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ABSTRACT
Clostridium difficile infection (CDI) is the most common type of infectious nosocomial 

diarrhoea. Overwhelming evidence indicate that the most important risk factors are prior 

antibiotic use and elderly patients. The severity of the disease varies from asymptomatic carrier 

to mild diarrhoea to colitis (AAC) and life threatening pseudomembranous colitis (PMC). 

Because little is known about C. difficile and CDI in Kuwait, this study was undertaken to 

determine the nosocomial acquisition of C. difficile by new patients admitted to the intensive 

care units (ICU) of 4 teaching hospitals in Kuwait between February 2001 and January 2002 

(first part) and January 2003 to December 2005 (second part) and evaluate cytotoxin (toxin B) 

production by clinical isolates upon exposure to minimum inhibitory concentrations (MICs) and 

sub-MICs of certain antibiotics. The first part of the study was accomplished by serially 

culturing the stool specimens of 922 newly admitted patients to the ICUs; screening their stools 

for toxins A/B and screening their immediate environment for C. difficile. The isolates were 

typed by the PCR ribotyping technique developed in the Anaerobe Reference Unit, Cardiff. The 

effects of various concentrations of antibiotics that could predispose to CDI and those used for 

its therapy on the production of cell-bound and cell-free toxin B produced by C. difficile was 

investigated by experiments using cell cultures of the Vero cell line. Prevalence, epidemiology and 

risk factors of CDI in Kuwait hospitals was investigated during second part of the study by culturing 

patients’ stool specimens, ribotyping the isolates and detection of toxin A/B in stool samples. The 

susceptibility of all isolates was assessed by MIC determination to 16 antibiotics using the E test 

method. During the first part of the study, 95 (10.3%) out of 922 patients with negative cultures 

initially on the day of admission acquired C. difficile during their hospitalisation at various time 

intervals. Of these, 65 (6 8 %) remained symptom-free while 30 (32%) were symptomatic; 2 

patients had PMC, 4 AAC and 24 AAD. C. difficile toxin A/B was present in 28 (93%) of 30



symptomatic patients but in only 7 (10.8%) of 65 symptom-free patients. The hospital 

environments occupied by symptomatic patients as well as those occupied by asymptomatic 

patients were contaminated by C. difficile. The 95 isolates from patients belonged to a total of 32 

different ribotypes. Ribotypes 097 and 078 were responsible for >40% of C. difficile infections in 

Kuwait ICUs. There was a heterogeneous relationship between antibiotic exposure and intra- and extra

cellular toxin production by the toxigenic strains. Clinical strains of C. difficile when exposed to MIC and 

sub-inhibitory concentrations of certain antibiotics produced high level of cytotoxin. Ampicillin and 

clindamycin were the most potent inducers of cytotoxin followed by metronidazole and vancomycin. 

Cefotaxime induced the least amount of the cytotoxin activity.

During the second part of the study, 73 (10.5%) out of 697 met the diagnosis of CDI. Out of these 73, 56 

(76.7%) were hospital-acquired and 17 (23.3%) were from outpatient clinics. Thus, the prevalence of 

hospital-acquired CDI was 8 % over the study period. The prevalence of hospital-acquired CDI in 2003, 

2004 and 2005 were, 9.7%, 7.8% and 7.2%, respectively. Our data showed that 42.9% of the CDI patients 

were above 60 years out of which over 79% were aged 71 years and above. Patients with CDI were more 

likely than the controls to have been exposed to immunosuppressive drugs and feeding via naso-gastric 

tube. The most common ribotypes isolated during the second part of the study were 002 and 001. The 

later was isolated only from one environmental sample in the first part of the study. PCR-ribotype 027 

was not isolated during 2003-2005 study. None of our 151 C. difficile isolates were resistant to 

amoxicillin-clavulanic acid, ampicillin, linezolid, metronidazole, piperacillin-tazobactam, teicoplanin or 

vancomycin. Resistance to penicillin and meropenem among the clinical isolates increased from 2.4 to 

16.4% and 4.8 to 21.4%, respectively while resistance to imipenem (another carbapenem) was extremely 

high in both studies.
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CHAPTER 1 

GENERAL INTRODUCTION

1.1 General background

Clostridium difficile was first described in 1935 by American workers, Hall and O’Toole, who 

were studying the microbial flora of the meconium and faeces of newborn infants (Hall and 

O’Toole, 1935). They observed that this organism produced a toxin highly lethal to mice. During 

the Second World War, Hambre et al. (1943), while investigating the role of penicillin in the 

treatment of Clostridium perfringens-induced gas gangrene, demonstrated that penicillin caused 

typhlitis in rodent model which was more lethal to the rodent models than C. perfringens gas 

gangrene. This reaction in rodents was thought to be due to a direct action of penicillin on the gut 

mucosa. Latter, Green in 1974, who was studying penicillin-induced death in guinea pigs, found 

that stool specimens contained cytopathic changes, which the author related to the activity of a 

latent virus (Green, 1974). But this, in retrospect, may appear to be the first identification of C. 

difficile cytotoxin.

Pseudomembranous colitis (PMC) was first reported in 1893 (Finney, 1893) who reported 

pseudomembranous changes in the intestinal tract of a young 22-year-old patient who was being 

treated by William Osier. PMC, then became a commonly recognized complication of antibiotic 

use in the early 1950’s especially among surgeons (Altemeier, 1963). Early work in 1960’s 

implicated Staphylococcus aureus as a causative agent (Hall and Khan, 1966) and oral 

vancomycin was the standard treatment for PMC (Khan and Hall, 1966).

The “C. difficile era” started in 1974, when Tedesco and colleagues reported high rate of PMC 

among their patients who received clindamycin at the Bames Hospital (St Louis, MO, USA)
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(Tedesco et al., 1974). Diarrhoea developed in 42 (21%) out of 200 patients who were given 

clindamycin. Twenty (10%) of the clindamycin recipients had PMC which was diagnosed by 

endoscopy (Tedesco et al., 1974).

The initial work on C. difficile detection involving clinical specimens and hamster models were 

performed by several investigators in the 1970’s. They were primarily Keighley et al. (1978) in 

Birmingham, UK, Bartlett et al., (1977) in Boston, USA and Lusk et al. (1977) in Michigan, 

USA. In these early studies, the main method of detection of C. difficile infection was the 

hamster model as well as the cell cytotoxin assays (Bartlett et al., 1978).

The work on cell cytotoxicity assays began with Te-Wen Chang, who showed that the stool 

samples from hamsters with antibiotic-associated typhlitis and from patients with PMC 

contained a powerful cytotoxin that could be neutralized with C. sordellii antitoxin (Chang et al., 

1978). In spite of this finding, they did not demonstrate the presence of C. sordellii from 

hamsters stool cultures. However, Bartlett and his colleagues found that C. difficile was the only 

Clostridium species that could be recovered from the stool samples of the hamsters and produced 

a cytopathic effect which was neutralized by C. sordellii antitoxin (Bartlett et al., 1977). Since C. 

difficile antitoxin was not available at that time, the standard way of detection of C. difficile 

infection was to detect the presence of cytotoxin neutralized by C. sordellii antitoxin. In 1978, 

C. difficile was reported as the definitive causative agent of antibiotic-associated 

pseudomembranous colitis (Bartlett et al., 1978).
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1.2 Genome of Clostridium difficile

1.2.1 General features of the genome

The complete gemome sequence of C. difficile strain 630 (epidemic type X) has been determined 

recently by Sebaihia et al., 2006. It consists of a circular chromosome of 4,290,252 bp and a 

plasmid, pCD630, of 7,881 bp (Table 1.1). The chromosome encodes 3,776 predicted coding 

sequences (CDSs); in common with other low G+C content Gram-positive bacteia. The 

chromosome has a coding bias, with 82.1% of the CDSs encoded on the leading strand. The 

plasmid carries 11 CDSs, none of which has any function. The CDSs of C. difficile encode many 

accessory functions and mobile elements (Figure 1.1).

Table 1.1. General features of C. difficile genome (Sabaihia et al., 2006).

Chromosome Plasmid

Size (bp) 4,290,252 7,881
G + C content (%) 29.06 27.9
Coding sequences 3,776 11
Coding density 0.87 1.39
Average gene size (bp) 943 563
Pseudogenes 32 0
rRNA operons 11 0
tRNA 87 0
Stable RNA 54 0

3
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Figure 1.1. Representation of the distribution, by functional categories, of the shared and unique 

C. difficile CDSs relative to the sequences clostridial genomes. Blue: C. difficile CDSs, purple: 

C. difficile CDSs shared with the sequenced clostridia, yellow: CSDs unique to C. difficile 

relative to the sequenced clostridia (from Sabaihia et al., 2006).

1.2.2 Mobile genetic elements

The G+C content of the chromosome is highly variable, with numerous high G+C regions and 

some anomalies in the GC bias (Sebaihia et al., 2006). Many of these anomalous regions are 

consisted of mobile elements. Eleven percent of C. difficile genome consists of these mobile
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genetic elements. The identified mobile elements include the following: 7 putative conjugative 

transposons (CTn), one element that is likely to be a mobilizable transposon (Tn5398) (Farrow et 

al., 2001), two prophages, a skin element (Haraldsen and Sonenshein, 2003), IStrons (Braun et 

al., 2000) and several other unknown mobile elements. On conjugative transposon, Tn5397, 

mediates tetracycline resistance and has broad host range (Sebaihia et al., 2006). Conjugative 

transposons, known as integrative and conjugative elements (ICE), are genetic elements which 

are able of integrate into and excise from the host genome and thus transfer themselves into other 

unrelated bacteria (Burrus et al., 2002). One of the conjugative transposon from C. difficile, 

Tn5397, mediates tetracycline resistance and has a wide host range.

The genome of C. difficile carries a prophage-like element, skin {sigK intervening sequence), 

inserted within the gene sigK encoding a sporulation-specific sigma factor. Skin is required for 

effective sporulation of C. difficile after its excision at the onset of spomlation (Farrow et al., 

2003).

1.2.3 The genome of hypervirulent hyperendemic C. difficile

Recently, Stabler and his colleagues compared the genomic and phenotypic character of 3 C. 

difficile strains: an epidemic, hyperepidemic 027 strain, a non-epidemic ribotype 027 strain and a 

previously sequenced PCR-ribotype 012 strain (Stabler et al., 2009). They found that these 3 

strains share 3,247 core genes, including those encoding determinants for pathogenesis like 

antibiotic resistance. In addition there are 234 genes unique to both 027 ribotypes which include 

motility, drug resistance genes and toxicity. However, their sequence data showed that there are 

at least 5 genetic regions unique to the epidemic ribotype 027 strain compared to the non 

epidemic 027. These genetic elements include a unique phage island of high G + C DNA content
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inserted into a 027 unique conjugative transposoon, transcriptional regulators and a two- 

component response regulator, i.e. a putative lantibiotic ABC transporter and a putative cell 

surface protein along with a number. The phage island also encodes a toxin/antitoxin system 

which is important to maintain the stability of mobile elements (Stabler et al., 2009).

1.2.4 Virulence factors and surface proteins

As shown in Figure 1.2, C. difficile genome consists of one complete locus, termed the 

pathogenicity locus (PaLoc), which has 5 genes (tcdABCDE) responsible for the synthesis, and 

regulation of toxin A and B (Voth and Balard, 2006). Some C. difficle strains produce a third 

toxin, binary toxin, a two subunit actin-specific ADP-ribosyltransferase. Its genes found only in 

about 6-15% of isolates. This suggests that it is not a major virulence factor. However, whether it 

contributes to disease formation is still a debate.

Figure 1.2. Pathogenicity locus of C. difficile (PaLoc); tcdR: an alternative sigma factor -  

positive regulator of toxin production; tcdC: negative regulator of toxin production; tcdE: 

encodes a holin like protein (with permission from Professor I Poxton).
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1.2.5 Antimicrobial resistance

Tetracycline and erythromycin resistance genes in C. difficile are carried on the conjugative and 

putatively mobilizable transposons Tn5397 and Tn5398, respectively (Sebaihia et al., 2006). In 

addition, Sebaihia and his colleagues described the genes that mediates bacitracin resisctance, p- 

lactam resistance i.e. p-lactamase, P-lactamase regulatory protein and P-lactamse repressor in C. 

difficile.

1.3 Virulence Factors

C. difficile exhibits four main types of virulence factors which can be divided into the following: 

adhesion, chemotaxis, hydrolytic enzymes and toxins. Some are true virulence factors that 

contribute directly to infection process e.g. toxin A and B while others help C. difficile to 

colonize the colon and produce the true virulence factors.

1.3.1 Adhesion

Adhesion to the target site of infection is an important initial process. In 1979, adherence of C. 

difficile to the human gut epithelial cells was indicated by the recovery of C. difficile from a 

washed biopsy specimen from a patient with PMC (Borriello, 1979). In 1988, Borriello and 

colleagues found that highly virulent toxigenic C. difficile strain adhered better to the terminal 

ileum and caecum than the poorly virulent strain and both toxigenic strains adhered better than 

the non-virulent non-toxigenic strains in hamster model. The same group observed that co

administration of toxin A with a non-toxigenic C. difficile strain enhanced its adhesion to the
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same level as the virulent toxigenic strain (Borriello et al., 1988a). There have been several 

attempts made to identify the adhesion factors. Polar fimbriae were detected in 1988 (Borriello et 

al., 1988a). But there was no correlation between the presence of these fimbriae and the ability to 

adhere to hamster gut mucus (Borriello et al., 1998b). Some C. difficile have flagella but it is not 

known if they are involved in the adhesion of the organism to the gut epithelial cells. Some 

investigators have identified and characterized heat stimulated 27 kDa and 40 kDa proteins of C. 

difficile which may be involved in adhesion to human colonic enterocyte-like Caco-2 and mucus 

secreting HT29 cells in vitro (Eveillard et al., 1993). Type IV pillus biosynthesis locus is present 

in the C. difficile genome (CD3503-CD3513). This locus encodes one pillin subunit, two type IV 

pillin leader peptidases and several proteins (Sebaihia et al., 2006).

1.3.2 Chemotaxis

Chemotaxis is the ability of a microorganism to move to its target site along a chemical gradient, 

mostly by the activity of flagella. It has been shown that gut mucosa of animals as well as human 

acts as chemoattractant for C. difficile (Borriello and Bhatt, 1995). The degree of chemotaxis is 

correlated positively with the virulence of the strains in hamster model (Borriello, 1998). 

Flagellin has been demonstrated in C. difficile which is about 39kDa and appears to be an 

important chemotactic factor; the gene of this flagellin has been cloned and sequenced (Borriello, 

1998).

8



1.3.3 Capsule

Some investigators have detected a polysaccharide capsule in C. difficile but the removal of this 

capsule did not appear to affect the degree of pathogenicity of the organism (Davies and 

Borriello, 1990). In addition, it has been demonstrated that C. difficile has an outer coat called 

Surface layer (S-layer) protein. It is encoded by a single gene, splA. This S-layer protein consists 

of two polypeptides that form a regular crystalline array over the whole surface of the bacterium 

which may have a yet-to-be identified role in the virulence of C. difficile (McCoubrey and 

Poxton, 2001). However, the same group in Edinburgh has shown some degree of correlation 

between S-layer type, ribotype and serotype of C. difficile.

1.3.4 Hydrolytic enzymes

Various hydrolytic enzymes have been detected in C. difficile strains, e.g., hyaluronidase, 

chondroitin-4-sulphatase, heparinase and collagenase (Hafiz and Oakey, 1976; Seddon et al., 

1990). Highly virulent strains seem to produce higher level of enzymes than the less virulent 

strains (Seddon et al., 1990). It is possible that some of these enzymes are involved in tissue 

destruction and help to compromise gut integrity leading to further fluid accumulation (Borriello, 

1998). Conceivably, C. difficile acquire nutritional benefit from such enzymatic activity.

1.3.5 Toxins

C. difficile produces two high molecular weight toxins, toxin A and toxin B, which are 

responsible for the disease manifestations. Both toxin A (TcdA) and B (TcdB) are large single
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chain polypeptides with molecular masses of 308 kDa for enterotoxin A and 269kDa for 

cytotoxin B. These toxins are encoded by two genes, tcdA and tcdB, which have been mapped to 

a 19.6kb chromosomal pathogenicity locus (PaLoc) (Rupnik et al., 1998). Beside these genes, 3 

regulatory genes (tcdC, tcdD and tcdE) are located within the PaLoc (Braun et al., 1996; 

Hammond and Johnson, 1995; Cohen et al., 2000a). Both toxins A and B are 50% identical at 

the amino acid level and have similar primary structures (Poxton et al., 2001). The enzymatic 

and the cytotoxic activity of toxin B is found at the N-terminal of the toxin, which also holds the 

enzyme and cytotoxic activity of toxin A (Hofmann et al., 1997). The C-terminal of the toxin 

includes a receptor-binding domain and is made up of repetitive peptide elements (Poxton et al., 

2001).
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Figure 1.3. Mechanism of action of C. difficile toxin A and B on intestinal epithelial cells 

(Thelestam and Chaves-Olarte, 2000)

The carboxyl terminal of toxin A forms binding domains for the carbohydrate structure that 

occurs on the surface of the epithelial cells. Toxin B binds to the cells which are not covered by a 

thick carbohydrate matrix. They, then enter the epithelial cells via receptor-mediated endocytosis 

(Thelestam and Chaves-Olarte, 2000). Both toxins have to pass through an acidic intracellular 

compartment so that they can intoxicate the cells. Once the cells are intoxicated by the toxins A 

and B, both toxins inactivate Rho proteins, a group of low molecular weight GTP-binding
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proteins that regulate actin cytoskeletal filaments in the cells and various signal transduction 

process. Once Rho proteins are inactivated by C. difficile toxins, the cytoskeleton of the cells is 

disrupted, actin filaments disintegrate, roundening of the cells takes place and the resultant 

damaged cells cannot function (Salyers and Whitt, 2002). In addition, both toxins cause 

disruption of the barrier function by opening the tight junctions between the colonic epithelial 

cells and break down the actin filaments thus increasing the colonic permeability leading to 

watery diarrhoea (Poxton et al., 2001). This condition leads to increased permeability and 

peristalsis (Riegler et al., 1995; Lamont 2002). The inflammation of the colonic mucosa may 

result in toxic megacolon and perforation in fulminant cases (Longo et al., 2004).

Toxin production varies among different toxigenic strains of C. difficile and is influenced by 

environmental growth condition (Hundesberger et al., 1997), availablility of glucose (Dupuy and 

Sonenhein, 1998), temperature (Karlsson et al., 2003), various amino acids in the growth media 

(Yamakawa et al., 1994; Karlsson et al., 1999), butyric acid and butanol (Karlsson et al., 2000) 

and biotin (Yamakawa et al., 1998). Sub-inhibitory concentration of vancomycin and penicillin 

can induce increased toxin A production (Honda et al., 1983) and clindamycin and cephradine 

increase toxin A production (Onderdonk et al., 1979).

1.4 Pathophysiology

The pathogenesis of C. difficile diarrhoea starts with the disruption of the gut normal flora by 

various antimicrobial agents, followed by colonization of the gut with C. difficile and the 

production of toxins A and B that mediate the cytoskeletal derangement of the colon epithelial 

cells and finally by inflammation and mucosal injury.
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The indigenous microflora of the gut is one of the host defense mechanism against infection. 

About 1012 organisms are present in a gram of stool and disruption of microbial ecosystem by 

antibiotics is required before the development of C. difficile infection (CDI) (Thielman, 2000). 

Once the normal gut flora has been altered by an antibiotic, C. difficile colonization occurs after 

fecal-oral transmission. Most of the vegetative cells are killed by the gastric acid but the spores 

resist the acidity of the stomach. Thereafter, the spores are converted into vegetative cells in the 

small bowel after exposure to the bile acid (Thielman, 2000). Then, C. difficile multiplies in the 

colon reaching colony counts of > 108 Colony Forming Units (CFU)/gram of stool. Once the 

pathogenic C. difficile organisms reach the logarithmic and early stationary phases of growth, 

they release the cyto- and enterotoxins that mediate the disease (Thielman, 2000).

Systemic symptoms are often related to toxin-induced inflammatory mediators released into the 

colon, such as the tumour necrosis factor a  (TNFa), interleukin-8 (IL-8), macrophage 

inflammatory protein-2 and substance P (Lamontagne et al., 2007; Flegel et al., 1991; 

Castagliuolo et al., 1997; Castagliulo et al., 1998). Neutrophils, present in the pseudomembranes 

and within the intestinal mucosal layer underneath the pseudomembranes, are said to play an 

important role in the pathogenesis of the disease. In the study of Thielman (2000), toxin A was 

observed to activate human neutrophils which promote in vitro chemotaxis and chemokinesis.

It is not known why only a fraction of those exposed to certain antibiotics become colonized or 

why only a small proportion of those colonized with C. difficile develop CDI. It has been 

suggested that serum IgG to toxin A may play a role (Kyne et al., 2000). However, a number of 

of C. difficile have been reported with increasing frequency that have deletions, insertions or 

polymorphic restriction sites in one or more of the genes within the PaLoc. Until recently, it was 

believed that all C. difficile strains responsible for disease produce both TcdA and TcdB.
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However, several studies have shown that TcdA negative and TcdB positive (TedA' TcdB+) C. 

difficile strains can be involved in CDI (Al-Barrak et al, 1999; Brazier et al., 1999). The 

prevalence rate of these TcdA' TcdB+ strains ranged from 0.2 to 56% in different studies in 

Europe, Asia, and North America (Al-Barrak et al., 1999; Barbut et al, 2002; Rupnik et al., 

2003).

1.5 Isolation and identification

C. difficile is an obligate Gram-positive, spore-forming anaerobic bacillus. The designated name 

is related to the difficulty faced by the original investigators in finding it in culture. The 

vegetative cells are characterized by formation of spores, which allow the organism to survive 

the harsh environments by its resistance to oxygen, heat, drying and chemical agents. Its spores 

are usually subterminal but occasionally may be terminally located (Figure 1.4).

Figure 1.4. Gram stain of C. difficile bacilli showing spores (with permission from Dr J Brazier)
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It can be isolated after alcohol shock or heat shock procedure that allows the survival of the 

spores and eliminate other vegetative non-spore forming faecal organisms. Then, the deposit of 

the spirit treated specimen or the broth is inoculated onto selective C. difficile media which could 

be either C. difficile Cefoxitin Cycloserine Egg Yolk Agar base (CCEY; Oxoid LtD, Basinstoke, 

Hampshire, England) or C. difficile Cefoxitin Cycloserine Agar Base containing cefoxitin 8mg/L 

and cycloserine 250mg/L (Oxoid LtD). The inoculated agar plates are incubated anaerobically in 

the presence of 10% CO2 , 80% H2 , 10% N2 for 48-72 h. The colonies usually appear 

pleomorphic, grey, opaque and non-haemolytic (Figure 1.5; Figure 1.6). However, some strains 

may produce an alpha-type of haemolysis (Brazier, 1993). It produces a characteristic odour, 

often described as “elephant or horse manure” due to the production of /7-cresol from 

parahydroxyphenylacetic acid. Under long-wave ultraviolet light, C. difficile colonies fluoresce a 

greenish yellow colour (George et al., 1979). However, this is not a unique characteristic of C. 

difficile, as other Clostridium species, like C. innocum and C. novyi, also fluoresce the same way 

(Brazier, 1993). It can be identified by agglutination with C. difficile somatic antigen latex 

agglutination (however, false positive may occur with C. glycolicum and C. 

bifermentans/sordellii) or biochemical reactions like API20AN. Confirmation is usually by 

analysis of the metabolic end product of volatile fatty acid on gas liquid chromatography (GLC).
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Figure 1.5. Culture of hand for C. difficile after 48h incubation.

Figure 1.6. Colonial morphology of C. difficile on Fastidious Anaerobe Agar after 24 hour 

incubation (with permission from Dr J Brazier).



1.6 Infections

C. difficile is often implicated in a spectrum of diseases referred to as C. <ft$?c//e-associated 

diarrhoea (CDAD) or C. difficile infection (CDI) which manifests as mild self-limiting antibiotic 

associated diarrhoea (AAD), antibiotic associated colitis (AAC) or a more serious life- 

threatening pseudomembranous colitis (PMC) with toxic megacolon and possible gut perforation 

(Figure 1.7; Figure 1.8 and Figurel.9). Common clinical findings in patients with CDI include 

diarrhoea, colitis with abdominal cramps, fever, leucocytosis (sometimes as high as 50,000-

100,000 WBC/mm3), and inflammation in the colonic biopsy. Although diarrhoea is the hallmark 

of CDI, it may be absent in severe disease as in toxic megacolon, ileus or secondary to colonic 

dysfunction. This presentation may occur in post-operative patients who are receiving narcotics 

for pain. Therefore, symptoms like unexplained fever, leucocytosis, and abdominal pain in 

patient with recent antibiotic exposure or surgery should raise the suspension of CDI, even in the 

absence of diarrhoea (Burke et al., 1988; Bartlett and Gerding, 2008).

PMC is the most severe manifestation of the disease and is usually pancolitis affecting especially 

the distal colon and the rectum. However, right-sided colitis as well as small bowel involvement 

has been described (Jacobs et al., 2001). PMC represents an advanced stage of the disease which 

is “nonspecific” but nearly diagnostic of C. difficile infection (Bartlett et al., 1980). It is often 

associated with hypoalbuminaemia and sometimes with anasarca because it is protein-loosing 

enteropathy (Tedesco et al., 1974).
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Figure 1.7. A picture of pseudomemranous colitis (with permission from Professor I Poxton)

Figure 1.8. Histopathology section of the colon with PMC (with permission from Professor I 

Poxton)

18



Figure 1.9. Histopathology section showing PMC (with permission from Professor I Poxton)

There is evidence of C. difficile involvement in extracolonic infections such as bacteremia, 

prosthetic device infections, pleuropulmonary infections with empyema, primary peritonitis, 

osteomyelitis, reactive arthritis, cellulitis, necrotizing fasciitis and visceral abscesses, e.g. in the 

spleen and pancreas (Jacobs et al., 2001). It is also associated with outbreaks of diarrhoea and 

colitis in hospitalised adults receiving antibiotics (Pierce et al., 1982; Tabaqchali et al., 1984 b; 

Bartlett et al., 1978).

C. difficile has been branded an emerging pathogen and an important causative agent of 

nosocomial diarrhoea. Evidence to this effect is demonstrated in reports of major outbreaks of 

diarrhoea in hospitals where the organism has been the sole culprit. The organism, or its toxin, 

has been identified in 8-10% of cases of nosocomial diarrhoea, while other common bacterial 

enteric pathogens, e.g. Salmonella spp., Shigella spp., Klebsiella oxytoca and Campylobacter 

spp. were rarely isolated (Fan et al., 1993; Barbut et al., 1995; Rohner et al., 1997; Hogenauer et 

al, 2006). It has been shown that recurrence of CDI occurs in 20-25% patients and half of these 

patients are due to relapses which arise as a result of germination of the sporulated C. difficile 

occurring post therapy (McFarland, 2008a).
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1.7 Severity of the disease

The severity of CDI can be characterised by any of the following criteria: admission to intensive 

care unit for therapy of CDI or any of its complications; requirement for surgery, i.e., colectomy 

for toxic megacolon, perforation of the gut or refractory colitis; or death occurring within 30 

days after the diagnosis of CDI if CDI is the primary or contributory cause (Kuijper et al., 2006). 

Admission to the healthcare facility as an indicator of severe illness is subject to debate. Other 

criteria of the severity of the illness include raised leucocyte count, raised creatinine levels, or 

hypoalbuminaemia (Kuijper et al., 2007). Raised leucocyte count (more than 2 x 101 °/L) and 

creatinine level (more than 200pmole) have been associated with adverse effect of recurrence of 

the disease (Pepin et al., 2004). There are few reports on grading the severity of the disease 

according to the amount and consistency of the stool. In their report, Dubberke et al., (2007b) 

were able to grade the severity of the diarrhoea according to the volume of the stool per a day. 

However, there were practical difficulties in grading the diarrhoeal stool according to the volume 

especially in very sick and confused patient.

1.8 Risk factors

Several risk factors for AAD have been described. They can be divided into 4 groups viz: (i) 

those that disrupt the normal colonic microflora e.g. antimicrobial agents and surgery; (ii) those 

related to host factors e.g. advanced age, impaired immune system, comorbidities, impaired 

immune system and low production of anti-toxin A and/or B; (iii) exposure to C. difficile spores 

from hospital environmental surfaces, infected room-mates and hand carriage by health-care 

personnel; and (iv) those related to microbial factors e.g. the strain type.
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1.8.1 Antimicrobial agents

The most important risk factor that drives the development of CDI is prior use of antibiotic 

especially within the previous 8 weeks (Bouza et al., 2005). Excessive and sometimes irrational 

use of antimicrobial agents are widely believed to be the main driving factor behind CDI, with 

differences in the risk depending on the class of antimicrobial agent (McDonald et al., 2005). 

Differences in the risk of different antimicrobial agents have been postulated as being due to the 

differences in the properties of the antimicrobial agents e.g. the amount of the antibiotic in the 

gut and the duration of their effect on the gut flora (Spencer, 1998), their activity against C. 

difficile, and possibly their drug or its metabolite levels in the gut (Freeman et al., 2003). Any 

antimicrobial agent may cause CDI, but administration of clindamycin, broad spectrum 

cephalosporins and broad spectrum penicillins are often implicated (Freeman and Wilcox, 1999; 

Thomas et a l, 2003).

Some antibiotics, particularly clindamycin (relative risk “RR”, 9.0), cephalosporins (RRs range 

from 7.8 for cefaclor to 36.2 for cefotaxime) and P-lactams (RRs range from 2.0 to 22.2 to 

ampicillin and ampicillin-clavulanic acid) are associated with relatively high risk of C. difficile 

acquisition (Gerding et al., 1995; Bartlett, 1994; Bignardi, 1998). However, Shek et al. 2000, did 

not find any evidence to support that increasing use of cephalosporins, more elderly patients or 

increasing length of hospital stay are major contributors to the rising incidence of CDI (Shek et 

al., 2000).

Fluoroquinolones have been in use since 1988, but they have only recently been implicated as 

common causes of CDI (Loo et al., 2005; Pepin et al., 2005; Kazakova et al., 2006; McCusker et 

al., 2003). Gaynes et al., attributed an outbreak of CDI at long-term care facility due to changing
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their antibiotic formulary from levofloxacin to gatifloxacin which has an anti-anaerobic activity. 

In addition, the rate of CDI decreased after a switch back to levofloxacin coupled with the 

infection control measures (Gaynes et al., 2004). The use of combination antibiotic therapy and 

long-term receipt of antibiotic therapy are also risk factors. CDI may also occur even in patients 

exposed to short term prophylactic antibiotic courses (Bartlett, 1994). Almost all antibiotics may 

predispose to the development of CDI (Mylonakis et a l , 2001), although it is less often 

associated with some - e.g., metronidazole, aminoglycosides, trimethoprim - and it very rarely 

occurs without antibiotics. It is hypothesised that antibiotics deplete the normal flora of the gut 

that normally provide colonization resistance (Farrell and LaMont, 2000). Ertapenem, a 

carbapenem with an antianaerobic activity, may be associated with increased risk of CDI (Itani et 

a l, 2006).

1.8.2 Age

Other predisposing factors that have been associated with C. difficile infections include old age. 

Elderly patients are at noticeably higher risk, with disease rate for patients >65 years of age as 

much as 20-fold higher than those for younger patients (Loo et a l, 2005; Pepin et a l, 2005). 

However, children older than 2 years are also known to develop CDI (McFarland et a l, 2000). 

Neonates and infants less than 2 years are often asymptomatic carriers of C. difficile, but rarely 

they may develop symptoms (McFarland, 2008b). During 2000-2003, there was a report from 

Canada which indicated that 200 young children (mean age 5.4 years) developed CDI, of which 

23% of cases had serious disease that necessitate admission to the hospital and 31% of the 

patients had at least one recurrence (Morinville and McDonald, 2005).
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1.8.3 Anti-acid medication

Other independent risk factors include proton pump inhibitors which may increase the risk by 3- 

fold (Dial et al., 2004). It is presumed that the low acidic pH in the stomach may lead to 

destruction of the spores, but colonic receptors do exist in the colon for some proton pump 

inhibitor in animal models (Nakamura et al., 1995) and clostridial spores are generally resistant 

to acidic conditions. However, other investigators have demonstrated that exposure to H2 

receptor antagonists and proton pump inhibitors are associated with elevated risk of CDI only in 

univariate analysis and that there is no increased risk after adjustment for comorbidities on 

multivariate analysis (Pepin et al., 2005).

1.8.4. HIV infection

In the report by Sanchez et al., (2005), C. difficile was found to be the most common bacterial 

cause of diarrhoea in HIV infected patients. It was found in 598 (53.6%) out of 1115 HIV- 

positive patients. The explanation for this high prevalence rate in HIV patients was, in part, 

related to the frequent use of prophylactic and therapeutic antimicrobial agents in this population 

and perhaps to the frequent visits to the health care facilities.

1.8.5 Host related factors

Several host related risk factors have been described with CDI such as prolonged hospital stay 

(McFarland 1995), recent gastrointestinal surgery, enema and stool softener (McFarland et al., 

1990), endoscopy, immunosuppressive therapy and anti-neoplastic drugs (Halim et al., 1997).
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Jiang et al. (2006) investigated the association between interleukin-8 (IL-8) promoter 

polymorphism and patients with CDI. They found that out of 42 patients with CDI, 39% were 

positive for the polymorphism in IL-8 compared to 16% and 17% of the control patients with C. 

difficile negative diarrhoea and patients without diarrhoea, respectively. The majority of these 

infections have been reported in the geriatric wards, haematology wards (Heard et a l, 1986; 

Delmee et al., 1987; Tabaqchali and Wilks, 1992) and intensive care units (Foulke and Silva 

1989; Samore et al., 1994a).

1.9 Laboratory diagnosis

1.9.1 Specimen collection

Accurate diagnosis of CDI is important for the management of the patient, controlling the spread 

as well as generating surveillance data. C. difficile infection is suspected in adults or children >1 

year of age with unexplained diarrhoea especially those who received antibiotics in the previous 

2 months or whose diarrhoea begins 72 hours after admission to hospital (National Clostridium 

difficile Standards Group, 2004; Thielman, 2000). For optimal investigation of CDI, fresh stool 

specimen is the standard sample for diagnostic test. If this is not possible, the stool could be 

refrigerated or frozen. Storage at ambient temperature may lead to denaturation of the toxin 

(Brazier, 1993). However, multiple cycles of freezing/thawing have minimal effect on the 

viability of the C. difficile or its spores. Storage at 4°C has no discernible effect on the cytotoxin 

(HPA, 2009). But, storage at -20°C has detrimental effect on the cytotoxin and multiple cycles of 

freezing/thawing may adversely affect toxin titres (Freeman and Wilcox, 2003).
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1.9.2 Cell cytotoxicity assay

Although there is no gold standard for the diagnosis of CDI, the cell cytotoxicity assay is the best 

available. It is the most sensitive and specific test available to detect toxin B (Wilkins and 

Lyerly, 2003) and can detect C. difficile toxin at less than 10 picogram levels (Bartlett and 

Gerding, 2008). It can be done on different cell lines such as Vero, HEP-2 or MRC-5 cell lines. It 

needs neutralization of the cytotoxin by C. sordellii antitoxin. The major disadvantages of the 

cell cytotoxicity assay are that it is technically demanding, requiring continuous maintenance of 

the cell line and support from the virology department and the need for neutralization of the 

positive cytopathic effect. In addition, it is expensive and has a relatively long turnaround time 

(24-48 h).

1.9.3 Stool culture

Although stool culture on selective media has high sensitivity (i.e. a test that detect positive 

results among patients with disease), the specificity (i.e. a test that detect ngative results among 

patients without disease) is low because of the rate of asymptomatic carriage of C. difficile 

especially among hospitalized patients. In order to increase the specificity of the culture, broth 

culture can be evaluated further by means of a cell cytotoxicity assay or enzyme immunoassay 

(ELA) (National Clostridium difficile Standards Group, 2004). Stool culture for C. difficile is 

rarely done in a routine diagnostic Microbiology Laboratory because of the relative long 

turnaround time (48-72h), and the fact that it is not specific for in vitro production of toxins. 

However, culture allows molecular typing of the organisms, monitoring of antibiotic 

susceptibility and molecular epidemiology.
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1.9.4 Immunological assays

The main types of kit-based toxin detection are commercially available and these are: EIA, 

which gives coloured reaction in a microtitre well for a positive test, immunochromatography 

assays, which gives a coloured band or line in the substrate strip and common antigen tests that 

detect the enzyme glutamate dehydrogenase as an indicator of C. difficile infection in the stool. 

The current EIAs for detection of toxin A only, or both toxins A and B, in the stool are relatively 

insensitive as they can miss up to 40% of positive cases compared to culture (Delmee et al, 

2005) and cell cytotoxicity assays (Shanholtzer et al., 1992). The initial EIA tests were for the 

detection of toxin A only. But, after the recognition that some isolates only produce toxin B, 

combined assays were introduced that detect both toxins. These assays are only 70-80% as 

sensitive as the cell cytotoxicity assay, which in turn is less sensitive than the stool culture 

(O’Connor et al., 2001; Delmee et al., 2005). Commercial EIAs give results within hours rather 

than days but have low sensitivity than culture and cell cytotoxicity assays.

The most common antigen test (known as the glutamate dehydrogenase test or GDH test) is an 

EIA that detects GDH enzyme. C. difficile produces GDH enzyme constitutively and it is easily 

detectable at all levels. The test has good sensitivity of 90-100% which is almost equivalent to a 

positive culture. It is rapid and not expensive. However, a positive GDH indicate the presence of 

the organism only and does not indicate the production of the toxins. Therefore, it can be used as 

screening test to detect the GDH-positive stool that need further testing by cell cytotoxicity, EIA 

for toxins or toxigenic culture. In addition, this enzyme is produced by other anaerobes thus 

reducing the specificity of the test (Brazier, 1995).
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Commercially available tests for C. difficile toxins are the following: EIA for toxin A or both 

toxins A and B and immunochromatography for toxin A only. Toxin A EIA and 

immunochromatography can miss C. difficile strains that express only toxin B. However, they 

have rapid turnaround time (<1 h for immunochromatography and about 2 h for EIAs), have high 

specificity and easy to perform and commercially available by different suppliers (Sunenshine 

and McDonald, 2006). These methods can detect from 100-1000 pg of toxin (Yolken et al., 

1981; Viscidi et al., 1984). EIA on 2-3 specimens will increase the cost as well as the diagnostic 

yield by 5-10% compared to one stool EIA (Manabe et al., 1995). The sensitivities of the 

different EIA vary in different reports and they range from 85-95%. In the earlier studies, the 

sensitivity was 33.3-59.4% for toxin A and as low as 38% for toxins A and B in the recent 

studies (Bartlett and Gerding, 2008). Some laboratories use one method to screen for C. difficile 

in stool samples with subsequent testing for cytotoxin in samples with positive results. For 

example, some investigators have used two-step protocol in which common antigen assay 

(GDH) was used as screening test to exclude 75-90% of stool specimens that do not contain C. 

difficile (Ticehurst et al., 2006). Then, the positive specimens were further tested by cell 

cytotoxicity assay to improve the specificity of the non-specific GDH result. This, theoretically, 

should reduce the cost by decreasing the number of cytotoxicity assays required while 

maintaining high specificity and sensitivity. But this approach will increase the turnaround time.
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1.9.5 PCR amplification methods

PCR amplification tests using primers to detect toxin B and toxin A genes, 16S rRNA gene of C. 

difficile and toxin B sequencing have been developed (Thielman, 2000). But the clinical use in 

routine diagnostic laboratory is still not clear.

1.10 Clinical diagnosis

Patients with CDI often present with diarrhoea associated with history of antibiotic use. It is 

known that the diarrhoea occurs during or as late as 10 weeks after stopping the course of 

antibiotic (Tedesco, 1982). For mild to moderate disease, the patient may pass up to 10 loose 

stool per day (Bartlett et al., 1980). The stool is usually watery, foul smelling and takes the shape 

of the container; rarely is there fresh blood in the stool. Recognisable accompanying features 

include fever, lower quadrant abdominal cramps and leukocytosis. C. difficile colitis may present 

with fever, leucocytosis, abdominal pain, colonic inflammation visualized by endoscopy for the 

presence of pseudomembranes or Computerized Tomography (CT) scan and the presence of 

thickening of the colonic wall, pericolonic stranding, the accordion sign or the double-halo sign 

(Kawamoto et al., 1999; Sunenshine and McDonald, 2006). Infrequently, severe C. difficile 

infection may present without diarrhoea (Bruke et al., 1988). This occurs when the infection 

causes paralytic ileus that does not allow the passage of the stool. This presentation may occur in 

post-operative patients who received antibiotics as well as narcotics for pain.
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1.10.1 Role of endoscopy

The detection of PMC by colonoscopy is the preferred method of diagnosis because PMC, in up 

to one-third of the patients, can involve the right colon only and will not be detected by 

sigmoidoscopy. However, the sensitivity of endoscopy is only 51% in the presence of PMC 

(Bartlett and Gerding, 2008). As in any invasive procedure, complication is always a worry. An 

important complication of colonoscopy is perforation of the gut especially in patients with 

fulminant colitis (Longo et al., 2004).

1.11 Epidemiology

During the first month of life, up to two-thirds of neonates may be colonized with C. difficile 

without producing any symptoms. This may be related to the acquisition of organism from 

hospital environment. Most reports show a wide variation in the isolation rate among neonates 

and infants ranging from 2 to 71% (Viscidi et al., 1981; Larson et al., 1982; Al-Jumaili et al., 

1984; Tabaqchali et al., 1984a). The presence of toxin-producing organisms has also been 

demonstrated in this population, but the prevalence of colitis remains very low (Thielman, 2000). 

The body of evidence in the literature show that the carriage of C. difficile among healthy adults 

in western industrialized countries is uncommon and any association with community-acquired 

colitis is low and sporadic (Viscidi et al., 1981). However, the carriage rate among healthy adults 

varies significantly in different countries, from 1.9-7% in western industrialized countries 

(Aronsson et al., 1985; Bartlett 1979; Aronsson et al., 1983) to 15.4% in Japan (Nakamura et al., 

1981) and 33.3% in Nigeria (Rotimi et a l, 1986). However, it is not clear if this carriage is a 

permanent or a temporary phenomenon. The rate of colonization increases with age. For
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example, the rate of asymptomatic colonization has been reported as 7% of residents of long

term care facilities (Walker et al., 1993), 14% of hospitalised elderly patients on acute medical 

wards and 20% of patients on chronic medical care wards (Rudenskey et al., 1993). Also worthy 

of note is the finding that the rate of asymptomatic colonization is between 3-5 folds more 

common than in symptomatic patients (Samore 1993; McFarland et al., 1989).

Some other studies have demonstrated the direct effect of C. difficile infection on the length of 

hospital stay and consequent enormous cost. Elegant studies by Riley et al., in 1995 and Wilcox 

et al., in 1996 showed that C. difficile infection in the hospital increased the length of hospital 

stay by 18 days in adults and 21.3 days in geriatric wards, respectively (Riley et al., 1995; 

Wilcox et al., 1996). The approximate additional cost of each C. difficile infection was reported 

as £4107 (Wilcox et al., 1996). Fortunately, the mortality rate from CDI is relatively low, 

accounting for only 0.6% as reported by Olson et al. (Olson et al., 1994). However, Eriksson and 

Aronsson (1989) have earlier reported a higher mortality rate in elderly CDI patients compared 

with controls (21% vs. 7%). In addition, when surgical intervention is involved particularly in 

the treatment of toxic megacolon or colon perforation, the mortality rate may increase to 35-50% 

(Morris et al., 1990). In 2007, the Office of National Statistics reported 8324 death certificates 

with CDI listed as an underlying or contributory cause of death; in 49% it was the underlying 

cause. In the same year there were approx. 62,000 cases of CDI in England (National statistics, 

2009).

It appears that the most important sources of C. difficile in a hospital and long-term care facility 

setting are symptomatic cases or asymptomatic carriers who are the main reservoirs of C. 

difficile in the hospital. The environment of these patients is also an important source (Dubberke 

et al., 2007a). It has been found that environmental contamination in the rooms of patients with
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diarrhoea is more than in rooms with asymptomatic carriers (49 vs. 29%) (McFarland et a l , 

1989). In addition, it has been found that rooms occupied by C. difficile-negative patients were 

contaminated with C. difficile, in spite of routine cleaning, due to the spores of the organism that 

can persist for several months (Muligan et al., 1979). However, a recent study by Dubberke et a l 

2007a, showed that rooms housing a patient with CDI were more likely to be culture positive 

than non-CDI patients rooms (100% vs. 33% ; P < 0.01). Several neutral agents and chlorine- 

releasing agents have poor activity against C. difficile spores (Wilcox and Fawley, 2000). This is 

significant in outbreak situations as epidemic strains produce significantly more spores than non

epidemic strains and sporulation may be enhanced when the stools containing C. difficile are 

exposed to non-chlorine-based cleaning agents. Thus, enhancing the persistence of C. difficile 

spores in a hospital environment (Wilcox and Fawley, 2000).

Physical proximity to an asymptomatic carrier has been reported as an important risk factor for 

transmission with an attributable risk of 12% (Chang and Nelson, 2000). This may be related to 

the contamination of near-patient environment or movement of the patients between 

contaminated fomites, e.g. commodes. Transfer of patients between wards or institutions has also 

been implicated in the transmission of C. difficile (Safdar and Maki, 2002).

Direct or indirect contact represents the main route of C. difficile transmission, as the spores may 

persists in the environment for months or years and they show resistance to various 

environmental cleaners e.g. detergents and some disinfectants (Fawley and Wilcox, 2001; 

Wilcox et a l , 2003). Person-to-person transmission on hospital wards, particularly geriatric 

wards, as well as environmental contamination and carriage on the hands of hospital workers 

have been well documented (Mulligan et a l , 1979; Kim et a l , 1981; Malamou-Ladas et al., 

1983; Savage and Alford 1983; Heard et a l , 1986; McFarland et a l, 1989). Transmission occurs
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principally via the faecal oral route as well as by direct contact with contaminated surfaces 

(Barbut and Petit, 2001). C. difficile has been isolated from the hands of hospital personnel 

taking care of patients with C. difficile infection. Brooks and colleagues have also suggested that 

transmission may occur via direct inoculation into the bowel by contaminated rectal 

thermometers (Brooks et al., 1992). Direct transmission via the airborne route is unlikely to 

occur, but it has been suggested recently in a pilot study (Roberts et al., 2008). However, the 

potential for the dispersal of C. difficile spores in air needs further exploration, especially as the 

organism has been found widely in the soil and the gut of many animals, and is a known cause of 

colitis in animals such as cats, dogs, horses, rodents and neonatal pigs (Avbersek et al., 2009).

AAD is an important cause of morbidity and mortality in elderly hospitalised patients. Recently, 

there has been a dramatic rise in both the incidence and the mortality rate of CDI worldwide 

(Dallal et al., 2002; Morris et al., 2002; Pepin et al., 2004; McDonald et al., 2006). In a 1997 

survey of 18 Canadian institutions, the mean incidence of CDI was 6 per 10,000 admissions, and 

1.5% of the affected patients died as a direct or indirect effect of this complications (Hyland et 

al., 2001; Miller et al., 2002), while in 2004, the overall incidence had risen to 22.5 per 1000 

admissions, and the 30-day attributable mortality rate to 6.9% (Loo et al., 2005). In another 

recent survey of 8 European hospitals, the incidence of CDI was found to be 1.1 per 1,000 

patient admissions (Barbut et al., 2003a) compared to 0.1-2% reported earlier (Olson et al., 

1994; Bowen et al., 1995). This rise in the incidence has been associated with the emergence of 

an epidemic strain of C. difficile (Ribotype 027 or BI/NAP1). Infection with this strain is 

associated with more severe disease and fluoroquinolone resistance (McDonald et al., 2005; 

Pepin et al., 2005; Bartlett 2006; Hubert et al., 2007).

32



1.11.1 Typing methods

For epidemiological purpose, the typing method ideally should be characterized by its 

reproducibility, its discriminatory power, stability of the marker investigated and universal 

typability of the isolates (van Belkum et al., 2007). Several phenotypic and molecular typing 

techniques have been used for C. difficile. The phenotypic methods used for C. difficile include 

the following: antibiogram, plasmid profiling, serogrouping, protein polyacrylamide gel 

electrophoresis of cell surface antigens and pyrolysis mass spectrometry (Brazier, 2001). On the 

other hand, the molecular typing methods include, methods utilizing enzyme restriction of 

genomic DNA (e.g. pulsed-field gel electrophoresis and restriction endonuclease analysis), 

methods dependent on PCR products (e.g. PCR ribotyping and multi-locus variable-number 

tandem-repeat analysis), methods using sequencing of selected genes (e.g. multilocus sequence 

typing and surface layer protein A gene sequence typing) and combination of enzyme restriction 

and PCR (e.g. amplified fragment length polymorphism) (Killgore et al., 2008). Of all these, the 

PCR ribotyping method has become well established, reproducible, reliable and popular.

1.12 Epidemiology of C. difficile ribotype 027

A new era of C. difficile infection started early during this millennium when the frequency and 

severity of CDI suddenly increased across North America, Europe and Southeast Asia with 

devastating consequences. There were several outbreaks caused mainly, but not exclusively, by a 

newly recognised PCR ribotypes 027 strain, alternatively known as North American pulsed-field 

type 1 (NAP 1), restriction endonuclease type BI, toxinotype III or the hypervirulent strain
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(depending on the typing method used). This hypervirulent strain carries genetic mutations in the 

tcdC toxin regulatory gene, binary toxin gene and fluoroquinolone resistant mutation.

1.12.1 Hypervirulent CDI in USA

In the USA, a recent cohort analysis of patients from the Nationwide Inpatient Sample, 

representing 1,000 hospitals across 35 states, found a doubling of the C. difficile colitis incidence 

rate from 261 cases per 100,000 discharged patients in 1993 to 546 cases per 100,000 discharged 

patients in 2003 (Ricciardi et al., 2007) and over half of that increase occurred in the final 2 

years of the study. Population-based estimates of C. difficile mortality rates rose more than 

fourfold, from 5.7 per million population in 1999 to 23.7 per million population in 2004 

(Redelings et al., 2007). NAP 1 (ribotype 027) C. difficile strains have been isolated and 

identified in at least 27 states as of April 2007 (CDC, 2007). In addition, it has been reported as 

the main cause of outbreaks in several states (McDonald et al., 2005; Tan et al., 2007).

1.12.2 Hypervirulent CDI in Canada

The Canadian Nosocomial Infection Surveillance Program (CNISP) surveyed 2,062 patients 

from 19 institutes in 8 provinces during 1997 (Miller et al., 2002). The incidence of CDI was 5.9 

cases per 1,000 patient admissions; 8% of these patients had complications with 1.5% mortality 

attributed directly or indirectly to CDI. The increase in the frequency and mortality of CDI was 

first identified in December 2002 (Weiss et al., 2007) and later reported in 2004 (Eggertson and 

Sibbald, 2004). A study in Quebec, a French-speaking province of Canada, during the first 6
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months of 2004 involving 12 hospitals determined an incidence of 22.5 per 1,000 patient 

admissions, with mortality rate of 6.9% (Loo et al., 2005) i.e. fourfold compared to CNISP 

study. Although NAP1 was the dominant pathogen in that study, the mortality rate was related to 

the presence of the binary toxin and a partial deletion in the negative toxin regulator gene tcdC. 

A follow up CNISP survey of 34 hospitals across 9 provinces during November 2004 to April 

2005 revealed an unchanged scenario in the overall mean of CDI incidence at 6.4 per 10,000 

patient days (CNISP, 2007). However, the CDI incidence in Quebec of 11.9 per 10,000 patient 

days remained almost double the initial CNISP figure.

1.12.3 Hypervirulent CDI in Europe

A similar situation to that in North America has emerged in Europe. The NAPI/027 ribotype has 

been recognised as the cause of outbreaks across 9 European countries; namely, the UK 

(England, Wales, Scotland and Northern Ireland), Netherlands, Belgium, France, Austria, 

Germany, Finland, Luxembourg, and Ireland while sporadic cases have been detected in Austria, 

Norway, Poland, Hungry, Denmark and Spain (Kuijper et al., 2008). The attributable mortality 

rate had increased 2.3-fold from 1999 to 2004.

1.12.4 Hypervirulent CDI in Asia

There is less epidemiologic information on C. difficile and CDI from the Asian countries. In a 

survey of 310 C. difficile isolates from different hospitals in Japan and Korea and from healthy 

infants from Indonesia, Rupnik et al., (2003) discovered a wide variety of toxinotypes with no
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027/NAP 1 isolated; toxinotype 0 was predominant. An epidemic strain (PCR ribotype f  ‘smz’) 

was identified in an analysis of 148 isolates from one Japanese teaching hospital. This strain was 

responsible for outbreaks in many hospitals (Sawabe et al., 2007); only one 027/NAP 1 isolate 

susceptible to fluoroquinolone and associated with community onset disease was found.

1.12.5 Hypervirulent CDI in the Middle East

So far, no 027/NAP 1 strain has been found in any of the countries in the Middle East nor has the 

prevalence of C. difficile infection/colonisation been studied in any hospital setting in Kuwait, 

including the intensive therapy units (ICUs), haematology wards or bum units, which lack 

general guideline on the rational use of antibiotics. Nobody knows the antibiotic susceptibility 

pattern or the ribotypes of the strains of C. difficile circulating in our teaching hospitals with ICU 

facilities. Kuwait is a small country with a population of about 2.1 million, of which the 

Kuwaitis are one-third. The indigenes enjoy traveling abroad, both for holidays and for medical 

treatment in many European and American hospitals. It is not unknown for Kuwaitis who have 

travelled abroad to import multi-resistant bacteria. A recent example was a strain of mupirocin- 

resistant methicillin-resistant Staphylococcus aureus, imported from a UK hospital (Unpublished 

observation, Dr EE Udo). Although the acquisition rate of C. difficile in stool specimens of 

patients on admission to the intensive care units (ICUs) of Kuwait hospitals has been reported 

(Rotimi et al., 2002), the prevalence, risk factors and molecular epidemiology of CDI has not 

been established.
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1.13 Antibiotic susceptibility

Although metronidazole is the first line therapy for the treatment of CDI, current drug treatment 

of CDI focuses on both metronidazole and vancomycin. Early studies have demonstrated their 

equivalence of therapeutic outcomes (Mylonakis et al., 2001; Bartlett 2006) and the 

recommendation of several health authorities like CDC, HP A, SHEA, IDSA favour the use of 

both antimicrobials. However, recent data have shown increased CDI rates, increase disease 

severity as well as higher risk of treatment failure and CDI recurrence after treatment with 

metronidazole (Musher et al., 2005; McDonald et al., 2006). In addition, the CDC has 

discouraged the use of vancomycin for the treatment of CDI in hospital settings in order to 

minimize the risk of development of vancomycin resistance in enterococci and staphylococci 

(HICPAC, 1995). Clinical Microbiology Laboratories do not usually culture for C. difficile and 

they do not perform antimicrobial susceptibility testing on C. difficile as they depend on the 

detection of toxin A and/or B for the laboratory diagnosis of CDI. Several studies have reported 

the full susceptibility of C. difficile to metronidazole and vancomycin. However, few reports 

have appeared indicating that some clinical strains demonstrating decreased susceptibility to 

these therapeutic agents have emerged Table 1.2; (Barbut et al., 1999; Brazier et al., 2001; 

Pelaez et al., 2002). Recently, the number of isolates with vancomycin MIC of 4pg/ml has been 

found to increase from 2.7% to 21.6% in Scotland and the UK (Drummond et al., 2003a; Mutlu 

et al., 2007). This emphasizes the need for periodic monitoring of any emerging of resistance in 

C. difficile and to check the suitability of the current treatment as well as to investigate for new 

antimicrobial agents active against C. difficile, such as rifaximin, OPT-80, ramoplanin, rifalazil, 

tinidazole, linezolid and tigecycline.
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Table 1.2. Resistance of C. difficile isolates to metronidazole

Country Resistance to metronidazole Reference

Hong Kong

France

UK

Spain

Israel

UK

1/100 (1%) clinical isolate with MIC = 64 pg/ml

6/198 (3%) clinical isolates with MIC >8pg/ml

One environmental isolate with MIC = 16pg/ml

26/415 (6.3%) clinical isolates with MIC >32pg/ml

1/49 (2%) clinical isolate with MIC >256pg/ml

21/86 (24.4%) among among clinical isolates ribotype 
001

Wong et al., 1999 

Barbut etal., 1999 

Brazier et aL, 2001 

Pelaez et al., 2002 

Bishra et al., 2006 

Baines et al., 2008

In a recent report by Hecht and colleagues (Hecht et al., 2007), they found that the most active 

agents in vitro were rifaximin, rifalazil, tizoxanide, nitazoxanide and OPT-80. In-vitro activity of 

linezolid was examined against 115 C. difficile isolates and found to have an MIC range of 0.03- 

4pg/ml, which was thought to be susceptible (Pelaez et al., 2002). However, whether in-vitro 

activity correlates with in-vivo effect is a matter of debate especially as some of these agents, 

e.g., linezolid are absorbed and the levels in the colon are low.

Antimicrobial susceptibility patterns of 677 C. difficile isolates obtained from different hospitals 

in England 2007-2008 revealed significantly lower susceptibility to metronidazole in the more 

common PCR ribotypes (027, 106, 001) when compared to the less common ribotypes but all 

have MICs within the susceptible range (Brazier et al., 2008). The same investigators found that 

all the isolates were susceptible to vancomycin. The more common ribotypes (027, 106, 001) 

were more resistant to moxifloxacin and erythromycin than the less common strains (Brazier et 

al., 2008). There is no information on the antimicrobial susceptibility of clinical isolates in
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Kuwait or indeed in the entire Middle Eastern countries. Information regarding the susceptibility 

of C. difficile is vital to the formulation of treatment guidelines for CDI in our country.

1.14 Treatment of CDI

This can discussed as current and new options.

Current treatment of CDI has traditionally been to discontinue the implicated antimicrobial agent 

or agents with supportive care that include rehydration, electrolytes replacement and avoiding 

the use of antiperistaltic agents, e.g. narcotics and loperamide, as they may predispose to the 

development of toxic megacolon by slowing down the clearance of C. difficile toxin from the gut 

(Bouza et al., 2005). When the treatment with the precipitating antimicrobial agent has to be 

continued, then it is better to use antibiotics with low probability of causing CDI, such as 

sulphonamide, aminoglycosides, vancomycin, tetracycline, trimethoprim-sulfamethoxazole 

(Bricker et al., 2005).

The traditional therapy for patients with moderate to severe CDI is either oral metronidazole 

(400 mg 8 hourly) or oral vancomycin (125mg 6 hourly) for 10-14 days (HPA, 2009). 

Metronidazole is the preferred agent for treatment according to the Health Protection Agency in 

UK (HPA) (HPA, 2009), the Infectious Disease Society of America (IDSA), the US Centres for 

Disease Control and Prevention (CDC) and the Society for Healthcare Epidemiology of America 

(SHEA) guidelines (Bartlett, 2006). Metronidazole is the preferred agent due to its low cost, 

comparability to vancomycin in clinical trials and it is less likely to promote the development 

and spread of vancomycin-resistant enterococci (VRE) (Gerding, 1997). However, a recent study 

has indicated that both metronidazole and vancomycin are equivalent in promoting vancomycin-
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resistant enterococci during therapy of CDI (Al-Nassir et al., 2008), which may provide 

reassurance about using vancomycin more often in the treatment of moderate and severe CDI. 

Treatment with metronidazole is complicated with high recurrence rate in 20-25% of the 

patients, usually occurring 1-10 days after discontinuation of the treatment (Kuijper et al., 2006). 

Metronidazole has poor pharmacological profile in term of its absorption in the small intestine 

after oral therapy with only a detectable level found in the stool in the presence of diarrhoea 

(Bolton and Culshaw, 1986). As the diarrhoea improves, the level of metronidazole in the lumen 

of the colon drops, which may be a factor that leads to failure to respond to therapy or disease 

recurrence. In addition, some C. difficile isolates have been reported to be resistant to 

metronidazole in Spain and the UK (Brazier et al., 2001; Pelaez et al., 2002; Baines et al., 2008). 

There are some recent evidence which indicated that metronidazole is associated with higher 

failure rate compared to vancomycin in the treatment of seriously ill patients (Musher et al.,

2005) and that there is a poor response to metronidazole if the antibiotic for the initial condition 

has to be continued (Modena et al., 2006). These are in addition to an earlier report by Wilcox 

and Howe (1995) which showed that metronidazole has slower clinical response rate compared 

with oral vancomycin.

Although oral vancomycin is only approved by the US Food and Drug Administation (FDA) for 

CDI, many infectious disease authorities such as HPA (HPA, 2009) have suggested that 

vancomycin can be used for severe and serious forms of disease. It has an ideal pharmacological 

profile for treating colon infection as it is totally unabsorbed by the gut and it is found in the 

colon lumen at concentrations more than 100-fold higher than the MIC (Bartlett, 2006). All C. 

difficile isolates are susceptible to vancomycin in vitro except for one report from Spain which 

showed that about 3% of their isolates were intermediately susceptible to vancomycin with MICs
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ranging between 8-16pg/ml (Pelaez et al., 1998). However, the main problems with vancomycin 

are its high cost and possible promotion of acquisition of vancomycin-resistant enterococci, 

which of course, has been disputed by the recent report of Al-Nassir and his colleagues (2008).

There is enough evidence to show that both oral metronidazole and vancomycin are efficacious 

in the majority of patients with CDI. However, in cases of ileus or toxic megacolon, they may 

not respond because the antimicrobial agents may not reach the necessary site of the disease, i.e. 

the colon. Therefore, vancomycin may be delivered via retention enema or a long tube raised 

above the patient employing gravitational force (Bartlett, 2008). Another alternative therapy is 

the use of intravenous metronidazole and intravenous immunoglobulin. However, the success 

rate of this regimen is variable and total colectomy may be required, especially if the patient is 

seriously ill.

Another problem of therapy is relapse after stopping the therapy which may occur in 22-26% of 

patients, according to Bartlett (2008). They usually respond to retreatment because the majority 

of the recurrences are re-infection (Wilcox et al., 1998). Some may have additional relapses with 

small proportion of these patients having repeated relapses that may necessitate several courses 

of antibiotics. Different methods have been used to treat several and repeated relapses. These 

include, tapering or pulse dosing of vancomycin (McFarland et al., 2002), use of probiotics 

(Saccharomyces boulardii, Lactobacillus rhamnosus) (McFarland et al., 2002), stool implants 

(Aas et a l , 2003), and immunotherapy with intravenous immunoglobulin (McPherson et a l ,

2006). It is believed that all of these interventions work some of the time and none work all of 

the time (Bartlett 2008).
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1.14.1 New therapies using established antibiotics

Antimicrobial agents other than metronidazole and vancomycin are being studied as potential 

treatment options for CDI such as bacitracin, fusidic acid, nitazoxanide, rifampicin and 

teicoplanin. The conclusion reached by Kuijper et al., (2007) is that they are not superior to 

vancomycin or metronidazole. In a prospective randomized double-blind study, fusidic acid was 

used as a therapeutic alternative to metronidazole in the treatment of CDI by comparing the 

efficacy of both drugs. The cure rate and relapse rate were the same but resistance to fusidic acid 

was found in 1% pretreatment patients versus 55% of patients who remained culture positive 

after fusidic acid (Noren et al., 2006).

1.14.2 Alternative therapies

Nitazoxanide is a new thiazolide used to treat some parasitic and protozoal infection and has 

high concentration in the colon. It has good in vitro activity against C. difficile (Senok and 

Rotimi 2008). It was studied in a randomized double-blind study in comparison to metronidazole 

(Musher et al., 2006). The response to metronidazole was 57.6% compared to 65.8 and 74.3% 

for nitazoxanide for courses lasting 7 and 10 days, respectively. But there was no difference in 

term of recurrence rate in that study. Rifaximin is a rifampicin-like antibiotic that remains in the 

gut after oral administration. In an uncontrolled study reported by Johnson et al., (2007), it was 

used to treat 8 patients with multiple recurrent CDI after completing 2 weeks therapy with 

vancomycin. It was found to be effective in 7 of the 8 patients. Ramoplanin (an oral non

absorbable lipoglycodepsipeptide that blocks peptidoglycan synthesis) and rifampicin are non-
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inferior to the standard antimicrobial agents in phase II trials without serious effects (Pullman et 

al., 2004; Lagrotteria et al., 2006).

1.14.3 Adsorbent agents

Some workers have suggested the use of absorbent agents which bind to the C. difficile toxins 

thus preventing adherence and consequent damage to the intestinal epithelial cells. Several 

adsorbent agents have been used to treat CDI which include ion-exchange resin, e.g., 

cholestyramine and toxin binding polymers, e.g., tolevamer and Synsorb 90 (Senok and Rotimi, 

2008). Oral cholestyramine has been used successfully to treat CDI (Moncino and Falletta, 

1992). One of the drawbacks of the ion-exchange resin is their binding to the standard antibiotics 

used to treat CDI making the level of the antibiotics in the colon low. There is, therefore, the 

need to use these drugs with caution. Tolevamer is a polymer that binds and neutralizes C. 

difficile toxin A and B within the intestinal lumen. In a prospective multicentre double-blind 

study in patients with CDI, that compared low and high dosing tolevamer regimen with 

vancomycin, low dose tolevamer (3g/day) was found to resolve the diarrhoea in 67% of the 

patients compared to 83% for the higher dose tolevamer (6g/day) and 91% in vancomycin group 

(Louie et al., 2006). However, there was no significant difference between these rates. The 

recurrence rate was similar among the treatment groups (23%, 10% and 19% for the low dose 

tolevamer, higher-dose tolevamer and vancomycin groups, respectively). In addition, it was well 

tolerated but associated with increased risk of hypokalemia (Senok and Rotimi, 2008). Non- 

toxigenic C. difficile strains have also been successfully used to treat two patients with multiple 

relapses (Seal et al., 1987).
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1.14.4 Probiotics

Probiotics have been studied extensively in the treatment of various diseases including diarrhoea 

and CDI. The probiotics cover a variety of bacteria and yeast while the clinical efficacy against 

CDI have been linked to certain types, such as Saccharomyces boulardii, Lactobacillus 

rhamnosus GG and a non-toxigenic strain of C. difficile. The main principle of using these 

microorganisms is to restore the normal gut flora which is unfavorable for the proliferation of C. 

difficile. However, there are differences in the outcome of these clinical trials perhaps due to the 

different type of the probiotics and the regimen used. A recent meta-analysis of 6 randomized, 

placebo controlled trials published between 1994 and 2005 using probiotics combined with either 

metronidazole or vancomycin to treat CDI concluded that probiotics were effective in reducing 

the risk of CDI (McFarland 2006). However, these studies lack large and well designed trials to 

validate the routine clinical use of probiotics. Other meta-analysis failed to detect statistically 

significant efficacy in treating or preventing CDI (Pillai and Nelson, 2008). In addition, there are 

reports of fungaemia and bacteraemia in immunosuppressed patients who received probiotics 

(Schlegel et al., 1998; Niault et al., 1999).

1.14.5 Faecal enema

Faecal enema or transplant is another new option which appears to have caught the attention of 

clinical microbiologists and infectious disease experts. Fecal transplantation in humans has been 

used to replace the gut normal flora. This is used as the last option in patient with recurrent CDI 

refractory to the standard therapy. A fresh stool (30-50g) from a healthy donor is given in normal 

saline by rectal enema or orally via nasogastric tube or colonoscopy (HPA, 2009). It has been
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successfully used in patients with recurrent CDI (Aas et al., 2003). However, this type of 

treatment is aesthetically not appealing and carries the risk of transmission of various infectious 

agents present in the stool of “healthy donors”.

1.15 Immunotherapy

1.15.1 Immunoglobulin

There are some reports documenting the use of intravenous immunoglobulin for the treatment of 

refractory CDI (Wilcox 2004; McPherson et al., 2006). A dosage of 400mg/Kg of 

immunoglobulin given intravenously, as a stat dose, has been found to be beneficial in about 

two-third of intractable cases (HPA, 2009). Unfortunately, there are no randomized well 

controlled clinical trials on the use of immunoglobulin in CDI. Therefore, it may be difficult to 

evaluate its effectiveness in recurrent or severe CDI. It is not known, whether or not the efficacy 

of immunoglobulin is related to the concentration of antibodies to C. difficile toxins present in 

the pooled immunoglobulin or antibodies to different types of antigen. An immune concentrate 

made from cows immunized with inactivated C. difficile toxin and killed whole-cell C. difficile 

has been tested in a trial involving 77 patients with CDI (Young et al., 2007). The patients were 

given anti-C. difficile concentrate for 2 weeks after 10 days treatment with vancomycin. Only 4 

patients (6.3%) relapsed within 46 days post treatment. This therapeutic approach has been well 

tolerated without adverse effects. Administration of neutralizing human monoclonal antibodies 

against C. difficile toxin A in healthy volunteer adults was safe and well tolerated (Taylor et al., 

2008). The participants were followed for up to 56 days without any adverse reactions. A
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randomized study of this monoclonal antibody to C. difficile toxin A in patients with CDI is 

worthy of further evaluation.

1.15.2 Vaccination

Vaccine strategies have been developed to protect newly admitted patients to various hospitals 

and other healthcare facilities from developing CDI. A parenteral C. difficile formalin- 

inactivated toxoid A and B vaccine was been shown to be highly immunogenic in Phase I 

clinical trials in 30 healthy adults (Kotloff et al., 2001). The vaccine elicited fourfold rise in the 

neutralizing antibody to toxin A and B in all except one of the volunteers and serum antitoxin A 

IgA and IgG antibody responses were seen in all except one candidate. The conclusion was that 

the toxoid vaccine was safe and immunogenic. Other investigators (Ghose et al, 2007) have 

found that transcutaneous immunization with formalin treated C. difficile toxin A was effective 

and induced systemic as well as mucosal immune response in mouse. Other bacterial 

components may be immunogenic and protective as O’Brien et al., were able to demonstrate the 

ability of high titre rabbit anti-surface layer protein antibodies to attenuate the progress of the 

disease in hamsters infected with C. difficile (O’Brien et al., 2005). However, Ni Eidhin and 

colleagues recently demonstrated that conventional adjuvant approaches were insufficient in 

terms of generating neutralizing antibody responses to C. difficile based on surface layer protein 

alone in mouse and hamster models (Ni Eidhin et al., 2008).
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1.16 Infection control and prevention

Control of C. difficile infections and outbreaks involved 4 strategies: (i) interruption of the 

spread of C. difficile spores as well as the vegetative bacteria; (ii) reduction in the burden of 

clinical disease by prompt diagnosis and treatment of symptomatic patients; (iii) reduction of the 

inciting agents by antimicrobial stewardship programs and (iv) reduction of C. difficile 

recurrences.

Interruption of the route of the transmission can be achieved by using disposable gloves and 

thermometers, contact precautions or isolation precautions for C. difficile positive patients and 

environmental disinfection.

1.16.1 Isolation precautions

Contact or isolation precaution is advised for any patient with CDI. It is recommended that the 

patient be nursed in a single room with a self-contained toilet and hand washing basin. Personal 

protective clothes e.g. gloves and gowns should be used when in contact with the patient or the 

patient’s environment, and healthcare workers should wash their hands with soap and water 

before and after patient contact (HPA, 2009). If isolation in single rooms is not possible, then a 

cohort nursing in a bay with a solid partition or a door to separate the bay from the rest of the 

ward or a cohort ward may be considered (HPA, 2009). According to the HPA document, a 

dedicated cohort ward is preferable to a cohort bay in a ward because very strict supervision on 

the cleanliness of the toilet/commodes should be maintained to ensure staff contact precautions 

in these bays are observed (HPA, 2009). The cohorted patients have to be nursed and managed 

by designated staff in order to minimize the risk of cross-infection to other patients (Vonberg et
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al., 2008a). It is prudent that the patients should be on isolation precautions until the bowel 

function return to normal for at least 48 h especially during an outbreak setting (Al-Barrak et al., 

1999).

1.16.2 Hand hygiene

Standard infection control policies emphasize on hand hygiene to prevent the transmission of any 

healthcare-associated infection. If the hands are visibly clean, alcohol-based product is useful. If 

the hands are visibly dirty or contaminated, soap-based hand washing is used. However, it must 

be emphasized that C. difficle spores are not killed by alcohol, therefore it is not recommended as 

a replacement for hand-washing in CDI. Chlorhexidine, iodophors, chloroxylenol or triclosan are 

not effective against C. difficile in the form of antiseptic hand-wash or hand-mb (WHO, 2007). 

In a report published by Barbut et al., (2003b), 4% polyvidone soap was more effective in 

reducing C. difficile count than chlorhexidine or non-medicated soap. In addition, the above 

products are more effective than alcohol-based products.

Bacterial spores can be removed from the hands by the physical action of hand washing and 

rinsing, whether using non-antibacterial liquid soap or antiseptic substances (Samore et al., 

1996). There is a debate whether to use soap containing disinfectant or disinfectant-free soap as 

some studies have shown that there was no difference in the residual counts of C. difficile on the 

hands after using liquid soap or chlorhexidine gluconate (Bettin et al., 1994). However, other 

studies have shown that there was a significant difference in the removal of the spores on the 

hands of healthcare workers (HCW) using chlorhexidine gluconate compared to non-disinfectant 

soap (McFarland et al., 1989). Wearing gloves when caring for patients with CDI has been found
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to reduce the degree of contamination of HCW's hands with the C. difficile spores, but with a 

rider that the hands are washed and dried after removal of the gloves (WHO, 2007). Because 

patient-to-patient transmission has been reported, hand washing with soap and water is highly 

recommended for the patients with CDI especially after using the toilet and before eating 

(Samore et al., 1996).

1.16.3 Protective clothes

The use of disposable protective clothes, like disposable apron and gloves, for any physical 

contact with patients with CDI and patient's immediate environment or body fluids is highly 

recommended by a variety of health care authorities (HPA, 2009; Pittet et al., 2006). The bare 

hands of HCW are vulnerable to contamination with C. difficile spores especially when hand 

hygiene practice is not followed properly (McFarland et al., 1989). It is possible that 

contamination of the hands may occur during removal of the gloves; therefore, hand washing and 

drying is necessary after removal of the gloves (Doebbeling et al., 1988). Gowns and aprons help 

to prevent contamination of the cloths of HCW by C. difficile and its spores (AL-Barrak et al., 

1999). Since contamination of HCW may occur during work, it is advised that appropriate 

aprons be worn during work (Perry et al., 2001). Direct or indirect contamination from the 

environment have been documented by Perry and colleagues (Perry et al., 2001) who found that 

the some nurses uniforms were contaminated with C. difficile spores before the work-shift and 

that some of these uniforms have been laundered at home.
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1.16.4 Environmental cleaning

Environmental cleaning of the immediate surroundings of an infected patient is crucial in the 

control and prevention of CDI. The environment of a patient with CDI is known to be 

contaminated with C. difficile spores especially in patients with stool incontinence or 

symptomatic patients with large volume of liquid stool (Samore et al., 1996). The spores often 

contaminate the floors, commodes, toilets, bedpan, bed railings and frames. However, it is not 

known whether the spores in the environment are the source of the infection or a sequelae of the 

CDI because of the clonal nature of infection (Fawley and Wilcox, 2001). C. difficile spores in 

the environment may persist for months or years because they can resist drying, heat and 

disinfection substances (Wilcox and Fawley, 2000; Wilcox et al., 2003). Cleaning of an 

environment contaminated with C. difficile spores with detergent alone has been shown not to be 

sufficient means of decontamination (Verity et al., 2001) but there is a need for use of sporicidal 

products (Fawley et al., 2007). Hypochlorite-based disinfectant has been found to be very 

effective in decontaminating frequently touched surfaces especially as they are significantly less 

likely to enhance sporulation of C. difficile in vitro (Wilcox and Fawley, 2000). Some studies 

have demonstrated that hypochlorite solution, at a concentration of 1:1000ppm, used to clean the 

environment was associated with significant reduction of CDI compared with the use of 

detergent only (Wilcox et al., 2003; Fawley et al., 2007). However, it should be stressed that 

hypochlorite is corrosive to metal surfaces and does not remove organic matter. Quaternary 

ammonium compounds, although no longer used in hospital practice, have been shown to 

decontaminate the environment contaminated with C. difficile (Samore et al., 1994).

In a recent report, hydrogen peroxide vapour was shown to reduce the environmental 

contamination with C. difficile effectively (Boyce, 2007). In that study, C. difficile isolation
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reduced from 2.4% of swab cultures and 25.6% of sponge cultures to zero from both the swabs 

and sponge cultures after the use of hydrogen peroxide vapour. The incidence of new C. difficile 

infection dropped from 1.36 cases per 1,000 patient days to 0.84 cases per 1,000 patient days. 

However, major drawbacks for hydrogen peroxide vapour are that it is expensive, the rooms 

have to be sealed, and the rooms of the patients and staff location would have to be vacated for 

several hours. Although glutaraldehyde is effective in inactivation C. difficile spores, it not 

recommended for cleaning the environment due to safety issues (Vonberg et al., 2008a). 

Peracetic acid 0.2%, which has replaced glutaraldehyde in most of the UK hospitals, is also 

effective in inactivation of C. difficile spores, although it has not been used for environmental 

decontamination (Vonberg et al., 2008a).

According to the HPA (2009) report, environmental cleaning of the rooms of C. difficile patients 

has to be done at least once daily using chlorine containing cleaning agent (minimum of 

1,000ppm available chlorine). It is also recommended in this report that all hospital wards should 

be cleaned at regular interval with maximal concentration of the disinfectant, particularly the 

frequently touched surfaces. Once faecal soiling occurs in the environment, cleaning staff have 

to be notified so that immediate cleaning can be done (Vonberg et al, 2008a). The toilets and the 

items that can be soiled with stool e.g. commodes and bed pans, have to be cleaned thoroughly. 

Once a patient is discharged, terminal cleaning and disinfection of the room must be done 

thoroughly.
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1.16.5 Cleaning of medical equipments

Medical equipments like rectal thermometers, oximeters, blood pressure cuffs may play role in 

the transmission of disease (Samore et al., 1996; Brooks et al., 1992). Therefore, it is ill-advised 

to use rectal thermometers on the wards or the ICUs (Bartlett, 2008). The recommendations of 

the European C. Infection Control Group and the European Centre for Disease Control

and Prevention include, the use of dedicated blood pressure cuffs for each patient, possible use of 

disposable materials if feasible, and avoidance of using shared thermometers or, alternatively, 

using thermometers with disposable sheath (Vonberg et al., 2008a). In addition, these bodies 

recommended that any equipment used on CDI patient should be cleaned carefully and 

disinfected with a sporicidal agent.

1.16.6 Antimicrobial stewardship

Antimicrobial stewardship programmes have been advocated for the control and prevention of 

CDI as the use of antimicrobial agents is the most important risk factor for CDI. Recently, 

Valiquette and colleages in 2007, reported that the incidence of CDI did not change after 

strengthening of infection control procedures, but it was reduced markedly after implementation 

of antibiotic stewardship programme (Valiquette et al., 2007). Almost any antibiotic can 

predispose to CDI. For some time, the most common antibiotics are the third-generation 

cephalosporins, clindamycin and aminopenicillins (Freeman et al., 1999; Thomas et al., 2003). 

Therefore, aggressive restriction of high-risk antibiotics, reducing polypharmacy, prevention of 

long-term therapy and avoiding inappropriate prescribing are the first steps in reducing the high 

incidence of CDI. In addition, the use of automatic stop-dates, electronic prescribing, banning of
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certain antibiotics and prescriber education and antibiotic policies will help in reducing CDI 

incidence (Davey, 2006). European C. difficile-lnfection Control Group and the European Centre 

for Disease Control and Prevention recommend stopping any (non-C. difficile) antimicrobial 

treatment in a patient with CDI as soon as possible. There is evidence that shows that attempts to 

prevent the infection with prophylactic metronidazole or vancomycin will lead to increase in the 

rate of C. difficile carriage and infection (Bartlett, 2008).

1.16.7 Education programmes

Education of the staff and communication is an important way to limit the spread of C. difficile. 

Education should include information on basic pathogenesis, potential reservoirs, route of 

transmission, contamination of the environment, decontamination of the hands/surfaces and 

infection control measures. Training of the staff, including HCWs as well non-medical personnel 

involved in cleaning the environment is paramount to a successful prevention of spread of CDI. 

It is equally important to educate the visitors who enter the patient’s room, especially on hand 

hygiene (Al-Barrak et al., 1999).

1.16.8 Active surveillance

The use of active surveillance cannot be over-emphasized and it is highly recommended because 

it will detect any rise in the incidence of CDI, the severity of the disease and risk factors (Brazier 

and Duerden, 1998). It is useful especially in endemic areas where it may detect high baseline
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rates of infection or significant variations in different locations that need more infection control 

intervention (Vonberg et al., 2008a).

1.17 Objective

So far, no 027/NAP 1 strain has been found in any of the countries in the Middle East nor has the 

prevalence of C. difficile infection/colonisation been studied in any hospital setting in Kuwait, 

including the intensive therapy units (ICUs), haematology wards or bum units, which lack 

general guideline on the rational use of antibiotics. Nobody knows the antibiotic susceptibility 

pattern or the ribotypes of the strains of C. difficile circulating in our teaching hospitals with ICU 

facilities. Although the acquisition rate of C. difficile in stool specimens of patients on admission 

to the intensive care units (ICUs) of Kuwait hospitals has been reported (Rotimi et al., 2002), the 

prevalence, risk factors and molecular epidemiology of CDI has not been established

The main aims of my study were to investigate the nosocomial acquisition of C. difficile by new 

patients admitted into the ICUs of 4 major teaching hospitals in Kuwait namely: Mubarak Al 

Kabir hospital, Amiri hospital, Ibn Sina hospital and the Kuwait Cancer Control Centre (KCCC), 

investigate the epidemiology of the isolates and determine the prevalence of C. difficile infection 

(CDI) in the country.

Specific objectives were to

1. Isolate and identify strains of C. difficile isolated from the stools of all new patients 

admitted onto the ICUs and haematology wards of these centres, with or without 

symptoms.

54



2. Screen their stools for the presence of C. difficile toxin

3. Screen the immediate environment of the patients for the presence of C. difficile

4. Determine the antimicrobial susceptibility and resistance pattern of all isolates.

5. Type all the isolates by using the PCR-ribotyping technique.

6. Investigate the effects of various concentrations of antibiotics known to predispose to 

CDI and, also, of those used in its therapy, on the production of extracellular and 

intracellular toxin B by C. difficile.

7. To assess the prevalence of CDI in Kuwait over a 3-year period (2003-2005) as well as 

correlate this to molecular epidemiology.

55



CHAPTER 2

MATERIALS AND METHODS

2.1 Growth media used for C. difficile

2.1.1 Fastidious Anaerobe Agar

Fastidious Anaerobe Agar (FAA) was obtained from Lab M International Diagnostics Group 

(Bury, UK) and prepared according to the manufacturers instructions.

2.1.2 Cycloserine-Cefoxitine Egg Yolk Agar

Cycloserine-Cefoxitine Egg Yolk Agar (CCEYA) was obtained from Oxoid (Basingstoke, UK) 

and prepared according to the manufacturers instructions. The selective agents were cycloserine 

at a concentration of 25pg/ml and cefoxitin at 8pg/ml (Oxoid).

2.1.3 Cycloserine-Cefoxitine Fructose Agar

Cycloserine-Cefoxitine Fructose Agar (CCFA) was obtained from Oxoid (Basingstoke, UK) and 

prepared according to the manufacturers’ instructions plus 6% horse blood. The selective agents 

were cycloserine at a concentration of 25pg/ml and cefoxitin at 8pg/ml (Oxoid).

2.1.4 Robertson Cooked Meat Media

Robertson Cooked Meat Media (RCM) was obtained from Oxoid (Basingstoke, UK) and 

prepared with 25ml of Fastidious Anaerobe Broth according to the manufacturers’ instructions.
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2.1.5 Fastidious Anaerobe Broth

Fastidious Anaerobe Broth was obtained from Lab M International Diagnostics Group (Bury, 

UK) and prepared according to the manufacturers instructions.

2.1.6 Brucella Agar

Brucella agar was obtained from Acumedia (Baltimore, USA) prepared according to the 

manufacturers instructions.

2.1.7 Nutrient Agar was obtained from Lab M International Diagnostics Group (Bury, UK) and 

prepared according to the manufacturers instructions.

2.2 Culture of stool and isolation of C. difficile

Stool/rectal swabs were inoculated onto various selective (CCEYA, CCFA) and enriched media 

(RCM) within 20 min of receipt in the laboratory. The process was carried out inside an 

anaerobic cabinet (Ruskinn Tech. Ltd, Guiseley, Leeds, UK) and incubation was for 48 h at 37°C 

in the presence of CO2 5%, H2 5% and N2 90%. 500pl of the FAB broth culture from the RCM 

was heated for 10 min at 80°C (Brazier, 1995). Then, CCEYA and CCFA plates were inoculated 

with one loop of the heated broth and incubated for 48 h anaerobically in the anaerobic cabinet.
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Figure 2.1. Stool culture during the first part of the study

EIA for toxin A and B

Stool Inoculate RCM. heat shock subculture on CCFA & CCEYA

Direct culture on CCFA and CCEYA

Figure 2.2. Stool culture during the second part of the study

Negative—► discard the sample

Stool EIA for toxin A & B ——► Positive  ►RCM -----► heat shock —►CCFA,CCEY

2.3 Identification of C. difficile

Colonies of putative C. difficile usually fluoresce a yellow-green colour under long-wave 

ultraviolet light illuminator. Therefore, suspected colonies on CCEYA or CCFA were exposed to 

long-wave UV light (565nm). Representative colonies with characteristic smell, which 

fluoresced yellowish-green under UV light were identified by API 20A (bioMerieux, SA, 

France). All isolates were further confirmed as C. difficile at the Anaerobe Reference Laboratory, 

University Hospital of Wales, Cardiff, UK.
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2.4 Toxin A and B detection

All strains were tested for toxin A/B production by the C. difficile TOX-A/B test, ELISA, for 

rapid detection of toxin A and B (TechLab, VPI Research Park, Blacksburg, Va., USA). The 

procedure was carried out according to manufacturers’ instructions in package insert.

2.5 PCR ribotyping method

2.5.1 DNA extraction

All isolates were typed by the polymerase chain reaction (PCR) ribotyping technique previously 

described by O’Neill et al., (1996). After obtaining a pure culture, a single colony was further 

subcultured on FAA supplemented with 6% horse blood and incubated for 24 h at 37°C in the 

anaerobic cabinet. DNA was extracted from a suspension of 10-12 colonies in 100 pi of 5% 

Chelex 100 (BioRad Laboratories, USA) by heating at 100°C for lOmin. The cell suspensions 

were centrifuged for 10 min at 17000g to remove the cell debris and the supernatant was used as 

DNA template.

2.5.2. Polymerase Chain Reaction

PCR was performed with the following primers: P3 (CTGGGGTGAAGTCGTAACAAGG) and 

P4 (GCGCCCTTTGTAGCTTTGACC). Amplification was performed in a final volume of 

lOOpl. The reaction mixture contained the following: 1.5mM MgCk, lOmM Tris HC1 (pH 9), 

50mM KC1, 0.1% Triton X-100, 2.5U taq polymerase, 200mM of each dNTP, 50pmol of each 

primer and lOjul of DNA template. The PCR programme was 35 cycles of denaturation at 95°C
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for 1 min, annealing at 56°C for 1 min and extension at 72°C for 2 min. A positive control (C. 

difficile type 001 NCTC 11209) and negative control (sterile water) were included in each run.

2.5.3 Agarose gel electrophoresis:

The product was separated by electrophoresis in 3% metaphor agarose (FMC, Rockland, ME, 

USA) at 200 V for 3 h. DNA fragments were visualised by staining in 0.5pg/ml ethidium 

bromide. Gel data were analysed with GelCompar software (Applied Maths, Kortrijk, Belgium). 

The results were then compared with the library of PCR ribotypes already established at the 

Anaerobe Reference Unit in Cardiff, Wales, UK.

2.6 Determination of Minimum Inhibitory Concentration (MIC) by E test method

For MIC determination by E test, growth from a 48 h Fastidious Anaerobe Agar (FAA) culture 

suspended in Fastidiuos Anaerobe Broth (FAB) and adjusted to 1.0 McFarland turbidity standard 

was inoculated onto pre-reduced Brucella agar (Oxoid) plates supplemented with 5% horse 

blood, haemin 5pg/ml and menadione 1 jag/ml. The E test strips of the antibiotic was applied onto 

the agar surface, after drying for 15 min, and then incubated in Anoxomat Anaerobic jars 

(MART) for 48 h at 37°C in an atmosphere of CO2 10%, H2 10%, N2 80%. The MIC was read as 

the interception of the elliptical zone of inhibition. C. difficile, ATCC 9689 and ATCC 17857, 

and C. perfringens ATCC 13124, were included in each run as controls for antibiotic potency 

and media performance.
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CHAPTER 3

NOSOCOMIAL ACQUISITION OF CLOSTRIDIUM DIFFICILE IN THE ICU SETTING

3.1 Introduction

The prevalence of C. difficile spores in the environment is relatively high in hospitals and long 

term facilities (McFarland et al., 1989). For example the rate of colonization among hospitalized 

patients are 10-25% and 4-20% among residents in long term care facilities compared to 2-3% 

for healthy individuals in the general population (Bartlett, 1994; Simor et al., 2002). Very few 

studies have looked at the rate of acquisition of C. difficile in an ICU setting and there is 

certainly no reported study on the prevalence of C. difficile in hospitalized patients neither in 

Kuwait nor in the entire Gulf state countries. This study was designed to determine the rate of 

nosocomial acquisition and the prevalence of C. difficile in the ICU patients admitted to the 4 

main teaching hospitals in Kuwait. No reported study exists that has carried out this type of 

investigation in the Middle East.

3.2 Materials and Methods

3.2.1 Patients and samples

Consequative patients admitted to the four ICUs were examined for C. difficile infection. Freshly 

passed stool (rectal swabs, in Amies transport medium, if collection of stool was not possible) 

was taken from each patient for culture on the day of admission, 3 days post-admission and 

weekly thereafter until the patient was discharged or until diarrhoea secondary to C. difficile
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developed. General demographic data including name, hospital number, room and bed location, 

age, sex, underlying disease, medications (antibiotics), nasogastric tube insertion, previous 

hospital admissions and length of hospital stay, were all obtained after informed consent mostly 

from the relatives.

3.2.2. Other samples

3.2.2.1 Environmental samples

A sterile swab pre-moistened with sterile normal saline was wiped over selected surfaces in the 

units e.g. bed sheets, mattress, bed edges, bed ledges, surface of the side table next to the 

patients, suction regulator, oxygen regulator, ventilator surfaces, IV stand and the floor under the 

bed. The samples were then inoculated into Robertson Cooked Meat (RCM; Oxoid, Basingstoke, 

UK) medium containing 25ml of Fastidious Anaerobe Broth (FAB; Lab M, Bury, UK) and onto 

Cycloserine-Cefoxitin Egg-Yolk Agar (CCEYA; Oxoid) and Cyclserine-Cefoxitin Fructose Agar 

(CCFA).

3.2.2.2. Hospital personnel

A sample group of doctors, nurses and physiotherapists caring for the patients with positive C. 

difficile cultures were investigated before and after contact with the patients. Their samples were 

taken by making contact with hand-surface imprint and fingernail impressions on selective 

CCEYA.
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3.2.3 Transportation of the specimens

3.2.3.1 Stool samples

All stool/rectal swab samples were transported immediately, without any delay, to the Anaerobe 

Research Laboratory, Department of Microbiology in the Faculty of Medicine of Kuwait 

University, where the work was done. Samples from Amiri hospital, Ibn Sina hospital and 

Kuwait Cancer Control Centre (KCCC; about 16 km away) were collected personally or through 

a designated porter. When samples could not be sent immediately, they were kept in the 

refrigerator or frozen and then sent within the next 24-48 h. This method has been shown to 

preserve the spores in the stool samples (Brazier, 1995).

3.2.3.2 Biopsy specimen

Rectal/colonic biopsies were taken when necessary and sent in formalin immediately to the 

Department of Pathology where histopathological studies were carried out.

3.2.4 Culture media

Selective and non-selective media were used for the isolation of C. difficile. All samples were 

cultured on selective and non selective C. difficile media (Chapter 2.1).

Non-clostridial causes of diarrhoea were investigated using the following media: MacConkey 

agar (Oxoid), Salmonella Shigella agar (SS agar; Oxoid), Xylose Lysine Deoxycholate agar 

(XLD agar; Oxoid), Selenite F broth (Difco Laboratories, Detroit MI, USA), urease broth
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(Becton Dickinson Microbiology System, Cockeysville, MD, USA) and Triple Sugar Iron slants 

(TSI slants; Difco).

3.2.5 Inoculation and isolation

All stool/rectal swabs were cultured for C. difficile on CCFA and CCEYA (Chapter 2 section 

2.2; Figure 2.1) and on media for Salmonella and Shigella. Environmental and personnel samples 

were onto C. difficile-SQlQCiivQ media only. In addition, the stool/rectal swabs were inoculated 

onto MacConkey agar and into Selenite F broth, and then incubated aerobically for 24 h at 37°C. 

After incubation, the Selenite F broth was subcultured onto Salmonella and Shigella agar (SSA; 

Oxoid) and XLD agar and incubated aerobically for 24 h. Non-lactose fermenting colonies with, 

or without, black centre were subcultured onto urea broth and TSI slants. Any suspected colonies 

on the MacConkey, XLD, and SSA were selected for full identification.

3.2.6 Identification

Any suspected colonies on the CCEYA or CCFA plates were selected for full identification (see 

chapter 2.3).

3.2.7 Toxin detection

All stool samples and the isolated strains were tested for toxin A/B production by the C. difficile 

TOX-A/B test, ELISA, for rapid detection of toxin A and B (section 2.4).
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3.2.8 Statistical analysis

Statistical analysis was done by %l statistical test for univariate comparisons of proportions using 

the SPSS statistical package for windows and Z test for proportion.

3.3 Results

3.3.1 Patients and samples

A total of 430, 63, 8 8 , and 341 consecutive patients admitted to the ICU of Mubarak Al Kabeer 

Hospital (ICU-1), Ibn Sina Bum Unit (ICU-2), Haematology wards of KCCC (ICU-3) and ICU 

of Amiri Hospital (ICU-4), respectively, who stayed in the ICUs for a minimum period of 3 

days, were studied over a period one year (February 2001 -  January 2002). The 4 hospitals 

represent the 3 points of a triangle with Ibn Sina and KCCC (about 100m apart) at the apex and 

Mubarak and Amiri hospitals at the bases, about 16 km apart in equidistant directions. The 

hospitals serve as university teaching hospitals and are 500, 300, 200 and 300-bedded, 

respectively.

3.3.2 Prevalence of nosocomial acquisition of C. difficile

A total of 922 patients were admitted into the four units over a period of one year. C. difficile 

was not isolated from any patients on admission. The overall prevalence rate of nosocomially 

acquired culture-positive C. difficile in the 4 hospitals was 95/922 (10.3%). The patient’s 

characteristics are given in Table 3.1. The median number of days in the units was 11 days 

(range 4-147 days), with 73.5% for 4-10 days, 16% for 11-20 days, 3.5% for 21-30 days, 1.7%
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for 31-40 days and 5.3% for more than 40 days. Analysis by each hospital ICUs showed that 44 

(10.2%) out of 430 patients were positive in Mubarak Al-Kabeer Hospital ICU (ICU-1), 4 (6.3 

%) out of 63 patients in Ibn Sina Hospital ICU (ICU-2), 16 (18.2%) out of 8 8  in KCCC ICU 

(ICU-3) and 31 (9.1%) out of 341 in Amiri Hospital ICU (ICU-4). There was no significant 

difference between acquisition rate in the four ICUs except between ICU-3 and ICU-4 where the 

acquisition was significantly higher in ICU-3 (p <0.013 by z test for proportion). This may be 

related to the small number of positive patients in ICU-2. Out of the total of 95, 30 (32%) 

patients developed diarrhoea attributable only to C. difficile and the other 65 (6 8 %) patients were 

symptom-free. The bum unit, ICU-2, deals with adults and children. However, the positive four 

patients were children whose age range between 0.7-2 years with a median of 1.5years. None of 

the adults had positive stool culture.
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Table 3.1. General characteristics of the 95 hospital-acquired C. difficile culture-positive patients

Characteristics

Culture Positive patients

ICU-1 
(No. = 44)

ICU-2 
(No. =4)

ICU-3 
(No. = 16)

ICU-4 
(No. = 31)

Age in years 

Range 0.3-73 0.7-2 16-64 0.3-84

Median 51 1.5 31 59

Days in the units(median) 14 6 47 6

Days before culture + ve (median) 6 5 2 2 4

No. of patients on antibiotics 41 (93.2) 4 (100) 16 (1 0 0 ) 21 (67.8)

No. of pts on multiple antibiotics 20 (45.5) 4 (100) 16(100) 17 (54.8)

Underlying disease: 

Cardiovascular 17 (38.6) 0 5(31.3) 19(61.3)

Diabetes mellitus 6  (13.6) 0 3 (18.8) 12 (38.7)

Liver disease 9 (20.5) 0 2(12.5) 2 (6.5)

Head trauma 12 (27.3) 0 0 0

Malignancy 3 (6 .8 ) 0 16 (1 0 0 ) 5(16.1)

COPD 11(25) 0 0 9(29)

Renal impairment 1 (2.3) 0 0 2(6.5)

Bum 0 4(100) 0 0

CNS 4(9.1) 0 0 0

CVA 7(15.9) 0 0 2(6.5)

Sepsis 3 (6 .8 ) 0 0 7 (22.6)

Patients with diarrhoea 18 (40.9) 0 5(31.3) 7 (22.6)

Patients symptoms-ffee 26 (59.1) 4(100) 1 1  (6 8 .8 ) 24 (77.4)

Percentage is given in parentheses. CNS: central nervous system; CVA: cerebrovascular 

accident; COPD: chronic obstructive pulmonary disease. ICU-1: Mubarak hospital; ICU-2: Ibn 

Sina Hospital; ICU-3: Kuwait Cancer Control Centre (KCCC); ICU-4: Amiri hospital
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3.3.3 Time of acquisition

The culture-positive patients stayed in the units for 4-147 days with a median length of stay of 11 

days. Seventy (73.7%) of the 95 patients with nosocomial acquisition of C. difficile became 

culture-positive within 4-10 days, 12 (12.6%) within 11-20 days, 6  (6.3%) patients within 21- 

30days, 2 (2.1%) within 31-40 days and 5 (5.3%) more than 40 days. Over half (51/95; 53.7%) 

of the nosocomially infected patients acquired the organism within the first week of admission 

and by the end of the second week; another 20 (21.1%) patients had become positive. The 

remaining 24 patients acquired the organism after 15 days of admission. Thus, on the basis of 

time of acquisition and patient characteristics, two arbitrary groups of patients were identified: 

patients who acquired the organism within 2 weeks of admission in the ICU (designated as early 

acquisition) and those who acquired it after 2  weeks of admission (late acquisition).

Table 3.2 shows the clinical characteristics of patients with early and late nosocomial acquisition 

of C. difficile. The median ages of both groups were not significantly different (P>0.08). Fifty 

four (76%) and 16 (67%) of the patients in the early and late groups, respectively, were on 

cephalosporin therapy. Of the 54 and 16, 30 (55.6%) and 2 (12.5%), respectively, were on one 

class of cephalosporin therapy for one week. Thus, overall, the consumption of antibiotics such 

as the cephalosporins, metronidazole and meropenem had no observable significant effects on 

those who acquired the organism in the early or late groups. Comparing patients in the early and 

late groups for co-morbidity, use of nasogastric tube, endoscopy and surgery, patients in the late 

group had more severe underlying diseases and higher number of deaths (data not shown). There 

was no significant difference with insertion of nasogastric tube or surgery (P>0.05), although 

higher number of patients had endoscopy done in the early versus late onset group.
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Table 3.2. Salient characteristics associated with the 95 patients with early and late hospital-
acquired C. difficile

Characteristics Early acquisition 

(n = 71)

Late acquisition 

(n = 24)

Median age, years 46 36

Cephalosporin 54 (76.1) 16 (66.7)

1 week* 30 (42.3) 2 (8.3)

> 1  week* 24 (33.8) 14 (58.3)

Metronidazole 12 (16.9) 5 (20.8)

Meropenem 4(5.6) 2 (8.3)

Erythromycin 7 (9.9) 0

Nasogastric tube 39 (54.9) 16 (66.7)

Endoscopy 9(17.7) 2 (8.3)

Surgery 2 0  (28.2) 7 (29.2)

Percent of patients (in parenthesis); * duration of therapy

3.3.4 Prevalence of CDI

3.3.4.1 Case definition

A patient was defined as having CDI when there was diarrhoea with at least one positive C. 

difficile assay (culture and/or toxin A/B assay). Antibiotic-associated diarrhoea (AAD) was 

defined in this study as passage of six loose motions within 36 h following exposure to antibiotic 

and in whom other aetiological causes of diarrhoea had been excluded (McFarland et al., 1989).
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3.3.4.2 Prevalence of CDI

Of the 95 C. difficile culture-positive patients, 30 (31.6%) developed CDI. The characteristics of 

those patients with CDI and those who were symptom-free are shown in Table 3.3. There was a 

non-significant difference between the median ages of those with diarrhoea (47.95 years) and 

symptom-free (29.49 years) (p>0.05). All the 30 patients with CDI and 52 (80%) of those who 

did not have diarrhoea received antibiotics during admission to the ICU. A high proportion (28; 

93.3%) of the 30 patients with diarrhoea were infected with toxigenic strains compared with 44 

(67.7%) of the 65 symptom-free patients (p>0.05). However, C. difficile toxin A/B was present 

in the stool of the same 28 patients with diarrhoea but present in only 7 (10.8%) out of 65 of 

those who were symptom-free, which is statistically significant (p<0 .0 0 1 ).

Table 3.3. Important characteristics of all the 95 patients with and without diarrhoea

Characteristics With diarrhoea 

(n=30)

Without diarrhoea 

(n=65)

Age, (median years) 47.95 29.49

Antibiotics 30(100) 52 (80)

Patients with tox + strains 28 (93.3) 44 (67.7)

Patients with NT strains 2 (6.7) 21 (32.3)

Patients with toxin in stool 28 (93.3) 7(10.8)

Percentages are given in parenthesis. Tox + strains: toxigenic strains; NT: non toxigenic strains
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3.3.5 The prevalence of CDI in each hospital ICU

The distribution of the patients with the three classical presentations of CDI, and toxigenic 

strains, in each hospital is shown in Table 3.4. Overall, the prevalence of CDI per ICU was 4.2% 

in ICU-1, 0% in ICU-2, 5.7% in ICU-3 and 2.1% in ICU-4. Analysis of the symptomatic (CDI) 

patients in each ICU revealed that the highest proportion of symptomatic cases was in ICU-1 

(60%) followed at a distance by ICU-4 (23.3%) and ICU-3 (16.7%). No CDI case was seen 

among the patients in ICU-2. The 2 PMC cases recorded were in ICU-1 while the other forms of 

CDI were distributed almost evenly in ICUs 1, 3 and 4.

Table 3.4. Distribution of symptomatic C. dijficile-^osiiivQ patients by hospital

Characteristics Number (%) patients in the ICUs Total

ICU-1

(n=18)

ICU-2

(n=0 )

ICU-3

(n=5)

ICU-4

(n=7)

Age, years (median) 52.4 0 23.0 52.8

Pts. on antibiotic therapy 18(100) 0 5 (100) 7(100) 30

Toxigenic strains+ve 18(100) 0 4(80) 6  (85.7) 28

Faecal toxins+ve 18(100) 0 4(80) 6  (85.7) 28

Patients with AAD 15 (83.3) 0 4(80) 5(71.4) 24

Patients with AAC 1 (5.6) 0 1 (2 0 ) 2  (28.6) 4

Patients with PMC 2 (1 1 .1 ) 0 0 0 2

+ve: positive. AAD: antibiotic-associated diarrhoea; AAC: antibiotic-associated colitis; PMC: 

pseudomembranous colitis.
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3.3.6 Hand carriage among healthcare providers in the unit

The hands of the healthcare workers (doctors, nurses, radiologists and respiratory therapists) in 

the ICUs were examined for the possibility of hand carriage and thus vehicle of transmission of 

C. difficile. Samples from the hands of 126 healthcare workers were cultured for C. difficile 

before and after exposure to patients whose cultures were positive. However, none were positive.

3.3.7 Environmental isolates

Environmental samples were examined for the possibility of cross-contamination and 

transmission. Of the 380 samples were taken, only 18 samples were culture-positive; 6  from 

ICU-1, none from ICU-2, 3 from ICU-3 and 9 from ICU-4.

3.4 Comments

In spite of the growing number of studies devoted to C. difficile-related diseases in the western 

countries, studies on C. difficile-associated diseases in the Middle East especially Kuwait are 

almost non-existent with a few exceptions (Rotimi et al., 2002; Jamal et al., 2002). This may be 

explained, in part, by the lack of expertise (until recently), technology and facilities for culturing 

anaerobic pathogens. Besides, the high proportion of asymptomatic carriers of C. difficile 

encountered in our hospitals (Prof VO Rotimi; personal communication) makes the interpretation 

of a positive culture equivocal. However, in a previous study reported by Akhter et al. (Akhter et 

al., 1994) in nearby Riyadh, Saudi Arabia, C. difficile cytotoxin was detected in 9.5% of patients 

with acute gastroenteritis, suggesting that this organism might be an important enteric pathogen
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in the Gulf and Middle East. To support this conjecture, is the fact that C. difficile has been 

isolated from the stool of symptomatic patients in Turkey (Soyletir et al., 1996) and Israel 

(Rudensky et al., 1993; Rivilin et al., 1998; Boaz et al., 2000).

The overall 10.3% prevalence of acquisition of C. difficile amongst patients admitted to the 4 

ICUs, whose initial cultures were negative, reported in this study, is similar to the prevalence rate 

of 9.7% reported by Barbut et al., (Barbut et al., 1996) in various intensive care units in French 

hospitals but lower than the 30% reported elsewhere by Samore and colleagues in 1994 (Samore 

et al., 1994b), although in a relatively smaller population of patients than the number 

investigated in this study. The acquisition rate of C. difficile patients in our bum unit ICU was 

6.5% and none of them had C. difficile-associated diseases, unlike the study by Gmbe and 

colleagues, who found a prevalence of 9.8% CDI among 112 critically ill burned patients in their 

ICU (Gmbe et al., 1987). Still and his colleagues (Still et al., 2002) evaluated 1753 patients in 

their bum unit over 3-year period and reported 18 cases (1%) in whom C. difficile toxin was 

detected. A relatively high acquisition rate of 18.2% occurred in our haematology wards of 

KCCC (ICU-3), an experience much higher than the 2.6% rate reported by Tabaqchali and Wilks 

in 1992 (Tabaqchali and Wilks, 1992) in the absence of outbreak, and 15% reported by 

Wroblewska et al. (2005), similar to our setting, but lower than the 39.2% reported by Heard et 

al. (1986) in the presence of an outbreak. However, our finding was similar to the 16.6%, 

reported by Delmee et al. (1987).

A finding of toxin A/B positivity in the stool was significantly higher among infected patients 

with diarrhoea than among asymptomatic carriers. However, there were two cases of CDI from 

whom non-toxigenic C. difficile strains were isolated and who had no toxins in their stools. This 

may be explained by the relatively lack of sensitivity of the ELISA TOX A/B kits (O’Connor et
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al., 2001). This is buttressed by the isolation of a toxin A-negative/toxin B-positive strain from a 

symptomatic patient without evidence of neither the organism nor the toxin in Amiri hospital. 

This was the only strain of such description that was isolated in this study. Anecdotal reports of 

previous studies have described such strains in asymptomatic children (Delmee et al., 1988; 

Depitre et al., 1993). However, in recent years, toxin-variable strains, such as those producing 

cytotoxin but not enterotoxin, have been described in symptomatic adults and appear to be more 

prevalent in Japan (Kato et al., 1997), USA (Johnson et al., 2001) and UK (Brazier et al., 1999). 

In addition, an outbreak involving 16 patients, due to toxin variable C. difficile, has been 

described in Canada (Al-Barrak et al., 1999). At the present time, from an epidemiological 

perspective, these toxin-variable strains do not constitute a problem in our hospitals.

Environmental contamination and carriage on the hands of the healthcare workers have been 

documented as playing a significant role in the transfer of C. difficile from patient to patient 

(Mulligan et al., 1979; Kim et al., 1981; Malamou-Ladas et al., 1983; McFarland et al., 1989). 

McFarland et al. (1989) found that carriage of C. difficile on the hands of healthcare providers 

nearly always involved the same type as the patients strain and sometimes occurred even after 

patient care practices thought ordinarily to pose little risk, e.g. daily patient assessment, physical 

examination or charting. It is noteworthy that in this present study, we did not recover any C. 

difficile from the hands of healthcare providers. This may reflect the compliance of our nursing 

and medical staff with hand washing hygiene which is enhanced by continuous eduction, 

demonstration of hand washing techniques and displaying posters at the clinical areas. Our 

finding is concordant with the reports of other workers in Israel (Rudensky et al., 1993), in the 

UK (Malamou-Ladas et al., 1983) and in the USA (Gerding et al., 1986) who did not recover C. 

difficile from the hands of staff members caring for their C. difficile culture-positive patients.
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The environment around some of the patients in 3 of the 4 ICUs was contaminated with C. 

difficile. The frequency of such contamination correlated with the patient's clinical status. It was 

highest around patients with diarrhoea, an observation supported by earlier reports (Mulligan et 

al., 1979; Kim et al., 1981; McFarland et al., 1989). This contamination of the environment from 

asymptomatic carrier is of special concern because it involves patients whose carrier state 

usually remain undetected. Thus, these asymptomatic carriers, who are nursed without enteric 

precautions, constitute credible potential sources of cross-infection and perhaps outbreak of 

infection. The environmental prevalence of C. difficile was low in our ICUs. This may be related 

to the method for isolation and culturing of the organisms as we used enrichment broth. Other 

studies (Wilcox et al., 2000b) showed that incorporation of lysozyme (5mg/l) into selective agar 

significantly increased the recovery of C. difficile from the environmental samples probably due 

to increased germination of dormant spores. In addition, Verity and colleages found that C. 

difficile was recovered significantly more frequently from swabs plated directly onto C. difficile 

selective media containing lysozyme than from enrichment broth (Verity et al., 2001).

None of the conventional enteric pathogens was isolated in this study and our data showed that 

the main cause of nosocomial diarrhoea among ICU patients in Kuwait is C. difficile. This 

finding is in agreement with several earlier reports from elsewhere (Fan et al., 1993; Rohner et 

al., 1997). It therefore stands to reason to suggest that, in the western/developed countries, stool 

culture for common enteric pathogens need not be done for hospitalized patients who had stayed 

in the hospital for more than three days unless clinically or epidemiologically indicated.
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CHAPTER 4

MOLECULAR TYPING OF CLOSTRIDIUM DIFFICILE ISOLATES 

4.1 Introduction

C. difficile infection has increased dramatically over last decade especially in North America 

(Eggertson and Sibbald, 2004; Loo et al., 2005), Europe (Kuijper et al., 2008) and Asia (Rupnik 

et al., 2003; Sawabe et al., 2007). Several outbreaks due to the same genotype or closely related 

genotypes of C. difficile have been reported (Loo et al., 2005; McDonald et al., 2005). Therefore, 

it is important to trace the emergence and the spread of certain epidemic strains for infection 

control investigations and epidemiological studies.

This study was designed to determine the molecular relatedness of all the isolates obtained from 

the nosocomial acquisition of C. difficile study as well as the environmental strains, described in 

chapter 2, using the PCR ribotyping method.

4.2 Materials and Methods

4.2.1 Bacterial isolates

All the 95 clinical as well as the 18 environmental isolates obtained from the previous study 

described in chapter 3 were used for this study. The isolates, initially kept at -80°C, were 

lyophilised and shipped to the Anaerobe Reference Laboratory, University of Wales College of 

Medicine, Cardiff, UK where PCR ribotyping of all the isolates was carried out. The lyophilised
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samples were reconstituted with addition of FA broth to the vials and the content inoculated onto 

a set of FAA plates to which 6 % horse blood had been added. The inoculated plates were then 

incubated in the anaerobic cabinet in the presence of CO2 10%, H2 10%, N2 80%, at 37°C for 48 

h.

4.2.2 PCR-ribotyping method

All isolates were subjected to PCR ribotyping technique (section 2.5). The results were then 

compared with the library of PCR ribotypes already established at the Anaerobe Reference Unit 

in Cardiff, Wales, UK.

4.3 Results

The distribution of the PCR-ribotypes of the clinical and environmental isolates is outlined in 

Table 4.1 and Table 4.2, respectively as well as Figure 4.1.

4.3.1 PCR ribotype of the clinical isolates

As shown in Table 4.1, 32 distinct genotypically different DNA ribotypes were established 

among the 95 clinical isolates. Of these, ribotypes 097 (toxigenic), 078 (toxigenic) and 039 (non- 

toxigenic) were 3 distinct clones circulating in all the 4 hospitals. The commonest ribotype in 

Kuwait was 097 with a prevalence of 19%, followed by 039 representing 10.5%; 078, 9.5% and 

076, 6.3%. The remaining 52 isolates belonged to diverse DNA ribotypes. In ICU-1, the
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Table 4.1. Distribution of PCR-ribotypes and the toxigenic strains of C. difficile from patients in 
the four teaching hospital ICUs

PC R -

R ib otyp es

T o x in

(A /B )

N u m ber o f  iso la tes  in  each  hosp ita l IC U Total

(n=95)M ubarak

(n = 4 4 )

Ibn Sina  

(n = 4 )

K C C C

(n = 1 6 )

A m iri

(n = 3 1 )

0 0 2 + 0 1 1 0 2

0 1 0 - 3 0 0 0 3

0 1 2 + 2 0 0 0 2

0 13 + 1 0 0 0 1

0 1 4 + 1 0 1 1 3

0 1 7 -/+ 0 0 0 1 1

0 2 0 + 1 0 0 0 1

0 2 6 - 1 0 0 0 1

0 2 9 + 1 0 1 0 2

03 5 - 1 0 0 0 1

0 3 9 - 6 1 1 2 10

04 5 + 0 0 0 2 2

0 4 6 + 1 0 0 0 1

051 + 0 0 3 0 3

0 5 4 + 1 0 0 0 1

0 5 6 + 2 0 0 3 5

0 6 4 + 1 0 0 0 1

0 7 0 + 0 0 1 0 1

0 7 6 + 3 0 0 3 6

0 7 7 + 0 0 3 0 3

0 7 8 + 4 1 2 2 9

081 + 1 0 0 0 1

0 9 4 + 2 0 1 0 3

0 9 7 + 3 1 1 13 18

0 9 8 + 0 0 0 2 2

105 + 2 0 0 0 2

113 - 0 0 1 0 1

128 - 5 0 0 0 5

129 + 1 0 0 0 1

131 + 1 0 0 0 1

140 - 0 0 0 1 1

141 - 0 0 0 1 1
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ribotypes associated with diarrhoea in 18 symptomatic patients were ribotypes 078 (4, 22%), 076 

(3, 17%), 012 (2, 11%), 056 (2, 11%), 094 (2, 11%), 097 (2, 11%), 105 (2, 11%) and 046 (1, 

6 %). Those associated with diarrhoea in ICU-3 were ribotypes 077 (2), 014 (1), 097 (1) and 113 

(1), while those associated with diarrhoea in ICU-4 were ribotypes 017 (1), 039 (1) and 097 (5). 

Even though 078 and 097 were 2 of the 4 ribotypes found in the ICU-2, they were not associated 

with any symptoms.

All symptomatic patients with toxigenic ribotypes had detectable toxins in their stools, except 2 

patients colonised with non-toxigenic ribotypes 039 and 113 who demonstrated no detectable 

level of toxin in their stools by the TOX A/B ELISA assay. The two PMC cases in ICU-1 were 

infected with ribotype 078. One AAC case in each of ICU-1 and ICU-3 were infected with 

ribotypes 046 and 097, respectively. Two AAC cases in ICU-4 were infected with ribotype 097.

4.3.2 PCR ribotype of the environmental isolates

As demonstrated in Table 4.2, the 18 environmental isolates were assigned to 9 genotypically 

distinct ribotypes ( 6  toxigenic and 3 non-toxigenic); the predominant types were 010 (3), 078(3) 

and 097 (4). Ribotypes 078 and 097 were isolated primarily from the environment of 

symptomatic patients infected with the same ribotype in ICU-1 and ICU-4, respectively. 

Ribotype 010 was isolated from the environment of asymptomatic patients in ICU-1. Ribotype 

105 associated with diarrhoea in ICU-1 was absent in its environment but present in the 

environment of ICU-3 and ICU-4 where it did not contribute to disease process. Ribotypes 001 

and 144 were present in the environment of ICU-4 but were not isolated from any patient in the
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unit. Similarly, ribotypes 120 and 125 were isolated from the floor of ICU-3 but were not 

isolated from the patients in this unit.

Table 4.2. Distribution of the PCR-ribotypes and the toxigenic strains of C. difficile in the 
environment of the 4 teaching hospital ICUs

Toxin Number of isolations in each hospital
PCR-     Total

Ribotype (A/B) ICU-1 ICU-2 ICU-3 ICU-4
c (a 18)

(n=6 ) (n=0) (n=3) (n=9)

0 0 1 + 0 0 0 1 1

0 1 0 - 3 0 0 0 3

056 + 0 0 0 2 2

078 + 3 0 0 0 3

097 + 0 0 0 4 4

105 + 0 0 1 1 2

1 2 0 + 0 0 1 0 1

125 - 0 0 1 0 1

144 _ 0 0 0 1 1
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.1. PCR ribotype profiles of Clostridium difficile isolated in Kuwait from 2001 to 2002. 
Lanes 1,6,11,16 = lOObp; Lane 2 = 139; Lane 3 = 140; Lane 4 = 14; Lane 5 = 070; Lane 7 = 055;

Lane 8  = 001; Lane 9 = reference strain NCTC 11209 (ribotype 001); Lane 10 = 017; Lane 12 =

097; Lane 13 =097; Lane 14 = 056; Lane 15 = 097.

4.4 Comments

The ribotyping of isolates from all patients in the 4 ICUs revealed some interesting 

epidemiological findings. Our data showed that the 95 culture-positive patients harboured 32 

different highly diverse PCR-ribotypes of C. difficile. Three major different DNA clones (PCR- 

ribotypes 097, 078 and 039) were detected among the patients in all hospitals. All other isolates 

were assigned to 29 distinct and diverse types. Ribotype 097 was the single most prevalent type 

and was responsible for about 19% of the CDI while ribotype 078 was responsible for about
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9.5% of the CDI. Thus, ribotypes 097 and 078 were responsible for over one third of the cases of 

CDI seen. For full epidemiological point of view, this is an interesting finding in that the 

dominant ribotypes causing diarrhoea in Kuwait are completely different from those seen in 

Europe as it is demonstrated in Table 4.3 (Martirosian et al., 1995; Stubbs et al., 1999; Urban et 

al., 2001). Fifty five percent of infections seen in the UK hospitals are caused by ribotype 001 

(Stubbs et al., 1999), while ribotype 087 accounted for 39% of all isolates in Hungary (Urban et 

al., 2001). In another study in a Polish maternity hospital, all environmental isolates and 11 out 

of 31 neonatal isolates belonged to ribotype 001 (Martirosian et al., 1995).

Prior to the recognition of ribotype 027 in the UK, ribotype 001 was the most common type 

which accounted for 55% of hospitalized patients (Stubbs et a l , 1999). Recently, C. difficile 

ribotype 106 has become the predominant strain in England, accounting for 26% while ribotypes 

027 and 001 account for 25% each (HPA, 2006). However, it appears that the epidemiology of 

prevalent ribotypes continues to change rapidly in the UK, with ribotype 027 assuming a higher 

proportion (Figure 4.2). A more recent report in England has demonstrated that of 2,084 C. 

difficile isolates, 42% were ribotype 027, 19% were ribotype 106 and only 10% as ribotype 001 

(Kuijper et al., 2008). In Scotland, ribotype 106 accounts for 55% of all isolates while type 001 

for 21%; ribotype 078 has emerged in 4 isolates. Presently, in Ireland, the commonest ribotypes 

are 001 (35%), 106 (11.6%) followed by type 078 (8.3%) (Kuijper et al., 2008). In a recent 

outbreak in the Netherlands, 25.3% of patients with CDI were due to type 027 (Goorhuis et al., 

2007). In all these countries the predominant ribotypes are different from the ribotypes present in 

our hospitals. Even in these hospitals the predominant ribotypes differ. In Mubarak hospital, 

ribotype 078 was predominant while ribotype 097 was the commonest in Amiri hospital. 

Ribotype 078 is an interesting finding in that this ribotype is mostly associated with animal
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origin in the UK and Netherlands (Goohuis et al., 2007). All the patients from whom this strain 

was isolated had no history of animal contact. Neither ribotype 001 nor the hypervirulent 027 

was detected in this series in our hospitals. The single ribotype 001 found in our study was from 

the environment in Amiri hospital. The absence of these strains in Kuwait may explain the 

absence of outbreak situations in our country.

Table 4.3. Distribution of various C. difficile ribotypes in different countries

Country Percentages of ribotypes Reference

Hungry 39%, ribotype 087; 20% for 012; 12.3% for 001 Urban et al., 2001

Poland 35.5%, ribotype 001 Martirosian et al, 1995

Scotland 55%, ribotype 106; 21% ribotype 001 Kuijper et al, 2008

Ireland 35%, ribotype 001; 11.6% for 106; 7.8% for 

078

Kuijper et al 2008

Netherland 25.3%, ribotype 027 Goorhuis et al., 2007

England 55%, ribotype 001 Stubbs et al., 1999

England 26% for 106; 25% for 001, 25% 027 HP A, 2006

England 42% for 027; 19% for 106; 10% for 001 Kuijper et al., 2008
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ribotypes

Figure 4.2. Distribution of the three different C. difficile ribotypes over time in England (Stubbs 

et al., 1999; HPA, 2006; Kuijper et al., 2008)

The environmental strains were heterogeneous in each hospital. The 18 isolates were assigned to 

9 different ribotypes. The environment of 2 patients each in ICU-1 and ICU-4 was contaminated 

by the same ribotype as in the patient clinical samples. Thus, confirming that the patient’s 

environment is a potential source of C. difficile and cross-contamination may contribute to the 

acquisition of nosocomial CDI (Cohen et al., 2000b). In some cases there was no correlation 

between environmental and patient’s isolates. For instance, the environmental isolates in ICU-3 

and some in ICU-4 differed from those in the patients. Cohen et a l (1997) also found none of the 

environmental C. difficile types among the isolates from the patients nor did Simore et al., (1993) 

in a survey of C. difficile infection in a long-term care facility found any cross-transmission in
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their institution. In conclusion, C. difficile isolates in Kuwait are of different ribotypes from 

those circulating in the UK or Europe.
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CHAPTER 5

ANTIBIOTIC SUSCEPTIBILITY PATTERN OF CLINICAL AND ENVIRONMENTAL 
CLOSTRIDIUM DIFFICILE  ISOLATES

5.1 Introduction

Metronidazole is currently the first choice to treat CDI due to its lower potential for selection of 

vancomycin-resistant enterococci (VRE) and its approval by several health institutions, like HPA 

and IDSA, and for economical reasons. The role of antimicrobial susceptibility testing of 

anaerobes including Clostridium difficile has been questioned in the past decade. Several 

diagnostic microbiology laboratories do not perform antimicrobial susceptibility testing for 

anaerobes in general, and specifically for C. difficile, as the main method of the diagnosis in 

routine diagnostic laboratory is dependent on toxin detection rather than culture. In addition, 

anaerobes have predictable susceptibility pattern to most antibiotics with anti-anaerobic activity 

as well as lack of simple method for testing and are bedevilled with delay in getting pure culture. 

On several occasions, there is little correlation between clinical outcome and the antimicrobial 

susceptibility testing. In Kuwait routine antibiotic susceptibility testing of anaerobes in the 

clinical laboratories is not usually done. However, resistance of anaerobes to anti-anaerobic 

drugs is on the increase, even to drugs with excellent anti-anaerobic activity like metronidazole. 

Recently, C. difficile resistant to metronidazole (Pelaez et al., 1997; Brazier et al., 1999; Pelaez 

et al., 2002a; Bishara et al., 2006) and intermediate susceptibility to vancomycin (Pelaez et al., 

2002a) have been reported. In addition, earlier in 2005, treatment failure or poor outcome with 

metronidazole treatment for CDI was reported by Musher et al., (2005).

Empirical therapy of anaerobic infections is mainly based on data derived from periodic 

surveillance studies, which are not always up-to-date. These data also suffer from great
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variations reported over time and from different geographical area. Reports on the susceptibility 

of C. difficile to a variety of antibiotics are scarce and far between. This study was designed to 

determine the antibiotic susceptibility pattern of the clinical as well as the environmental isolates 

of C. difficile obtained in the two periods of this project.

5.2 Materials and Methods

5.2.1 Bacterial isolates

A total of 151 C. difficile isolates, comprising the 95 clinical and 18 environmental isolates 

obtained during the first phase of this study, February 2001- January 2002, described in chapter 2 

and the 38 clinical isolates obtained in the second phase from January 2003 -  December 2005, 

described in chapter 5, were included in this study. They were stored at -80°C and subcultured 

twice on Fastidious Anaerobe agar (FAA; Lab M) before use to ensure purity.

5.2.2 Antibiotic susceptibility testing (AST)

The AST was performed to determine the minimum inhibitory concentrations (MICs) of 16 

antibiotics against the clinical and environmental isolates using the E test (AB Biodisk, Solna, 

Sweden) and agar dilution methods. The following antibiotics were tested by the E test according 

to the manufacturer’s instruction: amoxicillin-clavulanic acid, ampicillin, cefotaxime, cefoxitin, 

cefuroxime, clindamycin, imipenem, linezolid, meropenem, metronidazole, penicillin, 

piperacillin, piperacillin-tazobactam, teicoplanin and vancomycin. For MIC determination by E 

test, see chapter 2 .6 .
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Trovafloxacin (Pfizer, Inc., Groton, Conn., USA) susceptibility was determined by the agar 

dilution method recommended by the National Committee for Clinical Laboratory Standards 

(NCCLS, 2001). Briefly, serial two-fold dilutions of trovafloxacin were incorporated into FAA, 

supplemented with 5% horse blood, to give final antibiotic concentrations of 0.03-256 pg/ml. An 

inoculum was prepared in Fastidious Anaerobe Broth (FAB) from a 48-h FAA culture. The 

suspension was adjusted to 1.0 McFarland turbidity standard. Then the inoculum was applied 

onto the surface of pre-reduced antibiotic-containing FAA plate supplemented with 5% horse 

blood, with a 35-prong Steers applicator that delivered 10 pi (105cfu/ml) per spot. The plates 

were then incubated in Anoxomat Anaerobic jar system (Model WS800: MART Microbiology 

BV, Lichtenvoorde, Netherlands) in an atmosphere of CO2 10%, H2 10%, N2 80%, for 48 h at 

37°C. Anaerobiosis was checked by inclusion of a nutrient agar plate culture of Pseudomonas 

aeruginosa and a chemical indicator (Oxoid). After incubation, the MIC was recorded as the 

lowest concentration of each antibiotic that inhibited visible growth of the organism.

C. difficile, ATCC 9689 and ATCC 17857, and C. perfringens ATCC 13124, were included in 

each run as controls.

5.2.3 Statistical method

Fisher’s exact test was used to test proportion for the respective variables. The probability level 

of <0.05 was considered as significant.
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5.3 Results

5.3.1 The antimicrobial susceptibility of the isolates

The MICs of the 16 antibiotics tested, as shown in Figures 5.1, 5.3 and 5.5 (Appendix Tables 

5.3.1, 5.3.2 and 5.3.3), are presented as the concentrations that killed 50% (MIC50), 90% (MIC90) 

of the isolates and the percentage of resistant isolates in Figure 5.2, Figure 5.4 and Figure 5.6.

5.3.2 Clinical isolates (2001-2002)

This data is summarized in Figure 5.1 and Figure 5.2 where the percentage of susceptibility is 

demonstrated as opposed to percentage of resistance (Appendix; Table 5.3.1). As shown in 

Figure 5.1 (Appendix; Table 5.3.1), among the 95 isolates tested in the first part of the study, 

amoxicillin-clavulanic acid, ampicillin, linezolid, meropenem, metronidazole, piperacillin, 

teicoplanin, trovafloxacin and vancomycin demonstrated excellent in vitro activities against all 

isolates of C. difficile with MIC9 0S of 0.38, 1.5, 2.0, 1.5, 0.19, 4, 0.25, 4 and 0.75 pg/ml, 

respectively. There was no statistically significant difference between the susceptibility of 

toxigenic and non-toxigenic strains. One non-toxigenic strain had decreased susceptibility to 

vancomycin and teicoplanin with MICs of 3 and 2pg/ml, respectively. Another 2 isolates had 

decreased sensitivity to vancomycin with MIC of 2 pg/ml but fully susceptible to teicoplanin.

All the isolates were resistant to cefuroxime, 97.5% were resistant to cefoxitin and 92.7% were 

resistant to cefotaxime (Appendix; Table 5.3.1). Nearly half of the isolates (46/95; 48.4%) were 

resistant to clindamycin. Of these 46 clindamycin-resistant isolates, 23 (50%) exhibited high- 

level resistance, MIC >256 pg/ml. The MIC of clindamycin for the remaining 23 isolates ranged
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between 6  and 32 pg/ml. Although the MIC90 to penicillin was 1.5 pg/ml, two isolates with 

MICs of 6  and >32 pg/ml, were seen. Of interest, 91.4% and 4.8% of the isolates were resistant 

to imipenem and meropenem, respectively, with MIC9 0S of >32 and 1.5 pg/ml, respectively. 

Eight strains had MIC of imipenem <4 pg/ml and one had MIC of 12 pg/ml.

Figure 5.1. MIC50 amd MIC90 of 95 clinical isolates of C. difficile against 16 antibiotics
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Figure 5.2. Percentage of susceptibility of 95 clinical isolates of C. difficile against 16 antibiotics
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5.3.3 Environm ental isolates (2001-2002)

This data is summarized in Figure 5.3 and Figure 5.4 where the percentage o f susceptibility is 

demonstrated as opposed to percentage o f resistance (Appendix; Table 5.3.2). Figure 5.3 and 

Figure 5.4 (Table 5.3.2; Appendix) show the susceptibility pattern o f the environmental isolates. 

Compared with those o f the clinical isolates the environmental strains were relatively less 

resistant, especially against cefotaxime with MIC90 o f 83.3% and clindamycin with MIC9 0  o f 

38.8%. The environmental isolates were more resistant to meropenem with a higher MIC90 value 

o f >32 pg/ml and percentage resistant at 50%. All isolates were susceptible to the penicillins, 

glycopeptides, linezolid, trovafloxacin and piperacillin-tazobactam with MIC9 0 S ranging from

0 .1 9 -4 .0  pg/ml.

Figure 5.3. MIC50 and MIC90 o f 18 environmental isolates o f C. difficile to 16 antibiotics
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Figure 5.4. Percentage o f  susceptibility o f 18 environmental isolates o f C. difficile to 16 

antibiotics
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5.3.4 Clinical isolates (2003-2005)

This data is summarized in Figure 5.5 and Figure 5.6 where the percentage o f  susceptibility is 

demonstrated as opposed to percentage of resistance (Appendix; Table 5.3.3). Figure 5.5 and 

Figure 5.6 (Table 5.3.3; Appendix) show the MICsoand MIC9 0  and percentage resistance to the 

16 antibiotics tested. The resistance rates o f these latter isolates were similar to those o f the 

earlier years, although resistance rates to meropenem, penicillin and piperacillin were higher at

21.4, 16.6 and 11.9%, respectively. Three (7.9%) o f the 38 isolates were resistant trovafloxacin 

and 33 (8 6 .8 %) to imipenem. One toxigenic strain had decreased susceptibility to vancomycin 

and teicoplanin with MICs o f 3 and 2jig/ml, respectively.
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F igure 5.5. MIC 50 and MIC90 o f  38 clinical isolates o f C. difficile collected in 2003-2005
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Figure 5.6. Percentage of susceptibility of 38 clinical isolates of C. difficile collected in 2003- 

2005
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5.3.5 Prevalence of multi-drug resistant isolates

The prevalence of multi-drug resistant (MDR) clinical isolates of C. difficile in 2001-2002 and 

2003-2005 was virtually the same and for that reason only the analysis of the isolates in 2001- 

2002 is demonstrated in Table 5.1, Table 5.2 and Table 5.3.

A total of 74 (77.9%) of the clinical isolates were multiply resistant, i.e. resistance to two or 

more classes of antibiotics. The analysis of individual isolates in relation to multiple resistance, 

and toxin or non-toxin production, is shown in Table 5.1. Out of the 74 multi-resistant strains, 

only one was resistant to 4 antibiotics (cefoxitin, clindamycin, imipenem and trovafloxacin) and 

one was resistant to cefoxitin, imipenem and trovafloxacin; these 2 strains were toxin-producers. 

Another 39 (52.7%) were resistant to a different combination of 3 antibiotics (cefoxitin, 

clindamycin and imipenem); 25 (64.1%) of these were toxigenic and 14 non-toxigenic. 

Resistance to cefoxitin and imipenem was noted in another 31 (41.9%) strains, of which 25 

(80.6%) were toxigenic. The distribution of the multiply resistant clinical isolates by hospital 

ICUs is shown in Table 5.2. A total of 39 (52.7%) of the multiply resistant strains were from 

ICU-1 compared with 3 (4.1%) in ICU-2, 14 (18.9%) in ICU-3 and 18 (24.3%) in ICU-4. The 

ratio of the isolation rates of the multiply resistant toxigenic strains to non-toxigenic strains was, 

in ICU-1, 1.6:1, ICU-2, 1:1, ICU-3, 13:1 and ICU-4, 3.5:1.
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5.3.6 Correlation between MDR strains and CDI

The correlation between the MDR strains and symptomatic or asymptomatic patients is shown in 

Table 5.3. Twenty two (73.3%) of the 30 symptomatic patients were infected with multiply 

resistant strains and 54 (83%) of 65 asymptomatic patients were colonised by resistant strains, a 

difference that did not attain statistical significance,/?>0.05.

Table 5.1. Antibiotic resistance profile of 74 multiply resistant clinical isolates of C. difficile

Resistance groups Number of isolates Total number

Toxigenic (53) Non-toxigenic (21) II

Fox, clind, imip, trov 1 0 1

Fox, imip, trov 1 0 1

Fox, clind, imip 25 14 39

Fox, trov 0 1 1

Fox, imip 25 6 31

Fox, clind 1 0 1

Fox = cefoxitin, clind = clindamycin, imip = imipenem, trov = trovafloxacin
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Table 5.2. Distribution of the 74 multiply resistant clinical isolates of C. difficile in the four 
different intensive therapy units (ICUs)

Number of isolates in:
Total

Resistance group ICU-1 ICU-2 ICU-3 ICU-4
(No = 74)

T NT T NT T NT T NT

Fox, clind, imip, trov 0 0 0 0 0 0 1 0 1

Fox, imip, trov 0 0 0 0 1 0 0 0 1

Fox, clind, imip 17 12 0 0 4 0 4 2 39

Fox, trov 0 0 0 0 0 1 0 0 1

Fox, clind 0 0 1 0 0 0 0 0 1

Fox, imip 7 3 1 1 8 0 9 0 31

T -  toxigenic; NT = non-toxigenic; Fox = cefoxitin; clind = clindamycin; imip = imipenem; trov 

= trovafloxacin
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Table 5.3. Resistant profiles of toxigenic C. difficile isolated from symptomatic and 
asymptomatic patients

Resistant groups

No. (%) patients that were

Symptomatic 

(n = 30)

Asymptomatic 

(n = 65)

Fox, clind, imip, trov 1 (3.3) 0

Fox, imip, trov 0 1 (1.5)

Fox, clind, imip 9(30) 28 (43)

Fox, trov 0 1 (1.5)

Fox, imip 12 (40) 23 (35.3)

Fox, clind 0 1 (1.5)

Fox = cefoxitin, clind = clindamycin, imip = imipenem, trov = trovafloxacin

5.4 Comments

C. difficile is an important cause of hospital-acquired diarrhoea and PMC which has a mortality 

rate that ranges from 15-30% (Bartlett 2008). Therefore, it is important to be abreast of the 

susceptibility pattern of local isolates to the antibiotics that are available for the treatment of 

disease caused by this organism. Although susceptibility testing of C. difficile is not often done 

and generally not relied upon for clinical-decision making, resistance to anti-anaerobic drugs is 

gradually emerging.

Highlights form this study includes the result of susceptibility testing of our strains showing that 

90% of the strains were inhibited by 0.75pg/ml of vancomycin and 0.25pg/ml of teicoplanin. 

Although 4 and 2 clinical isolates had reduced susceptibility to vancomycin (2-3pg/ml) and

98



teicoplanin (2pg/ml), all of them were inhibited by concentrations that did not exceed 3 and 2 

jig/ml, respectively. However, these upper limits were more than the concentrations reported in 

other studies (Bartolini et al., 1990; Biavasco et al., 1991; Barbut et al., 1999; Newsom et al., 

1995). Resistance to vancomycin has been reported in Spain by Pelaez et al. (1997; 2002a) 

although all of intermediate resistance. The rise in vancomycin MIC is also noticed in other 

studies e.g. in Scotland, where all of the C. difficile were susceptible to vancomycin but there 

was increase in the number of C. difficile with MIC of 4pg/ml from 2.7% (5/186) of the isolates 

(Drummond et al., 2003a) to 21.6% (25/116) in another study (Mutlu et al., 2007). Therefore, 

there is need for constant monitoring of vancomycin susceptibility of C. difficile in our hospitals.

Metronidazole was the most active of all the antibiotics. All the isolates were inhibited by a 

concentration that did not exceed 2pg/ml. This is in contrast to studies that have reported some 

degree of decreased susceptibility to metronidazole (Pelaez et al., 1998, Brazier et al., 2001) and 

to the single isolate that was completely resistant to metronidazole with MIC of 64pg/ml and 

>256pg/ml (Wong et al., 1999; Bishara et al., 2006). These resistant strains appear to be more 

common in patients with recurrent C. difficile diarrhoea (Pelaez et al., 1998). Barbut et al. in 

1999, described six C. difficile clinical isolates with MICs of metronidazole ranging from 8- 

32pg/ml among 198 isolates recovered in France in 1991 and in 1997. But 5 out of 6 strains were 

non-toxigenic isolates. Another Spanish study reported metronidazole resistance (MIC, 

>16pg/ml) in 6.3% of 415 clinical C. difficile isolates (Pelaez et al., 2002a). In spite of these 

reports, the incidence of metronidazole-resistant strains remains very low as was demonstrated in 

our present study. Recently however, Baines et al. (2008) demonstrated the emergence of 

reduced susceptibility to metronidazole in 24.4% of C. difficile ribotype 001 isolates from their 

institution in Leeds, UK. They used the spiral gradient end-point analysis and the resistance was
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further confirmed by agar incorporation method. Although metronidazole and vancomycin are 

equally effective for the treatment of CDI (Olson et al., 1994; Teasley et al., 1983; Kelly et al., 

1994), metronidazole has been the drug of choice in Kuwait for the past one decade. This is 

primarily because of its good in-vitro susceptibility, cost and risk of emergence of vancomycin- 

resistant enterococci (VRE). Despite the efficacy of teicoplanin when compared to vancomycin, 

its high cost prevents its use as the drug of choice.

In this study, susceptibility to the 13-lactam antibiotics was largely predictable and essentially 

similar to other reports (Chow et al., 1985; Goldstein et al., 1999; Nord 1996; Bourgault et al., 

2006). The resistance to penicillin in our study was 2.4%, in the first phase of the study but rose 

to about 17% in the second phase. A much earlier report in Italy by Panichi et al. (1990), similar 

to ours, found a penicillin resistance rate (14%) much higher than ours in first phase study but 

about the same in the second phase. A very striking finding was the consistent high resistance 

rate to imipenem while meropenem demonstrated relatively good activities against the clinical 

strains in the first phase and seemingly high resistance rate (21%) in the second phase. In 

general, carbapenems are regarded as alternative drugs of choice after metronidazole for therapy 

of infections involving anaerobes because of their excellent in-vitro and in-vivo activities. This 

rather unexpected finding contrasts with the finding of Panichi and colleagues (Panichi et al., 

1990) who showed that imipenem had excellent activity against their isolates. This finding 

deserves detailed investigation at the molecular level which, of course, is currently outside the 

scope of this project. However, imipenem-resistant C. difficile is not entirely unknown as attested 

to by Jones as well as John and Brazier in Cardiff, UK (Jones 1985; John and Brazier, 2005). 

The data presented in the study also demonstrated the ineffectiveness of the cephalosporins
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against C. difficile. All these go to show a particular spectrum of antibiotic resistance that 

distinguishes this organism from other clostridia.

The resistance rate of over 48% to clindamycin in this study was higher than the one reported by 

Wongwanich et al. (1996) and Bourgault et al. (2006), but lower than those reported by Chow et 

al. (1985), Levet (1988), Panichi et al. (1990), Nord et al. (1993), Barbut et al. (1999) and Mutlu 

etal. (2007).

Susceptibility of C. difficile to the quinolones has always been poor, especially to the first and 

second generation agents, such as norfloxacin and ciprofloxacin (Chow et al, 1985; Nord et al., 

1993; Bourgault et al., 2006). However, trovafloxacin, a new fluoroquinolones, has good in-vitro 

activity against most Gram-positive and Gram-negative anaerobes. In this study, the resistance to 

trovafloxacin by the clinical isolates in both phases of the study was at acceptable levels; none of 

the environmental strains was resistant. This is in agreement with Wilcox and his colleagues who 

found that trovafloxacin was highly active against C. difficile by MIC determination (Wilcox et 

al., 2000a). In general, there was no significant difference in the susceptibility of the 

environmental isolates compared with the clinical isolates except with meropenem to which 

almost 50% were resistant.
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CHAPTER 6

INFLUENCE OF ANTIBIOTIC EXPOSURE ON CELL-BOUND AND CELL-FREE 
CYTOTOXIN PRODUCTION BY CLOSTRIDIUM DIFFICILE

6.1 Introduction

CDI is often associated with antibiotic exposure leading to depletion of normal gut flora and 

impairment of colonization resistance. Previous studies have shown that subinhibitory 

concentration of clindamycin and cephradine stimulated enterotoxin production (Honda et al., 

1983) while tetracycline did not induce both toxins. In addition, clindamycin and cephradine 

increase toxin A production (Onderdonk et al., 1979). Recently, it has been demonstrated that 

exposure of C. difficile to sub-lethal concentration of various antibiotics such as vancomycin, 

metronidazole, amoxicillin, clindamycin, cefoxitin and ceftriaxone has no consistent relationship 

between growth and toxin A production (Drummond et al., 2003b). Emerson et al., used 

microarray technology to analyse the transcriptional responses of C. difficile 630 strain to 

environmental shock and to the growth in the presence of subinhibitory concentrations of 

antibiotics (amoxicillin, clindamycin and metronidazole) (Emerson et al., 2008). Amoxicillin 

and clindamycin increased the transcription of ribosomeal protein genes and changed the 

transcription of genes encoding surface-associated proteins, while exposure of C. difficile to 

subinhibitory concentration of metronidazole resulted in minor changes in transcription patterns.

The aim of this study was to investigate the effects of various concentrations of antibiotics 

known to predispose to CDI and, also, of those used in its therapy, on the production of 

extracellular toxin B by C. difficile.
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The specific objectives were to:

1. Investigate the production of extracellular toxin B by quantitative measurement of the 

cytotoxic effect on Vero cell line;

2. Investigate and quantify the cytotoxic effect of cell-bound toxin on the Vero cell lines

3. Compare the quantitative cytotoxic activities of cell-free and cell-bound toxin B 

produced by Kuwait toxigenic strains with toxigenic strain from the UK.

6.2 Materials and methods

6.2.1 Clostridium difficile strains

Six strains of C. difficile were used for this study. These were: strains 233D ribotype 078 & 

K34A ribotype 097 (two local toxigenic strains isolated from the stool samples of patients with 

pseudomembranous colitis (PMC) from Mubarak A1 Kabeer Hospital; strain 175 ribotype 039 (a 

local non-toxigenic strain isolated from a stool sample of a patient with suspected antibiotic- 

associated diarrhoea, ADD); strain A11A ribotype 017 (a toxin A negative/toxin B positive strain 

from a patient with ADD from Amiri hospital, Kuwait); strain 362C ribotype 046 (a local 

toxigenic strain isolated from a patient with antibiotic-associated colitis (AAC) in Mubarak 

Hospital) and a strain of ribotype 001, associated with an outbreak of AAD in the UK, obtained 

from Prof. BI Duerden and Dr Jon Brazier of the Anaerobe Reference Unit, Cardiff, UK.

6.2.1 Media and reagents

The following media and reagents were used throughout the experiments: Brucella agar 

(Unipath, Basingstoke, UK), Anaerobe broth (Unipath), Brain Heart Infusion broth (BHI) (Difco,
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Becton, Dickinson and Company, Sparks, MD, USA), Phosphate Buffered Saline (PBS; ICN 

Biomedicals, Inc., OH, USA), Liver broth (Oxoid Ltd, Basingstoke, Hampshire, England), 

Minimum Essential Medium (D-MEM; Gibco, Invitrogen, Paisley, Scotland, UK), foetal bovine 

serum (FBS; Gibco), amphotericin B (Gibco), penicillin-streptomycin sulphate (Gibco).

6.2.3 Susceptibility testing

Five antibiotics were chosen for the study: vancomycin and metronidazole, two agents that are 

used for the treatment of CDI, and three agents that are associated with precipitation of the 

disease: ampicillin, cefotaxime and clindamycin. The susceptibility of the isolates to these 

antibiotics was determined by the E test (section 2.6).

6.2.4 Cytotoxin detection

6.2.4.1 Inoculum standardization

The number of viable bacteria in the inoculum was determined by a modified Miles and Misra 

method (Brown et al., 1989). C. difficile strains were grown overnight in liver broth. Then the 

neat broth culture was serially diluted in ten-fold steps from neat to 10'8 with BHI. Three drops 

(20pl) from each dilution were dropped on dry blood agar from a height of 1.5-2cm. The drops 

were allowed to dry and then incubated in anaerobic jars at 37°C overnight. The colonies in the 

area of each drop were counted, added together and divided by 3 to find the average. Then the 

count was multiplied by 50, to convert it to 1ml, and by the dilution factor to get the final 

bacterial count/ml in each diluted broth culture.
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Each of the diluted broths was centrifuged at 3,500 g for 5min and the supernatant filtered 

through a sterile membrane filter with 0.45pm pore size. The filtrates were then assayed for 

cytotoxicity.

The deposit was washed twice with 3ml of 50 mM PBS and centrifuged for 3,500 g for 5 min 

and then the supernatant was discarded. The washed sediment was sonicated with an ultrasonic 

homogenizer (Labsonic U, B. Braun, Model 1254, Melsungen AG, W Germany) for 5 min. The 

cellular debris was removed by centrifugation at 3,500 g for 10 min. The supernatant was filtered 

through a sterile membrane filter, 0.45pm size, and assayed for cytotoxicity. An inoculum 

containing 1011 CFU/ml which produced the highest cytotoxic activity was then used throughout 

the cytotoxin detection experiments.

6.2.4.2 Cytotoxin detection assay

In a study for cytotoxin detection assays, C. difficile toxigenic strain 233D (ribotype 078) and a 

non-toxigenic strain 175 (ribotype 039) (as a control) were seeded onto blood agar and incubated 

anaerobically for 48 h at 37°C. Then, a loopful of each strain was inoculated into 10ml of sterile 

liver broth, and incubated anaerobically overnight. This was diluted 1:10 corresponding to 1011 

CFU/ml after which it was exposed to differing concentrations of the test antibiotics. 

Concentration of antibiotics used in this study corresponded to the MIC, 1/2, 1/4, 1/8, 1/16, 1/32 

and 1/64 MICs. Antibiotics were prepared in sterile distilled water with reference to the highest 

concentration required (MIC). Doubling dilutions were then made in 10ml of freshly prepared 

sterile BHI broth in 6 different bottles per concentration containing the specific concentrations of 

the test antibiotics and the bottles were labelled to correspond to the MIC values as above per
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each day of incubation. An inoculum of 100 jliI containing approximately 1011 CFU/ml of the 

inoculated liver broth was added to each bottle. An antibiotic-free broth culture was used as 

control for each strain for baseline comparison. The inoculated broth cultures were then 

incubated for 1, 2, 3, 4, 5 and 7 days in an anaerobic gas chamber (Bactron Anaerobic Chamber, 

model IV, Sheldon Manufacturing Inc., Cornelius, Oregon 97113) at 37°C. At the end of each 

incubation period two types of cytotoxin were assayed, viz: cell-free cytotoxin and cell-bound 

cytotoxin.

6.2.4.3 Cell-free supernatant cytotoxin detection

After incubation of each bottle of the broth cultures for each period (1-5 and 7 days), 5-ml 

samples were centrifuged at 3,500 x g for 5 min. The supernatant was filtered through a sterile 

membrane filter (Millex-AH, Millipore, Carrigtwchill, Co. Cork, Ireland) with 0.45pm pore size, 

and then assayed for cytotoxicity.

6.2.4.4. Cell-bound cytotoxin detection

The remaining 5ml of the broth cultures was centrifuged as above and the sediment washed 

twice with 3ml of 50mM PBS (pH 7.0) by centrifugation for 5 min at 3500 g and discarding the 

supernatant. The washed sediment was sonicated with an ultrasonic homogenizer (Labsonic U, 

B. Braun, Model 1254, Melsungen AG, W. Germany) for 5 min. The cellular debris was 

removed by centrifugation at 3,500 g for 10 min. The supernatant was filtered through a sterile 

membrane filter, 0.45 pm pore size (Millex-AH), and assayed for cytotoxicity.
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6.2.4.5. Assay for cytotoxicity

For this experiment, monolayer of Vero cells were used. 50pl of a Vero cell suspension 

containing 200,000 cells/ml of growth media was dispended into each well of a micro test plate 

containing 96 wells of 7-mm diameter. The growth medium was made up of 500ml of Minimal 

Essential Media (D-MEM), 10% foetal bovine serum (FBS), 5ml of amphotericin B (Gibco) 

lpg/ml, 5ml of penicillin 100 Unit/ml and streptomycin sulphate (Gibco) lOOpg/ml. After 

incubation for 24 h at 37°C in CO2 5% atmosphere, each well had a confluent monolayer of cells. 

Serial twofold dilutions of each filter-sterilised broth culture supernatant fluid and the sonicated 

effluent were made with maintenance media (500ml of D-MEM, FBS 2%, amphotericin B 

lpg/ml and penicillin 100 Unit/ml-streptomycin sulphate lOOpg/ml). A 50 pi volume of 

undiluted sample and subsequent dilutions were introduced into each well of confluent 

monolayer of cells. The dilution series was 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280, 1:2560 and 

1:5120 for the control, the supernatant and the sonicated effluent. The inoculated Vero cells were 

incubated at 37°C in CO2 5% and examined at 24 and 48 h for cytotoxic changes, defined as 

rounding of the cells, changes in morphology or partial loss of adherence. The highest dilution 

resulting in complete rounding of the cells was taken as the number of cytotoxic units (CU)/50- 

pl sample (Nakamura et al., 1982; Nakamura et al., 1981) and the results were expressed as 

CU/ml.

All the remaining strains were subjected to the same procedures. At the end of 7th day 

incubation, the mean CUs/ml were calculated and tabulated.
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6.3 Results

6.3.1 Minimum inhibitory concentrations

The MICs of the 5 antibiotics tested against the 6 strains investigated are shown in Table 6.1.

Table 6.1. MICs (pg/ml) of selected antibiotics against clinical strains of C. difficile

Antibiotics MIC (pg/ml) of antibiotics against strains:

(breakpoints; pg/ml) 078 039 097 017 046 001

Clindamycin (4) 8.0 >256 >256 >256 4.0 8.0

Metronidazole (8) 0.25 0.06 0.06 0.25 0.25 0.25

Vancomycin (4) 0.5 1.0 1.0 1.0 0.5 2.0

Ampicillin (8) 0.5 0.5 1.0 1.0 1.0 2.0

Cefotaxime (32) >256 >256 >256 >256 >256 >256
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6.3.2 Inoculum standardisation

Tables 6.2a and 6.2b demonstrate the inoculum at which cell-free and cell-bound cytotoxin 

production was maximal below the neat broth. Thus, inoculum of 1011 cfu/ml was used 

throughout the experiments.

Table 6.2a. Cytotoxic activity (CU/ml) versus dose (CFU/ml) of the cell-free broth culture of C. 
difficile

Viable count 

(CFU/ml)

CU/ml of strain

078 039 097 017 046 001

24h 48h 24h 48h 24h 48h 24h 48h 24h 48h 24h 48h

1012 (Neat) 128 256 0 0 32 32 128 256 32 32 256 512

1011 64 128 0 0 16 32 16 32 16 16 32 64

1010 0 0 0 0 0 0 16 16 0 0 0 0

109 0 0 0 0 0 0 0 0 0 0 0 0

108 0 0 0 0 0 0 0 0 0 0 0 0

107 0 0 0 0 0 0 0 0 0 0 0 0

106 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6.2b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin versus dose (CFU/ml) of C. 
difficile

Viable count 

(CFU/ml) 078 039

CU/ml of strain 

097 017 046 001

24h 48h 24h 48h 24h 48h 24h 48h 24h 48h 24h 48h

1012(Neat) 256 512 0 0 256 512 2048 2048 256 256 1024 1024

1011 16 16 0 0 16 16 256 512 16 16 128 128

1010 0 0 0 0 0 0 0 0 0 0 0 0

109 0 0 0 0 0 0 0 0 0 0 0 0

108 0 0 0 0 0 0 0 0 0 0 0 0

107 0 0 0 0 0 0 0 0 0 0 0 0

106 0 0 0 0 0 0 0 0 0 0 0 0
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6.3.3 Quantitative cytotoxic activity of C. difficile, strain 233D (ribotype 078)

A study for cell-bound and cell-free cytotoxin production was carried out with the toxigenic 

strain C. difficile 233D (078) on the Vero cell line. The test was done for induction of cytotoxin 

production in the presence of inhibitory and sub-inhibitory concentrations of cefotaxime, 

ampicillin, metronidazole, vancomycin or clindamycin. Induced intra- and extra-cellular 

cytotoxin was determined after incubation with the antibiotics for 1, 2, 3, 4, 5 and 7 days. The 

results are shown in Figure 6.1 and Figure 6.2 (Appendix; Tables 6.3.1a and 6.3.1 b to 6.3.10a 

and 6.3.10b). The non-toxigenic strain 175 039 did not produce any effect in the Vero cell lines.

The graphs in this chapter show representative results for cytotoxic activity after exposure to an 

antibiotic for 3 days and Vero cells assays read after 24 hours. Full details of the results over 7 

days and of Vero cells assays read after 48 hours are in the Appendix.

6.3.4 The effect of exposure to cefotaxime (CTX)

As shown in Figure 6.1 (Appendix; Table 6.3.1a and Table 6.3.1b), post-exposure extra-cellular 

cytotoxin production could be demonstrated on Vero cell lines after incubation for 24 and 48 h. 

Cefotaxime induced twice (32 CU/ml) the level of activity obtained with the control antibiotic- 

free broth culture (16 CU/ml) on day 1 at the MIC and Vi MIC of cefotaxime, through a 4-fold 

increase (64 CU/ml), to an 8-fold rise (128 CU/ml) at 1/32 MIC. The CU reached a 16-fold 

increase, 2048 CU/ml, on the 5th day of exposure at concentration from 1/8 MIC down to 1/64 

MIC. Peak induction, 64-fold increase (2048 CU/ml), was reached on day 7 from the MIC to the 

lowest cefotaxime concentration of 1/64 MIC.
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Figure 6.1. Cytotoxic activity (CU/ml) o f cell-free and cell-bound cytotoxin o f C. difficile strain 
233D (ribotype 078) post-exposure to cefotaxime after 3days incubation on Vero cell line
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After incubation on Vero cell lines for 48h (Appendix; Table 6 .3 .lb) the quantity o f induced 

cell-free cytotoxin increased two-fold from MIC exposure to 1/8 MIC on day 1. This trend was 

observed through all the days o f incubation with the antibiotic up till day 7.

The effect o f exposure to cefotaxime on cell-bound cytotoxic activity was not as pronounced as 

it was with the cell-free cytotoxic activity. As shown in Figure 6.1 (Appendix; Tables 6.3.2a and 

6.3.2b), the cell-bound cytotoxic activities became noticeable only at relatively low 

concentrations (1/16 MIC) o f the antibiotic on days 1 and 2 post-exposure after incubation on 

Vero cells for 24 and 48 h. Even on days 3, 4, 5 and 7, there were only 2-8-fold increases over 

the cytotoxic activity of the control filtered broth culture at 1/32 -  1/64 MIC exposures after 24 h 

incubation and twice these levels, at the same concentrations, after 48 h incubation.
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6.3.5 The effect of exposure to ampicillin (AMP)

The effect of exposure to ampicillin on cell-free cytotoxic activity, shown in Figure 5.2 

(Appendix; Tables 6.3.3a and 6.3.3b), was very striking from day 1 cultures after incubation with 

Vero cells for 24 and 48 h. Maximum induction, 2048 CU/ml, was seen at 5 and 7 days post- 

AMP exposure. This represented a 32-fold increase over the antibiotic-free broth culture filtrate 

control. This high degree of induction, particularly on days 5 and 7, was observed at all levels of 

inhibitory and sub-inhibitory MICs.

Figure 6.2. Cytotoxic activity (CU/ml) of cell-free and cell-bound cytotoxin of C. difficile strain 
233D (ribotype 078) post- exposure to ampicillin after 3 days incubation on Vero cell line
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Figure 6.2 (Appendix; Tables 6.3.4a and 6.3.4b) show the effect of ampicillin on cell-bound 

cytotoxin induction. The drug had no effect on days 1 and 3. However, the maximum effects, 

1028 and 2048 CU/ml, were observed on days 3 and 4 when compared with the 32 and 64 

CU/ml, respectively, of control antibiotic-free sonicated effluent culture after incubation with 

Vero cells for at 24 and 48 h.

6.3.6 The effect of exposure to metronidazole (MTZ)

The effects of exposure to metronidazole are shown in Figure 6.3 (Appendix; Tables 6.3.5a, 

6.3.5b, 6.3.6a and 6.3.6b). As can be seen in Appendix ;Tables 6.3.5a and 6.3.5b, the cytotoxic 

effects were 2-4-fold higher than the control filtered broth culture supernatant on days 1 and 2 

for Vz MIC down to the 1/64 MIC for the cell-free cytotoxin and increased to 4-8-fold on days 3 

and 4, reaching the maximum of 32-fold increase on day 5, after 24 h incubation of supernatants 

on Vero cell lines. The same observation was noticed after 48 h incubation although the 

maximum cytotoxic effects, 2048 CU/ml, were also determined on day 7.

The effect of MTZ on the cell-bound cytotoxin was more pronounced than the effects on cell- 

free cytotoxin (Appendix; Table 6.3.6a and 6.3.6b) on days 1-3, reaching maximum activities of 

2048 CU/ml, i.e. 128-fold increase, after incubation for 24 and 48 h. The level of activity 

decreased to 256 and 512 CU/ml (4-8 folds) on days 5 and 7 at the MIC and higher sub- 

inhibitory MICs.
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Figure 6.3. Cytotoxic activity (CU/ml) of cell-free and cell-bound cytotoxin of C. difficile strain 
233D (ribotype 078) post- exposure to metronidazole after 3 days incubation on Vero cell line
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6.3.7 Effect of exposure to vancomycin

Figure 6.4 (Appendix; Tables 6.3.7a and 6.3.7b, and 6.3.8a and 6.3.8b show the amount of cell- 

free and cell-bound CUs produced by strain 233D ribotype 078 pre- and post- exposure to 

vancomycin on the Vero cell line. Vancomycin induced cell-free cytotoxin maximally on days 4 

and 5 where it caused a 16-32 fold rise in the extracellular cytotoxin production compared to the 

control when incubated for 24 h on Vero cells but much higher levels of 1028 and 2048 CU/ml 

(32-64 - fold rise), on days 3, 4 and 5 after incubation for 48 h. On day 7, at both incubation 

periods, the activities dropped to below that of the control broth culture after incubation for 24 h 

or the same level after 48 h except at 1/32 and 1/64 MICs when 1024 CU/ml was recorded.
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Figure 6.4. Cytotoxic activity (CU/ml) of cell-free and cell-bound cytotoxin of C. difficile strain 
233D (PCR ribotype 078) post- exposure to vancomycin after 3 days incubation on Vero cell 
line
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At days 1, 2, and 3, vancomycin induce an increase in cell-bound cytotoxin by 32 to 64-fold at 

MIC and V2 MIC, then maximally increasing with further sub-inhibitory concentration to 128 - 

fold at 1/64 MIC while decreasing to 2-fold increases on days 4, 5 and 7 after incubation for 24 h 

with Vero cells (Appendix; Table 6.3.8a). A similar trend (Appendix; Table 6.3.8b) was 

observed after incubation for 48 h but at a higher level o f activity, i.e. 2048 CU/ml, was achieved 

with higher MICs on days 1-3, decreasing to 4-32 fold on days 4 and 7.
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6.3.8 Effect of exposure to clindamycin

Figure 6.5 (Appendix; Tables 6.3.9a and 6.3.9b, and 6.3.10a and 6.3.10b) show the amount o f 

cell-free and cell-bound CU produced by strain 233D (ribotype 078) pre- and post- exposure to 

clindamycin on the Vero cell line. The maximum cytotoxic effect o f 2048 CU/ml was produced 

on days 5 and 7 after 24 and 48 h incubation on Vero cells, although representing only a 16-32- 

fold increase in the extracellular cytotoxin activity. The effects were minimal on day 1 but 

increased by 2 to 4-fold on days 2 - 4  after both incubation periods on the Vero cell line, i.e. 

clindamycin hardly caused any induction o f cell-free cytotoxin on day 1 except at Vi and Vi MIC. 

The effect o f clindamycin on cell-bound cytotoxin was more pronounced on days 1 -  4 after 

incubation for both 24 and 48 h.

Figure 6.5. Cytotoxic activity (CU/ml) o f cell-free and cell-bound cytotoxin o f C. difficile strain 
233D (ribotype 078) post- exposure to clindamycin after 3 days incubation on Vero cell line
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As shown in Figure 6.5 and (Appendix; Tables 6.3.10a and 6.3.10b), the effects of clindamycin 

were 64-fold higher than the control on days 1, 2, 3 and 4 after incubation for 24 and 48 h. These 

activities decreased to a 16-fold rise on days 5 and 7 after incubation for both periods.

6.3.9 The mean cytotoxic activity of all strains after exposure to the various antibiotics

The analysis of the data for the remaining 4 strains was done by calculating the mean of the 

cytotoxic activities produced on all post-exposure days to the antibiotics along with those of C. 

difficile strain 233D (078).

6.3.10 Mean effect of cefotaxime on cytotoxin induction

Figure 6.6 (Appendix; Table 6.3.11a) shows that the increase in the cytotoxic activities of cell- 

free cytotoxin produced by C. difficile strain 233D 078 was linear from MIC to 1/64MIC. There 

was an overall increase from the pre-exposure level of cell-free cytotoxin of 66.6 CU/ml to post- 

CTX exposure levels of 368.0 CU/ml (5.5x) at the MIC to 1050.6 CU/ml (15.7x) at 1/64MIC 

after incubation with Vero cells for 24h. After incubation for 48h, the levels increased 2-fold 

over the 24 h incubation values from 48.0 CU/ml to 448.0 CU/ml (9.3x) at the MIC and 1322 

CU/ml (27.5x) at 1/64MIC.

The effects on the cell-bound cytotoxic activities were not as marked as shown in Figure 6.7 

(Appendix; Table 6.3.11b). On day 1, there was no increase in cytotoxin production at the MIC 

after incubation for 24 or 48 h. The increase observed at lA MIC was marginal, 1.3x the control 

but this rose gradually to 7.Ox the control at 1/64 MIC after incubation for 24 h. After incubation
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for 48h, there was no increase from the pre-exposure level at the MIC and Vi MIC. However, 

there were gradual increase from 106.6 CU/ml (1.4x) at % MIC to 789.3 CU/ml (10.2x) at 1/64 

MIC.

Following exposure of strain A11A 017 to CTX, there was a massive increase in the cell-free 

cytotoxin (Figure 6.6; Appendix; Table 6.3.11a). Cell-free cytotoxin production increased by

16.5 times at the MIC and 128 times at 1/64 MIC after incubation for 24h with Vero cells. The 

effects were 64-fold more than the control from the MIC to 1/64 MIC after incubation for 48h. 

For cell-bound cytotoxin, the effect of exposure to CTX was considerably less. It was 2.8 and 32 

times the control at the MIC after incubation for 24 and 48 h and 20 and 18 times the control at 

1/64 MIC following incubation for 24 and 48 h.

Cefotaxime failed to induce cell-free or cell-bound cytotoxin in strain K34 097 at the MIC and Vi 

MIC following incubation for both periods, but CTX induced cell-free cytotoxin at 1/4 MIC by 

8-fold and gradually through 1/16 MIC (lOx) to 1/64 MIC (16x) after incubation for 24 and 48h. 

The effect on cell-bound cytotoxin was about the same following incubation at both 24 and 48 h.

With strain 362C 046, CTX induced cell-free cytotoxin at Vi MIC by 8-fold compared to the 

control and the level increased between 1/8-1/16 MIC, dropping gradually at 1/32 MIC; these 

values were higher than the control after incubation with Vero cells for 48h.

Cefotaxime did not induce cell-free cytotoxin from the UK C. difficile strain, ribotype 001 after 

incubation with Vero cells for 24h. However, after incubation for 48 h, the activity levels of 

cell-bound cytotoxin increased 5 times over the control at V2 MIC and by 24-fold at % MIC. 

These values decreased to 12-fold at lower sub-inhibitory MICs.
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CTX did not induce any cell-free or cell-bound cytotoxin in the non-toxigenic strain 175 039 in

the presence or absence o f  CTX.

Figure 6.6. Mean cytotoxic activity (CU/ml) o f cell-free cytotoxin o f C. difficile post exposure 
to cefotaxime by all test strains
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Figure 6.7. Mean cytotoxic activity (CU/ml) o f cell-bound cytotoxin o f C. difficile post exposure 
to cefotaxime by all test strains
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6.3.11 The Mean cytotoxic activity of all strains after exposure to ampicillin

Cell-free cytotoxin activity: The cytotoxic activity of the supernatant of all tested C. difficile 

strains is shown in Figure 6.8 (Appendix; Table 6.3.12a). For strain 233D 078, the induction of 

extracellular cytotoxin after exposure to ampicillin started at the MIC (0.5 pg/ml) where it was 

about 18.5-fold higher than the control. Then the cytotoxic activity increased reaching its highest 

level of 1088 CU/ml and 960 CU/ml between Vi MIC and % MIC; and then declined with 

subsequent sub-inhibitory concentrations.

The induction of cell-free cytotoxin in strain A llA 0 1 7 b y  ampicillin when incubated with Vero 

cells for 24 h was about 2.5-fold increasing to 128-fold higher than the control at % MIC. This 

was the same after incubation for 48 h on Vero cells.

With the cell-free filtered supernatant of strain K34A 097 exposed to various concentrations of 

ampicillin, there was a 2-fold increase at the MIC which increases slightly to 3 X at V-i MIC and

4.5-fold at % MIC. Thereafter, the levels dropped back to 3-fold at 1/8 and 1/16 MIC and then to

1.5-fold at 1/32 MIC.

Ampicillin started to induce a rise in cell-free cytotoxin production by strain 362C 046 at the 

MIC then remained at the same high level (24-32fold higher than the control).

For the UK ribotype 001 strain, ampicillin did not induce cell-free cytotoxin at the MIC value 

but the cytotoxic activity increased by 18-fold at lA MIC and 32-fold for % MIC down to 1/64 

MIC after incubation for 24h. After incubation with Vero cells for 48h the values were the same 

except at MIC when it was 32-fold instead of 18-fold after 24 h.
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F igure 6.8. Mean cytotoxic activity (CU/ml) o f  cell-free cytotoxin o f  C. difficile post exposure
to am picillin  by all test strains
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Cell-bound cytotoxin: The cytotoxic activity o f  the sonicated cell effluents o f all the tested 

strains before and after exposure to ampicillin is shown in Figure 6.9 (Appendix; Table 6 .3 .12b). 

For strain 233D 078, the cytotoxic activity o f the intracellular cytotoxin started to rise at the MIC 

and reached a maximum at 1/8 MIC (15 X the control) then dropped gradually with further 

dilution o f the ampicillin.

There was no apparent change in the cytotoxic activity o f the cell-bound cytotoxin after exposure 

to ampicillin for strain A11A 017, except at 1/4 MIC where the rise was 3-fold higher (800.0 

CU/ml) than the antibiotic free control (256CU/ml).

Ampicillin induced cell-bound cytotoxin production by strain K34A 097 in almost a linear 

fashion and reached a maximum at 1/16 MIC (37-fold higher than the control) after incubation 

with Vero cells for 48 h.
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With strain 362C 046, ampicillin induced cell-bound cytotoxin production maximally at the MIC 

level - 272 (17-fold) and 544 CU/ml (32-fold), after incubation for 24 and 48 h. Thereafter the 

activities decreased sharply to the antibiotic-free levels.

Ampicillin did not induce cell-bound cytotoxin production in the strain o f ribotype 001 at the 

MIC but induced high levels o f cytotoxin, 1024.0 (16-fold) and 1536.0 CU/ml (24-fold), at XA  

MIC, after incubation for 24 and 48 h. The levels then dropped to 4.5-fold at and 1/8 MICs 

and 6 -fold at 1/16 and 1/32 MICs after incubations for 24 and 48h.

Figure 6.9. Mean cytotoxic activity (CU/ml) o f cell-bound cytotoxin o f C. difficile post exposure 

to ampicillin by all test strains
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6.3.12 The Mean cytotoxic activity of all strains after exposure to metronidazole

Cell-free cytotoxin (Figure 6.10 and Appendix; Table 6.3.13a): For strain 233D 078, in the 

presence of metronidazole, the cell-free cytotoxin was greatly increased at the MIC by about 8.8 

-fold, increasing to about 11-fold at % MIC after incubation on Vero cells for 24 h compared to 

the control. But this effect was more apparent after incubation for 48 h.

For the cell-free supernatant of Al 1A 017, there was a 128-fold rise in the cytotoxic activity at V\ 

MIC and it remained at the same level throughout subsequent sub-inhibitory concentrations of 

MZ incubation for 24 and 48 h.

With the cell-free supernatant of K34A 097, there was a 6-fold rise in cytotoxin production 

starting at the MIC with further drop, but above the antibiotic free control.

With the strain 362C 046, there was a rise in the cytotoxic activity of the broth control from 16 

to 80.0 CU/ml at the MIC, reaching a maximum of 256 CU/ml (16-fold) at 1/16 MIC and then 

dropping gradually to 136 and 64 CU/ml at 1/32 and 1/64 MIC, respectively.

Metronidazole induced the production of cell-free extracellular toxin at all concentrations. There 

was hardly any apparent change in the toxin secretion in the supernatant of broth cultures of the 

type 001 isolate after incubation on Vero cells for 24 and 48 h.
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Figure 6.10. Mean cytotoxic activity (CU/ml) o f  cell-free cytotoxin o f  C. difficile and post
exposure to metronidazole by all test strains
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Cell-bound cytotoxin: Figure 6.11 (Appendix; Table 6.3.12b) show the amount o f cell-bound 

cytotoxic unit (CU/ml) produced by various C. difficile strains pre and post-exposure to MZ. For 

strain 233D 078, in the presence o f MZ, the cell-bound cytotoxin was increased at the MIC by 

about 4-fold and this increased greatly to about 23-fold at 1/32 MIC after incubation for 24 h 

compared to the control. But this effect was more apparent after incubation for 48 h from a 19- 

fold increase at the MIC to a 44-fold increase at 1/64 MIC.

For strain Al 1A 017, metronidazole increased the production o f cell-bound cytotoxin production 

at 1/2 MIC by 1.5-fold compared to the control and reached maximum levels at 1/32 and 1/64 

MICs (3-fold) after incubation with Vero cells for 24 h but at 1/8 MIC after incubation for 48 h, 

the level increased to 8.5-fold higher than the control.

With strain 362C 046 and ribotype 001, metronidazole induced cell-bound cytotoxin production 

in a similar manner at all MICs; twice the cytotoxic activities were observed at the MICs of both

125



strains. These increased to 6 -fold at 1/8 and 1/16 MICs after incubation for 24 h for the 362C 

046 strain. For the 001 strain, the maximum activity was 6 -fold at 1/16 MIC after incubation for 

24 h and 8 -fold at the same MIC after incubation for 48h.

Figure 6.11. Mean cytotoxic activity (CU/ml) o f cell-bound cytotoxin o f C. difficile post 
exposure to metronidazole by all test strains.
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6.3.13 The Mean cytotoxic activity of all strains after exposure to vancomycin

Cell-free cytotoxin: Figure 6.12 (Appendix; Table 6.3.14a) shows the amount o f cell-free 

CU/ml produced by all toxigenic o f  C. difficile pre- and post— exposure to vancomycin. Strain 

233D 078, produced cell-free cytotoxin at the MIC 6 -fold higher than the control and this 

increased in a linear way to 17.7-fold at 1/16 MIC after incubation for 24h. After incubation for 

48h, there was greater increase o f 24.3-fold at the MIC and this reached the maximum level o f 

30.6-fold at 1/32 MIC. The cytotoxic activity o f the cell-free filtrate o f  strain A11A 017 was



1040 CU/ml (8-fold) at the MIC increasing to 2048 CU/ml (16-fold) at 1/8, 1/16 and 1/64 MIC 

after incubation for 24h. There was no difference in the level of activity after incubation for 48h. 

With the K34 097 strain, there was an increase of cell-free cytotoxin of 33-fold over the control 

at Vi MIC after incubation for 24h and this dropped to 5-fold at % MIC. After 48 h, the cytotoxic 

activity was the same. Strain 362C 046, produced no cytotoxin at the MIC but produced 768.0 

CU/ml (24-fold) at MIC, increasing to 1024 CU/ml (32-fold) at % to 1/16 MIC after 

incubation for 48h. A similar trend was observed after incubation for 48h. With ribotype 001, 

there was no production of cytotoxin at the MIC but it produced a sub-control level at Vi MIC. 

The level at Y a  MIC was 1536 CU/ml (24-fold rise), increasing to 2048 CU/ml (32-fold rise) 

from 1/8 to 1/64 MIC after incubation 24h. The same levels of activity were observed after 

incubation for 48h.
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Figure 6.12. M ean cytotoxic activity (CU /m l) o f  cell-free cytotoxin o f  C. difficile post exposure

to vancomycin by all test strains
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Cell-bound cytotoxin Figure 6.13 (Appendix; Table 6.3.14b): The mean cell-bound cytotoxin 

levels o f  strain 233D 078 were 282.6 (11.7-fold rise) and 618.6 CU/ml (15.4-fold) after exposure 

to the MIC (0.5pg/ml) o f vancomycin after incubation for 24 and 48h. Thereafter, there was a 

linear increase to 901.3 CU/ml (21.4-fold) at 1/64 MIC after incubation for 24h and 1536.0 

CU/ml (38.3-fold) after incubation for 48h. Strain A11A 017 produced a relatively high level o f  

constitutive cytotoxin in the absence o f antibiotic measuring 128 and 256 CU/ml after incubation 

for 24 and 48 h, respectively. There was no induction o f cell-bound cytotoxin after exposure to 

vancomycin above the control levels after incubation for 24 and 48h.

Vancomycin did not induce the production o f cell-bound cytotoxin in K34A 097 at the MIC 

(lpg/m l) but did at sub-inhibitory concentrations. The level increased to 512 CU/ml (32-fold)
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after exposure to vancomycin at XA MIC (0.5pg/ml) following incubation for 24 h. After 

subsequent exposure to sub-inhibitory concentrations, there was a decrease in the cell-bound 

toxin to 32 CU/ml (2-fold) at 1/8MIC after incubation for 24h and this then increased gradually 

to 48 (3-fold) and 144 CU/ml (9-fold) at 1/16, 1/32 and 1/64 MIC, respectively. The cytotoxic 

activity was enhanced by prolonged incubation in Vero cells for 48 h.

Exposure of strain 362C 046 to vancomycin did not result in induction of appreciable cytotoxin 

production at the level of MIC, Va MIC and 1/64 MIC, as shown in Appendix; Table 6.3.8b after 

24 h incubation. However, it induced the cell-bound cytotoxin at low level of 24 CU/ml 

compared to the control (16U/ml) after 48 h incubation.

Exposure of ribotype 001 strain to vancomycin did not result in the induction of cytotoxin 

production at the MIC (0.5pg/ml). Then there was a relatively high rise in the cytotoxic activity 

to 264 CU/ml (4-fold) at lA MIC after incubation for 24h. Almost the same level of activity was 

observed after incubation for 48h.
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Figure 6.13. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin o f C. difficile post
exposure to vancomycin by all test strains
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6.3.14 The Mean cytotoxic activity of all strains after exposure to clindamycin

Cell-free cytotoxin: Figure 6.14 (Appendix; Table 6.3.15a) show the mean cell-free CU/ml 

produced by the C. difficile strains pre and post-exposure to clindamycin. Clindamycin induced 

cell-free cytotoxin production by strain 233D 078 of 736 CU/ml (12-fold) at the MIC after 

incubation for 24h. The level increased further to 810.6 CU/ml (13-fold), compared to the 

control, at 1/8 and 1/16 MIC then dropped to the original level at 1/64MIC. There was little 

difference with the values obtained after incubation 48h.

The induction of cell-free cytotoxin by strain A11A 017 was highest (16-fold rise) at 1/32 and 

1/64 MIC after incubation for 24h and after 48 h. With the K34A strain 017, there was only a 

slight rise (2-4-fold rise) at the MIC and other sub-inhibitory MICs after incubation for 24h. The 

values after incubation for 48h were 4 - 8  fold increase. Strain 362C 046 produced the highest
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induced cytotoxin, 256 CU/ml (8-fold), at 1/32 MIC after incubation for 24h. After 48 h, the 

highest cytotoxic activities, 264 CU/ml (8-fold rise), were at 1/16 and 1/32 MICs. For ribotype 

001, the cytotoxic activity of the cell-free filtrates was high, 2048 CU/ml (16-fold), from the 

MIC through all the sub-inhibitory concentrations, after incubation for 24 and 48h.

Figure 6.14. Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile post exposure 
to clindamycin by all test strains
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Cell-bound cytotoxin Figure 6.15 ( Appedix; Table 6.3.15b): For strain 233D 078, induction 

of cell-bound cytotoxic activity after exposure to clindamycin at the MIC, was about 17-fold and 

12-fold higher than the control after incubation with Vero cells for 24 and 48 h, respectively. 

Then it increased gradually reaching a maximum of 30-fold and 25-fold rises at 1/64 MIC, after 

incubation for 24 and 48h.
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For strain A11A 017, clindamycin induced cell-bound cytotoxin maximally at the MIC by about 

17-fold and 66-fold higher than the control after incubation for 24 and 48h, respectively. With 

K34A 097, the cytotoxic activities were 272 (17-fold) and 160 (10-fold) CU/ml at the MIC after 

incubation for 24 and 48h, respectively. The highest activities of 288 (18-fold) CU/ml and 320 

(20-fold) CU/ml were observed at 1/16 MIC after incubation for 24 and 48h, respectively.

For strain 362C 046, the maximum activity of 64 CU/ml (4-fold) induction was at 1/8 MIC after 

incubation for 24h. After 48 h, the maximum activity of 96 CU/ml (6-fold) was detected at %, 

1/8 and 1/32 MIC.

Exposure of ribotype 001 to clindamycin induced cell-bound cytotoxin production of 144 CU/ml 

(2-fold) at the MIC, after incubation for 24 and 48h. The maximum activities were 192 CU/ml 

(3-fold) at %, 1/16 MIC and 256 CU/ml (4-fold) at 1/16 MIC, after incubation for 24 and 48h.
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Figure 6.15. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin o f C. difficile post
exposure to clindamycin by all test strains
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Figure 6.16. Uninoculated Vero Cells after 24 hour incubation (magnification X 40)
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Figure 6.17. Cytopathic effect of C. difficile cytotoxin B on Vero Cells demonstrated by 
rounding of the cells after 24 hour incubation (magnification X 40)
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6.4 Comments

Production of CDI is not only enhanced by antibiotics use but also by physiological changes that 

affect the pathogenicity of C. difficile (Lorian and Gemmell, 1994). Previously, Onderdonk et 

al., (1979); Honda et al., (1983) and Drummond et a l, (2003b) reported that certain antibiotics 

enhance synthesis of toxin A and/or cytotoxin B, which are the main virulence factors. 

Onderdonk and colleaques in 1981, compared the effect of clindamycin and its metabolites in a 

hamster model of C. d$?c//e-associated colitis and they did not find any correlation between the 

clindamycin potency and the AACD5o (toxin lethal to 50% of the animals). Other investigators 

described a human gut model of C. difficile infections and they demonstrated that C. difficile 

germinate and produce cytotoxin in response to clindamycin (Freeman et al., 2005), cefotaxime 

with and without its metabolites, desacetylcefotaxime (Freeman et al., 2003), metronidazole 

(Freeman et a l , 2007) and fluoroquinolones such as ciprofloxacin and levofloxacin (Saxton et 

al., 2009). Recently, Baines and his colleagues demonstrate that vancomycin reduced the 

vegetative forms and cytotoxin titres of epidemic strains of C. difficile but did not have any anti

spore activity (Baines et al., 2009). In addition, the same workers showed that vancomycin was 

more effective than metronidazole in reducing C. difficile PCR ribotype 027 numbers and 

cytotoxin titre (Baines et al., 2009). In contrast, germination and cytotoxin production was not 

observed in the human gut model after exposure to piperacillin-tazobactam or tigecycline 

(Baines et al., 2005; Baines et al., 2006).

This study focused on the effects of MIC and sub-inhibitory concentrations of 5 different 

antibiotics, including those used for treatment and those known to predispose to CDI occurrence, 

on the production of cytotoxin B by 6 different strains of C. difficile. The study showed clearly 

that there is a heterogeneous relationship between antibiotic exposure and toxin B production
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intracellularly and extracellularly by the toxigenic strains of C. difficile. The non-toxigenic strain 

from a symptomatic patient with diarrhoea, strain 175, did not produce toxin B inside or outside 

the cell in the absence or presence of any antibiotic. This may be related to the absence of the 

genes that produce the toxin or the absence of other virulence factors.

The results showed that certain strains, when exposed to the MIC and sub-inhibitory 

concentrations of certain antibiotics, are capable of producing high level of cytotoxin compared 

to the antibiotic-free control. This may be due to the stress that an organism experiences in the 

presence of antibiotics. Early reports suggested that the stress may induce extracellular toxin 

production. For example, Onderdonk and colleagues reported that raised temperature leads to 

higher cytotoxin production and toxin production increased in the presence of sub-inhibitory 

concentration of vancomycin and penicillin (Onderdonk et al., 1979). A study by Karlsson and 

colleagues (Karlsson et al., 2003) showed that temperature may act as a controlling factor for the 

expression of toxin A and TcdD. Therefore, toxin production may be enhanced by environmental 

stress. Emmerson et al., showed exposure of C. difficile to environmental stress e.g. heat shock 

and acid shock lead to upregulation of certain genes that allow the vegetative form of C. difficile 

to tolerate this type of environmental stress. In addition, C. difficile is respond to oxidative stress 

by upregulation of electron transporters (Emmerson et al., 2008). The same invistigators found 

that exposure to amoxicillin, clindamycin increased the transcription of ribosomal protein genes 

and altered transcription of genes encoding surface-associated proteins, while minor changes in 

the transcription occurred after exposure to metronidazole (Emmerson et al., 2008).

In this study, strains A11A 017 and 001 were the most responsive to antibiotic induction of 

cytotoxin production. Strain A l l A 0 1 7 i s a n  isolate from an AAD patient and was not a unique 

isolate; indistinguishable isolates were cultured from other patients. Strain 001 is a strain
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associated with CDI outbreaks in the UK. Clindamycin and ampicillin were the most potent 

inducers of cytotoxin in our hands. They provoked an increase in the cell-free as well as the cell- 

bound toxin in all toxigenic strains. Metronidazole and vancomycin were almost at the same 

level as inducers as the former two antibiotics. Surprisingly, cefotaxime induced the least amount 

of cytotoxic activity on all the strains. However, the cytotoxic effect of the cell-free toxin was 

more than the cell-bound toxin, particularly after induction with clindamycin, except with strain 

233D 078 which produced more cell-bound cytotoxin than extracellular toxin on exposure to 

clindamycin, vancomycin and metronidazole.

Vancomycin induced more extracellular than intracellular cytotoxin production in all toxigenic 

isolates except for isolate 233D 078 in which vancomycin induced more intracellular than 

extracellular cytotoxin production. This may indicate that vancomycin increases cytotoxin 

release from within the cell rather than enhances synthesis for C. difficile 233D strain 078.

Metronidazole induced more cell-free than cell-bound cytotoxin for all toxigenic isolates except 

isolates 233D 078 and K34A 097 where cell-bound was greater than the cell-free cytotoxin. 

These 2 isolates were isolated from patients with PMC. However, ampicillin induced more 

cytotoxin extracellularly rather than intracellularly for all toxigenic C. difficile strains. 

Cefotaxime induced more cell-free than cell-bound cytotoxin B from all toxigenic strains except 

C. difficile ribotype 001 and K34A 097where the cell-bound toxin was more than the cell-free 

toxin.

There does not appear to be any correlation between the severity of the symptoms and the level 

of cytotoxin produced in Vero cell line. For example, cefotaxime induced more cytotoxic effect 

in Vero cells from Al 1A 017 which caused only AAD in contrast to strain K34A 097 that was
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associated with PMC. Moreover, ampicillin induced more cytotoxic effect on Vero cells by 

strain A11A 017 isolated from a patient with diarrhoea (AAD) than strain 362C 046 isolated 

from a patient with colitis (AAC) and strain 233D 078 isolated from a PMC case. This suggests 

that the quantity of the cytotoxin produced is not enough to explain the gut pathology caused by 

the different strains of C. difficile.

The results showed that there is a general relationship between antibiotics and toxin production 

by C. difficile. All isolates showed increase in cytotoxin production after exposure to antibiotics 

but there is no consistent pattern and the response to different doses varied considerably. 

Antibiotics that are used for treatment and those that precipitate the disease have different effects 

on different C. difficile isolates, therefore the relationship may be complex. The effects of sub- 

inhibitory concentration of antibiotic that predispose to CDI development may suppress the 

normal gut flora partially and allow colonization and growth of C. difficile and may affect the 

level of toxin produced.

139



CHAPTER 7

ANALYSIS OF PREVALENCE, RISK FACTORS, AND MOLECULAR 
EPIDEMIOLOGY OF CDI IN KUWAIT

7.1 Introduction

The rate of community-acquired CDI may be underestimated if patients with atypical risk factors 

and no history of recent healthcare admission are not tested for C. difficile toxin. The previous 

study reported in chapter 2 suggests that CDI is the most common cause of hospital-acquired 

diarrhoea amongst patients admitted to our hospital ICUs although no outbreak has so far been 

reported in Kuwait. The findings in that study led us to believe that CDI may be under-reported 

in Kuwait hospitals in general. With that in mind the present second study was designed to 

investigate the prevalence, epidemiology and risk factors of CDI in our hospitals.

7.2 Materials and Methods

7.2.1 Patients

Stool specimens from all hospitalised patients and patients seen as outpatients with diarrhoea 

were requested to be sent to the Anaerobe Reference laboratory, Faculty of Medicine, Kuwait 

University from all the government hospitals in Kuwait. This was approved by the local ethics 

committee. The Reference Laboratory normally receives all stool samples from inpatients and 

outpatients in all Kuwait hospitals requesting for investigation of C. difficile and its toxins. Data 

were collected over a 3-year period, from January 2003 to December 2005. Inpatients with C.
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difficile toxin A/B positive were evaluated for development of CDI, healthcare-related 

acquisition and molecular analysis. Data for each in-patient were collected from the patients’ 

medical records regarding date of admission, duration of hospital stay, the date of onset of 

diarrhoea, antibiotic used 2 months prior to onset of disease, use of nasogastric tube, 

immunosuppressive therapy, recent surgical intervention, antibiotic used for treatment of the 

CDI, white blood cell count, temperature, renal function test (i.e. urea and creatinine), diagnosis 

with the underlying disease, type of CDI and the outcome.

7.2.2 Control patients

Control group data were collected for assessing the risk factors. The control group consisted of 

patients from whom diarrhoeal faecal samples were examined for C. difficile toxin A/B but who 

were negative for C. difficile toxin. They were matched to cases by age (with stratified groups of 

2-20, 21-40, 41-60, 61-70, 71-80 and >81 years), gender and date (within 2 months of the case 

becoming symptomatic).

7.2.3 Case definition

C. J/$?c//e-associated diarrhoea was defined as: (i) a minimum of 6 loose bowel motions in 36 h, 

(ii) a positive stool culture and/or cytotoxin assay for C. difficile and/or endoscopic evidence of 

PMC, and (iii) no other explanation for the presence of the diarrhoea (Samore et al., 1994a).
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7.2.4 Detection of C. difficile infection

Stool samples were investigated for C. difficile infection following Figure 2.2, section 2.4 and 

section 2.2

7.2.5 PCR ribotyping

The PCR ribotyping of all the isolates was done (section 2.5). All the isolates from these cases 

were included in this typing exercise to determine the ribotypes responsible for CDI and to 

estimate the prevalence of ribotype 027.

7.2.6 Statistical analysis

Fisher’s exact test was used to test proportion between cases and controls for the respective 

variables. The probability level of <0.05 was considered as significant.

7.3 Results

7.3.1 Prevalence of nosocomial CDI

A total of 697 patients with diarrhoea were investigated over a period of 3 years as follows: 175 

in 2003, 218 in 2004 and 304 in 2005. Of these 73 (10.47%) met the diagnosis of CDI. Out of 

these 73, 56 (76.7%) were hospital-acquired and 17 (23.3%) were from outpatient clinics (either 

from outpatient clinics in the hospitals or clinics run by the general practitioners). Thus, the
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prevalence of hospital-acquired CDI was 8.03% over the study period. The prevalence of 

hospital-acquired CDI in 2003, 2004 and 2005 were, 17/175 (9.7%), 17/218 (7.8%) and 22/304 

(7.2%), respectively. Patient’s demographic data are shown in Table 7.1. Over half (55.4%) of 

hospital acquired CDI were male and less than half (44.6%) were females. Around 59% of the 

patients were Kuwaiti and over 41% were non-Kuwaitis. About one-quarter (23.2%) of the 

patients were the aged 41-60 years, another 23.2% were 71-80 years and one-fifth (19.6%) were 

aged 21-40 years and only 9% were where those aged 61-70 years. Only 14.2% of the patients 

were between the ages of 2-20 years. Those above the age of 81 years accounted for only 10.7% 

of the total patients. Analysis of the patients from the clinics with CDI revealed that 41.1% were 

between the age of 21-40 years and 35.3% between 41-60years. A total of 78.5%, 17.8% and 

3.5% patients developed AAD, AAC and PMC, respectively.

7.3.2 Length of hospital stay

Only the 56 in-patients and 56 controls were included in the subsequent analysis. As 

demonstrated in Table 7.2, for the health-care associated CDI, the median duration in the 

hospital wards was 26 days (range between 5-135 days). Almost one-quarter (23.2%) of the 

cases stayed in the hospital for 20-29 days, about one-fifth (21.4%) for 10-19 days and 17.8% for 

30-39 days. Only 3.5% of the patients stayed for more than 90 days. However, for the controls, 

the median number of days spent in the hospital was 18 days (range 5-99 days). Nearly one-third 

(28.5%) of the controls stayed in the hospital for 10-19 days, about one-quarter (26.7%) stayed 

between 4-10 days and 16% between 20-29days. Only 3.5% of the controls stayed for more than 

90 days. There was no statistically significant difference between the total duration of the stay in 

the hospital and the development of CDI between the patients and the controls.
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Table 7.1. Demographic data for patients with CDI over 3 year period

Hospital acquired 

(56 patients)

Community acquired 

(17 patients)

Sex

Female 25 (44.6%) 8 (47.1%)

Male 31 (55.35%) 9 (52.9%)

Nationality

K 33 (58.9%) 12 (70.6%)

NK 23 (41.1%) 5 (29.4%)

Age

2-20years 8 (14.2%) 1 (5.8%)

21-40years 11 (19.6%) 7(41.1%)

41-60years 13 (23.2%) 6 (35.3%)

61-70years 5 (9%) 1 (5.8%)

71-80years 13 (23.2%) 1 (5.8%)

>80years 6(10.7%) 1 (5.8%)

K: Kuwaiti; NK: non-Kuwaiti
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7.3.3 Time to acquisition

As demonstrated in Table 7.2, patients with CDI stayed in the hospital between 4 and 129 days 

with median of 10 days before the onset of the disease. Half of the patients with CDI stayed in 

the hospital for less than 10 days, one third (32.1%) stayed between 10-19 days and only 5.3% of 

the patients stayed between 20-29 days. Only 2 patients (3.5%) stayed for 119 and 129 days 

before the onset of the disease. One patient (1.7%) in each of the following categories stayed 

between 40-49 days, 50-59 days and 60-89 days. However for the controls, they stayed in the 

hospital for 4-90 days with a median of 12 days before the onset of the diarrhoea. About one- 

third (33.9%) of the controls developed diarrhoea between 4-10 days after being admitted to the 

hospital and another one-third (32.1%) after 10-19 days. Fourteen percent of the controls stayed 

for 20-29 days before the onset of the diarrhoea and another 14% stayed for 30-49 days. Only 

two of the control patients stayed for more than 90 days. There was no statistical difference 

between the duration of the stay in the hospital before the onset of the disease and the 

development of CDI.
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Table 7.2. Risk factors for patients with CDI regarding hospital stay and time of presentation

N o  (% ) o f  patients  

(n =  5 6 )

N o  (% ) o f  controls  

(n =  5 6 )

/*-va lue

Duration o f  hospita l stay  
(days)

< 1 0 8 (1 4 .2 ) 15 (2 6 .7 ) 0 .1 6 0

10-19 1 2 (2 1 .2 ) 16 (2 8 .5 ) 0 .5 1 3

2 0 -2 9 13 (2 3 .2 ) 9 ( 1 6 ) 0 .4 7 6

3 0 -3 9 1 0 (1 7 .8 ) 7 ( 1 2 .5 ) 0 .5 9 9

4 0 -4 9 6 (1 0 .7 ) 3 (5 .3 ) 0 .4 8 9

5 0 -5 9 2 (3 .5 ) 3 (5 .3 ) 1.000

6 0 -8 9 3 (5 .3 ) 1 (1 .7 ) 0 .6 1 8

> 9 0 2 (3 .5 ) 2 (3 .5 ) 1 .382

D ays after in itial 
presentation

< 1 0  days 28  (5 0 ) 19 (3 3 .9 ) 0 .1 2 5

10-19  days 1 8 (3 2 .1 ) 1 8 (3 2 .1 ) 1 .1 6 0

2 0 -2 9  days 3 (5 .3 ) 8 (1 4 .2 ) 0 .2 0 3

3 0 -3 9  days 2 ( 3 .5 ) 4 ( 7 .1 ) 0 .6 7 9

4 0 -4 9  days 1 ( 1 .7 ) 4 ( 7 .1 ) 0 .3 6 4

5 0 -5 9  days 1 (1 .7 ) 0 ( 0 ) 1.000

6 0 -8 9  days 1 (1 .7 ) 1 (1 .7 ) 1 .505

> 9 0  days 2 ( 3 .5 ) 2 (3 .5 ) 1 .3 8 2

7.3.4 Predisposing Factors

As demonstrated in Table 7.3, patients with CDI were significantly more likely than the control 

to have been exposed to immunosuppressive drugs (28.5% patients vs. 10.7% controls, P =

0.031) and parenteral feeding via naso-gastric tube (26.7% for the patients vs. 8.9% for the
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controls, P<0.05). Although over one-third (30.3%) of the patients had major surgery within 2 

months of the onset of the disease compared with 16% of the controls, the difference was 

statistically non-significant.

A statistically significant difference was observed between patients who had fever of >38°C 

compared with the controls; 51.7% vs 30.3%, respectively (P = 0.034). Only one patient and non 

of the controls had leucopenia with WBC < lx l9/L. The majority of the patients (60.7%) had 

raised WBC of between 10-19.9 x l09/L compared to 35.7% of the controls (P=0.014). 

Comparatively, 11 (19.6%) of the patients vs 34 (60.7%) of the controls had normal WBC 

CP<0.05). Two (3.5%) patients had marked leucocytosis of >30xl09/L.

Analysis of the renal function tests did not reveal any statistically significant difference between 

the patients and controls.
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Table7.3. Risk factors for the clinical presentation of patients with CDI

Risk factor No. (%) of patients No. (%) of control P-value

Use of NGT 15 (26.7) 5 (8.9) 0.025

Surgery in previous 2 months 17(30.3) 9(16) 0.116

Immunosuppression 16(28.5) 6 (10.7) 0.031

Fever >38°C 29 (51.7) 17(30.3) 0.034

WBC count

<1 xl09/l* 1 (1.7) 0(0) 1.000

<9.9 xl09/l 11 (19.6) 34 (60.7) 0.001

10-19.9 xl09/l 34 (60.7) 20 (35.7) 0.014

20-29.9 xl09/l 8 (12.5) 2(3.6) 0.094

>30x109/l 2(3.6) 0(0) 0.494

RFT

Normal 38 (67.9) 46 (82.1) 0.126

Abnormal (f ) 18(32.1) 10(17.9) 0.126

NGT, nasogastric tube; WBC, white blood cells; RFT, renal function test; aplastic anaemia*

7.3.5 Outcome of the disease

Table 7.4 shows the impacts of CDI on the patients. Seven (12.5%) out of 56 patients died 

compared to 5 (8.9%) of controls without CDI. There was no significant difference between 

patients and controls regarding survival or death. The number of survivals were higher in the in

patients group than the controls, but the difference was statistically not significant (100% vs. 

91.7%, respectively; P  = 0.546). Exposure to specific antimicrobial therapy was significantly 

more prevalent in the in-patients with CDI than the control patients (73.2% vs. 35.9; P  = 0.001). 

Patients and controls were treated with one of the following antimicrobial regimens:
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metronidazole alone, vancomycin alone, both metronidazole and vancomycin, both 

metronidazole and ciprofloxacin or no antimicrobial treatment. Over half of CDI patients were 

treated with metronidazole alone compared to only one-fifth of the controls (53.5% vs 21.4%, 

P<0.001). Only four (7.1%) patients were treated with vancomycin alone and seven (12.5%) 

were treated with both metronidazole and vancomycin. None of the patients were treated with 

both metronidazole and ciprofloxacin compared to 8 (14.2%) controls. None of the control group 

received vancomycin with or without metronidazole. One-fifth (20%) of the patients who 

received metronidazole alone died compared to two (16.7%) controls. Only one patient (14.2%) 

died after being treated with both metronidazole and vancomycin. However, none of the patients 

who received vancomycin alone or no treatment died.
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Table 7.4. The outcome and treatment of CDI and controls

No (%) of patients No (%) controls P-value

Outcome

Survive 49 (87.5) 51 (91) 0.761

Death 7 (12.5) 5 (8.9)

Treatment

Metronidazole 30 (53.5) 12(21.4) 0.001

Survival 24 (80) 10(83.3) 1.000

Death 6(20) 2 (16.7)

Vancomycin 4(7.1) 0(0) 0.118

Survival 4 (100) NA

Death 0(0) NA

Metronidazole followed by 7 (12.5) 0 0.013
vancomycin

Survival 6 (85.7) NA

Death 1 (14.2) NA

No therapy 15 (26.8) 36(64.1) 0.001

Survival 15 (100) 33 (91.7) 0.546

Death 0(0) 3 (8.3)

Ciprofloxacin and metronidazole 0(0) 8 (14.2) 0.006

Survival 0(0) 8 (100) -

Death 0(0) 0(0)
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7.3.6 Prior therapy with antibiotic

A total of 53 (95%) of the 56 patients with CDI received antimicrobial therapy 2 months prior to 

the onset of the disease compared to 49 (87.5%) of the 56 controls. As shown in Table 7.5, the 

third-generation (ceftriaxone, cefotaxime or ceftazidime) and fourth-generation (cefepime) 

cephalosporins were the commonest antimicrobial agent received by both the patients and 

controls. They were used alone (73% vs 42%) or in combination with amikacin (5.4% vs 8.9%) 

for the patients and the controls. Although it appears that cephalosporins usage was the most 

common previous therapy, the difference did not reach a statistically significant level when 

compared with the controls (P = 0.112). The second most common antibiotic administered was 

clindamycin which was used for 10 (17.8%) of the patients followed by ciprofloxacin (14.3%) 

and meropenem (14.3%). Five (8.9%) patients had used metronidazole prior to the onset of the 

disease but none of them used vancomycin. In contrast to the patients, the second common 

antibiotics used by the controls after third-generation cephalosporins were cefuroxime (21.4%) 

and piperacillin/tazobactam (21.4%).
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Table 7.5. Antibiotics used 2 months prior to onset of disease

No. (%) of patients 

(n=56)

No. (%) of controls 

(n=56)

Cloxacillin 6 (10.7) 4(7.1)

Amoxicillin-clavulanic acid 2(3.6) 0(0)

Amikacin + cefotaxime 3 (5.4) 5 (8.9)

Cefuroxime 5 (8.9) 12(21.4)

3rd, 4th generation cephalosporin 41 (73.2) 24 (42.9)

Metronidazole 5(8.9) 7 (12.5)

Erythromycin 5 (8.9) 9(16.1)

Ciprofloxacin 8 (14.3) 5 (8.9)

Meropenem 8 (14.3) 4(7.1)

Piperacillin/tazobactam 4(7.1) 12(21.4)

Clindamycin 10(17.9) 7 (12.5)

Vancomycin 0(0) 3 (5.4)

No antibiotics 3 (5.4) 7(12.5)

7.3.7 Underlying morbidity

The underlying diseases in the patients and controls are presented in Table 7.6. The main 

underlying diseases in the patients were cerebro-vascular accidents and ischemic heart diseases, 

diabetes mellitus and pneumonia recorded in 24 (42.9%), 15 (26.8%) and 12 (21.4%), 

respectively compared to 19 (33.9%), 5 (8.9%) and 9 (16.1%) of the controls, respectively.
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Twice as many of the patients compared with the controls had septicaemia (4, 7.1% vs 2, 3.6%) 

and malignancy was found exclusively in 3 (5.4%) of the patients. Because of the small number 

these figures were not subjected to statistical analysis.
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Table 7.6. Underlying morbidity in patients and control

Patients

(n=56)

Controls

(n=56)

Pneumonia 12 9

Cerebro-vascular accidents and ischemic heart disease 24 19

Road traffic accidents 3 7

Septicaemia 4 2

Pancreatitis 2 2

SLE 3 2

Renal failure 5 4

Diabetes mellitus 15 5

Urinary tract infection 2 1

Peripheral vascular disease 0 4

Chronic obstructive airway disease 3 4

Inflammatory bowel disease 3 2

Solid organ tumour 1 3

Kidney transplant 0 1

Diabetic ketoacidosis 1 2

Liver cirrhosis 3 3

Short bowel syndrome 1 0

Septic arthritis 1 0

Myasthenia gravis 1 0

Aplastic anaemia 1 0

Underlying malignancy 3 0

SLE, systemic lupus erythematosus
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7.3.8 Severity of the disease

Table 7.7 shows the mortality rate of all patients with CDI. Of the 56 patients with the diagnosis 

of CDI, 7 (12.5%) had severe form of the disease according to the study case definition of severe 

disease. Three (5.4%) of our patients developed CDI while in ICU for the initial management of 

their medical conditions. The ages of the seven patients were 44, 56, 64, 71, 75, 76 and 79 years 

with a median of 71 years. The severe disease was more frequent among those who were above 

70 years where the mortality rate reached 30.7%.

Table 7.7. Deaths of inpatients with laboratory confirmed CDI, 2003-2005

Age group, Total no of patients No. of death % of deaths within age group

<50 years 25 1 4

51-60 years 7 1 14.2

61-70 years 5 1 20

71-80 years 13 4 30.7

81-90 years 6 0 0

Total 56 7 12.5
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Table 7.8, shows the variables associated with mild and severe CDI. The median age of all 

patients with CDI was 53 years. Patients with severe CDI were older than those with mild 

disease (71 vs 51 years). More than half (57%) of the patients with severe CDI were above the 

age of 70 years while only about one third (30.6%) of patients with mild disease were above the 

age of 70 years. The ratio of male to female patients with and without severe disease is almost 

the same (1.3 vs. 1.2). Previous surgery within 2 months before the onset of the disease did not 

differ between patients with or without severe disease. However, more patients with severe 

disease used nasogastric tube feeding compared to the patients with mild or non-severe disease 

(57% vs. 22.4%). More patients with severe disease had WBC > 20,000/pl compared to those 

with mild disease (42.9% vs. 10.2%). There is not much difference between patients with or 

without disease regarding the underlying medical illness or malignancy.
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Table 7.8. Analysis of the results of 56 patients with and without severe disease

Variable Severe CDI (No = 7) Non severe CDI (No = 49)

Age (median) 71 50:52

Age >70years 4 (57%) 15 (30.6%)

Male: Female ratio 4:3 27:22

Immunosuppresion 0 16 (32.7%)

NGT feeding 4 (57%) 11 (22.4%)

Previous surgery 2 (28.6%) 15(30.6%)

WBC>20,000/pl 3 (42.9%) 5 (10.0%)

CVA 4 (57%) 20 (40.8%)

DM 3 (42.9%) 15 (30.6%)

Pulmonary disease 1 (14.2%) 11 (22.4%)

Renal disease 1 (14.2%) 4 (8.2%)

Underlying cancer 0 4 (8.2%)

NGT, naso-gastric tube; WBC, white blood cells; CVA, cerebro-vascular accident; DM, diabetes 

mellitus

7.3.9 PCR ribotypes

The distribution of the PCR-ribotypes of the clinical isolates of C. difficile in this second phase 

prevalence and epidemiological study is outlined in Table 7.9 and Figure 7.1. Although there are 

56 patients with CDI from whom C. difficile toxin A/B were demonstrated in the stool samples, 

only 38 (67.9%) C. difficile strains were isolated. These 38 isolates were subjected to PCR 

ribotyping. As shown in Table 32, 16 distinct genotypically different DNA ribotypes were 

established among the 38 clinical isolates. Two new ribotypes were added to the library,
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ribotypes 195 (toxigenic) and 196 (non-toxigenic). Of these 38 isolates, ribotypes 002 (toxigenic; 

18.4%), 001 (toxigenic; 15.7%), 126 (toxigenic; 10.5%) and 140 (non-toxigenic; 10.5%) were 

the four most common distinct clones. The remaining 17 isolates belonged to diverse ribotypes 

which are 003 (3, 7.8%), 014 (2, 5.3%), 057 (2, 5.3%), 195 (2, 5.3%), 005 (1, 2.6%), 029 (1, 

2.6%), 056 (1, 2.6%), 083 (1, 2.6%), 107 (1, 2.6%), 159 (1, 2.6%), 177 (1, 2.6%) and 196 (1, 

2.6%). The PCR ribotypes for those patients with severe disease were the following: 196 (non- 

toxigenic, new type), 083, 056, 126, 001 and 002 while the strain from the last patient with 

severe disease did not grow. The two patients with PMC were infected with ribotypes 056 and

001. No PCR-ribotype 027, 017 or 078 were encountered in this series.
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Table 7.9. Distribution of C. difficile PCR ribotypes between 2003-2005.

PCR ribotype Toxin A/B Total no. (%) of strains (n = 38)

001 +/+ 6 (15.7)

002 +/+ 7 (18.4)

003 +/+ 3 (7.9)

005 +/+ 1 (2.6)

014 +/+ 2(5.3)

029 +/+ 1 (2.6)

056 +/+ 1 (2.6)

057 +/+ 2(5.3)

083 +/+ 1 (2-6)

107 +/+ 1 (2.6)

126 +/+ 4 (10.5)

140 -/- 4 (10.5)

159 +/+ 1 (2.6)

177 +/+ 1 (2.6)

195* +/+ 2(5.3)

196* -/- 1 (2.6)

*New PCR-ribotypes added to the existing library in Cardiff, Wales, UK
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 7.1. PCR ribotype profiles of Clostridium difficile isolated in Kuwait from 2003 to 2005. 
Lanes 1,7,13,19 = lOObp; Lane 2 = 057; Lane 3 = 083; Lane 4 = 140; Lane 5 = 002; Lane 6 =

002; Lane 8 = 126; Lane 9 = 195; Lane 10 = 003; Lane 11 = 140; Lane 12 = 001; Lane 14 = 002;

Lane 15 = 107; Lane 16 = 001; Lane 17 = 029; Lane 18 =NCTC 11209 (type 001)

160



7.4 Comments

CDI is not a reportable disease in Kuwait and infection rates as well as disease epidemiology are 

not clear except perhaps in the intensive care units where documented case have been reported 

previously (Rotimi et al., 2002). The present study extended the previous ICU experience and 

assessed the prevalence and epidemiology of all hospital-acquired CDI over a 3-year period. In 

this study, the data suggest that the prevalence of CDI decreased from year to year with an 

overall prevalence of 8.03% which is lower than was reported earlier in a specific hospital setting 

in Kuwait (Rotimi et al., 2002). The low prevalence of the disease in Kuwait may be related to 

lack of awareness on the part of the clinicians concerning the clinical diagnosis of the disease. 

Another reason may be due to the use of a less sensitive toxin immunoassay in the Reference 

Laboratory instead of the tissue culture cytotoxin assays which is more laborious and time- 

consuming. In addition to lack of awareness on the part of our clinicians, the low prevalence may 

also be related to good antibiotic control policy that is in place in Kuwait hospitals as well as the 

limited use of the new fluoroquinolones, e.g. gatifloxacin which has been associated with 

outbreaks of CDI (Gaynes et al., 2004). It is conceivable that the strict infection control guideline 

requiring the use of soap and water as the primary means of hand hygiene in Kuwait hospitals 

may have helped to limit the spread of infection as soap is more effective in removing the spores 

than alcohol-based hand rub (WHO, 2007).

That the overall low prevalence of CDI in Kuwait is now a documented evidence that the disease 

is not yet a big problem here, particularly when compared with the prevalence rates in the 

Western countries such as the UK (Durai, 2007; HPA 2009), USA (McDonald et al., 2006), 

Canada (Loo et al., 2005) and Israel (Samra et al., 2002). In Canada, the incidence of CDI was

22.5 per 1000 admissions during 2004 (Loo et al., 2005). Indeed recent data from these countries
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have demonstrated high incidence of CDI of 100-450/10,000 admissions among hospitalised 

patients. This has been associated with the emergence of infections due to the hypervirulent 

strain of ribotype 027/NAP1 (McDonald et al., 2005; Pepin et al., 2005; Loo et al., 2005; 

Kuijper et al., 2008). So far no such strain has been isolated in Kuwait. Even compared with 

some developing countries, like Peru, our prevalence rate is much lower than the reported 

prevalence of 35.5% (Garcia et al., 2007). However, the only one report to emerge from the 

Middle East also demonstrates equally low prevalence rate such as the rate 9.7% in Jordan 

(Shehabi et al., 2001).

It is well known that C. difficile infection can occur in the community as well as hospital (Wilcox 

et al., 2008) as it is widely disseminated in the environment and has been isolated from the soil, 

water and faeces of many wild and domestic animals (Brazier, 1998). This current study revealed 

that 17 (23.3%) positive stool samples for C. difficile toxin A/B were from patients attending the 

clinics. This is a very high rate and an interesting finding as there has been no data about the 

incidence or prevalence of community-acquired CDI from Kuwait. It is therefore an important 

observation worthy of a follow-up study. This is buttressed by a recent report from the UK that 

estimated the prevalence of C. difficile cytotoxin positivity in urban and semi-urban areas in the 

community as 2.1% (Wilcox et al., 2008). Another report from the Centers for Disease Control 

and Prevention estimated that the minimum annual incidence of community-acquired CDI in 

Philadelphia area between July 2004 and June 2005 was 7.6 cases /100,000 populations (CDC, 

2005). Price and colleagues recently reported the incidence of CDI within 48 hour of admission 

to the hospital as 4.0 cases /10,000 patient-days as compared to 7.0 cases /10,000 patient days for 

nosocomial CDI (Price et al., 2007). All these reports suggest a low level of CDI in the 

community and so whether Kuwait’s situation is a paradox remains to be investigated.
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As previously pointed out by Asha et al., 2006, age of 70 years and above is an important risk 

factor for CDI. Our data showed that 42.9% of the CDI patients were above 60 years out of 

which over 79% were aged 71 years and above. Overall, 33.9% of patients with CDI were above 

the age of 71 but finding 23.2% in a relative younger age group of 41-60 years group was 

surprisingly high. Although concordant with the findings of McDonald et a l 2006, who reported 

a rate several fold higher in persons above the age of 65 (228/100,000) with the next highest rate 

in the 45-65 year olds 40/100,000), the rate in the latter group was much lower than the present 

study. The possible reasons that may explain the association between age and CDI are the 

increased exposure to health care facilities, the use of antimicrobial agents and reduced stomach 

acidity due to possible use of H2 blockers or proton pump inhibitors which are associated risk 

factors for CDI (Asha et al., 2006). Eight (14.2%) of our patients were children between the age 

of 2-20 years. Finding CDI in this very young age is supported by a previous report published by 

Benson et al. (2007) which reported a much higher proportion of children with CDI above the 

age of 2 years.

The association between the length of hospital stay (>7 days) and CDI development has been 

described repeatedly (Asha et al., 2006; Garcia et al., 2007; Manian et al., 2007). However, 

prolonged hospital stay, as found in this study, was not necessarily a significant risk factor as the 

median number of days spent in the hospital before the onset of the disease was 10 days versus 

12 days for the control. This is also buttressed by the fact that 50% of the patients developed CDI 

within 4-10 days of admission to the hospital, thereby nullifying the notion of prolonged hospital 

stay as a significant risk factor, at least not in Kuwait.

Several other risk factors have been described previously, such as naso-gastric tube feeding, 

immuno-suppression, surgery within 2 months of the onset of the disease, antacid, proton pump
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inhibitors and antibiotic therapy. In this study, nasogastric tube feeding and immunosuppressive 

drugs were statistically significant risk factors. This is in accord with previous reports 

(McFarland, 1995; Halim et a l, 1997). It is postulated that tube feedings may help nosocomial 

transmission of C. difficile spores in the hands of healthcare providers. Unlike other studies 

(McFarland, 1995; Halim et a l, 1997), recent operations and length of hospital stay were not 

statistically significant risk factor in this study.

Exposure to antimicrobial agents is also considered as an important precipitant factor for CDI. 

Broad spectrum cephalosporins and clindamycin are considered to be high risk antibiotics and 

the main drivers of CDI (Freeman and Wilcox, 1999). Recent data (Freeman et al., 2003) 

suggested that the broad-spectrum cephalosporins may stimulate the production of toxin by C. 

difficile. Experiment described in chapter 4 of this study seems to support this assertion. Seventy 

three percent of our patients had history of exposure to third or fourth-generation cephalosporin 

compared to only 42.9% of the controls, a finding that was statistically not significant (P=0.112). 

This is in contrast to the findings of Loo et al., (2005) and Asha et al. (2006). However, our data 

is similar to the report by Weiss et al. (2007), who did not find any correlation between the 

quantity of cephalosporin consumption and the magnitude of CDI outbreak development. 

Clindamycin was the second most common antibiotic used among our patients. However, there 

was also no statistically significant difference between patients and controls which is similar to 

the findings by Loo et al. (2005). But contrasting to a report by Weiss et al. (2007), there was no 

association between CDI cases and clindamycin consumption. The newer fluoroquinolones, e.g. 

gatifloxacin which has been associated with increased risk of CDI (Loo et al., 2005; Gaynes et 

al., 2004), is not available in Kuwait although consumption of older ones such as ciprofloxacin 

and norfloxacin is relatively high (Eggleston et al., in press). However, only 8 patients used
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ciprofloxacin which was not of statistical significance compared with the control. 

Aminoglycoside, e.g. amikacin, was used by only three CDI patients. It is therefore not 

considered as a trigger antibiotic for CDI because anaerobes are intrinsically resistant to it and it 

does not disrupt the normal anaerobic flora. Piperacillin/tazobactam is the second most 

commonly used antibiotic (21.4%) by the control patients but used by only 7.1% of our patients.

It is interesting to note that all of the fifteen patients with CDI who did not receive proper 

antimicrobial therapy for their illness survived and 6 out of 30 patients who received 

metronidazole died. This may reflect the severity of the illness i.e. those who died had severe 

illness that necessitate initiation of metronidazole while those who had mild illness did not 

require antimicrobial therapy. In addition, those who died had other co-morbidities that increased 

the risk of death. Recent report had questioned the efficacy of metronidazole to treat CDI which 

may be related to its poor pharmacological profile or resistance to metronidazole (Musher et al., 

2005, Baines et al., 2008). The latter speculation is out of the question as all our C. difficile were 

susceptible to metronidazole as will be discussed in chapter 6.

The PCR ribotypes of the C. difficile isolates of the second part of the study differ from those 

that were isolated previously (Rotimi et al., 2003). Between 2001-2002, ribotypes 097,039 and 

078 were the most common ribotypes isolated from CDI patients. However, the most common 

ribotype isolated between 2003-2005 were type 002 followed by type 001. Although type 001 

was the second commonest PCR-ribotype during the 2003-2005 study, it was isolated only from 

one environmental sample in the 2001-2002 study of the CDI acquired in the ICUs. PCR- 

ribotype 027 was not isolated during 2003-2005 study and this may partially explain the mild 

illness from CDI seen in Kuwaiti hospitals and absence of major outbreaks among the hospitals. 

Different PCR-ribotypes (196, 083, 056, 126, 001 and 002) were associated with severe disease
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among our patients with severe CDI. These finding suggests that the clinician in Kuwait may be 

able to link the risk of severe outcome with clinical data e.g. age, nasogatric tube feeding and 

WBC without individual genotyping.

Although nearly half (44.6%) of our patients were less than 50 years of age, they had the least 

number of death rate (4%). This may be related to better immune system than elderly patients. 

As expected advanced age was associated with higher death rate (30.7%) than the younger 

patients. Death due to severe CDI in our patients was more among those above 71 years, a 

finding which is similar to those of other studies (Loo et al., 2005; Henrich et al., 2009). We did 

not find any association between immunosuppression or underlying malignancy with severity of 

the disease similar to the findings of Henrich et al., (2009). Patients with severe disease were 

more likely to have been exposed to nasogastric tube feeding than the controls, a finding similar 

to that of Henrich et al., (2009) and Loo et al., (2005). Laboratory markers e.g. raised leucocytes 

counts above 20,000/pl and increased creatinine level have been correlated with poor outcome 

for patients with CDI. Our study showed that raised leucocytes count but not creatinine level was 

associated with the severity of the disease.

In conclusion, CDI appears to occur at a relatively low level in hospitals in Kuwait and the 

prevalence of CDI in patients attending outpatient clinics is even much lower although a 

conclusion like this is not well supported by the methodology used in the study. The prevalence 

in hospitals is decreasing as demonstrated by trend over 3 year period. PCR-ribotypes 002 and 

001 are the predominant ribotypes circulating in Kuwait right now. Type 027 has not reach 

Kuwait yet. Advanced age and use of enteral feeding as well as raised leucocyte count is 

associated with severe outcome of CDI in Kuwait. The physicians need to maintain high index of 

suspicion for CDI in Kuwait and there is a need for continuous surveillance to better understand
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the changing epidemiology of CDI. Therefore, more educational programmes should be directed 

to all physicians concerning the role of C. difficile as an important enteric pathogen especially in 

hospitalised patients.
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CHAPTER 8

GENERAL DISCUSSION

C. difficile is the most important cause of health-care associated infectious diarrhoea and prior 

antibiotic exposure is regarded as the most important risk factor for the development of diarrhoea 

(Barbut et al., 1996). Some patients may remain without symptoms after exposure to the 

organism, while others may have diarrhoea ranging from mild diarrhoea to colitis to fulminant 

PMC. The illness may become severe requiring colectomy, intensive care unit admission or lead 

to death. C. difficile may be transmitted directly or indirectly as its spores may survive for long 

periods of time and can resist environmental challenges, detergents and some disinfectants.

The data generated from this study have shown that C. difficile is the most common cause of 

hospital-acquired diarrhoea in Kuwait in the study carried out in 2001-2002 and the evidence 

from this study showed that it causes sporadic infections rather than major outbreaks in our 

hospital ICU setting. The overall prevalence of health-care acquisition of C. difficile amongst 

patients admitted to the four ICUs during this period was 10.3%. This overall acquisition rate 

may appear to be low but a breakdown of the rate into different hospital prevalence reveals that 

individual rates may be higher that those from similar settings elsewhere. For example, the 

acquisition rate was lowest in the bum unit (ICU-2) with only 6.5% of patients being colonised 

but this rate is much higher than the 1% rate reported by Still et al. (2002) in a similar setting. 

Similarly, the highest acquisition rate of 18.2% obtained in the haematology wards (ICU-3) of 

KCCC was higher than the 15% reported earlier by Wroblewska et al., (2005).
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In general hospital-acquired C. difficile infection in the ICUs occurred in only 30 (31.6%) out of 

95 patients and the remaining 65 patients were asymptomatic carriers. This goes to show that in 

special units, like the ICUs, of a hospital these asymptomatic patients may act as the reservoir for 

the dissemination of the organism. During the 2001-2002 study, the majority of the 30 

symptomatic patients (93%) were caused by toxin A/toxin B-positive strains with the exception 

of one patient in Amiri hospital with toxin A-negative/toxin B-positive strain (ribotype 017); The 

remaining 2 symptomatic patients were infected by toxin-negative C. difficile isolates. Finding a 

toxin A-/toxin B+ isolate at the time was interesting as several outbreaks of infection due to toxin 

A-/toxin B+ strains have been reported in Canada and Poland (Al-Barrak et al., 1999; Kuijper et 

al., 2008). This strain seems to have disappeared as no such strain was isolated in the most recent 

study that looked at the general prevalence of CDI in a hospital-wide study across the country 

(see chapter 7).

The majority of literature evidence indicates that the major risk factors for CDI are antibiotic 

exposure, advanced age and hospitalisation. In the four ICUs (1-4) studied, the median ages were 

51, 1.5, 31 and 59 years, respectively. This finding reveals a much lower age of acquisition of 

infection than the ones that have been reported by other investigators (McFarland et al., 1990; 

Loo et al., 2005) which shows that the average age of acquisition of CDI in Kuwait is below the 

average elsewhere. This may be explained by the lower average age of patients usually admitted 

to the ICUs of our hospitals. In the same study, the majority of the patients with early and late 

acquisition of C. difficile were exposed to the cephalosporins and few patients were exposed to 

metronidazole and meropenem. This finding is supported by reports from other countries which 

have shown that cephalosporins, clindamycin and fluoroquinolones are important risk factors for 

the development of CDI (Bartlett, 1994; Gerding et al., 1995; Bignardi, 1998; Loo et al., 2005).
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The environment is said to play an important part in the maintenance and transmission of the 

organism in the hospital setting. Although the environment of the ICUs was contaminated with 

C. difficile, there was little epidemiological link to the development of CDI as is revealed by 

PCR-ribotyping study described in chapter 4. Another important source of transmission 

investigated in this study was the hands of health care workers in the ICUs. Unlike other 

investigators who isolated C. difficile from the hands of their health care workers (McFarland et 

al., 1989), C. difficile was not isolated from the hands of any of our staff members in the 4 ICUs.

It would appear that the PCR ribotypes of the C. difficile circulating in Kuwait and associated 

with CDI are not stable. During 2001-2002, 95 culture-positive patients had 32 different PCR 

ribotypes. The main ones were ribotype 097, which account for 27% of the isolates, and ribotype 

078 which account for 13% of all the isolates. But during the 2003-2005 study, 38 culture- 

positive isolates had 16 different PCR ribotypes. The commonest ribotypes described during this 

period were ribotypes 002 (18.4%) and 001 (15.7%) followed by 126 and 140. There were no 

097 or 078. The explanation for this change is not clear. During the first part of the study, 

ribotype 001 was detected from only one sample from the environment of ICU-4 in Amiri 

hospital whereas during the second part, it was the second most common riboytpe among the 

patients. Similarly, type 002 was isolated from only 2 patients (2.1%) in the previous study but 

became the predominant type during the second part of the study. This finding tends to compare 

with the situation in Europe although at a lower level. For instance, in UK, 55% of the infections 

in hospitals were due to ribotype 001 (Stubbs et al., 1999) in the earlier years but recently the 

situation has changed. For example, between April 2007- February 2008, the commonest 

ribotypes in England were 027 (42%), 106 (19%) and 001 accounting for only 10% (Kuijper et 

al., 2008). Also, in Scotland, in 2006, the commonest PCR ribotype was type 106 (55%)
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followed by 001 at a distant 21%. However, ribotype 001 seems to still maintain its edge in 

Northern Ireland, where, during a survey between September and December 2006, it remains the 

commonest ribotypes (35%) followed by 106 (11.6%) and 078 (8.3%). Ribotype 027 has also 

surfaced in Northern Ireland (Kuijper et al., 2008).

During the initial part of the study, ribotype 078 which was the second most common toxigenic 

strain isolated from the CDI patients, was not isolated from any of the 38 culture-positive 

patients during the 2003-2005 study. PCR ribotype 078 has emerged recently in Scotland and it 

accounts for 6.3% of Belgium isolates (Kuijper et al., 2008). The most frequently isolated PCR 

ribotypes in The Netherlands are ribotypes 027, 014, 001 and 078 (Goorhuis et al., 2007; 

Goorhuis et al., 2008) while the most frequent PCR ribotype in Poland is type 017 which 

accounts for 45% of their tested isolates (Pituch et al., 2006).

In the experiment on the induction of C. difficile cytotoxin production by MIC and sub-inhibitory 

concentrations of antibiotics, it was clear that there is a heterogeneous relationship between 

antibiotic exposure and intra- and extra-cellular toxin production by the toxigenic strains. Certain 

strains of C. difficile when exposed to MIC and sub-inhibitory concentrations of certain 

antibiotics are able to produce high level of cytotoxin. In this experiment, ampicillin and 

clindamycin were the most potent inducers of cytotoxin production followed by metronidazole 

and vancomycin. Surprisingly, cefotaxime induced the least amount of the cytotoxin activity. 

Thus, suggesting that the quantity of the cytotoxin produced is not enough to explain the gut 

pathology caused by the different strains of C. difficile. This may be due to the stress that an 

organism experiences in the presence of antibiotics. Early reports suggested that the stress may 

induce extracellular toxin production. As an example, Onderdonk et al. (1979) showed in their 

study that raised temperature lead to increased cytotoxin production and toxin production
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increased in the presence of sub-inhibitory concentration of vancomycin and penicillin which 

essentially agrees with the findings of the present study. Therefore, toxin production may be 

enhanced by environmental stress as well as by exposure to antibiotics. The results of the 

experiment also showed that there is no uniform relationship between antibiotics and toxin 

production by C. difficile as antibiotics that are used for treatment and those that precipitate the 

disease may have different effects on different C. difficile isolates, therefore suggesting that the 

relationship may be complex. It can be speculated that the effects of sub-inhibitory concentration 

of antibiotic that predispose to CDI development may suppress the normal gut flora partially and 

allow colonisation and growth of C. difficile.

In the study of the susceptibility of the C. difficile strains it was shown that all the isolates were 

uniformly susceptible to ampicillin, amoxicillin-clavulanic acid, linezolid, metronidazole 

piperacillin-tazobactam, vancomycin and teicoplanin. In this study, metronidazole and 

vancomycin remained highly active in vitro. Although 4 and 2 clinical isolates had raised MIC to 

vancomycin (2-3pg/ml) and teicoplanin (2pg/ml), all of them were inhibited by concentrations 

that did not exceed 3 and 2 jag/ml, respectively, i.e. they were within the susceptible range. Other 

findings similar to this have been reported by Drummond et al. (2003a) and Mutlu et al. (2007). 

However, in vitro activity does not necessarily correlate with the in vivo activity or the 

therapeutic outcome for the patients. For example, during treatment of severely sick patients with 

CDI, metronidazole was associated with higher failure rate compared to vancomycin (Musher et 

al., 2005) and that there was a poor response to metronidazole if the antibiotic for the initial 

condition has to be continued (Modena et al., 2006).

In this study, there was no isolation of C. difficile resistant to linezolid unlike in Israel where 2% 

of the isolates are resistant to linezolid (Bishara et al., 2006). It must be emphasised that despite
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the excellent in vitro activity, experience with the use of linezolid therapy in CDI is limited and 

more trials are needed to make any of such recommendation especially as there is report of 

treatment failure with intravenous linezolid in the therapy of patients with CDI (Lazzarini and De 

Lalla, 2003). This drug has also been known to contribute to the development of C. difficile 

colitis with fatal outcome (Zabel and Worm, 2005).

A very important highlight of this study is the discrepancy observed between imipenem and 

meropenem susceptibility in the two phases. A large proportion of the isolates were resistant to 

imipenem and sparing meropenem, particularly in the first phase study. The rise in meropenem 

resistance from 4.8% to 21.4% in the first and the second part of the study respectively is also 

worthy of note. As both drugs are carbapenems with identical mode of action and spectrum of 

activity it is not clear at this time what the mechanism of resistance might be. While meropenem 

resistance has not been detected among C. difficile isolates, imipenem resistance has been 

reported (John and Brazier, 2005; Bougault et al., 2006) which is in support of the findings 

reported in the thesis.

The rate of resistance to clindamycin by the local Kuwait isolates is exceedingly high (48%), 

much higher than the previously reported 14.7% resistance rate in Canada by Bourgault et al., 

(2006). The unrestricted use of clindamycin in the country may eventually lead to selection of C. 

difficile and overgrowth in the gut and it is predicted that more cases of CDI will follow. 

Another note-worthy finding was marked increase in the isolation of penicillin-resistant strains in 

the 2003-2005 study which was 16.6% compared to 2.4% in 2001-2002. This may be due, in 

part, to that fact that a relatively fewer number of isolates were tested in the latter study.
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During the period 2003-2005, the overall prevalence of hospital-acquired CDI was low (8%) 

which is much lower than that reported in other countries like UK (Durai, 2007), Canada (Loo et 

al., 2005) and USA (McDonald et al., 2006). Our hospitals are noted for good infection control 

practices and strict adherence to published policies. This may probably be a plausible 

explanation for this low prevalence of CDI. On the other hand, it may be that cases are been 

under diagnosed because of the use of a less sensitive technique for the diagnosis of CDI such as 

ELISA for toxin A and toxin B (TechLab Tox A/B) that is the only available tool in the 

Anaerobe Reference Laboratory. Although this assay has a specificity of 98%, its sensitivity of 

78% is rather too low compared to the cell cytotoxicity assay (O’Connor et al., 2001).

As expected in a general hospital, CDI is often associated with advanced age. About one-third of 

our patients in the second part of the study were above the age of 71 years and one-quarter 

between 41-60 years. This is essentially similar to the findings of Loo et al., (2005) and Henrich 

et al., (2009). Exposure to entral feeding via nasogastric tube and immunosuppressive 

medication, like chemotherapy or steroids, was significantly associated with CDI in our study 

which contrasts the report of Loo et al., (2005) who did not demonstrate a significant association 

between these risk factors and CDI. However, these findings in the present study are concordant 

with previous reports (McFarland, 1995; Halim et al., 1997). Patients with severe disease are 

more likely to have been exposed to nasogastric tube feeding than the controls, a finding similar 

to that of Loo et al., (2005) and Henrich et al., (2009). It is conceivable that entral feeding via the 

tube may help nosocomial transmission of C. difficile spores that are present in the hands of 

healthcare providers during care of the patient. Unlike other studies (McFarland, 1995; Halim et 

al., 1997), recent operations and length of hospital stay were not statistically significant risk 

factor in this study. About two-thirds of our patients with CDI had leucocyte counts between
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10,000-19,000 x 109/L compared to the controls. Laboratory markers, such as raised leucocyte 

counts (leucocytosis) above 20,000/pl and increased creatinine level have been correlated with 

poor outcome for patients with CDI. Our study showed that raised leucocyte count but not 

creatinine level was significantly associated with the severity of the disease.

In conclusion, C. difficile is acquired in our hospital ICUs by over one out of 10 patients and the 

prevalence of CDI in Kuwait is at a relatively low level. Cases of CDI was also seen among 

patients attending the outpatient clinics although with a much lower prevalence rate than it is in 

the hospital setting. It is suggested that the use of less sensitive methodology for detecting C. 

difficile toxin, lack of awareness on the part of the physicians, restrictive use of fluoroquinolones 

(only ciprofloxacin is readily available in Kuwait) and adherence to infection control guidelines 

and policies may be responsible for the relatively low prevalence rate. The prevalence in 

hospitals is decreasing as demonstrated by trend over 3 year period. The previous predominant 

PCR-ribotypes, 097 and 078 in the earlier study, have been replaced by 002 and 001 as the 

predominant ribotypes now present in Kuwait. It is reassuring that ribotype 027 has not yet 

reached Kuwait. Advanced age and use of entral feeding as well as raised leucocyte count, are 

associated with severe outcome of CDI in Kuwait. C. difficile strains from Kuwait appear to be 

uniquely resistant to imipenem with a high resistance rate to clindamycin. Strains implicated in 

aetiology of CDI are capable of inducing extra- and intra-cellular cytotoxin production after 

exposure to sub-inhibitory concentrations of certain antibiotics. To keep the prevalence of CDI at 

acceptable low level, the physicians must maintain high index of suspicion for CDI in Kuwait 

and there is a need for continuous surveillance to better understand the changing epidemiology of 

CDI. Educational programmes should be directed to all physicians concerning the role of C. 

difficile as an important enteric pathogen especially in hospitalised patients.
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Appendix

Table 5.3.1. Susceptibility of 95 clinical isolates of C. difficile against 16 antibiotics

Antibiotic 

(breakpoint, jig/ml)

Minimum inhibitory concentration (MIC) in pg/ml

MIC50 m ic 90 Range % resistant

Amox/clav (8 ) 0.125 0.38 0.016-0.75 0

Ampicillin (8 ) 0.25 1.5 0.016-4 0

Cefotaxime (32) >256 >256 24->256 92.7

Cefoxitin (32) >256 >256 0.25-256 97.5

Cefiiroxime (32) >256 >256 256-256 1 0 0

Clindamycin (4) 4 >256 0.016->256 48.4

Imipenem (8 ) >32 >32 0.064->32 91.4

Linezolid (4) 2 . 0 2 . 0 0.5-4.0 0

Meropenem (8 ) 0.5 1.5 0.012-32 4.8

Metronidazole (8 ) 0.047 0.19 0.016-0.94 0

Penicillin (4) 0.75 1.5 0.006-32 2.4

Piperacillin (32) 1 4 0.016-256 1 .2

Pip/taz (64) 2 4 0.016-16 0

Teicoplanin (2) 0.125 0.25 0.047-2 0

Trovafloxacin (4) 2 4 0.5-64 2.4

Vancomycin (4) 0.5 0.75 0.125-3 0

Amox/clav= amoxicillin-clavulanic acid; Pip/taz = piperacillin-tazobactam.
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Table 5.3.2. Susceptibility of 18 environmental isolates of C. difficile to 16 antibiotics

Antibiotic 

(breakpoint, jug/ml)

Minimum inhibitory concentration (MIC) in pg/ml

MIC50 m ic 90 Range % resistant

Amox/clav (8 ) 0.25 0.38 0.064-0.5 0

Ampicillin (8 ) 0.75 1.5 0.19-2 0

Cefotaxime (32) >256 >256 24->256 83.3

Cefoxitin (32) >256 >256 256->256 1 0 0

Cefuroxime (32) >256 >256 256->256 1 0 0

Clindamycin (4) 4 >256 1.5-256 38.8

Imipenem (8 ) >32 >32 3->32 94.4

Linezolid (4) 0.5 2 . 0 0.01-4.0 0

Meropenem (8 ) 1 >32 0.094-32 50

Metronidazole (8 ) 0.094 0.19 0.023-.38 0

Penicillin (4) 0.75 1.5 0.25-3 0

Piperacillin (32) 1 2 0.125-256 5.5

Pip/taz (64) 3 4 0.032-8 0

Teicoplanin (2) 0.125 0.19 0.094-0.38 0

Trovafloxacin (4) 4 4 1-4 0

Vancomycin (4) 0.5 0.75 0.125-0.75 0

Amox/clav = amoxicillin-clavulanic acid; Pip/taz = piperacillin-tazobactam.
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Table 5.3.3. Susceptibility of 38 clinical isolates of C. difficile collected in 2003-2005

Antibiotic 

(breakpoint, pg/ml)

Minimum inhibitory concentration (MIC) in pg/ml

MIC50 m ic90 Range % resistant

Amox/clav (8 ) 0.38 0.75 0.094-1.5 0

Ampicillin (8 ) 0.75 1.5 0.19-2.0 0

Cefotaxime (32) 96 >256 24->256 1 0 0

Cefoxitin (32) >256 >256 0.25->256 97

Cefuroxime (32) >256 >256 256->256 1 0 0

Clindamycin (4) 4 >256 0.16->256 48

Imipenem (8 ) 32 >32 0.064->3 8 6 . 8

Linezolid (4) 0.5 2 . 0 0.125-4.0 0

Meropenem (8 ) 0.5 4.0 0.003-16 21.4

Metronidazole (8 ) 0.19 1 . 0 0.016-2.0 0

Penicillin (4) 0.5 1.5 0.016-12 16.6

Piperacillin (32) 3 6 0.25-24 11.9

Pip/taz (64) 3 6 0.016-24 0

Teicoplanin (2) 0.125 0.25 0.032-2.0 0

Trovafloxacin (4) 0.5 4 0.25-32 7.9

Vancomycin (4) 0.5 0.75 0.15-3.0 0

Amox/clav = amoxicillin-clavulanic acid; Pip/taz = piperacillin-tazobactam.
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Table 6.3.1a. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to cefotaxime after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 64 128 128 32

MIC* 32 32 32 32 32 2048

1/2MIC 32 32 32 32 128 2048

1/4MIC 64 32 32 32 512 2048

1/8MIC 64 32 256 256 2048 2048

1/16MIC 128 128 256 256 2048 2048

1/32MIC 128 128 512 512 2048 2048

1/64MIC 32 128 1024 1024 2048 2048

*MIC = >256pg/ml

Table 6.3.1b. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to cefotaxime after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 32 64 128 32

MIC* 128 128 128 128 128 2048

1/2MIC 128 128 128 128 256 2048

1/4MIC 128 256 512 256 2048 2048

1/8MIC 128 512 512 512 2048 2048

1/16MIC 256 512 512 512 2048 2048

1/32MIC 256 512 1024 1024 2048 2048

1/64MIC 256 512 1024 1024 2048 2048

*MIC = >256pg/ml
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Table 6.3.2a. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to cefotaxime after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 64 64 64 64

MIC* 0 0 0 0 0 0

1/2MIC 0 0 0 64 256 64

1/4MIC 0 0 0 64 256 32

1/8MIC 0 16 256 256 256 32

1/16MIC 128 32 256 256 512 64

1/32MIC 128 32 512 512 512 32

1/64MIC 256 64 512 512 512 256

*MIC = >256pg/ml

Table 6.3.2b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to cefotaxime after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 64 64 128 128 64

MIC* 0 0 0 0 0 0

1/2MIC 0 0 0 64 256 128

1/4MIC 0 0 0 64 512 64

1/8MIC 0 32 512 512 256 128

1/16MIC 512 512 512 512 512 256

1/32MIC 512 512 1024 512 512 128

1/64MIC 1024 1024 1024 512 512 128

*MIC = >256pg/ml
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Table 6.3.3a. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to ampicillin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 32 64 64 64

MIC* 256 128 128 128 2048 2048

1/2MIC 128 128 128 512 2048 2048

1/4MIC 128 128 128 2048 2048 2048

1/8MIC 128 512 512 512 2048 2048

1/16MIC 128 256 512 512 2048 2048

1/32MIC 128 256 256 512 2048 2048

1/64MIC 64 256 512 512 2048 2048

*MIC = 0.5|ng/ml

Table 6.3.3b. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to ampicillin after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 64 64 64 64

MIC* 512 128 256 256 2048 2048

1/2MIC 256 256 1024 1024 2048 2048

1/4MIC 256 512 512 2048 2048 2048

1/8MIC 256 512 1024 512 2048 2048

1/16MIC 256 512 1024 512 2048 2048

1/32MIC 256 512 512 512 2048 2048

1/64MIC 128 256 512 512 2048 2048

*MIC = 0.5pg/ml
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Table 6.3.4a. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to ampicillin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 32 64 64 128

MIC* 32 32 512 1024 256 128

1/2MIC 16 32 512 1024 1024 512

1/4MIC 16 32 1024 1024 128 128

1/8MIC 16 32 1024 1024 128 128

1/16MIC 16 32 1024 1024 128 128

1/32MIC 32 32 512 1024 64 64

1/64MIC 0 32 512 512 64 64

♦MIC = 0.5pg/ml

Table 6.3.4b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to ampicillin after 48 h incubation in Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 32 64 64 128

MIC* 128 128 2048 2048 512 512

1/2MIC 64 64 1024 2048 512 512

1/4MIC 32 32 1024 2048 512 512

1/8MIC 16 32 2048 2048 512 512

1/16MIC 16 32 2048 2048 256 256

1/32MIC 16 32 2048 2048 128 256

1/64MIC 16 64 2048 2048 128 128

*MIC = 0.5pg/ml
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Table 6.3.5a. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to metronidazole after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 64 64 64 128

MIC* 0 0 256 256 256 2048

1/2MIC 32 32 128 256 2048 2048

1/4MIC 32 32 128 512 2048 1024

1/8MIC 32 64 128 512 2048 1024

1/16MIC 64 64 64 512 2048 1024

1/32MIC 64 64 64 512 2048 1024

1/64MIC 32 32 64 512 2048 1024

*MIC = 0.25|ig/ml

Table 6.3.5b. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to metronidazole after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 32 64 64 128

MIC* 16 32 256 256 256 2048

1/2MIC 32 64 128 256 2048 2048

1/4MIC 32 64 256 512 2048 2048

1/8MIC 64 256 256 1024 2048 2048

1/16MIC 64 128 128 1024 2048 1024

1/32MIC 64 64 128 512 2048 2048

1/64MIC 32 32 128 512 2048 2048

*MIC = 0.25pg/ml
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Table 6.3.6a. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to metronidazole after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 64 128 64 64

MIC* 2 512 128 512 256 256

1/2MIC 1024 512 512 512 256 256

1/4MIC 1024 1024 1024 512 512 512

1/8MIC 1024 1024 1024 1024 512 512

1/16MIC 2048 1024 1024 1024 512 512

1/32MIC 2048 1024 2048 2048 512 512

1/64MIC 2048 1024 1024 1024 1024 512

*MIC = 0.25pg/ml

Table 6.3.6b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to metronidazole after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 32 64 64 64

MIC* 2048 1024 1024 256 256 256

1/2MIC 2048 1024 1024 512 256 256

1/4MIC 2048 2048 1024 512 256 512

1/8MIC 2048 2048 512 512 1024 1024

1/16MIC 2048 2048 2048 2048 1024 1024

1/32MIC 2048 2048 2048 2048 1024 1024

1/64MIC 2048 2048 2048 2048 1024 1024

*MIC = 0.25pg/ml
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Table 6.3.7a. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to vancomycin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 64 64 64 64 32

MIC* 0 128 128 1024 512 0

1/2MIC 128 256 512 1024 512 16

1/4MIC 128 128 512 2048 1024 16

1/8MIC 128 128 512 2048 1024 16

1/16MIC 64 128 1024 2048 2048 16

1/32MIC 32 256 1024 1024 1024 1024

1/64MIC 32 256 1024 1024 1024 1024

*MIC = 0.5pg/ml

Table 6.3.7b. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to vancomycin after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 32 32 64 64 32 32

MIC* 0 1024 1024 2048 2048 0

1/2MIC 256 512 1024 2048 2048 64

1/4MIC 256 256 2048 2048 2048 32

1/8MIC 256 512 2048 2048 2048 32

1/16MIC 128 256 2048 2048 2048 32

1/32MIC 64 512 2048 2048 2048 1024

1/64MIC 64 256 2048 2048 2048 1024

*MIC = 0.5pg/ml
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Table 6.3.8a. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to vancomycin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 16 64 64 64 32

MIC* 512 512 512 128 32 0

1/2MIC 1024 1024 512 128 128 64

1/4MIC 1024 1024 1024 128 128 64

1/8MIC 1024 1024 1024 128 128 64

1/16MIC 1024 1024 1024 128 128 64

1/32MIC 1024 1024 1024 128 128 64

1/64MIC 2048 2048 1024 128 128 32

*MIC = 0.5pg/ml

Table 6.3.8b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to vancomycin after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 64 64 32 32

MIC* 1024 1024 1024 512 128 0

1/2MIC 1024 1024 1024 256 256 128

1/4MIC 2048 2048 2048 512 512 128

1/8MIC 2048 2048 2048 1024 1024 1024

1/16MIC 2048 2048 2048 256 256 128

1/32MIC 2048 2048 2048 256 256 128

1/64MIC 2048 2048 2048 1024 1024 64

*MIC = 0.5pg/ml
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Table 6.3.9a. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to clindamycin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 32 32 32 64 64 128

MIC* 0 64 128 128 2048 2048

1/2MIC 64 64 64 512 2048 2048

1/4MIC 64 128 128 512 1024 2048

1/8MIC 0 128 128 512 2048 2048

1/16MIC 0 128 128 512 2048 2048

1/32MIC 0 32 32 256 1024 2048

1/64MIC 0 32 32 256 2048 2048

♦MIC = 8.0pg/ml

Table 6.3.9b. Cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to clindamycin after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 32 32 32 64 128 128

MIC* 0 128 128 128 2048 2048

1/2MIC 64 128 128 512 2048 2048

1/4MIC 64 128 128 512 2048 2048

1/8MIC 0 128 128 512 2048 2048

1/16MIC 0 128 128 512 2048 2048

1/32MIC 0 32 64 512 2048 2048

1/64MIC 0 32 128 256 2048 2048

*MIC = 6.0pg/ml
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Table 6.3.10a. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D
(ribotype 078) pre- and post- exposure to clindamycin after 24 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 16 32 32 64 32 32

MIC* 0 1024 1024 1024 512 64

1/2MIC 1024 1024 1024 1024 512 256

1/4MIC 1024 1024 1024 2048 256 256

1/8MIC 128 1024 2048 2048 512 256

1/16MIC 128 1024 2048 2048 1024 256

1/32MIC 0 0 2048 2048 1024 256

1/64MIC 0 1024 2048 2048 1024 256

*MIC = 8.0pg/ml

Table 6.3.10b. Cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile strain 233D 
(ribotype 078) pre- and post- exposure to clindamycin after 48 h incubation on Vero cell line

Day 1 Day 2 Day 3 Day 4 Day 5 Day 7

Control 32 64 64 64 64 32

MIC* 0 2048 1024 1024 1024 256

1/2MIC 2048 2048 2048 2048 1024 256

1/4MIC 2048 2048 2048 2048 512 512

1/8MIC 2048 2048 2048 2048 1024 512

1/16MIC 256 2048 2048 2048 1024 512

1/32MIC 256 2048 2048 2048 1028 512

1/64MIC 2048 2048 2048 2048 2048 512

*MIC = 6.0pg/ml
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Table 6.3.11a. Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile pre- and
post exposure to cefotaxime by all test strains

MIC & Cytotoxic activity (CU/ml) of strains

sub-

inhibitory 078 017 097 046 0 0 1

MICs
24h 48h 24h 48h 24h 48h 24h 48h 24h 48h

Control 6 6 . 6 48.0 16.0 32.0 16.0 32.0 16.0 16.0 64.0 64.0

>256 368.0 448.0 264.0 2048.0 0 0 0 0 1 . 2 1 . 2

128 384.0 469.3 2048.0 2048.0 0 0 128.0 128.0 16.0 16.0

64 453.3 832.0 2048.0 2048.0 128.0 128.0 320.1 560.4 76.8 76.8

32 784.0 960.0 2048.0 2048.0 128.0 266.3 384.3 760.3 38.4 38.4

16 810.6 981.3 2048.0 2048.0 160.3 290.4 384.3 760.3 51.2 51.2

8 896.0 1152.0 2048.0 2048.0 272.4 290.4 384.3 640.3 38.4 51.2

4 1050.6 1322.0 2048.0 2048.0 256.1 256.0 256.0 380.4 38.4 38.4
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Table 6.3.11b. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile pre- and
post exposure to cefotaxime by all test strains

MIC & 

sub-

Cytotoxic activity (CU/ml) of strains

inhibitory

MICs
24h

078

48h 24h

017

48h

097 

24h 48h

046 

24h 48h

001 

24h 48h

Control 50.6 77.3 16.0 32.0 16.0 32.0 16.0 16.0 64.0 64.0

>256 0 0 182.3 1024.0 0 0 0 0 24.0 32.0

128 64.0 74.6 576.1 1536.3 0 0 256.0 512.0 320.0 320.0

64 117.3 106.6 192.3 768.2 384.2 512.0 128.0 128.3 1536.1 1536.1

32 136.0 240.0 544.0 1152.1 28.0 320.0 64.0 64.0 768.1 768.1

16 208.6 469.3 272.3 576.3 96.0 232.3 24.0 48.4 1024.0 1024.0

8 288.0 704.0 272.3 528.2 64.4 128.1 64.0 96.0 768.3 1024.0

4 352.0 789.3 320.0 576.0 24.0 48.0 64.0 64.0 768.3 768.3
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Table 6.3.12a. Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile pre- and
post exposure to ampicillin by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control

A

42.6 48.0 16.0 32.0 32.0 32.0 32.0 32.0 64.0 64.0

4

2 - - - - - - - 32.0 32.0

1 - - 40.0 48.0 64.0 128.0 320.0 560.0 1152.0 2048.0

0.5 789.3 874.0 1036.0 1040.0 96.0 256.0 1536.0 1024.0 2048.0 2048.0

0.25 1088.0 1109.3 2048.0 2048.0 144.0 384.0 512.0 760.0 2048.0 2048.0

0.125 960.0 1237.3 2048.0 2048.0 96.0 256.0 768.0 1024.0 2048.0 2048.0

0.06 960.0 1066.6 2048.0 2048.0 96.0 192.0 768.0 1024.0 2048.0 2048.0

0.03 917.0 1066.6 2048.0 2048.0 48.0 160.0 768.0 1024.0 2048.0 2048.0

0.015 289.5 981.3 2048.0 2048.0 48.0 160.0 768.0 1024.0 - -

0.007 197.3 917.3 - - - - - - -

, not tested at the corresponding MIC
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Table 6.3.12b. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile pre- and
post exposure to ampicillin by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control

A

56.0 56.0 256.0 512.0 16.0 16.0 16.0 16.0 64.0 64.0

4

2 - - - - - - - - 0 0

1 - - 0 0 48.0 32.0 272.0 544.0 1024.0 1536.0

0.5 330.6 896.0 256.0 256.0 32.0 96.0 32.0 48.0 288.0 244.0

0.25 520.0 704.0 800.2 276.0 48.0 80.0 16.0 16.0 288.0 320.0

0.125 392.0 693.0 48.0 80.0 80.0 160.0 8.0 16.0 384.0 768.0

0.06 392.0 861.3 64.0 160.0 80.0 600.0 24.0 24.0 384.0 256.0

0.03 392.0 776.0 32.0 40.0 144.0 288.0 32.0 32.0 48.0 48.0

0.015 288.0 754.6 64.0 160.0 80.0 160.0 0 8.0 - -

0.007 200.0 738.6 - - - - - - - -

, not tested at the corresponding MIC
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Table 6.3.13a. Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile pre- and
post exposure to metronidazole by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control 53.0 45.3 16.0 16.0 16.0 32.0 16.0 16.0 32.0 64.0

0.5 - - - - - - - - 256.0 2048.0

0.25 469.3 477.3 0 8.0 - - 80.0 80.0 2048.0 2048.0

0.125 757.3 784.0 8.0 24.0 96.0 160.0 48.0 80.0 2048.0 2048.0

0.06 629.3 826.6 2048.0 2048.0 80.0 96.0 144.0 144.0 2048.0 2048.0

0.03 634.6 949.3 2048.0 2048.0 80.0 288.0 136.0 136.0 2048.0 2048.0

0.015 629.3 903.6 2048.0 2048.0 64.0 128.0 256.0 516.0 2048.0 2048.0

0.007 629.3 810.0 128.0 2048.0 72.0 144.0 136.0 264.0 2048.0 2048.0

0.0035 618.6 800.0 2048.0 2048.0 80.0 144.0 64.0 256.0 - -

0.0017 - - - - 64.0 128.0 - - - -

- , not tested at the corresponding MIC
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Table 6.3.13b. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile pre- and
post exposure to metronidazole by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control 58.0 42.6 64.0 128.0 16.0 16.0 16.0 16.0 128.0 128.0

0.5 - - - - - - - - 256.0 512.0

0.25 277.3 810.0 0 0 - - 32.0 64.0 320.0 640.0

0.125 512.0 753.3 16.0 16.0 192.0 384.0 32.0 32.0 256.0 384.0

0.06 768.0 1066.6 40.0 96.0 160.0 160.0 128.0 192.0 160.0 320.0

0.03 853.0 1194.6 160.0 1088.0 160.0 192.0 96.0 160.0 768.0 1024.0

0.015 1024.0 1706.6 96.0 320.0 96.0 320.0 96.0 128.0 256.0 256.0

0.007 1365.3 1706.6 192.0 512.0 128.0 384.0 64.0 128.0 288.0 284.0

0.0035 1109.3 1877.3 192.0 640.0 128.0 192.0 48.0 48.0 - -

0.0017 - - - - 64.0 96.0 - - - -

, not tested at the corresponding MIC
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Table 6.3.14a. Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile pre- and
post exposure to vancomycin by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control 50.0 42.1 128.0 256.0 32.0 32.0 32.0 32.0 64.0 128.0

2 - - - - - - - - 0 0

1 - - 48.0 48.0 16.0 64.0 - - 16.0 16.0

0.5 298.6 1024.0 1040.0 1056.0 1056.0 1088.0 0 0 1536.0 1536.0

0.25 408.0 992.0 1536.0 2048.0 160.0 320.0 768.0 760.0 2048.0 2048.0

0.125 642.0 1114.6 2048.0 2048.0 64.0 128.0 1024.0 1024.0 2048.0 2048.0

0.06 642.0 1157.3 2048.0 2048.0 80.0 160.0 1024.0 1024.0 2048.0 2048.0

0.03 888.0 1093.3 1536.0 2048.0 1040.0 1056.0 1024.0 1024.0 2048.0 2048.0

0.015 730.0 1290.6 2048.0 2048.0 1032.0 1000.0 768.0 1024.0 - -

0.007 730.5 1248.0 - - - - 512.0 1024.0 - -

- , not tested at the corresponding MIC
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Table 6.3.14b. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile pre- and
post exposure to vancomycin by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control 42.0 42.1 128.0 258.0 16.0 16.0 16.0 16.0 64.0 128.0

2 - - - - - - - - 0 0

1 - - 0 0 0 0 - - 264.0 272.0

0.5 282.6 618.6 0 8.0 512.0 1024.0 0 0 256.0 384.0

0.25 480.0 618.6 48.0 160.0 48.0 144.0 16.0 16.0 192.0 384.0

0.125 565.3 1216.0 32.0 160.0 32.0 96.0 8.0 8.0 96.0 96.0

0.06 565.3 1536.3 62.0 192.0 48.0 48.0 16.0 24.0 256.0 256.0

0.03 565.3 1130.6 62.0 192.0 48.0 86.0 16.0 24.0 256.0 256.0

0.015 565.3 1130.6 96.0 192.0 144.0 288.0 16.0 24.0 - -

0.007 901.3 1536.0 - - - - 8.0 8.0 - -

Not tested at the corresponding MIC
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Table 6.3.14a Mean cytotoxic activity (CU/ml) of cell-free cytotoxin of C. difficile pre- and post
exposure to clindamycin by all test strains

MIC & sub-

inhibitory

MICs
078 

24h 48h

Cytotoxic activity (CU/ml) of strains

017 097 046 

24h 48h 24h 48h 24h 48h

001 

24h 48h

Control 58.6 69.3 128.0 258.0 32.0 32.0 32.0 32.0 128.0 128.0

256 - - 1088.8 1152.0 64.0 128.0 64.0 136.0 - -

128 - - 1536.0 2048.0 64.0 128.0 82.0 160.0 - -

64 - - 1024.0 1024.0 136.0 136.0 144.0 144.0 - -

32 - - 1040.0 1088.0 136.0 136.0 136.0 264.0 - -

16 - - 1280.0 2048.0 136.0 144.0 136.0 136.0 - -

8 736.0 746.6 2048.0 2048.0 136.0 264.0 256.0 264.0 2048.0 2048.0

4 800.0 821.3 2048.0 2048.0 136.0 264.0 72.0 136.0 2048.0 2048.0

2 650.6 821.3 - - - - - - 2048.0 2048.0

1 810.6 810.6 - - - - - - 2048.0 2048.0

0.5 810.6 810.6 - - - - - - 2048.0 2048.0

0.25 565.3 778.6 - - - - - - 2048.0 2048.0

0.0125 736.0 757.3 - - - - - - 2048.0 2048.0

- , not tested at the corresponding MIC
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Table 6.3.16b. Mean cytotoxic activity (CU/ml) of cell-bound cytotoxin of C. difficile pre- and
post exposure to clindamycin by all test strains

MIC & sub- Cytotoxic activity (CU/ml) of strains

inhibitory

MICs
078 017 097 046 001

24h 48h 24h 48h 24h 48h 24h 48h 24h 48h

Control 34.6 69.3 16.0 16.0 16.0 16.0 16.0 16.0 64.0 64.0

256 - - 272.0 1056.0 272.0 160.0 48.0 64.0 - -

128 - - 72.0 136.0 272.0 288.0 40.0 40.0 - -

64 - - 32.0 64.0 96.0 96.0 48.0 96.0 - -

32 - - 264.0 1040.0 272.0 288.0 64.0 96.0 - -

16 - - 72.0 272.0 288.0 320.0 32.0 48.0 - -

8 608.0 896.0 256.0 384.0 272.0 288.0 48.0 96.0 144.0 144.0

4 810.0 1578.6 40.0 160.0 144.0 160.0 32.0 32.0 128.0 192.0

2 938.6 1536.0 - - - - - 192.0 192.0

1 1002.6 1621.3 - - - - - 160.0 192.0

0.5 1088.0 1322.6 - - - - - 192.0 256.0

0.25 896.0 1332.6 - - - - - 96.0 128.0

0.0125 1066.6 1792.0 - - - - - 24.0 24.0

- , not tested at the corresponding MIC
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Abstract

A  total o f  73 clinical isolates o f  Clostridium difficile isolated from  stool/rectal swabs o f  patients adm itted to  the intensive care 
units at Mubarak H ospital, Ibn Sina H ospital B um  unit and H aem atology wards at the K uw ait Cancer C ontrol Centre, were 
investigated for their susceptibility to  15 antibiotics using the Etest. A m oxycillin -clavu lan ic  acid, am picillin, m eropenem , 
metronidazole, penicillin, piperacillin, piperacillin/tazobactam , teicoplanin and vancom ycin had excellent activities w ith M IC 90S o f  
0 .3 8 ,0 .5 ,1 ,0 .1 9 ,1 .5 , 2, 3 ,0 .2 5  and 0.75 mg/1, respectively. O f the 73 C. difficile isolates, 86% were resistant to  im ipenem  (M IC 90 >  
32 mg/1) and alm ost 97% were resistant to  trovafloxacin (M IC 90 >  256 mg/1). Forty eight percent o f  the isolates were resistant to  
clindamycin. A  total o f  18 isolates were highly clindam ycin-resistant w ith an M IC  o f  >  256 mg/1; 10 o f  these were toxin  producers. 
M ultiple antibiotic resistance (two or m ore antibiotics) was noted in 63 isolates. These were m ore com m on am ong the toxigenic  
strains than the non-toxigenic strains by a ratio o f  2.5:1.
©  2002 Elsevier Science B.V. and International Society o f  C hem otherapy. A ll rights reserved.

Keywords: Clostridium difficile; Clinical isolates; Antibiotic susceptibility

1. Introduction

Bartlett and his colleagues positively identified Clos
tridium difficile as an aetiological agent of pseudomem
branous colitis (PMC) in 1978 [1]. It soon became 
obvious after this pioneering work that the organism 
was responsible for a spectrum of disease referred to as 
C. difficile -associated diarrhoea (CDAD) ranging from 
mild, self-limiting diarrhoea to potentially life-threaten
ing PMC. This organism is now recognized as a major 
nosocomial pathogen all over the world [2]. The diseases 
it causes, when they occur in the hospital setting, have 
contributed significantly to extended hospital stay and 
increased the cost [3,4].

Metronidazole and vancomycin, given orally for 10 
days, are the drugs of first choice for the treatment of 
CDAD. Several clinical trials have established that these 
two antibiotics have equivalent efficacy, particularly in 
the therapy of mild to moderate diseases [5-7] although

* Corresponding author
E-mail address: vincent(a>hsc.kuniv.edu.kw (V.O. Rotimi).

sometimes accompanied by high relapse rates. Teico
planin, another potent glycopeptide, is equally effica
cious as vancomycin [8].

The role of antibiotic susceptibility testing of anae
robes in general and of C. difficile specifically, has been 
questioned over the past decades. Mainly because of the 
predictable sensitivity pattern of anaerobes to most 
antibiotics with anti-anaerobic activity as well as lack 
of simple method for testing, delay in getting pure 
culture and little correlation between the clinical out
come and the antibiotic susceptibility testing results 
[9.10]. In our country, routine antibiotic susceptibility 
testing of anaerobes is not usually done. However, 
resistance of anaerobes to anti-anaerobic antibiotics is 
on the increase, even to drugs with excellent anti- 
anaerobic activity like metronidazole [11-13], imipenem 
[14,15] and (3-lactam- (3-lactamase inhibitors [16]. In a 
recent report from Spain, Pelaez et al., [17] described an 
increase in the number of clinical isolates of C. difficile 
with decreased susceptibility to metronidazole and the 
emergence of strains with decreased susceptibility to 
vancomycin thus emphasizing the importance of anti
biotic susceptibility testing of anaerobic bacteria, in

0924-8579/02/$ - see front matter ©  2002 Elsevier Science B.V. and International Society o f Chemotherapy. All rights reserved. 
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particular C. difficile, in different geographical areas. 
This prompted us to investigate the susceptibility of 
clinical isolates of C. difficile to establish a base-line 
susceptibility pattern to 15 antibiotics and assess the 
level of resistance of our isolates to established anti- 
anaerobic agents.

2. Material and methods

2.1. Bacterial strains

Clinical isolates of C. difficile obtained from sympto
matic and asymptomatic ICU patients in three large 
teaching hospitals in Kuwait (Mubarak, Ibn Sina and 
Kuwait Cancer Control Center (KCCQ, Hospitals) 
over a period of 2 years were studied. Hie isolates 
were identified as C. difficile by their characteristic 
yellow/green fluorescence under an ultraviolet (UV) 
illuminator, Gram-stain morphology, horse-stable smell 
and reactions in the API 20A (BioMerieux, SA, France). 
Two reference quality control strains, C. difficile ATCC 
9689 and ATCC 17857, and C. perfringens ATCC 
13124, were included in each run.

2.2. Susceptibility testing

The susceptibility of the isolates was determined by 
estimating the minimum inhibitory concentrations 
(MICs) of the 15 antibiotics using the Etest (AB Biodisk, 
Slona, Sweden) and agar dilution method. The 15 
antibiotics tested are listed in Table 1. The activity of 
trovafloxacin (Pfizer, Inc., Groton, CT) was determined 
by the agar dilution method recommended by the 
National Committee for Clinical Laboratory Standards

(NCCLS, 1997) [18]. Briefly, serial two-fold dilutions of 
trovafloxacin were incorporated into Fastidious Anae
robe agar (FAA; Lab M, Bury, UK) with final antibiotic 
concentrations of 0.03-256 mg/1. An inoculum was 
prepared in Anaerobe broth (Difco, USA) from a 48 h 
FAA culture. The suspension was adjusted to 0.5 
McFarland turbidity standard. Then the inoculum was 
applied onto the surface of pre-reduced antibiotic- 
containing agar using a 35-prong Steers applicator 
that delivered 10 pi (105 CFU) per spot. The plates 
were incubated in anaerobic jars for 48 h at 37 °C. 
Anaerobiosis was checked by inclusion of a nutrient 
plate inoculated with Pseudomonas aeruginosa and a 
chemical indicator. After incubation, the MIC was 
recorded as the lowest concentration of each antibiotic 
that inhibited visible growth of the organisms.

For the MIC determination by Etest, a 48 h bacterial 
growth suspended in Anaerobe broth and adjusted to 
no. 1.0 McFarland turbidity standard was inoculated 
onto reduced brucella agar plates (Unipath, Basing
stoke, UK) supplemented with 5% horse blood, haemin 
5 pg/ml and menadione 1 pg/ml. The Etest strips of the 
antibiotics, other than trovafloxacin, were applied onto 
the agar surface, after drying for 15 min, and then 
incubated in anaerobic jars containing 10% C02, 90% 
H2, for 48 h at 37 °C. The MIC was read as the 
interception of the elliptical zone of inhibition with the 
strip. C. difficile and C. perfringens control strains were 
included in each run as control of the media and the 
susceptibility test.

All the isolates were tested for toxin A and B 
production using commercial C. difficile TOX-A/B 
TEST Kit (Tech Lab, VPI Research Park, Blacksburg, 
VA) according to the manufacturer’s package insert.

Table 1
Susceptibility o f the 73 clinical isolates o f C  difficile to IS antibiotics

Antibiotics (breakpoint, mg/1) MIC (mg/1)

Range MICso M IC90 % Resistant

Amox/clav (8) 0.047-0.5 0.125 0.38 0
Ampicillin (8) 0.094-0.75 0.25 0.5 0
Cefotaxime (32) 2 4 - >  256 96 > 256 100
Cefoxitin (32) 0.25- >  256 > 256 > 256 97
Cefuroxime (32) > 256 > 256 > 256 100
Clindamycin (4) 0 .1 6 -> 2 5 6 4 > 256 48
Imipenem (8) 0.064- >  32 32 > 3 2 86
Meropenem (8) 0.032-1.0 0.75 1.0 0
Metronidazole (8) 0.023-0.19 0.094 0.19 0
Penicillin (4) 0.125-1.5 0.5 1.5 0
Piperacillin (32) 0.094-3 1.5 2 0
Piperacillin/tazo (64) 0.047 - 6 2.0 3 0
Teicoplanin (2) 0.032-2 0.125 0.25 0
Trovafloxacin (4) 0 .5 - >  256 32 64 97
Vancomycin (4) 0.125-3 0.5 0.75 0

Amox/clav, amoxycillin-clavulanic acid; tazo, tazobactam.
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3. Results

A total of 73 clinical isolates (52 from Mubarak 
hospital, 4 from Ibn Sina and 17 from the KCCC), 
obtained over a period of 2 years, were studied. Forty- 
five (62%) of them were toxigenic. Fifteen of the 73 
isolates were from symptomatic patients and the rest 
were from patients who became colonized after admis
sion to the hospital. The MICs of the antibiotics tested, 
shown in Table 1, are presented as the concentrations 
that killed 50% (MIC50) and 90% (MIC90) of the 
isolates. Amoxycillin-clavulanic acid, ampicillin, mer- 
openem, metronidazole, penicillin, piperacillin, pipera- 
cillin-tazobactam, teicoplanin and vancomycin had 
excellent activity against all isolates of C. difficile with 
MIGwS of 0.38, 0.5, 1.0, 0.19, 1.5, 2.0, 3.0, 0.25 and 0.75 
mg/1, respectively. One isolate had decreased suscept
ibility to vancomycin and teicoplanin with MICs of 3 
and 2 mg/1, respectively.

As was expected, 71 (97%) of our 73 strains were 
resistant to cefoxitin and all them were resistant to 
cefotaxime and cefuroxime. Almost half of the C. 
difficile isolates were resistant to clindamycin (35/73; 
48%). Of these 35 resistant isolates, 18 (51%) exhibited 
high-level clindamycin resistance with MIC > 256 mg/1. 
The MIC of clindamycin for the remaining 17 isolates 
was 6-24 mg/1. High-level resistance to clindamycin was 
present in 10 of the 18 high-level resistant strains and 
they were toxigenic. Of interest, 63 (86%) and 71 (97%) 
were resistant to imipenem and trovafloxacin with MICs 
of > 32 and 64 mg/1, respectively. Nine had imipenem 
MIC of <8 mg/1 and the remaining one strain had an 
MIC of 12 mg/1.

Analysis of individual isolates in relation to multiple 
resistance, i.e. resistance to two or more antibiotics, and 
toxin or non-toxin production, is shown in Table 2. A 
total of 27 isolates were resistant to 4 antibiotics 
(cefoxitin, clindamycin, imipenem and trovafloxacin) 
of which 15 were toxigenic and 12 non-toxigenic strains. 
Of the 25 strains resistant to a combination of cefoxitin, 
imipenem and trovafloxacin, 24 (96%) were toxigenic 
strains. Table 3 shows the distribution of the toxigenic

Table 2
Antibiotic resistance profile of 63 multiply resistant C. difficile isolates

Resistance groups

Number o f isolates 

Toxigenic Non-toxigenic Total no.

Cefox, Clind, Imip, Trovafl 15 12 27
Cefox, Imip, Trovafl 24 1 25
Cefox, Clind, Trovafl 1 - 1
Cefox, Clind, Imip 2 - 2
Cefox, Trovafl 3 - 3
Imip, Trovafl - 5 5

Cefox, cefoxitin; Clind, clindamycin; Imip, imipenem; Trovafl, 
trovafloxacin.

Table 3
Resistance profiles o f the toxigenic isolates from symptomatic and 
asymptomatic patients

Resistance group No. patients that were 

Symptomatic Asymptomatic

Cefox, Clind, Imip, Trovafl 11 4
Cefox, Imip, Trovafl 3 21
Cefox, Clind, Trovafl 1 0
Cefox, Clind, Imip 0 2
Cefox, Trovafl 0 3
Imip,Trovafl 0 5

strains that were multiply resistant among the sympto
matic and asymptomatic patients. More isolates exhibit
ing resistance to 4 antibiotics came from the 
symptomatic patients than from the asymptomatic 
patients by a ratio of 2.75:1, whereas those resistant to 
3 or fewer antibiotics were isolated predominantly from 
the asymptomatic patients.

A comparison was also made between antibiotic usage 
and multiple resistance. The average number of anti
biotics prescribed per patient was 4.0 (range 0-11) for 
an average duration of 8.4 days (range 1-22) per 
prescription. The commonest antibiotics prescribed 
were cephalosporins (21%), metronidazole (17%), mer- 
openem (14%), amikacin, vancomycin and teicoplanin 
(7% each) and imipenem (3%). Trovafloxacin has never 
been used in our hospitals before. Over 50% of the 63 
multiply resistant isolates were from patients treated 
with the cephalosporins, meropenem and metronida
zole.

4. Discussion

C. difficile is an important cause of nosocomial 
diarrhoea [19,20] and PMC, has a mortality rate that 
ranges from 15 to 30% [21]. It is therefore prudent to be 
abreast of the susceptibility pattern of local isolates to 
the antibiotics that are available for the treatment of the 
disease caused by the organism. The data from our 
present study show that 90% of the strains were 
inhibited by 0.75 mg/1 of vancomycin and 0.25 mg/1 of 
teicoplanin; all strains were inhibited by concentrations 
that did not exceed 3 mg/1 and 2 mg/1, respectively, with 
the MICs distributed over a narrow range. These upper 
limits are higher than the concentrations reported in 
other studies [12,22-25]. However, only one strain with 
decreased susceptibility to vancomycin (MIC, 3 mg/1) 
and teicoplanin (2 mg/1) was isolated. This strain was 
from a symptomatic patient with CDAD and thus calls 
for vigilance and close monitoring of the susceptibility 
of future isolates in our hospitals.
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Metronidazole was the most active of all the anti
biotics. All isolates were inhibited by a concentration 
that did not exceed 0.19 mg/1, and with a narrow range 
of MIC distribution. This is in contrast to studies that 
have reported from 3-20% decreased susceptibility to 
metronidazole [5,17]. Wong et al [26] has also recently 
described a single isolate from a collection of 100 strains 
studied that had MIC of 64 mg/1. Despite these reports, 
the incidence of metronidazole resistant strains remains 
very low. Our finding suggests that metronidazole 
should remain the drug of choice for the therapy of 
CDAD in our hospitals. This is without prejudice to the 
fact that metronidazole and vancomycin are equally 
effective for treatment of C. difficile -associated disease 
[5.27.28]. In addition to the excellent in vitro activity, 
cost and concern regarding the emergence of vancomy
cin-resistant enterococci [27-29] support its choice as a 
preferred drug. Even though teicoplanin is as effective as 
vancomycin [8.301 its high cost precludes it as the drug 
of first choice.

All our isolates were susceptible to ampicillin, peni
cillin and amoxycillin-clavulanic acid but resistant to the 
cephalosporins (cefotaxime, cefuroxime and cefoxitin) 
with MIC90S of more than 256 mg/1, a finding consistent 
some earlier reports [31,32]. Although, imipenem and 
meropenem have very good activity against anaerobes in 
general, there was a big difference in their in vitro 
activities against our C. difficile isolates. While mer
openem showed excellent activity against all isolates of 
C. difficile, over three-quarters of the strains had high- 
level resistance to imipenem. In a previous review of 46 
isolates by Jones [14], quite a few had MIC90 of more 
than 10 mg/1. The explanation for the discrepancy in 
susceptibility of our isolates to meropenem and imipe
nem is a subject of further investigation.

The resistance rate of our isolates to clindamycin is 
much lower them the rate reported elsewhere [33]. Nearly 
25% of the isolates showed high-level clindamycin 
resistance and over half of these were toxigenic. These 
strains were isolated from patients in two of our three 
hospitals. Unlike a previous report [34] where a specific, 
highly clindamycin-resistant strain of C. difficile caused 
large outbreaks of diarrhoea in four hospitals in the 
United States, our isolates did not appear to have been 
associated with any particular outbreak. Only half of 
them were isolated from sporadic cases of CDAD. The 
majority of the non-toxigenic strains were susceptible to 
clindamycin. Susceptibility of C. difficile to the quino- 
lones has always been poor, particularly to the first and 
second-generation agents, such as norfloxacin and 
ciprofloxacin [31,32]. Although in general, trovafloxacin 
has good anti-anaerobic activity against most of the 
Gram-positive and Gram-negative anaerobes, in our 
study trovafloxacin had very poor activity against C. 
difficile with about two-thirds of the strains showing 
high-level resistance. Our data indicates that this drug

can not be considered for use in the treatment of disease 
caused by this organism.

Further analysis of the strains according to toxin 
production and multiple resistance revealed that all the 
toxigenic, more than the non-toxigenic strains, by a 
ratio of 2.5:1, were resistant to two or more antibiotics. 
Resistance to combinations of cefoxitin, imipenem and 
trovafloxacin, cefoxitin, clindamycin and imipenem, 
cefoxitin, clindamycin and trovafloxacin were exclu
sively observed in the toxigenic group. These results cast 
new light into the relationship between toxigenic strains 
and resistance grouping. While C. difficile isolates are 
routinely resistant to the cephalosporins and imipenem, 
resistance to clindamycin is less common. The finding of 
these multiple resistant strains in our hospitals is there
fore an important one, particularly as those strains 
resistant to four antibiotics were associated more with 
symptomatic patients than asymptomatic patients by a 
ratio of 2.75:1. A study of larger number of isolates will 
be needed to confirm this observation. The use of these 
antibiotics and the development of CDAD are currently 
being investigated.

CDAD is almost unknown in the absence of anti
biotic use and it has been demonstrated that the risk of 
this disease among hospitalized patients increases with 
the use of clindamycin and the presence of clindamycin- 
resistant strains [34] as well as the use of cephalosporins 
[35].
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Ninety-five isolates of Clostridium difficile from symptomatic and asymptomatic patients and 18 
from their environment in the intensive-therapy units (ITUs) of four teaching hospitals in Kuwait were 
typed by PCR amplification of rRNA intergenic spacer regions (PCR ribotyping). A total of 32 
different ribotypes was detected among the clinical isolates. The predominant ribotypes from the 
clinical isolates were types 097 and 078, which accounted for ~  40 % of all isolates in the ITUs in 
Kuwait. Ribotypes 097 (toxigenic), 078 (toxigenic) and 039 (non-toxigenic) were three distinct 
clones that were circulating in all four hospitals. Ribotypes 097, 078 and 076 (i.e. 50%  of isolates 
from symptomatic patients) were the predominant isolates associated with C. difficile-associated 
disease (CDAD). The environmental isolates belonged to a diverse range of ribotypes, with no 
particular types common to all the hospitals. Ribotype 078 was found only in the patient environment 
in Mubarak hospital, while ribotype 097 was restricted to Amiri hospital. The hospital environment 
occupied by symptomatic as well as symptom-free patients was contaminated with C. difficile. Eight 
new strains that did not match any in the PCR ribotype library established at the PHLS Anaerobe 
Reference Unit, Cardiff, UK, were assigned ribotypes 105,125,128,129,131,134,140 and 141.

Received 3 February 2003 These findings show that the isolates associated with CDAD in Kuwait are different from those found
Accepted 4 April 2003 in the UK and some other European countries.

INTRODUCTION__________________________
Clostridium difficile is an  anaerobic, G ra m -p o sitiv e , sp ore-  
form ing bacillus. It is o ften  associated  w ith  a sp ectru m  o f  
diseases, referred as C. difficile- associa ted  d isease  (C D A D ), 
w hich m anifest as se lf-lim itin g  a n tib io tic -a sso c ia ted  d iar
rhoea (A A D ), an tib io tic-assoc ia ted  co litis  (A A C ) and  p seu 
dom em branous co litis (P M C ) w ith  to x ic  m e g a co lo n  and  
possible gut perforation. Rarely, it can  p resent as extra- 
intestinal infections, su ch  as arthritis, o steo m y elitis , so ft-  
tissue infection  and bacteraem ia (L evett, 1986). C D A D  is an  
im portant clinical prob lem  because it is o ften  acquired  by  
hospitalized patients, and C. difficile is a ssocia ted  w ith  
outbreaks o f  diarrhoea and  co litis  in  h o sp ita lized  adults  
receiving antib iotics (Bartlett et al., 1978; D ju retic  et al., 
1999).

Abbreviations: AAC, antibiotic-associated colitis; AAD, antibiotic- 
associated diarrhoea; CDAD, Clostridium difficile-associated disease; ITU, 
intensive-therapy unit; PMC, pseudomembranous colitis.

In sp ite  o f  m ajor efforts to  co n tro l the spread o f  C D A D  in  
h osp ita ls and  nu rsin g  h o m es, th is organ ism  has rem ained  
a m ajor prob lem  w orldw ide, and  it con tin u es to  be respons
ible for en d em ic  and  ep id em ic  n o so co m ia l diarrhoea  
(M cFarland et al., 1989; Johnson  et al., 1990; Barbut et al., 
1996). C. difficile, or  its tox in s, has been  identified  in  8 - 1 0  % 
o f  cases o f  n o so co m ia l diarrhoea, w h ile  other c o m m o n  
bacterial enteric p ath ogen s, Salmonella, Shigella and  Cam
pylobacter spp., are rarely iso lated  (Fan et al., 1993; R ohner  
etal., 1997).

It appears that th e  m o st im p ortan t sources o f  C. difficile in  a 
hosp ita l setting  are sym p tom atic  patients and asym ptom atic  
carriers w h o  are the m ain  reservoirs o f  C. difficile in the  
hospital. T he en v iron m en t o f  these  patients is also an  
im portant source. There is ev id en ce that environm ental 
co n ta m in a tio n  in  room s o f  patien ts w ith  diarrhoea is 
substantially  greater than in  room s w ith  asym ptom atic  
patients (49 vs 2 9 % ) (M cFarland et a l,  1989). In add ition , 
ro o m s currently occu p ied  b y  C. difficile-negative patients
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can, in  sp ite o f  rou tin e  c lean ing , b e  co n ta m in a ted  w ith  C. 
difficile spores that can  survive for  several m o n th s  in  the  
hospital env iron m en t. P erso n -to -p erso n  tra n sm ission  o n  
hospital wards, especia lly  geriatric w ards, as w ell as en v iro n 
m ental co n tam in ation  and  carriage o n  th e  h an d s o f  hosp ita l 
workers have been  d o cu m en ted  (K im  et a l ,  1981; M alam ou -  
Ladas et al.y 1983; Savage & A lford , 1983; M cFarland et al.y 
1989). T ransm ission occu rs m a in ly  v ia  th e  faecal oral route  
and direct contact w ith  co n ta m in a ted  surfaces (B arbut 8 c 
Petit, 2001).

E pidem iological stu d ies o f  C. difficile strains iso la ted  from  
different environm ental and  c lin ica l sou rces in vo lve  deta iled  
com parison o f  the d ifferent iso lates from  all sites. Several 
typing schem es have b een  d ev e lo p ed  to  d eterm in e  th e  
relatedness o f  strains o f  C. difficile a ssociated  w ith  in fectio n s . 
H ow ever, o f  these, PCR r ib otyp ing  offers several advantages  
over the other m eth od s because it is h ig h ly  d iscr im in ative , 
reproducible and relatively rapid  and  easy  to  perform  
(O ’N eill et al.y 1996; Stubbs et al.y 1999).

O ur m ain aim  w as to  stu d y  th e  e p id e m io lo g y  o f  C. difficile 
isolates from  patients ad m itted  in to  th e  in ten siv e -th era p y  
units (IT U s) o f  the four  m ain  teach in g  h osp ita ls  in  K uw ait b y  
PCR ribotyping.

METHODS

Bacterial iso lates from patients. Stool samples were collected from 
all patients admitted to the ITUs of Mubarak Al-Kabeer hospital (ITU- 
1), Ibn Sina Bum Unit (ITU-2), haematology wards o f Kuwait Cancer 
Control Centre (ITU-3) and Amiri hospital (ITU-4) who had stayed in 
the units for a minimum period o f 3 days. The study was carried out over 
a period of 1 year (February 2001-January  2002). Freshly passed stool 
(rectal swabs, in Amies transport medium, if collection o f stool was not 
feasible) was taken on the day of admission and weekly thereafter until 
the patient was discharged or developed diarrhoea secondary to  C. 
difficile infection/colonization.

Environmental and other sam ples. A sterile swab, pre-moistened 
with sterile normal saline, was wiped over selected surfaces in the units, 
e.g. bed sheets, mattress, bed edges, bed ledges, surfaces of the side table 
next to the patients, suction regulator, oxygen regulator, ventilator 
surfaces, IV stand and the floor under the bed. Hands of doctors, nurses 
and physiotherapists who had had contact with the positive cases were 
cultured, by contact agar plates, for evidence of C. difficile contam ina
tion.

Inoculation, isolation and identification. The stool and environ
mental samples were inoculated into Robertson cooked meat (RCM) 
medium containing 25 ml fastidious anaerobe broth (FAB; Lab M) and 
incubated anaerobically for 48 h at 37 °C. Five-hundred microlitres of 
the FAB from the RCM was heated for 10 min at 80 °C. Next, 
cycloserine-cefoxitin egg yolk agar (CCEYA; Oxoid) and cycloserine- 
cefoxitin fructose agar (CCFA; Oxoid) plates were inoculated with one 
loop of the heated broth and incubated anaerobically for 48 h in an 
anaerobic chamber (H2 10%, CO2 10%, N 2 80% ). Isolates that were 
Gram-positive bacilli with characteristic horse-dung smell and fluor
esced yellowish-green under long-wave UV light (365 nm ) were selected 
and their identity was confirmed as C. difficile by API 20A (bioMerieux).

Toxin detection. Single colonies were subcultured on pre-reduced 
Columbia agar base (Oxoid) supplemented with 5%  horse blood,

vitamin K and haemin and incubated at 37 °C under anaerobic 
conditions for toxin A detection. Toxin A was detected by ELISA 
(TOX-A) kits (Tech Lab); the procedure was carried out according to 
the manufacturer’s instructions. Toxin B was detected by cytotoxicity 
assay on Vero cells. Production of cytopathic effects by filtered super- 
nate o f C. difficile RCM broth culture on Vero cells indicated toxin B 
production. Toxins A and B were detected in the stool by the TOX-A/B 
kits (Tech Lab).

PCR ribotyping. All isolates were typed by the PCR ribotyping method 
described by O’Neill et al. (1996). Briefly, after obtaining a pure culture, 
a single colony was subcultured on fastidious anaerobe agar (FAA; Lab 
M) supplemented with 6 % horse blood and incubated for 24 h at 37 °C. 
DNA was extracted from a suspension of 10 colonies in 100 pi 5 % 
Chelex 100 (Bio-Rad) by heating at 100 °C for 10 min. Cell debris was 
removed from the suspension by centrifugation for 10 min at 17 000 g. 
The supemate obtained was then used as the DNA template. Primers P3 
(5 '-CTGGGGTGAAGTCGTAACAAGG) andP4 (5'-GCGCCCTTTGT 
AGCTTTGACC) were used for the PCR amplification. The reaction 
mixture (final volume, 100 |il) contained 1-5 mM MgCl2, 10 mM Tris/ 
HC1 (pH 9), 50 mM  KC1, 0-1 % Triton X-100, 2-5 U Taq polymerase, 
200 mM  of each dNTP, 50 pmol of each primer and 10 pi DNA 
template. The PCR programme was 35 cycles o f denaturation at 95 °C 
for 1 min, annealing at 56 °C for 1 min and extension at 72 °C for 2 min. 
A negative control was included in each run. Amplification products 
were concentrated to a final volume o f 25 pi by heating at 75 °C for 
90 m in before electrophoresis at 200 V, 100 A in Metaphore agarose gel 
(FMC) for 3 h  at room  temperature. DNA fragments were then 
visualized by staining the gel for 20 min in 0-5 % ethidium bromide. 
Gel images were analysed with GelCompar image analysis software 
(version 4.0; Applied Maths). O ur results were then compared with the 
library o f PCR ribotypes already established at the PHLS Anaerobe 
Reference Unit, Cardiff, UK.

RESULTS_______________________________
C. difficile was iso la ted  from  95  o f 922 patien ts (430  in  IT U -1, 
63 in  IT U -2 , 8 8  in  IT U -3  and  341 in  IT U -4 ) screened during  
th is period . T hirty  (31-6% ) o f  these  95  patients were 
sy m p to m a tic  w ith  C D A D ; tw o  patients had  PM C , four had  
A A C  and  24  had  A A D . T he overall in c id en ce  o f  C. difficile- 
p o sitiv e  patients w as 10-3 %, w ith  in c id en ce  in  each hospital 
b ein g  10-5 % for IT U -1 , 6-3 % in  IT U -2 , 18 % in  IT U -3 and  
9-6 % in  IT U -4 . T h e  organ ism  w as iso lated  from  18 o f  380  
en v iron m en ta l sam ples; six  from  IT U -1 , three from  IT U -3 
and  n in e  from  IT U -4.

T he d istr ib u tion  o f  PCR ribotypes a m o n g  th e  clinical and  
en v iron m en ta l iso lates is sh o w n  in  Tables 1 and  2, and  the  
b a n d in g  o f  representative ribotypes is dem onstrated  in  Fig. 1. 
O f th e  95  iso lates, 72 (75*8 %) w ere to x in -p rod u cers, w h ile  23  
(24-2 %) w ere n o n -to x ig en ic . A  total o f 28  (38*9 %) o f  the 72 
to x ig en ic  and  tw o  (8-7 %) o f  th e  23 n o n -to x ig en ic  isolates 
w ere associated  w ith  diarrhoea. A s sh o w n  in  Table 1, 32 
d istin ct, genotyp ica lly  d ifferent r ibotypes w ere identified  
a m o n g  the 95 clin ical isolates. O f  these , three d istin ct c lones  
w ere d etected  in  all four h osp ita ls, ribotypes 09 7  (to x ig en ic ), 
078  (tox igen ic) and 039  (n o n -to x ig en ic ) . T he rem ain ing  58 
iso lates b e longed  to  a set o f  diverse ribotypes. In IT U -1 , the  
ribotypes associated  w ith  diarrhoea in  th e  18 sym p tom atic  
patien ts w ere ribotypes 078  (4 , 22 % ), 076  (3 , 17 % ), 012 (2, 
11 % ), 056  (2 , 11 % ), 094  (2, 11 % ), 09 7  (2 , 11 % ), 105 (2, 
1 1 %) and 046 (1 , 6 % ). T he five iso lates associated  w ith
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Table 1. Distribution of PCR ribotypes and toxigenic strains of C. 
difficile in four teaching hospital ITUs

Ribotype Toxin
(A/B)

ITU-1 ITU-2 ITU-3 ITU-4 Total

002 + 0 1 1 0 2
010 - 3 0 0 0 3
012 + 2 0 0 0 2
013 + 1 0 0 0 1
014 + 1 0 1 1 3
017 - / + 0 0 0 1 1
020 + 1 0 0 0 1
026 - 1 0 0 0 1
029 + 1 0 1 0 2
035 - 1 0 0 0 1
039 - 6 1 1 2 10
045 + 0 0 0 2 2
046 + 1 0 0 0 1
051 + 0 0 3 0 3
054 + 1 0 0 0 1
056 + 2 0 0 3 5
064 + 1 0 0 0 1
070 + 0 0 1 0 1
076 + 3 0 0 3 6
077 + 0 0 3 0 3
078 + 4 1 2 2 9
081 + 1 0 0 0 1
094 + 2 0 1 0 3
097 + 3 1 1 13 18
098 + 0 0 0 2 2
105 + 2 0 0 0 2
113 — 0 0 1 0 1
128 - 5 0 0 0 5
129 + 1 0 0 0 1
131 + 1 0 0 0 1
140 - 0 0 0 1 1
141 - 0 0 0 1 1
Total 44 4 16 31 95

diarrhoea in IT U -3 represented ribotypes 077  (2 ,4 0  % ), 014  
(1, 20% ), 097 (1, 20% ) and 113 (1, 2 0 % ), w h ile  the seven  
associated w ith diarrhoea in IT U -4 represented ribotypes 017  
(1 ,1 4 -3  %), 039 (1, 14-3 %) and 097 (5, 71-4% ).

All sym ptom atic patients w ith  to x igen ic  ribotypes had  
detectable toxins in their stools; tw o  patients w ith  n o n -  
toxigen ic ribotypes 039 and 113 had n o  detectable level o f  
toxin  in their stools. T w o PM C cases in  IT U -1 w ere infected  
w ith ribotype 076. Single AAC cases in  IT U -1 and IT U -3  were  
infected with ribotypes 046 and 097. T w o AA C  cases in  IT U -4  
were infected w ith  ribotype 097.

As dem onstrated in Table 2, the 18 environ m en ta l isolates 
were assigned to  n in e genotypically  d istin ct ribotypes (six  
toxigen ic and three n o n -tox igen ic); the p redom inant types  
were 010 (3 ), 078 (3) and 097 (4 ). R ibotypes 078 and 097  
were isolated prim arily from  the environ m en t o f  sym p to-

Table 2. Distribution of PCR ribotypes and toxigenic strains of C. 
difficile in the environment of four teaching hospital ITUs

Ribotype Toxin
(A/B)

ITU-1 ITU-2 ITU-3 ITU-4 Total

001 + 0 0 0 1 1
010 - 3 0 0 0 3
056 + 0 0 0 2 2
078 + 3 0 0 0 3
097 + 0 0 0 4 4
105 + 0 0 1 1 2
120 + 0 0 1 0 1
125 - 0 0 1 0 1
144 - 0 0 0 1 1
Total 6 0 3 9 18

Fig. 1. Representative PCR ribotype profiles of C. difficile isolated 
from patients in Kuwait Lanes: 1,6, 11 and 14, 100 bp ladder; 2, 
ribotype 029; 3,039; 4,097; 5,039; 7,039; 8,039; 9,078; 10,078; 
12,097; 13,051.

m atic patients in fected  w ith  th e  sam e ribotypes in ITU -1 and  
IT U -4 , respectively. R ibotype 01 0  w as iso lated  from  the  
en viron m en t o f  asym p tom atic  patients in  IT U -1. R ibotype  
105, associated w ith  diarrhoea in  IT U -1 , was absent in  its 
environ m en t but present in  the en v iron m en t o f  IT U -3 and  
IT U -4 , w here it d id  n ot contrib ute to  C D A D . R ibotypes 001 
and 144 w ere present in  th e  en v iron m en t o f  IT U -4, b u t were  
n ot iso lated  from  any patient in  the un it. Sim ilarly, ribotypes 
120 and 125 w ere isolated  from  th e  floor  o f  IT U -3, but were  
n ot iso lated from  the patients in  the unit.

N o  C. difficile w as iso lated from  the hands o f  healthcare  
providers.

DISCUSSION____________________________
In sp ite o f  the grow ing num ber o f  studies devoted  to  C D A D  
in  W estern countries, studies o n  C D A D  in  the M iddle East
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are lacking, especially  in  K uw ait, w here in form ation  o n  the  
incidence o f  C. difficile carriage and  C D A D  is a lm ost n o n 
existent. This is partly as a result o f  inertia  in  anaerobic  
bacteriology p rom p ted , u n til recently, b y  lack o f  expertise, 
technology and facilities for  cu lturin g  anaerobic pathogens. 
W e have, in  the recent past, en co u n tered  a relatively h igh  
proportion  o f  asym p tom atic  carriers o f  C. difficile in  ou r  
hospitals, and the in terp retation  o f  p ositiv e  cu ltures w as 
equivocal. C. difficile or  its to x in  has b een  reported  in  o n e  
study from  nearby Saudi Arabia (A khter et a l ,  1994), in  
Turkey (Soyletir et al., 1996) and  in  a few  reports from  Israel 
(Rudensky et a l,  1993; R ivlin  et al., 1998; B oaz et a l ,  2 000). 
H ow ever, th is is the first report o n  PCR rib otyp ing  o f  C. 
difficile strains isolated from  sym p to m a tic  and a sy m p tom atic  
patients in  the M iddle East.

The data generated from  th e  present stu d y  sh ow ed  that all 95  
and 18 C. difficile isolates respectively  or ig in atin g  from  
patients and their en v iron m en t w ere typable b y  th e  PCR  
ribotyping m eth od , and  th ey  revealed so m e  in teresting  
epidem iological findings. Secondly, n o n e  o f  th e  patien ts  
adm itted to  the ITU s carried C. difficile in to  th e  u n its  o n  
adm ission . Thus, an incid en ce rate o f  h o sp ita l-acq u ired  C. 
difficile in fection /co lon iza tion  o f  10-3 % w as estab lished  for  
the four hospital ITU s in K uwait, ranging fro m  6-3 to  18 % in  
different hospitals. Interestingly, th e  9 5  C. difficile cu lture- 
positive patients harboured 32 d ifferent, h ig h ly  d iverse PCR  
ribotypes. Three different D N A  c lon es (P C R  rib otypes 097, 
078 and 039) w ere detected  a m o n g  p a tien t iso la tes in  all 
hospitals. The other isolates were assigned to  2 9  d istin ct and  
diverse types. R ibotype 097  w as the sing le  m o st  prevalent 
type and was responsible for abou t 27  % o f  C D A D , w h ile  
ribotype 078 w as responsib le for about 13 % o f  C D A D . T hus, 
ribotypes 097 and 078 w ere responsib le for  over o n e-th ird  o f  
the cases o f  C D A D  seen. From  an ep id em io lo g ica l p o in t o f  
view , th is is an interesting finding, in  that th e  d o m in a n t  
ribotypes causing diarrhoea in  K uw ait are co m p lete ly  differ
ent from  those seen in  Europe, particularly th e  U K  (Stubbs  
et a l,  1999), H ungary (U rban et a l,  2 001) and  P olan d  
(M artirosian et a l,  1995). F ifty-five per cen t o f  C. difficile 
infections seen in  UK  hosp itals are caused  b y  rib otype 001  
(Stubbs et a l,  1999), w h ile  ribotype 087  acco u n ted  for  39  % 
o f  all isolates in  H ungary (U rban et a l,  20 0 1 ). In th e  P olish  
study, all the environm ental isolates and  11 o f  31 neonata l 
isolates belonged to  ribotype 001.

It is notew orthy that o n e  o f  our patients in  IT U -4  w h o  had  
A A D  was infected w ith  ribotype 017 , w h ich  is tox in -variab le  
(tox in  A -negative, B -p ositive). H e  gave a h istory  o f  travel to  
Thailand and he w as hosp ita lized  there for unrelated illness. 
A n outbreak o f  to x in  A -n egative, B -p o sitiv e  C. difficile 
associated w ith  diarrhoea has been reported  in  a C anadian  
tertiary-care hospital (Al-Barrak e ta l ,  1999). T h is is n o t  our  
experience in  Kuwait so  far, as the single  iso la te  w as restricted  
to  on ly  on e  hosp ital and  o n e  patient. W h y  so m e  patien ts have  
m ore m arked sy m p to m s th an  others and  so m e  strains are 
m ore associated w ith  outbreaks o f  C D A D  in  d ifferent 
countries is unclear. System ic sy m p to m s are caused  m ain ly  
by tox in -m ed ia ted  in flam m atory  m ed iators released in  th e

c o lo n  (D allal et a l,  2002). T hus, it  is conceivable  that the  
ability  o f  the h ost to  m o u n t an  effective antibod y-m ed ia ted  
response to  the C. difficile to x in  plays a m ajor role in  th is  
regard. H ow ever, the bacterial factors invo lved  in  the  
geographical differences seen  in  th e  tw o  loca tio n s are w orthy  
o f  further investigation .

T he environ m en ta l strains w ere heterogen eou s in  each  
hosp ita l. T he 18 isolates w ere assigned to  n in e  d ifferent 
ribotypes. T he environ m en t o f  tw o  patients each in  IT U -1  
and  IT U -4  w as contam inated  by  th e  sam e ribotypes as fo u n d  
in  th e  patients’ clinical sam ples, c on firm in g  that th e  patien t’s 
en v iro n m en t is a potentia l source o f  C. difficile and  that 
cro ss-con tam in ation  m ay play an im p ortan t role in  the  
acq u isition  o f  n oso co m ia l C D A D  (C o h en  et a l ,  20 0 0 ). In  
so m e  cases, there w as n o  correlation  b etw een  th e  en v iro n 
m enta l and  patient isolates. For instance, th e  environ m en ta l  
iso la tes in  IT U -3 and so m e in  IT U -4  differed from  th ose  
fo u n d  in  the patients. O ur find in g  is n o t  an iso la ted  on e . 
Earlier, C oh en  et a l  (1997) fo u n d  n o n e  o f  th e  env iron m en ta l 
C. difficile genotypes am on g  iso lates from  patients, and  
Sim or et a l  (1993) fo u n d  n o  cro ss-tran sm ission  in  their  
in stitu tio n  in  a survey o f  C. difficile in fec tio n  in  a lo n g-term  
care facility.

In co n c lu sio n , the prevalent PC R  ribotypes o f  C. difficile 
strains circu lating in  K uwait hosp ita ls are d ifferent from  
th o se  fo u n d  in  m any hosp ita ls in  E urope and  are also  
different from  th o se  associated  w ith  C D A D  in  m a n y  patients. 
Further w ork  is n eeded  to  elu cidate  th e  factors responsib le  
for the geographical d ifferences and  th e  ab ility  o f  o n e  strain  
to  cause m ore system ic sym p tom s th a n  another.
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S u m m a r y  *  ̂ —-----
Clostrid ium  diff ic ile  is a com m on cause of nosocom ial diarrhea. Its role in com 

munity-acquired diarrhea is also becom ing an important public health concern. Hardly 
any studies have correlated strain ribotypes, toxinotypes and multidrug resistant (MDR) 
profiles. To investigate th ese  characteristics, 6 5  C. diff ic ile  isolates obtained from 
stool samples of patients w hose cultures were negative on admission but becam e pos
itive after 4 8  h of adm ission to  the ICUs of our hospitals were studied to determine the 
prevalent ribotypes, toxinotypes and their relationship with the MDR profiles using 
ELISA/cytotoxicity assays, PCR and Etest m ethods. The toxin-producing strains were 
toxinotyped by the PCR-RFLP technique. Of the 6 5  isolates, 4 2  (64.6% ) were toxi
genic (T). The isolates were of diverse ribotypes but types 0 9 7 , 0 7 8 , 0 5 6  and 0 3 9  
(NT) were predominant. Thirty (71.4% ) of 4 2  T and 13 (56.5% ) of 2 3  NT strains were 
multiresistant to 3 or more antibiotics. Only 3 toxinotypes (0, “V-like” and Xll) were 
encountered. Of the 4 2  T strains, 3 0  (71.4% ) were of toxinotype 0 , and 12 belonged  
to variant toxinotypes: 4  (9.4% ) to  toxinotype XII and 8  (19%) to “V-like” toxinotype 
in which amplified B1 PCR fragm ents was amplified as expected for toxinotype V but 
the A3 PCR fragment could not be amplified. The 4 3  MDR strains were assigned to  3 
arbitrary resistance groups; groups 1, 11 and III. The m ost prevalent isolates (37; 
86.1% ) were in group II. Of the predominant T ribotypes (0 9 7 , 0 7 8  and 0 5 6 ), c. 62%  
clustered in group II. Although the number of strains toxinotyped was small, ribotyp
ing and toxinotyping correlated well with the published literature, except for 0 7 8  with 
a novel “V-like” toxinotype. Antibiogram was not as clear-cut.

Key words: Toxinotypes, ribotypes, resistance pattern, Clostr id ium  difficile.

INTRODUCTION

Clostridium difficile is regarded worldwide as one 
of, if not, the most common cause of nosocomial di
arrhea. Diarrhea produced by this organism is usually 
mild and self-limiting often referred to as antibiotic-as
sociated diarrhea (AAD) but more severe forms of the 
disease can arise in the form of C. difficile-associated 
colitis (CDAC) and life-threatening pseudomembranous 
colitis (PMC), particularly in patients in intensive care 
units (ICU) and other intensive therapy units in hospi

tals. These spectra of the diseases are mediated by bac
terial toxin production and usually driven by antibiotic 
use. C. difficile produces two major virulence factors: 
toxin A (TcdA, an enterotoxin) and toxin B (TcdB, a 
cytotoxin). They are the largest bacterial toxins known, 
with molecular weights of 308 kDa and 279 kDa, re
spectively. Using a toxinotyping method based on 
PCR-RFLP analysis of a 19.6kb region encompassing 
the C. difficile pathogenicity locus PaLoc, 20 different 
toxinotypes (I to XX) have been established.12 These 
include variants of C. difficile that harbor deletions,
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insertions, polymorphic restriction sites in one or more 
of the genes within the PaLoc, but still generate func
tional TcdA and TcdB toxins.

Many different methods have been used to analyze 
the genetic relatedness among C. difficile isolates dur
ing nosocomial outbreaks. Experience with PCR ribo
typing, that uses specific primers complimentary to the 
3’ end of 16S rRNA gene and the 5 ’end of the 23S 
rRNA gene to amplify the variable-length intergenic 
spacer region, appears to have gained worldwide ac
ceptance with relatively easy application in epidemio
logical studies.3 Currently, over 190 ribotypes have 
been established and the database is available at the 
Anaerobe Reference Laboratory at the University of 
Wales Hospital, Cardiff, UK.

The results of various typing methods have demon
strated the heterogeneity of C. difficile showing that 
the organism consists of several groups. Not all mem
bers of these groups are associated with disease. How
ever, some have been associated with particular 
outbreaks. Recent experience indicates that the or
ganism is not uniformly susceptible to the same groups 
of antibiotics, in particular showing unusually consis
tent resistance to imipenem but not meropenem.4 So 
far, the relationship between the different groups (tox
inotypes and ribotypes) and antibiotic resistance pat
tern has not been well studied.

The aim of this study was to investigate and corre
late PCR-ribotypes, toxinotypes and antibiotic resist
ance patterns in clinical strains of C. difficile isolated 
from the stools of patients in 4 teaching hospitals in 
Kuwait.

MATERIALS AND METHODS

Bacterial strains: A total of 65 clinical isolates of 
C. difficile obtained earlier5 during a study on the ac
quisition of C. difficile by ICU patients in our hospital 
were included in this study. These were isolates ob
tained from stool samples of both symptomatic and 
asymptomatic patients 48 h post-admission to the In
tensive Care Units (ICU) of 4 major teaching hospitals 
in Kuwait.

Growth conditions and toxin production: Isolates 
were grown on Fastidious Anaerobe Agar (FAA; Lab 
M) supplemented with 5% horse blood in anaerobic at
mosphere at 37°C. Detection of toxin A production 
was achieved by using the ELISA (Tox-A) kits (Tech- 
Lab, BioConnections, Leeds, UK) and the procedure 
was carried out according to manufacturer’s instruc
tion. Toxin B was detected by cytotoxicity assay on 
Vero cells by assessing the cytopathic effects produced 
by filtered supernatant of C. difficile broth culture 
(Robertson Cooked Meat broth; Unipath, Basingstoke, 
UK) on the Vero cell lines.

PCR ribotyping and toxinotyping: The isolates 
were ribotyped as described earlier.36 Briefly, a single 
colony was subcultured on FFA supplemented with 5% 
horse blood and incubated overnight at 37°C. Crude

nucleic acid template was prepared by resuspension of 
10 colonies in lOOpl of Chelex-100 (Bio-Rad) and boil
ing for 10 min. The suspension was centrifuged at 
15,000xg to remove cell debris. The supernatant was 
then used for PCR ribotyping. DNA fragments were 
visualized by staining the Metaphore agarose gel for 
20 min in 0.5% ethidium bromide. Gel images were 
analyzed with GelCompar image analysis software (ver
sion 4.0; Applied Maths). PCR-RFLP technique was 
used for the toxinotyping of isolates according to pre
viously described methods.7 8 Briefly, DNA was ex
tracted with Chelex 100 (Bio-Rad Laboratories, USA). 
Subsequently, the strains were screened for variation in 
the first 3kb of tcdB (PCR fragment Bl) and the 3kb 
fragment spanning the repetitive region of ted A (PCR 
fragment A3) by PCR amplification as described pre
viously.7 Then, digestion with restriction enzymes 
HincII and AccI (for fragment Bl) and EcoRI (for frag
ment A3) was done as described previously.1 The tox
inotype was then determined according to the 
combination of restriction patterns in the PCR frag
ments B l and A3.1-2

Antimicrobial susceptibility testing (AST): AST 
was performed by determining the minimum inhibitory 
concentrations (MICs) of cefoxitin, clindamycin, 
imipenem, meropenem, and metronidazole using the 
Etest (AB, Biodisk, Slona, Sweden) method. Briefly, a 
48-h bacterial growth culture suspended in anaerobe 
broth and adjusted to 1.0 McFarland turbidity standard 
was inoculated onto a reduced Brucella agar plate (Uni
path, Basingstoke, UK) supplemented with 5% horse 
blood, hemin 5 pg/ml and menadione 1 pg/ml. The 
Etest strips of the tested antibiotics were applied onto 
the agar surface, and then incubated in anaerobic jars 
containing 10% C 0 2, 90% H2 for 48 h at 37°C. The 
MIC was read as the interception of the elliptical zone 
of inhibition with the strip. Trovafloxacin MIC was de
termined by agar dilution method recommended by the 
Clinical Laboratory Standards Institute (CLSI; formerly 
NCCLS).9The multiresistance (MDR) profile was based 
on resistance to 3 or more classes of antibiotics.

RESULTS

Ribotyping, toxinotyping and antibiotic suscepti
bility o f  C. difficile

Of 65 clinical isolates analyzed, 42 (64.6%) were 
toxin-producers (T) while 23 (35.4%) were non-toxi
genic (NT). Thirty (46.2%) isolates out of 65 were from 
patients with diarrhea. A total of 28 (66.7%) of 42 tox
igenic and 2 (8.7%) of the 23 non-toxigenic isolates 
were associated with diarrhea. The predominant ribo
types detected were ribotypes 097(T), 078 (T), 056 (T) 
and 039 (NT), which represented over 44% of the iso
lates (representative ribotypes are shown in Figure 1).

The 42 T strains, including those from sympto
matic patients, were toxinotyped; 30 (71.4%) were 
toxinotype 0 and 12 (28.6%) belonged to variant tox
inotypes: 4 (9.4%) to toxinotype XII and 8 (19%) to



f e O R R E L j^ j^ g ^ W ^ jite f iU G  ^ S T A N C E ,  TOXINOTYPES AND PCR RIBOTYPES IN CLOSTRIDIUM DIFFICILE ISOLATES FROM KUWAIT 63

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19
—  . __ __ ,

—  —  —

iWl Figure 1 - PCR ribotype 
profiles of representative clini
cal isolates of C lostridium d if
ficile.
Lanes 1 ,7 ,1 3 ,1 9  = lOObp; 
Lane 2 = 056; Lane 3 = 097; 
Lanes 4 and i l =  077; Lanes 
5, 6 and 14 = 078; Lane 8 = 
120; Lane 9 = 076; Lane 10 = 
002; Lane 12 = 001 (non-tox- 
inotyped environmental isolate); 
Lane 15 = 105; Lane 16 = 
001; Lane 17 = 129; Lane 18 
= NCTC 11209 (type 001)

“V-like” toxinotype in which amplified B l PCR frag
ments suggested toxinotype V but the A3 PCR frag
ment could not be amplified (See Table 1). Of the 30 
strains with toxinotype 0, 22 (82%) were associated 
with diarrhea. These strains were PCR ribotypes 097, 
076, 012, 077, 094, 105, 014, 078, and 046. How
ever, some strains of PCR ribotype 097 also belonged 
to more than one toxinotype (0, V).

All of the isolates were susceptible to metronida
zole and meropenem. As shown in Table 2, 43 out of 
65 (66.2%) of the clinical isolates were multiply resist
ant, i.e. resistant to 3 or more antibiotics. Their resist
ance pattern was divided arbitrarily into 3 groups 
according to various combinations of resistance pro
files: group 1, resistance to cefoxitin (C), clindamycin 
(C), imipenem (I) and trovafloxacin (T) i.e. (CCIT); 
group D, CCI; group IE, CIT. The analysis of individual 
isolates in relation to the multiresistance group, and 
toxin or non-toxin production, showed that out of the 
43 multiresistant isolates, only 3 (7%) were resistant to 
4 antibiotics (CCIT; all T strains) while 37 (86%) and 3 
(7%) were resistant to CCI and CIT, respectively. The 
strains resistant to CCIT and CIT were all toxigenic 
strains but only 24 (64.8%) of the 37 resistant to CCI 
were toxin-producers. All the MDR-strains had com
mon resistance to imipenem and cefoxitin.

Correlation between ribotypes, toxinotypes and  
antibiotic susceptibility:

Table 3  shows the 3 antibiotic resistance groups 
and the associated corresponding ribotypes. Of the 
prominent toxigenic ribotypes, 6 (75%) of the 8 ribo
type 078 were clustered in group II CCI resistance pat
tern and the remaining 2 in group I. Three (75%) each 
of the 4 ribotypes 056 and 076, and 4 (57.1%) of 7

Table 1 - PCR ribotypes and toxinotypes o f  the toxi
genic C. difficile strains from  sym ptom atic and non-symp- 
tom atic patients.

PCR
ribotypes
(n.) T oxinotypes C om m ents

078  (8) “V-like”* 078  normally belongs to  toxino
type V

097 (7) 0 Some strains (not these ones) were 
toxinotype V

076  (4) 0

056  (4) XII They do not have genes for binary 
toxin

077 (3) 0

002 (2) 0

0 14  (2) 0

094  (2) 0

105 (2) 0

106(2) 0

012  (1) 0 ■j i s- • L ..

013  (1) 0

054  (1) 0

120 (1) 0

129 (1) 0

131 (1) 0

*In these strains, B l fragm ent was amplified which 
showed RFLP as expected for toxinotype V but A3 PCR frag
m ent was not amplified which is unusual for toxinotype V. 
0 39  (NT) was Cdd3+ but there was no amplification of 
PaLoc.
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Table 2  - Distribution o f  the m ultiresistant groups am ong the toxigenic and non-toxigenic C. difficile strains.

Arbitrary grouping Resistance grouping N. of T strains N. of NT strains Total (%)

Cef, Clind, Imip, Trov 
Cef, Clind, Imip 
Cef, Imip, Trov

3
2 4

3

0
1 3
0

3 ( 7 )  

3 7  (86) 

3 ( 7 )

Cef: cefoxitin; Clind: clindamycin; Imip: imipenem; Trov: trovofloxacin; T: toxigenic strains; NT; non-toxigenic

Table 3  - Antibiotic resistance groupings, PCR ribotypes and toxino type d istribution o f  toxigenic C. difficile isolates.

Resistance grouping PCR ribotyping (no.) Toxinotype Total n. (%) (n=30)

I. Cef, Clind, Imip, Trov 0 7 8  (2) ”V-like” 3(10)
105 (1) 0

II. Cef, Clind, Imip 014  (2) 0 24 (80)
0 54  (1) 0
0 56  (3) XII
0 7 6  (3) 0
077  (1) 0
0 78  (6) “V-like”
0 94  (2) 0
097  (4) 0
129(1) 0
131 (1) 0

ID. Cef, Imip, Trov 0 1 3 (1 ) 0 3(10)
0 7 6  (1) 0
0 7 7  (1) 0

Cef: cefoxitin; Clind: clindamycin; Imip: imipenem; Trov: trovofloxacin.

ribotype 097 were also in group II. These strains were 
associated with symptomatic CDI patients. The major
ity of those that were toxinotyped in the 3 resistance 
groups were of toxinotype 0.

DISCUSSION

The identification of C. difficile as a major cause 
of hospital-acquired diarrhea has led to the application 
of various methods for typing this organism and many 
laboratories have thus focused on genotyping meth
ods. In this study, we correlated the relationship be
tween antibiotic resistance, PCR-ribotypes and 
toxinotypes in C. difficile isolates in Kuwait. Some in
teresting findings are worth highlighting. For example, 
the main toxinotypes in our country were 0, XII and 
“V-like” toxinotypes. So far no previous study exists 
on the prevalence and distribution of toxinotypes in 
Kuwait or in all Gulf State countries. This is in contrast 
with the Brussels and Anaerobe Reference Unit col
lections in Cardiff which already share toxinotypes 
from I to XV.1 Six (toxinotypes I, III, IV, VIII, IX and XII)

of these 15 toxinotypes have been described among 
the Japanese strains. In addition, 11 various toxino
types have been described in Asia (isolates from Japan, 
Korea and Indonesia).2 Approximately 71% of the tox
inotyped isolates in our study belonged to the “0” tox
inotype. This relatively high prevalence of 0 toxinotype 
is similar to the findings of Geric et. al. ,7 who reported 
a prevalence of 80.4% among their clinical C. difficile 
isolates. In that study, 11.1% belonged to various other 
toxinotypes. A much higher prevalence of toxinotype 
0 has been reported by other workers. Mutlu et a/.10 in 
Scotland reported a prevalence rate of 96.6% toxino
type 0 among their C. difficile isolates, with 2 toxino
type V isolates and single isolates for each of 
toxinotypes I, IV and XIII. The prevalence rate of 
28.6% of variant (not 0) toxinotypes in our study is 
comparable to the findings of others in Europe (21.5- 
25%)1211 and Asia (23.5%).2 Worthy of note in our re
port is the finding of a novel “V-like” toxinotype in 
ribotype 078, which differs from the V type in that the 
B l PCR fragment was amplified but the A3 fragment 
was not.
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Analysis of the strains according to the resistance 
pattern revealed that toxigenic strains were more re
sistant than non-toxigenic strains. Almost two-thirds 
(66.2%) of the resistant strains were MDR strains. Al
though this appears to be an alarming finding, its clin
ical relevance is in doubt as none of the strains were 
resistant to metronidazole or vancomycin, the drugs of 
choice for therapy of CDI. However, the observation 
is worth noting as the therapeutic options for infec
tions caused by particular toxinotypes, such as toxino- 
types 0 and “V-like” strains, become severely limited. 
Resistance to a combination of cefoxitin, clindamycin, 
imipenem and trovafloxacin, and cefoxitin, imipenem 
and trovafloxacin were exclusively seen in the toxigenic 
strains. In our study, only three of the isolates were re
sistant to 4 antibiotics and 2 of them were of ribotype 
078 with “V-like” toxinotype and the other one was 
ribotype 105 belonging to toxinotype 0. None of our 
isolates were resistant to metronidazole and 
meropenem. However, recently Baines and his col
leagues in Leeds, UK 12 have demonstrated the emer
gence of reduced susceptibility to metronidazole in 
24.4% of C. difficile that belonged to ribotype 001. 
Ribotype 001 is often associated with outbreak of CDI 
in the UK but this ribotype never featured in our pa
tients; only one strain of ribotype 001 has so far been 
found in the ICU environment of Amiri hospital in our 
country.13

The most predominant ribotypes (097, 078 and 
039) in our series were essentially similar to the ribo
types in our previous study.13These ribotypes were dif
ferent from those seen in the UK,6 Hungary14 and 
Poland.15 In Hungary, the main ribotype is 087 while 
in Poland ribotype 001 is the predominant one. Prior 
to the recognition of ribotype 027 in the UK, ribotype 
001 was the most common type which accounted for 
55% of hospitalized patients.6 Recently, C. difficile ri
botype 106 has become the predominant strain in 
England, accounting for 26% while ribotypes 027 and 
001 account for 25% each.16 However, it appears that 
the epidemiology of prevalent ribotypes continues to 
change rapidly in the UK, with ribotype 027 assuming 
a higher proportion. A more recent report in England 
has demonstrated that of 2,084 C. difficile isolates, 
42% were type 027, 19% were type 106 and only 
10% as type 001.17 However, in Scotland, ribotype 
106 accounts for 55% of all isolates while type 001 
for 21%. Ribotype 078, the most prevalent in our se
ries, has emerged in only 4 isolates. The most recent 
report from Ireland showed that the commonest ribo
types are 001 (35%), 106 (11.6%) followed by type 
078 (8.3%).17 In a recent outbreak in the Netherlands, 
25.3% of patients with CDI were due to type 027 
which belonged to toxinotype III.18 Interestingly, these 
reports contrast sharply with the findings in Kuwait 
where the prevalent ribotypes are 078 and 097. More 
and more of 078 are associated with animal origin al
though we did not investigate its association with any 
animal in this study.

In conclusion, the results obtained from our study

demonstrate that the strains of C. difficile in Kuwait 
are complex and heterogeneous. Although character
ization by toxinotyping or antibiotic resistance patterns 
appears to suggest that the majority of our strains may 
be closely related, the use of other typing method—es
pecially PCR ribotyping—demonstrates a wide varia
tion among the strains.
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Introduction:
C lostrid ium  difficile is a Gram-positive anaerobic bacillus often incriminated in 

hospital-acquired diarrhoea (1,2) which represents a spectrum of diseases 
known as C. d/flfc/fe-associated dseases (CDAD). This disease is mediated 

by elaboration of toxins A and B by the organism in the gut (2,3). CDAD is 
driven by a variety of environmental factors, including exposure to antibiotics. 
The objective of this study is to quantitatively determine the effects of 
different concentrations of antibiotics on cell-bound and cell-free cytotoxin B 

production.

Methods:

j
i
S

Figure 3 Cytotoxic activity of ceB-free and cefl-bound cytotoxin of C dWaite strain 233D

Ampicillin, cefotaxime, clindamycin, metronidazole and vancomycin were 

tested. These antibiotics are either incriminated as trigger drugs in CDAD or 
used for its therapy. Three toxigenic strains, 233D, A11A & 362C, isolated 

from clinical cases, pseudomembranous colitis (PMC), antibiotic-associated 

diarrhoea (AAD; Tox A-/B+) and antibiotic-associated colitis (AAC), 
respectively, and a negative control non-toxigenic strain (175) were used for 
the study. The strains were grown in liver broth and brain heart infusion 

containing MICs and sub-MICs of the 5 antibiotics. Filtered cell-free 
supernatant and supernatant of sonicated cells (Ultrasonic Homogenizer 
labsonic, Meisungen AG, Germany) were tested for cytotcxic activity (CA) on 

Vero cell lines. Positive result was represented by complete rounding of the
cels after exposure to the extracts for 24 h. See Fig 1 (negative control) & Fig b*«b4:cjw>* k m -,zt ca-nour* cyimm tic  < * * » »
2 (positive test). A11A

Ftgurv 1: Unlnocutattd Vwo C«ts Rgur» 2  Cytofurthlc XT»ct si C dtfVi*
cytotoxin B on Vero CH S:

Results:
E f fe c t  o n  P M C -ca u sIn g  s tr a in  2 3 3 D  (F ig u re  3)
•Clindamycin, on the average, induced the highest of cell-bound cytotoxin at al 
MIC and sub-MIC concentrations. The average cytotoxic activity (CA) was 915.7 
pgAnl which is 27-folds higher than the control, followed by metronidazole and 

vancomycin, 14.5- and 13.3- folds h itter than the control, respectively. 
-Ampicillin and cefotaxime induced more cell-free cytotoxin than the cell-bound 
cytotoxin, 17.4 and 10.1-fold versus 6.4 and 2.3-fold, respectively.

E f fe c t  o n  A A D -ca u slr tg  s tr a in  A 1 1 A  (F ig u re  4 f.
•Cefotaxime, amplcilin, metronidazole, vancomycin and clindamycin induced 
more cell-free cytotoxin than the cel-bound toxin. The cell-free c^otoxin were 

112-, 101-, 84-, 11.5- and 11.2- folds higher than the control; while the cel- 
bound cytotoxin were only 21-, 0.7-, 1.5-, 0.33- and 9-fold higher than the 

control, respectively.

Effect o n  A A C -c a u s in g  s tra in  362C (F igure  5 )
•Exposure to ampicillin, vancomycin, cefotaxime, metronidazole and clindamycin 

also induced more cell-free cytotoxin than the cell-bound cytotoxin. The cell-free 
cytotoxin were 24.2-, 22.8-, 16.5-, 7.7- and 3.9-folds higher than the control; 
while the cell-bound cytotoxin were 3.4-, 0.7-, 5.3-, 4.0- and 2.7- folds hicfier 
than the control, respectively.

E ffe c t  o n  n o n - to x ig e n ic  s tra in  1 75
•The non-toxigenic strain 175 dki not induce any cytotoxic activity in the 

presence or absence of antibiotic.

Figure 5 Cytotoxic activity of cel-free and ceB-bound cytotoxin of C. dtfnfe strain 362C

Conclusions
•Both the antibiotics that drive CDAD as well as those used in 
its therapy induced appreciable production of cell-free and cell- 
bound cytotoxic activities on contact with disease-producing C. 
difficile.
•Induction of both cell-free and cel I-bound cytotoxin was equally 
hi^i after exposing PMC strain 233D to the 5 antibiotics. It is 

noteworthy that induction of cell-bound cytotoxin was more 
prominent with this strain than the other non-PMC strains 

•Tlie highest cytotoxic activities occur mostly at sub-inhibitory 
concentrations.
•There appears to be no uniform relationship between antibiotic 
class and toxin production by C. difficile.
•There is no correlation between the severity of the illness and 
the level of cytotoxin production on Vero cells, except PMC and 

hi^i induction of cell-bound cytotoxin.
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