G3000 PWXL) in series. V0 and Vb were 13.2 and 19.8 mL, 
respectively, mobile phase = PBS, pH 7.4 and flow rate = 1 mL min-1.

160



CHAPTER 4: Site-Specific PEGylation

(a) 1 0 (H M nby  SEC Mw by SEC

62504250 72505250
m/z

(b) lOO-i Mw by SECM nby SEC

4250 5250 6250 7250
m/z

Figure 4.11 C haracterisation by MALDI-TOF of the NO F mPEG-maleimide 
interm ediate. Panel (a) reflectron mode, panel (b) linear mode. Dotted lines 
represent the M n and Mw values of 5522 and 5688 g mol'1, respectively, provided 
by NOF (determined by SEC).
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4.3.2.2 Optimisation o f Solution-Phase Synthesis Using mPEG- EbGP2609-630

A preliminary synthesis of the mPEG-EbGP2609-630 conjugate was conducted on 
a small scale to define the analytical techniques that could be used to (i) monitor 
progress of the reaction, (ii) identify the product(s) and (iii) confirm the product purity.

The UV spectrum for the EbGP2609-630 peptide (positive) control showed a peak 

at 412 nm, which indicated the presence of free (reduced) R-SH (Figure 4.12). No 

signal was seen for the mPEG-MAL (negative) control, demonstrating that it did not 

interfere with the reduction o f DTNB to the carboxylato-4-nitrothiophenolate anion. At 

t=2 min, an 83 % reduction was seen in the UV absorbance at 412 nm for the reaction 

mixture, there was only a very small further decreases at t=l h (86 %) and t=3 h (91 %). 

This indicated that the nucleophilic addition reaction between mPEG-MAL and 

EbGP2609-630 was almost complete after as little as 2 min. It was decided to use a 

reaction time of 2 h for all further reactions to allow for possible peptide-peptide 

variability.

SEC chromatograms of mPEG-MAL (Fluka) and the putative mPEG-EbGP2609- 

630 conjugate (crude reaction mixture) showed similar profiles with only small 

differences in their elution volumes (Figure 4.13). However, the peak for the reaction 

mixture was broader, suggesting a more heterogeneous mixture as was expected.

The third observation was that the chromatograms showed marked differences in 

the relative intensities of the two peaks eluting at 19.83 mL and 21.10 mL. The bed 

volume (Vb) of the TSK-gel columns (G4000 PWXL and G3000 PWXL in series) was 

previously determined to be 19.8 mL, therefore it is difficult to speculate as to the exact 

identity o f these peaks. They are either low molecular weight contaminants, present in 

the original mPEG-MAL product (since they appear in both traces) or artefacts resulting 

from dissolved gasses in the sample. The latter is perhaps more likely as similar peaks 

have been observed in previous chromatograms during the characterisation of entirely 

different samples. Nonetheless, the chromatograms suggest that either, (i) the synthesis 

of the conjugate mPEG-EbGP26o9-63o was not successful or, (ii) the resolution of the 

column set-up is not sufficient to distinguish mPEG-MAL from mPEG-EbGP2609-630. 

Free peptide was too small to be characterised using this system.

When an alternative'SEC column (Superdex HR 10/30) with a separation range 

of 3,000 to 70,000 g mol'1 (determined for globular proteins) was used, the mPEG- 

MAL intermediate displayed four peaks eluting at 7.5, 10.7, 13.1 and 19.4 mL (Figure
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Figure 4.12 Rate of PEGylation of EbGP2609.630 monitored by Ellman’s assay.

163



CHAPTER 4: Site-Specific PEGylation

Small shift in elution volume

1(XH
I

Increased 
intensity of 
second and 
third peaks

mPEG-maleimide 
(shaded)

Crude reaction 
mixture

B  50

Change in peak width

13 14 15 16 17 18 19 20 21 22
Elution Volume (mL)

Figure 4.13 SEC (TSK-gel columns) characterisation of crude mPEG- 
EbGP2609_630. Chromatogram was obtained using two TSK-gel SEC columns (G4000 
and G3000 PWXL) in series. V0 and Vb were 13.2 and 19.8 mL, respectively, mobile 
phase = PBS, pH 7.4 and flow rate = 1 mL min-1.
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4.14). The EbGP2609-63o peptide produced a single peak at 15.7 mL and this was well 

resolved from all of the mPEG-MAL peaks. When the crude reaction mixture was 

analysed on this system it also showed four peaks (with very similar elution times) to 

those observed for the mPEG-MAL sample. However, almost no signal was observed 

at 15.7 mL (peak for free peptide) in the crude reaction mixture. This suggested that 

there was no free peptide left and so gave the first indication that the PEGylation 

reaction had been successful. Nonetheless, it was difficult to discern which peak 

corresponded to the conjugate as no new peaks (only different relative intensities) were 

seen in the reaction mixture compared with the mPEG-MAL intermediate.

Given these results, no further analyses were conducted using the reaction 

mixture from this preliminary synthesis due to the impure nature o f the mPEG-MAL 

(Fluka) used for conjugation. A second batch of mPEG-EbGP2609-63o and the synthesis 

of all the other conjugates (mPEG-PhbcYi85-2i4, mPEG-FosWc and mPEG-EbGP2566-589) 

were conducted using the higher purity mPEG-MAL obtained from NOF.

43,23 Solution-Phase Synthesis o f mPEG-PhbcYi85-2i4> mPEG-FosWc mPEG- 
EbGP2 6o9-63o and mPEG-EbGP2 $66-589

In each instance, upon addition of the acidic peptide solution to the solution of 

mPEG-MAL in phosphate buffer the solution rapidly changed from slightly turbid to 

almost clear within a matter o f seconds. If these observations indicated with 

progression of the nucleophilic addition reaction, they would corroborate the 

measurements of thiol content (Ellman’s assay) and so suggest the very rapid 

PEGylation o f the coiled-coil motifs.

Optimisation o f  Cation-Exchange Chromatography fo r  Purification o f  the Crude 

Reaction Mixtures

Due to the difficulties explained above (section 4.3.2.2) with SEC, an alternative 

approach using cation-exchange chromatography was developed to characterise the 

putative mPEG-coiled-coil motif conjugates.

The blank injection run conducted before sample injection showed the stable 

baseline of the UV (280 nm) detector and increase in conductivity (Figure 4.15a). 

There was a small lag between the increase in % of buffer B and the measured 

conductivity; this was typical of runs with this method. mPEG-MAL was shown to 

elute as a single peak in the wash phase of the method (c.a. 7 mL), with no adsorption to
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Figure 4.14 SEC (Superdex HR 10/30 column) characterisation of crude 
mPEG-EbGP2609_630. V0 and Vb were 7.5 and 24.0 mL, respectively, mobile phase = 
PBS, pH  7.4 and flow rate = 1 mL m in 1.
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Figure 4.15 Optimisation of conditions for cation-exchange chromatography 
characterisation. Panel (a) shows a typical “blank” injection (buffer A) profile. 
Panel (b) shows the elution profile o f  mPEG-maleimide (citrate buffer, 200 mM, pH
3.2)
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the column media (Figure 4.15b). This example shows the elution using a 200 mM 

citrate buffer, however, no change in the elution profile of mPEG-MAL was observed 

for any of the buffers (or molarities) used in this study.

Synthesis and Characterisation of mPEG-EBGP2609-630
Analysis by Ellman’s assay showed that the % free thiol in the reaction mixture 

had decreased by 94 % after 2 h, in line with the observation made for the previous trial 

syntheis of mPEG-EbGP2609-630* The iso-electric point of the peptide EbGP2609-63o was 

estimated to be 4.5, therefore a citrate buffer (pH 3.2) was used for purification and 

analysis (Table 4.3). First studies were conducted to characterise the elution profile of 

the free peptide EbGP2609-630 to ensure that it would bind to the column and elute in the 

gradient phase. Very little binding was seen when a 200 mM buffer was used (Figure 

4.16a), this indicated that the ionic strength of the mobile phase was too high. The 

chromatogram obtained using a 50 mM buffer showed that the amount of peptide 

binding to the column and eluting in the gradient phase increased with a corresponding 

decrease in the area o f the peak in the wash phase (Figure 4.16b). Optimal conditions 

were found using a 20 mM citrate buffer (Table 4.3) with less than 5 % of the peptide 

eluting in the wash phase (Figure 4.16c). Some of this peptide may have been 

truncated peptide lacking the charged residues necessary for binding to the column.

A typical elution profile o f the crude reaction mixture is shown in Figure 4.17 

along with an overlaid chromatogram obtained from injection of the EbGP2609-63o 

peptide alone. The crude reaction mixture showed three peaks: PI (7.6 mL), P2 (25.7 

mL) and P3 (34.6 mL). PI eluted in the wash phase whereas P2 and P3 eluted with 

increasing NaCl concentration as shown by the measure of conductivity (red). P3 eluted 

at the same volume as the EbGP2609-630 peptide, suggesting that this was a small amount 

of unreacted EbGP2609-63o peptide present in the reaction mixture. mPEG-MAL was 

previously shown to elute in the wash phase. Therefore, as only three species were 

predicted (Figure 4.2) to be present in the crude reaction mixture, it was likely that P2 

represented the mPEG-EbGP2609-630 conjugate. Fractions corresponding to P2 were 

collected, desalted and the concentration determined by UV spectroscopy such that the 

mass and % yields could be calculated (Table 4.3).

The purity of the mPEG-EBGP2609-63o conjugate isolated in this way was 

assessed using the same method of cation-exchange chromatograpy and a single peak 

was observed with an elution volume of 25.3 mL (Figure 4.18a). The molecular
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Figure 4.16 Characterisation by cation-exchange chromatography of the 
peptide EbGP260,.630 with decreasing buffer molarity.
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Figure 4.17 Purification of mPEG-EbGP2609_630 by cation-exchange 
chromatography (MacroCap SP). Solid line shows the typical elution profile of 
the crude reaction mixture. Dashed line shows the overlaid elution profile o f the RP- 
HPLC pure EbGP2609_630 peptide. Conductivity (mS cm '1) as a measure of 
increasing NaCl is shown in red (dotted line).
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Figure 4.18 Characterisation of purified mPEG-EbGP2609.630 by cation- 
exchange chromatography and MALDI-TOF MS. Panel (a) shows the analysis 
o f purified and desalted mPEG-EbGP2609_630 by cation-exchange chromatography 
(MacroCap SP). Panel (b) shows the M ALDI-TOF mass spectrum acquired for the 
same sample, the dotted lines show the expected M w  and M n o f the mPEG- 
EbGP2609_630 conjugate.
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weight o f this peak was determined using MALDI-TOF MS (Figure 4.18b). The mass 

spectrum showed a peak that was in good agreement with the theoretical Mn and Mw 

(8,245 g mol' 1 and 8,411 g m ol'1, respectively - represented by the dotted lines) 

calculated for the conjugate. It took a considerable effort to optimise the sample 

preparation parameters for the acquisition o f the MALDI-TOF mass spectrum as many 

approaches failed (Figure 4.18b). The matricies, salts and solvents along with the 

methods o f preparation that were investigated during the course of this study are 

summarised in Table 4.4.

Synthesis and Characterisation o f mPEG-FosWc

Analysis by Ellman’s assay showed that the % free thiol in the reaction mixture 

had decreased by 92 % after 2 h. This was comparable to that seen for the previous 

reactions. The same cation-exchange chromatography protocol was used for 

purification, and since the iso-electric point o f the FosWc peptide was estimated to be

4.2 the same citrate buffer (20 mM, pH 3.2) was used as the mobile phase (Table 4.3). 

A typical elution profile o f the crude reaction mixture is shown in Figure 4.19 along 

with an overlaid chromatogram obtained from injection o f the FosWc peptide alone. 

The crude reaction mixture displayed three peaks: PI (5.6 mL), P2 (32.9 mL) and P3 

(54.6 mL). PI eluted in the wash phase whereas P2 and P3 elute with increasing NaCl 

concentration as shown by the measure of conductivity (red). The elution volume o f P3 

(54.6 mL) corresponded reasonably well with the single peak o f the RP-HPLC pure 

FosWc peptide (51.1 mL). This suggested that P3 was unreacted FosWc peptide and PI 

as discussed above (section 4.3.2.3) was unreacted mPEG-MAL. P2, which had a broad 

elution profile with two shoulders, one before the main peak at 28.2 mL and the second 

at 38.2 mL was assumed to be the mPEG-FosWc conjugate. As before, fractions 

corresponding to P2 were collected, desalted and the concentration determined by UV 

spectroscopy such that the mass and % yields could be calculated (Table 4.3).

The purity o f the mPEG-FosW c conjugate isolated in this way was assessed 

using the same method o f cation-exchange chromatograpy and a single peak was 

observed with an elution volume o f 32.7 mL (Figure 4.20a). Characterisation by 

MALDI-TOF MS (Figure 4.20b) confirmed that this peak was o f the correct expected 

mass as the spectrum showed a peak that was in good agreement with the theoretical 

Mn and Mw (9,881 g mol' 1 and 10,047 g m ol'1, respectively - represented by the dotted 

lines) for the conjugate.
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Figure 4.19 Purification of mPEG-FosWc by cation-exchange chromatography 
(MacroCap SP). Solid line shows the typical elution profile o f the crude reaction 
mixture. Dashed line shows the overlaid elution profile o f the RP-HPLC pure 
FosWc peptide. Conductivity (mS cm*1) as a measure o f increasing NaCl is shown in 
red (dotted line).
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Figure 4.20 Characterisation of purified mPEG-FosWc by cation-exchange 
chromatography and MALDI-TOF MS. Panel (a) shows the analysis of purified 
and desalted mPEG-FosWc by cation exchange chromatography (MacroCap SP). 
Panel (b) shows the MALDI-TOF mass spectrum acquired for the same sample, the 
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Further characterisation by 2D DOSY showed that the mPEG-FosWc conjugate
v.

had a higher diffusion coefficient than either mPEG-MAL or FosWc peptide (Figure 

4.21). This confirmed that the conjugate had a larger molecular size/hydrodynamic 

volume. Furthermore, no free mPEG-MAL or FosWc peptide was detected in the 

mPEG-FosWc conjugate sample, corroborating the assessment of purity made by 

cation-exchange chromatography. The DOSY analysis also showed the presence of a 

small, low molecular weight contaminant (2.3 and 2.4 ppm on FI axis) in the purified 

mPEG-FosWc conjugate sample. This is likely to be citric acid, which suggested that 

the desalting protocol used post-purification could be improved.

Synthesis and Characterisation o f mPEG-PhbcYi85-2i4

Analysis by Ellman’s assay showed that the % free thiol in the reaction mixture 

had decreased by 97 % after 2 h , this was a slightly bigger decrease than seen 

previously. The same cation-exchange chromatography protocol was used as for the 

purification of the previous conjugates, with one alteration. Since the iso-electric point 

of the P h b cY i85 -2 i4  peptide was estimated to be 10.2, a phosphate buffer pH 6.2 was used 

as the mobile phase (Table 4.3). Initially a 50 mM buffer was used, however the 

chromatogram showed only a single peak in the wash phase, this indicated that the 

putative conjugate did not bind to the column media (data not shown) and as such, the 

molarity of the buffer was reduced to 10 mM. The typical chromatogram obtained for a 

sample of the crude reaction mixture showed two peaks: PI (5.1 mL) and P2 (18.8 mL) 

(Figure 4.22). RP-HPLC pure P h b cy i8 5 -2 i4  peptide eluted as a single peak at 27.7 mL, 

therefore, P2 was assumed to represent the mPEG-PhbcYi85-2i4 conjugate. There was no 

sign of unreacted P h b cY i85-2 i4  peptide in the crude reaction mixture. Fractions 

corresponding to P2 were collected, desalted and the concentration determined by UV 

spectroscopy such that the mass and % yield could be calculated (Table 4.3).

The purity of the mPEG-PhbcYi85-2i4 conjugate isolated in this way was assessed 

using the same method of cation-exchange chromatograpy and a single peak was 

observed with an elution volume of 22.4 mL (Figure 4.23a). Characterisation by 

MALDI-TOF MS (Figure 4.23b) failed to confirm the estimated molecular weight for 

the conjugate (Mn= 9,156 g mol'1, Mw = 9,322 g mol'1). Instead the mass spectrum 

showed two peaks corresponding to molecular weights of approximately 3,000 g mol'1 

and 5,900 g mol'1 (assuming that z=l).
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Figure 4.23 Characterisation of mPEG-PhbCYi85_2i4 by cation-exchange 
chromatography and MALDI-TOF MS. Panel (a) shows the analysis of purified 
and desalted mPEG-PhbCY185_2 i4  by cation exchange chromatography (MacroCap 
SP). Panel (b) shows the MALDI-TOF mass spectrum acquired for the same 
sample.
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Synthesis and Characterisation o f mPEG-EbGP2cY566-589

Analysis by Ellman’s assay showed that the % of free thiol in the reaction 

mixture had decreased by 83 % after 2 h, slightly less than seen for previous reactions. 

A further aliquot was assayed at 2.5 h, this showed a decrease of 84 % which was not 

significantly different to the measurement at 2 h, therefore the reaction was stopped.

A similar cation-exchange chromatography protocol was used as for the 

purification of the previous conjugates. As the iso-electric point of the Phbcyi85-2i4 

peptide was calculated to be 12.1, a phosphate buffer (10 mM), pH 7.4 was used for 

purification and analysis (Table 4.3). Normally, a buffer of only 1 -2 units below the 

iso-electric point is used, however, there was concern that a basic buffer may lead to 

degradation of the peptide. A typical elution profile of the crude reaction mixture is 

shown in Figure 4,24. The EbGP2cY566-589 peptide eluted as a single peak in the wash 

phase and there was not sufficient peptide available to conduct further studies to 

optimise the conditions (data not shown). The first peak to elute indicated the presence 

of two separate compounds as two “spikes” were observed. This suggested that any 

unreacted EbGP2cY566-589 peptide eluted along with mPEG-MAL in the wash phase. 

Two poorly resolved peaks eluted at 24.2 and 34.6 mL as the NaCl gradient was 

applied. In light of previous observations it would seem probable that one or more of 

these peaks corresponded the mPEG-EbGP2cY566-589 conjugate. Fractions 

corresponding to each peak were collected, lyophilised, and desalted using a PD-10 

column (secion 2.2.2.2). Two fractions (> 5,000 g mol"1 and < 5,000 g mol"1) were 

collected for each peak and lyophilised before analysing by MALDI-TOF MS. Mass 

and % yields are shown in Table 4.3. MALDI-TOF analysis of the low molecular 

weight fractions did not show any peaks between 1,000 and 10,000 m/z (data not 

shown). Subsequent analysis of the higher molecular weight fractions failed to confirm 

the estimated molecular weight of the mPEG-EbGP2cY566-589 conjugate (Mn= 8,622 g 

mol'1, Mw = 8,788 g mol'1). However, for both samples the mass spectrum showed the 

same two peaks corresponding to molecular weights of approximately 3,000 g mol'1 and 

5,900 g mol'1 (assuming that z=l) (Figure 4.25). These values are very similar to the 

calculated molecular weights for the EbGP2cY566-589 peptide and mPEG-MAL, however 

the resolution of the peaks is very different to that which would be expected either for a 

mono-disperse peptide or for unreacted mPEG-MAL.
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Figure 4.24 Purification of mPEG-EbGP2CY566_589 by cation-exchange 
chromatography (MacroCap SP). Solid line shows the typical elution profile of 
the crude reaction mixture. Conductivity (mS cm '1) as a measure of increasing NaCl 
is shown in red.
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Figure 4.25 Characterisation of mPEG-EbGP2CY566-589 by MALDI-TOF MS.
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4.4 Discussion

4.4.1 Comparison of the Relative Merits of the Synthetic Methods Used

PEGylation by solid-phase synthesis was first investigated using a TentaGel 

PAP resin as the solid support. Peptides were “grown” from the NH2 terminated PEG 

chains using an Fmoc-SPPS chain elongation approach as first described by Fields & 

Noble, (1990) and more recently by Rosier et al, (2003). This approach did not 

improve the solubility of the EbVP35cY88-ii9 peptide (discussed in Chapter 3, section 

3.3.2.3) however it did generate a water-soluble PhbcYi85-2 i4-PEG conjugate.

One of the main concerns with this synthetic approach was that the removal of 

PEGylated truncation peptides or unreacted PEG by RP-HPLC would be an 

insurmountable challenge in the time available. Whilst ideal for the preparative-scale 

purification of the coiled-coil motif peptides (Chapter 3), the RP-HPLC column 

(Atlantis® dCi8 OBD™ 5 pm, 30 x 150 mm) was not optimal for the purification of the 

C-terminal PEG-conjugates. Fundamentally, it did not provide sufficient resolving 

power at high ACN concentrations, nor was the pore size large enough to prevent 

clogging of the sample within the column. These issues were only fully realised during 

attempts at purify the PhbcYi85-2i4-PEG conjugate.

As outlined in Chapter 1 one of the goals of this study was to develop methods 

that could be easily adapted for the preparation of conjugates for clinical study in the 

longer-term. The PEG-conjugates that have recently received FDA approval (see Table 

4.1) have all used higher molecular weight PEGs (20,000 to 40,000 g mol"1), therefore it 

was important that the synthetic approach developed here could be adapted accordingly. 

The molecular weight of the PEG grafted onto the commercially available TentaGel 

PAP resin is approximately 2,000 to 3,000 g mol"1 (www.rapp-polymere.com). The 

possibility of modifying the TentaGel PAP resin with a higher molecular weight PEG 

existed, however this is capped at 10,000 g mol'1; any higher and there would be 

insufficient room within the polystyrene matrix to permit efficient synthesis of peptides 

from the NH2 termini of the PEG chains (personal communication from Dr Rapp, Rapp- 

Polymere).

In light of these early results it was decided to abandon the solid-phase approach 

for the preparation of peptide-PEG conjugates and focus on the development of a
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solution-phase methodology. Towards this end, it was first necessary to characterise the 

mPEG-MAL used for synthesis and develop a “tool-kit” of analytical techniques.

4,4,1,1 Quality of the mPEG-MAL intermediate and the Challenges of Solution- 

Phase Synthesis
Characterisation of the first trial synthesis of mPEG-EbGP2609-630 (which used 

the Fluka mPEG-MAL) was hampered by the impure nature of the product. As a result 

of the multiple peaks detected in the SEC chromatograms of the crude reaction material 

it was impossible to discern whether or not the solution-phase PEGylation was 

successful. SEC chromatography of the raw material (mPEG-MAL) clearly 

demonstrated the greater purity of the NOF product over that from Fluka (Figure 4.9). 

Furthermore, the data obtained for the NOF mPEG-MAL correlated well with the 

certificate of analysis provided by the supplier stating the sample to be of superior 

purity with a polydispersity of 1.03 and Mn of 5,522 g mol"1.

The solution-phase synthesis of the conjugates described in this study was 

adapted from a method described by Chen et al, 2004 for the synthesis of PEGylated 

poly-lysine conjugates. One of the main differences between the approach used here 

and the one adopted by Chen et al, (2004) was that the coiled-coil motif peptides were 

not treated with a reducing agent prior to synthesis. Such treatment was not considered 

necessary since it was unlikely that disulphide bonds would have had the opportunity to 

form post-synthesis; the environment in which they were prepared and stored was 

acidic, very cold (- 80 °C) and devoid of oxygen by virtue of degassing all the solvents 

used. Furthermore, if either dithiolthreitol (DTT) or tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP) were used as reducing agents they would have required removal 

prior to addition of mPEG-MAL since studies have shown that either agent can 

competitively react with maleimide derivatives (Shafer et al, 2000).

In order to assess the progress of the nucleophilic addition reaction between the 

cysteine thiol and the mPEG-MAL intermediate it was necessary to develop a suitable 

analytical method. Three possibilities existed: (i) to monitor appearance of the 

conjugate, (ii) to monitor disappearance of the maleimide moiety and (iii) to monitor 

disappearance of the thiol moiety. Use of Ellman’s reagent to measure the latter 

(Ellman, 1959) proved a very useful approach. The assay suggested that the reaction
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proceeded very quickly (> 80 % complete in 2 min), this was surprising, however, a 

recent study by Tom et al, (2007) in which mPEG-MAL was conjugated to 28-38- 

residue peptides supported this observation. Furthermore, as the assay demonstrated 

that the thiol concentration decreased following PEGylation, one may assume that site- 

specific (thiol-directed) conjugation was successfully effected.

It is important to note here, that while Ellman’s reagent was not used in this 

study to quantify the concentration of thiols present (merely to provide a qualitative 

comparison) the extinction coefficient of 1360 at 412 nm published in the original 

reference (Ellman, 1959), was found to be an underestimate (Collier, 1973); the 

currently accepted value is 1414.

4.4.2 Challenges of characterising mPEG-coiled-coil conjugates

While Ellman’s assay gave an indirect indication that the PEGylation reaction 

was successful, philosophically it was more desirable to use an additional method that 

could confirm the existence of an mPEG-coiled-coil conjugate rather than the 

disappearance of a reactive moiety.

RP-HPLC and SEC

As discussed in section 4.4.1 characterisation by RP-HPLC was not possible 

with the column available (Atlantis® dCig OBD™ 5 pm, 30 x 150 mm). SEC was also 

assessed towards characterising the putative conjugate mPEG-EbGP2609-63o. However, 

neither of the columns used in this study were able to resolve mPEG-MAL from the 

mPEG-coiled-coil motif conjugate. It has been reported that PEGs typically appear 

between five and ten times larger than proteins of similar molecular weight due to their 

capacity to bind large quantities of water molecules (reviewed in Roberts et al, 2002). 

Thus, one may conclude that coupling of the coiled-coil motif peptide to the PEG 

intermediate did not increase the hydrodynamic volume relative to that of mPEG-MAL 

alone. SEC using the Superdex HR 10/30 column did however show that no peptide 

was present in the crude reaction mixture of the trial synthesis; this again gave an 

indirect indication that the reaction was successful.
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Cation-exchange chromatography

This approach made it possible to separate the three predicted species in the 

crude reaction mixture: unreacted mPEG-MAL, peptide and the desired conjugate. 

Thereby, giving the first direct indicator that the PEGylation reaction was successful.

While it was expected that mPEG-MAL would elute in the wash phase, 

resolving the conjugate from unreacted peptide was an unexpected benefit of this 

technique. Since the iso-electric point of the peptide had not been altered by 

conjugation (as it would if amine-directed conjugation had been effected) the affinity of 

both species for the cation-exchange media was predicted to remain the same. It may 

be concluded that the PEG chain had a steric effect and thereby reduced the binding 

affinity of the peptide with the column media.

In this study, cation-exchange chromatography was particularly useful since 

with minor alterations to the protocol used (typically buffer composition, pH and 

molarity), it proved to be adaptable for the purification and analysis of all of the 

conjugates prepared. The mPEG-EbGP2609-63o peptide was the simplest to work with 

since the peptide contained a tryptophan residue rather than tyrosine as the UV- 

chromophore. The extinction coefficient of tryptophan is approximately 3.5 times that 

of tyrosine, therefore detection with the fixed wavelength 280 nm detector was much 

easier. Of the four conjugates prepared in this study, mPEG-EbGP2cY566-589 was the 

most difficult. At least two poorly resolved peaks were detected where the conjugate 

was expected to elute. As a homo-trimeric coiled-coil motif, one possible explanation is 

that the peaks represent differing oligomeric states. This suggestion is supported by 

previous studies (Vandermeulen et al, unpublished data - personal communication) with 

PEGylated homo-oligomeric coiled-coil motifs that showed multiple peaks in SEC 

chomatograms.

MALDI-TOF MS

With a minor modification to the optimised spotting protocol adapted from the 

method described by Meier and Schubert, (2003) it was possible to confirm the 

expected molecular weights of mPEG-EbGP2609-63o and mPEG-FosWc. The 

indisputable advantage of characterisation by MALDI-TOF MS is that it cannot give a 

“false positive” result. Therefore, the existence of the peaks in the expected mass-range 

was conclusive proof that mono-PEGylated conjugates had been successfully 

synthesised. However MALDI-TOF can, and often does give a “false-negative” result
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if the method of sample preparation does not permit ionisation of the conjugate. It is 

likely (in light of the cation-exchange chromatography data) that this was the case for 

the conjugates mPEG-PhbcYi85-2 i4 and mPEG-EbGP2cY566-589. Further optimisation of 

the sample preparation method is required to enable MALDI-TOF spectra to be 

acquired. Recent advances in MALDI-TOF MS have even shown that it is possible to 

identify (or confirm) the site of PEGylation using a modified “reflector in-source decay 

analysis” approach (Yoo et al, 2009). A “crystal seed” method was used in conjunction 

was sinapinic acid or DHB as the matrix; it is possible that this approach could be 

successfully used to characterise either mPEG-PhbcYi85-2i4 or mPEG-EbGP2cY566-589- 

However, the caveat is that since the peptide sequences here are entirely different to 

those used in the above study the successful acquisition of spectra cannot be guaranteed.

DOSY

Characterisation by 2D DOSY was only conducted for mPEG-FosWc conjugate 

as it was the only conjugate taken to CIPF in Valencia for the 2D NMR target 

hybridisation studies detailed in Chapter 5. The 2D DOSY spectrum is shown here as it 

supports the other characterisation data. It has a greater resolving power that the SEC 

approaches described earlier as it demonstrated that the conjugate had a greater 

molecular size/hydrodynamic volume than either mPEG-MAL or FosWc as would be 

expected. The ease with which the spectra were acquired, and lack or requirement for 

complex sample preparation makes 2D DOSY the analytical technique of choice. It is 

probable that a calibration curve could be constructed that would enable the molecular 

weight of mPEG-coiled coil conjugates to be estimated by 2D DOSY, however, 

MALDI-TOF MS remains the better approach for determining absolute molecular 

weight (provided the sample can be ionised effectively).

4.4.3 Conclusions

Conjugation of peptides to mPEG-MAL using the solution-phase MAL/thiol 

reaction enabled site-specific conjugation. This was particularly important to avoid 

disrupting the alpha-helical structure of the coiled-coil motif. Often it is difficult to 

remove free polymer as well as free peptide from such conjugates. However, a method 

optimised from that described by Chen et al (2004) made it possible here to prepare 

samples of very high purity (> 95 %) and suitable for further study by NMR and CD 

spectroscopy (Chapter 5) and biological assessment (Chapter 6).
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CHAPTER 5

Investigation of mPEG-Coiled-Coil Motif 
Target Hybridisation Using Phb : E2F1 and 
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5.1 Introduction

The primary aim of this study was to investigate whether PEGylated-coiled-coil 

motifs would indeed be able to hybridise with their respective targets via the formation 

of heterodimeric coiled-coils in preference to homodimers, which would have no use as 

polymer therapeutics. The transcription factors E2F1 and c-Jun were chosen as targets 

to test this hypothesis.

Putative Phb:E2Fl Coiled-Coil Interaction

As discussed in Chapter 1 (section 1.5.1), Wang et al, (1999) first demonstrated 

that the tumour suppressor protein PHB suppressed the activity of the transcription 

factor E2F1. Joshi et al, (2003) subsequently made the assertion that the PHB : E2F1 

interaction was mediated by a putative coiled-coil domain in the PHB protein 

(illustrated in Figure 3.8). Moreover, it was also shown that a peptide corresponding to 

the PHB coiled-coil domain was able to suppress E2F1 mediated transcription (Joshi et 

al, 2003).

These studies sought to investigate whether the PHB derived coiled-coil motif 

peptides (Phbxi85-2i4) prepared in Chapter 3 could indeed hybridise with the E2F1 target 

protein via the formation of a coiled-coil. If so, to see whether PEGylation of Phbcyiss- 

214 (Chapter 4) would affect this hybridisation. First studies were conducted using CD 

spectroscopy to investigate the interaction of the coiled-coil motif peptides (Phbig5_2i4 

and Phbvi85-2i4) with peptides (E2Fla and E2Flb), which were designed to model the 

E2F1 target hybridisation domain (Figure 5.1a). The ideal approach to assess the 

mechanism of target hybridisation was to try to use full-length E2F1 protein, rather than 

the E2F1 derived peptides used in the early studies. Towards this end, experiments 

were conducted with the aim of expressing recombinant human (rh) E2F1 protein in 

sufficient quantities to allow characterisation of the Phb : E2F1 interaction using CD or 

NMR spectroscopy (Figure 5.1b).

c-Jun:FosWc Coiled-CoilInteraction

Since there was doubt over whether the Phb : E2F1 interaction was mediated by 

the formation of a coiled-coil, it was considered important to study a second target, 

hence c-Jun was chosen. As discussed in Chapter 1 (section 1.5.2), c-Jun constitutes
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(a) Phb peptide 1 E2Fla & E2Flb peptides 1
Chapter 3 Chapter 3

Phb : E2F1
Peptide-Model Interaction CD Spectroscopy |

(b) Phb peptide I rhE2Fl protein 1
Chapter 3 Chapter 5

Phb : E2F1
Protein-Model Interaction CD  Spectroscopy

(c) FosWc peptide 1 mPEG-FosWc 1 c-Jun peptide 1 [15N]r-c-Jun peptide 1
Chapter 3 Chapter 4 Chapter 3 Chapter 5

I
FosWc/mPEG-FosWc : c-Jun

Peptide-Model Interaction

CD Spectroscopy | 

N M R  Spectroscopy I

Legend:

Inputs: Peptides or conjugates synthesised in chapters 3 and 4 

Proposed target hybridisation investigated in this study 

Outputs: Analytical technique(s) used to investigate coiled-coil formation

Figure 5.1 Schematic overview of the three target hybridisation studies 

conducted.
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one half of the heterodimeric and oncogenic AP-1 transcription factor (reviewed in 

Eferl & Wagner, 2003; Shaulian & Karin 2002). The heterodimeric coiled-coil that 

drives the hybridisation of c-Jun and c-Fos (Figure 3.14a) has been shown to exist 

using X-Ray crystallography (Glover & Harrison, 1995). FosW, a synthetic mutant of 

c-Fos was designed as a potential therapeutic with a higher affinity for the bZIP domain 

of c-Jun than native c-Fos (Mason et al, 2006). In this study, using the FosWc peptide 

prepared in Chapter 3 and the mPEG-FosWc conjugate (Chapter 4) the interaction with 

the coiled-coil domain of c-Jun was studied (Figure 5.1c). It was first necessary to 

consider the analytical techniques that might be used to confirm target hybridisation. 

NMR and CD spectroscopy were deemed to offer a more definitive approach than other 

methods such as native PAGE. While it was possible to conduct CD spectroscopy 

experiments using the c-Jun peptide synthesised in Chapter 3, to enable sophisticated 

characterisation by 2D !H, 15N-Heteronuclear Single Quantum Coherence (HSQC) 

NMR spectroscopy it was necessary to synthesise a 15N-labelled c-Jun peptide ([15N]r-c- 

Jun) using a recombinant approach.

This peptide could theoretically have been prepared using Fmoc-SPPS (Chapter 

3), however, Fmoc protected [15N]amino acids typically cost in excess of $300-1000 per 

g (Cambridge Isotope Laboratories, Inc. 2008). This made the prospect of preparing the 

[15N]c-Jun peptide by Fmoc-SPPS a very expensive venture. With a recombinant 

approach, it is necessary to enrich the growth media with a single 15N source such as 

[15N]H4C1; available for as little as $40 per g (Cambridge Isotope Laboratories, Inc. 

2008). As such, a recombinant expression system was chosen to generate [15N]r-c-Jun.

The background and issues that were considered before choosing the methods 

used for the preparation of rhE2Fl and [15N]r-c-Jun, and subsequently analysis of target 

hybridisation by NMR and CD spectroscopy are summarised below (sections 5.1.1 and 

5.1.2, respectively).

5.1.1 Development of a Method for Recombinant Expression and Purification of 

Targets rhE2Fl and r-c-Jun/[15N]r-c-Jun

The general steps involved in the recombinant expression of a protein or peptide 

as summarised in Figure 5.2. For a comprehensive assessment of protein production 

and purification the reader is referred to a recent review article by Graslund et al, 

(2008).

190



CHAPTER 5: Studies on Target Hybridisation Using Phb : E2F1 & c-Jun : FosWc as Models

Obtain the DNA either by 
amplifying genomic DNA 
or by total gene synthesis.

I
Clone the full-length DNA (or the 
fragment of interest) using ligation- 

independent cloning (LIC) into an E. 
coli expression vector (plasmid).

I

Use a pre­
existing or 

commercially 
available 
plasmid.

Engineer T7 RNA polymerase-driven expression and 
an N-terminal tag e.g. hexahistidine, ensure a cleavage 
site is included for a sequence-specific protease e.g. 

TEV protease to enable removal o f the tag.

i
Express protein in a derivative of the BL21 (DE3) E. coli strain, with 

induction at low temperature (15-25 °C) in rich medium and with good 
aeration. If exp res sing proteins from organisms that have codon biases 

differing from those used by E. coli, use a strain supplemented with 
the appropriate tRNA genes.

I

Solubilise and purify the protein in a well-buffered solution 
containing an ionic strength equivalent to 300-500 mM o f a 

monovalent salt, such as NaCl.

I

Use immobilised metal affinity chromatography (IM AC) as the 
initial purification step.

I
If additional purification is required, use size-exclusion chromatography. If 

necessary, use ion exchange chromatography as a final ‘polishing’ step.

I

Remove the affinity tag using a recombinant, hexahistidine-tagged 
protease and reapply the sample to IM AC column to remove the 

protease and any cellular proteins that bound to the metal affinity resin.

Figure 5.2 The consensus protocol for recombinant protein expression and 
purification, recommended by Graslund (2008).
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Before continuing, it may be helpful to clarify the nomenclature used in this 

study. The prefix “r” is used following standard convention to denote a recombinant 

peptide/protein. This is followed by the letter “h” if the source of the DNA used to 

translate the peptide/protein is human, hence rhE2Fl. In relation to r-c-Jun, the letter 

“h” is intentionally omitted due to the structural alterations that were made to the 

peptide sequence, first by Mason et al, (2006), and subsequently in the course of this 

study.

Plasmid Assembly/Acquisition, Purification and Characterisation

The starting point for the expression of any protein or peptide involves either the 

assembly of a plasmid encoding the appropriate DNA sequence or, the acquisition of an 

existing plasmid i.e. one that has been prepared previously. For this study, a plasmid 

encoding the rhE2Fl protein (pGEX-KG-(GST)-E2Fl) was a kind gift from Professor 

N. La Thangue (CRUK) (Bandara et al, 1993; Girling et al, 1993), while the plasmid 

encoding r-c-Jun (pETl 5B-cytb5-ENLYFQGT-r-c-Jun) was custom designed and 

characterised by Dr A.K. Schott (CIPF).

The pET15B-cytb5-ENLYFQGT-r-c-Jun plasmid was prepared in advance in 

sufficient quantities for use in this study, however, in the case of the pGEX-KG-(GST)- 

E2F1 plasmid it was first necessary to amplify the stock solution to ensure enough 

material for characterisation and subsequent optimisation of expression. This is now a 

fairly straightforward laboratory technique for which there are many commercially 

available kits (e.g. Qiagen) depending upon the yield of plasmid desired.

Characterisation of the pGEX-KG-(GST)-E2Fl plasmid and verification of the 

DNA sequence along with the ATG start and TGA stop codons was crucial prior to 

attempting expression since this data was not in existence (La Thangue - personal 

comminucation). This work was conducted under the tutelage of Dr S. Richardson. A 

quick assessment of purity to determine the extent of protein contamination is typically 

made by determining the ratio of UV absorbance of the sample at 260 nm to that at 280 

nm (Glasel, 1995). The basis of this analysis rests on the Beer-Lambert Law (as defined 

in Chapter 2, Section 2.2.1.1). DNA absorbs UV radiation strongest at 260 nm, with 

weaker absorption at 280 nm, for a protein or peptide with one or more aromatic 

residues the inverse is true. Therefore, pure nucleic acid samples typically have an 

A260-A280 ratio of 2.0, while pure protein samples would be 0.57. Thus, for samples that 

contain a mixture of protein and DNA the ratio is influenced by the UV absorbance
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spectra of both macromolecules and so reads somewhere between 0.57 and 2.0. The 

generally accepted benchmark for purity is an A26o:A28o ratio of between 1.8 and 2.0 

(reviewed in Middaugh et al, 1998).

Further plasmid characterisation can be conducted using either agarose gel 

electrophoresis (Helling et al, 1974) to determine its size (number of base pairs), or 

ideally automated DNA sequencing to confirm the nucleotide sequence (reviewed in 

Fran$a et al, 2002). The former is generally only valuable if the vector map is known 

so that a restriction digest may be performed. Electrophoresis of “uncut” plasmid DNA 

is often of limited value (as shown later in this study) due to the propensity of the DNA 

molecules to super-coil, hence making accurate determinations of size impossible 

(reviewed in Middaugh et al, 1998). The best approach is to sequence the plasmid 

using either commercially available or custom primers (oligonucleotides) followed by 

amplification in the presence of dye with the polymerase chain reaction (PCR) 

(reviewed in Fran9 a et al, 2002).

Choice o f Expression Organism/Strain and Optimisation o f  Expression

Once characterised, it was important to consider the strain of bacteria (or other 

organism) in which to express the plasmid. For most peptides and proteins, Escherichia 

coli (E. coli) has proven a suitable expression host (Peti & Page, 2007) and is the 

recommended starting point for the recombinant expression of any protein (reviewed in 

Graslund et al, 2008).

Prior to commencing this study the expression of the r-c-Jun peptide was found 

to be optimal in BL21-CodonPlus (DE3) strain of E. coli (Dr A.K. Schott, personal 

communication). Similarly, expression of the rhE2Fl protein was previously 

demonstrated in the BL21 (DE3) E. coli strain (Dr K. Luoto, personal communication). 

The BL21 (DE3) strain is often ideal for high-level protein production as it has the 

advantage of being deficient in Ion and ompT proteases (Studier et al, 1990). Moreover 

the designation “DE3” indicates that it is compatible with the T7 lacO promoter system 

and is therefore suitable for induction with IPTG (Studier et al, 1990). The 

“CodonPlus” strain of BL21 E. coli designed by Stratagene has the added advantage of 

containing extra copies of tRNA genes normally rare in E. coli but sometimes required 

for the biosynthesis of proteins originating from other organisms 

(www.stratagene.com). Optimisation of culturing conditions such as media
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composition, incubation temperature, induction time etc. was determined for each 

protein expression system during the course of this study.

Lysis and Purification

Once an optimal level of expression has been confirmed, typically by denaturing 

SDS-PAGE analysis with Coumassie Blue staining (Bradford, 1976), the E. coli host 

needs to be lysed (as neither r-c-Jun nor rhE2Fl are thought to be secreted). The most 

efficient methods use mechanical forces in the form of probe sonication or the use of a 

French press (reviewed in Graslund et al, 2008). Other methods, such as enzymatic 

degradation of the bacterial cell wall using lysozyme followed by osmotic shock are 

often less efficient without the use of detergents. Due to the nature of this study, it was 

essential that detergents were not used in the preparation of either rhE2Fl or r-c-Jun as 

they can dramatically affect the 3D structure of the protein/peptide and are very difficult 

to remove (Dr S. Richardson, personal communication).

To purify the over-expressed protein/peptide from the crude cell lysate a number 

of different tags have been developed, of which glutathione s-transferase (GST) and 

hexahistadine tags are probably the most common. They are usually encoded in the 

vector so that the tag is either immediately 5’ or 3’ of the protein/peptide DNA 

sequence. When over-expressed the fusion protein can then be isolated from the crude 

lysate using affinity chromatography. After purification the tag can be site-specifically 

cleaved using a protease such as TEV to yield the desired protein/peptide (Carrington & 

Dougherty, 1988). Upon comparison of most of the available affinity tags, not one has 

been shown to be consistently superior in the preparation of soluble and active 

recombinant proteins/peptides (Amau et al, 2006).

In this study, rhE2Fl was expressed as a glutathione-s-transferase (GST) fusion 

protein whereas an alternative tag, (derived from cytochrome b5 - cytb5) in combination 

with a hexahistidine domain was engineered into the r-c-Jun expression plasmid. Use 

of the highly soluble, heme-binding domain of cytb5 as a tag, was first described in a 

pioneering study by Mitra et al, (2005). The authors noted that, “very few proteins 

possess the dual characteristics of high expression and high solubility that would qualify 

them to be “good hosts” for fusion protein systems” (Mitra et al, 2005). Cytb5 has both 

of these key characteristics and significantly has the added advantage that it is a 

coloured protein. The distinct red/orange colour would make it possible to visually
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check the efficiency of each step in the expression protocol without having to rely 

solely on denaturing SDS-PAGE and/or western blotting techniques.

5.1.2 Analytical Techniques Used to Study Target Hybridisation

5.1.2.1 CD Spectroscopy

CD spectroscopy was used in several studies to investigate coiled-coil motif and 

mPEG-coiled-coil motif target hybridisation. CD spectroscopy is an excellent tool for 

the analysis of peptide and protein structure as the shape of the far-UV CD spectrum 

can be correlated with different types of secondary structure. Typical spectra for 

peptides, including an a-helix, a P-sheet, an aperiodic/random coil, a p-tum-1 and a (3- 

tum-2 are shown in Figure 5.3 (Perczel et al, 1991). The a-helix is of particular 

importance here as it is a constituent of the coiled-coil, and as discussed in Chapter 1 

(section 1.2) a “coiled-coil motif’ is defined in this thesis an a-helical peptide with the 

propensity to form a coiled-coil. a-Helicies are characterised by a spectrum with two 

distinct minima at approximately 208 and 222 nm and a sharp peak at 195 nm 

approximately twice the intensity of the minimum at 208 nm (Greenfield, 2006) 

(Figure 5.3). From the analysis of many protein and peptide structures it has been 

shown that a coiled-coil is probable when the ratio of the two minima (same [0 ]2O8 • 

[0]222) is > 1 (Lau et al, 1984). However, CD spectroscopy does not give the residue- 

specific resolution of data that can be obtained by NMR spectroscopy. Furthermore, it 

is not possible with CD spectroscopy to accurately detect a switch between a 

homooligomeric and heterooligomeric state. Since many peptides/proteins with a 

propensity to form a coiled-coil may also homooligomerise it was considered important 

to also study target hybridisation using 2D NMR techniques that can differentiate 

between homo and hetero-oligomerisation. A brief introduction to the NMR 

spectroscopy experiments used here is given below.

5.1.2.2 2D 'H, lsN-HSQC and ‘H-NMR Spectroscopy

NMR spectroscopy is probably the most powerful tool with which to study 3D 

structure and the interactions of macromolecules in solution, unlike X-Ray 

crystallography where characterisation is conducted in a crystalline state (reviewed in 

Zuiderweg, 2002). The method is particularly attractive as it is possible to adjust a wide 

range of solution conditions such as temperature, pH, buffer composition and salt
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a-helix: characteristic 
maximum at 195 nm

—b— a-helix  
—m- - p-sheet 

aperiodic 
♦ P-tum 1 

~ P-tum 2

80000-

70000-

60000-

50000-

40000-

30000-

20000 -

10000

10000-

20000 -

30000-

40000-
a-helix: characteristic 

minima at 208 and 222 nm

-50000H— i i— i— r i— i— i— i— i— i— i— i— i i— r - ■ i
185 195 205 215 225 235 245 255 265

Wavelength (nm)

Figure 5.3 Characteristic CD spectra of common peptide structures. Spectra 

adapted from Perez el etal, (1991).
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concentration in order to model a physiological environment. Conversely, one may also 

adjust the conditions to investigate denaturation and/or degradation of the 

protein/peptide.

Two different types of NMR spectroscopy were conducted to study the 

interaction of FosWc and mPEG-FosWc with [15N]r-c-Jun, these were 2D 1H, 15N- 

HSQC and *H-NMR. The usefulness of the latter is limited in the analysis of peptide 

and proteins as there are many overlapping peaks in the ID ^-N M R  spectrum (Figure 

5.4a). The 2D HSQC experiment, first described by Bodenhausen & Rubenin, (1980) 

however is able to resolve a peak for each unique proton that is attached to a 

heteronucleus (a nucleus other than a proton) (Figure 5.4b). In this study the only 

heteronucleus used was 15N, in the form of isotopically labelled [15N]r-c-Jun peptide. 

Previous studies have shown that when a peptide/protein is structured, for example, an 

a-helix or coiled-coil the peaks in the 2D HSQC spectrum are usually well dispersed 

and it is possible to resolve each individual peak (Takeuchi & Wagner, 2006). If 

however, the peptide is largely unstructured only a limited number of backbone *H-15N 

correlations with a very low dispersion will be distinguishable as most of the signals 

from the NH groups will be lost due to exchange with the water. For the [15N]r-c-Jun 

peptide, each amino acid residue (with the exception of proline) has an amide proton 

that is attached to the 15N heteronucleus. When folded, one cross peak per backbone 

NH (i.e. per amino acid), minus the number of proline residues in the sequence, plus 

two extra cross peaks per glutamine/asparagine residue (from the NH2 side chain) 

would be expected. Therefore if changes in structure occur following target 

hybridisation one would expect to observe a change in the number of resolvable peaks; 

an increase would suggest more structure, the converse, less (reviewed in Otting & 

Wuthrich, 1990). To the best of our knowledge this is the first time that this technique 

has been proposed to study the target hybridisation of PEGylated coiled-coil motfis.

5.1.3 Experimental Aims

The specific aims for this study can be divided into three sections and 

summarised as follows:
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Figure 5.4 Typical ID 1 H-NMR and 2D !H, 15N-HSQC spectra for a 36- 
residue peptide.

198



CHAPTER 5: Studies on Target Hybridisation Using Phb : E2F1 & c-Jun : FosWc as Models

Recombinant preparation o f the rhE2Fl protein

■ To characterise the pGEX-KG-(GST)-E2Fl plasmid obtained for the expression 

of the rhE2Fl protein.

■ Amplify the pGEX-KG-(GST)-E2Fl plasmid stock.

■ Identify an appropriate host organism and optimise the culturing conditions for 

expression of rhE2Fl protein.

■ Express and purify sufficient rhE2Fl protein (> 3 mg) to enable analysis by CD 

spectroscopy.

■ Characterise the rhE2Fl protein by MALDI-TOF MS.

Recombinant preparation o f the r-c-Jun and [15N]r-c-Jun peptides

■ Optimise the expression protocol for r-c-Jun in “normal” M9 media.

■ Express and purify sufficient [15N]r-c-Jun (> 3 mg) to enable analysis by 2D 

15N, ^-H SQ C spectroscopy.

■ Characterise the r-c-Jun and [15N]r-c-Jun peptides by MALDI-TOF MS.

Characterisation o f the Phb:E2Fl Interaction Using CD Spectroscopy

■ To determine whether the putative coiled-coil motif peptide Phbig5-2i4 interacted 

with the peptides E2Fla and E2Flb via the formation of a coiled-coil.

■ To determine whether the putative coiled-coil motif peptide Phbig5-2i4 interacted 

with the protein rhE2Fl via the formation of a coiled-coil.

Characterisation o f the c-Jun: FosWc Interaction Using CD Spectroscopy 1 H-NMR and

2D 15N  ]H-HSQC spectroscopy

■ To use 2D 15N, ^-HSQ C spectroscopy to characterise the coiled-coil driven 

target hybridisation of FosWc with c-Jun.

■ To use 2D 15N, ^-H SQ C spectroscopy to determine whether the presence of N- 

terminal mPEG affected coiled-coil driven target hybridisation between mPEG- 

FosWc and c-Jun.

■ To use 2D 15N, ]H-HSQC spectroscopy to investigate what effect the ratio of 

mPEG-FosWc and FosWc '• [15N]r-c-Jun had on hybridisation.

■ To use CD spectroscopy to confirm that the target hybridisation interaction 

observed was via the formation of a coiled-coil and not non-specific 

aggregation.

199



CHAPTER 5: Studies on Target Hybridisation Using Phb : E2F1 & c-Jun : FosWc as Models

■ To determine by thermal denaturation whether there was a qualitative difference 

in the strength of binding between mPEG-FosWc and FosWc with c-Jun and 

compare with changes observed in the 1 H-NMR spectra acquired over a similar 

temperature range.

5.2 M ethods

The peptides E2Fla, E2Flb, Phbi85-2i4, PhbYi85-2i4, c-Jun and FosWc were 

prepared for this study as described in Chapter 3. The mPEG-PhbCYi85-2i4 and mPEG- 

FosWc conjugates were prepared as described in Chapter 4. The recombinant methods 

developed for the preparation of rhE2F-l and r-c-Jun and [15N]r-c-Jun are described in 

detail below. The general methods used for UV spectroscopy (Section 2.2.1.1), 

Agarose Gel Electrophoresis (Section 2.2.1.2), SDS-PAGE (Section 2.2.1.3) CD 

spectroscopy (Section 2.2.1.4), are all given in Chapter 2.

5.2.1 Expression of rhE2Fl

A plasmid purportedly encoding rhE2Fl was obtained from Professor N. La 

Thangue (CRUK). However, no characterisation data were available for this plasmid. 

In order to characterise the pGEX-KG-(GST)-E2Fl plasmid (by agarose gel 

electrophoresis and/or automated DNA sequencing), it was first necessary to amplify 

the aliquot provided to generate a stock of plasmid.

5.2.1.1 Transformation of DH5a and TOPIO E. coli with pGEX-KG-(GST)-E2Fl 
and Plasmid Purification

The pGEX-KG-(GST)-E2Fl plasmid was transformed into E. coli strains DH5a 

and TOPIO affording two recombinant strains as follows. For each strain, competent 

E.coli (100 ng pL'1, 50 pL) were thawed on ice, an aliquot (1 pL) of pGEX-KG-(GST)- 

E2F1 added and then left on ice for a further 30 min. Transformation was achieved by 

heat shocking at 42 °C for 30 sec, followed by cooling on ice for 5 min. An aliquot 

(450 pL) of SOC media was added and the freshly transformed bacteria were left to 

propagate at 37 °C for 1 h (orbital shaker - 180-220 rpm).

Pre-cultures were prepared by inoculating Luria Broth (LB) media (yeast extract

0.5 % w/v, tryptone 1 % w/v and NaCl 1 % w/v in dcffl^O) (10 mL) containing Amp 

(100 pg mL-1) and with an aliquot (100 pL) of freshly transformed bacteria. The
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culture was incubated at 37 °C overnight (orbital shaker - 180-220 rpm). 

Simultaneously, an agar plate was inoculated with an aliquot (50 pL) of freshly 

transformed bacteria in the presence of Amp. The following day, a culture (500 mL) of 

each strain was prepared by inoculating LB media with the pre-culture (10 mL). Each 

culture was incubated at 37 °C for 5 h in an orbital shaker (180-220 ipm) until an OD at 

6̂oomn of approximately 0.6 was reached. The cultures (500 mL) were transferred to 

four large centrifuge tubes (ca. 250 mL) and spun at 3,500 g, 4 °C for 15 min. 

Extraction and purification of plasmid DNA was conducted using a Qiagen EndoFree 

Plasmid Mega Kit, which was used in accordance with the manufacturers instructions. 

Following amplification of the plasmid stock in TOPIO and DH5a E.coli samples were 

analysed with respect to purity and concentration using UV spectroscopy to determine 

the A26o : A28o ratio (section 2.2.1.1) and agarose gel electrophoresis (section 2.2.1.2).

5.2.1.2 Sequencing o f  the pGEX-KG-(GST)-E2Fl Plasmid

Since full sequence data was not available it was necessary to draw a plan to 

sequence the insert in the pGEX-KG plasmid and aid design of the appropriate primers. 

The multiple cloning site (MCS) into which the E2F1 gene was most likely engineered 

is shown in the pGEX-KG vector map (Figure 5.5a) and a schematic of the vector 

containing the E2F1 gene is shown in Figure 5.5b. It was envisaged that a minimum of 

six primers would be needed to sequence the unknown region (blue). The primers 

pGEX 5’ F and pGEX 3’ R read from the known vector sequence (pGEX-KG) so their 

sequences were available from Addgene (http://www.addgene.org/pgvecl ?f=c&cmd=sh 

owvecinfo&vectorid=5100) and subsequently ordered from Invitrogen™. However, 

custom sequences were designed using the OligoPerfect™ Designer software 

(accessible online via the Invitrogen™ website: http://tools.invitrogen.com/content.cfin? 

pageid=9716) for each of the remaining primers (2F, 3R, 4F and 5R). This software 

required several inputs.

In step 1, “sequencing” was selected in the application field and the human 

E2F1 nucleotide sequence entered into the target sequence field in text format. In step 

2, the following parameters were selected for design of the forward reading primers 2F 

and4F:

Primer size (bases): 

Primer Tm (°C):

Min 16 

Min 50

Opt 20 

Opt 60

Max 26 

Max 75

http://www.addgene.org/pgvecl
http://tools.invitrogen.com/content.cfin
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Figure 5.5 pGEX-KG vector map and schematic of pGEX-KG-(GS T)-E2F1 
sequencing strategy. Panel (a) shows the pGEX-KG vector map 
(www.addgene.com) and MCS within which the E2F1 gene was purportedly 
engineered (3’ o f the GST reading frame). Panel (b) shows a schematic o f the vector 
with the E2F1 gene insert. The approximate positions o f the primers designed or 
selected to sequence the unknown region (blue) are shown along with their direction 
o f reading, also indicated by the final letter in the ID of each primer, “F ” for forward 
(clockwise) and “R” for reverse (anti-clockwise).
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Primer %GC: 

Sequencing Region: 

Primer Position:

Min 20 

From 1 bp 

Lead 0 bp

Opt 50 Max 80 

To 1314 bp 

Spacing 400-500 bp

Experimental Conditions: Salt conc. 50mM Primer conc. 50 nM

The number three was entered in the field designated “Maximum number of 

Primers per Sequencing Subregion to return”. The reverse read primers (3R(1°), 3R(2°) 

and 5R) were designed by checking the “sequence complimentary strand” box. Finally, 

in step 3 the primers identified by the software that corresponded to approximate 

positions as defined in the sequencing plan (Figure 5.5b) were chosen. Sequences that 

were generated by the software yet, had more than 3 ‘C’s or ‘G’s at the 3’ end were 

discarded. In step 4, no 5’ or 3’ modifications were selected, the purity level chosen 

was “desalted” and the scale of synthesis was set at 25 nmole. For clarity the 

sequences, IDs and other data relating to each of the primers is provided in Table 5.1.

PCR and Automated DNA Sequencing

Stock solutions (100 pmol pL'1) of each primer were prepared in nuclease free 

ddH20  and stored at -20 °C. Prior to use, each primer stock solution was diluted 

(1/100) to 1 pmol pL'1. Working on ice (4 °C), to each reaction tube, primer (5 pL), 

“BigDye ready reaction premix” (4 pL), “BigDye sequencing buffer” (2 pL), pGEX- 

KG-(GST)-E2F1 plasmid (500 ng) and nuclease free ddH20  were added in the order 

stated. Each tube was placed in a thermal cycler and the following reaction conditions 

used for 30 cycles:

1. Denature 96 °C 30 sec

2. Anneal 50 °C 15 sec

3. Polymerise 60 °C 4 min

After completion of the PCR reaction the tubes were removed from the heating 

block, the top 4 mm of each tube cut-off and placed upside down in 1.5 mL Eppendorf 

tubes. The PCR reaction mixture was transferred to the Eppendorf tube by 

centrifugation at 14,000 rpm for 10 s at 4 °C. The empty PCR reaction tubes were 

discarded and an aliquot (90 pL) of 70 % isopropanol was added to each tube for 15 

min. PCR product was precipitated by centrifugation (14,000 rpm for 30 min at 4°C).
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Table 5.1 Characteristics of the primers used to determine the sequence of the E2F1 ORF.

Primer ID Direction Sequence Annealing Region No. of Bases GC Content 

(%)

Tm

(°C)

pGEX5’ F Forward GGGCTGGCAAGCCACGTTTGGTG 869-891 (vector) 23 65.2 ♦

2F Forward CTATGACATCACCAACGTCC 501-520 (E2F1) 20 50.0 56.3

3R(1°) Reverse GGGTCTCAGGAGGGGCTTT 814-796 (E2F1) 19 63.2 62.8

3R(2°) Reverse GCAGGCGCAGCTGCGTAGTAC 700-680 (E2F1) 21 66.7 70.0

4F Forward AGCCTTTCCCCACCCCAC 1201-1218 (E2F1) 18 66.7 64.5

5R Reverse TCAGAAATCCAGGGGGGT 1314-1297 (E2F1) 18 55.6 60.3

pGEX3’ R Reverse CCGGGAGCTGCATGTGTCAGAGG 1078-1056 (vector) 23 65.2 ♦

* Data not available as these primers were not designed using the Invitrogen™ OligoPerfect™ software.
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The supernatant was removed and the PCR product washed twice with 180 pL of 70 % 

isopropanol. Once dry, the tubes were sealed and stored at -20 °C, sequence analysis 

was conducted within 48 h. Automated DNA sequence analysis was conducted Mr 

Barrie Francis (Central Biotechnology Services, Henry Wellcome Research Institute, 

Cardiff University) with an ABI Prism 3130x1 Genetic Analyser, all data were exported 

as .abl files.

5,2,13 Sequence Analysis and In Silico Construction of the pGEX-KG-(GST)-E2Fl 
Plasmid Map

Sequencing files were provisionally reviewed using the software 4peaks 

(vl.7.2). However, for more advanced processing e.g. alignment of the respective 

sequences and construction of a complete plasmid map, the software Geneious (v3.5.5 

with “Pro” functions) was used. Creation of the complete plasmid map is described in 

the results (section 5.3.1.1). The full consensus sequence was exported in FASTA 

format and annotated accordingly.

5,2,1,4 Mini-Induction to Test Expression of rhE2Fl

Expression of the rhE2Fl protein was assessed in the the same E.coli strains 

(DH5a and TOPIO) used to amplify the pGEX-KG-(GST)-E2Fl and later in the E. coli 

strains BL21 (DE3) and BL21 (DE3) pLysS.

The pGEX-KG-(GST)-E2Fl plasmid was transformed into each strain as 

described above (section 5.2.1.1). Starter-cultures were prepared by inoculating SOC 

media (10 mL) with an aliquot (50 pL) of freshly transformed bacteria. DH5a and 

TOPIO strains were incubated in the presence of Amp (100 pg mL"1) while BL21 (DE3) 

and BL21 (DE3) pLysS strains were incubated with both Amp (100 pg mL"1) and Cam 

(25 pg mL'1). The culture was incubated at 37 °C for 4 h (orbital shaker), then agar 

plates containing the appropriate antibiotics inoculated with an aliquot (50 pL) of 

culture and incubated overnight at 37 °C. A single colony from each plate was selected 

and used to innoculate a mini-culture of LB media (10 mL). Each culture was 

incubated at 37 °C for 5 h in an orbital shaker (180-220 rpm) until an OD at A.6oonm of 

approximately 0.6 was reached expression induced with IPTG (0.5 mM final 

concentration). Following a post-induction time of 4 h, cultures were removed from the 

incubator, centrifuged (3,500 g, 10 min) and the supernatant removed. The pellet was
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lysed and solubilised by the addition of an aliquot (100 pL) of gel loading buffer and 

analysis conducted using denaturing SDS-PAGE (Chapter 2, section 2.2.1.3).

Further optimisation of the expression conditions was conducted using the BL21 

(DE3) pLysS strain. In these studies, 24 mini-cultures (four for each OD) were 

prepared as described above and incubated until ODs of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 were 

measured. For each OD, two cultures were induced with IPTG (0.5 mM final 

concentration) and two were used as controls. Two cultures for each OD (± IPTG) were 

incubated for a post-induction time of 4 h at 37 °C, and two cultures for each OD (± 

IPTG) incubated overnight (~ 16 h) at 20 °C. Following incubation, cultures were 

prepared for analysis by denaturing SDS-PAGE as described above.

As a mechanical method (e.g. probe sonicator or French press) of lysing the 

bacteria was unavailable at the Welsh School of Pharmacy it was not possible to 

conduct further studies and express sufficient quantities (> 3 mg) of rhE2Fl protein in 

Cardiff. Coupled with the lack of evidence for a coiled-coil mediated interaction 

between Phbyi85-2i4 and E2F1 (see results section 5.3.3.1) further studies focused on 

expression of r-c-Jun and [15N]r-c-Jun towards investigating target hybridisation in the 

second cancer model, c-Jun : FosWc- The methods detailed below (section 5.2.2) were 

developed during a four-week visit to CIPF, Valencia.

5.2.2 Expression of r-c-Jun and [15N]r-c-Jun

For ease of reference, an illustration of the steps taken to prepare r-c-Jun and 

[15N]r-c-Jun is shown in Figure 5.6.

5.2.2.1 Assembly and Characterisation o f  the cytb5-r-c-Jun Plasmid

The pET15B-cytb5-ENLYFQGT-r-c-Jun plasmid was prepared by Dr A.K. 

Schott for use in this study, however a brief description of the method used is given 

below.

pET15B-cytb5-ENLYFQGT-r-c-Jun was assembled by conventional cloning 

using an in house modified version of the commercially pET15b plasmid containing, 

between the restriction sites Ndel and BamHI an N-terminal fusion-tag from the codon 

optimised sequence of rat cytb5 followed by a TEV protease recognition site ENLYFQ- 

Kpnl (adapted from Mitra et al, 2005). The c-Jun fragment was obtained by gene 

synthesis (Itakura et al, 1977; Echt et al, 2004) using the partially complementary 

oligonucleotides c-Jun_forward (5' ataataggtaccgcctctatcgcgcgtctggaggagaaggtgaaaacgt
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Figure 5.6 Illustration of the recombinant method used to express peptides r- 
c-Jun and [15N]r-c-Jun. Sections in which each method is detailed are annotated.
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taaaagcccaaaactatgaattagcgtc 3'), and c-Jun_reverse (5' tattatggatccttacgcacctaattgggc 

aacctgctcacgcagcatattggcggtagacgctaattcatagttttgggctt 3'), which were annealed and 

treated with DNA polymerase. The resulting 138 bp segment was amplified by PCR, 

purified with a gel extraction kit, restricted with the endonucleases Kpnl and BamHI, 

and ligated into the pET15b-cytb5 plasmid, which had been treated with the same 

restriction endonucleases. Sequencing of clone no. 5 (pET15B-cytb5-ENLYFQGT-r-c- 

Jun-5) confirmed the expected sequence; the TEV protease cleavage site, the His tag, 

and the start and stop codons.

5.2.2.2 Transformation of BL21-CodonPlus (DE3) with the pETlSB-cytbS- 
ENLYFQGT-r-c-Jun-5 Plasmid

The pET15B-cytb5-ENLYFQGT-r-c-Jun-5 plasmid was transformed into E. coli 

strain BL21-CodonPlus (DE3) affording the recombinant strain BL21-CodonPlus 

(DE3)-pET 15B-cytb5-ENLYFQGT-r-c-Jun-5 as follows. Competent BL21-CodonPlus 

(DE3) E.coli (100 ng pL"1, 50 pL) were thawed on ice, an aliquot (1 pL) of pET15B- 

cytb5-ENLYFQGT-r-c-Jun-5 added and left on ice for a further 30 min. 

Transformation was achieved by heat shocking at 42 °C for 45 sec, followed by cooling 

on ice for 2 min. An aliquot (450 pL) of LB media was added and the freshly 

transformed bacteria were left to propagate at 37 °C for 1 h (orbital shaker -180 rpm).

5.2.2.3 Expression of cytb5-c-Jun in BL21-CodonPlus (DE3) E. coli

This protocol details the methodology used initially for the expression of r-c- 

Jun. Alterations made when scaling the expression to 2 L (i.e. four 500 mL cultures) in 

the presence of 15N containing media are described under a separate italicised heading 

in each section. Unless otherwise stated “an aliquot (x mL) was taken for analysis...” 

should be understood to indicate that the sample was analysed by SDS-PAGE 

electrophoresis as described in Chapter 2 (Section 2.2.1.3).

A pre-culture was prepared by inoculating LB media (25 mL) containing Amp 

(100 pg mL'1) and chloramphenicol (Cam) (25 pg mL'1) with an aliquot (50 pL) of 

freshly transformed bacteria. The culture was incubated at 37 °C overnight (orbital 

shaker). Simultaneously, an agar plate was inoculated with an aliquot (50 pL) of 

freshly transformed bacteria in the presence of Amp and Cam.
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The following day, the pre-culture was centrifuged (3500 g, 10 min) and the 

media removed. A culture (500 mL) was prepared by inoculating M9 media with the 

re-suspended pellet of pre-culture. The culture was incubated at 37 °C for 5 h in an 

orbital shaker until an OD at X6oonm of approximately 0.6 was reached. After 5 h, 

aliquots of glucose (20 % w/v, 5 mL) and IPTG (1M, 250 pL) were added. Following a 

post-induction time of 4.5 h cultures were removed from the incubator and stored at 4 

°C overnight. The next day, an aliquot (1 mL) was taken, diluted 1:10 with ddH20  and 

the OD at X600nm measured. The remaining volume (900 pL) was centrifuged, the pellet 

re-suspended in ddH20  and an aliquot (20 pL) taken for analysis. The culture (500 mL) 

was transferred to a large centrifuge tube (ca. 1 L) and spun at 3500 g, 4 °C for 15 min. 

The pellet was transferred to a small centrifuge tube (50 mL) and spun at 6000 g, 4 °C 

for 5 min, weighed, then placed at - 20 °C and left for 1 h.

Expression o f [15N]cytb5-c-Jun in BL21-CodonPlus (DE3) E. coli

Four cultures: A, B, C and D (500 mL each) were prepared and each inoculated 

with pre-culture (25 mL). Culture media (M9) was freshly prepared containing [15N], 

provided in the form of [15N]H4C1.

5.2.2.4 Lysis of BL21-CodonPlus (DE3) E. coli by Probe Sonication

Lysis buffer was freshly prepared, cooled to 4 °C and used to re-suspend the 

frozen bacterial pellet (approx. 10 mL buffer to 1 g pellet). The suspension was 

vortexed to obtain a homogenous mixture and left on ice (4 °C) for 30 min. The 

mixture was transferred to a sterile glass beaker (on ice) and the bacteria lysed by probe 

sonication, using 6 x 30 sec pulses with 30 sec intervals. An aliquot (500 pL) of the 

lysate was taken for analysis. The remaining lysate was centrifuged at 10,000 g, 4 °C 

for 30 min. The supernatant was removed from the pellet and both were stored on ice 

(4 °C). Aliquots (20 pL) of each were collected for analysis.

Lysis o f BL21-CodonPlus (DE3) E. coli by Probe Sonication

Lysis buffer (60 mL, total volume) was used to re-suspend the frozen pellets 

(each weighed approximately 2.3 g). Lysis by probe sonication utilised 8 x 30 sec 

pulses with 30 sec intervals. An aliquot (500 pL) was taken for analysis. Following 

centrifugation of the lysate, the pellet was still pink in colour. Therefore a second round

209



CHAPTER 5: Studies on Target Hybridisation Using Phb: E2F1 & c-Jun: FosWc as Models

of sonication (6 x 30 sec pulses with 30 sec intervals) was performed. An aliquot (500 

pL) of the lysate was taken for analysis.

5.2,2.5 Purification of cytb5~r-c-Jun from Crude Lysate

Purification was achieved by affinity chromatography using TALON® metal 

affinity resin. The bed volume was calculated on the basis that the fusion protein 

content of the crude lysate was 60-70 % (protein concentration approximated from the 

OD at X280nm). The binding capacity of the resin used was published to be 20 mg 

protein mL'1. TALON® media was applied to the column as a 50 % w/v slurry stored in 

20 % v/v EtOH in ddH20 . The media was washed with five-column volume of ddH20  

followed by five-column volumes of freshly prepared Tris HC1 buffer, pH 8.0, 20 mM. 

Crude lysate supernatant was applied to the media and recycled twice. Proteins and 

other cellular debris were removed by washing with ten column volumes of Tris HC1 

buffer, pH 8.0, 20 mM containing imidazole, 5 mM. Stepwise elution with increasing 

imidazole concentrations was as follows:

■ 2 mL imidazole 50 mM

■ 2 mL imidazole 250 mM

■ 3 mL imidazole 500 mM

■ 2 mL imidazole 1000 mM

Fractions (1 mL) were collected for analysis. The column was cleaned by 

washing with two-column volumes of Tris HC1 buffer, pH 8.0, 20 mM containing 

imidazole, 1000 mM. Followed by five-column volumes of ddH20 , five-column 

volumes of MES buffer, pH 5.0, 20 mM, five-column volumes of ddH20  and two- 

column volumes of 20 % v/v EtOH in ddH20 . The column was sealed and the media 

stored at 4 °C for future use.

Purification o f [15N]cytb5r-c-Jun from Crude Lysate

A bed volume of 6 mL was used (12 mL 50 % w/v slurry) due to the larger scale 

of the preparation. The media was equilibrated as described, transferred to a 

polypropylene container (ca. 250 mL) and incubated with the crude lysate supernatant at 

4 °C for 30 min, agitating every 5-10 min. The media and lysate suspension were 

transferred back to the purification column and washed with five-column volumes (30
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mL) of Tris HC1 buffer containing imidazole, 10 mM. Stepwise elution with increasing 

imidazole concentrations was performed as follows:

■ 30 mL imidazole 50 mM

■ 6 mL imidazole 250 mM

■ 9 mL imidazole 500 mM

■ 6 mL imidazole 1000 mM

Fractions were collected corresponding to each imidazole concentraion and 

aliquots (20 pL) taken for analysis. The column was washed with three-column 

volumes of Tris HC1 buffer containing imidazole, 1000 mM and the original cleaning 

protocol followed to regenerate the TALON® media.

5.2.2.6 Cleavage of cytb5-r-c-Jun Using TEVProtease

Following analysis of the eluted fractions by SDS-PAGE electrophoresis, TEV 

protease (3.79 mg mL’1, 50 pL) was added the fraction (1 mL) containing the desired 

fusion protein in highest purity and the solution incubated at 4 °C. Aliquots (20 pL) 

were taken at 2.5 h, 16 h and 60 h for analysis, after 16 h, a further aliquot (50 pL) of 

TEV protease was added.

Cleavage o f [15N]CytB sr-c-Jun Using TEV Protease

The protein content of the pooled fractions (imidazole concentration of 50, 250 

and 500 mM) was estimated to be circa 40 mg therefore TEV protease (250 pL) was 

added and the cleavage reaction allowed to proceed overnight (16 h) at 4 °C. An 

aliquot (20 pL) was taken for analysis and a further aliquot of TEV protease (100 pL) 

added for a further 3 h.

5.2.2.7 Final Purification and Concentration of r-c-Jun

TEV protease, cytb5 and other contaminating proteins remaining from TALON® 

purification were removed using a Vivaspin 10 kDa MWCO centrifuge tube. Prior to 

sample addition the membrane was washed with ddl^O was centrifuged at 4000 g, 4 °C 

for 10 min. The membrane was washed again with ddH20  and the centrifugation 

repeated once, thus ensuring removal of residual glycerol/Na azide. The TEV protease 

cleavage solution was added to the primed tube and spun at the same conditions. The
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membrane was washed with ddH20  and centrifuged a final time. An aliquot (20 pL) of 

the high molecular weight fraction was taken for analysis. The elutates were pooled and 

concentrated using a Vivaspin 2 kDa MWCO centrifuge tube. As before, the tube was 

first primed by washing twice and centrifuging with ddH20 . Once a volume of 

approximately 100 pL was obtained the sample was washed twice with ddH20 , the OD 

of both the high Mw fraction and eluate was measured and samples taken for analysis 

by SDS-PAGE electrophoresis and MALDI-TOF mass spectroscopy.

Final Purification and Concentration o f [15N]r-c-Jun

Centrifugation using Vivaspin 10 kDa MWCO tubes was performed at 12 °C to 

reduce the likelihood of c-Jun homo-dimerising (c.f. 4 °C). Concentration was achieved 

using two Vivaspin 2 kDa MWCO centrifugation tubes (8000 g, 4 °C for 11 min). This 

process was repeated until the final volume was reduced to circa 600 pL. The retentate 

was freeze dried, weighed and stored at -20 °C.

5.2.3 Characterisation of r-c-Jun and [15N] r-c-Jun Peptides by MALDI-TOF MS

MALDI-TOF MS was conducted to verify the mass of each peptide. In earlier 

studies (Chapter 3), MS of peptides was conducted using ESI-TOF MS, however, this 

study was conducted at CIPF and MALDI-TOF was the only MS technique available. 

The MS suite was operated as a technician led service and therefore samples were 

simply sent as a dry lyophilisate for analysis and data were received as .xls files.

5.2.4 Preparation of Samples for Target Hybridisation Studies by CD and NMR 

Spectroscopy

All samples were prepared for either CD or NMR experiments in the same 

buffers. Dry lyophilisate (peptide or conjugate) was dissolved in a phosphate buffer 

comprising of NaH2P0 4 /Na2HP0 4  (10 mM) containing NaF (100 mM) in ddH20. 

Concentrations were then determined by UV spectroscopy as described in Chapter 2 

(Section 2.2.1.1).

5.2.4.1 Characterisation by CD Spectroscopy

The general method is described in Chapter 2 (section 2.2.1.4).
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P h b  185-214. P h b y i8 5 - 2 1 4 .  E2Fla andE2Flb

Initial CD experiments were conducted at EPFL with peptides Phbi85.214, 

Phbyi85-2 i4, E2Fla and E2Flb and used a total peptide concentration of 80 pM. The 

concentration of Phbig5-2 i4 was determined gravimetrically while the UV spectroscopy 

(section 2.2.1.1) was used to determine the concentration of all other peptides in this 

study. Thermal denaturation spectra were acquired in temperature steps of 5 °C over a 

range of 5-95 °C.

c-Jun, [15N]r-c-Jun, FosWc, mPEG-FosWc andmPEG-MAL

Characterisation of the peptides c-Jun, [15N]r-c-Jun was conducted at CIPF, all 

further studies were conducted in Cardiff. The temperatures used and cuvette 

pathlength are all detailed in the figure legends (see results section 5.3.3.2). One 

experiment was conducted using a tandem cell: a quartz cuvette with a two chambers 

separated by a thin screen of quartz. This made it possible to acquire a far UV CD 

spectrum pre-mixing, followed by the acquisition of a spectrum by post-mixing without 

introducing any error by pipetting.

5.2.4,2 Characterisation by ID ,1 H-NMR and 2D 1H, lsN-HSQC Spectroscopy

Samples solutions (1 mL) were prepared as described above (section 5.2.4) 

however, with the addition of D20  (5 % v/v) and an aliquot (30 pM ~ final 

concentration) of the internal standard 2,2,3,3-tetradeutero-3-trimethylsilylpropionic 

acid (TSP). Measurements were conducted using quartz NMR tubes filled with 500 pL 

of sample solution. All spectra were recorded using peptide concentrations of 75 pM as 

used in the latter CD studies (section 5.2.4.1) and unless otherwise noted all 

experiments were conducted at 37 °C and pH 7.4 to model the physiological 

environment. All data were processed using the program Topspin 1.3.

Acquisition o f ID  1 H-NMR Spectra o f c-Jun, FosWc and mPEG-FosWc

1 H-NMR spectra were acquired with 16 K complex points and a spectral width 

of 8.4 kHz. The total number of scans was 256, with a repetition delay of 1.5 s. A 

WATERGATE scheme was used to suppress the water signal.

Acquisition o f 2D 1H, 15N-HSQC Spectra o f [15N]r-c-Jun, FosWc •' [15N]r-c-Jun and 

mPEG-FosWc: [15N]r-c-Jun
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2D, JH, 15N-HSQC heteronuclear experiments were acquired with spectral 

widths of 8 kHz (*H dimension) and 2.2 kHz (15N dimension), 40 scans and a repetition 

delay of Is. All measurements were first conducted using [15N]r-c-Jun (75 pM) then 

then an aliquot of either FosWc or mPEG-FosWc added and the concentration of each 

peptide adjusted to 75 pM.

5.3 Results

Early CD studies with Phb and target peptides E2Fla and E2Flb were 

conducted at EPFL, Lausanne. The characterisation of the pGEX-KG-(GST)-E2Fl 

plasmid and expression of rhE2Fl and detailed CD studies with c-Jun, FosWc and 

mPEG-FosWc were conducted in Cardiff, while expression and characterisation of r-c- 

Jun/[15N]r-c-Jun, first CD studies and detailed analyses by ID, 1 H-NMR and 2D *H, 

15N-HSQC spectroscopy were conducted during a visit to the structural biology 

laboratory at CIPF in Valencia, Spain.

5.3.1 Preparation and Characterisation of rhE2Fl and r-c-Jun

5.3.1.1 Characterisation of the pGEX-KG-(GST)-E2Fl Plasmid and Expression of 
rhE2Fl Protein

For ease of reference, a summary of the experiments conducted in this section is 

shown in Figure 5.7.

The A260 : A28o ratios were 1.88 and 1.63 for TOPIO and DH5a respectively. 

This indicated that the sample obtained from the TOPIO E.coli was of superior purity 

(less protein contamination). Furthermore, significantly more plasmid was obtained 

using this strain, with a yield of 761 pg compared with 272 pg of lower purity plasmid 

obtained from the DH5a strain.

Characterisation of “uncut” plasmid by agarose gel electrophoresis showed two 

bands > 10 Kb in the TOPIO E.coli samples and a single band > 10 Kb for the DH5a 

samples (Figure 5.8). As the plasmid was expected to be approximately 6-8 Kb, the 

data suggested that the DNA was running as non-covalent, intermolecular multimers. 

Smearing was seen in both lanes (0.2 pg and 0.5 pg) for the DH5a derived plasmid 

suggesting the presence of protein contamination, however, none was seen for the
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Plasmid containing GST-E2F-1 obtained from N. La Thangue (CRUK) 
No sequence data provided.

I
|-------  Propagated plasmid using TOPIO and DH5a E.coli |

 ̂ , 1
Yield and Purity |

Characterisat ion J

Agarose Gel Electrophoresis 
(Figure 5.8)

1
Unique restriction 

sites unknown 
therefore 

sequencing required

Contiguous sequence 
generated & GST-E2F-1 

sequence confirmed 
(Figure 5.9,10 & 11)

Analysis by SDS-PAGE 
(Figures 5.12 & 13)

PCR and 
Sequencing

t
Primers designed 

to vector and 
E2F-1 gene insert

1

Sequencing plan 
(Figure 5.5)

Primer sequences 
(Table 5.1)

PCR & Sequence
Analysis

Optimisation o f  
expression conditions

l
Potential to conduct scale-up, lysis and 

purification at CIPF.

Figure 5.7 Summary of the experiments conducted towards recombinant 
expression of the rhE2Fl target protein.
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TOPIO TOPIO TOPIO
(0.2 pg) (0.5 pg) (1.0 pg)

DNA Ladders
2-Log 1Kb 100 bp

DH5a DH5a 
(0.2 pg) (0.5 pg)

10 K b -

3.0 K b -
2.0 K b -
1.5 K b -
1.2 K b -
1.0 K b -

Multiple bands were observed at each 
concentration and were o f a much greater 
size than that anticipated. Suggestive o f  
the formation o f intermolecular 
multimers.

Smearing suggests the possibility 
o f protein contamination

Figure 5.8 Characterisation by agarose gel electrophoresis of the pGEX-KG- 
E2F1 plasmid. Plasmid was obtained following amplification in two E.coli strains 
(TOPIO and DH5a).
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TOPIO derived plasmid. These observations supported the quantitative assessment of 

purity given by the ratio of A26o/A28o-

Sequencing o f the pGEX-KG-(GST)-E2Fl Plasmid

Preliminary experiments using 50 ng of template (plasmid) and 3 pmol of primer 

per reaction yielded very low levels of PCR product such that the signal was hardly 

distinguishable from the noise in the electropherogram (data not shown), as such the 

quantity of plasmid template used was increased ten-fold (500 ng) and quantity of 

primer increased to 5 pmol per reaction. The only primer to fail to generate a PCR 

product on the second attempt was primer 3R(1°), as such a second primer was 

designed (3R(2°)) rather than attempt to optimise the myriad of possible conditions in 

the PCR. The reaction with the new primer was successful as judged by the 

electropherogram (data not shown).

The linear illustration of contiguous sequence shows the successful alignment 

and overlap of each piece of sequence data provided by the respective primers (Figure 

5.9). A more detailed representation of the sequence assembly shows the substantial 

degree of overlay (> 150 bases) between primer/primer or primer/plasmid sequence 

(Figure 5.10). In panel (c) primer 5R did not confer any significant additional sequence 

data not provided by the other three primers. The single discrepancy identified by the 

break in the green bar of panel (c) is the result of disagreement between the sequence 

data provided by primers pGEX3’R and 4F, and the vector sequence. It is most likely 

that the sequencing data has misread and entered an extra base, in this instance “A” 

since the sequences otherwise agree with the vector sequence. It is not of great 

significance since this discrepancy is after the TGA stop codon encoding rhE2Fl.

The full consensus sequence showed that the sequence is 100 % homologous 

with the sequence for Human E2F-1 and the start (ATG) and stop (TGA) codons are 

both present (Figure 5.11). Furthermore, it was possible to identify the likely cut sites 

used to first assemble the plasmid. The single cut, restriction enzymes that would have 

probably been used are identified in bold font as Smal (5’ of the E2F1 DNA) and Xhol 

(3’ of the E2F1 DNA).

Expression o f rhE2Fl Protein

No bands corresponding to over-expression of GST-rhE2Fl protein were 

observed following analysis of DH5a, TOPIO and BL21 (DE3) E. coli crude lysate by
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324i 1 , 2 3 6i 1 , 6 4 8  2 , 0 6 0i i 2 , 4 7 2  2 , 8 8 4i i

pGEX-KG 
5’ ofORF

2F

pGEX 3’ R

5R

4F
pGEX-KG 3’ ofORF

fHTwr’ii

F ig u re  5.9 L in e a r  a l ig n m e n t  o f  th e  c o n tig u o u s  pG EX -K G -(G S T)-E2F1 

p la sm id  se q u e n c e . Sequences are shown as grey bars and represent their actual 
alignment. The chromatograms, in black show the signal intensity for each of the 
sequenced bases. Assembly was performed using Geneious software version 3.5.5.
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(a) Overlay o f 3R primer sequence with the vector 5 ’ o f the ORF.
700 7 2 5  750  775  800 825 850 875 900

pGEX-KG 
5’ ofORF 
3R

(b) Overlay o f the 3R, 2F and pGEX 3 ’ R primer sequences in the centre of the 
E2F-1/unknown sequence region

1 ,4 7 5  1 ,5 0 0  1 ,5 2 5  1 ,5 5 0  1 ,5 7 5  1 ,6 0 0  1 ,6 2 5
■  I ■ ■ ■ ■ ■ ■ N i l  I  U N I  IN I ■ ■ ■  I N  N B  ■ ■ ■  I I I I  ■ I  ■ N I M M H  I  ■ ! ■ ■

h  fir

AAMinil3R

2F

pGEX 3’ R

(c) Overlay of the 2F, pGEX 3 ’ R, 5R and 4F primer sequences with the vector 
3 ’ of the E2F-1/unknown sequence region.

2 ,1 7 5  2 ,2 0 0
immm m i  i i i  m i

2 ,2 2 5  2 ,2 5 0 2 , 2 7 5  2 , 3 0 0  2 , 3 2 5
■ ■ ■ ■ M I I N I B I N I  M M M

2 ,3 5 0  2 ,3 7 5
II I I Mi ■ ■ ■ ■ • ■ ■  I I I

t

2F

M k i l
pGEX 3’ R

Single discrepancy between vector and primer derived sequences

5R
r^ ~ u—1HV---- « - v ™ -

4F-------------- -
pGEX-KG 3      — — ---------------
ofORF

Figure 5.10 Magnified alignment of the contiguous pGEX-KG-(GST)-E2Fl 
plasmid sequence. Panels a, b and c show in greater detail the alignment o f the 
primer derived sequences and vector pGEX-KG. Solid green bars represent 100 % 
homology between the overlaid sequences. The colours used in the chromatograms 
and consensus sequence bar represent the bases A (red), C (blue), G (gold) and T 
(green).
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> p G E X -K G -E 2 F - l C o n s e n s u s  S e q u e n c e  l - 6 3 6 5 b p
ACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCATAATTC 
GTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTA 
ATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTA 
AGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGCGAA 
ACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATA 
TAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTT 
CGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTC 
ATAAAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGG 
ATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTT 
TG C A <pG EX 5' >GGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAATCGGATCTGGTTCCGCGTGGATC<SmaI> C C A T ^B G C C T T  
GGCCGGGGCCCCTGCGGGCGGCCCATGCGCGCCGGCGCTGGAGGCCCTGCTCGGGGCCGGCGCGCTGCGGCTGCTCGACTCCTCGCAGATCGTCAT 
CATCTCCGCCGCGCAGGACGCCAGCGCCCCGCCGGCTCCCACCGGCCCCGCGGCGCCCGCCGCCGGCCCCTGCGACCCTGACCTGCTGCTCTTCGC 
CACACCGCAGGCGCCCCGGCCCACACCCAGTGCGCCGCGGCCCGCGCTCGGCCGCCCGCCGGTGAAGCGGAGGCTGGACCTGGAAACTGACCATCA 
GTACCTGGCCGAGAGCAGTGGGCCAGCTCGGGGCAGAGGCCGCCATCCAGGAAAAGGTGTGAAATCCCCGGGGGAGAAGTCACGCTATGAGACCTC 
ACTGAATCTGACCACCAAGCGCTTCCTGGAGCTGCTGAGCCACTCGGCTGACGGTGTCGTCGACCTGAACTGGGCTGCCGAGGTGCTGAAGGTGCA 
GAAGCGGCGCAT<2F>CTATGACATCACCAACGTCCTTGAGGGCATCCAGCTCATTGCCAAGAAGTCCAAGAACCACATCCAGTGGCTGGGCAGCC 
ACACCACAGTGGGCGTCGGCGGACGGCTTGAGGGGTTGACCCAGGACCTCCGACAGCTGCAGGAGAGCGAGCAGCAGCTGGACCACCTGATGAATA 
TCT< 3R  ( 2 °  ) >GTACTACGCAGCTGCGCCTGCTCTCCGAGGACACTGACAGCCAGCGCCTGGCCTACGTGACGTGTCAGGACCTTCGTAGCATTGC 
AGACCCTGCAGAGCAGATGGTTATGGTGATC< 3 R (1  ° ) > AAAGCCCCTCCTGAGACCCAGCTCCAAGCCGTGGACTCTTCGGAGAACTTTCAGATC 
TCCCTTAAGAGCAAACAAGGCCCGATCGATGTTTTCCTGTGCCCTGAGGAGACCGTAGGTGGGATCAGCCCTGGGAAGACCCCATCCCAGGAGGTC 
ACTTCTGAGGAGGAGAACAGGGCCACTGACTCTGCCACCATAGTGTCACCACCACCATCATCTCCCCCCTCATCCCTCACCACAGATCCCAGCCAG 
TCTCTACTCAGCCTGGAGCAAGAACCGCTGTTGTCCCGGATGGGCAGCCTGCGGGCTCCCGTGGACGAGGACCGCCTGTCCCCGCTGGTGGCGGCC 
GACTCGCTCCTGGAGCATGTGCGGGAGGACTTCTCCGGCCTCCTCCCTGAGGAGTTCATC<4F>AGCCTTTCCCCACCCCACGAGGCCCTCGACTA 
CCACTTCGGCCTCGAGGAGGGCGAGGGCATCAGAGACCTCTTCGACTGTGACTTTGGGGACCTC< 5 R>ACCCCCCTGGATT1 U cA G G A T G C A T  
GAATTCTGCAGATATCCATCACACTGGCGGCCG<Xhol>CTCGAGCATGCATCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGCTCA 
AGCTTAATTCATCGTGACTGACTGACGATCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAA<pGEX3 ' >CCTCTGACACATGCAGCTCCCGGAGA 
CGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCC 
AGTCACGTAGCGATAGCGGAGTGTATAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTT 
CTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGAC 
AATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTT 
GCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCA 
ACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTG 
TTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATG 
GCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGC 
TAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACA 
CCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGG 
AGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCG 
GTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGAC 
AGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTT 
AATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG 
AAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGC 
CGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCC 
ACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCG 
GGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACA 
CCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAA 
CAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGT 
GATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCT 
TTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGT 
CAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAAATTCCGACACCATCGAAT 
GGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAG 
AGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGG 
CGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACG 
CGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCT 
GTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTG 
CCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCG 
TGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATA 
AATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATG

Legend:

Black - Vector (pGEX-KG). Red - GST sequence.
Blue - E2F-1. Pink - Named primer annealing regions

Black highlighted regions show the correct start and end codons.

S mal and Xhol are the likely cut-sites used to insert the E2F1 gene during the 
original synthesis

A (bold and underlined) represents the single discrepancy resulting from alignment o f 
the primer derived sequencing data and the vector sequence.

Figure 5.11 Consensus sequence for the pGEX-KG-(GST)-E2F1 plasmid in 
FASTA format.
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denaturing SDS-PAGE (data not shown). However, successful over-expression was 

observed using the BL21 (DE3) pLysS E. coli strain irrespective of the OD at which 

induction took place (Figure 5.12). The band corresponded to a higher molecular 

weight than expected, however, this is likely due to dimerisation of the fusion protein 

driven by the GST tag. When the cultures were incubated at 20 °C (rather than 37 °C) 

post-induction, over-expression of GST-rhE2Fl was hardly detectable (Figure 5.13). 

Strongest bands correlating to over-expressed rhE2Flwere seen at ODs of 0.2-0.4, 

however at higher ODs no over-expression was detected.

5.3.1.2 Expression and Characterisation of r-c-Jun and [15N]r-c-Jun Peptides

The plasmid encoding r-c-Jun was previously prepared and characterised by Dr 

A.K. Schott (CIPF) so that this project could start with optimisation of the expression 

and purification protocols. For ease of reference, the experimental approach is 

summarised in Figure 3.14.

Optimisation o f Expression and Purification o f r-c-Jun peptide

Successful lysis by probe sonication was confirmed by the detection of cytb5-c- 

Jun fusion protein in the post-sonication supernatant (lane 1), however, the fusion 

protein was also detected in the pellet post-sonication (lane 2) (Figure 5.15a). 

Purification with TALON® metal affinity media using a stepwise elution protocol (lanes

3-11) showed that cytb5-r-c-Jun fusion protein and cytb5 begin to elute at an imidazole 

concentration of 250 mM with the most intense bands observed in the first 500 mM 

fraction (Figure 5.15a). The time required for cleavage by the TEV protease was 

investigated at three time points; at 2.5 h a strong band for the fusion protein was 

detected, while almost no fusion protein was detected after 16 h and complete 

conversion to cytb5 and r-c-Jun was seen in 60 h (Figure 5.15b). Post centrifugation, a 

sample (lane 1) from the upper fraction (retentate) showed a single band that 

corresponded approximately to the expected molecular weight for r-c-Jun (Figure 

5.15c). No bands were visible for the lower fraction (eluate) in lane 2 (Figure 5.15c).

Expression and Purification o f [15N]r-c-Jun

The expression levels in all four cultures (A-D, lanes 1-4) were consistent 

(Figure 5.16a). Similarly to the optimisation study described above, soluble 

[15N]cytb5-r-c-Jun fusion protein was detected in the post-sonication supernatant (lane
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g m ol'1 (x 103)
M 0.2(-) 0.2(+) 0.3(-) 0.3(+) 0.4(-) 0.4(+) M

GST-rhE2Fl

g m ol'1 (x 103)
M 0.5(-) 0.5(+) 0.6(-) 0.6(+) 0.7(-) 0.7(+)

210  -  " '■>

Figure 5.12 SDS-PAGE characterisation of rhE2Fl expression in BL2l (DE3) 

pLysS E. coli. Post-induction cultures were incubated at 37 °C for 4 h. M = marker, 

-/+ indicates whether where sample was induced with IPTG (0.5 mM). Numbers on 

left o f figure represent approximate molecular weight of the standards used. The 

darker band seen only in (+) lanes indicated over-expression of the fusion protein 

GST-rhE2Fl.
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g mol-1 (x 103)

M  0.2(-) 0 .2(+) 0.3(-) 0 .3(+) 0.4(-) 0.4(+) 

210  —  *

GST-rhE2Fl

g mol"1 (x 103)
M  0.2(-) 0.2(+) 0.3(-) 0.3 (+) 0 .4(-) 0.4(+)

2 1 0 -

Figure 5.13 SDS-PAGE characterisation of rhE2Fl expression in BL21 (DE3) 
pLysS E. coli. Post-induction temperature was 20 °C incubation overnight (~ 16 h). 
M = marker, -/+ indicate whether where sample was taken pre/post induction with 
IPTG (0.5 mM). Numbers on left o f figure represent approximate molecular weight 
o f the standards used. Faint additional band in (+) lanes at ODs o f 0.2, 0.3 and 0.4 
suggests low expression o f GST-rhE2Fl.
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Plasmid encoding cytb5-r~c~Jun was prepared by conventional cloning techniques 
and the sequence verified by Dr. A.K. Schott

i
Expression in BL21-CodonPlus (DE3) E. coli usingM 9 Media 

conducted to optimise protocol

i

T rans format ion 
Expression 

Lysis 
Purification 

Concentration

Analysis by SDS- 
PAGE 

(Table 5.15)

i
Scaled-up expression in BL21 -CodonPlus (DE3) E. coli usingM 9 Media 

supplemented by [15N] in the form o f NH4C1

i

Characterisation by 
MALDI-TOF MS 

(Figure 5.18)

T rans format ion 
Expression 

Lysis 
Purification 

Concentration

Analysis by SDS- 
PAGE 

(Table 5.16 & 17)

Structural characterisation

i
Coiled-coil fomation

i
Thermal denaturation

i
Target hybridisation |

CD Spectroscopy 
(Figure 5.21)

CD Spectroscopy 
(Figure 5.22 to 5.26)

ID ‘H-NM R 
(Figure 5.27)

2D 1H, 15N-HSQC 
Spectroscopy 

(Figure 5.28 to 5.32)

Figure 5.14 Summary of the experiments conducted towards recombinant 
expression of the [15N]r-c-Jun target peptide and analysis of target 
hybridisation with FosWc/mPEG-FosWc.
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(a)
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cytb5-r-c-Jun fusion 

cytb5
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- 66.2
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Figure 5.15 SDS-PAGE analysis of the expression of r-c-Jun in BL21- 
CodonPlus (DE3) E.coli. Panel (a) shows the analysis post lysis and during 
purification, panel (b) shows optimisation o f the TEV cleavage reaction, panel (c) 
shows pure r-c-Jun post-purification and concentration.
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(a)

ST s?  &JO

sV i fJS i frV
■O z>

c f  <
200 - *

9 7 .4 -
66 . 2 -

1 4 .4 -

[15N]cytb5-r-c-Jun
fusion

f> V V  / / /

1 4 .4 -

>  J ’ &

[15N]cy tb5-r-c-Jun
fusion
[15N]cytb5

6.5—4

Figure 5.16 SDS-PAGE analysis of the expression of [15N]r-c-Jun in BL21- 
CodonPlus (DE3) E.coli. Panel (a) shows expression levels in each culture followed 
by analysis o f the sonication method. Panel (b) shows the analysis o f the purified 
fractions.
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6, Figure 5.16a). However, fusion protein remained in the pellet, even after a second 

lysis step was performed, suggesting that the protocol could be further optimised (lanes 

7 and 8, Figure 5.16a). The majority of undesired proteins were removed with the 10 

mM imidazole wash (lane 2, Figure 5.16b), and the fusion protein then eluted over a 

broad range i.e. 50 to 500 mM imidazole (lanes 3-5, Figure 5.16b). Despite washing 

with 1000 mM imidazole a small amount of protein remained bound to the resin (lanes 

6 and 7, Figure 5.16b). Cleavage by TEV protease was monitored following an 

overnight reaction of approximately 16 h (lane 1, Figure 5.17). This lane ran slightly 

slower on the gel compared with lanes 2-4. Additionally, unlike in Figure 5.15b 

cleaved [15N]r-c-Jun was not detected. However, a band corresponding to that expected 

for [15N]r-c-Jun peptide was detected following removal of the higher molecular weight 

proteins and subsequent concentration (lane 2, Figure 5.17). Purity was assessed to be 

> 90 % with less than 10 % [15N]cytb5 remaining as a contaminant. Analysis of the 

insoluble retentate (lane 3, Figure 5.17) showed that it was composed of a mixture of 

[15N]cytb5-c-Jun, [15N]cytb5 and [15N]r-c-Jun. In agreement with the earlier study, no 

staining was observed for the eluate sample (lane 4, Figure 5.17).

Characterisation o f r-c-Jun and [15N]r-c-Jun by MALDI- TOF MS

Characterisation by MALDI-TOF MS confirmed the expected molecular 

weights for both peptides, r-c-Jun (Figure 5.18a) and [15N]r-c-Jun (Figure 5.18b). The 

peaks (M+H)+ are in good agreement with the theoretical values of 4104.68 and 

4156.30 g mol'1 respectively. The inset spectra confirm that each of the m/z peaks 

observed corresponds to full-length peptide as the distance measured between each peak 

in the cluster is approximately equal to 1.0.

5.3.3 Target Hybridisation Studies

53.3,1 Preliminary Characterisation by CD Spectroscopy o f  the Interaction Between 

Phb and E2F1 Peptides E2Fla and E 2Flb

When the Phbi85-2i4 peptide was characterised by CD spectroscopy over a 

temperature range of 5 to 95 °C a clear a-helical structure was observed at 5 °C as 

judged by the minima at 205 and 222 nm (Figure 5.19a). However, as the temperature 

was increased, a loss of secondary structure with a transition to a random coil was 

observed above 20 °C. The tyrosine tagged peptide, Phbyi85-2i4 produced spectra
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200 -  *

97.4 -  -  
6 6 . 2 — I

45 -

[15N]TEV

[15N]cytb5-r-c-Jun fusion 

[15N]cytb5

[15N]r-c-Jun

Figure 5.17 SDS-PAGE analysis of the TEV cleavage and final purification of 
[15N]r-c-Jun.
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Figure 5.18 MALDI-TOF MS characterisation of peptdes r-c-Jun and [15N]r-c- 
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magnification of the main peak.
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showing the same pattern of a-helical structure at 5 °C with a steady loss of structure as 

the temperature was increased (Figure 5.19b). The main difference between the two 

sets of spectra acquired was that the tyrosine containing peptide (Phbvi85-2i4) showed an 

increased signal intensity of approximately 50 %. This was probably due to an error in 

determining the concentration of the Phbi85-2i4 sample solution gravimetrically. This 

problem is highlighted in Chapter 3 and so all further studies in this Chapter used 

peptides tagged with tyrosine residues to enable accurate quantitation of peptide 

concentration by UV spectroscopy.

When equi-molar amounts of potential target peptides E2Fla or E2Flb (or both) 

were added to Phbyi85-2i4 at 37 °C the signal intensity decreased however, the shape of 

the spectra remained largely unchanged Figure 5.20a. The loss in signal intensity 

following addition of peptides E2Fla/b (or both) was probably in part due to dilution, 

but also small structural changes. This is supported by the “concentration corrected” 

spectra, which show there is little increase in the signal intensity at 222 nm (relative to 

the minimum at 202 nm) that would be indicative of the formation of a coiled-coil 

between Phbyi85-2i4 and the target peptides E2Fla and E2Flb (Figure 5.20b). The inset 

table shows a comparison of the percentage a-helix, P-sheet and random coil in each 

sample. These data indicated that there was a progressive loss of a-helical structure and 

a transition towards a P-sheet structure as either E2Fla, E2Flb or both were added. The 

percentage of random coil remained similar for all four samples.

5,33,2 Characterisation o f  mPEG-FosWc * c-Jun Target Hybridisation by CD and 

ID, 1H-NMR Spectroscopy

Characterisation o f Target Peptides - c-Jun (synthetic) and r-c-Jun

It was of interest first to investigate whether CD spectroscopy was able to detect 

any changes in the secondary structure of the synthetic and recombinant forms of c-Jun. 

At 37 °C the spectra for both peptides had a very similar shape, albeit with differing 

signal intensities particularly at 197 nm (Figure 5.21a). However when cooled to 4 °C, 

the spectrum acquired for c-Jun showed a clear transition from a random coil to an a- 

helix (Figure 5.21b). The shape of the spectrum acquired for r-c-Jun did not change 

following cooling, however the intensity of the signal was stronger as one might expect 

due to stabilisation of the structure. Synthetic c-Jun peptide was used for all further CD 

studies.

231



CHAPTER 5: Studies on Target Hybridisation Using Phb : E2F1 & c-Jun: FosWc as Models

\

□ P h b y i  8 5 .2 1 4  

Phby 185-214 

 P h b y i  85-214

Phbyi 8 5 .2 1 4  

I

E2Fla 
E2Flb
E 2 F la : E2Flb
i

S
<s
Bei
tsco>-o'w'

mO

CD

200 220 230
Wavelength (nm)

240 250

(b)

/ j

Y185-214

Phbyig5-2i4 • E 2F la  

Phby185.214 : E 2Flb

PhbYi85-2i4 • E2Fla 
: E2Flb 

T 
220

a RC R2

21 10 69 0.93

19 15 66 0.97

13 19 68 0.98

12 22 66 0.98

250210 220 230
Wavelength (nm)

Figure 5.20 Characterisation of the interaction between PhbY185_214 and target 
peptides E2Fla and E2Flb using CD spectroscopy. Panel (a) shows the CD 
spectra expressed as a total peptide concentration of 80 pM. Panel (b) shows the 
data corrected to a PhbY185.2i4 concentration of 80 pM. The percentage a-helix, p- 
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Figure 5.21 Characterisation of [15N]r-c-Jun and synthetic c-Jun at 37 °C and 
4 °C using CD spectroscopy. Panel (a) shows spectra at 37 °C, panel (b) shows 
spectra at 4 °C, peptide concentration was 75 pM.
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Characterisation o f  mPEG-MAL

It was first necessary to ensure that mPEG-MAL had no structure in the far-UV 

range that might interfere with the acquisition of spectra for mPEG-FosWc. These 

earlier experiments used lower concentrations of mPEG-MAL and mPEG-FosWc than 

those used later to compare with the HSQC studies, nonetheless, they demonstrated that 

mPEG-MAL had no observable structure as judged by its far UV CD spectrum between 

185 and 260 nm (Figure 5.22).

Characterisation o f  FosWc and mPEG-FosWc: c-Jun Target Hybridisation

The far UV CD spectra acquired with c-Jun and mPEG-FosWc using the tandem 

cell showed that the [0 ]2O8/[O]222 ratio increased post mixing, indicative of the formation 

of a coiled-coil (Figure 5.23). The ability to mix by simply inverting the cell removed 

the risk of contributing error to the measurement as a result of pipetting, however the 

disadvantage was that a maximum concentration of 7.5 pM could be used due to the 

long (10 mm) pathlength of the cuvette. A concentration of 75 pM of each peptide was 

desired so that the data could be compared directly with the 1H, 15N-HSQC data and the 

CD data published by Mason et al (2006). Therefore no further measurements were 

used using the tandem cell.

Far UV CD spectra measured in a 0.2 mm quartz cuvette for the c-Jun : FosWc 

and the c-Jun : mPEG-FosWc complexes at 37 °C demonstrated a high degree of a- 

helical structure with the characteristic bands at 192, 208 and 222 nm (Figure 5.24). 

Moreover, the [0]2O8/[0]222 ratio was indicative of the formation of a coiled-coil for both 

complexes. The narrow pathlength of this cuvette made it possible to acquire spectra as 

low as 180 nm, however it was not possible to use this cuvette for thermal denaturation 

experiments. Therefore measurements were repeated in a 1 mm cuvette (suitable for 

heating) for comparison. The far UV CD spectra shown in Figure 5.24b are almost 

identical to those in Figure 5.24a within the recorded range.

Studies on Thermal Stability Using CD and ID, ]H-NMR Spectroscopy

Thermal stability was investigated for both the c-Jun : FosWc and the c-Jun : 

mPEG-FosWc complexes. Upon heating a Tm value of 70.1 °C was determined for the 

c-Jun : FosWc complex (Figure 5.25a) whereas a value of 45.5 °C was determined for 

the c-Jun : mPEG-FosWc complex (Figure 5.25b). Both samples showed a cooperative 

transition from the folded to unfolded state, but whereas c-Jun : FosWc exhibited > 90
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Figure 5.22 Characterisation of mPEG-maleimide and mPEG-FosWc by CD 

spectroscopy. Spectra were acquired at 4 °C in a 1 mm pathlength quartz cuvette, 

peptide/polymer concentration was 15 pM.
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Figure 5.23 Characterisation of c-Jun : mPEG-FosWc by CD spectroscopy 
using a “Tandem Cell”. Spectra were acquired at 37 °C in a 10 mm pathlength 
quartz cuvette, concentration of each peptide was 7.5 pM.
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Figure 5.24 Characterisation of c-Jun : FosWc and c-Jun : mPEG-FosWc by 
CD spectroscopy. Panel (a) shows data acquired using a 0.2 mm pathlength quartz 
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cuvette. All spectra recorded were acquired at 37 °C, peptide concentration 75 pM.
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Figure 5.25 Analysis of the thermal denaturation of c-Jun : FosWc and c-Jun 
: mPEG-FosWc complexes by CD spectroscopy. Panel (a) shows c-Jun : FosWc 
complex, panel (b) shows c-Jun : mPEG-FosWc complex. Spectra were acquired 
using a 1 mm pathlength quartz cuvette, peptide concentration 75 pM.
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% recovery of its initial signal upon cooling, the PEGylated complex remained 

irreversibly denatured. Furthermore the c-Jun : mPEG-FosWc denaturation curve 

displayed minor pre-transitions at circa 29 and 35 °C. Spectra of renatured c-Jun : 

FosWc show the same [0]2O8/[0]222 ratio as the original material (Figure 5.26a), 

whereas spectra of the c-Jun : mPEG-FosWc complex exhibited a minimum at 198 nm 

typical for a denatured protein (Figure 5,26b).

]H-NMR spectra acquired from 4 to 49 °C for synthetic c-Jun, FosWc and 

mPEG-FosWc show marked differences as a result of temperature variation, particularly 

in the NH and aromatic region from 6.5 to 9.0 ppm (Figure 5.27). For c-Jun, the 

spectra show near complete loss of signal from the NH region above 24 °C, indicative 

of denaturation (Figure 5.27a). The spectra acquired for FosWc show fewer changes in 

peak intensity up to 37 °C (Figure 5.27b). At 49 °C a considerable number of peaks 

disappeared, intensities reduced and peak shape changed more markedly, indicating 

denaturation of the peptide. The spectra obtained for mPEG-FosWc showed a veiy 

similar pattern as seen for FosWc and denaturation appeared to occur at a similar 

temperature (Figure 5.27c).

5.3.3.3 Characterisation o f  mPEG-FosWc: c-Jun Target Hybridisation Using 2D 1H, 

I5N-HSQC Spectroscopy

2D *H, 15N-HSQC spectra of isotopically labelled [15N]r-c-Jun peptide were 

obtained at 37 °C, pH 7.4 and the spectra showed a limited number of backbone 

correlations (6.7-8.3 ppm), with a very low dispersion (Figure 5.28a). This was an 

indication of a disordered (unstructured) peptide, as most of the signals from the NH 

groups were lost due to exchange with the water. It was observed that acidification of 

the sample resulted in an increase in the number of peaks (backbone *H-15N 

correlations) in the spectrum, suggesting increased structure (data not shown).

Addition of equimolar amounts of the unlabelled peptide FosWc to [15N]r-c-Jun 

produced a dramatic change in the spectrum, as a significant number of cross peaks not 

present on the spectrum of [15N]r-c-Jun alone (Figure 5.28a) were observed (Figure 

5.28b). As FosWc was unlabelled, no signals could originate from this peptide in the 

HSQC spectrum, therefore the new peaks belonged to [15N]r-c-Jun and were a 

consequence of structural changes having occurred to this peptide. The increase in the
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Figure 5.26 Characterisation of c-Jun : FosWc and c-Jun:mPEG-FosWc 
complexes before and after thermal denaturation and after renaturation 
(cooling) using CD spectroscopy. Panel (a) shows c-Jun : FosWc complex, panel 
(b) shows c-Jun : mPEG-FosWc complex. Spectra were acquired using a 1 mm 
pathlength quartz cuvette, peptide concentration 75 pM.
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number of signals was indicative of a transition from the unordered structure on its own, 

to the formation of a structured combination of [15N]r-c-Jun and FosWc. The overlaid 

spectra (Figure 5.28c) showed that there were no chemical shifts for the peaks in the 

2D spectrum. A 2D nuclear Overhauser effect spectroscopy (NOESY) spectrum of 

[15N]r-c-Jun : FosWc acquired by Dr R. Carbajo showed characteristic NH-NH NOE 

peaks which were indicative of an alpha-helical structure (data not shown).

When mPEG-FosWc was added to the [15N]r-c-Jun peptide at a 1:1 ratio the 

number of peaks (backbone !H-15N correlations) observed increased significantly 

(Figure 5.29b). As before, the overlaid spectra (Figure 5.29c) showed that there were 

no chemical shifts for the peaks in the 2D spectrum suggesting that the small amount of 

ordered structure seen for [15N]r-c-Jun peptide alone (Figure 5.29a) was not altered in 

form, rather the remaining residues in the [15N]r-c-Jun peptide became structured 

through interaction with mPEG-FosWc.

Both target hybridisation spectra for [15N]r-c-Jun : FosWc and [15N]r-c-Jun : 

mPEG-FosWc were overlaid (Figure 5.30) to determine whether any differences were 

detected between the addition of FosWc and addition of mPEG-FosWc. The pattern 

observed was almost identical, therefore, it could be concluded that the hybridisation of 

the peptides produced the same type of structural motif.

Further experiments investigated the effect of increasing the ratio of [15N]r-c-Jun 

to FosWc/mPEG-FosWc from 1:1 (Figure 5.31/32a) to 1:2 (Figure 5.31/32b), in order 

to check whether homodimerisation of the FosWc peptides was preferred over 

heterodimerisation with [15N]r-c-Jun. When overlaid (Figure 5.31/32c), no changes in 

the chemical shifts of the signals were detected. Furthermore, the volumes of the peaks 

were compared for both ratios and found to be the same. This indicated that 

heterodimeric hybridisation was saturated at a 1:1 ratio, i.e. at the 1:2 ratio no further 

increase in signal intensity was observed because all the [15N]r-c-Jun molecules existed 

as heterodimeric complexes. This data strongly supports the statement that the 

heterodimeric state is more favourable than the possible homodimeric states under 

model physiological conditions.

5.4 Discussion

This Chapter set out to investigate whether the mPEG-coiled-coil motifs could 

interact with their targets in a similar manner to which the free coiled-coil motif
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undergoes target hybridisation. The task of testing this hypothesis was a challenging 

one. Firstly it was necessary have a good model of the target, either a protein or peptide 

domain, subsequently it was necessary to develop CD and NMR spectroscopy 

techniques to conduct the proposed analyses.

5.4.1 Comparative Merits of the Model Targets Used to Study Phb : E2F1 and 

FosW c: c-Jun Hybridisation

Use o f  E2F1 Derived Peptides and rhE2Fl

Unlike previous studies by Wang et al, (1999) where co-immunoprecipitation 

techniques were used to study the PHB : E2F1 interaction, this study sought to 

characterise spectroscopically whether hybridisation was driven by a hetero-oligomeric 

coiled-coil. CD and NMR spectroscopy required larger quantities (mg c f  pg) of target 

material due to the lower sensitivities of the techniques and greater sample volumes 

needed.

Use of the peptides, E2Fla and E2Flb, which corresponded to the Phb-binding 

domain in the E2F1 protein was first proposed due to the difficulty in obtaining full- 

length protein. The advantage of this approach was twofold, first it was possible to 

synthesise large quantities of either peptide using Fmoc-SPPS (Chapter 3) to a high 

level of purity (> 95 %). Moreover, it was proposed that the small size o f the peptides 

would facilitate characterisation by CD and or NMR spectroscopy. However, it was not 

known whether the peptides E2Fla and E2Flb would form a similar structure to the 

Phb-binding domain in the E2F1 protein. Furthermore, occasionally other sequences 

within the protein have been shown to be necessary to facilitate/trigger coiled-coil 

formation (Steinmetz et al, 1998).

Therefore, on balance use of full-length E2F1 protein for hybridisation studies 

was considered the optimal approach. Since E2F1 was too large to synthesise by 

conventional Fmoc-SPPS (Chan & White, 2000) the recombinant approach summarised 

in section 5.1.1 was used.

The original studies using GST-rhE2Fl do not describe in detail the methods 

used to clone or to express the protein (Bandara et al, 1993; Girling et al, 1993). The 

BL21 (DE3) E.coli strain was suggested as a suitable strain in a personal 

communication by La Thangue et al, however, in this study successful over-expression 

of GST-rhE2Fl was only observed using the BL21 (DE3) pLysS E.coli strain. As the 

T7 high-level expression system in the BL21 (DE3) E.coli strain is well known to allow
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some basal expression prior to induction with IPTG, lack of GST-rhE2Fl 

overexpression would suggest that the protein is toxic to E.coli. The pLysS plasmid 

solved this problem by suppressing basal level expression of GST-rhE2Fl via reduction 

of T7 RNA polymerase expression (Moffatt & Studier, 1987). Unfortunately it was not 

possible to achieve the end goal of expressing sufficient rhE2Fl to enable 

characterisation by CD/NMR spectroscopy as a mechanical method of lysing the cells 

was not available in the Welsh School of Pharmacy.

Use o f  [15N]r-c-Jun and Synthetic c-Jun Peptides

With the characterisation of the plasmid encoding r-c-Jun completed by a 

collaborator (Dr A.K. Schott) it was possible to focus attention on optimising the 

expression and purification protocols. The successful expression of the [15N]r-c-Jun 

peptide enabled a detailed study of mPEG-FosWc : c-Jun interaction by 2D *H, 15N 

HSQC spectroscopy. The product was pure (> 90 %) and had the expected molecular 

weight by MALDI-TOF MS.

Monitoring each step of an expression protocol usually relies solely on the use 

of denaturing SDS-PAGE (Chapter 2, section 2.2.1.3). However, in the case of [15N]r- 

c-Jun, the orange/red colour of the cytb5 tag (adapted from Mitra et al, 2003) made it 

possible to qualitatively assess each step of the expression and purification protocols.

A disadvantage of recombinant preparation was that a N-terminal “GT” 

sequence was left following TEV protease cleavage. Furthermore, it was not possible to 

neutralise the charged N- and C-termini by selective amidation and acetylation as 

performed during Fmoc-SPPS of the peptides described in Chapter 3. When c-Jun 

(synthetic) was compared with r-c-Jun at 37 °C, both far UV CD spectra indicated a 

random coil structure. This was expected since the Tm of the c-Jun peptide as 

determined by CD spectroscopy was 24 °C (Mason et al, 2006), moreover, early NMR 

studies of the c-Jun homodimer necessitated low pH (3.6) buffers to induce coiled-coil 

structure. In this study, when cooled to 4 °C, r-c-Jun remained as a random coil, 

whereas synthetic c-Jun underwent a transition to an a-helix, possibly a homodimeric 

coiled-coil. The most likely explanation for this observation is that the charged termini 

of the recombinant peptide prevented parallel association of the two peptides and so a 

similar transition did not occur. As such, [15N]r-c-Jun was only used in experiments 

conducted at 37 °C, whilst the synthetic c-Jun was used in later CD and NMR 

experiments requiring study over a wider range of temperatures.
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5.4.2 Challenges of Verifying Coiled-Coil Driven Target Hybridisation

Study o f Phb : E2F1 Using CD Spectroscopy

CD spectra showed that at temperatures below 20 °C the PHB derived peptides 

Phbi85-2 i4 and Phbyi85-2i4 adopted a-helical structures. This may suggest that given the 

right environment the peptides could form a coiled-coil structure, in agreement with the 

studies by Joshi et al, (2003) where PHB was shown to form homodimers driven by the 

putative coiled-coil domain.

In subsequent studies where the interaction o f Phbyi85-2i4 and the peptides 

E2Fla and E2Flb was investigated no evidence of either heterodimeric or 

heterotrimeric coiled-coil formation was observed. Due to the short length of the E2F1 

derived peptides it may be that there were too few heptads to enable the formation of a 

coiled-coil or alternatively, that other sequences within the E2F1 protein may have been 

necessary to facilitate/trigger coiled-coil formation (Steinmetz et al, 1998).

One proposal is that the putative coiled-coil domain in the PHB protein drives 

homodimerisation and holds it in an inactive state. In response to an unknown stimuli 

the protein then switches to the active (monomeric) form whereby the putative coiled- 

coil domain is exposed and can interact with E2F1 and suppress transcription. Further 

studies would be required to investigate this hypothesis further. Ideally these should 

use full-length E2F1 and PHB proteins in combination with the Phbyi85-2 i4 peptide 

prepared here.

Study o f the c-Jun : FosWc and c-Jun : mPEG-FosWc Interaction

The far-UV CD spectra of c-Jun and c-Fos related peptides are well documented 

so this study did not seek to repeat the many spectra published in the literature (Mason 

et al, 2006; John et al, 1996). However it was important to show that coiled-coil 

formation did occur when c-Jun and mPEG-FosWc were combined under physiological 

conditions.

Far UV CD spectra of c-Jun : mPEG-FosWc at equimolar concentrations (7.5 

pM each) acquired using a tandem cell confirmed a-helical structures at 37 °C. 

Furthermore, the increase in the [0]2O8/[0]222 ratio post-mixing suggested the formation 

of a coiled-coil. The ratio of the CD intensities for dimeric coiled-coils [0]2os/[0]222 ~ 1 

is indicative for tertiary interactions between helices: whereas the n-Jt* transition
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(222nm) mainly reflects on the a-helical content, the tc-tc* band (208nm) polarizes 

parallel to the helix axis and therefore reports on tertiary contacts.

Subsequently, far UV CD spectra for both c-Jun : FosWc and c-Jun : mPEG- 

FosWc at higher concentrations (75 pM each) equivalent to those used in the study by 

Mason et al, (2006) confirmed a-helical, coiled-coil structures for both complexes at 37 

°C and 4 °C. The thermal denaturation studies showed that a clear preference remained 

for the heterodimers at physiological temperature (37 °C). However, the Tm for the c- 

Jun : mPEG-FosWc complex was 45.5 °C, substantially lower than seen for the c-Jun : 

FosWc complex (70.1 °C) possibly as a result of temperature inducing increased 

mobility of the mPEG chain. The Tm determined by Mason et al, (2006) for the c-Jun : 

FosW complex was 63°C; this was 7 °C lower than measured in this study. Other than 

the N-terminal cysteine tag (in the case of FosWc), the only differences between the 

peptides were the C-terminal proline residues, which had been omitted in this study. It 

is pertinent to realise however that the Tm determined by Mason et al, (2006) for the 

wild-type c-Jun : c-Fos complex was much lower (16 °C) than either Tm value 

determined for the c-Jun : mPEG-FosWc (45.5 °C) and c-Jun : FosWc (70.1 °C) 

complexes. Thus, while the mPEG chain appears to reduce the affinity of FosWc for 

the target peptide c-Jun, it is still markedly more stable than the wild-type complex. 

This suggests that mPEG-FosWc could act effectively as a competitive inhibitor of AP- 

1 by sequestering wild-type c-Jun and preventing coiled-coil driven heterodimerisation 

of c-Jun : c-Fos.

ID ^-N M R  spectra were acquired with the intention of corroborating the 

findings shown by CD spectroscopy. However, the maximum temperature at which 

spectra could be recorded with the instrument was 49 °C, this was below the Tm of most 

of the complexes and so the study was limited to characterisation of just the individual 

peptides/conjugate (c-Jun, FosWc and mPEG-FosWc). Interestingly, the data acquired 

for the c-Jun homodimer corroborate the Tm of 24 °C determined by Mason et al, 

(2006). This indicates that by monitoring the disappearance of the amide peaks in the 

ID !H-NMR one can successfully determine the Tm of a coiled-coil complex. The level 

of accuracy with which this can be achieved would necessitate further study.

While not of great importance here, the advantages of the NMR approach are 

that analyses can be conducted with buffers and salts not compatible with CD e.g. 

carboxylate, 4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid (HEPES) and 3-(N- 

morpholino) propanesulfonic acid (MOPS). The acquisition of far UV CD spectra
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between pH 4-6 (lysosomal-late endosomal range) is normally problematic due to the 

need for these buffers. Moreover, modifying the ionic strength with Cl' is problematic 

since it absorbs strongly at X < 195 (Dr. K. Beck, personal communication), hence F' 

(NaF) was used in this study. In NMR analyses Cl" could be used; advantageous if low 

pH (< 7) studies were required since under acidic conditions NaF may be converted to 

HF which can damage (etch) the expensive quartz cells or NMR tubes.

2D 15N HSQC spectroscopy demonstrated that at 37 °C the [15N]r-c-Jun peptide 

alone has very little structure, but subsequent addition of an equimolar concentration of 

mPEG-FosWc induced structural changes consistent with an induced fit theory of 

coiled-coil heterodimerisation. The spectral changes were equivalent to those seen 

when FosWc was added so it can be concluded that site-specific conjugation of mPEG 

did not change the manner o f heterodimerisation. Furthermore, the observation that 

doubling the concentration of both FosWc and mPEG-FosWc (relative to [15N]r-c-Jun 

peptide) did not induce further spectral changes suggests that a stable heterodimer is 

fully formed at equimolar concentrations. This also underlines the preference for 

heterodimerisation rather than potential homodimerisation of either FosWc or [15N]r-c- 

Jun.

General Considerations fo r  the Study o f Protein Interactions in a Model Environment

It is pertinent to consider that while the temperature and pH of the buffered 

solution within which the samples were analysed was adjusted to model physiological 

conditions i.e. 37 °C, pH 7.4, the local environment found within the cell is likely to be 

very different, in particular, the ionic strength, concentration and type of counter-ions. 

Furthermore, hybridisation may be dependent or at least affected by the presence of 

chaperone proteins, in the case o f E2F1, binding proteins such as Brg-1 and Brm (Wang 

et al, 2002). Therefore, approaches where NMR may be used to study interactions in a 

real, living cell have great promise (Inomata et al, 2009; Sakakibara et al, 2009; Burz et 

al, 2006).

5.4.3 Conclusions

With the synthesis of well-characterised peptides and conjugates (Chapters 3 

and 4, respectively) and the [*5N]r-c-Jun peptide prepared here, it was possible to
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investigate FosWc/mPEG-FosWc : c-Jun target hybridisation using 2D 1H, 15N-HSQC, 

CD and ^-N M R  spectroscopy.

In conclusion, these studies demonstrate for the first time that an mPEG-FosWc 

conjugate is able to heterodimerise via the formation of a coiled-coil with r-c-Jun in a 

similar manner as for FosWc. No N-H signal shifts were recorded in the 2D-HSQC 

spectra, nor were any significant changes in peak intensity observed. Furthermore, CD 

spectroscopy corroborated the formation of a coiled-coil structure for both FosWc and 

mPEG-FosWc : c-Jun complexes. While mPEG reduced the Tm of the coiled-coil 

complex, it remained three times that determined for the wild-type in previous studies.

Progress was made regarding study of the Phb : E2F1 interaction, however it 

was not possible to achieve the end goal of expressing sufficient rhE2Fl to enable 

characterisation by CD/NMR spectroscopy. Nonetheless it was possible to successfully 

characterise the plasmid encoding GST-rhE2Fl then determine the optimal E.coli strain 

and expression conditions. Further investigation and detailed charcterisation of the 

interaction would make a very exciting continuation of this thesis.

Moving forward, it was considered essential to begin to investigate the 

biological activity of such novel polymer therapeutics in a cellular environment. 

Therefore, studies in Chapter 6  began to study the therapeutic potential of the Phbyiss- 

214 and FosWc coiled-coil motifs and their respective mPEG conjugates using cell-based 

assays to determine cytotoxicity, biocompatibility and cellular uptake.
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CHAPTER 6

Investigation of the Cellular Uptake and 

Cytotoxicity of mPEG-PhbcYi85-2i4 and 
mPEG-FosWc in MCF-7 Cells I n  V i t r o
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6.1 Introduction

As described in Chapter 1, FosWc, Phbyi85-2i4 and their respective mPEG- 

conjugates were designed as potential anti-cancer agents. In both instances, the protein 

targets c-Jun (Pekarsky et al, 2008) and E2F1 (Fusaro et al, 2003) are localised in the 

cytosol and/or nucleus. Therefore, in order to exert a cytotoxic effect by their proposed 

mechanisms (section 1.4) they would need to be able to gain cytosolic access. In the 

previous study (Chapter 5) the ability of FosWc and mPEG-FosWc to hybridise with 

the target, c-Jun, was demonstrated in a model environment. The aims of these 

preliminary studies were to determine whether mPEG-FosWc and/or mPEG-PhbYi85-2i4 

could show cytotoxicity in vitro.

Experimental Overview

Cellular cytotoxicity was assessed in the human breast cancer cell line, MCF-7, 

using the MTT assay. Previous research by Joshi et al, (2003) showed that a 41-residue 

peptide (from which Phbvi85-2i4 was derived) was able to mediate cytotoxicity without 

the need for a transfection reagent. Therefore studies with Phbyi85-214 and mPEG- 

PhbcYi85-2i4 were conducted without the cationic lipid Tfx™-50 used to deliver FosWc 

and mPEG-FosWc- The use of Tfx™-50 for the delivery of c-Fos derived peptides was 

shown to be essential in earlier studies by Yao et al, (1998). In light of their work, it 

was first necessary to determine the cytotoxicity o f this reagent alone, then optimise the 

Tfx™-50 : FosWc/mPEG-FosWc ratio.

Further studies using flow cytometry were conducted to assess cellular uptake 

and of both PhbYi85-2i4/mPEG-PhbcYi85-2i4 and FosWc/mPEG-FosWc (± Tfx™-50) at 

37 °C. In order to perform these latter experiments it was first necessary to synthesise 

fluorescently labelled (OG) peptides and conjugates. Although the above relates to the 

chronological order of these studies, for the purpose of clarity here, the synthesis, 

characterisation and cellular uptake studies of OG-labelled peptides/conjugates are 

presented first, followed by preliminary cytotoxicity and haematotoxicity studies 

(Figure 6.1). A brief background to the rationale and use of each of these experiments 

is described in the following sections.

255



CHAPTER 6: Biological and Cellular Uptake Studies with mPEG-PhbCYlg5 214 and mPEG-Fos\Vc

(a) Synthesis o f OG- 
labelled conjugates 
Chapter 5

Characterisation by 
fluorescence spectroscopy

Assessment o f cellular uptake 
using flow cytometry

(b)
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Chapter 3

mPEGPhb
Chapter 4
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Assessment o f cytotoxicity 
in MCF-7 cells

FosWc
Chapter 3

mPEG-FosWc | _
Chapter 4
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Chapter 3

1
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c 11 J
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Chapter 4

Assessment of 
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Figure 6.1 Schem atic overview of the experiments conducted in this study.
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6.1.1 Flow Cytometry as a Tool to Study Cellular Uptake of OG-Labelled 
Conjugates

In this study, flow cytometry was used to monitor and quantitate cell uptake of 

fluorescently labelled peptides, conjugates and controls. This technique enables the 

analysis of thousands of cells per second, by passing the cells through a laser beam and 

measuring the discrete measurements of cellular fluorescence and light scattering 

(Melamed et al, 1990). Following statistical analysis of the data using flow cytometry 

software one may deduce cellular features and characteristics such as size, granularity, 

phenotype, health and cell-associated fluorescence. Furthermore, it is also possible to 

study the cellular uptake of fluorescent drugs e.g. doxorubicin (Dordal et al, 1995; 

Greco et al, 2007) and non-fluorescent compounds, labelled with an appropriate 

fluorophore e.g. OG. Such modification has made it possible be to monitor the cellular 

uptake of polymers (Richardson et al, 2008; Seib et al, 2007; Shukla et al, 2006), 

peptides (L6pez de Saro et al, 2003) and many other molecules of interest (Seye et al, 

2004). Flow cytometry has a number of key advantages over other cell imaging 

techniques, for example, it does not just give a measurement of cell-associated 

fluorescence for the entire population of cells but instead allows the user to define a 

population range. This is particularly useful to enable dead cells to be excluded from 

measurements, or to determine if there are differences in uptake by different populations 

(e.g. transfected and non-transfected) of cells in a given sample. A further advantage is 

that the cells may be imaged live without the need for fixing or digestion (Ramanathan, 

1997), both of which have the potential to introduce artefacts into the measurements. 

However, flow cytometry does not enable one to discern the intracellular localisation of 

polymer therapeutics by imaging of individual cells made possible with confocal 

fluorescence microscopy (Richardson et al, 2008). Moreover, quantitative analysis of 

fluorescence can be hindered by the variable output of the fluorescent probe, a problem 

not seen with a combined radio-labelling and sub-cellular fractionation approach (Seib 

et al, 2006; Manunta et al, 2007).

6.1.2 Choice of Fluorescent Probe

To establish whether Tfx™-50 was effectively facilitating the uptake of either 

FosWc or mPEG-FosWc, studies were conducted using flow cytometry (reviewed in 

section 6.1.1 above). Studies were also planned to assess the relative uptake of Phbyiss-
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214 and mPEG-Phbyi85-214 (though not in conjunction with Tfx™-50). In order to 

conduct these studies it was first necessary to label each compound with a suitable 

fluorescent probe. Prior to conjugation, it was necessary to consider (i) the choice of 

fluorophore, (ii) possible site of attachment to the peptide or polymer, and (iii) the 

linking chemistry.

Oregon Green (OG)

A wide-range of fluorophores are commercially available for the purpose of 

labelling peptides, polymers or other molecules. Oregon green (OG) was identified as 

the fluorophore o f choice for use in this study. In previous studies it has been used to 

label polymers such as dextrin and HPMA co-polymer conjugates (Richardson et al, 

2008), dendrimers and both linear and branched PEI (Seib et al, 2007). Other 

fluorophores, such as fluorescein have been widely used in the past, however, despite 

similar fluorescence excitation and emission wavelengths (XeX = 488 nm and Xem = 520 

nm), fluorescein has been shown to be less photostable. Furthermore, a marked 

quenching of the fluorescence output has been reported at pH < 7 (Lanz et al, 1997). 

The increased photostability of OG facilitates its use in a practical sense, and 

theoretically reduces the concentration of fluorophore required for detection. However, 

more significant is the reduced quenching observed with OG in the pH range 5.5 to 7.4 

compared with fluorescein (Seib et al, 2007). As discussed in Chapter 1, any 

compound that undergoes endocytosis and subsequent transport to lysosomal vesicles 

will experience a drop in local pH; approximately 6.5 in early endosomes, while 

dropping further to 5.5 in late endosomes and lysosomes. As such, if a fluorophore 

were subject to pH related quenching it would not be suitable to accurately assess either 

qualitatively or quantitatively cellular uptake.

Conjugation Site(s) and Linking Chemistry

The peptides FosWc and Phbvi85-2i4 were synthesised using only naturally 

occurring amino-acid residues, therefore the only reactive side-chains that could be used 

for OG-conjugation were R-COOH, R-NH2 and R-SH (Figure 6.2). As discussed in 

Chapter 4, the R-SH group of the cysteine residue is the most potent electrophile and is 

therefore a useful way of ensuring site-specific conjugation. However, since the 

mPEG-conjugates were prepared using this same approach, neither mPEG-FosWc npr 

mPEG-PhbYi85-2 i4 possessed any reactive cysteine residues that could be targeted.
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FosWr

COOH Nh2 COOH COOH
QW NH2SH COOH

#  " M l  c’SoH * NHj

COOH
COOH KIU COOHIMrU

COOHCOOH COOH

COOH

(a)

(b)

Figure 6.2 Possible sites of conjugating OG to peptides FosWc and Phbyi85_2i4 

and reaction scheme for OGSE488-X with a reactive amine side-chain. Panels 
(a) and (b) show COOH sides-chains coloured blue, NH2 side-chains red and SH 
white. The latter was not reactive in the PEGylated peptides. Panel (c) shows the 
structure o f OGSE488-X and its reaction mechanism with an amine side-chain. N.B. 
R-SH could react in the same manner. Protein structure file was obtained from the 

PDB, DOT: 1 0 .2210/pdbl fos/pdb and edited/rendered accordingly using MacPyM OL.
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To facilitate later analyses with fluorescence spectroscopy and flow cytometry, 

it was important that exactly the same fluorophore, and linking chemistry, was used to 

prepare both the OG-labelled peptides and mPEG-conjugates. The ideal approach 

would have utilised a heterobifunctional PEG chain, whereby OG could be conjugated 

to one end and either FosWc or PhbcYig5-2i4 to the other. However, the cost of PEG 

reagents needed to perform such a synthesis were prohibitive, furthermore this approach 

would have required new conjugates to be synthesised. Instead, the use of an OG 

derivative such as OGSE488-X would make it possible to label each compound in a 

similar manner, i.e. same fluorophore, same linking chemistry. The only possible 

difference was the exact site of conjugation, since each peptide possessed multiple 

arginine and lysine residues. To ensure the same site of conjugation it would have been 

necessary to re-synthesise the coiled-coil motif peptides with protecting groups that 

could be selectively removed i.e. with differing concentrations of TFA. Re-synthesis 

was not a feasible option; therefore, the random amine-labelling approach as described 

above was used. The most significant disadvantage of this approach was that 

conjugation of OGSE488-X to an amine side-chain would likely disrupt the a-helical 

structure of the peptides and probably prevent coiled-coil formation with their 

respective targets. Furthermore, it was hypothesised that changes to the secondary 

structure of the coiled-coil motif peptides may affect their intracellular uptake and 

trafficking. However, the random amine-labelling approach was the only option 

available which would allow the preliminary uptake studies to be conducted with the 

time and materials that were available. Prior to conducting the synthesis of OG-labelled 

peptides and conjugates, optimisation of the protocol was conducted using mPEG-NH2 

(Chapter 2, section 2.2.7).

6.1.3 M ethods of Investigating In Vitro Cell Viability

The assessment of in vitro cell viability is an essential step in the pre-clinical 

study of any compound if considered as a potential future therapeutic. To best 

characterise candidate compounds, a cell viability assay must be reproducible and able 

to report accurately changes in viability, furthermore it is imperative that the assay is a 

good predictor of in vivo and/or clinical outcomes.

A myriad of techniques are available, including measuring (i) mitochondrial 

respiration using the MTT assay (Mosmann, 1983), (ii) the incorporation of
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radiolabelled DNA precursors e.g. [3H]-thymidine (Amirghofran et al, 2007) and (iii) 

lactate dehydrogenase (LDH) release as a measure of membrane integrity 

(Korzeniewski and Callewaert, 1983).

The MTT assay, first described by Mosmann (1983) has been routinely used to 

screen polymer-anticancer agents (Alley et al, 1998) to detect changes in cytotoxicity, 

proliferation or activation. The main advantages of this colorimetric assay were its 

“...rapidity and precision, and the lack of any [requirement for a] radioisotope” 

(Mosmann, 1987). Furthermore, in an evaluation of the clinical usefulness of 

preclinical assessment using the MTT assay, the prediction rate for anti-tumour therapy 

was shown to be 86.4 % (Furukawa et al, 1991). Thus this assay was chosen to 

measure the cytotoxicity of Phbyi85-2i4 and mPEG-PhbYi85-2i4 and subsequently FosWc 

and mPEG-FosWc.

Rationale fo r  Use o f  the MCF-7 Cell Line

As mentioned above (section 6.1), a peptide similar to P h b y i85-214 was 

previously shown to have a pro-apoptotic effect in four different cell lines including 

MCF-7 (Joshi et al, 2003). These observations were made without the use of a 

transfection reagent and the MCF-7 cell line was found to be most sensitive, with 46 % 

of cells in an apoptotic state (TUNEL assay) at a peptide concentration of 15 pM. In 

this study, experiments were conducted using the MTT assay to determine whether a 

similar effect could be observed for either P h b v i85-2 i4 or m P E G -P h b Yi85-2 i4-

Previous work had also demonstrated that c-Fos derived peptides were cytotoxic 

in the MCF-7 cell line, albeit when delivered with the transfection reagent Tfx™-50 

(Yao et al, 1998). Experiments conducted without the use of Tfx™-50 had failed to 

show any cytotoxicity up to a concentration of 100 pM (Yao et al, 1998). In light of 

this work, a review of the use of Tfx™-50 and other methods for the transfection of 

peptides was conducted.

6.1.4 Transfection o f Peptide/Polym er Therapeutics

A diverse range of methods and reagents have been developed with the aim of 

delivering macromolecules including peptides/proteins, polymers and DNA into cells. 

Commonly used techniques for facilitating intracellular delivery include the use of 

calcium phosphate precipitation, peptides, cationic polymers e.g. polyethyleneimine
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Table 6.1 Choice of reagents considered to aid intracellular delivery of FosWc and mPEG-FosW<>

Reagent Name Description Referenced)

Chariot™ Intracellular-delivery demonstrated for a wide-range of macromolecules in many different 

cell lines, including delivery of green fluorescent protein (GFP) in MCF-7 cells. Reported to 

be non-cytotoxic, transfection is serum independent. Used for the intracellular delivery of a 

PHB derived peptide.

Morris et al, 1999; 

Morris etal, 2001; 

Joshi et al, 2003

DeliverX™ Virus derived ampipathic peptides that form nano-particles capable of passing through 

plasma membranes avoiding the endocytic pathway. Purported delivery of a peptide 

inhibitor of cyclin dependent kinase 2 (Cdk2) in HeLa cells.

Simeoni et al, 2003

Pro-Ject™ Cationic lipid used to successfully transfect a range of macromolecules including, GFP, high 

and low molecular weight dextran sulfate and caspase enzymes. Protocol advises to transfect 

in serum free media.

Thermo Scientific, 

www.piercenet.com

PULSin™ Cationic amphiphile, forms non-covalent complexes with proteins. Said complexes are 

delivered following binding with anionic cell adhesion receptors. Used for wide range of 

proteins in many cell types, though not including MCF-7.

Weill et al, 2008; 

Cortez et al, 2007

Tfx™-50 Cationic lipid marketed for the transfection of DNA, however, successful transfection of c- 

Fos derived peptides demonstrated in the MCF-7 cell line. Works in presence of serum.

Yao etal, 1998

TransPass™ P Reagent that delivers proteins and peptides into cells via endocytosis. Successfully used in 

MCF-7 cell line. Very little other information available.

New England BioLabs 

(www.neb.com)
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(PEI) (Boussif et al, 1995), cationic liposomes (Feigner et al, 1987), electroporation 

(Chu et al, 1987), micro-injection (Capecchi, 1980) and viral methods (Graham and 

VanderEb, 1973).

The use of viral vectors, or access to electroporation and/or micro-injection 

techniques was not possible during the course of this study. As such the relative pros 

and cons of the remaining reagents were assessed, with particular regard to the peptide 

and cationic lipid reagents (Table 6.1).

The cationic liposome Tfx™-50 was of particular interest since its use with Fos 

derived peptides had shown promise in previous work (Yao et al, 1998). Furthermore, 

it was commercially available, substantially cheaper than the peptide reagents (therefore 

a greater range of experiments could be conducted) and could be used to perform 

transfections in the presence of serum (Schenbom et al, 1995).

Structure ofTfx ™-50 and Proposed Mechanism o f Action

The cationic lipid component of the Tfx™-50 reagent is N, N, N ’, N ’- 

tetramethyl-N, N ’-bis(2-hydroxyethyl)-2, 3, -dioleoyloxy-1, 4-butane diammonium 

iodide (Schenbom et al, 1995). Whilst the exact mechanism by which the reagent is 

purported to facilitate transfection is unknown, it is postulated that the cationic head 

groups of the lipid molecule form an ionic complex with the anionic groups of the target 

molecule (Schenbom et al, 1995), in this case the peptide. As discussed in Chapter 1 

(section 1.4), the cell membrane presents a charged surface by virtue of the anioic 

phosphate groups positioned at the outer edges of the lipid bilayer. It is thought that by 

conveying an overall cationic charge to the peptide (or mPEG-peptide conjugate) the 

complex will be able to make contact with the cell membrane surface, and an unknown 

fusion-type event follow, allowing the complex to be internalised into the cell (Zhou 

and Huang, 1994; Remy et al, 1994).

6.1.5 RBC Lysis as a Tool to Study Haematotoxicity

The overall aim of this research was to develop novel polymer-coiled-coil motif 

conjugates with therapeutic potential as novel nanomedicines for clinical use. With this 

approach in mind, it was necessary to ascertain whether non-specific toxicity (e.g. 

membrane damage) was likely to arise following parenteral administration of any of the
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compounds described in this study. It was essential that the compounds did not induce 

lysis of cellular membranes, as such an effect would preclude further study.

The RBC lysis assay is a well-established method of investigating whether 

polymers, proteins and other biomacromolecules exert a membrane destabilising effect 

(Duncan et al, 1994; Lavignac et al, 2005; Vandermeulen et ah 2005). It was used in 

conjunction with well-established positive and negative controls, PEI and mPEG-NH2 

respectively.

6.16 Experimental Aims

In summary, the aims of this study were to:

For Flow Cytometry Studies:

■ Synthesise, purify and characterise OG-labelled peptides (FosW c-O G  and 

Phbyi85-2 i4-OG) and mPEG-peptide conjugates (mPEG-FosW c-O G  and mPEG- 

P hbcY 185-214"OG).

■ Study the effect of OG conjugation and complexation with Tfx™-50 on (i) the 

fluorescence excitation and emission spectra and (ii) the fluorescence intensity 

at the XeX (max) and Xem (max) using fluorescence spectroscopy.

■ Investigate the effect of pH (in the physiological range - 5.5 to 7.4) on the 

fluorescence emission intensity of each of the OG-labelled compounds. If 

quenching did occur, to estimate the degree to which it occurred and whether it 

was likely to affect the data obtained from flow cytometry measurements.

■ Measure the uptake of OG-labelled peptides and conjugates at 37 °C using flow 

cytometry. Firstly to assess the uptake of Phbyi85-2 i4-OG and mPEG-Phbcyiss- 

214-OG relative to mPEG-OG. Secondly, to quantify the uptake of the 

compounds FosWc-OG and mPEG-FosWc-OG relative to their respective Tfx- 

50 complexes.

For Assessment o f Cytotoxicity:

■ Study the effect of each of the unlabelled peptides and conjugates on cell 

viability in the MCF-7 cell line using the MTT assay. Investigate the use of the
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transfection reagent Tfx™-50 to deliver FosWc and mPEG-FosWc and 

determine by means of the MTT assay whether the complex is more cytotoxic 

than either compound in isolation.

For Assessment o f  Haematotoxicity:

■ Determine whether the unlabelled peptides and conjugates induced haemolysis 

using the red blood cell lysis assay as a means of assessing likely 

biocompatibility.

6.2 Methods

The coiled-coil motif peptides, FosWc and Phbyi85-2i4, and mPEG-coiled-coil 

motif conjugates, mPEG-FosWc and mPEG-Phbcy 185-214, used in this study were 

prepared as described in Chapters 3 (section 3.2.2) and 4 (section 4.2.2), respectively. 

The molecular weight and peptide sequence for each compound is provided in 

Appendix 1.

General methods relating to cell culture and characterisation of the OG- 

conjugates prepared in this study are described in Chapter 2. In particular, use of UV 

spectroscopy to determine sample concentration (section 2.2.1.1), packing of Sephadex® 

G-15 chromatography columns (section 2.2.2.1), purification and analysis of OG- 

labelled conjugates (section 2.2.2.2), and flow cytometry (section 2.2.4.3).

The methods in this Chapter are divided into two sections; the first describes the 

synthesis and characterisation of the OG-labelled conjugates and cellular uptake studies 

using flow cytometry, while the second describes the haemolysis, MTT and transfection 

assays.

6.2.1 Preparation o f OG-Labelled Probes

Prior to conducting any cell-uptake experiments with flow cytometry it was first 

necessary to prepare and characterise OG-labelled peptides (FosWc-OG and Phbyi85-2 i4- 

OG), conjugates (mPEG-FosWc-OG and mPEG-PhbcYi85-2 i4-OG) and as a control 

mPEG-OG. The methods used to prepare the probes used in this study were optimised 

in earlier work with mPEG-OG and are summarised in Chapter 2 (section 2.2.2.2).
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Table 6.2 Summary of Reactants Used for Preparation of the OG-Labelled 

Probes.

Sample ID Peptide/Conjugate^ Volume of OG

(mg) pmoles (pL)

FosWc-OG 10 2.29 71

mPEG- FosWc-OG 10 2.29 71

PhbY185-214“OG 5 1.42 44

mP EG-Phbcy i 85-2 i 4~OG 5 1.38 43

Tor each of the mPEG-conjugates, quantities were determined using the peptide 

molecular weight.

#[Stock solution] = 5 mg mL'1.
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6.2.1.1 Synthesis, Purification and Analysis of OG-Labelled Probes

This method describes the preparation of mPEG-OG; all OG conjugates were 

prepared in the same manner. For reference, the quantities of reactants used in the 

preparation of the other four OG-labelled conjugates are summarised in Table 6.2.

mPEG-NH2 (5,000 g m ol1, 11 mg, 2.2 pmoles) was dissolved in sodium 

bicarbonate buffer, pH 8.3 (0.5 mL). OGSE488-X was dissolved in methanol to a 

concentration of 5 mg mL'1. An aliquot (68 pL, 0.25 mol. eq.) of this solution was 

added to the reaction flask. The flask was wrapped in foil and the reaction left to 

proceed for 4 h at room temperature in the dark. Progress o f the reaction was monitored 

at t = 0, 1,2 and 4 h, by thin layer chromatography (TLC) using methanol as the mobile 

phase, once dry the plates were visualised using a UV lamp.

SEC with a PD-10 desalting column was used to purify the crude reaction 

mixture; ddH20  was used as the mobile phase. An aliquot (25 pL) of the purified 

sample was dissolved in ddH20  and the purity checked using a PD-10 desalting column 

equilibrated in PBS. Aliquots (100 pL) from each fraction collected (500 pL) were 

assayed using a fluorescence plate reader (FLUOstar OPTIMA) to determine the ratio 

of free to bound OG-SE (detailed in section 2.2.7). UV spectroscopy was used to 

determine the peptide and OG concentrations where appropriate (section 2.2.1).

6.2.1.2 Effect of OG-Conjugation on Fluorescence Excitation and Emission Spectra

To investigate whether the fluorescence spectra were changed as a result of 

conjugation, excitation and emission spectra were measured for each of the OG- 

conjugates prepared in section 6.2.1.1. Each sample was prepared at an OGSE488-X 

concentration of 1.5 pg mL"1 (determined by UV spectroscopy) in PBS, pH 7.4, total 

volume 120 pL. To determine the appropriate gain setting, the emission intensity for 

each of the samples was first measured using a fluorescence plate reader (FLUOstar 

OPTIMA) with excitation and emission filters set at "kQX — 485 nm and Xem = 520 nm, 

respectively. These filters were chosen as they were closest available to the published 

^ex (max) and Xem (max) for OGSE488-X (www.invitrogen.com).

The sample with the highest emission intensity at >̂ m = 520 nm (mPEG-OG) 

was then measured first with a fluorometer (SIM-AMICO) and the gain adjusted such 

that the XeX (max) was set to 60 %  of the maximum detection limit. Spectra were acquired 

for each sample using a quartz cuvette, pathlength 1 cm. The instrument settings were

267

http://www.invitrogen.com


CHAPTER 6: Biological and Cellular Uptake Studies with mPEG-PhbCY185 214 and mPEG-FosWc

as follows: X range of 350 to 550 nm for excitation scans and a X range of 450 to 650 

nm for emission scans, resolution was 2 nm, integration time 1 s and monochromator 

band pass 4 nm. All spectra were saved and exported as .txt files.

6.2.1.3 Effect ofpH and Concentration on the Fluorescence Emission Intensity of the 
OG-Labelled Conjugates

Prior to conducting cell-uptake experiments with flow cytometry it was first 

necessary to determine whether the fluorescence emission intensity of the OG- 

conjugates changed in response to pH and/or concentration; and in the case of FosWc 

and mPEG-FosWc following complexation with the cationic lipid, Tfx™-50, 

transfection reagent.

Stock solutions (100 fig mL'1) of OGSE488-X and each OG-labelled conjugate 

were prepared in PBS, pH 7.4 and diluted with either, PBS (pH 7.4), PBS (pH 6.5) or 

citrate buffer (pH 5.5) to provide 5 samples (0.1, 0.5, 0.75, 1.0 and 1.5 pg mL'1) of each 

probe for each pH. The total volume of each sample was 120 pL. All of the samples 

were prepared directly into black, polypropylene 96-well plates suitable for 

fluorescence spectroscopy. Aliquots (120 pL) of each buffer were also added to the 

respective plates as a negative control. The fluorescence emission intensity at 520 nm 

was measured using a fluorescence plate reader (FLUOstar OPTIMA) with excitation 

and emission filters set at X*x = 485 nm and Xem = 520 nm, respectively. The gain was 

adjusted such that the fluorescence emission for the sample of highest intensity (mPEG- 

OG, 1.5 pg mL'1, pH 7.4) was set to 90 % of the maximum detection limit. This gain 

value (1223) was used in the acquisition of data for all three plates. Immediately prior 

to acquiring the emission data, each plate was shaken for 10 s inside the plate reader. 

Post-acquisition, all data were saved and exported as .xls files.

6.2.2 Study of Cellular Uptake Using Flow Cytometry

6.2.2.1 Cell Uptake Studies Using OG-Labelled Peptides and Conjugates

The general method used to analyse the cellular uptake of OG-conjugates by 

flow cytometry analysis was described in Chapter 2, section 2.2.8. In the experiments 

conducted in this study all samples were standardised to an [OG] of 1.5 pg mL'1; this 

was the same concentration used to conduct the fluorescent spectroscopy experiments 

described earlier (section 6.2.1). Wells were seeded with MCF-7 cells at a
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concentration of 5 x 105 cells mL"1 and incubated for 24 h at 37 °C, 5 % CO2 to allow 

cells to adhere before adding test compounds.

For studies with mPEG-OG, Phbyi85-2i4-OG and mPEG-PhbcYi85-2i4-OG, uptake 

at time points of 0, 1,3 and 5 h were measured relative to control (untreated) cells. In 

each experiment samples were prepared in triplicate and the data from three 

experiments collated.

For studies with FosWc-OG, mPEG-FosWc-OG and their respective, Tfx™-50 

complexes, uptake was measured at time points of 0, 1 and 2 h relative to control 

(untreated) and Tfx™-50 treated cells. The 2 h time-point samples were prepared by 

incubating the cells with test compounds for 1 h, then removing and adding fresh 

complete media for a further 1 h; thus replicating the protocol used in the earlier cell 

viability studies (section 6.2.3). Samples were added in reverse time order such that all 

samples were ready to analyse with the flow cytometer at the same time. In each 

experiment samples were prepared in triplicate and the data from two experiments 

collated.

All data were analysed and exported in two formats (i) dot-plots (x-axis: forward 

scatter, y-axis: side scatter) and (ii) histograms (x-axis: fluorescence - FL-1, y-axis: 

counts), data were later processed using GraphPad Prism v4.0 to generate the bar charts 

presented (x-axis: time, y-axis: fluorescence).

6,2,2.2 Stability of OG-Conjugates Post-Incubation with MCF-7 Cells

An important control was to determine whether significant amounts of 

OGSE488-X were cleaved from each of the respective OG-conjugates during 

incubation with the cells over the course of the flow cytometry experiments. Liberation 

of large amounts of OGSE488-X, either by acid or enzymatic hydrolysis would likely, 

introduce artefacts into the fluorescence data obtained (due to differences in rate of 

uptake and transport of free OGSE488-X compared with the macromolecular form). As 

such, cell media, post-incubation at each of the time points measured (1 and 2 h) was 

analysed using PD-10 columns filled with Sephadex® G-15 media (see section 2.2.6 for 

preparation and use). Analysis of each sample by fluorescence spectroscopy was 

conducted as described in section 2.2.2.2.
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6.2.3 Assessment o f Cell Viability Using the MTT Assay

This assay was described in Chapter 2, section 2.2.3. Detailed here are specific 

references to the test compounds under study. In all instances cells were seeded in 96- 

well plates at a density of 40,000 cells mL'1 using clear complete media (100 pL / well) 

and incubated for 72 h at 37 °C, 5 % CO2 prior to addition of test compound to ensure 

that the cells were in their exponential growth phase.

6.2.3.1 Cytotoxicity o f  Phbi85-2i4> PM>yi8$-214 ttnd mPEG-PhbcYi85-2i4

In the first three experiments Phbi85-2 i4 was used as the test compound; as it did 

not possess a strong UV-sensitive choromophore e.g. tyrosine, concentrations were 

determined gravimetrically as for the polymers PEI and mPEG-NKk used as positive 

and negative controls, respectively. Solutions of PEI (70,000 g mol'1), Phbig5-2i4 (3531 

g mol'1) and mPEG-NH2 (5,000 g mol'1) were prepared at concentrations of 0, 0.01, 

0.05, 0.1, 0.5 and 1 mg mL'1 in clear complete media. Aliquots (100 pL) of each in 

replicates of 6 were added to the respective wells. Plates were then incubated (37 °C, 5 

% CO2) for a total of 72 h; the remainder of the assay was conducted as described in 

Chapter 2, section 2.2.4.2.

Further studies made use of the peptide Phbyi85-214 along with the conjugate 

mPEG-PhbcYi85-2i4 as test compounds, since both contained the tyrosine chromophore 

that made accurate determination of concentration by UV spectroscopy possible. Each 

of these experiments was conducted using the same protocol as described for Phbi85-2i4-

6.2.3.2 Cytotoxicity o f  FosWc and mPEG-FosWc ± Tfx ™-50

Initial studies were conducted to investigate cytotoxicity of FosWc and mPEG- 

FosWc without the use of the transfection reagent Tfx™-50. Three separate 

experiments were conducted using the same protocol as described for the Phb 

derivatives above.

In light of data published by Yao et al, (1998) suggesting the need to use a 

transfection reagent (Tfx™-50) to deliver Fos derived peptides, subsequent studies were 

conducted using this reagent. Optimisation of the transfection protocol was conducted 

using only the peptide FosWc to minimise the amount of Tfx™-50 reagent required. 

Comparative studies using mPEG-FosWc were performed later.
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Approaches to Calculating the Amount o f Tfx™-50 Reagent to Complex with FosWc

It was necessary to determine the amount of Tfx-50 reagent to use to form a 

complex with the peptide FosWc. In the work by Yao et al, (1998) a charge ratio of 2:1 

(peptide : Tfx™-50) was used. However the authors did not mention whether this ratio 

was calculated using the summed negative charge/molecule of the peptides studied, or 

the overall charge, i.e. summed negative charges/molecule minus the sum of positive 

charges/molecule. FosWc has a total of ten negatively charged and five positively 

charged functional groups. A preliminary experiment was conducted to evaluate 

whether there was any difference between the complexes prepared using either 

approach to the calculation. For clarity, a 2:1 charge ratio using a negative charge of - 

10/molecule of FosWc is equivalent to a 1:2.5 (peptide : Tfx™-50) molar ratio; a 

negative charge of -5/molecule equates to a 1:1.25 molar ratio.

Furthermore, it is important to note that in these experiments concentrations 

were prepared using molar, rather than mass units in contrast to earlier studies, this 

decision was taken to facilitate comparison of the data with that obtained by Yao et al, 

(1998).

6.233 Preparation and Reconstitution of Tfx ™-50 Reagent

Complexes were prepared in accordance with the manufacturers instructions, 

summarised in Figure 6.3a; all work was conducted in an aseptic suite. In brief, a vial 

of Tfx™-50 reagent was warmed to room temperature at least the day prior to each 

experiment. Nuclease-free water (400 pL) was added to the contents of each vial to 

produce a lipid suspension of concentration, 1 mM (1 nmol pL'1). The sample was 

vortexed vigorously (10 s) to suspend the lipid film, then incubated at 65 °C in a water 

bath for 1 min. Care was taken to ensure that the water level was above that of the lipid 

suspension in the vial and that the rubber septum did not “pop” off during incubation. 

The suspension was vortexed a second time (10-15 s) then stored overnight at - 20 °C. 

When required, the suspension was thawed at room temperature and vortexed (10-15 s). 

Once reconstituted the suspension was used within 8 weeks or discarded in accordance 

with the manufacturers advice.

6.23.4 FosWc/mPEG-FosWc: Tfx ™-50 Complex Preparation

FosWc / mPEG-FosWc • Tfx™-50 complexes were prepared immediately prior 

to use in each experiment. An illustration is provided in Figure 6.3b. Sample solution
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(a) Reconstitution o f Tfx™-50 reagent 

(1) Rehydrate (2) Incubate

Nuclease free H20  
(400 pL)

■s
TfxT“-50. 
lipid film

Vortex
(10 s)

65 °C 
(60 s)

(b) Transfection Protocol

(3) Freeze

-20 °C- 
(24 h)

Vortex 
(10 S)

►
u

(1) M ix

FosWc TfxT“-50

(2) Incubate complex

Vortex w 
(10 s) f

20 °C 
(15 min)

(3) Dilute

FosWc:Tfx™-50 
complex diluted with 
fresh complete media

Vortex
(10 s)

(4) Transfect cells

FosWc:Tfx™-50 
complex in complete 
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(5) Wash
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(6) Incubate for 18 or 
66 h then treat with 

M TT reagent (Chapter 
2)

F ig u re  6.3 R e c o n s t iu t io n  a n d  use  o f  Tfx™-50 r e a g e n t .  Panel (a) shows the 
reconstitution o f Tfx™-50 reagent. Panel (b) shows transfection o f M CF-7 cells 
using FosWc, Tfx™-50 controls were prepared using PBS in replacement o f FosWc.
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(FosWc or mPEG-FosWc in PBS) and Tfx™-50 reagent were combined in sterile plastic 

Eppendorf™ tubes (2 mL). The tubes were sealed and vortexed (10-15 s) then 

incubated for 15 min at room temperature (20 °C). The samples were then ready to be 

added to the cells, see individual experiment descriptions below.

6.2.3.5 Assessment of FosWc : Tfic ™-50 Molar Ratio and MTT Assay Incubation 

Time

The first assay was performed using samples of FosWc : Tfic™-50 prepared 

using a 1:1.25 molar ratio, the second using a 1:2.5 molar ratio. In each assay, a 5-log 

concentration range was used to construct a dose response curve to compare the 

cytotoxicity of the FosWc : Tfic™-50 complex relative to Tfic™-50 alone. The test 

compounds were incubated with the cells for a total of 72 h and the MTT assay 

performed as described in Chapter 2, section 2.2.3. A third assay was conducted using a 

1 :2.5 molar ratio, however with a 24 h incubation time as used by Yao et al, (1998). In 

all three assays, samples were prepared at each concentration in triplicate.

6.2.3.6 Determination of the Optimal FosWc: Tfx ™-50 Charge Ratio

In all further cell viability studies experiments were conducted using a fixed 

peptide concentration of 10 pM and with and incubation time of 24 h. A 10 pM 

concentration was chosen since it was at this concentration that the greatest difference 

between the cytotoxicity of the FosWc • Tfx™-50 complex and the Tfx™-50 control was 

observed in all three assays. This experiment investigated whether a charge ratio of 2:1 

(calculated on the basis of a molar ratio of 1:2.5) was optimal. Complexes and Tfic™-50 

controls at equivalent concentrations were prepared in triplicate to investigate the effect 

on cell viability at charge ratios of 2:1, 1:1, 1 :2 , 1:4 and 1:8 (FosWc : Tfx™-50). The 

incubation time was kept at 24 h.

6.2.3.7 Assessment of the Cytotoxicty of FosWc /mPEG-FosWc: Tfic ™-50 Complexes 
Using a 2:1 Charge Ratio (1:2.5 Molar Ratio)

Four assays were conducted, in each instance using a fixed peptide 

concentration of 10 pM. The first assay was performed using only the peptide FosWc 

and was conducted with three controls: (i) untreated cells, (ii) Tfx™-50 alone and (iii) 

FosWc, each at equivalent concentrations to those used in the FosWc : Tfx™-50 

complex. The remaining three assays were conducted with Tfx™-50 complexes of both
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FosWc and mPEG-FosWc and three controls as above. To improve the power of the 

data, in each assay samples were prepared in replicates of six. Data from the three 

separate assays were combined to generate an n of 18.

6.2.4 Investigation of Haemolytic Activity Using the RBC Lysis Assay

Prior to preparation of the RBC suspension, samples (100 pL) of the positive 

and negative-controls, PEI (70,000 g mol’1) and mPEG-NH2 (5,000 g mol'1), 

respectively were added to “v-bottomed” 96-well plates in pentuplicate. It was 

important to note that the concentration of sample prepared in each well was doubled, 

since it was to be diluted 2-fold by the addition of RBC suspension (100 pL). For each 

sample, a 3-log range of concentrations was prepared such that the final concentrations 

were 0.001, 0.01, 0.1 and 1 mg mL'1. Since neither of the polymers had a chromophore 

from which the concentration could be determined using UV spectroscopy, 

concentrations were determined gravimetrically. Two additional lanes (5 wells each) 

were included in each experiment, a “blank” lane of PBS, pH 7.4 and a second, 

consisting of Triton X-100 (1 % w/v). The latter was used as a 100 % haemolysis 

control so that all other data could be expressed as a percentage of this value. All plates 

were then chilled to 4 °C, while the RBC suspension was prepared.

The method used to prepare the RBCs was described previously by Duncan et 

al, (1994). In brief, male Wistar rats (c.a. 250-300 g body weight) were killed by CO2 

asphyxiation. Blood (6 - 8  mL / rat) was obtained by cardiac puncture using a large bore 

needle (18 G) and syringe and rapidly transferred to Li-Hep Vacutainer™ tubes (pre­

weighed) on ice (c.a. 4 °C). PBS, pH 7.4 (1-2 mL / tube) was added to make the 

volume up to 5 mL following which, the tubes were centrifuged at 1500 g for 10 min at 

4 °C. The supernatant was removed, fresh PBS, pH 7.4 was added (up to 5 mL / tube) 

and the sample centrifuged a second time. This process was repeated a third time and 

the mass of the pellet determined such that the volume of PBS, pH 7.4 required to make 

a 2 % w/v RBC suspension could be calculated. This suspension was freshly prepared 

for each experiment and stored on ice (c.a. 4 °C) while in use.

Aliquots (100 pL) of RBC suspension were added to each of the sample wells in 

the 96-well plate. The plate was then placed in an incubator for 1 h at 37 °C. 

Following incubation, the plate was centrifuged at 1500 g for 10 min at 4 °C. Aliquots 

(100 pL) of supernatant were then carefully removed from each well and transferred to
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a “flat-bottomed” 96-well plate. The UV absorbance at >.550 nm was determined using a 

microtitre plate reader (Tecan Sunrise). The mean absorbance of the “blank” lane was 

subtracted from all of the sample values and the data expressed as a % (± SD) of the 

haemoglobin released relative to Triton X-100.

Once the protocol was optimised using the positive and negative-controls, 

further assays were conducted with samples ( 1 0 0  pL) of FosWc, mPEG-FosWc, 

Phby 185-214 and mPEG-PhbcYi85-2i4- Sample concentrations were prepared in the same 

3-log range, however a maximum concentration of 0.5 mg mL'1 was used for each test 

compound sample to conserve material. The experiment was conducted three times, 

each time a fresh RBC suspension was prepared with blood from a new rat. The data 

were collated and expressed as described above.

6.3 Results

6.3.1 Synthesis and Characterisation of OG-Labelled Conjugates

The OG-labelling protocol optimised in Chapter 2, section 2.2.2.2 was 

successfully applied to the synthesis of PhbYi85-2 i4-OG, mPEG-PhbcYi85-2i4“ OG, 

FosWc-OG and mPEG-FosWc-OG for use in this study. TLC was used to monitor the 

progress of each reaction; in each case, after 2 h a bright fluorescent spot was visible on 

the baseline of the TLC plate for the reaction mixture. After 4 h, there was no further 

change in the appearance of the TLC. However, the efficiency o f the reaction was well 

below 100 %, as judged by the fluorescent spot remaining in the reaction mixture lane 

for each sample with a RF similar to that of the free (un-reacted) OGSE control.

Analysis of the crude reaction mixture by SEC corroborated the observations 

made by TLC (Figures 6.4 and 6.5). In each instance, peaks corresponding to un­

reacted OGSE488-X eluted between 5 and 15 mL, while the OG-labelled peptides and 

OG-labelled conjugates in the void volume (0.5 - 5 mL). Analyses conducted post 

purification by SEC, demonstrated the effectiveness of this technique at removing free 

OGSE488-X as only peaks corresponding to macromolecular-OG were observed in 

each analytical run (Figures 6.4 and 6.5). The first OG-labelled peptide prepared, 

Phby 185-2 i4"OG, eluted slightly later than the other samples suggesting the possibility of 

a higher % of free OG contaminant. Free OG was higher in this sample (2.97 %)
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(a)

(b) 60n

Y185-214*

Un-reacted OG

 Pre-Purification
 Post-Purification

Elution Volume (mL)

M— mPEG-PhbY185-214-OG

Un-reacted OG

Pre-Purification
Post-Purification

15 20
Elution Volume (mL)

Figure 6.4 Evaluation of reaction efficiency and purity using SEC of OG- 
labelled conjugates PhbYi85_2i4-OG and m PEG -Phby^^^-O G . PD-10 columns 
containing Sephadex® G-25 media were used for purification and analysis of mPEG- 
PhbYi85-2i4-OG while G-15 filled columns were used for PhbY185_2 i4-OG.
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(a) FosWr-OG

Un-reacted OG
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Elution Volume (mL)
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Un-reacted OG 
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Figure 6.5 Evaluation of reaction efficiency and purity using SEC of OG- 
labelled conjugates FosWc-OG and mPEG-FosWc-OG. PD-10 columns 
containing Sephadex® G-25 media was used for purification and analysis of mPEG- 
FosWc-OG while G-15 media was used for the peptide FosWc-OG.
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Table 6.3 Characterisation of OG-labelled peptides, polymer and conjugates.

S a m p l e  ID M o la r  R a t io S p e c i f i c  A c t i v i t y P u r ity ^

( O G  : p e p t i d e / ( p g  O G  m g ' 1 (%  F r e e  O G )

p o l y m e r / c o n j u g a t e ) c o n j u g a t e )

m P E G - O G 0.38 04.20 2.90

P hb Y 185-214-O G 0.56 21.31 2.97

m P  E G -P h b c Y  i 85-2 i 4~ O G 0.23 21.07 0.88

F o s W c - O G 0.17 18.94 0.85

m P E G - F o s W c - O G 0.16 19.80 0.24

'Determined by AUC
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Figure 6.6 Characterisation of OG fluorescence excitation and emission 
spectra. Panels show (a) OGSE488-X, (b) mPEG-OG, (c) PhbYi85_2i4-OG and (d) 
mPEG-PhbCY185_2 i4-OG. All samples were prepared at equi-molar concentrations of 
OG (1.5 pgm L'1) in PBS, pH 7.4.
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compared with 0.88, 0.85 and 0.24 % for mPEG-Phbcyi85-2i4-OG, FosWc-OG and 

mPEG-FosWc-OG, respectively (Table 6.3). With the exception of mPEG-OG, all 

OG-labelled conjugates had similar specific activities in the range of 20 pg OG / mg 

conjugate (Table 6.3).

Fluorescence Excitation and Emission Spectra o f  OG Pre and Post Conjugation

The fluorescence excitation and emission spectra for OGSE488-X are shown in 

Figure 6.6a. (max) and Xem (max) were 492 and 517 nm, respectively. Following 

conjugation there was no change in the Xex (max) and Xem (max) values, however, in every 

case changes in the intensity of both the excitation and emission spectra were observed. 

For mPEG-OG (Figure 6.6b) the intensity of both spectra increased by approximately 

14 %; it is possible that this small difference may be accounted for, at least in part by 

errors in determining the concentration of the sample. More marked 

changes were observed however when the fluorophore was conjugated to Phbyi85-2i4- 

OG (Figure 6.6c); the fluorescence intensity decreased by 33 % and for mPEG- 

PhbYi85-2 i4-OG, the decrease was greater at approximately 41 %. A similar pattern was 

observed for FosWc-OG (Figure 6.7a) and mPEG-FosWc-OG (Figure 6.7b), with 

decreases of 30 and 36 % respectively.

When complexed with Tfx™-50 even greater quenching was observed. The 

fluorescence output of the FosWc-OG : Tfic™-50 complex (Figure 6.7c) decreased by 

91 %. The decrease was less pronounced for the mPEG-FosWc-OG : Tfx™-50 complex 

(Figure 6.7d) at 57 %. However spikes in both the fluorescence excitation and 

emission spectra were detected for this sample. These may be suggestive of light 

scattering. Spectra were also acquired for an equi-molar concentration of Tfx™-50 as a 

control (Figure 6.7e), spikes, as seen for the mPEG-FosWc-OG : Tfx™-50 complex 

were observed at the same and ^em values. Furthermore the excitation peak was of 

higher wavelength than the emission peak, again suggestive of light scattering rather 

than fluorescence, possibly indicative of micellar structures.

When normalised with respect to maximal fluorescence emission intensity at 

517 nm (Figure 6.8), the excitation and emission spectra were almost identical in shape, 

both pre and post-conjugation. The only difference observed was a small change in the 

excitation spectra at 483 nm; the fluorescence intensity post conjugation (of all OG- 

labelled samples) decreased by approximately 4 % relative to free OG.
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Figure 6.7 Characterisation of OG fluorescence excitation and emission 
spectra (continued). Panels show (a) FosWc-OG, (b) mPEG-FosWc-OG, (c) 
FosWc-OG : Tfx™-50, (d) mPEG-FosWc-OG : Tfx™-50, (e) Tfx™-50. All samples 
were prepared at equi-molarconcentrations of OG (1.5 pgmL"1) in PBS, pH 7.4.
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pH  Sensitivity o f  OGSE488-X and OG-Labelled Peptides, Conjugates and Tjx-50 

Complexes

Further characterisation at pH 7.4, 6.5 and 5.5 demonstrated the different 

degrees of fluorescence quenching seen for each of the OG-labelled compounds 

compared with free OGSE488-X. No change in fluorescence emission intensity was 

observed for OGSE488-X between pH 7.4 and 6.5 (Figure 6.9a). However a 15 % 

reduction was observed at pH 5.5 between OGSE488-X concentrations of 0.5 — 1.5 jug 

m L 1. A similar pattern was observed for mPEG-OG (Figure 6.9b). Greater pH 

sensitivity was observed for PhbYi85-2i4-OG, with a 10 % decrease at pH 6.5 and a 45 % 

decrease at ph 5.5 in the same concentration range (Figure 6.9c). For m P E G - P h b y i 85- 

214-OG the quenching was less at pH 6.5 (8 %), however at pH 5.5 ranged between 30 

% at 1.0 pg mL (OGSE488-X) and 40 % at 1.5 pg mL (OGSE488-X) (Figure 6.9d); 

this was suggestive of a non-linear relationship between fluorescence emission and 

OGSE488-X concentration at pH 5.5. All other data had suggested a linear relationship 

in the ranges measured.

In subsequent experiments with FosWc-OG, mPEG-FosWc-OG and their 

respective Tfx™-50 complexes, similar patterns of pH dependent fluorescence 

quenching were observed (Figure 6.10). The decreased fluorescence at pH 6.5 for 

FosWc-OG was approximately 14 %, while a 45 % decrease was observed at pH 5.5 

(Figure 6.10a). Little pH sensitivity was observed for the FosWc-OG : Tfic™-50 

complex, however this may be due to the very low output for all measurements (Figure 

6.10b). The trend for mPEG-FosWc-OG was very similar to mPEG-PhbYi85-2i4-OG 

with a 5 % decrease at pH 6.5 and a greater, 37 % decrease at pH 5.5 though the 

relationship between fluorescence output and OGSE488-X concentration was linear at 

all three pH values (Figure 6.10c). The mPEG-FosWc-OG : Tfic™-50 complex showed 

no pH quenching up to an OG concentration of 0.75 pg mL'1 (Figure 6.10d). Between 

0.75 and 1.5 pg mL'1 no quenching was observed between pH 7.4 and 6.5, however a 

23 % decrease was observed at pH 5.5.

6.3.2 Cellular Uptake of OG-Labelled Conjugates

Cellular Uptake o f P h b y i 8 5 -2 1 4 - O G  and m P E G - P h b c Y M - 2 1 4 - O G
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Figure 6.11 Uptake of PhbY185_214-OG and mPEG-PhbY185_214-OG relative to 
mPEG-OG at 37 °C in MCF-7 cells over 5 h. Data represent the mean (n=6) ± 
SD obtained from two separate experiments. Statistical analysis represents a two- 
way ANOVA, ** = p < 0.01, all others were n.s.
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Cell-associated fluorescence increased almost linearly from 0 to 3 h for each of 

the three compounds (Figure 6.11). No statistically significant (p > 0.05) difference 

was observed between PhbYi85-2 i4-OG, mPEG-PhbcYi85-2i4-OG or the control mPEG- 

OG at 1 h, however, at 3 h the uptake of mPEG-PhbcYi85-2i4-OG was significantly (p < 

0.01) greater than that of the mPEG-OG control. This suggested that the coiled-coil 

peptide motif was responsible for increasing the cellular uptake/binding to the cell 

membrane. Between 3 and 5 h the rate of uptake had reached a plateau suggesting a 

state of equilibrium had been reached between cellular uptake and exocytosis. At 5 h, 

the uptake of mPEG-PhbcYi85-2i4-OG remained significantly (p < 0.01) greater than that 

of the mPEG-OG control however, no statistically significant (p > 0.05) difference was 

observed between PhbYi85-2 i4-OG and mPEG-PhbcYi85-2i4-OG. The stability of the OG- 

conjugates was determined by SEC (PD-10) at 5 h and in each instance the free 

OGSE488-X found to be < 10 % of the total fluorescence, compared with < 3 % prior to 

incubation indicating that a small amount of OGSE488-X had been cleaved.

Cellular Uptake ofFosWc andmPEG-FosWc ± Tfic ™-50

Statistically significant (p < 0.001) differences in cell-associated fluorescence 

were observed between FosWc-OG/mPEG-FosWc-OG and the Tfx™-50 complexed 

samples at t = 1 and 3 h (Figure 6.12). In each instance there was very little 

instantaneous binding between the probes and the cell membrane as judged by the 

fluorescence at 0 h. No statistically significant (p > 0.05) difference was seen for any of 

the OG-conjugates at t = 0 h, however the cell-associated fluorescence of the cells 

treated with Tfx™-50 alone was markedly greater than that of the untreated, control 

cells at 0 h. After an incubation time of 1 h this difference diminished.

At 1 h, there was a 25-fold increase in the cell-associated fluorescence of the 

cells treated with the Tfic™-50 complexes compared with either FosWc-OG or mPEG- 

FosWc-OG alone. Though no statistically significant (p > 0.05) difference was 

observed between the complexes FosWc-OG : Tfx™-50 and mPEG-FosWc-OG : Tfx™- 

50 at 1 h. After the 1 h “chase” phase (t = 2 h), a significant difference (p < 0.001) was 

observed for the two samples in respect of both magnitude and trend. The cell- 

associated fluorescence of FosWc-OG : Tfx™-50 doubled at t = 2 h c.f. t = 1 h, while 

that for mPEG-FosWc-OG : Tfx™-50 decreased by approximately 40 %. A similar 

trend was observed upon comparison of FosWc-OG and mPEG-FosWc-OG, though the
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Figure 6.12 Uptake of FosWc-OG, FosWc-OG : Tfx™-50, mPEG-FosWc OG, 
mPEG-FosWc-0 G  : Tfx™-50 and Tfx™-50 alone over the first 2 h of the 
transfection protocol. Data show cell associated fluorescence determined by flow 
cytometry and represents the mean (n=6) ± SD of two separate experiments. Inset 
shows the uptake of FosWc and mPEG- FosWc without Tfx™-50 on a magnified y- 
axis. Time (h) is shown above each bar. Statistical significance determined using a 
two-way ANOVA with Bonferroni post hoc test. N.S. represents no significant 
difference, ** = p < 0.01, *** = p < 0.001. Black shows difference ± Tfx-50, blue 
shows difference between FosWc-OG : Tfx™-50 and mPEG-FosWc-OG : Tfx™-50 
complexes.
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Figure 6.13 Change in acquisition pattern of cells and gated population 
during the course of flow cytometry analysis. Panels (a) and (b): Dot plots show 
change in acquisition pattern, data represent treatment with Tfx™-50 at 0 h and 1 h 

as examples. In panel (c) bars show number o f cells in gate as a % of the total 
number of cells acquired.,Data represent mean (n=6) ± SD. Dotted line indicates 
mean % gated cells in the untreated control.
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magnitude of the difference was much reduced (Figure 6.12 inset). At 2 h the stability 

of the OG-conjugates was determined by SEC (PD-10) and in each instance the free OG 

found to be < 7 % of the total fluorescence, compared with < 1 % prior to incubation 

indicating that a small amount of OGSE488-X had been cleaved.

During analysis by flow cytometry the acquisition pattern in the dot-plot was 

monitored for each sample, in most cases there was little change. However the cells 

treated with Tfx™-50 alone exhibited a distinct change in morphology as judged by the 

decrease in the forward and side-scatter (FSC and SSC, respectively) measurements of 

the cell population (Figure 6.13). At 0 h (Figure 6.13a), the cells appeared indifferent 

to those treated with the other samples, however the change after 1 h was quite dramatic 

(Figure 6.13b). The flow cytometry data corroborated visual observations of a 

morphological change during Tfx™-50 treatment. The bar chart summarises the % of 

cells within the acquisition gate for each of the test compounds over time (Figure 

6.13c). The non-Tfx™-50 complexed samples had no effect on the % of gated cells at 1 

h, while a small decrease circa 10 % was noted after 2 h. Linear decreases were 

observed for each of the Tfx™-50 complexes. The effect of Tfx™-50 alone was greatest 

at 1 h with a 58 % decrease, while at 2 h recovery towards the original % commenced 

with a lesser decrease of 40 %. These data suggest that Tfx™-50 has a cytotoxic action 

towards the cells, possibly due to membrane damage. However, the “health” of the 

cells treated with Tfx™-50 alone appeared to improve after the wash phase (2 h), while 

the cells treated with either of the Tfx™-50 complexes continued to deteriorate.

6.3.3 Biological Assessment

Cytotoxicity ofPhbm -214, Phbyi85-2i4 and mPEG-PhbcYi85-2i4
The first assay conducted with Phbig5-2 i4 demonstrated dose-dependent 

cytotoxicity over a concentration range of 0.001 to 1 mg mL'1 with an IC50 value of 

approximately 0.8 mg mL'1 (Figure 6.14a). Statistically significant cytotoxicity c.f. 

mPEG-NH2 was determined at 0.05 mg mL'1 (p < 0.05) and 0.1-1 mg mL'1 (p < 0.001). 

A repeat of this experiment failed to show any cytotoxicity up to 1 mg mL'1 (Figure 

6.14b). A second repeat showed statistically significant cytotoxicity c.f. mPEG-NH2 

between 0.05 mg m L'1 (p < 0.05) 1 mg mL'1 (p < 0.001). At a Phbi85-2 i4 concentration 

of 1 mg mL'1 cell growth was reduced by 34 % (Figure 6.14c).
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To investigate whether the differences observed in the three assays may have 

been the result of error in determining the peptide concentration, a further three assays 

were conducted using Phbyi85-2i4, since concentration could be calculated by UV- 

spectroscopy using the tyrosine chromophore. In these experiments Phbvi85-2i4 was 

found to be no more toxic than the mPEG-NH2 negative control (Figure 6.15a, b and 

c). In parallel, the cytotoxicity of mPEG-Phbcyi85-214 was studied and in all three assays 

the conjugate was shown to be non-cytotoxic up to the maximum concentration used of 

1 mg mL'1. To determine whether the lack of cytotoxicity could be attributed to the 

proteolytic degradation of the peptides, in the third repeat of the assay Phbvi85-2i4 and 

mPEG-PhbcYi85-2i4 were incubated in the presence of the protease inhibitor leupeptin 

(Figure 6.15c). No cytotoxic activity was observed up to the maximum concentration 

tested (1 mg mL*1).

Cytotoxicity o f  FosWc and mPEG-FosWc

No dose-dependent cytotoxicity was observed in two repeats of the MTT assay 

for either FosWc or mPEG-FosWc (Figure 6.16 a and b). However, in the second 

assay a statistically significant increase in toxicity relative to mPEG-NH2 was 

determined at 1 mg mL'1 (p < 0.001) for both FosWc and mPEG-FosWc- In the third 

assay, incubation with either FosWc or mPEG-FosWc reduced cell viability by 

approximately 15-20 % at concentrations of between 0.01 and 0.5 mg mL'1 compared 

with the negative control mPEG-NH2 (Figure 6.16c). However, while these differences 

were determined to be statistically significant (p < 0.001) the absolute decrease in cell 

viability was modest.

Cytotoxicity o f  FosWc and mPEG-FosWc ± Tfx ™-50

Initial experiments were conducted to determine the concentration at which the 

greatest divergence between FosWc • Tfx™-50 and Tfx™-50 alone occurred. When 

FosWc was complexed with Tfx™-50 at a molar ratio of 1:1.25 divergent trends 

between the complex and the Tfx™-50 control were observed at peptide concentrations 

in the range of 0.01 and 10 pM with a statistically significant (p < 0.01) difference 

observed at the 10 pM concentration (Figure 6.17a). A repeat of this assay using a 

molar ratio of 1:1.2.5 showed again a significant (p < 0.01) difference between the 

cytotoxicity of the control and the complex at 10 pM (peptide concentration), though
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Figure 6.16 Cytotoxicity of FosWc and mPEG-FosWc relative to mPEG-NH2 
and PEI in MCF-7 cells over 72 h. Each panel denotes a separate experiment, data 
represent cell viability as a % of untreated cells ± SD, n = 6. Statistical significance 
determined using a two-way ANOVA with Bonferroni post hoc test.
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Figure 6.17 Determination of the optimal molar ratio of FosWc : Tfx™-50 
over 24 and 72 h in MCF-7 cells using the MTT assay. Panels show (a) 1:1.25 
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incubation. All data represent mean (n=3) ± SD. Statistical significance determined 
using a two-way ANOVA with Bonferroni post hoc test.
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Figure 6.18 Effect of charge ratio on the cytotoxicity of the FosWc : Tfx™-50 
complex in MCF-7 cells using the MTT assay. In panel (a) the first column in 
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significance determined using a one-way ANOVA with Bonferroni post hoc test.
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not at lower concentrations (Figure 6.17b). The assay was repeated with a shorter 

incubation period (24 h, rather than 72 h) using a molar ratio of 1:2.5 and a similar 

observation was made (Figure 6.17b).

The second study assessed the optimal charge ratio, in all instances the complex 

was found to be more cytotoxic than the Tfic™-50 control (Figure 6.18a). However, 

this difference was not statistically significant (p > 0.05) at charge ratios of 1:4 and 1:8 

(FosWc : Tfic™-50). The greatest difference (without toxicity from the equimolar 

Tfx™-50 control) was observed at a charge ratio of 2:1 (FosWc : Tfic™-50) as used in 

the previous study (Figure 6.17). However, the cytotoxic effect observed here was 

significantly greater (p < 0.001) as cell viability was reduced to 40 % of the untreated 

control compared with 80 % in the previous studies. A repeat of this experiment, using 

only the 2:1 charge ratio corroborated this result (Figure 6.18b). Further experiments 

conducted using Tfic™-50 complexes of FosWc and mPEG-FosWc demonstrated a 

similar trend (Figure 6.19). However, while statistically significant (p < 0.001) 

increases in cytotoxicity were observed between both FosWc ± Tfic™-50 and mPEG- 

FosWc ± Tfic™-50 no statistically significant (p > 0.05) reduction in cell viability was 

determined when a comparison was made between either FosWc : Tfic™-50 or mPEG- 

FosWc : Tfic™-50 and the Tfx™-50 control.

RBC Lysis

PEI was found to be very haemolytic at concentrations above 0.001 mg mL'1 

while no lysis was observed for mPEG-NH2 at concentrations up to 1 mg mL'1 (Figure 

6.20a). In subsequent experiments the peptides FosWc, Phbyi85-214 and conjugates 

mPEG-PhbcYi 85-214, and mPEG-FosWc were found to be no more haemolytic than the 

negative control, mPEG-NH2 up to the maximum concentrations tested (0.5 mg mL'1) 

(Figure 6.20b).

6.4 Discussion

6.4.1 Challenges o f Using Fluorescence to Investigate Cellular Uptake

Assessing cellular uptake can be investigated using either a direct approach i.e. 

monitoring of the molecule of interest or an indirect approach i.e. monitoring of a 

cellular response. The disadvantage of the latter is that failure to illicit the expected
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Figure 6.19 Cytotoxicity of FosWc, FosWc : Tfx™-50 complex, mPEG-FosWc, 
and mPEG-FosWc : Tfx™-50 complex in MCF-7 cells using the MTT assay.
Charge ratio = 2:1 (peptide/conjugate : Tfx™-50). Data represent the mean of three 
experiments (n=18), error ± SD. No statistical significance determined using a two- 
way ANOVA with Bonferroni/Tukey post hoc test.
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response raises the question “did the molecule enter the cell and fail to show activity, or 

did it simply not enter”.

Since it was not known for certain whether any of the coiled-coil motif peptides 

or mPEG-conjugates under investigation would successfully illicit the desired response 

i.e. downregulation of E2F1 or API regulated transcription, a “direct approach” using 

fluorescence to assess cellular uptake was used in this study. As neither the coiled-coil 

peptide motifs, nor mPEG-coiled-coil motif conjugates possessed any inherent 

fluorescence it was necessary to label each compound with an appropriate fluorophore, 

as such, OGSE488-X was used.

It was possible to successfully synthesise OG-labelled coiled-coil motif peptides 

(Phbyi85-2i4 and FosWc) and mPEG-conjugates using succinimidyl ester chemistry so 

that the fluorophore was attached via an amine side-chain. Purification using either 

Sephadex® G-15 or G-25 SEC media yielded OG-conjugates with < 3 % free 

OGSE488-X. Previous studies have demonstrated a shift in the fluorescence emission 

spectra for fluorophores post-conjugation to peptides (Delmotte & Delmas, 1999). This 

was not seen with the OGSE488-X fluorophore used in this study and may be due to the 

-(CH2-)5 spacer positioning the molecule sufficiently far from the conjugated molecule 

to prevent a shift in the fluorescence emission spectrum (Figure 6.21). However, a 

small decrease (4 % cf. OGSE488-X) in the excitation spectrum at 483 nm was 

observed post-conjugation, in future studies this could be used as an analytical 

fingerprint to confirm that OGSE488-X has been successfully conjugated.

As macromolecules are usually excluded from entering cells via passive 

diffusion or direct translocation it was envisaged that cellular uptake would occur via 
endocytosis (discussed in Chapter 1, section 1.4). It was therefore important to 

investigate whether the emission fluorescence of the OGSE488-X fluorophore was 

sensitive to changes in pH. As a fluorinated analogue of fluorescein (Figure 6.21), 

OGSE488-X has a lower pKa (4.7 cf. 6.4 of fluorescein), which should render the probe 

insensitive to changes in pH in the physiological range (http://www.invitrogen.com/site/ 

us/en/home/References/Molecular-Probes-The-Handbook.html). However, in this study 

it was shown that the fluorescence characteristics of OGSE488-X changed following 

conjugation. Like many fluorophores, the fluorescence output of fluorescein derivatives 

have been shown to be quenched by proteins, it has been speculated that this is due to 

charge-transfer interactions with aromatic amino-acids (http://www.invitrogen.com/site/
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F igure  6.21 S tru ctu res  of 6-carboxyfluorescein and OGSE488-X.
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us/en/home/References/Molecular-Probes-The-Handbook.html). Both peptides Phbyi85- 

214 and FosWc have arginine/lysine residues in close proximity to the aromatic tyrosine 

tags (Figure 6.2) therefore, this could offer an explanation for the observed quenching 

which was not seen following conjugation to mPEG-NH2. An alternative explanation 

may be that at low pH (5.5-6.5) Phbyi85-2i4 and FosWc may homodimerise resulting in 

the positioning of OGSE488-X molecules in close proximity and thus lead to self- 

quenching (Chen & Knutson, 1988) (Figure 6.22). Such speculation can be supported 

by previous studies whereby the fluorescence of the drug doxorubicin has been shown 

to be self-quenched when conjugated to the polymer HPMA at high concentrations 

(Greco et al, 2007). Unfortunately, the homodimerisation at low pH (5.5-6.5) of either 

peptide, or either mPEG-conjugate was not investigated in Chapter 5. Further studies 

with CD or NMR spectroscopy could offer clarification.

The most dramatic quenching of OGSE488-X emission fluorescence was seen 

following complexation of FosWc-OG with Tfx™-50. While quenching was seen for 

the mPEG-FosWc-OG. : Tfx™-50 complex it was of a much lesser magnitude 

suggesting that the OGSE488-X molecules were positioned in a rather different local 

environment. As discussed earlier (section 6.1.4) Tfx™-50 is a cationic lipid and 

therefore could create a hydrophobic environment around the OGSE488-X fluorophore. 

Previous studies have shown that hydrophobic solvents or micellar environments may 

increase the emission fluorescence output of a similar OG derivative (Delmotte & 

Delmas, 1999), however, the opposite effect was seen here. Furthermore, in view of the 

different spectral shapes observed for the FosWc-OG : Tfx™-50 and mPEG-FosWc-OG 

: Tfx™-50 complexes (Figure 6.7) i.e. the presence of spikes for the latter it is likely 

that the 3D arrangement of the complexes is very different. Further analyses using light 

scattering techniques would be useful to investigate these differences further.

In light of the challenges posed by the differing fluorescence characteristics, in 

particular the sensitivity of OGSE488-X to environmental factors such as, pH, 

proximity/concentration and possibly solvent/complex polarity, extensive studies were 

not undertaken with flow cytometry. The flow cytometry experiments were 

standardised by using the same concentration of OGSE488-X (1.5 pg mL'1) since 

absorption spectra and extinction coefficients are reported to be much less sensitive to 

changes in local environment compared with fluorescence characteristics (http://www.in
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vitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html).

Whilst is was considered more important to standardise with respect to [OGSE488-X] it 

is worth noting that it was not possible to keep the concentrations of the peptides and 

conjugates exactly the same due to the small differences in specific activity of each OG- 

conjugate (see Table 63).

Preliminary studies with PhbYi85-2 i4 -OG, mPEG-PhbcYi85-2 i4 -OG and mPEG- 

OG showed that the rates of uptake were similar. A statistically significant difference in 

the cell-associated fluorescence of mPEG-PhbcYi8 5-2 i4 -OG cf. mPEG-OG was seen at 3 

and 5 h suggesting that the putative coiled-coil peptide motif (PhbcYi85-2 i4) increased 

cellular uptake when conjugated to mPEG. Without conducting extensive studies 

including inhibiting mechanisms of endocytosis and actively removing membrane 

bound OG-conjugates (e.g. via acid washing) it is impossible to conclude with 

confidence whether the increased cell-associated fluorescence is indicative of increased 

uptake or simply binding to the extracellular membrane. The plateau in the cell- 

associated fluorescence for each of the OG-conjugates between 3 and 5 h is indicative 

of an equilibrium state between uptake/binding and exocytosis, quenching of 

OGSE488-X fluorescence and release of OGSE488-X following enzymatic degradation 

of the peptide or cleavage of the amide bond (Figure 6.22). The latter is unlikely 

within the time-course of the experiment due to the biological stability of the amide 

bond (Banks & Paquette, 1995), however, if either PhbYi8 5-2 i4 -OG or mPEG-PhbcYi85- 

2 1 4-OG are trafficked to lysosomal compartments degradation of the putative coiled-coil 

peptide motif would be probable. Free OGSE488-X was < 10 % at 5 h, this equated to 

approximately a 3-fold increase suggesting that some PhbYi85-2i4-OG/mPEG-PhbcYi85- 

2 1 4-OG was entering lysosomal compartments and being degraded.

Flow cytometry studies with FosWc-OG and mPEG-FosWc-OG ± Tfx™-50 

showed clearly that complexation with Tfx™-50 dramatically increased cell-associated 

fluorescence. Whether this was due to increased binding of FosWc-OG or mPEG- 

FosWc-OG to the extracellular membrane or endocytosis cannot be concluded from this 

experiment. Only small increases in the amount of free OGSE488-X (< 10 % at 2 h) 

were observed suggesting that some FosWc-OG and mPEG-FosWc-OG was entering 

lysosomal compartments and being degraded rather than staying on the extracellular 

membrane (Figure 6.22).
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The most interesting observations in this experiment were the differences in the 

cell-associated fluorescence at 2 h between the FosWc-OG and mPEG-FosWc-OG 

Tfx™-50 complexes. In the case of the FosWc-OG : Tfx™-50 complex, cell-associated 

fluorescence doubled 1 h after the wash, since no more FosWc-OG could have been 

taken up by the cell from the extracellular media increased fluorescence could only arise 

from FosWc-OG escaping the FosWc-OG : Tfx™-50 complex. This data suggests that 

at the second time-point FosWc-OG is being effectively delivered, however it is not 

known whether it is liberated inside an endocytic vesicle or into the cystosol. A 

decrease in the cell-associated fluorescence at the same time-point for the mPEG- 

FosWc-OG : Tfx™-50 complex suggests that OGSE488-X is either being quenched as a 

result of localisation in late-endocytic or lysosomal vesicles or that mPEG-FosWc-OG 

is being exocytosed.

To answer the many questions arising from these initial studies would require 

the focus of a whole new Ph.D. thesis. This study has highlighted the many challenges 

of using fluorescence tagging to assess cellular uptake, in particular, the variable output 

of the fluorescent probe depending upon the local environment. Moreover, coupling of 

the hydrophobic OGSE488-X molecule may affect the structure of the coiled-coil 

peptide motif and/or intracellular trafficking, therefore future studies must utilise 

analytical approaches that do not introduce additional artefacts into the experimental 

design. Quantitative assessments should be conducted using radio-labelled peptides and 

conjugates with sub-cellular fraction methods to elucidate the intracellular localisation 

(Manunta et al, 2007; Seib et al, 2006). This approach should be combined with the 

recent advances in NMR spectroscopy to enable “in cell” target hybridisation studies to 

be conducted (Inomata et al, 2009; Sakakibara et al, 2009; Burz et al, 2006).

6.4.2 Assessing Biological Activity and the Challenges of Intracellular 

Delivery o f mPEG-Coiled-Coil M otif Therapeutics

Targeting E2F1 Mediated Transcription with Phbjss-214, Phbyi85-2i4 and mPEG- 

PhbcY185-214
The design of the putative coiled-coil peptide motif Phbi85-2i4 was inspired by a 

study by Joshi et al, (2003) (discussed in Chapter 1, section 1.5 and Chapter 3, section 

3.3.2.1). Phbi85-2i4 initially demonstrated dose-dependent cytotoxicity with an
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estimated IC50 value of 0.8 mg mL'1 (238 pM). In the study by Joshi et al, (2003) the 

similar 41-residue peptide induced apoptosis in approximately 40 % of MCF-7 cells at a 

concentration of 15 pM. At an equivalent concentration (0.05 mg mL'1), Phbi85-2i4 

reduced cell growth by approximately 10 %. However, it was difficult to make direct 

comparisons since the TUNEL assay used by Joshi et al, (2003) measured % apoptotic 

cells, whereas the MTT assay used here assessed cell viability. Subsequent repeats of 

the MTT assay yielded inconsistent results with the first showing no cytotoxicity 

relative to mPEG-NH2 and the second showing activity only at the highest 

concentrations tested. To determine whether the inconsistent data was due to variability 

in sample concentration further studies were conducted with Phbyi85-2i4 and the mPEG- 

PhbcYi85-2i4 conjugate. Both failed to show any evidence of cytotoxicity. To see 

whether this could be attributed to proteolytic degradation of the putative coiled-coil 

motif samples were incubated with the protease inhibitor leupeptin. However, no 

cytotoxic activity was observed.

The study by Joshi et al, (2003) does not actually specify the sequence of the 41- 

residue peptide, rather it states that it was derived from the putative coiled-coil domain 

of the PHB protein. Therefore, it is difficult to make any comparison with regard to 

structure. It is possible that the extra 11-residues aided intracellular delivery of the 

peptide and hence explain the higher activity cf. Phbig5-2i4. A satisfactory explanation 

for the differences in cytotoxicity observed between Phbig5-2i4 and Phbyi85-2i4 in this 

study remains elusive.

Targeting c-Jun Mediated Transcription with FosWc and mPEG-FosWc

Initial studies with FosWc and mPEG-FosWc failed to show consistent, dose- 

dependent cytotoxicity over a 3-log concentration range (0.001 to 1 mg mL'1 ~ 0.23 to 

230 pM) with only one experiment showing marginal cytotoxic activity for either 

FosWc or mPEG-FosWc. Previous studies by Yao et al, (1998) with a number of c-Fos 

derived peptides had demonstrated similarly that the peptides were not active against 

MCF-7 cells unless used in conjunction with the transfection reagent Tfx™-50. As the 

study by Yao et al, (1998) did not show the toxicity of the Tfx™-50 reagent first studies 

here compared the cell viability of the FosWc : Tfx™-50 complex with Tfx™-50 alone 

and found that the greatest difference was at a peptide concentration of 10 pM. In the 

study by Yao et al, (1998) the cytotoxic concentrations of the transfected peptides were 

in the same magnitude (6 to 48 pM). The optimal charge ratio was found to be the
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Table 6.4 Comparison of c-Fos derived peptide sequences and charges.

Peptide Sequence No. of Residues Net Charge Length Net Charge

(+ve) (-ve) (residues) (%)

c-Fos ELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEF 4 11 -7 36 19

FosWc CAS LDELQAEIEQLEERNYALRKEIEDLQKQLEKLGA 5 10 -5 37 14

Fos-32 TDTLQAETDQLEDEKSALQTEIANLLKEKEKL 4 9 -5 32 16

Fos-N25 TDTLQAETDQLEDEKSALQTEIANL 1 7 -6 25 24

Fos-N18 TDTLQAETDQLEDEKSAL 1 6 -5 18 28

Fos-C25 TDQLEDEKSALQTEIANLLKEKEKL 4 7 -3 25 12

Fos-C18 KSALQTEIANLLKEKEKL 4 3 +1 18 6

Fos-15 LQAETDQLEDEKSAL 1 5 -4 15 27

Fos-14 LQAETDQLEDEKSA 1 5 -4 14 29

N.B. Positive residues are shown in bold font-type and negative residues are underlined.
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same as that used in the study by Yao et al, (1998). This was perhaps unsurprising 

upon comparison of the relative net charge ratios of FosWc with the most active 

peptides Fos-32, Fos-15 and Fos-14 used by Yao et al, (1998) (Table 6.4).

A repeat of the initial experiment showed that the cell viability was reduced by 

70 % following incubation with the FosWc : Tfx™-50 complex, compared with a 

reduction of 30 % with either FosWc or Tfx™-50 alone. However, upon collation of 

three separate experiments no statistically significant difference was found between 

either the FosWc : Tfx™-50 complex or mPEG-FosWc : Tfx™-50 complex the Tfx™-50 

control. As for the studies with the Phbi85-2i4 peptides and mPEG-conjugate a 

satisfactory explanation for the differences in the cytotoxicty observed between the 

assays in this study remains elusive.

General Considerations
Failure to achieve intracellular delivery of the coiled-coil peptide motifs and 

mPEG-coiled-coil motif conjugates is probably the reason for the low or non-existent 

cytotoxic activity shown in this study. In the second study the use of the transfection 

reagent Tfx™-50 failed to solve this issue satisfactorily. Furthermore, the toxicity of the 

reagent made it impossible to accurately discern whether the toxicity of the complexes 

was due to the effect of FosWc/mPEG-FosWc or Tfx™-50 itself. Morphological 

changes in the appearance of the cells following incubation with Tfx™-50 or the 

FosWc/mPEG-FosWc : Tfx™-50 complexes was possibly suggestive of apoptosis, as 

such further investigations may benefit from use of the TUNEL assay as used by Joshi 

et al, (2003). However, to have real potential as novel polymer therapeutics it is 

essential that the compounds show activity without the use of tranfection reagents or 

artificial techniques such as microinjection or microporation. These techniques could 

be of use to see whether the compounds are active following intracellular delivery, 

however, re-design of the construct e.g. use o f an endosomolytic polymer (Lavignac et 
al, 2004; Pattrick et al, 2001) would then be necessary to develop a therapeutic that 

could mediate its own delivery.

6.4.3 Conclusions

Fluorescence Studies
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OG-labelled coiled-coil motif peptides (PhbYi85-2i4 and FosWc) and mPEG- 

conjugates were successfully synthesised using succinimidyl ester chemistry, and 

purified using either Sephadex® G-15 or G-25 SEC media to yield OG-conjugates with 

< 3 % free OG. A subtle, yet reproducible change in the OGSE488-X fluorescence 

emission spectrum was seen post-conjugation, which, in future studies could be used as 

an analytical fingerprint to confirm that OGSE488-X has been successfully conjugated.

Significant pH-dependent quenching of OGSE488-X emission fluorescence (up 

to 45 %), particularly post-conjugation to either coiled-coil peptide motifs or mPEG- 

coiled-coil motif conjugates was observed. Furthermore, complexation of Tfx™-50 

with FosWc almost completely quenched OGSE488-X emission fluorescence at pH 7.4, 

6.5 and 5.5. These observations demonstrated that fluorescence output was highly 

dependent upon the local environment and varied from one OG-conjugate to another, it 

was therefore not an ideal tool with which to assess cellular uptake. Future studies 

should be conducted using radiolabelled peptides/conjugates and cellular uptake 

assessed using a sub-cellular fractionation methodology.

Flow cytometry studies suggested that Tfx™-50 significantly increased the 

cellular uptake of both FosWc-OG and mPEG-FosWc-OG relative to peptide or mPEG- 

conjugate alone. In light of the earlier studies, which demonstrated the pH sensitivity of 

the fluorescence output, it is likely that the differences recorded are underestimates and 

the real values could be far greater than shown here.

Assessment o f Biological Activity
None of the compounds tested were found to be haemolytic, however, the 

accurate assessment of cytotoxicity was impeded by significant assay-assay variability.

Preliminary investigations with Phbig5-2i4 showed evidence of dose-dependent 

cytotoxicity, however efforts to repeat these initial observations yielded inconsistent 

data. No dose-dependent cytotoxicity was observed for either Phbyi 85-214 or mPEG- 

Phbcvi85-2i4- In one study statistically significant cytotoxicity was measured for FosWc 

and mPEG-FosWc relative to mPEG-NH2 however, this data was not reproducible.

Initial studies demonstrated increased cytotoxicity of FosWc when complexed 

with Tfx™-50 over Tfx™-50 alone. However, in further studies the Tfx™-50 reagent 

was found to be too toxic at the concentrations used to make it possible to accurately 

determine the effect of FosWc or mPEG-FosWc conjugate on cells.
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7.1 General Discussion

In recent years, the growing potential of nanomedicine has been widely 

acknowledged starting with the European Science Foundation report “Forward Look on 

Nanomedicine” (ESF, 2005) and latterly the US National Institute of Health’s 

Nanomedicine Roadmap (http://nihroadmap.nih.gov/nanomedicine). In Europe, the 

ESF Summer Schools of 2007 and 2009 have promoted the exchange and development 

of ideas between researchers from backgrounds as diverse as chemistry, engineering, 

biology, pharmaceutics, medicine and ethics. This thesis is testament to the potential of 

highly successful, interdisciplinary collaborative research with studies conducted at 

Cardiff University (UK), EPFL (Switzerland) and CIPF (Spain).

Polymer therapeutics has been shown to be the most productive field of 

nanomedicine in terms of translating laboratory research into clinical products, with 

more than ten therapeutic agents in clinical use and many more in development 

(reviewed in Duncan, 2003; Duncan, 2006). PEGylation now over 30 years old has 

proven the most successful and popular approach and has been the subject of a number 

of excellent reviews (Davis, 2002; Harris & Chess, 2003; Parveen & Sahoo, 2006; 

Veronese & Harris, 2008; Pasut et al, 2008). While much progress has been made of 

late towards the use of biodegradable polymers in particular dextrin (Hreczuk-Hirst et 
al, 2001; Ferguson & Duncan, 2008; Hardwicke et al, 2008; Duncan et al, 2008), PEG 

is likely to remain at the forefront of clinically approved polymer therapeutics for a 

number of years yet. A paradigm shift towards the use of alternative (biodegradable) 

polymer materials is most likely to be realised in the advent of the development of 

polymer therapeutics for the treatment of chronic rather than acute diseases where 

repeated, possibly life-long injections are required.

Opening the Gateway for the Development o f Coiled-Coil Motif Therapeutics
Increased understanding of the 3D structure of proteins and its role in the 

assembly of multi-protein complexes that regulate biological pathways has provided 

attractive new targets for drug development (reviewed in Dev, 2004). For example, the 

initial step of HIV-1 cellular entry involves binding of the trimeric viral envelope 

glycoprotein gpl20/gp41 fo cell surface receptor CD4 and its chemokine co-receptor 

CXCR4 or CCR5. This triggers conformational changes in the envelope proteins such
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that gpl20 dissociates from gp41, allowing fusion peptide insertion into the plasma 

membrane then cellular entry (Gallo et al, 2003). In the last decade we have observed 

the clinical approval of the first large (36-residue) peptide therapeutic 

(enfuvirtide/Fuzeon) designed for the treatment of HIV-1 by inhibiting this process as 

“association between the fusion inhibitor and gp41 prevents the successful completion 

of gp41 zipping” (Fletcher, 2003; Matthews et al, 2004). Although Fuzeon is acting at 

the C-terminus of the gp41 trimeric coiled-coil it has not been described as an inhibitor 

of coiled-coil formation. The requirement for large-scale (multi-tonne) production of 

Fuzeon, as a by-product has resulted in peptide synthesis reagent costs dropping 

dramatically, worldwide, thus markedly reducing reagent costs for laboratory scale 

synthesis. Today, Fmoc-SPPS has become a readily available tool for the preparation 

of peptides, used in thousands of laboratories from industry to academia. Moreover, 

recombinant technology has allowed design of coiled-coil based protein biomaterials, 

bioresponsive hybrid hydrogels and epitope displays (reviewed in Tang et al, 2001).

7.2 Summary of the Strategy of this Thesis and Key Results, Successes 

and Challenges

Polymer conjugates of coiled-coil peptides designed as molecular switches to 

modulate physiological protein heterodimerisation are particularly attractive as a new 

therapeutic strategy. Using an appropriately tailored polymer (in respect of molecular 

weight and physico-chemical nature depending on the sub-cellular location of its 

complementary molecular target), the polymer therapeutic approach has the potential to 

efficiently deliver the peptide to an extracellular, cell surface, endocytic or, more 

challengingly, an intracellular location (Figure 1.7).

Earlier studies used a novel LAEIEAK-based coiled-coil sequence to 

systematically study the effect alterations in peptide primary structure have on the self- 

assembly properties of PEG-6-peptide hybrid block copolymers and provided a 

platform for this Ph.D. thesis (Figure 7.1). Despite differences in peptide primary 

structure, all peptides and PEG-conjugates retained their ability to form coiled coils. 

However, CD spectroscopy and other techniques showed that self-organisation could be 

described as a two-state equilibrium between discrete monomers and dimeric coiled-coil 

aggregates. The key aim of this study was to develop an mPEG-coiled-coil motif
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conjugate that would preferentially hybridise with its target whilst not forming macro- 

molecular homoligomeric aggregates.

Synthesis and Characterisation
The ability to design and successfully synthesise a range of putative coiled-coil 

peptides was demonstrated using Fmoc-SPPS in Chapter 3. This study also highlighted 

the large degree of variability seen with using computational software to predict the 

existence of a coiled-coil domain; this observation should serve as a caveat to the 

shortcomings of this approach. Unfortunately, not all of the peptides designed were 

easily solubilised. The most problematic were EbGP2 and EbVP35 derived coiled-coil 

motif peptides. Whilst the difficulties were overcome with EbGP2 and two peptides 

were synthesised it was not possible to prepare soluble EbVP35 derived peptides.

The solution phase thiol-directed method of PEGylation described in Chapter 4 

was a very efficient and rapid yet simple approach, which yielded four site-specific 

mono-PEGylated conjugates designed to target the proteins E2F1, c-Jun and EbGP2. 

Ellman’s assay provided a useful means of monitoring the progress of each reaction and 

ion-exchange chromatography, once optimised for each conjugate proved an excellent 

method of purification. In particular, because it enabled the removal of both unreacted 

mPEG-Mal and free coiled-coil motif peptide, separation of the former being something 

not oft reported for the synthesis of polymer therapeutics. Thus, the final samples were 

of very high purity and suitable for further study by NMR and CD spectroscopy to 

determine whether target hybridisation by coiled-coil formation would be achievable.

The challenge of characterising the purified mPEG-coiled-coil motif conjugates 

by MALDI-TOF MS was an aspect of this thesis that was not fully solved. The 

indisputable advantage of characterisation by MALDI-TOF MS was that it could not 

give a “false positive” result. Therefore, the existence of the peaks in the expected 

mass-range was conclusive proof that mono-PEGylated conjugates had been 

successfully synthesised. Coupled with the greater resolution and more rapid analysis 

that it afforded over SDS-PAGE or similar techniques, meant that a considerable 

amount of time was allocated to optimising the method of sample preparation. Using a 

minor modification to the optimised spotting protocol described by Meier and Schubert, 

(2003) it was possible to Confirm the expected molecular weights of mPEG-EbGP2609- 

630 and mPEG-FosWc- However, the acquisition of spectra confirming the expected
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m olecular w eights o f  the conjugates m PEG -Phbcvi 85-214 and m PEG-EbGP2CY566-589 was 

not achieved and thus dem onstrates that further optim isation o f  the sample preparation 

m ethod is required.

In Vitro Study of Target Hybridisation
Proof of concept was successfully demonstrated using the well-characterised 

coiled-coil driven heterodimerisation of the AP-1 transcription factor as a model target. 

These studies demonstrated for the first time that an mPEG-FosWc conjugate was able 

to heterodimerise with r-c-Jun in exactly the same manner as for FosWc.

The [15N]r-c-Jun peptide synthesised using a recombinant methodology adapted 

from Mitra et ah (2005) enabled a detailed study of the FosWc/mPEG-FosWc : c-Jun 

interaction by 2D *H, 15N HSQC spectroscopy. At 37 °C the [15N]r-c-Jun peptide alone 

had very little structure, but subsequent addition of an equimolar concentration of 

mPEG-FosWc induced structural changes consistent with an induced fit model of 

coiled-coil heterodimerisation. The spectral changes were equivalent to those seen 

when FosWc was added, so it can be concluded that site-specific conjugation of mPEG 

did not impair heterodimerisation. Furthermore, the observation that doubling the 

concentration of both FosWc and mPEG-FosWc (relative to the [15N]r-c-Jun peptide) 

did not induce further spectral changes suggested that a stable heterodimer was fully 

formed at equimolar concentrations. This also underlined the preference for 

heterodimerisation rather than potential homodimerisation of FosWc or [15N]r-c-Jun. 

Under the same conditions, further characterisation by CD spectroscopy corroborated 

the formation of a coiled-coil structure.

Lesser progress was made towards characterisation of the Phb : E2F1 interaction 

as it was not possible to express sufficient rhE2Fl to enable characterisation by 

CD/NMR spectroscopy. Nonetheless, it was possible to successfully characterise the 

plasmid encoding GST-rhE2Fl and determine the optimal E.coli strain and expression 

conditions. Further investigation and detailed charcterisation of the interaction would 

make a very exciting continuation of this thesis.

Biological Evaluation
In preliminary studies, the successful demonstration of reproducible biological 

activity in a cellular model' was not realised for either of the anti-cancer mPEG-coiled- 

coil motif conjugates prepared. This was probably due to difficulties in achieving
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intracellular delivery rather than inactivity of the coiled-coil motif. As shown in 

Chapter 6, initial observations of Phbi85-2 i4  cytotoxic activity in the MCF-7 cell line 

were not routinely reproducible. A satisfactory explanation could not be found and 

subsequent experiments with the tyrosine tagged and PEGylated coiled-coil motif failed 

to show any activity.

In studies involving FosWc/mPEG-FosWc initial experiments demonstrated 

increased cytotoxicity of FosWc when complexed with Tfx™-50 over Tfx™-50 alone. 

However, in further studies the Tfx™-50 reagent was found to be too toxic at the 

concentrations used to make it possible to accurately determine the effect of FosWc or 

mPEG-FosWc conjugate on cells. Further studies are warranted to elucidate accurately 

whether FosWc/mPEG-FosWc or PhbYi85-2i4/mPEG-PhbcYi85-2i4 are not active because 

they are not reaching their target proteins, c-Jun and E2F1, respectively

The challenges of using fluorescence to assess cellular uptake were amply 

demonstrated by the control studies in Chapter 6. Should further investigations be 

conducted, they would benefit greatly from using radiolabelled peptides/polymers and a 

quantitative approach such as sub-cellular fractionation.

7.3 Potential Applications o f this Concept

An overview of the many projects that could emanate from this thesis are 

summarised in Figure 7.2 while a selection are discussed at greater length below. The 

answer to the question “is there a future for coiled-coils as molecular switches?” is 

undoubtedly “yes”. The most exciting opportunity for further research lies with the 

development of mPEG-coiled-coil motif conjugates as fusion inhibitors for the 

treatment of Ebola HF. The preliminary evaluation of biological activity could be 

conducted using the conjugates prepared in Chapter 4. However, these would require 

new collaborations to be established. The use of “live” Ebola virus requires class 4 

biocontainment facilities and as such discussion should be sought with the Ministry of 

Defence (MoD) laboratories at Porton, Salisbury. Alternatively, proof of concept 

studies could be conducted using a less dangerous Ebola virus model such as that 

designed by Watanabe et al, (2000).

Further development of this approach could be conducted towards the 

development of polymer therapeutics for the treatment of many other infectious diseases
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e.g. SARS-coronavirus, HIV and influenza since these viruses rely upon similar 

mechanisms of gaining cellular entry.

The challenge of targeting the intracellular transcription factors AP-1 and E2F1 

was one that could not be completed during the course of this study. Therefore, more 

extensive investigations could be conducted towards the development of novel anti­

cancer polymer therapeutics.

In the case of the E2F1 transcription factor, further studies should focus initially 

on the expression of recombinant protein (rhE2Fl), then conduct extensive analyses to 

elucidate the precise mechanism by which PHB and the coiled-coil motif peptides 

hybridise. Such studies would benefit from the characterisation by CD and NMR 

spectroscopy presented in Chapter 5 using mPEG-FosWc and c-Jun

The power, scope and applications of NMR spectroscopy have grown 

enormously since the start of this thesis in 2005. Most significantly, the 

characterisation of “in cell” mPEG-coiled-coil motif : target hybridisation is 

theoretically possible. This would be a challenging, yet very exciting continuation of 

this work particularly of conducted alongside the biological assays proposed below.

It is possible that the challenge of intracellular delivery may be solved by the 

mass of research being conducted towards delivery of siRNA. However, in the 

meanwhile further studies could be conducted as discussed in Chapter 6 using 

alternative transfection reagents, or techniques such as micro-injection or 

electroporation to deliver the mPEG-coiled-coil motif conjugates.

7.4 General Conclusions

As we are facing new healthcare challenges and the potential threat of 

bioterrorism in the 21st century we wished to investigate whether this concept might be 

more widely applicable to diseases without any effective current treatment.

These studies have demonstrated the potential of mPEG-coiled-coil motifs as 

therapeutic agents. However, the demonstration of reproducible biological activity was 

not possible with the intracellular targets. As discussed in Chapter 1 (section 1.5) 

infection by the Ebola virus results in severe haemorrhagic fever in humans and 

primates. Statistics from the World Health Organisation indicate that fatality ensues in 

50-90 % of cases. There is no anti-viral treatment or vaccine available. Investigating
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the biological activity of the conjugates designed to target the extra-cellular Ebola virus 

fusion proteins remains an exciting prospect. GP2 is a particularly interesting target 

since the trimeric coiled-coil is thought to be key to fusion of the virus with the host cell 

membrane and therefore the target of inhibition is extracellular. Therefore 

circumventing the need to modify the design of the polymer-coiled-coil conjugate for 

intracellular delivery.

If the significant challenges of intracellular delivery can be overcome, 

therapeutic agents such as mPEG-Phbcyi85-2i4 or mPEG-FosWc that are capable of 

down-regulating either E2F1 or AP-1 mediated transcription have enormous potential, 

not only in oncology but for a whole raft of other proliferative disorders.

Fortunately, it would appear thus far that the field of Nanomedicine has avoided 

the disastrous public response as seen with genetically modified (GM) foodstuffs. 

Nanomedicine has the potential to contribute the most sophisticated therapeutics and 

diagnostic tools ever created. It is therefore essential that these overwhelming benefits 

are effectively communicated to investors, policy makers and the general public. A 

fantastic example of the latter are the animated videos, “The Adventure of Nano” 

(http://www.nanonet.go.jp/english/kids/video) produced by the Nanotechnology 

Researchers Network Center of Japan. Education and most importantly, inspiration of 

the next generation of scientists will help realise the many challenges in healthcare and 

medicine and hopefully solve a few.

“Every day you may make progress. Every step may be fruitful. Yet there will 

stretch out before you an ever-lengthening, ever-ascending, ever-improving path. You 

know you will never get to the end of the journey. But this, so far from discouraging, 

only adds to the joy and glory of the climb.”

“Now this is not the end. It is not even the beginning of the end. But it is, 

perhaps, the end of the beginning.”

Sir Winston Churchill
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Table I Summary of peptide sequences and molecular weights for the peptides and mPEG-conjugates synthesised in this study.

Peptide Sequence Length Molecular Weight# *

a b cd e  f  gabcde  f  gabcde  f  gabcde  f  gabcde  f (residues) (g mol'1)

E2F1 and PHB derived peptides

Phbi85-214 AKQVAQQEAERARFWEKAEQQKKAAIIS A 30 3368

Phbyi85-214 YAKQVAQQEAERARF WEKAEQQKKAAIIS A 31 3531

PhbcY185-214 C YAKQVAQQEAERARFWEKAEQQKKAAIISA 32 3634

mPEG-PhbCYi85,214 mPEG-C YAKQVAQQEAERARF WEKAEQQKKAAI ISA 32 9322

E2Flaf YPGKTPSQEVTSEEENRA 18 2063

E2Flbf YLTTDPSQSLLSLEQEGG 18 1979

c-Jun and c-Fos derived peptides

c-JunT ASIARLEEKVKTLKAQNYELASTANMLREQVAQLGA 36 3988

FosWc CASLDELQAEIEQLEERNYALRKEIEDLQKQLEKLGA 37 4359

mPEG-FosWc mPEG-CASLDELQAEIEQLEERNYALRKEIEDLQKQLEKLGA 37 10047

Peptides that represent target domains for use in in-vitro binding assays.
$ Theoretical molecular weight based upon the average isotopic abundance of naturally occurring elements.
♦

For mPEG-conjugates the molecular weight shown is Mw.

N.B. Apolar residues in positions “a” and “d” are shown in bold type font.



Table I Summary of peptide sequences and molecular weights for the peptides and mPEG-conjugates synthesised in this study.

Peptide Sequence Length Molecular Weight

abcde f gabcde f gabcde f gabcde f gabcdef gab (residues) (g mol'1)

EbVP35 derived peptides

E b V P 3  582-i 19 SFEEWQTLASLATWQQQTIASESLEQRITSLENGLK 38 4190

E b V P 3 5 CY88-119 CYQTLASLATWQQQTIASESLEQRITSLENGLK 34 3697

EbGP2 derived peptides

abcde f g abcde f gabcde f gabcdef gabcdef
EbGP2$o9-63o CIEPHDWTKNITDKIDQIIHDF 2 2 2 7 2 3

m P  EG -EbG P2609-630 mPEG-CIEPHDWTKNITDKIDQIIHDF 2 2 8411

EbGP2cY557-589 CYGLRQLANETTQALQLFLRATTELRTFSILNRKA 35 4083

EbGP2cY557-595 CYGLRQLANETTQALQLFLRATTELRTF SILNRKAIDFLLQ 41 4813

E b G P 2 c  y566-589 CYTQALQLFLRATTELRTFSILNRKA 26 3100

m P  E G -E b G P 2 CY566-589 mPEG-CYTQALQLFLRATTELRTFSILNRKA 26 8788

u>

For mPEG-conjugates the molecular weight shown is Mw.

N.B. Apolar residues in positions “a” and “d” are shown in bold type font (*heptad positions are not assigned for peptide EbGP2609-630 as

^ \ t  is an a-helical peptide, not strictly a coiled-coil motif).
•n*


