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Summary

Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by 

germline mutations in either TSC1 or TSC2 and characterised by the 

development of benign hamartomatous growths in multiple organs and tissues. 

Clinical trials are underway for the treatment of TSC-associated tumours using 

mammalian target of rapamycin (mTOR) inhibitors. Here, we show that many of 

the earliest renal lesions from Tsc1+/~ and Tsc2+/' mice do not exhibit mTOR 

activation, suggesting that pharmacological targeting of an alternative pathway 

may be necessary to prevent tumour formation.

Patients with TSC often develop renal cysts and those with inherited co­

deletions of the autosomal dominant polycystic kidney disease (ADPKD) 1 gene 

(PKD1) develop severe, early onset, polycystic kidneys. Using mouse models, 

we crossed Tsc1+'~ and Tsc2+,~ mice with Pkd1+'~ mice to generate double 

heterozygotes. We found that Tsc1+l~Pkd1+,~ and Tsc2+l~Pkd1+l~ mice had 

significantly more renal lesions than their corresponding single heterozygote 

littermates indicating a genetic interaction between Tsc1 and Tsc2 with Pkd1. In 

agreement with our findings from Tsc1+/~ and Tsc2+/~ mice, we found that a large 

proportion of cysts from Tsc1+l~Pkd1+l~ and Tsc2+l'Pkd1+l' mice failed to stain for 

pS6, suggesting that initiation of renal cystogenesis in these animals may occur 

independently of mTOR activation.

We analysed primary cilia in phenotypically normal renal tubule epithelial 

cells by scanning electron microscopy (SEM) and found that those from Tsc1+,~ 

and Tsc2+,~ mice were significantly shorter than those from wild-type littermates 

(2.122pm and 2.016pm vs. 2.233pm, respectively, P<0.001). Primary cilia from 

epithelial cells lining renal cysts of Tsc1+I~ and Tsc2+I~ mice were consistently 

longer (5.157pm and 5.091pm respectively). Interestingly, we found that Pkd1- 

deficiency coupled with either Tsc1 or 7sc2-deficiency altered the length of the 

primary cilia from both normal renal tubule cells (restored to ‘wild-type’ length)



and epithelial cells lining cysts (Tsc1+l~Pkd1+l~ Mean 3.38pm and Tsc2+l~Pkd1+l~ 

Mean 3.09pm). These novel data demonstrate that the Tsc and Pkd1 gene 

products help regulate primary cilia length which may prevent renal cystogenesis.

Consistent with the observation that primary cilia modulate the planar cell 

polarity (PCP) pathway, we found that many dividing pre-cystic renal tubule 

epithelial cells from Tsc1+/~, Tsc2+/~ and Pkd1+/~ mice were highly misorientated 

along the tubule axis. This could potentially lead to tubule dilation and 

subsequent cyst formation. We therefore propose that defects in cell polarity 

underlie both TSC and ADPKD-associated renal cystic disease and targeting of 

this pathway may be of key therapeutic benefit.
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CHAPTER ONE: General introduction

1.1 Tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a tumour suppressor gene 

syndrome characterised by benign hamartomatous growths in multiple 

organs.

1.1.1 A brief history of TSC

D&sire-Magloire Bourneville first discovered and described TSC in 

1879, giving it the name “tuberous sclerosis of the cerebral convolutions” 

(Bourneville 1880). In 1908 Vogt proposed a clinical triad of seizures, mental 

handicap and adenoma sebaceum as indicative of cerebral tuberous sclerosis 

and also noted that cardiac and renal tumours occurred (Vogt 1908). Prior to 

the 1970’s, estimates of the prevalence of TSC ranged from 1:20,000 to 

1:150,000 (Gunther and Penrose 1935, Ross and Dickerson 1943, Dawson 

1954, Paulson and Lyle 1966, Zaremba 1968, Stevenson and Fischer 1956, 

Nevin and Pearce 1968, Singer 1971). During the 1970’s and 1980’s, new 

technologies such as computed tomography (CT), echocardiography, renal 

ultrasound and magnetic resonance imaging (MRI) provided reliable non- 

invasive methods of diagnosis allowing identification of patients who did not 

present with the complete Vogt’s triad or those that presented with no signs of 

impaired intelligence (Lagos and Gomez 1967). Due to these new 

technologies and publication of primary and secondary diagnostic criteria by 

Gomez in 1979, population studies became far more accurate and many more 

patients were included (Gomez 1979). Since this, many more population 

studies have been undertaken and by 2006 the prevalence of TSC was 

estimated between 1:14,492 to 1:26,500 (Shepherd etal. 1991a, Webb etal. 

1996, Devlin et al. 2006). The two genes responsible for TSC have now been 

characterised (The European Chromosome 16 Tuberous Sclerosis 

Consortium 1993, van Slegtenhorst etal. 1997) and genetic testing is 

available for the diagnosis of TSC in adults, children and infants, both pre- 

and post-natally (Jones et al. 2000, Benit etal. 2001). Table 1.1 lists further 

important discoveries in the history of TSC.
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Table 1.1 History of the tuberous sclerosis complex.

Date Name Discoveries, developments and genetics
1835 Pierre Francois 

Olive Rayer
A picture in skin disease atlas closely resembled 
facial angiofibromas seen in TSC patients.

1862 Friedrich Daniel 
von
Recklinghausen

Presented a newborn infant with heart tumours 
and brain scleroses, now commonly known as 
cardiac rhabdomyomas and cortical tubers.

1879 D€sire-Magloire
Bourneville

Coined term “tuberous sclerosis of the cerebral 
convolutions” after examining brain of epileptic 
and mentally handicapped girl (Bourneville 1880).

1885 Balzer, Menetrier 
and Pringle

Recognised and named “adenoma sebaceum”, a 
facial lesion found in TSC patients.

1905 Campbell Described ocular pathology.
1905 Perusini Observed association of cerebral, renal and 

cardiac lesions with facial angiofibromas.
1908 Vogt Clinical triad of seizures, mental handicap and 

adenoma sebaceum (Vogt 1908).
1910 Kirpicznik & Berg Hereditary nature of tuberous sclerosis.
1920
and
1935

Van der Hoeve Noted retinal phakomas and a similarity between 
TSC, neurofibromatosis and von Hippel-Lindau 
disease, introduced concept of phakomatosis.

1932 Critchley & Earl Published very complete description of TSC and 
emphasized the diagnostic value of white spots 
(hypomelanotic skin macules).

1942 Moolten Recognised the complexity and hamartial nature 
of tuberous sclerosis, renamed it “the tuberous 
sclerosis complex” (Moolten 1942).

1967 Lagos & Gomez 38% of their patients were found to have average 
intelligence.

1979 Gomez New criteria for diagnosis; decline of Vogt’s triad.
1987 Fryer et al. Assigned TSC1 to chromosome 9q34 (Fryer et al. 

1987).
1992 Kandt et al. Assigned TSC2 to chromosome 16p13 near the 

region of PKD1 (Kandt et al. 1992).
1993 The European 

Chromosome 16 
TSC Consortium

TSC2 cloned and its protein product tuberin 
identified. Found region of homology to the 
GTPase-activating protein GAP3.

1994 Green et al. & 
Carbonara et al.

Loss of heterozygosity found in renal, cardiac and 
brain lesions from TSC patients (Green et al. 
1994, Carbonara et al. 1994).

1997 Van Slegtenhorst 
et al.

TSC1 cloned and its protein product hamartin 
identified (van Slegtenhorst et al. 1997).

1998 Van Slegtenhorst 
et al.

Hamartin and tuberin associate physically in vivo 
(van Slegtenhorst et al. 1998).

2002 Tee et al. Hamartin and tuberin function together to inhibit 
the mammalian target of rapamycin (mTOR) 
pathway (Tee et al. 2002).

Unless otherwise stated, references are from Gomez etal. 1999.
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1.1.2 TSC manifestations

TSC can cause hamartomatous lesions in most organs of the body, 

notably the central nervous system, skin, kidneys, retina and heart. Skin 

lesions are the most common findings in TSC patients (apparent in 

approximately 96% of patients), closely followed by cerebral pathology in 90% 

of patients. Approximately 84% have had seizures, 60% have renal pathology 

and nearly 50% have retinal hamartomas (Gomez etal. 1999). Other tissues 

that may be affected include the lungs, spleen, lymph nodes, adrenal and 

thyroid glands, gonads, nasal mucosa, pituitary gland, the aorta and large 

calibre arteries, bones, dental enamel, gums, liver, pancreas, and 

gastrointestinal tract (Gomez 1988). The spinal cord is rarely involved and the 

skeletal muscles and peripheral nerves are not known to be affected. Table

1.2 lists the characteristic lesions of TSC in more detail. Age is a factor in the 

type of lesions present in a patient. Angiomyolipomas (AMLs) tend to not 

appear until later in life, usually becoming apparent towards the end of the 

second decade, whereas cardiac rhabdomyomas appear in foetal life and 

often disappear in infancy (Roach and Sparagana 2004).

Hamartomas are the most common type of lesion in TSC, however 

there are actually three different types of lesion (Moolten 1942):

■ Hamartias are misaligned groups of dysplastic cells that are intrinsic to 

the tissue they are located in. The undifferentiated cells do not multiply 

or grow more rapidly than the surrounding normal cells (e.g. cortical 

tubers).

■ Hamartomas are groups of dysplastic cells that tend to multiply 

excessively and grow into benign tumours (e.g. renal 

angiomyolipomas).

■ Hamartoblastomas are rare malignant tumours derived from 

hamartomas (e.g. renal cell carcinomas).
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Subependymal giant cell 
astrocytoma (SEGA)

Histologically identical to SEN but diff 
their propensity to grow. Lie adjacent 
foramina of Monro.

Skin Hypomelanotic macule Often present at birth and appear as ( 
white patches commonly over the trur 
buttocks.

Facial angiofibroma 
(adenoma sebaceum)

Red to pink papules or nodules with a 
smooth, glistening surface. Bilaterally 
symmetrical, distributed over the cent 
areas.

Shagreen patch Found on the dorsal body surfaces, 
particularly the lumbosacral region. A| 
slightly elevated, yellowish, brown or | 
colour and texture of orange peel.

Ungual fibroma Dull, red- or flesh-coloured papules 01 
nodules arising from the finger or toe 
bed.

Cafe-au-Lait macule Oval or round, flat, hyperpigmented m 
of 1 to 5cm in length. Can create diag 
confusion with neurofibromatosis.

Kidney Cyst
Angiomyolipoma 
Renal cell carcinoma

Described in text below.

Heart Cardiac rhabdomyoma Grey-white to yellow-tan lesions that \ 
from several millimetres to several 
centimetres. Occur more commonly in 
ventricles than atria.
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tumours, mixed tumours and retinal 
depigmented spots.

Lungs Lymphangioleiomyomatosis
(LAM)

Found in up to 50% of women with Ti 
CT scan. Affected lungs may be twice 
heavy as normal. Lung tissue replace 
many cysts varying from a few millimi 
several centimetres diameter.

Liver Angiomyolipoma Less commonly found in the liver thar 
kidneys. Consists of abnormal blood 
smooth muscle cells and adipose tiss

The
endocrine
system

Angiomyolipoma
Adenoma

Organs involved include adrenal glan 
thyroid gland, pancreas, gonads, 
hypothalamus, pituitary and parathyrc 
glands.

Digestive
tract

Mouth - Nodular tumours, 
fibromas, papillomas

Rectum - Hamartomatous 
colorectal polyps

Appear between 4 and 10 years of ag 
puberty.

Uncommon, mainly occur in adults. T 
non-neoplastic and have no malignan 
potential.

Teeth Enamel pits Occur in primary or deciduous teeth.

Spleen Nodular tumours Very rare. Can reach up to 11cm in di

Arteries Wall defects Result in aneurysm of the aorta or 
subclavian, cranial, or renal arteries.

Skeleton Phalangeal cysts 

Sclerotic lesions

Present early in childhood. Non-specr 
fibrous tissue replaces bone.

Un-accompanied by symptoms. Calve 
sclerosis appears within the first deca 
life in about half of TSC patients.

Information obtained from Gomez etal. 1999, Rosser etal. 2006 and Lendvj 
and Marshall 2003.
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1.1.2.1 Renal manifestations

After neurologic complications, renal manifestations are the second 

most common cause of morbidity and mortality in TSC (Shepherd et al.

1991b). Renal lesions can be divided into three types: cysts and AMLs 

(strongly associated with TSC) and renal cell carcinomas (RCCs) (rarely 

seen).

AMLs are the most common renal lesions in TSC, seen in as many as 

80% of patients (Bernstein and Robbins 1991, Casper etal. 2002). Females 

appear to be more often affected with larger and more numerous AMLs 

compared to males (Ewalt et al. 1998). AMLs are classified as benign tumours 

of abnormal blood vessels, immature smooth muscle cells and adipose tissue 

(Henske 2005). The lesions are often multiple and bilateral and increase in 

size and number with age (Roach and Sparagana 2004). Smaller AMLs are 

asymptomatic, but lesions larger than 4cm in diameter are at greater risk of 

spontaneous haemorrhage and are often treated with prophylactic 

embolization (Casper et al. 2002).

The second most common renal lesions in TSC patients are cysts, 

occurring in 17% of children and up to 47% of adults (Rosser et al. 2006). 

Cysts are more commonly the cause of renal insufficiency and hypertension 

than AMLs (Lendvay and Marshall 2003). Like AMLs, the incidence of cysts 

between the sexes appears to vary with 20% of males and 9% of females 

affected (Torres et al. 1995). Cysts may be focal or diffuse, can be several 

centimetres in diameter and are usually present throughout the cortex and 

medulla. They are characteristically lined with a hyperplastic epithelium 

consisting of large cells often containing large, hyperchromatic nuclei with 

occasional mitotic figures (Gomez 1988). Occasionally TSC patients present 

with severe cystic kidneys, often at a young age, similar to those seen in 

advanced autosomal dominant polycystic kidney disease (ADPKD). Almost all 

of these patients have an inherited deletion spanning both the TSC2 and 

PKD1 genes which lie adjacent to each other on chromosome 16 (Brook- 

Carter etal. 1994, Sampson etal. 1997 and Laas etal. 2004).
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TSC patients can also develop RCC and oncocytomas although these 

are quite rare phenotypes. The incidence of TSC associated RCC has been 

reported to be 2.5% to 4%, which is higher than that of the general population 

(Lendvay and Marshall 2003, Al-Saleem et al. 1998). There are also many 

reports in children with TSC (Al-Saleem etal. 1998, Robertson etal. 1996), 

and one report in an infant (Breysem et al. 2002). RCCs in TSC patients occur 

at an average age of 28 years, compared to sporadic RCCs which occur at a 

mean age of 55 in the general population (Washecka and Hanna 1991, 

Bjomsson et al. 1996). Clear cell carcinomas are the predominant cancer cell 

type, with papillary, sarcomatoid and chromophobe carcinomas also seen 

(Bjomsson et al. 1996, Al-Saleem et al. 1998). It is believed that RCCs evolve 

from hyperplastic cystic epithelia rather than AML lesions (Al-Saleem et al. 

1998, Robertson etal. 1996).

1.1.3 Clinical diagnosis of TSC

For decades, Vogt’s triad of seizures, mental retardation and facial 

angiofibromas was thought to be the complete clinical manifestation of TSC. 

However Gomez found that the three features of the triad are only found in 

29% of patients with TSC, and perhaps more importantly 6% of TSC patients 

displayed none of the triad (Gomez 1988). In 1979 Gomez devised a new 

criterion for the diagnosis of TSC (Gomez 1979). This was later reassessed in 

1998 at the Consensus Conference on TSC, and an even more detailed 

diagnostic criterion was devised (Roach etal. 1998). The new criteria were 

divided into major and minor features with the outcome consisting of a 

definitive, probable or possible diagnosis of TSC. Table 1.3 shows the full 

diagnostic criteria. Since 2001 genetic testing, using techniques such as 

denaturing high-performance liquid chromatography (DHPLC), has also been 

employed to diagnose TSC by screening patients DNA for mutations in TSC1 

or TSC2 (Benit 2001).
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Table 1.3 Clinical diagnostic criteria for TSC.

Major features

Facial angiofibromas or forehead plaque 

Nontraumatic ungula or periungual fibroma 

Hypomelanotic macules (more than 3) 

Shagreen patch (connective tissue nevus) 

Multiple retinal nodular hamartomas 

Cortical tuber *

Subependymal nodule 

Subependymal giant cell astrocytoma 

Cardiac rhabdomyomas, single or multiple 

Lymphangioleiomyomatosis f  

Renal angiomyolipomas f

Minor features

Multiple randomly distributed pits in dental enamel 

Hamartomatous rectal polyps t  

Bone cysts §

Cerebral white matter migration lines * §

Gingival fibromas 

Nonrenal hamartomas ±

Retinal achromic patch 

“Confetti” skin lesions 

Multiple renal cysts ±

Definite TSC: either 2 major features or 1 major feature with 2 minor features. 

Probable TSC: 1 major feature and 1 minor feature.

Possible TSC: either 1 major feature or 2 or more minor features.

Table adapted from Roach etal. 1998.
* When cerebral cortical dysplasia and cerebral white matter migration tracts 
occur together, they should be counted as 1 rather than 2 features of TSC.
t  When both lymphangioleiomyomatosis and renal angiomyolipomas are 
present, other features of TSC should be present before definitive diagnosis is 
assigned.
$ Histologic confirmation is suggested.
§ Radiographic confirmation is sufficient.
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1.1.4 Identification of the TSC genes

TSC was first recognised as a genetic condition in 1910 by Kirpicznik, 

and later in 1913, Berg reported that the disease was hereditary (Kirpicznik 

1910, Berg 1913). Gunther and Penrose in 1935 demonstrated the dominant 

inheritance and also suggested a high mutation rate was present in TSC 

(Gunther and Penrose 1935). It was not until the 1980s that progress was 

made in identifying the genes responsible for TSC. Fryer et al. undertook a 

genetic linkage study of 19 TSC families and found linkage to the ABO blood 

group gene on chromosome 9q34 (Fryer et al. 1987). The locus was named 

TSC1 for tuberous sclerosis complex type 1, however evidence for genetic 

heterogeneity suggested that there must be at least one additional TSC- 

causing locus elsewhere in the genome (Sampson etal. 1989, Haines etal. 

1991, Northrup etal. 1992). In 1991 a genome-wide search testing five 

families affected by TSC revealed linkage to a polymorphic marker near the 

autosomal dominant polycystic kidney disease type 1 (ADPKD1) locus on 

chromosome 16p13 (Kandt etal. 1992). This locus was named TSC2 and 

subsequent studies indicated that >90% of TSC families showed strong 

evidence of linkage to TSC1 or TSC2 with no conclusive evidence of a third 

locus.

1.1.4.1 The TSC1 gene

In the early 1990s, analysis of key meiotic recombination events in 

TSC1 families suggested that the disease gene was located in a 4-cM interval 

between loci D9S149 and D9S114 (Povey etal. 1994). Conflicting 

recombination data (Gilbert etal. 1993, Kwiatkowski etal. 1993, Pitiot etal. 

1994, Nellist et al. 1993) and the lack of any clues from chromosome 

rearrangements or large deletions led to the construction of a 1.7 Megabase 

(Mb) cosmid contig which covered the TSC1 candidate region (Hornigold, et 

al. 1997). The candidate region was soon narrowed to 900 kilobases (kb) 

between the markers D9S2127 and DBH (van Slegtenhorst 1997). This TSC1 

region proved to be gene-rich with over 30 genes identified and several of 

these were highlighted as good candidates based on probable roles in signal 

transduction pathways. However, no mutations in these genes were identified 

in patients with TSC (van Slegtenhorst 1997) and so complete genome
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sequencing of the region was initiated to predict further putative exons and 

genes. Systematic amplification and mutation screening of exons by 

heteroduplex analysis of a set of 60 DNA samples from 20 unrelated familial 

TSC cases with linkage to 9q34 and 40 sporadic cases, revealed mobility 

shifts corresponding to small truncating mutations in the 62nd exon screened 

(van Slegtenhorst 1997). This exon corresponded to previously identified 

complementary DNA (cDNA) clones and a combination of 5’ rapid 

amplification of cDNA ends (5’RACE), reverse transcription-polymerase chain 

reaction (RT-PCR) and isolation of other cDNA clones defined the remainder 

of the open reading frame (ORF) of TSC1 (van Slegtenhorst 1997). The 

complete genomic structure of TSC1 was finally determined by comparison of 

the genomic and cDNA sequences (van Slegtenhorst 1997).

The TSC1 gene spans approximately 43kb of genomic DNA and 

consists of 23 exons, of which the last 21 contain coding sequence (van 

Slegtenhorst 1997). The initiator ATG codon occurs at nucleotide 222 (in exon 

3) and the first stop codon is at nucleotide 3738 in exon 23, leaving a 4.5 kb 3’ 

untranslated region (van Slegtenhorst 1997). The 8.6 kb full length transcript 

encodes a 1164 amino acid, 130 kDa protein called hamartin (Figure 1.3) (van 

Slegtenhorst 1997).

1.1.4.2 The TSC2 gene

Linkage studies in 1992 identified a 1.5 Mb region of chromosome 16p 

as the probable location of the TSC2 gene (Kandt etal. 1992). Around the 

same time a family with TSC and ADPKD was found to segregate a 

translocation between chromosomes 16p and 22q (Cheadle etal. 2000). The 

mother and daughter had typical ADPKD; however the son had symptoms of 

both TSC and ADPKD. The translocation breakpoint on chromosome 16 in 

this family was shown to disrupt the PKD1 gene. It was concluded that the 

son had TSC as well as ADPKD due to a deletion of one copy of TSC2, the 

implied location of which was telomeric to the translocation breakpoint on 

chromosome 16p13.3, and a 1.4 Mb TSC2 candidate region was identified. A 

further 1.1 Mb of this region was excluded following identification of another 

breakpoint in a patient with no signs of TSC who had a de novo truncation of
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16p (Wilkie etal. 1990). Progress in identifying TSC2 was rapid due to 

advanced mapping of 16p13.3 already available and in depth information on 

chromosomal rearrangements in the region, which narrowed down the search 

substantially (Gomez et al. 1999). A cosmid contig was developed for the 

remaining 300 kb TSC2 candidate region and pulsed field gel electrophoresis 

(PFGE) and southern blotting were used to examine a panel of 255 unrelated 

TSC patients for rearrangements (The European Chromosome 16 Tuberous 

Sclerosis Consortium 1993). Five TSC associated deletions at 16p13.3 were 

identified and mapped to a 120 kb region from which 4 genes were isolated by 

screening cDNA libraries. One gene was interrupted by all 5 PFGE deletions 

making it a strong candidate for TSC2. Further analysis of this gene revealed 

4 smaller intragenic deletions thus confirming the identity of the TSC2 gene. 

(The European Chromosome 16 Tuberous Sclerosis Consortium 1993).

TSC2 is approximately 44 kb in length and comprises 41 exons and a 

non-coding leader exon (Kobayashi etal. 1997). The initiator ATG codon 

occurs at nucleotide 19 in exon 1 and the stop codon is at nucleotide 5440 in 

exon 41 .The TSC2 transcript is roughly 5.5 kb and encodes a 1807 amino 

acid, 198 kDa protein called tuberin (Figure 1.3) (The European Chromosome 

16 Tuberous Sclerosis Consortium 1993).

1.1.5 Mutation analysis and genotype/phenotype correlations
To date more than 680 disease-causing mutations have been identified 

in either TSC1 or TSC2 (Au et al. 2007). Most identified mutations are small 

changes such as small deletions or insertions and missense, nonsense or 

splice site mutations (Dabora etal. 2001, Sancak etal. 2005) (Figure 1.1). 

Large rearrangements, missense mutations and in-frame deletions are very 

rare in the TSC1 gene; however TSC patients with large deletions and 

rearrangements in TSC2 have often been found (Au etal. 1997, Sancak etal. 

2005) (Figure 1.1). In a recent study, few or no mutations were found in exons 

22 and 23 of TSC1 and exons 6, 25, 31, and 41 of TSC2 (Au et al. 2007). 

Approximately 70% of TSC1 mutations were located in or near exons 8, 9, 10, 

15, 17, and 18, and approximately 70% of TSC2 mutations were located in or 

near exons 9, 13, 14, 16, 23, 24, 29, 30, 33, and 35 to 40 (Au etal. 2007).
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Missense mutations in the TSC2 Rheb-GAP-domain (exons 35-40) accounted 

for approximately 6% of all mutations suggesting that the GAP domain exons 

are a major target for missense mutation probably linked to a key role in the 

regulation of cellular growth (Au et al. 2007). Another frequently mutated 

codon, R611 of TSC2 (accounting for 6% of all mutations) has been 

demonstrated to be important in regulating mammalian target of rapamycin 

(mTOR)/pS6K function (Nellist et al. 2001, Au et al. 2007). Both somatic and 

germline mosaicism for TSC1 and TSC2 mutations have also been found in 

TSC patients (Cheadle et al. 2000).

Approximately two-thirds of TSC patients present as sporadic cases 

caused by a de novo mutation in either TSC1 or TSC2, with neither parent 

displaying signs of TSC (The European Chromosome 16 Tuberous Sclerosis 

Consortium 1993, van Slegtenhorst 1997). In de novo cases, mutations in 

TSC2 are found at a much higher frequency (TSC1.TSC2 = 1:4) compared to 

familial cases where approximately half show linkage to TSC1 and half to 

TSC2 (Au et al. 2007, Sancak et al. 2005, Jones et al. 1999). This difference 

has been attributed to the smaller size and less complex structure of TSC1, 

and the rarity of large DNA rearrangements and missense mutations at this 

locus (Sancak et al. 2005). In general, milder TSC phenotypes are observed 

in familial cases compared to spontaneous cases (Au et al. 2007). Many 

studies have been conducted on large cohorts of patients to examine 

genotype/phenotype correlations (Jones etal. 1999, Dabora etal. 2001, 

Sancak et al. 2005, Au et al. 2007). Au et al. (2007) recently reported a higher 

rate of neurologic, renal and skin lesions in patients with a TSC2 mutation. 

Sancak et al. (2005) found patients with a TSC1 mutation were less often 

mentally retarded and had fewer renal AMLs, renal cysts, retinal phakomas 

and retinal depigmentations. Not only are there differences in phenotype 

when comparing genotype, but also there are differences between the sexes. 

Males have more neurologic features as well as more retinal phakomas, 

ungula fibromas and renal cysts (Au et al. 2007). Two possible reasons for 

these differences between the sexes are modifier genes coded for on the X 

chromosome or differential effects of hormonal influences between genders 

(Smalley 1992, Kwiatkowski 2002, Au etal. 2007).
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TSC1 TSC2

Splice-site
9%

Frameshift
45%

Nonsense
45% In-frame

1%

Large
rearrangements

7% Frameshift
29%Missense

Splice-site
15%

Nonsense
24%

In-frame
5%

Figure 1.1 Types and frequencies of the mutations found in TSC1 and TSC2. Data taken 
from Sancak et al. 2005.
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1.1.6 Knudson’s two-hit hypothesis
Tumourigenesis generally requires mutations in both the maternal and 

paternal alleles of tumour suppressor genes as described by Knudson’s two- 

hit hypothesis (Figure 1.2) (Knudson 1971). Knudson’s two-hit hypothesis was 

formulated from results of a statistical study on retinoblastoma and states that 

biallelic inactivation of a tumour suppressor gene is required for tumour 

formation and that both inherited and sporadic cancers can result from 

mutations of the same gene. Individuals carrying a germline mutation are 

predisposed to the disease because a single somatic event is sufficient to 

initiate tumour formation. In sporadic cases, the number of tumours is lower 

and cancer occurs at a later age because both alleles must be somatically 

inactivated (Knudson 1971).

1.1.7 Loss of heterozygosity and haploinsufficiency
In 1994 it was reported that some of the hamartomas in TSC patients 

showed loss of heterozygosity (LOH) (Green et al. 1994, Carbonara et al. 

1994). LOH involves the deletion of a wild-type allele in a heterozygous 

individual and, in accordance with Knudson’s two-hit hypothesis, can lead to 

tumour formation (Knudson 1971). The finding that some TSC hamartomas 

appeared to fit with Knudson’s two-hit hypothesis suggested a role for TSC1 

and TSC2 as tumour suppressor genes, which restrict cell proliferation under 

normal conditions (Vogelstein and Kinzler 2004). LOH at TSC1 and TSC2 has 

been found in SEGAs, AMLs, RCCs, rhabdomyomas and other lesions 

(Green etal. 1994, Carbonara etal. 1994, Parry etal. 2001), however it 

appears to be more apparent in certain lesions. Henske etal. (1996) found 

LOH of the TSC genes in over 50% of renal AMLs and cardiac 

rhabdomyomas, but only 4% of brain lesions, suggesting a different 

pathogenic mechanism for tumour formation in different organs.
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There is increasing evidence that the loss of only one allele of a tumour 

suppressor gene might also contribute to tumourigenesis (Santarosa and 

Ashworth 2004). This phenomenon is known as haploinsufficiency, and the 

reduction in gene dosage leaves the cell with insufficient protein for normal 

functions, thus conferring a selective advantage for tumourigenesis. Even 

weak haploinsufficient events could confer a small proliferative advantage and 

allow the clonal expansion of cells, thus presenting a relatively large 

sensitised population of target cells available for subsequent mutagenesis 

(Quon and Berns 2001). Several studies indicate that TSC1 or TSC2 

haploinsufficiency has both biochemical and phenotypic consequences. For 

example a study by Stoyanova et al. (2004) revealed that gene expression 

profiles of phenotypically normal renal epithelial cells from TSC mutation 

carriers were significantly different compared to similar cells from controls. 

Waltereit et al. (2006) found young Eker rats, which have yet to develop brain 

tumours, exhibit enhanced responses to chemically-induced kindling (induces 

seizures) and Uhlmann et al. (2002) reported that Tsc1+/~ and Tsc2+/~ mice 

exhibit a 1.5 fold increase in the number of astrocytes.

1.1.8 Biochemistry of the TSC proteins

Hamartin and tuberin share no homology with each other and very little 

with other proteins, however they are highly evolutionary conserved (Huang 

and Manning 2008). The protein domains of hamartin and tuberin have been 

extensively studied and are summarised in Table 1.4 and Figure 1.3. They 

contain multiple domains, of which the best characterised is a small TSC2 C- 

terminus region with sequence similarity to Rap1-GTPase-activating protein 

(GAP) (The European Chromosome 16 Tuberous Sclerosis Consortium 1993, 

Wienecke etal. 1995, Maheshwar et al. 1997). GAPs inhibit the Ras-related 

family of small G proteins such as Rap1 and Rheb (Ras homologue enriched 

in brain) by accelerating the conversion of the active GTP-bound state to the 

inactive GDP-bound state (Piedimonte et al. 2006). Less is known about the 

function of hamartin. Hamartin possesses a domain which interacts with the 

ezrin-radixin-moezin (ERM) family of actin-binding proteins, and when loss of 

hamartin occurs, defects in cell-matrix adhesion occur (Lamb et al. 2000). 

Hamartin also associates with neurofilament-L (NF-L) suggesting that it may
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function as an integrator of the neuronal intermediate filament and the actin 

cytoskeletal network (Haddad et al. 2002). These proposed functions of 

hamartin indicate that it may act as a scaffolding protein for tuberin 

localisation (Astrinidis and Henske 2005).

1.1.8.1 Interaction of hamartin and tuberin

Hamartin and tuberin physically interact to form a heterodimer complex 

through strong association of specific binding motifs within their N-termini (van 

Slegtenhorst etal. 1998, Hodges etal. 2001) (Figure 1.3). Yeast two-hybrid 

screening revealed that this association occurs between amino acids 302-430 

of hamartin and amino acids 1-418 of tuberin (Hodges etal. 2001) (Figure 

1.3). The hamartin-tuberin interaction appears to be important for the stability 

of each protein. Benvenuto et al. (2000) found that binding of hamartin to 

tuberin protects it from ubiquitination, and conversely, hamartin, which is also 

ubiquitinated, was found to be stabilised by co-expression of tuberin. Tuberin 

can also act as a cytosolic chaperone, preventing hamartin self-aggregation 

(Nellist et al. 1999). Phosphorylation of tuberin may also affect the stability of 

the hamartin-tuberin complex. Aicher etal. (2001) found that tuberin 

undergoes phosphorylation at serine and tyrosine residues (Figure 1.3), and 

when not phosphorylated, tuberin was unable to interact with hamartin and 

the tumour suppressor activity of the complex was lost. Similar results were 

also found by Nellist et al. (2001). These studies indicate that the stability and 

optimum function of the hamartin-tuberin complex is dependent on the activity 

of the two proteins.

Although hamartin has no GAP activity, evidence suggests that it may 

be important for the function of tuberin as a GAP. Hamartin and tuberin 

together enhanced Rheb GTPase activity by more than 100-fold over the 

activity of either protein on its own, indicating that hamartin and tuberin form a 

GTPase-activating protein complex that greatly enhances the intrinsic 

GTPase activity of Rheb (Tee et al. 2003). Astrinidis et al. (2003) reported that 

phosphorylation of hamartin by the cyclin-dependent kinase 1 (CDK1) leads to 

decreased tuberin GAP activity during G2/M phase of the cell-cycle.
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Table 1.4 Domains and phosphorylation sites of hamartin and tuberin.
Hamartin
Protein domain Amino acid Function
Trans-membrane 127-144 Cytoplasmic vesicle membrane localisation (Plank et al. 

1998).
Activation of Rho 
GTPase

145-510 Activates the small GTP-binding protein Rho (Lamb et al. 
2000).

Tuberin binding 302-430 Interacts strongly with the hamartin binding domain of 
tuberin (Hodges et al. 2001).

Interaction with NF-L 674-1164 Binds NF-L, anchors neuronal intermediate filaments to 
actin cytoskeleton (Haddad 2002).

Coiled coil 730-996 Capable of hamartin self aggregation which is prevented 
by tuberin (Nellist et al. 1999).

Interaction with ERM 
proteins

881-1084 Interacts with ERM family of proteins which aids 
adhesion to the cell substrate (Lamb et al. 2000).

Phosphorylated by Amino acid Function
CDK1 (cyclin 
dependent kinase)

T417, S584, 
T1047

Inhibits activity of hamartin-tuberin complex during 
mitosis (Astrinidis et al. 2003).

IKKp (inhibitory kB 
kinase)

S487, S511 Links to inflammation. Suppresses hamartin and 
activates the mTOR pathway. (Lee et al. 2007).

GSK3p (glycogen 
synthase kinase)

T357, T390 Increases stability of hamartin-tuberin complex: p-catenin 
signalling attenuation (Mak et al. 2005).

Tuberin
Protein domain Amino acid Function
Hamartin binding 1-418 Interacts strongly with the tuberin binding domain of 

hamartin (Hodges etal. 2001).
Leucine zipper 81-98 Involved in protein-protein interactions (The European 

Chromosome 16 Tuberous Sclerosis Consortium 1993).
Coiled coil 346-371,

1008-1021
Necessary but not sufficient to mediate the interaction 
with hamartin (Hodges etal. 2001).

Transcription 
activating domain

1163-1256,
1690-1744

Suggests a potential role for tuberin in transcription 
(Tsuchiya etal. 1996).

GTPase activating 
protein (GAP)

1517-1674 Inhibit Ras-related family of small G proteins such as 
Rap1, Rab5 and Rheb (The European Chromosome 16 
Tuberous Sclerosis Consortium 1993).

Calmodulin (CaM) 
binding

1740-1755 Potential role in transcription by modulation of steroid 
receptor function (Noonan et al. 2002).

Phosphorylated by Amino acid Function
ERK (extracellular 
signal regulated 
kinase)

S664 Growth factor activated. Disrupts hamartin-tuberin 
complex, activation of mTOR (Ma et al. 2005).

Akt (or protein 
kinase B (PKB))

S939, S981, 
T1462

Growth factor activated. Inactivates tuberin and causes 
activation of mTOR (Manning et al. 2002).

MK2 (MAPK 
activated protein 
kinase 2)

S1210 Promotes binding with 14-3-3 proteins, sequesters 
tuberin from substrates (Li et al. 2003b).

RSK1 (ribosomal 
protein S6 kinase)

S1798 Growth factor activated. Inhibits heterodimer complex, 
increased mTOR signalling (Roux 2004).

AMPK (AMP- 
dependent protein 
kinase)

T 1227, 
S1345

Phosphorylated in response to energy deprivation which 
increases tuberin activity (Inoki et al. 2003).
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1.1.8.2 Localisation of hamartin and tuberin

Consistent with the fact that hamartin and tuberin form a heterodimer 

complex, the proteins are co-expressed in most tissues, particularly those 

affected by TSC. Immunohistochemical analyses have localised hamartin and 

tuberin to the brain, kidney, heart, adrenal gland, gut, liver, lung, pancreas 

and prostate (Plank etal. 1991, Johnson etal. 2001). Minimal expression has 

also been found in the lymph node, spleen, testes and thymus (Johnson et al. 

2001). Within the cell, hamartin and tuberin show transient membrane 

localisation indicating that they are not integral membrane proteins but appear 

to be mainly cytoplasmic (Yamamoto etal. 2002, Nellist etal. 1999). Hamartin 

has been localised to cytoplasmic vesicles and the centrosome (Plank et al. 

1998, Astrinidis etal. 2006), whilst tuberin has been localised to the Golgi 

apparatus and the nucleus (Wienecke etal. 1996, Lou etal. 2001).

1.1.8.3 The mTOR pathway

Target of rapamycin (TOR), a protein kinase expressed by all 

eukaryotic cells, regulates cell size through control of mRNA translation in 

response to nutrient and growth signals (Tee et al. 2005). TOR proteins 

function as serine/threonine kinases of the phosphoinositide 3-kinase-related 

kinase (PIKK) family and have also been found to regulate cell proliferation, 

survival and metabolism in certain settings (Huang and Manning 2008, Fingar 

and Blenis 2004). mTOR (mammalian target of rapamycin) exists in two 

functionally distinct protein complexes: mTORCI (mTOR complex 1) and 

mTORC2 (mTOR complex 2). mTORCI forms a complex with Raptor 

(regulatory associated protein of mTOR) and LST8 (lethal with SEC13 protein 

8) and is sensitive to inhibition by the naturally occurring compound 

rapamycin, whereas mTORC2, which complexes with Rictor (rapamycin 

insensitive companion of mTOR), SIN1 (stress activated protein kinase 

interacting protein 1) and LST8, is insensitive to rapamycin (Huang and 

Manning 2008). Little is known about the biochemical role of mTORC2. It has 

been found to function upstream of Rho GTPases to regulate the actin 

cytoskeleton (Jacinto et al. 2004). mTORC2 also acts as a motif kinase for Akt 

(also known as protein kinase B (PKB)) and phosphorylates it at S473, thus 

activating Akt downstream of growth factors (Sarbassov et al. 2005).
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mTORCI (referred to as mTOR from now on) has two major downstream 

phosphorylation targets: ribosomal protein S6 kinase (S6K) and 4E-BP1 

(elF4E (eukaryotic translation initiation factor 4E)-binding protein 1) which 

both have TOR signalling (TOS) motifs (Astrinidis and Henske 2005). When 

p70S6K is activated by mTOR, S6K becomes phosphorylated resulting in 

increased ribosome biogenesis (Astrinidis and Henske 2005). Inhibitory 

phosphorylation of 4E-BP1 by mTOR prevents binding of the protein to elF4E 

which is then free to facilitate mRNA translation (Gingras et al. 2001).

A link was established between the hamartin-tuberin complex and 

mTOR after studies in Drosophila revealed an increase in cell size in dTstf 

and dTsc2 mutant cells (Gao and Pan 2001, Potter etal. 2001). This work 

suggested that the TSC genes function together in the insulin signalling 

pathway downstream from Akt. Akt was later found to directly phosphorylate 

tuberin and inhibit the hamartin-tuberin complex confirming the downstream 

location of TSC1 and TSC2 (Manning et al. 2002, Potter et al. 2002). In 2002 

the TSC1/TSC2 complex was shown to inhibit mTOR mediated signalling to 

S6K and 4E-BP1 (Tee et al. 2002). It was unclear how exactly this inhibition of 

mTOR occurred until Tee et al. (2003) presented evidence that the hamartin- 

tuberin complex inhibited Rheb by reverting Rheb-GTP back into Rheb-GDP, 

through the function of tuberin’s GAP domain which stimulated the intrinsic 

GTPase activity of Rheb. Rheb had previously been shown to potently 

activate mTOR, although the mechanism by which it does this is still unclear 

(Saucedo et al. 2003). Figure 1.4 shows the role of the hamartin-tuberin 

complex in the mTOR pathway.
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The mTOR pathway can be inhibited and activated in a variety of ways 

through its involvement with the hamartin-tuberin complex. These are 

displayed in more detail in Figures 1.3 and 1.4 and Table 1.4. For extensive 

reviews see Huang and Manning 2008, Tee and Blenis 2005 and Krymskaya 

2003. Inhibitory phosphorylation of hamartin/tuberin by cell-cycle kinases 

(CDK1), cytokines (IKKp) and growth factors (Akt, ERK, RSK and MK2) 

inactivates the complex which can then no longer prevent the accumulation of 

Rheb-GTP. With the build up of Rheb-GTP levels, mTOR becomes activated 

and protein synthesis is increased. It follows that if TSC1/2 are inactive due to 

a mutation, the mTOR pathway will become constitutively activated due to 

increased levels of Rheb-GTP. The hamartin-tuberin complex can also be 

activated by phosphorylation events. Under energy deprivation, AMPK 

phosphorylates and activates tuberin which can then inhibit the mTOR 

pathway through its association with Rheb (Inoki et al 2003). This 

phosphorylation may protect the cells from apoptosis caused by prolonged 

energy deprivation (Astrinidis and Henske 2005). The hamartin-tuberin 

complex also links the Wnt pathway to the mTOR pathway through its 

phosphorylation by GSK3(3, which increases the stability of the complex and 

thus its inhibition of mTOR (Mak et al. 2005).

Aside from TSC, other hamartoma and tumour syndromes have been 

linked to the mTOR pathway (extensively reviewed in Inoki et al. 2005). These 

include PTEN- (phosphatase and tensin homologue) hamartoma tumour 

syndromes (PTHSs), Peutz-Jeghers syndrome (PJS), neurofibromatosis type- 

1 (NF-1), von Hippel-Lindau (VHL) syndrome, familial adenomatous polyposis 

(FAP) and juvenile polyposis syndrome (JPS). Table 1.5 contains more detail 

on these diseases and their link with the mTOR pathway.
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Table 1.5 Hamartoma syndromes and their link to mTOR.

Disease Gene mutated Link to mTOR Clinical characteristics
TSC TSC1, TSC2 Form a complex which 

inhibits formation of 
Rheb-GTP.

Hamartomas in multiple 
organs, hypomelanocytic 
macules.

Cowden
disease

PTEN Reduces intracellular 
levels of PI3K, inhibits 
Akt activation.

Hamartomas in multiple 
organs, lentigenes.

Bannayan-
Riley-
Ruvalcaba
syndrome

PTEN Reduces intracellular 
levels of PI3K, inhibits 
Akt activation.

Hamartomas in multiple 
organs, lentigenes.

Proteus
syndrome

PTEN Reduces intracellular 
levels of PI3K, inhibits 
Akt activation.

Hamartomas in multiple 
organs.

Lhermitte-
Duclos
disease

PTEN Reduces intracellular 
levels of PI3K, inhibits 
Akt activation.

Hamartomas in brain.

PJS LKB1/STK11 Phosphorylates and 
activates AMPK.

Hamartomas in the 
gastrointestinal tract, 
lentigenes.

NF-1 NF1 GTPase activating 
protein for the Ras 
small G protein.

Neurofibromas.

VHL
syndrome

VHL Degradation of 
hypoxia-inducible 
factor (HIF) of which 
mTOR is a regulator.

Angiomas of the retina, 
haemangioblastomas of 
the central nervous 
system, renal carcinoma.

FAP APC Loss of APC causes 
p-catenin activation. 
mTOR has been 
linked to Wnt pathway.

Polyps or carcinomas in 
the gastrointestinal tract.

JPS SMAD4,
BMPR1A

SMAD3, binding 
partner of SMAD4, 
physically interacts 
with Akt and tuberin.

Hamartomas in the 
gastrointestinal tract.

Information obtained from Inoki et al. 2005.

1.1.8.4 Other functions of hamartin and tuberin 

Hamartin and tuberin have other functions in the cell including roles in 

transcriptional activation and cell cycle control (Table 1.6) (Refer to 

Krymskaya 2003 and Rosner et al. 2008 for extensive reviews). These 

observations are perhaps not surprising given the central role of the mTOR 

pathway in so many biological processes. Importantly, TSC1 and TSC2 do not 

always function through the mTOR pathway, suggesting that hamartin and
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tuberin play unique roles in cellular signalling, independent of mTOR 

activation.

Table 1.6 Cell signalling functions of hamartin and tuberin.

(Continued on the next page).

Cellular function Evidence

Transcriptional
activation

■ Loss of functional tuberin triggers accumulation of HIF and 
upregulation of the expression of HIF-responsive genes 
including VEGF.

■ Tuberin interacts with Pam, a binding partner for the 
transcription factor c-myc, although the functional relevance 
of this interaction is yet to be determined.

■ Tuberin was found to interact with SMAD2 and SMAD3 to 
regulate TGFp responsive gene transcription.

a Tuberin is a modulator of transcription events mediated by 
steroid/nuclear receptor family members i.e. ERa, RxRa 
and VDR.

■ Tuberin physically associates with the forkhead transcription 
factor FoxOI, which interacts with several kinds of protein 
and regulates their function and vice versa.

■ In renal carcinomas of the Eker rat (which has an insertion 
in the TSC2 locus, discussed later), the transcription factor 
AP-1 is overexpressed, suggesting that loss of tuberin 
promotes AP-1 gene translation.

Cell adhesion and 
the cytoskeleton

■ Hamartin interacts with the ERM-family proteins ezrin, 
radixin and moesin which are involved in cleavage furrows 
during cell division and cell adhesion. This interaction is 
required for activation of the small GTP-binding protein Rho 
by serum and is involved in the regulation of cell adhesion.

■ Interaction of hamartin with ERM and NF-L (a major 
cytoskeletal element in nerve axons and dendrites) proteins 
suggests that hamartin could function as an integrator of the 
neuronal intermediate filament and the actin cytoskeletal 
skeleton.

■ Hamartin binds to FIP200 which is a protein inhibitor for 
FAK which is an integral part of focal adhesions at the cell 
membrane.
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Table 1.6 Cell signalling functions of hamartin and tuberin.

(Continued from previous page).

Cellular function Evidence

Cell cycle 
regulation

■ Loss of function of either hamartin or tuberin shortens the 
G1 phase of the cell cycle, subsequently leading to cell 
proliferation.

■ Tuberin has been found to bind to cyclins D1, D2 and D3 
which are expressed during early G1 phase.

■ Hamartin and tuberin stabilise protein levels of p27KIP1, a 
CDK inhibitor, and thus inhibit the activity of CDKs and cell 
cycle progression.

■ Cyclin B1 and Cdk1, which regulate the transition from G2 
to M phase (mitosis), interact with the hamartin/tuberin 
complex and cyclin A (also involved in G2 to M phase 
transition) interacts with tuberin.

GAP for RaplA 
and Rab5

■ Tuberin shows modest GAP activity towards RaplA which 
has mitogenic and oncogenic properties and also a possible 
role in mitogen-activated protein-kinase-mediated neuronal 
differentiation.

■ Tuberin has modest GAP activity for the GTPase Rab5, 
which serves a role in regulating endosome fusion.

Interaction with 
14-3-3 proteins

■ Akt phosphorylated tuberin interacts with 14-3-3 proteins 
which function as adaptor molecules modulating 
interactions/functions of components involved in signal 
transduction and cell cycle control.

HIF = hypoxia-inducible transcription factor, VEGF = vascular endothelial 
growth factor, Pam = protein associated with c-myc, TGFp = transforming 
growth factor beta, FoxOI = forkhead box 01, ERa = oestrogen receptor 
alpha, RxRa = retinoid X receptor alpha, VDR = vitamin D receptor, AP-1 = 
activator protein-1, KIP1 = kinase interacting protein 1, CDK = cyclin- 
dependent kinase, ERM = ezrin-radixin-moesin, NF-L = light-chain 
neurofilament, FIP200 = focal adhesion kinase family interacting protein of 
200KD, FAK = focal adhesion kinase. Information and references obtained 
from Cheadle et al. 2000, Krymskaya 2003 and Rosner et al. 2008.
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1.1.9 Treatment of TSC
Since loss of TSC1 or TSC2 leads to activation of the mTOR pathway, 

it followed that the natural inhibitor of mTOR, rapamycin, could be used for 

treatment of the disease. Rapamycin (also known as sirolimus) is an 

antifungal agent derived from a bacterium (Streptomyces hygroscopicus) 

found in the soil of Easter Island in the 1970s (Vezina et al. 1975, Sehgal et 

al. 1975). It has been used as an immunosuppressant in organ transplantation 

for many years, but recently, due to its high specificity towards the 

immunophilin FKBP12 and subsequent binding to mTOR, it has been trialled 

for use in the treatment of TSC (Inoki et al. 2005). Research into the effect of 

rapamycin treatment in the Eker rat model of TSC revealed a significant 

decrease in the size of renal tumours, accompanied by down regulation of 

ribosomal S6 kinase activity, reduction in cell size, and induction of apoptosis 

(Kenerson et al. 2005). Interestingly no effect on the number of microscopic 

precursor lesions was found indicating that other mechanisms, besides 

activation of the mTOR pathway, may be involved in tumour initiation. 

Rapamycin treatment has also been found to prevent seizures and prolong 

survival in mice with conditional inactivation of the Tsc1 gene in glia (Zeng et 

al. 2008), and a reduction in subcutaneous tumours has been seen following 

the topical application of rapamycin in a nude TSC mouse model (Rauktys et 

al. 2008). Results are now beginning to emerge from rapamycin studies and 

clinical trials in patients. Two small studies revealed that rapamycin caused 

the regression of astrocytomas and renal AMLs in TSC patients (Franz et al. 

2006, Herry et al. 2007). Recently the results from a two year clinical trial of 

sirolimus use in TSC patients were published by Bissler et al. (2008).

Sirolimus was administered for the first year only, after which the patient’s 

progress was followed up for a year. The results were encouraging, with 

AMLs regressing during the year of sirolimus therapy, however, after 

treatment had stopped AMLs tended to increase in volume. Interim results 

from a two year study by Davies et al. (2008) also reveal shrinkage of AMLs in 

all TSC patients treated with sirolimus. These clinical trials present 

encouraging data for the effective treatment of TSC with rapamycin, however 

concerns have been expressed over the long-term usage of the drug, which 

may increase the risk of malignant tumours. This is due to the identification of
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an Akt feedback loop, which upon rapamycin usage restores insulin signalling 

toward Akt (Manning 2004). Further work however is needed to fully 

understand this phenomenon.

1.1.10 TSC models
Studies in animal models have enhanced our knowledge of the genetic 

and biochemical mechanisms that underlie many diseases, including TSC. 

TSC1 and TSC2 homologues have been identified in non-mammalian 

organisms such as Schizosaccharomyces pombe and Drosophila. As with 

hamartin and tuberin, the protein products of S. pombe Tsc1 and Tsc2 were 

found to physically interact. Deletion of Tsc1 or Tsc2 resulted in defective 

uptake of nutrients from the environment and also a defect in conjugation 

(Matsumoto et al. 2002). Recently, a gene, cpp1, encoding the p-subunit of a 

farnesyltransferase (FTase) was found to suppress most of the phenotypes 

associated with loss of function of Tsc1!Tsc2 in S. pombe, prompting the 

authors to speculate that an inhibitor of FTase should be considered as an 

anti-TSC drug (Nakase et al. 2006). Studies in Drosophila were among the 

first to identify the Tsc1ITsc2 genes as downstream targets of Akt In the 

mTOR pathway (as explained above) (Gao and Pan 2001, Potter et al. 2001, 

Potter et al. 2002). The Drosophila TSC1/TSC2 homologues were identified in 

1999, during which it was found that mutation of dTsc2 (gigas) resulted in 

enlarged cells which repeated S phase without entering M phase (Ito and 

Rubin 1999). This suggested that a defect in cell-cycle control may be an 

underlying cause of TSC, a theory supported by work from Astrinidis et al. 

(2003) on CDK1.

1.1.10.1 TSC rodent models

A large number of mammalian genes do not have orthologues in 

invertebrates. Murine models are therefore invaluable, specifically mouse 

models as they share considerable physiological, anatomical and genomic 

similarities with humans (Yu and Bradley 2001). They can also be interbred, 

allowing assessment of the effects of multiple genetic changes, and controlled 

breeding is relatively simple. Rats are also a valuable model organism, 

however genetic manipulation of the rat genome has proved difficult due to a
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lack of suitable methods for generating targeted mutations (Piedimonte et al. 

2006, Jacob and Kwitek 2002). Targeted mutation of the genome is desirable 

as spontaneous mutations of biomedical interest occur infrequently, and 

radiation or chemical mutagenesis of the genome is limited by the fact that the 

final results of the induced rearrangements cannot be predetermined (Yu and 

Bradley 2001). Therefore, the production of mouse models is typically carried 

out in two ways: random insertion of cloned DNA into the pronuclei of fertilised 

mouse eggs using microinjection, and site specific genetic manipulation of 

embryonic stem (ES) cells which are injected into blastocysts which are then 

injected into pseudopregnant foster mothers (Kobayashi et al. 2005, Yu and 

Bradley 2001). ES cell technology is an extremely powerful technique, and 

has been used to develop TSC mouse models.

1.1.10.1.1 Tsc1 knockout mice

Three conventional Tsc1 knockout mouse models have been 

developed (Kobayashi et al. 2001, Kwiatkowski et al. 2002, Wilson et al.

2005), the most recent of which exhibited a more severe phenotype than 

existing models (Wilson etal. 2005). To knockout a germ line copy of Tsc1, 

Wilson et al. (2005) constructed a targeting vector designed to inactivate Tsc1 

by deleting an internal region of the gene comprising the 3’ half of exon 6 and 

all of exons 7 and 8 and replacing this region with a p-galactosidase 

reporter/neomycin selection cassette. The linearised vector was 

electroporated into embryonic day (E) 14 Tg2alV ES cells and Tsc1+/~ clones 

were injected into C57BL/6 blastocysts and transferred into pseudopregnant 

females. Tsc1+/' F1 mice (50% 129ola/50% C57BL/6) were backcrossed with 

inbred C57BL/6, Balb/c and C3H mice to assess the effects of background on 

the Tsc1+/' phenotype. The deletion event produced an unpredicted spliced 

transcript that lacked exons 6-8, and joined exons 5 and 9, causing a shift in 

the reading frame and the introduction of a premature termination codon in 

exon 9. ,

Tsc1v' mice were found to die in utero between E10.5 and E12.5, 

similar to what was found in two previous mouse models (Kobayashi et al.

2001, Kwiatkowski et al. 2002). These null embryos were generally smaller
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and developmental^ retarded, with some displaying exencephaly and 

abnormal morphology of myocardial cells (Kobayashi etal. 2001, Kwiatkowski 

et al. 2002, Wilson et al. 2005). Kobayashi et al. (2001) observed that about 

one third of Tsc1 null embryos displayed failed neural tube closure at the 

head region.

The frequency and severity of renal lesions from Tsc1+/~ mice is 

dependent on background. This was examined thoroughly by Wilson et al. 

(2005) who found that more Tsc1+/~ mice (44%) on a C3H background 

developed macroscopically and microscopically visible renal lesions at the 

early age of 3-6 months, compared to those on a C57BL/6 (8%) or Balb/c 

(13%) background. They also found that 80% of 15-18 month mice on a 

Balb/c background showed progression to RCC, far more than on C3H or 

C57BL/6 backgrounds. Regardless of background, by 15-18 months all mice 

showed microscopic renal lesions. These renal lesions varied from cysts, 

atypical cysts with papillary projections, branching cysts with branching 

papillary projections to solid carcinomas. The authors also noted that these 

lesions displayed a clear progression from small cysts to carcinomas (Wilson 

et al. 2005). Extra-renal lesions were also reported in Tsc1+/~ mice, including 

liver haemangiomas and hepatomas, uterine leiomyoma/leiomyosarcomas, 

tail or paw haemangiomas (Kobayashi et al. 2001, Kwiatkowski et al. 2002, 

Wilson et al. 2005) and RCC metastases in the lungs (Wilson et al. 2005).

Molecular analysis of renal and extra-renal lesions revealed that LOH 

at the Tsc1 locus was present in five out of 12 renal lesions, two out of five 

hepatic haemangiomas, one out of two uterine lesions and one out of one 

lung lesion (Wilson etal. 2005). Kobayashi et al. (2001) found two out of six 

renal lesions with loss of the wild-type Tsc1 allele. These LOH analyses 

suggest that a second hit in Tsc1 may be necessary for the development of 

renal tumours in Tsc1+/~ mice.
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1.1.10.1.2 Tsc2 knockout mice

Two groups have developed conventional Tsc2 knockout mouse 

models using similar homologous recombination and targeting vector 

techniques. Onda etal. (1999) disrupted exon 2 with a neomycin gene 

targeting construct, whereas Kobayashi et al. (1999) deleted part of exon 2 

through to exon 5 with a LacZ/neomycin reporter selection cassette. Both of 

these gene targeting events resulted in early truncation of the protein product, 

which was confirmed by a lack of tuberin staining in immunoblot assays.

Similar to Tsc1v~ mice, homozygous Tsc2 mutant embryos died in utero 

between E9.5 and E12.5 (Onda etal. 1999, Kobayashi etal. 1999). Tsc2?~ 

embryos appeared less developed by approximately 1-2 embryonic days and 

showed signs of exencephaly and a hypoplastic liver (Onda etal. 1999). The 

nonclosure of the neural tube in the head region was also a prominent 

feature, and was found in approximately 50% of Tsc2^' embryos at E9.0-11.5 

(Kobayashi etal. 1999).

Most Tsc2+/~ mice displayed renal cysts and adenomas by 6 months of 

age, and rose to complete penetrance by 15 months (Onda etal. 1999, 

Kobayashi etal. 1999). Histological examination revealed that all Tsc2+/~ renal 

lesions were located in the cortical region of the kidney, and, similar to 

findings from Tsc1+/~ mice, renal lesions appeared as pure cysts, cysts with 

papillary projections and solid adenomas (Onda et al. 1999, Kobayashi et al.

1999). Extra-renal lesions included liver haemangiomas, angiosarcomas in 

the foot, tail and lip, alveolar adenomas and RCC metastases in the lungs 

(Onda etal. 1999, Kobayashi etal. 1999).

LOH analysis revealed loss of the wild-type Tsc2 allele in nine out of 37 

renal cystadenomas and carcinomas, and seven out of 14 liver 

haemangiomas (Onda etal. 1999). Kobayashi etal. (1999)found LOH of 

Tsc2 in four out of 11 renal lesions. As with the LOH data from Tsc1+/~ mice, 

these results indicate that loss of the wild-type Tsc2 allele may contribute to 

tumour development.
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1.1.10.1.3 The Ekerrat

The Eker rat was the first hereditary cancer animal model to be 

described (Eker 1954, Okimoto etal. 2000). It presented as an autosomal 

dominant, hereditary model of predisposition to renal carcinoma with near 

complete penetrance, and displayed kidney lesions ranging from atypical 

tubules, pure cysts, cysts with papillary projections to solid adenomas (Eker et 

al. 1981, Hino et al. 1994). Homozygous mutant mice were found to die in 

uteno at approximately 10 days of embryonic life (Hino et al. 1993a). Eker rats 

also developed tumours in the spleen, uterus and pituitary and, to a lesser 

extent, brain hamartomas resembling human TSC subependymal 

hamartomas and cortical tubers have also been observed (Hino etal. 1994, 

Yeung etal. 1997, Mizuguchi etal. 2000). The gene responsible for the Eker 

rat phenotype was localised to chromosome 10q12 using linkage analysis 

(Hino etal. 1993b, Yeung etal. 1993). Hino etal. (1994) demonstrated that 

the Eker rat gene was tightly linked to TSC2, with further analyses confirming 

that the mutation involved insertion of an approximately 5kb DNA fragment in 

the 3’ portion of the gene proximal to the putative raplGAP domain, resulting 

in aberrant RNA expression from the mutant allele (Yeung et al. 1994, 

Kobayashi etal. 1995).

LOH studies in Eker rats have revealed 40-60% of renal tumours show 

LOH, compared to 0% of splenic haemangiomas, 36% of uterine leiomyomas, 

35% of pituitary adenomas and 0% of subependymal and subcortical 

hamartomas (Yeung etal. 1995, Yeung etal. 1997, Kubo etal. 1995). 

Screening for intragenic mutations has shown that some LOH-negative RCCs 

from Eker rats carry point mutations (7 out of 21 spontaneous RCCs) 

however, many lesions do not contain these mutations (Kobayashi et al.

1997). This data, as with the Tsc1+/~ and Tsc2+/~ mouse data, indicates that 

second hits are an important feature of tumour development, however, they 

are not apparent in all lesions, suggesting perhaps other mechanisms are 

also responsible for tumourigenesis.
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1.2 Autosomal dominant polycystic kidney disease
Polycystic kidney diseases (PKDs) are a large family of disorders 

characterised by the occurrence of multiple renal cysts often leading to end- 

stage renal disease (ESRD). They frequently arise through genetic mutations 

with autosomal dominant or autosomal recessive PKD being the most 

prevalent inherited PKDs (Ibraghimov-Beskrovnaya and Bukanov 2008). 

Autosomal recessive PKD (ARPKD) occurs at an incidence of 1:20,000, and 

is observed primarily in infancy and childhood (Torres and Harris 2006). 

ARPKD is characterised by bilateral cystic kidneys and congenital hepatic 

fibrosis and is responsible for significant paediatric morbidity and mortality 

(Ibraghimov-Beskrovnaya and Bukanov 2008). The gene responsible for 

ARPKD lies on chromosome 6p21.1-p12 and is called PKHD1 (polycystic 

kidney and hepatic disease 1) (Zerres etal. 1994, Guay-Woodford etal.

1995). The protein product of PKHD1 is known as fibrocystin (Ward et al.

2002) (or polyductin (Onuchic et al. 2002)) which functions as a membrane 

associated receptor or ligand, however its exact role is unknown (Menezes 

and Onuchic 2006). Autosomal dominant PKD (ADPKD) is one of the most 

common life-threatening genetic diseases, occurring at a higher incidence 

than ARPKD, and will be the focus of this chapter.

1.2.1 A brief history of ADPKD

ADPKD was previously known as adult polycystic kidney disease, 

however this name did not encompass the true pathology of the disease 

(Zhou and Pei 2008). ADPKD is in fact an inherited systemic disease that can 

occur at any time in life and can affect multiple organs such as the kidneys, 

liver and heart (Zhou and Pei 2008). It later became known as autosomal 

dominant PKD after a study by Dalgaard in 1957 confirmed an autosomal 

dominant pattern of inheritance (Dalgaard 1957). During this study the 

prevalence of ADPKD was estimated at 1:1,000 from a Danish population, 

however a more recent North American study provided a prevalence estimate 

of 1:400 (Iglesias et al. 1983). These figures make ADPKD the most common 

genetic disorder of the kidney, with over 50,000 people affected in the United 

Kingdom alone, and up to 12.5 million worldwide (Yoder etal. 2006). In 1985 

and 1993 the two genes responsible for ADPKD, PKD1 and PKD2, were
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localised, and later their protein products identified (Reeders etal. 1985, 

Peters etal. 1993, Kimberling etal. 1993, Hughes etal. 1995, The 

International Polycystic Kidney Disease Consortium 1995, Mochizuki etal. 

1996). Genetic testing is now available to test those with equivocal renal 

imaging results and those with a negative family history (Rossetti et al. 2001).

1.2.2 ADPKD manifestations
ADPKD is characterised by progressive formation and enlargement of 

bilateral, multiple, renal cysts, leading to chronic renal failure by the sixth to 

eighth decade of life. Typical symptoms of ADPKD include abdominal 

discomfort, back pain, macroscopic haematuria and urine infections (Yoder et 

al. 2006). It is a multisystemic disorder with cysts also occurring in the liver 

(70% of patients) and pancreas (5-10%), and rarely in other organs such as 

the spleen (Yoder et al. 2006). Numerous hepatic cysts can give rise to 

polycystic liver disease in patients with advanced renal disease. Hepatic cysts 

arise from the biliary epithelia and are rarely associated with impairment of 

hepatic function (Sandford etal. 1999). Although men and women with 

ADPKD are equally as susceptible to hepatic cysts, massive polycystic liver 

disease occurs almost exclusively in women (Gabow et al. 1990). Polycystic 

liver disease is not to be confused with autosomal dominant polycystic liver 

disease (ADPLD), another monogenic disorder due to mutations of different 

genes, with few or no renal cysts present in patients (Qian et al. 2003a).

Of the non-cystic manifestations, cardiovascular system abnormalities 

are the most common and often most lethal (Fick et al. 1995). Hypertension is 

a major feature of ADPKD, occurring in 50-70% of patients often before any 

significant reduction in renal function (Ecder and Schrier 2001). Cardiac 

valvular heart disease is also widespread, with mitral valve prolapse occurring 

in 25% of ADPKD patients (Sandford etal. 1999). Ruptured intracranial 

aneurysms (ICAs) are rare but life threatening complications, occurring in 8% 

of ADPKD patients compared with ~1 % of the general population (Chapman 

etal. 1992, Ruggieri etal. 1994, Rinkel etal. 1998). Renal and extra-renal 

manifestations of ADPKD have also been reported in children and even rarely 

in utero or in the early postnatal period (Boucher and Sandford 2004).
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1.2.2.1 Renal manifestations

The formation of renal cysts is age dependent and occurs in all ADPKD 

patients. In most cases only a few renal cysts are detected in patients before 

30 years of age, however, by the fifth decade of life, hundreds to thousands of 

renal cysts may be present, leading to enlargement of the kidneys by up to 

40cm in length (compared with 10-12cm in normal individuals) and 8kg in 

weight (compared with 400-500g in normal individuals) (Gabow 1993). Renal 

cysts occur bilaterally and arise from epithelial cells lining the renal tubule, but 

unlike ARPKD cysts, which derive from collecting ducts, ADPKD cysts arise 

from all segments of the nephron and collecting ducts (Torres and Harris 

2006). The main complications associated with renal cysts include renal 

failure, back or flank pain, cyst infection and haemorrhage, and renal stones 

(Table 1.7). RCC occurs very rarely in ADPKD and does not appear to arise 

at a greater frequency than the general population (Keith et al. 1994). 

Progression to ESRD in ADPKD patients typically occurs in late middle age 

with less than 5% of patients under 40 years of age, and up to 80% of those 

70 years of age suffering from it (Zhou and Pei 2008).

Table 1.7 Renal manifestations of ADPKD.

Symptom Caused by
Renal function abnormalities Urine concentrating defect 

Reduced urine ammonium relative to pH 
Reduced renal blood flow

Renal pain Cyst haemorrhage 
Renal calculi 
Renal infection

Haematuria Cyst haemorrhage 
Renal calculi 
Renal cell carcinoma

Proteinuria Low grade excretion of urinary protein (<1g/day).
Hypertension Activation of renin-angiotensin system 

Impaired endothelial-dependent vascular 
relaxation
Increased sympathetic nerve activity

Renal disease progression Compression atrophy 
Tubular obstruction 
Renal ischemia 
Interstitial inflammation 
Apoptosis of tubular epithelial cells

Table adapted from Zhou and Pei 2008.
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1.2.3 Clinical diagnosis of ADPKD
The most frequently used methods of diagnosis for ADPKD are trans­

abdominal ultrasound scanning, CT, and MRI (Boucher and Sandford 2004, 

Nascimento et al. 2001). Ultrasound is the preferred diagnostic imagining 

method for both adults and children as it is simple, highly sensitive, widely 

available and non-invasive (Boucher and Sandford 2004). CT and MRI are 

often used when ultrasound results are equivocal, and additional information 

on renal structure and function is required (Nascimento etal. 2001).

ADPKD is typically diagnosed in adults when they present with 

bilaterally enlarged kidneys with multiple cysts and a positive family history 

consistent with autosomal dominant inheritance (Pei 2006). Other symptoms 

that contribute towards a positive ADPKD diagnosis are the presence of liver 

and other extra-renal cysts, cardiovascular system abnormalities indicative of 

the disease, and also the absence of symptoms of other cystic kidney 

disorders (Table 1.8) (Pei 2006). However occasionally ADPKD will appear in 

children and may be easily confused with ARPKD. In these instances, the 

presence of a positive family history of ADPKD and renal cyst size differences 

will help to differentiate the two (ADPKD renal cysts are generally larger than 

ARPKD cysts (Avni et al. 2002)). In some patients where ADPKD is 

suspected, a family history may not be present, indicating a possible de novo 

mutation or an undiscovered PKD2 family history with very mild symptoms 

(Pei 2006).

For individuals bom with a 50% risk of inheriting ADPKD from a PKD1- 

linked family, diagnostic criteria revised by Ravine et al. (1994) are commonly 

used (listed below). This diagnostic criteria is also believed to be sufficient for 

the diagnosis of ADPKD from PKD2-linked families, however some refinement 

is needed to reduce the false-negative rate (Pei 2006).

• Younger than 30 years of age -  at least two renal cysts (unilateral or

bilateral).

• Between 30 and 59 years of age -  at least two cysts in each kidney.

• Older than 60 years of age -  at least four cysts in each kidney.
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Genetic testing is also available for the diagnosis of ADPKD when 

renal ultrasonography is inconclusive and there is a negative family history 

(Rossetti et al. 2002b). This involves the use of techniques such as DHPLC 

mutation screening of the entire PKD1 and PKD2 coding sequence and splice 

junctions. Expense is however a problem and a definitive mutation is maybe 

found in no more than approximately two thirds of the test subjects (Pei 2006).

Table 1.8 Potential ADPKD diagnostic confusion with other renal cystic 
disorders.

Disorder Prevalence Inheritance Differences to ADPKD
Syndromic
TSC -1:10,000 Autosomal

dominant
Skin lesions, retinal 
hamartomas, seizures, 
mental retardation, brain 
lesions, cardiac 
rhabdomyoma, LAM, 
renal angiomyolipoma.

VHL syndrome -1:50,000 Autosomal
dominant

Central nervous system 
and retinal 
haemangioblastoma, 
pancreatic cysts, 
p heoch romocytoma, 
RCC, papillary 
cystadenoma of 
epididymis.

Medullary sponge 
kidney

-1:5,000 Familial
clustering
uncommon

Medullary 
nephrocalcinosis, 
“paintbrush” appearance 
of renal papillae on 
intravenous pyelogram.

Oro-facio-digital
syndrome

Very rare X-linked
dominant
inheritance

Lethal in affected males. 
Oral anomalies, facial 
anomalies, digital 
anomalies.

Nonsyndromic
Simple renal 
cysts

Common None Rare under 30 years, but 
increase with age.

Acquired renal 
cystic disease

Common None Chronic renal 
insufficiency or ESRD 
with multiple renal cysts 
associated with normal 
sized or small kidneys.

Table adapted from Pei 2006.
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1.2.4 Identification of the ADPKD genes
The first ADPKD gene locus, now designated the PKD1 locus, was 

localised in 1985 to the a-globin cluster on the short arm of chromosome 16 

(Reeders etal. 1985). Families in which there was no linkage to markers on 

chromosome 16p were soon identified (Kimberling etal. 1988, Romeo etal. 

1988), leading to the discovery of a second ADPKD locus (PKD2) on 

chromosome 4q13-q23 (Peters etal. 1993, Kimberling etal. 1993). It is 

estimated that approximately 85% of ADPKD is due to mutations in PKD1, 

with PKD2 accounting for the remaining 15% (Peters and Sandkuijl 1992, 

Peral etal. 1993). However, since patients with PKD2 mutations have a 

milder disease phenotype and sometimes go un-diagnosed, there may be a 

bias towards identifying families with PKD1 mutations, thus the proportion of 

families with ADPKD2 may be higher than 15% (Hateboer et al. 1999).

1.2.4.1 The PKD1 gene

Localisation of the PKD1 region was further refined in the early 1990s 

to chromosome band 16p13.3 using extensive linkage analysis and panels of 

somatic cell hybrids (The European Polycystic Kidney Disease Consortium 

1994). Within this region the PKD1 locus was located in an interval of 

approximately 600kb between the markers GGG1 and SM7, which was rich in 

gene sequences (Harris et al. 1990, Germino et al. 1992, Harris et al. 1991, 

Somlo et al. 1992). Investigators then went on to examine families with TSC 

for information on the possible location of ADPKD causing genes as it was 

known that some TSC patients developed renal cystic lesions that resembled 

those of ADPKD. One ADPKD family was found to have inherited a balanced 

translocation near the TSC2 locus with a breakpoint in a novel gene named 

the polycystic breakpoint protein (PBP) gene (The European Polycystic 

Kidney Disease Consortium 1994). Further mutations of the PBP gene, which 

encodes a 14kb transcript, were found in ADPKD1 patients, confirming that 

PBP was in fact the PKD1 gene (The European Polycystic Kidney Disease 

Consortium 1994). A year later the PKD1 sequence was extended by 2689 

amino acids (The International Polycystic Kidney Disease Consortium 1995). 

The delay in revealing the entire PKD1 sequence was due to the presence of 

several transcriptionally active copies of PKD1-like sequences located in the
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more proximal region 16p13.1 (The European Polycystic Kidney Disease 

Consortium 1994). This made it very difficult to distinguish the PKD1 locus 

transcript from those of the PKDf-like loci.

PKD1 is approximately 53kb in length and is organised into 46 exons 

encoding a 14.5kb mRNA (The International Polycystic Kidney Disease 

Consortium 1995). Exon 1 is located 16kb away from exon 2 with an in-frame 

start codon located at 212bp and an ORF of 12,906bp (Hughes et al. 1995). 

The PKD1 genomic region has a high GC content and multiple simple repeats 

(Hughes etal. 1995). Interestingly, intron 21 contains a 2.5kb polypyrimidine 

tract which may interfere with replication and transcription (Van Raay et al.

1996). The 14.5kb transcript encodes a 4,302 amino acid, 460 kDa protein 

called polycystin-1 (PC1) (Hughes etal. 1995).

1.2.4.2 The PKD2 gene

Unlike the PKD1 gene, PKD2 is a single copy gene and so its 

identification was much simpler. Peters etal. (1993) localised the PKD2 locus 

to the long arm of chromosome 4, flanked by the DNA markers D4S231 and 

D4S423. Around the same time, Kimberling et al. (1993) further localised 

PKD2 to chromosome 4q13-q23, and in 1996, the PKD2 gene sequence was 

mapped using cDNA clones (specifically clone cTM-4) (Mochizuki etal. 1996).

PKD2 is approximately 68kb in length and contains 15 exons which 

encode a 5.4kb transcript. An initiator ATG codon is located 67bp from the 5’ 

end, and is followed by a 2904bp ORF. The PKD2 transcript encodes a 968 

amino acid, 110 kDa protein called polycystin-2 (PC2) (Mochizuki etal. 1996).

1.2.4.3 A possible PKD3 gene?

The existence of a third gene, PKD3, is suspected but has not yet been 

confirmed. This theory arose due to the identification of a small proportion of 

families linked neither to PKD1 nor to PKD2 (Daoust et al. 1995, de Almeida 

etal. 1995, Turco etal. 1996, Ariza etal. 1997, McConnel etal. 2001). 

However, before these unlinked families can be confidently assigned to the 

putative PKD3 gene, potential confounders must first be eliminated. The
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common confounders that may lead to false exclusion of linkage to PKD1 and 

PKD2 include: genotyping errors, DNA sample mix up, non-paternity and 

misdiagnosis (Paterson and Pei 1998, Paterson and Pei 1999). Detailed 

haplotype analysis using multiple markers must be performed in all putative 

PKD3 families before the existence of this gene can be confirmed and 

potentially located.

1.2.5 Mutation analysis of PKD1 and PKD2
A mutation detection rate in PKD1 and PKD2 of approximately 76% 

has been achieved using conventional and long-range PCR (Boucher and 

Sandford 2004). Most of these mutations are unique to a single family, as 

seen in other autosomal dominant and X-linked diseases (Peters and 

Breuning 2001). Mutations have been identified in all parts of PKD1 and are 

predicted to produce a truncated PC1 protein (Rossetti et al. 2001). Most 

mutations are nonsense (33%) or frameshifting (28%), however small 

deletions (6%), splicing defects (14%) and missense mutations (19%) are also 

common, (Rossetti etal. 2001) and in total approximately 270 different PKD1 

mutations have been described (Rossetti et al. 2007). Large deletions of 

PKD1 are rare but can include the adjacent TSC2 gene, causing a contiguous 

gene deletion syndrome (discussed in more detail in section 1.2.6) (Brook- 

Carter etal. 1994, Sampson etal. 1997 and Laas etal. 2004).

Nearly 70 different mutations have been found in PKD2, most of which 

are predicted to be inactivating (Rossetti et al. 2007). These mutations are 

dispersed over the entire coding sequence with no significant clustering or 

hotspots, however none have been found in exons 3 and 15 (Magistroni et al.

2003). Of the mutations reported, most are nonsense (37%) or frameshifting 

(39%), but splicing (17%) and missense mutations (6%) also occur 

(Magistroni et al. 2003). One family has been found to have a complete 

deletion of PKD2 (Magistroni et al. 2003).

Evidence suggests that PKD1 is more susceptible to mutagenic events 

than PKD2, with a de novo germline mutation rate four to five times higher 

(Rossetti et al. 2001). A number of reasons have been proposed to explain

40



formation and recombination; however a recent report by Kozlowski et al. 

(2007) found no evidence for an enhanced rate of genomic deletions near this 

tract.

1.2.6 Genotype/phenotype correlations
ADPKD1 is a more severe disease than ADPKD2, with earlier 

diagnosis, a higher incidence of hypertension and haematuria, a greater 

history of urinary tract infection, and ESRD occurring approximately 15 years 

earlier (Hateboer et al. 1999, Ravine et al. 1992). Allelic effects within each 

gene may also influence renal disease severity in ADPKD. The location of 

mutations in PKD1, but not the type, appears to be associated with disease 

severity differences in the ADPKD 1 population. Patients with mutations in the 

5’ portion of the gene (0-7812bp) were found to have a lower mean age of 

ESRD than the 3’ group (beyond 7812bp) (Rossetti etal. 2002a). In addition, 

Rossetti et al. (2003) revealed that 5’ mutations were more commonly 

associated with vascular disease, becoming especially clear in patients with 

aneurismal rupture, early rupture or families with more than one vascular 

case. By contrast, a large study of ADPKD2 patients, found that the location 

of mutations did not influence the age of onset of ESRD (Magistroni et al. 

2003). This study did however reveal that patients with splice site mutations 

appear to have milder renal disease compared with other mutation types. 

Interestingly Magistroni et al. (2003) found a significant correlation between 

gender and disease severity, reporting that female ADPKD2 patients had a 

later mean age of ESRD onset compared to males. However, in studies of 

PKD1, gender was not found to correlate significantly with disease severity 

(Hateboer et al. 1999, Rossetti etal. 2002a).
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Renal disease severity in ADPKD can also be greatly affected by two 

rare Mendelian syndromes. The first, known as the TSC2/ADPKD1 

contiguous gene syndrome, involves a large genomic deletion of both PKD1 

and TSC2 (Brook-Carter et al. 1994). These genes lie immediately adjacent to 

each other (approximately 60bp apart) on chromosome 16p13.3 in a tail-to-tail 

orientation (Sampson etal. 1997). Large TSC2IPKD1 contiguous deletions 

were first discovered during the search for the TSC2 gene (Brook-Carter et al. 

1994, The European Chromosome 16 Tuberous Sclerosis Consortium 1993, 

The European Polycystic Kidney Disease Consortium 1994). The first TSC 

patient with this deletion was only three months old and was found to have 

grossly enlarged and polycystic kidneys (Brook-Carter etal. 1994). Five 

further TSC patients with similar polycystic kidneys in infancy were studied, 

and deletions involving TSC2 and PKD1 were found in each case (Brook- 

Carter et al. 1994). In contrast, severe early onset cystic kidney disease was 

not found in TSC patients with no mutations in PKD1, suggesting that 

constitutional deletion of PKD1 is necessary for the development of this 

phenotype in some TSC patients (Brook-Carter etal. 1994). The severity of 

the TSC2/ADPKD1 contiguous gene syndrome indicates that an interaction 

between TSC2 and PKD1 exists and perhaps the signalling pathways 

downstream from PC1 and tuberin converge at some crucial point (Rossetti 

and Harris 2007). To date approximately 20 cases (75% paediatric and 25% 

adult cases) of the disease have been observed, often arising in patients with 

no family history of the disease or those with somatic mosaic parents with 

subtle disease (Bisceglia et al. 2008 for case references).

The second syndrome involves bilineal inheritance of two 

independently segregating PKD1 and PKD2 mutations. During the search for 

the putative PKD3 gene a large ADPKD family was studied which had 

previously been excluded from linkage to both the PKD1 locus and the PKD2 

locus (Pei et al. 2001). Out of 48 members of the family, 28 were affected with 

ADPKD, two of which were shown to have frans-heterozygous germline PKD1 

and PKD2 mutations. These two individuals had more severe renal disease 

than the other family members who had either mutation alone, and also 

developed ESRD approximately 20 years earlier. The authors proposed two
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signalling complex below a threshold , which would predispose more cells to 

a cystic phenotype (Pei et al. 2001). These rare syndromes provide unique 

evidence for the role of interaction between cystogenes (PKD1 with TSC2, 

and PKD1 with PKD2) in modifying renal cystic disease severity (Zhou and 

Pei 2008).

1.2.7 Loss of heterozygosity and haploinsufficiency
Similar to Knudson’s classic “two-hit” model of tumourigenesis, a two- 

hit model of cystogenesis has been proposed for ADPKD (Reeders 1992). As 

with most cystic kidney diseases, the majority of nephrons remain normal in 

ADPKD whilst a minority (around 10%) contain cysts, and yet every cell within 

the nephron carries a germline mutation (Reeders 1992). This suggests that 

the germline mutation is not in itself sufficient to produce a cyst and a “second 

hit” is also required. Recent studies have provided evidence that this event is 

a major mechanism of cystogenesis in ADPKD. By isolating epithelial cells 

from single renal cysts, thus minimising contamination by other cells, two 

laboratories independently reported that ADPKD 1 renal cysts are monoclonal 

(Qian etal. 1996, Brasier etal. 1997). LOH of PKD 1 was found in 17-24% of 

cysts, however small somatic mutations were not examined (Qian et al. 1996, 

Brasier etal. 1997). Second hits have also been found in extra renal tissue 

such as the liver; in which one group found small intragenic mutations in up to 

30% of PKD1 liver cysts (Watnick et al. 1998). Studies of PKD2 have revealed 

similar findings, with LOH and small intragenic mutations reported in up to 

10% and 40% of human PKD2 renal and liver cysts, respectively (Pei et al. 

1999, Torra etal. 1999, Koptides etal. 1999). Of note, inactivating somatic 

PKD1 mutations have been reported in approximately 8% of PKD2 cysts, and 

conversely, somatic PKD2 mutations in approximately 13% of PKD1 cysts, 

suggesting a trans-heterozygous two-hit model may be a mechanism for
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two-hit model of cystogenesis (Ong and Harris 1997). First, it was argued that 

a higher rate of somatic PKD mutations should be reported if second hits are 

indeed required for cystogenesis. However, none of the earlier studies 

examined the entire length of PKD1 and PKD2 for somatic mutations, and 

also mutation screening of PKD1 is challenging due to its large size and 

complexity. To address this issue, a recent study screened the entire PKD2 

gene for somatic mutations using a highly sensitive single-stranded 

conformational analysis (Watnick et al. 2000). The analysis, which included all 

15 exons and flanking splice junctions, revealed somatic mutations in 71% of 

cysts. This study reveals that when using sensitive mutation detection 

techniques, a high rate of somatic mutation can be detected, however, a large 

proportion of cysts still show no second hit. The second concern involves 

evidence from studies showing strong immunoreactivity for PC1 and PC2 in 

the majority of cystic epithelia (Ong et al. 1999a, Ong et al. 1999b). These 

results appear incompatible with a two-hit model of cystogenesis, and so 

several explanations have been proposed. Ong etal. (1999b) suggested that 

the problem could be reconciled if the majority of somatic mutations are 

missense, which could then functionally inactivate the “normal” polycystin 

protein while allowing its expression and detection. However, the majority of 

PKD mutations identified so far are stop or frame-shifting changes (Rossetti et 

al. 2001, Magistroni et al. 2003). Another explanation stems from trans- 

heterozygous inactivation of PKD1 and PKD2 (Watnick et al. 2000, Koptides 

etal. 2000). Expression of PC1 and PC2 is expected in these cysts, however 

trans-heterozygous inactivation only occurs in approximately 10% of ADPKD 

cysts and so cannot account for the majority of polycystin immunoreactivity 

(Pei 2001). Finally, unreliable antibodies and cross-reactivity could lead to 

polycystin positive cysts (Pei 2001).
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only 13-20% normally spliced PC1, Lantinga-van Leeuwen etal. (2004) found 

that a reduced dosage of Pkd1, but not complete loss, was sufficient to initiate 

cystogenesis. Similar results were obtained by Jiang et al. (2006) using a 

conditional Pkd1 knockout mouse model, resulting in partially inhibited Pkd1 

expression. Mice homozygous for the targeted allele appeared normal at birth 

but developed polycystic kidneys whilst low levels of full-length PC1 continued 

to be produced. Haploinsufficiency in Pkd2 mouse mutants has also been 

reported to result in a cystic phenotype. Chang et al. (2006) found an 

increased proliferative index in non-cystic tubules 5-10 times that of normal 

control tissue. The effects of haploinsufficiency in frans-heterozygous Pkd1 

and Pkd2 mutations have also been studied using mouse models (Wu et al. 

2002). The severity of cystic disease was found to be increased in Pkd1+/~ 

Pkd2+/~ mice in excess of that predicted by a simple additive affect based on 

cyst formation in Pkd1+/' or Pkd2+/' mice alone. Together, the data from these 

haploinsufficient models suggest that severe reduction, but not complete loss 

of PC1, possibly coupled with other genetic and environmental factors, may 

induce cystogenesis. Two other studies have suggested that increased levels 

of PC1 expression may also cause renal cystic disease. Transgenic mice over 

expressing Pkd1 were found to have multiple tubular and glomerular cysts, as 

well as hepatic cysts and bile duct proliferation, characteristic of ADPKD 

(Pritchard etal. 2000, Thivierge etal. 2006). Interestingly, analysis of tissues 

from ADPKD patients has revealed enhanced PC1 immunoreactivity in the 

majority of cysts (Ward et al. 1996, Geng et al. 1996). These studies suggest 

that overexpression of PC1 alone may also be sufficient to trigger 

cystogenesis.
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Table 1.9 The polycystin protein tamiiy.

Protein Gene and locus Localisation Biological role
PC 1-like
Polycystin-1 PKD1, 16p13.3 Widespread Mechanotransductii 

regulator of cell 
growth, proliferatior 
and differentiation

Polycystin-REJ PKDREJ, 22q13 Testis, coincident 
with the timing of 
sperm maturation

Regulator of ion 
channels during 
fertilisation?

Polycystin-1 L1 PKD1L1, 16p12-13 Relatively 
widespread with 
higher levels in 
heart and testis

Unknown

Polycystin-1 L2 PKD1L2, 16q23 Relatively 
widespread with 
higher levels in 
heart and testis

Unknown

Polycystin-1 L3 PKD1L3, 16q22 Relatively 
widespread, but 
not in skeletal 
muscle

Unknown

PC2-like
Polycystin-2 PKD2, 4q21-23 Widespread Mechanotransducti 

regulator of cell 
growth, proliferatior 
and differentiation

Polycystin-L PKDL, 10q24-25 Relatively
widespread

Unknown

Polycystin-2L2 PKD2L2, 5q31 Heart and testis Fertilisation?
Table adapted from Zhou and Pei 2008, Delmas et al. 2004.

PC1 is a receptor-like molecule with a large extracellular N-terminal 

domain, 11 transmembrane domains and a C-terminal cytoplasmic domain o 

approximately 200 amino acids (Figure 1.5) (Sandford etal. 1999). The N- 

terminus contains a number of adhesive regions, suggesting a diverse role a
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for the normal function of the protein. Qian et al. (2002) found that cleavage 

deficient Madin-Darby canine kidney (MDCK) cells could only form cyst-like 

structures compared to cells transfected with wild-type PC1, which 

consistently developed tubule like structures in 3-dimesional collagen gels. 

Cleavage of the cytoplasmic C-terminal tail is believed to be involved in 

nuclear signalling and will be discussed in more detail later. The C-terminal 

domain of PC1 is known to be phosphorylated at a number of sites. Cyclic 

adenosine monophosphate (cAMP)-dependent protein kinase A, but not 

protein kinase C, phosphorylates PC1 at S4159 and S4252, whilst it is 

suggested that T4237 might be phosphorylated by c-src (Parnell etal. 1999, 

Li etal. 1999).

PC2 is a non-selective cation channel with a high permeability to 

calcium (Ca2+) modulated by intracellular Ca2+ concentration (Anyatonwu and 

Ehrlich 2005). It contains six transmembrane domains and a pore region 

thought to be located between the fifth and sixth transmembrane domains 

(Anyatonwu and Ehrlich 2005) (Figure 1.5) (Table 1.10). Both N- and C- 

terminal domains of PC2 are located intracellularly. PC2 shares significant 

homology with transient receptor potential (TRP) channels and is considered 

a member of the TRP channel superfamily TRPP2 (Delmas etal. 2004). An 

EF-hand domain (EF stands for E and F helixes of parvalbumin) is present in 

the C-terminal of PC2 and is thought to play a significant role in Ca2+ binding 

and regulation of ion channel functions (Cai etal. 1999). PC2 associates with 

the coiled coil domain of PC1 through its C-terminal tail (Qian etal. 1997).
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N-terminus Cystein-rich region 
Leucine-rich repeat
Cell wall integrity and stress response component 
PKD domain 
C-Lectin domain 
Low-density lipoprotein A 
Sperm receptor for egg jelly 
G-protein coupled receptor proteolytic site 

Lipoxygenase homology 
G-protein activation sequence 
EF-hand, calcium binding domain 
Endoplasmic reticulum retention signal

C-termini

oo Extracellular

Intracellular

N-terminus

Figure 1.5 The predicted structure of human PC1 and PC2. A coiled-coil domain (red spiral) in the C-terminus of PC1 interacts with a 
predicted coiled-coil domain (red spiral) in the C-terminus of PC2. PC1 has 11 transmembrane domains (pink ovals) and PC2 has 6 
transmembrane domains (yellow ovals). All other domains are indicated in the key above. Domains not drawn to scale.
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2002).
Cell wall integrity and 
stress response 
component (WSC)

Definite function unknown. Putative carbohydrate-bindir 
domain, possibly acting as a regulator of stress-activate 
pathways (Weston et al. 2003).

PKD domains Display homology to immunoglobin-like domains. Involv 
cell-cell adhesion by strong calcium-independent homo| 
interactions (Ibraghimov-Beskrovnaya et al. 2000).

C-Lectin domain Involved in cell adhesion by binding carbohydrate matrii 
and collagen 1, II and IV in vitro. This binding is greatly 
enhanced by the presence of calcium (Weston et al. 20

Low-density 
lipoprotein A (LDL)

Involved in protein-protein interactions. Binding partner 
unclear as there is some confusion as to whether LDL fc 
definite motif in PC1 (Weston et al. 2003).

Sperm receptor for 
egg jelly (REJ) 
domain

Regulator of ion transport in the acrosome reaction. Uns 
of function in PC1, but could be involved in ionic regulat 
(Moy etal. 1996).

G-protein coupled 
receptor proteolytic 
site (GPS)

Site of proteolytic cleavage, a process that requires the 
adjacent REJ module to be present. Cleavage could be 
for PC1 to exhibit full biological activity (Qian et al. 2002

Lipoxygenase 
homology (LH2)

May mediate interactions with other membrane proteins 
involved in PC1 function (Bateman and Sandford 1999)

G-protein activation 
sequence

Binds to and activates G proteins. This activity is physic 
regulated by PC2 (Parnell etal. 1998, Delmas etal. 20C

Coiled coil domain Binds to the C-terminal tail of PC2 (Qian et al. 1997).
PC2
Protein domain Function
EF-hand, calcium 
binding domain

May play a role in calcium binding and regulation of ion 
channel function (Cai etal. 1999).

Endoplasmic 
reticulum retention 
signal

Prevents trafficking to the surface membrane when 
expressed on its own. Responsible for retention of PC2 
the endoplasmic reticulum (ER) (Cai etal. 1999).

Coiled coil domain Binds to the C-terminal tail of PC1 (Foggensteiner et al. 
2000).
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the cell membrane, they form a mechanosensory complex which helps 

regulate normal renal tissue morphogenesis (discussed in more detail in 

section 1.3) (Nauli et al. 2003). PC2 can also regulate the subcellular 

distribution of PC1. Grimm etal. (2003) observed that when PC1 is expresser 

alone, it localises to the cell membrane, whereas co-transfection with PC2 

results in ER localisation of PC1 along with PC2. Interestingly it has also beer 

shown that PC2 remains in the nodal cilia of PC1 knockout mice, suggesting 

that PC2 targeting can also be independent of PC1 (Geng et al. 2006). It is 

clear that further studies are required to elucidate the full interdependent and 

independent functions of PC1 and PC2.

1.2.8.2 Localisation of PC1 and PC2

PC1 and PC2 have a wide tissue distribution, being highly expressed ii 

kidney, brain, liver, pancreas and vasculature (Wilson 2001). Expression of 

PC1 is developmentally regulated, with high levels in developing tissue, but 

only low levels in adult tissue (Geng etal. 1997, Van Adelsberg etal. 1997).

In the mouse kidney, PC1 levels peak at embryonic day 15 and fall to a low 

level 2 weeks after birth (Geng etal. 1997). This low level is then maintained 

throughout adult life. Within the kidney, PC1 is found predominantly in the 

collecting duct, although lower levels are also found in nearly all tubule 

segments of the nephron (Foggensteiner et al. 2000). The subcellular 

localisation of PC1 has been greatly debated, although it is now generally 

accepted as a cell membrane protein specifically located at the apical 

membrane and the adherent and desmosomal junctions (Geng et al. 1996, 

Huan and van Adelsberg 1999, Scheffers etal. 2000). More recently PC1 has 

been localised to the primary cilium of renal tubules in vivo and in cell culture 

(Nauli et al. 2003, Yoder et al., 2002, Luo et al. 2003).
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Unlike PC1, PC2 maintains high levels of tubular expression in adult 

kidney (Foggensteiner et al. 2000). PC2 expression is highest in the thick 

ascending limb of the loop of Henle and the distal convoluted tubule (DCT) in 

normal adult kidney (Foggensteiner et al. 2000). The subcellular location of 

PC2 has been controversial, with cytoplasmic, apical and basolateral 

membrane localisation reported in vivo (Cai et al. 1999, Foggensteiner et al.

2000). PC2 is also found in the ER, and some groups believe this to be its 

primary location (Cai etal. 1999, Koulen etal. 2002). Finally PC2 has been 

localised to the primary cilium along with PC1, where they are believed to act 

as a mechanosensory complex (Yoder et al. 2002).

1.2.8.3 PC1 and PC2 signalling pathways

The mechanosensation and calcium influx properties of PC1 and PC2 

are one of the most interesting and possibly most important functions of these 

proteins and will be discussed in detail in section 1.3. PC1 and PC2 are also 

believed to be involved in other significant signalling pathways, such as the 

Wnt pathway and the mTOR pathway.

1.2.8.3.1 The JAK-STATpathway

Recent studies in the kidney have shown that the C-terminal 

cytoplasmic tail of PC1 can be cleaved in response to fluid flow stress 

(discussed in more detail in section 1.3) (Chauvet et al. 2004, Low et al.

2006). This cleaved C-tail then translocates to the nucleus where it initiates 

nuclear signalling by binding to the transcription factor STAT6 (signal 

transducer and activator of transcription protein 6) and its co-activator P100 

(Low et al. 2006) (Figure 1.6). The researchers suggest that this nuclear 

localisation of STAT6 has a pathologic role in ADPKD. They found that cyst 

lining cells in ADPKD showed elevated levels of nuclear STAT6, P100 and the 

PC1 tail. It was proposed that in normal renal tubular lumens with fluid flow 

and normal PC1, STAT6 is sequestered in the cilia by PC1. Under the 

absence of urine flow or PC1, STAT6 translocates from the cilia to the 

nucleus to initiate STAT6-dependent transcription (Figure 1.6).
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Figure 1.6 A working model of the role of PC1, primary cilia and flow sensing in the JAK/STAT pathway. Under normal flow 
conditions (A), PC1 localises to primary cilia, where it is in a complex with P100 and STAT6. The normal function of PC1 would be to 
sequester STAT6 and prevent the expression of STAT6/P100-dependent genes. This state remains stable as long as the cilia remain 
bent by luminal fluid flow. Renal injury resulting in cessation of fluid flow (B) will trigger cleavage of the cytoplasmic tail of PC1 by a 
yet unknown mechanism and protease. This is accompanied by STAT6 tyrosine phosphorylation, nuclear translocation of the PC1 
tail/STAT6/P100 complex, and activation of gene expression. If PC1 is lost, STAT6 cannot be sequestered at the cilia and may be 
constitutively activated (C). It is more commonly observed in ADPKD that PC1 is actually highly expressed in cyst-lining epithelial 
cells. However, overexpressed mutant PC1 may be mis-folded and degraded, which may release a biologically active fragment 
corresponding to the C-terminal half of the tail. In this scenario (D), not only would STAT6 fail to be sequestered at the cilia, but the 
PC1 tail would further increase STAT6-dependent transcription. Adapted from Low et al. 2006.



1.2.8.3.2 The inhibitor of DNA binding pathway

Recently, PC2 has been shown to directly associate with the

protein Id2, a member of the inhibitor of DNA binding (Id) protein family that 

belongs to the superfamily of helix-loop-helix transcription factors (Li et al. 

2005). This protein family is known to promote cellular growth and inhibit 

differentiation (Pagliuca et al. 2000). Li et al. (2005) showed that PC2 

interacts with Id2 and sequesters the protein outside the nucleus in the 

cytosol, thus inhibiting its function. This interaction was regulated by PC1- 

dependent phosphorylation of PC2. The authors found increased Id2 

expression and nuclear translocation in cyst lining epithelia in the kidneys 

from patients with either PKD1 or PKD2 mutations, and also renal epithelial 

cells from Pkd1 targeted mice. This is in contrast to the normal kidney, in 

which a low level of Id2 expression was detected, primarily in the cytosol. The 

authors propose that Id2 has a crucial role in cell-cycle regulation that is 

mediated by PC1 and PC2. Their data indicates that aberrant Id2 nuclear 

translocation resulting from loss of function mutations in either PKD1 or PKD2 

contributes to abnormal cellular proliferation in ADPKD, which is a trigger for 

cyst formation (Li et al. 2005).

1.2.8.3.3 The canonical Wnt signalling pathway

The Wnt signalling pathway is an evolutionarily conserved signal 

transduction pathway used extensively during development. This highly 

conserved complex network of proteins can regulate multiple aspects of 

development including the proliferation, fate specification, polarity and 

migration of cells (Habas and Dawid 2005). It also plays a role in normal 

physiologic processes in adult life, as well as pathological roles in many 

diseases, most notably cancer. In canonical Wnt signalling, Wnt proteins bind 

to a Frizzled (Fz) family receptor and a coreceptor of the LRP family, both 

located at the cell surface (Clevers 2006). Fz then interacts with the 

cytoplasmic phosphoprotein Dishevelled which functions upstream of p- 

catenin and the kinase GSK-3 (Clevers 2006). This interaction inhibits the 

degradation of p-catenin by the APC/Axin/CK1/GSK3p destruction complex, 

leading to the stabilization of p-catenin and its translocation to the nucleus
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oonnicung evidence exisis over wnemer modulates wnt 

signalling. The controversy mainly revolves around the potential interaction 

between the membrane-anchored C-terminal tail of PC1 and p-catenin. Kim et 

al. (1999) reported that the PC1 C-terminal tail stabilizes p-catenin and 

stimulates TCF-dependent gene transcription in human embryonic kidney 

cells. They state that their findings indicate that PC1 has the capacity to 

modulate Wnt signalling during renal development. However, two recent 

studies have shown that neither the membrane anchored nor the cleaved 

soluble PC1 C-terminal tails were able to modulate Wnt signalling using a 

variety of assays (Le et al. 2004, Low et al. 2006). This conflicting data 

requires further investigation before the potential link between polycystins and 

Wnt signalling can be confidently resolved.
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p-cateninirouch

Figure 1.7 Overview of the canonical Wnt signalling pathway. (Left panel) When the Wnt 
receptor complex is not bound by Wnt ligand, cytoplasmic p-catenin is bound to its 
destruction complex, consisting of APC, axin/conductin and GSK3p. After CK-1 
phosphorylates p-catenin on Ser 45 residue, p-catenin is further phosphorylated on Thr 41, 
Ser 37 and Ser 33 residues by GSK3p. Phosphorylated p-catenin is recognised by ubiquitin 
ligase p-TrCP and undergoes ubiquitination and degradation. Therefore, the cytoplasmic 
level of p-catenin is kept low in the absence of Wnt/Fz signalling. In the nucleus, the binding 
of Groucho to TCF (T cell factor) inhibits the transcription of Wnt target genes. WIF-1, sFRP 
and/or Dkk can inhibit the Wnt/Fz signalling by binding to Wnt ligands or LRP. (Right panel) 
Once bound by Wnt, the Fz/LRP coreceptor complex activates the canonical signalling 
pathway. Dsh is recruited and phosphorylated by Fz. Phosphorylated Dsh in turn recruits 
axin, which dissociates from the P-catenin destruction complex. Beta-catenin therefore 
escapes from phosphorylation and subsequent ubiquitination and accumulates in the 
cytoplasm. This accumulated cytoplasmic p-catenin then enters the nucleus where it 
displaces Groucho, binds to TCF/LEFs and activates the transcription of Wnt target genes. 
Information obtained from Eisenmann 2005.
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polycystins in mTOR signalling. Their results showed that the C-terminal 

cytoplasmic tail of PC1 interacts with tuberin and the kinase mTOR. 

Interestingly they also found that the mTOR pathway is inappropriately 

activated in cyst-lining epithelial cells in human ADPKD and mouse models 

(Pkd1, MAL and orpk mouse models), and when given rapamycin, a 

significant reduction in renal size was found in both end-stage ADPKD 

patients and PKD mouse models (Orpk and bpk mouse models). The authors 

suggest that dysregulation of mTOR underlies changes in renal epithelial cells 

that cause the formation of polycystic kidneys. It is proposed that a function of 

the PC1 tail may be to assemble a complex with tuberin and mTOR and when 

PC1 is mutated, for example in ADPKD patients, the tuberin-mTOR complex 

is not formed and mTOR is rendered constitutively active (Figure 1.8) 

(Shillingford et al. 2006, Mostov 2006). These results also led the authors to 

speculate that rapamycin and other mTOR inhibiting drugs may be excellent 

candidates to help prevent or delay the onset of PKD (Shillingford et al. 2006).
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Figure 1.8 Model of the possible regulation of mTOR by PC1. Interaction data suggests that 
a function of the PC1 tail may be to assemble a complex with tuberin and mTOR. However, 
tuberin does not directly interact with mTOR and instead inhibits Rheb, reverting it from 
active RhebGTP to inactive RhebGDP. This perhaps suggests that Rheb should be part of 
the PC1/tuberin/mTOR complex, however this has not yet been proven. Another 
unanswered question is whether hamartin is part of the complex. The hamartin-tuberin 
interaction appears to be important for the stability of each protein and so the presence of 
hamartin must be established. When PC1 is mutated, for example in ADPKD patients, the 
tuberin/Rheb/mTOR complex does not form (or not as efficiently). Under these conditions, 
tuberin may be subject to phosphorylation by kinases such as Akt or Erk, which destabilise 
the hamartin/tuberin complex. Without the stable hamartin/tuberin complex, RhebGTP binds 
to mTOR and the mTOR pathway is rendered constitutively active. Adapted from Mostov 
2006.
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has stimulated trials of antiproliferative agents such as taxanes and c-myc 

antisense with satisfactory results in only certain animal models (Torres and 

Harris 2007). Activation of the renin-angiotensin-aldosterone system (RAAS) 

in ADPKD has been suggested, with increased levels of rennin, 

angiotensinogen, angiotensin converting enzyme (ACE), angiotensin II type 1 

receptor and angiotensin II being found in both kidney tissue and cyst fluid 

from patients (Torres etal. 1992, Loghman-Adham etal. 2004). ACE 

inhibitors and angiotensin II receptor blockers are frequently used for the 

treatment of hyperlipidaemia and hypertension, an important risk factor for 

cardiovascular disease, the most common cause of death in patients with 

ADPKD (Torres and Harris 2007), however studies have not demonstrated a 

renoprotective effect of these drugs (Schrier et al. 2002, Chapman 2007). To 

address this issue and asses in more detail the value of RAAS inhibition in 

ADPKD, a large clinical trial (HALT-PKD) has been implemented to 

investigate whether using ACE inhibitors and angiotensin receptor blockers in 

combination is beneficial in comparison with ACE inhibitors alone (Chapman 

2007). Rapamycin studies in three rodent models of PKD have shown 

encouraging results, with a significant reduction in the rate of cyst expansion 

and improved renal function (Shillingford etal. 2006, Tao etal. 2005, Wahl et 

al. 2006). Clinical trials of sirolimus and everolimus are now underway (Torres 

and Harris 2007). EGFR tyrosine kinase inhibitors, mTOR inhibitors, 

vasopressin V2 receptor antagonists and octreotide are currently the 

therapies best supported by preclinical studies and are being tested in 

ongoing ADPKD clinical trials (Table 1.11) (Torres and Harris, 2007, 

Ibraghimov-Beskrovnaya and Bukanov 2008).
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Table 1.11 Summary of existing drugs and potential experimental agents for

the treatment of PKD.

System Drug Mechanism Physiological
effects

Trial
results/status

RAAS Enalapril ACE-inhibitor ft RFP 
ft GFR 
ft F.F
ft Alb/Cr (M>F)

LVH reversal 
ft Albuminuria

Vasopressin Mozavaptan
(rat)
Tolvaptan
(human)

V2-receptor
antagonist

ftcAMP 
ft Ras 
ft ERK

ft Disease 
progression 
ft Kidney weight 
ft BUN
NA in fibrocystic 
liver disease

Water AVP
suppression

ftcAMP ft Cyst growth 
ft Kidney weight 
ft Renal function

Endothelin Bosentan ETa/b receptor 
antagonist

ft MAP 
ft GFR 
ft RPF

Acute treatment

Darusentan 
LU 224332

ETa/b receptor 
antagonists 
(especially ETA)

ft Cyst volume 
ft Cell
proliferation

ft Kidney weight 
(not
recommended)

Calcium
channel

Verapamil
BAPTA-AM

Calcium channel 
antagonist

ftcAMP

mTOR Sirolimus
Temsirolimus
Everolimus

mTOR inhibitor ft Cell
proliferation 
ft Cyst volume 
ft Renal volume

Phase I and II 
clinical trials

MEK PD-098059 MEK inhibitor ft Cell
proliferation

Caspase IDN-8050 Pan-caspase
inhibitor

ft Cyst volume 
ft Kidney size

Reduction in 
BUN (rat)

Somatostatin Octreotide Somatostatin 
receptor type 2  

agonist

ftcAMP 
ft PLC
ft Phospholipase 
ft Cyst growth

6  month clinical 
trial

AVP = arginine vasopressin, BUN = blood urea nitrogen, cAMP = cyclic
adenosine monophosphate, ERK = extracellular signal-regulated kinase, ET = 
endothelin, F.F = filtration fraction, GFR = glomerular filtration rate, LVH = left 
ventricular hypertrophy, MAP = mean arterial pressure, MEK = mitogen 
extracellular kinase, NA = data not available, PLC = phospholipase C, RAAS 
= rennin-angiotensin-aldosterone system, RPF = renal plasma flow, \J2 = 
vasopressin, ft indicates increase, ft indicates decrease. Table adapted from 
Masoumi et al. 2007.
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The main challenge in ADPKD clinical trials is the utilisation of renal 

function as the primary outcome measure. Renal function remains normal for 

decades, and only begins to decline late in the course of the disease when 

the kidneys are markedly enlarged, obliterated by cysts and unlikely to benefit 

from potential treatment. Reliable, more sensitive measures of kidney function 

are required for more beneficial early intervention trials. Results from the 

CRISP (Consortium for Radiologic Imaging Studies of PKD) study indicate 

that the rate of renal growth is a good indicator of kidney function decline, and 

justifies the measurement of kidney volume by MRI as a reliable indicator of 

clinical outcome.

1.2.10 PKD models
Animal models of PKD have been critical in supporting studies of 

disease pathogenesis and in testing potential therapies. For extensive reviews 

please refer to Guay-Woodford 2003 and Torres and Harris 2007. Murine 

PKD models have arisen from spontaneous mutations, random mutagenesis, 

transgenic technologies and gene-specific targeting and generally resemble 

human ARPKD or ADPKD with respect to renal cyst pathology and disease 

progression (Guay-Woodford 2003). For example, those models that display 

cysts distributed along the entire nephron, extra-renal manifestations and 

slower disease progression most closely resemble the human ADPKD 

phenotype (Guay-Woodford 2003).

Although there are a number of spontaneous animal models of PKD, 

none are due to mutations in Pkd1 or Pkd2 (Torres and Harris 2007). Table

1.12 lists many of these models, including the jcpk (Flaherty et al. 1995) and 

orpk (Moyer et al. 1994) mouse models which arose from chemical and 

insertional mutagenesis programmes respectively. Several of them, 

particularly the cpk, bpk, orpk and pcy mice and the Han:SPRD and pck rats, 

have been used to test potential therapies (Torres and Harris 2007). In 

general, the ideal model for this purpose should carry a mutation in an 

orthologous gene to the human disease-carrying gene and reproduce the 

typical phenotype of human ADPKD or ARPKD, however few, if any, meet 

these requirements (Torres and Harris 2007). For example, the cpk (Fry et al.
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1985, Preminger et al. 1982) and bpk (Nauta et al. 1993) mice present with a 

phenotype resembling ARPKD, however they are caused by mutations in 

Cys1 and B icrf respectively, genes which are not known to be associated to 

human ARPKD pathology (Hou et al. 2002).

Table 1.12 Murine models of PKD.

Model Inheritance Gene Protein Renal
pathology

Extra-renal
pathology

Progression Human
homologue

Mouse

cpk AR Cys1 Cystin PT=>CD BD, P Rapid ?

bpk AR Biccl Bicaudal C PT=>CD BD Rapid ?

jcpk AD/AR Biccl Bicaudal C G I/all 
tubules

BD Slow/rapid ?

orpk AR TgN737 Polaris PT=>CD BD, PD Rapid ?

inv AR Invs Inversin PT=>CD BA, P, SI Rapid NPH2

jck AR Nek8 Nek8 C, OM - Slow ?

kat AR Nek1 Nek1 Gl, PT FD, MS, 
HC, An

Slow

pcy AR Nphp3 Nephro-
cystin-3

CD,
nephron

ICA Slow NPH3

Rat

Han:
SPRD-
cy

AD/AR Pkdrl SamCystin PT L Slow ?

wpk AR Mks3 Meckelin PT=>CD HC Rapid MKS3

pck AR PkhcH Fibrocystin CD, DN BD Slow PKHD1

Cpk = congenital polycystic kidneys, bpk = BALB/C polycystic kidneys, jcpk = 
juvenile congenital polycystic kidney, orpk = Oak Ridge polycystic kidney, inv 
= inversion of embryonic turning, jck  = juvenile cystic kidney, kat = kidney, 
anaemia, testis, pcy = polycystic kidney disease, wpk = Wistar polycystic 
kidneys, pck = polycystic kidneys, AR = autosomal recessive, AD = autosomal 
dominant, PT = proximal tubule, CD = collecting duct, Gl = glomeruli, C = 
cortex, OM = outer medulla, DN = distal nephron, BD = biliary dysgenesis, P = 
pancreatic cysts or fibrosis, PD = polydactyl, BA = biliary atresia, SI = situs 
inversus, ICA = intracranial aneurysm, FD = facial dysmorphism, MS = male 
sterility, HC = hydrocephalus, An = anaemia. Information and references from 
Guay-Woodford 2003, Torres and Harris 2007.
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Mice with targeted mutations of Pkd1 or Pkd2 have been created 

(Table 1.13); however, the renal phenotype in heterozygous animals is often 

normal or only very mild, with cystic change late in life (Ibraghimov- 

Beskrovnaya and Bukanov 2008). Homozygous animals develop renal and 

pancreatic cysts at E15.5, however death occurs perinatally (Guay-Woodford 

2003). Exceptions to the mild cystic phenotype include those models with a 

hypomorphic Pkd1 allele such as Pkd1nl (Lantinga-van Leeuwen et al. 2004) 

and Pkd1L3 (Jiang et al. 2006) which results in a low expression of PC1, thus 

preventing homozygous lethality. These mice develop polycystic kidney 

disease within the first month after birth, however the variability of the 

phenotype limits their usefulness for therapeutic trials. The PkdZ'WS25 mouse 

(Lakshmanan and Eysselein 1993) with one null allele and one unstable allele 

(WS25) develops renal and liver cysts within 3 months, however, due to a 

very high degree of phenotypic heterogeneity in combination with difficulties in 

measuring disease progression, this model is more suitable as a secondary 

confirmatory model in therapeutic testing (Torres and Harris 2007).

As previously mentioned, murine models with a simple targeted 

mutation in Pkd1 or Pkd2 develop very mild renal cystic disease, therefore 

making them unsuitable for therapeutic testing (Ibraghimov-Beskrovnaya and 

Bukanov 2008), however, they may provide an insight into early cystogenesis 

events. The p ^d l60'17'21̂ 0 mouse (Boulter et al. 2001) carries a truncating 

mutation in the Pkd1 gene, replacing exons 17-21 with a lacZ-neomycin 

fusion gene 08geo) downstream of a splice acceptor site and an internal 

ribosome entry site (IRES). The resulting transcript is predicted to encode a 

truncated form of PC1, which includes only the extracellular domains up to 

and including the PKD repeats, and thus represents a common class of 

mutation found in ADPKD patients.
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Table 1.13 Mouse models with Pkd1 and Pkd2 targeted mutations.

Strain Mutation Pkd1* K/P
cysts

Cardiovascular
defects

Oedema Skeletal
defects

Pkd1w

Pkd11X134 Exon 34 
deletion

Lethal/
perinatal

K, P None Yes Yes K, L, P 
cysts

Pkd1""" Exon 4 
insertion

Lethal K, P Subcutaneous 
bleeding seen in 
<1% of animals

Yes Yes K, L, P 
cysts

Pkd1L Exon 43-45 
deletion

Lethal K, P Vascular leak Yes n.d. n.d.

P k d i < * n '-
2ipgeo

Exon 17-20 
deletion

Lethal K Conotruncal
defects

Yes Yes K, L 
cysts

PkdV Exon 2-4 
deletion with 
in-frame 
lacZ

Lethal K, P Double outlet 
right ventricle

Yes n.d. n.d.

PkdT Exon 2-6 
deletion

Lethal K Conotruncal
defects

Yes n.d. n.d.

Pkdr Exon 1 
disruption

Lethal K, P n.d Yes n.d. K, L 
cysts

Pkdr Point change 
due to ENU 
mutagenesis

Lethal K n.d. Yes n.d. K, L, P 
cysts

Pkd1m Insertion of 
neo cassette 
in intron 1 , 
aberrant 
splicing

Viable. 
40% at 1 
month, 
1 0 % >1 
year

K, P Aorta aneurysms No n.d. No cysts

Pkd1u Aberrant
transcription
and/or
splicing

Viable. 
50% at 1- 
2  months, 
1 0 % >1 
year

K, P n.d. No n.d. No cysts

Pkd1con,> Exon 2-4 
MMTV.Cre

Viable K
(few)

None No No No cysts

PkdZ Exon 1 
disruption

Lethal K, P Yes Yes n.d. K, L 
cysts

Pkd2WS!S~ Exon 1 
duplication. 
Unstable 
allele

Viable K, P n.d. n.d. n.d. K cysts

PkdZtec2 Exon 1 
deletion with 
LacZ
promoter trap

Lethal K, P Yes Yes Yes n.d.

the targeted mutation, ENU = N-ethyl-nitrosourea, K = kidney, L = liver, P = 
pancreas, n.d. = not described. Information and references obtained from 
Guay-Woodford 2003, Torres and Harris 2007, Zhou and Pei 2008.
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As with other Pkd1 and Pkd2 targeted mouse models, homozygous 
PkdlteHwpgeo embryos died before birth at E13.5-E14.5. The cause of death 

is believed to be from a primary cardiovascular defect that includes double 

outflow right ventricle, disorganised myocardium and abnormal atrio­

ventricular septation. Although skeletal abnormalities have not been 

recognised in ADPKD patients, skeletal development in homozygous embryos 

was found to be severely compromised, with abnormal axial skeleton and long 

bones found.

Approximately 50% of Pkd’/de/r7'2r̂ eo heterozygous (Pkd'/cte/77'2̂ geQ/+) 

mice developed renal cysts by 9 months of age and cysts were detected as 

early as 3 months. Indicative of ADPKD, cysts arose throughout the nephron 

and were often lined with hyperplastic cells or apoptotic cells. Liver cysts, 

another feature of human ADPKD, were found occasionally in heterozygous 

mice from 19 months of age. Pkd1 expression was found to correlate well with 

the onset of renal cyst formation in other Pkd1 mouse models, with a low 

expression prior to E15.5, and a dramatic increase in the differentiating 

tubules of the nephron and collecting duct system from E15.5 to E18.5. Pkd1 

was also expressed highly throughout the cardiovascular system, with highest 

levels in the aortic outflow tract and atrial appendages and in the endothelial 

and vascular smooth muscle cells of the major vessels including the aorta and 

intracranial arteries. Cardiovascular defects are a major feature of ADPKD 

and are often the most lethal. Combined with the lethal cardiovascular 

phenotype of p k d i^ 117'21̂ 960 null mice, this expression pattern suggested a 

role for PC1 in cardiovascular development.
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1.3 Primary cilia
The first documented mention of ciliary structures occurred as far back 

as 1676 by Antony van Leeuwenhoek in a letter sent to the Royal Society of 

London describing his discovery of protozoa with cilia and flagella (Haimo and 

Rosenbaum 1981). For the next 200 years cilia and flagella were found on a 

variety of cells and theories began to be developed to explain flagellar 

beating. It was not until 1954 when, thanks to the development of the electron 

microscope, the internal structure of the cilium was described (Fawcett and 

Porter 1954).

1.3.1 Ciliary localisation and structure

Cilia (and flagella, which are distinguished by distinctive patterns of 

movement) are microtubule based hair-like organelles that protrude from the 

apical surface of most types of eukaryotic cell, with the exception of higher 

plants and fungi (Bisgrove and Yost 2006). Exceptions within the body include 

mucosal epithelium of the gut, hepatocytes and small lymphocytes (Wheatley 

et al. 1996). Although cilia are extensively found in vertebrate cells, they are 

restricted to sensory neurons in invertebrates (Wheatley et al. 1996). For a 

complete list of ciliated cells please visit 

http://www.bowserlab.org/primarycilia/cilialist.html.

Structurally, the cilium consists of nine peripheral microtubule doublets, 

the axoneme, covered by a specialised plasma membrane that extends from 

the cell surface into the extra-cellular space (Figure 1.9) (Davenport and 

Yoder 2005). The microtubule doublets emerge from the nine triplet 

microtubules of the basal body (the elder centriole in a centrosome), which 

anchors the cilium to the cell and acts as a microtubule-organising centre 

(Simons and Walz 2006). There is a transition zone at the junction of the 

basal body and the ciliary axoneme consisting of Y-shaped fibres which, in 

combination with the internal structure of the basal body, functions as a filter 

for the cilium (Bisgrove and Yost 2006). The distal tips of cilia link the ends of 

the axonemal microtubules to the ciliary membrane, thus forming a 

microtubule-capping structure (Sloboda 2005).
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Figure 1.9 Cilia structure and intraflagellar transport (IFT). A typical cilium consists of an 
axoneme of nine microtubule doublets which arise from the nine triplet microtubules of the 
basal body (the elder centriole in a centrosome). The transition zone at the junction of the 
basal body and the ciliary axoneme consists of Y-shaped fibres and functions as a filter for 
the cilium. The distal tips of cilia link the ends of the axonemal microtubules to the ciliary 
membrane, thus forming a microtubule tip complex. Motile cilia generally have a central pair 
of microtubule singlets as well as outer dynein arms which are important for ciliary motility. 
These features are generally absent from primary cilia. Ciliary assembly and maintenance is 
accomplished by IFT, which relies on the microtubule motor proteins kinesin II and 
cytoplasmic dynein to transport IFT particles and their associated cargo up and down the 
length of the cilium. At the ciliary tip, anterograde cargo is unloaded, turnover cargo is picked 
up, the kinesin II motor is inactivated for transport back to the cytoplasm, and cytoplasmic 
dynein is activated to power the retrograde trip back to the cytoplasm.
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Cilia can be classified as either ‘9+2’ motile cilia or ‘9+0’ non-motile 

cilia (otherwise known as primary cilia), based on whether the axoneme 

includes an additional central pair of microtubules (Figure 1.9) (Simons and 

Walz 2006). There are of course exceptions to this classification with four cilia 

types being identified in humans: motile 9+2 cilia (such as respiratory and 

ependymal cilia), motile 9+0 cilia (nodal cilia), non-motile 9+2 cilia (kinocilium 

of hair cells) and non-motile 9+0 cilia (renal monocilia, photoreceptor- 

connecting cilia) (Fliegauf et al. 2007). Motile cilia usually have dynein arms 

that link the microtubule doublets, exerting ciliary movement by ATP- 

dependent conformational changes and transient binding to neighbouring 

doublets, leading to the sliding of microtubule doublets relative to one another 

(Fliegauf et al. 2007). Non-motile cilia lack these dynein arms.

1.3.2 Intraflagellar transport

In most ciliated cells, entry into the cell-cycle is preceded by cilia 

disassembly and resorption, followed by cilia reassembly once the cell has 

exited mitosis (Quarmby and Parker 2005). This relationship is thought to 

reflect the use of the basal body/centrioles as mitotic spindle poles during the 

cell-cycle (Quarmby and Parker 2005). Cilia disassembly and reassembly is 

carried out by a specialised microtubule based conveying system called 

intraflagellar transport (IFT) (Figure 1.9, reviewed extensively in Scholey 

2003), an essential process considering cilia are devoid of ribosomes and so 

cannot make their own proteins (Yoder 2007).

IFT was first identified in Chlamydomonas as the rapid bidirectional 

movement of particles along the length of the flagellar axoneme on raft-like 

transport structures located between the outer doublet microtubules and the 

axoneme membrane (Kozminski etal. 1993). Ciliary proteins and transport 

‘rafts’ are assembled at the base of the cilia near the transition fibres and 

basal body into complexes called IFT particles (Davenport and Yoder 2005). 

These particles are then transported in an anterograde manner toward the tip 

of the axoneme by the action of the heterotrimeric kinesin II motor complex 

(Kif3a, Kif3b and Kap3 in mammalian systems) (Kozminski etal. 1993, 

Davenport and Yoder 2005). Once the particle reaches the tip of the cilia
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axoneme, it undergoes a poorly understood transition resulting in inactivation 

of the kinesin and the retrograde return of the raft to the base of the cilium via 

a cytoplasmic dynein motor protein (Davenport and Yoder 2005). Because 

cilia lack the ability to carry out protein synthesis, IFT is thought to be 

essential for transporting proteins required for cilia assembly, maintenance 

and sensory and signalling functions to their location in the axoneme, as well 

as delivering signals from the cilium in response to external environmental 

stimuli (Wang et al. 2006, Yoder 2007).

1.3.3 Physiological functions of cilia

In mammals, motile cilia are normally found in large numbers and 

beating in a coordinated wave on the apical surface of epithelial cells (Yoder 

2007). Examples include motile cilia lining the trachea, where they sweep 

mucus and dirt out of the lungs, ependymal cells of the brain ventricles 

involved in cerebrospinal fluid movement, and the Fallopian tubes, where they 

move the ovum from the ovary to the uterus (Eley et al. 2005). An exception 

to the usual 9+2 motile cilia structure is the solitary nodal cilium. Although 

motile, nodal cilia have a 9+0 microtubule arrangement, and are present in 

the embryonic node where they act as a specialised signalling structure in the 

early mammalian embryo (Yost 2003). The circular twirling of these cilia 

generates a leftward flow of extraembryonic fluid which is essential for the 

correct development of left-right asymmetry (i.e. ensuring the heart is on the 

left of the body whilst the liver is on the right) (Nonaka et al. 2005).

In contrast, primary cilia are solitary, non-motile organelles, present on 

most cells in the mammalian body, including specialised cells such as 

olfactory cells and rod and cone cells in the retina. During olfaction, odorants 

bind to olfactory receptors on the ciliary membrane of olfactory sensory 

neuron cilia, causing an increase in Ca2+ inside the cilia, an effect that is 

converted into an electrical signal (Menini 1999). Photoreception involves rod 

and cone photoreceptors which possess a primary cilium that transports 

photoreceptor discs and visual pigments to an expanded tip called the outer 

segment where the reception and transduction of light can occur (Singla and 

Reiter 2006). These functions clearly demonstrate the chemo- and
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photosensation properties of primary cilia, thus allowing a cell or an organism 

to interact with and respond appropriately to its environment. Primary cilia 

lining renal tubules may also have a chemosensory function, extending from 

the apical cell surface into the tubule lumen where they can sense specific 

ligands and transmit this information to surrounding cells (Zhang et al. 2004). 

However, perhaps the most interesting function of these renal primary cilia is 

their role as a mechanosensor, detecting fluid flow (urine) through the lumen 

of the tubule. This detection involves deflection of the cilium in response to 

fluid flow, quickly followed by an influx of extracellular Ca2+, probably 

mediated by PC1 and PC2 (Praetorius and Spring 2001 & 2003, Nauli etal. 

2003). Nauli et al. (2003) proposed that PC1 and PC2 function in this Ca2+ 

response by the large extracellular domain of PC1 sensing fluid shear stress 

as the cilia bends, thus acting as a mechano-fluid sensory molecule, then 

transmitting this mechanical stress signal to tightly associated PC2, which in 

turn produces sufficient extracellular Ca2+ influx to trigger intra-organellar Ca2+ 

release inside the cytoplasm through Ca2+ induced Ca2+ release (Figure 1.10). 

The resulting local increase in the cytosolic Ca2+ concentration may then alter 

various cell functions such as growth, differentiation, gene expression and 

polarity.

In addition to functioning as a calcium influx inducing mechanosensor, 

deflection of the cilia axoneme and the polycystins has effects on gene 

expression. In the presence of normal flow conditions, PC1 localises to the 

primary cilium in association with STAT6  and P100, thus preventing the 

expression of STAT6 /P 100-dependent genes (Figure 1.6a) (Low etal. 2006). 

However, when fluid flow is impeded for example from renal injury, the C- 

terminal tail of PC1 is proteolytically cleaved and translocates to the nucleus 

with STAT6  and P100 to activate target genes (Figure 1.6b) (Low etal. 2006). 

As previously mentioned (section 1.2.8 .3.1), if PC1 is absent, for example 

during ADPKD, STAT6  and P100 are no longer sequestered in the cilium, and 

may be constitutively activated in the cell nucleus (Figure 1.6 c) (Low et al.

2006). Similarly, when primary cilia, PC1 or PC2 are absent or inhibited, Ca2+ 

influx is impeded, demonstrating the importance of this organelle in Ca 

mediated signalling (Nauli etal. 2003).
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Figure 1.10 Schematic diagram of mechanisms of fluid shear stress and Ca2+ signalling in primary cilia. PC1 and PC2 physically 
interact to form a mechanosensory complex at the plasma membrane of primary cilia which act as antennae to sense fluid 
movement. The large extracellular domain of PC1 acts as a sensory molecule which senses fluid shear stress, transmitting this signal 
from the extracellular fluid environment to PC2, which, in turn, produces sufficient Ca2+ influx to activate intracellular ryanodine 
receptors through Ca2+-induced Ca2+ release (CICR). The resulting local increase in the cytosolic Ca2+ concentration then regulates 
numerous molecular activities inside the cell that contribute to tissue development. When fluid flow is absent, the cilium does not 
bend, therefore no Ca2+ influx is triggered due to the lack of fluid shear stress acting on PC1. Information obtained from Nauli et al. 
2003.
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1.3.4 The ciliary hypothesis of cyst formation

The first clue that cilia might be involved in the pathogenesis of PKD 

came from the orpk mouse model with disease phenotypically resembling 

ARPKD (Yoder et al. 1995). The renal cystic phenotype is the result of a 

hypomorphic allele of the Tg737 gene. Chlamydomonas with mutated IFT8 8 , 

the homologue of Tg737 (Polaris), fail to assemble flagella and similarly, orpk 

mice with defective Tg737 lack cilia on the ventral node and tubular epithelial 

cells (Pazour etal. 2000). IFT8 8  is one of the components of the IFT complex 

in green algae (Qin etal. 2001). Mice with a klf3a (subunit of the IFT kinesin II 

motor complex) knockout specifically in the kidney (conventional knockouts 

are embryonic lethal due to defects in cardiac looping and left-right axis 

determination) begin to develop cysts by 5 days of age and by 5 weeks of age 

the kidneys are replaced with large cysts and fibrosis (Lin et al. 2003). Most 

strikingly cilia are absent in the cystic epithelial cells, demonstrating the 

necessity of IFT for cilia formation. More evidence for a critical role of cilia in 

PKD cystogenesis came from an insertional mutagenesis screen in zebrafish, 

in which 7 genes encoding for ciliary functions or ciliogenesis were among 11 

isolates with pronephric cysts (Sun etal. 2004). Together, these findings 

indicated that IFT is important for both flagella and primary cilia formation, and 

suggested that functional primary cilia are linked to normal renal function, 

which ultimately led to the ciliary hypothesis of cystic disease in PKD (Simons 

and Walz 2006).

Following the initial discovery that defects in the renal cilium are 

associated with PKD, many other cystic kidney disease-related proteins 

(cystoproteins) have been localised to the renal cilium and/or the basal body 

(refer to Davenport and Yoder 2005, Hildebrandt and Otto 2005 for extensive 

reviews). Lov-1 and pkd-2, the Caenorhabditls elegans homologues of PKD1 

and PKD2, were the first cystoproteins to be identified in the cilia and cell 

bodies of male specific sensory neurons (Barr et al. 2001). Mammalian PC1 

and PC2 were subsequently localised to renal tubule epithelial cell primary 

cilia (Yoder et al. 2002), followed by many other cystoproteins, providing 

increasing evidence for the ciliary connection to cystic kidney disease (Table 

1.14). Recently, hamartin was localised to the basal body of mouse embryonic
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fibroblasts (MEFs), highlighting an intriguing link between TSC and primary 

cilia (Hartman et al. 2009).

Table 1.14 Cystoproteins localised to the primary cilium/basal body complex.

Gene
(protein)

Genetic disease Disease
phenotype

Protein
function

Ciliary
expression

PKD1 (PC1) ADPKD Kidney, liver and 
pancreatic cysts, 
cardiac defects.

Mechanosensitive 
and G protein- 
coupled receptor.

Basal body 
and cilia

PKD2 (PC2) ADPKD Kidney, liver and 
pancreatic cysts, 
cardiac defects.

TRP-like non- 
selective cation 
channel permeable 
to Ca2+. Involved in 
mechanosensation.

Cilia

PKHD1
(fibrocystin/
polyductin)

ARPKD Kidney and liver 
cysts. Liver 
fibrosis.

Unknown. 
Transmembrane 
protein, perhaps 
mechanosensitive 
regulator?

Basal body 
and cilia

NPHP1
(nephrocystin)

Type I
nephronophthisis 
(juvenile form)

Kidney cysts and 
fibrosis, liver 
fibrosis, growth 
retardation, retinal 
dystrophy.

Docking protein. Cilia

NPHP2 / INVS 
(inversin)

Type II
nephronophthisis 
(infantile form)

Kidney cysts and 
fibrosis, liver 
fibrosis.

Unknown. Interacts 
with nephrocystin.

Cilia

NPHP3
(nephrocystin-
3)

Type III
nephronophthisis 
(adolescent form)

Kidney cysts and 
fibrosis.

Unknown. Interacts 
with nephrocystin.

Cilia, retinal
connecting
cilium

NPHP4
(nephroretinin)

Type IV
nephronophthisis 
(juvenile form)

Kidney cysts and 
fibrosis, growth 
retardation, 
retinitis 
pigmentosa.

Unknown. Interacts 
with nephrocystin.

Cilia

NPHP5
(nephrocystin-
5)

Senior-Loken 
syndrome type I

Renal cysts,
retinitis
pigmentosa.

Unknown. Interacts 
with retinitis 
pigmentosa 
GTPase regulator 
and calmodulin 
within the 
photoreceptor cilia.

Cilia, retinal
connecting
cilium

OFD1 (OFD1) Oral-facial-digital 
syndrome typel

Renal cysts, 
malformations in 
the oral cavity, 
face and digits, 
cognitive defects.

Unknown. 
Implicated in IFT 
and intracellular 
transport 
processes.

Basal body
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Table 1.14 Cystoproteins localised to the primary cilium/basal body complex

(continued).

BBS1-8
(BBS1-8)

Bardet-Biedl
syndrome

Kidney cysts, 
obesity, anosmia, 
retinal dystrophy, 
situs inversus.

Several BBS 
proteins may be 
related to regulation 
of IFT and 
intracellular 
microtubule 
transport processes

Basal body 
and cilia

TSC1
(Hamartin)

TSC Kidney cysts and 
AMLs, brain and 
skin lesions. 
Seizures.

Functions in the 
mTOR pathway 
when bound to 
tuberin.

Basal body

Tg737
(polaris)

Unknown Mouse: kidney 
cysts resembling 
ARPKD, 
hydrocephalus, 
polydactyly, situs 
inversus.

IFT complex B 
protein.

Cilia and 
basal body

CYS1 (cystin) Unknown Mouse: similar to 
ARPKD. Renal 
cysts, congenital 
hepatic fibrosis, 
biliary dysgenesis

Unknown. May be 
associated with 
microtubule 
stabilisation and/or 
tubuloepithelial 
differentiation within 
the developing 
kidney and liver.

Cilia

NEK1
(Nek1/kat)

Unknown Mouse: kidney 
cysts resembling 
ADPKD, facial 
dysmorphism, 
growth 
retardation, 
anaemia, male 
infertility.

NIMA kinase family 
member. Interacts 
with PKD proteins, 
cell-cycle 
regulation?

Basal body 
and cilia

00 
00 

VSt Unknown Mouse: slowly 
progressive renal 
cysts resembling 
ARPKD.

NIMA kinase family 
member. Involved 
in cell-cycle 
regulation.

Basal body 
and cilia

KIF3a (Kif3a) Unknown Mouse: Kidney 
cysts, retinal 
dystrophy, situs 
inversus.

Subunit of the 
anterograde IFT 
motor protein 
kinesin II.

Cilia

BBS = Bardet-Biedl syndrome, KIF3 = kinesin superfamily 3, NEK = NIMA- 
related kinase, NIMA = a cell-cycle regulated p-casein kinase encoded by 
nimA (nim = ‘never in mitosis’), NPHP= nephronophthisis, OFD1 =
orofaciodigital syndrome 1, PKHD1 = polycystic kidney and hepatic disease 1. 
Data and references obtained from Nauli and Zhou 2004, Hildebrandt and 
Otto 2006, Bisgrove and Yost 2006.
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1.3.5 Pathogenic mechanisms
The pathogenic link between primary cilia localised cystoproteins and 

the renal cystic phenotype remains unknown. Nevertheless hypotheses have 

been proposed using knowledge of the mechanosensory function of primary 

cilia, the role of centrosomes in cell-cycle regulation and the multitude of 

proteins localised to the primary cilia/basal body complex. As previously 

mentioned (section 1.3.3), Ca2+ influx following flow mediated bending of the 

primary cilium is believed to mediate subcellular activities such as expression 

of STAT6/P100 activated target genes involved in cell growth regulation (Low 

et al. 2006). Defects/absence of primary cilia, restricted fluid flow or lack of 

sensory proteins such as PC1 and PC2 can lead to incorrect activation of the 

pathway and potential uncontrolled cell growth (Low et al. 2006, Nauli et al. 

2003).

1.3.5.1 Cilia and cell-cycle regulation

Recent data has further highlighted the possibility that ciliary proteins 

may play a more direct role in cell-cycle regulation (reviewed in Pan and Snell

2007). The cilium is assembled during the GO phase of the cell-cycle and 

originates from the basal body, which emerges from one of the two centrioles 

that together constitute the centrosome. Entry into the cell-cycle is preceded 

by cilia disassembly and resorption, at which point the basal body converts 

back into a centriole which then duplicates to form two centrosomes that form 

the poles of the mitotic spindle apparatus. Once the cell has exited mitosis, 

the centrosomes migrate towards the apical membrane where the mother 

centriole gives rise to the basal body, followed by cilia assembly. This close 

association between primary cilia and the centrosome/basal body led to 

hypotheses that the cilium is involved in cell-cycle regulation. It is thought that 

the presence of a primary cilium prevents the cell from entering mitosis until it 

is disassembled, freeing up the centrioles for cell division, however, a direct 

molecular link between cilia and the cell-cycle remains elusive (Quarmby and 

Parker 2005).

Recently, data has suggested that IFT proteins may play a role in 

regulating cell proliferation. IFT8 8 /polaris has been found to localise to the
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centrioles throughout the cell-cycle (Robert et al. 2007). Overexpression of 

IFT8 8 /polaris interferes with G1-S transition, whereas depletion of the protein 

causes cilium disappearance and cell-cycle progression to the S and G2/M 

phases with an increase in proliferation (Robert et al. 2007). A reduced level 

of IFT27 also appears to effect cell-cycle control, resulting in cell growth 

inhibition and incomplete or asymmetrical cytokinesis (Qin et al. 2007).

Members of a cell-cycle kinase family, the Nek kinases (or NIMA- 

related kinases), provide a link between ciliary function and cell-cycle control. 

Nek1, deficiency of which leads to ARPKD in mice (Table 1.14), has been 

found to interact with Kif3a and localises to the centrosome (Mahjoub et al. 

2005, Surpili etal. 2003). Targeted knockdown of Nek8  in zebrafish causes 

pronephric cysts and Nek8 mutant mice have juvenile cystic kidney (JCK) 

disease (Upadhya etal. 2000, Liu etal. 2002). Nek8  localises to primary cilia 

during interphase and is undetectable during mitosis (Mahjoub et al. 2005). 

Cell cycle progression has been found to be affected in a cell line with a 

kinase domain mutation of Nek8  (Bowers and Boylan 2004). These 

observations provide interesting insight into the connection between primary 

cilia, cell-cycle kinases and control of the cell-cycle.

Another link between cilia and the cell-cycle is inversin, encoded by the 

gene INVS, mutations of which cause Type II nephronophthisis characterised 

by cystic kidneys and situs inversus (Table 1.14) (Otto etal. 2003). Inversin 

interacts with the anaphase-promoting complex protein APC2 which regulates 

cell cycle progression by selectively degrading checkpoint proteins such as 

cyclin B (Morgan et al. 2002, Nurnberger et al. 2002). Inversin has been found 

to have a cell-cycle dependent dynamic pattern of expression during mitosis, 

localising to primary cilia, basal bodies, the nucleus, and the cell-cell borders 

during interphase and to the spindle poles during mitosis (Morgan etal. 2002, 

Nurnberger et al. 2002). As the centrosomes are shared by mitotic spindles 

and cilia, it has been proposed that they integrate cilia-sensed signals into 

cellular pathways that affect proliferation and differentiation (Simons and Walz 

2006).
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1.3.5.2 Cilia and Wnt signalling

Successful development of the mammalian kidney is dependent upon 

many signalling pathways, with the Wnt signalling pathway being particularly 

important in the induction of the metanephric mesenchyme to form S- and 

comma-shaped epithelial tubes that are precursors of proximal parts of the 

nephron including the glomerulus (Simons and Walz 2006). For example, 

Wnt-4 and Wnt-11 have both been found to be important in the early stages of 

renal development during the mesenchymal to epithelial transdifferentiation 

stage and in regulating proliferation and ureteric bud branching, respectively 

(Stark etal. 1994, Majumdaretal. 2003).

As previously mentioned, there are two branches of the Wnt signalling 

pathway, the canonical p-catenin dependent Wnt pathway (described in 

section 1.2.8.3.3) and the non-canonical (PCP) Wnt pathway. Dishevelled is 

located at a decisive branch point, and either activates the canonical Wnt 

pathway, or the PCP pathway (Nelson and Nusse 2004). Evidence suggests 

that uncontrolled canonical Wnt signalling during renal development causes 

PKD, as demonstrated by transgenic overexpression of an activated form of 

P-catenin in mice which present with increased proliferation and apoptotic 

rates in cystic epithelia, and a delay in tubular maturation (Saadi-Kheddouci 

2001).

A similar renal phenotype has also been found in the invlinv mouse 

model of nephronophthisis type II, providing a tantalising link between Wnt 

signalling, cystic kidney disease (a primary feature of the disease) and 

primary cilia (inversin is localised to this organelle) (Guo et al. 2004, Simons 

et al. 2005). The potential role of inversin in Wnt signalling was recently 

studied in Xenopus and zebrafish (Simons et al. 2005). Inversin was found to 

directly interact with Dishevelled (Dsh) and regulate its stability by targeting 

cytoplasmic Dsh for degradation. This cytoplasmic localisation of Dsh is 

essential for canonical Wnt signalling where Dsh moves between different 

subcellular compartments, including the nucleus, cytoplasm and plasma 

membrane (Itoh et al. 2005, Wallingford and Habas 2005). In contrast, within 

the PCP pathway, Dsh has to be tightly associated with the plasma
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membrane (Wallingford and Habas 2005). Inversin was found to not target 

membrane-bound Dsh pools, indicating that it may negatively regulate the 

canonical Wnt signalling pathway while promoting PCP signalling. Consistent 

with this proposed role in PCP signalling, inversin is required for convergent 

extension movements in gastrulating Xenopus laevis embryos and elongation 

of animal cap explants, both regulated by PCP signalling. In zebrafish, 

structurally related Diversin ameliorates pronephric cysts caused by the 

absence of inversin, implying that an inhibition of canonical Wnt signalling is 

required for normal renal development (Simons et al. 2005). Overall, this data 

suggests that cyst formation in the absence of inversin is caused by 

unopposed canonical Wnt signalling during permissive periods of renal 

development. The reversal of cyst formation by Diversin suggests that 

inversin has an essential role in PCP signalling by permitting the accumulation 

of Dsh at the plasma membrane (Simons et al. 2005).

Perhaps the most important question these results raise is how is the 

switch between canonical Wnt signalling and PCP signalling regulated? This 

is where the mechanosensory properties of primary cilia become important, 

with hypotheses suggesting that the initiation of fluid flow through a newly 

developed tubule, exposing tubular epithelial cells to shear stress for the first 

time and thus bending of their primary cilia, may affect the expression of 

inversin (Simons et al. 2005). Indeed, a flow rate equivalent to urine flow 

upregulated expression of inversin, accompanied by a reduction in p-catenin 

levels, in inner medullary collecting duct (IMCD) cells (Simons et al. 2005). 

Investigators have therefore speculated that urine flow terminates canonical 

Wnt signalling to facilitate p-catenin independent Wnt pathways, perhaps to 

endow tubular epithelial cells with the spatial information important to maintain 

correct tubular structure such as a constant tubule diameter (Simons et al. 

2005).

1.3.5.2.1 PCP signalling

The PCP pathway was first discovered and is best understood in 

the fruit fly Drosophila melanogaster, particularly in the wing and the eye 

(Simons and Mlodzik 2008). PCP is the organisation of cells within the plane
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of the epithelium, and is perpendicular to the apical-basal axis (Bacallao and 

McNeill 2009). An excellent example of this planar orientation is the 

organisation of actin-based hairs in the Drosophila wing, where a single hair 

extends from the distal section of each cell and points distally (Simons and 

Walz 2006). Planar organisation of ommatidia in the fly eye is another key 

example of PCP, with ommatidia in the dorsal half of the eye pointing dorsally, 

and those in the ventral half pointing ventrally (Bacallao and McNeill 2009). 

Ommatidia consist of eight photoreceptor cells and additional accessory cells 

arranged in a trapezoidal shape and when mutations in PCP genes occur, 

planar organisation is lost and ommatidia become randomly orientated 

(Bacallao and McNeill 2009). Prominent vertebrate examples of PCP 

signalling include neural tube closure, body hair orientation and the 

organisation of stereocilia bundles in the organ of Corti in the inner ear 

(Simons and Walz 2006). A role for PCP in the kidney has also been 

suggested, where it is believed to govern the orientation of cell division in 

renal tubule epithelial cells, thus maintaining a constant tubule diameter as 

the tubule grows (Germino 2005) (this is one of the main subjects of this 

thesis and will be discussed in more detail in chapter 6 ).

Genetic and biochemical data, based on characterisation of mutant 

phenotypes in Drosophila, has revealed three evolutionarily conserved groups 

of PCP genes that work together to coordinate PCP establishment 

(extensively reviewed in Bacallao and McNeill 2009, Simons and Mlodzik

2008). The first major group is known as the “upstream group” and includes 

four-jointed (fj), Dachsous (Ds), Atmphin (atro), Widerborst (Wdb) and Fat 

(Ft). These genes are involved in the first steps of establishing the direction of 

polarity and dictate a global planar polarity stemming from an initial long- 

range signal (Karner et al. 2006). This global planar polarity then biases the 

asymmetric sub-cellular localisation of the “core proteins” along the 

proximal/distal axis of the cell (Karner et al. 2006). The core group includes 

the genes frizzled (fz), dishevelled (dsh), prickle (pk), Vang Gogh 

(Vang)/strabismus (stbm), flamingo (fmi) and diego (dgo) (Bacallao and 

McNeill 2009). Dsh, dgo and fz are localised to the distal side of the cell whilst 

pk and Vang are proximally located. Fmi localises to both proximal and distal
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sides of the cell. These genes are involved in establishing the planar polarity 

of individual cells (Karner etal. 2006). Downstream of the core proteins are 

the PCP effector genes which encode proteins that convert the PCP signal 

into a physical remodelling of cells (Bacallao and McNeill 2009). These genes 

are often tissue specific, for example, intumed, fuzzy, fritz and multiple wing 

hair only regulate PCP in the wing, while nemo and unpaired only regulate 

PCP in the eye (Bacallao and McNeill 2009). All core PCP proteins are 

located apically, suggesting that their function requires apical/basal polarity 

(Djiane etal. 2005). Indeed recent studies in Drosophila have found a direct 

molecular link between apical/basal determinants and Fz1 -mediated PCP 

establishment. Work by Djiane et al. (2005) found that the Crumbs complex 

protein dPatj binds Fz1 and recruits aPKC, which in turn phosphorylates Fz1 

and inhibits its function. The Crumbs complex is a vital component in the 

establishment of apical/basal polarity and cooperates with the Par complex in 

the formation of tight junctions (Karner et al. 2006). Although these results 

indicate an interaction between apical/basal polarity components and PCP 

components, the precise interplay of these two pathways remains poorly 

understood.

1.4 Aims
The aims of this project were:

■ To investigate potential phenotypic interactions of hamartin and 

tuberin with PC1 by cross-breeding Tsc1+/', Tsc2+/' and Pkd1+/~ 

mouse models.

■ To understand the role of activation of the mTOR pathway in the 

initiation of renal cystogenesis in TSC and ADPKD using the 

above mentioned mouse models.

■ To examine the integrity of primary cilia in pre-cystic renal 

tubules and renal cysts from TSC and ADPKD mouse models.

■ To investigate the role of PCP in the pathogenesis of TSC and 

ADPKD by examining the mitotic orientation of pre-cystic renal 

tubule epithelial cells in Tsc1+/~, Tsc2+/' and Pkd1+/~ mouse 

models.
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CHAPTER TWO: Materials and methods

2.1 Suppliers
The names and locations of all suppliers whose products were used in 

this study are listed below:

ABGene (Surrey, UK)

Applied Biosystems (Cheshire, UK)

Bibby Sterling (Staffordshire, UK)

Bioquote (Yorkshire, UK)

Bio-Rad Laboratories Ltd (Hertfordshire, UK)

Bright Instrument Co Ltd (Cambridgeshire, UK)

Carl Zeiss Vision (Hallbergmoos, Germany)

Cell Signalling Technologies (Danvers, MA, USA)

Chemicon International (Now part of Millipore)

DAKO (Cambridgeshire, UK)

EMScope (Kent, UK)

Eurogentec (Hampshire, UK)

Fisher Scientific (Leicestershire, UK)

GE Healthcare (Buckinghamshire, UK)

Genetic Research Instrumentation (GRI) (Essex, UK)

InterFocus Ltd (Cambridgeshire, UK)

Invitrogen Life Technologies (Strathclyde, UK)

JEOL (Tokyo, Japan)

Labtech International Ltd (East Sussex, UK)

Leica Microsystems (Heidelburg, Germany)

Millipore (Hertfordshire, UK)

Motic (Suffolk, UK)

MWG-Biotech (Buckinghamshire, UK)

New England Biolabs (Hertfordshire, UK)

Nikon (Surrey, UK)

Olympus Optical (London, UK)

Qiagen (West Sussex, UK)
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Raymond A Lamb Ltd (East Sussex, UK)

Roche Biochemicals (East Sussex, UK)

Santa Cruz Biotechnologies (Santa Cruz, CA, USA)

Sigma-Aldrich (Dorset, UK)

Soft Imaging System GmbH (Munster, Germany)

Starlabs (Buckinghamshire, UK)

TAAB Laboratory and Microscopy (Berkshire, UK)

Thermo Electron Corporation (Middlesex, UK)

Vector Laboratories (Peterborough, UK)

VWR International Ltd (Dorset, UK)

2.2 Materials
2.2.1 Chemicals
Chemicals of analytical grade were supplied by Sigma-Aldrich or Fisher 

Scientific unless otherwise stated.

2.2.2 Histology
Accu-Edge low profile microtome blades, processing cassettes, 

paraffin wax and cork disks were purchased from Raymond A Lamb Ltd. 

Superfrost slides, 22x50mm cover slips, dibutyl phthalate and xylene (DPX) 

mountant, xylene, formaldehyde, optimum cutting temperature (OCT) 

embedding compound, haematoxylin and eosin (H&E), hydrogen peroxide 

and isopentane were purchased from VWR International Ltd. Poly-L-lysine 

and mineral oil were obtained from Sigma-Aldrich. Ethanol was purchased 

from VWR International Ltd.

2.2.3 Nucleic acid extraction and purification

QIAamp DNA mini kits, QIAamp DNA micro kits and proteinase K were 

supplied by Qiagen. Isopropanol was purchased from VWR International Ltd.

2.2.4 Oligonucleotides
HPSF purified oligonucleotide primers were purchased from either 

MWG-Biotech or Eurogentec and diluted to 100pM in sterile water for stock 

solutions.
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2.2.5 PCR
AmpliTaq Gold DNA polymerase and 10X PCR buffer were purchased 

from Applied Biosystems. Deoxynucleotidetriphosphates (dNTPs) were from 

GE Healthcare.

2.2.6 PCR purification
Exonuclease I was purchased from New England Biolabs and shrimp 

alkaline phosphatase was from GE Healthcare.

2.2.7 Electrophoresis
Multipurpose agarose was obtained from Roche Biochemicals. 1kb 

DNA ladder was supplied by Invitrogen Life Technologies.

2.2.8 Sequencing and fluorescent product sizing
BigDye® Terminator v3.1 Cycle Sequencing Kit and POP6  polymer 

were purchased from Applied Biosystems. Montage SEQ96 sequencing 

reaction clean-up kits were purchased from Millipore.

2.2.9 Antibodies
Cell Signalling Technologies supplied the anti-phospho-S6  ribosomal 

protein (Ser2407244) and anti-phospho-histone H3 (Ser10) antibodies.

Rhodamine conjugated goat anti-rabbit IgG (H+L) and fluorescein conjugated 

chicken anti-goat IgG (H+L) were purchased from Chemicon 

International/Millipore. Tamm-Horsfall glycoprotein (THP) was obtained from 

Santa Cruz Biotechnologies.

2.2.10 Immunohistochemistry
The rabbit VECTASTAIN ELITE ABC horseradish peroxidase kit and 

3,3’-diaminobenzidine (DAB) peroxidase substrate kit were supplied by Vector 

Laboratories. Bovine albumin fraction V was purchased from VWR 

International Ltd. Cytomation wax pens were supplied by DAKO.
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2.2.11 Immunofluorescence
Fluorescein Lotus tetragonolobus lectin (LTL), fluorescein Dolichos 

biflorus agglutinin (DBA) and goat serum were purchased from Vector 

Laboratories. ProLong® Gold antifade reagent with DAPI was obtained from 

Invitrogen Life Technologies. Sigma-Aldrich supplied the Triton X-100.

2.2.12 Scanning electron microscopy (SEM)
Phosphate buffered saline (PBS) for perfusion fixation was purchased 

from Sigma-Aldrich. TAAB Laboratory and Microscopy supplied the 70% 

vacuum distilled glutaraldehyde, 16% methanol-free formaldehyde, aluminium 

stubs, carbon paint and hexamethyldisilazane (HMDS).

2.3 Equipment
2.3.1 Plastics
Sterile tips for Gilson pipettes were purchased from Starlabs. Bioquote 

supplied 0.6ml, 1.5ml and 2.0ml plastic eppendorf tubes. Thermo Life 

Sciences supplied thermo fast 96 well PCR plates. ABGene provided 0.2ml 

thermo strip tubes, adhesive PCR film and thermo fast 96 well detection 

plates. Sterile universal tubes were purchased from Bibby Sterling.

2.3.2 Histology

InterFocus Ltd supplied tweezers and scissors for mouse dissection. 

Fixed tissue was processed using a Thermo Shandon Citadel 2000 tissue 

processor and embedded using a Raymond A Lamb Ltd wax embedder. 

Paraffin sections were cut on a Leica RM2235 microtome and stained with 

H&E on a Thermo Shandon Varistain Gemini. Frozen sections were cut on a 

cryostat, and a sledge microtome with freezing stage was used to cut un­

embedded fixed tissue, all supplied by Bright Instrument Co Ltd. H&E and 

immunohistochemistry samples were viewed using an Olympus BX51 BF light 

microscope or a Motic B3 professional series light microscope.

2.3.3 Immunohistochemistry and immunofluorescence

Raymond A Lamb Ltd provided plastic slide racks, cardboard slide 

holders and Coplin jars. Immunofluorescent samples were viewed using an
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Olympus BX51 BF microscope with mercury lamp attached or a Leica TCS 

SP2 AOBS spectral confocal laser scanning microscope.

2.3.4 DNA quantification and thermocycling
DNA concentration was measured using a NanoDrop 8-Sample 

Spectrophotometer purchased from Labtech International. Thermocycling of 

single tubes was carried out in a DNA thermal cycler 480 from Applied 

Biosystems. Thermocycling of 96-well plates and strip tubes was carried out 

in a PTC-225 Peltier thermal cycler from GRI.

2.3.5 Electrophoresis
Agarose gel electrophoresis was carried out using Horizon 11.14 gel 

tanks from Invitrogen Life Technologies or a 96-well gel apparatus from 

ABGene. Bio-Rad Laboratories Ltd supplied the power packs. Capillary gel 

electrophoresis of fluorescent sequencing or PCR products was performed on 

an ABI 3100 Genetic analyser purchased from Applied Biosystems.

2.3.6 SEM
Dehydrated aluminium stub mounted samples were sputter coated with 

gold using an EMScope vacuum coater. Prepared tissues were viewed in a 

JEOL 840A SEM.

2.3.7 Photography
Macroscopic pictures were recorded using a Nikon Coolpix 4500. 

Agarose gels were photographed using a Gel Doc 2000 ultraviolet (UV) 

transilluminator from Bio-Rad laboratories Ltd and printed using the Mitsubishi 

P91 video processor with high-density thermal paper. Micrographs were 

acquired using a Zeiss Axiocam digital camera purchased from Carl Zeiss 

Vision.

2.3.8 Software
Fluorescent images were analysed using AxioVision software from Carl 

Zeiss Vision. AnalySIS software from Soft Imaging System GmbH was used 

to measure cilia in SEM micrographs. Fluorescent confocal images were
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analysed using Leica Confocal Software. Statistics and graphing was carried 

out using Minitab 15, Microsoft Excel and SPSS 16.

2.4 General solutions
■ 1XTAE (0.4M Tris-acetate, 10mM EDTA, pH 8.0)

■ 1XTBS (0.15M NaCI, 0.005M Tris, pH 7.6)

■ Tail buffer (50mM Tris, 100mM EDTA, 100mM NaCI, 1%SDS, pH 8)

■ 1XTBS/0.3% Triton X-100 (For 1L-100ml 10XTBS, 900ml dH20, 3ml

Triton X-100)

■ 10mM sodium citrate buffer (For 1 L-2.94g sodium citrate trisodium salt 

dehydrate, 1L dH20, pH 6)

■ 10% formal saline (For 1L-100ml 38% w/w formaldehyde, 900ml dH20, 

9g NaCI)

■ Phosphate buffered 4% formaldehyde/0.2% glutaraldehyde (PBFG)

- Make up buffer solution of 0.167M Na2HP04and 3.35% sucrose 

(pH 7.4).

- Add 10% formaldehyde (prepared from 16% methanol-free stock 

solution) in a 40:60 ratio with the buffer. This will produce a 4% 

formaldehyde in 100mM buffer + 2% sucrose solution. The solution 

will go cloudy and needs to be filtered through a fine paper filter.

- Add glutaraldehyde (70% vacuum distilled) to 0.2% (2.857ml/L).

- Aliquot and store at -30°C.

2.5 Methods
2.5.1 Animal husbandry
All procedures with animals were carried out in accordance with Home 

Office guidelines. Mice were housed in filter top cages and received filtered 

food and water. Cages were kept at an ambient temperature of 22°C and 

maintained on a 12 hour light :12 hour dark cycle (7:30 hours to 19:30 hours). 

Mice were tagged using microchips and tail tips were cut for genotyping using 

a local anaesthetic. Mice were killed by cervical dislocation.
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2.5.2 Necropsy analysis
Necropsy analysis included macroscopic examination of the brain, 

heart, lungs, kidneys, liver, spleen and uterus (in females) in all animals. 

Photos were taken of macroscopic lesions. Organs were longitudinally 

bisected, half was fixed and processed into paraffin wax and the other half 

was snap frozen. Longitudinally bisected kidneys and cochlea taken for SEM 

analysis were fixed and then transferred to 1XTBS.

2.5.3 Histology
2.5.3.1 Tissue fixation and paraffin embedding

Fixation is used to preserve tissue morphology by creating strong 

cross-links between the tissue proteins. Formaldehyde based fixative 

penetrates the tissue rapidly due to its small molecules and is therefore used 

for immersion fixation.

Fresh tissue was immersed in 10% formal saline overnight at room 

temperature and then transferred into 1XTBS. Fixed tissue was placed into 

the processor for a period of 1 hour in each of the following solutions; 70% 

ethanol, 90% ethanol, 100% ethanol, followed by 2 hours in 100% ethanol x2, 

followed by 1 hour in xylene, followed by 1.5 hours in xylene x2, and finally 3 

hours in paraffin wax x2. Tissues were embedded cut side down and stored at 

room temperature. Paraffin sections were routinely sectioned at 4pm and 

floated onto poly-L-lysine treated glass slides. Sections were dried onto slides 

overnight at 45°C and stored at room temperature.

2.5.3.2 Freezing and sectioning tissue

Tissue was placed onto cork disks and covered with OCT embedding 

medium. Disks were dropped into liquid nitrogen-cooled isopentane until 

frozen, and stored in cryotubes at -70°C. This technique was used as liquid 

nitrogen-cooled isopentane provides more efficient heat transfer, therefore 

reducing ice crystal formation, compared to freezing in liquid nitrogen alone. 

Frozen sections were routinely sectioned at 10pm on a Bright cryostat and
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placed onto glass slides. Sections were air-dried at room temperature for 2 

hours and stored at -20°C.

2.5.3.3 Perfusion fixation and cochlea fixation for SEM

Perfusion fixation was used for SEM to ensure excellent morphology

was preserved, such as open renal tubules for cilia viewing. By using a 

mixture of formaldehyde and glutaraldehyde, the rapid penetration of 

formaldehyde to initiate structural stabilization of the tissue, could be 

combined with the thorough cross-linking brought about by the more slowly 

penetrating glutaraldehyde.

Immediately following cervical dislocation the rib cage was removed to 

expose the heart and lungs. The right oracle was cut open to allow blood,

PBS and fixative to drain out as it is syringed through the body. The left 

ventricle was then cut open and a large blunt needle and syringe used to 

pump 40ml of PBS through the body, followed by 50ml of PBFG. The kidneys 

were removed, longitudinally bisected, post-fixed for 24hrs in PBFG, and 

infiltrated with 2.3M sucrose in tris buffered saline (TBS). Kidneys were frozen 

and the tubule lumens exposed by sectioning with a freezing stage sledge 

microtome.

For the organ of Corti, cochleas encased in the temporal bone were 

dissected from 4 week old mice, perfused through the oval window with PBFG 

and immersed in PBFG overnight at 4°C. The temporal bone and vestibular 

and tectorial membranes were then removed and the cochleas placed in 

PBFG fixative overnight and transferred to 1XTBS. For SEM of E8.5 embryos, 

embryos were removed from their extra-embryonic membranes and fixed in 

PBFG overnight.

2.5.3.4 Haematoxylin and eosin staining

H&E staining reveals the architecture of a tissue. Haematoxylin stains 

the nucleus blue whereas eosin stains basic components of the cell and 

extracellular matrix, such as proteins, pink. Paraffin sections were stained with
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H&E by immersion in the following: xylene (1 minute) x3, 100% ethanol (1 

minute) x2, 70% ethanol (1 minute), Meyer’s haematoxylin (5 minutes), 

running water (1 minute), eosin (2 minutes), running water (1 minute), 70% 

ethanol (1 minute), 1 0 0 % ethanol (1 minute) x2 , xylene (1 minute) x2 . 

Sections were mounted with DPX.

2.5.4 Nucleic acid extraction
2.5.4.1 DNA extraction from tail tips

For the purpose of mouse genotyping, DNA was extracted from 3mm 

tail tips that had been immediately frozen after cutting. Tail tips were placed in 

2ml eppendorf tubes with 500pl of tail buffer and 20pl of proteinase K 

(2 0 mg/ml), which degrades ribonucleases and other proteins, and incubated 

overnight at 65°C. In the morning the samples were vortexed and if not fully 

digested an extra 20pl of proteinase K was added and vortexed. Once 

digested, 250pl of 6 M supersaturated NaCI was added to the lysate to cause 

proteins and carbohydrates to precipitate while DNA remains in solution. The 

mixture was vortexed until a milky solution was obtained, and centrifuged at

13,000 rpm for 10 minutes. Without disturbing the salt pellet, the supernatant 

was collected into a fresh 1.5ml eppendorf and 500pl of isopropanol was 

added to precipitate the DNA. The tube was manually inverted until a DNA 

precipitate could be seen. Eppendorfs were left overnight at -20°C to aid 

precipitation, when required. The DNA precipitate was then separated by 

centrifugation at 13,000 rpm for 5 minutes. The supernatant was removed and 

the DNA pellet washed in 150pl of 70% ethanol. Finally, the pellet was air- 

dried for 15 minutes to remove any remaining ethanol and re-suspended in 

30-50pl of DNAase-free water overnight at 35°C. Samples were stored at - 

20°C.

2.5.4.2 DNA extraction from fresh and frozen tissue

DNA was extracted from fresh and frozen tissue using the QIAamp 

DNA mini kit according to the manufacturers’ instructions. Using this 

technique, DNA binds to a silica-gel membrane in the presence of a high salt 

medium. Contaminants are removed by washing the membrane with various 

buffers. Small pieces of tissue, up to 25mg, were incubated overnight at 65°C
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with 180|jl of Buffer ATL (contents a trade secret (CTS)) and 20pl of 

proteinase K. Once the tissue was completely lysed, 200pl of Buffer AL (CTS) 

was added and incubated for 10 minutes at 70°C. Two hundred micro litres of 

100% ethanol was added and the solution applied to a QIAamp silica gel 

based Spin Column and centrifuged at 8,000 rpm for 1 minute. The filtrate 

was discarded and the column was transferred to a clean collection tube, 

500pl of Buffer AW1 (CTS) added and re-centrifuged at 8,000 rpm for 1 

minute. The filtrate was again discarded before a second wash was carried 

out using 500pl of Buffer AW2 (CTS) and the column was re-centrifuged at

13,000 rpm for 3 minutes followed by an extra 1 minute spin to remove any 

residual buffer. DNA was eluted in 200pl of DNAase free water by incubating 

for 1 minute at room temperature and finally centrifuging at 8 ,0 0 0  rpm for 1 

minute. Samples were stored at -20°C.

2.5.4.3 DNA extraction from paraffin embedded tissue

DNA was extracted from paraffin embedded tissue using the QIAamp 

DNA mini kit. Three 4pm thick sections of tissue were placed into an 

eppendorf tube and incubated overnight at 65°C with 180pl Buffer ATL (CTS) 

and 20pl of proteinase K. Once the wax had melted and the tissue had lysed, 

200pl of Buffer AL (CTS) was added and incubated for 10 minutes at 70°C. 

Two hundred micro litres of 100% ethanol was added and the solution was left 

at 25°C for at least 3 hours to allow the wax to set on top of the sample. A 

pipette tip was used to pierce through the wax and obtain the solution 

underneath, which was then applied to a QIAamp Spin Column and 

centrifuged at 8,000 rpm for 1 minute. The filtrate was discarded and the 

column was transferred to a clean collection tube, 500pl of Buffer AW1 (CTS) 

added and re-centrifuged at 8,000 rpm for 1 minute. The filtrate was again 

discarded before a second wash was carried out using 500pl of Buffer AW2 

(CTS) and the column was re-centrifuged at 13,000 rpm for 3 minutes 

followed by an extra 1 minute spin to remove any residual buffer. DNA was 

eluted in ~100pl of DNAase free water by incubating for 1 minute at room 

temperature and finally centrifuging at 8,000 rpm for 1 minute. Samples were 

stored at -20°C.
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2.5.5 Nucleic acid quantification
UV spectrophotometry at wavelengths of 260nm and 280nm was used 

to determine DNA concentrations. This allowed the amount of DNA to be 

quantified and the protein concentration to be established. An absorption ratio 

of 1 .8  at 260nm:280nm indicates high sample purity.

2.5.6 Oligonucleotide primer design
Primers between 18-23 nucleotides in length were designed using 

Primer 3 (Rozen and Skaletsky 2000) and the following criteria where 

possible:

■ Repetitive motifs and predicted dimerisation or secondary 

structure formation avoided.

■ Four bases (A, T, C, G) represented in equal proportions.

■ Melting temperatures of the primer pairs within 2°C of each 

other.

2.5.7 Polymerase chain reaction (PCR)
An in vitro cycling technique known as the polymerase chain reaction 

was used to amplify specific DNA sequences. Heat stable polymerase 

synthesises a complementary strand of DNA from template DNA between two 

oligonucleotides designed from two regions of known sequence. Multiple 

cycles (20-40) of temperature changes are used to carry out this reaction, with 

each PCR cycle comprised of a high temperature denaturation step to 

generate single stranded template DNA, followed by a cooler annealing step 

to bind the primers to the single stranded DNA and finally an extension step 

where the polymerase carries out the synthesis of the new complementary 

strand.

Standard conditions for PCR included 25ng of template DNA, 2pl of 

10x reaction buffer (100mM TrisHCI, pH8.3, 500mM KCI, 15nM MgCfc, 0.01% 

w/v gelatin), 0.25mM dNTPs, 25pmol of each primer, and 0.5Units (U) of 

AmpliTaq Gold DNA polymerase in a total reaction volume of 20pl. Reactions 

in tubes were scaled up to a 50pl total volume and overlaid with mineral oil. 

Standard cycling conditions were 94°C for 10-12 minutes, followed by 35
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cycles of 52°C-60°C for 1 minute, 72°C for 1-2 minutes and 94°C for 1 minute. 

There was a final elongation step of 72°C for 12 minutes.

2.5.8 Agarose gel electrophoresis
DNA fragments are separated according to their size with smaller DNA 

fragments travelling further through the gel than larger fragments. The higher 

the gel concentration, the better the separation is for small DNA fragments 

due to the smaller gel pore size. Standard grade agarose is sufficient to 

separate fragments of 200bp-30Kb in size. Agarose gels of 1-2% w/v 

concentration were prepared using 1xTAE buffer and 0.05pg/ml ethidium 

bromide which incorporates into the DNA and allows visualisation under ultra­

violet light. Ten micro litres of PCR sample was mixed with 2pl of loading dye 

(15% w/v ficol, 10mM Tris pH 8 , 1mM EDTA, 0.2% orange G), loaded into the 

well of a gel and electrophoresis performed in 1xTAE buffer at 100 volts. A 

1 kb DNA ladder was used to allow fragment sizing. DNA was visualised under 

UV at a wavelength of 300nm and photographed using the Gel Doc 2000 

system.

2.5.9 PCR purification
To prepare PCR products for cycle sequencing, the ExoSAP method 

was used to eliminate any unused dNTPs and primers. This involves the use 

of hydrolytic enzymes Exonuclease I (Exo) and Shrimp Alkaline Phosphatase 

(SAP) to degrade residual single-stranded primers and hydrolyse remaining 

dNTPs respectively. Fifteen micro litres of PCR product was purified by the 

addition of 5U Exo I and 0.5U SAP. The sample was incubated at 37°C for 1 

hour followed by denaturation at 80°C for 15 minutes.

2.5.10 ABI cycle sequencing

ABI cycle sequencing uses the chain termination method developed by 

Sanger and Coulson (1977). In addition to dNTPs, fluorescently labelled chain 

terminating 2’,3’ ddNTPs are incorporated into the newly synthesised DNA 

strand. DNA polymerase cannot extend the growing DNA chain past the 

ddNTP, due to the lack of a hydroxyl group at the 3’ position of the 

deoxyribose sugar, and so the reaction is terminated at this specific base. As
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a result, single-stranded DNA strands are formed that differ in length by one 

nucleotide. In automated sequencing the reaction can take place in a single 

tube because each ddNTP is labelled with a different fluorphore. The ABI 

sequencer can then identify the position of the fluorescent bases by passing 

the single-stranded DNAs through a capillary gel, with smaller fragments 

migrating fastest through the polymer and through the laser beam first. The 

emitted wavelength is detected and used to determine the ddNTP 

incorporated at a particular position.

Purified PCR products were sequenced using a BigDye® Terminator 

v3.1 Cycle Sequencing Kit. A total reaction volume of 10pl was used 

containing 2pl of purified PCR product, 0.25pmol of primers, 0.75pl of 

terminator ready reaction mix (labelled A, C, G and T dye terminators, dNTPs, 

AmpliTaq DNA polymerase FS, MgCfe and Tris-HCI buffer, pH 9.0) and 2pl 

BigDye terminator sequencing buffer. Cycling parameters were 96°C for 1 

minute followed by 25 cycles of 96°C for 10 seconds, 50°C for 5 seconds and 

60°C for 4 minutes. Purification of sequencing products was performed using 

Montage SEQ96 sequencing reaction clean up kits. Twenty micro litres of 

injection fluid was added to sequencing reactions and transferred into the 

micro well filter plate. The samples were drawn through the plate using a 

vacuum pump (20 inches Hg) until the wells were empty. Two additional 

washes with injection fluid (25pl) were performed using the vacuum pump. 

Purified sequencing products were re-suspended in 25pl of injection fluid by 

shaking for 10 minutes. Samples were run on an ABI 3100 Genetic Analyser 

and sequence data viewed on Sequencher version 4.2.

2.5.11 Immunohistochemistry
The avidin-biotin complex (ABC) method was used for 

immunohistochemistry (IHC) procedures. This is an indirect IHC method 

which utilises the unique properties of the large glycoprotein avidin and the 

vitamin biotin which have an extremely high affinity for one another. Biotin can 

in turn be conjugated to a variety of biological molecules such as antibodies, 

whilst avidin can be labelled with peroxidase or fluorescein. The technique 

involves three main steps: application of unlabelled primary antibody,

92



application of biotinylated secondary antibody and application of a complex of 

avid in-biotin peroxidase. The peroxidase is then developed by DAB or other 

substrates to produce a coloured end product. The main advantage of this 

method is the amplification of the original antibody signal due to avidin having 

four binding sites for biotin, therefore amplifying the signal many fold.

Four micron thick kidney and liver paraffin sections were deparaffinised 

and rehydrated by immersing in xylene x2, 100% ethanol x2, 70% ethanol, 

50% ethanol and water for 5 minutes each. For antigen retrieval, sections 

were boiled in 10 mM citrate buffer (pH 6.0) for 10 minutes and rinsed in 

running tap water. Endogenous peroxidase activity was blocked with 0.3% 

hydrogen peroxide for 30 minutes followed by two 1XTBS washes for 5 

minutes. Immunostaining was performed in a humidity chamber using the 

rabbit VECTASTAIN ELITE ABC horseradish peroxidase kit. Sections were 

encircled with a wax ring and blocked in goat normal serum for 2 0  minutes. 

Primary antibodies were applied and incubated overnight at 4°C, followed by 

two 5 minute 1XTBS washes. A biotinylated secondary antibody was applied 

and incubated for 30 minutes followed by two 5 minute 1XTBS washes. 

Avidin-biotin complex (ABC) was incubated for 30 minutes followed by two 5 

minute 1XTBS washes. Sections were developed using DAB, counterstained 

in Gills haematoxylin for 30 seconds, and blued in tap water. Sections were 

finally dehydrated by immersing in 50% ethanol, 70% ethanol and 100% 

ethanol x2 (all 5 minutes each), cleared in xylene for 10 minutes, mounted 

with DPX and air dried. Slides were viewed on an Olympus BX51 microscope. 

All incubations were at room temperature unless otherwise stated.

2.5.12 Double immunofluorescence staining
2.5.12.1 Double staining with primary antibody and lectins

Four micron thick kidney paraffin sections were deparaffinised and 

rehydrated as described above. For antigen retrieval, sections were boiled in 

10 mM citrate buffer (pH 6.0) for 10 minutes, rinsed in running tap water and 

immersed in 1XTBS for 5 minutes. Immunofluorescence was performed in a 

humidity chamber covered in tin foil to keep the contents in darkness.
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Sections were encircled with a wax ring and blocked in goat normal serum for 

30 minutes. Primary antibodies were applied and incubated overnight at 4°C, 

followed by two 5 minute 1XTBS washes. A fluorescent secondary antibody 

was applied in combination with a fluorescent lectin, and both incubated for 1 

hour in the dark, followed by two 5 minute 1XTBS washes. Sections were 

finally mounted with one drop of Prol_ong®Gold antifade reagent with DAPI 

and allowed to cure overnight in the dark. Once cured, the edges of the 

coverslip were sealed with clear nail varnish and the slides viewed 

immediately on an Olympus BX51 microscope. Finally, slides were stored at 

4°C in the dark. All incubations were at room temperature unless otherwise 

stated.

2.5.12.2 Double staining with two primary antibodies

Four micron thick kidney paraffin sections were deparaffinised and 

rehydrated as described above. Antigen retrieval was carried out as described 

above followed by blocking in two 5 minute 1XTBS/0.6% bovine serum 

albumin (BSA) washes. Immunofluorescence was performed in a humidity 

chamber covered in tin foil to keep the contents in darkness. Sections were 

encircled with a wax ring, primary antibodies applied and incubated overnight 

at 4°C, followed by two 5 minute 1XTBS/0.6% BSA washes. The first 

fluorescent secondary antibody was applied and incubated for 1 hour in the 

dark, followed by two 5 minute 1XTBS/0.6% BSA washes. The second 

fluorescent secondary antibody was then applied and incubated for 1 hour in 

the dark, followed by two 5 minute 1XTBS/0.6% BSA washes. Sections were 

finally mounted with one drop of ProLong® Gold antifade reagent with DAPI 

and allowed to cure overnight in the dark. Once cured, the edges of the 

coverslip were sealed with clear nail varnish and the slides viewed 

immediately on an Olympus BX51 microscope. Finally, slides were stored at 

4°C in the dark. All incubations were at room temperature unless otherwise 

stated.
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2.5.12.3 Confocal immunofluorescence

Thirty micron thick kidney sections were stained as detailed in sections

2.5.12.1 and 2.5.12.2. Samples were imaged using a Leica TCS SP2 AOBS 

spectral confocal laser scanning microscope under x40 and x63 oil immersion 

objective lenses using appropriate excitation and emission settings for 

sequential recordings of fluorescence used. Z-stacks of optical sections (512 

x 512 pixels) were taken through the tissue depth at a step size of 0.4pm and 

these were used to create Maximum intensity-type 3D reconstructions using 

Leica Confocal Software.

2.5.13 Scanning electron microscopy
All tissues for SEM were processed using the hexamethyldisilazane 

(HMDS) method (Nation 1983). This method was used as it does not shrink or 

distort the tissue upon air drying ensuring excellent surface detail is preserved 

and also it requires less time compared to the critical point drying procedure.

Samples were washed twice in dH20  for 10 minutes each, followed by 

dehydration in 50%, 70%, 90% and 100% ethanol x2 for 15 minutes each. 

Samples were finally dehydrated in three 10 minute immersions in HMDS and 

allowed to air dry in a perspex cabinet with silica gel crystals to prevent 

moisture re-entering the samples. The specimens were then mounted on 

aluminium stubs using carbon paint, sputter coated with gold using an 

EMScope vacuum coater and viewed at 5kV using a JEOL 840A scanning 

electron microscope.

2.6 Bioinformatic tools

Genbank (http://www.ncbi.nih.gov/Genbank/) accession numbers for 

the genes analysed in this project are as follows:

Tsc1 (Mus musculus) NM_022887

Tsc2 (Mus musculus) NM_011647

Pkd1 (Mus musculus) N M_013630

BLAST searches were carried out against DNA sequences from Genbank 

(http://www.ncbi.nlm.nih.gov/BLAST/).
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CHAPTER THREE: Investigating the role of mTOR activation 

in 7sc-associated renal cystogenesis

3.1 Introduction
Many lesions from patients with TSC exhibit activation of mTOR and 

clinical trials are underway for the treatment of these tumours using mTOR 

inhibitors (Bissler etal. 2008, Davies etal. 2008). Interestingly, the mTOR 

inhibitor rapamycin, has been shown to have no effect on a number of 

microscopic precursor kidney lesions that develop in a rat model of Tsc2- 

inactivation (Kenerson et al. 2005). Furthermore, data from a recent study in a 

conventional Tsc2+/' mouse model found that rapamycin treatment was not 

effective in young mice (under 6  months of age) with early disease and a mild 

cystic phenotype, and no significant difference in tumour burden was found 

when compared to untreated mice (Messina etal. 2007). Together, these 

results suggest that many TSC-associated renal tumours initially develop via 

an mTOR-independent pathway.

Here, we investigated the apparent rapamycin-insensitive pathway that 

may be involved in 7sc-associated renal cyst formation by studying renal 

lesions from Tsc1+/~ (Wilson etal. 2005), Tsc2+/~ mice (Onda etal. 1999) and 

Tsc1+/~Tsc2+/~ mice.

3.2 Materials and methods
3.2.1 DNA extraction and PCR genotyping
DNA was extracted from tail tips using NaCI/ isopropanol extraction 

methods (chapter 2, section 2.5.4.1). PCR genotyping of DNA from tail tips 

was performed by amplification of the wild-type and mutant alleles for Tsc1 

and Tsc2 using the following primers in a 35 cycle PCR reaction with 

AmpliTaq gold DNA polymerase (Applied Biosystems). Tsc1 wild-type allele: 

exon8 F 5 -TGCCTGGAAGCCCAGGAAGGT-3' and exon8 R 5- 

CTGCAGGGCCCATGGTGGTT-3, (183bp product), Tsc1 mutant allele: 

TsclHETF S-CGTTGGCTACCCGTGATATT-S’ and TsclHETR 5- 

CCAATGGGCTCATTACTCTCA-3’ (268bp product). Tsc2 wild-type allele:
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Tsc2genF 5 -AATCGCATCCGAATGATAGG-3’ and Tsc2WTR 5- 

GTTTAATGGGCCCTGGATCT-3' (~900bp product), Tsc2 mutant allele, 

Tsc2genF and Tsc2HETR 5 -GGATGATCTGGACGAAGAGC-3' (658bp 

product). Products were analysed on 2% agarose gels. Some genotyping 

assistance was provided by Carol Guy and Rebecca Harris.

3.2.2 Animal care, necropsy and pathology
All procedures with animals were carried out in accordance with Home 

Office guidelines as previously described (chapter 2, section 2.5.1). Tsc1+,~ 

mice on a Balb/c background (Wilson et al. 2005) were crossed with Tsc2+I~ 

mice on a Balb/c background (Onda etal. 1999) to produce Tsc1+I~, Tsc2+I~, 

Tsc1+l'Tsc2+l~ and wild-type progeny. Kidneys from 5 mice of each genotype 

were analysed at 6-7 and 11-12 months of age. Half of each kidney was snap 

frozen in liquid nitrogen-cooled isopentane and the other half was processed 

into paraffin wax and sectioned at 4pm. To estimate the average number of 

microscopically visible kidney lesions per mouse, five representative sections 

~200pm apart from each half kidney were stained with H&E and inspected on 

an Olympus BX51 BF light microscope. Lesions crossing more than one 

section were only counted once and the total number of lesions were doubled 

and divided by 5 (5 mice per genotype) to generate a mean number per 

mouse in each genotype.

3.2.3 Immunohistochemistry
Immunohistochemistry of kidney paraffin sections from Tsc1+I~, Tsc2+I~, 

Tsc1+l~Tsc2+l~ and wild-type mice was performed as previously described 

(chapter 2, section 2.5.11) using the rabbit VECTASTAIN ELITE ABC 

horseradish peroxidase kit (Vector Laboratories), anti-phospho-S6  ribosomal 

protein (Ser240/244, 1:400 dilution) and goat anti-rabbit biotinylated secondary 

antibody. Renal lesions were identified after H&E staining and adjacent 

sections were stained with anti-pS6  (5 mice per genotype were used).

Staining was scored as either present or absent by an observer blinded to 

genotype.
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3.2.4 Statistics
Lesion counts were compared using 2-sample T-tests and the Mann- 

Whitney confidence interval test. Numbers of lesions that stained for pS6  

were compared using the Chi-squared test or Fisher’s exact test.

3.3 Results
3.3.1 Designing Tsc1 primers
The knockout construct in our Tsc1+/~ mice was previously designed by 

our laboratory (Wilson etal. 2005, Figure 3.1) and contains a (TAGyiRES- 

/acz-polyA//oxP/MC1neo-polyA//oxP reporter/positive selection cassette which 

replaces half of exon 6  and all of exons 7 and 8 . Previous primers used for the 

genotyping of Tsc1+/~ mice were located within a neomycin resistance 

cassette (neo); however, due to the use of other mouse models containing 

neo cassettes in this study, new primers were designed that were specific to 

the Tsc1 mutant allele. A set of primers for the wild-type allele (exon8 F and 

exon8 R) were designed in exon 8  and primers to identify the mutant allele 

were designed at the 3’ end of the construct with the forward primer 

(TsclHETF) lying within neo and the reverse primer (TsclHETR) located just 

outside the construct ~1000bp upstream from exon 9, therefore ensuring 

these primers were Tsc1 allele specific. Genotyping results are shown in 

Figure 3.1.
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Figure 3.1 Targeted Tsc1 locus and PCR genotyping results. (A) Schematic illustration of 
the wild-type Tsc1 locus (upper panel) and the targeted locus (lower panel). Using 
homologous recombination, a (TAG)3/IRES-/acz-polyA//oxP/MC1neo-polyA//oxP 
reporter/positive selection cassette was inserted into Tsc1. The targeted locus contains the 
reporter/ positive selection cassette inserted into exon 6 of Tsc1 and introduces stop codons 
(TAG3) into all three reading frames of the Tsc1 coding sequence. The targeting event also 
simultaneously deletes the 3’ part of exon 6 and all of exons 7 and 8 of Tsc1. Exons are 
shown as numbered black rectangles, introns as a thick black line, and flanking genomic 
regions as a thick dashed line. The reporter/selection cassette is shown as a large light grey 
striped rectangle (IRES-/acz component) and a large filled light grey rectangle (MC1r?eo- 
polyA component), with dark grey triangles indicating loxP sites. The genotyping primers are 
shown as black triangles. (B) PCR analysis with genotyping primers. Tsc1+A mice contain 
both the wild-type fragment (183bp) and the mutant fragment (268bp). Wild-type mice 
contain only the wild-type fragment. M = marker, WT = wild-type.
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3.3.2 Sequencing of the targeting cassette in Tsc2*/m mice and 

primer design
Due to poor amplification with the original Tsc2 primers from Onda et 

al. (1999) we sought to design our own. The Tsc2 gene in these mice is 

disrupted by a neo cassette inserted into the second coding exon (Figure 3.2). 

Unfortunately, no sequence information was available for this loci and so we 

sequenced the first half of exon 2 and the 5’ end of the insert using the 

primers neotestIF (S’-ACCGGTCACCCATTCTTCTG-S’, located upstream of 

exon 2) and neotestlbR (S’-GGATGATCTGGACGAAGAGC-S’, located within 

the 5’ end of the neo cassette) which produced a sequence from which we 

could design new genotyping primers. The new genotyping primer set 

consists of a forward primer (Tsc2genF), located in the first half of exon 2, 

which can PCR with both the wild-type (Tsc2WTR, located just downstream 

from exon 2) and mutant (Tsc2HETR, located in neo) reverse primers, 

therefore ensuring these primers are Tsc2 allele specific. Genotyping results 

are shown in Figure 3.2.

100



A

Wild-type locus
non-coding 

exon 1

non-coding
Targeted locus exon 1 2 3

► <
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Figure 3.2 Targeted Tsc2 locus and PCR genotyping results. (A) Schematic illustration of 
the wild-type Tsc2 locus (upper panel) and the targeted locus (lower panel). Using 
homologous recombination, a neomycin (neo) resistance cassette was inserted into the 
second coding exon of Tsc2. Exons are shown as numbered black rectangles, introns as a 
thick black line, and flanking genomic regions as a thick dashed line. The neo resistance 
cassette is shown as a large light grey rectangle. The genotyping primers are shown as 
black triangles. The same forward primer is used for each reverse primer. (B) PCR analysis 
of genotyping primers. Tsc2+A mice contain both the wild-type fragment (~900bp) and the 
mutant fragment (658bp). Wild-type mice contain only the wild-type fragment. M = marker, 
WT = wild-type.
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3.3.3 Renal pathology
We crossed Tsc1+/~ mice with Tsc2+/~ mice to generate Tsc1+I~, Tsc2+I~, 

Tsc1+l~Tsc2+l~ and wild-type mice. From 1 7  crosses, 2 6 1  progeny were 

obtained, 6 4  of which were Tsc1+/~, 6 7  Tsc2+/~, 5 5  Tsc1+/' Tsc2+/~ and 7 5  wild- 

type. These genotypes did not differ significantly from the expected 1:1:1:1 

ratio ( x 2= 3 . 1 4 ,  critical value of x 2= 7 . 8 1 5  at P= 0 . 0 5 ) .  In agreement with other 

studies, we did not find any Tsc1v~ or Tsc2/_ live pups, indicating that 

homozygous mutations in these mice are embryonic lethal as previously 

reported (Wilson etal. 2 0 0 5 ,  Onda etal. 1 9 9 9 ) .

3.3.3.1 General lesion observations

Renal lesions varied from pure cysts through to solid carcinomas and 

were classified as cysts (solitary cysts with one layer of epithelium), 

cystadenomas (cysts with branching papillary projections into the lumen) and 

renal cell carcinomas (RCCs) (Figure 3.3). The distribution in the size of the 

lesions, with simple cysts tending to be smaller and more numerous than 

cystadenomas and RCCs, supported the theory that these lesions progress 

from cyst through to RCC (Table 3.1).

No renal lesions were observed in wild-type littermates under 18 

months of age. At 6-7 months, renal cysts were observed in all genotypes and 

RCCs were absent (Table 3.1). By 11-12 months however, 40% (2/5) of 

Tsc1+/~, 80% (4/5) of Tsc2+/~ and 100% (5/5) of Tsc1+/~Tsc2+/~ mice developed 

RCCs supporting a progression of early cystic lesions through to RCC with 

age.

3.3.3.2 Comparison of renal lesions from Tsc1+/' and Tsc2+/' mice

At 6-7 months, the number of renal lesions from Tsc1+/' and Tsc2+/'

mice was almost identical at an average of 12.4 and 12.8 lesions per mouse 

respectively (P=0.957), however, at 11-12 months, we observed significantly 

more renal lesions in Tsc2+/~ mice compared to age matched Tsc1+/~ mice on 

the same genetic background (39.2 and 22.8 lesions per mouse respectively, 

P=0.04) (Table 3.1).
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When examining the types of renal lesions, we found very little 

difference in the number of renal cysts in Tsc1+/~ and Tsc2+/~ mice at 6-7 

months (5.6 and 7.6 lesions per mouse respectively), however by 11-12 

months Tsc2+/' mice had significantly more cysts compared to Tsc1+/' mice 

(27.2 and 15.2 lesions per mouse respectively, f^0.038) (Table 3.1).

3.3.3.3 Comparison of renal lesions from Tsc1+/'Tsc2+/' mice and single 

heterozygote littermates

In Tsc1+/~Tsc2+/~ mice at both 6  months and 11-12 months the total 

number of renal lesions was approximately the sum of the single 

heterozygotes at 24.8 and 58.4 lesions per mouse respectively (Table 3.1) 

highlighting a simple additive affect when both Tsc1 and Tsc2 are knocked 

out.

Table 3.1 Average number and histological classification of microscopic renal 

lesions in Tsc1+I~, Tsc2+I~ and Tsc1+l~Tsc2+l~ mice.

Age Genotype Cyst Cystadenoma Renal cell 

carcinoma

Total

lesions

Tsc1*'- 5.6 6 .8 0 12.4* *

6-7 months Tsc2*a 7.6 5.2 0 12.8* f

Tsc1*/'Tsc2*/' 15.6 9.2 0 24.8* *

Tsc1*'~ 15.2 6.4 1 .2 22.8* +

1 1 - 1 2 Tsc2*/- 27.2 9.6 2.4 39.2° °

months Tsc1*'Tsc2*/- 32.8 18.8 6 .8 58.4* “

Numbers based on the analyses of five sections (~200pm apart) from half 
kidneys of five mice from each of the above genotypes in each age group. 
*P=0.96, *P=0.09, fP=0.1, °P=0.035, +P=0.003, °P=0.09
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Figure 3.3 Macroscopic and microscopic analysis of renal lesions from Tsc1+I~, TscF1' and Tsd+' TscT'- mice. Macroscopic renal 
lesions could be seen on kidneys from 11-12 month old Tsc1+I' ( A), Tsc2+A (B) and Tsc1+l~Tsc2+/' (C) mice. Significantly more renal 
lesions were found in 11-12 month old Tsc2+A mice as compared to age matched Tsc1+A mice on the same genetic background 
(P= 0.04). Examples of macroscopic cysts, cystadenomas (CAs) and RCCs are indicated in panel C. Microscopic view of a cyst (D) 
with a single layer of cuboidal cells, a cystadenoma (E) with branching papillae projections beginning to fill the lumen and a solid 
renal cell carcinoma (F). Scale bars: A, B and C; 2mm, D; 100pm, E; 0.2mm, F; 0.1mm.



3.3.4 pS6  immunohistochemistry

We tested for activation of the mTOR pathway by staining renal lesions 

for the presence of pS6 . We found that 33% (17/52) of cysts from Tsc1+/' 

mice, 46% (31/68) of cysts from Tsc2+/' mice and 32% (27/84) of those from 

Tsc1+/~Tsc2+/~ mice, failed to stain for pS6 , whereas most advanced lesions 

(cystadenomas and RCCs) from these mice did stain (32/37, 87%, P=0.039, 

35/42, 83%, P=0.002 and 71/75, 95%, P<0.001, respectively) (Table 3.2, 

Figure 3.4). There was no significant difference in pS6  staining patterns 

between the genotypes.

We determined the pattern of pS6  activation throughout individual renal 

cysts from Tsc1+,~ mice by staining consecutive serial sections. Seventeen out 

of 26 (65%) cysts studied in this way showed consistently strong pS6  staining 

and the remaining 9 (35%) showed consistently little or no staining, in every 

serial section (Figure 3.5). Three of the cysts with little or no pS6  staining had 

some sections in which single cells displayed strong positivity (e.g. in Figure

3.5 C and D); however, this pattern was also seen in some normal tubular 

epithelial cells.

Table 3.2 Phosphorylated-S6  analysis of renal lesions from Tsc1+,~, Tsc2+I' 

and Tsc1+l~Tsc2+l~ mice.

Genotype Lesion type Number pS6  positive

Tsc1*'- Cyst

Cystadenoma

RCC

35/52 (67%)* 

29/34 (85%)* a 

3/3 (100%)

Tsc2*‘- Cyst

Cystadenoma

RCC

37/68 (54%)* 

29/36 (81%)*a 

6 /6  (1 0 0 %)

Tsc1*l~Tsc2*'~ Cyst

Cystadenoma

RCC

57/84 (6 8 %)t 

57/61 (93%)* a 

14/14 (100%)

Numbers based on the analyses of five sections (~200pm apart) from half 
kidneys of five mice from each of the above genotypes. 
a cystadenoma and RCC values combined, *P=0.039, #P=0.002, tP<0.001
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Figure 3.4 Immunohistochemistry analysis of murine renal lesions from Tsc1+/-’ TscZ1' and Tsc1+l'T s c 2 mice using an anti-pS6 
antibody. Intense (brown) staining is found in some cysts (A) and the vast majority of cystadenomas (B) and RCCs (C). A significant 
proportion of cysts from Tsc1+I~ (D), TscT'~ (E), and Tscl+' TscF1' (F) mice showed little or no staining. Note: other lesions present in 
other parts of sections shown in D-F stained for pS6 (data not shown), confirming that the antibody worked successfully. Scale bars: 
A-C; 0.1mm, D & E; 20pm, F; 50pm.



Figure 3.5 IHC of consecutive serial sections of renal cysts from Tsc1+A mice using a pS6 
antibody to show the pattern of pS6 staining throughout the cyst. Examples of serial 
sections through cysts that consistently either stained (A, B), or, that did not stain strongly 
(C, D). Note: other lesions present in other parts of sections shown in C and D stained for 
pS6 (data not shown), confirming that the antibody worked successfully. Scale bars: 100pm
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3.4 Discussion
3.4.1 Tsc2*/m mice have a more severe renal phenotype compared
to Tsc1*/m mice
Genotype/phenotype correlation studies in patients with TSC have 

revealed that a more severe phenotype, including a higher rate of renal and 

skin lesions and mental retardation (matched by similar differences in brain 

radiographic findings such as tubers and SENs), is apparent in those with a 

TSC2 mutation compared to those with a TSC1 mutation (Jones etal. 1999, 

Dabora etal. 2001, Sancak etal. 2005, Au etal. 2007). Interestingly, Dabora 

et al. (2 0 0 1 ) found that renal cystic disease occurred at similar rates in 

patients with sporadic TSC2 compared to those with sporadic TSC1 (25% vs. 

16% respectively), however the patients with TSC1 mutations who had renal 

cysts were on average older than patients with TSC2 mutations who had renal 

cysts (26.3 vs. 13.8 years old respectively). There was however a higher 

frequency of grade 2-4 renal cystic disease (>2 small (<2cm) cysts up to 

classic polycystic kidney disease (multiple cysts with renal enlargement)) in 

patients with TSC2 mutations (19% vs. 0%) as compared to those with TSC1 

mutations. Renal AMLs were also seen at a higher frequency and were more 

severe in patients with TSC2 mutations compared to those with TSC1 

mutations. Two further studies found that renal AMLs and renal cysts were 

less frequent in patients with a TSC1 mutation compared to patients with a 

TSC2 mutation of a similar age (Sancak et al. 2005, Au et al. 2007). In 

agreement with these findings, we found that Tsc2+/~ mice at 11-12 months 

had significantly more renal lesions than Tsc1+/~ mice, in particular, 

significantly more cysts were found in Tsc2+/' mice compared to Tsc1+/~ mice 

at this age. Unlike the genotype/phenotype correlations carried out by Dabora 

et al., we controlled for age by only comparing mice of a similar age. Age is an 

important factor as in the younger mice where cysts are fewer in number, no 

difference was found in the number of renal lesions present in Tsc1+/~ and 

Tsc2+/~ mice.

Our data is the first to demonstrate a genotype/phenotype correlation in 

rodent models of TSC that resembles the difference observed between TSC1 

and TSC2 associated disease in humans. At least two hypotheses have been
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suggested to explain why TSC2 associated,disease is more severe than 

TSC1 disease (Dabora et al. 2001). Firstly, it is possible that second-hit 

events (following Knudson’s two-hit model) occur more often in TSC2 than in 

TSC1, possibly due to the larger gene size and mutational spectrum of TSC2 

and the more complex structure. Secondly, it is proposed that complete loss 

of tuberin has different effects in cells compared with the loss of hamartin. An 

interaction between tuberin and hamartin may be necessary for their function 

in the mTOR pathway; however independent functions of the proteins may 

also be vital to the cell as indicated by the different binding domains present in 

each protein (Krymskaya 2003, Rosner et al. 2008, chapter 1, section 

1.1.8.4).

3.4.2 Differing phenotypes between Tsc rodent models and
patients with TSC
Although the phenotype of Tsc1+/~ and Tsc2+/~ rodent models may differ 

from patients with TSC, there are similarities, for example, in humans and 

rodents, tumours develop at a high frequency with a slow growth rate and 

malignancies occurring only rarely (Cheadle et al. 2000). Similarities in the 

TSC renal phenotype also exist between humans and rodents. In Tsc1+/~ and 

Tsc2+/~ mouse models, cysts, cystadenomas and RCCs are the most common 

renal lesions. Renal cysts are also a common feature in patients with TSC, 

and, although the occurrence of RCC in these patients is unusual, an 

association is recognised (Henske 2004) with studies suggesting that as with 

the rodent models, RCCs in humans arise from dysplastic renal cyst epithelial 

cells (Al-Saleem etal. 1998).

Perhaps the most striking difference between Tsc1+/' and Tsc2+/~ mouse 

models and patients with TSC is the absence of brain lesions and renal AMLs 

in mouse models. This is perhaps surprising given the occurrence of cerebral 

pathology in approximately 90% and renal AMLs in approximately 80% of 

patients with TSC (Gomez et at. 1999). Thus a mutation of the same gene can 

cause phenotypic variation between species. These differences may simply 

reflect the much smaller size and cell number of mice compared to humans 

(Cheadle et al. 2000). Longevity differences may also be responsible; indeed,
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the prevalence of renal AMLs in patients with TSC is positively correlated with 

age, whereas cysts are the commoner lesion in childhood (Cook etal. 1996).

It is also possible that the progenitor cells which give rise to human brain 

lesions have different mechanisms of tuberin/hamartin regulated growth and 

differentiation compared to mouse brain precursor cells (Cheadle et al. 2000).

3.4.3 Combined loss of Tsc1 and Tsc2 results in an additive effect 
on phenotype

Studies in humans and mice indicate that loss of TSC2 can lead to a 

more severe phenotype compared to loss of TSC1; however, the effect of 

heterozygosity of both TSC1 and TSC2 in the same organism has not been 

studied. We attempted to investigate this using our mouse models and found 

what appears to be an additive affect on renal lesion number. In Tsc1+/'Tsc2+/~ 

mice at both 6  months and 1 1 - 1 2  months the number of renal lesions was 

approximately the sum of the single heterozygotes. These findings are 

consistent with hamartin and tuberin functioning as a complex in the same 

pathway. Combined haploinsufficiency of hamartin and tuberin and/or an 

increase in the target of second (somatic) hits (due to the availability of two 

genes now containing germline mutations) could be responsible for the 

additive increase in renal lesions in Tsc1+/~Tsc2+/~ mice.

3.4.4 Activation of the mTOR pathway is not essential for cyst 
formation
Since the discovery that TSC1 and TSC2 inhibit the function of mTOR 

through Rheb (Inoki etal. 2002, Tee etal. 2002), most research into TSC has 

focussed on the mTOR pathway. Clinical trials of the mTOR inhibitor 

rapamycin are currently underway, with promising results on advanced 

lesions such as AMLs in humans (Bissler et al. 2008, Davies et al. 2008); 

however its effects on early precursor lesions such as cysts remain unclear. 

We found little or no activation of the mTOR pathway in 33% of cysts from 

Tsc1+/~ mice, 46% of cysts from Tsc2+/~ mice and 32% of cysts from Tsc1+/~ 

Tsc2+/~ mice whereas almost all advanced lesions did exhibit mTOR 

activation. This is in support of previous work on Tsc1+/~ mice where 37% 

(20/54) of cysts showed little or no pS6  staining, compared with only 7%
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(7/98) of advanced lesions (P<0.001) (Wilson et al. 2006). To ensure the pS6  

staining in one section of a cyst was representative of the entire cyst we 

carried out serial sectioning which encompassed entire cysts and found that 

negative or positive staining was consistent throughout a cyst. This data 

indicates that cysts are clonal and that our pS6  staining technique gave a 

valid representation of the entire cystic structure and phenotype.

Our data, together with the data from Kenerson et al. (2005) and 

Messina et al. (2007), suggest that many TSC-associated renal tumours 

initially develop via an mTOR-independent pathway. Therefore, although 

rapamycin may help control TSC-associated tumour development, it may not 

prevent tumour initiation. Further work into the mechanism of cyst initiation in 

TSC may eventually provide new therapeutic targets to prevent lesions from 

forming, and will be focussed on throughout this thesis.

3.4.5 Somatic Tsc1 mutations are not abundant in renal cysts from
Tsc1*/m mice
Our laboratory has previously shown that renal cyst formation may 

occur without the need of a somatic mutation in Tsc1+/~ mice (Wilson et al. 

2006). DNA was extracted from 19 renal cysts, 49 renal cystadenomas and 

65 RCCs from Tsc1+I~ mice using laser capture microdissection (LCM). LOH 

analyses and direct sequencing of the entire Tsc1 ORF were used to identify 

somatic Tsc1 mutations in DNA from these lesions. Interestingly, somatic 

Tsc1 mutations were not found in 68.4% (13/19) of cysts compared to only 

20.4% (10/49) of cystadenomas and 20.0% (13/65) of RCCs, demonstrating 

significantly fewer second hits in cysts as compared to cystadenomas 

(f^0.0003) and RCCs (P=0.0001). It would be informative if we could identify 

whether cysts with no somatic mutation also stain negative for pS6  therefore 

indicating a possible mTOR independent/haploinsufficient pathway of 

cystogenesis in these mice. Unfortunately, there were a number of reasons 

why we were unable to undertake both mutation analysis and IHC on the 

same cysts. Firstly, the small size of cysts makes LCM and extraction of 

sufficient amounts of DNA difficult. Secondly, pS6  staining was not successful 

in frozen tissue. Thirdly, DNA extracted from paraffin embedded tissue was
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not reliable in LOH assays and finally, immunohistochemical staining of 

paraffin and frozen tissue hinders DNA extraction. Therefore, paraffin 

embedded pS6  stained cysts could not be used for DNA extraction and frozen 

cysts could not be stained for pS6 .

Interestingly, second hits at Tsc1 and activation of the mTOR pathway 

were found in the vast majority of more advanced renal tumours (Wilson et al. 

2006) suggesting that these are important steps in the latter stages of Tsc- 

associated renal tumourigenesis.
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CHAPTER FOUR: Investigating the relationship between 
hamartin, tuberin and PC1

4.1 Introduction

Cysts are the second most common renal lesion in patients with TSC, 

occurring in up to 47% of affected adults (Rosser et al. 2006). In TSC mouse 

models, renal cysts show 1 0 0 % penetrance and appear to be the earliest 

renal lesions, later progressing into cystadenomas and RCC (chapter 3, 

section 3.3.2). The event or events that initiate cyst formation are unknown, 

but could reveal new targets for preventative therapies.

One of the most common inherited human cystic diseases is ADPKD, 

characterised by progressive development of multiple fluid filled cysts in the 

kidney (Boucher et al. 2004). Approximately 5% of patients with TSC also 

have a very severe form of PKD, normally due to an inherited contiguous 

deletion which spans both TSC2 and PKD1 (which lie adjacent to one another 

on chromosome 16p13.3) (Brook-Carter et al. 1994). The severity of this 

disease suggests that tuberin and PC1 may co-operate at a cellular level 

which markedly accelerates the disease process in such patients. Indeed, an 

interaction between tuberin and PC1 at the functional level has been reported 

(Kleymenova etal. 2001). Using the Eker rat model, Kleymenova etal. found 

that tuberin is required for membrane localisation of PC1 and in tuberin- 

deficient cells, PC1 is unable to exit the Golgi where it remains sequestered 

until expression of exogenous tuberin reinstates appropriate PC1 localisation. 

The authors concluded that tuberin is required for appropriate intracellular 

trafficking and localisation of PC1 to the lateral domain of the cell membrane. 

Recently, Shillingford et al. (2006) showed that the cytoplasmic tail of PC1 

interacts with tuberin and the mTOR pathway is inappropriately activated in 

cyst-lining epithelial cells in human ADPKD patients and mouse models.

Here, we attempted to understand the mechanism of renal cyst 

formation in TSC and ADPKD by crossing our Tsc1+/' and Tsc2+/~ mice with a 

mouse model of ADPKD1 which has exons 17-21 replaced with a 

promoterless cassette (Pkc/'/de/77'2̂ eo mouse model, hereafter termed

113



Pkd1+/~) (Boulter et al. 2001). We also sought whether the human TSC2/PKD1 

contiguous deletion phenotype could be recapitulated in Tsc1+/~Pkd1+/~ and 

Tsc2+/~Pkd1+/~ mice. The role of mTOR activation was also investigated in a 

more severe Pkd1-deficiency model known as the Pkd1nl mouse model 

(Lantinga-van Leeuwen et al. 2004).

4.2 Materials and methods
4.2.1 DNA extraction and PCR genotyping
DNA was extracted from tail tips as previously described (chapter 2, 

section 2.5.4.1). PCR genotyping of DNA from tail tips was performed by 

amplification of the wild-type and mutant alleles for Pkd1 using the following 

primers in a 35 cycle PCR reaction with AmpliTaq gold DNA polymerase 

(Applied Biosystems). Pkd1 wild-type allele: PkdlWTF 5- 

GCTCGCACTTTCAGCAATAAGAC-3’ and PkdlWTR 5- 

CAGGATTTCCACTGGGTTCT-3'(661bp product), Pkd1 mutant allele, 

PkdlNEOF 5 -AGCGTTGGCTACCCGTGATATTG-3’ and Pkd1EXON21R 5- 

GTCTCCGTGATGTTCTTACGCATT-S’ ^S Ib p  product). Tsc1 and Tsc2 were 

genotyped as previously described in chapter 3, section 3.2.1. Products were 

analysed on 2% agarose gels. Some genotyping assistance was provided by 

Carol Guy and Rebecca Harris. Genotyping for Pkd1nm mice was carried out 

as previously described (Lantinga-van Leeuwen et al. 2004).

4.2.2 Animal care, necropsy and pathology
Tsc1+I~ (Wilson etal. 2005) and Tsc2+I~ mice (Onda etal. 1999) were 

crossed with Pkd1+/' mice (on a 129/Sv background) (Boulter et al. 2001) to 

produce Tsc1+I', Tsc2+ I Pkd1+/~, Tsc1+/Pkd1+/', Tsc2+/'Pkd1+A and wild-type 

progeny. Kidneys and livers from 5 mice of each genotype were analysed at 

6-7, 9-12 and 15-18 months of age. Tissue processing and lesion examination 

was carried out as described in chapter 3, section 3.3.2. Four micron thick 

Pkd1nl/nl paraffin embedded kidney sections were provided by Richard 

Sandford (Department of Medical Genetics, University of Cambridge, UK) 

from mice acquired from Dorien Peters (Leiden University Medical Centre,

The Netherlands).
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Mice from the above crosses were also examined at weaning (between 

3-4 weeks of age) for the presence of PKD. Over 200 mice from the Tsc1+I~ 

and Pkd1+/~ crosses and over 200 mice from the Tsc2+I' and Pkd1+/~ crosses 

were examined macroscopically following cervical dislocation. Kidneys with 

PKD were removed, processed and examined as described above.

4.2.3 Immunohistochemistry

Immunohistochemistry of kidney and liver paraffin sections from 5 mice 

from each genotype was performed as previously described (chapter 2, 

section 2.5.11) and analysed as described in chapter 3, section 3.2.3. Kidneys 

with a PKD phenotype from mice at weaning were also examined for pS6. In 

addition, pS6 staining was performed on kidney sections (two from each 

mouse) from three Pkd1nl/nl mice and one wild-type mouse. Statistics were 

performed as described in chapter 3, section 3.2.4.
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4.3 Results
4.3.1 Sequencing of Pkd1 insert and primer design
The Pkd1 gene in our Pkd1+/~ mice is disrupted by a promoterless 

cassette containing a donor engrailed-2 intron and splice acceptor site, an 

internal ribosome entry site (IRES) coupled to a lacZ-neomycinR fusion gene 

ifigeo) and a simian virus 40 polyadenylation site (Figure 4.1). Boulter et al. 

(2001) state that this cassette deletes a 1.5kb H/ndlll-Xbal fragment which 

contains exons 17-21. We therefore sought to sequence part of this cassette 

to enable us to design new allele specific primers for genotyping of our mice.

Analysis of the Pkd1 gene sequence revealed that the Xbal restriction 

site was situated ~40bp upstream from exon 21, indicating that exon 21 was 

not actually deleted by the cassette. To confirm this we designed reverse 

primers in exon 21 (exon21R 5 -GTCTCCGTGATGTTCTTACGCATT-3 ) and 

exon 22 (exon22R 5-AGCATCTTCTTCAGGCAGGA-3,) which we then used 

in separate reactions with a primer designed within the neo sequence of the 

cassette (neoF 5 - AGCGTTGGCTACCCGTGATATTG-3,J 731 bp and 1608bp 

respectively). Both sets of primers showed clear bands, indicating that exon 

21 and exon 22 were still present in the mutant allele and subsequent 

sequencing of these fragments generated sufficient sequence to design new 

genotyping primers (Figure 4.1). The wild-type forward (PkdlWTF) and 

reverse (PkdlWTR) primers are situated in exons 18 and 20 respectively, as 

these were deleted by the construct in mutant alleles, whilst the mutant 

forward primer (PkdlNEOF) is situated in the neo cassette with the 

corresponding reverse primer (Pkd1EXON21R) in exon 21, thus ensuring 

Pkd1 mutant allele specific amplification.
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A

Wild-type locus 15 16 17 18 19 20 21 22

Targeted locus SA
15 16

SVpA

IRES (3geo

B
M WT Pkd1+/- Blank

1kb

0.5kb

731bp 
661 bp

Figure 4.1 Targeted Pkd1 locus and PCR genotyping results. (A) Schematic illustration of 
the wild-type Pkd1 locus (upper panel) and the targeted locus (lower panel). Using 
homologous recombination, Pkd1 exons 17-20 were replaced with a lacZ-neomycin fusion 
gene ((3geo) located downstream of an engrailed-2 gene donor intron (En-2), splice acceptor 
site (SA) and an IRES, and upstream of a simian virus 40 polyadenylation signal (SVpA). 
Exons are shown as numbered black rectangles, introns as a thick black line, and flanking 
genomic regions as a thick dashed line. The fusion gene is shown as a large light grey 
striped rectangle (IRES-/3geo component) upstream of a filled light grey rectangle 
(engrailed-2 gene donor intron component). The genotyping primers are shown as black 
triangles. (B) PCR analysis of genotyping primers. Pkd1+A mice contain both the wild-type 
fragment (661 bp) and the mutant fragment (731 bp). Wild-type mice contain only the wild- 
type fragment. M = marker, WT = wild-type.
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4.3.2 Renal pathology
From 36 Tsc1+/'x  Pkd1+/~ crosses, 629 progeny were obtained, 152 of 

which were Tsc1+/', 164 Pkd1+/~, 147 Tsc1+/'Pkd1+/’ and 166 wild-type. From 

33 Tsc2+/'x  Pkd1+/' crosses, 631 progeny were obtained, 166 of which were 

Tsc2+/~, 161 Pkd1+/', 142 Tsc2+/~Pkd1+/~ and 162 wild-type. These genotypes 

did not differ significantly from the expected 1:1:1:1 ratio ( /2=1.62 and 2.19 

respectively, critical value of x2=7.815 at P= 0.05). In agreement with other 

studies, we did not find any Pkd1v~ live pups, indicating that homozygous 

mutations in these mice are embryonic lethal as previously reported (Boulter 

etal. 2001).

4.3.2.1 Comparison of renal lesions from Pkd1+ / Tsc1+/~ and Tsc2+/~

mice

No cysts were observed in Pkd1+/~ mice at 6-7 months of age. At both 

9-12 and 15-18 months of age, low numbers of renal cysts were observed in 

Pkd1+A mice from both crosses ranging from an average of 1.2 to 7.6 lesions 

per mouse (Tables 4.1 and 4.2). No cystadenomas or RCCs were observed in 

Pkd1+/~ mice. At 6-7, 9-12 and 15-18 months, Tsc2+/~ mice had consistently 

more renal lesions compared to Tsc1+/~ mice (P=0.012, F^O.031 and P= 0.004 

respectively), consistent with our results presented in chapter 3. No renal 

lesions were observed in wild-type littermates less than 18 months of age.

4.3.2.2 Comparison of renal lesions from compound heterozygotes and

single heterozygote littermates

We failed to find any Tsc1+/~ Pkd1+/~ mice with a gross PKD phenotype 

between 6-18 months of age. At 6-7 months renal lesion numbers were very 

low in both Tsc1+/~ mice and Tsc1+/~ Pkd1+/~ mice respectively (4 and 8.4 

lesions per mouse respectively, P= 0.12). We found that at 9-12 months, 

Tsc1+/~Pkd1+/~ mice had significantly more renal lesions (32 lesions per 

mouse) compared to either Pkd1+/~ (5.2 lesions per mouse, F^O.OI) or Tsc1+/~ 

(10 lesions per mouse, P= 0.01) mice (Table 4.1, Figure 4.2). In terms of the 

type of lesion, Tsc1+/'Pkd1+/~ mice had significantly more cysts and 

cystadenomas as compared to either Pkd1+/~ (P= 0.02 and P<0.01,
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respectively) or Tsc1+/~ mice {P= 0.01 and P=0.009, respectively) (Table 4.1). 

By 15-18 months, no significant difference was observed in the total number 

of renal lesions from Tsc1+/~ Pkd1+/~ mice (28.8 lesions per mouse) compared 

to Tsc1+/~ mice (19.2 lesions per mouse).

A gross PKD phenotype was not observed in any Tsc2+/~ Pkd1+/' mice 

between the ages of 6-18 months. Interestingly, whereas the number of renal 

lesions in Tsc2+/~ mice steadily rose from 6-7 months to 15-18 months, the 

number of lesions in Tsc2+/' Pkd1+/~ mice at 6-7 months was considerably 

higher at 90.4 lesions per mouse, compared to 53.2 lesions per mouse at 9- 

12 months (Table 4.2). At 9-12 months, the number of renal lesions from 

Tsc2+/' Pkd1+/~ and Tsc2+/~ mice were similar at 53.2 and 59.6 respectively, 

however, when the types of these lesions were examined, the Tsc2+/~ Pkd1+/~ 

mice had double the number of cystadenomas and significantly more RCCs 

compared to Tsc2+/~ mice (P= 0.03) (Table 4.2). We also found that Tsc2+/~ 

Pkd1+/~ mice had more renal lesions (228.8 lesions per mouse), that were 

more advanced, as compared to Tsc2+/~ mice (152 lesions per mouse) at 15- 

18 months (P= 0.03) (Table 4.2, Figure 4.3).

Finally, significantly more renal lesions were observed in Tsc2+/~ Pkd1+/~ 

mice compared to Tsc1+/~ Pkd1+/~ mice at 6-7 and 15-18 months of age 

(P= 0.03 and P=0.001 respectively).
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Table 4.1 Average number and histological classification of microscopic renal 

lesions in Tsc1+ / Pkd1+/~ and Tsc1+/'Pkd1+/~ mice.

Age Genotype Cyst Cystadenoma RCC Total

lesions

Tsc1+/' 3.2 0.8 0 4*

6-7 months Pkd1+/- 0 0 0 0

Tsc1+/Pkd1+/- 7.2 1.2 0 8.4*

Tsc1+/- 8.4 1.2 0.4 10* T

9-12 months Pkd1+A 5.2 0 0 5.2*°

Tsc1+/'Pkd1+/- 21.2 10 0.8 32t0

15-18 Tsc1+/- 10.4 7.6 1.2 19.2+ °

months Pkd1+A 1.2 0 0 1.2+±

Tsc1+/Pkd1+/- 12.4 13.2 3.2 28.8° *

Numbers based on the analyses of five sections (~200pm apart) from half 
kidneys of five mice from each of the above genotypes in each age group. 
*P=0.12, *P= 0.34, TP=0.01, °P<0.001, +P=0.01, °P=0.2, ^<0.001

Table 4.2 Average number and histological classification of microscopic renal 

lesions in Tsc2+/', Pkd1+/' and Tsc2+/'Pkd1+/' mice.

Age Genotype Cyst Cystadenoma RCC Total

lesions

Tsc2*'~ 21.2 2 0.4 23.6*

6-7 months Pkd1*'~ 0 0 0 0

*!+■CMO£

88.4 2 0 90.4*

Tsc2+/- 49.2 9.6 0.8 59.6* T

9-12 months Pkd1+A 7.6 0 0 76# «

Tsc2+/Pkd1+A 30 19.2 4 53.2+0

15-18 Tsc2+/- 126.4 20 5.6 152* "

months Pkd1+A 3.6 0 0 3.6*1

Tsc2+APkd1+/- 157.2 56.4 15.2 228.8°1

Numbers based on the analyses of five sections (~200pm apart) from half 
kidneys of five mice from each of the above genotypes in each age group. 
*P= 0.4, *P=0.01, +P=0.83, °P=0.016, +P=0.01, °P= 0.4, *^0.001



Tsc1+/-

Pkd1+/~

Figure 4.2 Microscopic analysis of renal lesions from Tsc1+'-, PkdV‘- and Tsc1+,-Pkdr'- mice 
at 9-12 months of age. (A) Kidneys from a Tsc1+IL mouse with a cyst boxed and enlarged in 
B. (B) Cyst lined with a single layer of cuboidal epithelial cells. (C) Kidneys from a Pkd1+I- 
mouse with a cyst (boxed and enlarged in D). (D) Fluid filled cyst from a Pkd1+A mouse 
kidney. (E) Kidneys from a Tsc1+,‘ Pkd1+/- mouse with a large RCC highlighted by a dashed 
box; solid line boxed region (enlarged in F) shows a cystadenoma (large filled arrow) and an 
adjacent cyst (thin arrow). Significantly more renal lesions were found in Tsc1+,-Pkd1+/- mice 
compared to either Tsc1+/- or Pkd1+A mice (P= 0.01 for both). Scale bars: A, C and E; 2mm,
B, D and F; 200pm.
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Figure 4.3 Macroscopic and microscopic analysis of renal lesions from Tsc2*'\ Pkd1+I~ and 
Tsc2*'-Pkd1+'- mice at 15-18 months of age. (A, B) Macroscopic view and H&E section of 
kidneys from a Tsc2+A mouse showing cysts, cystadenoma and RCC. (C, D) Macroscopic 
view and H&E section of kidneys from a Pkd1+A mouse showing a cyst (arrows). (E, F) 
Macroscopic view and H&E section of kidneys from a Tsc2+APkd1+/- mouse showing many 
RCCs (examples indicated by arrow heads) as well as cysts and cystadenomas. Scale bar: 
2mm.
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4.3.3 Extra-renal pathology
Liver cysts were found in approximately 20-40% of Pkd1+/\  Tsc1+/~ 

Pkd1+/' and Tsc2+/'Pkd1+/' mice over 15 months of age. No liver cysts were 

found in wild-type, Tsc1+/' or Tsc2+/~ mice. Macroscopically, liver cysts ranged 

in size from 0.3-3cm in diameter (Figure 4.4). The very large liver cysts (over 

1 inch) tended to be found in mice over 20 months of age. Microscopically, all 

liver cysts were lined with a single layer of epithelium and had no papillary 

projections (Figure 4.4).

4.3.4 pS6 immunohistochemistry

We tested for activation of the mTOR pathway by staining cells for the 

presence of pS6.

4.3.4.1 pS6 staining in renal and liver cysts from Pkd1+/' mice and renal

cysts from Pkd1nl/nl mice

We examined 42 renal cysts and 10 liver cysts from Pkd1+/~ mice and 

failed to identify any cysts that stained for pS6 (Table 4.3, Figures 4.4 and 

4.5). Although we did observe some renal cysts that stained for pS6 from the 

Pkd1nVnl mice, we found that significantly less small cysts (<50pm) stained 

(56%, 168/300) compared to large cysts (>200pm) (85%, 93/110; P<0.001) 

(Table 4.4, Figure 4.5).

4.3.4.2 pS6 staining in renal lesions and liver cysts from compound

heterozygous mice

We found that 47% (27/58) of renal cysts from Tsc1+/~Pkd1+/~ mice 

failed to stain for pS6, whereas 93% (26/28) of advanced lesions 

(cystadenomas and RCCs) from these mice did stain (P<0.001), and similarly, 

in Tsc2+/'Pkd1+/' mice, significantly fewer renal cysts stained for pS6 as 

compared to advanced lesions (128/163 vs. 42/42, P<0.001) (Table 4.3,

Figure 4.5). We also examined 8 liver cysts from Tsc1+/'Pkd1+/' mice and 7 

from Tsc2+/'Pkd1+/' mice and failed to find any that stained for pS6 (Figure 
4.4).
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Pkd1+/-

Tsc1+/-Pkd1Pkd1+/-

Figure 4.4 H&E and immunohistochemistry analysis of murine liver lesions using anti-pS6. 
(A) Large liver cyst from a Pkd1+A mouse. (B) Section through a focal multi-cystic region 
found in the liver of a Tsc1+APkd1+A mouse. Cyst are lined with a single layer of cuboidal 
epithelial cells. (C, D) Corresponding pS6 staining of cysts in A and B. No staining was seen 
in any liver cysts. Scale bars: A; 5mm, B & D; 50pm, C; 0.1mm.
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Table 4.3 pS6 analysis of renal lesions from Pkd1+A, Tsc1+APkd1+A and 

Tsc2+/'Pkd1+/- mice.

Genotype Lesion type Number pS6 positive

Pkd1*'- Cyst

Cystadenoma

RCC

0/30 (0%)

n/a

n/a

Tsc1v'Pkd1v- Cyst

Cystadenoma

RCC

31/58 (53%)* 

24/26 (92%)* a 

2/2 (100%)

Tsc2*'~Pkd1*'~ Cyst

Cystadenoma

RCC

128/163 (78%)* 

40/40 (100%)* a 

2/2 (100%)

n/a, cystadenomas and RCCs were not found in Pkd1+/~ mice.
Numbers based on the analyses of five sections (~200|jm apart) from half 
kidneys of five mice from each of the above genotypes. 
a cystadenoma and RCC values combined, *P<0.001, #P<0.001

Table 4.4 pS6 analysis of renal lesions from Pkd1nl/nl mice.

Mouse pS6 +ve cysts 

<50pm diameter

pS6 +ve cysts 

>200pm diameter

Total cysts pS6 +ve

WT n/a n/a n/a

Pkd1mm

1

55/100 (55%) 12/14 (86%) 147/250 (59%)

Pkd1nm

2

55/100 (55%) 35/41 (85%) 621/848 (73%)

Pkd1mnl

3

58/100 (58%) 46/55 (84%) 1065/1340 (80%)

n/a, no cysts were present for scoring.
Numbers based on the analyses of one section from half kidneys of each of 
the above mice.
Significantly less small cysts (<50pm) stained positive for pS6 (56%, 168/300) 
compared to large cysts (>200pm) (85%, 93/110; P<0.001).
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Pkd1+/- Pkd1nm

Tsc1+/-Pkd1+A Tsc2+APkd1+/-

Figure 4.5 Immunohistochemistry analysis of murine renal lesions using anti-pS6. 
Examples of cysts from Pkd1 +A (A), Pkd1nl/nl(B), (C) and (D) 
mice that did not stain for pS6. Scale bars: (A) 0.2mm, (B-D) 50pm.
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4.3.5 Study of mice with early onset PKD
We failed to find any mice in the previous Tsc1+/'Pkd1+/' and Tsc2+/~ 

Pkd1+/~ studies that recapitulated the contiguous gene syndrome phenotype of 

early onset severe PKD. We reasoned that mice with early onset PKD may 

have died before the age of 6 months (the earliest age we previously 

examined) and so we therefore set up a breeding programme where mice 

were examined at weaning. In over 200 mice generated from Tsc2+/~ x Pkd1+/~ 

crosses we identified three mice with a polycystic renal phenotype (no extra- 

renal lesions were observed). Two of these mice were characterised as 

Tsc2+/~ and one was a Tsc2+/'Pkd1+/'. No mice from over 200 offspring 

generated from Tsc1+/~ x Pkd1+/~ crosses were identified with PKD.

4.3.5.1 Renal pathology of mice with early onset PKD

PKD in the three mice was unilateral, with one normal kidney and one 

polycystic kidney (Figure 4.6). Macroscopically, the polycystic kidney 

appeared enlarged but maintained its reniform shape and had a smooth 

cortical surface with multiple cysts clearly visible under the surface. Upon 

longitudinal bisection, the cysts were distributed homogeneously throughout 

the cortical and medullary regions and ranged in size from <1mm to 5mm 

(Figure 4.6). Microscopically, the cysts differed in morphology with those from 

the two Tsc2+/~ mice resembling TSC-associated cysts (Figure 4.2, panel B) 

lined with a single layer of cuboidal epithelial cells. Four cystadenomas were 

observed in one of the Tsc2+/' polycystic kidneys whilst five were observed in 

the other. Cysts from the Tsc2+/~Pkd1+/~ mouse with PKD were lined with a 

single layer of flattened looking epithelial cells similar to those observed in 

Pkd1+/' mice. No cystadenomas were observed in this mouse.

4.3.5.2 pS6 staining in polycystic kidneys from mice with early onset

PKD

All kidney cysts and cystadenomas from the polycystic kidneys of the 

two Tsc2+/' mice stained positive for pS6 (Figure 4.7). In the Tsc2+/~Pkd1+/~ 

mouse with PKD, the majority of cysts were negative for pS6 except for a 

large cyst which showed pS6 staining within the single layer of epithelial cells 

and also closely surrounding cells (Figure 4.7).
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Tsc2+/-Pkd1+/-

Figure 4.6 Macroscopic and microscopic images of polycystic kidneys from 3-4 week old 
mice with early onset PKD. (A) Macroscopic image showing the unilateral nature of the 
polycystic kidney phenotype with one normal looking kidney (on the left) and one polycystic 
kidney (on the right) both from the same mouse. (B) Macroscopic image of the polycystic 
kidney from (A) cut in half to reveal the internal cysts which are present throughout the 
cortex and medulla. (C, D) H&E images of the kidneys from Tsc2+/- and Tsc2+/'Pkd1+/- mice 
with early onset PKD which show the normal architecture of one kidney and the polycystic 
architecture of the other. (E) Microscopic image of a cyst from a Tsc2+/' mouse with PKD 
showing a single layer of cuboidal epithelial cells in contrast to the Tsc2+APkd1+/- mouse with 
PKD (F) where the cyst lining epithelial cells are flattened in appearance. Scale bars: (A-D) 
2mm, (E, F) 10pm.
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:Jsc2+/-Pkd1+/-

Figure 4.7 Immunohistochemistry analysis of polycystic kidneys from 3-4 week old mice with early onset PKD using anti-pS6. Cysts 
(A) and a cystadenoma (B) from a Tsc2+/~ mouse with PKD showing strong staining for pS6. (C) Large cyst (top left) showing staining 
for pS6 and small cyst (bottom right) negative for pS6 from the Tsc2+APkd1+/- mouse with PKD. The majority of cysts in this mouse 
were negative for pS6. Scale bars: A; 10pm, B; 20pm, C; 40pm.



4.4 Discussion

4.4.1 Genetic interaction between Tsc1, Tsc2 and Pkd1
A genetic interaction between TSC2 and PKD1 is suggested by the 

severe early onset PKD phenotype of the TSC2/PKD1 contiguous gene 

deletion syndrome (Brook-Carter etal. 1994, Sampson etal. 1997). We bred 

Tsc2+/~ mice with Pkd1+/~ mice in an attempt to recapitulate this phenotype; 

however, although we found more renal lesions that were more advanced in 

Tsc2+/~Pkd1+/~ mice, this was not on the same scale as that seen in the 

contiguous gene syndrome. Severe PKD was not a common feature of these 

mice, which instead presented with an increased burden of a mixture of cysts, 

cystadenomas and RCC which progressed in severity with age.

Tuberin and hamartin physically interact to from a tumour suppressor 

complex (van Slegtenhorst et al. 1998, Tee et al. 2003) and it is therefore of 

interest to investigate whether a similar enhanced kidney phenotype is 

produced in Tsc1+/~Pkd1+/~ compound heterozygous mice. Severe PKD was 

not a phenotype of the Tsc1+/~Pkd1+/~ mice, however significantly more renal 

lesions (cysts, cystadenomas and RCCs) were found in these mice compared 

to their single heterozygote littermates.

This data, although different to the human TSC2JPKD1 contiguous 

gene deletion syndrome, indicates that a genetic interaction exists between 

Tsc1, Tsc2 and Pkd1. Although TSC2 and PKD1 lie immediately adjacent to 

each other on chromosome 16 in humans, TSC1 lies separately on 

chromosome 9. In our mouse models, although Tsc2 and Pkd1 lie adjacent to 

each other on chromosome 17, the gene targeting constructs will lie in 

different alleles and Tsc1 is located on chromosome 2. This suggests that 

trans-regulatory changes, perhaps in combination with c/s-regulatory 

changes, may affect gene expression and play a role in disease severity.

4.4.1.1 Advanced renal lesions may obscure accurate lesion counting

The main underlying problem when using renal lesion number as a

marker of disease severity is that advanced renal lesions (such as 

cystadenomas and RCCs) tend to be much larger than the earlier renal cysts
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and invade much of the kidney, obscuring the smaller more numerous cysts 

(Wilson et al. 2005). Where 10 small cysts may once have been, a RCC may 

later infiltrate that space, thus making the overall renal lesion number lower, 

but the severity of the disease greater. This could explain some of the unusual 

renal lesion number results we observed, for example, between 6-7 months 

and 9-12 months of age, the overall lesion number in Tsc2+/~Pkd1+/~ mice 

actually decreased with age (although not significantly) from an average of

90.4 lesions per mouse to 53.2 lesions per mouse respectively. An 

explanation for this can be found when the types of these lesions are 

examined. Ninety eight percent (221/226) of lesions in the 6-7 month old mice 

are cysts, whereas in the 9-12 month old Tsc2+/~Pkd1+/~ mice only 56% 

(75/133) of the lesions are cysts, indicating that a significantly larger 

proportion of advanced lesions (cystadenomas and RCCs) are present in 

older mice (P<0.001).

Perhaps one slightly odd result that cannot be explained by the 

presence of large advanced lesions obscuring accurate lesion numbers is the 

small decrease in the number of renal cysts in Pkd1+/~ mice as age increased 

from 9-12 months to 15-18 months (from an average of 5.2 to 1.2 lesions per 

mouse in Pkd1+/~ mice from Tsc1+/~ x Pkd1+/~ crosses and from 7.6 to 3.6 

lesions per mouse in Pkd1+/~ mice from Tsc2+/~ x Pkd1+/~ crosses). Due to the 

small n value it is unclear whether this observation is a true representation of 

cyst regression in older animals, however a similar phenomenon was found 

by Jiang et al. when working on the conditional Pkd1L3 mouse model (Jiang et 

al. 2006). The authors observed cyst regression, linked to cyst epithelia 

apoptosis, in mice past the age of 30 days. They state infiltration of 

inflammatory cells, hypoxia and a general hostile environment for tubular cell 

survival as possible mechanisms for apoptosis in these cystic epithelial cells. 

Although this model is more severe than our Pkd1H/~ mouse model, further 

lesion counting and terminal dUTP nick-end labelling (TUNEL) staining could 

reveal more about possible cyst regression in these mice.
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4.4.2 Functional interaction between hamartin, tuberin and PC1
Another possible reason for the significant increase in lesion numbers 

and/or advancement of these lesions found in our compound heterozygous 

mice could be that second hits, due to the availability of two genes now 

containing germline mutations, are occurring more frequently and thus 

increasing the lesion burden. However, one would expect an additive increase 

in lesion numbers if this were the case, unlike the much greater increase in 

lesion numbers observed in our Tsc1+/~Pkd1+/~ and Tsc2+/'Pkd1+/' mice. Many 

studies have also found that second hits are not apparent in all TSC and 

ADPKD associated lesions (Wilson etal. 2006, Onda etal. 1999, Koptides et 

al. 2000).

Perhaps a combined drop in gene dosage levels could lead to a more 

than additive phenotype in Tsc1+/~Pkd1+/~ and Tsc2+/~Pkd1+/~ mice. The 

signalling pathways downstream from PC1, tuberin and hamartin may 

converge at some crucial point, with loss of an allele of each taking the gene 

dosage level below a critical threshold, thus accelerating disease initiation and 

progression. Indeed, when Pkd1+/~ mice were bred with Pkd2+/~ mice (Wu et 

al. 2002), cystic disease in the trans-heterozygous mice was notably more 

severe than that predicted by a simple additive effect in the single 

heterozygous mice. The authors state that their data suggest a modifier role 

for the Trans’ polycystin gene in cystic kidney disease, and support a 

contribution from threshold effects to cyst formation and growth (Wu et al. 

2002). As previously mentioned, tuberin and PC1 have been found to 

functionally and physically interact, with tuberin trafficking PC1 from the Golgi 

to the lateral cell membrane (Kleymenova et al. 2001) at which point PC1 has 

been suggested to assemble a complex with tuberin and mTOR through 

interaction with its cytoplasmic C-terminal tail (Shillingford et al. 2006, Mostov 

2006). A combined reduction in each protein (tuberin and PC1) in Tsc2+/~ 

Pkd1+/' mice may potentially lead to an even greater drop in the amount of 

functionally active protein, thus leading to a more severe disease phenotype. 

As hamartin and tuberin have been shown to form a tumour suppressor 

complex, the same may also apply to Tsc1+/~Pkd1+/~ mice.
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4.4.3 A rare occurrence of mice with severe early onset PKD was
observed
Interestingly, although extremely rare, we did observe 3 cases of PKD 

in mice from crosses between Tsc2+/' and Pkd1+/~ mice. These cases stood 

out as the mice were only 3-4 weeks of age and displayed severe unilateral 

PKD. Upon genotyping we discovered that two of these mice were Tsc2+/~ and 

the other was Tsc2+/~Pkd1+/~. This was surprising considering the contiguous 

gene syndrome involves a deletion that spans both TSC2 and PKD1. The 

morphology of lesions from the Tsc2+/~ and Tsc2+/'Pkd1+/' mice with severe 

PKD differed, with those from Tsc2+/~ mice resembling 7sc-associated cysts 

and cystadenomas, and those from Tsc2+/~Pkd1+/~ mice resembling cysts 

found in Pkd1+/' mice. Interestingly, similar to our Tsc2+/~ mice with severe 

PKD, Cai et al. (2003) have identified three young Eker rats (<3 months of 

age) with PKD. Their observations were similar to ours with the polycystic 

kidneys containing cysts throughout the cortex and medulla and also 

cystadenomas and RCCs were present. Differences lay in the fact that PKD in 

the Eker rat was bilateral whereas in our Tsc2+/' mice with PKD it was 

unilateral. Also Cai et al. observed extra renal lesions in the spleen and uterus 

whereas we observed no extra-renal lesions. The authors found that affected 

cells from these rats had lost the wild-type Tsc2 allele while retaining two 

copies of chromosome 10 containing the mutant Tsc2 allele as well as two 

normal copies of Pkd1. Due to this, affected organs did not express tuberin, 

whereas unaffected organs such as the brain and liver did. Also, despite the 

presence of two normal copies of Pkd1, tuberin deficient cells had an 

apparent functional inactivation of PC1 due to the requirement of tuberin for 

intracellular trafficking of PC1 to the lateral cell membrane (Kleymenova et al. 

2001). The authors state that the genetic data, bilateral nature of the kidney 

disease, and extent of involvement of the spleen and kidney indicate that, in 

affected animals, loss of the wild-type Tsc2 allele occurred during 

embryogenesis, probably as a result of chromosome nondisjunction, with 

affected animals being mosaics for loss of Tsc2 gene function. It is likely that 

a similar event has occurred in our Tsc2+/~ mice with PKD considering the 

cystic phenotype was similar and we observed strong pS6 staining in all cysts 

suggesting biallelic inactivation of Tsc2 and subsequent mTOR activation.
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The major difference with our mice is that PKD was unilateral. This could 

indicate that loss of the wild-type allele may have occurred at a later stage in 

embryogenesis.

The PKD phenotype in our Tsc2+/~Pkd1+/~ mouse with PKD appears to 

be quite different to the Tsc2+/~ mice with PKD with lesions resembling those 

found in Pkd1+/~ mice and also a lack of activation of the mTOR pathway in 

almost all cysts. Without molecular data it is unclear what is occurring in this 

mouse, however, one could speculate that a second hit may have occurred in 

the wild-type Pkd1 allele early in development, leading to severe early onset 

PKD in one of the kidneys with cysts resembling those found in Pkd1+/~ mice. 

Interestingly, cysts resembling those found in both TSC and ADPKD have 

been found in patients with TSC2/PKD'\ contiguous gene syndrome 

(Martignoni et al. 2002, Bisceglia et al. 2008). Perhaps one could speculate 

that the contiguous gene syndrome may arise through a variety of different 

second hits during development thus leading to slightly different mosaic 

phenotypes as observed in our mice with severe PKD. For example some 

patients, as with our Tsc2+/~ mice and the Eker rats with PKD, may acquire a 

second hit in the wild-type TSC2 allele during development, leading to PKD 

with cysts resembling those seen in TSC. Loss of the wild-type TSC2 allele 

may lead to PC1 becoming sequestered in the Golgi, thus preventing its 

function in cell-cell and cell-matrix interactions at the lateral cell membrane 

(Cai et al. 2003). Therefore PKD may arise early in life with the severity of that 

seen in advanced stage ADPKD, but the phenotype of cysts seen in TSC 

(Sampson etal. 1997). Indeed, three cases of patients with multiple cysts in 

both kidneys and a large rearrangement in TSC2 but no deletion in PKD1 

have been indentified (Sampson etal. 1997). Another mechanism may 

involve somatic mutations in both TSC2 and PKD1 during development. This 

could explain the presence of cysts with the appearance of those found in 

TSC and ADPKD in kidneys from patients with the contiguous deletion 

syndrome (Martignoni et al. 2002, Bisceglia et al. 2008). Finally, a third 

possibility could be somatic mutations occurring in PKD1 during development 

giving rise to cysts with morphology similar to those found in ADPKD. This 

scenario may be occurring in our Tsc2+/~Pkd1+/~ mouse with PKD as the renal
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cysts appear similar to those seen in the Pkd1+/~ mice and also may occur in 

an mTOR independent manner as cysts were negative for pS6. Of interest, 

one of the large renal cysts present in our Tsc2+/'Pkd1+/' mouse with PKD 

stained positive for pS6. One might speculate that a second hit in Tsc2 may 

have occurred in this cyst leading to loss of tuberin and subsequent activation 

of the mTOR pathway. It would be extremely interesting if mTOR analyses 

were preformed on kidneys from patients with the contiguous gene syndrome 

to assess whether those cysts with a TSC appearance stain positive for 

mTOR activation and if those cysts with an ADPKD appearance stain 

negative. It is interesting to note that patients with the contiguous gene 

syndrome may develop AMLs later in life (personal correspondence with 

Julian Sampson regarding patients from his clinic). All three of the above 

scenarios could lead to this either through a somatic hit in TSC2 during 

development, or a somatic hit in TSC2 later in life in an individual cell.

In conclusion, it is unclear whether our three mice with PKD 

recapitulate the TSC2/PKD1 contiguous gene syndrome due to a lack of 

molecular data from both sources. One can only speculate about the 

involvement of second hits in this phenotype, however, a study by Smulders 

et al. (2003) revealed a patient with contiguous deletion of both TSC2 and 

PKD1 who displayed no signs of infantile PKD. The authors found an absence 

of somatic mosaicism in this patient thus perhaps highlighting the need for an 

early somatic mutation during development in order for early onset PKD to 

arise. Hopefully future studies involving LOH and other mutation analyses will 

reveal the role of second hits in the TSC2/PKD1 contiguous gene syndrome.

4.4.4 The role of mTOR activation in renal and hepatic cyst

formation

We previously found that cysts, the earliest renal lesions present in 

Tsc1+/~ and Tsc2+/' mouse models, showed significantly less pS6 staining 

compared to cystadenomas and RCCs. These results suggested that 

activation of the mTOR pathway may not be necessary for renal cyst 

formation in TSC. Conflicting evidence exists for the role of mTOR activation
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in ADPKD (Shillingford et al. 2006, Hartman et al. 2009) and so we attempted 

to investigate activation of the mTOR pathway in our Pkd1 mouse models.

4.4.4.1 Lack of mTOR activation in Pkd1+/~ cysts

A possible functional interaction between PC1, tuberin and hamartin 

through the mTOR pathway was recently suggested by Shillingford et al. 

(2006). They found that the cytoplasmic tale of PC1 physically interacts with 

tuberin and mTOR and proposed that PC1, tuberin (and thus potentially 

hamartin) and mTOR form a protein complex in renal epithelial cells, the 

function of which is the down-regulation of mTOR activity under normal 

conditions. The authors also found that renal cysts from ADPKD patients and 

mouse models (Orpk-rescue, Pkd1°°nd and myelin and lymphocyte protein 

over-expressing mice) stained positive for pS6 and phospho-mTOR. In 

contrast, we failed to identify pS6 staining in any renal or hepatic cysts from 

Pkd1+/~ mice indicating that mTOR was not active in these animals. Obvious 

reasons for this difference to the ADPKD samples lie in the fact that human 

ADPKD specimens represent advanced stage disease, whereas our mouse 

model represents a very mild cystic phenotype where early factors are in play, 

quite different to end stage disease factors. This could also be the reason why 

Shillingford et al. found pS6 staining in their mouse models as these also had 

a severe cystic phenotype reminiscent of late stage disease. We too 

examined a mouse model with severe renal cystic disease by 3 weeks of age 

(Pkd1nVnl mice) and found pS6 staining in a number of cysts, however, it 

appears that smaller cysts (<50pm diameter) display significantly less pS6 

staining compared to larger cysts (>200pm diameter), suggesting that mTOR 

activation occurs later in the disease process. Recently, work by Hartman et 

al. (2009) showed that only a small proportion of cysts (30%) from patients 

with ADPKD had strong to moderate pS6 staining, with the other 70% 

showing weak or negative pS6 immunoreactivity. It is unclear if these results 

are in agreement with those from Shillingford et al. as these authors do not 

state the specific percentage of renal cysts from patients with ADPKD which 

stained positive or negative for pS6. It is however clear that in kidneys from 

patients with late stage ADPKD, a significant proportion of cysts do not show 

evidence of mTOR activation.
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The role of mTOR activation has recently been investigated in hepatic 

cysts from patients with ADPKD who had received kidney transplants (Qian et 

al. 2008). The authors found a high level of p-mTOR and pS6 staining in liver 

cyst lining epithelial cells. In contrast, we found no evidence of pS6 staining in 

liver cysts from Pkd1+/~ mice. As with our renal lesion data, we believe that 

this difference lies in the fact that human ADPKD specimens represent 

advanced stage disease, whereas our mouse model represents a mild cystic 

phenotype. It would be interesting to know if all liver cysts from these patients 

with ADPKD (n=2) were positive for p-mTOR and pS6, or if only a small 

proportion were positive (the authors to do not state any percentages).

We feel that our Pkd1+/~ findings represent what occurs in early stage 

cystic disease. Our data suggests that early cyst formation in ADPKD does 

not involve the activation of mTOR, however, at later stages mTOR can 

become active and perhaps accelerate and progress the disease.

4.4.4.2 Activation of the mTOR pathway is not essential for cyst

initiation in compound heterozygous mice

As with Tsc1+/' and Tsc2+/~ mice, we found a significant proportion of 

renal cysts in both Tsc1+/~Pkd1+/~ and Tsc2+/~Pkd1+/~ mice were negative for 

pS6 compared to advanced lesions. Liver cysts, as in the Pkd1+/~ mice, were 

also negative for pS6 in Tsc1+/~Pkd1+/~ and Tsc2+/~Pkd1+/~ mice. No liver cysts 

were observed in Tsc1+/~ or Tsc2+/' mice indicating that these lesions are a 

phenotype of Pkd1 heterozygosity. This data further supports our hypothesis 

that activation of the mTOR pathway is not the initiating mechanism of renal 

cystogenesis in TSC or ADPKD, but perhaps is one of the key events for 

disease progression.

4.4.4.3 Implications for rapamycin treatment

Clinical trials are currently underway for the treatment of TSC and 

ADPKD with the mTOR inhibitor rapamycin. Early results in TSC patients 

reveal a decrease in the size of AMLs (Bissler et al. 2008, Davies et al. 2008), 

however the effects on cysts have not been reported. Clinical trials for the use 

of rapamycin treatment in ADPKD patients are also underway with results
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pending. A small retrospective study has been performed on advanced-stage 

ADPKD patients who had recently received a renal transplant without removal 

of the affected cystic kidneys (Shillingford et al. 2006). Rapamycin treatment 

is used in some of these patients as an immunosuppressant to prevent 

transplant rejection. At this advanced stage of disease a reduction in kidney 

volume was seen in the rapamycin group. This agrees with results from 

rapamycin treatment in two advanced mouse models of PKD (the bpk and 

orpk-rescue mouse models) in which the histological renal cystic index was 

significantly reduced in rapamycin treated mutant mice. Recently, a small 

retrospective study was carried out which measured the volumes of polycystic 

livers and kidneys in patients with ADPKD who had received kidney 

transplants and had participated in a randomised trial that compared a 

sirolimus-containing immunosuppression regimen to a tacrolimus-containing 

immunosuppression regimen (Qian et al. 2008). The investigators found that 

treatment with the sirolimus regimen was associated with an 11.9 ± 0.03% 

reduction in polycystic liver volume, whereas treatment with tacrolimus for a 

comparable duration was associated with a 14.1 ± 0.09% increase. They also 

noted a trend toward a greater reduction in kidney volume in the sirolimus 

group compared with the non-sirolimus group.

Despite all this data, studies of the efficacy of rapamycin in early cystic 

disease in TSC or ADPKD have not been carried out. Here we found that 

many of the earliest renal lesions from Tsc1+/~, Tsc2+/', Pkd1+/\  Tsc1+/'Pkd1+/' 

and Tsc2+/'Pkd1+/~ mice did not exhibit activation of mTOR. Other 

investigators have also found that ~70% of cysts from patients with ADPKD 

had weak or absent pS6 staining (Hartman et al. 2009) whilst studies in the 

Eker rat reveal that rapamycin has no effect on the number of microscopic 

precursor lesions, (Kenerson et al. 2005). These data suggest that although 

mTOR inhibitors may be an effective treatment for the advanced stages of 

TSC and ADPKD associated kidney disease, they may have little effect in 

preventing initial cyst/tumour formation.
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CHAPTER FIVE: Investigating primary cilia in TSC and ADPKD 

mouse models

5.1 Introduction
Defects in the structure and/or function of primary cilia may be involved 

in some of the earliest stages of cystic disease such as cell proliferation and 

tubular differentiation (Lin and Satlin 2004). Numerous proteins associated 

with cystic kidney disease have been localised to the renal primary cilium or 

basal body including the ADPKD2 protein PC2 (Pazour et al. 2002, Ydder et 

al. 2002), the product of the human autosomal recessive PKD gene (PKHD1), 

fibrocystin (Ward et al. 2003), and polaris and cystin, which are mutated in 

two mouse models of PKD (Yoder et al. 2002). Mice with mutant polaris 

develop shortened cilia or no cilia in kidney epithelia (Pazour et al. 2000) and 

PCK rats (an orthologous model for PKHD1) (Ward et al. 2002) have cilia that 

are abnormal and shortened (Masyuk et al. 2003).

The proteins associated with TSC and ADPKD have been localised to 

the primary cilium. PC1 and PC2 can be found in the primary cilium where the 

two proteins interact to form a mechanosensory complex (Yoder et al. 2002). 

Hamartin has been localised to the centrosome/basal body complex 

(Astrinidis et al. 2006, Hartman et al. 2009) and tuberin interacts with PC1 

(Shillingford et al. 2006), which could potentially localise the protein to the 

primary cilium.

Here, we studied the structure of primary cilia in pre-cystic renal tubule 

epithelial cells from wild-type, Tsc1+/~, Tsc2+/', Pkd1+/', Tsc1+/'Pkd1+/~ and 

Tsc2+/~Pkd1+/~ mice at 3 months of age by SEM. We also examined primary 

cilia in cysts from these mice to assess potential differences between pre- 

cystic and cystic tubules. Defects in ciliary structure are often associated with 

disrupted IFT and so a general role for hamartin, tuberin and PC1 in this 

process was sought.
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5.2 Materials and methods

5.2.1 Animal care, genotyping and tissue fixation

All procedures with animals, DNA extraction and genotyping were 

performed as previously described. Tsc1+I~ and Tsc2+'~ mice were crossed 

with Pkd1+/~ mice to produce Tsc1+I~, Tsc1+/~Pkd1+/~, Tsc2+I~, Tsc2+/'Pkd1+/', 

Pkd1+/~ and wild-type progeny. Pre-cystic renal tubules were examined in 

three month old mice and cysts were examined in 15-18 month old mice 

following perfusion fixation with PBFG (chapter 2, section 2.5.3.3). Five mice 

from each genotype were used for both age groups. Fixed kidneys from 3 

month old mice were sectioned to reveal open tubules (chapter 2, section

2.5.3.3) and cysts were removed from 15-18 month old fixed mouse kidneys.

For SEM analysis of E8.5 embryos, wild-type, Tsc1+I', Tsc2*'~, Tsc1~'~ 

and TscZ1' embryos were removed from their extra-embryonic membranes 

and fixed in PBFG overnight. For cardiac tube examination, E9.5 embryos 

were extracted and viewed under an Olympus BX51 microscope using a dark 

field filter. DNA was extracted from yolk sacs using the QIAamp DNA mini kit 

(chapter 2, section 2.5.4.2) and genotyping performed as described in 

sections 3.2.1 and 4.2.1.

5.2.2 SEM processing and analysis

All specimens were dehydrated using the HMDS method (Nation 1983, 

chapter 2, section 2.5.13), mounted on aluminium stubs using carbon paint, 

sputter coated with gold and viewed at 5kV in a JEOL 840A SEM. Kidney 

halves for tubule examination were mounted cut side facing up and cysts 

were mounted with the lumen facing up. AnalySIS software was used to 

measure primary and nodal cilia lengths.

5.2.3 Statistics

Primary cilia lengths were compared using 2-sample T-tests and the 

Mann-Whitney confidence interval test.
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5.3 Results

5.3.1 Primary cilia in pre-cystic renal tubules

We examined collecting tubules as these displayed the best 

morphology with clearly visible primary cilia. The collecting tubule consists of 

two cell types: light cells, which possess a single central cilium, and dark cells 

which do not usually display a primary cilium but do possess thin folds called 

microplicae (Figure 5.1) (Kessel and Kardon 1979). These cells were clearly 

visible in our samples and enabled the accurate identification of collecting 

tubules.

Primary cilia from pre-cystic renal tubules displayed no abnormal 

morphology such as bulbous tips and appeared as solitary projections with no 

evidence of multiple cilia per cell. We found that primary cilia in pre-cystic 

renal tubule cells from Tsc1+/~ and Tsc2+/~ mice were 5% and 10% shorter, 

respectively, as compared to those from age-matched wild-type littermates 

(P=0.016 and P<0.001, respectively) (Table and Figure 5.1). We found that 

the lengths of primary cilia from pre-cystic renal tubule cells from Pkd1+A mice 

were 5% longer than those found in wild-type animals (P= 0.02) (Table 5.1). 

Interestingly, the lengths of primary cilia from pre-cystic tubule cells from 

Tsc1+APkd1+A and Tsc2+/'Pkd1+/' mice were also significantly longer than 

those found in Tsc1+/~ and Tsc2+/' mice (P<0.001 for both) and wild-type mice 

(P<0.001 and P=0.043 respectively), and were of a similar length to those 

found in Pkd1+/' mice (P>0.12) (Table 5.1).

5.3.2 Primary cilia in renal cystic epithelia

As with the pre-cystic renal tubule cells, primary cilia from epithelial 

cells lining cysts had a normal morphology and no multiple cilia per cell were 

observed. We found that the lengths of primary cilia in epithelial cells lining 

cysts from Tsc1+/~ and Tsc2+/' mice were ~200% longer than primary cilia from 

pre-cystic tubule cells from wild-type, Tsc1+/' or Tsc2+/~ mice (P<0.001) (Table 

and Figure 5.1). Conversely, primary cilia from epithelial cells lining cysts from 

Tsc1+APkd1+A and Tsc2+APkd1+A mice were 34-39% shorter than those found 

in cysts from Tsc1+/' and Tsc2+/~ mice (P<0.001 for both) (Table and Figure 

5.1), but still remained significantly longer than those from pre-cystic tubule
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cells from wild-type, Tsc1+/'Pkd1+/' and Tsc2+/~Pkd1+/~ mice (P<0.001). No 

renal cysts were found from Pkd1+/~ mice for SEM analysis.

Table 5.1 Measurements of primary cilia length (pm) from pre-cystic renal 

tubule cells and epithelial cells lining cysts.

Genotype Pre-cystic tubule cells

mean length (and SD)

Epithelial cells lining cysts

mean length (and SD)

Wild-type 2.233 (0.449) 

n=205

n/aa

Tsc1+/' 2.122 (0.537) 5.157 (3.059)

n=126 n=442

P=0.016 P<0.001

Tsc2*'- 2.016(0.410) 5.091 (2.921)

n=255 77=128

P<0.001 P<0.001

Pkd1*'~ 2.333 (0.399) 

n=285 

P= 0.02

n/a D

Tsc1*APkd1*A 2.389 (0.456) 3.384 (1.404)

n=269 n= 157

P<0.001 P<0.001

Tsc2*'-Pkd1*'- 2.356 (0.589) 3.091 (1.351)

77=261 77=106

P=0.043 P< 0.001

n/a, not applicable (awild-type animals do not develop renal cysts and bno 
renal cysts were found from Pkd1+/' mice for SEM analysis), n values denote 
number of primary cilia measured from five mice of each genotype.
P values in table correspond to associated genotype cilia length compared to 
wild-type cilia length.
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Tsc1+A Pkd1+A

Tsc2+/- Pkd1+A

Figure 5.1 SEM examination of renal primary cilia in pre-cystic collecting tubule cells (A, B) 
and epithelial cells lining cysts (C-F). Primary cilia from pre-cystic cells from Tsc2+A mice (B, 
mean length 2.016pm) were 10% shorter compared to those from wild-type littermates (A, 
mean 2.223pm, P<0.001). Primary cilia from epithelial cells lining cysts from (C) Tsc1+A 
(mean 5.157pm) and (E) Tsc2+A (mean 5.091pm) mice were >200% longer than primary cilia 
from pre-cystic tubule cells from wild type, Tsc1+A or Tsc2*A mice (P<0.001). Pkd1- 
haploinsufficiency significantly reduced the length of the primary cilia from epithelial cells 
lining cysts from Tsc1+A or Tsc2+A mice: (D) Tsc1+A Pkd1+A mice, mean 3.384pm, and, (F) 
Tsc2+A Pkd1+A mice, mean 3.091pm (P<0.001 for both). Scale bars: 5pm.
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5.3.3 Examination of nodal cilia and cardiac tube position
We investigated whether hamartin and tuberin play a role in I FT and 

the active maintenance of cilia. Mice with mutations in proteins necessary for 

cilium formation often have an absence or malfunction in nodal cilia in E7.5- 

E8.5 embryos which prevents the generation of the leftward nodal flow of 

extra-embryonic fluid required for activation of the molecular signals in the left 

side of the body and, as a consequence, develop situs inversus. However, we 

failed to find any differences in nodal cilia from Tsc1+/~, Tsc1v', Tsc2+/~, Tsc2~/~ 

and wild-type embryos (Figure 5.2), nor did we, or others (Onda et al. 1999), 

find any evidence of situs inversus or defects in cardiac tube position (Figure

5.3).
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g  Tsc1+/- Tsc1-'~

Figure 5.2 SEM examination of nodal cilia from E8.5 embryos. (A) Lower magnification view 
of the node region (arrow) and notochordal plate (arrow head). We observed no difference in 
the length or structure of nodal cilia from wild-type (B), Tsc1+/~ (C), TsctA (D), Tsc2+A (E) and 
Tsc2-A (F) embryos. Scale bars: A; 100pm, B-F; 10pm.
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Figure 5.3 Microscopic examination of cardiac tube position in E9.5 mouse embryos. (A) 
Lower magnification view of a wild-type embryo showing the location of the cardiac tube with 
a higher magnification view (B) to show the direction of cardiac tube looping. We observed 
no difference in looping of the cardiac tube between wild-type (B), Tsc1+A (C), Tsc1v‘ (D), 
Tsc2+/- (E) and Tsc2̂ * (F) embryos. Scale bars: 0.1mm.
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5.4 Discussion
5.4.1 A possible role for hamartin, tuberin and PC1 in renal
ciliogenesis
Defects in the structure or function of primary cilia are thought to 

underlie numerous disorders associated with cystic kidneys. Hartman et al. 

(2009) recently described a ciliary disruption in TSC with enhanced cilia 

development in Tsc1 and Tsc2 null mouse embryonic fibroblasts (MEFs) 

which manifests in an mTOR-independent mechanism. Normally, Tsc1 and 

Tsc2 null MEFs have difficulty growing and so in order to compensate for this, 

p53 is often knocked out (Kwiatkowski et al. 2002, Zhang et al. 2003). By 

silencing p53 expression, the protein’s function as a cell cycle regulator is 

abolished, thus leading to uncontrolled cell growth and proliferation, effectively 

immortalising the cell. Of course, a major disadvantage of this approach is the 

multitude of other cellular processes that could potentially be affected by this 

silencing, for example, DNA repair and apoptosis (Sancar et al. 2004). By 

losing p53, the cell becomes genetically unstable and susceptible to 

mutations in other genes with no applicable mechanism to correct or eradicate 

these mutated cells (Sancar et al. 2004).

In our study, we found that hamartin, tuberin and PC1 all played a role 

in maintaining the length of primary cilia in pre-cystic renal tubule cells (those 

from Tsc1+/~ and Tsc2+/~ mice were 5-10% shorter and those from Pkd1+/~ mice 

were 5% longer, compared to wild-type littermates). These data support a role 

for hamartin, tuberin and PC1 in renal ciliogenesis and suggest that cellular 

abnormalities exist in pre-cystic cells in a Tsc1-, Tsc2- or Pkd1- 

haploinsufficient state. Our Tsc1+/' and Tsc2+/~ cilia data differ to those of 

Hartman et al. who found an increase in the number of ciliated cells and also 

an increase in the length of cilia in Tsc1 and Tsc2 null MEFs compared to 

wild-type cells. We found no difference in the number of ciliated cells between 

genotypes and found that cilia length decreased in Tsc1+/~ and Tsc2+/~ pre- 

cystic renal tubule cells compared to wild-types. There are a number of 

reasons why our data may differ from that of Hartman et al. The Tsc1 null 

MEFs used were spontaneously immortalised and so it is unclear what else 

has been knocked during this process (Kwiatkowski et al. 2002). Also, as
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previously mentioned, the Tsc2 null MEFs had p53 knocked out which could 

have a variety of other effects on the cell which may contribute to an altered 

ciliary phenotype. Perhaps the biggest difference between our methods and 

those used by Hartman et al. is the fact that cilia formation was forcibly 

induced in the Tsc1 and Tsc2 null MEFs. To achieve this, three different 

conditions were used: cells were serum starved for 48-72 hours, cells were 

cultured with cell-to-cell contact inhibition in the presence of 10% foetal bovine 

serum (FBS) for 48 hours, or cells were grown logarithmically in the presence 

of 10% FBS at subconfluency for 24 hours. None of these conditions are a 

true representation of actual physiological conditions and tubular flow present 

in the renal tubule. We collected our cilia measurements from in vivo primary 

cilia which have been exposed to natural conditions found in renal tubules.

Cell culture methods will always be faced with the problem of not 

recapitulating actual in vivo conditions and therefore results from these 

studies should be treated with caution.

Interestingly, we saw a large increase (~200%) in cilia length in cyst 

lining epithelial cells from Tsc1+/~ and Tsc2+/~ mice. All the cysts examined 

were >1mm in diameter and are therefore quite developed with a significant 

chance of having acquired a second hit (and so may be in a Tsc1 or Tsc2 null 

state). This brings our results more inline with those found by Hartman et al. 

and suggests that defects exist in pre-cystic renal tubule cells in which the 

primary cilia are shortened in length, however in large cysts which may have 

advanced and acquired second hits, primary cilia have significantly grown in 

length. Similar length differences have been reported in kidneys and cell 

cultures from mice with mutations in the renal cystic disease associated Bbs4 

(Mokrzan et al. 2007) and Nek8 (Smith et al. 2006) proteins. Mokrzan et al. 

found that in cells cultured from Bbs4'A mice, cilia were initially shorter, but 

surpassed the length of control cilia by 10 days, whilst Smith et al. found 

significant lengthening of primary cilia in cysts from jck  (mutation in Nek8) 

mouse kidneys.
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5.4.2 Do ciliary length differences have a pathophysiological
effect?
It is clear from previous studies that loss of primary cilia has a 

detrimental effect to the cell, for example the reduction of flow mediated Ca2+ 

entry into the cell, and can lead to the formation of cysts (Nauli et al. 2003, 

Praetorius and Spring 2003, Lin et al. 2003). It is however unclear if 

differences in cilia length, particularly small variations in length as seen in our 

mice, result in a pathophysiological affect. Studies using the orpk mouse 

model of ARPKD have revealed that in orpk homozygous mutants, renal 

primary cilia are severely stunted (but still present) and when their sensitivity 

to flow was measured, the magnitude of the increase in intracellular Ca2+ 

concentration was reduced (Liu et al. 2005). Interestingly, a recent paper by 

Verghese et al. (2008) demonstrated a pattern of renal cilia length alterations 

in mice similar to our findings in pre-cystic renal tubule cells and renal cysts, 

with an initial shortening of cilia in the proximal tubule after ischaemic renal 

injury, followed by lengthening of cilia in both the proximal tubule and 

distal/collecting duct. It has been shown that longer cilia experience greater 

the shear forces and bending response to flow (Schwartz et al. 1997). Cilium 

lengthening is an energy-dependent process that uses kinesin- and dynein- 

based IFT. Verghese etal. therefore suggest that cilium lengthening during 

epithelial injury is likely to be a directed response, rather than the result of 

simple metabolic disruption. The authors propose that lengthening of the renal 

cilium increases their sensitivity to flow and other cilium detected factors that 

promote maintenance of the epithelial phenotype and may represent a 

compensatory response that counteracts dedifferentiation. This situation may 

also be occurring in renal cysts from our mouse models which showed a 

lengthening of primary cilia in Tsc1+/~, Tsc2+/~, Tsc1+/~Pkd1+/~ and Tsc2+/~Pkd1+/~ 

mice. Increasing primary cilia length in renal cysts may be the cells final 

attempt at detecting essential flow and ligand mediated physiological signals, 

however, unlike in an injured tubule where these factors may be more 

abundant, a cyst represents a very hostile environment with perhaps no flow 

and a variety of abnormal ligands which will not promote a normal epithelial 

phenotype.
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5.4.3 Haploinsufficiency of Pkd1 modulates the ciliary defect
observed in Tsc1- and 7sc2-haploinsufficient mice
Cilia defects have previously not been found in Pkd1 knockout cell 

lines and mouse models. Nauli et al. (2003) reported no difference in renal 

cilia length between wild-type embryonic kidney cells and embryonic kidney 

cells with biallelic mutations in Pkd1 (obtained from kidneys from wild-type 
and pkd idel34/dei34 embryos respectively), whilst Hartman et al. (2009) found 

no evidence of enhanced cilia development in Pkd1v~ MEFs. We have 

however showed that cilia are significantly longer in pre-cystic renal tubule 

cells from Pkd1+/~ mice compared to those found in wild-type mice. Reasons 

for this discrepancy could be explained by the fact that these labs carried out 

their research on cells using artificial flow and growth conditions which can not 

accurately mimic in vivo conditions. Also they measured cilia length from 

immunofluorescent images which have limited resolution compared to SEM, 

therefore small differences in length (as seen in our studies) may not be 

picked up. Finally, PkdTA MEFs were immortalised by knocking out p53 

(Hartman et al. 2009). As previously mentioned this could lead to a variety of 

other pathways being affected in these cells and so may affect primary cilia 

data.

Interestingly, the lengths of primary cilia from pre-cystic tubule cells 

from Tsc1+/'Pkd1+/~ and Tsc2+/~Pkd1+/~ mice were significantly longer than 

those found in Tsc1+/' and Tsc2+/~ mice and were of a similar length to those 

found in Pkd1+/' mice. Conversely, in epithelial cells lining cysts they were 

significantly shorter than those found in cysts from Tsc1+/~ and Tsc2+/~ mice. 

Although it is unclear why haploinsufficiency of Pkd1 modulates the ciliary 

defect observed in Tsc1- and 7sc2-haploinsufficient mice, these data clearly 

support a functional relationship between PC1 and hamartin/tuberin within the 

renal primary cilium. Perhaps alterations in Ca2+ influx controlled by PC1 and 

PC2 override the effects of hamartin and tuberin, and thus lead to a 

compound heterozygous phenotype similar to that of Pkd1 haploinsufficiency. 

This could perhaps be mediated by the calmodulin (CaM) binding domain 

present in the C-terminus of tuberin (Figure 1.3), which enables the binding of 

tuberin to the calcium-dependent intracellular signalling protein CaM (Noonan
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et al. 2002). This binding domain is believed to overlap with a binding domain 

for oestrogen receptor a (ERa) and a functional nuclear localisation sequence 

(NLS) (York et al. 2006). Hamartin is often found in a complex with tuberin 

and so may also be affected by altered Ca2+ influx (due to haploinsufficiency 

of Pkd1) and subsequent CaM binding. Further work is needed to elucidate 

the effect of intracellular Ca2+ concentration on hamartin and tuberin, 

particularly in connection with flow induced primary cilia Ca2+ influx and 

altered levels of PC1.

5.4.4 No evidence for a direct role of hamartin, tuberin or PC1 in
IFT
Left-right asymmetry is established early in embryonic life by the 

leftward flow of extraembryonic fluid across the node region generated by the 

beating of nodal cilia (Nonaka et al. 2005). Nodal cilia beat by twirling in a 

circle and are therefore situated toward the back of node cells and tilted 

toward the posterior of the embryo to ensure that extraembryonic fluid flows in 

a leftward direction (Nonaka etal. 2005). As previously mentioned, mice with 

mutations in proteins necessary for cilium formation often have an absence or 

malfunction in nodal cilia and, as a consequence, develop defects in cardiac 

tube position and abnormal expression of asymmetrical markers. Such 

models include mice with mutations in ciliary proteins such as kinesins 

(Marszalek etal. 1999), dyneins (Supp etal. 1999), and the IFT proteins 

IFT88 (encoded by Ift88, also known as Polaris) (Murcia etal. 2000, Hamada 

etal. 2002) and IFT172 (encoded by Ift172, also known as Wim) (Huangfu et 

al. 2003). We failed to find any differences in nodal cilia or cardiac tube 

position from Tsc1+/\  Tsc1v', Tsc2+/', Tsc2'/~ and wild-type embryos, 

suggesting that IFT was not altered in these mice. Interestingly, a recent 

paper by DiBella et al. (2009) demonstrated left-right asymmetry defects in a 

Tsc1 zebrafish morpholino. Knockdown of Tsc1 resulted in an abnormal 

expression pattern of two asymmetry markers (cmlc2 (cardiac myosin light 

chain 2) and southpaw) usually expressed on the left side of the embryo. 

Although our data indicates no obvious morphological defects in left-right 

asymmetry, perhaps subtle changes in asymmetry markers are present and 

should be investigated in further embryo studies. Overall, this data provides
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no evidence for a direct role of hamartin and tuberin in IFT but suggests that 

perhaps the ciliary length differences found in our mouse models could be 

secondary to perturbation of an upstream pathway, perhaps the PCP pathway 

which primary cilia have been linked to (investigated in the next chapter).
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CHAPTER SIX: Defects in cell polarity may underlie renal 
cystic disease in TSC and ADPKD

6.1 Introduction
Renal primary cilia project into the tubule lumen and monitor urinary 

flow via the mechanotransduction properties of PC1 and PC2 (Nauli et al. 

2003). It is now emerging that many of the ciliary proteins are involved in 

maintenance of the canonical and noncanonical Wnt pathways. The ciliary 

protein inversin acts as a molecular switch from the canonical to the 

noncanonical/PCP Wnt signalling pathways by targeting cytoplasmic 

dishevelled (Dsh) for degradation (Simons et al. 2005). Notably Dsh is 

positioned at a crucial junction between the two arms of the Wnt pathway 

(Germino 2005). Furthermore, mutations in Kif3a, Ift88 and Ofd1, that disrupt 

ciliogenesis, restricts the activity of the canonical Wnt pathway with loss of 

Kif3a causing constitutive phosphorylation of Dsh (Corbit et al. 2008). 

Interestingly, tuberin and hamartin associate with the GSK3/axin complex to 

promote p-catenin degradation and inhibit canonical Wnt-signalling (Mak et al. 

2003) and tuberin also interacts with Dsh upon Wnt stimulation (Mak et al. 

2005).

The lengthening of developing renal tubules is associated with the 

mitotic orientation of cells along the tubule axis, demonstrating intrinsic PCP 

(Fischer et al. 2006). During renal development, newly formed tubules 

undergo an intense proliferative phase and increase in length whilst 

maintaining a constant diameter (Simons and Walz 2006). Oriented cell 

division is thought to dictate the maintenance of this constant tubule diameter 

by ensuring cells divide in a direction parallel to the longitudinal axis of the 

tubule (Simons and Mlodzik 2008). If PCP is disrupted, cells may lose the 

ability to divide along the longitudinal tubule axis and may deviate from this 

axis, eventually leading to a dilated tubule and perhaps cyst formation (Figure 

7.2) (Germino et al. 2005). Defects in oriented cell division during kidney 

tubule development have been found in mice with a renal-specific inactivation 

of Tcf2, a transcription factor essential for the expression of genes involved in
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PKD, the PCK rat and Kif3a mutant mice (Fischer et al. 2006, Patel et al. 

2008). Given that we observed a role for hamartin, tuberin and PC1 in 

maintaining the structure of the renal primary cilium (which others have linked 

to the PCP pathway); we hypothesised that these proteins may also play a 

role in maintaining tubule cell polarity.

The most distinct example of vertebrate PCP is the uniform orientation 

of stereociliary bundles in the organ of Corti. Stereociliary bundles consist of a 

single specialised primary cilium (the kinocilium) and multiple stereocilia 

situated at the apices of sensory hair cells in the mammalian auditory sensory 

organ (Wang et al. 2005). Mice with mutations in genes involved in Bardet- 

Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, display 

PCP defects including open eyelids and disrupted cochlear stereociliary 

bundles (Ross et al. 2005). We examined our mouse models of TSC and 

ADPKD for misrotations of stereociliary bundles, one of the most prominent 

examples of PCP defects in the mammalian body.

6.2 Materials and methods 

6.2.1 Animal care, genotyping and tissue preparation
All procedures with animals, DNA extraction and genotyping were 

carried out as previously described. Five mice from each genotype (wild-type, 

Tsc1*'\ Tsc2*a, Pkd1*'\ Tscl^Pkdl*''and Tsc2*/ Pkd1*/~) were sacrificed at 

48 hours, 10 days, 15 days and 20 days of age and embedded in paraffin wax 

as previously described.

For SEM analysis of cochlea, five mice from each genotype were 

culled at 4 weeks of age and cochlea extracted and fixed as described in 

chapter 2, section 2.5.3.3.

6.2.2 Immunofluorescence
For fluorescent microscopy, five 4pm thick sections were cut from each 

set of kidneys for each age group and stained as described in chapter 2, 

section 2.5.12. Anti-phospho-histone H3 (Ser10) (anti-H3pS10, 1:50 dilution) 

and tetramethyl rhodamine isothiocyanate (TRITC) conjugated goat anti-rabbit
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IgG (H+L) (1:300 dilution) were used to label the chromosomes of dividing 

cells in late anaphase and telophase. Sections were counterstained with 

either fluorescein isothiocyanate (FITC) Lotus tetragonolobus lectin (LTL,

1:100 dilution) for the proximal kidney tubule, FITC Dolichos biflorus agglutinin 

(DBA, 1:100 dilution) for the collecting duct or immunostained overnight at 

4°C with anti-Tamm-Horsfall glycoprotein (THP, 1:150 dilution) followed by 

FITC conjugated chicken anti-goat IgG (H+L) (1:200 dilution) for the thick limb 

of the loop of Henle/distal convoluted tubule. Slides were examined using an 

Olympus BX51 microscope, images were acquired using a Zeiss Axiocam 

digital camera and analysed with AxioVision software. The orientation of cell 

division was determined by measuring the angle between the mitotic spindles 

of dividing cells and the longitudinal axis of the kidney tubules. Metaphase 

chromosomes were ignored to avoid the measurement of spindles that had 

not yet reached their definitive orientation.

For confocal microscopy, 30pm thick sections were cut from each set 

of kidneys for each age group and stained with anti-H3pS10 and THP as 

described above. Dividing pre-cystic cells from the loop of Henle/distal 

convoluted tubule were scanned as detailed in chapter 2, section 2.5.12.3 

using excitation and emission settings for sequential recordings of FITC 

(Ex[maxj: 494nm; Em[max]: 518nm) and TRITC (Ex[max]: 555nm; Em[max]: 

580nm). Mitotic orientations were determined as described above.

6.2.3 SEM processing and analysis
Cochlea were dehydrated using the HMDS method (Nation 1983, 

chapter 2, section 2.5.13), mounted on aluminium stubs using carbon paint, 

sputter coated with gold and viewed at 5kV in a JEOL 840A SEM. AnalySIS 

software was used to view and record images.

6.2.4 Statistics
The distribution of mitotic angles between genotypes was compared 

using the chi-squared test.
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6.3 Results
6.3.1 Mitotic orientation of pre-cystic renal tubule cells from 48

hour old mice
We sought defects in cell polarity in our mice by assessing the mitotic 

orientations of dividing pre-cystic cells from the proximal tubule, collecting 

duct and loop of Henle/distal convoluted tubule from mice at 48 hrs of age. 

For wild-type mice, we found that 78% of dividing cells from the proximal 

tubule, 82% from the collecting duct and 78% from the loop of Henle/distal 

convoluted tubule divided within 10° of the longitudinal axis (Figure 6.1), 

demonstrating that, in agreement with others (Fischer et al. 2006), oriented 

cell division is tightly regulated during tubule lengthening. In contrast, we 

found significant defects in the mitotic orientations of dividing cells from 

Tsc1+/', Tsc2+/' and Pkd1+/' mice. For Tsc1+/~ mice, we found that 41% of 

dividing cells from the proximal tubule, 45% from the collecting duct and 53% 

from the loop of Henle/distal convoluted tubule divided within 10° of the 

longitudinal axis (P=0.002, 0.003 and 0.039, respectively, compared to wild- 

type), for Tsc2+/' mice, we found that 46% of dividing cells from the proximal 

tubule, 27% from the collecting duct and 44% from the loop of Henle/distal 

convoluted tubule divided within 10° of the longitudinal axis (P^O.003, <0.001 

and 0.009, respectively, compared to wild-type) and for Pkd1+/~ mice, we 

found that 61% of dividing cells from the proximal tubule, 47% from the 

collecting duct and 44% from the loop of Henle/distal convoluted tubule 

divided within 10° of the longitudinal axis (P=0.133, 0.001 and 0.002, 

respectively, compared to wild-type) (Figure 6.1). Within each genotype, we 

observed no significant difference between the mitotic orientations of dividing 

cells from the different tubule segments.
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Figure 6.1 Mitotic orientations of dividing pre-cystic tubule cells from 2 day old mouse kidneys. Graphs showing the distribution of the 
mitotic angles from wild-type, Tsc1+/', Tsc2+/- and Pkd1+A mice in the collecting tubule (A), proximal tubule (B) and loop of Henle/distal 
convoluted tubule (C). Fluorescent micrographs showing examples of the orientation of dividing cells in wild-type (D), Tsc1+A (E), 
Tsc2+/- (F) and Pkd1+/- (G) mice using anti-H3pS10 to stain for dividing chromosomes (red), DBA, LTL or THP to stain for tubules 
(green) and DAPI for nuclear staining (blue). In wild-type mice, tubule cells predominantly divided in parallel with the longitudinal 
tubule axis whereas in Tsc1+/-t Tsc2+/- and Pkd1+/- mice, the mitotic alignments were often distorted and in a plane perpendicular to 
the epithelial sheath. Examples of how mitotic angles were measured (D, E). Tubule lumens are indicated by a dashed white line and 
the direction of tubule cell division is indicated by a solid white line. Scale bars: 10pm.



We also observed that in Tsc1+/~ mice, 21-30% of dividing cells from 

the proximal tubule, collecting duct and loop of Henle/distal convoluted tubule 

showed an ‘extreme’ dysregulation of mitotic orientation (with divisions 

between 60° and 90° to the tubule axis) and, similarly, in Tsc2+/~ mice, 28-49% 

of dividing cells displayed this severe phenotype (Figure 6.1). Such 

dysregulation was less frequently observed in dividing cells from Pkd1+/~ mice 

(9-21% of cells depending upon tubule segment) and was rarely observed in 

wild-type mice (2-8% of cells) (P<0.05 compared to both Tsc1+/' and Tsc2+/~ 

cells). We found no difference between Tsc1- and Tsc2-associated polarity 

defects.

Interestingly, we did find significant differences in the orientations of 

dividing tubule cells from Tsc1+/~ Pkd1+/~ and Tsc2+/~ Pkd1+/~ mice as compared 

to their wild-type littermates (P<0.04), but did not observe any differences 

between Tsc1+/~ Pkd1+/~ and Tsc2+/' Pkd1+/~ mice, or their corresponding single 

heterozygote Tsc1+/~ or Tsc2+/~ littermates (P>0.1) (Figure 6.2).

6.3.2 Confocal analysis of mitotic orientation in 48 hour old mice
We generated more comprehensive, three dimensional (3D) images of 

the aberrant mitotic orientations using confocal microscopy. In agreement with 

our previous results, we found that only 44%, 40% and 50% of dividing cells 

from Tsc1+/~, Tsc2+/~ and Pkd1+/~ mice, respectively, divided within 10° of the 

longitudinal tubule axis, as compared to 80% of dividing cells from wild-type 

mice (P=0.023, P= 0.01 and P=0.037, respectively) (Figure 6.3). We also 

found that 39% and 40% of dividing cells from Tsc1+/~ and Tsc2+/~ mice, 

respectively, showed an ‘extreme’ dysregulation of mitotic orientation 

(divisions between 60° and 90° to the tubule axis) and this was only found in 

5% of dividing cells from wild-type mice (F^0.01 and P=0.008, respectively) 

(Figure 6.3). We found no difference between Tsc1- and 7sc2-associated 

polarity defects.
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Figure 6.2 Mitotic orientations of dividing pre-cystic renal tubule cells from 2 day old Tsc1+A 
Pkd1+/- and Tsc2+A Pkd1+A mice compared to respective littermates. Graphs showing the 
distribution of the mitotic angles from wild-type, Tsc1+/-, Tsc2+/-, Pkd1+/~, Tsc1+A Pkd1+A and 
Tsc2+/- Pkd1+A mice in the collecting tubule (A, B), proximal tubule (C, D) and loop of 
Henle/distal convoluted tubule (E, F). Aberrant mitotic orientations in Tsc1+A Pkd1+A and 
Tsc2+/~ Pkd1+A mice were similar to their corresponding single heterozygote Tsc1+/■ or Tsc2+/~ 
littermates.
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and THP to stain for tubules (green). Scale bars: 10pm.



6.3.3 Mitotic orientation in pre-cystic renal tubule cells from 10

day old mice
We also studied dividing cells from mice at 10 days of age and 

observed identical results to our studies at 48 hrs of age, with significant 

differences in the mitotic orientations of dividing cells in all regions of the 

kidney tubule from Tsc1+/\  Tsc2*'\ Pkd1*A, Tsc1*A Pkd1*A and Tsc2*A Pkd1*A 

mice as compared to wild-type littermates (P<0.05 for each genotype) (Figure

6.4). By 15 days of age, the number of dividing tubule cells had dramatically 

reduced in all mice regardless of genotype and by 20 days of age, no dividing 

cells were observed indicating the completion of tubule development.

6.3.4 SEM analysis of stereociliary bundles in mouse cochlea
We addressed whether the observed defects in polarity were also 

present in extra-renal tissues from our mouse models. We analysed 

stereociliary bundles from Tsc1+/~, Tsc2+/~, Pkd1+/~, Tsc1+/~Pkd1+/~ and Tsc2+/~ 

Pkd1+/~ mice by SEM to search for abnormalities in PCP, but found no 

differences between these animals and their wild-type littermates (Figures 6.5 

and 6.6). The majority of stereociliary bundles in mice from all genotypes were 

of normal appearance and orientation (Figure 6.5). Rarely, abnormal looking 

structures such as misorientation, misalignment and absence (Figure 6.6) of 

stereociliary bundles were observed in all mice. Regardless of genotype, the 

overall structure of the cochlea also appeared regular with all turns of the 

cochlea (one and a half turns with a basal ‘hook’ region) normal in both 

structure and length.
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Figure 6.5 SEM examination of stereociliary bundles in the organ of Corti from wild-type (A), 
Pkd1*  (B), Tsc1+/~ (C), Tsc1+/-Pkd1+/- (D), Tsc2+/- (E), and Tsc2+/'Pkd1+/- (F) mice. In all 
animals, the outer hair cells were uniformly arranged in three rows, with a row of inner hair 
cells underneath. Scale bars: 10pm.
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Figure 6.6 SEM micrographs of abnormal stereociliary bundles in the mouse organ of Corti 
found in both mutant and wild-type mice. Rarely, four rows of outer hair cells were observed 
rather than the normal three rows (arrows) (A, B). Stereociliary bundles were sometimes 
absent (circled areas), however this may be an artefact from dissection and/or processing of 
the tissues (B, C). Occasionally, stereociliary bundles can appear out of alignment from the 
rest of the row (asterix) (C, D). Mis-orientated stereociliary bundles were infrequently 
observed (arrow heads) (E, F). These organ of Corti abnormalities were found in both wild- 
type and heterozygous mice and so are not thought to represent a disease phenotype. 
Scales bars: 10pm.
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6.4 Discussion
6.4.1 A novel role for hamartin and tuberin in cell polarity?
To date, PCP defects have not been examined in TSC- or ADPKD- 

associated renal disease. Fischer et al. (2006) recently reported defects in the 

mitotic orientation of dividing tubule epithelial cells during renal tubule 

elongation in a rat model of ARPKD. Similar to these findings, we found a high 

percentage of cells from Tsc1+/~, Tsc2+/~ and Pkd1+/~ mouse models divided in 

a plane perpendicular to the longitudinal tubule axis demonstrating extreme 

dysregulation of mitotic orientation. This novel data suggests that defects in 

cell polarity underlie not just ADPKD but also TSC-associated renal cystic 

disease.

Interestingly, Tsc1+/~Pkd1+/~ and Tsc2+/~Pkd1+/~ mice showed similar 

mitotic orientation defects to their corresponding Tsc1+/~ or Tsc2+/~ littermates.

It is unclear why haploinsufficiency of Pkd1 does not appear to elicit a 

significant effect on mitotic orientation during tubule development as it does 

with lesion numbers or primary cilia length in older compound heterozygotes. 

Perhaps expression levels of PC1, hamartin and tuberin during development 

may provide an answer. Expression of PC1 is developmental^ regulated, with 

high levels in developing mouse kidney, falling to a low level 2 weeks after 

birth (Geng etal. 1997). This drop in PC1 expression correlates with the 

dramatic drop in dividing tubule cells as tubule development and lengthening 

comes to an end approximately 2 weeks after birth. Tuberin levels also drop 

as age increases with a significant reduction in the rat kidney by day 15, 

falling to very low levels in adult life (12 weeks) (Murthy et al. 2001). Hamartin 

expression appears to fall dramatically by day 1 in the rat kidney, remaining at 

this low level through to adult life (Murthy et al. 2001). These differences in 

protein expression levels between the developing and adult kidneys may 

account for the differences in the effect of compound heterozygosity on mitotic 

orientation in early life and primary cilia length and lesion number in later life.
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6.4.2 Apical/basal polarity may be altered in Tsc1 and Tsc2
haploinsufficient mice
Close examination of the misorientated tubule cells revealed that most 

of these cells were dividing in a plane perpendicular to the epithelial sheath, 

consistent with defects in apical/basal (A/B) polarity which occurs 

perpendicular to the PCP axis. While the apical localization of PCP 

determinants such as Frizzled (Fz1) is critical for their function, the link 

between A/B polarity and PCP is poorly understood. Djiane et al. (2005) have 

shown that dPatj, a member of the Crumbs complex which plays a key role in 

A/B polarity, binds to the cytoplasmic tail of Fz1 which recruits aPKC, which in 

turn phosphorylates and inhibits Fz1, thereby providing a direct link between 

A/B polarity and PCP. Accordingly, components of the aPKC complex and 

dPatj produce PCP defects in the Drosophila eye such as ommatidial 

misrotations (Djiane etal. 2005). Interestingly, tuberin has been found to 

directly interact with PATJ (Massey-Harroche et al. 2007) and Drosophila with 

mosaic Tsc1 mutant cells in their eyes exhibit ommatidial misrotations (Tapon 

et al. 2001). This data suggests that tuberin may in some way influence the 

interaction between PATJ and Fz1, perhaps by stabilising the complex (Figure 

6.7). Given that primary cilia are the most apical structures in a cell, this raises 

the possibility that the defects that we observed in primary cilium length may 

be secondary consequences of perturbed A/B polarity.
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Figure 6.7 Model of the interaction between tuberin and PATJ and the possible effect on 
Fz1 activation. dPatJ binds directly to the Fz1 cytoplasmic tail and recruits aPKC which 
phophorylates Fz1 at Ser554 and Ser560 thus inhibiting the activity of Fz1 in cells where 
signalling should not be occurring. Tuberin interacts through its C-terminal domain with 
PATJ. The role of tuberin in this complex is unclear, however one could speculate that 
perhaps tuberin is required to stabilise the PATJ/Fz1/aPKC interaction. Hamartin co­
precipitates with PATJ indicating the requirement of the functional hamartin/tuberin 
complex.
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6.4.3 Stereocilia bundle abnormalities are occasionally observed
in wild-type mice
Examination of the organ of Corti occasionally revealed an extra row of 

outer hair cells, missing bundles and misoriented stereocilia bundles in all 

genotypes, including wild-type mice. These findings in wild-type mice were 

surprising, however, personal correspondence with an expert in the field (Prof. 

Karen Steel) has revealed that these abnormalities do occasionally occur in 

wild-type mice, and are often dependent on background. Indeed, work by 

Hayashi et al. (2007) using a mouse model of fibroblast growth factor 

receptor-3 (FGFR3) deficiency (FgfrSv~) to examine the role of FGFR3 in 

development of the organ of Corti, found an extra row of outer hair cells in 

F g frS mice which had previously not been observed in an earlier analysis of 

Fg/r3-deficient mice. The authors suggest that this difference may be due to 

the different backgrounds of these mice.

6.4.4 Polarity defects may be tissue or cell-type specific
It has recently been shown by others that hamartin and tuberin play a 

role in neuronal polarity (Choi et al. 2008). Polarisation of the neuron is 

essential for the correct formation and function of dendrites and axons. Kishi 

et al. (2005) previously showed that SAD (synapses of amphids defective)-A 

and SAD-B, mammalian orthologues of SAD-1 kinase required for presynaptic 

differentiation in C. elegans, are required for neuronal polarisation in mice.

Choi et al. (2008) found that cortical and hippocampal neurons deficient for 

Tsc1/Tsc2 function form ectopic axons both in vitro and in vivo. They also 

revealed that inactivation of Tsc1/Tsc2 promotes axonal growth via up- 

regulation of neuronal polarity SAD kinases, particularly SAD-A, which they 

also found to be elevated in cortical tubers of a TSC patient. The authors 

suggest that the Tsc/mTOR pathway may limit multiple axon formation and 

confine polarised growth within a single axon in the mammalian brain, and its 

deregulation likely contributes to the neurological symptoms commonly 

observed in patients with TSC. Here, we show a role for hamartin and tuberin 

in renal tubule cell polarity. Since we did not find any defects in the 

orientations of the stereociliary bundles from our mice, we suggest that 

hamartin, tuberin and PC1 are not ‘classical’ PCP proteins and that the
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associated defects in polarity are tissue or cell-type specific. Such tissue 

specific PCP proteins (PCP effectors) are found in Drosophila where certain 

proteins regulate PCP in the wing while completely different proteins regulate 

PCP in the eye (chapter 1, section 1.3.5.2.1 and reviewed in Fanto and 

McNeill 2004). It is interesting to note that TSC patients have no known 

hearing impairment, but the majority do develop brain and kidney lesions 

(Gomez et al. 1999). Further investigation of polarity defects in other affected 

and unaffected organs may provide more insight into the tissue specificity of 

TSC polarity defects.

Interestingly, the work carried out by Choi et al. and our work on renal 

tubule epithelial cells suggests that the polarity defects observed may occur 

as a consequence of haploinsufficiency and not through a requirement for 

additional somatic mutations. Choi et al. (2008) showed that SAD-A levels are 

often notably increased in the giant cells of a cortical tuber from a patient with 

TSC. LOH of the wild-type TSC1 or TSC2 alleles in cortical tubers is rare 

(Henske et al. 1996, Niida et al. 2001) and indicates that the loss of one copy 

of Tsc1 or Tsc2 may be sufficient to significantly increase the amount of SAD 

and affect neuronal polarity and/or morphology (Wildonger et al. 2008). We 

observed polarity defects in renal tubule epithelial cells from mice as young as 

2 days old. At this young age it is unlikely second hits have occurred and 

suggests that these defects are due to haploinsufficiency of Tsc1 or Tsc2.
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CHAPTER SEVEN: General discussion

7.1 Haploinsufficiency in TSC and ADPKD
We have shown that hamartin, tuberin and PC1 play a key role in 

maintaining renal tubule cell polarity during development. This early aberrant 

phenotype suggests that haploinsufficiency for Tsc1, Tsc2 or Pkd1 may have 

pathogenic consequences, a notion supported by other studies which have 

highlighted the importance of haploinsufficiency in TSC (Figure 7.1) and 

ADPKD.

7.1.1 Haploinsufficiency in TSC and other hamartoma syndromes
Microscopically normal renal tubule epithelial cells from germline TSC 

mutation carriers have significant differences in gene expression profiles 

compared to control cells (Stoyanova et al. 2004). TSC renal epithelial cells 

showed increased expression of transcripts for several factors involved in 

protein synthesis including eukaryotic translation initiation factor 3 and 

upregulation of several ribosomal protein genes (S6, S25, L6, L21). In 

addition HIF signalling was altered, as shown by increased expression of the 

HIF1a subunit, hypoxia-inducible protein 2 and hypoxia induced gene 1 

(Stoyanova et al. 2004).

Work on rodent models of Tsc has provided more insight into the role 

of haploinsufficiency, particularly in pathogenic central nervous system 

manifestations. As previously mentioned, young Eker rats, which rarely 

harbour brain lesions early in life, exhibit enhanced episodic-like memory and 

enhanced responses to chemically-induced kindling (Waltereit et al. 2006). 

Goorden et al. (2007) reported that Tsc1+/~ mice with no apparent cerebral 

pathology showed impaired learning in hippocampus-sensitive versions of 

learning tasks and also impaired social behaviour. Furthermore, Uhlmann et 

al. (2002) reported that grossly normal Tsc1+/~ and Tsc2+/~ mouse brains 

exhibit a 1.5 fold increase in the number of astrocytes in the hippocampus.
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Mitotic misorientation is apparent in 
pre-cystic renal tubule epithelial cells 
from Tsc1+A and Tsc2+A mice as 
young as 2 days of age (Chapter 6).

Primary cilia from pre-cystic renal 
tubule cells from Tsc1+A and Tsc2+A 
mice are significantly shorter 
compared to renal primary cilia from 
wild-type littermates (Chapter 5).

Second hits are only found in 
31.6% of renal cysts from Tsc1+A 
mice compared to approximately 
80% of cystadenomas and RCCs, 
suggesting that haploinsufficiency 
for Tsc1 plays a role in cyst 
formation (Wilson et al. 2006).

Phenotypically normal renal 
epithelial cells from TSC 
mutation carriers have 
significant differences in gene 
expression profiles compared 
with similar cells from controls 
(Stoyanova et al. 2004).

TSC1/TSC2
haploinsufficiency

Tsc1+A and Tsc2+A mice exhibit 
increased numbers of astrocytes 
compared to wild-type littermates 
(Uhlmann et al. 2002).

Young Eker rats (that rarely 
harbour brain lesions) exhibit 
enhanced responses to 
chemically-induced kindling 
(Waltereit et al. 2006).

Tsc1 haploinsufficient neurons 
have increased soma size, 
decreased spine density, and 
increased spine length and head 
width (Tavazoie et al. 2005).

Tsc1 haploinsufficient mice with 
no apparent cerebral pathology 
or spontaneous seizures show 
social and cognitive deficits 
(Goorden et al. 2007).

Figure 7.1 Tsc1 and Tsc2 haploinsufficiency effects.



Our laboratory has previously demonstrated a lack of Tsc1 second hits 

in 68.4% of renal cysts compared to approximately 20% of advanced lesions 

(cystadenomas and RCCs) from Tsc1+/' mice. These results were obtained 

after LOH analyses and direct sequencing of the entire Tsc1 ORF and 

suggest that haploinsufficiency for Tsc1 may be sufficient to initiate 

cystogenesis. Our findings of mitotic orientation and primary cilia length 

defects in pre-cystic renal tubule epithelial cells may be some of the earliest 

events in cystogenesis and support the theory that haploinsufficiency of Tsc1 

or Tsc2 is sufficient to elicit a pathogenic phenotype.

There is increasing evidence that haploinsufficiency in a variety of 

other hamartoma syndromes may be involved in tumour initiation. These 

diseases include Peutz-Jeghers syndrome (PJS), PTEN hamartoma 

syndromes and juvenile polyposis syndrome (JPS) (summarised in Table 7.1). 

In addition to the haploinsufficiency found in early cystic lesions from our 

studies in TSC and early lesions of other hamartoma syndromes, a common 

trend is observed that many advanced lesions display second hits in their 

corresponding wild-type gene. We have previously identified somatic Tsc1 

mutations in more than 80% of cystadenomas and RCCs from Tsc1+/~ mice. 

Biallelic inactivation of the Lkb1 gene (associated with PJS) has been found in 

advanced hepatocellular carcinomas in Lkb1+/~ mice (Nakau et al. 2002) and 

Entius et al. (2001) found LOH of the LKB1 wild-type allele in only 38% of 

benign hamartomatous polyps from PJS patients, in contrast to 100% of 

carcinomas. LOH of the Smad4 allele (associated with JPS) has been 

detected in 40% of lesions from Smad4+/~ mice up to 15 months, which 

increased to 64% in tumours from mice over 18 months (Alberici et al. 2006).

Our data suggests that although Tsc1 haploinsufficiency may be an 

important step in the initiation of Tsc-associated renal tumourigenesis, biallelic 

inactivation of Tsc1 is an important factor in the latter stages. Together, these 

results suggest a possible common mechanism of tumour initiation in 

hamartoma syndromes, whereby one hit initiates tumourigenesis, while a 

second hit promotes the progression to more advanced lesions.
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Table 7.1 Examples of haploinsufficiency in other hamartoma syndromes.

Disease Gene mutated Haploinsufficiency effects

PJS LKB1/STK11 ■ LOH of the LKB1 wild-type allele found in 
only 19%-38% of tumours from PJS 
patients (Resta etal. 1998, Entius etal. 
2001).

■ Loss of only one copy of Lkb1 is 
necessary to produce gastrointestinal 
polyps in Lkb1+/~ mice (Miyoshi et al. 
2002, Rossi et al. 2002, Jishage et al. 
2002).

PTEN
hamartoma
syndromes

PTEN ■ PTEN haploinsufficiency results in altered 
gene expression in subventricular zone 
precursor cells (Li et al. 2003a).

■ Loss of the wild-type Ren allele does not 
occur in hyperplastic-dysplastic changes 
of the colon mucosa and polyps in the 
lower gastronintestinal tract in Ren+/~ 
mice (Di Cristofano etal. 1998).

JPS SMAD4,
BMPR1A

■ Only 9% of gastrointestinal polyps show 
LOH of the wild-type SMAD4 allele (Howe 
etal. 1998).

■ Early gastrointestinal lesions from 
Smad4+/' mice often do not display LOH 
of the Smad4 wild-type allele (Xu et al. 
2000, Alberici et al. 2005).

7.1.2 Haploinsufficiency in ADPKD

As previously discussed (chapter 1, section 1.2.7), second hits in PKD1 

or PKD2 are only found in a proportion of cysts from patients with ADPKD, 

and both high and low gene dosage levels of Pkd1 can lead to renal cystic 

disease in mouse models (Lantinga-van Leeuwen etal. 2004, Jiang etal. 

2006, Pritchard et al. 2000, Thivierge et al. 2006). Pkd1 haploinsufficiency has 

been found to be associated with increased pre-cystic renal tubule epithelial 

cell proliferation in Pkd1 mutant mice compared to controls (Lantinga-van
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Leeuwen et al. 2007). Ahrabi et al. (2007) studied a non-cystic Pkd1+/~ mouse 

model and found that Pkd1 haploinsufficiency is associated with a syndrome 

of inappropriate antidiuresis (reduction of urinary volume) reflecting decreased 

intracellular Ca2+ concentration, decreased activity of RhoA and inappropriate 

expression of arginine vasopressin in the brain. Haploinsufficiency of Pkd2 

has also been found to elicit a pathogenic phenotype, with Pkd2+/~ mice 

displaying an enhanced level of intracranial vascular abnormalities when 

induced to develop hypertension, possibly due to significant alteration of 

intracellular Ca2+ homeostasis (Qian et al. 2003b). Chang et al. (2006) have 

also found an increased proliferative index in non-cystic tubules from Pkd2 

mutant mice 5-10 times higher than that of normal control tissue. Similarly, the 

proliferative index of non-cystic tubules in kidneys from patients with ADPKD 

was 40 times higher than corresponding controls, suggesting that an increase 

in cell proliferation is an early event preceding cyst formation and can result 

from haploinsufficiency at PKD2 (Chang et al. 2006).

We found ciliary length defects and misoriented mitotic orientations in 

pre-cystic renal tubule epithelial cells from Pkd1+/' mice. In combination with 

the above studies, a clear case for haploinsufficiency at Pkd1 or Pkd2 causing 

pre-cystic abnormalities is suggested. An increase in proliferation is 

highlighted as a necessary step towards cystogenesis in ADPKD and, in 

combination with misoriented renal tubule epithelial cell divisions, a 

mechanism for cystogenesis can be envisaged (Figure 7.2). This model may 

also apply to TSC, as discussed in the next section.
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Figure 7.2 Planar cell polarity (PCP) and tubular morphogenesis. During renal development, newly formed tubules undergo an 
intense proliferative phase and increase in length whilst maintaining a constant diameter. In order for this to occur, tubular epithelial 
cells must be correctly orientated along the longitudinal tubule axis, a process which is controlled by PCP. If PCP is disrupted, cells 
may lose the ability to divide along the longitudinal tubule axis and may deviate from this axis, eventually leading to a dilated tubule, 
one of the first stages of cyst formation.



7.2 Mechanisms of cyst formation
Our results suggest that dysregulation of the A/B polarity (and 

consequently PCP) pathway initiates renal cystic disease in TSC and ADPKD, 

and subsequent activation of mTOR promotes cyst expansion (in PKD) and 

tumour progression (in TSC). Several issues still require further investigation. 

Firstly, although we demonstrated aberrant polarity in tubule cells from 

Tsc1+/\  Tsc2+/~ and Pkd1+/~ mice at both 2 and 10 days of age, these animals 

ultimately develop tubules that are structurally indistinguishable from wild-type 

mice and, in the case of the TSC models, do not develop cysts for many 

months. Although we have identified dilated tubules (which may result from 

aberrantly dividing tubule cells and subsequently develop into cysts) in Tsc1+/~ 

and Tsc2+/~ mice as early as 1 month of age, these were rare. We therefore 

propose that other events, such as cessation of fluid flow, enhanced 

proliferation and defective apoptosis may also be required to trigger cyst 

formation. Secondly, we hypothesise, but have not yet proven, that activation 

of mTOR occurs after somatic inactivation of the wild-type Tsc1 or Tsc2 allele. 

In support of this hypothesis, we have previously shown that somatic Tsc1 

mutations are infrequent in cysts but common in advanced lesions from 

Tsc1+/~ mice, a similar pattern to mTOR activation (Wilson et al. 2006). We 

therefore propose a model whereby cystogenesis may occur via two distinct 

routes; one involving defective A/B polarity and/or PCP (left side of Figure 

7.3), and the other involving a second hit with subsequent activation of the 

mTOR pathway (right side of Figure 7.3).
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7.2.1 Renal cystogenesis as a consequence of defective polarity
Our results suggest that haploinsufficiency for Tsc1, Tsc2 or Pkd1 in 

pre-cystic renal tubule epithelial cells can result in misoriented mitotic 

divisions during renal development. However, during this intense proliferative 

phase, why do we not observe a multitude of dilated tubules? One 

explanation may involve cellular apoptosis and subsequent sloughing off of 

apoptotic bodies by luminal fluid flow. It has previously been shown that when 

displaced from the extracellular matrix, epithelial and endothelial cells 

undergo apoptosis (Frisch and Francis 1994, Meredith etal. 1993). This 

action is suggested to be an important protective measure for the organism, 

preventing detached cells from reattaching to new matrices and growing 

dysplastically (Frisch and Ruoslahti 1997). This scenario may also be 

occurring inside developing kidneys. The daughter cell of a misoriented 

dividing tubule cell may protrude out from the epithelial cell layer and into the 

lumen where it is no longer in contact with the extracellular matrix, and must 

therefore undergo apoptosis. Interestingly, when examining our mouse 

kidneys for misoriented dividing tubule epithelial cells, misoriented cells that 

had completed or almost completed cytokinesis were not observed, indicating 

that the mispositioned daughter cell had been removed, leaving behind one 

normal looking cell. Due to constant flow of urine through the renal tubules, 

apoptotic bodies may easily be sloughed off and swept away, therefore 

leaving no sign of the mispositioned cell. This scenario may explain why 

dilated tubules were not a feature of 2-10 day old developing mouse kidneys 

as aberrant mitotic divisions usually undergo apoptosis. We propose that this 

situation may change as age increases and other pathogenic events take 

place as described below.

7.2.1.1 Renal injury in adult kidneys leads to cell proliferation and

cystogenesis

Previous studies have shown that the severity of renal cystic disease is 

dependent upon the stage of development at which the gene in question is 

inactivated. Patel etal. (2008) found that kidney-specific inactivation of Kif3a 

in newborn mice (beginning at P2) resulted in the loss of primary cilia and the 

rapid formation of kidney cysts; however, kidney-specific inactivation of Kif3a
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in adult mice caused no histological abnormalities up to 4 weeks after 

tamoxifen administration, despite loss of primary cilia (Patel et al. 2008). 

Similar results have been found in Pkd1 mouse models. Lantinga-van 

Leeuwen et al. (2007) found that timing of Pkd1 gene disruption has a major 

effect on the severity of cyst development with adult mice showing a mild 

cystic phenotype one month after tamoxifen-induced disruption of the Pkd1 

gene, compared to rapid and massive cyst formation observed in newborn 

mice. More recently, Takakura et al. (2008) showed that inactivation of Pkd1 

in one week old developing kidneys led to rapid, widespread cyst formation, 

however, when Pkd1 was inactivated in 5 week old mice, only focal and slow 

progression of PKD was observed. These studies suggest that the formation 

of kidney cysts is dependent on elevations in the basal rate of cell proliferation 

in renal tubules (Patel et al. 2008). Cell proliferation is markedly decreased in 

the adult kidney following the intense proliferative phase observed during 

kidney development in newborn mice. Patel et al. (2008) found that in 

newborn mice, in which inactivation of Kif3a produced multiple kidney cysts, 

0.99% of the renal tubule epithelial cells were undergoing mitosis, whereas in 

adult mice that did not develop kidney cysts, only 0.06% of the cells were 

undergoing mitosis. Additional evidence supporting the role of cell proliferation 

as a prerequisite to cyst formation has been shown in Kif3a and Pkd1 

knockout mice following acute kidney injury. Renal regeneration following 

ischaemic/reperfusion injury (IRI) (caused by clamping the left renal pedicle 

followed by release of the clamp) is primarily mediated by proliferation of 

surviving tubular epithelial cells. Patel etal. (2008) and Takakura etal. (2009) 

found that following renal IRI, Kif3a mutant mice and Pkd1 mutant mice 

respectively, developed cysts in the injured kidney whilst no cyst formation 

was observed in the uninjured contralateral kidney. These results indicate that 

renal injury and/or tubular regeneration trigger cystogenesis in adult Kif3a and 

Pkd1 mutant mice and support the hypothesis that cell proliferation stimulates 

cyst formation (Patel et al. 2008).
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Following acute kidney injury, the surviving renal tubular cells 

transiently lose epithelial characteristics, similar to that seen in epithelial cells 

lining renal cysts (Patel et al. 2008). However, unlike the injured kidney where 

re-establishment of the differentiated epithelial state marks recovery, cystic 

kidney epithelial cells remain persistently dedifferentiated (Patel et al. 2008). 

Based on these observations, it is possible that progression of cystic disease 

may result from failure to switch off the normal renal injury induced repair 

programme due to failure of complete recovery after kidney injury (Takakura 

et al. 2009). Instead, they continue to proliferate, resulting in cyst formation. 

This theory may explain the focal nature of cyst formation in patients with TSC 

and ADPKD, and individual differences in exposure to factors that cause 

subclinical kidney injury and tubular regeneration may contribute to the 

variability in cyst formation between patients.

7.2.1.2 Apoptosis defects may lead to unopposed misoriented renal

tubule epithelial cell divisions

Renal tubule epithelial cells with the potential to divide in an aberrant 

mitotic orientation which have lain in a quiescent state since completion of 

renal development, may begin to undergo mitosis again as a consequence of 

renal injury induced cellular proliferation. However, as in the developing 

tubule, these misoriented cells may undergo apoptosis and be sloughed off by 

tubular fluid flow (Frisch and Ruoslahti 1997). We propose that somatic 

mutations or dysregulation of apoptotic genes in the adult kidney, such as 

those in the BCL2 family of genes, may cause defective apoptosis, thus 

allowing misoriented mitotic division to continue unopposed. Indeed, bcl-2 is 

known to enhance lymphoid cell survival by interfering with apoptotic cell 

death (Kamada etal. 1995). Perhaps upregulation of this gene may prolong 

survival of misoriented dividing renal tubule epithelial cells. Other members of 

the BCL2 family are pro-apoptotic, such as Bax, a Bcl2-like protein that binds 

to and antagonises the protective effect of Bcl2, rendering cells more 

susceptible to death (Ortiz et al. 2000). Inactivating mutations in this gene 

may render misoriented dividing cells immune to apoptosis. Studies to 

elucidate the expression levels of the BCL2 proteins, and other apoptotic
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proteins, in early and late stages of TSC and ADPKD will provide vital insight 

into the role of apoptosis in the early stages of cyst formation.

In conclusion, results from recent studies suggest that in humans with 

ADPKD, subclinical injury may be an important factor determining disease 

progression in adults. Renal injury is known to effect fluid flow rate through 

renal tubules and can often lead to cessation of fluid flow (Weimbs 2007). 

This may result in the reduction of sloughing off of misoriented dividing renal 

tubule epithelial cells. We propose that cellular proliferation and aberrant fluid 

flow caused by renal injury, in combination with defective apoptosis, lead to 

unopposed misoriented cell division in epithelial cells with defective A/B 

polarity (as observed in our Tsc1+/~, Tsc2+/' and Pkd1+/' mice). This 

combination of events may then lead to tubular dilation and subsequent 

formation of cysts in both TSC and ADPKD. Preventing kidney injury and 

targeting the developmental pathways reactivated in kidneys undergoing 

repair represent important areas of possible intervention in cystic disease.

7.2.2 Renal cystogenesis as a consequence of somatic mutation
and activation of the mTOR pathway
Renal cyst formation in TSC may also occur by a second mechanism 

(somatic hit/mTOR activation route in Figure 7.3) involving a second hit in 

TSC1 or TSC2 and subsequent activation of the mTOR pathway. We have 

previously shown that somatic Tsc1 mutations and mTOR activation are 

common in advanced lesions from Tscf+/~ mice (Wilson et al. 2006), 

suggesting that activation of the mTOR pathway may occur after somatic 

inactivation of the wild-type Tsc1 or Tsc2 allele. Since we did find a small 

proportion of cysts with somatic Tsc1 mutations and some with mTOR 

activation, we propose that a proportion of cysts in Tsc1+/~ and Tsc2+/' mice 

form through somatic inactivation of Tsc1 or Tsc2, causing activation of the 

mTOR pathway and subsequent mTOR dependent proliferation leading to 

renal tubule dilation and eventual formation of cysts. These mTOR positive 

cysts then advance through to cystadenomas and RCCs.
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Interestingly, some cysts which may have formed through the defective 

A/B polarity/PCP route could possibly also progress to cystadenomas and 

RCCs. We occasionally observed cysts with a single pS6 positive papillae 

projection in Tsc1+/' and Tsc2+/' mice (Figure 7.3). We propose that these 

cysts have arisen through defective polarity and have eventually acquired a 

second hit in Tsc1 or Tsc2 in a single cell of the cystic epithelium, leading to 

mTOR activation and subsequent formation of a papillae projection. This cyst 

may then progress through to a full cystadenoma and eventually RCC.

Much work is needed to validate the model illustrated in Figure 7.3; 

however, it does serve to explain many inconsistencies from previous studies, 

such as why is cyst formation focal? Why is there a delay between aberrant 

mitotic orientation during renal development and cyst formation in adulthood? 

Why are second hits not found in all cysts? Why is mTOR not active in all 

cysts? Further studies are therefore warranted to unravel the exact 

relationship between hamartin, tuberin and PC1, and their role in cell polarity 

and cystogenesis. Once more is known about this complex pathway, potential 

new therapeutic targets could come to light for the treatment and perhaps 

prevention of TSC and PKD.

7.3 The complex relationship between primary cilia and canonical and
noncanonical Wnt signalling
The precise relationship between primary cilia and Wnt signalling 

remains unclear despite recent research. Defects in primary cilia structure 

and/or function have been shown to affect Wnt signalling and, conversely,

Wnt pathway proteins facilitate cilia formation (Figures 7.4 and 7.5). As 

previously discussed in chapter 1 (section 1.3.5.2), some of the earliest 

indications that primary cilia may be involved in PCP signalling came from 

studies on the nephronophthisis type II gene inversin (Simons et al. 2008).

The authors found that inversin targets cytoplasmic Dsh (essential for 

canonical Wnt signalling) for degradation indicating that this ciliary protein 

may negatively regulate the canonical Wnt pathway while promoting PCP 

signalling (Figure 7.4). Data has now emerged showing that nephrocystin-3
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(NPHP3, encoded by NPHP3), also localised to the primary cilium/basal body, 

directly interacts with inversin and can inhibit canonical Wnt signalling similar 

to inversin (Bergmann et al. 2008) (Figure 7.4). Work in X. laevis has revealed 

that NPHP3 deficiency leads to convergent extension defects suggesting a 

role for this protein in PCP pathway activation (Bergmann etal. 2008). Taken 

together, these results indicate a similar role for both inversin and NPHP3 in 

the control of the switch between canonical and noncanonical Wnt signalling 

(Bergmann et al. 2008).

7.3.1 Primary cilia defects affect PCP signalling
Ift88, a component of the I FT complex, is essential for normal 

ciliogenesis in Chlamydomonas and mice (Qin etal. 2001, Pazour etal.

2000). Studies in mice have revealed loss of Ift88 results in stereociliary 

bundle misrotations and a genetic interaction with the core PCP gene Vangl2 

was suggested in compound Ift88 and Vangl2 mutant mice during PCP 

regulation in the organ of Corti (Jones et al. 2007) (Figure 7.4). To determine 

whether the requirement for Ift88 is dependent on cilia, and to support a role 

for cilia in PCP regulation, Jones et al. examined a Kif3a ciliary mouse 

mutant. These mice displayed similar defective PCP phenotypes to those 

observed in Ift88 mutant mice, suggesting a general requirement for the ciliary 

axoneme and/or basal body in the regulation of bundle orientation in the 

organ of Corti (Jones et al. 2007).
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Primary cilia are also required for the maintenance of PCP in the 

mammalian kidney. Patel et al. (2008) found misoriented mitotic spindles in 

dividing pre-cystic renal tubule epithelial cells from Kif3a mutant mouse 

kidneys. This study indicates that primary cilia are required for the 

maintenance of PCP in the mammalian kidney and the loss of cilia produces 

aberrant PCP prior to cyst formation (Patel et al. 2008). A possible 

mechanism whereby Kif3a could regulate PCP may involve phosphorylation 

of Dsh. By disrupting ciliogenesis either through culture conditions or 

mutations in Kif3a, Ift88 or a basal body component (Ofd1), Corbit et al.

(2008) showed that the primary cilium restricts the activity of the canonical 

Wnt pathway (Figure 7.4). It was found that Kif3a may achieve this by 

constraining the ability of casein kinase I (CK1) to phosphorylate Dsh with 

loss of Kif3a resulting in uncontrolled phosphorylation of Dsh by CK1 leading 

to hyper-responsiveness of the downstream pathway (Corbit et al. 2008) 

(Figure 7.4). The authors state that these findings indicate a critical role for 

primary cilia in the Wnt pathway by restricting the magnitude of the canonical 

response (Corbit et al. 2008).

7.3.1.1 Ciliary localised cystic kidney disease proteins and PCP

Substantial evidence exists for the role of primary cilia in PKD 

cystogenesis (chapter 1, section 1.3.4) and now a link between some cystic 

kidney diseases and PCP is beginning to emerge. We found abnormalities in 

renal tubule primary cilia length and mitotic orientations in our Pkd1+/~ mice; 

however, the link between these two phenotypes is unclear, particularly which 

is a cause and which is a consequence. Studies in other renal cystic diseases 

indicate that defects in PCP may occur as a consequence of aberrant 

ciliogenesis.

BBS is a pleiotropic disorder characterised by obesity, age-related 

retinal dystrophy, polydactyly, reproductive tract abnormalities, cognitive 

impairment and renal cystic disease (Ross etal. 2005). To date, mutations in 

12 genes have been identified; BBS1, BBS2, BBS3 (also called ARL6), BBS4, 

BBS5, BBS6 (also called MKKS), BBS7, BBS8 (also called TTC8), BBS9 

(also called B1), BBS10, BBS11 (also called TRIM32) and BBS12 (Tobin and

185



Beales 2007). So far, BBS1-8 have been localised to the primary cilium/basal 

body, suggesting that the BBS phenotype is due to a defect in the assembly 

or function of cilia or basal bodies (Tobin and Beales 2007). Ross et al. (2005) 

showed that Bbs1, Bbs4 and Bbs6 null mice display anterior neural tube and 

stereociliary bundle orientation defects, with mice heterozygous for both 

Vangl2 and Bbs1 or Bbs6 displaying more severe PCP defects compared to 

single heterozygote littermates suggesting a genetic interaction between the 

Bbs genes and Vangl2 (Ross et al. 2005). A tempting functional link between 

the Bbs proteins and Vangl2 was suggested when Vangl2 showed strong 

expression around the base of the cilium (Ross et al. 2005). Recently Gerdes 

et al. (2007) found that Bbs1, Bbs4 and Bbs6 genetically interact with Wnt 

genes involved in non-canonical Wnt signalling: Wnt11 and Wnt5b, with 

suppression of Bbs1, Bbs4 and Bbs6 resulting in stabilisation of (3-catenin 

with concomitant upregulation of TCF-dependent transcription (Figure 7.4). 

This was found to be dependent upon the cilium and I FT as confirmed by 

suppression of KIF3A. The observation of excessive p-catenin, primarily in the 

cytoplasm, suggested to Gerdes et al. that deficiencies existed in p-catenin 

clearance. Indeed suppression of BBS4 was found to lead to defective 

proteasomal targeting and degradation of p-catenin. The proteasome is 

known to be enriched in the pericentriolar region surrounding centrioles (and 

therefore the basal body) leading the authors to speculate that the 

transmission of PCP or other Wnt signals from the cilium is likely to be 

interpreted at the pericentriolar region which then dictates a range of 

decisions mediated by the pericentriolar material, including proteasomal 

degradation and phosphorylation and dephosphorylation events (Gerdes et al.

2007).

Similar to the BBS proteins, OFD1, the protein involved in oral-facial- 

digital type I (OFD1) syndrome, has been localised to the basal body 

(Ferrante etal. 2009). OFD1 is a male-lethal X-linked dominant 

developmental disorder characterised by malformations of the face, oral cavity 

and digits, and, in 15% of cases, polycystic kidneys. Recent studies in 

zebrafish have revealed a role for Ofd1 in convergent extension, a conclusion 

supported by the finding that Ofd1 downregulation enhanced the phenotype of
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embryos that were also disrupted for Wnt11 or Vangl2, two important PCP 

proteins (Ferrante etal. 2009). The authors suggest that as for inversin, Ofd1 

might influence the switch from the canonical Wnt pathway to the PCP 

pathway possibly as an indirect result of a requirement for Ofd1 in normal 

ciliary structure and function or a direct interaction with Wnt signalling 

components (Ferrante etal. 2009). Indeed, recent work by Corbit etal. (2008) 

has shown that Ofd1 null mouse embryonic stem cells lack cilia and are 

hyper-responsive to Wnt ligand resulting in exaggerated p-catenin signalling 

(Figure 7.4).

It appears from these studies that much of the communication between 

ciliary localised proteins and PCP signalling occurs via the basal body. 

Defective proteasomal targeting and degradation of p-catenin can lead to 

PCP defects, thus implicating the pericentriolar region surrounding centrioles 

in the transmission of PCP and other Wnt signals from the cilium leading to a 

range of cellular effects (Gerdes et al. 2007). The indication that the basal 

body may be the key organelle linking ciliary cues with PCP signalling is 

perhaps unsurprising considering the basal body, in combination with the 

transition zone, is thought to function as a filter for the cilium, regulating the 

molecules that can pass into or out of the cilium (Bisgrove and Yost 2006). 

Perhaps insufficient signals from a defective primary cilium could be 

intercepted at the basal body and subsequently passed onto proteins involved 

in Wnt signalling such as Vangl2 and Dsh leading to aberrant PCP. It is 

tempting to speculate that a lack of PC1 (due to mutations in PKD1) in the 

ciliary axoneme could lead to decreased levels of Ca2+ reaching the basal 

body which could therefore lead to inadequate signals to the PCP pathway, 

thus resulting in the polarity defects we observed in our mice (Figure 7.4).

Ca2+ release has been shown to influence PCP signalling and plays an 

important role in both canonical Wnt and PCP signalling (Slusarski and 

Pelegri 2007). As previously mentioned, lengthening of the primary cilium, as 

seen in pre-cystic renal tubule epithelial cells from Pkd1+/~ mice, could be the 

cells attempt in compensating for insufficient Ca2+ signalling, however this 

rescue response is inadequate and cannot correct the defective signalling 

thus leading to aberrant mitotic orientations due to defective PCP signalling.
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The studies discussed above have led us to speculate that aberrant 

mitotic orientation in Pkd1+/~ mice may occur as a consequence of insufficient 

extracellular Ca2+ entry into the cell with subsequent compensatory ciliary 

lengthening. Evidence also exists for the role of PCP influencing ciliogenesis. 

Certain PCP proteins have been localised to the primary cilium. As previously 

mentioned, Vangl2, a core PCP protein, has been observed in the base of the 

cilium in mouse IMCD3 kidney epithelial cells (Ross etal. 2005) (Figure 7.5). 

One of the key “upstream” PCP proteins, Fat4, has been localised to the 

primary cilium in MDCK cells (Saburi et al. 2008) (Figure 7.5). It is unclear if 

these proteins are involved in maintenance of ciliary structure as no 

alterations in cilia number or size have been found in Fat4v' mouse kidneys 

(Saburi etal. 2008). Research is lacking in the role of Vangl2 and Fat4 in IFT 

and other ciliary functions and could provide exciting insights into the 

relationship between PCP signalling and cilia functions.

7.3.2 Regulation of ciliogenesis by PCP proteins
Polarity defects were evident in our Tsc1+/~ and Tsc2+/~ mice as 

demonstrated by the misorientation of dividing renal tubule epithelial cells. 

These aberrant divisions appeared to be occurring perpendicular to the plane 

of the epithelium, suggesting defects in A/B polarity. Indeed, tuberin has been 

found to interact with PATJ (Massey-Harroche et al. 2007) a scaffold member 

of the Crumbs complex which also includes Crumbs (CRB) and protein 

associated with Lin seven 1 (PALS1). Interestingly, an isoform of CRB3 

(CRB3-CLPI) has been localised to the primary cilium and knockdown of 

CRB3-CLPI leads to loss of cilia in MDCK cells (Fan et al. 2007), providing a 

link between A/B polarity and ciliogenesis (Figure 7.5). A functional link 

between dPatJ, aPKC and Fz1 has also been demonstrated with subsequent 

inhibition of Fz1 and PCP signalling defects (Djiane et al. 2005). We proposed 

that the tuberin/hamartin complex functions in this model through its 

interaction with PATJ and therefore mutations affecting hamartin or tuberin 

could potentially lead to defective PCP signalling (Figure 7.5). Recent 

research has in fact shown that knockdown of various PCP genes can cause 

ciliogenesis defects.
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The PCP effector proteins inturned and fuzzy have been shown to be 

necessary for ciliogenesis in X. laevis embryos (Park et al. 2006).

Examination of intumed and fuzzy X. laevis morphants (embryos injected with 

inturned and fuzzy morpholinos respectively) revealed that defective 

ciliogenesis was due to a lack of organisation of microtubules into apically 

projecting cilia (Park et al. 2006). Instead, a dense mesh of microtubules was 

observed parallel to and below the apical cell surface in morphants. The 

spatial ordering of elongating ciliary microtubules is determined by the ciliary 

basal apparatus whose orientation and position is controlled by the actin 

cytoskeleton (Park et al. 2006). In intumed and fuzzy morphants, the apical 

actin meshwork of ciliated epidermal cells is less dense than in controls 

suggesting that inturned and fuzzy control ciliogenesis by governing the 

organisation of the apical actin cytoskeleton in ciliated cells, which in turn is 

required for the orientation of elongating ciliary microtubules (Park et al. 2006) 

(Figure 7.5). These defects in the actin cytoskeleton were further investigated 

by Park et al. (2008) using the X. laevis mucociliary epithelium. The ciliated 

cells of mucuciliary epithelia are covered in dozens of large cilia which beat 

directionally to clear mucus away. Knockdown of Dsh proteins (Dsh1, Dsh2 

and Dsh3 using morpholinos) resulted in ciliogenesis defects, mislocalisation 

of microtubules and a failure to accumulate apically localised actin, resulting 

in the inability of basal bodies to reach the apical surface. The authors 

therefore suggest that the ciliogenesis defects in Dsh morphants (and 

presumably inturned and fuzzy morphants) stem from a failure of basal body 

docking rather than from a failure of cilia assembly (Park et al. 2008). Dsh, 

together with inturned was also found to mediate Rho activation and together 

these proteins governed apical docking (Figure 7.5). Once docked, basal 

bodies were found to require Dsh and Rho for the planar polarisation 

underlying basal body orientation and directional beating of cilia (Park et al.

2008).

Actin organisation and ciliogenesis has also been linked to a protein 

called duboraya (dub) which is regulated by Frizzled-2 (Fz2)-mediated 

phosphorylation events (Oishi et al. 2006). Dub is encoded by the zebrafish 

gene duboraya (dub) and is similar to mammalian CapZIP, a putative
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phosphorylation-dependent cytoskeletal regulatory molecule (Oishi et al. 

2006). Zebrafish dub morphants were found to have fewer and shorter 

primary cilia present in both the Kupffer’s vesicle (functions as an embryonic 

organ of asymmetry equivalent to the mammalian ventral node) and renal 

primary cilia. Convergent extension defects were also present indicating that 

dub function may depend on PCP signalling. In fact, dub was found to 

functionally interact with Fz2, a protein involved in PCP signalling, and 

authors proposed a model in which dub phosphorylation, induced by Fz2- 

mediated PCP signalling, regulates cilia formation and left-right patterning. 

Similar to intumed, fuzzy and Dsh morphants, actin assembly at the apical 

surface of Kupffer’s vesicle cells and renal epithelial cells was found to be 

disorganised in dub morphants, suggesting that dub regulates primary cilia 

formation by organising the apical actin structure (Figure 7.5). These findings 

in intumed, fuzzy, Dsh and dub morphant embryos highlight the role PCP 

signalling plays in ciliogenesis, a role that is conveyed through the actin 

cytoskeleton.

We found that primary cilia from pre-cystic renal tubule epithelial cells 

in Tsc1+/' and Tsc2+/~ mouse kidneys were significantly shorter than those in 

wild-type littermates. This finding is similar, although not to the same severity, 

to those in PCP morphant embryos as described above. Interestingly, both 

hamartin and tuberin have been shown to interact with Rho (Lamb et al. 2000, 

Astrinidis et al. 2002, Goncharova et al. 2004), a known regulator of the actin 

cytoskeleton, which is required for the apical localisation of actin and 

subsequent successful ciliogenesis (in combination with Dsh and inturned as 

described above). Hamartin is localised to the basal body and has been found 

to activate Rho (similar to Dsh) and regulate focal adhesion and stress fibre 

formation via an interaction with the ezrin-radixin-moesin family of cytoskeletal 

proteins (Lamb et al. 2000). The interaction between tuberin and Rho remains 

unclear with different groups suggesting that it inhibits and also activates Rho 

(Astrinidis etal. 2002, Goncharova etal. 2004). Interestingly, tuberin has been 

found to associate with Dsh (Mak etal. 2005), suggesting that perhaps 

tuberin, hamartin, Rho and Dsh may form a complex involved in successful 

localisation of the actin cytoskeleton to the apical cell surface with subsequent
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basal body docking (Figure 7.5). The exact role of hamartin and tuberin in the 

apical localisation of actin and its subsequent effects on ciliogenesis remains 

to be examined, but could potentially explain the length defects observed in 

Tsc1+/~ and Tsc2+/~ pre-cystic renal tubule epithelial cell primary cilia.

In conclusion, our results highlight a novel role for hamartin, tuberin 

and PC1 in renal tubule epithelial cell polarity. The precise mechanism of this 

role remains unclear, as does the interaction between primary cilia and PCP.

It is of key importance that A/B and/or PCP defects are undoubtedly some of 

the earliest pathogenic mechanisms in disease initiation. Further research into 

this area will no doubt reveal other diseases with similar pathogenic 

mechanisms, and, hopefully soon, potential therapeutic targets will provide 

strategies to prevent disease initiation.
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