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“Any living cell carries with it the experience of a billion 

years of experimentation by its ancestors.”

Max Delbruck



Summary

SUMMARY

The BK channel is a large conductance calcium-activated voltage- 
dependent potassium channel. This channel plays a key role as a 
negative feedback mechanism of membrane excitability and cellular 
Ca *. There is substantial evidence suggesting that the Ca2* activation 
of the BK channel is regulated by localised Ca2* release from 
intracellular stores. The aim of the work presented in this thesis was to 
develop a novel method of measuring the local Ca2* concentration 
controlling the BK channel activation. The p2 subunit, an auxiliary 
protein of the BK channel, was extracted from MG63 cells and cloned. 
Subsequently, the aequorin sequence was attached to its C-terminus 
using splicing by overlapping extension.

The recombinant protein retained the features of the native proteins 
emitting light in response to Ca2* and showed correct targeting to the 
cell membrane. The resultant light emission of the new protein was 
diminished in comparison to the native aequorin. The p2-Aequorin and 
a cytosolic Luciferase-aequorin were successfully transfected in a 
HEK293 cell line which stably express the BK channel a subunit. The 
expression of the aequorin constructs in HEK293 cells in suspension 
revealed the presence of intracellular mechanosensitive Ca2* channels.

The main finding of this thesis was that the Ca2* affecting the BK 
channel is regulated independently of cytosolic Ca2* in HEK293 cells. 
Stimulation with agonists such as carbachol, ATP and cyclopiazonic 
acid demonstrated clear differences in the magnitude of BK channel 
microdomain and cytosolic Ca2* signals. Short term exposure to 
caffeine induced a significant decrease in the Ca2* signals near the 
channel. The addition of extracellular Ca2* led to large Ca2* transients 
close to the BK channel suggesting a store-operated Ca2* mechanism. 
The Ca2* effects produced by carbachol, ATP, caffeine and 
cyclopizaonic acid indicate a coupling between IfVinduced Ca2* 
release from the ER and Ca2*- activation of the BK channel.
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Chapter 1

The survival of all living organisms depends on the maintenance of 

suitable concentrations of inorganic ions such as sodium, potassium, 

chloride and calcium. Calcium in particular is now widely recognized as 

a vital regulator of many cellular processes including metabolic 

processes, enzymatic activities, gene regulation and electrochemical 

responses. There has been a vast increase in research on calcium 

signalling in recent years which has widened our understanding. The 

majority of this research has focused mainly on the cytosol. It is now 

well-known that small variations in intracellular free calcium may have 

significant repercussions on some of these essential processes. Some 

of these events are triggered by calcium within milliseconds whereas 

others require the presence of Ca2+ over minutes to hours. Not only the 

temporal aspects but also the spatial pattern of Ca2* concentrations 

affects these processes. Some of them respond to localised Ca2* 

concentrations whereas others to more diffuse Ca2* signals. The activity 

of Ca2*-dependent protein complexes such as enzymes or ion channels 

is modulated by the Ca2* concentration in their vicinity. It is becoming 

evident that in order to understand how Ca2* controls the activity of 

these ion channels, the measuring of the exact local Ca2* 

concentrations near to these elements is required.

2
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Fig. 1.1 Number of scientific publications on calcium.
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exponential growth can be observed until the year 2000. Interestingly,

the number of publications of the last two decades is maintained. A web

search was carried out using the term calcium and the publication dates

indicated in the graph on the web-based search engine Pub Med

(http://www.ncbi.nlm.nih.gov/pubmed/) during March 2009.
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Chapter 1

1.1. CELLULAR CALCIUM

1.1.1 Historical Perspective: The first 100 years.

The work carried out by Sidney Ringer (Ringer, 1883) nearly 125 years 

ago is considered the first evidence of the crucial role of calcium in 

physiological processes. This brilliant physiologist realised that small 

amounts of Ca2+ in the perfusion solution were required for the 

maintenance of the normal heartbeat of isolated rat hearts. He 

concluded that Ca2+ was not only an structural component of the body 

but also responsible for initiating physiological processes such as heart 

contraction. Subsequently a number of investigators (see Campbell, 

1983 for details) followed his work providing more evidence of the 

important role of Ca2+ in cell stimuli. Among many others, one could 

quote the work of two pioneers: Heilbrunn and Bailey. Heilbrunn 

(Heilbrunn, 1940) proved that Ca2+ applied to the cut ends of frog 

muscle fibers diffused to their contractile elements eliciting contraction. 

Bailey (Bailey, 1942) showed that the ATPase activity of myosin was 

increased in the presence of Ca2+ (but not Mg2+) and concluded that the 

release of Ca2+ in the proximity of the myosin triggered muscle 

contraction. The synthesis and characterisation of EDTA led to the 

compelling evidence that the removal of Ca2+ by EDTA relaxed muscle 

fibers (Bozler, 1954). In the following fifty years, the interest in Ca2+ has 

experienced a continuous growth, slowly at first and then more rapidly. 

Calcium is now recognised as an essential messenger involved in a

4



Chapter 1

myriad of key cell processes (for a general overview of the historical 

aspects, see Carafoli, 2002; for comprehensive review, see Campbell, 

1983).

1.1.2 Physiological relevance of calcium.

Calcium is thought to play a key role in the regulation of a multitude of 

cellular processes such as ion channel modulation, neurotransmitter 

and hormone release, muscle contraction, proliferation, exocytosis, 

apoptosis, gene regulation, control of kinase and phosphatase activity 

and general enzymatic activation (Carafoli & Klee, 1998; McDonough, 

2003). Perturbed Ca2+ homeostasis is also thought to be involved in the 

pathogenesis of disorders of the immune, cardiovascular and nervous 

system (Orrenius et al., 2003) i.e. heart failure (Go et al., 1995) and 

Alzheimer’s disease (Mattson et al., 2000).

The function of calcium in apoptosis is particularly fascinating, 

especially when we consider that cell death is behind many of the 

mentioned disorders. There is considerable evidence supporting the 

major role of calcium in apoptosis involving well-known apoptosis 

regulators such as the oncogene Bcl-2 family members, cytochrome c 

and caspases (Rizzuto et al., 2003). ‘Ca2+ communication’ between ER 

and mitochondria is a clear example. An increase in ER Ca2+ release 

induces the augmentation of Ca2+ loading of mitochondria causing the 

release of cytochrome c, fragmentation and swelling of the mitochondria 

(Pinton et al., 2001; Boehning et al., 2003). Furthermore, proteins of

5



Chapter 1

the Bcl-2 family have been found in these two organelles (Scorrano et 

al., 2003). Other elements involved in the apoptotic process such as the 

proteases calpains, some caspases and reactive oxygen species have 

been shown to be Ca2+ dependent (Rizzuto et al., 2003). All these facts 

emphasize that programmed cell-death seems to be tightly related to 

alterations in intracellular Ca2+ homeostasis.

1.1.3 Mechanisms of control of cellular calcium.

It is clear that calcium ions affect many vital cellular processes. 

However, it must be noted that only the free Ca2+ ions serve as a 

second messenger tightly controlling all these processes. The resting 

levels of free Ca2+ found in the cytosol are maintained near 100 nM 

while extracellular calcium is around four orders of magnitude higher (1-

1.5 mM) (Baker, 1972). The total cell calcium (free, bound to calcium- 

binding proteins and within intracellular compartments) is estimated to 

be much higher (105 times the amount of cytosolic free Ca2+) (Hurwitz et 

al., 1991).

As a general rule, Ca2+-binding proteins such as aequorin and 

fluorescent Ca2+ indicators such as the Fura-2 dye only detect free Ca2+ 

in their proximity. Unless otherwise stated, in this thesis we will refer to 

free intracellular calcium simply as intracellular calcium.

Since intracellular enzymes and receptors display different affinities for 

calcium, minor variations of intracellular calcium can lead to diverse

6



Chapter 1

intracellular results. Therefore, the correct calcium balance must be 

preserved to maintain cell functions. The plasma membrane calcium 

ATPase (PMCA) and the Na+/Ca2+-exchanger are responsible for Ca2+ 

extrusion. On the other hand, the two predominant mechanisms of 

intracellular Ca2+ increase are Ca2+ entry from the extracellular milieu 

and Ca2* release from intracellular stores. For the purpose of this work, 

we will focus on the sources of Ca2+ entry.

The lipid membrane is very impermeable to Ca2+ ions and Ca2+ only 

enters through Ca2+ channels. There are mainly three types of Ca2+ 

channels: voltage-gated Ca2+ channels, receptor-operated Ca2+

channels and store-operated Ca2+ (SOC) channels.

Voltage-gated Ca2+ channels mediate the entry of Ca2+ ions in response 

to electrical depolarisation of the plasma membrane. According to their 

biophysical and pharmacological properties, voltage-gated Ca2+ 

channels can be classified as L, N, T and P/Q type (Tsien et al., 1988; 

Miller etal., 1992; Zamponi etai,  2005). It is thought that different Ca2+ 

channel subtypes govern distinct physiological functions (McDonough, 

2003).

The receptor-operated Ca2+ channels respond to agonists such as 

glutamate, ATP or histamine in the plasma membrane allowing Ca2+ 

entry through the membrane. The binding of agonists to some receptors 

in the plasma membrane such as muscarinic or purinergic receptors 

results in the production of IP3 which in turn causes the release of Ca2+

7
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from intracellular organelles (McMillian et al., 1988). IP3 receptors have 

been also found in the plasma membrane (Khan et al., 1992). 

Ryanodine, caffeine and inositol 1,4,5-triphosphate (IP3) are typical 

effectors which cause Ca2+ release by binding to these receptors 

contained in the ER. In particular, IP3 is generally considered a second 

messenger (Streb etal,  1983; Berridge, 1984).

SOC channels are involved in the replenishment of intracellular Ca2+ 

stores after depletion by the mechanism known as store-operated Ca2+ 

entry, also termed capacitative Ca2+ entry (Putney, 2007). The most 

studied SOC channels are calcium-release activated calcium (CRAC) 

channels (Putney, 1986). The main characteristics of CRAC channels 

are: an extremely small conductance ( <1 pS); high selectivity for Ca2+ 

and sensitivity to channel blockers such as La3*, Gd3* and Ni2* (Putney, 

2001). Although The precise mechanism of CRAC channels activation 

has remained elusive for the past 20 years, the recent discovery of the 

Orai and Stim proteins brings new light to this problem. Stiml is mainly 

localised in the ER where detects Ca2+ fluctuations, while Orail is 

embedded in the plasma membrane. Orail and Stiml interact 

functionally and together can emulate most of the features of CRAC 

entry (Putney, 2007). Second messenger particles such as the Calcium 

influx factor (CIF) and TRP channels have been also suggested to play 

an important role in this mechanism (Bimbaumer etal., 1996). In light of 

these new findings, these hypotheses need a close re-examination.

8
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Some TRP channels have been reported to be CRAC channels. 

However, the role of TRP channels in SOC entry is controversial, 

because their electrophysiological signature (Ca2+ selectivity, 

conductance and pharmacology) does not coincide with that displayed 

by CRAC channels (Bimbaumer et al., 1996; Clapham, 2003). Like all 

the other Ca2+-permeant channels they probably affect this mechanism 

of Ca2* entry but more research is needed to decide whether TRP 

channels are CRAC channels.

Cells possess many ways of controlling intracellular Ca2+ (Fig. 1 .2 ) and 

in most cases more than one of these mechanisms affect stimuli- 

induced Ca2+ responses. In this work, we will address the effects of 

these mechanisms when studying the resultant Ca2+ responses.

Comprehensive reviews about the important role of intracellular Ca2+ in 

the physiological context and the cellular mechanisms of controlling 

Ca2* can be found first in Campbell (1983) and also in Carafoli & Klee 

(1998), Clapham (2003) and Putney (2007).

Cells use Ca2+ signalling to modulate the signals received from the 

environment and from other cells. They can also alter their electrical 

potential across the plasma membrane to regulate these signals. 

Consequently, cells need a means of controlling both mechanisms 

simultaneously. The tight regulation of membrane potential and Ca2+ 

concentrations is achieved by means of Ca2+-activated voltage- 

dependent ion channels such as the large conductance Ca2+-activated

9
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potassium channel (BK channel). The BK channel plays a key role 

acting as a negative feedback regulator for these processes.

W T
- 1  i i iM

MNCX
Unfxxter MMCA

I Calcium-brtclng 
chaperone stores

Endoplasmic reticulum Mitochondrion

Receptor-gated 
o channel oo

Fig 1.2. Schematic illustration of the complex mechanism controlling Ca2+ 
inside the cell (from Syntichaki & Tavemarakis, 2003).

1.2. ION CHANNELS

1.2.1 Overview.

Every single cell possesses a membrane which enables it to keep its 

interior characteristics (pH, charge, concentrations) suitable to perform 

optimally all the biological processes inside the cell. This membrane is a
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lipid bilayer impermeable to polar molecules (sugars, amino acids, 

ions). The ion channels, together with ion pumps and exchangers, are 

the mechanisms embedded in the membrane that control the pathway 

of the ions. These ionic movements account for the membrane potential 

fluctuations. Changes in this potential trigger intracellular processes 

including the release of chemical signals that enable the cells to 

communicate with other cells. Therefore, at a physiological level, it may 

be said that the ion channels are in charge of the brain synapses, the 

heart beating and muscle contraction.

1.2.2. Localisation.

The ion channels can be expressed in all membrane domains. They 

may be found in the plasma membrane as well as in internal 

membranes such as those of the nucleus, Golgi complex, endoplasmic 

reticulum, lysosomes, endosomes and mitochondria.

1.2.3. Stmcture, gating and selectivity.

Ion channels are composed of diverse proteins assembled with an 

aqueous pore in the centre that can be either open or closed. We refer 

to this as gating. The opening is produced by means of conformational 

changes which allow the flow of ions through the channel at rates up to 

108 ions per second. The gating of the channel can be triggered as a 

result of the binding of one or more compounds (ligand-gated 

channels), changes in the membrane potential (voltage-gated

11
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channels), sensory stimuli of various kinds (mechanosensitive 

channels) or a combination of these factors (Ca2+- voltage-activated 

channels).

Different channels show different selectivity. Potassium channels are up 

to 100 times more permeable to K+ than Na+ because the K+ gating is a 

thermodynamically favoured process. Broadly speaking, the gating and 

selectivity are independent processes.

For an extended review of ion channel function see (Aidley, 1996; Hille, 

2001; Sperelakis, 2 0 0 1 ).

1.3 BK CHANNELS

The BK channel is one of the most widely studied K+ channels. It is 

activated by both membrane depolarization and increases in cytosolic 

Ca2+ (Marty, 1981; Pallotta, et al., 1981) and is present in almost all 

organisms (mammals, fruit flies, bacteria, virus...). It is involved in many 

physiological processes but its main role in the human body is 

controlling neuronal excitability, secretion and smooth muscle tone.

1.3.1 BK CHANNEL DIVERSITY

The molecular diversity of the K+ channel family is vastly greater than 

the rest of ion channel families.

12
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Fig 1.3. This diagram illustrates the great molecular diversity of the 
potassium channels (Institut de Pharmacologie Moleculaire et 
Cellulaire).

This enormous molecular diversity (Fig 1.3) is attributable to the 

combination of heteromultimeric formation, accessory subunits, 

alternative splicing, RNA editing and posttranslational modification 

(Coetzee et al., 1999). In particular for BK channels, the majority of the 

research on their molecular diversity has been predominantly based on 

the alternative splicing sites and p subunit co-expression (Orio et al., 

2002).
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1.3.1.1 Splice Variants.

The different splice variants show distinct calcium and voltage 

sensitivity, surface expression and sensitivity to protein phosphorylation 

(Curley et al., 2004). Most of the splice variants are located in the 

COOH terminus. These splice variants are tissue dependent and their 

number depends on the tissue studied. For instance 9 splice variants 

have been found in the brain, whereas there are only two in the 

myometrium (Tseng-Crank et al., 1994; Curley et al., 2004; Yu et al., 

2006). Part of this alternative splicing is controlled by stress hormones 

such as corticosterone. In the presence of adrenal corticosterone, the 

exon (174bp) named “STREX” is expressed in rat (Xie & McCobb,

1998).

1.3.1.2.13 Subunit Modulation.

The co-expression of BK channel four a subunits with the p-subunit 

alters their Ca2+ sensitivity, gating kinetics and pharmacological 

properties (Orio et al., 2 0 0 2 ). These aspects are explained in more 

detailed in section 1.4.

1.3.2 BK CHANNEL STRUCTURE

BK channels essentially belong to the family of 6  transmembrane Kv 

channels such as Shaker K+ channel, but differ from them because BK 

channels contain an extra N-terminus transmembrane segment (Fig
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1.4) which is exoplasmic and their characteristic tail at the C-terminus is 

much longer.

The minimum functional BK channel is formed by a tetramer of a 

subunits which shows Ca2+ and voltage dependence. However, the co

assembly of the a subunit with p subunits is needed to obtain a 

completely functional channel with all the relevant kinetics and 

pharmacological properties.

The following diagram schematically illustrates the structure of a single 

BK channel a subunit coupled with its p subunit:

/3 s u b u n it a  s u b u n it

p  su b u n it  
coupling

V o ltage  sensing P ore  d om ain

R C K

Calcium
bowl

In a c t iv a t in g
p a rtic le

core  1 ta il

T1: Tetramerization 1 domain 
RCK: regulator of conductance for K*

Figure 1.4: Diagram of the structure of the 7TM a subunit of the BK 
channel and the 2TM auxiliary p subunit (modified from Latorre & 
Brauchi, 2006).
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The extensive research on the BK channel structure has clarified the 

role of specific domains:

Core: Initial studies divided the channel in two parts, namely core and 

tail according to the different Ca2+ sensitivity properties. The core 

includes the S0-S8 region (Wei etal., 1994).

Tail: Domains S9-S10 were initially held responsible for Ca2+ affinity. 

Later studies have shown that a Ca2+-binding site with lower affinity is 

contained near to the RCK domain (Jiang etal., 2001).

p subunit coupling: The SO segment is only found in BK channels. 

This extra transmembrane domain was thought to be required for the 

assembly of p subunits with the a subunit (Meera et al., 1997) but 

recent studies have proven otherwise (Morrow et al., 2006). 

Nevertheless, this exoplasmic N terminus domain is essential for some 

of the features produced by the p1 subunit such as the conductance- 

voltage (G-V) shift and 17p-Estradiol sensitivity. Apart from this, it can 

also modulate the activity of the voltage sensor (Koval et al., 2007).

p subunit inactivating particle: The NH2 terminus of the p3 subunit 

mediates the inactivation of BK channels. Its removal results in a p 

subunit lacking inactivation properties (Xia etal., 1999).

Pore domain: The S5 and S6  segments form the pore domain which 

shows, by similarity with Shaker K channel, the features of potassium 

selectivity (Jan & Jan, 1997). There is also a great deal of evidence that
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binding sites for channel-specific toxins are located in these 

transmembrane domains.

Voltage sensing: The S1 , S2 , S3 and S4 transmembrane segments 

function as part of the voltage sensor. The S4 segment possesses three 

positively charged residues (R365, R368, and R371), which contribute 

significantly to the channel gating (Seoh et al., 1996). The S3 segment 

has been shown to be sufficient for the physical association between a- 

p1 subunits (Jan & Jan, 1997; Diaz, 1998; Morrow etal., 2006).

Calcium bowl: A motif rich in Asp and Glu which enormously 

decreases the Ca2+ sensitivity of the channel when altered by 

mutations. However, recent findings suggest that BK channels may 

exhibit the normal calcium sensitivity even after the deletion of the 

whole COOH-terminal region. Therefore, BK channels must have other 

Ca2+ binding sites (Moczydlowski, 2004).

RCK: A regulator of conductance for K+ which contains binding sites for 

Ca2+ and Mg2+ (Jiang etal., 2001).

T1 Domain: This “Tetramerization 1 domain” promotes the assembly of 

monomers into functional potassium channels. It includes the RCK 

domain (Shen etal., 1993).

1.3.3. BK CHANNEL CHARACTERISTICS

In the table below the main features of BK channels may be observed.
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CHARACTERISTICS OF THE BK CHANNELS

Description Large conductance, Ca2+ and Voltage-activated 
potassium channel

Other names KCNMA1, Slo (hSIo for human), BK channel, Maxi-K 
channel, KCa1.1

Molecular information KCNMA1 Human: 1182aa, chr 10q22

Main associated 
subunits

BK-beta (4 different types: KCNMB1 , KCNMB2 , 
KCNMB3, KCNMB4)

Other associated 
proteins

f32-adrenergic receptor and Ca2+ channels; Protein 
Kinases, Caveolin-1 and caveolae; Haem and 
Hemoxygenase-2, Synaptic proteins, Syntaxin 1A, 6 - 
Catenin, Cereblon, Microtubule-associated protein 
1A and ankyrin-repeat family protein

Conductance (K7K+) -260 pS (between 200-300 pS)

Ion selectivity P k/P Na>50

Activation Calcium and voltage

Activators Intracellular calcium, NS1608, NS1619, BMS204352, 
DHS-1 , CGS7181, estradiol, sulphatides, Mg2+

Modulators

Phosphorylation modifies Ca2+ sensitivity. MaxiK 
activity is increased by inhibition of mitogen-activated 
protein kinases (MAPKs) such as stress-activated 
protein kinases (also known as p38s) and 
extracellular signal-regulated kinases (ERKs).

Blockers (ED50)
TEA (0.14mM), charybdotoxin (2.9nM), iberiotoxin 
(1.7nM), paxilline (1.9nM), slotoxin (1.5nM), BmP09 
Chinese scorpion toxin (27 nM)

Channel distribution
Ubiquitous, brain, skeletal muscle, smooth muscle, 
adrenal cortex, cochlear hair cells, odontoblast, 
pancreatic islet cells, colonic and kidney epithelium

Pharmacological
significance

Channel openers may have applications in stroke, 
epilepsy, bladder over-reactivity, asthma, 
hypertension, gastric hypermotility and psychoses.

Table 1.1. (Wei, 2005; Chi & Qi, 2006; Li etal., 2006; Lin etal., 2006)
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Apart from p subunits, the other BK channel partners mentioned above, 

mostly identified by co-immunoprecipitation or immunolabelling 

techniques, are: B2-adrenergic receptor and Ca2+ channels (L-type, 

P/Q-type, N-Type and TRPC1) (Berkefeld et al., 2006; Kwan et al., 

2009); protein kinases (protein kinase A, focal adhesion kinase, proline- 

rich tyrosine kinase 2 , src tyrosine kinase), caveolin-1 and caveolae; 

haem and hemoxygenase- 2  and synaptic proteins and other partners 

from brain (syntaxin 1 A, B-catenin, cereblon, microtubule-associated 

protein 1A and ankyrin-repeat family protein). Particularly significant it is 

the coupling of BK and calcium channels in the central nervous system 

which may well control transmitter release (Lu et al., 2006). How these 

complex and diverse partnerships with the BK channel regulate its 

properties and phenotype is in most cases unclear. Particular attention 

to the co-assembly of Ca2+ channels will be paid for the purpose of this 

thesis.

1.3.4. OTHER BK CHANNELS

BK channels are characterised by a large single channel conductance 

and their activation by voltage and other cytoplasmic factors such as 

Ca2+, pH or phosphorylation. In this context it is worth mentioning that 

apart from hSIol (KCNMA1) there are other BK channels which fit this 

description. Nonetheless, they differ in conductance, pharmacological 

properties and protein sequences. Their main aspects are summarised 

in the table below:

19



Chapter 1

Channel Characteristics of other BK channels

Slo2 .1

Human Gene: KCNT2

Alternative names: Slick, KNa. KCa4 .2

Conductance (K7K+): 60-140 pS
Voltage-dependence: Low.

Blockers: Intracellular ATP, quinidine, Ba2+.
Modulators: Na+ and Cl*, negatively modulated by G- 
protein-coupled receptors (GPCRs).
Channel distribution: Mainly in the brain.
Structure: Lack of SO TM domain, absence of positive 
charges in S4, some negative charges in the Ca bowl 
changed to positive.

Slo2.2

Human Gene: KCNT1 

Alternative names: Slack, KNa> KCa4.1 

Conductance (K+/K+): 100-180 pS 

Voltage-dependence: Low.
Modulators: Na* and Cl', positively modulated by G- 
protein-coupled receptors (GPCRs).
Channel distribution: Mainly in the brain.
Structure: Lack of SO TM domain, absence of positive 
charges in S4, some negative charges in the Ca2+ bowl 
changed to positive.

Slo3

Human Gene: KCNU1
Alternative names: K large-conductance pH sensitive 
channel, KCa5.1
Conductance (K7K+): 70-100 pS 

Voltage-dependence: Marked.
Modulators: High dependence of intracellular pH.
Channel distribution: Only spermatocytes.
Structure: Lack of the Ca2+ bowl, high similarity to Slo1

Table 1.2. (Salkoff etal., 2006)
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To date several heteromultimeric complexes of Kv channels have been 

found (Patel et al., 1997). Similarly the formation of heteromultimeric 

complex of different Slo channels has been suggested, although there 

is no direct evidence. This possibility may well account for part of the 

molecular and pharmacology differences shown by BK channels in 

diverse cell types and should be taken into consideration when channel 

properties are studied.

BK channels interact with several cellular partners (see Table 1.1). The 

auxiliary p subunits are considered as the main modulators of BK 

channel activity and pharmacology.

1.4. p SUBUNITS: THEIR IMPORTANCE

The co-expression of BK channel 4 alpha subunits with the p subunits 

alters their Ca2+ sensitivity, gating kinetics and pharmacological 

properties. At present, four different p subunits have been identified 

each of which show distinct modulation properties. For instance, the pi 

increases the stability of the open states whereas p2  subunit produces 

inactivating currents (Orio etal., 2 0 0 2 ).

1.4.1. Specific features of each p subunit.

Probably the most noteworthy difference amongst p subunits is their 

high tissue specificity. In the table below (Table 1.3) we can see a 

rough outline of this fact:

21



Chapter 1

The symbol (.......) indicates that the subunit is expressed at very low

level in that specific tissue or is not expressed at all. Different tissues 

express different subunit genes. The figures w ere calculated dividing 

gene expression in a specific tissue by the total gene expression of all 

tissues evaluated.

Expression of BK a and 0 subunits in different tissues

Normalized Gene Expression (%)

Tissue KCNMA1 KCNMB1 KCNMB2 KCNMB3 KCNMB4

Blood 0.90 8.71 2.45 2.56

bone: 4.96 2.24 2.35

brain: 7.22 0.63 2.97 1.07 10.43

colon: 1.02 4.93 3.86 4.16 10.17

Eye 0.95 1.53 1.20 2.57 6.29

Heart 1.08 4.09 2.93 3.07

kidney: 3.52 1.70 6.65 3.81 5.00

lung 2.03 8.35 2.49 2.62

lymph node 0.74 11.09 9.51

muscle: 8.16 2.19 5.14 1.23 2.58

Ovary 0.59 13.40

Pancreas 3.89 9.36

Prostate: 2.12 6.14 1.60 1.15 7.23

spleen: 8.46 10.65 7.64

Stomach 2.78 1.56

uterus: 8.21 16.75 2.57

vascular: 6.59 21.19 5.95 12.48

Table 1.3. The table shows the main tissues expressing the different BK 
channel subunits and their level of normalized gene expression for that 
tissue. Note that figures are calculated dividing gene expression in a 
specific tissue by total gene expression of all tissues evaluated (Rebhan, et 
al., 1997; GeneCards encyclopedia, 2008)
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Although the normalization was made individually for each subunit, 

these data suggest that each tissue needs a BK channel with a precise 

range of properties defined by distinct assembly patterns.

More evidence to support this general fact is reported by Rhodes 

(Rhodes et a/., 1996) revealing that the Kv channel a/p complex has a 

different distribution and expression depending on the tissue. In this 

study, it was reported that the expression level of Kvp2  in the rat brain 

is twice that of Kvp i. Furthermore, the expression of Kvp1 requires the 

presence of Kvp2 while Kvp2  may be expressed individually.

The different effects on channel activity mediated by each subunit are 

as follows:

p1 SUBUNIT (KCNMB1): This is by far the most studied p subunit. 

These are some of its features:

Channel Modulation: Modulates Ca2+ sensitivity and affinity for CTX 

and IbTX, increases open probability (P0), especially at high Ca2+ 

(1pM) and enhances oxidative regulation (Santarelli etal., 2004). 

Kinetics: slows down the activation and deactivation kinetics. 

Pharmacology: required for binding of the opener

dehydrosoyasaponin (DHS-1) and for external binding of the agonist 

hormone 17p-Oestradiol

Coupling: p1 subunit intervenes in the regulation of coupling 

between Ca2+ transients and BK channels by protein kinase C 

(Hagen et al., 2003).
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Disorders: Protects against hypertension and its absence provokes 

an increase in arterial tone and blood pressure (Femandez- 

Femandez etal., 2004; Ghatta etal., 2005).

Surface expression: regulates BK surface expression levels (Toro et 

al., 2006).

p2 SUBUNIT (KCNMB2):

Channel Modulation: confers low affinity for CTX and produces 

inactivation currents thanks to a peptide sequence in NH2 terminal 

domain. In absence of this peptide, it exhibits the same properties 

as (31.

Surface expression: regulates BK surface expression levels (Zarei, 

2005).

p3 SUBUNIT (KCNMB3):

Channel Modulation: partially inactivates or slightly decreases the 

activation time of the channel.

Splice variants: 4 different isoforms have been reported, each one 

conferring different inactivation properties. Some of them show 

inactivation kinetics similar to the (32 subunit.

(34 SUBUNIT (KCNMB4): highly expressed in the brain.

Channel Modulation: decreases the apparent Ca2+ sensitivity, 

confers resistance to CTX and IbTX (Meera etal., 2000).

Kinetics: slows down channel activation and accelerates its 

deactivating effect.

Disorders: implicated in epilepsy (Brenner etal., 2005).
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A more detailed description of all these aspects may be found in (Orio 

etal., 2 0 0 2 ).

The role of p subunits as promoters of cell surface expression of the 

channel has been investigated in more detail in the shaker Kv channel 

which shares a resemblance to BK in many aspects. In this channel p 

subunits increase a subunit expression and stability (Sutherland et al.,

1999). In this case the p subunit behaves as a chaperone-like protein 

and this is probably one of its fundamental roles. The a/p subunit 

interaction occurs very rapidly via the cytoplasmic N-terminus of the a 

subunit (note that this N terminus is not cytosolic in BK channels and 

may interact differently with the p subunit). Additionally, it has been 

suggested that electrical activity may be caused by a failure of many of 

the a subunits to reach the cell surface and that p subunit dysfunction 

may lead to seizure activity or other neuropathological states in 

mammals (Nakahira et al., 1996). Unexpectedly, the mechanisms of 

surface expression of BK channels show a difference among species. 

During pregnancy, reduced channel expression in rats arises due to 

diminished transcription, whereas in mice is produced by altering the 

subunit traffic to the surface (Mansoureh et al., 2003). Furthermore, 

some highly evolved organisms such as Drosophila melanogaster lack 

p subunits. This may be because the fruit fly possesses a more efficient 

a subunit than their mammalian counterpart (Nagaya, 1997). All this 

evidence suggests that p subunits may play a significant role in the 

adaptation and evolution of animals. Indeed, the p1 and p2 subunits of
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the BK channel are believed to take part in the physiological 

adaptations to hypoxia since their mechanisms of expression are 

altered by this condition (Hartness et al., 2003; Del Toro, 2005; 

Navarro-Antolin, 2005).

Interestingly, in addition to their chaperone activity, p subunits have 

been reported to behave as kinases as well as being a modulator 

subunit of the K+ voltage-gated sensory channel (Cai, 2005).

1.4.2. Stoichiometry.

p subunits form a complex with the a subunits. This complex was 

initially thought to exist as a 4:4 channel with a 1:1 stoichiometry (Fig.

1.5) (Garcia-Calvo et al., 1994) but further studies have shown 

evidence of a reduced stoichiometry showing for instance 4a subunits 

and only 3p (Wang etal., 2002).

The modulation of channel properties by p subunits, such as gating and 

inactivation, is functionally dependent on the average number of p 

subunits per channel (Manganas & Trimmer, 2000; Wang et al., 2002). 

Furthermore, according to (Zeng et al., 2003), the mechanism of 

blockage is related to the number of p subunits.

In chromaffin cells, it has been demonstrated that currents from native 

BK channels and those from recombinant a/p2  share many properties 

but differ in others (the voltage-dependent activation is shifted to the 

right along the voltage axis) (Uebele et al., 2000). Additionally,
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variability in the average number of (32 subunits was detected. These 

features can be explained by the channel having fewer p2 subunits or 

mixtures of different p subunits.

In summary, p subunits contribute greatly to the phenotypic variability 

of BK channels in native tissues, modulate binding properties, calcium 

sensitivity, voltage-dependence, current shift, etc; may promote channel 

expression and stability; are involved in vasoregulation and in hypoxia 

and must act in concert to show some (if not all) of their properties (e.g. 

inactivation).

Fig 1.5 Diagram showing the co-assembly of 
a subunits and p subunits in a stoichiometry 
of 4:4, from (Toro L., 2005)

1.4.3. Channelopathies.

Channelopathies are by definition diseases connected with ion channel 

disorders. A large number of channelopathies have been discovered 

over the past decade highlighting the physiological relevance of ion 

channels.
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Potassium channels are involved somehow with different diseases such 

as cardiac arrhythmias (long-QT syndrome type 1,2,5, Andersen's 

syndrome), neurological disorders (depression, genetic ataxia, episodic 

ataxia with myokymia, some forms of epilepsy), neurodegenerative 

diseases (Huntington’s, Parkinson, Alzheimer’s), vision disorders (total 

colour-blindness), renal disorders (Antenatal variant of Bartter 

syndrome), endocrine disorders (hypersinsulinemic hypoglycaemia of 

infancy, type II diabetes) and periodic paralysis (Shiehm et al., 2000; 

Hubner & Jentsch, 2002; Cajal Institute Neuroscience Research Centre, 

2005; Heurteaux etal., 2006; Waters etal., 2006).

BK Channels, in particular, are directly involved in several physiological 

processes and disorders: the mechanism of analgesia, the olfactory 

system, hearing loss, innate immunity, pregnancy, development, 

coronary artery disease and senescence, acute ischemic stroke, 

genetic hypertension, autism, urinary system disorders (Type II Baffler's 

syndrome, incontinence), erectile dysfunction, schizophrenia, 

generalized epilepsy and paroxysmal dyskinesia. (Dray & Urban, 1996; 

Gribkoff, 2001; Marijic, 2001; Clapp & Jabr, 2003; Eghbali et al., 2003; 

Ahluwalia et al., 2004; Meredith et al., 2004; Ruttiger, 2004; Du, 2005; 

Werner etal., 2005; Bailey etal., 2006; Laumonnier etal., 2006; Lin et 

al., 2006; Zhang et al., 2006). BK channels are also thought to be 

involved in cancer progression since there is data showing an over

expression of BK in cancer cell lines and inhibition of apoptosis with 

channel blockers (Bronstein-Sitton, 2003; Bauer, 2005). In some cases
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it is difficult to say whether the alterations in the ion channels are the 

cause of the disease or the consequence. Nevertheless, the existence 

of a close relationship between these factors and BK channels is 

undeniable.

Recently, two models of BK channel knockout mice have been 

developed, one with no a-subunit (a'A) and another with no p1 subunit 

(P1*7*). The (a*7) shows hearing dysfunction and a cerebellar motor 

deficit whereas (pi*7*) exhibits bowel/colon dysfunction and a decrease 

of K+ secretion. Interestingly, (P17*) mice have a higher vascular arterial 

tone and blood pressure than that observed in (a*7*) (Ghatta et al., 

2005). This fact highlights the key role of p subunit in some of the 

previously mentioned diseases. For instance, apart from controlling the 

vascular tone, it is thought that the p1 subunit protects against 

hypertension and is involved in the complications of diabetes, and that 

P4 prevents epilepsy (Femandez-Femandez etal., 2004; Brenner etal., 

2005; McGahon etal., 2007).

All this evidence stresses the major importance of ion channel research 

as well as the necessity of finding new techniques to facilitate the study, 

screening and resolution of ion channel disorders.

1.5 BIOLUMINESCENCE

Bioluminescence is the emission of light produced by a chemical 

reaction within an organism. This term has currently been extended to
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the test-tube biochemical systems derived from such organisms 

although a more appropriate word would be chemiluminescence 

because no living organism is involved. In this study we follow this 

current tendency and will refer to this phenomenon as bioluminescence.

In nature, a wide range of organisms produce bioluminescence such as 

marine animals (jellyfish, octopus, aristotomias...), insects (fireflies, 

beetles), worms, bacteria, mushrooms/fungi, etc (Campbell, 1988) for a 

variety of purposes, such as defence, feeding, breeding, etc. The 

spectrum of the light depends on the organism and goes from cyan, 

through blue, green, orange to red.

Bioluminescence represents an extremely sensitive method for 

determining the concentration of specific ions and molecules and plays 

a key role in analytical biochemistry and molecular biology (Campbell, 

1988). The applications of bioluminescence reach all areas such as 

medicine (non-invasive imaging), industry (food processing, gas 

detection, measurement of light emissions...), environment (detection of 

toxicity levels in water, monitoring of coastal currents, etc), society 

(cosmetics glowing birthday cards, etc) (Campbell, 1989). In particular, 

aequorin has been used extensively specially for the detection of 

calcium concentrations in vivo and as a label in immunoassays.
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1.5.1. Aequorin.

Aequorin from Aequorea victoria jellyfish was the first bioluminescent 

protein to be isolated by Dr Shimomura in the early 1960s (Shimomura 

et al., 1963) opening a huge new area of research focused on cell 

imaging in vivo. Since its discovery, aequorin has been widely used to 

monitor intracellular Ca2+ (Ridgway & Ashley, 1967; Cobbold & Lee, 

1991). Initially, microinjection was the main method of choice to load the 

photoprotein into the tissues. The subsequent cloning of the aequorin 

sequence (Inouye et al., 1985) allowed the use of homogenous 

aequorin and new methods to introduce the protein into the cells (i.e. 

cell transfection). Thanks to the constant advances in molecular biology 

and microscopy techniques, luminescent probes have become an 

every-day analysis and screening technique.

1.5.1.1 Mechanism of light emission in aequorin.

Aequorin is composed of two distinct units, apoaequorin, with an 

approximate molecular weight of 22 kDa and the prosthetic group 

coelenterazine (MW 472 kDa), a molecule belonging to the luciferin 

family. Luciferin is the chemical substance present in the cells of 

bioluminescent organisms that emits light when oxidized under the 

catalytic effects of luciferase and in the presence of molecular oxygen 

and certain cofactors like ATP or Ca2+ (Fig 1.6, A) (Campbell, 1988).
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A

Luciferin + O2 + cofactors --------------► oxyluciferin + light

B
OH OH

° w *
CH„ bound O 2 CH0

i 2
N. .N

L kN CH

Coelenterazine

.NH0=O

HO

Coelenteramide

+ h? + CO2

Fig 1.6. (A) The basic chemical reaction that produces bioluminescence 
(Campbell, 2003). (B) Chemical reaction producing aequorin light emission.

The mechanism of aequorin is as follows: the two components of 

aequorin form spontaneously the functional protein in the presence of 

oxygen; then if Ca2+ is added, the protein undergoes a conformational 

change and converts through oxidation its prosthetic group, 

coelenterazine, into excited coelenteramide and CO2 (Campbell, 1988). 

The last step is the relaxation of the excited coelenteramide to the 

ground state emitting blue light of wavelength of 469 nm (Fig. 1.6  B). 

Once aequorin is triggered, it can no longer emit light. However, it can 

be reconstituted into the active photoprotein by the addition of
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coelenterazine in the presence of oxygen (Shimomura & Johnson, 

1975).

Coelenterazine is a hydrophobic chemical compound, cell permeable 

and commercially available which allows the reconstitution of 

apoaequorin both in free solution or inside intact cells (Inouye et al., 

1986). A number of coelenterazine analogues have been synthesised 

and used to reconstitute apoaequorin generating a range of 

semisynthetic aequorins with different reconstitution rates and Ca2+ 

sensitivities (Shimomura et al., 1993). Aequorin has been also 

engineered using direct mutagenesis creating new photoproteins with a 

reduced affinity for Ca2+. This has allowed monitoring of high Ca2+ 

compartments such as ER or mitochondria.

1.5.1.2. Structure of aequorin.

The crystal structure of aequorin (Fig. 1.7) has been elucidated recently 

showing that it is a dimer (Head et al., 2000). The protein scaffold 

consists of four helix-loop-helix domains (EF-hands), three of which can 

bind calcium. Two EF-hands (I & III) exhibited a high affinity for Ca2+ 

whereas the affinity of the third (IV) was 20 times lower (Toma et al., 

2005). This is consistent with previous reports showing that between 2 

(Shimomura, 1995) and 2.5 (Allen etal., 1977) Ca2+ ions are required to 

trigger the luminescence reaction of aequorin. These domains create a 

central hydrophobic binding cavity for coelenterazine. Both oxygen and 

coelenterazine are bound within this cage. In this state, the protein shell
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is completely closed not allowing solvent access. The addition of 

calcium initiates a series of conformational changes in the protein that 

triggers the internal reaction resulting in light emission and the opening 

up of the ligand-binding site, releasing the oxyluciferin.

Fig 1.7 Diagram of the crystal structure of aequorin from PDB 
database (Access number 1EJ3).
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1.5.1.3. Converting aequorin light emission into calcium.

The binding of Ca2+ ions to the aequorin protein follows a power law 

relationship of around 2.5 (Shimomura, 1995; Allen et al., 1977). This 

2.5 power relationship between light emission and free calcium level 

entails that a doubling of the Ca2+ concentration can lead to a five fold 

increase in light output. Additionally, aequorin is consumed during this 

process causing a decrease in light emission while the Ca2+ 

concentration is still rising. The method used to calibrate aequorin takes 

into consideration both events using by means of two approaches. First 

the light signal is calibrated over a range of solutions containing 

different Ca2+ concentrations (Allen et al., 1977; Woods et al., 1987). 

Secondly the light output is corrected for photoprotein consumption by 

converting the light emission to rate constants, k (s-1) (Campbell, 1988). 

The light emission of aequorin is obtained by incubating in vitro the 

photoprotein in a series of known Ca2+ concentrations. Subsequently, 

there are two procedures to calculate the rate constants, both of which 

account for aequorin consumption: rate of aequorin consumption 

(Campbell et al., 1981) and fractional luminous intensity (L/Lmax). In the 

first one the total counts in a specific time are divided by the total 

number of counts remaining, after the subtraction of background. Since 

the decay of the light emission is exponential, plotting logel (I = light 

intensity) versus time and calculating the slope of the plot gives the rate 

constant (Campbell, 1988). The second method uses the peak height 

(L) on addition of Ca2+ and the maximal peak height (Lmax) at saturating
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Ca2+ concentration to calculate the rate constant ( L / L m a x ) .  The first 

method is considered to be more precise (for a detailed explanation, 

see Campbell, 1988). Therefore, the rate of aequorin consumption was 

the approach of choice in this thesis.

The concentrations of free Ca2+ ions within living cells are measured by 

monitoring the light emission during the length of the experiment and 

the remaining light signal at the end of the experiment. This is achieved 

by lysing the cells in a. hyposmotic solution containing a high Ca2+ 

concentration. This methodology allows to effectively measure Ca2+ 

concentrations between 100 nM to 10 pM (Cobbold & Rink, 1987).

1.5.1.4. Aequorin as a Ca2* reporter.

Aequorin has several advantages which make it ideal as a Ca2+ 

reporter. It has a high selectivity for free calcium, a wide dynamic range 

for measuring calcium (i.e. 0.1-100uM Ca2+), a very low background 

and excellent signal-noise ratio (Campbell, 1988). In addition, aequorin 

does not disturb the Ca2+ homeostasis of the cell, is relatively 

insensitive to changes in pH in the physiological range and exhibits an 

excellent stability during long-term recordings. Furthermore, aequorin 

light emission can be easily and inexpensively detected with a 

luminometer. On the minor side, it requires a substrate (coelenterazine), 

produces a low signal and does not allow single-cell imaging. Overall, 

the low cost, robustness and simplicity of bioluminescent probes make 

them the first choice in high-throughout screening and research kits.
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The use of aequorin to detect localised Ca2+ concentrations is probably 

one of its major advantages. Since the isolation and cloning of its DNA 

sequence (Inouye et al., 1985), aequorin constructs have been used to 

monitor local Ca2+ concentrations within organelles including the 

nucleus (Badminton etal., 1995), the endoplasmic reticulum (Kendall et 

al., 1992) and the mitochondria (Rizzuto et al., 1992). Additionally, it 

has been also employed to detect Ca2+ signal near to various proteins 

such as adenylyl cyclase (Nakahashi et al., 1997) and connexins 

(George etal., 1998).

The advantages and disadvantages of aequorin in comparison to other 

techniques are further discussed in the next section.

1.6. MEASURING INTRACELLULAR CALCIUM

The methods used to monitor intracellular Ca2+ fall into two main 

categories: optical techniques and non-optical techniques, depending 

whether they use light emission to detect Ca2+ signals or a different 

approach such as variations in electrical properties. In this section the 

most prevalent techniques to monitor Ca2+ are discussed with a special 

focus on their advantages and disadvantages.
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1.6.1. Optical Techniques.

1.6.1.1. Fluorescence indicators.

The use of fura-2 and its relatives to monitor cellular Ca2+ have greatly 

expanded in the last 20 years. The prime advantage of fluorescent 

indicators is the ease with which these dyes can be introduced into 

cells. Apart from their convenience, they also exhibit other advantages 

such as high Ca2+ affinity, fast kinetics and a wide dynamic range 

(Tsien, 1980; Grynkiewicz et al., 1985). They also allow Ca2+ imaging 

at a single-cell level due to their strong fluorescent signal.

On the other hand, the rapid adoption of fluorescent indicators, and the 

experience gained in using them also quickly revealed several problems 

associated with their use such as leakage, compartmentalization and 

unwanted binding to cellular constituents (Roe et al., 1990; Haugland, 

1993). The addition of AM esters turns the fluorescent indicators into 

membrane-permeable entities gaining access to the interior of the cells. 

Nevertheless, this is not a selective process and part of the dye will be 

retained in other intracellular compartments such as ER, mitochondria 

and nucleus (Putney, 2000). Since many Ca2+ processes are coupled to 

these organelles, it is difficult to determine whether these compartments 

are involved in the Ca2+ transients detected. Furthermore, the hydrolysis 

of the AM esters results in the generation of byproducts which may be 

potentially cytotoxic or interfere with the Ca2+ pathways. Dye leakage 

mainly due to anion transport proteins is an additional problem.
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Intracellular dye binding to immobile proteins hinders drastically its 

diffusion and may alter its natural properties such as Ca2+ affinity or light 

emission (Harkins et al., 1993). Another potential problem is the fact 

that they bind Ca2+ effectively and may act as a Ca2+ buffers, especially 

at high concentrations (McFadzean & Brownlee, 1995). Several 

techniques and methods may be employed to reduce these problems 

including dye loading by microinjection or at lower temperature; the use 

of anion protein transport inhibitors; the use of dextrans instead of AM 

esters and quantification of dye extrusion. All these factors introduce 

intrinsic inaccuracies which might well account for the discrepancies 

observed between diverse studies, in particular when different 

fluorescent dyes have been used (Alonso etal., 2003).

These are the generic problems associated with the use of fluorescent 

dyes. However, there are two additional drawbacks of particular 

importance. Firstly, it has been shown that fluorescent dyes such as 

Fura-2 may mask or even antagonise Ca2+ release from the ER (Alonso 

et al., 2003). Secondly, Ca2+ effectors such as caffeine have been 

reported to interact directly with several commonly used fluorescent 

dyes such as indo-1 (Donoso et al., 1994), mag-fura-2, magnesium 

green, fura-2 and fluo-3 (Muschol et al., 1999) largely modifying their 

intrinsic properties (absorbance or fluorescence spectra, wavelength, 

quantum yield and kinetics). Specific strategies for each dye had to be 

used to eliminate the resulting artifacts. These two effects could 

seriously distort the physiological measurements of specific Ca2+
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responses. Consequently, the study of particular Ca2+ signals may 

require careful assessment of the potential interactions of the 

fluorescent dye used with the Ca2+ response and also the effects of 

every single agonist employed on the fluorescent properties of the dye. 

Moreover, if the elicited Ca2+ signals depend on which fluorescent dye 

has been employed, this then seriously limits the comparison of results 

obtained from different groups. This greatly compromises the reliability 

of these dyes to monitor Ca2+ responses.

In conclusion, although in many cases the use of fluorescent dyes is 

quick, easy, fairly reproducible and cause no significant changes in the 

Ca2+ response, special care has to be taken when using specific 

agonists and comparing data detected using different dyes.

1.6.1.2. GFP-based Ca2* indicators.

These indicators named chameleons were initially designed by Tsien 

and co-workers (Miyawaki et al., 1997; Tsien, 1998). They consist of 

tandem fusions of a blue- or cyan- emitting mutant of the green 

fluorescent protein (GFP) and calmodulin Ca2+-binding site. When Ca2+ 

binds, there are changes on the conformation of the complex, resulting 

in an increase in FRET. Changes in the Ca2+ can be determined by the 

variation of light emission. They provide a reasonable range of 

detection (50 nM -  1 pM), do not require specific co-factors, their 

kinetics are independent of the concentration of the indicators and can 

be expressed in intracellular compartments (Miyawaki et al., 1999;
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Takahashi et al., 1999). On the minus side, their limited Ca sensitivity 

may miss large Ca2+ transients ( > 1 pM), the fluorescence of GFP is 

partially pH sensitive, In contrast, and more importantly GFP has been 

proven to be cytotoxic in living cells as well as to disrupt cell processes 

and embryo development (Liu etal., 1999; Agbulut etal., 2006; Cheung 

etal., 2006).

1.6.1.3. Aequorin.

The advantages of aequorin are a high selectivity for free calcium 

(Baker, 1972; Cobbold & Rink, 1987; Campbell, 1988), a wide dynamic 

range for measuring calcium (i.e. 50 nm -  100 pM Ca2+), high signal to 

noise ratio, expression and retention in different intracellular 

compartments (mitochondria, ER, plasma membrane, cytoplasm...), 

can be stably expressed in mammalian cells and has been shown to be 

safe and well tolerated by cells (Cobbold & Lee, 1991). Aequorin also 

lacks the undesirable side-effects encountered with fluorescent probes 

such as buffering capacity, autofluorescence and photo-induced 

cytotoxicity when exposed to excitation light (Miller et al., 1994). 

Fluorescent dyes are typically loaded at concentrations of 10-50 pM 

causing the detrimental Ca2+ buffering effect. In contrast, only moderate 

levels of aequorin expression (i.e. <1 pM) are required to obtain reliable 

Ca2+ measurements because of its excellent signal to noise ratio. The 

low buffering effect together with its wide dynamic range makes 

aequorin the ideal tool to accurately quantify the large Ca2+ transients
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occurring within the cells. Since oxidation of coelenterazine does not 

depend on any optical excitation, aequorin does not display the 

problems associated with fluorescent excitation such as photo-induced 

cytotoxicity or autofluorescence.

A crucial advantage of aequorin is its ability to detect local Ca2+ signals. 

As previously mentioned in section 1.6.1.2., fluorescent dyes do not 

always faithfully report rapid changes in Ca2+ seen in some cells and 

may miss highly localised Ca2+ transients. In contrast, aequorin has 

been used to accurately monitor local Ca2+ concentrations near to 

specific proteins (Nakahashi et al., 1997; George et al., 1998). To 

investigate the effect of diverse events on local Ca2+ concentration, 

aequorin is definitely a superior tool.

Its disadvantages are the requirement of coelenterazine to reconstitute 

functional aequorin and the low intensity of the light emission. 

Regarding the use of coelenterazine it must be said that it is 

hydrophobic and can permeate almost every cell type, including 

bacteria, and cellular organelles (Xu et al., 1999). The low signal is 

probably the major drawback because it does not allow single-cell 

imaging at least is highly overexpressed. Therefore other supporting 

technique has to be used to assess its localisation within the cell.

42



Chapter 1

1.6.2. Non-optical techniques.

Two main non-optical techniques have been mainly used: Ca2+- 

selective electrodes and electrophysiology.

1.6.2.1. Cap*-selective electrodes.

The Ca2+-selective electrodes use a ligand contained in a liquid 

lipophilic membrane which separates two aqueous compartments. This 

ligand selectively extract ions form the solutions and transports them 

across the membrane generating a electric current. An unknown Ca2+ 

concentration can be calculated using the potential difference and a 

reference concentration. They exhibit a wider dynamic range (from 1 

nm to 100 m M ), allow long term recordings, organelles are excluded, it 

is almost unaffected by ions or proteins in the intracellular milieu and 

does not interfere with intracellular Ca2+. However, they require a great 

deal of manipulative skills, their response time is not very fast (-0.5 -1  

s), electrical interference may occur and some lipophilic drugs can 

affect their performance (Campbell, 1983; Voipio et al., 1994; 

Takahashi etal., 1999).

1.6.2.2. Electrophysiology.

The channel activity of membrane-bound Ca2+-dependent ion channels 

can be used to estimate Ca2+ concentrations in the vicinity of the 

channel. Single channel activity of Ca2+-activated Cl* channels (Miledi & 

Parker, 1984; Parker & Yao, 1994) and Ca2+-activated K+ channels
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(Barrett et al., 1982) have been used for this purpose. This allows fast 

resolution (ms) and long term recordings if a stable seal is obtained. 

However, it is an invasive technique, imposes changes on the natural 

membrane potential and can be only be applied to cells where GQ 

seals can be achieved. In addition, their calibration strongly relies in 

excised patches in which many cellular components may be missing or 

the effects of cellular processes (i.e. phosphorylation) could be different 

resulting in discrepancies on channel activation between cell-attached 

and excised patches. Additionally, the use of mathematical models 

based on different assumptions has resulted on values of Ca2+ 

concentrations ranging from 0.3 pM (Franciolini et al., 2001) to 150 pM 

(ZhuGe et al., 2000).

Additional information on the different methods to measure Ca2+ can be 

found in Baker, 1972; Campbell, 1983 and Takahashi, 1999.

1.6.3. Use of luminescence techniques in ion channels.

Most studies in ion channels have been performed with fluorescent 

proteins instead of bioluminescent ones. The first reports using 

fluorescent fusion proteins to study ion channels (Marshall et al., 1995) 

go back more than 10 years ago. Since then, there has been a great 

deal of diverse methodologies used to study different channels. Among 

them, some of the most significant for the purpose of this research have 

been the GFP-Shaker fusion protein used to measure voltage-gated 

conformational changes (Siegel & Isacoff, 1997). However, in spite of
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showing certain voltage dependence, the wide discrepancy between the 

kinetics of fluorescence and voltage-activated processes does not 

support the use of this probe as a consistent instrument for research A 

similar approach was more successfully used in a sodium channel 

obtaining a fusion protein with faster kinetics in response to voltage 

changes. This method proved that GFP joined to a mobile part of a 

channel provides fluorescence variations as a result of conformational 

changes (Ataka & Pieribone, 2002). Sheridan and collaborators 

(Sheridan et al., 2002) suggested that the insertion of GFP in 

transmembrane domains might give a functional channel. Nevertheless, 

there is some evidence to indicate that this is unlikely to happen in BK 

channels (Giraldez et al., 2005). Indeed many of their randomly 

engineered recombinant constructs at the C-terminus also resulted in 

diminished cell surface expression and/or different Ca2+ sensitivity. This 

indicates that the addition of tags to the BK channel should be avoided 

in order to resemble the native properties of the channel.

Resonance Energy Transfer techniques have been also used to study 

ion channels. Fluorescence Resonance Energy Transfer (FRET) was 

effectively employed to study the stoichiometry of a heteromeric 

complex K+ channel and to estimate the distance between subunits 

(Kerschensteiner et al., 2005). The bioluminescent equivalent, 

Bioluminescence Resonance Energy Transfer (BRET), has been 

successfully used to determine the conformational changes in the 

insulin receptor (Boutem et al., 2001) and the interactions in assembly
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complexes such as circadian clock proteins (Xu et al., 1999) and G- 

protein-coupled receptors (Gales et al., 2005). For a more detailed 

introduction see Piston et al. (2006); for an extensive review see Tsien 

(1998) and Miyawaki & Tsien (2000).

In this thesis the robust capability of aequorin to measure confined Ca2+ 

concentrations is used for the first time to report local Ca2+ signals in the 

vicinity of a BK channel.

1.7. AIMS OF THE THESIS

The overall aim of this work was to investigate the regulation in situ of 

calcium signals in the vicinity of the BK channel in living cells in order to 

determine whether the local calcium concentration is capable of 

independently controlling BK channel activation. This involved 

developing a novel recombinant protein by combining the auxiliary (32 

subunit and aequorin targeted near to the channel.

The strategy used to achieve this was:

1. To clone the p2 subunit from MG63 cells and subsequently attach 

the aequorin sequence to the C-terminus using splicing by 

overlapping extension.

2. To demonstrate the functionality, properties (i.e. light emission) and 

correct targeting of the new protein.
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3. To assess the optimal conditions for aequorin expression and 

calcium imaging in two different cell lines (MG63 and HEK293) using 

a luminometer and a photon imaging camera.

4. To investigate the BK channel microdomain and cytosolic calcium 

signalling in HEK293 cells in response to several agonists (ATP, 

histamine, carbachol, caffeine) and non-agonists (extracellular 

calcium, TEA, tetrandrine and cyclopiazonic acid) stimuli using a 

photon imaging camera.
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CHAPTER 2

MATERIALS AND METHODS
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2.1 MATERIALS

2.1.1. GENERAL REAGENTS

2.1.1.1. Chemicals.

General laboratory chemicals were AnalaR grade reagents and 

obtained from Sigma-Aldrich Company Ltd. (Poole, UK). All eukaryotic 

cell culture reagents were obtained from Gibco/lnvitrogen (Paisley, UK). 

Coelenterazine was a kind gift from Dr Bruce Bryan (ProLume Inc, 

Beverly Hills, CA, USA).

2.1.1.2. Enzymes and molecular biology reagents.

Bacterial media components were from Oxoid (Hampshire, UK) and 

JM109 competent cells from Promega (Hampshire, UK). ImProm-ll RT- 

System, GoTaq polymerase, T7 promoter primer and pTarget 

Mammalian Expression system were also purchased from Promega. 

BIO-X-ACT Short DNA polymerase, DNA markers and nucleotides were 

from Bioline (Bioline, UK). DNA-free, Proteinscript II T7 linked 

transcription/translation system and ABI Prism Big Dye Sequencing kit 

were obtained from Applied Biosystems/Ambion (Warrington, UK). 

QIAprep Spin Miniprep Kit and plasmid Maxi kits were from Qiagen. All 

the buffers (P1, P2, P3, PE and EB) used in these experiments were 

also provided by Qiagen. The transfection reagents, Lipofectamine 200, 

LTX and Plus, were from Invitrogen (Paisley, UK) and Fugene HD from 

Roche (Hertfordshire, UK).
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2.1.2. GENERAL SOLUTIONS

Aequorin assay buffer: was used for measuring aequorin light emission 

in the home-built luminometer and contained 200 mM Tris-HCI, 0.5 mM 

EDTA, pH= 7.4.

Aequorin resuspension buffer: consisted of 20 mM Tris-HCI, 1 mM 

EDTA and 5 mM Dithiothreitol).

Buffer O: contained 10 mM Tris HCI, 500 mM NaCI, 1 mM EDTA, 5 mM 

(3-mercaptoethanol and 0.1% gelatine adjusted to pH 7.5.

EDTA: a 0.5 M stock solution was made from

ethylenediaminetetraacetic acid disodium dihydrate pH 7.5 and stored 

at room temperature (RT).

EGTA: a 0.1 M stock solution of ethyleneglycolbis-(P-aminoethyether)- 

N,N,N',N' tetraacetic acid at pH 7.5 and stored at -4°C.

KRH- Modified Krebs-Ringer-Hepes buffer: contained 120 mM NaCI, 

4.8 mM KCI, 1.2 mM KH2P04, 1.2 mM MgS04, 25 mM Hepes adjusted 

to pH 7.4. When stated, KRH was supplement with either 1.3 mM CaCI2 

or 1 mM EGTA.

LB medium: 10 g of tryptone, 5 g yeast extract and 10 g NaCI were 

dissolved in 11 sterile water. pH adjusted to 7 with NaOH and 

autoclaved.
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LB plates with ampicillin: 15 g bactero agar were added to 1L LB 

medium, autoclaved, cooled at 50°C, then 100 pg/ml of ampicillin 

supplemented and -25 ml poured into 85 mm Petri dishes.

LB plates with ampicillin/IPTG/X-Gal: As above with additional 0.5mM 

IPTG and 80 pg/ml X-Gal.

Lysis Buffer: was used to extract apoaequorin from culture cells and 

consisted of 20 mM Tris HCI, 0.5 mM EDTA and 5 mM (3- 

mercaptoethanol pH 7.4.

M9+B1 plates: M9 minimal medium plates containing thiamine are 

employed to obtain healthy competent bacteria ready for blue/white 

screening. 6 g Na2HP04, 3 g KH2P04, 0.5 g NaCI, 1 g NH4CI, and 15 g 

agar were added to 1 litre of deionised water, autoclaved, cooled at 

50°C and subsequently 2 ml of MgS04 (1M), 0.1 of CaCI2 (1M), 10ml of 

20% glucose and 1 ml of Thiamine-HCI were added and -25 ml poured 

into 85 mm Petri dishes.

SOC medium: filtered medium with pH=7 and the following

compounds: tryptone (20 g/l), yeast extract (5 g/l), NaCI 10 mM, KCI 

(250 mM), MgCI2-MgS04 (10 mM, 45% w/w) and glucose (20 mM).

TAE: was used for running agarose gels diluted from a 50X 

concentrated stock containing 141 g Tris base, 28.55 ml glacial acetic 

acid, 50 ml 0.5 M EDTA (pH 8.0) and double sterile water made up to 

0.5L, pH 8.3.
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TE: buffer employed for rehydrate primers containing 10 mM Tris HCI, 

1mM EDTA and double sterile water up to 100ml at pH 8.

TFB1: transformation buffer needed to prepare competent bacteria. It 

contains 30 mM potassium acetate, 10 mM CaCI2, 50mM MnCI2> 

100mM RbCI and 15% glycerol. pH was adjusted to 5.8 with acetic acid 

and the final solution filtered (0.2um).

TFB2: second transformation buffer for preparation of competent 

bacteria containing 10 mM MOPS, 75 mM CaCI2, 101 mM RbCI and 

15% glycerol, with pH = 6.5 and filtered.

2.1.2.1. Physiological solutions.

Physiological solutions were used in patch-clamp experiments. 

Solutions were prepared under sterile conditions and filtered with a 

sterile 0.2 pm syringe filters (Whatman). Physiological saline solutions 

used:

Locke: 150 mM NaCI, 3 mM KCI, 2 mM MgCI2, 2 mM CaCI2, 10 mM 

HEPES and 10 mM glucose. pH=7.4 (adjusted with NaOH or HCI).

High 1C: 5 mM NaCI, 140 mM KCI, 1 mM MgCI2, 1 mM CaCI2, 10 mM 

HEPES, 11 mM EGTA. pH=7.2 (adjusted with KOH).
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2.2. MOLECULAR BIOLOGY TECHNIQUES

2.2.1. POLYMERASE CHAIN REACTION

The following reagents were pipetted into a thin-walled PCR reaction 

tube: 5 pi 5xGreen GoTaq Flexi buffer, 1.5 pi MgCI2 (25 mM), 1 pi of 

each primer (10 pM), 5 pi dNTPs (5 mM), 0.25 pi GoTaq polymerase (5 

U/pl) and nuclease-free water was added up to 25 pi. Finally, a thin 

layer of mineral oil (50 pi) was added to each tube to prevent 

evaporation. Thermal cycling was carried out in either a Perkin Elmer 

Thermo (adding Mineral Oil to prevent evaporation) or Uno- 

Thermoblock (with heated lead, Biometra). The PCR cycle program was 

a first step (94°C 1min); 30 cycles each consisting of denaturation 

(94°C 1min), annealing (58°C 1min), extension (72°C 2 min plus a 5 

second extension per cycle); and a final step (72°C, 10min) to allow 

completion of DNA synthesis.

2.2.1.1. High-fidelity PCR.

High-fidelity PCR was performed using BIO-X-ACT Short DNA 

polymerase possessing proof-reading capability. This proof-reading 

activity improves the accuracy of the enzyme up to 7 times when 

compared with a standard Taq polymerase which consequently reduces 

the incidence of mutations arising from misincorporation errors such as 

base substitutions, frameshifts and nonsense mutations
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The DNA substrate was amplified as follows: 2.5 pi 10X OptiBuffer, 2.4 

pi MgCI2 (50 mM), 2.5 pi dNTPs (10 mM), 1 pi BIO-X-ACT™ Short DNA 

polymerase (4 u/pl), 1 pi of each primer (10 pi), the template DNA 

(amounts and concentrations differ between experiments) and 

nuclease-free water up to 25 pi.

Thermal cycling consisted of a first step (95 °C, 5 min) followed by 30 

cycles comprising 30 s at 95 °C, 45 s at 55 °C and 1 min at 68 °C and 

a final step of 68 °C for 5 min.

2.2.1.2. Primer design.

Primers were designed using Primer3 software (Rozen & Skaletsky, 

2000) taking special attention to all parameters to avoid mismatching, 

different melting temperature of the primers and primer dimerization. 

Target sequences were obtained from National Center for 

Biotechnology Information (NCBI) database. Specificity was confirmed 

by BLAST analysis. Primers were purchased from Invitrogen.

The oligonucleotide primers were purchased dehydrated from 

Invitrogen, resuspended in ~0.5ml TE and stored at -20°C.

2.2.1.3. DNA quantification.

This process is employed to quantify the DNA concentration (plasmids, 

PCR products) and additionally to assess the purity of the DNA.

A 1:10 DNA/TE solution was dispensed into a sterile cuvette and 

absorbance measured at 260, 280, 230 and 320nm wavelengths in a
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biophotometer. High quality samples show A28o/26o ratio -1.7-1.9 (280 

nm-DNA & 260 nm-RNA) whereas high measurements at 230 (for 

aromatic moieties) and 320 (particles in solution) indicate potential 

impurities due to poor efficiency of the purification process or use of 

unclean cuvettes. When a poor quality measurement was obtained, the 

purification process was repeated.

2.2.1.4. DNA sequencing.

DNA was sequenced using a ABI Prism Big Dye Terminator Cycle 

Sequencing Ready Reaction kit. PCR was performed using T7 

Promoter Primer as a forward primer, a specific one as a reverse primer 

and a purified pTarget vector with the appropriate insert as a template 

(see Polymerase Chain Reaction in section 2.2.1). The product was run 

in 1% agarose gel (see agarose gel electrophoresis), the band cut and 

incubated overnight with 250 pi of sterile water. To assess the amount 

of DNA in solution, samples of 1 pi, 3 pi and 5 pi were run in another 

gel. The sequencing reaction was performed with 2 pi Big Dye 

Terminator sequencing premix, 1 pi Sequencing Buffer, 3.82 pm primer, 

the appropriate amount of DNA mixture, sterile water up to 10 pi and 40 

pi mineral oil to avoid evaporation. As the Big Dye Terminator 

sequencing premix is light-sensitive the appropriate measures were 

taken to avoid light exposure. A PCR was carried out in a Perkin Elmer 

Thermal Cycler with cycle program as follows: (96°C-30s/50°C- 

15s/60°C-4m)x25 cycles. The reaction mixture was carefully isolated 

from the mineral oil, transferred into a 0.5 ml tube containing 2 pi 3M
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NaAc pH= 4.6 and 50 |il 95% Ethanol, vortexed and left to stand at 

room temperature for 15 min. Subsequently, the sample was 

centrifuged at 13000 rpm for 20 min, the supernatant removed, 250 pi 

of EtOH (70%) added to wash the pellet, latter vortexed and centrifuged 

for 5min. The pellet was given an additional wash in 250 pi of EtOH, 

then vortexed, centrifuged for another 5 min and supernatant mostly 

removed leaving 10 pi to avoid dehydration. All PCR sequencing was 

performed using ABI Prism 3100 Genetic Analyzer which uses a 

polymer electrophoresis system at the School of Medicine, Cardiff.

2.2.2. AGAROSE GEL ELECTROPHORESIS

Double stranded DNA fragments were separated by agarose gel 

electrophoresis, which allowed characterisation of DNA according to 

size.

A 2% agarose gel was made by dissolving electrophoresis grade 

agarose in 75ml of TAE buffer, boiling, cooling to room temperature, 

adding 2 pi of Ethidium Bromide, then poured the mixture into a mini-gel 

tray and allowed to setting. Agarose gels were placed in a Pharmacia 

electrophoresis chamber, submerged under 1x TAE buffer, each well 

loaded with 5 pi of sample to which have markers have been added. An 

extra well was loaded with Hyperladder II to assess the band size and 

semiqualitatively the amount of DNA. The gel was, as a general rule, 

run at 100 volts for 30 min, then transferred to a UV gel documentation 

system (Gel Doc. 1000, Bio-Rad), photographed, and fragment sizes 

compared to the 2 kb ladder.
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2.2.3. RNA ISOLATION

The medium of a 25 cm2 culture flask containing MG63 (70 passage) 

was removed; 2.5 ml of Trizol added and spread over the whole 

surface. The cell lysate was passed through a pipette several times. 

The solution centrifuged at 12000xg for 10 min at room temperature 

and then the supernatant was carefully removed using a Pasteur 

pipette. The aqueous phase containing the RNA was transferred to a 

fresh tube, 1.5 ml of isopropyl alcohol added in order to precipitate the 

RNA and incubated at room temperature for 10min. The supernatant 

was removed again and 2.5 ml of 75% ethanol was added to wash the 

RNA. The sample was vortexed and subsequently centrifuged at 

12000xg for 5min more. The remaining supernatant was removed with 

a normal pipette and the pellet was dried by leaving it at room 

temperature a few minutes. Finally, 150 pi of RNAse-free water were 

added and the sample was incubated overnight at -80°C to rehydrate 

the RNA.

2.2.3.1. DNAse treatment.

A DNAse treatment was performed to increase the purity of the RNA 

obtained. 0.5 pi 10xDNasel Buffer and 1 pi DNasel were added to a 50 

pi RNA sample and mixed gently. The mixture was incubated at 37°C 

for 30min. The DNAse inactivation reagent was vortexed vigorously to 

avoid the loss of the fluid from the interstitial spaces. Then 0.5 pi of 

DNAse inactivation reagent were added, incubated for 2min more and
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mixed each minute. After centrifugation at 10000xg for 2 min, the 

supernatant was transferred into a fresh tube and stored at -80°C.

2.2.3.2. RNA quantification.

The amount of RNA collected was quantified by placing 2 pi RNA/ 70 pi 

sterile water solution into a cuvette and measured by light absorbance 

in a spectrophotometer (ThermoSpectronic - Genesys 10 Series) at two 

distinct wavelengths (260 nm - RNA & 280 nm - DNA). Good samples 

show A26o/28o ratio < 1.6.

2.2.4. REVERSE TRANSCRIPTION PCR

An initial RNA target and Primer mixture was prepared using RNA (1 

pg), random primers (0.5 pg/pl) and nuclease-free water up to 5ul, 

incubated at 70°C for 5 min and then incubated in ice for 5 min more.

Using the ImProm-ll RT-System (Promega), a 15 pi mixture (4 pi 5X 

Reaction Buffer, 2.4 pi MgCI2 (25 mM), 1 pi dNTPs (40 mM), 0.5 pi 

RNasin, 1 ul Reverse Transcriptase) was vortexed gently and mixed 

together with the previous template-primer mixture. The RT-PCR was 

performed in a Perkin Elmer Thermal Cycler with cycle program 25°C -  

5 min (annealing), 42°C - 60 min (extension) and 70°C - 15 min 

(Reverse Transcriptase heat inactivation). A negative control (no 

Reverse Transcriptase) was prepared and checked subsequently with a 

standard PCR.
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2.2.5. TA CLONING INTO pTARGET VECTOR

2.2.5.1. Ligation of DNA insert into pTarget.

The ligation reaction consisted of 1 pi T4 DNA ligase Buffer, 60 ng 

pTarget Vector, 1 pi T4 DNA ligase, insert (3:1 ratio, see formula below) 

and deionised water up to 10 pi. Simultaneously, a positive and 

background control ligation reaction were performed. The mixtures were 

incubated for 3 hours at room temperature.

2.2.5.2. Preparation of competent bacteria.

This method, commonly known as the RbCI method, allows preparing 

great amounts of high efficiency E.Coli JM109 competent cells capable 

of being transformed with a foreign vector or DNA. One single colony 

was inoculated from a M9+B1 plate into 2 ml SOC media and incubated 

overnight at 37°C with shaking (225 rpm). The culture was diluted into 

200 ml LB media supplemented with 20 mM MgS04 and incubated at 

37°C until ODeoo reached 0.5. Cells were centrifuged at 4500 rpm for 5 

min at 4°C, supernatant removed and resuspended in 80 ml ice cold 

TFB1 for 5min. Then cells were centrifuged once more at 4500 rpm for 

5 min at 4°C, supernatant removed, resuspended in 8 ml ice cold TFB2 

and were kept on ice for 45 min. Finally, 200 pi aliquots of the cell 

suspension were stored at -70°C where the loss of competency is 

minimal. The transformation efficiency (ability to acquire free DNA from 

their environment) assessed using Competent Cells Control DNA 

(Promega) was always over 107.
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2.2.5.3. Transformation of competent cells.

The transformation is the process that allows the insertion of a plasmid 

into the bacteria cells in order to obtain a large quantity of this plasmid.

Competent Cells were removed from -70°C, placed on ice for 5 

minutes, gently mixed and 50 pi were added into chilled sterile 17x100 

mm polypropylene culture tubes. The plasmid or ligation reaction (2pl) 

was dispensed onto the competent cells, incubated on ice for 20 min, 

heat shocked at 42°C for 50 s and then returned on ice for 2 min. 

Subsequently 450 pi of SOC medium were added and the mixture was 

incubated for 1.5 h at 37°C with shaking (150 rpm). A 100 pi aliquot of 

this mixture was spread onto LB/ampicillin/IPTG/X-Gal plates under 

sterile conditions. The plates were left at room temperature for 20 min 

to dry, incubated upside down overnight at 37°C and then stored in the 

refrigerator.

2.2.5.4. Screening transformant colonies for DNA insert.

The pTARGET Vector contains a coding sequence which allows 

blue/white recombinant screening. Among white colonies, 10 were 

picked and resuspended in 20 pi sterile water in a 96-well plate. From 

each solution 5 pi was resuspended into 100 pi of LB with carbenicillin 

and incubated at 37°C for 4 h. With the purpose of confirming the 

correct orientation and size of the insert, the remaining 15 pi of each 

plasmid-containing solution were incubated at 100°C for 10 min, cooled 

to room temperature and then 10 pi used as a template for a PCR 

screening, T7 Promoter Primer as a forward primer and a specific one
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as a reverse primer. Among the samples with the appropriate size, 4 

were selected to consequently perform purification of plasmid DNA. 

From 96-well plate samples (after 4 h incubation), the previously 

selected ones were inoculated into 5 ml of LB with carbenicillin and left 

growing overnight at 37 °C in a shaker incubator (220 rpm). Finally, an 

aliquot (500 pi) of this cell medium after incubation was mixed with 500 

pi of sterile Glycerol and stored at -80°C for later use. The remaining 4 

ml was employed for isolation of their plasmid.

2.2.6. ISOLATION OF PLASMID DNA

This procedure was performed using the QIAprep Spin Miniprep Kit, 

following the manufacturer’s procedure with slight modifications.

A solution of LB medium with carbenicillin containing the plasmid of 

interest after overnight incubation (See section 2.1.6.4 Screening 

transformant colonies for DNA insert) was centrifuged at 3000 rpm for 

10 min. The resultant pellet was resuspended in 250 pi of P1 buffer (50 

mM Tris-HCI, pH 9.0, 10 mM EDTA, 100 pg/ml RNAse A), transferred 

into a microcentrifuge tube and lysed with 250 pi of Buffer P2 (0.2 

NaOH, 1% SDS) by inversion 6 times. 350 pi of Buffer N3 (3M KAc, pH 

5.5) were added, mixed by inversion 6 times and centrifuged at 13000 

rpm for 10 min. The consequent supernatant was carefully decanted 

and pipetted into a QIAprep spin column, centrifuged (13000 rpm -  1 

min) and the flow-through discarded. The column was washed by 

adding 0.5 ml of Buffer PB to remove nuclease activity, centrifuged 

(13000 rpm -  1 min) and the flow-through discarded. The column was
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then washed with 0.75 ml of Buffer PE, centrifuged (13000 rpm -  1 

min), flow-through discarded and centrifuged (13000 rpm -  1 min) for a 

second time to remove any residual wash buffer. Finally the column 

was introduced in a 1.5 ml Eppendorf tube, 30 pi of Buffer EB (10 mM 

Tris-CI, pH 8.5) added to the centre of the column to elute the plasmid 

cDNA, left to stand for 1 min and centrifuged once more at 13000rpm for 

1 min. The final plasmid solution was stored at -20° C.

2.2.6.1. Isolation of large quantities of plasmid DNA.

Large-scale isolations of plasmid DNA were prepared using Qiagen 

plasmid Maxi kits.

A single colony from a selective plate was picked and inoculated a 

starter culture of 5ml LB medium containing ampicillin. After 

approximately 6 h incubation at 37°C with vigorous shaking, the starter 

culture was diluted 1/50 to 1/100 selective LB medium and grown 

overnight at 37°C with shaking (160 rpm). At this point, for low copy 

plasmids like pMMB66EH-AEQ (Watkins et al., 1995), chloramphenicol 

which inhibits protein synthesis but not plasmid replication was added to 

a final concentration of 180 mg/l and incubated for another 4 h. The 

bacteria were then pelleted by centrifugation at 6000 x g for 15 min. 

After harvesting, Qiagen plasmid purification protocol was followed. The 

bacterial pellet was resuspended in 10 ml of P1 buffer, lysed with 10 ml 

of P2 buffer for 5 min at room temperature after gentle inversion. 10 ml 

of ice-cold P3 buffer were mixed by inversion 6 times followed by 20 

min incubation on ice. The mixture was centrifuged at 20000 x g for 30

62



Chapter 2

min at 4°C and the supernatant was further centrifuged at 20000 x g for 

15 min at 4°C. After 10 ml of QBT buffer were used to equilibrate the 

Qiagen-tip 500, the supernatant was added. The column was then 

washed twice with 30 ml of QC buffer (1 M NaCI, 50 mM MOPS, pH= 

7.0, 15% (v/v) ethanol) and the plasmid DNA retained in the column 

eluted with 15 ml of QF buffer (1.25 M NaCI, 50 mM Tris-HCI, pH 8.5, 

15% (v/v) ethanol). DNA was precipitated with the addition of 10.5 ml of 

isopropanol and centrifuged at 15000 x g for 30 min at 4°C. The DNA 

pellet was washed with 70% ethanol and centrifuged at 15000 x g for 10 

min at 4°C, air-dried and resuspended in 200 pi of TE buffer.

2.2.7. PROTEIN EXPRESSION

2.2.7.1. In vitro Protein transcription/translation.

In vitro transcription/translation was performed using the Proteinscript II 

T7 linked transcription/translation system. This standard rabbit 

reticulocyte lysate system allows the synthesis in vitro of circular DNA 

with the T7 RNA polymerase promoter. Following the manufacturer’s 

instructions, a mixture of 1 pi 5X Transcription mix, 1 pi of enzyme mix, 

0.5 pg of plasmid DNA and nuclease-free water up to 5 pi was 

prepared, mixed by pipetting up and down, centrifuged briefly and 

incubated at 30°C for 60 min. The resultant solutions were either used 

immediately or stored at -20°C for future translation reactions.

The translation reactions were composed of 17.5 pi of Retie Lysate, 2 

pi of unlabeled Methionine (500 pM), 1.25 pi of 20X Translation mix

63



Chapter 2

and 3.25 pi of nuclease-free water and store at -80°C until required. 

For the final reaction step, 1 pi of the transcription reaction was added 

to the translation mixture, incubated at 30°C for 60 min and the product 

stored at -20°C for future analysis.

The in vitro transcription/translation products were then assayed for 

aequorin activity as described later in this section.

2.2.7.2. Expression of recombinant proteins in living cells.

2.2.7.2.1. Lipid mediated transfection.

2.2.7.2.1.1. Cell seeding.

Unless otherwise stated, transfection experiments were performed as 

follows. HEK293 cells were seeded at the appropriate density 48 h prior 

to transfection in order to give 90-95% confluence in the day of 

transfection. MG63 cells were cultured just 24 h before transfection.

Transfection experiments were carried out in either 6 well-plates or 

22x22 mm coverslips placed onto 6 well-plates. In 6 well-plates, 

HEK293 cells were seeded at a density of 106 cells/well and MG63 at 

5x105 cells per well. For coverslips, 105 of HEK293 cells and 5x104 of 

MG63 cells were transferred in a final volume of 300 pi. The next day, 

wells were replenished to 2 ml.

In the case of HEK293, coverslips were previously coated with 400 pi of 

poly-l-lysine (0.01% w/v, Sigma-Aldrich) to enhance attachment. After 5
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minutes, the treating solution was removed; coverslips rinsed twice in 

cell culture water and dried in air.

2.2.7.2.1.2. Liporfectamine 2000 transfection.

In the day of transfection, cells were transfected using the appropriate 

vector and Lipofectamine 2000 reagent according to the manufacturer’s 

protocol. In brief, 1 pg of total DNA was transfected into each well using 

a Lipofectamine to DNA ration of 3:1 in a volume of 1 ml of Opti-MEM 

reduced serum medium. The transfection mixture was removed after 6 

h of incubation at 37°C and the transfected cells were washed with PBS 

and maintained with the appropriate medium (MEM or DMEM). Cells 

were assessed two days after transfection.

Lipofectamine 2000 was the standard reagent used for transient 

transfection. Other transfection reagents were used in the initial test 

experiments which are described in the following sections.

2.2.7.2.1.3. Liporfectamine LTXand PLUS transfection.

A similar transfection procedure to LIPOFECTAMINE 2000 was used 

with LIPOFECTAMINE LTX and LIPOFECTAMINE PLUS. The amount 

of transfection reagents was adjusted accordingly to the manufacturer’s 

recommendations using 2.5 pi and 1 pi of LIPOFECTAMINE LTX and 

PLUS respectively.

2.2.7.2.1.4. FUGENEHD transfection.

Transient transfection was performed using FUGENE HD (Roche) 

transfection reagent. Briefly, 100 pi of cell medium were mixed with 3 pi
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of FUGENE HD in a sterile tube, incubated for 5 min and 1 |ig of DNA 

added and incubated at room temperature for 15 min. Medium was 

removed from the wells, the mixture added and medium added to a final 

volume of 1 ml. Cells were incubated at 37°C for 24 h with the 

transfection mixture, then the medium was removed, cells washed with 

PBS and incubated in normal culture medium for another 48 h.

2.2.8. AEQUORIN EXPRESSION AND EXTRACTION FROM 

BACTERIA

The plasmid pMMB66EH-AEQ (Watkins e ta i, 1995) which contains the 

gene of the native aequorin was used to transform JM109 bacteria. 

Transformation was performed as described in section 2.1.7.1. After the 

overnight bacteria growth, 2.5 ml of the culture was added to 300 ml of 

LB with ampicillin, incubated at 37°C and 150 rpm shaking until ODeoo 

was approximately 0.3-0.6. The medium was then supplemented with 

IPTG to a final concentration of 1 mM and induction was carried out for 

2 h at 37°C. Next the solution was centrifuged at 3000 rpm for 10 min 

and the medium removed. The pellet was washed with PBS, 

centrifuged at 3000 rpm for another 10 min, the supernatant decanted 

and the final pellet resuspended in aequorin resuspension buffer. For 

protein extraction, the solution was maintained in ice at all times and 

was subjected to 5 sonication pulses of 15 s allowing the sample to cool 

down between pulses. The sample was centrifuged at 3000xg for 30 

min at 4°C; the supernatant with aequorin in solution was subsequently 

transferred to a new tube and stored at -20 °C until used.
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2.2.9. PROTEIN EXTRACTION FROM EUKARYOTIC CELLS

Forty-eight hours after transfection, cells were detached by treatment 

with trypsin, centrifuged at 1000 xg for 2 min, washed first with ice-cold 

PBS, centrifuged again and then washed with ice-cold PBS with 1 mM 

EDTA to make sure any traces of calcium were removed. 

Subsequently, cells were centrifuged at 1000 xg for another 2 min, 

harvested in 500 pi of hyposmotic lysis buffer and incubated in ice for 5 

minutes. Cells were homogenized by two passages through a 27 gauge 

needle followed by three freeze-thawing cycles.

2.2.9.1. Subcellular fractionation.

From each sample of protein cell extract, an aliquot of 100 pi was taken 

for the light measurement of the total protein suspension. The 

remaining mixture was centrifuged at 30,000 xg for 30 min at 4 °C to 

separate the proteins in the cytosol from those in the membrane. 300 pi 

of the supernatant were transferred to a fresh tube taking care not to 

disturb the pellet. The residual supernatant was removed and the pellet 

resuspended in 300 pi of lysis buffer. Protein samples were kept on ice 

at all times.
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2.3. CELL BIOLOGY TECHNIQUES

2.3.1. CELL CULTURE

Three cell lines were used during this work: the Human Embryonic 

Kidney 293 (HEK293), the osteoblast-like MG63 and the Human Bone 

Osteoblast (HBO) primary cells. MG63 and HBO cells were kindly 

supplied by Dr Bronwen Evans, Department of Child Health, School of 

Medicine, Cardiff University. HEK293 cells which stably express human 

brain BK channel a subunit (Ahring etal., 1997) were kindly provided by 

Professor Paul Kemp, School of Biosciences, Cardiff University.

2.3.1.1. Cell husbandry of MG63 and HBO.

HBO and MG63 cells were cultured at 37°C in a humidified atmosphere 

of 5% CO2 and 95% air in Dulbecco’s modified Eagle medium (DMEM) 

that contained 100 U/ml penicillin, 100 pg/ml streptomycin, 250 pg/mL 

amphotericin B with 5% foetal bovine serum (FBS). The cell medium 

was changed each three or four days period to optimise growth and 

~106 cells were passaged into new flasks each seven days.

2.3.1.2. Cell husbandry of HEK293.

The HEK293 cell line was maintained under same conditions in 

Minimum Essential Medium with Earle's Salts and L-Glutamine (MEM), 

supplemented with 10% fetal bovine serum, 1% MEM Non-Essential 

Amino Acids, 0.35% NaOH (1M) and 1% Antibiotic/Antimycotic (100X) 

and 0.20% Gentamicin (50 mg/ml). All HEK293 cells used in this thesis
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were stably transfected with the BK channel a subunit. To maintain only 

the transfected cells lines an additional supplement of 1% Geniticin 

selective antibiotic (100 mg/ml) was added.

2.3.2. Cell storage.

A number of either MG63 or HEK293 cells from 5 to 10 million per ml 

were resuspended in freezing medium (90% normal medium + 10% 

DMSO) and 1ml transferred into cryotubes, placed into a freezing 

container (Nalgene, cooling temperature -1°C/min) and then into a - 

80°C freezer for a minimum period of 2 hours. Finally the cryotubes 

were placed indefinitely into a liquid nitrogen container (-196°C) for later 

use.

All reagents were purchased from Invitrogen. All cell culture techniques 

were carried out under sterile conditions (class II cabinet, protective 

clothes and gloves, sterile glassware, ethanol 70% sprayed before use, 

etc).

2.4. CALCIUM IMAGING TECHNIQUES

2.4.1. APOAEQUORIN RECONSTITUTION

2.4.1.1. Coelenterazine.

Coelenterazine is a very unstable substrate which will lose activity in a 

few days if exposed to light and air at room temperature. To prevent the 

oxidation during storage, coelenterazine powder was dissolved in small 

volumes of methanol, aliquots were dispensed and dried under argon
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flow. All dried aliquots were stored at -20°C in the dark. On the day of 

the experiment individual aliquots were immediately redissolved in a 

small concentration of methanol (10-20 pi) and supplemented to the 

appropriate solution. For each set of experiments, when possible, the 

same coelenterazine solution was used to reconstitute all aequorin 

variants to minimise variability due to different coelenterazine 

concentrations. This is of particular importance when comparing total 

number of light counts.

2.4.1.2. Reconstitution of apoaequorin in translation products.

Following in vitro transcription/translation (section 2.1.8.1), the total 

volume (25 pi) of the mixture was incubated with 25 pi Buffer O 

containing 5 pM coelenterazine for 4 hours. The aequorin activity was 

assayed in the home built luminometer by adding the total volume (50 

pi) of the mixture to 500 pi aequorin assay buffer in an LP3 test tube 

and measuring the bioluminescent counts after the addition of 500 pi of 

50 mM CaCI2.

2.4.1.3. Reconstitution of apoaequorin in bacteria cell extracts.

Apoaequorin reconstitution was achieved by the addition of equal 

volumes of buffer O with coelenterazine (final concentration 5 pM). 

Aliquots (50 pi) of the total protein suspension, membrane proteins and 

cytosolic proteins, were assayed in the home built luminometer as 

described in the above section.
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2.4.1.4. Reconstitution of apoaequorin in living cells.

Transfected cells in 6-well plates were detached with trypsin and 

reconstituted as a cell suspension. Cells on coverslips were held as 

monolayers at all times. The culture medium was removed, cells were 

washed twice with PBS and a minimal volume of KRH medium 

containing 2 pM coelenterazine, sufficient to cover the cells, was added. 

Cells were incubated at 37°C for 1 hour prior to the start of the 

experiment. Cells in suspension were centrifuged at 1000 x g for 2 min, 

washed with warm KRH medium to remove the excess of 

coelenterazine, centrifuged again and resuspended in KRH medium. 

Aliquots of this mixture were transferred to a LP3 tube containing 500 pi 

of KRH. Monolayers of cells on coverslips were washed twice with 

warmed KRH and maintained in KRH at 37°C prior to the start of the 

experiment.

2.4.2. Luminometers.

A luminometer is a sensitive device for measuring extremely low photon 

emission such as those emitted by bioluminescent reactions. The basic 

components of a luminometer are: a light-proof sample housing, a 

photomultiplier (PMT) and a signal processor couple to a recorder. The 

sample housing is designed to reduce the background light signal and 

to maximize the efficiency of the detection by placing the sample as 

close to the detector as possible. The PMT function is to multiply the 

signal produced by incident photons by several orders of magnitude, 

from which single photons can be resolved. The collected data is
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normally processed using a computer software program. All these 

features ensure uniformity of light collection from even the smallest 

sample. The individual photon-detecting devices used in these 

experiments are described in detail below.

2.4.2.1. Home-built luminometer.

This luminometer (Fig. 2.1) was designed in Cardiff (Campbell, 1988) 

and used to detect bioluminescence from either a suspension of live 

cells expressing aequorin or aequorin proteins. All experiments were 

performed in a dark room. Phosphorescence was minimised by never 

exposing either the PMT or the sample tubes to light even when 

switched off. The sample housing consisted of a rotating brass cylinder 

designed to accommodate a 12 x 65 mm plastic LP3 test tube (Fisher 

Scientific UK Ltd.). Reagents were added through an injection port fitted 

above the sample. When sequential additions were made, light 

detected during the replacement of the syringe was removed at the 

processing stage. The PMT (Thom EMI, 9757AM) was specifically 

chosen for low dark current and connected to an adjustable high 

voltage supply (500 - 2000V, PM20, electron tubes). The effect of 

thermal noise in the PMT was reduced by cooling using a FACT50 air- 

cooled thermoelectric housing (Thom EMI) maintained at -20 °C.
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Fig. 2.1. Picture of the home-built luminometer used in this thesis.

2.4.2.1.1 Optimisation of sensitivity of the home-built luminometer.

A luminometer is a sensitive instrument which requires optimisation to 

achieve the favourable conditions for sensitive and accurate results. In 

order to achieve a consistent performance during the experimental 

procedures, the main parameters must be accurately monitored and 

adjusted. A study was conducted to determine the optimal conditions 

prior to the initial experiments.

Instrumental voltage optimisation was performed by allowing external 

light to pass through the aperture of the sample cylinder and recording 

the number of counts for 10 s. Background noise was the number of 

counts prior to the light exposure. All readings were taken in triplicates.

To determine the aequorin signal-to-background ratio against voltage 

plot, first 10 pi of aequorin were added to 500 pi of assay buffer. Light 

emission was then measured over a period of 30 s immediately upon
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the injection of 500 pi of the triggering solution containing calcium 

chloride. Aequorin was extracted from bacteria as described in section 

2.1.9 and reconstituted for 1 hour in the presence of coelenterazine (5 

pM). Background noise was the average of three readings previous to 

aequorin consumption. Experiments were repeated at three different 

temperature settings using a PMT cooler.

To establish the optimal conditions for experiments with aequorin, we 

first delimited the voltage range in which light signal is much higher than 

the background noise. The initial range was from 1400 to 1800 V 

based in previous experience in our group. When the luminometer was 

subjected to light exposure, a highest relative increase was observed in 

the range between 1700 and 1800 V.

Once the voltage range was established, the effect of the temperature 

on reducing the thermal noise in the PMT was studied at three different 

temperature settings. At high voltages (1800-1850 V) the effects of 

cooling the PMT were quite noticeable (Fig 2.2, B) whereas below 1700 

V were almost indistinguishable (Fig 2.2, B & C).

When aequorin signal was compared to the background noise at 

different voltages and cooler temperatures, the best performance was 

obtained by setting the high voltage power supply at 1700 V and the 

temperature of the cooler at -20°C. Under these conditions, the signal- 

to-noise ratio was improved by a factor of 30 compared to the other 

settings. Quite remarkable is the improvement achieved by cooling the 

PMT in order to reduce the thermal background noise (Fig 2.2, D).
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Fig 2.2. O ptim isation  of sensitiv ity of the hom e-built 
lum inom eter. (A) The optimal voltage range assessed by 
instrumental calibration was between 1700-1800 V. (B and C) 
illustrate the reduction of noise background by reducing the 
temperature. (D) The optimisation curves obtained with aequorin at 
different temperatures were employed to determine the optimal 
voltage (1700 V).

W hen dealing with an instrument as sensitive as a luminometer, 

calibration is an area of critical concern. As a result of the optimisation 

process, the aequorin signal-to noise ratio was improved by the factor 

of 30 to the initial experiments. This improved sensitivity of the system 

permitted the use of smaller samples and the detection of minor 

variations in aequorin signal.
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2.4.2.2.ICCD camera.

An image intensified charge-coupled device (ICCD) camera is a 

sensitive and quantitative device which also exhibits a fast response 

time, good spatial resolution and low level signal detection. All these 

features are required to detect events such as Ca2+ signalling in 

individual cells and to investigate the complex spatial ant temporal 

patterns of these processes. The basic principle relies on converting the 

light output to an electrical signal which is then amplified several orders 

of magnitude.

The bioluminescent imaging system used in this work was a 25 mm 

three stage microchannel image intensifier coupled to a CCD camera 

(Photek Ltd, Hastings, UK) via a reducing fibre optic taper and 

connected to an external high voltage power supply (Fig 2.3). When 

photons generated by the sample strikes the photocathode connected 

to a high voltage power supply unit, a portion of them causes electrons 

to be released via the photoelectric effect. These electrons are attracted 

towards the wall of the Multi Channel Plate (MCP) which, while 

maintaining the spatial resolution of the signal, amplifies it by generating 

a shower of secondary electrons. This process occurs three times 

resulting in a gain of 106-107 electrons per photon event. The electrons 

are then accelerated towards the phosphor screen, where they strike 

the output phosphor coating and cause it to release light. This final 

intensified light signal was transmitted onto the CCD camera via the 

fibre optic taper. The camera operates with a resolution o f 5 1 2 x 5 1 2
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non-interlaced pixels and at a frame rate of 60 Hz, giving a time 

resolution of 20 ms. The dark counts at room temperature for the whole 

filed of view was approximately 40 counts/s.

The imaging equipment was located inside a dark box (Fig 2.4). 

Experiments were also carried out in a dark room with an air- 

conditioning system set at 22°C. This system was designed to allow 

continuous measurements of calcium signals from small populations of 

attached cells and to deliver solutions by means of a perfusion system.

Fibre
optic

device

High Voltage 
PSU

Figure 2.3. Schematic representation of the ICCD325 camera from 
Photek Ltd. Light is collected via a fibre optic device onto the front of 
the camera, intensified and imaged as described above (section 
2.3.3.2). PSU stands for power supply unit.
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V a c u u m

pump

p e r f u s i o n

chamber

ICCD

peristaltic
pump

Test
solution

Fig 2.4 A picture (top) and a schematic representation (bottom) of the 

components of the ICCD camera system used in this thesis.
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2.4.2.2.1. Sample handling.

Cells growing on a coverslip (22 x 22 mm) were inverted over the 

reservoir of a plastic perfusion chamber and secured into position. The 

perfused chamber was immediately brought into contact with the fibre 

optics bundle attached to the photocathode and sealed with microscope 

oil (Fig 2.4). Cells were perfused for at least 3 min in KRH solution.

2.4.2.2.1. Perfusion system.

Initial experiments were carried out using stop-flow perfusion. During 

the course of these experiments, a series of light signals often 

appeared which were not caused by the addition of an stimuli. These 

artefacts have been previously reported as being instigated by stop-flow 

medium changes (Tong et al.t 1999). Additionally, this method of 

perfusion increased the incidence of bubbles during the experiments. 

Some of these bubbles reached the chamber producing the lysis of the 

cells in the coverslip resulting in aequorin release and a high light 

signal. Therefore, a different approach was adopted to reduce these 

potential artefacts. Firstly, a two way valve was incorporated to enable 

the exchange of solutions and the use of over-flow perfusion. Secondly, 

a syringe was mounted on the perfusion system to act as a bubble trap. 

As a result, the incidence of these artefacts was significantly reduced.

All experiments performed during this work used over-flow perfusion to 

add solutions. The flow rate of the perfusion system was experimentally 

assessed using a coloured dye. The first drop of dye arrived at the cell
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chamber after 32 s and full colour was reached at 48 s. Before and after 

each set of experiments, the tubing was fully cleaned by the perfusion 

of sterile water for 10 min in order to minimise the growth of bacteria 

which can release toxins into the solutions employed. In addition, the 

unclean parts of the tubing system were replaced when required. 

2A.2.2.3. Data Analysis.

The IFS32 Data Acquisition and Image Processing Software (Photek 

Ltd, U.K.) were used to analyse the data obtained. The system only 

records the xy coordinate for each pixel which is exposed to a positive 

photon event, saving large amounts of negative data. However, this 

may give rise to a coincident loss when two or more events occur on 

one pixel in less than 20 ms. A neutral density filter can be used to 

overcome this issue. Nevertheless, this potential problem was not 

observed in the course of all the experiments performed in this work.

The data acquired during the experiment was subjected to an analysis 

as follows: a variable number (5 - 20 on average) of Odd Area Sets 

(OAS) was drawn around the sections which emitted a substantial 

number of counts when lysed (Fig. 2.5); a 10 s frame video sequence 

was generated for the whole duration of the experiment; the cumulative 

counts during each frame were then extracted from the sequence and 

transferred to Microsoft Excel; finally graphs were plotted according to 

this numerical data. Background noise was obtained using a short video 

sequence with a cell-free coverslip, calculated using the average counts 

of similar OAS to each experiment and subsequently subtracted from
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the initial readings. The average number of HEK293 cells on each cell 

cluster was estimated to be between 2000 cells. This estimation was 

based on an average cell diameter of 30 pM and under the assumption 

that cells were fully confluent and uniformly distributed throughout the 

monolayer.

Fig 2.5. Light emission of cell clusters following the addition of a high Caz* 

lysis solution. The addition of a high Ca2+ hyposmotic solution resulted in clusters 

of cells firing. A number of cell clusters (OAS, in red) was selected in different 

regions of the chamber for the subsequent data analysis. Each cell cluster 

contained approximately 2000 HEK293 cells on average. HEK293 cells were 

transfected with Luc-Aeq and incubated for 1 h in the presence of EGTA and 

coelenterazine (2 uML

2.4.3. Converting aequorin light emission into calcium.

All experiments were performed at room temperature (22°C). 

Unconsumed aequorin was determined at the end of each experiment 

by exposing the cells to hyposmotic buffer containing 10 mM CaCfe 

(which caused the cells to lyse slowly and thus avoid the use of
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detergents). There is a great dealt of evidence showing that Ca2+-  

dependence remained unchanged after the fusion of an additional 

protein sequence (Kendall et al., 1992; Badminton et a!., 1995; 

Nakahashi et a i, 1997; George et ai, 1998; Lin et at., 2000). 

Conversion of light emission to Ca2+ concentration was calculated using 

two empirically determined equations previously employed in our 

laboratory, one for Luc-Aeq (Badminton et al., 1996) and other for P2- 

Aeq based on a membrane-bound aequorin construct (George et al., 

1998). Aequorin consumption is reduced at lower temperatures than 

37°C (Brini et al. 1995). Accordingly, the equations were modified to 

account for the difference in temperature according to Brini (1995). The 

final equations used to calculate the absolute free Ca2+ concentrations 

were as follows:

Range of pCa

pCa = 0.403 (-log k) + 4.8727 (Luc-Aeq) 8.5 -  4.5

pCa = 0.41 (-log k) + 4.843 (p2-Aeq) 7.8 -  4.8

Each equation is valid between the range of pCa indicated. Unless 

otherwise stated, the rate constants for decay of the bioluminescence, k 

(s'"1), were determined as the mean counts per second divided by the 

remaining counts (Chapter 1, section 1.5.1.3.).
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2.5. ELECTROPHYSIOLOGICAL TECHNIQUES

2.5.1. The patch-damp technique

Patch-clamp is a powerful technique that allows the electrophysiological 

study of individual cells or even individual ion channels within a patch of 

membrane. This technique was first introduced by Neher and Sakmann 

(Neher & Sakm ann, 1976) and subsequently improved by Hamill and 

collaborators (Hamill et al., 1981).

Fig. 2 .6. Schematic representation of a single ion channel being 

recorded within the patch pipette (Neher & Sakmann, 1992).

The basic working principle involves the use of a glass pipette 

microelectrode with a tip diameter of ~1 pm. The microelectrode is 

pressed against the cell membrane and suction is applied inside of the 

glass pipette (known as ‘blow-and-seal’ method also used in brain 

slices, Stuart et al., 1993). The small patch of the membrane is 

subsequently pulled into the pipette tip and a tight seal is formed with



Chapter 2

an electrical resistance over 1 Giga-Ohm. This little patch, which is 

electrically isolated from the rest of the cell, allows the measurement of 

incredibly small electrical currents (~ 1 pA) produced by the ion flow 

through individual ion channels in the patch.

There are four main configurations which are called ‘cell-attached’, 

‘inside-out’, ‘outside-out’ and ‘whole-cell’ recordings. In this thesis, the 

‘cell-attached’ configuration, which is the least invasive of all, was 

employed in this thesis to record single-channel activity.

2.5.2. Seeding on to glass coverslips.

This process was performed in order to carry out electrophysiological 

recordings. Cells were carefully counted using a haemocytometer. From 

1000 to 3000 cells were seeded on to sterile coverslips (16 mm 

diameter) uncoated and placed in 6 well plates. After 1 - 1.5 h 

incubation at 37°C (5% CO2), 2 ml were added to each well and 

incubated at 37°C (5% CO2) until used.

2.5.3. Patch-electrodes production.

A DMZ Universal Puller (Dagan Corporation) was employed to pull and 

heat-polish borosilicate glass capillaries (GC150-F10, Harvard 

Apparatus Ltd.) of dimensions 1.5 mm outside diameter and 0.86 mm 

inside diameter. Patch-electrodes with electrical resistances of 4-7 MQ 

were produced by this method. The patch-electrodes for patch clamp 

were backfilled with the above high K+ saline. All solutions were filtered 

on application through 0.2 pm syringe filters (Whatman).
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2.5.4. Electrophysiological Recording.

Glass coverslips with cells attached were transferred inside a laminar 

flow cabinet to a glass recording chamber. The slip bring held in place 

by a tiny amount of vaseline to secure. Approximately 500 pi of Locke 

solution was added carefully over the coverslip. Coverslips were 

scanned visually to select cells that appeared healthy and isolated. 

Recordings were made using the cell-attached patch clamp technique. 

The recording electrode tip was placed into the bathing solution by 

means of the coarse manipulator and positive pressure applied. Any 

junction potential was set to zero by adjusting the DC offset on the 

amplifier (Axopatch 1D, Axon Instruments).

Using a hydraulic micromanipulator the microelectrode was advanced 

toward the cell in solution. When microelectrode tip and cell were seen 

at the same time and a slight decrease in amplitude of the square-wave 

pulse detected on the oscilloscope, slight negative pressure was 

applied by suction to reach a membrane-electrode seal of 1 Giga-Ohm 

or more. Both the electrode and the seal resistance were computed by 

dividing the command pulse of 20 mV through the electrode, by the 

deflection measured from the oscilloscope display taking into account 

the amplifier gain (i.e. mV / pA).

2.5.5. Data analysis.

WinEDR Electrophysiology Data Recorder v2.5.8 Software (Dempster, 

2003) was employed to perform the data analysis. Distributions of
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current amplitude histograms were constructed by the software for each 

holding potential and the peaks were fitted with either a Gaussian 

distribution curve whenever possible or a ‘Patlak average’ plot. The 

amplitude of the current was derived from the mean current value of 

each peak.

Data are reported as means ±SEM for the indicated number of 

experiments.

Where x = sample value, x = mean value and n = the sample 

number.

Statistical significance was determined using the independent two 

sample Student’s f-test. The criterion used for significance was p < 

0.05.

The coefficient of variation is reported as a percentage and calculated

from the average and standard deviation as follows

The coefficient of variation (CV) is a statistical method to standardise 

the variability of a number of samples. It is reported as a percentage 

and calculated from the mean and standard deviation as follows:

2.7. STATISTICAL ANALYSIS

SEM =
SD

SD
CV = X 100

X
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CHAPTER 3

ENGINEERING AND CHARACTERISATION 

OF A P2-AEQUORIN CHIMERA TARGETING

THE BK CHANNEL
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3.1. INTRODUCTION

Aims:

- To develop a novel recombinant protein as a result of combining 

the P2 subunit and the Aequorin sequences.

- To assess the functionality of the new protein.

- To determine the optimal conditions for aequorin reconstitution. 

Strategy:

To obtain this protein, several possibilities were available about how to 

combine p2 subunit and Aequorin. Since both N-terminus and C- 

terminus face the cytosol (Tseng-Crank et a/., 1994), either can be 

combined with aequorin in order to monitor intracellular calcium. Recent 

studies have shown that the N-terminus of the P2 subunit possesses an 

inactivating particle and is involved in the trafficking mechanism of the 

protein (Wallner etal., 1999; Lv et al., 2008). Production of recombinant 

proteins using aequorin has been so far limited to its N-terminus. 

Literature reports have shown that modifications of the N-terminus of 

aequorin have no adverse effects on its luminescent activity (Badminton 

et al., 1995; Brini et al., 1999). Conversely several studies have 

reported a complete or significant lost of aequorin activity when 

modifications were introduced at the C-terminus (Tsuji et al., 1986; 

Nomura et al., 1991; Watkins NJ & Campbell AK, 1993). Consequently,
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the C-terminus of p2 was selected to be connected to the N-terminus of 

the Aequorin sequence.

Two cell lines were used in this work, HEK293 a as a model cell line 

and MG63 as a native cell line. The term ‘model cell line’ refers to the 

feature of these cells in which many proteins are either absent or 

expressed at low levels. In contrast, the term ‘native cell line’ applies 

here to those cells in which the patterns of protein expression are 

analogous or very similar to primary cells and therefore to real tissue. 

HEK293 is commonly used as a model cell line. HEK293 a has been 

steadily transfected with the BK channel a subunit and is well 

characterised (Lippiat et al., 2003). The MG63 cell line was selected 

because it exhibits an unusual high density of BK channels and has 

been also well characterised (Li et al., 2007). In order to correctly 

evaluate the effects of p2Aeq in MG63, a PCR study was carried out to 

detect the presence of a and p1-4 subunits and obtain the complete 

sequence of the P2 subunit.

The first goal was to obtain and clone the full coding sequence (CDS) of 

the P2 subunit. This was achieved using Retro Transcription PCR with 

two primers flanking the sequence using mRNA extracted from MG63. 

PCR was carried out using a standard polymerase which adds a 3'-A 

overhang to the final product facilitating the subsequently TA cloning in 

the mammalian vector.
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The second step was to join both sequences together with the removal 

of the stop codon from the first sequence. To accomplish this, the 

splicing by overlapping extension (SOE) PCR methodology was used. 

This is a method of recombining DNA sequences which relies on 

carefully designed primers and various consecutive PCR steps (Horton 

et al., 1990). The initial templates were the p2 subunit previously 

inserted into a vector and a plasmid designed in our group containing 

the aequorin sequence (Watkins, 1995). Since a number of PCR 

reactions are needed, a high fidelity polymerase was employed during 

this process to reduce the incorporation of errors in the final products. 

This polymerase also displays the ability to add 3'-A overhangs 

enabling the final TA cloning procedure.

Once the correct sequence of the DNA sequence was confirmed, a 

subsequent experimental investigation was carried out to assess the 

properties of the new recombinant protein. Following the initial 

adjustment of the instrumental conditions, a cell-free system and living 

cells (HEK293 a and MG63) were used to study the functional aspects 

of the protein. Finally, the optimal conditions for aequorin reconstitution 

were determined.
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3.2. METHODS

3.2.1. Primer design.

Primers for the housekeeping gene beta actin, the BK channel a subunit 

(KCNMA1) and p1-4 subunits (KCNMB1-4) were designed in order to 

verify the presence of these genes in osteoblasts (Table 3.1).

Two gene-flanking primers were specifically designed to be up and 

downstream of the KCNMB2 CDS sequence to ensure that the whole 

sequence was obtained (Fig 3.1).

GENE Gsnbank 
Access nurobsr Sequence Locus Product

She

Beta Actin NM _001101
cccagccatgtacgttgcta 387

125 bp
agggcatacccctcgtagatg 512

KCNMA1 NM_002247
acgcaatctgcctcgcagagttg 1640

407 bp
catcatgacaggccttgcag 2047

KCNMB1 NM_004137
ctgtaccacacggaggacact 268

188 bp
gtagaggcgctggaataggac 456

KCNMB2 NM_181361

catgtccctggtgaatgttg 465
236 bp

ttgatccgttggatcctctc 701

gagaccctggaccaacattct 318
823 bp

agaaccttaagtttgtaacgtgcag 1141

KCNMB3 NM_171830
aacccccttttcatgcttct 537

276 bp
tcttcctttgctcctcctca 813

KCNMB4 N M _014505
gttcgagtgcaccttcacct 195

245 bp
taaatggctgggaaccaatc 439

T ab le  3 .1 . List of the primers used to confirm the presence of 
BK a and four p subunits. KCNMB2 primers located at 318 and 
1141 were designed to obtain the whole sequence of the p2 
subunit.
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318 FW 465 FW 701 RV 1117 RV

4
K C N M B 2

708bp

Fig 3.1. Diagram of the two of the primers are located within the DNA 
sequence corresponding to the protein sequence (in orange) and the other 
two up/downstream of the sequence, within the mRNA sequence (in yellow).

3.2.2. Polymerase Chain Reaction.

RNA extraction and standard PCR were in M G 63 performed as 

described previously (See Material & Methods) and the products 

confirmed by sequencing. PCR conditions were in all cases GoTaq, 40 

cycles and 58°C  as melting temperature. Primers are listed in table 3.1.

3.2.3. Cloning of the p2 subunit.

The complete P2 subunit sequence extracted from M G 63 was used for 

cloning into the Mammalian Vector pTarget. Following the bacteria 

transformation and the PCR screening of the resulting bacterial 

colonies, the plasmids showing the correct size and orientation were 

selected for maxiplasmid preparations. The entire sequence of the 

insert was confirmed by PCR amplification and subsequent sequencing 

of the band.

3.2.4. Engineering and cloning of p2-Aequorin.

The method known as Splicing by Overlap Extension (SOE) was 

performed to join the aequorin sequence (573 bp) to the BK p2 subunit
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(708 bp). The first step requires obtaining the sequences of interest 

sharing a common fragment. To achieve this, a P2 reverse primer with 

24 extra nucleotides overlapping the initial sequence at the N-terminus 

of aequorin was designed together with an aequorin forward primer with 

the last 24 bp at the C-terminus of the p2 subunit sequence. When 

designing these primers, special care was taken to remove the stop 

codon from the end of the p2 subunit and maintain the sequences in 

frame. This step is crucial to ensure that the correct fusion protein 

sequence is achieved.

High-fidelity PCR amplification was carried out with these primers using 

as templates the p2 sequence in pTarget plasmid mentioned before and 

the pMMB66EH-AEQ plasmid previously constructed by Watkins 

(1995). To obtain enough amounts of both DNA products, a stepwise 

PCR optimisation process was conducted involving the use of different 

amounts of templates, increasing of the MgCfe concentration and the 

addition of enhancing agents (DMSO). The PCR products were run on 

1 % agarose gels, purified and the concentration of the purified product 

assessed. Equal amounts of either fragment were mixed and amplified 

using the outer primers resulting in the fusion of both DNA sequences.

In order to successfully generate the fusion construct, firstly it is 

required to obtain enough amount of appropriate band size. To 

accomplish this, a PCR optimisation was performed, the final product
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run in a gel to avoid any unspecific band, the band cut and the product 

purified.

The fusion PCR product was loaded on 1% agarose gel, purified and 

cloned into the pTarget vector. PCR screening was performed in the 

bacteria colonies in order to detect the presence of the correct fusion 

sequence within the plasmids and confirm their appropriate orientation. 

After the screening, the exact DNA composition of the inserts was 

verified by sequencing.

3.2.5. Cell-free protein expression.

In vitro transcription/translation was performed using the Proteinscript II 

T7 linked transcription/translation system as described in Material & 

Methods, section 2.2.7.1. Equal amounts (0.5 pg) of three pTarget 

vectors containing p2, p2-Aeq and Luc-aeq were employed. The total 

volume was assessed for aequorin activity was carried out using the 

home-built luminometer as described in Material & Methods, section

2.4.1.2.

3.2.6. MTS Cell proliferation assay.

The MTS assay is a simple and accurate method to examine cell 

viability. This assay is based on the ability of the mitochondrial 

dehydrogenases of living cells to reduce the yellowish coloured 3-(4,5- 

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- 

tetrazolium (MTS) into the purple crystals of formazan. The latter can be
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measured by colorimetric assay and is proportional to the number of 

viable cells.

The effects of the transfection process on cell growth were quantified by 

means of a CellTiter 96 Aqueous Cell Proliferation Assay (MTS assay). 

Cells were plated at 3000 cells per well in a 96-well plate. Two days 

later, the cells were subjected to transfection with Lipofectamine 2000 

using pTarget plasmids containing one of the following inserts: Luc-Aeq, 

p2-Aeq or P2 (1 pg/ml). Following 6 hours incubation in OptiMEM 

medium in the presence of these constructs, the medium was replaced 

with normal medium for 48 hours. Following addition of 20 pi of a 

PMS/MTS (1:20) solution to each well and incubation for 1 h, the 

absorbance of each well was measured at 490 nm using an ELISA 

plate reader. Two control sets were conducted using normal cell culture 

medium instead of OptiMEM medium and Lipofectamine with no DNA 

added. Background absorbance was calculated as the mean of three 

wells containing no cells and subtracted from the values of the sample 

wells. Data values from three different experiments were converted to 

percent of control and pooled for statistical analysis.

3.2.7. Assessment of aequorin reconstitution.

The home-built luminometer was used to measure the light counts of 

HEK293 a cells in suspension. Cells were transfected with either Luc- 

Aeq or p2-Aeq for 48 hours. Each sample contained 50000 cells. 

Unless otherwise stated, coelenterazine concentration was 2 pM. For
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the time-course experiment, aequorin activity was assayed at four 

intervals of 1 hour. All data were extracted from three different 

experiments.

3.3. RESULTS

Following the assessment of the cell lines selected, the p2 was cloned 

into a vector and subsequently joined to the Aequorin sequence by 

means of genetic engineering techniques. The properties of the protein 

were then evaluated and the optimal conditions for cell work 

determined.

3.3.1. MG63 and HEK293 a cell assessment.

In order to detect the presence of the a and pi-4 subunits RT-PCR was 

carried out in MG63. Additionally, the same study was performed in 

Human Primary Osteoblast (HBO) with the purpose of using the 

aequorin probes in a primary cell line. HEK293 a was also subjected to 

RT-PCR to verify whether the a subunit was still expressed in these 

cells.

The presence of BK a subunit and all four p subunits was detected in 

both MG63 and HBO cells at mRNA level (Fig 3.2). This is consistent 

with previous reports using patch-clamp techniques showing that BK 

channels are present in MG63 (Li et al., 2007). The a subunit exhibits 

significantly higher expression levels than those observed for each 

individual p subunit. Understandably, this is probably due to the fact that
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the a subunit primers target a shared sequence of the four subunits 

required to form the channel while the p subunit primers aim at four 

different sequences. However, this is only a qualitative indication. For a 

true comparison between mRNA expression levels, Real Time PCR 

should be performed.

One sole band was detected for a subunit with our primers. These 

primers targeted a site where splice variants has been located in other 

tissues. At this site, named site 1 in (Tseng-Crank et al., 1994), 0 aa 

were found during the sequencing process ruling out the presence of 

the transcript variant 1 (Genbank NM_001014797) (Pallanck L & B., 

1994) and isoforms hbr2, hbr3, hbr4, hbr6 and hbr7 (Tseng-Crank et 

al., 1994). While in brain three difference sequences have been 

discovered in this site, only one appears in bone. Other splice variants 

may be present but further investigation will be required. These data 

indicate that not all isoforms are expressed in MG63, the isoform 

corresponding to GeneBank U11717 being the most probable one. 

Sequencing however must be performed to confirm this.

RT-PCR amplification was also carried out in HEK293 a (cell passage 

40) confirming the presence of the a in this stable transfected cell line. 

In addition, patch-clamp recordings also showed at least three channels 

with a high current (~ 13 pA, Fig 3.3.) similar to that reported in previous 

studies (Tseng-Crank et al., 1994). This high conductance is 

characteristic of the BK channel indicating that the channels recorded
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were probably BK channels. Since these patches were generally 

unstable and only lasted for a few minutes, the number of successful 

recordings achieved was insufficient to confirm that the channels 

recorded were BK channels. Nevertheless, other researchers in our 

group have performed a more extensive patch-clamp analysis of these 

HEK293 a cells confirming that BK channels (~ 240 pS) are still 

expressed in the plasma membrane (Li Bo, personal communication, 

2008).

PCR confirmed that both MG63 and HBO cells express BK a subunit 

and (31-4 subunits at mRNA level making them ideal candidates for cell 

transfection. Since HEK293 a cells were still capable of expressing the 

a subunit, they can also be used as a model cell line to express (32 

constructs.

3.3.2. p2  subunit cloning.

With the purpose of facilitate the genetic engineering process of 

combining p2 and Aequorin, the complete CDS of the p2 subunit was 

first cloned into a DNA vector.

The PCR amplification of the whole sequence of the P2 with the gene 

flanking primers generated a DNA band corresponding to the correct 

size (Fig 3.5 A). The PCR product was then inserted into the 

Mammalian Vector pTarget by TA cloning. The bacterial colonies were 

subsequently screened by PCR to identify those plasmids with the
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appropriate insert and orientation (Fig 3.5 B). Finally, a plasmid was 

selected, amplified by PCR (Fig 3.5 C), the resultant band purified and 

used as a template for sequencing to verify the gene identity (Table 

3.2).

Published p2 sequence (NM_181361 GenBank) and the one obtained 

from the pTarget plasmid were compared. Three single nucleotide 

changes were detected along the whole sequence (See Table 3.2). 

These three point mutations are silent which means that the amino acid 

sequence remains unaltered and therefore will not interfere when 

expressed.

The whole P2 sequence was successfully inserted into pTarget with a 

100% identity in the AA sequence.
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Fig 3.2. Subunit com position of the BK channel in human  

osteoblast.
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Fig 3 .2 . S u b u n it co m p o s itio n  o f th e  BK ch an n e l in h u m an  

o s te o b la s t. Gel electrophoresis shows bands equivalent to the  

predicted size of the BK channel subunits a, (31, (32, 03 and 04 in 

MG63 (A) and Human Primary Osteoblast (B) cell lines. Bands were 

compared to Hyperladder I I .
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Fig. 3.3. S ingle channel recording of BK channels in HEK293 a 

cells in a cell-attached patch.

I
10 pA I---------1

10 ms

2n

1 . 5 -

%

0 5

0 20 3010

Patlak Average (pA)

Fig. 3.3. Single channel recording of BK channels in HEK293 a cells in a 

cell-attached patch. (A) Raw data showing high activity in this patch at 120 

mM with at least 3 channel openings (arrows). (B) The Patlak average 

distribution of current histogram from the whole 30 s recording period showing 

peaks at 12.97 and 24.05 pA indicating that at least three channels were 

present in this patch.
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Fig 3.4 PCR am plification of the BK a subunit in HEK293 a.

Fig 3 .4 . PCR a m p lif ic a tio n  o f th e  BK 

a s u b u n it in H E K 29 3  a . Gel analysis of 

the RT-PCR product obtained from  

HEK293 a mRNA confirmed the presence 

of the a subunit in the stable 

transfected cell line. DNA m arker was 

Hyperladder I I .

Fig 3.5 C loning of the p2 subunit.

Fig 3 .5  C lo n in g  o f th e  (32 s u b u n it. (A ) Whole sequence of 02 

subunit (8 2 3  bp) obtained by RT-PCR from MG63 using gene-flanking  

primers. (B) PCR screening to determ ine the plasmids with the  

correct insert and orientation. (C) PCR amplification of the insert of a 

pTarget vector for sequencing. Hyperladder I was the m arker of 

choice to compare the band length.
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Sequencing result for s l insert in pTarget
atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 
M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 
I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 

K A G E D R A I  L L G L A M M V C S I M  

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaaCtgctccttcagc 

E S Q C T L L N A S  I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 

T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctaCatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 
K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 

V V M E N F R K Y Q H F S C Y S D P E G  

aaccagaagagtgttatcctaacCaaactctacagttccaacgtgctgttccattcactc 
N Q K S V I  L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 
F W P T C M M A G G V A I V A M V K L T  

cagtacctctccctactatgtgagaggatccaacggatcaatagataa 

Q Y L S L L C E R I Q R I N R -

Published 32 sequence Access Number NM _181361 (GenBank)
atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 

M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 

I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggaGtggctatgatggtgtgctGGatGatg 

K A G E D R A I  L L G L A M M V C S I M  

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaaTtgctccttcagc 

E S Q C T L L N A S  I T E T F N C S F S  
tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 
C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 
T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctaTatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 
K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 

V V M E N F R K Y Q H F S C Y S D P E G  

aaccagaagagtgttatcctaacAaaactctacagttccaacgtgctgttccattcactc 

N Q K S V I  L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 

F W P T C M M A G G V A I V A M V K L T  

cagtacctctccctactatgtgagaggatccaacggatcaatagataa 

Q Y L S L L C E R I Q R I N R -

Table 3.2 p2 nucleotide and protein sequence comparisons: 3 point 

mutations (in red) which are silent and therefore not alter the protein 

sequence.
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3.3.3. Engineering and cloning of ̂ 2-Aequorin.

Following the cloning of the p2 subunit, SOE method was employed to 

combine |32 and Aequorin sequences.

Initially, two complementary sequences were successfully joined to both 

whole sequences of P2 subunit and Aequorin (Fig 3.6 A & B) obtaining 

enough to perform the next step. After a process of PCR optimisation, 

these products sharing complementary sequences were able to 

generate a good yield of the final p2-Aequorin protein (Fig 3.6 C). The 

upper band was cut, purified and inserted into pTarget. PCR screening 

of the vector after ligation with p2-Aequorin insert reveals which 

plasmids possess the correct sequence and orientation (Fig 3.6 D). 

Several vectors were sequenced giving in some cases frame-shift 

mutations or early stop codons. Among those, one of them originated 

with the full coding sequence, although with three point mutations.

Sequencing analysis showed three point mutations, one of them being 

silent. The other two produced amino acid modifications (Table 3.3) in 

positions 180 and 227 of the protein sequence (Table 3.4).

The hydrophobic character of the protein was assessed using the Kyte- 

Doolittle scale by means of the software Molecular Toolkit developed by 

Colorado State University. Analysis of the secondary structure and the 

hydrophobic prediction for the entire protein obtained (Fig 3.7 A) and 

the potential predicted structure (Fig 3.7 B) did not exhibit major
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modifications as a result of these substitutions. A more detailed image 

(Fig 3.7 C) clearly shows the little impact of these modifications on the 

protein structure. Furthermore, no significant variations were noticed 

between the secondary structures of each individual protein and the 

fusion protein (Fig 3.7 A).

To summarise, p2 and Aequorin sequences have been combined using 

genetic engineering techniques. The DNA sequencing analysis 

demonstrated that the resulting sequence was in frame with only two 

point mutations in the p2-part of the sequence. No major structural 

changes were detected in the AA sequence by the hydrophobic 

analysis.
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Fig 3.6. Engineering and cloning of p2-Aequorin.

B2Aeauorin

62+linker
aeq+linker

f l

B —

• M
i i i H

■
B

Fig 3 .6 . E n g in e e rin g  and  c lo n in g  o f p 2 -A e q u o rin . (A & B) PCR

bands showing the jo int of the com plem entary extra sequence to both 

(32 and Aequorin sequences. (C) SOE PCR product illustrates the  

successful fusion of both sequences and the starting tem plates  

rem aining. (D ) PCR screening of several colonies reveals two plasmids 

with the appropriate sequence length and orientation. Bands were 

compared to Hyperladder I I .
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Table 3.3 Amino acid modifications in the (32-Aeq protein 

sequence.

AM IN O  ACID  M O D IFICATIO N

AA 180 AA 227

L-Asparagine (N) L-Serine (S) L-Cysteine (C) L-Tryptophan (W)

Table 3.3 The diagram above illustrates two amino acid modifications 

originated during the engineering and cloning procedure. The alteration 

from Asparagine to Serine maintains the polarity of the amino acid while 

the change between Cysteine and Tryptophan has altered partly the 

individual polarity of the amino acid from polar to non-polar respectively.
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T a b le  3 .4  p 2 -A e q u o rin  n u c le o tid e /p ro te in  seq u en ce  

co m p a ris o n s

Sequencing result for 32-Aequorin insert in pTarqet_______________

atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 

M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 
I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 
K A G E D R A  I L L G L A M M V C S  I M 

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaattgctccttcagc 

E S Q C T L L N A S I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 
T S S G E K L L L Y H T E E T I  K I N Q  

aagtgctcctatatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 
K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 

V V M E N F R K Y Q H F S C Y S D P E G  

aGccagaagagtgttatcctaacaaaactctacagttccaacgtgctgttccattcactc 

S Q K S V I L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 
FW  P T C M M A G G V A I  V A M V K L T  

cagtacctctccctactatgGgagaggatccaacggatcaatagaatggtcaagcttaca 

Q Y L S L L W E R I Q R  I N R M V K L T  

tcagacttcgacaacccaaaatggattggacgacacaagcacatgtttaattttcttgat 

S D F D N P K W I G R H K H M F N F L D  

gtcaaccacaatggaaggatctctcttgacgagatggtctacaaggcgtccgatattgtt 

V N H N G R I  S L D E M V Y K A S D I V  

ataaacaatcttggagcaacacctgaacaagccaaacgtcacaaagatgctgtagaagcc 
I N N L G A T P E Q A K R H K D A V E A  

ttcttcggaggagctggaatgaaatatggtgtagaaactgaatggcctgaatacatcgaa 

F F G G A G M K Y G V E T E W P E Y I E  

ggatggaaaagactggcttccgaggaattgaaaaggtattcaaaaaaccaaatcacactt 

G W K R L A S E E L K R Y S K N Q I T L  

attcgtttatggggtgatgcattgttcgatatcattgacaaagaccaaaatggagctatt 

I R L W G D A L F D I  I D K D Q N G A I  

tcactggatgaatggaaagcatacaccaaatctgctggcatcatccaatcgtcagaagat 

S L D E W K A Y T K S A G I  I Q S S E D  

tgcgaggaaacattcagagtgtgcgatattgatgaaagtggacagctcgatgttgatgag 

C E E T F R V C D I  D E S G Q L D V D E  
atgacaagacaacatttaggattttggtacaccatggaCcctgcttgcgaaaagctctac 

M T R Q H L G F W Y T M D  P A C E K L Y  

ggtggagctgtcccctaa 

G G A V P -
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Theoretical p2-Aequorin sequence

atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 
M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 

I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 

K A G E D R A I  L L G L A M M V C S  I M 

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaattgctccttcagc 

E S Q C T L L N A S I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 

T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctatatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 

K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 

V V M E N F R K Y Q H F S C Y S D P E G  

aAccagaagagtgttatcctaacaaaactctacagttccaacgtgctgttccattcactc 

N Q K S V I L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 

FW  P T C M M A G G V A  I V A M V K L T  
cagtacctctccctactatgTgagaggatccaacggatcaatagaatggtcaagcttaca 

Q Y L S L L C E R I Q R I N R M V K L T  

tcagacttcgacaacccaaaatggattggacgacacaagcatatgttcaattttcttgat 

S D F D N P K W I G R H K H M F N F L D  

gtcaatcacaatggaagaatctctcttgacgagatggtctacaaggcgtctgatattgtt 

V N H N G R I  S L D E M V Y K A S D I V  

ataaacaatcttggagcaacacctgaacaagccaaacgacacaaagacgctgtagaagct 

I N N L G A T P E Q A K R H K D A V E A  

ttctttggaggagctggaatgaaatatggtgtagaaactgaatggcctgaatacatcgaa 

F F G G A G M K Y G V E T E W P E Y I E  

ggatggaaaagactggctaccgaagaattggaaaggtattcaaaaaaccaaatcacactt 

G W K R L A T E E L E R Y S K N Q I T L  

attcgtttatggggtgatgcattgttcgatatcattgacaaagaccaaaatggagctatt 

I R L W G D A L F D I  I D K D Q N G A I  
acactcgatgaatggaaagcatataccaaatctgctggcatcatccaatcgtcagaagat 

T L D E W K A Y T K S A G I  I Q S S E D  
tgcgaggaaacattcagagtgtgcgatattgatgaaagtggacagctcgatgttgatgaa 

C E E T F R V C D I D E S G Q L D V D E  

atgacaagacaacatttaggattttggtacaccatggaTcctgcttgcgaaaagctctac 
M T R Q H L G F W Y T M D P A C E K L Y  

ggtggagctgtcccctaa 

G G A V P -

T a b le  3 .4  0 2 -A e q u o rin  n u c le o tid e  and  p ro te in  seq u en ce  

c o m p a riso n s : 3 point mutations (in red), two of which are point 

m utations causing an aminoacid change and the third is a silent 

mutation which maintains the aminoacid unmodified.
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Fig 3.7 Hydropathy analysis of the 02 subunit.

IQfrflooMi Stilt OnfdrophoMt%)
4 0

P2 protein Aeq protein ►
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• 3.0
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Sequencing180 227
-4 0 Original Sequencing423
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-3 0

Original227lfiSL-4  0

423

Fig 3.7 Hydropathy analysis of the 02 subunit. (A & B) represent 

hydropathy plots of the entire amino acid sequence of the protein 

experimentally obtained and the theorically predicted one respectively. 

Arrows indicate were amino acid modifications (180 & 227) occurred. 

(C) shows the differences found (indicated with circles) between both in 

more detail. All plots were determined according to Kite-Doolittle 

algorithm with a window size of seven. Regions with values above 0 are 

hydrophobic in character.
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3.3.4. Expression of p2-Aequorin in a cell-free system.

A cell-free system was employed to determine whether P2-Aeq was 

capable of emitting light in response to calcium.

In vitro transcription/translation was performed using the TNT Protein 

script II T7 system and activity was determined as the total number of 

counts emitted in the presence of coelenterazine when exposed to 

calcium as described in Materials & Methods 2, section 2.4.1.2. 

Experiments for each construct were performed in triplicates.

p2-Aeq emitted thousands of light counts when it was exposed to 

calcium. The cytosolic Luciferase-Aequorin which produces similar 

count response to aequorin was used as a positive control. The number 

of photons generated by p2-Aeq was ten times lower than those 

obtained from Luciferase-Aequorin (Fig 3.8).

The light emitted by p2-Aequorin using the cell-free system 

demonstrated that the aequorin moiety of the construct was functional 

at a protein level.

The precise detection of Ca2+ responses requires that aequorin 

constructs emit sufficient counts to discriminate between Ca2+ signals 

and variations in background noise. Since p2-Aequorin exhibited less 

light emission that Luc-Aeq, it was vital to maximise the number of 

counts obtained. The conditions of Aequorin reconstitution may 

significantly increase the number of counts emitted by these constructs.
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Fig 3.8. Cell-free expression of p2Aeq and LucAeq.
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Fig 3 .8 . C e ll-fre e  ex p re s s io n  o f (32Aeq an d  LucAeq. Expression 

of p2Aeq using a transcription/translation system (TNT Protein 

Script I I )  confirms emission of light when exposed to calcium 

proving that p2 and Aequorin has been successfully assembled. 

LucAeq exhibits a light emission 10 times higher than p2Aeq in a 

cell-free system. p2 subunit was used as a control. Mean and SEMs 

were extracted from three experiments. Data from two sets of 

experim ents (LucAeq/p2Aeq & p2Aeq/p2) have been normalised.

LucAeq p2Aeq
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Consequently, the best conditions for aequorin reconstitution were then 

assessed.

3.3.5. Evaluation of reconstitution conditions for @2-Aeq.

The number of counts emitted during a complete experiment depends 

on the conditions in which aequorin has been reconstituted. A high 

number of counts enables the accurate measurement of minor 

variations during the course of the experiment. On the contrary, a low 

level of counts may cause difficulties to distinguish between Ca2+ 

signals and background noise. Therefore, the optimal conditions for 

aequorin reconstitution were assessed in this set of experiments.

The best conditions for aequorin reconstitution were experimentally 

evaluated using three different parameters: coelenterazine

concentration, Ca2+ concentration in the medium and time-course. Both 

constructs were also compared to determine whether differences in light 

emission were dependent of these factors.

HEK293 a cells in suspension expressing either Luc-Aeq or p2-Aeq 

were incubated for periods between 1 to 4 hours in different medium (1 

mM EGTA, normal medium or 1.3 mM Ca2+ medium) containing 2 pM 

coelenterazine as described in Section 3.2.7. Similarly, the effects of 

different coelenterazine concentrations ranging from 1 to 10 pM was 

evaluated ieach hour during a 4 h period. The total light counts were 

acquired using the home-built luminometer after addition of NP40 lysis
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solution. The results are the mean and SEMs of three different 

experiments.

After one hour incubation with coelenterazine, the number of light 

counts generated by the p2-Aeq construct decreased over the course of 

time independently of the type of medium used (Fig 3.9 A). 

Understandably, a greater reduction was observed when calcium was 

present in the medium whereas no significant difference was noticed 

between EGTA and normal medium. In the case of Luc-Aeq, a decline 

of light emission was obtained only in medium with calcium added. 

Counts remained barely unchanged when cells were suspended in 

EGTA or normal medium (Fig 3.9 B). The differences in aequorin 

reconstitution between the EGTA-medium and the Ca2+-medium 

incubation were, for both constructs, significant only after 3-4 hours 

incubation. One hour incubation time was chosen as the best option 

because the maximal light emission was obtained during that period. 

Incubation in EGTA-medium also maximised the number of counts 

generated by the aequorin constructs (Fig 3.9 C).

A trend of coelenterazine dependency was observed following a similar 

pattern for both proteins: maximum light emission reached at 5 pM 

followed by a decrease at 10 pM for both proteins (Fig 3.11 A & B). 

Since this difference was no significant for both constructs, a 

coelenterazine concentration of 2 pM was selected to perform
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Fig 3.9 Reconstitution efficiency of aequorin constructs in HEK293  

in different m edia in the presence of coelenterazine.
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Fig 3.9 Reconstitution efficiency of aequorin constructs in HEK293 in 

different media in the presence of coelenterazine.

Time course reconstitution of 02Aeq (A) and LucAeq (B) is expressed as 

percentage of that obtained after 1 hour in the same medium. Efficiency of 

reconstitution of each chimera is expressed as percentage of the value 

obtained in Ca2+-free medium. A major declined is observed for p2Aeq in 

all mediums while for LucAeq only occurred in Ca2+ medium. 

Subsequently, both constructs followed similar trend. Concentration of 

coelenterazine was 2 pM. " statistically significant in comparison to EGTA.
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Fig 3.10 Reconstitution efficiency of aequorin constructs in 

HEK293 in different m edia in the presence of coelenterazine.
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Fig 3.10 Relative reconstitution efficiency of aequorin constructs in 

HEK293 in different media in the presence of coelenterazine.

(A) Relative efficiency of reconstitution of each chimera is expressed as 

percentage of the value obtained in Ca2+-free medium after 1 h (B). Relative 

efficiency of both chimeras reconstituted in media containing Ca2+ (1.3 mM), 

EGTA (1 mM) or with nothing added at different time points in the presence of 

coelenterazine (2 pM). significant (p < 0.05) when compared to EGTA/EGTA 

(100%).
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Fig 3.11 Effects of coelenterazine concentration in the  
reconstitution efficiency of aequorin constructs in HEK293.
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Fig 3.11 Effects of coelenterazine concentration in the reconstitution 
efficiency of aequorin constructs in HEK293.
Aequorin reconstitution in both (32Aeq and LucAeq was dependant of 
coelenterazine showing a maximum light emission peak at 5 pM concentration 
(A & B). Additionally, both exhibited a decline at 10 pM coelenterazine 
concentration. Relative light counts of both chimeras reconstituted showed 
little variation with the concentration at values above 2 pM (C). Graphs 
represent mean values and SEMs of three experiments.
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reconstitution of aequorin in living cells enabling us to compare our data 

with previous research using Luc-Aeq (George etal., 1998).

When the reconstitutions of Luc-Aeq and p2-Aeq were compared, Luc

Aeq showed a greater reduction of light emission than p2-Aeq in either 

normal or Ca2+ medium (Fig 3.10 A). The relative light emission 

amounts for the respective proteins remained at the same level (-10 %) 

for the whole period regardless of the medium used (Fig 3.10 B). There 

was little change for the average of the relative light emission for values 

of coelenterazine concentration higher than 1 pM (Fig 3.11 C).

The experimental conditions for Aequorin reconstitution were 

determined as follows: incubation in EGTA-medium for 1 hour in the 

presence of 2 pM coelenterazine.

3.3.6. Subcellular distribution of recombinant aequorin.

On occasions, the addition of a foreign protein sequence may alter the 

innate features of the native protein such as the correct targeting 

(Myers et al., 1999). To determine whether p2-Aeq protein remains 

bound to the plasma membrane, a subcellular fractionation 

methodology was performed.

The subcellular fractionation approach adopted in this work involved the 

centrifugation of the cell lysate at a high speed. Following the lysis of 

the cells, the cell suspension was subjected to centrifugation at 

30,000 xg for 30 min at 4 °C in order to separate the proteins in the
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cytosol from those in the membrane. Cytosolic proteins are mainly in 

the supernatant while the pellet contains proteins from cellular 

membranes and other organelles such as nucleus, ER, Golgi and 

lysosomes.

The cytosolic vector Luc-Aeq served as a positive control to evaluate 

the efficacy of this method to separate the membrane proteins from the 

cytosolic ones. Initial experiments were performed by only lysing the 

cells with three freeze-thaw cycles. This simple approach showed low 

efficiency. The membrane fraction of the Luc-Aeq protein was above 30 

% for HEK293 cells, indicating a poor cell lysis.

An additional step, which involved the passage of the cell suspension 

through a narrow-gauge syringe, was introduced to improve efficiency. 

As a result, only a residual proportion of Luc-Aeq was found in the 

membrane fraction demonstrating the effectiveness of the improved 

method. Furthermore, p2-Aeq was recovered almost exclusively in the 

membrane fraction supporting the correct targeting of the recombinant 

protein (Fig 3.12).

Our data proved that the P2-Aeq protein successfully targeted the 

membrane.
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Fig 3.12 Subcellu lar fractionation of HEK 293 transfected with  

either p2Aeq or LucAeq.
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Fig 3 .1 2  R e la tiv e  p ro p o rtio n  o f p ro te in  in m e m b ra n e  vs. 

c y to so l. Assessment of the relative proportion of the (32Aeq and 

LucAeq in HEK293 and MG63 cell lines was estimated as the 

percentage of the total counts obtained in each fraction divided by 

the sum of the counts from the two fractions. The total counts 

from untransfected cells used as a control were subtracted from  

the sample values. Values and standard error were extracted from  

three different experim ents.
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3.3.7. Effects of fi2-Aeq in cell growth.

Expression of foreign proteins may modify cell functions such as 

growth; i.e. GFP seems to instigate apoptosis in eukaryotic cells (Liu et 

a/., 1999). In order to assess if p2-Aeq produced cell toxicity or an 

impairment of cell growth, an MTS proliferation assay was carried out in 

HEK293 cells.

The effects of P2-Aeq on cell viability were evaluated using a MTS 

assay. In the MTS proliferation assay, HEK293 cells expressing pTarget 

vectors showed significantly lower growth rate than control cells (Fig. 

3.13). All three vectors tested showed the same decline. No significant 

effects were observed by only using the transfection reagent 

Lipofectamine. Similar decrease was detected by simple observation on 

flasks expressing p2-Aeq when compared to normal cells. These 

evidence indicate that the decrease in cell number is probably caused 

uniquely by the expression of foreign DNA and not because of the lipid- 

mediated transfection process.

The MTS assay revealed that the transfection of the p2-Aeq vector 

reduced cell number in a similar manner to the P2 plasmid.
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Fig 3.13 Effects of p2-Aeq transfection on cell num ber.
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Fig 3 .1 3  E ffects  o f 0 2 -A e q  tra n s fe c tio n  on cell n u m b e r. MTS

assay of cell proliferation shows decrease in HEK293 cell number by 

incubation with Luc-Aeq, (32-Aeq or (32 subunit constructs. Differences 

between these plasmids are statistically insignificant. Lipid mediated 

transfection in the absence of DNA reveals a small non-significant 

decrease in cell number. Data represents mean ±SEM of five 

experim ents performed in triplicate. * -  significant difference p < 0.05  

compared to Normal Medium and Lipofectamine controls.



Chapter 3

3.4 DISCUSION

3.4.1. Cell Assessment.

The different BK channel properties such as channel activation, 

response to blockers and activators, surface expression and calcium 

sensitivity are greatly influenced by the exact a subunit isoform present 

and its assembly with the accessory beta subunits. Therefore, it is 

crucial to know the exact subunit composition of the cell lines in order to 

establish whether P2-Aeq expression may be altered by other subunits 

or remain unaffected. In addition, the presence of certain subunits may 

modify the pharmacology and response of the BK channel which in turn 

may cause changes on cell function including Ca2+ signalling (Meera et 

al., 1996 & 2000).

The results presented here provide evidence for the first time of the 

presence of the all four BK p subunits in MG63. These data also 

indicate that not all isoforms of the a subunit are expressed in MG63, 

isoform corresponding to GeneBank U11717 being the most probable 

one. Sequencing however must be performed to confirm this. It has 

been reported that a subunit splice variants may impede the normal 

expression of the p subunits (Zarei et al., 2001). Since this splice 

variant coincides with the one already verified using RT-PCR and 

electrophysiological techniques in the stable-transfected HEK293 cell 

line, the a and p2 subunits should express and co-assemble in a similar
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manner. Therefore, both cell lines were suitable to be transfected with 

p2 constructs.

In addition, this study gives new insights into the subunit composition of 

BK channels in osteoblasts. These findings, together with the 

determination of the splice variant form, contribute to gaining a better 

understanding of the phenomenology and pharmacology of the channel.

3.4.2. Engineering of p 2-Aeq and functional evaluation.

Following the acquisition and cloning of the whole coding sequence of 

the p2 subunit, a novel recombinant protein was successfully created 

comprising the P2 subunit and Aequorin. A protein prediction analysis 

found no major differences due to the point mutations introduced in the 

p2 subunit part of the sequence during the production of this construct. 

The aequorin part of the protein remained unchanged.

When two heterogeneous proteins are combined to create a new 

recombinant protein, functional differences may be expected as a 

result. Therefore, a subsequent experimental investigation was 

conducted to assess the properties and functionality of the new 

recombinant protein.

The study of the functional aspects of the bioluminescent part was 

carried out using a cell-free system. The in vitro transcription/translation 

system demonstrated that the main properties of aequorin were 

conserved in the p2-Aequorin protein. Like aequorin, light emission was
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obtained when P2-Aequorin was exposed to calcium. The new protein 

showed low light emission efficiency when compared to Luc-Aeq which 

exhibits bioluminescent activity similar to the native aequorin 

(Badminton etal., 1995).

Maintenance of correct protein targeting is crucial for cell function. The 

targeting of transmembrane proteins like the p2 subunit occurs by 

means of the hydrophobic membrane-spanning domains which anchor 

it within the cell membrane. Based on the analysis of its hydrophobic 

character, neither the addition of the aequorin protein nor the amino 

acid modifications had a significant impact on the overall hydrophobicity 

pattern of the P2 section of the protein. Therefore, the targeting 

properties of the protein should remain unchanged.

This prediction was experimentally assessed by means of a subcellular 

fractionation methodology. This approach produced a high ratio of the 

cytosolic aequorin protein in the expected fraction proving the 

effectiveness of the adopted methodology. The cellular location of the 

P2-Aeq in the membrane was also confirmed with only a minimum 

amount been found in the cytosolic fraction (Fig. 3.10). The study was 

performed in two different cell lines, HEK293 and MG63, demonstrating 

that the cellular location of the p2 subunit is probably tissue 

independent.

These results provide strong evidence in favour of the localisation of the 

p2-Aeq protein in the plasma membrane. Nevertheless, it must be
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mentioned that they do not discriminate whether p2-Aeq is located in 

the plasma membrane or other intracellular compartments such as ER, 

Golgi or lysosomes. The p1 subunit, which maintains 82 % homology 

with the p2, has been reported to be expressed primarily in conjunction 

with the a subunit (Hartness et al., 2003; Morrow et al., 2006), in 

particular the QEERL splice variant (Kim et al., 2007). The a subunit 

used in this thesis contains this amino acid sequence which is mostly 

expressed in the plasma membrane (Kim et al., 2007). Moreover, p1 

subunit tagged with GFP in the C-terminus exhibited similar pattern of 

expression and electrophysiological properties. In recent studies using 

co-immunofluorescence, it has been shown that the p2 subunit 

expressed alone was mostly retained in the ER (Lv et al., 2008). On 

the other hand, if the a subunit was present, the P2 subunit could 

successfully reach the plasma membrane. The values obtained in this 

study (-90%) for localisation of the native p2 subunit in the plasma 

membrane were consistent with our results. Moreover, only 

modifications in the N-terminus of the subunit seemed to alter its 

targeting to the plasma membrane.

The MTS assay carried out in transfected HEK293 cells revealed a 

significant decrease in cell number. Since incubation with Lipofectamine 

showed only a marginal decline, the lower number of cells is probably 

due to the expression of foreign DNA. Similar results were observed 

using three different vectors: the cytosolic Luc-Aeq, the native P2 

subunit and the recombinant p2-Aeq. Two of the vectors targeted
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different subcellular compartments (Luc-Aeq, cytosol & p2-Aeq, 

membrane) suggesting that this effect was not produced by either 

cytotoxicity of protein overexpression in the cytosol or structural 

changes in the cell membrane. The native p2 protein generated the 

same result indicating that this was probably not caused by the 

expression of artificially modified proteins. A reason for the difference in 

cell growth may be that the overexpression of any foreign DNA in the 

cells may impair or slow down cellular processes. All experiments in this 

work were expressed as percentage of the total or normalised to the 

cell number. Consequently, the reduction in cell number should not 

compromise the results obtained.

Since no significant difference was observed between P2-Aeq and P2 

transfected HEK293 cells, our data demonstrate that the incorporation 

of the Aequorin sequence to the p2 subunit has not altered cellular 

functions such as cell growth.

3.4.3. Assessment of best conditions for aequorin reconstitution.

The conditions to achieve the maximum light output from the aequorin 

vectors were also experimentally evaluated. Time-course assessment 

showed that after the first hour, counts remained similar in the case of 

Luc-Aeq for EGTA and normal medium and decreased in Ca2+ medium. 

P2-Aeq presented a decline in all mediums, greater with Ca2+ medium. 

Although a potential loss of aequorin stability or protein degradation 

may partly for these differences, a more probable explanation is that the
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rate of aequorin consumption surpassed the rate of aequorin 

reconstitution after the first hour. In the fist hour, both constructs emitted 

significantly more counts when incubated in EGTA. Since 

coelenterazine concentrations did not exhibit a significant impact in the 

number of counts, 2 pM was selected as the best option in order to be 

able to compare with previous studies using Luc-Aeq (George et al., 

1998). Consequently, the optimal conditions for both proteins were 

incubation in EGTA medium for 1 hour in the presence of 2 pM.

3.4.4. Differences between @2-Aeq and Luc-Aeq.

The main difference noticed between both proteins was a 10-fold lower 

light emission obtained from p2-Aeq than from Luc-Aeq. Amino acid 

modifications have previously reported to cause this type of alterations 

(Watkins NJ & Campbell AK, 1993). However, since the amino acid 

sequence of the aequorin section remained unchanged, the difference 

was not attributed to amino acid variations.

Protein degradation may account for this difference because proteolysis 

activity depends on the organelle location of the protein (Badminton et 

al., 1995; Jeffery et al., 2000). However, since proteases are generally 

induced by Ca2+ and incubation in different Ca2+ concentration showed 

little effect on the relative light emission obtained (Fig. 3.7 B), 

proteolysis was probably not an important factor on this difference in 

light emission. Similarly, the stability of the two photoproteins may have 

been different resulting in a greater decrease of the active protein of
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one of the constructs over the other (Badminton et al., 1995). 

Nevertheless, no important change was detected in the relative light 

emission during the four hour period (Fig. 3.7 B) indicating that the 

stability of both photoproteins was analogous.

Different patterns of protein expression may also produce the difference 

in light emission detected. Nevertheless, similar results (10 times higher 

number of counts) have been obtained in three very distinct 

circumstances: a cell-free system, isolated proteins and living cells (See 

Chapter 3, sections 3.4.4 and 3.4.5). It is unlikely that proteins are 

expressed in the same manner in such heterologous systems.

One feasible explanation might be that the cytosolic carboxyl terminus 

of the (32 subunit is only 20 amino acids long, based on the predicted 

structure (UniProtKB / Swiss-Prot entry Q9Y691). This cytosolic domain 

which is normally the flexible part of the protein might not be long 

enough to confer sufficient freedom to the aequorin structure to fold 

appropriately. Previous studies showed that when connexin26, a 

plasma membrane protein with 26 aa cytosolic tail, was linked to 

aequorin, the resulting protein lost most of the chemiluminescent 

activity (Martin et al, 1998). In this case, the addition of a larger tail to 

combine both proteins restored the chemiluminescent emission of the 

aequorin moiety (George et al, 1998). Interestingly, the opposite effect 

was detected working with EGFP and aequorin targeted to the cytosol: 

a spacer of 36 aa between sequence completely abolished the light
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emission which did not occur with only 18 aa (Bermudez-Fajardo, 

2002). One possible reason might be that the proper folding of the 

aequorin protein was impeded by a lack of flexibility in connection with 

its correct assembly into the plasma membrane.

To better understand the differences between both constructs, a 

comparison between reconstitution of p2-Aeq and Luc-Aeq was also 

conducted providing the following results. The effects of the medium 

used during aequorin reconstitution (EGTA, Ca2+ or nothing added) 

between p2-Aeq and Luc-Aeq differ. The main difference between both 

proteins was the reduction of light counts of p2-Aeq in all different 

media which did only occur in the presence of Ca2+ for Luc-Aeq. This 

result may be explained by either a lower reconstitution of p2-Aeq in 

EGTA medium or a higher consumption of Luc-Aeq in the absence of 

EGTA. This fact may be attributed to one being located in the cytosol 

and the other embedded in the plasma membrane.

Aequorin reconstitution of both p2-Aeq and Luc-Aeq displayed a similar 

pattern of behaviour when the respective average readings were 

compared under different conditions of media, incubation times and 

coelenterazine concentration. Our data indicate that the rate of aequorin 

reconstitution/consumption under the same conditions is very similar for 

both recombinant proteins. Through these results, it is clear that the 

modifications of the aequorin moiety causing the 10 fold reduction of 

p2-Aeq light emission have no evident effect on the speed rate of
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aequorin regeneration from apoaequorin, or its ability to bind 

coelenterazine. If a potential loss of aequorin stability or protein 

degradation occurred during the length of the experiments, they 

produced similar effects on both constructs.

3.4.4. Conclusions.

In summary, a novel recombinant protein has been obtained by 

combining the BK channel P2 subunit and the aequorin sequences. The 

fusion protein exhibits the inherent properties of both individual proteins: 

Ca2+-dependent light emission, binding to coelenterazine and 

reconstitution rates as aequorin; plasma membrane targeting and cell 

growth patterns similar to the p2 subunit. The optimal conditions for p2- 

Aeq reconstitution have also been determined in order to carry out the 

following cell transfection experiments. In addition, the differences 

between two aequorin-linked recombinant proteins have been 

assessed. This study brings new insights into the extent that aequorin 

properties are retained when it is combined with other proteins.
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CHAPTER 4

EVIDENCE FOR LOCAL REGULATION OF THE 

CALCIUM SIGNALS IN THE PROXIMITY OF THE 

BK CHANNEL IN LIVING CELLS
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4.1 INTRODUCTION

Since the first studies conducted by Ringer (1883), an enormous 

amount of evidence has demonstrated the essential role of calcium in 

controlling a multitude of cellular functions. Indeed minor variations of 

intracellular Ca2+ signals can initiate or modulate many cellular 

processes including neurotransmitter release, apoptosis and ion 

channel modulation (See Chapter 1, sections 1.1.2. & 1.1.3.). These 

Ca2+ signals are normally generated in response to extracellular stimuli 

such as hormones, neurotransmitters, agonists and temperature. 

Numerous proteins operate in conjunction with intracellular organelles 

to accurately control Ca2+ signals across the cell. The Ca2+ 

concentration is not homogenously distributed within the cell and high 

calcium cell compartments exist such as ER, mitochondria and sub

plasma membrane domains (Button & Eidsath, 1996; Golovina & 

Blaustein, 1997). Consequently, the intracellular Ca2+ responses are not 

uniform and vary widely in strength and range. They may also be 

repetitive (Ca2+ oscillations) or localised. Local Ca2+ transients may 

either be concealed or propagate gradually to the rest of the cell.

Aequorin has been a fundamental tool for studying the complex 

mechanism of Ca2+ signalling. Since the isolation and cloning of its DNA 

sequence (Inouye ef a/., 1985), several recombinant photoproteins have 

been engineered using the aequorin moiety. They have been primarily 

employed to target defined intracellular locations such as the nucleus
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(Badminton et a/., 1995), the endoplasmic reticulum (Kendall et al., 

1992), the Golgi apparatus (Pinton et al., 1998) and the mitochondria 

(Rizzuto et al., 1992). Of particular interest to our research are those 

studies in which aequorin was connected to plasma membrane-bound 

proteins. For this purpose, aequorin has been fused to the following 

partners: a serotonin 5-HT receptor (Daguzan et al., 1995), an adenylyl 

cyclase (Nakahashi et al., 1997), the neural synaptosome-associated 

protein SNAP-25 (Marsault et al., 1997), various connexins (George et 

al., 1998) and endothelial nitric-oxide synthase (eNOS) (Lin et al., 

2000). All these studies have revealed the presence of a wide range of 

heterogeneous Ca2+ environments within the cell. These findings have 

been also supported by complementary studies using fluorescent Ca2+ 

sensitive dyes (Golovina and Blaustein, 1997; Graier etal., 1998).

All this evidence emphasises the remarkable versatility of cellular Ca2+ 

signalling. However, cells also need to trigger selective responses. The 

importance of creating local Ca2+ microdomains to control specific 

cellular responses has been highlighted by recent reports (Rizzuto & 

Pozzan, 2006; Clapham, 2007; Parekh, 2008). These local Ca2+ 

microdomains provide a means for rapid and selective activation of 

specific cellular processes. The BK channel also needs this tight Ca2+ 

regulation to modulate its precise mechanism of activation. Therefore, 

new tools to measure the local Ca2+ concentration affecting the channel 

such as the p2-Aeq chimera developed in this thesis are required.
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This chapter aims to examine the local regulation of Ca2+ signals in the 

vicinity of the BK channel in cultured cells using the p2-Aequorin 

construct developed and characterised in this thesis. The first step was 

to evaluate the light emission obtained from cells using either an ICCD 

camera or a luminometer. Two cell lines were tested and transfection 

efficiency was measured at this stage. The second step was to 

determine whether Ca2+ transients detected with our new probe were 

significantly different from those in the cytosol in support of a potential 

local regulation of Ca2+ near the BK channel. The Ca2+ signals were 

investigated at rest and in response to the addition of extracellular Ca2+. 

The specific characteristics of the Ca2+ signals elicited were also 

studied.

4.2 METHODS

4.2.1 Transfection efficiency.

Transfection efficiency is the ratio of successfully transfected cells to 

the total number of cells. Transfection is a process that depends on 

external parameters such as the amount of DNA, the method of 

transfection, the number and type of cells as well as internal parameters 

such as the different processes occurring inside the cells. Under similar 

conditions, it is assumed that transfection efficiency remains equal for 

each plasmid if the gene operates under the control of the same 

promoter. Therefore, to determine the transfection efficiency of a given 

vector, a reporter gene like GFP may be used as long as both vectors
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are under the control of the same promoter, the CMV promoter in our 

case. Transfection efficiency was assessed in MG63 and HEK293 cells 

using Fluorescence-activated cell sorting analysis.

4.2.2 Fluorescence-activated cell sorting.

Fluorescence-activated cell sorting (FACS) is a reliable method which 

enables rapid separation of cells in a suspension on the basis of size 

and the colour of their fluorescence. Cells in suspension pass in single 

file through a thin stream where a laser beam is applied. As each cell 

passes through the beam, the resulting fluorescence signal of cells 

expressing EGFP is detected by a photocell. When the signal meets 

either of the criteria set for size and fluorescence, an electrical charge is 

given to the cell which is subsequently sorted by passing between a 

pair of charged metal plates.

FACS analysis was performed to determine the transfection efficiency 

of the cell lines used in this project. Cells were subject to transfection 

with a vector (Waud et al., 2001) carrying the EGFP reporter gene 

under control of CMV promoter prior to FACS assessment. Following 

48 h transfection, cells were detached with trypsin, collected, washed 

twice with PBS, resuspended in medium and incubated in ice until 

analysis. Measuring was done by placing a gate round the EGFP- 

positive cells in the viable cell population. The viable cell population was 

determined using the forward and side scatter characteristics of the 

cells. A total of 10,000 events per cell sample were recorded using a
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FACScalibur flow cytometer (BD Biosciences, Oxford, UK). FACS data 

were analysed with WinMDI software. The efficiency was expressed as 

percentage of cells expressing EGFP. Untransfected cells were used as 

the negative control. Transfection efficiency was calculated after 

subtracting the control values from experimental values.

4.2.3 Calcium-dependent signal from living cells.

HEK293 and MG63 cells were transfected with either [32-Aeq or Luc- 

Aeq for 48 h as described in Chapter 2, 2.2.7.2. Cells were seeded on 

either 6 well plates or coverslips for Ca2+ imaging experiments using the 

home-built luminometer or the ICCD camera respectively. Cells 

expressing apoaequorin were washed twice with Ca2+-free KRH to 

remove all traces of calcium and incubated in this medium for 1 h at 

37°C in the presence of coelenterazine (2 pM). Light emission was 

converted into Ca2+ concentrations using the equations described in 

Chapter 2, 2.4.3. All Ca2+ imaging experiments were carried out at room 

temperature (22°C).

4.2.3.1. Effects of the addition of an isosmotic solution on intracellular 

free Cap* detected using a home-built luminometer.

Transfected HEK293 cells in 6-well plates were detached with trypsin 

and reconstituted at 37°C as a cell suspension using a minimum 

volume of EGTA (1 mM) medium (coelenterazine 5 pM). Subsequently, 

cells were washed twice with warm KRH medium to remove the excess 

of coelenterazine and resuspended in a final volume of 500 pi of Ca2+-
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free KRH. Aliquots of 20 pi were added to a LP3 tube containing 500 pi 

of the same medium and transferred to the sample housing of the 

home-built luminometer. A solution containing 500 pi of identical 

medium was injected after 20 s and the remaining counts were obtained 

by addition of a solution containing 50 mM CaCfe and 3 % of the 

detergent Nonidet 40. The experiments were performed in triplicates.

4.2.3.2 Effects of addition of extracellular Cap* on intracellular free Ca2+ 

recorded using an ICCD camera.

Ca2+ imaging experiments using the ICCD camera (Photek, UK) were 

performed as described in 2.3.3.2. In brief, following the reconstitution 

of aequorin, the cells were washed twice with Ca2+-free (1 mM EGTA) 

KRH medium to remove coelenterazine. The cells were then transferred 

to the chamber and brought into contact with the fibre optics. A 

continuous flow perfusion system was employed to change solutions. 

The imaging protocol was as follows: 10 min Ca2+-free KRH; 10 min 

Ca2+ (1.3 mM) KRH; 5 min Ca2+-free KRH; 5 min Ca2+ KRH and 20 min 

lysis solution.

IFS32 Software (Photek, UK) was employed to analyse the data 

acquired. The complete imaging experiment was converted into a 10 s 

frame video sequence and a number of cell clusters (OAS) selected as 

described in Chapter 2, 2.4.2.2. The means ±SEM were obtained from 

all the cell clusters selected from three different coverslips.
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4.2.3.3 Analysis of individual Ca2+ signals.

Each cell cluster from the previous experiments was individually 

analysed using IFS32 software. Aequorin consumption was calculated 

as the total number of light counts recorded during the period studied 

divided by the total light counts obtained at the end of the experiment. 

The total aequorin expression per cell cluster was expressed as the 

total light counts during the whole experiment divided by the number of 

pixels of the OAS.

4.3 RESULTS

In this chapter, a series of initial experiments was carried out to 

determine the suitability for Ca2+ imaging of the two cell lines, HEK293 

and MG63, employed. Similarly, experiments were performed to 

examine if Ca2+ signals of cells in suspension could be detected 

appropriately. Once the correct conditions were determined, the Ca2+ 

signals of cells expressing either |32-Aeq or Luc-Aeq were investigated 

at rest and in response to the addition of extracellular Ca2+. Finally, the 

particular characteristics of the Ca2+ transients were assessed.

4.3.1. Transfection efficiency.

The initial Ca2+ imaging experiments showed that low light emission 

was obtained from MG63 cells (Fig. 4.4). In contrast, HEK293 cells 

generated sufficient light counts (Fig. 4.6). One factor contributing to the 

total light emission is the transfection efficiency. The total amount of
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aequorin present in a given sample is dependent on the number of cells 

successfully transfected. To evaluate whether this difference in light 

emission was due to the transfection efficiency, a series of experiments 

was undertaken to determine the effects of different transfection 

reagents and the transfection efficiency in HEK293 and MG63 cells.

Qualitative studies on transfection efficiency were carried out using 

various transfection reagents (Lipofectamine 2000, Lipofectamine Plus, 

Lipofectamine LTX and Fugene HD). From simple observation of the 

GFP signal under the fluorescent microscope, there w no noticeable 

differences between the numbers of successful GFP-transfected cells 

employing different reagents (Fig 4.1). Nevertheless, at first sight, the 

much lower transfection efficiency achieved in MG63 (Fig 4.1 F) than in 

HEK293 cells (Fig 4.1 A) was clear. The qualitative estimation by simple 

observation of the transfection efficiencies was in line with the 

subsequent assessment via FACS analysis.

The assessment of transfection efficiency via flow cytometry was 

performed in HEK293 a and MG63 cell lines. The value of transfection 

efficiency achieved in HEK293 cells after 48 h was around 20 % 

whereas a much lower rate, below 1 %, was achieved for MG63 (Table 

4.1). Figs 4.2 & 4.3 illustrate representative histograms for HEK293 and 

MG63 cell lines respectively. When plotting the number of cells (events) 

against the fluorescence intensity (FL1-H), EGFP-transfected HEK293 

cells exhibited a higher fluorescence signal (Fig 4.2 B) in contrast to the
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native cells (Fig 4.2 A). In MG63, no noticeable difference was 

observed between EGFP transfected (B) and control cells (A) indicating 

the low transfection efficiency (Table 4.1) achieved in these cells. The 

populations of viable cells selected for each cell line are also shown 

(Fig 4.2 C & Fig 4.3 C).

Since very low transfection efficiency was observed in MG63 cells, a set 

of experiments using selective medium was carried out to generate two 

stable transfected MG63 cell lines with either p2-Aeq or Luc-Aeq 

plasmids. In a stable cell line, a selective antibiotic is used to make sure 

that only the cells containing the appropriate plasmid survive. This leads 

to 100% of successfully transfected cells. Following the two weeks 

incubation in gentamicin-selective medium, most of the MG63 cells died 

as expected. However, the growth rate of the surviving cells was 

surprisingly low taking almost 2 weeks to reach confluence in 

comparison to the native MG63 cells ( 3 - 4  days on average). This was 

consistent with our previous cell proliferation experiments showing this 

reduction in cell growth in transfected HEK293 cells (Fig. 3.9). A sample 

containing 20000 of the surviving MG63 cells was subjected to aequorin 

assay using the luminometer. The mean values of Luc-Aeq transfected 

MG63 cells after cell lysis were very low, especially in comparison to 

those obtained in transient transfected HEK293 cells (3820 and 465114 

counts, respectively). An explanation may be that a few untransfected 

cells developed resistance to the antibiotic and they overgrow the 

transfected cells, which were shown to grow more slowly (Fig. 3.9).
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There is also evidence that aequorin activity is lost during the creation 

of stable cell lines (George, 1998). This may have also caused the low 

light emission observed in the stable MG63 cell line.

Our data showed that adequate transfection efficiency was achieved in 

HEK293 but not in MG63 cells.
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Fig 4.1. C om parative analysis of d ifferent transfection  reagents.

I(M) pM

Fig 4.1. Comparative analysis of cells expressing GFP using different 

transfection reagents. HEK293 a transfected with Lipofectamine 2000 (A), 

previous image with cells (B), Lipofectamine Plus (C), Lipofectamine LTX (D), 

Fugene HD (E) and MG63 cells transfected with Lipofectamine 2000 (F) and 

Fugene HD (G) as described in Chapter 2, 2.2.7.2. Cells were transfected with a 

EGFP vector for 48 hours and fully confluent at the time of the image capture. 

Images were attained 48 hours after transfection using a fluorescent microscope. 

Image (B) combines fluorescence and bright field. Pictures were taken on a Zeiss 

Axiovert microscope at X100 magnification with GFP-specific filters (excitation 

480/30, dichromic 505/40 nm and emission 535/40 nm).
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Table 4.1. Transfection effic iency in HEK293 and MG63 cells.

T a b le  4 .1 . Transfection efficiency in 
HEK293 and MG63 cells. The table 
shows the percentage of cells 
showing GFP associated fluorescence 
Experiments were made in triplicates 
and the means ±SEM  are shown.

Fig. 4.2. FACS analysis of transfection efficiency in HEK293.

HKK293 a Control HEK293 a GFP transfected

10*1 0 '

M1

10 * 10*10 '

Fig. 4.2. FACS analysis of § 
transfection  effic iency in HEK293  
cells.
In histograms A & B the number of 
cells (events) is plotted against the 
fluorescence intensity (FL1-H). ^
Histogram (B) exhibits a long tail 
characteristic of GFP-tagged cells 
emitting a fluorescence signal in 
contrast to the native cells (A). A 
population of viable cells (in red) 
was selected using a FSC-SSC dot 
plot within 10.000 cells. A marked 
region (M1) was established 
containing 1 % of the control cells 
and the percentage of cells moving 
into this marked region calculated 
as described in section 4.2.1.
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Transfection  efficiency

Cell line
Cells showing  

Fluorescence (%)

HEK293 19.25± 0.18

MG63 0.48± 0.20
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Fig. 4.3. FACS analysis of transfection effic iency in MG63.

MG63 Control MG63 GFP transfected

1

o
10* 10* to* 10*

FU f-l

Fig. 4.3. FACS analysis of 
transfection  effic iency in MG63 
cells.
Histograms A & B show the number 
of cells (events) vs. the $ 
fluorescence intensity (FL1-H). No 
apparent difference was observed 
between GFP transfected (B) and 
control cells (A). The FSC-SSC dot 
plot (C) shows the population of 
viable cells (in red) selected. 10.000 
cells were analysed. A marked 
region (M1) was established 
containing 1 %  of the control cells 
and the percentage of cells moving 
into this marked region calculated 
as described in section 4.2.1.
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Fig. 4.4. Light em ission of MG63 cells transfected with Luc-Aeq.
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Fig 4.4. Light emission of MG63 cells transfected with Luc-Aeq. A:

Unmodified image of the cumulative counts obtained from confluent MG63 

cells after hyposmotic treatment. Red circles delimit the areas with slightly 

higher light emission probably accounting for the few cells expressing 

aequorin. The total counts within each area are indicated. Below each 

area are the counts obtained in a non-light emission zone using similar 

area. This image was acquired using an ICCD camera (Photek) as 

described in Chapter 2, 2.4.2.2. This image was subsequently modified (B) 

by a fade correction of 80 using Corel Paint Shop Pro X Software to allow 

a better visualisation of the counts in the different areas.
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4.3.2. Effects of the addition of an isosmotic solution on intracellular free 

Csf* in transfected HEK293 cells in suspension.

A series of initial experiments were conducted to assess the effects of 

different agonists on intracellular Ca2+ in transfected HEK293 cells in 

suspension using the home-built luminometer. The preliminary data 

quickly revealed substantial variations between experiments. A possible 

cause may have been that Ca2+ responses in HEK293 cells were 

susceptible to mechanical stimuli (Campbell AK, personal 

communication, 1996). This set of experiments was undertaken to 

examine whether the intracellular Ca2+ concentrations of cells in 

suspension may vary as a consequence of a mechanical disturbance.

Following 1 h aequorin reconstitution in Ca2+-free medium (1 mM 

EGTA) of HEK293 cells in suspension and coelenterazine removal, a 

LP3 tube containing 500 pi of Ca2+-free medium was supplemented with 

20 pi of the cell suspension. Once light output reached stability, 

mechanical stimuli were administered via fast injection (over 1 sec) of 

500 pi of identical Ca2+-free medium resulting in a major increase in 

intracellular free Ca2+ (BK: 9.48 ± 3.37 pM & Luc-Aeq: 6.27 ± 2.98 pM, 

Fig. 4.5) that lasted for a period of 3-5 s and then Ca2+ returned to basal 

levels. It should be noted that Ca2+ levels above 5 pM represent the 

limit of accuracy when measuring Ca2+ using aequorin (George et al., 

1998). Therefore, the resulting Ca2+ concentrations were probably 

underestimated. Nevertheless, it is evident that a prominent Ca2+
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response was obtained as a result of the addition of an isosmotic 

solution. Since these experiments were performed in the presence of 

EGTA, this Ca2+ response must have been produced by Ca2+ release 

from intracellular stores.

The results presented in this section indicate the possible existence of 

intracellular Ca2+ channels triggered by mechanical stimuli in HEK293 

cells.

4.3.3. Effects of the addition of extracellular calcium on intracellular free 

Ca2*.

To investigate whether p2-Aeq could report changes in intracellular 

Ca2+ concentrations in HEK293 cells, HEK293 cells expressing P2-Aeq 

were exposed to a Ca2+ challenge. The cells were also transfected with 

Luc-Aeq in order to compare the regulation of Ca2+ signals detected in 

either the BK channel or cytosolic domains. The basal intracellular free 

Ca2+ in both domains in either the presence or absence of extracellular 

Ca2+ were also studied.

HEK293 cells on coverslips expressing either p2-Aeq or Luc-Aeq were 

used to measure by luminescence the intracellular free Ca2+ 

concentration. When aequorin was reconstituted in situ in cells exposed 

to calcium-deficient medium containing EGTA (1 mM), and calcium (1.3 

mM) was then added back to the medium, a rapid increase in the 

intracellular free Ca2+ reaching a maximum of 4.56 pM was observed
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(Fig. 4.5). A lower peak (1.81 pM) was detected in the cytosol. The Ca2+ 

transients declined to basal Ca2+ levels after approximately 5 min near 

the BK channel and 10 min in the cytosol. These high calcium domains 

are reflected by visual comparison of cells expressing either Luc-Aeq or 

p2-Aeq (Fig. 4.4. B & F, respectively).

Following the first addition of extracellular Ca2+ for 10 min, cells were 

perfused with Ca2+-free medium EGTA (1 mM) for 5 min and then Ca2+- 

containing medium was re-perfused for another 5 min prior to the cell 

lysis. This subsequent addition of extracellular Ca2+ was intended to 

determine whether the marked Ca2+ transients induced in first instance 

were only dependent of extracellular Ca2+. The second Ca2+ challenge 

induced a small increase from 0.35 to 0.50 pM in cytosolic free Ca2+ 

(Fig. 4.5). No change in intracellular free Ca2+ was observed near the 

BK channel. This indicates that the large Ca2+ transients triggered after 

the first addition of extracellular Ca2+ were mainly produced by SOC 

entry. The initial long-term exposure to EGTA during the incubation 

period probably caused the emptying of the ER Ca2+ stores.

The basal intracellular free Ca2+ levels detected by the p2-Aeq chimera 

were higher than those reported by the cytosolic Luc-Aeq (Fig. 4.7 & 

Table 4.2). Previous studies of plasma membrane bound proteins have 

reported Ca2+ levels within the same range (Martin eta!., 1998).
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Fig. 4.5 Effect of m echanical stim uli on free Ca2+ in the cytosolic  

and BK m icrodom ains of HEK293 cells in suspension expressing  

either (32-Aeq or Luc-Aeq.

35
EGTA medium (1 mM)
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Injection of 

EGTA medium

NP40

Fig. 4.5 Effect of m echanical stim uli on free Ca2* in the cytoso lic  

and BK m icrodom ains of HEK293 cells in suspension. HEK293  

cells containing either Luc-Aeq or p2-Aeq were suspended in Ca2+-free 

medium (1 mM EGTA) prior to challenge with an equal volume of 

identical medium. Addition of an equal volume of similar medium 

generated a mechanical disturbance resulting in a fast rise in the free 

C a2+ near the channel to approximately 9.48 pM and also in cytosolic 

Ca2+ (6.27 pM). Intracellular free Ca2+ in both domains returned to basal 

levels after approximately 3-5 s. The remaining aequorin was estimated 

after the addition of 3%  NP40 in a high C a2+ solution. Cells were 

incubated in C a2+-free medium for 1 h (coelenterazine 5 pM). Light 

counts were recorded every second using a home-built luminometer. 

The data are expressed as mean ±SEM  and are representative of three 

separate experiments.

150



Chapter 4

The initial Ca2+ concentrations at rest in the BK channel microdomain in 

Ca2+-free medium were 3 times higher than in the cytosol (0.79 & 0.26 

pM, respectively, Table 4.2, region 1). In regions 2, 3 and 4 (Fig. 4.7) 

this difference dropped to around twice the cytosolic resting Ca2+ level 

in either the presence or absence of Ca2+ in the medium. In both 

domains, the Ca2+ concentrations prior to the first Ca2+ addition (BK 

domain: 0.79 pM, cytosol: 0.26 pM) were significantly lower than those 

subsequently detected (BK domain: 0.86 in EGTA & 0.88 pM with Ca2+; 

cytosol: 0.38 in EGTA & 0.42 pM with Ca2+). These initial reduced levels 

were probably caused by the long-term incubation in EGTA.

The basal intracellular free Ca2+ levels detected by the (32-Aeq chimera 

were higher than those reported by the cytosolic Luc-Aeq (Fig. 4.7 & 

Table 4.2). This is consistent with previous studies of plasma 

membrane bound proteins that showed levels within the same range 

(Martin et al., 1998). The initial Ca2+ concentrations at rest in the BK 

channel microdomain in Ca2+-free medium were 3 times higher than in 

the cytosol (0.79 & 0.26 pM, respectively, Table 4.2, region 1). In 

regions 2, 3 and 4 (Fig. 4.7) this difference dropped to around twice the 

cytosolic resting Ca2+ level in either the presence or absence of Ca2+ in 

the medium. In both domains, the Ca2+ concentrations prior to the first 

Ca2+ addition (BK domain: 0.79 pM, cytosol: 0.26 pM) were significantly 

lower than those subsequently detected (BK domain: 0.86 in EGTA & 

0.88 pM with Ca2+; cytosol: 0.38 in EGTA & 0.42 pM with Ca2+).
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These differences in Ca2+ signals may have been induced by a bias 

caused by either the use of two difference Ca2+-conversion equations or 

the contribution of the background counts to the low light signal 

produced by the p2-Aeq construct. This possibility was appropriately 

addressed first by interchanging the equations in two representative 

experiments with each construct. In this case, only a 2.5-3 % difference 

was noticed between the initial data and the values generated using the 

other equation. Secondly, a series of surrogate background levels was 

artificially created to determine the effect of the background counts on 

both constructs. The initial counts obtained in the first 10 seconds were 

used to create background levels ranging from 0 to 90% of the raw 

signal. In all cases, p2-Aeq detected higher levels of Ca2+ that those 

revealed by Luc-Aeq. Nonetheless, a higher difference between the 

Ca2+ levels of the p2-Aeq and Luc-Aeq was appreciated when the 

background counts raised to 90 % of the raw signal. The difference 

between Ca2+ levels increased from 3.37 fold at 0 % of background 

counts to 5.14 fold at 90 %. This may have been mainly produced by 

the decrease of Luc-Aeq levels from 0.26 to 0.17. These observations 

indicated that the higher Ca2+ signals detected by p2-Aeq were 

genuine. This also indicated that the qualitative comparison of 

membrane and cytosolic Ca2+ levels shown here was correct but the 

attempts of quantify this Ca2+ values should be taken carefully.

152



Chapter 4

Fig 4.6. Visual evaluation of the effects of extracellu lar calcium on 

the light em ission of HEK293 cells expressing either Luc-Aeq or 

p2-Aeq.

L U C - A E O U O R I N

0-600s 601-1200s 1801-2100s 18013000s

EGTA (1 mM) Calcium (1.3 mM) Cell lysis (5 min) Cell lysis (20 min)

B 2 - A E O U O R I N

Fig 4.6. Visual evaluation of the effects of extracellu lar calcium  on 

the light em ission of HEK293 cells expressing either Luc-Aeq or 

p2-Aeq. These images illustrate the different light outputs exhibited by 

Luc-Aeq (top) and p2-Aeq (bottom) in response to extracellular Ca2+. A 

higher increase in light emission was observed near the BK channel (F) 

than in the cytosol (B) as a result of the addition of extracellular Ca2+. 

No difference was noticed when constructs were exposed to Ca2+-free 

medium (A & E). Cell lysis images (C, D, G & H) show the circular area 

where the ICCD camera was located. Images represent the cumulative 

light counts obtained during the indicated periods and were acquired 

using an ICCD system (Photek, UK) as described in Chapter 2, section

2.4.2.2. To allow image comparison, the total number of light counts 

was employed to normalise the brightness of the pictures using IFS32  

Software (Photek, UK).
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Fig 4.7. Effects of extracellu lar calcium  on intracellu lar free Ca2+ 

from  HEK293 cells transfected w ith Luc-Aeq or 02-Aeq.

Calcium (1 .3 m M ) EGTA Ca2+ (1 .3 m M )
EGTA (1  m M )

5.00

LucAeq 

 B2Aeq
4.50

4.00

3 50

3.00

2.50

Cell2.00

1.50

1.00
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0.00
200 400 600 800 1200 1400 1600 1800 2000

T im e  (s )

REG 1 REG 2 REG 3 REG 4

Fig 4.7. Effects of extracellular calcium on intracellular free Ca2+ from 

HEK293 cells transfected with Luc-Aeq or 02-Aeq. Following 1 h 

incubation in Ca2+-free medium (1 mM EGTA), HEK293 cells in coverslips 

transfected with either Luc-Aeq or (32-Aeq were exposed to cell medium 

with either EGTA (1 mM) or Ca2+ (1.3 mM) during the periods indicated on 

the top. The upper trace is the calcium response in p2-Aeq transfected 

cells, and the lower trace is the response monitored with Luc-Aeq. The 

Ca2+ transient induced near the BK channel reached a peak of 

approximately 4.5 pM and then decayed to basal Ca2+ levels after 

approximately 5 min. A Ca2+ transient was also triggered in the cytosol 

reaching a peak at around 1.8 pM and then returning to basal Ca2+ after 

10 min. The traces shown are the means from between 30 to 40 cell 

clusters recorded during three separate experiments. The remaining 

counts were obtained after the cell lysis and luminescence was converted 

to Ca2+ concentration as described in Chapter 2, 2.4.3. Light output was 

acquired using an ICCD camera (Photek, UK). Ca2+ imaging experiments 

were performed as described in Chapter 2, 2.4.2.2. The bottom lines Reg 

1-4 indicate the regions selected to assess the basal Ca2+ levels (Table
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Table 4.2. Comparison of basal intracellular free Ca2+ 

concentrations in HEK293 cells expressing either Luc-Aeq or (32- 
Aeq.

Div microaomam
Regions Ca2+ (pM)

1 (EGTA) 0.79 ± 0.00 I

2 (Ca2+) 0.98 ± 0.02

3 (EGTA) 0.86 ± 0.01

4 (Ca2+) 0.88 ± 0.01

Cytosolic
Regions Ca2+ (pM)

1 (EGTA) 0.26 ± 0.00 :

2 (Ca2+) 0.57 ±0.01

3 (EGTA) 0.38 ± 0.01

4 (Ca2+) 0.42 ± 0.01

Table 4.2. Comparison of basal intracellular free Ca2+ 

concentrations in HEK293 cells expressing either Luc-Aeq or p2- 

Aeq. The resting Ca2+ levels in the BK channel and cytosolic domains 

were significantly lower prior to the addition of Ca2+ medium (reg 1, 

Fig. 4.7) than those subsequently recorded in regions 3 and 4. The 

second addition of extracellular Ca2+ (reg 4) also produced minor 

increases in resting Ca2+ in both domains, although this rise was only 

significant in the case of cytosolic aequorin. The table values are the 

mean ±SEM and were calculated from the traces in Fig. 4.7 during the 

periods indicated. Periods where Ca2+ levels remained stable. Were 

selected to determine the regions (reg 1-4) used. *- represents 

statistical significance (p < 0.05).
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These initial reduced levels were probably caused by the long-term 

incubation in EGTA. A significant increase from 0.38 to 0.42 pM in basal 

intracellular free Ca2+ in the cytosol was also observed following the 

second supplement of extracellular Ca2+ (Fig. 4.7 and Table 4.2). In 

contrast, the basal Ca2+ concentrations remained unchanged (0.86 pM 

vs. 0.88 pM) in the BK microdomain.

The addition of extracellular Ca2+ caused a distinctively high Ca2+ 

response in the BK channel microdomain of HEK293 cells, probably 

caused by SOC entry. In addition, basal intracellular Ca2+ levels 

recorded by (32-Aeq were higher than those in the cytosol irrespectively 

of the presence of extracellular Ca2+.

4.3.4. Individual Ca2+ responses in HEK293 cells.

The addition of extracellular Ca2+ revealed differences in the Ca2+ 

responses of individual cell clusters in both BK channel and cytosolic 

domains. To determine the characteristics of the Ca2+ signals of 

individual cell clusters a more detailed analysis was performed.

The initial challenge with extracellular Ca2+ (1.3 mM) (Fig. 4.7) produced 

Ca2+ transients ranging from 2 to more than 10 % in aequorin 

consumption near the BK channel (Fig. 4.8. A). These values were 

between 0.75 and 6 % (Fig. 4.9. B) in the cytosol during the 10 min 

period analysed. Following the first Ca2+ challenge, addition of medium 

containing EGTA (1 mM) for 5 min and a second addition of 

extracellular Ca2+, a new series of Ca2+ transients was obtained (Fig.
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4.9). In this second Ca2+ challenge, the Ca2+ signal in the proximity of 

the BK channel varied from 0.13 to 1.8 % (Fig. 4.9. A) whereas in the 

cytosol were between 0.11 and 0.89 % (Fig. 4.9 B).

The initial challenge with extracellular Ca2+ (1.3 mM) (Fig. 4.7) produced 

Ca2+ transients ranging from 2 to more than 10 % in aequorin 

consumption near the BK channel (Fig. 4.8. A). These values were 

between 0.75 and 6 % (Fig. 4.9. B) in the cytosol during the 10 min 

period analysed. Following the first Ca2+ challenge, addition of medium 

containing EGTA (1 mM) for 5 min and a second addition of 

extracellular Ca2+, a new series of Ca2+ transients was obtained (Fig.

4.9). In this second Ca2+ challenge, the Ca2+ signal in the proximity of 

the BK channel varied from 0.13 to 1.8 % (Fig. 4.9. A) whereas in the 

cytosol were between 0.11 and 0.89 % (Fig. 4.9 B). Accordingly, a 

higher degree of variability was detected in the vicinity of the BK 

channel (CV = 2.36 %, Table 4.3) than those induced in the cytosol (CV 

= 1.26 %, Table 4.3). The Ca2+ concentrations close to the BK channel 

exhibited a two-fold increase in variability when compared to the cytosol 

during both events, the first and the second Ca2+ challenges (Table 

4.2).

It could be argued that a potential artefact generated by differences in 

aequorin expression between cell clusters may have caused the 

diversity of individual Ca2+ signals. To exclude this possibility, the Ca2+ 

responses were compared to the total aequorin for each individual cell
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cluster. This study found that no correlation between the Ca2+ signals 

and the total aequorin expression of the cell cluster (Table 4.10). It 

could also be expected that an initial large and prolonged rise in 

intracellular free Ca2+ during the first Ca2+ challenge also induces a 

similar high Ca2+ signal during the subsequent Ca2+ challenge. 

Nevertheless, the data presented in these experiments showed that the 

first (Fig. 4.8) and second Ca2+ transients (Fig. 4.9) were also unrelated 

in the BK and cytosolic domains. In some occasions in the BK channel 

microdomain, a high Ca2+ signal during the first challenge (i.e. 6.31 %, 

cell cluster 21, Fig. 4.8 A) was followed by a second high Ca2+ signal 

(0.61 %, Fig. 4.9 A) while in other cases the secondary response was 

lower (0.48 %, cell cluster 1, Fig. 4.9 A) even when the first Ca2+ 

transient had been considerably high (7.83 %, Fig. 4.8 A). Similar 

results were observed in the cytosol (Fig. 4.8 B & 4.9 B).

These results have demonstrated the high degree of variability of the 

Ca2+ signals triggered in individual cell clusters. No association was 

found between the experimental conditions and the Ca2+ transients 

indicating that the diversity in the Ca2+ responses was probably due to 

the different biological features of each cell cluster.
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Fig 4.8. Individual Ca2* transients induced by addition of extracellular Ca2+
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Fig 4.8. Individual Ca2* transients induced by addition of extracellular Ca2*. 

Individual clusters of HEK293 cells exhibited different Ca2+ signals in response to the 

addition of extracellular Ca2* (1.3 mM) for 10 min (Fig. 4.7). Larger transients ranging 

from 2 to more than 10 % near the BK channel (A). Cytosolic Ca2* responses varied 

0.75 and 6 % (B). Each number in the x axis represents a individual cell cluster. Cell 

clusters were selected as described in Chapter 2, 2.3.3.2.3. from three separate 

experiments. HEK293 cells in coverslips were transfected with either 02-Aeq or Luc- 

Aeq, incubated for 1 hour in EGTA medium (2 pM coelenterazine) and perfused with 

EGTA medium prior to the Ca2* challenge. Light counts were acquired using an ICCD 

camera (Photek, UK) as described in Chapter 2, 2.4.2.2. Bars show the percentage of 

aequorin consumed during a period of 10 min.
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Fig 4.9. Individual Ca2* transients induced by a second addition of extracellular Ca2*.
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Fig 4.9. Individual Ca2* transients induced by a subsequent addition of 

extracellular Ca2* in HEK293 cells. Different Ca2* responses were observed in 

individual clusters of HEK293 cells during a second addition of extracellular Ca2* (1.3 

mM) (Fig. 4.7). (32-Aeq reported larger individual Ca2* transients ranging from 0.13 to 

1.8 % (A) than those in the cytosol (B). The individual Ca2* signals induced in the cytosol 

varied between 0.11 and 0.89 % (B). Cell clusters were extracted from three different 

experiments and are indicated in the x axis. Experimental conditions were as follows: 

incubation in EGTA (1 mM, 1 h, 2 pM coelenterazine) and then perfusion with 10 min 

EGTA, 10 min Ca2* (1.3 mM) medium, 5 min EGTA, 5 min Ca2* (1.3 mM) and cell lysis 

solution (Fig 4.7). Ca2* imaging experiments were carried out using an ICCD camera 

(Photek) as described in Chapter 2, 2.4.2.2. Bars show the percentage of aequorin 

consumed during the 5 min period corresponding to the second addition of extracellular
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Fig 4.10. Comparison of Ca2* signals to the total expression of aequorin 
in individual cell clusters.
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Fig 4.10. Comparison of Ca2+ signals to the total expression of aequorin in individual 

cell clusters. The differences of individual Ca2+ responses in both BK channel (A) and cytosolic 

(B) domains were independent of the total aequorin expressed in the individual cell cluster. This 

indicates that the difference in Ca2* responses in individual HEK293 cell clusters was due to 

biological factors. Blue bars represent the aequorin consumed (left Y axis) after the first addition 

of extracellular Ca2* as described in Fig. 4.8. Note that the units and scale of total light counts 

per pixel (right Y axis) were selected to facilitate the interpretation of each individual graph. The 

total aequorin expression (red bars) for individual cell clusters is expressed as the total light 

counts obtained for the same cell cluster at the end of the experiment divided by the total 
number of pixels of the specific OAS. The area of the OAS is proportional to the number of 

pixels. All data was obtained using a ICCD camera and IFS32 Software (Photek, UK).
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Table 4.3. Variability of the individual Ca2* responses.

02-Aeq Luc-Aeq

1st Ca2+ challenge 2.36 % 1.26 %

2nd Ca2+ challenge 0.37 % 0.19 %

Table 4.3. Variability of the individual Ca2* responses. The higher 

degree of variability observed near the BK channel is indicated by the 

coefficient of variability. The coefficient of variability was higher than in 

the cytosol during both the first and the second Ca2+ challenges. The 

coefficients of variability are the percentage of the standard deviation 

divided by the mean and were calculated from the aequorin consumption 

data presented in figures 4.8 and 4.9.
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4.4 DISCUSSION

The results in this chapter have demonstrated that Ca2+ concentrations 

in the proximity of the BK channel were locally regulated. A higher Ca2+ 

signal was detected near the channel at rest and in response to the 

addition of extracellular Ca2+. The analysis of the Ca2+ responses 

induced showed important differences between individual cell clusters 

in both BK channel and cytosolic domains. In addition, evidence of the 

presence of intracellular mechanosensitive channels in HEK293 was 

found. Moreover, the assessment of aequorin light emission carried out 

in MG63 and HEK293 cells revealed that only the latter generated 

sufficient counts to enable the use of a CCD camera for Ca2+ imaging 

experiments.

4.4.1. Assessment of the best conditions for Ca2+ imaging in HEK293 

and MG63 cells: evidence of mechanosensitive channels in HEK293.

The preliminary Ca2+ imaging experiments performed in HEK293 and 

MG63 cell lines using both the home-built luminometer and the CCD 

camera revealed that very low light emission was detected in MG63 

cells (Fig. 4.4). Since an adequate light yield is required in order to 

distinguish the Ca2+-induced signal from the background noise, a study 

was conducted to determine the causes of the differences in light 

emission between HEK293 and MG63. The number of counts emitted 

depends on the expression rate of aequorin and its inherent properties 

(i.e.: p2-Aeq displays a 10 times lower the quantum yield than Luc-

163



Chapter 4

Aeq). Consequently, it is important to assess whether a sufficient 

amount of transfected cells are present.

The analysis of the transfection efficiency in HEK293 and MG63 cells 

was performed by two methods: qualitative, by simple observation of 

the visible signal and quantitative, via FACS analysis. Both methods 

delivered similar results revealing a much higher transfection rate in 

HEK293 cells (Table 4.1). This dramatic difference in transfection 

efficiency may be ascribed to the use of different cell lines. Indeed 

MG63 cells showed low transfection efficiency that was several orders 

of magnitude lower when compared to HEK293 (Table 4.1). Other 

studies have also reported the low transfection efficiency achieved in 

MG63 (Corsi et al., 2003; Hantusch et al., 2007). The comparison of 

light counts recorded in experiments carried out with aequorin vectors in 

either HEK293 or MG63 cells also corroborate the higher transfection 

rate observed in HEK293.

The transfection efficiency achieved by HEK293 (-20 %, Table 4.1) 

proved to be adequate to enable the calcium monitoring of these cells 

under a CCD camera. In contrast, the light emission recorded from 

MG63 cells was insufficient probably due to their low transfection 

efficiency (Fig 4.3). The area covered by the CCD camera is only a few 

square centimetres, which may allocate a few thousand of confluent 

HEK293 cells. One fifth of these cells can fire as a response to calcium 

giving a sufficient number of counts. In the case of MG63, the number

164



Chapter 4

of cells under the camera is reduced due to the bigger size of these 

cells compared to HEK293 and from those merely 0.5% express 

aequorin. As a consequence, the low number of counts obtained makes 

the use of a CCD camera unreliable to examine Ca2+ signalling in 

MG63.

Aequorin assays were also undertaken using a home-built luminometer 

in order to study Ca2+ signalling in cells in suspension. Our findings 

showed that a marked increase in intracellular free Ca2+ in HEK293 

cells was caused simply by the injection stimuli even in the presence of 

EGTA. These results concur with other studies showing Ca2+ transients 

monitored with aequorin in the presence of EGTA (Brown & Blinks, 

1974) and also in quin-2 loaded cells after addition of EGTA (James- 

Kracke, 1986). This effect was probably due to a physical artefact that 

can be generated in a number of ways. One may appear as a result of 

physically disturbing the cells, especially when cells are in suspension. 

Another involves the mechanical stimulation of cells which initiates Ca2+ 

transients (Putney, 2000). Since this effect occurred in the absence of 

extracellular Ca2+, these mechanical stimuli probably produced a Ca2+ 

release from intracellular stores. In support of this idea, the existence of 

stretch-activated Ca2+ channels triggering Ca2+ release from 

intracellular stores in the presence of EGTA has been reported 

(Fanchaouy et al., 2007) and the presence of mechanosensitive TRP 

channels in the ER (O'Neil & Heller, 2005; Reaves & Wolstenholme, 

2007). Furthermore, endogenous stretch-activated Ca2+ channels have
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been recorded in HEK293 WT by means of electrophysiological 

techniques (Morita etai, 2007).

These experiments made clear that MG63 cells elicited a low light 

signal and Ca2+ imaging could only be performed in HEK293 cells. 

Furthermore, the mechanical stimulation of HEK293 cells in suspension 

induced large Ca2+ transients in both the BK channel and the cytosol 

domains. The results presented here indicate that Ca2+ mobilised into 

both domains upon mechanical disturbance is entirely of intracellular 

origin.

4.4.2. Effects of extracellular calcium.

To investigate whether the Ca2+ responses detected by the p2-Aeq 

chimera were different from those produced in the cytosol, HEK293 

cells were subjected to a Ca2+ challenge. There has been shown 

(George et a/., 1998) that the addition of extracellular Ca2+ to cells that 

have been exposed to EGTA for long periods results in considerable 

Ca2+ transients. The same approach was used in HEK293 cells. 

Following incubation in EGTA (1 mM) for a period of 1 h, cells were 

exposed to Ca2+ (1.3 mM) containing medium for 10 min, followed by 5 

min of EGTA medium and re-addition of extracellular Ca2+ before cell 

lysis (Fig. 4.8). In these experiments, HEK293 cells expressing the 

plasma membrane-bound p2-Aeq revealed a rapid rise in Ca2+ 

concentration which was consistently higher than that detected by the 

cytosolic Luc-Aeq (4.56 pM vs. 1.81 pM, respectively). Long time
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exposure to Ca2+ buffers such as EGTA or BAPTA can cause a fall in 

Ca2+ levels in the ER. Accordingly, these Ca2+ transients were probably 

caused by a combination of SOC channels and CICR from intracellular 

stores. Since the subsequent 5 min exposure to EGTA and re-addition 

of extracellular Ca2+ did not generate such a response (Fig. 4.8), it is 

likely that SOC entry was mainly responsible for the initial Ca2+ 

increase. Previous studies using plasma membrane-bound aequorin 

revealed that analogous Ca2+ transient occurred during addition of Ca2+ 

which quickly decayed to values proximal to those before Ca2+ influx 

occurred (Marsault et al., 1997; Nakahashi et al., 1997).

The key question now is whether the Ca2+ concentrations reached in 

response to stimuli beneath the plasma membrane, especially near the 

BK channel, are consistent with previous studies. Three techniques 

have been mainly used for this purpose: electrophysiology,

bioluminescence and fluorescent dyes (Chapter 1, 1.6). Only the first 

one was specific for the BK channel microdomain. Aequorin light 

emission was used in other microdomains near the membrane and 

fluorescent dyes detected general Ca2+ responses beneath the 

membrane. These limitations should be considered when comparing 

these studies.

Single channel activity of Ca2+-activated BK channels have been 

employed to calculate the Ca2+ concentrations affecting the channel 

(Chapter 1, 1.6). The Ca2+ transients reported here are similar to
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previous subplasma membrane Ca2+ concentrations estimated using 

BK activation as a means of assessment (Munoz et al, 1998; Frieden 

et al., 2002). In the first study, a high Hill coefficient was employed to 

account for the difference between Fura 2 measurements and BK 

activation as a result of ionomycin stimulation. A switch-off mechanism 

for BK activation was proposed at a level of around 1 pM Ca2+. There is 

no other evidence supporting such hypothesis. This is probably 

because ionomycin does not release Ca2+ homogeneously within the 

cell (Dedkova et al, 2000) as was assumed. The latter research 

(Frieden et al., 2002) matches closely the Ca2+ concentrations reported 

in this thesis. In their study, the equation employed to calculate the Ca2+ 

concentrations was based on previous studies (Barrett et al., 1982), 

which assumed that BK channels in a membrane patch had similar 

properties and acted independently. Barret and collaborators (Barrett et 

al., 1982) reported a Hill coefficient of 2.7, which is consistent with the 

two high-affinity Ca2+ sites and other with lower affinity found in BK 

channels (Zeng et al., 2005). This indicates that this approach is 

probably quite accurate. Nevertheless, other mathematical models 

using similar coefficients but different assumptions such as non- 

cooperative Ca2+ binding resulted in estimated Ca2+ concentrations 

beneath the membrane of 50 pM (Markwardt & Isenberg, 1992) and 

150 pM (ZhuGe et al., 2000). Other study (Franciolini et al., 2001) 

showed very low ionomycin-induced Ca2+ transients (0.3 pM) near the 

membrane. In this case, the assumption of Ba2+ contamination in the
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solution resulted in long inactive periods (>2 s) being ignored in the 

analysis. These close states were not excluded in Barrett’s studies 

(Barrett et al., 1982) probably explaining the differences in estimated 

Ca2+ concentrations between both studies. The wide disparity among all 

these studies exposes the importance of making the correct 

assumptions. The use of aequorin probes like the one designed in this 

thesis may provide further evidence about the precise Ca2+ 

concentration affecting the BK channel and also to the suitability of the 

assumptions made in previous studies.

Imaging studies using plasma membrane-bound aequorin have also 

been undertaken to determine Ca2+ concentrations in these domains. 

Initial experiments using 5HT-Aeq indicated the existence of a high sub

plasma membrane domain (Marsault et al., 1997). However, the use of 

other membrane-bound proteins fused to aequorin failed to reveal such 

domain (Nakahashi et al., 1997; Martin et al., 1998; Lin et al., 2000). A 

potential explanation for their unique results may be the low expression 

of their construct obtained. Indeed, in some of our experiments using 

the low-transfected MG63 cell line, most of the (32-Aeq was completely 

consumed after the addition of extracellular Ca2+. Only a small part of 

aequorin remained during the cell lysis. In addition, a posterior work 

with the 5HT-Aeq construct revealed Ca2+ rises within the micromolar 

range in a different cell line (Poburko et al., 2006). The range of Ca2+ 

concentrations reported in this thesis is supported by other reports
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using membrane-bound aequorin (Nakahashi et al., 1997; Martin et al., 

1998; Lin et al., 2000).

The series of Ca2+-sensitive fluorescent dyes (C18-fura 2, FFP18, and 

FIP18) used to monitor Ca2+ near the plasma membrane have also 

indicated that the Ca2+ levels beneath the membrane could reach 

concentrations as high as 150 pM (Davies & Hallett, 1998). Following 

this brief massive increase, the Ca2+ levels go down to order of 

magnitude similar to ours (5 pM). The difficulty of the calibration of 

these fluorescent dyes is well documented because of the important 

differences between in-vitro and in-vivo properties of these compounds 

(Takahashi et al., 1999). The majority of the following reports using 

these dyes only showed the variation in fluorescent emission at the 

appropriate wavelengths avoiding the use of Ca2+ concentrations. 

Furthermore, no other studies employing such dyes have reported a 

similar ratio increase of 50-150 times. Normally, the reported ratio 

increase was 3-4 times in response to stimuli (Graier et al., 1998), 

which is consistent with our results.

During these experiments, the resting Ca2+ concentrations were also 

studied to determine whether there were differences between BK 

channel and cytosolic domains at rest (Fig. 4.8). Four regions (Fig. 4.7) 

where Ca2+ levels remained stable were compared under different 

conditions. The initial basal Ca2+ levels of HEK293 cells previously 

maintained in Ca2+-free medium were significantly lower (BK: 0.79 pM;
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Cyt: 0.26 |iM) than those obtained during the subsequent addition of 

Ca2+-free medium (BK: 0.86 pM; Cyt: 0.38 pM) and re-addition of 

extracellular Ca2+ (BK: 0.88 |iM; Cyt: 0.42 pM). These initial lower levels 

in both domains were probably caused by the long-term incubation in 

EGTA, which may have emptied the ER Ca2+ stores. When cells were 

supplemented with EGTA for 5 min and subsequently with Ca2+ medium 

for another 5 min, only a small increase in resting Ca2+ levels was 

observed. This increased was detected in both the BK and cytosolic 

domains (0.86 & 0.88 pM, 0.38 & 0.42 pM, respectively), although only 

in the case of the cytosolic aequorin was significant. The higher Ca2+ 

levels detected in the plasma membrane at rest shown in this work are 

also supported by previous reports using aequorin constructs (Martin et 

al., 1998; Lin et al., 2000) and Ca2+-sensitive fluorescent dyes (Graier et 

al., 1998). Moreover, it is known that BK channel activity at rest is low. 

These basal Ca2+ levels near the BK channel (0.79 & 0.88 pM) are also 

consistent with this. There is evidence that Ca2+ concentrations below 1 

pM induced low BK channel activity at resting membrane potential (~ - 

60 mV) when the a subunit was co-expressed with either the p2 (Orio & 

Latorre, 2005) or the p1 subunit (Nimigean & Magleby, 2000; Bao & 

Cox, 2005). A potential hypothesis to explain the higher Ca2+ 

concentrations in the membrane is that zeta potential retains Ca2+ ions 

beneath the subplasma membrane creating the higher Ca2+ levels 

detected.
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The data presented in this work have revealed higher Ca2+ signals near 

the BK channel in response to the addition of extracellular Ca2+ 

probably due to SOC entry. In addition, the basal Ca2+ levels near the 

BK channel were also higher than those in the cytosol in either the 

presence or absence of extracellular Ca2+.

4.4.3. Individuality of Ca2+ responses in HEK293 cells.

The inherent nature of all cell systems entails a certain degree of 

biological variability. There are, however, many occasions in which the 

diversity of the cellular response cannot be attributed to this biological 

variability (Rao et al., 2002). The term ‘molecular noise’ has been used 

to describe this apparently random range of variability. Sometimes even 

opposite cellular responses can be induced under similar conditions 

(Rommerts et al., 2002). Single cell imaging usually reports the 

percentage of cells in which the specific Ca2+ transients were detected 

supporting cell individuality.

HEK293 cells transfected with either p2-Aeq or Luc-Aeq exhibited a 

wide range of different Ca2+ transients. To investigate whether there 

exists a pattern in these apparently random Ca2+ responses to the 

external stimulus, a detailed study of the individual Ca2+ signals in the 

context of the fluctuations of the biological and experimental conditions 

was conducted.
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This individual variability has been previously reported using aequorin 

chimeras (Allen et al., 1985; Baubet et al., 2000) although no detailed 

study was performed. In this thesis, a comprehensive analysis of the 

experimental conditions was carried out to examine the characteristics 

of these Ca2+ signals. The Ca2+ concentrations were calculated using 

the percentage of aequorin consumption, which is proportional to the 

Ca2+ concentration. Consequently, the variability of the Ca2+ transients 

was not as a result of the total aequorin expression, the coelenterazine 

concentration or the total cell number. Furthermore, there was no 

pattern found when the individual Ca2+ signals were compared to the 

total aequorin expression in each cell cluster (Fig. 4.10). The cellular 

responses in well-characterised cell lines may also differ due to 

modification of the cell properties during the culture period. 

Nevertheless, in the experiments analysed, all cells originated from the 

same cell passage number and differences in Ca2+ responses were 

observed within each individual coverslip (Fig. 4.9 & 4.10). This latter 

result also suggests that the differences were not caused by either 

technical variations (i.e. position of the ICCD camera, manual 

manipulation of the coverslip prior to the experiment, etc) or 

experimental conditions (i.e. use of different drug solutions, delay in the 

perfusion of the initial solution, incubation time in EGTA, etc). Moreover, 

the same solutions were employed in all the experiments in both (32-Aeq 

and Luc-Aeq. In our experiments, HEK293 cells were completely 

confluent and Ca2+ signals of individual cell clusters were independent
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of their actual position within the chamber. This indicates that the cell 

density or particular position of individual cells in the population had 

probably little influence on the cellular responses.

The variations of the cellular responses during the life-cycle (G1-Gap1; 

S-synthesis; G2-Gap2 and M-Mitosis) of individual cells may account 

for part of this variability on the individual Ca2+ responses. Alterations of 

intracellular Ca2+ concentrations during the cell cycle have been widely 

reported (Santella, 1998). Indeed, extracellular Ca2+ has been shown to 

be required to initiate the G1 phase; a rise in intracellular Ca2+ from 200 

to 400 nM occurs during the breakdown of the nuclear envelope 

(Steinhardt & Alderton, 1988); the SOC entry decreases with cell cycle 

progression (Morimoto et al., 2007) and IP3-induced Ca2+ release 

controls the timing of mitosis onset (Ciapa et al., 1994). Additionally, 

local Ca2+ microdomains generated by the ER near the nucleus may 

also be involved (Whitaker, 2006). Ca2+ binding enzymes such as 

calmodulin and the proteolytic enzyme calpain probably mediate these 

effects of Ca2+ on the cell cycle (Santella, 1998). Furthermore, the 

expression, regulation and activity of ion channels also depends on the 

phase of the cell cycle. Ca2+ channels such as the T-type (Day et al., 

1998) and the CRAC channels (Tani et al., 2007) showed different 

regulation during the cell cycle. Similar findings have been reported for 

voltage-dependent potassium channels (Chittajallu et al., 2002) and 

Ca2+-activated potassium channels such as the intermediate 

conductance potassium (IK) (Deng et al., 2007) and small conductance
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potassium (SK) channels (Morimoto et a!., 2007). The cell cycle state 

also alters the expression and activity of BK channels in embryos (Day 

et al., 1998) and cell lines (Ouadid-Ahidouch et al., 2004). Many of 

these variations during the cell cycle occur near or within the plasma 

membrane. This may account for the higher variability observed in the 

BK channel microdomain (CV = 2.36 %, Table 4.3) than in the cytosol 

(CV = 1.36 %). Considering the great deal of cellular events and 

processes modified during the cell cycle, the phase of the cell cycle of 

individual cells may have caused, to some extend, the wide diversity of 

Ca2+ signals.

This diversity could also be an example of the non-linear and chaotic 

properties of complex biological systems operating inside the cell 

(Coffey, 1998). The traditional deterministic approach is generally used 

in research studies in order to simplify the cause-effect relationship of 

the results obtained. However, deterministic models are mathematically 

convenient, but biologically unrealistic. The use of stochastic models 

that describe random process can be better suited to account for the 

variability encountered during these experiments. These models use 

probability distribution functions to describe the uncertainty of the 

cellular processes. This uncertainty is produced by multiple factors, 

often working interactively and synergistically. In particular, Ca2+ 

oscillations, which are also present in HEK293 cells (Bird & Putney, 

2005), seem to follow stochastic models (Eichwald & Kaiser, 1993; 

Kummer et al., 2005). The stimuli-induced cellular response in the
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experiments probably triggers several intracellular pathways in addition 

to the increase in intracellular Ca2+. Some of these biological cascades 

are also likely to generate specific positive or negative feedback in the 

Ca2+ responses. This in turn results in a very complex Ca2+ signalling 

process that triggers the myriad of different Ca2+ signals observed.

The experiments carried out in this thesis provided evidence that 

individual clusters of HEK293 cells produced different Ca2+ responses 

as a result of the addition of extracellular Ca2+.

4.4.4. Conclusions.

The analysis of the transfection efficiency and light signals in HEK293 

(Fig. 4.2) and MG63 (Fig. 4.3 & 4.4) cells revealed that a minimum level 

of protein expression must be achieved to accurately monitor Ca2+ 

concentrations. Only HEK293 cells exhibited sufficient aequorin 

expression to perform Ca2+ imaging experiments. There was also 

evidence that HEK293 cells possessed intracellular mechanosensitive 

Ca2+ channels (Fig. 4.5). In HEK293 cells expressing the p2-Aeq 

chimera, resting calcium levels below the plasma membrane were 

higher (0.79 pM) than those in the cytoplasm (0.26 pM). Similarly a 

larger Ca2+ transient (4.56 pM) in response to the addition of 

extracellular Ca2+ was detected near the BK channel than that in the 

cytosol (1.81 pM). These differences indicate that the intracellular free 

Ca2+ in the BK channel is locally regulated and significantly different of 

that detected in the cytosol. In both BK channel and cytosolic domains,
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the study of these Ca2+ transients (Fig. 4.8 & 4.9) revealed significant 

differences in the Ca2+ signals between individual cell clusters 

demonstrating the individuality of Ca2+ responses in HEK293 cells.
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CHAPTER 5

REGULATION OF LOCAL CALCIUM SIGNALS 

NEAR THE BK CHANNEL BY AGONISTS AND 

INTRACELLULAR CALCIUM RELEASE
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5.1 INTRODUCTION

Intracellular free Ca2+ has been proposed to modulate the activation of 

the BK channel (Marty, 1981; Pallotta, et a l 1981). These evidence, 

however, have been based on experiments using either 

electrophysiological techniques or fluorescent dyes targeted to the 

cytosol. As indicated in Chapter 1, section 1.6, these techniques are 

unable to provide the exact Ca2+ concentration affecting the BK channel 

in situ in living cells. Therefore, in order to test the hypothesis that local 

intracellular Ca2+ activate BK channels, the experiments in this chapter 

were undertaken.

Receptor-operated agonist such as carbachol (CCh), ATP and 

histamine trigger Ca2+ responses in many different cells, which can be 

effectively monitored using aequorin (Rembold et al., 1995; Badminton 

et al., 1996). It could be expected that agonist-induced Ca2+ responses 

may also mediate the activation of the BK channel. Indeed, the BK 

channel regulation by CCh and ATP has been reported to be mediated 

by intracellular Ca2+ changes (Trautmann & Marty, 1984; Strobaek et 

al., 1996). Similar findings have been reported for histamine (Frieden et 

al., 2002) and caffeine (Chavis et al., 1998). Consequently, these three 

agonists were selected to study the Ca2+ responses near the BK 

channel.

Intracellular Ca2+ signals can also be affected by the exposure to 

potassium channel blockers. These Ca2+ responses are mainly caused
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by alterations of the cell membrane potential which lead to the 

activation of voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ 

channels have been reported to co-express with BK channels 

(Berkefeld et al., 2006). Consequently, a local increase in intracellular 

Ca2+ near the channel may well occur as a result of membrane 

depolarisation. Tetraethylammonium (TEA), a generic potassium 

channel blocker, has been reported to induce Ca2+ transients in 

fibroblasts in which a large conductance K+ channel is involved 

(Bhagavan, et al., 1998). Tetrandrine, a more specific BK channel 

blocker (Wang & Lemos, 1992), also produced modifications in 

intracellular Ca2+ concentrations (Chen et al., 2000). Moreover, there is 

also evidence that iberiotoxin, a specific BK channel blocker (Candia et 

al., 1992), alters the amplitude of Ca2+ spikes in neuronal cells 

(Haghdoost-Yazdi et al., 2008). Nevertheless, it must be mentioned that 

the ability of these compounds to block BK channels has been shown to 

be independent of the intracellular free Ca2+ (Candia et al., 1992; Wu et 

al., 2000). The effects of changes in membrane potential induced by 

TEA and tetrandrine were studied in this chapter.

Ca2+ release from intracellular stores has been associated with BK 

channel activation (Sergeant et al., 2001; Frieden et al., 2002). The 

effects of ER Ca2+ release in other cellular processes have been 

investigated using compounds such as caffeine or cyclopiazonic acid 

(CPA) (Rembold et al., 1995; Badminton et al., 1996). Caffeine acts 

through ryanodine receptors, which induce Ca2+ release from the ER.
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CPA is an potent inhibitor of ER Ca2+-dependent ATPases (Seidler et 

al., 1989). This compound in particular has been shown to produce 

activation of the BK channels by means of increasing intracellular Ca2+ 

(Ohi et al., 2001). Experiments using CPA are normally performed in 

the absence of extracellular Ca2+ to ensure that any modification of 

intracellular free Ca2+ is due to Ca2+ release from intracellular stores. In 

this thesis, caffeine and CPA were employed to determine whether ER 

Ca2+ release produces specific regulation of the intracellular free Ca2+ 

affecting the BK channel.

The BK channel activation in response to agonists or blockers has been 

examined mainly by means of either patch-clamp studies or 

determination of cytosolic Ca2+. As shown in the previous chapter 

higher Ca2+ signals occur near the BK channel than those detected in 

the cytosol. Therefore, to understand how the BK channel function is 

modulated by these compounds is essential to assess the local 

intracellular free Ca2+ affecting the channel. This chapter aims to 

determine the Ca2+ levels reached in the proximity of the BK channel in 

response to various receptor-operated agonists (CCh, ATP and 

histamine) and changes in membrane potential using K+ channel 

blockers (TEA and tetrandrine). The effects of ER Ca2+ release on Ca2+ 

signalling near the BK channel were also investigated using caffeine 

and the SERCA pump inhibitor, CPA. Furthermore, the effects of the 

Ca2+ responses obtained in these experiments are compared to the
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estimated Ca2+ concentrations required to produce BK channel 

activation based on previous studies.

5.2 METHODS

5.2.1. Ca?+ monitoring in living cells in response to diverse agonists.

HEK293 cells seeded on coverslips were transfected with either p2-Aeq 

or Luc-Aeq for 48 h as described in Chapter 2, 2.2.7.2. Cells were then 

incubated in Krebs-Ringer-HEPES (KRH) medium containing either 

EGTA (1 mM) or Ca2+ (1.3 mM) for 1 h at 37°C in the presence of 

coelenterazine (2 pM). Following the reconstitution of aequorin, 

coelenterazine was eliminated by washing the cells twice with the same 

medium. The cells were then transferred to the chamber and carefully 

brought into contact with the fibre optic. Ca2+ imaging experiments 

using an ICCD camera (Photek, UK) were carried out as described in 

Chapter 2, 2.4.2.2. All experiments were performed at room 

temperature (22°C).

5.2.2. Cc?+ monitoring in living cells in response to diverse drugs.

The Ca2+ imaging protocols were as follows:

- Receptor-operated agonists.

CCh & ATP. Incubation (1 h) in Ca2+ (1.3 mM) KRH (2 pM 

coelenterazine): 3 min Ca2+ KRH; 5 min CCh (100 pM) in Ca2+ KRH; 3 

min Ca2+ KRH; 5 min ATP (100 pM) in Ca2+ KRH and 20 min lysis 

solution.
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ATP & histamine. Incubation (1 h) in Ca2+ (1.3 mM) KRH (2 [iM 

coelenterazine): 3 min Ca2+ KRH; 5 min ATP (100 pM) in Ca2+ KRH; 3 

min Ca2+ KRH; 5 min histamine (100 |j M ) in Ca2+ KRH and 20 min lysis 

solution.

- 1C channel blockers.

TEA & tetrandrine. Incubation (1 h) in Ca2+ (1.3 mM) KRH (2 |iM 

coelenterazine): 3 min Ca2+ KRH; 5 min CCh (TEA 10 mM) in Ca2+ 

KRH; 3 min Ca2+ KRH; 5 min tetrandrine (10 |j M ) in Ca2+ KRH and 20 

min lysis solution.

- Caffeine.

Caffeine (5 & 50 mM) in EGTA. Incubation (1 h) in Ca2+-free KRH (1 

mM EGTA) (2 |iM coelenterazine): 3 min Ca2+-free KRH; 5 min caffeine 

(5 mM) in Ca2+-free KRH; 5 min caffeine (50 mM) in Ca2+-free KRH and 

20 min lysis solution.

Caffeine (5 & 50 mM) in Ca2* (1.3 mM). Incubation (1 h) in Ca2+ (1.3 

mM) KRH (2 jiM coelenterazine): 3 min Ca2+ KRH; 5 min caffeine (5 

mM) in Ca2+ KRH; 5 min caffeine (50 mM) in Ca2+ KRH and 20 min lysis 

solution.

- Cyclopiazonic acid.

CPA in EGTA. Incubation (1 h) in Ca2+-free KRH (1 mM EGTA) (2 |iM 

coelenterazine): 5 min Ca2+-free KRH; 10 min CPA (10 |iM) in Ca2+-free 

KRH; 5 min Ca2+ KRH and and 20 min lysis solution.
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All compounds were dissolved in KRH medium in either the presence or 

absence Ca2+. CPA was dissolved in DMSO for stock solutions (10 

mM). It has been shown that low concentrations of DMSO (-0.1 % v/v) 

do not affect cellular Ca2+ during 10 min exposure (Leung etal., 1994).

5.2.3. Data analysis.

IFS32 Software (Photek, UK) was employed to analyse the data 

acquired. The complete imaging experiment was converted into a 10 s 

frame video sequence and a number of cell clusters (OAS) selected as 

described in Chapter 2, 2.4.2.2.3. The means±SEM were obtained 

from all the cell clusters selected from three different coverslips. Light 

emission was converted to Ca2+ concentration using rate constants and 

the equations described in Chapter 2, 2.4.3.

Aequorin consumption is proportional to the intracellular free Ca2+. 

Since small Ca2+ transients were detected in response to some of the 

compounds tested, the increase in aequorin consumption was 

employed to quantify these Ca2+ responses. There was also evidence 

that the Ca2+ concentrations near the BK channel were higher than 

those in the cytosol (see Chapter 4, Table 4.2). Therefore in a given 

time period, more aequorin is consumed near the BK channel than in 

the cytosol. In order to compare the Ca2+ responses between the BK 

channel and the cytosolic microdomains, the data were plot as the 

increase in aequorin consumption during the exposure to the stimuli. 

The mean of the aequorin consumption prior to the addition of the drug
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was calculated and subtracted from the values obtained during the drug 

exposure. Since the resting values varied between individual cell 

clusters, the increase in aequorin consumption was determined for each 

individual cell cluster. The aequorin consumed was calculated by 

dividing the total light counts during the drug exposure by the total 

counts emitted during the experiment. The final graphs represent the 

means of the variation in aequorin consumption of all cell clusters 

studied.

5.3 RESULTS

Three different agonists (ATP, histamine and CCh were employed to 

examine whether the agonist-induced Ca2+ signalling near the BK 

channel was (see Chapter 4) regulated by local intracellular Ca2+ 

signals. In addition, the effects of K+ channel blockers (TEA and 

tetrandrine) on intracellular free Ca2+ were assessed. To mimic 

physiological conditions these experiments (agonists and K+ channel 

blockers) were performed in the presence of extracellular Ca2+. 

Moreover, Ca2+ transients induced by CCh and ATP have been 

reported to be inhibited in the presence of EGTA in other cell lines such 

as adrenal chromaffin cells (Castro et al., 1995). Consequently, to 

ensure that Ca2+ transients were generated in HEK293 cells, the effects 

of these agonists were tested in the presence of extracellular Ca2+.
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To investigate whether ER Ca2+ release may affect Ca2+ signals in both 

BK channel and cytosolic domains, caffeine and CPA (SERCA pump 

inhibitor) were tested in the absence of extracellular Ca2+.

5.3.1 Effects of agonist-induced Ca2* responses in HEK293 cells.

To investigate the effects of agonist-induced Ca2+ responses on the BK 

channel microenvironment of HEK293 a cells, a series of receptor- 

operated agonist that modulates intracellular Ca2+ was tested.

Three different compounds were applied: ATP, histamine and CCh. 

Histamine (100 pM) showed no effect in either the cytosol or the BK 

channel microdomain (Fig. 5.2) indicating the absence of histamine 

receptors in HEK293 cells. In contrast, ATP (100 pM) and CCh (100 

pM) generated Ca2+ transients in both cytosolic and BK channel 

domains (Fig. 5.2). This is consistent with previous studies reporting the 

presence of purinergic and muscarinic receptors in HEK293 cells 

(Schachter et al., 1997; Luo et al., 2001). The exposure to ATP 

produced on average a higher increase within the BK microdomain (Fig.

5.2). Nonetheless, no significant different was detected between both 

Ca2+ increases. In contrast, CCh caused a significantly higher Ca2+ 

increase in the BK channel microdomain (Fig. 5.2) indicating a potential 

specific effect of this drug on the modulation of the BK channel by Ca2+. 

In the analysis of the individual Ca2+ responses of representative cell 

clusters (Fig 5.1), an increase in intracellular free Ca2+ from 1 to 2 pM 

was observed in the BK channel microdomain (Fig. 5.1 A).
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Fig. 5.1. Effects of carbachol in individual clusters of HEK293  

cells transfected w ith either [32-Aeq or Luc-Aeq.
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Fig. 5.1. Effects of carbachol in individual clusters of HEK293 cells 

transfected with either 02-Aeq or Luc-Aeq. Two representative 

experiments showing the effects of the exposure to CCh (100 pM) on 

intracellular free Ca2+ in either BK channel m icrodomain (A) or the 

cytosol (B). CCh induced a higher increase in the Ca2+ signal near the 

BK channel (A) than in the cytosol (B). The p2-Aeq chimera initially 

reported an intracellular free Ca2+ of around 1 pM which increased after 

exposure to CCh reaching peak values of approximately 2 pM. 

Following the addition of CCh, the cytosolic free Ca2+ also increased 

from a mean of approximately 0.5 pM to peaks of 0.8 pM. Several 

peaks can be observed in both domains during the CCh-induced Ca2+ 

transient. Cells were incubated for 1 h in the presence of medium 

containing Ca2+ (1.3 mM, 2 pM coelenterazine), perfused with sim ilar 

medium for at least 3 min and supplemented with CCh (100 pM) for 5 

min in the same medium. The remaining counts were obtained at the 

end of each experiment by the addition of an hyposmotic solution (10 

mM CaCI2). Light counts were acquired using an ICCD cam era and 

IFS32 software (both from Photek, UK) as described in Chapter 2, 

2.4.2.2. Light emission was converted to Ca2+ using rate constants as 

described in Chapter 2, 2.4.3.
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Fig 5 .2 . E ffec ts  o f in tra c e llu la r  Ca2+ m o d u la to rs  on Ca2+ 

responses in HEK293 cells transfected w ith Luc-Aeq or (32-Aeq.
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Fig 5.2. Effects of intracellular Ca2+ modulators in HEK293 cells transfected 

with Luc-Aeq or p2-Aeq. Cells were initially incubated in Ca2+ (1.3 mM) medium 

for 1 h, perfused with similar medium for at least 3 min and drugs supplemented 

for 5 min in Ca2+-containing medium. Ca2+ rises in response to ATP (100 pM) and 

CCh (100 pM) were higher on the BK channel microdomain than in the cytosol. 

However, this increase was significant only in the case of CCh. Histamine (100 

pM) produced no major increase in intracellular free Ca2+ in either domains. The 

remaining counts were obtained by addition of an hyposmotic 10 mM Ca2+ 

solution for 20 min. Data represent the means±SEM (02-Aeq: CCh n = 77, 

histam ine n = 15, ATP n = 77; Luc-Aeq: CCh n = 97, histamine n = 35, ATP n = 

97) of aequorin consumption during 5 min exposure to the test solutions after 

subtracting the mean values obtained before drug addition. Data were obtained 

from at least 15 cell clusters recorded during three separate experiments. Data 

were acquired using an ICCD camera (Photek, UK) and analysed by means of 

IFS32 software (Photek, UK) as described in Chapter 2, 2.4.2.2. *- indicates that 

Luc-Aeq and p2-Aeq mean values are statistically different (p < 0.05)

□  p2AEQ 

■  LUCAEQ

Carbachol Histamine ATP
(100 pM) (100 pM) (100 pM)
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Similarly, the initial cytosolic free Ca2+ (0.5 pM) reached peaks of 

approximately 0.8 pM after exposure to CCh.

Among the three agonists tested, only CCh (100 pM) showed a 

significant effect affecting the BK channel microdomain. Ca2+ 

oscillations were also recorded during the exposure to CCh.

5.3.2 Effects of tC channel blockers on intracellular free Cs?+ in 

HEK293 cells.

The effects of K+ channel blockers on intracellular free Ca2+ were also 

assessed. The blocking of K+ channels produce membrane 

depolarisation which then induce the activation of voltage-dependent 

Ca2+ channels. Since voltage-dependent Ca2+ channels such as L-type, 

P/Q-type and N-Type have been reported to co-express with BK 

channels (Berkefeld et al., 2006), the possibility of a specific Ca2+ 

response induced by K+ channel blockers close to the BK channel was 

studied. Two K+ channel blockers were tested: TEA, a generic K+ 

channel blocker and tetrandrine, which is specific for BK channels 

(Wang & Lemos, 1992).

Coverslips containing HEK293 a expressing either p2-Aeq or Luc-Aeq 

were perfused with either TEA (10 mM) or tetrandrine (10 pM) for 5 min. 

Neither TEA nor tetrandrine generated a significant modification in 

intracellular free Ca2+ in either domains (Fig. 5.4). A representative 

example is illustrated in Fig. 5.3 showing that intracellular free Ca2+ 

remained at approximately 0.7 and 0.3 pM in the BK channel (Fig. 5.3
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A) and cytosolic (Fig. 5.3 B) domains respectively. The Ca2+ responses 

induced by TEA were found to be significantly different between p2-Aeq 

and Luc-Aeq (Fig. 5.4). However, the mean values obtained were very 

small indicating that these TEA-induced effects were probably negligible 

when compared to the basal levels prior to the exposure to TEA.

In summary, the K+ channel blockers TEA (10 mM) and tetrandrine (10 

pM) produced no significant changes in intracellular free Ca2+ in either 

the BK channel or the cytosolic domains.

5.3.2 Effects of caffeine.

To examine whether ER Ca2+ release can induce a specific local Ca2+ 

response in the proximity of the BK channel, various concentrations of 

caffeine were tested in either the presence or absence of extracellular 

Ca2+.

Caffeine is used to trigger Ca2+ release from the ER (Smith etal., 1988). 

The mechanism of action is through activation of ryanodine receptors. 

The doses of caffeine required to instigate this Ca2+ response are within 

the millimolar range (Karhapaa & Tomquist, 1997). This latter study 

also reported that the caffeine-induced Ca2+ transients were dependent 

on extracellular Ca2+ because the Ca2+ increases detected were 

considerably reduced in the presence of Ca2+ chelators.
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Fig. 5.3. Effects of TEA on intracellular free Ca2+ in individual clusters 
of HEK293 cells transfected with either p2-Aeq or Luc-Aeq.
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Fig. 5.3. Effects of TEA on intracellular free Ca2+ in individual 

clusters of HEK293 cells transfected with either p2-Aeq or Luc- 

Aeq. In these two representative experiments TEA (1 0  m M ) 

induced no s ign ifican t e ffec t on in trac e llu la r fre e  Ca2+ in 

either the BK channel microdomain (A ) o r th e  cytosol (B ). The  

Ca2+ levels detected near the BK channel remained at 

approximately 0.7 pM (B) independently of the presence of TEA. 

Similarly the cytosolic basal Ca2+ of approximately 0.3 pM (B) did 

not change significantly as a result of TEA exposure. Cells were 

incubated in KRH medium (1.3 mM C a2+ & 2 pM coelenterazine) for 

1 h, perfused with C a2+ medium for at least 3 min and TEA (10 mM) 

added for a 5 min period. At the end of experiments, the total 

remaining counts were obtained by 20 min exposure to an 

hyposmotic solution (10 mM CaCk). An ICCD camera and IFS32 

software (both from Photek, UK) were used to acquire and analyse 

the aequorin signal as described in Chapter 2, 2.4.2.2. Intracellular 

free Ca2+ was calculated by converting the light emission to rate 

constants as described in Chapter 2, 2.4.3.
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Fig 5.4. Effects of K+ channel blockers on intracellular free Ca2+ in

HEK293 cells transfected with Luc-Aeq or (32-Aeq.
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Fig 5.4. Effects of K+ channel blockers on intracellular free Ca2+ in HEK293 

cells transfected with Luc-Aeq or p2-Aeq. Cells in coverslips were incubated in 

medium containing 1.3 mM Ca2+ for 1 h in the presence of coelenterazine (2 pM) 

and perfused with Ca2+ medium for at least 3 min before addition of the channel 

blockers. TEA (10 mM) and tetrandrine (10 pM) were perfused for 5 min in Ca2+ 

medium. Minimum changes in intracellular free Ca2+ in either BK channel or 

cytosolic domains were induced by either TEA or tetrandrine. Although a 

statistical difference was detected in response to TEA between both domains, this 

is probably negligible due to the low Ca2+ signals generated. Cells expressing 

aequorin were exposed to a 10 mM Ca2+ solution in order to obtain the remaining 

light counts. The graph represents the means ±SEM (p2-Aeq: TEA n = 17, 

tetrandrine n = 17; Luc-Aeq: TEA n = 17, tetrandrine n = 27) of the aequorin 

consumed during the 5 min exposure to the channel blockers. Mean values 

calculated prior to the addition of the test solutions were subtracted. Data were 

obtained from at least 15 cell clusters recorded using an ICCD camera (Photek, 

UK) during three separate experiments and analysed using IFS32 software 

(Photek, UK) as described in Chapter 2, 2.4.2.2. *- indicates that Luc-Aeq and 02- 

Aea mean values are statistically different
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Experiments were conducted in either Ca2+-free medium (1 mM EGTA) 

or Ca2+ (1.3 mM) medium following aequorin reconstitution in the same 

medium for 1 h. Cells were then perfused first with Caffeine (5 mM) for 

5 min and then with caffeine (50 mM) for another 5 min, just before 

exposure to an hyposmotic solution to obtain the remaining light counts. 

The expected rise of intracellular Ca2+ was not observed in the 

experiments reported here indicating the absence of ryanodine receptor 

in HEK293 cells. In contrast, caffeine (5 & 50 mM) produced a steadily 

decrease in the BK microdomain (Fig. 5.5). In Ca2+-free medium, this 

Ca2+ decline was only perceived at high concentrations (50 mM) (Fig.

5.6) while in the presence of extracellular Ca2+ was detected for both 

concentrations (5 & 50 mM). It must be noticed that a short Ca2+ 

increase from 0.2 to 0.3 pM lasting for 10 s was detected in the cytosol 

(Fig. 5.5. B) after addition of 5 mM caffeine in the presence of 

extracellular Ca2+. This initial peak was only observed in a few cell 

clusters. Nonetheless, this may indicate the presence of endogenous 

ryanodine receptors in some individual cells.

A series of peaks were detected during these experiments, especially 

near the BK channel (Fig. 5.5 A & C). This effect may have been 

caused by Ca2+ oscillations which have been reported in HEK293 cells 

(Bird & Putney, 2005). Caffeine has also been reported to induce Ca2+ 

oscillations in other cell lines (Koopman et al, 1997).
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Fig. 5.5. Effects of caffeine in individual HEK293 cell clusters  
transfected with either (32-Aeq or Luc-Aeq.
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Fig. 5.5. Effects of caffeine on intracellular free Ca2+ of individual 
clusters of HEK293 cells transfected with either 02-Aeq or Luc-Aeq.
The data plots illustrate four representative experiments showing the effects 
of caffeine addition (5 & 50 mM) on the intracellular free Ca2+ in either the 
absence (A & B) or presence (C & D) of extracellular Ca2+. Caffeine (5 & 50 
mM) induced a steady decay from approximately 0.60-0.65 to 0.5 pM on the 
average Ca2+ signal near the BK channel in either EGTA (1 mM) (A) or Ca2+ 
(1.3 mM) medium (C). A phenomenon similar to Ca2+ oscillations that 
ranged from 0.4 to 0.7 pM in the absence of Ca2+ (A) and from 0.4 to 0.8 
pM (C) was observed in the BK channel microdomain during these 
experiments. Cells were incubated for 1 h in the presence of coelenterazine 
(2 pM) in medium either containing Ca2+ (1.3 mM) (C & D) or EGTA (1 mM) 
(A & B). Following 5 min perfusion with identical medium, coverslips were 
exposed first to caffeine (5 mM) for 5 min and subsequently to caffeine (50 
mM) for another 5 min before adding an hyposmotic solution for 20 min to 
obtain the remaining counts. Data were acquired using an ICCD camera 
(Photek, UK) and analysed by means of IFS32 software (Photek, UK) as 
described in Chapter 2, 2.4.2.2. Light emission was converted to Ca2+ using 
rate constants as described in Chapter 2, 2.4.3.
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Fig 5.6. Effects of caffeine on intracellu lar free Ca2+ in HEK293 

cells transfected with Luc-Aeq or (32-Aeq.
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Fig 5.6. Effects of 5 min exposure to caffeine on intracellular free Ca2+ in 

HEK293 cells transfected with Luc-Aeq or P2-Aeq. Cells were incubated in 

either Ca2+-free medium or medium with Ca2+ (1.3 mM) for 1 h 

(coelenterazine, 2 pM). Following 5 min perfusion with identical medium, 

coverslips were exposed first to caffeine (5 mM) for 5 min and subsequently to 

caffeine (50 mM) for another 5 min before lysing the cells. Data are the means 

±SEM (p2-Aeq: EGTA caffeine (5 & 50 mM) n = 17, Ca2+ caffeine (5 & 50 

mM) n = 21; Luc-Aeq: EGTA caffeine (5 & 50 mM) n = 34, Ca2+ caffeine (5 & 

50 mM) n = 32) of the variation of aequorin consumption during 5 min when 

compared to the consumption in the same medium prior to the addition of 

caffeine. Means and SEMs were obtained from between 15 to 30 cell clusters 

recorded during three separate experiments. Light counts were recorded 

using an ICCD camera (Photek, UK) and analysed using IFS32 software 

(Photek, UK) as described in Chapter 2, 2.4.2.2. *- indicates that Luc-Aeq and 

p2-Aeq mean values are statistically different (p < 0.05)
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In conclusion, the addition of caffeine resulted in a reduction in 

intracellular free Ca2+ in the BK channel microdomain of HEK293 cells. 

This effect was dependent on the presence of extracellular Ca2+. Ca2+ 

oscillations were observed in the proximity of the BK channel.

5.3.3. Effects of cyclopiazonic acid.

To investigate further the effects of Ca2+ release from intracellular 

stores on the BK channel microenvironment, CPA, a potent inhibitor of 

ER Ca2*-dependent ATPases, was employed. In order to examine 

solely the effects of Ca2+ release from the ER, CPA was supplemented 

in Ca2+-free medium (1 mM EGTA) preventing SOC entry.

Following incubation in EGTA (1 mM) for 1 h, the addition of CPA (10 

pM) triggered a larger Ca2+ rise close to the BK channel than that 

observed in the cytosol (peaks: 1.88 ±0.09 pM & 0.65 ±0.05 pM 

respectively) (Fig. 5.7). The Ca2+ increase near the BK channel was 

also maintained for a longer period than in the cytosol (approx. 80 s & 

10 s on average, respectively). This indicates that the inhibition of ER 

Ca2+-dependent ATPases generated a local Ca2+ increase in the vicinity 

of the BK channel.

Perfusion of Ca2+ (1.3 mM) medium following the CPA treatment in 

EGTA elicited Ca2+ transients in both domains due to SOC entry from 

the extracellular milieu (Fig. 5.7). The slope of the Ca2+ transient 

detected in the cytosol reached a peak of 0.7 pM and then remained at 

0.6 pM before exposure to the hyposmotic solution.
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Fig 5 .7 . E ffec ts  o f cyc lo p iazo n ic  acid  on in tra c e llu la r  fre e  Ca2+ 

in H E K 2 9 3  ce lls  tra n s fe c te d  w ith  Luc-A eq  o r (32-Aeq.
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Fig 5.7. Effects of cyclopiazonic acid on intracellular free Ca2+ in 

HEK293 cells transfected with Luc-Aeq or p2-Aeq. Following 1 h 

incubation in Ca2+-free medium (1 mM EGTA), HEK293 cells transfected 

with either Luc-Aeq or p2-Aeq were perfused with CPA (10 pM) in Ca2+- 

free medium for 10 min. CPA induced a Ca2+ transient near the BK 

channel that reached at maximum of approximately 1.9 pM and decayed to 

basal Ca2+ levels after 70 s. In contrast, a short Ca2+ increase (0.65 pM) 

lasting only 10 s was detected in the cytosol. The subsequent addition of 

cell medium with Ca2+ (1.3 mM) for 5 min provoked Ca2+ transients in the 

BK channel and cytosolic domains reaching Ca2+ peaks of 1.5 and 0.7 pM 

respectively. Cells were then exposed to an hyposmotic solution to obtain 

the remaining light counts. The traces illustrate the means of 39 (P2-Aeq) 

and 50 (Luc-Aeq) cell clusters obtained from at least three separate 

experiments. Light counts were converted to Ca2+ using rate constants as 

described in Chapter 2, 2.4.3. Ca2+ imaging experiments were performed 

using an ICCD camera and IFS32 software (both from Photek, UK) as 

described in Chapter 2, 2.4.2.2.
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In the BK channel microdomain, the intracellular free Ca2+ increased 

from approximately 1 to 1.5 pM and subsequently decayed back to 1 

pM after 5 min. Note that the central difference between the shapes of 

these Ca2+ transients detected near the BK channel and those 

previously obtained (Fig. 4.7) following long-term exposure to EGTA (1 

mM) is the absence of the initial peak. This indicates that the initial peak 

(Fig. 4.7) was most likely promoted by Ca2+-release from the ER, 

possibly by means of an initial CICR mechanism. The remaining 

component of this Ca2+ response (Fig 4.7) was similar to the one 

observed following exposure to CPA (10 pM) for 10 min and then to 

extracellular Ca2+for 5 min (Fig. 5.7).

The p2-Aeq chimera reported a larger increase in intracellular free Ca2+ 

in response to CPA than that detected by the cytosolic Luc-Aeq. This 

provides evidence of a potential coupling between ER Ca2+ release and 

BK channel function.

5 .4  DISCUSSION

The local free Ca2+ affecting the BK channel has been examined at rest 

and in response to a Ca2+ challenge (see Chapter 4) showing that in 

both cases was higher than cytosolic Ca2+. In this chapter, the 

hypothesis that local intracellular free Ca2+ activates the BK channel 

was tested by using receptor-operated agonists (CCh, ATP and 

histamine) to induce Ca2+ responses in the plasma membrane and K+ 

channel blockers (TEA and tetrandrine) to produce changes in the
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membrane potential. The role of ER Ca2+ release was also studied by 

means of caffeine and CPA.

The results reported in this chapter showed that CCh and ATP 

produced Ca2+ transients in HEK293 cells in both the BK channel and 

cytosolic domains. The CCh-induced Ca2+ transient near the BK 

channel was significantly higher than that detected in the cytosol. 

Neither TEA nor tetrandrine generated a significant Ca2+ response in 

either domain. Caffeine caused a steady decay in intracellular free Ca2+ 

close to the BK channel. Unexpectedly CPA induced a larger Ca2+ 

transient in the BK channel microdomain. The effects of caffeine and 

CPA indicate that ER Ca2+ release can play a key role in controlling the 

local Ca2+ signals affecting the BK channel.

5.4.1 Effects of receptor-operated agonists.

To study the effects of receptor-operated agonists on intracellular free 

Ca2+ in either BK channel or cytosol, three different agonists (CCh, ATP 

and histamine) were tested. These agonists act through different 

receptors: muscarinic (CCh), purinergic (ATP) and histamine receptors. 

There is evidence of the presence of the purinergic (Schachter et al.,

1997), muscarinic (Luo et al., 2001) and histamine receptors (Iwata et 

al., 2005) in HEK293 cells. Although, CCh may also act through 

nicotinic acetylcholine receptors, these receptors are mainly expressed 

in the brain and have not been found in HEK293 cells (Gopalakrishnan
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et al., 1996). These experiments were undertaken in the presence of 

extracellular Ca2+ (1.3 mM) in order to mimic physiological conditions.

Among the three agonists, only ATP and CCh induced a notable 

intracellular Ca2+ response (Fig. 5.2). Histamine (100 pM) exhibited a 

very small effect probably due to the absence or low expression of 

histamine receptors. However, endogenous histamine receptors in 

HEK293 cells have been reported (Iwata et al., 2005) inducing minor 

increases (-50 nm) in cytosolic Ca2+, which is probably similar to the 

data presented in this thesis. Nevertheless, no significant difference 

was found between the histamine-induced Ca2+ responses in the BK 

channel and cytosolic domains.

CCh (100 pM) generated a significant Ca2+ response in the BK channel 

microdomain (aeq consumption = 0.69). The Ca2+ levels above 1 pM 

observed after CCh exposure (Fig. 5.1) are consistent with previous 

reports showing that Ca2+ values above 1 pM produced an exponential 

increase in BK channel activation at resting membrane potential (~ -60 

mV) when co-express with either the p2 (Orio & Latorre, 2005) or the p1 

subunit (Nimigean & Magleby, 2000; Bao & Cox, 2005), which confers 

similar sensitivity to Ca2+.

CCh activates muscarinic receptors inducing IP3 production which 

causes Ca2+-release from intracellular stores (White & McGeown, 

2002). The empty of the ER also triggers SOC entry. These two Ca2+ 

effects probably participated in the response observed near the BK
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channel. The activation of BK channels by CCh has been reported to 

remain even in the absence of extracellular Ca2+ (Trautmann and Marty,

1984). Since the effects of SOC entry were discussed in the previous 

chapter, this discussion is focused on the role of the Ca2+-release from 

the ER produced by IP3.

Since IP3-induced Ca2+-release produced a higher increase in 

intracellular free Ca2+ in the BK microdomain, a precise regulation of 

local Ca2+ near the channel by IP3 might well have taken place (Fig. 

5.8). Zeta potential may also be involved by attracting and maintaining 

the flow of Ca2+ ions released from the ER near the plasma membrane 

and consequently creating a local high Ca2+ concentration. The Ca2+ 

release is later diffused to the cytosol causing part of the increase 

observed in cytosolic Ca2+. IP3-induced Ca2+-release from other 

channels distant from the plasma membrane (Fig. 5.8 B) and SOC entry 

may account for the rest of this increase. It has also been suggested 

that CCh acts on BK channels through a pathway sensitive to the 

pertussis toxin and unrelated to the L-type Ca2+ channels (Chavis et al.,

1998). This pathway may be involved in CCh-induced Ca2+ response 

near the BK channel.

A series of peaks in intracellular free Ca2+ in response to CCh was also 

observed, especially in the BK microdomain (Fig. 5.1 A). These events 

resembled Ca2+ oscillations, although no further examination was 

undertaken. Mathematical models have suggested that IP3 receptors
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Fig. 5.8. Schematic representation of the effects of ER Ca release 
on the Ca2* activation the BK channel.

Fig. 5.8. Schematic representation of the effects of ER Ca release 

on the Ca2* activation the BK channel. The diagram on the right (A) 
illustrates the production of IP3 by the activation of muscarinic receptors 

by carbachol which subsequently activates IP3 receptors causing the 

Ca2*-release from intracellular stores. This Ca2*-response is then 

detected by the BK channel triggering its activation. Caffeine induces 

an increase in the threshold of the IP3 receptors inhibiting the ER Ca2*- 
release. The hypothesis of IP3 -triggered Ca2* channels generating a 

larger Ca2*-response near the membrane is shown in figure B. 
According to this hypothesis, an increase in IP3 causes the Ca2*- 
release from the ER which is larger close to the BK channel. This local 
Ca2*-increase might be used to regulate locally the BK channel 
activation near the membrane. This is consistent with the greater Ca2* 
signal detected near the BK channel in response to carbachol (See Fig.
5.2). In resting conditions, this considerable Ca2*-response is normally 

compensated by the Ca2*-ATPase pump. Cyclopiazonic acid produces 

the inhibition of this pump causing also a larger Ca2*-increase near the 

BK channel (See also Fig. 5.7).
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and the Ca-ATPase in the ER and plasma membrane play an essential 

role in the mechanism of the Ca2+ oscillations. Moreover, CCh-induced 

Ca2+ oscillations occur in HEK293 cells (Luo et al., 2001). In this report 

performed in Ca2+ (1.5 mM) medium, the Ca2+ oscillations appeared in 

50% of the cells examined and showed a frequency of around 0.5-1 /min 

which also varied among the cells. This could explain the difficulties 

encountered in this thesis for the study of the Ca2+ responses in the 

presence of extracellular Ca2+.

In contrast to the data shown in this research, other studies using 

membrane bound aequorin chimeras (Nakahashi et al., 1997) have 

revealed that carbachol (200 pM) triggered a lower Ca2+ signal near the 

membrane that in the cytosol. Two are the main differences between 

this report and the work presented in here. Nakahashi and collaborators 

used a different method to supplement solutions to the cells which may 

produce a considerable difference between experiments (See section

4.3.3.). This idea is also supported by other reports (Tong et al., 1999). 

More importantly in this research (Nakahashi et al., 1997) aequorin was 

linked to the adenylyl cyclase protein. The fine tuning of Ca2+ signalling 

near the membrane controls many different cellular processes and must 

be tightly regulated (See section 1.1). Consequently, each particular 

protein is probably affected by an specific Ca2+ microdomain which may 

well differ from those having an effect on other proteins. The existence 

of these Ca2+-microdomains has been previously proposed (Rizzuto 

and Pozzan, 2006) and would explain the different Ca2+-transients
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detected by either the adenylyl cyclase or P2-Aeq chimeras. The BK 

channels may require a large Ca2+-transient to maintain the appropriate 

membrane potential while a lower Ca2+ concentration may be sufficient 

to trigger the signalling cascade of the the adenylyl cyclase.

The exposure to ATP (100 pM) caused Ca2+ transients in both the BK 

channel and the cytosol (Fig. 5.2). The mean of the Ca2+ response near 

the BK channel (0.28 ±0.10 increase in aequorin consumption) was 

notably higher than that in the cytosol (0.12 ±0.03). However, no 

significant difference in the ATP-induced Ca2+ response was found 

between the BK channel and cytosol domains. It is thought that the 

binding of extracellular ATP to P2Y receptors results in the production 

of intracellular IP3 and consequently to an increase in intracellular free 

Ca2+. Interestingly ATP failed to produce a statistically significant Ca2+ 

response near the BK channel as that caused by CCh. Following the 

hypothesis of an IP3 mechanism, this discrepancy may be explained by 

the fact that IP3 production by ATP is much lower than that by CCh 

(McMillian et al., 1988). It may be also possible that the IP3-triggered 

Ca2+ channels in the intracellular stores close to the BK channel 

possess a higher threshold than those releasing Ca2+ to the cytosol. 

This would explain the differences observed between the Ca2+ 

responses in both domains.

The muscarinic-operated agonist, CCh, induced a significant increase in 

intracellular free Ca2+ near the BK channel. This compound also
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triggered a phenomenon similar to Ca2+ oscillations. ATP caused a 

marked increase in the proximity of the channel although no significant 

difference was found in comparison to the Ca2+ response in the cytosol. 

Histamine failed to induce a significant Ca2+ transient.

5.4.2. Effects of tC channel blockers.

K+ channel blockers can cause membrane depolarisation, which in turn 

activates voltage-dependent Ca2+ channels. Some of these channels 

such as L-type, P/Q-type and N-Type can co-express with the BK 

channel forming Ca2+ microdomains (Berkefeld et al., 2006). 

Consequently, K+ channel blockers such as TEA or tetrandrine may 

induce specific regulation of Ca2+ signalling near the BK channel. Since 

the resting membrane potential of HEK293 cells is around -40 mV 

(Thomas & Smart, 2005), the concentrations of these blockers used in 

this work should be sufficient to depolarise the cell membrane which 

may cause Ca2+ influx.

Two K+ channel blockers were used for this purpose: TEA and 

tetrandrine. Both blockers exhibit different kinetics indicating a different 

mechanism of inhibiting BK channel activity (Wang & Lemos, 1992). 

The generic K+ channel blocker, TEA, is also capable of inducing Ca2+ 

oscillations (Tamarina et al., 2005) and Ca2+ increases in response to 

the alterations produced in membrane potential (Nilius et al., 1993; 

Brzyska eta l, 2002). Tetrandrine is a more specific BK channel blocker 

(Wu et al., 2000). In addition, it also produces other effects which may
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alter intracellular Ca2+ such as blockage of T-type and L-type Ca2+ 

channels (IC50 9 pM and 30 pM, respectively) and inhibition of the Ca2+ 

ATPse pump similar to thapsigargin (Rossier et al., 1993; Leung et al., 

1994). The inhibition of the Ca2+ ATPse pump by Tetrandrine in other 

cell lines has been reported to be much higher (IC50 -  98 pM) (Chen et 

al., 2000).

Neither TEA (10 mM) nor tetrandrine (10 pM) had a major impact in 

intracellular Ca2+ (Fig. 5.4). TEA showed a statistically significant 

difference between the BK microenvironment and the cytosol. However, 

the effect recorded was too small to reliably establish this as a key 

factor in the distinctive Ca2+ modulation of the BK channel. No apparent 

Ca2+ oscillations were detected in the analysis of individual cell clusters 

(Fig. 5.3). The blocking activity of tetrandrine on Ca2+ channels did not 

cause any significant effect in the intracellular free Ca2+ in either the BK 

channel or cytosolic domains.

In summary, the changes in membrane potential caused by TEA and 

tetrandrine induced no significant modification of intracellular free Ca2+ 

in HEK293 cells.

5.4.3. ER and BK channel coupling: investigation using caffeine and 

cyclopiazonic acid.

There is evidence supporting the hypothesis of a potential coupling 

between local Ca2+ release and BK channel modulation (Sergeant et 

al., 2001; Frieden et al., 2002). The specific CCh-induced Ca2+
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response detected in the vicinity of the BK channel (see section 5.4.1) 

also indicates an possible IP3-mediated Ca2+ release from intracellular 

stores affecting the BK channel. To investigate this hypothesis, two 

compounds, caffeine and CPA, which affect the mechanism of ER Ca2+ 

release were employed.

5.4.3.1 The effects of caffeine on intracellular free Ca2+.

Caffeine is widely used as a pharmacological tool to study the Ca2+ 

release from intracellular stores. The mechanism of action is through 

ryanodine receptors, which trigger ER Ca2+ release when activated. 

Caffeine also exhibits a variety of Ca2+-independent actions such as 

inhibition of phosphodiesterase enzymes, activation of protein kinase A 

and increase of cytosolic cAMP (Butcher & Sutherland, 1962; Rousseau 

eta /., 1988; Lindaman et al., 2002).

The results presented in this chapter showed that in HEK293 cells there 

was no increase in intracellular free Ca2+ induced by caffeine (Fig. 5.6) 

probably due to the absence of ryanodine receptors in these cells. 

Previous studies have reported the null effect of caffeine in HEK293 WT 

while a Ca2+ transient was detected in response to caffeine following 

transfection with ryanodine receptors (Brini et al.t 2005). Other cells are 

also devoid of both caffeine and ryanodine-sensitive Ca2+ channels and 

stores (Zimmermann & Walz, 1997), including an embryonic-type cell 

line (Scamps et al., 1998). Although some studies have reported rises 

in intracellular calcium in HEK293, these effects were probably due to
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an artefact caused by the perfusion system employed according to 

Tong and collaborators (Tong et al., 1999). In the latter study, neither 

caffeine nor ryanodine generated a Ca2+ increase in HEK293 cells.

Interestingly, a notable decay ranging from 0.15 to 0.43 in aequorin 

consumption levels was detected with the P2-Aeq chimera (Fig. 5.5 &

5.6). A similar type of steadily decline but in basal calcium has been 

reported in previous studies (Cseresnyes et al., 1997; Krizaj et al.,

1999). A common characteristic of all these studies is the biphasic 

effect of caffeine. An initial increase is observed immediately after 

caffeine addition and prior to the beginning of the Ca2+ decline. This 

increase was inhibited by ryanodine suggesting the presence of 

ryanodine receptors through which caffeine cause Ca2+ release from 

intracellular stores. The lack of Ca2+ response to ryanodine and the fact 

that it is routinely used as a model cell line to transfect ryanodine 

receptors support the idea that ryanodine receptors are not expressed 

in HEK293. Without these receptors, no initial Ca2+ increase was 

reported by either p2-Aeq or Luc-Aeq.

The Ca2+ decrease noticed by the p2-Aeq probe suggests a potential 

specific effect of caffeine in the BK channel microdomain. Caffeine has 

been shown to have a double effect on BK channels depending on the 

tissue, causing direct channel activation i.e. in arterial smooth muscle 

(McGahon et al., 2007) or inhibition i.e. in portal vein (Xiong et al., 

1992). Activation of BK channels in HEK293 would produce membrane
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hyperpolarisation causing the closure of voltage-dependent Ca2+ 

channels. Caffeine also produces direct inhibition of Ca2+ channels in 

the plasma membrane (Martin etal., 1989), some of which co-assemble 

with the BK channel (Berkefeld et al., 2006). The closure of Ca2+ 

channels in the plasma membrane by these two events may account for 

this Ca2+ decline near the BK channel and are consistent with the 

differences observed when caffeine was supplemented in either Ca2+- 

containing or Ca2+-free medium.

Another potential theory is based on the two pool model (Berridge & 

Galione, 1988). According to this model, there are two types of 

intracellular stores which maintain the equilibrium of intracellular 

calcium within the cell. The ER/SR one is triggered by IP3 and the other 

is IP3-insensitive. Caffeine produces an augmentation of the IP3 

threshold which may partially reduce the IP3-induced calcium release 

(Parker & Ivorra, 1991). This inhibition might have caused the localised 

decrease in calcium detected in the BK channel microenvironment (Fig. 

5.8 A). The higher threshold means that more IP3 was free at basal 

levels which may have been sufficient to trigger the calcium release 

through other caffeine-insensitive Ca2+ channels with lower IP3 affinity. 

These caffeine-insensitive channels have probably released Ca2+ in 

several areas no proximal to the BK channel in order to compensate the 

calcium decline detected near the BK channel. Ca2+ release from other 

sources such as the IP3-insensitive Ca2+ stores may have also been 

involved in this Ca2+ replenishment. Assuming an even distribution of
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Luc-Aeq across the cell, the lower light signal emitted near to the BK 

channel would have been compensated by a higher signal in areas 

close to the caffeine-insensitive Ca2+ channels giving the overall 

equilibrium in Ca2+ signal detected by Luc-Aeq. If both events occur at 

low levels and simultaneously, no significant increase or decrease 

would be observed. The hypothesis of a confined Ca2+ fine-tune 

controlling BK channel activity is also supported by evidence showing a 

coupling between ER calcium release (Fig. 5.8 B) and BK channel 

modulation (Sergeant et al., 2001; Frieden etal., 2002). Furthermore, a 

recent report strengthens the idea of a close link between IP3-induced 

Ca2+ release and BK channel activation (Weaver etal., 2007).

One last hypothesis involving the mitochondrial Ca2+ uptake as the 

mechanism behind the decline in Ca2+ concentration near the channel 

will be explained in the following section.

The caffeine effect has been shown to be dose-dependent and 

dependent on the presence of calcium in the extracellular milieu (Smith 

et al., 1988; Missiaen et al., 1994; Karhapaa & Tomquist, 1997). 

Although there was no statistical difference between the mean values at 

concentrations of 5 mM (EGTA), 5 mM (Ca2+) and 50 mM (Ca2+), a 

clear trend towards lower aequorin consumption in the presence of Ca2+ 

could be observed (lower p values). There is also evidence that at low 

concentrations (< 300 pM) the caffeine-induced Ca2+ response is 

abolished in the absence of extracellular Ca2+ (Ahmed et al., 1997)
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which is coherent with the non significant difference noticed at a 

concentration of 5 mM in the presence of EGTA.

These experiments also revealed a series of Ca2+ peaks during the 

exposure to caffeine, especially in the BK channel microdomain Ca2+ 

(Fig. 5.5 A & C) and more frequently in the presence of extracellular 

Ca2+. HEK293 cells generate Ca2+ oscillations in response to CCh (Luo 

et al., 2001, see also section 5.4.1). Moreover, caffeine has been 

reported to induce Ca2+ oscillations in other cell lines (Koopman et al., 

1997) and also oscillations in the membrane potential (Komendantov & 

Kononenko, 2000). Consequently, Ca2+ oscillations may have well 

occurred during the course of these experiments. Nonetheless, the 

effects of these Ca2+ waves were difficult to assess during these 

experiments. Most studies in Ca2+ oscillations have been performed at a 

single cell level using fluorescent dyes. Aequorin has been also used 

(Berrie et al., 1996) but mainly using microinjection in large cells which 

results in high light signals. Since these Ca2+ oscillations may vary 

temporally and spatially, they will normally appear as a very small light 

signals in the aequorin studies reported in this thesis (Allen et al.,

1985). In general, when individual Ca2+ peaks change little during the 

experiment, the mean Ca2+ peak may remain approximately constant. 

These Ca2+ waves can only be detected when firing simultaneously in 

various aequorin transfected cells or in single cells with a high 

expression of aequorin. Due to these difficulties, no further investigation
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related to Ca2+ oscillations was carried out and the means of the Ca2+ 

signals were used to examine Ca2+ signalling.

In summary, a Ca2+ decay induced by caffeine occurred within the BK 

channel microenvironment. This effect may be explained by a co

operative combination of two effects: an inhibition of the IP3-triggered 

Ca2+-release from intracellular stores and closure of voltage-activated 

Ca2+ channels in the plasma membrane. Caffeine-induced Ca2+ 

oscillations were also detected during the course of these experiments.

5.4.3.2 The effects of CPA on intracellular free Cs?+.

Cyclopiazonic acid (10 pM), a well-known inhibitor of ER Ca2+- 

dependent ATPases, induced surprisingly a significant Ca2+-increase 

close to the BK channel (1.88 pM, Fig. 5.7) while only a small increase 

was detected in the cytosol (0.65 pM). Since these experiments were 

performed in the absence of extracellular Ca2+, the Ca2+ transients 

could only be induced by Ca2+ release from intracellular stores. This 

larger increase near the membrane was unexpected because CPA is 

supposed to increase intracellular Ca2+ uniformously across the cytosol. 

In the presence of CPA, the Ca2+ leak from intracellular stores is not 

longer compensated by the CPA-inhibited Ca2+ re-uptake. Nonetheless, 

some studies have reported Ca2+ release from intracellular stores near 

the plasma membrane using membrane-bound fluorescent dyes 

(Davies et al., 1997) and CPA-induced Ca2+ release resulting in the 

activation of Ca2+ dependent currents using patch-clamp techniques
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(Wayman etal. 1996; Ohi etal., 2001). Of particular interest is this latter 

work reporting BK channel activation following the addition of CPA in 

the presence of EGTA that lasted between 1-2 min. This time-frame is 

similar to the CPA-induced Ca2+ transients recorded in the proximity of 

the channel in this thesis. This research work (Ohi et al., 2001) 

together with the results presented here indicate that the addition of 

CPA caused a local Ca2+ transient affecting the BK channel which also 

produced the activation of the channel.

The possibility of the p2-Aeq being trapped in the ER exists because 

the subcellular fractionation assessment (Fig. 3.12) only indicated that 

the P2-Aeq chimera targeted any of the cell membranes which includes 

the ER membrane. If this was the case, the aequorin moiety of the 

protein would be pointing to the cytosol and detecting directly the Ca2+ 

release from the ER. However, this is not probably the case because 

there is evidence that the p2 subunit is mainly expressed in the cytosol 

if co-expressed with the a subunit (Lv et al., 2008; see also Chapter 3, 

section 3.4.2). Furthermore, aequorin constructs retained in the ER and 

orientated to the cytosolic part have been reported to detect identical 

Ca2+ concentrations as those in the cytosol (Pinton et al., 2004). These 

reports give support to the results presented in this thesis showing that 

P2-Aeq reports Ca2+ signals in the vicinity of the BK channel.

An hypothesis to explain this larger Ca2+ increase near the BK channel 

could be that the continuous mechanism of Ca2+ release and uptake
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functioning in the proximity of the ER may have been altered by CPA. 

Consequently, the continuous Ca2+ leak from the stores could then be 

observed because the uptake into the stores was inhibited (Morgan & 

Jacob, 1994). If part of this Ca2+ release and uptake was specifically 

orientated towards the BK channel microenvironment (Fig. 5.8 B), then 

the disruption of the Ca2+ uptake would have resulted in a constant Ca2+ 

leak near the BK channel similar to that detected by the p2-Aeq 

chimera. This Ca2+ release would have not been compensated by the 

ER Ca2+-dependent ATPase and lasted until this BK-orientated CPA- 

sensitive Ca2+ store in the ER was empty. This idea is consistent with 

the hypothesis that Ca2+ reuptake via the ER Ca2+-dependent ATPase 

is the main mechanism for removal of Ca2+ from the subplasma 

membrane domain (Young & Zhang, 2004). Another potential 

hypothesis is based on the zeta potential playing a key role. As 

mentioned earlier (section 5.4.1), the zeta potential may have 

maintained the Ca2+ ions released from the ER near the membrane 

resulting in high local Ca2+ concentrations close to the BK channel.

The Ca2+ peak obtained in the cytosol in Ca2+-free medium was similar 

to those previously reported in other cell lines (Hopf et al., 1996). A 

simple mechanism of cellular diffusion may account for the diminution of 

the local Ca2+ signal induced in the BK channel and not detected in the 

cytosol. In addition, mitochondria may also be involved. Previous 

reports have suggested a buffering effect of mitochondria on the cytosol 

(Golovina & Blaustein, 1997; Varadi et al., 2004). Indeed CPA also
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induced an increase in mitochondrial Ca2+ uptake in smooth muscle 

(Szado et al., 2003). Consequently, the large CPA-evoked Ca2+ 

response obtained near the membrane might have been buffered by 

mitochondria giving an attenuated rise in the cytosol. This hypothesis 

will be described later on.

CPA has been shown to deplete both caffeine and IP3-activated ER 

stores (Ziganshin etal., 1994). Both CPA and CCh produced significant 

responses within the BK channel microenvironment. These results were 

consistent with previous evidence showing that CPA acts through I Pa- 

sensitive intracellular stores also affected by CCh (Nakamura et al., 

2000; Molleman et al., 2001). Ryanodine, which also activates these 

receptors, has been reported to induce large Ca2+-transients beneath 

the plasma membrane producing the activation of BK channels in 

smooth muscle (Zhuge etal., 2002).

As mentioned earlier, patch-clamp experiments have shown an 

increase of BK channel activity following the addition of CPA (Ohi etal., 

2001). In this research, concentrations of CPA within the same range to 

the experiments performed here triggered the activation of BK channels 

for a period of 1-2 min. The duration of the Ca2+ transients obtained in 

the experiments carried out in this thesis is similar to their results. In 

addition, the Ca2+ concentrations reached near the BK channel (1.88 

pM) as a result of exposure to CPA were also consistent with those 

required to increase the activation of BK channels formed by a and
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either pi or p2 subunits (Nimigean & Magleby, 2000; Bao & Cox, 2005; 

Orio & Latorre, 2005). Furthermore, there is also evidence that a CPA- 

sensitive outward current promoted by CCh was selectively inhibited by 

iberiotoxin (Molleman et at., 2001). This data demonstrates that BK 

channel activity and Ca2+ released elicited by CCh and CPA are two 

processes closely connected which is also corroborated by the results 

presented in this thesis.

CPA, caffeine and CCh can affect ER Ca2+ release. These three distinct 

compounds also modify Ca2+ concentration near the BK channel 

indicating the close link between ER Ca2+ release and BK channel 

activation.

5.4.4. The potential role of mitochondria in buffering calcium in the BK 

channel microdomain.

Mitochondria are recognised as the main sources of cellular energy. 

They are also deeply involved in the mechanisms of control of cellular 

calcium. There is a great deal of evidence showing their prominent role 

as a buffering constituent (Golovina & Blaustein, 1997; Szado et al., 

2003; Varadi et al., 2004). Indeed it has been suggested that normal 

Ca2+ influx is maintained using a subset of mitochondria beneath the 

plasma membrane (Varadi et al., 2004). A key role of mitochondria 

controlling Ca2+ modulation of BK channels has been proposed (Malli et 

al., 2003) which may well explain most of the findings presented in this 

work.
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In support of this hypothesis, there is evidence of mitochondrial Ca2+ 

uptake in response to CCh, ATP and caffeine (Rutter et al., 1993; 

Button & Eidsath, 1996; Brini et al., 1997; Montero et al., 2002). These 

studies have demonstrated that CCh produced a higher Ca2+ uptake in 

mitochondria than ATP. In addition, there is evidence of a connexion 

between Ca2+ release mediated by ryanodine receptors and an 

increase in mitochondrial Ca2+ (Szado et al., 2003). Caffeine also 

induced a large initial Ca2+ increase in mitochondria which was followed 

by a small plateau indicating a sustained Ca2+ uptake. This caffeine- 

induced effect may account for the initial Ca2+ rise caused by the 

activation of ryanodine receptors which are absent in HEK293 and the 

later steady decline in Ca2+. The addition of CPA can also initiate Ca2+ 

transients in mitochondria (Szado etal., 2003; Takei etal., 2006) which 

also revealed a correlation with the ER Ca2+ release (Pinton et al., 

2001; Boehning etal., 2003).

The effects of inhibitors of mitochondrial functions were shown to be 

dependent on extracellular Ca2+ (Nowicky & Duchen, 1998). In addition, 

a large Ca2+ transient has been detected in mitochondria as a result of 

extracellular Ca2+ which was reduced by inhibitors (Varadi et al., 2004; 

Vandebrouck et al., 2006). This data indicates that mitochondria are 

also involved in SOC entry. Furthermore, these inhibitors also 

generated a rise in cytosolic Ca2+ resulting in the activation of Ca2+ - 

dependent K+ channels which were sensitive to charybdotoxin and TEA
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(Varadi et al., 2004) This latter study suggests a potential link between 

mitochondria Ca2+ uptake and BK channels.

Most of the findings presented in this thesis can be explained according 

to these reports. CCh and CPA induced considerable Ca2+ responses 

near the BK channel which may have been buffered by means of 

mitochondria buffering. In the case of ATP, the reduced buffering effect 

of mitochondria in the BK microdomain may have resulted in a higher 

increase in cytosolic Ca2+. Consequently, no significant difference 

would have been detected between the BK channel and cytosolic 

domains. The caffeine-induced decay in intracellular free Ca2+ may 

have also been caused by mitochondrial Ca2+ uptake. Accordingly, 

mitochondria would have displayed a sustained Ca2+ increase as a 

result of the exposure to caffeine which would be consistent with the 

mentioned studies (Szado et al., 2003). Similarly, the prominent Ca2+ 

buffering effect originated by mitochondria during the addition of 

extracellular Ca2+ would have probably been responsible for the lower 

Ca2+ increase recorded in the cytosol.

Finally, the most relevant work supporting this theory of mitochondrial 

buffering of the BK channel was undertaken by Malli and collaborators 

(Malli et al., 2003). In this elegant approach using a combination of 

fluorescent dyes and whole-cell patch clamp analysis, they studied the 

effects of histamine-induced Ca2+ activation of the BK channel in three 

specific sub-plasma membrane locations: close to the ER, near
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mitochondria and far from either. Their data revealed that in human 

umbilical vein endothelial cells there are three very distinctive Ca2+ 

concentrations beneath the plasma membrane depending on the 

presence of ER (6.33 pM), mitochondria (0.25 pM) or none of them 

(3.50 pM). Following the initial Ca2+ rise, the subsequent values of the 

Ca2+ plateau were 1.30, 0.10 and 1.18 respectively. All their 

experiments were carried out at room temperature. Electrophysiological 

recordings were performed simultaneously showing analogous 

increases in the channel open probability. This data indicate that 

mitochondria play a key role in buffering Ca2+ concentrations near the 

BK channel. In addition, the sub-plasma membrane Ca2+ 

measurements obtained in this work correlated well with theirs, even 

though they estimated Ca2+ concentrations near the membrane using 

an equation determined by BK channel activation in excised patches. 

The experiments presented in here showed that Ca2+ concentrations in 

the plasma membrane elicited in the presence of EGTA were in the 

order of 1.88 pM (Fig. 5.7) and 4.56 pM with Ca2+ medium (Fig. 4.7). It 

would be expected that histamine-induced Ca2+ transients in Ca2+ 

medium were between those values which are concordant with the 

findings of Malli and collaborators (Malli et al., 2003). The close 

similarity between both results indicates that both approaches are 

equally valid.

The hypothesis proposed in this thesis is that BK channels together with 

the (32-Aeq chimera were distributed uniformly across the membrane of
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each cell. Therefore, the three different possibilities (proximity to the 

ER, mitochondria or none of them) would have contributed to the mean 

values reported in this work.

The similarity found between the results in this thesis and those of 

previous reports provide support to the hypothesis of a potential role of 

mitochondria controlling the Ca2+ activation of BK channels.

5.4.5. Conclusions

To summarise, the results in this chapter provide support to the 

hypothesis that BK channels are activated by local Ca2+ signals. Indeed 

CCh, caffeine and CPA induced local Ca2+ responses near the channel. 

p2-Aeq chimera reported a specific Ca2+ regulation in the proximity of 

the BK channel in HEK293 cells as a result of exposure to CCh (100 

pM) (Fig. 5.2). ATP (100 pM) produced Ca2+ transients of the same 

magnitude in the BK channel and cytosolic domains. Histamine (100 

pM) caused no significant increase in intracellular free Ca2+ in both 

domains. Similarly, no significant Ca2+ response was triggered by 

changes in membrane potential following the addition of either TEA (10 

mM) or tetrandrine (10 pM) (Fig. 5.4). Caffeine (5 & 50 mM) induced a 

sustained decay in intracellular free Ca2+ near the BK channel (Fig. 

5.6). This effect was more prominent in the presence of extracellular 

Ca2+. Ca2+ oscillations were detected near the BK channel in response 

to CCh and caffeine. Surprisingly, the use of the SERCA inhibitor, CPA 

(10 pM), in Ca2+-free medium caused a marked Ca2+ transient in the BK
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channel microdomain (1.88 |iM) while only a small Ca2+ peak was 

recorded in the cytosol (0.65 pM). This unexpected result may be 

explained by a potential coupling between ER Ca2+-release and Ca2+ 

signalling near the BK channel. Furthermore, a mechanism involving 

IP3-induced ER Ca2+-release and mitochondrial buffering has been 

proposed to account for the local Ca2+-regulation in the vicinity of the 

BK channel.
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CHAPTER 6

GENERAL DISCUSSION
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6.1. SUMMARY OF MAIN FINDINGS

The studies outlined in this thesis describe the successful development 

of a p2-Aeq chimera capable of detecting local Ca2+ signals affecting 

the BK channel. This section presents an overview of the principal 

findings, the future studies and their significance in the context of the 

published literature.

The main finding of this thesis was that a highly localised Ca2+ 

signalling controls the BK channel function.

The strategy adopted in this thesis was to measure the intracellular free 

Ca2+ using the Ca2+ sensitive photoprotein aequorin targeted to the BK 

channel complex in living cells, and to investigate the regulation of the 

Ca2+ concentration close to the channel as a signalling mechanism. In 

the first stage of this work, the p2 subunit of the BK channel was cloned 

using mRNA extracted from osteoblast-like MG63 cells. The aequorin 

protein was engineered onto the cytosolic C-terminus of the p2 subunit 

and shown to maintain the Ca2+ sensitivity in both a cell-free system 

and living cells. The functional assessment of the protein showed that 

the new chimera possessed identical reconstitution properties in 

different conditions but a 10-fold reduction in light emission in 

comparison to the native aequorin. The recombinant protein targeted 

effectively the plasma membrane, where it reported changes in free 

Ca2+.
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The p2-Aequorin protein was used in conjunction with a cytosolic Luc- 

Aeq construct to compare the Ca2+ signalling processes in both 

domains. These two aequorin variants were expressed in two cell lines 

that contain a high number of BK channels, MG63 and HEK293 stably 

transfected with the BK channel a subunit. Only HEK293 cells express 

sufficient aequorin protein to enable Ca2+ imaging studies. Evidence of 

Ca2+ release from intracellular stores in response to a mechanical 

stimuli was found in HEK293 cells in suspension. This Ca2+ release 

indicates the presence of intracellular Ca2+ channels that are activated 

in response to mechanical disturbance.

Store-operated Ca2+ entry induced a 3 fold higher Ca2+ transient in the 

vicinity of the channel than that observed in the cytosol in HEK293 cells 

in monolayers. The individuality of Ca2+ signalling in these cells was 

demonstrated by the wide range of different Ca2+ signals detected in the 

individual cell clusters. Agonist-induced stimuli generated local Ca2+ 

responses near the BK channel. Changes in membrane potential 

produced no significant Ca2+ responses in either the BK channel or 

cytosol domains. The ER Ca2+ release also induced a high Ca2+ 

increase in the BK channel microdomain suggesting a potential 

coupling between the ER and the BK channel that regulates the Ca2+ 

concentration affecting the channel.

224



Chapter 6

All this evidence proves that this new p2-Aequorin chimera is a powerful 

tool to clarify the very complex mechanisms involved in cellular Ca2+ 

signalling controlling the BK channel function.

6-2. FUTURE PROSPECTS

The studies reported in this thesis will form the basis of future work on 

the local regulation and physiological function of free Ca2+ near the BK 

channel.

6.2.1. Further assessment of the functional properties of the p2-Aeq 

chimera.

The data described in this thesis have provided considerable evidence 

of the capacity of p2-Aeq for successfully reporting the local Ca2+ 

signals affecting the BK channel. Nonetheless, the correct co

expression of the a subunit with the p2-Aeq has not been studied in 

detail. An appropriate approach would be immunoassays such as co- 

immunoprecipitation or immunofluorescence for both a and p2-Aeq 

proteins. This would also assist in determining whether part of the p2- 

Aeq is retained in the ER. Previous reports indicate that the a subunit 

co-assembles effectively with either the P2 subunit (Lv et al., 2008) and 

a p1-GFP chimera (Kim etal., 2007).

A simple estimation of the number of BK channels per cell and the 

number of p2-Aequorin chimeras present in the cell may suggest that
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there was a slightly excess of p2-Aequorin. Assuming that BK channels 

are uniformly distributed across the cell membrane, an average of three 

channels per patch (Fig. 3.3) and an average diameter of 30 pm for 

HEK293 cells, the total number of BK channels per HEK293 cell was 

estimated to be around 8500 channels. Equally, the amount of total 

counts can also provide an estimate of the number of P2-Aeq molecules 

within the cell. Based on the data shown in this thesis (See section 

4.3.1) and assuming a transfection efficiency of 20%, a quantum 

efficiency of 2% for p2-Aeq (10 fold lower than aequorin, Fig. 3.8) and a 

total quantum collection efficiency of 10% for the luminometer, the 

number of p2-Aeq molecules was estimated to be of the order of 58000. 

Each BK channel may potentially bind up to four p2 subunits resulting in 

a maximum of 34000 binding sites available. Consequently, some of the 

p2-Aeq chimeras may not be co-assembling with the BK channel, 

although may well be membrane-bound as suggested by the subcellular 

fraction approach taken in this thesis (Fig. 3.12). The co- 

immunoprecipitation of both BK a and p2 subunits would clarify whether 

these estimations reflect the precise distribution of these two proteins 

within the cell.

Patch-clamp studies should also be performed to confirm that the 

electrophysiological properties of p2 subunit remained unchanged 

following the addition of the aequorin sequence. This would also 

confirm whether the P2-Aeq chimera co-assemble with the a subunit.
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Nevertheless, there is evidence that the addition of GFP to the C- 

terminus of p1 subunit did not modify its expression or 

electrophysiological properties (Kim et al., 2007). Ideally an equipment 

that could simultaneously perform bioluminescent Ca2+ imaging and 

patch-clamp would provide the appropriate conditions to correlate the 

local Ca2+ signals detected by P2-Aeq with the BK channel function.

6.2.2. Investigation of the role of mitochondria on Ca2* signalling near 

the BK channel.

The work in this thesis has demonstrated that Ca2+ signals near the BK 

channel were locally regulated under certain conditions. As discussed in 

the previous chapter (See section 5.4.4.) there is a great deal of 

evidence showing the important role of mitochondria in many cellular 

processes including the control of Ca2+ modulation of the BK channels 

(Malli et al.t 2003). One of the first questions is to determine whether 

this local Ca2+ regulation is affected by mitochondrial buffering. This will 

be investigated in HEK293 by employing inhibitors of mitochondrial 

function such as cyanide (CN~) or p-trifluoromethoxyphenyl hydrazone 

(FCCP). The disruption of the mitochondrial buffering effect will 

probably result in a rise on Ca2+ concentrations in both the BK channel 

and the cytosol domains. A higher increase of the local Ca2+ response 

near the BK channel in comparison to the cytosol will provide further 

evidence that there is a subset of mitochondria beneath the plasma 

membrane acting as a buffering barrier. Conversely if there is no
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significant difference between both regions, this would mean that 

mitochondrial Ca2+ uptake operates uniformly across the cell. A better 

understanding of the role of mitochondria in the modulation of Ca2+ 

signalling is crucial to comprehend BK channel function.

6.2.3. Does the local CsP* regulation of the BK channel vary with cell 

function?

The important role of the BK channel in neurotransmitter release, 

secretion and smooth muscle tone requires a very tight regulation, 

which has a major impact in cell function. This diverse regulation is 

achieved by various mechanisms such as expression of different splice 

variants or co-assembly with different p subunits. Indeed there is 

evidence of BK channels which exhibited enhanced Ca2+ sensitivity 

(Ransom & Sontheimer, 2002). The majority of the studies reporting 

these differences were carried out using either excised patches or 

cytosolic fluorescent dyes. Nonetheless, there is a lack of evidence 

showing how different cell types handle in situ the local Ca2+ 

concentrations affecting the BK channel. There are two potential 

approaches to examine the specific mechanism of this Ca2+ regulation. 

Firstly the expression of the p2-Aeq construct in other cell lines (i.e. 

vascular smooth muscle cells, neurons, pancreatic cells...) will provide 

significant data about how Ca2+ regulation of the BK channel is 

managed by a range of cells with different phenotype. Secondly the co

expression of the p2-Aeq chimera with a subunit variants with different
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Ca2+ sensitivity (i.e. different splice variants, deletion of the Ca2+ 

bowl...) may reveal that the local Ca2+ regulation near the channel is 

modified as a result. These experiments can bring new insights about 

how cell function affects the local Ca2+ regulation of the BK channel.

6.2.4. Does the BK channel form complexes with Ca2+ channels?

Recent studies have reported the co-assembly of BK channels with 

Ca2+ channels resulting in the creation of Ca2+ microdomains (Berkefeld 

et al., 2006; Loane et al., 2007). In these reports the Ca2+ chelator 

BAPTA was capable of diminishing the Ca2+ concentrations in these 

microdomains due to its fast kinetics. In contrast, EGTA was unable to 

produce the same effect even at high concentrations. The P2-Aeq may 

prove very useful in determining whether different type of Ca2+ channels 

co-assemble with the BK channel in a range of different cell types. An 

initial experiment would be to examine whether BAPTA can abolish the 

local Ca2+ increase observed in EGTA medium as a response to CPA 

(Fig. 5.5). This would demonstrate whether the coupling between the 

ER Ca2+ release and the BK channel is through a microdomain that 

may be diminished by BAPTA. A series of subsequent experiments 

using Ca2+ channels blockers such as nifedipine and oo-agatoxin in 

different cell types transfected with P2-Aeq may reveal the existence of 

these BK- Ca2+ channel complexes.
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The study of agonist-induced Ca2+ transients in the presence of Ca2+ 

channels blockers such as nifedipine and w-agatoxin in different cell 

types transfected with P2-Aeq may reveal the existence of these BK- 

Ca2+ channel complexes. If Ca2+ channels near the BK channel are 

blocked a marked decline in the local Ca2+ concentration in the 

proximity of the channel would be observed. Since HEK293 cells 

possess very low or undetectable endogenous Ca2+ channels, these 

studies should be conducted in other cell lines.
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Appendix 1

APPENDIX 1 Oligonucleotide primer sequences.

Primers used to detect the presence of the a and p1-4 subunits:

Beta Actin sense (20 bp)

CCCAGCCAT GT ACGTT GCTA

Beta Actin antisense (21 bp)

AGGGCATACCCCTCGTAGATG

a sense (23 bp)

ACGCAAT CT GCCT CGCAG AGTT G

a antisense (20 bp)

CATCATGACAGGCCTTGCAG

p1 sense (21 bp)

CTGTACCACACGGAGGACACT

p1 antisense (21 bp)

GT AG AGGCGCTGG AAT AGG AC

p2 sense (20 bp)

CATGTCCCTGGTGAATGTTG

p2 antisense (20 bp)

TTGATCCGTTGGATCCTCTC

p3 sense (20 bp)

AACCCCCTTTTCATGCTTCT
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p3 antisense (20 bp)

TCTTCCTTTGCTCCTCCTCA

p3 sense (20 bp)

GTT CG AGT GCACCTT CACCT

p4 antisense (20 bp)

TAAATGGCTGGGAACCAATC

Primers used to obtain the full sequence of the p2 subunit:

P2 sense (21 bp)

G AG ACCCTGG ACC AACATT CT

p2 antisense (25 bp)

AGAACCTTAAGTTTGTAACGTGCAG

Primers used to link the p2 and aequorin sequences:

p2 sense primer (28 bp)

ATGTTTATATGGACCAGTGGCCG

p2 antisense primer (26 bp)

TTATCTATTGATCCGTTGGATCCTCT

p2 antisense primer with aequorin linker (48 bp):

GAAGTCTGATGTAAGCTTGACCATTCTATTGATCCGTTGGATCCTCTC

Aequorin antisense primer (19 bp):

TTAGGGGACAGCTCCACCC

Primer used for plasmid screening in bacteria:

T7 promoter sense primer:

TAATACGACTCACTATAGGG
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APPENDIX 2: Vector circle map and sequence 

reference points.

pTarget: mammalian expression
(Promega, Southampton, U.K.)

CMV ^  
Enhancer/Promoter

Intron

pTARGET
Vector

(5670bp) SV40 Late 
poly (A) i

Synthetic fl
poly(A) SV40 Enhancer/
\  EarlyPromoter^

i/ II 5665

lacZ

T7 X
EcoR I 1250
BamH I 1256
Nhe I 1264
Xho I 1270
Mlu I 1276
T overhangs

Sma I 1293
Kpn I 1301
Sal I 1303
Acc I 1304
Atofl 1311
EcoR I 1318

lacZ

Sequence reference points

1. Cytomegalovirus immediate-early enhancer

2. Cytomegalovirus immediate-early promoter

3. Chimeric intron

4. lacZa start codon

5. lacZa stop codon

6. lac operon sequences

7. lac operator

8. T7 promoter

9. Multiple cloning site

10. SV40 late polyadenylation signal

11. Phage f1 region

12. Neomycin selectable marker

13. p-lactamase (Ampr) coding region

Bases

1-659

669-750

890-1022

1377

1053

1363-1499, 1066-1226

1397-1413

1227-1251

1250-1323

1535-1755

1798-2252

2260-3581

3978-4838
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Appendix 3

APPENDIX 3: cDNA sequences.

A. P2 subunit of the BK channel cDNA coding sequence (KCNMB2)

Published sequence of the p2 subunit (NM_181361, GenBank). This sequence is 

listed 5’ to 3. The transcriptional start site is defined as residue +1. Stop codon is 

indicated by The translated amino acid sequence is shown underneath.

atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 61 

M F  I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 121 

I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 181 

K A G E D R A I L L G L A M M V C S I M  

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 241 

M Y F L L G I  T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaattgctccttcagc 3 01 

E S Q C T L L N A S I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 3 61 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 421 

T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctatatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 481 

K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 541 

V V M E N F R K Y Q H  F S C Y S D P E G  

aaccagaagagtgttatcctaacaaaactctacagttccaacgtgctgttccattcactc 601 

N Q K S V I  L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 661 

F W P T C M M A G G V A I V A M V K L T  

cagtacctctccctactatgtgagaggatccaacggatcaatagataa 708
Q Y L S L L C E R I Q R I N R -
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B. p2 subunit of the BK channel coding sequence.

|32 sequence inserted into pTarget. This sequence is listed 5’ to 3’, left to right. The 

transcriptional start site is defined as residue +1. Stop codon is indicated by -. The 

translated amino acid sequence is shown underneath.

atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 61 

M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 121 

I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 181 

K A G E D R A I  L L G L A M M V C S  I M 

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 241 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaactgctccttcagc 3 01 

E S Q C T L L N A S I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 361 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 421 

T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctacatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 481 

K C  S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 541 

V V M E N F R K Y Q H F S C Y S D P E G  

aaccagaagagtgttatcctaaccaaactctacagttccaacgtgctgttccattcactc 601 

N Q K S V I L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 661 

F W P T C M M A G G V A I V A M V K L T  

cagtacctctccctactatgtgagaggatccaacggatcaatagataa 708
Q Y L S L L C E R I Q R I N R -
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C. Native aequorin cDNA coding sequence.

Sequence of aequorin cDNA (Badminton, 1996). This sequence is listed 5’ to 3’, left 

to right. The transcriptional start site is defined as residue +1. Stop codon is indicated 

by The translated amino acid sequence is shown underneath.

atggtcaagcttacatcagacttcgacaacccaaaatggattggacgacacaagcacatg 61 

M V K L T S D F D N P K W I G R H K H M  

tttaattttcttgatgtcaaccacaatggaaggatctctcttgacgagatggtctacaag 121 

F N F L D V N H N G R I  S L D E M V Y K  

Gcgtccgatattgttataaacaatcttggagcaacacctgaacaagccaaacgtcacaaa 181 

A S D  I V I N N L G A T P E Q A K R H K  

gatgctgtagaagccttcttcggaggagctggaatgaaatatggtgtagaaactgaatgg 241 

D A V E A F F G G A G M K Y G V E T E W  

cctgaatacatcgaaggatggaaaagactggcttccgaggaattgaaaaggtattcaaaa 301 

P E Y I E G W K R L A S E E L K R Y S K  

aaccaaatcacacttattcgtttatggggtgatgcattgttcgatatcattgacaaagac 361 

N Q I T L I R L W G D A L F D I  I D K D  

caaaatggagctatttcactggatgaatggaaagcatacaccaaatctgctggcatcatc 421 

Q N G A I  S L D E W K A Y T K S A G I  I 

caatcgtcagaagattgcgaggaaacattcagagtgtgcgatattgatgaaagtggacag 481 

Q S S E D C E E T F R V C D I D E S G Q  

ctcgatgttgatgagatgacaagacaacatttaggattttggtacaccatggaccctgct 541 

L D V D E M T R Q H L G F W Y T M D P A  

tgcgaaaagctctacggtggagctgtcccctaa 573

C E K L Y G G A V P

263



Appendix 3

D. p2-Aequorin sequence coding sequence.

P2-Aequorin sequence inserted into pTarget. This sequence is listed 5’ to 3’, left to 

right. The transcriptional start site is defined as residue +1. Stop codon is indicated by 

-. The translated amino acid sequence is shown underneath.

atgtttatatggaccagtggccggacctcttcatcttatagacatgatgaaaaaagaaat 61 

M F I W T S G R T S S S Y R H D E K R N  

atttaccagaaaatcagggaccatgacctcctggacaaaaggaaaacagtcacagcactg 121 

I Y Q K I  R D H D L L D K R K T V T A L  

aaggcaggagaggaccgagctattctcctgggactggctatgatggtgtgctccatcatg 181 

K A G E D R A I  L L G L A M M V C S  I M  

atgtattttctgctgggaatcacactcctgcgctcatacatgcagagcgtgtggaccgaa 241 

M Y F L L G I T L L R S Y M Q S V W T E  

gagtctcaatgcaccttgctgaatgcgtccatcacggaaacatttaattgctccttcagc 301 

E S Q C T L L N A S I T E T F N C S F S  

tgtggtccagactgctggaaactttctcagtacccctgcctccaggtgtacgttaacctg 361 

C G P D C W K L S Q Y P C L Q V Y V N L  

acttcttccggggaaaagctcctcctctaccacacagaagagacaataaaaatcaatcag 421 

T S S G E K L L L Y H T E E T I K I N Q  

aagtgctcctatatacctaaatgtggaaaaaattttgaagaatccatgtccctggtgaat 481 

K C S Y I  P K C G K N F E E S M S L V N  

gttgtcatggaaaacttcaggaagtatcaacacttctcctgctattctgacccagaagga 541 

V V M E N F R K Y Q H F S C Y S D P E G  

agccagaagagtgttatcctaacaaaactctacagttccaacgtgctgttccattcactc 601 

S Q K S V I  L T K L Y S S N V L F H S L  

ttctggccaacctgtatgatggctgggggtgtggcaattgttgccatggtgaaacttaca 661 

F W P T C M M A G G V A I V A M V K L T  

cagtacctctccctactatgggagaggatccaacggatcaatagaatggtcaagcttaca 721 

Q Y L S L L W E R I Q R I N R M V K L T  

tcagacttcgacaacccaaaatggattggacgacacaagcacatgtttaattttcttgat 781 

S D F D N P K W I G R H K H M F N F L D  

gtcaaccacaatggaaggatctctcttgacgagatggtctacaaggcgtccgatattgtt 841 

V N H N G R I  S L D E M V Y K A S D I V  

ataaacaatcttggagcaacacctgaacaagccaaacgtcacaaagatgctgtagaagcc 901 

I N N L G A T P E Q A K R H K D A V E A  

ttcttcggaggagctggaatgaaatatggtgtagaaactgaatggcctgaatacatcgaa 961 

F F G G A G M K Y G V E T E W P E Y I E  

ggatggaaaagactggcttccgaggaattgaaaaggtattcaaaaaaccaaatcacactt 1021 

G W K R L A S E E L K R Y S K N Q I  T L  

attcgtttatggggtgatgcattgttcgatatcattgacaaagaccaaaatggagctatt 1061 

I R L W G D A L F D  I I D K D Q N G A I  

tcactggatgaatggaaagcatacaccaaatctgctggcatcatccaatcgtcagaagat 1121 

S L D E W K A Y T K S A G I  I Q S S E D  

tgcgaggaaacattcagagtgtgcgatattgatgaaagtggacagctcgatgttgatgag 1181 

C E E T F R V C D I D E S G Q L D V D E  

atgacaagacaacatttaggattttggtacaccatggaccctgcttgcgaaaagctctac 1241 

M T R Q H L G F W Y T M D P A C E K L Y  

ggtggagctgtcccctaa 1260
G G A V P -
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