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Summary

Many different strategies have been developed for the analysis of microarray data and 

these have a significant influence on the level and quality of knowledge that may be 

achieved from a microarray-based experiment. Two such strategies are explored in this 

thesis.

Part A of this thesis describes explorations of a resource-efficient strategy that could 

allow for large-scale integration of microarray data in an unsupervised fashion. For this 

purpose, comparisons were carried out between a series of genelists manually extracted 

from the literature, representing a disparate set of microarray experiments. Initial results 

were highly unexpected, and are likely to have been caused by violations of the 

assumptions of the hypergeometric test used for assessing comparisons. Statistical 

modelling was found to successfully simulate these results; however the estimated net 

effect of these violations was found to be considerable. These findings strongly caution 

against the comparison of microarray experiments using their genelists.

Part B then describes the development of Gene Set Discovery (GSD), a novel 

methodology to perform threshold-free gene set analysis of microarray datasets without 

requiring sample class information. This was achieved by deriving a novel metric that 

allows for the selection of those gene sets that exhibit significant discrimination between 

samples. GSD was implemented on four microarray datasets and the results were found 

to be biologically plausible and/or in agreement with prior analyses of these datasets. 

These findings suggested that GSD could be a potentially useful tool for biological 

theme discovery in microarray datasets, particularly in studies of cancer where sample 

classification is problematic. Also described is a related methodology for extraction of 

informative genes from within selected gene sets, and a scheme for visualization of 

results in an integrated format.
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Chapter 1: Introduction

Chapter 1: Introduction

The work described in this thesis primarily concerns the implementation and 

development of methods with which to analyze and interpret data from microarray-based 

experiments. This chapter introduces some of the basic underlying concepts of 

microarray technology. It also aims to provide a broad overview of the analytical 

workflows, technical methodologies and strategies used for microarray data analysis. 

Because this is a constantly developing sphere of research with a varied range of 

available options, this chapter places emphasis on describing those concepts, methods 

and strategies that are relevant to work described in this thesis.

Section 1.1 examines the importance of high-throughput gene expression profiling, and 

the evolution of microarrays for this purpose. Section 1.2 then introduces Affymetrix 

GeneChip technology and the generation of gene expression data. Section 1.3 describes 

several different strategies for microarray experimental design and analysis, the choice 

of which to use depends on the aims of an experiment. Section 1.4 describes the 

underlying concepts of methodologies that have been popularly used to aid the 

biological interpretation of microarray data. In particular, this section describes methods 

used to link microarray data to prior biological knowledge. Section 1.5 examines the 

concepts and strategies used for integration of data from different microarray-based 

experiments. Finally Section 1.6 describes the scope and structure of work described in 

this thesis, as well as guidance regarding the terminology used.
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Chapter 1: Introduction

1.1 Gene expression profiling using microarrays

1.1.1 The paradigm shift in molecular biology

A grand aim of molecular biology studies has been to elucidate how information coded 

in the genome is used for the development and maintenance of a functional living 

organism. Prior to the development of some of the technologies described below, most 

research was carried out by studying the functions of one gene at a time. However, the 

biochemical processes of life involve complex networks and interactions between genes 

and gene products, and the scope for such a ‘reductionist’ approach to capture these 

complexities is limited (Vukmirovic and Tilghman 2000).

Over the past 10-15 years, there have been several technological advancements that have 

allowed for molecular biology studies to be carried out using a ‘holistic’ approach. One 

of the first such developments was that of high-throughput whole-genome sequencing 

technologies, which has led to the sequencing of complete genomes of hundreds of 

organisms, including humans (Lander et al. 2001; Venter et al. 2001). While genome 

sequences (along with the information derived from sequence analyses) can be thought 

o f as ‘gene catalogues’ representing lists of all the components of a functional genome, 

other high-throughput ‘post-genome’ technologies have been developed that allow 

global studies of the interactions and relationships between these components. One of 

the most widely used of these technologies is DNA microarrays (Pease et al. 1994; 

Schenaetal. 1995).

Microarrays allow for global gene-expression profiling, by monitoring the levels of 

mRNA expressed by thousands of genes simultaneously. The mRNA complement of a 

cell (i.e. its transcriptome) is a major determinant of phenotype and function. Unlike the 

genome, it is highly dynamic, changing rapidly and dramatically both during normal 

cellular events (such as cell division), or in response to external stimuli (such as 

treatment with a drug) (Lockhart and Winzeler 2000). The rationale for the use of

14



Chapter 1: Introduction

microarrays is that observation of the levels of gene expression (i.e. mRNA abundance), 

and the conditions for expression, can provide clues about the functions of genes. 

Patterns of expression shared by many genes can inform about broader biochemical 

themes and processes (such as pathways and regulatory mechanisms), as well as 

interactions between genes and gene products. Simultaneous observation of large 

numbers of genes (such as all genes of an organism) allows for identification of 

potentially all genes relevant to particular experimental conditions.

Microarrays have been used for a wide variety of applications, such as biomarker 

identification, pharmacogenomics, toxicogenomics, disease class discovery, etc. While 

microarrays have been developed for other purposes, such a detection of mutations 

(‘genotyping arrays’), this thesis only concerns use of microarrays for gene expression 

profiling.

1.1.2 The development of microarray technology

The key principle underlying microarray technology is that complementary nucleic acid 

(DNA or RNA) strands hybridize to each other. This principle has formed the basis for 

several established molecular biology techniques, such as Southern and Northern 

blotting. In Southern blotting, short nucleic acid sequences are radio-labelled and used 

as ‘probes’ to hybridize to DNA sequences that have been separated on the basis of size 

by gel electrophoresis. The occurrence of binding is then visualized using radiation- 

sensitive photographic film. In Northern blotting, the probes are hybridized to mRNA 

instead. In both cases, the intensity of the radio-labelled probe on the film is then used as 

a semi-quantitative measure of the amount of DNA/RNA present, as compared to a 

known standard.

The use of arrays for gene expression profiling has developed from the idea of a mass 

parallel version of these blotting techniques (Lander 1999), with a key distinction being
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Chapter 1: Introduction

the immobilization of probes to a solid substrate. The first such arrays (‘macroarrays’) 

involved spotting of cDNA libraries (usually of unknown sequence) as probes onto 

porous nylon membranes, onto which radio-labelled mRNA was hybridized. The 

microarrays that are used today have evolved from these, and involve great 

improvements in terms of experimental efficiency and information content. Several 

factors have aided the development of microarrays, such as the use of non-porous solid 

substrate (glass slides), the use of fluorescence for detection (as opposed to radio- 

labelling) and the development of technologies for synthesis or deposition of probes on 

substrates at very high densities (Lockhart and Winzeler 2000).

1.1.3 Overview of microarray technologies

There are several different techniques that can be used to create microarrays, which in 

turn require different experimental workflows and data analysis pipelines. However, all 

these aspects share some fundamental principles. Firstly, in all cases, the nucleic acid 

sequences representing the probes are bound to solid surfaces (usually glass slides) at 

known positions, using a variety of techniques. Next, expressed mRNA is extracted from 

an experimental sample and converted into cDNA by reverse transcription. This is then 

labelled using fluorescent dyes, eluted onto the arrays and allowed to hybridize. 

Hybridization is detected by fluorescence following laser excitation, and the intensity of 

the fluorescence is used to compute an estimate of expression levels. Details of two of 

the most popularly used microarray technologies are described below.

1.1.3.1 cDNA (‘spotted’) microarrays

cDNA microarrays (Brown and Botstein 1999) are created by robotic spotting of entire 

cDNA/EST sequences onto glass slides at precise pre-defined points, to be used as 

probes. Normally, these are used to assess differential expression between two samples: 

cDNA reverse-transcribed from mRNA extracted from one sample is labelled with a 

green fluorescent dye (Cy3), and that from the other with a red fluorescent dye (Cy5).
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The labelled cDNA is mixed and allowed to co-hybridize on the slide. The slide is then 

scanned using two different wavelengths of a laser to obtain the intensities for each dye 

used (two-channel detection).

1.1.3.2 High-density oligonucleotide microarrays

Oligonucleotide arrays (Lipshutz et al. 1999) are created using photolithographic 

techniques that allow for extremely high feature density with complete control of 

sequences used as probes. Typically, a set of probes comprising of unique sequences are 

used to represent a single gene or expressed sequence tag (EST). cDNA reverse- 

transcribed from the mRNA from each sample is labelled and hybridized onto separate 

arrays, each of which is laser-scanned separately (single channel detection).

1.1.3.3 Choice of microarrays

The choice of which microarray technology to use is decided by the needs of the 

researcher, and both technologies described above have advantages and disadvantages 

relative to each other. cDNA microarrays are typically designed and produced by the 

researchers themselves, and this system allows a great deal of flexibility with regards to 

array design and features. This also does not require prior knowledge of the sequence of 

the probes, which is useful for experiments on organisms for which availability of 

sequence data is limited. Oligonucleotide microarrays are usually designed and produced 

by commercial manufacturers, and require sequence information for probes. However, 

this removes the resource-intensive and potentially error-prone requirement for 

researchers to maintain and use cDNA libraries for probes.
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1.2 Affymetrix GeneChip technology

Asymetrix is one of the largest commercial manufacturers of high-density 

oligonucleotide microarrays. All data presented in this thesis are derived from 

experiments carried out on this platform.

1.2.1 Experimental workflow and data generation

1.2,L l Array design

The Affymetrix GeneChip microarrays consist o f oligonucleotide probes (25 nucleotides 

long) synthesised by a photolithographic process. Each gene is represented by one or 

more probe-sets, each comprising of 11-20 perfect-match (PM) oligonucleotide probes 

and 11-20 corresponding mismatch (MM) probes. The PM probes have sequences that 

are complementary to sequence fragments of a particular gene. The MM probes are 

identical to the PM probes except with a single base substitution at position 13 (out of 

25). Figure 1.1 displays the Affymetrix probe-set design strategy for eukaryotic 

organisms. Affymetrix claims that MM probes allow for quantification of (and 

subsequent control for) background noise and cross-hybridization by transcripts from 

different genes. The sequences used to design the probes are derived from several public 

sequence databases, such as UniGene, RefSeq, GenBank and dbEST (Affymetrix 2001).

1.2.1.2 Sample processing

The typical experimental workflow for samples from eukaryotic organisms is described 

as follows: first mRNA is isolated from cells (which may be from a tissue sample or a 

cell line), and then reverse-transcribed into double-stranded cDNA.
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5'
mRNA reference sequence

3'

„  _ Spaced DNA probe pairs
Reference sequence

TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC
AATGGGTCAGAAHGACTCCTATGTGGGTG Perfect Match Oligo 
AATGGGTCAGa J J s ACTCCTATGTGGGTG Mismatch Oligo

Perfect match probe cells
Fluorescence Intensity Image

Mismatch probe cels

Figure 1.1 A ffym etrix probe-set design strategy. This figure is reproduced from 

Figure 2b in Lipshutz et al (1999)

The next stage involves amplification of this cDNA into biotin-labelled cRNA which is 

then fragmented. This cRNA is then eluted over an array to allowr for hybridization to 

occur over an extended period of time (16 hours) at optimal hybridization temperatures. 

It is assumed that the amounts of cRNA that hybridize to their respective probes is 

proportional to their relative levels within the original sample. Following this, 

unhybridized material is washed away and a fluorochrome (streptavidin-phycoerythrin) 

is added to bind to the biotin-label on the hybridized cRNA. The array is then placed in a 

scanner where a laser is applied to excite the fluorochrome. An image of the array is 

stored as a DAT file, recording the intensity of fluorescence for each probe in many 

pixels. Using software included with the scanner, a single intensity value is calculated 

for each probe using all pixel intensities for that probe. These probe intensity values are 

stored in a CEL file.
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1.2.2 Data pre-processing

The probe intensity values contained in CEL files represent the ‘raw data’ from 

microarray-based analyses. However, a series of data manipulation and statistical 

modelling steps are usually carried out to make this data comparable within and across 

arrays. Such pre-processing is carried out to produce biologically meaningful data that 

can then be used for expression analysis. Many pre-processing methods are now 

available; the Affycomp (Cope et al. 2004) initiative to benchmark these methods has 

been used to assess nearly 90 such methods (as of July 2009). However it is still unclear 

as to which is the method is the ‘best’ (Allison et al. 2006).

Most of these methodologies have in common a three-stage approach (Bolstad et al. 

2005; Gentleman and Huber 2008): one stage involves ‘background correction’ to 

control for any non-specific signal (as may be caused by cross-hybridization of non- 

target transcripts with similar sequences), and to identify a detection threshold. Carrying 

out of this stage helps make the data across an array comparable, and increases array 

sensitivity.

The second stage is the process of ‘between-array normalization’ which is performed to 

minimize undesirable technical variability between data across the arrays, as may be 

caused by differences in handling, labelling, hybridization and scanning of different 

arrays. This stage is necessary to make the data comparable across chips, and to ensure 

much of the variability between arrays is due to biological reasons (which are of interest 

to a researcher).

The final stage is ‘summarization’; this is particularly relevant to data from Affymetrix 

arrays because a probe-set representing a single gene transcript on an array comprises of 

11-20 different probes. This process then involves combining the multiple probe 

intensity values for each probe-set to produce a single gene expression value for that 

probe-set.
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Two of most widely used pre-processing methodologies are described below.

1.2.2.1 Microarray Suite 5.0 (MASS)

MAS5 (Affymetrix 2002) is the software developed by Affymetrix for pre-processing of 

microarray data, and utilizes probe intensity data for both PM and MM probes. 

Background correction is carried out by using the lowest 2% probe intensities for 

various regions of the array to calculate background values for those regions. Probe 

intensities are then adjusted using a weighted average of each of the background values. 

Between-array normalization is carried out using a scaling technique: a baseline array is 

selected and all other arrays are scaled to have the same mean intensity as this array. 

Summarization is carried out by calculating a ‘Signal’ value representing the expression 

level for each probe-set, using intensity values for all PM probes and adjusting these for 

intensity values of all MM probes. MAS5 also provides for each probe-set, a ‘Detection 

Call’ to indicate if the transcript represented by a probe-set is ‘Present’, ‘Marginal’ or 

‘Absent’.

1.2.2.2 Robust Multichip Average (RMA)

The RMA algorithm, which was developed by independent researchers (Irizarry et al. 

2003), utilizes intensity values for only the PM probes. Background correction is carried 

out by modelling probe intensity values as the sum of a Gaussian noise component and 

an exponential signal component. Between-array normalization is performed by using 

quantile-quantile normalization to impose the same empirical distribution of intensities 

to each array. Summarization is based on a multi-array model using the ‘median polish’ 

algorithm to robustly estimate central tendency.
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1.3 Microarray data analysis strategies and workflows

Pre-processing of Affymetrix microarray data is usually followed by one or more steps 

of data transformation, such as log transformation, and gene-wise mean/median centring. 

This yields a ‘gene expression matrix’ which is the starting point for all subsequent data 

analysis. It comprises of a matrix where the rows represent genes (probesets) and the 

columns represent experimental conditions (samples). The cells are filled with numbers 

representing the expression level of a gene within a sample.

The following sections describe categories of statistical methodologies and data mining 

techniques that are commonly used to analyze microarray data. These can be divided 

into two broad categories on the basis of whether or not they utilize information 

regarding the samples (Allison et al. 2006; Butte 2002; Causton et al. 2003; Dudiot and 

Fridyland 2003; Tarca et al. 2006). The choice of the data analysis workflow depends on 

the nature and design of the experiment, as well as the information desired by the 

researcher.

1.3.1 Supervised Analysis -  Class comparison and prediction

Methodologies used to analyze microarray data can be considered to be ‘supervised’ if 

they require knowledge regarding the classes of samples. These classes usually represent 

two or more different experimental conditions. Sample class information may be known 

a priori during the experimental design phase (for example, normal versus diseased 

samples, cells treated with a chemical versus untreated cells, or different times points of 

a developmental process) or may be derived through unsupervised class discovery 

studies (see Section 1.3.1.2).
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1.3.1.1 Class comparison: assessing differential gene expression

The primary objective of class comparison studies is to assess whether the expression 

profiles of samples representing two or more classes are different, and to identify which 

genes exhibit differential expression levels across these sample classes. Typically, these 

involve performing a statistical test to assess the significance of differences in gene 

expression levels across sample classes for each gene separately. A wide range of tests 

have been used for this purpose (Jeffery et al. 2006; Pan 2002), such as variants of the 

Student’s t-test for two-group analyses and variants of the analysis of variance 

(ANOVA) test for when more than two groups are being analyzed. Genes can then be 

ranked on the basis of some metric derived from these tests and then selected using a 

pre-defined cut-off value to indicate significance (typically, a p-value of <0.05).

An issue that arises because of the performance of separate statistical tests on each of 

several thousand genes is that of the potentially large number of ‘false positives’ that 

would be expected. For example, when selecting genes exhibiting p-values of less than 

0.05 after carrying out a statistical test for differential expression on 20,000 genes, it is 

expected to select as many as 1,000 genes simply by chance alone (and not for any 

biological reasons). For this reason, it is considered necessary to carry out some form of 

‘multiple testing correction’, such as the Benjamini-Hochberg FDR method (Benjamini 

and Hochberg 1995) to increase p-values in proportion to the number of tests being 

performed (i.e. the number of genes being tested). Because the stringency of these tests 

increases with the number of genes analyzed, it has also become standard practice to 

carry out ‘non-specific filtering’ of genes to reduce this ‘gene universe’ size (Huber et 

al. 2008; Scholtens and Heydebreck 2005). These include removing genes that fail to 

exceed threshold levels of expression (such as those used by the MAS5 algorithm to 

assign Detection Calls of ‘Present’), or variability (because genes exhibiting stable 

expression levels across sample classes are unlikely to be of interest).
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1.3.1.2 Class prediction: developing sample classifiers

The objective of class prediction (also known as ‘classification’) techniques is to build a 

set of genes (a ‘classifier’) using samples with known classes that can classify other 

samples for which class information may not be available. Given a dataset with known 

sample classes, class prediction is typically carried out by first using a subset of this data 

(the ‘training set’) to derive a classifier. The accuracy of class prediction achieved by the 

classifier is then tested on another subset of the data (‘validation’). Having assessed the 

quality of the predictions, the classifier can then be used on new datasets. Several 

different supervised machine learning algorithms have been used for this purpose, such 

as support vector machines, neural networks and decision trees (Allison et al. 2006; 

Butte 2002; Causton et al. 2003; Quackenbush 2001).

1.3.2 Unsupervised analysis -  Class discovery

Unsupervised analysis of microarray data requires no prior knowledge of sample classes. 

The objective of such analyses is to ‘discover’ classes of genes and samples within a 

microarray dataset by identifying groups of genes and samples on the basis of their 

expression profiles. For this purpose, methods are used to find any underlying structure 

within the data with respect to shared patterns of gene expression.

Class discovery in microarray data was first described by Golub et al (Golub et al. 

1999), who achieved automated separation of acute myeloid leukaemia (AML) and 

acute lymphoblastic leukaemia (ALL), as well as differentiation between B-cell ALL 

and T-cell ALL, without requiring prior knowledge of these cancer classes. Indeed, class 

discovery has found much utility in studies of cancers, where morphological and 

histological methods may not provide adequate discrimination between tumour sub- 

types. For example, Alizadeh et al (Alizadeh et al. 2000) used hierarchical clustering to 

identify two previously unknown sub-groups of diffuse large B-cell lymphoma 

(DLBCL) samples. These new sub-groups corresponded to highly significant differences
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in patient survival rates and prognoses, even though the samples were not 

morphologically distinct. There are many other such examples in the published literature 

(Bittner et al. 2000; De Cecco et al. 2004; Ivshina et al. 2006; Perou et al. 2000).

Several different techniques have been used for class discovery in microarray data, such 

as clustering and self-organizing maps. Described below are two of the most popularly 

used clustering methodologies:

1.3.2.1 Hierarchical clustering

A key concept used by hierarchical clustering techniques is that of ‘distances’. These 

represent quantifications of the dissimilarity between any pair of genes or samples in a 

microarray dataset, based on their expression profiles. For this purpose, genes can be 

considered to be points in M-dimensional space, for an experiment with M number of 

samples (Kuruvilla et al. 2002). Similarly, samples can be considered to be points in N- 

dimensional space, where N represents the number of genes being considered. A number 

of distance metrics can be derived from this model, using, for example, the Euclidean 

distance between any two points, or the vector angle (as the cosine distance). One such 

popularly used distance measure is the Pearson’s correlation distance, which is 

equivalent to using the vector angle for mean-normalized data (Eisen et al. 1998).

Hierarchical clustering algorithms then use these distances to build a tree (‘dendrogram’) 

to represent the hierarchical structure of the data. The ‘nodes’ represent genes or 

samples and the ‘branch’ lengths are based on the pre-calculated distances. ‘Divisive’ 

hierarchical clustering methods start off by considering all objects (genes or samples) to 

be part of a single cluster and divide this into further sub-clusters. This is iterated by 

considering each sub-cluster separately till all objects are separated from each other. 

‘Agglomerative’ hierarchical clustering methods start by considering each gene/sample 

to be separate clusters. The most similar objects are then considered to be a single 

cluster and the distances between this cluster and all other objects are re-calculated. The
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object closest to the new cluster is added to this cluster; this is iterated till all objects are 

grouped in a single cluster. Using a pre-defmed distance, or one decided by the user 

having inspected of the dendrogram, the tree can be ‘cut’ at certain points to define the 

final clusters.

One technique that has widely been used for cluster analysis of microarray data (and in 

microarray data visualization schemes such as ‘heatmaps’) is agglomerative hierarchical 

clustering utilizing the Unweighted Pair Group Method with Arithmetic mean 

(UPGMA) method. This uses the average distance between every point in one cluster to 

every point in another cluster as the measure of cluster distance (‘average linkage’).

1.3.2.2 K-means clustering

K-means is a ‘partitioning’ clustering technique that differs from hierarchical clustering 

in that it does not produce a hierarchical structure of objects, does not require pre­

calculation of all pair-wise distances between objects, but does require a user-defined 

number of clusters (K). This is carried out by random (or heuristic) assignment of all 

objects to K number of clusters. The distances between each object and cluster center 

(‘centroid’) are calculated, and each object is re-assigned to the cluster with the nearest 

centroid. This is iterated by recalculation of centroids (of the newly formed clusters) 

until the centroids stabilize or a pre-defmed number of iterations is achieved.
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1.4 Biological interpretation of microarray data

The results derived from the strategies and data analysis pipelines described in Section

1.3 may be sufficient for certain microarray-based experiments. For example, having 

derived a list of genes that exhibit significantly differential expression levels across 

disease and non-disease samples, these genes may then be used as candidate biomarkers 

for the disease. However, in most cases, a natural progression would be to attempt to 

interpret these results in terms of their underlying biology. This could provide further 

insight into the biological mechanisms that are relevant to an experiment.

One of the most widely used strategies to achieve this is to investigate microarray data in 

the context of ‘biological themes’. Such themes include biochemical pathways and 

processes, and can be represented as sets of genes known a priori to be relevant to any 

particular theme (‘gene sets’). Investigation of microarray data in terms of biological 

themes can be termed as ‘gene set analysis’ (GSA), and currently there are many options 

for this purpose: Huang et al have identified and reviewed as many as 68 different 

methodologies (Huang da et al. 2009). Key to the utility of these methodologies has 

been the development of publicly available databases that store information regarding 

biological themes in an electronic format that allows for automated analyses. This 

section first describes these databases, and then introduces two broad categories of GSA 

techniques.

1.4.1 Gene annotation databases

The Gene Ontology database (Ashbumer et al. 2000) comprises of annotation data for 

genes of a wide range of species. This was created by using a controlled vocabulary to 

describe and represent a priori biological knowledge regarding these genes and their 

products. The components of this vocabulary (‘GO terms’) each have a unique identifier, 

and are grouped into three different categories, representing different types of
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information for any particular gene and gene product. The are biological processes, e.g. 

“apoptosis” (G0:0006915); molecular functions, e.g. “kinase binding” (G0:0019900); 

and cellular components, e.g. “plasma membrane” (G0:0005886). Each of these GO 

terms can be thought of as biological themes; thus any theme can be represented as the 

set of genes that are annotated with a particular GO term.

Other sources of gene sets that have been used as biological themes by GSA 

methodologies include biological pathway annotation databases such as the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al. 2004) and Biocarta 

(BioCarta 2005).

A key difference between GO and other sources of gene sets is that GO includes a 

framework of relationships between terms. Typically, GO terms representing larger, 

more general themes are considered to be ‘parents’ of GO terms representing smaller, 

more specific themes. For example, all genes that are annotated with the GO term 

“neurogenesis” (G0:0048699) are also annotated with the parent of this term, which is 

“nervous system development” (G0:0007399), but not the other way around. Parent- 

child relationships between GO terms are arranged in the form of directed acyclic 

graphs.

1.4.2 Threshold-based’ gene set analysis

Many of the earliest methodologies to carry out GSA were Over-Representation 

Analysis (ORA) techniques that attempted to identify ‘enrichment’ of biological themes 

within lists of ‘interesting’ genes that had been derived by analysis of microarray data 

(‘genelists’); for example, a list of genes found to exhibit significantly different levels of 

expression across two experimental conditions, as assessed by a t-test. A considerable 

number of such tools are now available, and have been reviewed by Khatri (Khatri and 

Draghici 2005), Huang (Huang da et al. 2009) and Rivals (Rivals et al. 2007). Typically,
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these methods first identify the number of genes annotated to a particular biological 

theme that are present in the genelist from an experiment, and then use statistical tests to 

assess if this observed number is significantly greater than what might be expected by 

chance. Statistical models commonly used by these methods include the hypergeometric 

distribution, Fisher’s exact test, the x-squared test and the binomial distribution (Huang 

da et al. 2009; Khatri and Draghici 2005; Rivals et al. 2007).

ORA-based methods for GSA have been referred to as ‘threshold-based’, to indicate that 

these methods test genelists that have been derived using some statistical threshold (for 

example, using a p-value cut-off of <0.05 after testing all genes for differential 

expression). This is the key aspect that differentiates ORA-based GSA methods from the 

category o f GSA methods that is described below.

1.4.3 Threshold-free’ gene set analysis

This category of GSA methods does not require selection of genelists; rather many of 

them require as input a list of all genes considered in an experiment (i.e. all genes 

represented on a microarray) ranked according to their adherence to some pre-defined 

pattern of expression across all samples. As there is no implementation of a statistical 

cut-off to identify genelists for further investigation, these methods have been termed 

‘threshold-free’.

A particular issue regarding the use of genelists by the threshold-based methods 

described in the previous section is that there is bias for selection of genes that show the 

greatest levels of differential expression (for example, in terms of fold-change) into 

genelists. Such a strategy may fail to detect structure within the dataset that could be of 

interest to a researcher: for example, if a significant proportion of genes associated with 

a particular pathway show consistent changes of expression levels across experimental 

conditions, this pathway is likely to be of interest to a researcher. However if these
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changes are relatively small in magnitude, it is likely that these genes may not be 

selected into genelists and detection of this pathway may be missed altogether (Ben- 

Shaul et al. 2005; Breitling et al. 2004; Huang da et al. 2009; Nam and Kim 2008; 

Subramanian et al. 2005). Indeed, for small and noisy datasets, few or no genes may 

exceed threshold levels of significance. Another issue is the arbitrary nature of setting 

thresholds for selection of genelists -  changing threshold values could lead to different 

results from ORA-based GSA methods (Pan et al. 2005). Threshold-free methods 

attempt to mitigate these issues by doing away with the need for selection of a genelist.

Many such methods are now available (Nam and Kim 2008), and one of the most 

popular of these is Gene Set Enrichment Analysis (GSEA) (Mootha et al. 2003; 

Subramanian et al. 2005). This methodology can be summarized as follows: all genes on 

an array are first ranked according to their differential expression across two sample 

classes using some metric. The positions of genes associated with any one gene set are 

then identified in this ranking. To test whether the genes for this gene set are enriched 

toward the top or bottom of the ranked list, an Enrichment Score (ES) is calculated, 

which is equivalent to a weighted Kolmogorov-Smimov-like statistic. The significance 

of the ES value is estimated by comparison with a null distribution of ES values which is 

calculated by permuting sample class labels and recalculating ES values for that gene set 

for each permutation.
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1.5 Integration of microarray data from different experiments

Microarrays have proven to be highly popular tools for biological research, and this is 

reflected in the development of publicly available databases containing raw data derived 

from hundreds of microarray based experiments such as the Gene Expression Omnibus 

(GEO) (Edgar et al. 2002) and ArrayExpress (Parkinson et al. 2007). The previous 

section described how further biological insight could be obtained by the integration of 

the results of a microarray-based experiment with other sources of information, such as 

biological annotation. The availability of data from hundreds of microarray-based 

experiments then allows for the prospect of another level of integration: that of data 

from different microarray experiments. Such integration could provide opportunities for 

improved sensitivity and validation of the results of microarray experiments, as well as 

deeper biological insight than may be achieved through the analysis of a single 

microarray dataset in isolation.

1.5.1 The need for integration of microarray data

A significant issue regarding the results of any single microarray based experiment 

considered in isolation is that microarrays “sacrifice specificity for scale” (Troyanskaya

2005): the expression data derived from any experiment involves that of several 

thousands of genes, measured over a relatively small number of samples. The 

sophisticated statistical methodologies used to analyse microarray data offer limited 

control of noise and technical variation, often at the cost of sensitivity of detection. 

Furthermore, validation of the results derived from any microarray based experiment is 

required to be carried out using experimental procedures such as RT-PCR and Northern 

blotting.
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1.5.1.1. Validation of results of microarray based experiments

Validation of the results derived from statistical analyses of microarray data (for 

example, a list of differentially expressed genes) using experimental procedures is 

expensive and resource-intensive (Kim and Park 2004). Furthermore, such validation is 

typically carried out only on a non-randomly selected (and thus potentially biased) 

subset of these results (Moreau et al. 2003).

The integration of the results of any particular microarray based experiment with those 

of other biologically similar experiments could provide a resource-efficient and 

objective validation of these results. The rationale for such a strategy is that it could 

allow for control of laboratory and platform-specific effects. For example, if a group of 

genes is found to be differentially expressed in each of several similar experiments 

which have been carried out in different laboratories, with different experimental 

protocols and on different platforms, then this provides strong evidence of the biological 

relevance of these genes and of the reliability of these results (Aggarwal et al. 2006; de 

Magalhaes et al. 2009; Hu et al. 2005; Hwang et al. 2004; Keegan et al. 2007; Moreau et 

al. 2003; Schlicht et al. 2004; Wamat et al. 2005; Xu et al. 2005; Zhou and Gibson

2004).

1.5.1.2 Increasing sample size to achieve greater sensitivity

The key feature of statistical techniques that are used to identify relevant genes within a 

microarray dataset is to distinguish between ‘true’ biological variations and undesirable 

technical variations. However, due to the high levels of noise inherent to microarray 

datasets, the power to detect genes that exhibit changes in expression that are 

biologically relevant but low in magnitude is diminished. The statistical power of these 

analyses can be increased by increasing the sample size of an experiment; however, this 

is also limited by the costs of running more arrays as well as availability of samples. 

Integration of several different analogous microarray datasets could increase the power 

to detect differentially expressed genes by increasing the sample size for an experiment
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(Choi et al. 2004; Grutzmann et al. 2005; Hamid et al. 2008; Hu et al. 2005; Kim and 

Park 2004; Mulligan et al. 2006; Wang et al. 2004).

1.5.2 Methodologies and experimental strategies for integration of 
microarray data

1.5.2.1 Meta-analysis

‘Meta-analysis’ refers to the use of statistical techniques to combine the results of 

several different experiments. The first such meta-analysis of microarray data was 

carried out by Rhodes et al, who reanalyzed four prostate cancer datasets to determine 

genes that were differentially expressed in all the datasets (Rhodes et al. 2002). Meta­

analyses have subsequently been carried out successfully in many different studies, 

where they have been shown to provide significant improvements in terms of the 

reliability of results as well as sensitivity of statistical tests, as compared to analysis of 

single datasets in isolation. These include studies of gastric cancer (Aggarwal et al.

2006), pancreatic cancer (Grutzmann et al. 2005), breast cancer (Smith et al. 2008), lung 

cancer (Parmigiani et al. 2004), alcohol consumption (Mulligan et al. 2006), and 

Drosophila circadian rhythms (Keegan et al. 2007).

While meta-analytical techniques combine the results of analyses of different microarray 

datasets carried out separately, many studies have involved combining of the datasets 

themselves followed by a single analysis of the combined dataset (Borozan et al. 2008; 

Choi et al. 2003; Hu et al. 2005; Stevens and Doerge 2005; Wang et al. 2004; Wamat et 

al. 2005; Xu et al. 2005). While these studies have also described significant advantages 

as compared to analyses of single datasets in terms of reliable results, their particular 

strength is the increased power to detect relevant genes due to the considerable increases 

in sample size.
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1.5.2.2 Cross species integration o f microarray data

The development of databases such as Homologene (Wheeler et al. 2008), Resourcerer 

(Tsai et al. 2001) and Inparanoid (O'Brien et al. 2005), which store relationships 

between homologous genes across a wide range of species in an electronic format that is 

accessible and useable, has allowed for the performance of cross-species integration of 

microarray data.

The principle that core biological networks and pathways are evolutionarily conserved 

across species is the basis for the use of model organisms for the study of human 

diseases (for example, mouse models of cancer). On this same basis, cross-species 

integration of microarray data could be a powerful tool for validation of microarray data 

(for example, if similar sets of genes are found to be relevant within similar microarray 

experiments carried out on diverse species, it unlikely that these genes were selected due 

to chance or technical effects), as well as help understand evolution of these processes 

(Lee et al. 2005; McCarroll et al. 2004; Zhou and Gibson 2004).

Cross-species integration of microarray data have successfully been carried out in many 

studies, such as those of aging (de Magalhaes et al. 2009; McCarroll et al. 2004; 

Wennmalm et al. 2005), liver cancer (Fang et al. 2005; Lee et al. 2004), lung cancer 

(Sweet-Cordero et al. 2005), breast cancer (Chan et al. 2005), prostate cancer (Ellwood- 

Yen et al. 2003; Schlicht et al. 2004) and COPD (DeMeo et al. 2006).

7.5.2. J  Experimental integration o f microarray data

Integrative analysis of microarray data has not only been used for the purposes of 

validation or increasing sample size: often, such data integration may be an exploratory 

(hypothesis-generating) or a confirmatory (hypothesis-driven) experiment in itself:

Chang et al (Chang et al. 2004) used fibroblast gene expression profiles to derive a set of 

genes representing wound healing and applied it to several different cancer datasets;
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their subsequent findings supported their initial hypothesis of a link between wound 

healing and cancer.

Rhodes et al (Rhodes et al. 2004) carried out a large scale meta-analysis of -40 

microarray based studies of cancer to derive a common transcriptional profile for 

neoplastic transformation that was shared across a wide range of cancer types, regardless 

of cell of origin.

Using an approach termed ‘comparative functional genomics’, Lee et al integrated data 

from microarray based experiments of human hepatocellular carcinoma with those of 

several mouse models of the disease (Lee et al. 2004); using unsupervised class 

discovery techniques (such as those described in Section 1.3.2), they were able to 

identify ‘best-fit’ mouse models for the disease.

Sweet-Cordero et al integrated human and mouse microarray data (Sweet-Cordero et al.

2005) using GSEA and showed firstly that the KrasLA mouse model could successfully 

represent only human lung adenocarcinoma (as opposed to other lung cancers), and 

secondly that a link between KRAS2 mutations and human lung adenocarcinomas could 

only be established by integration with the mouse model data.

35



Chapter 1: Introduction

1.6 Notes for readers

1.6.1 Thesis scope and structure

The work described in this thesis has been divided into two parts: A and B. Part A 

comprises of Chapters 2-5, which describe research involving cross-platform and cross­

species integration of microarray data using lists of differentially expressed genes. Part 

B comprises of Chapters 6-8, which describe the development and implementation of 

Gene Set Discovery (GSD), a novel methodology enabling performance of theme-based 

functional analysis of microarray data in an unsupervised fashion.

All research described in this thesis involves data derived from experiments carried out 

on the Asymetrix commercial microarray platform. However, all findings can, in 

principle, be applied to data derived from any other microarray platform.

1.6.2 Aims

Part A of this thesis (Chapter 2-5) describes explorations of the concept of integrating 

microarray datasets using solely their genelists. This prospect is particularly of interest 

because it is resource-efficient enough to allow large scale comparisons of many 

different datasets in an unsupervised fashion, which could in theory lead to the discovery 

of unexpected links between experiments. However, many studies have shown low 

levels of similarity between genelists even from very similar experiments. The main aim 

of Part A of this thesis is thus to explore whether, such a strategy could still be of use to 

researchers. This was carried out by carrying out comparisons between a large set of 

genelists, including cross-platform and cross-species comparisons. A secondary aim was 

to observe whether comparisons between genelists from species that are evolutionary
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distant could yield biologically meaningful results, and thus to assess the utility of such 

an approach.

Part B of this thesis describes the development of the GSD, a novel methodology which 

could allow for GSA of microarray datasets to be carried out in an unsupervised manner. 

The aims of these explorations were to firstly develop an appropriate metric to quantify 

the information content for any set of genes using simulated datasets with known 

information types and levels. Secondly, this approach would require to be validated on 

real-world microarray datasets to assess whether the method yielded biologically 

meaningful and useful results. Other aims included developing a metric that could allow 

for extraction of informative genes from within gene sets, and a visualization scheme 

that could present the diverse types of information involved to the user in an intuitive 

integrated format.

1.6.3 Terminology

The terms ‘microarray’, ‘array’ and ‘chip’ have been used interchangeably throughout 

this thesis. The term ‘GeneChip’ refers specifically to Affymetrix microarray platforms.

The term ‘genelist’ has been used to denote a set of genes that is derived experimentally 

through statistical analysis of microarray data, for example after testing for differential 

expression of genes.

The term ‘gene set’ has been used to indicate a set of genes that can be derived from 

gene annotation databases, such as Gene Ontology (GO) (Ashbumer et al. 2000), and 

typically represent biological themes such as pathways. These gene sets have been 

created using prior knowledge of the biological functions of these genes. The term ‘gene 

set analysis (GSA)’ has been used to refer to any methodology involving the study of 

biological themes, represented as gene sets, within microarray datasets. This included all
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threshold-based and threshold-free methods (see Section 1.4). The term ‘gene set 

enrichment analysis (GSEA)’ refers to a particular method to carry out threshold-free 

GSA (Subramanian et al. 2005). ‘Gene set discovery (GSD)’ is an unsupervised 

threshold-free GSA technique, the development and implementation of which is 

described in Part B of this thesis.
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Chapter 2: S trategies for large-scale  

in tegration  o f  m icroarray data

2.1 Introduction

2.1.1 Unsupervised integration of microarray datasets

Section 1.5 introduced the concept of integration of microarray data, that is comparison 

of microarray datasets from several different experiments, which could have been 

carried out in different laboratories, on different microarray platforms and on different 

species. Many different examples were cited to illustrate the utility of such an approach, 

both as a tool for validation and increasing the statistical power of analyses, as well as to 

provide deeper biological insight that may be achieved solely by the analysis of a single 

experiment. However, as Finocchiaro et al note, the majority of such integrative analyses 

select the datasets to be integrated using a ‘supervised’ approach: researchers often 

select the datasets that they wish to compare based on prior hypotheses that there is 

some common underlying biology between them (Finocchiaro et al. 2005). This is 

certainly the case for all the examples cited in Section 1.5. Indeed, careful selection of 

which datasets could be integrated is considered to be a pre-requisite for such 

approaches (Ramasamy et al. 2008).

However, as with most supervised methods, the possibilities for novel discovery may be 

somewhat limited. A more efficient utilization of the large amounts of information 

contained within a microarray dataset might be an unbiased exploratory analysis 

involving the comparison of the dataset with a diverse, unselected collection of datasets 

created without any prior assumption as to biological links between them. For example, 

having carried out a microarray-based experiment, a researcher might ask the question, 

“Which other experiments is my experiment similar to?” Carrying out an exploratory
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analysis such as described above could then provide the researcher with an unbiased way 

of finding other datasets not only with expected similarity (for example another very 

similar experiment), but crucially, this could also lead to unexpected links being found. 

The latter possibility is of particular significance as this could potentially lead to new 

discoveries and biological insight.

2.1.2 Using lists of differentially expressed genes as representatives 
of microarray experiments

As described in Section 1.1, a microarray-based experiment typically yields data from a 

few to several hundred arrays, each of which may contain expression data for thousands 

of genes, and analysis of such ‘raw’ microarray datasets is resource intensive. While 

most integrative studies of microarray data involve large-scale re-processing of raw 

experimental datasets, the numbers of datasets reanalyzed have been limited, since each 

of the datasets is pre-selected, usually on the basis of some hypothesized biological 

similarity.

However, an unsupervised meta-analysis of an experiment with, for example, all 

datasets available on a public repository like GEO is likely to involve a very significant 

computational workload. For example, even if we were to concentrate on solely the 

21434 Affymetrix hgul33a samples contained in GEO (as of 10th February 2009), with 

each array containing 22283 probesets, this would involve mining of 477,613,822 data 

points. The computational workload is also paralleled by a significant requirement for 

manual intervention during the process of microarray data analysis, which presents a 

particularly significant problem for scalability.

These considerations are a particularly acute problem for exploratory analyses, where it 

is expected that the majority of comparisons would not yield interesting data. It is then 

difficult to justify carrying out such a large number of complex and resource-intensive

41



Chapter 2: Strategies for large-scale integration of microarray data

analyses where most results will not be of interest. This then raises the need for a ‘quick 

and easy’ exploratory analysis involving a first-pass filtering of potentially interesting 

links between experiments, with the assumption that once found, these can then be 

explored in greater detail by analyzing the raw datasets.

One potential solution involves data reduction and summarization: comparisons could 

then be carried out between summaries of datasets rather than between entire raw 

datasets. A popular summary of a microarray experiment that could be used for this 

purpose is the list of ‘interesting’ genes created during the analysis of microarray data, 

usually after tests for differential expression (See Section 1.3.1.1). Datasets containing 

potentially millions of gene expression values could then be reduced to a few hundred 

gene identifiers. This is, in fact, the workflow adopted by several groups (Cahan et al. 

2005; Finocchiaro et al. 2005; Newman and Weiner 2005; Yi et al. 2007), who have 

created databases of experimentally-derived genelists for the purpose of comparison. 

The basis of this workflow is the argument that similarity between two genelists could 

reflect similarity between the corresponding experiments, in turn reflecting some shared 

biology (Rubin 2005).

However, the use of genelists to compare microarrays is a controversial prospect. 

Several studies have shown that even similar experiments exhibit little overlap between 

genelists (Cahan et al. 2007; Cheadle et al. 2007; Ein-Dor et al. 2005; Jeffery et al. 2006; 

Manoli et al. 2006; Tan et al. 2003). These have been attributed to various factors, such 

as differences in laboratories, experimental protocols, microarray platforms and data 

analysis strategies. Studies have shown that similarity in the results of similar microarray 

based experiments can be induced by standardization of experimental protocols and data 

analysis algorithms (Bammler et al. 2005; Irizarry et al. 2005; Larkin et al. 2005). This 

then creates doubts regarding the reliability of using solely genelists to compare 

microarray experiments; the genelists archived in the databases cited above represent a 

diverse set of experiments carried out in a wide range of different laboratories, on 

different platforms and species, and created using different statistical methodologies.

42



Chapter 2: Strategies for large-scale integration of microarray data

The primary aim of the work described in Part A of this thesis was thus to explore if the 

comparison of microarray experiments using genelists could be a feasible and reliable 

method to find links between disparate experiments in an unsupervised fashion, in light 

of the issues described above. It was intended to achieve this by carrying out 

comparisons between a diverse set of genelists derived from a number of different 

experiments (examining different biological themes) carried out in different laboratories, 

using different statistical methodologies. Examination of the results of these 

comparisons could then be carried out using both global (for example, by carrying out 

unsupervised hierarchical clustering [see Section 1.3.2.1] of genelists using a 

standardized measure of similarity, and examining the clusters for any dominant 

biological themes), and local (for example, focused examination of experiments found to 

have significantly similar genelists to detect shared underlying biology) strategies to 

assess whether these results were biologically meaningful and of use to researchers. 

Secondary aims included assessing how far across evolutionary distances could cross­

species comparisons be performed while still deriving biologically meaningful results.

This chapter, in particular, details the development of strategies to carry out comparisons 

between lists of differentially expressed genes. Two major issues are addressed, the first 

being the translation of genelists across chips and species: for example, how could a list 

of human genes and a list of C. elegans genes be made comparable? The second is that 

of assessing the statistical significance of the overlap between any two genelists, which 

would enable the detection of ‘real’ biological similarities as opposed to overlaps that 

could have been caused just by chance.
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2.2 Explorations and Results

2.2.1 Conversion of gene identifiers across array-types and species

The following explorations will use expression microarrays from Affymetrix to illustrate 

the principles and concepts, although similar issues would be faced with arrays produced 

by other companies. Affymetrix currently manufactures expression arrays for a wide 

number of species, ranging from humans and popular model animals like mice, rats and 

zebrafish, to plants and prokaryotes (see Table 2.1). Integration of lists of differentially 

expressed genes, especially across array-types and species, would require ensuring that 

the genelists are comparable. As explained in Section 1.2, the basic units of gene 

expression data within an Affymetrix array are the probesets, each of which has a unique 

ID label, and it is (usually) these identifiers that comprise lists of differentially expressed 

genes.

The first question addressed was whether these probeset IDs are shared across the 

different types of Affymetrix arrays. For this purpose, lists representing all probeset IDs 

for several chips were created and compared. Table 2.2 represents a selection of some of 

the most popular Affymetrix arrays for several different species and the number of 

probeset IDs that are shared between them. As can be seen, there is no overlap of 

probeset IDs across different species. Even within a species, there may be little or no 

overlap of probeset IDs between two different array-types, such as the human hgul33a 

and hgu95a arrays: these differ because they represent different generations of 

Affymetrix human arrays, and were created using different UniGene build versions 

(Affymetrix 2001). Thus, most genelists from microarray experiments carried out on 

different array-types (in particular, from different species) and comprising solely of 

probeset IDs are not directly comparable: any attempt to do so would result in no 

overlap between genelists. This then raises the need for some conversion of probeset IDs 

prior to cross-chip genelist comparisons.
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(1)
Species

(2)
Affymetrix GeneChip Expression 

Analysis Arrays

(3)
Bioconductor

name

(4)
Number of 

samples on 
GEO

(5) 
Number 
of series 
on GEO

Homo sapiens Human Genome U133 Plus 2.0 Array hgu133plus2 21434 743
Human Genome U133 Set Array - A hgu133a 19982 639
Human Genome U95 Set Array -A hgu95a/av2 5264 275
Human Genome U133 Set Array - B hgu133b 4420 109
Human Genome U133A 2.0 Array hgu133a2 2092 109
Human HG-Focus Target Array hgfocus 1935 47

Mus musculus Mouse Genome 430 2.0 Array mouse4302 10388 798
Murine Genome U74 Version 2 Set MG- 
U74A

mgu74av2 5490 435

Mouse Expression Array 430A and Mouse 
Genome 430A 2.0 Array

moe430a/a2 4797 378

Mouse Expression Array 430B moe430b 957 77

Rattus Rat Genome 230 2.0 Array rat2302 3107 168
norvegicus Rat Genome U34 Array Set RG-U34A rgu34a 3047 142

Rat Expression Set 230 Array RAE230A rae230a 2184 102
Rat Genome U34 Array Set RG-U34B rgu34b 456 10

Drosophila Drosophila Genome Array drosgenomel 1088 93
melanogaster Drosophila Genome 2.0 Array drosophila2 736 54

Arabidopsis Arabidopsis ATH1 Genome Array ath1121501 4325 330
thaliana Arabidopsis Genome Array ag 134 19

Yeast spp Yeast Genome S98 Array YG-S98 ygs98 1489 111
(S. cerevisiae; 
S.pombe)

Yeast Genome 2.0 Array yeast2 417 25

Other Soybean Genome Array soybean 3029 17
eukaryotes C.elegans Genome Array celegans 452 25

Zebrafish Genome Array zebrafish 423 37
Chicken Genome Array chicken 338 23
Wheat Genome Array wheat 315 11
Rhesus Macaque Genome Array rhesus 300 23
Maize Genome Array maize 249 16
Rice Genome Array rice 248 21
Porcine Genome Array porcine 237 12
Xenopus laevis Genome Array xenopuslaevis 198 20
Bovine Genome Array bovine 197 16
Barley Genome Array barleyl 184 13

Escherischia E. coli Antisense Genome Array ecoliasv2 672 38
coli E. coli Genome 2.0 Array ecoli2 204 26

Other Pseudomonas aeruginosa Array paegl 287 33
prokaryotes S. aureus Genome Array saureus 153 17
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Table 2 .1  A selection  o f Affymetrix g en e  expression  analysis arrays (in 
previous p age). The shortened names in column 3 are those used in the 

Bioconductor annotation packages for the respective arrays (arrays will be referred 

to by these names for the rest of the thesis). Column 4 represents the number of 

arrays for which data is available on the Gene Expression Omnibus, while Column 5 

displays the number of series of chips (where a series usually represents a set of 

arrays from the same experiment), as of 10th February 2009.

Translations of genelists can be made possible by utilizing the biological annotation that 

is associated with each probeset. Such annotation is available from sources such as the 

Affymetrix NetAffx annotation files (Liu et al. 2003) and the Bioconductor (Gentleman 

et al. 2004) annotation packages, which incorporate various annotation sources including 

the former (see Material and Methods). For example, while the hgul33a and hgu95a 

arrays contain distinct sets of probeset IDs, these can refer to the same genes. Thus, the 

hgul33a 222152_at and the hgu95a 37569_at probesets both represent the PDCD6 

programmed cell death 6 gene. Thus genelists from experiments carried out on two 

different array-types (but representing the same species) can be made comparable by 

converting probeset IDs into species-specific gene identifiers.

While several types of annotation are available for each probeset (for example, Unigene 

IDs, RefSeq IDs, Entrez Gene IDs and gene symbols), Entrez Gene IDs (EGIDs) were 

selected as the biological annotation of choice. There are two main reasons for this. First 

is that EGIDs (and gene symbols) are probably the most biologically-intuitive units of 

annotation, being gene-centric in focus, while the others are sequence-centric. The 

second reason is technical: more probesets are annotated with EGIDs than any other 

source (see Material and Methods), and probesets that are not annotated with an EGID 

also have no other annotation (data not shown). As a result, conversion of probeset IDs 

into EGIDs results in the least loss of information.
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Table 2.2 Probeset ID s that are shared across various A ffym etrix array- 

types. Numbers represent the percentage of (non-control) probeset IDs of row-wise 

arrays that are also found in column-wise arrays. Grey cells denote comparisons 

between arrays from the same species.
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However, conversion of probeset IDs to EGIDs alone would be insufficient translation 

for comparisons between genelists from experiments carried out on different organisms. 

EGIDs are species-specific and different species are each annotated with a distinct set of 

EGIDs. For example, the human GAPDH gene has the EGID of 2597, while the mouse 

homolog (Gapdh) has the EGID of 14433. There is thus a need for the conversion of the 

EGIDs of genes from one of the species into the EGIDs of the corresponding 

homologous genes of the other species. This could be carried out by using the 

homologous relationships between genes across different species that are recorded 

electronically in databases such as Homologene (Wheeler et al. 2008), Resourcerer (Tsai 

et al. 2001), and Inparanoid (O'Brien et al. 2005) (See Materials and Methods).

Direct comparison of lists of probeset IDs is sometimes possible, such as when 

comparing genelists from experiments carried out on the same array-type, or in those 

instances when all probesets of one chip are present in the other (for example the 

hgul33a and hgul33plus2 arrays, where the former is a subset of the latter). One 

complexity that the use of probesets introduce is that such analyses would be vulnerable 

to biases caused by genes which are represented by more than one probeset. For 

example, consider a gene that is represented in an array by 3 probesets. If this gene is 

differentially expressed in two experiments, we might expect all three probesets to be 

present in the genelists of both these experiments. Thus, in a comparison of these two 

genelists, the contribution of this gene to the overlap size would be three units 

(probesets), rather than the desired contribution of one unit (gene/EGID).

Figure 2.1 represents an exploration of all genes (represented as EGIDs) present on 

several arrays, and the number of probesets they are annotated to.
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Figure 2.1 Distribution of Entrez Gene IDs (EGIDs) according to  the number 
of p robesets annotated to  them . The x-axis denotes the number of probesets 

annotated to an EGID. The y-axis denotes the number of EGIDs in each category as 

percentages of total EGIDs on an array. In the legend, the upper number is the 

percentage of EGIDs having >1 probesets annotated to them; the lower number is 

the maximum number of probesets annotated to one EGID in that array.

As can be observed, as many as 59.4% of all EGIDs on an array can be linked to more 

than one probeset (as seen in hgul33plus2), and as many as 36 probesets can be 

annotated with the same EGID (as seen in xenopuslaevis).

These figures suggest that biases caused by the presence of more than one probeset 

representing a single gene are likely to occur. For this reason, it was decided that the 

strategy for comparing genelists from experiments carried out on the same array-type 

would require an initial step of converting lists of probeset IDs into unique lists of 

EGIDs to which those probesets are annotated to.

2.2.2 The need for assessm ent of significance of overlaps between 
genelists

A very simple metric to assess biological similarities between genelists would be the 

number of shared genes. For example, if genelist A and genelist B share x number of 

genes, and genelist A and genelist C share y  number of genes, and x>y, then we might 

infer that genelist A shows greater biological similarity with genelist B than with 

genelist C. However, the size of this overlap is likely to be affected not only by real 

biological similarities between the genelists, but also by systematic effects that depend 

on the lengths of the genelists being compared, and the size of the gene universe. The 

gene universe here refers to the set of all genes from which the genelists were selected.
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For example, if the genelists being compared are derived from experiments carried out 

on the same array-type, the gene universe for this comparison might be all the genes 

present on that array. These systematic effects exerted by genelist length and gene 

universe size on the size of overlaps between genelists were explored as follows.

The effect of genelist size would be exerted such that, when the universe size is constant, 

the larger are the genelists being compared, the larger we would expect that overlap to 

be. Consider a comparison of genelists A and B, where genelist B consists of 10% of 

genes on the entire array. Then, we would expect it to contain, on average, 10% of the 

genes in genelist A by chance alone. If genelist B were to have 20% of genes on the 

array, we would expect it contain, on average, 20% of the genes in genelist A and so on.

To explore this effect, the following simulation was carried out: a set of 20,000 arbitrary 

and unique identifiers was created, representing all the genes present on an imaginary 

array. From this, a total of 1000 identifiers were selected randomly and without 

replacement, representing a reference genelist of 1000 genes. Similarly, a series of ‘test 

genelists’, of sizes ranging from 10 to 20,000 identifiers were also selected. Each of 

these test genelists was compared to the reference genelist and the size of overlap for 

each comparison was recorded, and these have been displayed as grey dots in Figure 

2.2(a).

The positive linear relationship between the overlap size and length of test genelists is 

clearly observed, and the observed overlap sizes vary around the expected overlap sizes 

(represented by the red line). This expected overlap size is calculated by the formula 

(L\ * L2) ---------- where L \ and L2 are the lengths of the genelists being compared while N
N

represents the size of the gene universe. Thus, we find that in a gene universe of fixed 

size, the size of overlap between any two genelists is directly proportional to the lengths 

of the genelists.
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Figure 2 .2  -  S y stem a tic  e ffe c ts  o f (a ) g e n e lis t  length  and (b ) g en e  un iverse  

s iz e  on th e  s iz e  o f overlap  b etw een  g e n e lis ts . Figures are based on simulations 

carried out using a synthetic array represented by a set of unique and arbitrary 

identifiers, (a) Overlap sizes observed during comparisons of 'genelists' (created by 

random selection of identifiers from a synthetic array without replacement) of 

various sizes from a single synthetic array of constant size, plotted against the 

lengths of those genelists. (b) Overlap sizes observed when 'genelists' of constant 

size (selected randomly and w ithout replacement) from synthetic arrays of various 

sizes are compared, plotted against the inverse of the gene universe size (i.e. the 

number of genes present in the synthetic arrays). The grey points represent the 

observed overlap sizes, while the red lines represent the expected overlap sizes.
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The formula to calculate the expected overlap size also suggests that the size of the gene 

universe is inversely proportional to the size of the expected overlap, i.e. the larger the 

size of the universe, the smaller would be the expected overlap between any two 

genelists, and vice versa. To explore this, sets of unique and arbitrary identifiers, 

representing a series of imaginary arrays of sizes ranging from 1000 to 20,000 genes was 

created. From each of these arrays, two ‘genelists’ of 1000 genes (identifiers) each were 

randomly selected (without replacement) and compared. The number of genes in each 

overlap was recorded and is displayed as the grey dots in Figure 2.2(b).

A positive linear relationship is observed between the overlap sizes and the inverse of 

the gene universe sizes, and again, the observed overlap sizes vary around the expected 

overlap sizes. Thus, it is found that during comparisons of genelists that are of constant 

lengths, but are selected from gene universes of varying sizes, the overlap size is 

inversely proportional to the size of the gene universe.

These findings suggest that the size of overlap between genelists alone would not be a 

suitable indicator of the biological relatedness between any two genelists, because it 

would be not be possible to distinguish biological effects from the systematic effects of 

genelist and universe sizes.

For the purposes o f genelist comparison, the systematic effects of universe size can be 

controlled for by keeping the gene universe size constant. There are several ways to 

achieve this: for genelists from the same array-type, the universe size for all 

comparisons could be all the genes on the chip; for comparisons between genelists from 

different array-types, the gene universe could be only those genes that are present on 

both array-types (and the genelists would be filtered to reflect this); for cross-species 

comparisons, the gene universe could consist only of genes for which homologues are 

present on both arrays (and the genelists would be filtered accordingly). However 

genelist sizes vary greatly and these steps would not address this.
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2.2.3 Selection of metrics for the assessm ent of the significance of 
overlaps between genelists

The size of the overlap between any two genelists will in part depend on the lengths of 

genelists involved. This therefore raises a need for a metric to assess the significance of 

the observed overlap, that is a metric that indicates if an observed overlap is any greater 

than would be expected by chance alone (and preferably to indicate by how much). 

Deviations of the observed overlap from the expected overlap can then be argued to 

have occurred due to real biological similarities between genelists with the magnitude of 

the deviation giving some indication of the degree of biological similarity (or 

dissimilarity).

Three metrics were initially chosen as potential candidates to assess the significance of 

overlaps between genelists. These were fold change, the binary similarity index and the 

hypergeometric distribution, and were tested as follows. A set of unique and arbitrary 

identifiers, representing a synthetic array of 20,000 genes, was created. From this, a 

reference genelist of 1000 genes was created by random selection of genes without 

replacement. Then, a set of test genelists, varying in length from 100 to 20,000 were 

created, again by random selection of genes without replacement. Each test genelist was 

compared to the reference genelist and the overlap size was recorded; all three metrics 

were calculated for each comparison. Each metric was then assessed for its dependency 

on genelist length and the results of these analyses are presented below.

2.2.3.1 Fold change

Fold change is a simple and intuitive metric, which is calculated as the observed overlap 

size divided by the expected overlap size, and provides the magnitude of the observed 

overlap size relative to the size of the expected overlap. Thus, a fold change value of 1 

would indicate that the observed and expected overlap sizes are the same, while a fold 

change value of 2 would indicate that the observed overlap is twice the expected size of
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overlap, and so on. In natural space, the scale of fold change values is asymmetrical (for 

example, a ten-fold increase in an observed value with respect to the expected value 

yields a fold change value of 10, while a ten-fold decrease would yield a value of 0.1), 

and for this reason, fold change values are usually converted to log space. Thus a log 

fold change value of zero indicates that the observed value is equal to the expected 

value, while positive and negative log fold change values indicate observed values that 

are greater and lesser than the expected values respectively.

Fold change values were obtained from the simulations described above, and these were 

transformed using the natural log. Figure 2.3(a) shows the histogram of these log fold 

change values. As the comparisons were carried out between lists of ‘genes’ that had 

been selected in a random fashion, it is expected that the majority of comparisons should 

show no appreciable difference between the observed and expected values. Indeed, the 

median of this distribution is a log fold change value of zero.

Figure 2.3(b) shows a Q-Q plot where quantiles of the distribution of log fold change 

values are plotted against those for a normal distribution. This was created to investigate 

whether the log fold change values are normally distributed. As can be observed, the 

distribution of log fold change values tends towards non-normality as the values become 

higher and lower than the median value of zero. Further light is shed in Figure 2.3(c), 

where the log fold change values are plotted against the lengths of the test genelists used 

in each comparison. It is observed that while the values vary around the median of zero, 

regardless of the length of the test genelists, the variability of log fold change values is 

greater for shorter test genelists than for longer test genelists.
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Figure 2.3 Log Fold Change values from  simulation experim ents, (a)

Histogram of log fold change values obtained from comparisons carried out between 

a reference 'genelist' and a set of test 'genelists' of varying lengths from a synthetic 

array represented as a set of unique and arbitrary identifiers. Reference and test 

genelists were selected randomly and w ithout replacement, (b) Q-Q plot for the log 

fold change values (Y-axis) versus the normal distribution (X-axis), (c) Log fold 

change values plotted against the length of test genelists. Red lines in all plots 

indicate the median of the distribution (i.e. zero).

This observed relationship between the variability of log fold change values and the 

length of test genelists is due to instability at low genelist lengths because of data 

granularity. For example, consider two short genelists that have an expected overlap 

value of 5. An observed overlap value of one gene greater than that expected value (i.e. 

6) would then yield a log fold change value of 0.18. Now consider two long genelists 

that are expected to have an overlap size of 500. In this case, an observed overlap size of 

one gene greater than expected (i.e. 501) would yield a log fold change value of 0.002.
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In effect, this property is undesirable as this makes the setting a cut-off log fold change 

value (for example, 2) to indicate significance problematic: such cut-offs may be too 

liberal for comparisons between short genelists and too conservative for comparisons 

between longer genelists. For this reason, log fold change values were not explored 

further.

2,23.2 Binary similarity index

The next metric tested was the binary similarity index, which is calculated as the size of 

the overlap divided by the total number of unique genes present in at least one of the two 

genelists. In set theory terms would translate as the size of intersect divided by the size 

of the union of the two genelists (see Materials and Methods).

Figure 2.4(a) shows the histogram of binary similarity values obtained from the 

simulations described above, while Figure 2.4(b) shows the Q-Q normality plot for the 

same and these indicate a skewed and non-normal distribution of values. More 

importantly, as can be observed in Figure 2.4(c), there is a strong, positive, non-linear 

relationship between the binary similarity values and the size of the genelists.

Due to this undesirable property, binary similarity indices were also not explored any 

further. It is noted that Cahan et al (Cahan et al. 2005) use this metric in the LOLA 

database not as the sole indicator of significance, but as a measure of “concordance”. 

Values for variance and p-values are provided to interpret the concordance values.
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Figure 2.4 Binary sim ilarity values from  simulation experim ents, (a)

Histogram of binary sim ilarity values obtained from comparisons carried out 

between a reference 'genelist' and a set of test 'genelists' of varying lengths from a 

synthetic array represented as a set of unique and arbitrary identifiers. Reference 

and test genelists were selected randomly and w ithout replacement, (b) Q-Q plot for 

the binary sim ilarity values (Y-axis) versus the normal distribution (X-axis), (c) 

Binary sim ilarity values plotted against the length of test genelists. Red lines in all 

plots indicate the median of the distribution.

2.23.3 Hypergeometric and Binomial distributions

The final metrics tested were derived from the hypergeometric probability distribution, 

which can be described as follows: consider an um (which in our case represents a 

microarray chip, i.e. the gene universe) filled with balls (genes), some of which are 

coloured black (genelist A), while the rest are coloured white. From this um a certain 

number of balls (genelist B) are selected. The hypergeometric distribution then predicts 

the probabilities of the number of black balls among those selected (i.e. the overlap 

between genelists A and B).
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The binomial probability distribution, which is used by the L2L database (Newman and 

Weiner 2005) to assess the significance of overlaps between genelists, is related to the 

hypergeometric distribution. It differs in one aspect; while the latter assumes trials 

without replacement, the former assumes trials with replacement. In terms of the um 

analogy explained above, this translates to the binomial distribution requiring previously 

selected balls to be put back into the um prior to any subsequent sampling, while the 

hypergeometric distribution expects any selected balls to be removed from the um and 

not be involved in subsequent selections. Thus in a binomial trial, the probability of 

selecting a black ball stays the same throughout the trial, while in a hypergeometric one, 

this probability changes after each successive selection.

While the binomial distribution becomes increasingly similar to the hypergeometric one 

as the size of the gene universe increases in relation to the size of the genelists being 

compared, the hypergeometric distribution is a theoretically better choice for these 

purposes. This is because sampling with replacement, as in binomial trials, would imply 

occasions where a gene is present in a genelist more than once; this does not happen, 

because each gene is required to be unique within a genelist. Thus, the binomial 

distribution was excluded from further analysis on theoretical grounds. Newman et al, 

regarding the L2L database, concede that for the purposes of comparing genelists, the 

hypergeometric distribution is “more accurate”, but did not select this for use in their 

database as it is “more difficult to calculate” (Newman and Weiner 2005).

Two metrics can be derived from the hypergeometric probability distribution. The first 

of these is a Z-score, which is the observed overlap that has been standardized, taking 

into account the lengths of the genelists being compared and the gene universe size. As 

an ‘effect size’, it is conceptually similar to fold change, but is calculated differently (see 

Materials and Methods).
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An overlap that yields a Z-score of zero indicates an overlap of expected size, while 

positive and negative Z-scores indicate overlap sizes that are greater and lesser than the 

expected overlap sizes respectively. The magnitude of Z-score values represents the 

extent of deviation of the observed overlap sizes from the expected overlap sizes. 

Hypergeometric Z-scores were calculated for the simulations described above.

Figure 2.5(a) shows the histogram of Z-scores derived from the simulation studies. This 

distribution is centered on a median Z-score of zero, indicating that on average, the 

overlap sizes are no different from what is expected by chance alone.

The Q-Q plot in Figure 2.5(b) indicates the Z-score distribution is very similar in shape 

to the normal Gaussian probability distribution. Also, like a standardized normal 

distribution, it is centered on a median of zero and has a standard deviation of —1. One of 

the properties of a normal distribution is that -95% of values can be found within the 

range of the median ± 2 times the standard deviation of the distribution. Indeed, it 

observed that 1899 of the 2000 calculated Z-scores (i.e. 94.95%) fall within this range.

This is a useful property, and can be exploited to set cut-off values for significance. For 

example, a cutoff value of the median + 2 times the standard deviation of the distribution 

would imply selection of Z-scores representing overlap sizes that have only a 2.5% 

probability of having occurred by chance alone. Also, as can be seen in Figure 2.5(c), 

there is no observable relationship between Z-scores and the lengths of the test genelists.
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Figure 2.5  H ypergeom etric  Z-scores and p -va lu es  from sim ulation  

ex p er im en ts ,  (a) and (d) show, respectively, the hypergeometric Z-scores and p- 

values obtained from comparisons carried out between a reference 'genelist' and a 

set of test 'genelists' of varying lengths from a synthetic array represented as a set 

of unique and arbitrary identifiers. Reference and test genelists were selected 

randomly and w ithout replacement, (b) and (e) represent Q-Q plots for the Z-score 

and p-value distributions respectively (Y-axes) versus the normal distribution (X- 

axes). (c) and (f) show the Z-score and p-values respectively, plotted against the 

lengths of test genelists. Red lines in all plots indicate the medians of the respective 

distributions. Broken red lines in (a) and (c) represent median ± 2*sd of the Z- 

score distribution. Broken black lines in (f) represent the theoretical minimum and 

maximum values of the p-value distribution.
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The second metric that can be calculated using the hypergeometric distribution is a p- 

value, which is a measure of the probability that an observed overlap size could have 

occurred by chance alone. These were calculated for the above simulations assuming a 

one-sided test i.e. testing only for how much greater an observed overlap is than the 

expected size, and not the other way around (see Materials and Methods). The resultant 

p-value distribution is centred on a median value of ~0.5, and ranges from the minimum 

and maximum possible p-values of 0 and 1 respectively (Figure 2.5(d)). As expected, 

setting a p-value cut-off of 0.05 (i.e. the theoretical value which no more than 5% of 

comparisons should yield lower p-values for, if the assumptions of the distribution are 

not violated), results in the filtering of 102 of the total 2000 comparisons (i.e. 5.1%). 

Also, no relationship is observable between the p-values and the lengths of the test 

genelists (Figure 2.5(f)).

Figure 2.6 illustrates the relationship shared between hypergeometric Z-scores and p- 

values. Thus comparisons that yield high Z-scores yield low p-values. Theoretically, 

setting a Z-score cut-off value of 2 (from a Z-score distribution with a median of zero 

and standard deviation of 1) is equivalent in effect to setting a p-value cut-off of 0.025 

(i.e.2.5%), as these parameters would only be exceeded by 2.5% of comparisons 

between randomly created lists of genes, and the empirically derived distributions 

appear to be in agreement with this (broken red lines in Figure 2.6 represent these cut­

off values).

Thus, because hypergeometric Z-scores and p-values appear not to be influenced by the 

lengths of genelists being compared, when the universe size is constant, both metrics are 

candidates for the purpose of comparison of genelists and were taken forward into the 

explorations described in subsequent chapters.
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Figure 2 .6  Relationship b e tw een  hypergeom etric  Z -scores  and p-values.

Values represent the same distributions illustrated in Figure 2.5. Broken red lines 

indicate the theoretically equivalent Z-score (vertical) and p-value (horizontal) 

values of 2 and 0.025 respectively.
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2.3 Discussion

The increasing use of microarray technology has led to massive amounts of 

experimental data being deposited in public databases like NCBI’s GEO (Edgar et al. 

2002). Access to this experimental data has allowed for integrative analyses of 

microarray experiments which involve the comparison of several datasets at the same 

time. This approach allows opportunities for knowledge validation and discovery, and 

several examples have been highlighted (see Section 1.5).

However, in such analyses, datasets to be analyzed are selected in a supervised fashion, 

i.e. the selection involves prior hypotheses and knowledge regarding shared underlying 

biology between the experiments being compared. This approach, while valid, is 

restricted in scope and might be more optimally utilized by using unsupervised 

approaches to data integration, for example, comparison of one experiment with, instead 

of a small pre-selected set of experiments, a large and non-selected set of experiments, 

such as found in a public database. Such an unsupervised approach has the potential to 

find unexpected links that could provide new knowledge and insight regarding the 

experiments in question (Finocchiaro et al. 2005).

However, such an approach would be highly resource-intensive. For this reason, there 

has been an interest in the comparison of summaries of an experiment, rather than 

comparisons between entire experimental datasets. Several groups have advocated the 

use of lists of differentially expressed genes as suitable summaries for this purpose, 

using the logic that similarity between genelists might imply similarity between the 

originating experiments (Cahan et al. 2005; Finocchiaro et al. 2005; Newman and 

Weiner 2005; Rubin 2005; Yi et al. 2007). Thus ranking genelists by order of similarity 

to a test genelist could provide researchers with prioritization of experiments with which 

to carry out more rigorous integrative analyses.
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However, the reliability of such an approach is questionable, given the frequent 

observation of low levels of similarity between genelists derived from even very similar 

experiments (Cahan et al. 2007; Cheadle et al. 2007; Ein-Dor et al. 2005; Jeffery et al. 

2006; Manoli et al. 2006; Shen et al. 2008; Tan et al. 2003). For this reason, one of the 

aims of this project is to assess whether this approach could be useful for researcher by 

carrying out all comparisons between genelists derived from a diverse array of 

experiments, carried out in a range of different laboratories and on different species, and 

examining the results. In this chapter, the strategies for carrying out genelist integration 

were studied and developed.

To minimize the potential confounding effects that could arise from differences between 

microarray platforms (for example, due to differences in experimental protocols, probe 

sequences, etc.), research focussed on integration of only those genelists that were 

derived from experiments carried out using Asymetrix microarrays. Affymetrix is one 

of the largest commercial microarray manufacturers and considerable numbers of 

experiments have been carried out on this platform. Furthermore, they represent 

standardized experimental protocols and technical aspects (such as probe sequences). 

However, the general principles derived should be broadly applicable to genelists 

derived from experiments carried out on other platforms.

Affymetrix currently provides expression arrays for a wide range of species, and the 

probeset identifiers differ across arrays for each species. Identifiers for a particular gene 

may also differ within a species; particularly between arrays from different generations 

(see Section 2.2.1). Comparison of genelists from different arrays within a species can 

be facilitated by converting probeset identifiers into Entrez Gene IDs for that species. 

This translation was also included in the strategy for comparison of genelists from the 

same array-type, because of the potential bias caused by groups of 2 or more probesets 

that represent the same gene. Cross-species genelist comparisons can in principle be 

carried out by converting one genelist into a set of homologous genes from the organism 

on which the other experiment was carried out on.
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It was shown that simple overlap size between genelists is not a suitable metric with 

which to measure links between experiments, as it is sensitive to the systematic effects 

of genelist length and universe size (see Section 2.2.2). While the latter does not 

theoretically pose problems with regards to genelist comparison because the universe 

size remains constant, the variability of genelist length is a more difficult issue.

Three metrics of similarity between genelists were tested for sensitivity to genelist 

length (see Section 2.2.3). Both fold change and binary similarity coefficients were 

found to be sensitive. However, the hypergeometric distribution yielded two metrics: p- 

values and Z-scores, which were found to have no dependency on genelist length. Thus, 

these metrics were selected for further explorations in subsequent chapters. The 

hypergeometric distribution has been popularly used in Over-Representation Analysis of 

genelists (Huang da et al. 2009; Khatri and Draghici 2005), which detects the 

enrichment of one set of genes (such as a pathway or GO term) within another (the 

experimentally-derived genelist). Finocchiaro et al also used this for assessing 

comparisons between experimentally derived genelists (Finocchiaro et al. 2005).
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Chapter 3: Com parison o f  lists  o f  

differentia lly  expressed  genes using  the  

hypergeom etric test

3.1 Introduction

The previous chapter introduced the concept of comparing lists of differentially 

expressed genes from microarray experiments, as opposed to resource-intensive 

comparative analyses based on the integration of primary experimental datasets. The 

studies described revealed general principles regarding the annotation levels at which to 

perform comparisons of genelists, together with information about the behaviour of key 

potential metrics to assess similarity between genelists. Whereas in Chapter 2 

explorations were based on lists of randomly selected genes (represented as unique and 

arbitrary identifiers), in this chapter genelist comparison strategies are applied to a set of 

real experimentally-derived lists of differentially expressed genes.

One might expect that genelists would be most comparable if they were created using 

similar normalization techniques and statistical tests, with standardized parameters and 

cut-offs (Bammler et al. 2005; Irizarry et al. 2005; Larkin et al. 2005). Carrying out 

manual re-analysis of data from potentially hundred of experiments to derive genelists is 

unfeasible, and the current data storage paradigms of public repositories (in particular, 

with respect to experimental design) prohibit the automation of such a procedure. 

Genelists were thus extracted manually from published scientific literature. Initially the 

database consisted of genelists derived from experiments carried out on the Affymetrix 

hgul33a array, which was at that time the most popular commercial microarray. More 

genelists derived from experiments carried out on a range of array-types and species
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were then provided by Miss Hui Sun Leong (Department of Pathology, Cardiff 

University) in our laboratory. Table 3.1 provides an overview of the final database.

Array-types Species Number of genelists
hgu133a Homo sapiens 38
hgu133plus2 Homo sapiens 19
mouse4302 Mus musculus 20
rat2302 Rattus norvegicus 11
drosgenomel Drosophila melanogaster 20
celegans Caenorhabditis elegans 11
ath1121501 Arabidopsis thaliana 20
Total: 7 array-types 6 species 139 genelists

Table 3.1 Summ ary of a database of g en e lists  manually extracted from  
published literature.

This chapter will describe the results of comparing all the genelists within the database 

with themselves. It was expected from the outset that judging the utility of such an 

approach solely from the results would be problematic as there is no biological ‘truth’ 

with which to measure sensitivity and specificity. However, one potential indicator of 

accuracy is if the similarities found between experiments are biologically plausible.

Another issue that it was hoped this analysis would address was how far across species 

could significant links be found. It might be expected that increase in evolutionary 

distance between any two species would be accompanied by both a decrease in the 

number of homologous genes shared between the species and greater differences in 

transcriptional regulation programmes. As the analysis involved comparison of all 

genelists in the database, across all the species represented, it provided an opportunity to 

observe if biological links could be found even between microarray experiments carried 

out on evolutionary distant species, for example between a human and Arabidopsis 

experiments.
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3.2 Technical Methodology

Development of methodologies for the comparison of genelists was based on the 

explorations of biological annotation and studies of the behaviour of similarity metrics, 

as described in Chapter 2.

The genelists collected within the database comprised of Affymetrix probeset identifiers. 

For comparisons between genelists derived from experiments carried out on the same 

species (Figure 3.1(a)), regardless of whether they were carried out on the same array- 

type or not, the original lists of probesets were converted into non-redundant lists of the 

Entrez Gene IDs (EGIDs) with which the probesets were annotated. If the genelists were 

derived from experiments carried out on the same array-type, the gene universe 

comprised of all the EGIDs present on that array-type. For comparisons between 

genelists from different array-types, the gene universe comprised of those EGIDs that 

were present on both the array-types. To reflect this, the genelists were then filtered to 

remove any EGIDs that were not present in that “common” gene universe. For 

comparisons between genelists from experiments carried out on different species (Figure 

3.1(b)), lists of probeset identifiers were first converted to lists of non-redundant 

species-specific EGIDs with which the probesets were annotated. The EGIDs of one 

genelist were then converted into EGIDs representing the species of the other genelist 

through the homologous relationships between EGIDs stored in the Homologene 

database (see Materials and Methods). Here, the gene universe comprised of those 

(homologous) EGIDs that were present on both the array-types. The genelists were then 

filtered to remove any EGIDs that were not present in that “common” gene universe.

The size of the overlap between any two pairs of genelists, as well as the gene universe 

size, was the used to calculate Z-scores and p-values, using the hypergeometric 

statistical test, to assess the similarity between the genelists.
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Figure 3.1 Strategies for comparison of genelists (a) within and (b) across species.
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3.3 Explorations and Results

3.3.1 An overview of all comparisons

Regarding the question of how far across evolutionary distance could biological 

similarity be found between genelists, partial insight can be gained prior to the 

comparison of genelists, by exploring the numbers of homologous genes (if any) that are 

shared across chips from different species. Table 3.2 shows the number of genes shared 

between the chips, represented as the percentages of the total number of genes on each 

chip. The numbers can fall quite low, for example, comparisons between genelists from 

the C. elegans celegans array with those from the A. thaliana athl 121501 array would 

involve a gene universe that consists of only 7.1% of genes on the athl 121501 array and 

9.9% of genes on the celegans array.

In Figure 3.2, these values are plotted against the evolutionary distance between the 

species (see Materials and Methods). It is observed that there is a general trend, as might 

be expected, of the number of shared genes falling with increase in evolutionary 

distance.

All possible pair-wise comparisons were then carried out between all 139 genelists in the 

database. Hypergeometric p-values and Z-scores were calculated for each of the 

comparisons. Following correction for multiple-hypothesis testing using the Benjamini- 

Hochberg method (see Materials and Methods), a p-value cutoff value of 0.05 was used 

to indicate statistically significant similarity between genelists. The number of 

comparisons found to have significant similarity under this criterion have been 

represented in Table 3.3 as the percentage of all comparisons between all genelists from 

any pair of array-types.
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h g u 1 3 3 a 100 .0 97 .2 79.5 64.4 28.2 18.7 17.9

h g u 1 3 3 p lu s 2 6 4 .8 100 .0 70.1 54.5 22.8 14.7 13.9

m o u s e 4 3 0 2 50.7 67.1 100.0 52.9 21.3 13.9 13.1

ra t2 3 0 2 62.6 79.3 80.5 100 .0 27.0 17.6 16.8

d r o s g e n o m e l 31.3 38.0 37.0 30.9 100 .0 20.6 17.2

c e le g a n s 15.5 18.3 18.1 15.0 15.4 100.0 9.9

a th 1 1 2 1 5 0 1 10.6 12.4 12.2 10.3 9.2 7.1 100 .0

Table 3 .2  -  Num ber of g e n e s  shared  a cro ss  d ifferent array-types and 

sp e c ie s .  The numbers represent the percentage of genes of the row-wise chips that 

are present in the column-wise chips. Between array-types from the same species, 

they represent the number of shared genes (i.e. EGIDs). Between array-types from 

different species, they represent homologous genes (EGIDs after conversion across 

species by homology). Grey cells represent comparisons between arrays from the 

same species.

The proportion of comparisons found to have significant overlaps were highest when 

comparisons were carried out within a species. Interestingly, links between human 

genelists can be found with genelists from evolutionarily distant species such as the 

invertebrates Drosophila melanogaster and Caenorhabditis elegans, and even the plant 

Arabidopsis thaliana. In Figure 3.3, these values are plotted against the evolutionary 

distance between the species, and these exhibit a trend of decreasing with increase of 

evolutionary distance, similar to the behaviour of shared universe sizes in Figure 3.2.
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Figure 3 .2  D ecrease  in th e  num ber of g e n e s  shared b e tw een  sp e c ie s  with  

evolutionary d istance. Data points represent values displayed in Table 3.2. Y- 

axes represent the percentage of genes for each chip which is shared with the 

others. X-axes represent evolutionary distances scaled in units of expected fraction 

of amino acids changed, as calculated using the Dayhoff PAM matrix (see Materials 

and Methods).
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h g u 1 3 3 p lu s 2 53.7 69.6 44.7 38.8 3.4 0.0 1.3

m o u s e 4 3 0 2 28.4 44.7 64.7 35.5 4.0 0.0 0.3

ra t2 3 0 2 23.9 38.8 35.5 52.7 5.0 0.0 0.0

d r o s g e n o m e l 5.1 3.4 4.0 5.0 66.3 9.1 7.0

c e le g a n s 0.2 0.0 0.0 0.0 9.1 80.0 3.6

a th 1 1 2 1 5 0 1 0.8 1.3 0.3 0.0 7.0 3.6 72.6

Table 3 .3  -  C om parisons found to  sh o w  statistica lly  s ign ificant similarity.

Numbers represent the percentage of all comparisons between genelists that 

showed significant sim ilarity. Significance was detected using a hypergeometric p- 

value cut-o ff of 0.05 following Benjamini-Hochberg corrections (see Materials and 

Methods). Grey cells indicate comparisons between the same species.

These results appear to be biologically plausible: the decrease in the number of shared 

homologous genes with increase of evolutionary distance could be a consequence of the 

evolutionary changes to genome sequences. This factor, along with possible 

evolutionary changes to transcriptional regulation of biological pathways and networks 

could explain why the proportion of comparisons found to have significant similarity 

decreases as the evolutionary distance between the species being compared increases. 

However, a striking feature observed in the results is the very high proportion of 

comparisons that appear to have statistically significant overlap sizes when comparisons 

are carried out between genelists from the same species (or array-type). As can be seen 

in Table 3.3 (grey cells), 50-80% of all intra-species comparisons are classified as being 

significant.
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Figure 3 .3  D ecrease  in the  num ber of com p arisons sh ow ing  significant

similarity with evolutionary d istance. Data points represent values displayed in

Table 3.2. Y-axes represent the percentage of comparisons between genelists. X-

axes represent evolutionary distances scaled in units of expected fraction of amino

acids changed, as calculated using the Dayhoff PAM matrix (see Materials and

Methods).
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3.3.2 Excess similarity found between genelists from experiments 
carried out on the same array-type

It might reasonably be expected that lower proportions of cross-species comparisons 

would yield statistically significant similarity as compared to comparisons carried out 

between genelists from the same species (or array-type). This is likely to be caused by 

two effects of evolutionary changes across species. The first effect involves evolutionary 

changes to genome sequences. This limits the gene universe to only homologous genes 

that are present on arrays representing the both the species being compared. Prior to 

comparison, the genelists are required to be filtered to reflect this; very few genes may 

pass this filter if the shared universe between the species is small (for example, as 

previously pointed out, between the arrays representing C. elegans and A. thaliana). The 

second effect is more biological in nature, involving evolutionary changes to 

transcriptional regulatory mechanisms, which could cause divergence in biological 

pathways and processes between species.

While the results described in the previous section are in concordance with these 

expectations, the very high levels of similarity observed in comparisons of genelists 

from the same array-type (50-80% of comparisons are assigned significance when using 

the hypergeometric statistical test) are a cause for concern as such levels of similarity 

seem biologically implausible.

Hypergeometric Z-score distributions from all possible pair-wise comparisons carried 

out between genelists from experiments carried out on the same array-type are displayed 

in Figure 3.4. Control experiments, in the form of simulations, were carried out in 

parallel as follows: artificial arrays, represented as a set of unique and arbitrary 

identifiers, were created, of sizes equal to the number of unique Entrez Gene IDs 

(EGIDs) present on each real array. Genelists were then selected at random and without 

replacement from these artificial arrays, of the same lengths as those of the 

experimentally-derived genelists. These randomly created genelists were then compared,
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thus simulating each comparison of experimentally derived genelists. The grey lines 

represent the Z-scores distributions from these simulations. As expected, these are 

centred on medians of zero, implying that on average, there is no similarity between the 

genelists being compared.

It was expected that the majority of comparisons carried out between a diverse collection 

of genelists, such as those collected in the database, would yield no significant 

similarity between genelists, and that, like the simulations, these would yield Z-score 

distributions centred on medians of zero. However, as can be seen in Figure 3.4, the Z- 

score distributions from comparisons of the experimentally derived genelists (black 

lines) are markedly shifted away from those obtained from the simulations, and are 

centred on medians of 2 or more.

There are two possible interpretations of this observation. The first is that there is indeed 

some biology common to most, if not all, the experimentally-derived genelists; this 

seems somewhat biologically implausible when considering the diversity of experiments 

from which the genelists were derived. The second is that these could be artefacts caused 

by the violation of some assumption(s) of the hypergeometric statistical test.

To investigate whether this effect is prevalent in other collections of genelists, sets of 

genelists were downloaded from the L2L database (Newman and Weiner 2005). These 

are summarised in Table 3.4. All pair-wise comparisons were carried out between 

genelists from the same array-type and the resultant Z-score distributions are shown in 

Figure 3.5.
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Figure 3 .4  H ypergeom etric  Z-score distributions of com parison s of 

g e n e l is t s  from th e  sa m e  array-type. X-axes represent Z-scores;Y-axes denote 

distribution frequencies. Black lines represent comparisons of experimentally 

derived genelists. Grey lines represent simulations using random genelists using the 

same genelist and gene universe sizes as comparisons of real-world genelists. 

Broken lines represent medians of these distributions. Numbers within the plots 

signify the medians of the Z-score distributions from comparisons of experimentally 

derived genelists. For ease of visualization, Z-scores were capped at 10, such that 

all Z-scores >10 were set to 10. This causes some distributions to appear biphasic.
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Array-type Species Number of genelists
hgu133a Homo sapiens 37
hgu95a/av2 Homo sapiens 105
mgu74a/av2 Mus musculus 54
moe430a Mus musculus 13
Total: 4 array-types 2 species 209 genelists

Table 3 .4  Sum mary of g en e l is ts  dow nloaded  from the  L2L d atabase

hgu133a(L2L) hgu95a (L2L)
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Figure 3 .5  H ypergeom etric Z-score distributions of com parisons of  

g e n e l is t s  from th e  sa m e  array-type. X-axes represent Z-scores; Y-axes denote 

distribution frequencies. Black lines represent comparisons of experimentally 

derived genelists. Grey lines represent simulations using random genelists using the 

same genelist and gene universe size as comparison of real-world genelists. Broken 

lines represent medians of these distributions. Upper numbers in the plots signify 

the medians of the Z-score distributions from comparisons of experimentally derived 

genelists; lower numbers denote the percentage of comparisons found to be 

significant at p<0.05 (after FDR correction). For ease of visualization, Z-scores >10 

were set to 10. This may cause some distributions to appear biphasic.
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As can be seen, Z-score distributions are again positively shifted away from medians of 

zero in comparisons from genelists of experiments carried out on the hgul33a and 

moe430a arrays. However, in comparisons of genelists from experiments carried out on 

the hgu95a and mgu74a arrays, no such shift is observed. In this case the Z-score 

distributions, like those derived from the simulations, are centred on medians of zero.

These findings are in concordance with the proportions of comparisons which were 

found to have statistically significant overlaps between genelists (using a p-value cut-off 

of 0.05 after Benjamini-Hochberg correction): comparisons of genelists from 

experiments carried out on the hgul33a and moe430a arrays yielded significance for 

excessive proportions of comparisons (48% and 41% respectively), while the 

proportions for comparisons of genelists from experiments carried out on the hgu95a 

and mgu74a arrays that were found to have statistically significant overlap sizes were 

much more lower (14% and 11% respectively).

These results might suggest that one or more as-yet unidentified effects, which result in 

the apparent excess similarity amongst genelists from most of the array-types tested, are 

not prevalent in the hgu95a and mgu74a arrays. However, as is described in the next 

section, this does not appear to be the case.
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3.3.3 Link between significance of similarity and genelist length

Excess similarity between genelists from experiments carried out on the same array-type 

is observed in most of the array-types tested: the near-ubiquity of this phenomenon is 

consistent with this being a reflection of an unidentified systematic bias.

One observation in support of this hypothesis is the strong correlation found between the 

levels of excess similarity found within each array-type and the length of genelists. In 

Figure 3.6, the median Z-scores of comparisons of genelists within each array-type are 

plotted against the square root of median genelist lengths for each array-type. These 

values have a strong correlation to each other, having a correlation coefficient (r) of 

0.97. This correlation was also found to be highly significant: a Pearson’s product- 

moment test (see Materials and Methods) yielded a p-value of 1.13 x 10"6.

This apparent relationship then warranted investigation of the question of whether longer 

genelists tend to find more significant similarities with other genelists than shorter 

genelists. For this purpose, the median Z-scores of all comparisons of each genelist with 

all other genelists from the same array-type was recorded and plotted against the square 

root of the length of that genelist (Figure 3.7).

As can be seen in the figure, the majority of chip types appear to exhibit correlation 

between the median Z-scores from a genelist and the length of that genelist, though the 

strength of this correlation is highly variable. It should be noted that amongst the 

genelists from the L2L database that are derived from experiments carried out on the 

hgu95a and the mgu74a arrays, which had not shown the excess levels of similarity 

observed in the other sets of genelists, the correlation is highly significant.
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type. To avoid possible duplication of genelists, comparisons between genelists
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in-house database. The grey line is the line of best f it created by linear modelling of
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Figure 3 .7  Correlation b etw een  g en e l is t  length  and significance. Data points 

represent the median hypergeometric Z-score of all comparisons carried out 

between any one genelist and all other genelists from the same array-type (Y-axes), 

plotted against the square root of the length of that genelist. Grey lines represent 

lines of best f it created by linear modelling of data points. In the plot, the upper 

number represents the correlation coefficient while the lower number is the p-value 

from the Pearson's product-moment test for correlation.
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This finding could explain why the shifts in Z-score distributions and excess similarity is 

not observed amongst the genelists from the hgu95a and mgu74a arrays that were 

downloaded from the L2L database but are seen in all sets of genelists from the in-house 

database and all other genelists downloaded from the L2L database: with median 

genelist lengths of 37 and 37.5 genes for the hgu95a and mgu74a sets respectively 

(whilst all other sets of genelists had median genelist lengths of 176-660 genes), most 

genelists in these sets were too short for any shift of Z-score distribution to become 

noticeable.

To test this, comparisons were carried out for these two sets again, but only using 

genelists of length greater than 50 genes (an arbitrary cut-off). The resultant 

hypergeometric Z-score distributions (Figure 3.8) now show shifts away from a median 

of zero. The proportion of comparisons found to have significant similarity (selected as 

having p<0.05 after Benjamini-Hochberg correction) are also much higher: 45% and 

32% for the hgu95a and mgu74a sets respectively (as opposed to 14% and 11% 

respectively observed prior to filtration of short genelists).

This relationship between genelist length and significance of overlaps between genelists 

was unexpected, because the hypergeometric test (see simulations described in Chapter 

2) is insensitive to genelist length. This length-dependency provides additional support 

for the hypothesis that the excess similarity observed between genelists from the same 

array-type reflects some systematic bias, for example, caused by the violation of some 

assumption(s) of the hypergeometric distribution.
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Figure 3 .8  -  H ypergeom etric Z -score d istributions of com p arison s of 

g e n e lis ts  from th e  sa m e array-type. X-axes represent Z-scores; Y-axes denote 

distribution frequencies. Black lines represent comparisons of experimentally 

derived genelists. Grey lines represent simulations using random genelists using the 

same genelist and gene universe size as comparison of real-world genelists. Broken 

lines represent medians of these distributions. Upper numbers in the plots signify 

the medians of the Z-score distributions from comparisons of experimentally derived 

genelists; lower numbers denote the percentage of comparisons found to be 

significant at p<0.05 (after FDR correction). For ease of visualization, Z-scores >10 

were set to 10. This may cause some distributions to appear biphasic.

The link between genelist length and significance also makes compensating for the 

excess similarity observed between genelists more difficult. If the effect of the observed 

systematic bias could be shown to be uniform, causing the shift of all Z-scores by the 

same amount or proportion, then the rank-order of comparisons on the basis of Z-scores 

would remain the same as when there was no bias, and the top-ranked comparisons 

could be selected for further analysis.

The following chapter describes explorations into the possible causes for the observed 

relationship between significance and genelist length.

85



Chapter 3: Comparison of lists of differentially expressed genes using the hypergeometric test

3.4 Discussion

This chapter explored the results of applying the hypergeometric statistical test to assign 

significance to overlaps between genelists, having carried out all possible pair-wise 

comparisons between all genelists from a database of genelists extracted manually from 

the published literature of microarray experiments carried out on a range of species. It 

was initially found that significant overlaps could be found even between genelists from 

experiments carried out on evolutionarily distance species, for example between 

genelists from the human hgul33a and the Arabidopsis athl 121501 Affymetrix 

platforms. It was also found that the proportions of comparisons found to be significant 

decreased with the evolutionary distances between the species from which genelists 

were being compared. These could reflect both the decrease in the number of 

homologous genes (due to evolutionary changes of genetic sequences), and evolutionary 

changes to transcriptional regulation of biological pathways.

However, very high levels of similarity were found for comparisons between genelists 

from the same chip type. This was reflected in both the high proportions of comparisons 

that exceeded thresholds of statistical significance and in hypergeometric Z-score 

distributions that were positively shifted away from an expected median of zero. These 

findings have several implications. The first is regarding practicality; for this approach 

to be of use it should highlight a relatively few interesting overlaps between genelists, 

which would be seen as occasional outliers (and detected as such). However, as the 

method finds the majority of comparisons to have significant similarity, it has limited 

practical utility. The second implication concerns the interpretation of these findings; 

while it is possible that the results reflect true biological similarities between the 

genelists, this seems somewhat implausible given the diversity of experiments from 

which the genelists were derived. A perhaps more likely scenario is that these are the 

results of some unidentified systematic effect, such as an erroneous assumption within 

the underlying statistical model.
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Subsequently, it was found that significance levels shared strong correlation with 

genelist length; longer genelists tended to be involved in more comparisons that showed 

significant similarity between genelists than did shorter genelists. When enough 

genelists were present in the set, comparisons between them would result in a Z-score 

distribution shifted well beyond a median value of zero. This is further evidence of some 

systematic effect, as the hypergeometric statistical test was chosen for the purpose of 

genelist comparison because the metrics involved are not sensitive to genelist length (in 

simulations using randomly created genelists -  See Section 2.2.3.3).

While it would be possible to quantify and compensate for this relationship between 

significance and genelist length, which then could result in fewer, more credible 

numbers of significant links being found, this was not carried out for the following 

reasons. Firstly, any modelling of the relationship would have been very ad hoc, and 

completely dependent on the data. Secondly (and more importantly), as the reasons for 

this bias were unknown, there would have been no theoretical grounds for trusting the 

results from such manipulation of the data.

For these reasons, further explorations focused on attempts to find the possible statistical 

errors that could have caused the observed relationship between genelist length and 

significance. Chapter 4 describes explorations of possible violations of assumptions of 

the hypergeometric distribution that could explain this relationship. It is shown that 

under the ‘biased urn’ model of the hypergeometric distribution, the excess levels of 

similarity observed in comparisons of experimentally-derived genelists from the same 

array-type can be simulated using randomly created genelists. Chapter 5 then explains 

why any ad hoc methods that attempt to quantify and control for the observed biases 

could be unreliable when using a single universe size for all comparisons of genelists 

from the same array-type.
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Chapter 4: M odelling v io lations o f  the

assum ptions o f the hypergeom etric  

distribution  using the ‘b iased urn’ m odel

4.1 Introduction

One aim of this thesis is to assess the viability and potential utility of comparing lists of 

differentially expressed genes as representatives of microarray experiments to find 

possible biological similarities and links between them. Chapter 2 described the 

development of strategies to translate genelists across different chips and species, and 

the selection of the hypergeometric statistical test to assess the significance of overlaps 

between genelists. Chapter 3 described the application of these methodologies to a local 

database of genelists manually extracted from the published scientific literature of 

microarray experiments carried out on Affymetrix GeneChip microarrays covering a 

range of species.

Excess levels of similarity were found for comparisons carried out between genelists 

from experiments carried out using the same type of GeneChip. Subsequently it was 

observed that there was a relationship between significance and genelist length, which is 

not predicted from a simple application of the hypergeometric distribution. These 

findings raised the possibility that the excess levels of similarity do not reflect any true 

underlying biology common to these genelists (which would be a somewhat implausible 

scenario, given the diversity of experiments represented by the genelists), but rather 

some inherent flaw within the statistical model used to assess significance of overlaps 

between genelists.
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This chapter describes explorations attempting to identify the cause of this observed 

bias, whereby longer genelists are involved in more comparisons that are called 

significant than shorter genelists. One possible cause is a violation of some 

assumption(s) of the hypergeometric statistical test. Such violations might not be totally 

unexpected in this system, given that a simple statistical model has been applied to the 

complex issue of gene expression patterns. One particular assumption is that all genes 

(in an array) have an equal probability of being selected into a list of differentially 

expressed genes. There are several gene regulation scenarios that violate this 

assumption.

One such category involves genes that are less likely to appear in a genelist because they 

are very rarely or never expressed. This may be due to trivial technical reasons (such as 

a badly designed probe to which the complementary mRNA does not hybridize), or for 

biological ones (for example genes that are only expressed in certain tissues and/or 

environmental conditions), or even a combination of the two (for examples, genes which 

are differentially regulated but have expression levels too low to be detected by current 

hybridization-based techniques). The presence of such genes then artificially increases 

the size of the gene universe, and could lead to erroneous assessment of significance 

when included in calculations of the hypergeometric statistical test.

To illustrate this, consider two genelists that do not share any underlying biology, and 

have an overlap of size jc, which is the expected size of overlap between two randomly 

created genelists selected from a gene universe that does not include genes in any o f the 

categories described above (i.e. a subset of the full gene universe). Now consider that 

the hypergeometric test is used to assess the significance of this overlap, and all genes 

represented on the array from which these genelists are derived are included in the gene 

universe. The hypergeometric test would then assume an expected overlap size of y , but 

this would be lesser than x, because, as described in Section 2.2.2, the expected size of 

overlap between genelists decreases with increased universe size (when genelist lengths
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are constant). Because significance is a function of the deviation of the observed overlap 

size from the expected overlap size, this comparison would be assigned greater 

significance (i.e. higher Z-score and lower p-value) than it ought to be. An increase in 

numbers of this category of (un-expressed/rarely-expressed) genes would result in a 

greater difference between the size of the ‘real’ gene universe (i.e. the set of genes which 

can be selected into a genelist) and the size of the gene universe used in the 

hypergeometric test (i.e. all genes on the array), which in turn would result in greater 

significance being assigned to any comparison of genelists.

A second category would involve those genes whose expression patterns are 

evolutionarily (or otherwise) constrained to be stable. This might potentially include 

housekeeping genes such as GAPDH, P-actin, or cyclophilin because the expression 

patterns of these genes may not be expected to show much change in response to 

experimental conditions (She et al. 2009). As most tests for differential expression 

assess the level of variability in expression levels between phenotype classes, such genes 

may be less likely to be selected into a genelist. The presence of this category of genes 

on an array would have a similar effect on the hypergeometric test as might be expected 

from the first category of genes.

A third category consists of those genes that show high levels of variability in their 

expression patterns across different phenotype classes i.e. those that are commonly 

subject to differential transcriptional regulation in response to experimental conditions. 

These genes would then be more likely to be selected by tests for differential expression 

into genelists than other genes. This then would result in an increased probability of 

these genes being found in common between genelists. In effect, these genes could 

artificially increase the overlap size between genelists, and cause the comparison to be 

assigned greater significance by the hypergeometric test than should be the case.
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While the above three categories of genes all violate an assumption of the 

hypergeometric test, namely that all genes have an equal probability of being selected 

into a genelist, a fourth category of genes violates another assumption: that genes are 

selected into genelists independently of each other. This category would include co­

regulated genes. For example, consider a group of three co-regulated genes, with such 

similar expression patterns that (if differentially expressed) they would always be 

selected together into a genelist. Thus the contribution of these genes to an overlap 

between two genelists that contain these genes would be a value of three (instead of the 

desired value of one).

More advanced models of the hypergeometric distribution, such as the Fisher’s and 

Wallenius’ non-central hypergeometric distributions (Fog 2007), do not make some of 

the assumptions as the simple hypergeometric model, such as the assumption that all 

genes have equal probability of being selected. However, their use in the analysis of 

microarray data has been limited, because these methods require precise quantifications 

of gene-selection probabilities that are currently unavailable. Due to this, researchers 

have used simple models like the hypergeometric distribution in microarray data 

analysis (for example in Over-Representation Analysis of GO terms or pathways within 

genelists), in the hope that major biological signals will overcome any deficiencies of 

the statistical models.

So far, no attempts have been made to quantify these complexities or the effects they 

could have on the results when using statistical models that ignore them. This chapter 

describes attempts to quantify the effect of these complexities on the naive 

implementation of the hypergeometric test to the comparison of lists of genelists using 

the ‘biased urn’ model.
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4.2 Explorations and Results

4.2.1 The ‘biased urn’ model

Advanced models of the hypergeometric distribution such as those mentioned above 

(Fog 2007), involve selection from what has been termed a ‘biased urn’. This is an 

allusion to the um-filled-with-balls analogy that is popularly used to describe the 

hypergeometric distribution (see Section 2.2.3.3), and refers to these methods’ use in 

cases where different balls in the urn have different probabilities of being selected. In 

order to quantify the net effect of complex gene expression patterns on the use of the 

simple hypergeometric model to assess similarity between genelists, a statistical model 

was used that also assumed a ‘biased urn’.

This model involves an urn (gene universe) that is filled with two sets of balls (genes): a 

set that can be selected into genelists, and a set that cannot. Consider that the size of this 

gene universe is x, and the size of the subset of the universe from which genes can be 

selected is y, such that x > y. Genelists were to be selected in a random fashion from 

amongst this subset of genes and then compared using the hypergeometric test.

However, the universe size to be used in assessment of significance is x rather than y. In 

such a scenario, the distribution of overlap sizes observed would vary around the overlap 

sizes expected when using a gene universe of size y. However the statistical test would 

assume overlap sizes expected when using a gene universe of size x. As shown in 

Section 2.2.2, the expected overlap size decreases with increase in the size of the gene 

universe (when genelist lengths are constant). Thus, on average, any comparison of 

genelists from this model would involve an observed overlap size which is greater than 

what the model expects, and assignment of greater significance to this comparison than 

would be warranted by a comparison of two randomly created genelists. This could then
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cause excess levels of similarity to be found between the genelists, similar to what was 

observed in the comparisons of literature-derived genelists described in Chapter 3.

This model represents a somewhat over-simplification of the complex expression 

patterns of genes (such as those described in the introduction to this chapter), and cannot 

be expected to accurately quantify these effects separately. However it is hypothesized 

that this model could allow some quantification of the net effect of these factors on the 

comparison of genelists.

4.2.1.1 Effect of universe size on significance in the biased urn model

It is expected that for a comparison of randomly created genelists using the biased urn 

model, the significance assigned to the comparison would increase with an increase of 

the universe size used in the calculations relative to the size of the ‘real’ gene universe 

from which the genelists were sampled.

For example, consider the following biased urn scenario: two genelists of 1000 genes 

each that have been selected from a gene universe of 10,000 genes. Then consider that 

the observed overlap size between them is exactly as expected i.e. 100 (as calculated 

using the formula described in Section 2.2.2). A hypergeometric test using the correct 

gene universe size of 10,000 (i.e. an unbiased urn) would yield a Z-score of zero for this 

comparison. However, a hypergeometric test that involves a universe size of 20,000 (i.e. 

a biased urn which has a further 10,000 genes which cannot be selected into genelists), 

would then assume an expected overlap size of 50, and assign this comparison a Z-score 

of 7.4. Similarly, using gene universe sizes of 25,000 and 30,000 would yield Z-scores 

of 9.9 and 11.9 respectively and so on.

To demonstrate this, simulations were carried out as follows. A set of 10,000 unique and 

arbitrary identifiers was created, representing the subset of a gene universe from which
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genes can be selected into a gene universe. Two genelists, each of 1000 genes each were 

then selected at random and without replacement for the gene universe, and the size of 

the overlap between them was recorded. This was carried out a thousand times.

Hypergeometric Z-scores were then calculated for this distribution of overlap sizes using 

gene universe sizes ranging from 10,000 to 40,000. Figures 4.1a and 4.1b display box- 

plots and density curves, representing the Z-scores distributions calculated using these 

different universe sizes, respectively.

As expected, the distribution calculated using the correct universe size (which represents 

an unbiased urn) is centred on a median of zero (broken black lines). The other 

distributions are increasingly shifted away (from a median of zero) as the universe size 

used for their calculations increase.

The medians of these distributions (horizontal black lines within box-plots) are equal to 

Z-scores calculated using an overlap size of 1000, as would be expected in two genelists 

of 1000 genes each randomly selected from a universe of 10,000 genes (red points in 

Figure 4.1a).
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Figure 4 .1  Effect o f u n iverse s ize  on sign ifican ce in th e  b iased  urn m odel.

(a) Box-plots and (b) density curves of Z-score distributions based on comparisons 

of two genelists of 1000 genes each selected at randomly from a hypothetical array 

(a set of 10,000 unique and arbitrary identifiers), iterated a thousand times, created 

using a range of gene universe sizes (denoted by the X-axis in (a) and the key in

(b)). Broken black lines in both figures mark a Z-score of zero. Red lines and points 

in (a) represent pre-calculated Z-scores expected for their respective distributions.
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4.2.1.2 E ffect o f genelist length on significance in the biased urn model

It is also expected that, in the biased urn model, genelist length is linked to significance. 

For example, consider the following biased urn model: an array of 20,000 genes of 

which only half can be selected into genelists. For a comparison between two randomly 

created lists of 1000 genes each, an overlap size of 100 genes is expected. Under the 

biased urn model the expected overlap size is 50 and this would yield a Z-score of 7.4. 

Similarly consider a comparison of two randomly created genelists of 2000 genes each 

that have an expected overlap size of 400 genes. The biased urn model would then 

expect an overlap size of 200 and yield an even more significant Z-score of 15.7. A 

comparison between two lists of 3000 genes (that have an overlap of the expected size) 

each would yield a Z-score of 24.9, and so on.

To demonstrate this, the following simulations were carried out: a set of 10,000 unique 

and arbitrary identifiers was created, representing the subset of a gene universe from 

which genes can be selected into a gene universe. Two genelists, each of 1000 genes 

each were then selected at random and without replacement for the gene universe, and 

the size of the overlap between them was recorded. This was carried out a thousand 

times. Hypergeometric Z-scores were then calculated for this distribution of overlap 

sizes using a gene universe size of 20,000 genes. This was repeated using a range of 

genelist lengths varying from 1000 to 2500 genes.

Box-plots and density curves of the resultant Z-score distributions are displayed in 

Figure 4.2a and 4.2b respectively. A shift of distributions towards increasing 

significance (Z-scores) with increased genelist size is seen. The medians of these 

distributions (horizontal black lines within box-plots) are equal to Z-scores calculated 

using an overlap sizes that are expected in a comparison of randomly created genelists of 

their respective lengths (red points in Figure 4.2a).
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Figure 4 .2  Effect of g en e lis t  length  on s ig n ifican ce  in th e  b iased  urn m odel.

(a) box-plots (b) and density curves of Z-score distributions based on comparisons 

of two genelists (of the same length), each selected at randomly from a 

hypothetical array (a set of 10,000 unique and arbitrary identifiers), iterated a 

thousand times. Calculations used a universe size of 20,000 genes and a range of 

genelist lengths (denoted by the X-axis in (a) and the legend in (b)). Red lines and 

points in (a) represent pre-calculated Z-scores expected for the respective 

distributions.
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4.2.1.3 Combined effect o f genelist length and universe size on significance in the 

biased urn model

The explorations described above illustrate how gene universe size and genelist length 

can independently influence significance when performing the hypergeometric statistical 

test using the biased urn model.

To investigate if (and how) these factors interact with each other, simulations were 

carried out as follows: a set of 10,000 unique and arbitrary identifiers, representing a 

hypothetical array was created. From this, a reference list of 1000 genes was selected 

randomly and without replacement. Then, a set of genelists of lengths ranging from 1000 

to 5000 genes were selected randomly and without replacement.

Each of these was compared to the reference genelist and the observed overlap size was 

recorded. Hypergeometric Z-scores were then calculated for each comparison using gene 

universe sizes of 10,000 (representing an unbiased urn), 15,000, 20,000 and 25,000 

genes. Figure 4.3a displays the density curves of the resulting Z-score distributions.

As expected, the distribution that was created using a universe size of 10,000 genes (i.e. 

an unbiased urn) is centred on a median of zero. As seen previously in the analysis 

described in Section 4.2.1.1, the Z-score distributions that were calculated using the 

biased urn model are shifted away from a median of zero, and the magnitude of this shift 

is proportional to the difference between the ‘real’ gene universe size of 10,000 and the 

universe size used in the calculations.

There is also a greater change in the shapes of the distributions derived from the biased 

urn model, as compared to the previous analysis, probably due to a range of different 

genelist lengths being used (as opposed to the fixed genelists lengths used in Section 

4.2.1.1).
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In Figure 4.3b the Z-scores are plotted against the square root of the lengths of the test 

genelists used in the comparisons. As expected, the distribution derived from the 

unbiased urn shows no influence of genelist length on magnitude. The distributions 

derived from the biased urn models show an increase of significance with increase of 

genelist length, which is in concordance with the analysis described in Section 4.2.1.2.

It is also seen that for models involving greater deviations of the gene universe size from 

the ‘real’ gene universe size of 10,000 genes, there is a more pronounced effect of 

genelist length on significance, as evidenced by the increased slopes of the lines of best 

fit.

Thus, while genelist length and universe size can both influence measures of 

significance in the biased urn model independently, in cases where both factors are 

variable, the magnitude of the effect of genelist length on significance depends on how 

biased the urn is (i.e. the magnitude of the difference in the size of universe used for 

sampling genelists, and that of the universe size used in the hypergeometric test).
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F igure  4 .3  C om bined  e ffe c t o f g e n e l is t  le n g th  an d  u n iv e rs e  s ize  on 

s ig n if ic a n c e  in th e  b ia se d  u rn  m o d e l, (a) Density curves of Z-score distributions 

of comparisons of a reference genelist to a set of test genelists of a range of 

lengths, all of which were selected randomly from hypothetical arrays (sets of 

unique and arbitrary identifiers) of different sizes, (b) Z-scores plotted against 

square root of test genelist lengths. Broken lines represent lines of best fit created 

by linear modelling. The different distributions were created by using different gene 

universe sizes in Z-score calculations (see figure legends.)

100



Chapter 4: Modelling violations of the assumptions of the hypergeometric distribution using the

‘biased urn’ model

4.2.2 Effective gene universe sizes range from only 35-65% of the 
genes on an array

The above explorations indicate that the biased urn model is able to simulate both the 

excess similarity, and the effect of genelist length on significance of comparisons, that is 

observed in comparisons of real-world genelists. This was achieved simply by changing 

the universe size used in calculating the hypergeometric Z-scores, thus violating the 

assumption that all genes in the universe are equally likely to be selected into genelists. 

In effect, additional genes are added to the universe that cannot be selected into 

genelists.

Application of this model to a comparison of literature-derived genelists does have some 

caveats. It involves something of an over-simplification of the complex expression 

patterns and interactions that occur between genes, in that it assumes only two 

behaviours: that a gene can be selected into a genelist or it cannot. It thus ignores the 

continuum of probabilities that quantify the ability of genes to be selected into genelists, 

and the likelihood that these probabilities may change under different experiments and 

conditions. The model also ignores the possibility that the gene universes are also likely 

to be different for different comparisons. For these reasons, it is not reasonable to expect 

the model to provide resolution and quantification of the many different gene expression 

behaviours (some of which may cause excess similarity between genelists, and some of 

which may decrease it). However, it could provide adequate quantification of the net 

effect of these phenomena in the terms of this model.

The biased urn model was applied to the comparison of literature-derived genelists as 

follows. Central to the application of this model is the assumption that when the ‘true’ 

gene universe size is used in the calculation of Z-scores, the resulting distribution would 

be centred on a median of zero, thus reflecting the reasonable expectation that in a 

collection of genelists from a diverse range of experiments, most genelists would not be
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similar to each other. Decreasing the size of the gene universe used in the Z-score 

calculation resulted in the shifting of the distribution backwards towards a median of 

zero. The universe size was iteratively decreased till the resulting distribution was 

centred on a median of as close to zero as possible. This process was carried out on the 

comparisons of all sets of genelists (except the L2L hgu95a and mgu74a sets, as their Z- 

score distributions were already centred on medians of zero), and the results are shown 

in Table 4.1.

Array-type Median
Z-score

Original gene 
universe size (number 

of genes on array)

Estimated 
‘real’ gene 

universe size

Estimated ‘true’ 
gene universe size 

(% of original)

hgu133a 2.48 13387 7784 58.1%

hgu133plus2 4.12 20080 9256 46.1%

mouse4302 3.32 20981 11794 56.%

rat2302 2.33 13784 7395 53.6%

drosgenomel 4.66 12049 7688 63.8%

celegans 3.83 16107 8650 53.7%

ath1121501 5.58 22568 9635 42.7%

hgu133a (L2L) 2.52 13387 5225 39.%

moe430a (L2L) 2.14 13419 4762 35.5%

Table 4 .1  Application of the biased urn m odel to  com parisons of literature- 
derived gen elists . 'T rue7 g en e  universe sizes w ere estim ated  by iteratively 

reducing th e  g en e  un iverse size used  in calculations of Z -scores till th e  resulting 

distributions w ere cen tred  on m edians of zero. A rray-types rep resen t s e ts  of 

genelis ts  (derived from th o se  array s) collected in th e  local d a tab ase  unless indicated 

o therw ise.

The estimated ‘true’ gene universe sizes imply that, on average, for any comparison of 

genelists, the net effect of the complex gene expression patterns that are ignored by the 

simple hypergeometric test is equivalent to only 35-65% of genes on an array being 

available for selection into genelists, in terms of the biased urn model.
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4.2.2 Randomly selected genelists show excess similarity using the 
biased urn model

Having estimated the ‘true’ gene universe sizes, it was then desired to estimate the 

extent to which the excess similarity observed for comparisons of the literature-derived 

genelists could be explained by the systematic effects of genelist length and gene 

universe size on significance, as a result of violations of the assumptions of the simple 

hypergeometric test. This was attempted by carrying out the following simulations: for 

each of the sets of genelists, a hypothetical array, represented by a set of unique and 

arbitrary identifiers, was created. The size of these arrays was that of the estimated ‘true’ 

gene universe sizes (e.g. to simulate a comparison of the hgul33a set of genelists, a 

hypothetical array of 7784 genes was used). Then a set of genelists was selected from 

this array at random and without replacement, with lengths matched to each of the 

literature-derived genelists of that set. These genelists were then compared using the 

hypergeometric test, but now using a gene universe size that was the original number of 

genes on the array (thus for simulations of comparison of the hgul33a genelists, a 

universe size of 13387 genes was used).

The resulting distributions are shown in Figure 4.4. It is found that the distributions from 

the biased um model are able to simulate the excess similarity observed in the 

comparisons of literature-derived genelists well. This is reflected both in the similarity 

of the shapes of the distributions, and also in the similarity in the median Z-scores for 

these distributions, and the proportions of comparisons found to be significant at p<0.05 

after Benjamini-Hochberg correction (Table 4.2).

From these observations, it was concluded that much of the excess similarity observed 

during comparisons of genelists derived from experiments carried out on the same type 

of GeneChip appears to be an artefact caused by violations of assumptions of the 

hypergeometric test.
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Figure 4 .4  M odelling com parisons of literature-derived  g e n e lis ts  using the  

biased  urn m odel. X-axes represent hypergeometric Z-scores; Y-axes denote 

distribution frequencies. Black curves represent Z-scores from comparisons of 

literature-derived genelists. Grey curves represent Z-scores from simulation studies 

using an 'unbiased7 urn (i.e. the universe size used for sampling genelists is the 

same as that used for calculations). Broken curves represent Z-scores simulations 

using a biased urn. Vertical lines represent medians of their respective distributions. 

For ease of visualization Z-scores >10 were set to 10. This may cause some 

distributions to appear biphasic.
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Array-type

Comparison of literature-derived 
genelists

Comparison of randomly 
created genelists using the 

biased um model

Median
Z-score

%of 
comparisons 
significant at 

p<0.05

Median
Z-score

%of 
comparisons 
significant at 

p<0.05
hgu133a 2.48 51.4% 2.51 52.3%

hgu133plus2 4.12 69.6% 3.51 66.1%

mouse4302 3.32 64.7% 3.37 64.7%

rat2302 2.33 52.7% 2.29 43.6%

drosgenomel 4.66 66.3% 3.43 73.2%

celegans 3.83 80% 3.8 74.5%

ath1121501 5.58 72.6% 5.69 78.9%

hgu133a (L2L) 2.52 48.3% 2.59 48.8%

moe430a (L2L) 2.14 41% 1.98 37.2%

Table 4 .2  -  Modelling com parisons of literature-derived gen elists  using the  
biased urn m odel. Median Z -scores and proportions of com parisons found to  be 

positive a t  p < 0 .0 5  (a fte r Benjam ini-H ochberg correction) for com parisons of 

litera tu re-derived  genelis ts  and from sim ulation stud ies using th e  biased urn model. 

T hese a re  derived from  th e  d istributions rep resen ted  a s  black and broken curves 

respectively  in Figure 4 .4 . A rray-types rep resen t s e ts  of th o se  genelists  (derived 

from  th o se  a rray s) collected within th e  in-house d a tab ase  unless indicated 

o therw ise.
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4.3 Discussion

As described in Chapter 3, comparisons between genelists derived from experiments 

carried out on the same GeneChip using the hypergeometric statistical test yielded 

excess levels of similarity between the genelists. This observation, along with the 

discovery of a relationship between genelist length and significance, led to the 

hypothesis that the excess similarity reflected the systematic effects of a flaw in the 

statistical model (possibly caused by violations of assumptions of the hypergeometric 

test), rather than any true underlying biology.

This chapter then described investigations of this hypothesis, which involved what has 

been termed the ‘biased urn’ model of sampling for the hypergeometric distribution. 

While the simple hypergeometric test assumes that all genes on an array have an equal 

probability of being selected into a genelist, the biased urn model forces a bias in the 

sampling probability, such that a certain proportion of genes on the array can never be 

selected. This model was used for the investigations because in this model, the 

significance metrics are functions of genelist length and universe size, and yield excess 

levels of similarity between randomly created lists of genes, as is seen in comparisons of 

experimentally-derived genelists.

To simulate the comparisons of experimentally-derived genelists, the biased urn model 

required three parameters: the genelists lengths (which would be the same as the lengths 

of the experimentally-derived genelists), the universe size used for calculations of 

significance (which would be the total number of genes on the array; this is the universe 

size used in comparisons of experimentally-derived genelists), and the ‘true’ gene 

universe size, which is the size of the subset of those genes on the array that can be 

sampled into genelists. The ‘true’ gene universe sizes were estimated on an ad hoc basis 

by iteratively re-calculating Z-scores from comparisons of experimentally derived 

genelists using different gene universe sizes till the resulting distribution was centred on
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a median of zero. This methodology was based on the assumption that as most genelists 

from a diverse set of experiments would not be similar to each other, they should yield a 

Z-score distribution centred on a median of zero, as is seen from comparisons of 

randomly created genelists.

The magnitude of the difference between these ‘true’ gene universe sizes and the total 

number of genes on the array could thus provide a rough quantification of the magnitude 

of the violation of assumptions of the hypergeometric distribution observed in the data. 

Strikingly, it was found that the net effect of these violations resulted in the equivalent 

of only 35-65% of the genes on an array being available for selection into genelists, in 

terms of the biased urn model.

Simulations carried out using the biased urn model with the parameters described above 

yielded Z-score distributions that were highly similar to those derived from the original 

comparisons of experimentally derived genelists. Thus, even though the biased urn 

model represents an over-simplification of the complex gene expression patterns that 

violate assumptions of the hypergeometric distribution (some of which are described in 

Section 4.1), it is able to replicate the excess levels of similarity observed amongst 

experimentally-derived genelists with a considerable degree of success.

Naive application of the hypergeometric distribution to the comparison of 

experimentally-derived genelists is likely, therefore, to yield unreliable results, because 

of the influence on genelist length on significance metrics. However, as the biased urn 

model is capable of simulating these effects relatively well, simply by forcing a 

difference between the sizes of the sampling universe and the size of the universe used 

in calculation of significance metrics, it can provide some potential solutions. One 

option may be to simply use the estimated true gene universe size in the hypergeometric 

test. Another option may be to predict the relationship between genelist length and Z- 

scores based on the difference between the two universe sizes. The observed Z-scores
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can be projected on this relationship and significance could then be calculated using the 

deviation of Z-scores from the predicted relationship. These two methods can only be 

used in cases where excess similarity is observed amongst genelists (i.e. Z-score 

distributions are shifted away from medians of zero), as both require estimation of the 

true gene universe size. Another option which could be of use, particularly in cases like 

the hgu95a and mgu74a sets of genelists from the L2L database (Newman and Weiner 

2005) and thus where the genelists are too short to cause shifts in Z-score distributions, 

would involve modelling the observed relationship between Z-scores and genelist 

lengths. For example, a line of best fit could be induced by linear modelling of the data, 

and significance could then be assigned depending on the deviation of Z-scores from this 

line.

However, there are issues regarding such solutions. Firstly, they are ad hoc and very 

dependent upon the data, and will thus be potentially prone to biases within the data. 

Secondly, and more importantly, as these methods use, for all assessments, a single 

estimated true gene universe size that would actually be the average gene universe size 

shared between any two experiments, they ignore the possibility that different 

comparisons are likely to involve different gene universes (which may be of different 

sizes). For example, it is likely that two experiments carried out on the same tissue type 

may share a much larger gene universe than those carried out on different tissue types. 

Estimating the correct universe size is crucial, as (in the biased urn model), it not only 

influences the significance metrics (see Section 4.2.1.1), but also influences the effects 

of genelist length on significance metrics (see Section 4.2.1.3).

For this reason, subsequent investigations focussed on estimation of gene universes for 

experiments. Chapter 5 describes these explorations, which indicated considerable 

diversity in gene universe sizes, which appear to be affected by both technical and 

biological (such as tissue-specificity) effects.
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Chapter 5: Exploring gene expression

patterns w ith  the GNF Expression Atlas

5.1 Introduction

Chapter 3 described explorations involving comparisons of genelists derived from 

experiments carried out on the same array-type, by using the hypergeometric statistical 

test to assess significance of overlaps. This revealed what appeared to be excess levels of 

similarity. Further work revealed a link between genelist length and the significance of 

comparisons, which is not expected from the hypergeometric test and thus suggested the 

existence of one or more flaws within the application of the statistical model. Chapter 4 

described explorations of possible violations of the hypergeometric test. A statistical 

model (called the biased urn) was used that could model the excess levels of similarity 

observed, as well as the relationship between genelist length and significance. It was 

found that the model, when using randomly created genelists, could provide a reasonable 

simulation of the significance distributions derived from comparison of experimentally- 

derived genelists. This was achieved by using a different sized gene universe in the 

statistical test to that from which the genes were sampled.

While the biased urn model represents an over-simplification of the various gene 

expression scenarios that could cause violations of the assumptions of the 

hypergeometric distribution, its ability to at least partially replicate the Z-score 

distributions derived from comparisons of experimentally-derived genelists does raise 

the question as to whether it might be possible to model (and thus compensate for) these 

violations. One concern is that such modelling is likely to be a highly ad hoc and very 

dependent on the data, and would be susceptible to any biases inherent in a particular 

dataset. Also, such modelling would require assumptions that may be plausible, but
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somewhat weak (for example, the assumption that comparisons carried out within a set 

of genelists from a diverse range of experiments would yield a Z-score distribution 

centred on a median of zero, as is seen from comparisons of randomly created genelists).

One particular concern would be if the same gene universe size (i.e. the subset of genes 

on an array from which genes can actually be selected into genelists) would need to be 

used for all comparisons, since from a biological perspective this does not seem 

justified. This issue is of particular concern because, as simulations described in 

Chapter 4 show, in the biased urn model, calculations of the significance metrics are 

sensitive to the size of the gene universe. This also affects the magnitude of the 

relationship between genelist length and significance. Thus, use of the correct gene 

universe size is crucial. While the model provides an estimate of the true gene universe 

size, this only represents the average size of the gene universe that is shared between any 

two experiments. It is not difficult to conceive of pairs of experiments having very 

different sizes of shared gene universes (for example due to tissue-specific gene 

expression). Thus, one might expect that two experiments carried out on similar tissue- 

types would share a larger gene universe than two experiments carried out on different 

tissue-types.

To investigate these issues in greater detail the following chapter reports explorations 

undertaken using the Genomics Institute of the Novartis Research Foundation (GNF) 

Expression Atlas (Su et al. 2004) dataset. This is a publicly available set of expression 

profiles of a wide range human and mouse tissues. By providing an opportunity to 

explore the number of genes expressed in different types of tissues, it allowed some 

semi-quantitative estimates to be derived as to potential gene universe sizes in different 

tissue types, and the number of expressed genes shared between the different gene 

universes.
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5.2 Results and Explorations

5.2.1 Explorations of gene universe sizes and gene expression 
frequencies across 68 different tissue-types

The explorations described below were carried out on a subset of the Expression Atlas 

(see Materials and Methods) that comprises of the expression profiles of 68 different 

normal human tissues (having excluded expression profiles derived from foetal tissues 

and cancerous cell-types) carried out on the Affymetrix human hgul33a array platform. 

As the experimental procedures carried out to generate the tissue expression profiles that 

comprise this dataset were all carried out within the same laboratory and on the same 

microarray platform, analysis of this dataset should minimise problems related to cross- 

platform and cross-laboratory data integration.

Each of the 68 tissue-types comprising this subset of the GNF Expression Atlas that was 

selected for further explorations described in this chapter is represented by the 

expression profiles of two microarrays. To avoid possible biases that might be 

introduced by instances of several probesets that represent the same gene (see Chapter 

2), Entrez Gene IDs were used to represent genes rather than probeset IDs. This was 

achieved by selecting for each of the Entrez Gene IDs represented on the array, the 

probeset that shows the greatest median expression levels over all the 68 different tissues 

(see Materials and Methods).

One estimate for the size of the gene expression universe (that is, the number of genes 

expressed) for each tissue sample could then be calculated based on the number of genes 

flagged as ‘Present’ by the MAS5 algorithm in at least one of the two arrays 

representing that tissue-type (see Materials and Methods). The sizes of the gene 

universes based on these criteria are displayed in Table 5.1, and the distribution of these 

sizes is shown in Figure 5.1.
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Tissue-type Size of gene universe 
(% of genes on array) Tissue-type Size of gene universe ( 

% of genes on array)

Amygdala 46.0 PLACENTA 42.6
CerebellumPeduncles 32.4 Uterus 44.9
CingulateCortex 36.7 UterusCorpus 20.9

Hypothalamus 45.6 Prostate 44.2

MedullaOblongata 32.5 testis 38.5

OcdpitalLobe 39.8 TestisSeminiferousT ubule 35.2

OlfactoryBulb 37.9 TestisGermCell 44.2

ParietalLobe 31.7 Testislnterstitial 36.6
Pons 24.2 TestisLeydigCell 31.2

PrefrontalCortex 48.3 Heart 29.3
Temporal Lobe 27.4 atrioventricu lamode 18.3

Thalamus 39.2 Appendix 18.3
T rigeminalGanglion 14.8 721 _BJymphoblasts 52.8

WholeBrain 45.4 PB-CD19+Bcells 44.7

caudatenucleus 35.4 PB-CD4+Tcells 47.2

cerebellum 31.9 PB-CD56+NKCells 47.2

globuspallidus 27.6 PB-CD8+Tcells 48.6

subthalamicnucleus 29.8 PB-CD14+Monocytes 45.1

spinalcord 38.2 lymphnode 40.3

ciliaryganglion 21.4 Lung 40.7
SuperiorCervicalGanglion 13.1 Liver 27.6

PB-BDCA4+Dentritic_Cells 52.8 SkeletalMuscle 13.5

bronchialepithelialcells 41.2 SmoothMuscle 39.6

Pancreas 34.0 CardiacMyocytes 34.8
Pancreaticlslets 40.3 BM-CD33+Myeloid 43.9

BM-CD105+Endothelial 43.3 TONGUE 24.7

BM-CD34+ 50.0 salivarygland 31.0

BM-CD71 +Ear1yErythroid 36.1 Pituitary 36.1
bonemarrow 28.4 skin 21.2

WHOLEBLOOD 44.6 thymus 43.9

adrenalgland 33.3 Thyroid 48.3

AdrenalCortex 27.4 Tonsil 35.3

ADIPOCYTE 36.8 trachea 37.3

Ovary 25.7 kidney 32.4

Table 5.1 Numbers of g en es  exp ressed  in 68  normal human tissu es  from  
the GNF Expression Atlas. Numbers indicate percentages of the total number of 

EGIDs present on the hgul33a array. Expression universes were constructed for 

each tissue type by selection of genes flagged as 'Present' by the MAS5 algorithm. 

Tissue-type names were extracted from the names of the CEL files.
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Figure 5.1 Histogram of the number of g en es  expressed  in 68 normal 
human t issu e s  from the GNF Expression Atlas. These are represented as 

percentages of the total number of EGIDs present on the AfTymetrix hgul33a array. 

Expression universes were constructed for each tissue type by selection of genes 

flagged as 'Present' by the MAS5 algorithm.

The median size of the expression universe for these tissues corresponds to 36.6% of the 

genes (EGIDs) present on the hgul33a array. The number of genes expressed in the 

different tissues varies considerably, with a standard deviation for this distribution 

corresponding to approximately 10% of genes on the array. The universe sizes range 

from 13% of genes on the array, as seen for the superior cervical ganglion tissue, to 53% 

of genes on the array, as seen for the BDCA4+ dendritic cells.
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This analysis also provided the opportunity to investigate gene expression frequencies 

across these 68 tissue-types. These were calculated as the numbers of tissue-types that 

each of all the genes present on the hgul33a array were expressed in. To compare this 

with the distribution of gene expression frequencies expected if genes were selected into 

expression universes at random, a set of genelists was created, each of the size of one of 

the tissue gene expression universes, by selecting randomly and without replacement 

from the total set of genes present on the hgul33a array.

The distribution of gene expression frequencies from the random selection of gene 

expression universes appears to follow an approximately normal distribution as shown in 

Figure 5.2b and in the quantile-quantile (Q-Q) normal plot of this distribution in Figure 

5.2d. However, the distribution of gene expression frequencies observed in the 

Expression Atlas (see Figure 5.2a) appears to deviate noticeably from a normal 

distribution (see Q-Q normal plot in Figure 5.2c), due to the presence of large numbers 

of genes that are expressed in very few tissues, or in many tissues. Close to 15% of 

genes on the hgul33a array are not expressed in any of the tissues, and more than 32% 

of genes are expressed in 5 or less tissues. At the same time, more than 3% of genes on 

the array are expressed in all 68 tissues, while close to 10% of genes on the array are 

expressed in 65 or more tissues. In the distribution of gene frequencies of randomly 

selected genes, no genes cross any of the thresholds described above.

This highly non-normal and non-random selection of genes into expression universes as 

observed in these 68 tissue types is likely to cause the sort of expression patterns (some 

of which are described in Section 4.1) that cause violations of assumptions of the 

hypergeometric distribution when this is used to compare experimentally-derived lists of 

genes, and in particular, the assumption that all genes are equally likely to be selected 

into genelists.

114



Chapter 5: Exploring gene expression patterns with the GNF Expression Atlas

(a)
8  _ ID 
CN

8 _
(b)

<= ro <u
cr<U crCD

Oa

o  -ID

CD - 1 lfj llTfTTlTTnTrTTTiiiTrTfr̂^
I 1------ 1------ 1------ 1------ 1------ 1------ 1

0 10 20 30 40 50 60 70
Number of tissues expressed in

L
i------- 1— i— i— i— i— i— i

0 10 20 30 40 50 60 70
Number of tissues expressed in

COa>
c<0 o
Z3a
Cl
£cc
CO CN

•2 0 2 4•4

CO
_a>
c(O3
a
CD
Cl
£
05
CO

o•*3-

CDcn

ID
CN

CD

•4 •2 0 2 4
Theoretical quantiles Theoretical quantiles

Figure 5.2 Gene expression frequencies observed in 68 d ifferent normal 

human tissue-types. (a) Histogram of gene expression frequencies for all genes 

on the hgu l33a array, i.e. the number of tissues in which each gene is found to be 

expression (on the basis of being called as Present by the MAS5 algorithm ); (c) 

shows the normal Q-Q plot for this distribution, (b) Histogram of gene frequencies 

derived from a simulation involving random selection of genes from the hgu l33a 

array into hypothetical expression universes of the same sizes as those derived from 

the 68 tissues under investigation; (d) shows the normal Q-Q plot for this 

distribution.
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5.2.2 Sizes of genes shared by expression universes of different 
tissues vary widely

In the previous section it was noted that that the sizes of the expression universes (i.e. 

the number of genes found to be expressed) for each of the 68 tissue types from the GNF 

Expression Atlas vary widely. This would then suggest that the number of genes shared 

between the expression universes of any pair of tissues is highly variable as well, as 

would be expected from relationship between genelist length and overlap size described 

in Section 2.2.2.

To investigate this, the number of genes shared between the expression universes (i.e. 

the sizes of the shared expression universes) was recorded for every possible pair of 

tissues from amongst the 68 normal human tissues of the GNF Expression Atlas under 

consideration. A control experiment was then carried out by creating another set of 

expression universes by randomly selecting from amongst all genes represented on the 

Affymetrix hgul33a array, sets of genes of the same sizes as the expression universes 

observed for each of the 68 normal human tissues. Overlap sizes between all pairs of 

gene sets were also recorded. Box-plots and density distribution curves for both the 

former (‘Observed’) and latter (‘Control’) sets of shared expression universe sizes are 

displayed in Figure 5.3a and 5.3b respectively.

Firstly, it is observed that distribution of observed overlap sizes is shifted away from that 

of the simulated overlap sizes: the former is centred on a median value of -25% of genes 

on the hgul33A array, which is nearly twice the median of the latter distribution 

(-12%). A paired t-test comparing these distributions yielded a p-value of < 2 x 10'16, 

indicating that the difference between the means of these distributions is highly 

significant. This is most likely to have occurred due to the highly non-random selection 

of genes into the expression universes of the 68 tissues, as was observed in Figure 5.3.
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Figure 5 .3 S izes  of express ion  un iverses  shared across  68 normal human  

t is su e s .  Box-plots (a) and density curves (b) of distributions of the sizes of 

overlaps between expression universes observed for 68 normal human tissues from 

the GNF Expression Atlas ('Observed') and from a simulation comparing universes 

created by selecting randomly from all the genes on the hgul33a array, of the same 

sizes as the observed expression universes ('Control'). Sizes are represented in 

terms of percentage of genes on the hgul33a array (Y-axis in (a) and X-axis in (b)). 

Broken vertical lines in (b) represent medians of the respective distributions.

Secondly, it is observed that the overlap sizes of gene expression universes are variable: 

the simulated overlap sizes have a standard distribution of 4.9% of genes on the array, 

while that of the observed overlap sizes is even greater (7.2%).

These observations are as expected because of the sensitivity of overlap sizes to the sizes 

of the expression universes. To demonstrate this, the overlap sizes were observed in 

relation to the sizes of the pairs of expression universes being compared. For this 

purpose, the overlap sizes from both distributions were plotted against the square root of 

the product of sizes of expression universes (Figure 5.4).
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Figure 5 .4  Effect of exp ress ion  universe s ize  on the  num bers of g e n e s  

shared b e tw een  un iverses . Points represent observed (red) and simulated (grey) 

overlap sizes for all pairs of expression universes for 68 tissues of the GNF 

Expression Atlas. The black line indicates overlap sizes expected between 

comparisons of universes of those sizes (calculated using the formula described in 

Section 2.2.2).

Here it is found that both overlap size distributions shown a noticeable positive 

relationship with expression universe size. The simulated overlap sizes (grey points in 

Figure 5.4) vary around the overlap sizes that are expected for each comparison of 

expression universes of those sizes (black line, calculated using the formula described in 

Section 2.2.2). The entire distribution of observed overlap sizes (red points) is shifted 

upwards of that of the simulated overlap sizes, reflecting that observed in Figure 5.3. 

Interestingly, it is also observed that the spread of observed overlap size values is much 

greater than that for the simulated values. This reflects a greater variability than can be 

attributed solely to the effects of expression universe size.
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5.2.3. Tissue-specificity has a marked effect on gene expression 
universes

Thus far, it has been observed that there is a considerable level of variability in the 

number of genes shared by expression universes for each of the 68 tissues in the GNF 

Expression atlas. Some of this variability can be attributed to the marked variability of 

the sizes of the expression universes. Furthermore, overlap sizes may also be sensitive to 

biological effects, such as tissue-specific gene expression; for example, the expression 

universes from two breast cancer experiments may have more genes in common than 

those shared between universes from a breast cancer experiment and a colon cancer 

experiment.

To investigate this requires a methodology that would, in an unbiased manner, find 

patterns of gene expression to allow creation of groups of tissues that have more 

similarity within their expression universes than with others. One such method to 

achieve this could be hierarchical clustering (see Materials and Methods), which would 

allow unsupervised classification of the 68 tissues under investigation, on the basis of 

some measure of the similarity of their gene expression universes.

The issue then arises of which measure of similarity could be used for hierarchical 

clustering. The absolute size of overlaps between expression universes would not be a 

good choice since, as has been shown in Section 5.2.2, these are strongly influenced by 

the sizes of expression universes being compared. Hypergeometric Z-scores are another 

option, as they would represent standardized effect sizes where the systematic effects of 

expression universe sizes have been accounted for. However, the non-normal and non- 

random gene expression frequencies described in Section 5.2.1 might well cause 

violations of the assumptions of the hypergeometric distribution, and result in Z-scores 

that are sensitive to the effects of expression universe sizes, as has been seen in the 

comparisons of experimentally-derived genelists (see Section 3.3.3).
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To account for the systematic effects of expression universe sizes on the size of their 

overlaps, an empirical sampling-based strategy was therefore adopted to create a 

measure of similarity that could be used for the purposes of hierarchical clustering. 

From each of the 68 different expression universes, which comprise the genes that are 

expressed in each of the 68 different tissues, a set of 1000 genes was selected randomly 

and without replacement. All pair-wise comparisons were performed and the sizes of 

overlap between the sets of genes were then recorded. This was repeated 1000 times, 

and the median size of overlaps for each pair-wise comparison was then used to perform 

hierarchical clustering of the 68 tissue-types.

Figure 5.5 shows the results of the clustering. As can be observed there are at least three 

major clusters that comprise primarily of similar tissue-types. These are a cluster of 

tissues that are of neuronal origin (including the non-neuronal tissue derived from the 

pituitary, a neuro-endocrine gland), a cluster of tissues from the testes, and a cluster 

based on cells from blood (many of which are involved in immunity functions).

Further analyses showed that the distributions of overlap sizes observed between gene- 

expression universes derived from tissues belonging to any of these clusters were 

centred on medians that were greater than the medians of distributions of overlap sizes 

from comparisons of these tissues with all other tissues that did not fall into their 

respective clusters (Figure 5.6). Unpaired t-tests were then used to assess the statistical 

significance of the difference of means between the distributions, and all three clusters 

yielded highly significant p-values (see legends in Figure 5.6).

These findings suggest that the numbers of genes shared between the expression 

universes of different tissues is affected not just by the systematic effects of variability 

of expression universe sizes, but also by biological factors such as tissue-specific gene 

expression patterns.
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Figure 5 .5  Hierarchical c lustering 68  different t is s u e s  from the GNF 

Expression Atlas. Clustering was carried out by using, as distances, the negative 

median overlap size shared between lists of 1000 genes selected randomly from the 

expression universes of each tissue carried out 1000 times for each possible pair of 

tissues. Linkage of clusters was performed using the McQuitty method.
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Figure 5 .6  Similar t is s u e s  share  more ex p ressed  g e n e s  than dissimilar  

t is su e s .  X-axes represent median overlap sizes shared between lists of 1000 genes 

selected randomly from the expression universes of each tissue carried out 1000 

times for each possible pair of tissues. Box-plots represent overlap sizes derived 

from comparisons between members of the same cluster (red), and from 

comparisons between members of the same cluster and all other tissues (grey), for 

the three clusters of sim ilar tissues derived from hierarchical clustering (see Figure 

5.5): (a) neuronal tissues, (b) testis tissues and (c) blood-derived tissues. Legends 

show p-values from unpaired t-tests comparing each pair of distributions.
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5.2.4 Simulating the effects of using an average gene universe size

The biased urn model described in Chapter 4 provides a potential ad hoc solution to the 

use of all genes represented on an array as the gene universe when using the 

hypergeometric distribution to assess the similarity between a pair of genelists, by the 

estimation of a gene universe size representing the ‘average’ number of genes that is 

shared by the gene universes of any two experiments. The estimation of the numbers of 

genes shared between the expression universes of each possible pair of the 68 tissues of 

the GNF Expression Atlas described in the preceding section of this chapter then 

provides an opportunity to explore the effects using an estimated average number of 

genes shared between expression universes to compare genelists.

For this purpose, it was desired to carry out comparisons of simulated genelists where 

the effect of genelist lengths was controlled for; this would allow for observation of the 

sole influence of gene universe size on the significance metrics calculated from the 

hypergeometric distribution (i.e. Z-scores).

One possible strategy is the creation of lists of randomly selected genes from the 

expression universes of each of the 68 tissues of the GNF Expression Atlas, and 

comparison of all possible pairs of genelists. However, an accurate assessment of the 

significance of the overlap between any pair of genelists would require using, as the 

gene universe, those genes that shared between the expression universes for those tissues 

that the genelists were sampled from. This would then involve removal, from both 

genelists, of any genes that are not present within that gene universe. Such filtration of 

genelists could cause variability in the sizes of the genelists being compared, which is 

undesirable.

For these reasons, simulations were carried out using the following strategy: the overlap 

between the expression universes for each possible pair of the 68 tissues in the GNF 

Expression Atlas were considered separately as gene universes, from which two
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genelists of equal length (500 genes) were selected randomly and without replacement. 

The observed as well as the expected overlap size between these genelists was then 

recorded; the latter value was calculated using the formula described in Section 2.2.2.

Using these overlap sizes, three sets of hypergeometric Z-scores could be calculated, 

each using a different gene universe size. The first set was calculated by using the ‘true’ 

sizes of gene universes from which each pair of genelists was sampled (i.e. the overlap 

of expression universes for each pair of tissues), which was different for each 

comparison; this was labelled as Set A. To simulate Z-scores as would be calculated 

using the biased urn model, the second set (Set B) was calculated using the same gene 

universe size for each comparison. The size used here was the average size of overlap 

between the expression universes for all pairs of tissues; this was -25% of genes on the 

array. The third set was calculated by using the same gene universe size for each 

comparison, but this time using the entire number of genes present on the hgul33a array 

(Set C). Density distributions for all three sets of Z-scores are shown in Figure 5.7.

As can be observed, Z-scores of Set A (black curve) exhibit a distribution that is centred 

on a median of zero. This is as expected from comparisons of genelists created by 

random selection of genes. Z-scores of Set C (blue curve) exhibit a distribution that is 

considerably shifted away from a median of zero. This distribution is centred on a 

median of 14. This can be thought of as representing the shifted Z-score distributions 

(indicating high levels of similarity), which were observed for comparisons of 

experimentally-derived genelists in Chapter 3. Z-scores of Set B (red curve) can be 

thought to represent Z-scores calculated using the biased urn model described in Chapter 

4. This distribution is similar to that obtained by using ‘true’ gene universe sizes, i.e. Set 

A in that, it is also centred on a median of zero. However it has a very different shape. 

To further investigate the effect of gene universe size on these three sets of Z-scores that 

were all derived using the same set of overlap sizes, all three sets were plotted against 

the ‘true’ gene universe sizes for each comparison (see Figure 5.7)
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Figure 5 .7  Effect of d ifferent universe  s iz e s  on hypergeom etric  Z -scores for 

the sa m e  s e t  of com parison s ( I ) .  Density curves of Z-scores derived from 

comparisons of pairs of genelists (of equal lengths) selected randomly and w ithout 

replacement from each gene-expression universe shared between 68 normal human 

tissues, calculated using three different universe sizes (see figure key). Vertical lines 

represent medians of the respective distributions.

As can be observed in Figure 5.7, the expected Z-scores calculated using the ‘true’ gene 

universe sizes appear to be unaffected by gene universe size: they are zero for all 

comparisons (black line), and the observed Z-scores from Set A vary around them (grey 

points). This is as expected, considering all the comparisons involved genelists that were 

created by random selection of genes. Z-scores from Set B were, like those from Set A, 

also found to also be centred on a median on zero in Figure 5.6. However, as can be 

observed in Figure 5.7, these exhibit a noticeable negative relationship with gene 

universe size (red points). While Set B Z-scores are similar to Set A Z-scores when the 

‘true’ gene universe size is equal to the estimated ‘average’ gene universe size (vertical 

green line), increasing differences between the ‘true’ gene universe sizes and the 

estimated ‘average’ gene universe size appears to cause increasing deviation of Set B Z- 

scores from the distribution of Set A Z-scores.
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Figure 5 .8  Effect of d ifferent un iverse  s iz e s  on hypergeom etric  Z -scores  for 

the  sa m e  s e t  of com parisons (I I) .  Points represent Z-scores derived from 

comparisons of pairs of genelists (of equal lengths) selected randomly and w ithout 

replacement from each set of genes shared between the expression universes for all 

pairs of 68 normal human tissues, calculated using three different universe sizes 

(see figure key). Black red and blue lines represent expected Z-scores for the 

respective distributions. The vertical green line represents the average size of gene- 

expression universes shared between any pair of the 68 tissues.

The distribution of Set C values is shifted further up from that of the Set A and Set B 

distributions (reflecting the shift observed in Figure 5.7). It also exhibits a negative 

relationship with gene universe size, similar to that of the Set B distribution.
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5.3 Discussion

The explorations described in Chapter 4 indicated that the ‘biased urn’ model could be 

used to control for possible violations of assumptions of the hypergeometric statistical 

test, when used for comparisons of genelists derived from microarray-based 

experiments. It involved the ad hoc estimation of an average gene universe size 

representing the number of genes on an array that could be selected into both genelists 

being compared. While this model could, in theory, mitigate much of the undesirable 

effects of using the entire set of genes represented on an array as the gene universe for 

all comparisons, one particular issue with such a technique is the use of a single gene 

universe size for all comparisons. This could then lead to erroneous results if the true 

gene universe sizes vary widely from the estimated average size.

This chapter then described explorations of this issue using a subset of the GNF 

Expression Atlas dataset (Su et al. 2004), which consisted of the microarray gene 

expression profiles for a wide range of normal human tissues. This dataset was created 

in the same laboratory, using the same microarray platform for all samples. Thus, the 

results of investigations carried out on this dataset would not be subject to the effects of 

cross-platform and cross-laboratory issues. The expression universes for each tissue (i.e. 

the genes that were found to be expressed in each tissue) were considered to be estimates 

of the gene universes for experiments that would be carried out on those tissues. This is 

because the first criterion in the selection of important genes from an experiment (such 

as DEGs) is to assess whether those genes are expressed. The overlap between the 

expression universes for any pair of tissues could then be considered to be the gene 

universes for the comparison of genelists derived from experiments carried out on those 

tissues. The findings described are summarized as follows:

• There is considerable variation in the numbers of genes shared between the 

expression universes of any pair of tissues. This is related to the variability in the 

number of genes that are expressed for each of the tissues.
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• Aside from systematic reasons, such as those mentioned above, the numbers of 

genes that are shared by the expression universes are also subject to biological 

factors, particularly tissue-specific gene expression: the gene universe for the 

comparison of genelists from a pair of experiments carried out on the same tissue- 

type is likely to be larger than that for two experiments carried out on different 

tissue-types.

• Simulations were carried out to observe significance values assigned to comparisons 

of genelists created using a range of differently-sized gene universes, but where the 

statistical model used for all comparisons the average gene universe size. It was 

found that such a strategy could produce erroneous results; the magnitude of error 

would depend on the magnitude of the difference between the true gene universe size 

for a comparison and the estimated average gene universe size.

Thus while the biased urn model can reduce the excess levels of similarity that may be 

observed when comparisons of genelists are carried out using a gene universe 

comprising of all genes on an array, it is still an unsatisfactory methodology due to the 

use of a single gene universe size for comparisons involving widely ranging universe 

sizes. In terms of the broader question of whether comparisons of genelists could be 

carried out as a less resource-intensive alternative to comparison of entire microarray 

datasets (investigated over Chapters 2-5), it can be concluded that genelists alone do not 

provide all the information that is required for an accurate comparison of experiments.

The investigations also indicate potential problems in how gene universes are defined 

for ORA techniques in general (for example, to assess enrichment of GO terms in 

genelists) (Khatri and Draghici 2005). Here, the presence of genes in the universe for an 

experiment is a binary concept: they are either present or absent. However, a more 

realistic and possibly more accurate representation is that of a continuum of probabilities 

reflecting the likelihood of genes to be selected as interesting (depending on the levels 

and variability of expression). This is further discussed in Chapter 9.
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Chapter 6: Gene Set D iscovery (GSD): 

U nsupervised identification  o f relevant 

biological them es w ithin  m icroarray datasets

6.1 Introduction

As described in Section 1.4, biological interpretation of data from microarray-based 

experiments has been aided significantly by the development of gene set analysis (GSA) 

methodologies. These techniques utilize electronically archived biological knowledge 

which is available on public databases such as Gene Ontology (Ashbumer et al. 2000), 

KEGG (Kanehisa et al. 2004) and BioCarta (BioCarta 2005). Using these techniques, 

researchers have been able to identify biological themes (such as pathways or processes) 

that may be of interest within a particular experiment.

Many of the popular tools to carry out GSA have typically involved over-representation 

analysis (ORA), which seeks to identify enrichment of biological themes within lists of 

differentially expressed genes (DEGs) (Huang da et al. 2009; Khatri and Draghici 2005; 

Rivals et al. 2007). These GSA techniques have been termed ‘threshold-based’, as they 

require prior definition of threshold values to identify DEGs. For example, in an 

experiment to identify genes that are differentially expressed between two classes of 

samples using a t-test, a p-value threshold of <0.05 may be used. More recently, there 

has been development of ‘threshold-free’ GSA techniques that do not require creation of 

lists of DEGs (Huang da et al. 2009; Nam and Kim 2008). One of the most popular of 

these, Gene Set Enrichment Analysis (GSEA) (Mootha et al. 2003; Subramanian et al. 

2005), uses instead a list of all genes on the array, ranked according to their correlation 

to a pre-selected expression pattern (for example, up-regulation in one class of samples
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and down-regulation in another class), and then tests for the enrichment of gene-sets 

towards the top and bottom of the list.

Thus, GSA methods have most often been used after carrying out ‘supervised’ analyses 

of microarray datasets, i.e. researchers have knowledge of the sample classes, and select 

DEGs or rank genes on the basis of pre-selected expression patterns across these known 

sample classes. However, GSA methods have found little utility in exploratory analyses 

such as those involving ‘class discovery’ (see Section 1.3.2). Such analyses are of 

particular importance in studies of cancer, where sample classes are often not known a 

priori, or where morphology-based classification methods have not successfully 

resolved sample classes (Alizadeh et al. 2000; Ivshina et al. 2006).

This chapter thus explores the possibility of developing a methodology that could allow 

identification of biologically relevant themes within a microarray dataset, without 

requiring prior definition of sample classes. The investigations described focus 

particularly on the use of hierarchical clustering techniques within ‘heatmaps’. This 

chapter will introduce and explore some of the underlying concepts, and subsequent 

chapters will describe the application of this methodology to several datasets.
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6.2 Results and Explorations

Heatmaps (together with hierarchical clustering) are popular tools to provide visual 

representations of microarray data and to display gene expression patterns (Eisen et al. 

1998). They typically comprise of a matrix where the columns represent samples and the 

rows represent genes. Each cell is coloured, based on the expression value of that gene 

in that sample, such that the colour indicates whether the gene is up or down-regulated 

(for example, compared to the experiment-wide mean), and the intensity of the colour 

indicates the extent of up- or down-regulation. In analyses of microarray data, usually 

those involving the identification of a set of genes defined as being of interest by the 

researcher (e.g. a list of DEGs), it is routine to create a heatmap using those genes as 

intuitive visual evidence that those genes exhibit the expression pattern of interest.

While clustering and heatmap visualisation have typically been used as ‘end stage’ tools 

to represent in visual terms the sets of genes that have been determined to be relevant 

within any particular experiment, these tools can also be used for de novo knowledge 

discovery. For example, manual inspection of the resultant heatmaps from an 

unsupervised clustering and visualisation of the data for an experiment for each of the 

many gene sets that represent biological themes and processes may then allow for visual 

identification of those gene sets that exhibit expression patterns that are of interest to the 

researcher. Such a process, although common, is somewhat unsatisfactory due to the 

element of manual inspection and pattern identification that it involves and the absence 

of any underpinning statistical methodology.

The investigations described here thus focussed on the identification of a metric that 

could allow some quantification of the levels of information within a heatmap, and that 

may therefore be used for identification of gene sets that may be of interest.
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6.2.1 Quantification of the information content of a heatmap

6.2.1.1 Hierarchical clustering o f gene and samples within heatmaps

Key to the visualization of expression patterns within heatmaps is the process of 

hierarchical clustering that brings together those genes and samples that exhibit similar 

expression patterns.

To demonstrate this, a hypothetical gene expression matrix comprising of 20 samples 

(represented as matrix columns) and 500 genes (represented as matrix rows) was 

created. To simulate DEGs within the matrix, 25 genes were randomly selected to 

exhibit up-regulation in 10 randomly selected samples and down-regulation in the other 

randomly selected 10 samples. Another 25 genes were randomly selected to exhibit the 

opposite expression pattern in terms of up- and down-regulation in the same samples as 

the first set of genes.

To represent log2 median-centred gene expression values, the matrix was initially 

populated with values sampled randomly from a normal distribution having a zero mean 

and standard deviation of 0.3 (see Materials and Methods). This provides a very simple 

data structure to model what is typically seen in a microarray experiment by way of 

noise. Values in cells representing up-regulated gene expression values were then 

replaced with values randomly selected from a normal distribution with a mean of 2 

(that is, a 4-fold up-regulation) and standard deviation of 0.3. Similarly, values in cells 

representing down-regulated gene expression values were then replaced with values 

randomly selected from a normal distribution with a mean of -2 and standard deviation 

of 0.3. Figure 6.1a represents a heatmap of this hypothetical gene expression matrix 

without any hierarchical clustering, i.e. the orders of genes and samples are the same as 

when it was created. Figure 6.1b represents a heatmap of the same matrix after 

hierarchical clustering of genes and samples. As can be observed, the expression 

patterns are clearly discernible in Figure 6.1b.
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(a) (b)

Figure  6.1 Visuali za t ion  of  g e n e  e x p r e s s io n  p a t t e r n s  t h r o u g h  h ie ra rch ica l  

c lu s te r ing .  Heatmaps of an artificial gene expression matrix where (a) no 

hierarchical clustering of genes or samples has been carried out and (b) both genes 

and samples have been clustered. Heatmaps represent log median-centred gene 

expression values ranging from -2 (bright green) through 0 (black) to 2 (bright 

red). Hierarchical clustering was carried out using correlation distance and average 

linkage.

The presence of expression patterns shared by many genes (which reflects differential 

expression of genes) within a heatmap indicates that information is contained within the 

gene set represented in that heatmap. Such an ‘informative’ gene set (i.e. one that 

contains DEGs) is likely to be of interest to a researcher. As hierarchical clustering is 

able to identify expression patterns that are shared between genes and samples (and 

thereby brings similar genes and samples together), efforts to identify a metric that can 

quantify information content within the expression matrix for a gene set focussed on this 

aspect.
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6.2.1.2 The effect o f information content on gene and sample distance distributions

Hierarchical clustering requires the calculation of ‘distances’ between each possible pair 

of genes and each possible pair of samples. These values represent the level of 

dissimilarity between the expression profiles of each pair of genes or samples (see 

Materials and Methods). Thus the distance value between a pair of genes or samples that 

exhibit similar patterns of expression would be lesser in magnitude relative to the 

distance value for a pair of genes or samples that exhibit dissimilar expression patterns. 

To investigate the sensitivity of these values to the presence of information content 

within a gene set, the following simulations were carried out:

First, a hypothetical gene expression matrix comprising of 30 samples (columns) and 

500 genes (rows) was created such that it contained no DEGs. Distance distributions for 

genes and samples were then recorded. A second matrix was created, identical to the 

first but with one DEG showing an expression pattern of up-regulation in 10 randomly 

selected samples, and down-regulation in another 10 randomly selected samples. The 

matrices were populated with gene expression values representing unchanged 

expression, up- and down-regulation using distributions similar to those used in 

simulations described in Section 6.2.1.1. A series of matrices was similarly created, by 

converting increasing numbers of genes into DEGs. Gene and sample distance 

distributions were recorded for each of these matrices.

Heatmaps of some of these matrices are displayed in Figure 6.2 while the distributions 

of sample and gene distances for those matrices are displayed in Figure 6.3a and Figure 

6.3b respectively. Means of the sample distance matrices (M-SDM) and gene distance 

matrices (M-GDM) for each of all the hypothetical matrices are plotted against the 

percentage of DEGs in Figure 6.4a as red and blue points respectively. Standard 

deviations of the sample distance matrices (SD-SDM) and gene distance matrices (SD- 

GDM) for each of all the hypothetical matrices are plotted against the percentage of 

DEGs in Figure 6.4b as red and blue points respectively.
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Figure 6 .2  Changing levels of information contained within a hypothetical 
gen e expression  matrix. Heatmaps represent a series of hypothetical gene  

expression matrices created with increasing numbers of DEGs. Numbers above the 

heatmaps indicate the percentage of genes that are DEGs. Heatmaps represent log 

median-centred gene expression values ranging from -2 (bright green) through 0 

(black) to 2 (bright red). Clustering was carried out using correlation distances and 

average linkage.

As can be observed, in case of the initial matrix with no DEGs (i.e. no information), the 

distances between all pairs of samples are similar, and the distribution of these distances 

has a single peak (black line in Figure 6.3a) at ~1. The inclusion of DEGs causes a major 

change in the shape of the distributions of sample distances. Three peaks are observed: 

one of the peaks comprises of short distances, and representing distances between 

samples showing similar expression patterns. This peak approaches a value of 0 (the 

theoretical minimum correlation distance) as the number of DEGs in the matrices 

increases. Another peak comprises of long distances, and represents distances between 

samples showing opposite expression patterns. This peak approaches a value of 2 (the 

theoretical maximum correlation distance) as the number of DEGs in the matrices 

increases. The third peak corresponds to the median distance of ~1, and represents 

distances from samples exhibiting no patterns of differential expression, both to all other 

samples as well as themselves. These observations demonstrate that increasing the 

number of DEGs results in the ‘strengthening’ of sample clusters, in that the intra-cluster 

distances decrease and inter-cluster distances increase.

As can be seen in Figure 6.4a, increasing the number of DEGs in the expression matrices 

has no effect on the M-SDM values: these remain stable at ~1. However, the variability 

of these distributions (SD-SDM) increases continuously, as can be see in Figure 6.4 b.
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Figure 6 .3  Effect o f  information leve ls  on sam ple  and g e n e  d istance  

distributions ( I ) .  Curves represent (a) sample and (b) gene distance distributions 

derived for each of the hypothetical gene expression matrices represented as 

heatmaps in Figure 6.2.
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Figure 6 .4  Effect o f information leve ls  on sam ple  and g e n e  d istance  

distributions ( I I ) .  Points represent (a) mean and (b) standard distribution values 

for gene and sample distance distributions of a series of hypothetical gene 

expression matrices created with increasing numbers of DEGs, some of which are 

represented as heatmaps in Figure 6.2.

139



Chapter 6: Gene Set Discovery (GSD): Unsupervised identification of relevant biological themes
within microarray datasets

The gene distance distribution in the first matrix (i.e. with no DEGs) is similar to the 

sample distance distribution for it, having a single peak centred on a mean of ~1, 

indicating similar levels of similarity/dissimilarity between all genes (black curve in 

Figure 6.3b). The introduction of DEGs again changes the shape of the distribution: two 

peaks are now observed. One of the peaks is centred on a distance of ~0, and presumably 

comprises of distances between the DEGs themselves. The other peak, centred on ~1 

presumably comprises of distances from non-DEGs, both between themselves and to the 

DEGs. As would be expected, as the percentage of DEGs increases, the first peak 

increases in height, while the second decreases until no non-DEGs remain and all 

distances are ~0.

As can be observed Figure 6.4a (blue points), the M-GDM values of these distributions 

start from ~1, when there are no DEGs, and decrease continuously as the proportion of 

DEGs is increased. The variability of these distributions (SD-GDM) start low, and 

increase as the proportion of DEGs is increased to a particular point from where they 

decrease as the proportion of DEGs is increased (blue points in Figure 6.4b).

This observed sensitivity of distance distributions to the introduction of information (in 

the form of DEGs) within expression matrices raises the possibility that that attributes of 

these distributions (such as their mean values or variability) could be used to indicate the 

levels of information (i.e. proportion of DEGs) within these matrices. M-GDM and SD- 

SDM values exhibited relationships with the proportion of DEGs that were non-linear; 

but as these were unidirectional, both these metrics could be considered as possible 

candidates to indicate information levels in an expression matrix. For example, it may be 

possible to deduce that a gene set contains greater levels of information than another 

gene set, if the former yields a higher SD-SDM value or a lower M-GDM value. M- 

SDM values were not investigated further due to their apparent stability to changes in 

information levels. SD-GDM values were also disregarded in further analyses due to 

directional changes within their relationship with information levels.
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6,2.13 Presence o f more than one pattern within a gene expression matrix

The explorations described above identified SD-SDM and M-GDM values as metrics 

that could potentially be used to indicate levels of information with gene expression 

matrices. These explorations were carried out using simulations to observe the effects of 

changing the levels of information (i.e. the proportion of DEGs) on gene and sample 

distance distributions.

Another issue that required exploration was the nature of information within a gene 

expression matrix, and what effects this could have on the metrics under investigation. 

In the simulations described in the previous section, all DEGs were created to exhibit the 

same expression pattern. However, it is possible that there may be two or more groups of 

DEGs within a gene expression matrix, each of which exhibit different patterns of 

expression.

To illustrate this, a hypothetical gene expression matrix was created, comprising of 30 

samples and 500 genes and labelled as ‘HypMatl’. Half of these genes were randomly 

selected to represent a first group of DEGs, all of which showed the same expression 

pattern. This pattern was of up-regulation in the first 10 samples and down-regulation in 

the next 10 samples, and labelled as ‘ ExPat 1’. The matrix was populated with gene 

expression values representing unchanged expression, up- and down-regulation using 

distributions similar to those used in simulations described in Section 6.2.1.1. Two 

identical copies of HypMatl were then created, called ‘HypMat2’ and ‘HypMat3\

In HypMat2, the other half of genes were made to represent a second group of DEGs. 

On this second group, an expression pattern was imposed, that was different to ExPat 1, 

but corresponded to the same grouping o f samples. This pattern, labelled ExPat2, was of 

up-regulation in those samples which exhibited down-regulation in ExPat 1, and vice- 

versa.
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In HypMatS, these genes were also made to represent a second group of DEGs. 

However, the pattern of expression imposed on these genes, ExPat3, corresponded to a 

different grouping o f samples from what was observed in ExPat 1 (and ExPat2). This 

was achieved by randomly selected 10 samples to exhibit up-regulation, and another 10 

randomly selected samples to exhibit down-regulation. Heatmaps of HypMat2 and 

HypMat3 are displayed in Figure 6.5a and 6.5b respectively.

(a) (b)

i i H I rJn rWX

Figure 6 .5  P resen ce  o f d ifferent ex p ress io n  p attern s w ithin hypothetical 

g en e  ex p ress io n  m atrices. Heatmaps represent hypothetical gene expression 

matrices where all genes are differentially expressed. In both matrices, these 

comprise two equally sized groups, each exhibiting different expression patterns. In 

(a) both expression patterns correspond to the same grouping of samples. In (b) 

the expression patterns correspond to different groupings of samples. Heatmaps 

represent log median-centred gene expression values ranging from -2 (bright 

green) through 0 (black) to 2 (bright red). Clustering was carried out using 

correlation distances and average linkage.
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While both HypMat2 (Figure 6.5a) and HypMat3 (Figure 6.5b) have similar levels of 

information (i.e. the same number of DEGs), it can be argued that a researcher is likely 

to be more interested in a gene set that can be represented by HypMat2 rather than 

HypMat3. This is because it represents a single coherent expression profile (in terms of 

grouping of samples) that can be attributed to the biological theme represented by that 

gene set.

To observe the effect of changing expression patterns within a gene expression matrix 

on M-GDM and SD-SDM values, while the total level of information (i.e. number of 

DEGs) is constant, the following simulations were carried out: first, a hypothetical gene 

expression matrix comprising of 500 genes and 30 samples, was created such that 50% 

(i.e. 250) genes were DEGs, and all of which exhibited the expression pattern ExPatl. 

The matrix was populated with gene expression values representing unchanged 

expression, up- and down-regulation using distributions similar to those used in 

simulations described in Section 6.2.1.1. Two series of ten matrices were then created.

One of the series (labelled ‘Series A’) was created to represent changing expression 

patterns within a gene expression matrix but where the type of information (i.e. the 

grouping of samples) remained the same. This was carried out by changing the pattern of 

expression to ExPat2 of each of the DEGs, 25 genes at a time, till all DEGs exhibited 

ExPat2. Heatmaps of some of these matrices are displayed in Figure 6.6.

The other series of matrices (labelled ‘Series B’) was created to represent changing 

expression patterns within a gene expression matrix, each of which represented a 

different type of information (i.e. each expression resulted in a different grouping of 

samples). This was carried out by changing the pattern of each of the DEGs, 25 genes at 

a time. However for each set of 25 genes, an expression pattern was imposed that did not 

correspond to that of ExPatl (and ExPat2).
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Figure 6 .6  Changing expression patterns of DEGs w ithout changing typ es of 
information within hypothetical gen e expression m atrices. Heatmaps 

represent som e of a series of 10 hypothetical gene expression matrices (Series A), 

starting from one where 250 out of 500 gen es are DEGs, all of which exhibit the 

sam e pattern of expression. Subsequent matrices were created by changing the 

expression of 25 DEGs at a tim e, to show an expression pattern that is different to 

the first, but one that results in the sam e clustering of sam ples. Numbers above 

heatm aps represent the percentage of DEGs that exhibit the second expression  

pattern. Heatmaps represent log median-centred gene expression values ranging 

from -2 (bright green) through 0 (black) to 2 (bright red). Clustering was carried 

out using correlation distances and average linkage.

This was carried out by randomly selecting 10 samples to exhibit up-regulation, and 

randomly selecting another 10 samples to exhibit down-regulation, separately for each 

group of 25 genes. This was continued till a matrix was created where the 250 DEGs 

consisted of ten equally sized groups (of 25 genes each), each of which exhibited 

expression patterns that were different from ExPat, and also resulted in different 

classifications of samples. Heatmaps for some of these matrices are displayed in Figure 

6.7.

M-GDM can SD-SDM values were recorded for each of both series of matrices. M- 

GDM values for Series A and Series B are plotted against the percentage of DEGs with 

expression patterns that are different from ExPat as red and blue lines respectively in 

Figure 6.8a. SD-SDM values for Series A and Series B are similarly plotted as red and 

blue lines respectively in Figure 6.8b.
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Figure 6 .7  Changing expression  patterns of DEGs as well as the types of 
information within hypothetical g en e  expression m atrices. Heatmaps 

represent som e of a series of 10 hypothetical gene expression matrices, starting 

from one where 250 out of 500 gen es are DEGs, all of which exhibit the sam e 

pattern of expression. Subsequent matrices were created by changing the 

expression of 25 DEGs at a tim e, to show an expression patterns that are different 

to the first (and each other), and that result in different clustering of sam ples every 

time. Numbers above heatm aps represent the percentage of DEGs that exhibit the 

expression patterns other than the first. Heatmaps represent log median-centred 

gene expression values ranging from -2 (bright green) through 0 (black) to 2 

(bright red). Clustering was carried out using correlation distances and average 

linkage.

Thus, as is apparent from Figure 6.8, the presence of different expression patterns affects 

both M-GDM and SD-SDM values even though all matrices contain the same levels of 

information (all matrices have 250 DEGs). M-GDM values for both series of matrices 

show increases upon introduction of expression patterns that are different to ExPat 

(Figure 6.8a). This is can explained as follows: in the starting matrix where all DEGs 

exhibited ExPatl, distances between all pairs of DEGs were ~0 (the minimum possible 

correlation distance). In subsequent matrices, the distances between DEGs exhibiting 

different expression patterns results in replacement of those values with distances >0. 

The increase is much greater in Series A because ExPat2 represents the diagonally 

opposite expression pattern of ExPatl, and thus the distances between pairs of genes that 

exhibit ExPatl and ExPat2 are ~2 (the maximum possible correlation distance). The M- 

GDM values for Series A increase till reaching their zenith when equal numbers of 

genes exhibiting either expression pattern are present. Thereon the values drop in 

magnitude, as the number of genes exhibiting ExPat2 increases, back down to around 

the starting value, for the matrix where all DEGs exhibit ExPat2. However, in Series B, 

the M-GDM values continuously increase, because every successive matrix has an 

additional expression pattern, reaching their zenith when 10 patterns are present, each of 

which is exhibited by equal numbers of genes (25 genes each).
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Figure 6 .8  Effect of changing ex p ressio n  p attern s o f DEGs w ithin a g en e  

exp ressio n  m atrix. Points represent (a) M-GDM and (b) SD-SDM values calculated 

for two series of matrices, some of which are displayed in Figures 6.6 (Series A: 

same information) and 6.7 (Series B: different information).
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As can be observed in Figure 6.8b, SD-SDM values, for Series A appear to be very 

similar to that of the starting matrix implying that they are not affected by increasing the 

numbers of genes exhibiting ExPat2. This is presumably because ExPat2 corresponds to 

the same groupings of samples as ExPatl. However, SD-SDM values show continuous 

decrease in Series B.

As mentioned earlier, a researcher may not just be interested in those gene sets that 

contain information, but also the expression patterns represented by that information. In 

particular, the researcher would be more interested in a gene set where the expression 

pattem(s) of all DEGs result in the same grouping of samples (i.e. they represent the 

same type of information) such as those represented in Series A, than in a gene set where 

different expression patterns can group samples differently (i.e. they represent different 

types of information) such as those represented in Series B. This is because the former 

case provides researchers with a simple, coherent relationship between the biological 

theme represented by that gene set, and the resultant classification of samples. The 

presence of several types of sample stratification schemes within a gene-set could be of 

lesser utility and interest to the researcher.

Thus, it is desirable that a metric is not sensitive to the presence of different expression 

patterns, if they all represent the same type of information (i.e. correspond to the same 

groups of samples). Similarly the metric should be sensitive to the presence of 

expression patterns that represent different types of information (i.e. correspond to 

different groupings of samples). For these reasons, M-GDM values were disregarded for 

further analyses, which focussed solely on the use of SD-SDM values.
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6.2.2. Identification of possible confounding factors

Explorations described in the previous sections identified SD-SDM values as a metric 

that can potentially identify those gene sets that contain information (i.e. DEGs) 

particularly if the expression pattem(s) within the expression matrix represent the same 

type of information (i.e. correspond to the same groups of samples). However, another 

aspect that must be explored prior to their potential usage as tools for GSA is whether 

SD-SDM values are also subject to systematic effects of other factors, which may need 

to be controlled for.

6.2.2.1 E ffect o f gene set size on the distribution o f SD-SDM values

When testing a collection of gene sets for their relevance within any particular 

microarray experiment, the number of samples involved would be constant for all tests -  

thus, their influence on SD-SDM values would be uniform across all tests and might not 

require to be controlled for, as this would not affect the levels of SD-SDM values 

relative to each other. However, the sizes of gene sets tested could vary greatly. To 

explore the effect of gene-set size on SD-SDM values, the following simulations were 

carried out.

A hypothetical gene expression matrix, representing an entire microarray dataset 

comprising of 30 samples and 10,000 genes was first created. As it was desired to 

observe the effect of gene-set size alone (i.e. without any possible confounding effects of 

the presence of information), no genes were made to be DEGs. The matrix was 

populated with values sampled randomly from a normal distribution with a zero mean 

and standard deviation of 0.3. A series of gene sets was then created by randomly 

selecting from amongst those represented in the matrix, ranging in length from 20 to

10,000 genes (i.e. all genes in the matrix), in increments of 20 genes.
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SD-SDM values were calculated for each gene set. These values are plotted in Figure 

6.9a against the size of the gene sets. In Figure 6.9b, log SD-SDM values are plotted 

against logs of the gene set sizes.
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Figure 6.9 Effect of gene-set size on SD-SDM values in the absence of 

inform ation. Data represented was derived from a series of matrices created by 

randomly selecting a series of gene-sets of various sizes from a hypothetical gene 

expression m atrix containing no information. In (a) SD-SDM values are plotted 

against the number of genes, (b) represents the same data as (a) with both axes in 

log scale.
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As can be observed in Figure 6.9a, SD-SDM values decrease with increase of gene set 

size. This relationship is linear when SD-SDM values and gene set sizes are logged 

(Figure 6.9b). This systematic sensitivity of SD-SDM values to gene set size thus 

requires to be controlled for prior to use of SD-SDM values in GSA analysis.

6.2,2.2 Effect o f random selection o f informative genes on the distributions o f SD- 

SDM  values

If one assumes a linear relationship between log SD-SDM values and log gene-set size 

(as indicated by figure 6.9b), this can then allow for relatively simple and resource- 

efficient control of the systematic effect of gene-set size on SD-SDM values. However 

this assumption may not be valid when considering gene expression matrices with 

information content (i.e. with DEGs). Gene-sets sampled from such matrices could 

contain informative genes by chance alone (for example, if 10% of genes in the entire 

expression matrix are DEGs, we would expect 10% of any randomly selected set of 

genes to be DEGs), and these would exert their own influence on SD-SDM values. This 

could be further complicated if the information comprises of two or more different 

expression patterns, each of which could classify samples differently.

To observe the relationship between SD-SDM values and gene set size in the presence 

of information, first a hypothetical gene expression matrix was created comprising of 30 

samples and 10,000 genes, none of which were DEGs. Two identical copies of this 

matrix were created, labelled ExMatl and ExMat2. 1000 genes (i.e. 10%) from ExMatl 

were randomly selected to represent DEGs. An expression pattern of up-regulation in 10 

randomly selected samples and down-regulation in another 10 randomly selected 

samples was imposed on these genes. In ExMat2, 2000 genes (i.e. 20%) were randomly 

selected to represent DEGs and the same expression pattern was imposed on them. The 

matrix was populated with gene expression values representing unchanged expression, 

up- and down-regulation using distributions similar to those used in simulations 

described in Section 6.2.1.1.
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A series of gene sets was then created by randomly selecting from amongst those 

represented in the matrix, ranging in length from 20 to 10,000 genes (i.e. all genes in the 

matrix), in increments of 20 genes. Two SD-SDM values were calculated for each gene 

set: one each from ExMatl and ExMat2. These have been plotted in Figure 6.10a, 

against gene set sizes; SD-SDM values from ExMatl are coloured red while those from 

ExMat2 are blue. The same data is displayed in Figure 6.10b with both axes in log 

space.

As can be observed, the relationships between SD-SDM values and gene-set size in the 

presence of information (Figure 6.10) are markedly different from their relationships in 

the absence of information (Figure 6.9). In the absence of information, SD-SDM values 

showed a continuous decrease in value with increase of gene-set size; this relationship 

was linear when SD-SDM values and gene set sizes were logged. However, in the 

presence of information much of this length-dependency of SD-SDM values is lost. This 

occurs presumably because of random selection of DEGs into the gene sets. The 

difference in the levels of information between ExMatl (10% of genes are DEGs) and 

ExMat2 (20% of genes are DEGs) appears to shift the distributions their SD-SDM 

values, relative to gene set size, away from each other. This is due to the selection of 

greater numbers of DEGs into gene sets sampled from ExMat2 as compared to ExMatl.

Thus, we find that the SD-SDM values for any gene set are subject simultaneously to the 

systematic effects exerted by both gene sets size and any DEGs that may randomly be 

selected into a gene set. While effects of gene set size alone may be controlled easily 

through mathematical modelling of these effects, controlling for the effects of randomly 

selected DEGs is more complicated. Such modelling would require prior knowledge of 

both the number of DEGs, as well as all the different expression patterns exhibited by 

those genes. For any given dataset, such knowledge would not be available. For this 

reason, further investigations focussed on development of ad hoc methods that could 

control for both of these sources systematic effects on SD-SDM values.
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Figure 6 .1 0  Effect of g e n e -s e t  s iz e  on SD-SDM v a lu es  in th e  p resen ce  of 

inform ation. Data represented was derived from two series of matrices created by 

randomly selecting a series of gene-sets of various sizes from two hypothetical gene 

expression matrices (ExMatl and ExMat2) containing different levels of information. 

In (a) SD-SDM values are plotted against the number of genes, (b) represents the 

same data as (a) with both axes in log scale.
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6.2.3. Assessment of significance of SD-SDM values

Explorations described in the previous section showed that SD-SDM values alone may 

not be satisfactory metrics to identify gene sets that could be of interest to researchers. 

This is because of the observation that SD-SDM values are sensitive to gene set size and 

that this relationship is complicated by the possible presence of DEGs in within the gene 

sets by random chance. Mathematical modelling to control for these effects would 

require prior knowledge of both the level of information within a microarray dataset (i.e. 

the number of DEGs), as well as nature of this information (i.e. all possible groupings of 

samples based on the expression patterns of the DEGs).

Efforts were therefore focussed on an ad hoc method that did not require these 

parameters to be estimated. This involved creation of background distributions of SD- 

SDM values (i.e. null distributions) with which observed SD-SDM values could be 

compared, thus allowing for assessment of the significance of the observed SD-SDM 

values. Two methodologies that could be used for this purpose were identified: the first 

of these involves a strategy of randomization of values within the expression matrix for 

any given gene set. Such a strategy can be carried out in three different ways: values can 

be randomized for each gene (i.e. within each row), for each sample (i.e. within each 

column), or across both genes and samples. Iteration of this process and recording of the 

SD-SDM values for each matrix could then create a background distribution of null SD- 

SDM values with which to compare the SD-SDM value observed for a gene set.

The second strategy is of re-sampling, and involves random selection of gene sets of the 

same size as the one being tested, from amongst all genes represented in the entire 

experimental dataset. The background distribution would then comprise of the SD-SDM 

values for all the expression matrices for these randomly selected gene sets.
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Using these background distributions, two measures of significance can be calculated. 

The first of these is a Z-score, which represents the effect size i.e. the magnitude of the 

difference between the observed and expected SD-SDM value for gene-sets of a 

particular size (see Materials and Methods). The second is a p-value, representing the 

probability that the observed SD-SDM value could have occurred by chance alone.

Both the data randomisation and re-sampling methods for creating background 

distributions of SD-SDM values have advantages and disadvantages relative to each 

other. For example, it can be argued that because background distributions derived from 

the randomization strategy are derived from matrices comprising of the same set of 

values as that of the expression matrix of the gene set being tested, they may be more 

comparable to the SD-SDM value observed for that gene-set as compared to those 

derived from the re-sampling strategy because it involves expression matrices with 

different sets of values (as they represent different sets of genes). However, as indicated 

by explorations described in Section 6.2.2.2, DEGs may be present in a gene set simply 

by chance alone (and not for biological reasons). The randomization strategy may not 

allow control for their presence (and their influence on observed SD-SDM values) as it 

involves removal of all structure (brought about by the presence of information) within 

the expression matrix for a gene set.

To explore the feasibility of using either strategy to create background distributions to 

assess the significance of observed SD-SDM values, the following simulations were 

carried out. First, a hypothetical gene expression matrix representing an entire 

microarray dataset was created, comprising of 30 samples and 10,000 genes, none of 

which were DEGs. A second matrix was created, identical to the first, except that 2000 

genes (i.e. 20% of genes in the matrix) were selected at random to represent DEGs. An 

expression pattern of up-regulation in 10 randomly selected samples, and down- 

regulation in another 10 randomly selected samples was imposed on all the DEGs of the 

second matrix. The matrices were populated with gene expression values representing
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unchanged expression, up- and down-regulation using distributions similar to those used 

in simulations described in Section 6.2.1.1.

A series of 100 gene sets, ranging in length from 10 to 1000 genes were then selected at 

random from both expression matrices. Two SD-SDM values were recorded for each 

gene-set: one from each parental expression matrix. Background distributions were then 

created for each gene set using the two candidate strategies identified. Using the re­

sampling strategy, for each gene set being tested, 1000 gene sets of the same size were 

sampled randomly from the entire expression matrix, and their SD-SDM values were 

recorded for each parental matrix. Three background distributions were created for each 

test gene set (for each parental matrix) using the randomization strategy, by randomizing 

expression values only within samples, only within genes and across both genes and 

samples 1000 times for each gene-set. Z-scores and p-values could then be calculated for 

each gene-set using each of these distributions.

Table 6.1 shows the number of gene sets assigned significance (i.e. had p-values of 

<0.05) before and after multiple hypothesis correction using the Benjamini-Hochberg 

method, for each strategy, and for each parental expression matrix.

Considering that all 100 tested gene sets comprised of randomly selected genes, it is 

desirable that a useable strategy to assess the significance of the SD-SDM values 

observed for these gene sets detects little or no significance for them. This appears to be 

the case for both the re-sampling and randomization strategies when the gene sets were 

sampled from the matrix that contained no information (i.e. no DEGs): very few gene 

sets were assigned p-values <0.05, and no gene sets were flagged as significant after 

multiple hypothesis correction of the p-values using the Benjamini-Hochberg correction. 

Similar results are obtained from the application of the re-sampling strategy to assess the 

significance of gene sets sampled from the expression matrix that contained information.
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Expression
Matrix Testing Strategy

Number of tests 
significant at 

p<0.05 
(uncorrected)

Number of tests 
significant at 

p<0.05 
(FDR-corrected)

Without
information

Re-sampling 4 0

Randomization

Only samples 3 0

Only genes 2 0

Genes and samples 2 0

With
information

Re-sampling 3 0

Randomization

Only samples 100 100

Only genes 100 100

Genes and samples 100 100

Table 6 .1  Numbers of gen e s e ts  (out of 100) found to  have significant SD- 
SDM values as a sse sse d  by re-sam pling and randomization strategies. Gene 

se ts  of different sizes were created by random selection of gen es from two 

hypothetical gene expression matrices, one of which contained information (i.e. 

DEGs), while the other did not.

However, all three versions of the randomization strategy assigned p-values of <0.05 to 

all test gene sets that were sampled from the expression matrix that contained 

information. Even multiple-hypothesis correction did not appear to have much impact on 

these results: all test gene sets were flagged as significant (at p<0.05) after FDR- 

correction of the p-values.

Thus, the re-sampling strategy appears to be insensitive to the presence of information 

within a gene expression matrix: no significance is detected using this strategy 

regardless of whether the expression matrix from which gene sets are sampled contained 

DEGs or not. To explore this, the observed SD-SDM values and background SD-SDM
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distributions created using the re-sampling strategy for gene sets sampled from the 

matrix without information (Figure 6.11a) and with information (Figure 6.11 b ) were 

plotted against gene set size.
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Figure 6 .1 1  R e-sam pling based  sign ifican ce  te s tin g . Grey points represent 

background distributions of SD-SDM values derived by re-sampling of gene sets to 

assess the significance of observed SD-SDM values (red points) for a series test 

gene sets of various sizes selected randomly from hypothetical matrices (a) without 

and (b) with information (i.e. DEGs), the results for which are displayed in Table 

6.1. Black lines represent the median background SD-SDM value for each size of 

gene set tested.

As can be observed in Figure 6.1 la, the SD-SDM values observed for the test gene sets 

sampled from the expression matrix with no information content fall well within the 

background distributions created using the re-sampling strategy. This reflects the 

absence of any significance detected for these gene-sets. The observed SD-SDM values 

in Figure 6.11b show a very different distribution to those seen in Figure 6.1 la. This is
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as expected from the explorations described in Section 6.22.2, where it was found that 

when gene sets are randomly sampled from an expression matrix containing information 

(i.e. DEGs), the DEGs that are randomly selected into the gene sets influence their SD- 

SDM values. However, the background distribution of SD-SDM values also shows a 

similar change due to which the observed SD-SDM values again fall within the 

background distributions. This is because the background distributions were created 

using gene sets that (like the test gene sets) contained information as well, due to 

random selection of DEGs into them. The test gene sets were created by random 

selection of genes and thus contained similar levels of information as those used to 

create the background distributions. As a result, no significance was assigned to them.

On the other hand, the introduction of information to the expression matrix from which 

gene sets are sampled randomly changes the results of the randomization strategy 

radically. To explore this, the observed SD-SDM values for all the test gene sets were 

plotted against gene set size along with background distributions calculated by 

randomization of expression values only within genes, only within samples, and across 

genes and samples in Figures 6.12a, 612b, and 6.12c respectively for gene sets sampled 

from the matrix with no information, and in Figures 6.12d, 6.12e and 6.12f respectively 

for gene sets sampled from the matrix containing information.

As can be observed from Figures 6.12a, 6.12b and 6.12c, when gene sets are sampled 

from expression matrices containing no information, the SD-SDM values observed for 

them fall well within the background distributions of SD-SDM values: thus, no 

significance is detected for any of them. However as can be observed in Figures 6.12d, 

6.12e and 6.12f, the change in the distributions of observed SD-SDM values for gene 

sets sampled from the matrix containing information relative to gene set size is not 

mirrored by changes to the background distributions: these remain similar to as when 

gene sets were sampled from the expression matrix with no information content.
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Figure 6 .1 2  Randomization based significance testing. Grey points represent 

background distributions of SD-SDM values derived by randomization of expression  

values (in three different ways) to a sse ss  the significance of observed SD-SDM 

values (red points) for a series of te st gene se ts  of various sizes selected randomly 

from hypothetical matrices with and without information (i.e. DEGs), the results for 

which are displayed in Table 6 .1 . Black lines represent the median background SD- 

SDM value for each size of gene se t tested .

This is presumably because the randomization strategy to create the background 

distributions involves the removal of all information, including that represented by 

randomly selected DEGs. Thus the random selection of DEGs into the test gene sets is 

not accounted for and as a result all test gene sets are assigned significance.

It is expected that the numbers of DEGs that are randomly selected into gene sets 

increase linearly in relation to increase of gene set size. Thus it was then desired to 

investigate if the presence of information within a gene expression matrix could result in 

the sensitivity of the significance of SD-SDM values (as assigned by the re-sampling 

and randomization strategies) to gene set size. In Figure 6.13, the Z-scores derived using 

the re-sampling strategy for test gene sets sampled from the expression matrices with 

(red points) and without information (grey points) are plotted against gene set size. As 

can be observed, both distributions are similar: neither set of Z-scores appears to be 

affected by gene set size. In Figure 6.14, the Z-scores derived using all three types of the 

randomization strategy for test gene sets sampled from the expression matrices with (red 

points) and without information (grey points) are plotted against gene set size. As can be 

observed, for the gene sets sampled from the matrix without information, the Z-scores 

show no apparent sensitivity to gene set size. However, for gene sets sampled from the 

matrix with information content, a strongly positive relationship is observed between the 

Z-scores and gene-set size.
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Figure 6 .1 3  R e-sam pling based  Z -scores. Points represent Z-scores derived by 

re-sampling of gene sets to assess the significance of observed SD-SDM values for a 

series test gene sets, the results for which are displayed in Table 6.1. Broken black 

lines indicate Z-scores of zero.
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Figure 6 .1 4  Random ization based  Z -scores. Points represent Z-scores derived 

by randomization of expression values (in three ways) to assess the significance of 

observed SD-SDM values for a series test gene sets selected from hypothetical 

matrices w ithout (grey points) and with information (red points) , the results for 

which are displayed in Table 6.1. Broken black lines indicate Z-scores of zero.
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These data argue that the randomization strategy is an unsatisfactory methodology with 

which to assess to significance of SD-SDM values observed for gene sets for two 

reasons. Firstly, the null hypothesis when using the randomization strategy is that a gene 

set contains no information at all. Thus, the randomization strategy could assign 

significance to a gene set in which DEGs are present simply by chance alone (and not 

for biological reasons): this would be a false positive result of no interest to the 

researcher. Secondly, the presence of information (i.e. DEGs) within an experimental 

dataset creates an indirect sensitivity of significance levels, as assigned by the 

randomization strategy, to gene set size (via the random selection of larger numbers of 

DEGs into larger gene sets).

On the other hand, the re-sampling strategy represents a more satisfactory methodology 

with which to assess the significance of SD-SDM values observed for gene sets. The 

null hypothesis in this case is that a gene set contains no greater level o f information 

than would be expected by chance alone, and could therefore allow for removal of gene 

sets containing DEGs simply by chance alone. Also, the levels of significance as 

assigned by the re-sampling methodology appear to be unaffected by gene set size, 

regardless of the presence or absence of information within a gene expression matrix.

Thus, the calculation of an SD-SDM value for a gene set, followed by testing of the 

significance of that value using the re-sampling strategy, comprise a methodology that 

could potentially be used to identify biological themes that may be of interest to a 

researcher in an unsupervised way. We term this approach Gene Set Discovery (GSD).
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6.3 Discussion

GSA methods, both threshold-based (such as ORA of lists of DEGs) (Khatri and 

Draghici 2005) and threshold-free (such as GSEA) (Subramanian et al. 2005), are 

usually carried out following supervised analyses of microarray data that require prior 

knowledge of sample classes. However, in many studies (particularly those of cancers) 

researchers may have no a priori knowledge of sample classes, or these may be poorly 

defined (Alizadeh et al. 2000; Golub et al. 1999; Subramanian et al. 2005). This chapter 

explored the possibility of developing a methodology that could allow GSA analysis of 

microarray data without requiring prior description of sample classes.

Investigations focussed on heatmaps (and their associated hierarchical clustering) that 

have typically been used as visually intuitive ‘end stage’ tools to display expression 

patterns of genes that are known to be relevant within an experiment (such as lists of 

DEGs) (Eisen et al. 1998). A particular idea that was explored was that, if manual 

inspection of a heatmap reveals ‘striking’ visual patterns indicative of expression 

patterns shared between many genes, this may imply that the gene set (which may be a 

biological theme) represented by that heatmap is informative (i.e. contains DEGs) and 

may thus be of interest to a researcher. However such a method would be somewhat 

unsatisfactory due to the element of manual inspection and the absence of any 

underpinning statistical methodology.

To summarise the explorations that were carried out to develop a methodology that 

could allow unsupervised automated discovery of possibly interesting gene sets:

• A metric, SD-SDM, was found to be suitable for this purpose (see Section 6.2.1) for 

two reasons. First, it was sensitive to the levels o f information within a gene set, i.e. 

the number of DEGs. Second, it was sensitive to the types o f information within a 

gene set, i.e. whether the patterns of expression of the DEGs corresponded to the 

same groups of samples or not.
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• SD-SDM values were found to be sensitive to the simultaneous effects of two 

possible confounding factors: gene set size and the possible random presence of 

DEGs within a gene set (see Section 6.2.2).

• To control for these factors, two strategies were investigated (see Section 6.2.3). The 

first of these was a strategy involving randomization of gene expression values. This 

was found to be unsatisfactory as it involved a null hypothesis that the expression 

data corresponding to a gene set contained no information at all, and thus failed to 

take into account the possible randomly-selected presence of information within a 

gene set. The second tested strategy involved re-sampling of gene sets (in a random 

fashion) from the entire dataset, and had a null hypothesis that a gene set contained 

levels o f  information that were no greater than would be expected by chance alone. 

Investigations of this strategy indicated that it could successfully control for the 

simultaneous effects of both confounding factors.

The calculation of SD-SDM values for a gene set, and the subsequent assessment of the 

significance of these values using the re-sampling strategy thus constitute a novel 

methodology called Gene Set Discovery (GSD). As will be explored in subsequent 

chapters, this method could potentially be used for the discovery of gene sets that may 

be of interest to researchers in an unsupervised fashion (i.e. without prior definition of 

sample classes).

While all explorations and investigations described in this chapter were carried out using 

hypothetical gene expression matrices with artificially introduced information, and gene 

sets comprising of randomly selected genes, evidence of the utility of this approach in 

the analysis of ‘real-world’ microarray datasets requires testing of the GSD methodology 

on such datasets. This is explored in the next chapter, which describes the 

implementation of the GSD methodology on four microarray datasets, and analysis of 

the results.
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Chapter 7: A pplication o f the GSD 

m ethodology to four m icroarray datasets

7.1 Introduction

Class discovery based on gene expression signatures in cancer datasets datasets is an 

important technique (see Section 1.3.2), with numerous published examples of datasets 

where the samples are morphologically homogenous, but show molecular heterogeneity 

and varying prognoses (Alizadeh et al. 2000; Bittner et al. 2000; De Cecco et al. 2004; 

Golub et al. 1999; Ivshina et al. 2006; Perou et al. 2000), and where the expression 

patterns provide prognostic information beyond what the histological classification is 

capable of providing.

In the previous chapter, explorations were described outlining the concepts that underpin 

Gene Set Discovery (GSD), a methodology that can be used simultaneously to identify 

gene sets (which may represent biological themes such as pathways or GO terms) that 

could be relevant within an experiment, as well as possibly identify functional classes of 

samples based on those gene sets. This was illustrated using hypothetical gene 

expression matrices and simulated patterns of gene expression. Because the GSD 

methodology does not require prior definition of sample/phenotype classes it was 

reasoned that it might be of particular use in analysis of cancer datasets, where sample 

classes may be unknown (or at least, where sample discovery is an aim), or where the 

classification of samples is problematic. An important feature of GSD is the potential to 

discover informative gene set signatures in such datasets that have a linking theme 

between the constituent genes, which in turn may identify opportunities for theme-based 

drug or prognostic marker development.
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This chapter now describes the implementation of the GSD methodology, and its 

application to four microarray datasets. The first of these is the GNF human tissue 

expression dataset (Su et al. 2004) which was introduced in Chapter 5. This dataset 

shows strong sample grouping based on tissue-specific expression patterns. The 

remaining three datasets that were chosen to illustrate the GSD methodology were 

cancer datasets; a set of Acute Myeloid Leukaemia (AML) samples from the St Jude 

Children’s Research Hospital (Ross et al. 2004), liposarcoma samples from a 

collaborator at the Memorial University Medical Centre (see Materials and Methods), 

and breast cancer samples from Uppsala (Ivshina et al. 2006).

7.2 Technical methodology

The development of the GSD methodology was based on the explorations described in 

Chapter 6. Figure 7.1 displays how the methodology was applied to four datasets. CEL 

files, which consisted of the raw expression data, were obtained for each experiment. 

The MAS5 algorithm was used to extract expression summary values from the CEL 

files, which was then logged and median-centred to yield the gene expression matrices 

to which the GSD methodology was applied. The gene set database used for all analyses 

was that of Gene Ontology Biological Process (GOBP) terms (see Materials and 

Methods). Only gene sets that consisted of a minimum of 5 genes were utilized, and 

those gene sets that were greater in size than 10% of all genes represented on array were 

excluded. SD-SDM values were calculated for each gene set. Background distributions 

were created using the re-sampling strategy: for each unique size of the GOBP gene sets,

10,000 gene sets of that size were selected at randomly and without replacement from 

amongst all genes represented on the array. SD-SDM values were calculated for each of 

these gene sets and these made up the background distributions for each size of gene set 

tested. By comparing the observed SD-SDM values with the background distributions it 

was possible to derive Z-scores and empirical p-values for each GOBP term. A p-value 

cutoff of <0.01 after FDR correction was used for all datasets.
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CEL Files (raw data)

MAS5 normalization
Log + median center

Gene-set database 
(GOBP terms)

Calculate SD-SDM 
for each gene set

Gene expression matrix

10,000x permutations for 
each unique gene-set size

Observed 
SD-SDM values

I________

Background distribution 
of SD-SDM values

Derive empirical p-values + 
Multiple testing correction

Gene-sets found to be 
significant at p<0.01

Figure 7 .1  Im plem entation  of  th e  GSD m ethodology .

Testing the efficacy of methods for the analyses of microarray data is problematic due to 

the absence of ‘truth’ with which results can be compared. Assessment of the GSD 

methodology was based on the biological plausibility of the results and/or whether these 

results are in concord with prior analyses of these datasets.
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7.3 Results and Explorations

7.3.1 Analysis of the GNF human tissue expression dataset

The first dataset analyzed using the GSD methodology was from the GNF tissue 

expression database. The distribution of SD-SDM values observed for all the GOBP 

terms tested relative to the background distribution of SD-SDM values to which they 

were compared is displayed in Figure 7.2. A total of 51 GOBP terms (out of 1397) were 

found to have FDR-corrected p-values less than the significance threshold of 0.01.
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Figure 7 .2  Selection  of GOBP term s in GSD ana lys is  of th e  GNF human  

t is su e  exp ress ion  d ataset .  Grey points represent log SD-SDM values observed for 

each tested GOBP term. Encircled grey points represent those terms with FDR- 

corrected p-values of less that 0.01. The red line indicates the median of the 

background distribution of SD-SDM values for each gene set size. Broken black lines 

indicate the median ± 2 standard deviations for the background distributions.
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While 34 terms had p-values of zero, a more precise ordering of the terms according to 

their significance could be achieved by using their Z-scores. Table 7.1 displays the top 

20 terms selected by GSD analysis of this dataset when ranked by Z-score.

Gene Ontology Biological P rocess Term Z-score
p-value

(FDR
corrected)

G0:0048731_system  development 9.3 0

G0:0007399_nervous system development 9.2 0

G0:0030333_antigen processing 8.9 0

G0:0019882_antigen presentation 8.8 0

G0:0019883_antigen presentation, endogenous antigen 8.5 0

G0:0019226_transmission of nerve impulse 8.4 0

G0:0019885_antigen processing, endogenous antigen via MHC class I 8.4 0

G0:0007268_synaptic transmission 8.4 0

G0:0019886_antigen processing, exogenous antigen via MHC class II 7.2 0

G0:0019884_antigen presentation, exogenous antigen 7.1 0

G0:0006412_protein biosynthesis 7.0 0

G0:0007417_central nervous system development 6.7 0

G0:0009059_macromolecule biosynthesis 6..4 0

G0:0050877_neurophysiological process 6.1 0

G0:0030182_neuron differentiation 5.9 0

G0:0048699_neurogenesis 5.8 0

G0:0015672_monovalent inorganic cation transport 5.5 0

G0:0006812_cation transport 5.2 0

G0:0030154_cell differentiation 5.1 0

G0:0030001_metal ion transport 5.0 0

Table 7 .1  Top 20 GOBP term s, se lec ted  by GSD analysis , of th e  GNF human  

t is su e  exp ress ion  dataset .  Terms are ranked by Z-score values. Terms 

highlighted in blue represent those processes involved in functions within the 

nervous system, while those in red are specific to the immune system.
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As can be observed, the list is dominated by terms representing processes involved 

functions of the nervous system and of the immune system. This observation is of 

interest as it could be a reflection of the fact that samples from brain/neuronal tissues 

and from blood/immunity-related tissues comprise the two largest groups of similar 

tissue-types within this dataset. Indeed, terms associated with nervous system processes 

make up more than a third of all terms selected. On inspection of parent-child 

relationships between these terms (displayed in Figure 7.3), it is found that nearly all of 

their ancestral terms that were tested were also selected by GSD analysis. Investigation 

then focussed on the heatmaps of these selected terms that are associated with nervous 

system processes. Some of these are displayed in Figure 7.4, together with ‘picketplots’ 

to indicate the clusters in which each of the samples was found in the analysis described 

in Section 5.2.3. Three of the clusters comprised of samples from similar tissues: 

‘Brain/neuronal’, ‘Blood/immune’ and ‘Testis’; all other tissue samples were classified 

as ‘Miscellaneous’. Considerable proportions of genes exhibit strong and consistent 

patterns of up-regulation in the samples from the Brain/neuronal cluster.

Investigation of heatmaps of terms associated with immune system processes (some of 

which are displayed in Figure 7.5) also similarly revealed many genes within these terms 

exhibited higher levels of expression in samples from the Blood/Immune cluster, as well 

as in samples from other tissues in the Miscellaneous class that are associated with the 

immune system, (i.e. those labelled as ‘tonsil’, ‘lymph node’ and ‘thymus’). Heatmaps 

of all other GOBP terms selected by the GSD analysis (a subset of which are displayed 

in Figure 7.6) exhibited strong, consistent gene-expression expression patterns that were 

in concord with the tissue-type based clusters of samples.

Thus, it appears that the GSD methodology is successfully able to detect, without prior 

information regarding the groups of similar tissues, those biological processes that are 

specific to the two largest groups of functionally similar tissue-types within the dataset.
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Figure 7 .3  GOBP term s se lec ted  by GSD analysis  of the  GNF human t is su e  

exp ress ion  d a ta se t  which are involved in nervous sy ste m  p ro cesse s  (and  

their ancestral term s) .  Nodes represent GOBP terms while the edges represent 

parent-child relationships between terms. Orange nodes represent terms selected 

by GSD analysis. Blue nodes represent terms that were tested but not selected. 

Grey nodes represent untested terms.

G0:0007399_nervous system  development

Blood,Immune 
BrainMeuronal 

Testis 
M iscellaneous

IIIBIIIIIIIIIIIIII

G0:0006813_potassium ion transport

Bloodlmmune
BrairvTJeuronal

Testis
Miscellaneous
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G0:0048667_neuron m orphogenesis during differentiation

G0:0007268_synaptic transm ission

Blood.lmmune 
Brain Neuronal 

Testis 
Miscellaneous

Figure 7 .4  S e lec ted  GOBP term s specific  to nervous sy s te m  p r o c e s se s  

d etected  by GSD analysis  of th e  GNF t is su e  exp ress ion  d a ta se t .  Heatmaps 

represent log median-centred MAS5 normalized data ranging in value from -2 

(bright green) through 0 (black) to 2 (bright red), and were created using 

correlation distance and average linkage. Values greater than 2 and less than -2 

were set to 2 and -2 respectively. Black bars in the 'picketplots' below the heatmaps 

indicate which tissue-specific clusters the respective samples are grouped into in the 

analysis described in Section 5.2.3.
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G0:0019882_antigen presentation

Blood/Immune .............  . . . . . .
Brain/Neuronal l l l l l l l ^ l ^ l l l l l l ^   ̂ II

M iscellaneous I........................................................................................ ........................................

G0:0030333_antigen processing
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Blood/Immune
Brain/Neuronal

Testis
Miscellaneous

Figure 7 .5  S e lected  GOBP term s specific  to  im m une sy s te m  p r o c e s se s  

d etected  by GSD analysis  of the  GNF t is su e  exp ress ion  d a tase t .  Heatmaps 

represent log median-centred MAS5 normalized data ranging in value from -2 

(bright green) through 0 (black) to 2 (bright red), and were created using 

correlation distance and average linkage. Values greater than 2 and less than -2 

were set to 2 and -2 respectively. Black bars in the 'picketplots' below the heatmaps 

indicate which tissue-specific clusters the respective samples are grouped into in the 

analysis described in Section 5.2.3.
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G0:0006412_protein biosynthesis

Blood.lmmune L________________
Braintleuronal llllllllllllllllll
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G0:0030154_cell differentiation
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G0:0007155 cell adhesion

Blood.lmmune
Brain/Neuronal

Testis
Miscellaneous

G0:0016043_cell organization and biogenesis

IIIBIIIIIIIIIIIIIIBlood/Immune
Braintleuronal

Testis
Miscellaneous

F igure  7 .6  O th e r  s e le c te d  GOBP te r m s  d e te c te d  by GSD a n a ly s i s  of th e  GNF 

t i s s u e  e x p re s s io n  d a t a s e t .  Heatmaps represent log median-centred MAS5 

normalized data ranging in value from -2 (bright green) through 0 (black) to 2 

(bright red), and were created using correlation distance and average linkage. 

Values greater than 2 and less than -2 were set to 2 and -2 respectively. Black bars 

in the 'picketplots' below the heatmaps indicate which tissue-specific clusters the 

respective samples are grouped into in the analysis described in Section 5.2.3.
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7.3.2 Analysis of the Ross AML dataset

The next dataset analyzed using the GSD methodology comprised 130 samples from 

paediatric patients with Acute Myeloid Leukemia (AML), created at the St Judes 

Children’s Research Hospital (Ross et al. 2004). Of these, 83 samples could be classified 

into one of five known genetic sub-types of AML: cases with t( 15; 1 l)[PML-RARa] (15 

samples), t(&;2l)[AMLl-ETO] (21 samples), inv16[CBF$-MYHl 1] (14 samples), MLL 

chimeric fusion genes (23 samples), and acute megakaryocytic morphology (FAB-M7) 

(10 samples).

To reduce the complexity of analysis, implementation of the GSD methodology was 

restricted to these 83 samples, while the other 47 samples that could not be classified in 

the original study into any genetic subtype of AML were discarded. This therefore 

allowed GSD to be assessed as to whether it could discover the known classes within 

this dataset. The distribution of SD-SDM values observed for all the GOBP terms tested 

relative to the background distribution of SD-SDM values to which they were compared 

is displayed in Figure 7.7. A total of 12 GOBP terms (out of 1397) were found to have 

FDR-corrected p-values that were less than the significance threshold of 0.01. These are 

shown in Table 7.2.

As can be seen, other than the term for “translational initiation”, all of the selected 

GOBP terms can be considered to be involved in processes of immune response -  and as 

is displayed in Figure 7.8, are all descendants of the term “response to stimulus”. Given 

that the samples comprise of mononuclear cells from purified from the bone marrow/ 

peripheral blood samples from paediatric AML patients; and that these cells represent a 

critical component of the immune system, it seems plausible that the dominant theme to 

arise from this dataset relates to the immune response.

Investigations then focussed on the heatmaps derived from these terms, some of which 

are displayed in Figure 7.9.
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Figure 7 .7  S election  of GOBP term s in GSD analysis  of th e  Ross AML 

d ataset .  Grey points represent log SD-SDM values observed for each of the GOBP 

terms tested. Encircled grey points represent those GOBP terms found to exhibit 

FDR-corrected p-values of less that 0.01. The red line indicates the median of the 

background distribution of SD-SDM values for each gene set size. Broken black lines 

indicate the median ± 2 standard deviations for the background distributions.

As most these terms are closely related within the GOBP hierarchy, they share many 

genes. As a result, most of the heatmaps derived from the terms appear very similar to 

each other. The patterns of expression observed appear to correlate strongly with the 

known genotypic classes of AML.

Amongst most of the heatmaps, it is generally observed that the pattern involving the 

greatest number of genes splits the samples into two major clusters: one which is 

comprised mostly of samples of the l(\5\\l)[PML-RARo], t(%,2\)[AMLl-ETO\, and 

FAB-M7 subtypes, while the other cluster is dominated by samples of the 'mvI6[CBF$- 

MYH11] and MLL subtypes.
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Gene Ontology Biological Process Term Z-score
p-value

(FDR
corrected)

G0:0009607_response to biotic stimulus 12.8 0

G0:0006952_defense response 12.4 0

G0:0006955_immune response 11.6 0

G0:0051707_response to other organism 10.2 0

G0:0009613_response to pest, pathogen or parasite 10.1 0

G0:0019882_antigen presentation 8.3 0

G0:0006950_response to stress 8.2 0

G0:0009611_response to wounding 7.8 0

G0:0009605_response to external stimulus 7.6 0

G0:0030333_antigen processing 7.5 0

G0:0006413_translational initiation 7.2 0

G0:0006954_inflammatory response 6.3 0

Table 7 .2  GOBP term s se lec ted  by GSD analysis  of the  Ross AML dataset.

Terms shown are those found to have FDR-corrected p-values of less than 0.01. 

Terms highlighted in blue are those that are specific to immune system processes.

Other smaller patterns of expression are also observed that appear to be specific to AML 

sub-types within the first cluster. As a result, all of the X{\5\\l)[PML-RARa] samples, all 

the of the FAB-M7 samples and most of the t(&;2l)[AMLl-ETO] are grouped 

respectively into three well-differentiated sub-clusters.

No obvious expression patterns that could differentiate amongst the subtypes of samples 

in the second major cluster (i.e. inv16[CBFfi-MYHl 1] and MLL) were discernible. This is 

reflected in the grouping of samples within this cluster -  there is relatively little 

discrimination between samples of these sub-types.
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antigen presentation antigen processing inflammatory response

response to pest, pathogen or parasite response to woundingimmune response

defense response response to stress

response to biotic stimulus response to external stimulus

physiological process

biological.process

response to stimulus

organismal physiological process

response to other organism

Figure 7 .8  GOBP term s se lec ted  by GSD analysis  of th e  Ross d a tase t  (and  

their ancestral term s) .  Nodes represent GOBP terms while the edges represent 

parent-child relationships between terms. Orange nodes represent terms selected 

by GSD analysis. Blue nodes represent terms that were tested but not selected 

(there are no such terms here). Grey nodes represent untested terms. All terms 

selected represented with the exception of'translational in itiation7.

G0:0006955.immune resp o n se

CBFB.
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G0:0006413_translational initiation

CBFB,

G0:0009605_response to external stim ulus

Figure 7 .9  S e lected  GOBP term s d etected  by GSD an a lys is  o f  th e  R oss AML 

datase t .  Heatmaps represent log median-centred MAS5 normalized data ranging in 

value from -2 (bright green) through 0 (black) to 2 (bright red), and were created 

using correlation distance and average linkage. Values greater than 2 and less than 

-2 were set to 2 and -2 respectively. Black bars in the 'picketplots' below the 

heatmaps indicate which of five genetic sub-types of AML that each of the samples 

was classified as in the original study.
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This could be a reflection of the observation made in the original study that there is 

considerable molecular heterogeneity amongst samples of these AML sub-types, which 

implied the possibility of molecular sub-groups within these sub-types. The reason for 

this heterogeneity could also not be explained by the relatively more supervised and 

focussed analyses carried out in the original study.

Only the GOBP term for translational initiation exhibited a considerably different 

clustering of samples, which is not unexpected as it comprises a very different biological 

theme (consisting of a different set of genes) from all the other selected terms. The 

heatmap for this term (also displayed in Figure 7.9) reveals that there a relatively few 

informative genes, but strong expression patterns exhibited by these genes results in 

significantly strong clustering of samples. However the resultant samples clusters do not 

appear to be in agreement with the known AML genetic sub-types.

In summary, it was found that the majority of gene sets selected by GSD analysis of this 

dataset represented biological themes that can plausibly be linked to the biology within 

the dataset. The samples comprised mononuclear cells, which are a critical component 

of the immune system, and the dominant theme indicate by GSD analysis is that of the 

immune responses. Furthermore, the information within these gene sets (i.e. the patterns 

of expression) reflected known phenotypic classes of AML.
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7.3.3 Analysis of the Broccoli liposarcoma dataset

The third dataset analyzed using the GSD methodology was a set of 31 liposarcoma 

samples created using the Affymetrix hgul33plus2 platform. This dataset was provided 

by a collaborator at the Memorial University Medical Centre (see Materials and 

Methods). Liposarcomas are a relatively understudied type of cancers, and are of 

adipocytic origin. Each of the samples could be classified into four sub-types based on 

histological profiles: well differentiated (WD), myxoid (MYX), de-differentiated (DD) 

and pleomorphic (PLEO) samples. WD samples represented low grade tumours, while 

PLEO and DD samples represented high grade tumours.

A total of 1492 GOBP terms were tested on the Broccoli liposarcoma dataset using the 

GSD methodology. The distribution of SD-SDM values observed for all the GOBP 

terms tested relative to the background distribution of SD-SDM values to which they 

were compared is displayed in Figure 7.10. A total of 30 GOBP terms were found to be 

exhibit FDR-corrected p-values that were less than the significance threshold of 0.01. 

These terms are displayed in Table 7.3, ranked by their Z-score values. As can be 

observed, all the terms selected can be grouped into at least three major biological 

themes: cell division, metabolism (in particular, metabolism of fatty acids and 

carbohydrates) and the immune response. Relationships between terms for each of these 

themes are displayed in Figure 7.11.

Investigations then focussed on the heatmaps of these terms. Heatmaps of cell division 

terms (some of which are displayed in Figure 7.12) showed that most of the information 

for these terms appear to be limited to sets of genes that share a single expression 

pattern: of down-regulation in most of the WD samples, and up-regulation in most of the 

PLEO and DD samples. This is consistent with the tumour behaviour; the high-grade 

(PLEO and DD) samples exhibit greater levels of proliferative activity than the low- 

grade WD samples.

185



Chapter 7: Application of the GSD methodology to four microarray datasets

o
to
6
CO
'5>o

cn
CD

o
i

i

” «a<—

4 5
log(Gene-set size)

Figure 7 .1 0  Selection  of GOBP term s in GSD ana lys is  of th e  Broccoli 

liposarcom a d atase t .  Grey points represent log SD-SDM values observed for each 

of the GOBP terms tested. Encircled grey points represent those GOBP terms found 

to exhibit FDR-corrected p-values of less that 0.01. The red line indicates the 

median of the background distribution of SD-SDM values for each gene-set size. 

Broken black lines indicate the median ± 2 standard deviations for the background 

distributions.
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Gene Ontology Biological P rocess Term Z-score p-value 
(FDR corrected)

GO:0000087_M phase of mitotic cell cycle 11.2 0

G0:0006091_generation of precursor metabolites and energy 11 0

G0:0007067_mitosis 10.9 0

G0:0015980_energy derivation by oxidation of organic compounds 10.8 0

G0:0006066_alcohol metabolism 10.7 0

G0:0000278_mitotic cell cycle 9.9 0

G0:0007051_spindle organization and biogenesis 9.5 0

G0:0006955_immune response 9.4 0

GO:0000279_M phase 9.4 0

G0:0006629_lipid metabolism 9.1 0

G 0:0009607_response to biotic stimulus 8.8 0

G0:0006112_energy reserve metabolism 8.7 0

G 0:0006952_defense response 8.7 0

G0:0019883_antigen presentation, endogenous antigen 8.5 0

G0:0006082_organic acid metabolism 8.5 0

G0:0019752_carboxylic acid metabolism 8.4 0

G0:0030333_antigen processing 8.1 0

G0:0006631_fatty acid metabolism 8 0

G0:0005975_carbohydrate metabolism 8 0

GO:0019882_antigen presentation 7.9 0

G0:0051301_cell division 6.9 0

G0:0019318_hexose metabolism 6.7 0

G0:0044262_cellular carbohydrate metabolism 6.6 0

G0:0007049_cell cycle 6.6 0

G 0:0006006_glucose metabolism 6.6 0

G0:0044255_cellular lipid metabolism 6.1 0

G0:0009056_catabolism 5.1 0

G 0:0009613_response to pest, pathogen or parasite 4.8 0

G0:0009058_biosynthesis 4.4 0

G 0:0050896_response to stimulus 4.3 0
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Table 7.3 GOBP term s se lected  by GSD analysis of the Broccoli liposarcom a 
dataset. Terms are ranked by Z-score values. Terms highlighted in blue represent 

those processes involved in metabolism functions, while those in red are specific to 

cell division processes. The remaining terms are involved in immune response 

processes.

Heatmaps of the metabolism terms (some of which are displayed in Figure 7.13) also 

appeared to indicate that much of the information content within these terms was limited 

to genes that shared a single expression pattern. This pattern was the inverse of what was 

observed in the heatmaps of cell division terms, i.e. here the expression pattern was of 

up-regulation in most of the WD samples, and down-regulation in most of the PLEO and 

DD samples. This is, again, a biologically plausible finding. These liposarcomas are of 

adipocytic (fatty tissue) origin, and thus the well-differentiated WD samples might be 

expected to show higher levels of (lipid) metabolism than the poorly differentiated 

PLEO and DD samples.

Expression patterns observed in heatmaps of the immune response terms (some of which 

are displayed in Figure 7.14) do not appear to be specific to the known sample classes. 

There are several possible explanations for this. The samples used were gross biopsies, 

and no attempt was made to isolate RNA purely from the cancer cells. Thus, if any of 

the samples contained tumour-infiltrating lymphocytes or showed substantial 

vascularisation then cells of the immune system would be included in the sample that 

was analysed. Indeed, several of the samples show strong expression for 

immunoglobulin light chain (K), a B cell restricted marker that is strongly suggestive of 

a proportion of the sample being composed of immune cells (see Figure 7.15a). As 

such, the expression values for immune response pathways may not be strongly 

correlated with the cancer stage, since it is hypothesised that the signal is derived largely 

from non-cancer cells.
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(b) Mitosis/ cell division

(c) Immune response

mitosis

M phase

cell cycle

immune response

defense response

response to stress

cell division

biological_process

antigen processingantigen presentation

response to stimulus physiological process

cellular process

mitotic cell cycle

response to biotic stimulus

response to other organism

biological_process

physiological process

organismal physiological process

response to pest, pathogen or parasite

antigen presentation, endogenous antigen

M phase of mitotic cell cycle

cellular physiological process

Figure 7 .11  Dominant biological th e m e s  of GOBP term s se le c te d  by GSD 

an alysis  of th e  Broccoli liposarcom a dataset .  Nodes represent GOBP terms 

while the edges represent parent-child relationships between terms. Orange nodes 

represent terms selected by GSD analysis. Blue nodes represent terms that were 

tested but not selected. Grey nodes represent untested terms.

190



Chapter 7: Application of the GSD methodology to four microarray datasets

G0:0051301_cell division
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G0:0007051_spindle organization and biogenesis
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G0:0007067_mitosis

PLEO
DD

MYX

Figure 7 .1 2  S elected  GOBP term s specific  to  cell division p r o c e s s e s  

d etec ted  by GSD analysis  of th e  Broccoli d a tase t .  Heatmaps represent log 

median-centred MAS5 normalized data ranging in value from -2 (bright green) 

through 0 (black) to 2 (bright red), and were created using correlation distance and 

average linkage. Values greater than 2 or less than -2 were set to 2 and -2 

respectively. Black bars in the 'picketplots' below the heatmaps indicate categories 

of liposarcoma that each of the samples were classified histologically.

G0:0044255_cellular lipid metabolism

PLEO
DD

MYX
WD
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G0:0005975_carbohydrate metabolism

PLEO
DD

MYX
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G0:0019752_carboxytic acid metabolism
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G0:0006631_fatty acid metabolism

n
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G0:0006112_energy reserv e  metabolism

PLEO
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MYX
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Figure 7 .1 3  S e lec ted  GOBP term s  specif ic  to  m etab o lism  p r o c e s se s  d e tected  

by GSD analysis  o f  th e  Broccoli d a ta se t .  Heatmaps represent log median- 

centred MAS5 normalized data ranging in value from -2 (bright green) through 0 

(black) to 2 (bright red), and were created using correlation distance and average 

linkage. Values greater than 2 or less than -2 were set to 2 and -2 respectively. 

Black bars in the 'picketplots' below the heatmaps indicate categories of liposarcoma 

that each of the samples were classified histologically.
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G0:0006955Jmmune resp o n se

PLEO
DD

MYX
WD

G0:0019883_antigen presentation, endogenous antigen

PLEO
DD

MYX
WD

Figure 7 .1 4  S e lected  GOBP term s  specif ic  to  im m un e r esp o n se  p r o c e sse s  

d etec ted  by GSD analysis  of th e  Broccoli d a ta se t .  Heatmaps represent log 

median-centred MAS5 normalized data ranging in value from -2 (bright green) 

through 0 (black) to 2 (bright red), and were created using correlation distance and 

average linkage. Values greater than 2 or less than -2 were set to 2 and -2 

respectively. Black bars in the 'picketplots' below the heatmaps indicate categories 

of liposarcoma that each of the samples were classified histologically.
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Figure 7 .1 5  G ene ex p ress io n  le v e ls  for th ree  b iom arker g e n e s . Figures show 

log MAS5 data for markers for (a) B-Cells, (b) proliferation and (c) adipocytes.
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7.3.4 Analysis of the Ivshina breast cancer dataset

The final microarray dataset on which the GSD methodology was tested was the 

Uppsala breast cancer cohort (Ivshina et al. 2006), which comprised of a total of 249 

samples. Using the Nottingham Grading System, which is based on microscopic 

evaluation of morphological and cytological aspects of tumour cells, each of the samples 

was classified in the original study into one of three grades. Grade 1 (Gl) samples 

comprised well-differentiated, slow-growing tumours; untreated patients with this grade 

of tumour have -95% 5-year survival rates. Grade 2 (G2) samples were moderately 

differentiated, while grade 3 (G3) samples were poorly differentiated, highly 

proliferative tumours, and untreated patients with these two grades of tumours have 5- 

year survival rates of -75%  and -50% respectively.

The authors showed that G2 tumours could be sub-classified into two categories 

depending on the similarity of their expression profiles to those of Gl and G3 samples. 

Using class prediction algorithms, they discovered a set of classifier genes which could 

accurately discriminate between the 68 Gl and 55 G3 samples. They used this gene set 

to classify the 126 G2 samples into 83 grade 2a (G2a or 1-like), and 43 grade 2b (G2b or 

3-like) samples based on the similarity of their expression profiles to the Gl and G3 

samples respectively. Subsequent survival analyses and studies of other clinical 

variables supported this discrimination, showing significant differences between the two 

new sub-classes.

GSD analysis was carried out on this dataset. The distribution of SD-SDM values 

observed for all the GOBP terms tested relative to the background distribution of SD- 

SDM values to which they were compared is displayed in Figure 7.16. A total of 50 

GOBP terms were found to be significant, as they exhibited FDR-corrected p-values of 

less that 0.01.
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Figure 7 .1 6  S e lectio n  o f GOBP term s in GSD a n a ly sis  o f th e  Ivsh ina  b reast  

can cer d a ta se t. Grey points represent log SD-SDM values observed for each of the 

GOBP terms tested. Encircled grey points represent those GOBP terms found to 

exhibit FDR-corrected p-values of less that 0.01. The red line indicates the median 

of the background distribution of SD-SDM values for each gene set size. Broken 

black lines indicate the median ± 2 standard deviations for the background 

distributions.

As was the case in the analysis of the GNF human tissue expression dataset, the p-values 

exhibited by the selected terms were very similar and a more precise ranking of these 

terms according to their significance could be achieved by using their Z-scores. Table 

7.4 shows the top twenty selected terms when ranked by their Z-scores.

As can be seen, the table is comprised entirely of GOBP terms representing two distinct 

biological themes: immune system and cell division processes. These themes make up 

the majority of GOBP terms selected, and the relationships between terms from either 

theme are displayed in Figure 7.17.
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Gene Ontology Biological Process Term Z-score
p-value

(FDR
corrected)

G0:0009607_response to biotic stimulus 21.1 0

G0:0006952_defense response 21.1 0

G0:0006955_immune response 20.9 0

G0:0051707_response to other organism 13.8 0

GO:0009613_response to pest, pathogen or parasite 13.8 0

G0:0007067_mitosis 11.6 0

G0:0000278_mitotic cell cycle 11.6 0

GO:0000087_M phase of mitotic cell cycle 11.4 0

G0:0006950_response to stress 11.1 0

GO:0000279_M phase 9.8 0

G0:0009605_response to external stimulus 9.7 0

G0:0009611_response to wounding 9.6 0

G0:0051301_cell division 8.8 0

G0:0007049_cell cycle 8.8 0

G0:0019882_antigen presentation 8.5 0

G0:0006954_inflammatory response 8 0

G0:0007017_microtubule-based process 7.7 0

G0:0006968_cellular defense response 7.3 0

G0:0030333_antigen processing 7.2 0

G0:0000819_sister chromatid segregation 7 0.008

Table 7 .4  Top 20 GOBP term s s e le c te d  by GSD an a ly sis  o f th e  Ivsh ina  

b reast can cer d a ta se t . Terms are ranked by Z-score values. Terms highlighted in 

blue represent those processes involved in functions in immunity processes, while 

those highlighted in red represent processes that take place during cell division.
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[Im m u n ity ]

defense mechanism (sensu Vertcbrata)

antigen presentation humoral immune defense response, response to virus[cel

to pest, pathogen or parasite [responsecel activation

to other organism response to to chemical stimulus

to abioticto biotic stimuiusi to external

to stimulus

“ T "■

[Cell d iv ision ]

mitosis

> t
M phase of mitotic cell cycle regulation of progression through cell cycle

1 X  J
sister chromatid segregation mitotic ce l cycle M phase regulation of cell cycle

\  1 ------------------------------ ^
chromosome segregation c e l cycle [ cell division regulation of cellular physiological process

___ —  ̂ -a ^  ̂̂ _______________
celular physiological p rocess | regulation of cellular process I regulation of physiological process

cellular p rocess physiological p rocess regulation of biological process

biological _process

Figure 7 .1 7  D om inant b io lo g ica l th e m e s  o f GOBP term s s e le c te d  by GSD 

a n a ly s is  o f th e  Iv sh in a  d a ta se t . Nodes represent GOBP term s while the edges 

represent parent-child relationships between terms. Orange nodes represent terms 

selected by GSD analysis. Blue nodes represent term s that were tested but not 

selected. Grey nodes represent untested terms.
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Materials and Methods), and five terms were found to be significant, exhibiting I 

corrected p-values of less that 0.01 (see Table 7.6). All five terms represented mi 

and cell division processes, and had been selected in the GSD analysis.

These findings indicate that this biological theme of mitosis/cell division is likely 1 

relevant to the discrimination between low and high grade breast cancer samples 

investigate this, inspection of heatmaps of these GOBP terms specific to cell div 

processes was then carried out. Some of these heatmaps are displayed in Figure 

along with ‘picketplots’ that indicate which tumour grade each of the samples 

classified into in the original study using the Nottingham Grading System.

In the heatmaps of all the selected terms that represented mitosis/cell division proce 

two major clusters of samples could be observed. In every case, one of the clu 

appeared to include the majority of G1 samples, and the other appeared to includi 

majority of G3 samples. It can also be observed that much of the apparent inform; 

within these heatmaps involves genes exhibiting an expression pattern of d< 

regulation in most G1 samples, and up-regulation in most G3. This is biologi 

plausible, considering that G3 samples represent high-grade tumours which are i 

proliferative than the low-grade tumours represented by G1 samples; thus g 

involved in cell division processes may be expected to show higher levels of expres 

in G3 samples than in G1 samples.
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EGID Symbol Description GOBP terms

23397 BRRN1 barren homolog 
1 (Drosophila)

G0:0016043_cell organization and biogenesis
G0:0007049_cell cycle
G0:0051301_cell division
G0:0007067_mitosis
G0:0000087 M phase of mitotic cell cycle
GO:0000279_M phase
G0:0000278_mitotic cell cycle
G0:0006996_organelle organization and biogenesis
G0:0051276_chromosome organization and biogenesis
G0:0007059_chromosome segregation
G0:0000819_sister chromatid segregation
G0:0000070_mitotic sister chromatid segregation
G0:0007076_mitotic chromosome condensation
G0:0030261_chromosome condensation

55143 CDCA8
cell division 

cycle 
associated 8

G0:0051301_cell division

4605 MYBL2

v-myb 
myeloblastosis 
viral oncogene 

homolog 
(avian)-like 2

G0:0006366_transcription from RNA polymerase II 
promoter
G0:0006915 apoptosis
G0:0016265_death
G0:0012501 programmed cell death
G0:0008219_cell death
G0:0042981_regulation of apoptosis
G0:0043067_regulation of programmed cell death
G0:0048519_negative regulation of biological process
G0:0043118_negative regulation of physiological
process
G0:0048523_negative regulation of cellular process 
G0:0007049_cell cycle 
G0:0051726_regulation of cell cycle 
G0:0051243_negative regulation of cellular 
physiological process
G0:0000074_regulation of progression through cell 
cycle
G0:0006916_anti-apoptosis 
G0:0043066_negative regulation of apoptosis 
G0:0043069_negative regulation of programmed cell 
death

2354 FOSB

FBJ murine 
osteosarcoma 
viral oncogene 

homolog B

G0:0006366_transcription from RNA polymerase II 
promoter
G0:0007610_behavior
G0:0048519_negative regulation of biological process 
G0:0043118_negative regulation of physiological 
process
G0:0048523_negative regulation of cellular process
G0:0007049 cell cycle
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G0:0051726_regulation of cell cycle 
G0:0051243_negative regulation of cellular 
physiological process
G0:0000074_regulation of progression through cell 
cycle
G0:0016481_negative regulation of transcription 
G0:0045934_negative regulation of nucleobase, 
nucleoside, nucleotide and nucleic acid metabolism 
G0:0009892_negative regulation of metabolism 
G0:0031324_negative regulation of cellular metabolism 
G0:0006357_regulation of transcription from RNA 
polymerase II promoter
G0:0045892_negative regulation of transcription, DNA- 
dependent
G0:0000122_negative regulation of transcription from 
RNA polymerase II promoter

6790 AURKA aurora kinase A

G0:0006468_protein amino acid phosphorylation 
G0:0006796_phosphate metabolism 
G0:0016310_phosphorylation 
G0:0043412_biopolymer modification 
G0:0006793_phosphorus metabolism 
G0:0006464_protein modification 
G0:0016043_cell organization and biogenesis 
G0:0007242_intracellular signaling cascade 
G0:0007049_cell cycle 
G0:0007067_mitosis 
G0:0000087 M phase of mitotic cell cycle 
GO:0000279_M phase 
G0:0000278_mitotic cell cycle
G0:0007010_cytoskeleton organization and biogenesis 
G0:0006996_organelle organization and biogenesis 
GO:0019932_second-messenger-mediated signalling 
G0:0048015_phosphoinositide-mediated signalling 
G0:0007017_microtubule-based process 
G0:0007051_spindle organization and biogenesis 
G0:0000226_microtubule cytoskeleton organization and 
biogenesis
G0:0031647_regulation of protein stability

1062 CENPE
centromere 
protein E, 
312kDa

G0:0016043_cell organization and biogenesis
G0:0007049_cell cycle
G0:0051641_cellular localization
G0:0051649_establishment of cellular localization
G0:0046907_intracellular transport
G0:0051301_cell division
G0:0007067_mitosis
G0.0000087 M phase of mitotic cell cycle
GO:0000279_M phase
G0:0000278_mitotic cell cycle
G0:0007010_cytoskeleton organization and biogenesis 
G0:0006996 organelle organization and biogenesis
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G0:0051276_chromosome organization and biogenesis 
G0:0006461_protein complex assembly 
G0:0007059_chromosome segregation 
G0:0007017_microtubule-based process 
G0:0051640_organelle localization 
G0:0051656_establishment of organelle localization 
G0:0007018_microtubule-based movement 
G0:0030705_cytoskeleton-dependent intracellular 
transport
G0:0000819_sister chromatid segregation 
G0:0000070_mitotic sister chromatid segregation

7272 TTK TTK protein 
kinase

G0:0006468_protein amino acid phosphorylation 
G0:0006796_phosphate metabolism 
G0:0016310_phosphorylation 
G0:0043412_biopolymer modification 
G0:0006793_phosphorus metabolism 
G0:0006464_protein modification 
G0:0008283_cell proliferation 
G0:0016043_cell organization and biogenesis 
G0:0048518_positive regulation of biological process 
G0:0043119_positive regulation of physiological 
process
G0:0048522_positive regulation of cellular process 
G0:0051242_positive regulation of cellular physiological 
process
G0:0008284_positive regulation of cell proliferation 
G0:0042127_regulation of cell proliferation
G0:0007049_cell cycle 
G0:0051726_regulation of cell cycle 
G0:0000074_regulation of progression through cell 
cycle
GO:0007067_m itosis 
G0:0000087 M phase of mitotic cell cycle 
GO:0000279_M phase 
G0:0000278_mitotic cell cycle
G0:0007010_cytoskeleton organization and biogenesis 
G0:0006996_organelle organization and biogenesis 
G0:0007017_microtubule-based process 
G0:0007052_mitotic spindle organization and 
biogenesis
G0:0007051_spindle organization and biogenesis 
G0:0000226_microtubule cytoskeleton organization and 
biogenesis
G0:0007088_regulation of mitosis 
G0:0000075_cell cycle checkpoint 
G0:0007093_mitotic checkpoint

57758 SCUBE2
signal peptide, 
CUB domain, 

EGF-like 2
NA

2353 FOS v-fos FBJ
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murine 
osteosarcoma 
viral oncogene 

homolog

G0:0043412_biopolymer modification 
GO:0006259_DNA metabolism 
G0:0006950_response to stress 
G0:0006366_transcription from RNA polymerase II 
promoter
G0:0006954_inflammatory response 
G0:0009605_response to external stimulus 
G0:0009611_response to wounding 
G0:0051707_response to other organism 
G0:0006952_defense response 
G0:0006955_immune response 
G0:0009607_response to biotic stimulus 
GO:0009613_response to pest, pathogen or parasite 
G0:0006357_regulation of transcription from RNA 
polymerase II promoter 
G0:0043414_biopolymer methylation 
G0:0006304 DNA modification 
G0:0006306 DNA methylation 
GO:0006305_DNA alkylation
G0:0040029_regulation of gene expression, epigenetic

22974 TPX2

TPX2,
microtubule-
associated,

homolog
(Xenopus

laevis)

G0:0008283_cell proliferation
G0:0007049_cell cycle
G0:0007067_mitosis
G0.0000087 M phase of mitotic cell cycle
GO:0000279_M phase
G0:0000278_mitotic cell cycle

2305 FOXM1 forkhead box 
M1

G0:0042221_response to chemical stimulus 
G0:0006950_response to stress 
G0:0009628_response to abiotic stimulus 
G0:0006366_transcription from RNA polymerase II 
promoter
G0:0006979_response to oxidative stress 
G0:0006800_oxygen and reactive oxygen species 
metabolism

9833 MELK

maternal 
embryonic 

leucine zipper 
kinase

G0:0006468_protein amino acid phosphorylation 
G0:0006796_phosphate metabolism 
GO:0016310_phosphorylation 
G0:0043412_biopolymer modification 
G0:0006793_phosphorus metabolism 
G0:0006464_protein modification

83461 CDCA3
cell division 

cycle 
associated 3

NA
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Table 7 .5  Classifier g en es  that differentiate betw een G1 and G3 breast 
cancer sam ples. This was created using the PAM and SWS class prediction 

algorithm in the original study by Ivshina e t al. Of the original 18 genes, only those 

13 are shown that are represented on the h gu l33a  platform. Only those GOBP 

term s are shown that were tested  during the GSD analysis. Terms highlighted in red 

indicate those selected  by GSD analysis of this dataset.

GOBP term
Hypergeometric p-value 

(FDR corrected)

G0:0007067_mitosis 0.00026

GO:0000087_M phase of mitotic cell cycle 0.00026

GO:0000279_M phase 0.00053

G0:0000278_mitotic cell cycle 0.00053

G0:0007049_cell cycle 0.00054

Table 7 .6  GOBP term s found to  be enriched in th e classifier gen e  set. ORA

analysis of the gene se t shown in Table 7 .5  was carried out using the 

hypergeometric test. Terms displayed are those that were found to have FDR- 

corrected p-values of less than 0 .01 .

The heatmaps also indicate that the G2 samples do not appear to show any tendency to 

cluster separately from samples representing other tumour grades: they show apparently 

random ordering within each of the two major clusters. In the original study, the 

classifier gene set that could discriminate between G1 and G3 samples was used by the 

authors to stratify G2 samples into two groups: G2a (Gl-like) and G2b (G3-like). Also, 

in the original study, ORA analysis of genes found to be differentially expressed 

between G2a and G2b samples detected enrichment of terms specific to cell division and 

cell cycle processes. It was therefore investigated whether the mitosis/cell division terms 

selected by GSD analysis could also stratify G2 samples.
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G0:0007067 m itosis
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G0:0000819_sister chromatid segregation
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Figure 7 .1 8  S e le c ted  GOBP term s sp ec ific  to  cell d ivision  p r o c e sse s  

d etected  by GSD a n a ly sis  o f th e  Ivsh ina  B reast Cancer d a ta se t. Heatmaps 

represent log median-centred MAS5 normalized data ranging in value from -2 

(bright green) through 0 (black) to 2 (bright red), and were created using 

correlation distance and average linkage. Values greater than 2 and less than -2 

were set to 2 and -2 respectively. Black bars in the 'picketplots' below the heatmaps 

indicate the tumour grade in which each of the samples was classified in the original 

study using the Nottingham Grading System for breast cancers.
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For this purpose, the positions of samples that were classified in the original study as 

G2a and G2b, within the hierarchical clustering of samples produced for each of the 

mitosis/cell division terms selected by GSD analysis, were investigated. To illustrate 

this, displayed in Figure 7.19 are the cluster dendrograms from the heatmaps for some of 

these terms, along with picketplots supplemented with information regarding which 

samples were classified as G2a and G2b in the original study.

As can be seen in Figure 7.19, the clustering of G2 samples appears to be in concord 

with the sub-classes assigned in the original study: most G2a samples appear to be 

interspersed within the cluster that is also contains the majority of G1 samples. 

Similarly, most G2b samples are found interspersed within the cluster that includes the 

majority of G3 samples.

To statistically assess the enrichment of tumour grades within these clusters, the number 

of samples of each tumour grade within each of the first two hierarchical clusters 

exhibited by each of the cell division specific GOBP terms was counted. Tests were 

then carried out, to detect over-representation of each tumour grade within that cluster 

where the majority of samples for that grade were found, using the hypergeometric 

statistical test (see Materials and Methods).

These results are displayed in Table 7.7. In every case there is highly significant 

enrichment of tumour grades within the respective clusters. These findings imply that 

the grouping of tumour grades, as provided by hierarchical clustering for these terms, is 

non-random and unlikely to have occurred by chance. This then highlights the 

importance of the biological theme in the differentiation between low (G1 and G2a) and 

high (G2b and G3) grade breast cancer samples.
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Figure 7 .19  Stratification of Grade 2 breast cancer sam ples by hierarchical 
clustering using GOBP term s specific to  m itosis /ce ll division processes.
Figures display dendrograms representing hierarchical clusters of sam ples classes. 

Also displayed are picketplots where the tumour grade of each sample is indicated 

by the presence of coloured bars. Black bars indicate tumour grades G l, G2 and G3, 

which were assigned to sam ples in the original study through morphological and 

cytological a ssessm en ts using the Nottingham Grading System . Coloured bars 

indicate sub-classes of G2 sam ples that were discovered de novo in the original 

study using a gene set created using class discovery techniques.

Patient survival data was also available for each sample within the dataset, and in the 

original study this was used to display the highly significant difference in survival rates 

between patients with different grades of tumours. Assessment of the difference in 

survival rates between patients with tumours classified in the original study as either G1 

or G2a and those with G3 or G2b tumours using the Cox proportional-hazards regression 

model (see Materials and Methods) yielded a highly significant p-value of 2.1e-06.

To investigate if the relevance of the biological theme of cell division within this 

experiment could be reflected in patient survival rates, the following analysis was 

carried out: for each of the cell division specific GOBP terms selected by the GSD 

analysis of the dataset, two groups of samples were created by selecting the first two 

hierarchical clusters (as was done in the explorations displayed in Table 7.7).

The difference in survival rates of patients represented by the samples in each of the two 

groups was then assessed using the Cox proportional-hazards regression model. Kaplan- 

Meier survival curves are plotted for the two groups of samples created for each of the 

GOBP terms in Figure 7.20, along with the survival curves for the groups of samples 

based on tumour grades assigned in the original study.
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Gene Ontology Biological Process Term
Cluster A Cluster B

G1 G2a G3 G2b

G0:0007067_mitosis 79.4%
(1.3e-08)

75.9%
(1e-08)

90.9%
(3e-13)

90.7%
(5e-10)

G0:0000278_mitotic cell cycle 82.4%
(8.1e-09)

81.9%
(6.4e-11)

94.5%
(1.7e-17)

86%
(5.5e-09)

GO:0000087_M phase of mitotic cell cycle 77.9%
(2e-08)

77.1%
(3.6e-10)

92.7%
(7.7e-14)

95.3%
(5.1e-12)

G0.0000279_M phase 79.4%
(8.7e-09)

74.7%
(3.1e-08)

90.9%
(4.9e-13)

90.7%
(7.1e-10)

G0:0051301_cell division 89.7%
(1.9e-09)

91.6%
(1.4e-13)

90.9%
(1e-19)

76.7%
(3.5e-08)

G0:0007049_cell cycle 91.2%
(1.2e-11)

88%
(4.3e-12)

90.9%
(5.3e-18)

86%
(4.5e-11)

G0:0051726_regulation of cell cycle 82.4%
(3.2e-10)

74.7%
(5.1e-08)

94.5%
(7.8e-16)

88.4%
(5.8e-09)

G0:0000074_regulation of progression 
through cell cycle

85.3%
(3.7e-11)

74.7%
(3.4e-07)

92.7%
(2.2e-15)

86%
(1.5e-08)

G0:0000819_sister chromatid segregation 80.9%
(3.1e-08)

84.3%
(5.6e-13)

96.4%
(8.4e-19)

88.4%
(7.4e-10)

G0:0007018_microtubule-based movement 79.4%
(3.2e-08)

77.1%
(5.5e-09)

89.1%
(1.7e-12)

90.7%
(2.5e-10)

Table 7 .7  Enrichment of tum our grades within hierarchical clusters of 
sam ples created by GOBP term s specific to  cell division processes.
Hierarchical clustering of sam ples was carried out using correlation distance and 

average linkage for each of the gene se ts  representing GOBP term s specific to cell 

division processes that were selected  by GSD analysis of the Ivshina breast cancer 

datasets. Sam ples were then divided by selecting the first two hierarchical clusters 

(Clusters A and B) for each gene set separately. Figures indicate the percentage of 

sam ples of the dominant tumour grades within those clusters. Also displayed are 

hypergeometric p-values calculated to a sse ss  the enrichment of the tumour grades 

within those clusters.
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Figure 7 .2 0  Survival curves for p a tien ts  stratified  by h ierarchical c lusterin g  

of sa m p les  using g e n e  s e t s  sp ec ific  to  cell d iv ision  p r o c e sse s . Hierarchical 

clustering of samples was carried out using correlation distance and average linkage 

for each of the gene sets representing GOBP terms specific to cell division processes 

that were selected by GSD analysis of the Ivshina breast cancer datasets. Broken 

survival curves represent patients grouped in each of the firs t two hierarchical 

clusters for each gene set. Solid curves represent groups of patients created 

according to tumour grades assigned in the original study. P-values in the top right 

corner indicate the significance of the difference in survival rates of cluster-based 

groups of patients, using the Cox proportional-hazard regression model.
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As can be observed, there is considerable difference in survival rates of patients 

represented in each of the clusters; assessment of the statistical significance of these 

differences yields highly significant p-values for all tested gene sets.

Thus, the results of the implementation of the GSD methodology on this dataset are in 

concord with the findings of the original study on two major aspects: The first is that the 

GOBP terms selected by the analysis include many that are specific to cell division 

processes, which was found in the original study to be the most important biological 

theme with regard to discrimination between high and low grades of tumour.

The second is the finding in the original study that there is no apparent continuum of 

gene expression levels in G2 samples as they progress from G1 to G3 stages; rather G2 

samples appear to comprise at least two distinct molecular sub-classes, G2a and G2b, 

depending on the similarity of their gene expression profiles to those of G1 and G3 

samples respectively. This is supported by the findings that when the hierarchical 

clustering of samples is carried out using GOBP terms specific to cell division 

processes, there is a marked tendency for the majority of G1 and G2a samples to cluster 

together, and for the G2b and G3 samples to cluster together. This is further supported 

by survival analyses carried out both here and in the original study.
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7.4 Discussion

The previous chapter described explorations leading to the development of the GSD 

methodology using hypothetical gene expression matrices, randomly selected gene sets 

and artificially imposed information. This chapter then described the results of the 

application of the methodology to the analysis of four microarray datasets using gene 

sets based on GOBP terms. Assessment of a methodology like GSD, which is 

essentially exploratory in nature, is problematic as there is no known ‘truth’ regarding 

these datasets. It was thus hoped that some indication of the accuracy and reliability of 

results could be achieved by investigating whether the results of the analyses were 

biologically plausible and/or they were in agreement with the results of prior analyses of 

these datasets using other methodologies.

7.4.1 Overview of results

The GNF human tissue expression dataset (Su et al. 2004), which was used in Chapter 5 

to explore tissue-specific gene expression patterns was selected for analysis using GSD 

because it contains strong tissue-specific expression signatures that lead to clustering of 

samples based on tissue types. Inspection of the GOBP terms selected by GSD analysis 

of this dataset revealed considerable numbers of terms specific to immune and nervous 

system processes. These results most likely reflect the observation that tissues specific to 

these processes comprise the two largest groups of tissues of similar origin and/or 

function.

The next three datasets analyzed involved samples from cancer patients: this was 

because it is expected that the ability of the GSD methodology to identify potentially 

relevant biological themes within a dataset without requiring prior definition of sample 

classes could be of utility particularly in the analysis if cancer datasets where sample 

classes may not be known, or where the samples are difficult to classify.
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GSD analysis of the Ross AML dataset (Ross et al. 2004) resulted in selection of many 

immunity-specific GOBP terms, consistent with the biological nature of the samples 

(mononuclear cells that involved in immunity functions). Inspection of the heatmaps of 

the selected GOBP terms revealed gene expression patterns that resulted in groupings of 

samples that agreed with the five different known genetic sub-types of AML represented 

within the dataset.

Next, GSD was applied to a liposarcoma dataset provided by a collaborator at the 

Memorial University Medical Centre. Two out of the three major biological themes 

selected by GSD for this dataset are biologically plausible in the context of the tumour 

grades of the samples: genes comprising the mitosis/cell division theme exhibited 

expression patterns of up-regulation in the high-grade tumour samples and down- 

regulation in the low-grade samples. The opposite pattern was exhibited by genes 

comprising the lipid metabolism theme. The third theme, that of immunity, is likely to 

have been selected as a consequence of the possible presence of cells involved in the 

immune system within the samples.

Finally, GSD analysis of the Ivshina breast cancer dataset (Ivshina et al. 2006) revealed 

at least two major biological themes. One of these was cell division; this finding is 

biologically plausible (as high-grade tumours are typically more proliferative than low- 

grade tumours) and in agreement with the results of more supervised analyses carried 

out in the original study that took into account the histological grades of the samples. 

Further analyses carried out appear to highlight the importance of discovering relevant 

biological themes within a dataset — simple hierarchical clustering of samples using the 

GOBP terms specific to cell division could differentiate between patients into groups 

with statistically significant differences in survival rates.

Thus it is found that the GSD methodology can provide plausible and useable results. 

The potential utility of this technique is further discussed in Chapter 9.
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7.4.2 Genes and expression patterns shared by selected gene sets

Having identified the possibly relevant biological themes within a dataset (which may 

have been achieved by GSD or any other gene set analysis method), there are at least 

two issues that need to be addressed in order to help researchers further analyze these 

results.

The first of these is that, as can be observed in heatmaps of most selected gene sets, 

much of the information is restricted to only a proportion of genes within a gene set, i.e. 

only a sub-set of genes are DEGs. This then raises the need for a methodology to 

identify these informative genes within the selected gene sets.

The second issue is that of comparison of gene expression patterns within the selected 

gene sets: a researcher would be interested in knowing all the different types of 

information that are represented by the selected gene sets. Some gene sets may exhibit 

the same type of information as each other i.e. they could contain expression patterns 

that result in similar hierarchical clusters of samples. This may be because they represent 

similar biological themes and share many genes (for example, as would be seen for GO 

terms that share parent-child relationships). More interestingly, these may represent 

disparate biological processes (and thus do not share genes) but are affected in the same 

way by the experimental conditions.

The next chapter describes explorations to resolve both these issues. It first describes a 

methodology that could allow for ranking (and subsequent selection) of genes based on 

their information content. It then describes the implementation of a scheme that allows 

for simultaneous visualization of all gene expression patterns exhibited by all selected 

gene sets, indication of which patterns are exhibited by which gene sets, and the 

relationships between the gene sets (based on shared genes).
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Chapter 8: E xtraction  o f inform ative genes 

and v isu a lization  o f  GSD resu lts

8.1 Introduction

Chapter 6 described the development of GSD, a methodology that could identify 

potentially relevant biological themes within a microarray dataset. Chapter 7 then 

described the application of this methodology to four microarray datasets.

Visual inspection of heatmaps of gene sets selected by GSD analysis showed that in 

many cases much of the information within a gene set appeared to be contained in the 

expression values for only a subset of the genes. Ostensibly, only these ‘informative 

genes’ would be of interest to the researcher and this then raises the need for a 

methodology for extraction of these genes from within a heatmap.

One of the key differences between the GSD methodology and other gene set analysis 

methods is that it is unsupervised in terms of the relationship between expression 

patterns and classes. Typically, supervised gene set analyses of a datasets utilizing prior 

knowledge of sample classes would involve identification of gene sets that exhibit a 

single expression pattern (for example, differential expression between tumour and 

normal tissue). In contrast, GSD analysis attempts to identify those gene sets that exhibit 

significantly strong expression patterns, regardless of what the expression pattern is, and 

it is possible that gene sets identified by GSD analysis could exhibit several different 

expression patterns. This raises the need for identification and comparison of the 

expression patterns exhibited by gene sets selected by GSD analysis.
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This chapter describes the development of a methodology that attempts to identify 

informative genes within selected gene sets. It then describes the results of the 

application of this methodology to the gene sets selected by GSD analysis of the four 

datasets described in Chapter 7.

Also described is the implementation of a strategy for visualization of the results of GSD 

analysis that can present the results, together with information that is likely to be of 

interest to researchers, in an integrated format. This allows for simultaneous 

visualization of the different gene expression patterns exhibited by the selected genes, 

indication of which gene sets each of the selected genes belongs to, and the relationships 

between the gene sets (based on shared genes).
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8.2 Results and Explorations

8.2.1 Quantifying the prevalence of an expression pattern

The information content of any gene expression matrix is typically limited to groups of 

genes that exhibit very similar expression patterns. The consistency of these expression 

patterns leads to strong clustering of samples, which in turn leads to the selection of the 

gene set by the GSD methodology.

The hierarchical clustering of genes within a heatmap requires the calculation of 

distances between each possible pair of genes to yield a gene distance matrix (similar to 

the sample distance matrix used in the hierarchical clustering of samples, which is 

utilized by the GSD methodology). As these distances quantify the similarity between 

the expression profiles of any pair of genes, it was reasoned that they could be used to 

identify informative genes, i.e. those that share expression patterns with many other 

genes in that gene set.

Each row and column of a gene distance matrix consists of a vector of values of 

distances of any one gene to all other genes in that gene set. It was hypothesised that the 

variability of this distribution of distances of one gene to all others could indicate how 

informative a gene is. The reasoning behind this is similar to that of the use of SD-SDM 

values in GSD analysis: if the expression pattern of a gene is shared by many other 

genes, then the distance distribution for that gene would contain higher levels of short 

distances (to genes with similar expression patterns) and long distances (to genes 

exhibiting dissimilar or even opposite expression patterns) as compared to the distance 

distributions of genes that exhibit random expression patterns (i.e. uninformative genes).

To test this hypothesis, a hypothetical gene expression matrix consisting of 30 samples 

and 500 genes was created by randomly selection from a normal distribution with a zero 

mean and standard deviation of 0.3 (similar to the scheme used in Chapter 6 — see
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Materials and Methods). 200 genes were then randomly selected to exhibit an expression 

pattern of up-regulation, down-regulation and no change in 10 samples each. Another 50 

genes were randomly selected to exhibit a different pattern of expression. Correlation 

distances were than calculated for every possible pair of genes. The standard deviation 

of the gene distance vectors (SD-GDV) were then recorded for each of the genes. Figure 

8.1 shows the heatmap of this matrix, along with SD-GDV values for each of the genes.

“ i 1----- 1 r
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Figure 8 .1  H eatm ap of a h yp oth etica l g e n e  ex p ress io n  m atrix w ith  

artificially in troduced  inform ation co n ten t. The heatmap represents log 

median-centred gene expression values ranging from -2 (bright green) through 0 

(black) to 2 (bright red). Hierarchical clustering of genes and samples was carried 

out using correlation distance and average linkage. Also displayed is a plot of SD- 

GDV values for each of the genes at the ir respective positions within the heatmap.
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Two observations can be made: firstly, SD-GDV values for genes into which 

information was experimentally introduced are higher than for the other genes. 

Secondly, the SD-GDV values for the informative genes are greater when the expression 

pattern is shared by a greater number of genes: the SD-GDV values for each of the 

larger set (n=200) of informative genes is 0.55, while that of each of the smaller set 

(n=15) of informative genes is 0.45. The median SD-GDV for all other genes is 0.16. 

The distance distributions for each of these sets of genes are displayed in Figure 8.2.

o
cn   Informative genes (n=200)

  Informative genes (n=50)
Uninformative genes

CM
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CDQ

LD

2.0 2.50.5 1.0 1.5-0.5 0.0

SD-GDV values

Figure 8 .2  G ene d ista n ce  d istr ib u tion s for in form ative and uninform ative  

g e n e s . Curves represent gene distance distributions for the gene expression matrix 

represented in Figure 8.1. Broken vertical line represents the median gene distance 

for all pairs of genes.

These results suggest that SD-GDV values may be used to quantify how informative a 

gene is, and thus possibly allow for the extraction of informative genes from within gene 

sets.
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To investigate if similar results could be obtained from ‘real-world’ data, the GO term 

for mitosis, which was found to be highly significant in GSD analysis of the Ivshina 

breast cancer dataset was used. The heatmap for this term is displayed in Figure 8.3, 

along with the SD-GDV values calculated for each of the genes.
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Figure 8 .3  Heatm ap of th e  term  G 0 :0 0 0 7 0 6 7  (m ito s is )  on th e  Ivshina  

breast cancer d a ta se t .  The heatmap represents log median-centred gene 

expression values ranging from -2 (bright green) through 0 (black) to 2 (bright 

red). Hierarchical clustering of genes and samples was carried out using correlation 

distance and average linkage. Also displayed is a plot of SD-GDV values for each of 

the genes at the ir respective positions within the heatmap.
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Again, it is observed that there is a tendency for SD-GDV values to be higher in those 

genes that are visually informative, as compared to those that are not. For these reasons, 

SD-GDV values were presumed to be suitable for the purpose of extracting informative 

genes from within gene sets; the next section describes the implementation of this 

technique on the GSD results of datasets analyzed in Chapter 7.

8.2.2 Extraction of informative genes using SD-GDV values

The extraction of informative genes from within gene sets selected by GSD analyses was 

implemented using a ‘global’ strategy in order to capture relationships between genes (in 

terms of their expression patterns) across the different gene sets.

Thus SD-GDV values were calculated for genes of all gene sets selected by GSD 

analysis of a microarray dataset taken together (that is, the SD-GDV value was 

calculated for each gene using a vector of distances of that gene to all other genes from 

all gene sets selected by GSD). This was performed for each of the four microarray 

datasets described in Chapter 7. In each case, the genes were ranked in decreasing order 

of their respective SD-GDV values, and then grouped into quintiles (such that the first 

quintile comprised of 20% of the genes with the highest SD-GDV values). The heatmaps 

for each of these quintiles is displayed in Figure 8.4.

As can be observed, there appears to be a gradient of information in the quintile 

heatmaps: the proportion of genes that are informative (i.e. show consistent and strong 

expression patterns) appears to be highest in the first quintiles. This proportion decreases 

in successive quintiles till there are few or no apparent informative genes in the fifth 

quintiles.
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GNF human tissue 
expression dataset

Ross AML 
dataset

Ivshina breast 
cancer dataset

Broccoli liposarcoma 
dataset

Quintile 1 Quintile 1 Quintile 1 Quintile 1

Quintile 2 Quintile 2 Quintile 2 Quintile 2

p a r

Quintile 3 Quintile 3 Quintile 3 Quintile 3

Quintile 4Quintile 4 Quintile 4 Quintile 4

Quintile 5Quintile 5Quintile 5 Quintile 5

Figure 8 .4  Quintile h ea tm ap s  of g e n e s  from all g e n e  s e t s  se le c te d  by GSD 

analys is  ranked by SD-GDV v a lu es .  Heatmaps represent log median-centred 

gene expression values ranging from -2 (bright green) through 0 (black) to 2 

(bright red). Hierarchical clustering of genes and samples was carried out using 

correlation distance and average linkage.
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Figure 8.5 shows the distributions of distances between all pairs of genes for each of the 

quintiles. There is a marked decrease in the variability of the distributions moving from 

the first to the last quintiles implying that the strength of gene clustering is highest in the 

first quintile, and decreases with each successive quintile. Figure 8.6 shows the 

distributions of distances between all pairs of samples for each of the quintiles. Here, a 

noticeable decrease in the variability of the distances can be observed, moving from the 

first to the fifth quintiles. These indicate that clustering of samples is strongest in the 

first quintile, and this decreases with each successive quintile.

Thus, ranking of genes according to their SD-GDV values appears to result in the 

enrichment of informative genes at the top of the order. The issue then arises regarding 

cut-off SD-GDV values that would need to be set to extract the most informative genes 

for each dataset. It is apparent (as might be expected) that the number of informative 

genes varies across datasets. While the vast majority of informative genes appear to be 

contained within the first two quintiles for the cancer datasets, informative genes can be 

observed as far as the fourth quintile for the GNF tissue expression dataset (because 

large numbers of genes exhibit tissue-specific expression patterns).

As ‘customized’ extraction of informative genes for each of the datasets is subject to 

possible user bias, an arbitrary selection of the top 20% of genes (i.e. the first quintile) 

when ranked by SD-GDV values was implemented for each of the datasets in the 

subsequent explorations.
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(c) Ivshina gene distances
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Figure 8 .5  Gene d istan ce  d istr ibutions of g e n e  quintiles. Distributions 

represent distances between all possible pairs of genes for each o f the quintiles 

displayed in Figure 8.4. Variability of the distributions (measured as standard 

deviation) is indicated in the figure keys.
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(c) I v s h in a  s a m p l e  d i s t a n c e s
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Figure  8 .6  S a m p l e  d i s t a n c e  d i s t r i b u t i o n s  of  g e n e  qu in t i l e s .  Distributions 

represent distances between all possible pairs of samples for each of the quintiles 

displayed in Figure 8.4. Variability of the distributions (measured as standard 

deviation) is indicated in the figure keys.
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8.2.3 Visualization of the results of GSD analysis

Having identified possible relevant biological themes and extracted potentially 

informative genes by implementing the GSD methodology on three public datasets, 

efforts then focussed on how these results could be presented to a researcher in a format 

that could integrate all the different types of information.

Visualization of the different expression patterns prevalent in the dataset could be 

achieved by way of heatmaps of all the informative genes, as these involve hierarchical 

clustering of genes and samples according to their expression patterns. In a similar 

approach to the use of picketplots to indicate sample classes (for example, as used with 

the heatmaps in Chapter 7), a gene-based picketplot was used to show the links between 

each genes and their corresponding annotation metadata (i.e. GOBP terms). Hierarchical 

clustering of the terms could be carried out according to the genes shared by them and 

ordered accordingly in the gene picketplot (see Materials and Methods). The 

relationships between the terms as identified by the hierarchical clustering could be 

visualized using dendrograms.

8.2.3.1 Results o f  GSD analysis o f  the GNF human tissue expression dataset

The 51 GOBP terms selected by GSD analysis of the GNF human tissue expression 

dataset comprised of a total of 4123 genes. All possible pair-wise distances between 

these genes were calculated. An SD-GDV value was derived for each gene using the 

vector of distances of that gene to all other genes. Genes were then ranked in decreasing 

order of their SD-GDV values and the first quintile (which consisted of 825 genes) was 

selected for visualization.

The visualization of these genes based on the scheme described above is shown in 

Figure 8.7.

232



Chapter 8: Extraction of informative genes and visualization of GSD results

r

GO:0019882_antigen presentation 
G0:0019883_antigen presentation, endogenous antigen 

G0:0030333 antigen processing 
G0:0000398_nuclear mRNA splicing, via spliceosome 

G 0 :0016071 _m R N A m etabolism 
G0:0006412_protein biosynthesis 
G0:0044249_cellular biosynthesis 

G 0 :0009058_biosynthesis 
GO:0007155 cell adhesion 

GO: 0030154_ceirdifferentiation 
G0:0048468 cell development 

G 0 :00074U9_axonogenesis 
G0:0031175_neurite morphogenesis 

G0:0048666_neuron development 
GO:0030182_neuron differentiation 

G0:0048699_neurogenesis 
GO:0007417 central nervous system development 

G 0 :0tJ07399_nervous system development 
G0:0048731 system development 

GO:0006813_p6tassium ion transport 
G 0 :0006811 Jon  transport 

G 0 :0030001 m etal ion transport 
G 0 :00066T 2_cation transport 

G 0 :0050877_neurophysiological process 
G 0 :0007267_cell-cell signaling 

G0:0007268_synaptic transmission 
GO:0019226Jransmission of nerve impulse

Figure 8 .7  GSD analysis  of th e  GNF hum an t is su e  exp ress ion  d ataset.

Heatmap represents log median-centred gene expression values ranging from -2 

(bright green) through 0 (black) to 2 (bright red). Black and blue cells in the 

picketplots indicate the presence of samples and genes within corresponding sample 

classes and gene sets respectively, while white cells indicate their absence. All 

hierarchical clustering was carried out using correlation distance and average 

linkage. For ease of visualization, some GOBP terms that are very sim ilar to others 

have not been displayed, as have GOBP terms represented by less than 5 genes in 

the heatmap.
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As can be observed, the heatmap exhibits expression patterns that are primarily based on 

groups of similar tissues, and the hierarchical clustering of samples has resulted in 

strong discrimination between these groups. The most visually striking patterns are 

exhibited in samples that from the Blood/Immune or Brain/Neuronal groups, which are 

the two largest groups of similar tissues within the dataset.

There appear to be two major clusters of genes: the first of which exhibit up-regulation 

in the Blood/Immune samples and down-regulation in the Brain/Neuronal samples. This 

cluster appears to comprise primarily of genes of a few biological themes: immune 

system processes, mRNA metabolism and cellular biosynthesis. The second cluster 

comprises of genes that exhibit down-regulation in the Blood/Immune samples. Within 

this cluster, there a well-defined sub-cluster of genes that exhibit up-regulation within 

the Brain/Neuronal samples. These appear to be genes that primarily represent biological 

themes such as nervous system development, synaptic transmission and ion transport.

Thus it is found that the GSD methodology allows for mining of relevant information 

from within this dataset and visualization scheme can display this information in an 

integrated format. Consider analysis of the results of implementing the GSD 

methodology on this dataset without prior knowledge regarding the tissues that these 

samples represent. Having extracted a set of informative genes and created a heatmap of 

these, the first discovery would be that there are at least two major groups of samples 

that show very similar expression patterns (and could thus be from similar tissue-types). 

The second discovery would involve insight into the nature of these groups of similar 

samples by inspection of the biological themes represented in their expression patterns: 

the up-regulation of many genes involved in many nervous system processes in one of 

the sample groups hints at the neuronal origin of the samples. Similarly, links can be 

made between the immune system process genes that are up-regulated in the other group 

of similar samples, and the nature of the tissues they represent.
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8.2.3.2 Results o f  GSD analysis o f  the Ross AM L dataset

The 12 GOBP terms selected by GSD analysis of the Ross AML dataset comprised of a 

total of 1333 genes. All possible pair-wise distances between these genes were 

calculated. An SD-GDV value was derived for each gene using the vector of distances of 

that gene to all other genes. Genes were then ranked in decreasing order of their SD- 

GDV values and the first quintile (which consisted of 267 genes) was selected for 

visualization. The visualization of these genes is shown in Figure 8.8.

As can be observed from the heatmap, there are several distinct gene expression 

patterns, and the combined effects of these is a hierarchical clustering of samples that 

correlates well with previously known samples classes, i.e. genetic sub-types of AML. 

The largest of the expression patterns exhibited (in terms of the number of genes 

involved) causes the first major grouping of genes into the two largest clusters. This 

expression pattern appears to be strongly influenced by the subtypes of AML 

represented by the samples, as can be evidenced from the enrichment of samples from 

certain sub-types within the two clusters: the first cluster (in which most of these genes 

exhibit down-regulation) comprises of all samples of t(l 5\\l)[PML-RARa] and FAB-M7 

subtypes, most of l(%\2\)[AMLl-ETO) samples and relatively few inv16[CBFfi-MYHl 1] 

and MLL samples. The second cluster (in which most of these genes exhibit up- 

regulation) consists of the majority of inv16[CBF$-MYH11] and MLL samples, and 

relatively few \(%\2\)[AMLl-ETO] samples.

The other smaller expression patterns also appear to vary in concordance with AML 

subtypes. These then allow for well-differentiated sub-clusters (within the first major 

cluster) of samples representing the t(\5\\l)[PML-RARa\, t(%\2\)[AMLl-ETO\, and 

FAB-M7 subtypes. While no expression patterns were found that could discriminate 

between the invJ6[CBFfi-MYHl 1] and MLL subtypes (in the second major cluster), this 

is likely to be a reflection of the molecular heterogeneity of these subtypes — which was 

suggested by the authors in the original study, where highly supervised techniques could 

not discover adequate differentiation between these two subtypes.
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Figure 8 .8  GSD an a lys is  o f  th e  R oss AML d a ta se t .  Heatmap represents log 

median-centred gene expression values ranging from -2 (bright green) through 0 

(black) to 2 (bright red). Black and blue cells in the picketplots indicate the 

presence of samples and genes w ithin corresponding sample classes and gene sets 

respectively, while white cells indicate the ir absence. All hierarchical clustering was 

carried out using correlation distance and average linkage. For ease of visualization, 

GOBP terms represented by less than 5 genes in the heatmap have not been 

displayed.
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As noted earlier in Chapter 7, the majority of terms selected by GSD analysis of this 

dataset all concern a single biological theme: the immune response. The relatedness of 

these terms is noticeable from the picketplot: many genes are shared between these 

terms. Most of the terms include genes that exhibit several different expression patterns 

-  this could imply the possible existence of undiscovered functionality-based sub-groups 

of genes within these terms. At least one expression pattern can be linked with particular 

GOBP terms: the expression pattern of down-regulation in most t( 15; 1 l)[PML-RARa] 

and FAB-M7 samples, and up-regulation in most of the other subtypes appears to 

comprise the majority of selected genes that are annotated with GOBP terms for antigen 

processing and presentation.

8.2.3.3 Results o f  GSD analysis o f  the Broccoli liposarcoma dataset

The 30 GOBP terms selected by GSD analysis of the Broccoli liposarcoma dataset 

comprised of a total of 5042 genes. All possible pair-wise distances between these genes 

were calculated. An SD-GDV value was derived for each gene using the vector of 

distances of that gene to all other genes. Genes were then ranked in decreasing order of 

their SD-GDV values and the first quintile (which consisted of 1009 genes) was selected 

for visualization. The visualization of these genes based on the scheme described above 

is shown in Figure 8.9.

As can be observed, the heatmap includes expression patterns that cause a hierarchical 

clustering of samples which is agreement with the known sample phenotypes. Two 

major clusters are discernible: one of which includes most of the high-grade samples (all 

four DD samples and 6 out of 7 PLEO samples), while the other includes most of the 

low-grade samples (12 out of 15 WD samples).
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Figure 8 .9  GSD an a lys is  o f  th e  Broccoli liposarcom a d a ta se t .  Heatmap 

represents log median-centred gene expression values ranging from -2 (bright 

green) through 0 (black) to 2 (bright red). Black and blue cells in the picketplots 

indicate the presence of samples and genes w ithin corresponding sample classes 

and gene-sets respectively, while white cells indicate the ir absence. All hierarchical 

clustering was carried out using correlation distance and average linkage. For ease 

of visualization, some GOBP terms that are very sim ilar to others have not been 

displayed, as have GOBP terms represented by less than 5 genes in the heatmap.
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As was previously described in Chapter 7, the GOBP terms selected by GSD analysis of 

this dataset could be divided primarily into three major biological themes: mitosis/cell 

division, metabolism and immunity. The hierarchical clustering of the GOBP terms 

appears to reflect this -  terms comprising these themes fall into three well discriminated 

clusters. Indeed the hierarchical clustering is able to further sub-divide terms specific to 

metabolism of lipids and those specific to metabolism of carbohydrates.

Most of the genes annotated with mitosis/cell division terms exhibited expression 

patterns of up-regulation in the high-grade (DD/PLEO) samples, and down-regulation in 

the low-grade (WD) samples. The opposite expression pattern was observed for most 

genes annotated with metabolism terms. As discussed in Chapter 7, these observations 

are biologically plausible. Genes annotated with immunity terms show a range of 

different expression patterns.

8.2.3.4 Results o f  GSD analysis o f  the Ivshina breast cancer dataset

The 50 GOBP terms selected by GSD analysis of the Ivshina breast cancer dataset 

comprised of a total of 3771 genes. All possible pair-wise distances between these genes 

were calculated. An SD-GDV value was derived for each gene using the vector of 

distances of that gene to all other genes. Genes were then ranked in decreasing order of 

their SD-GDV values and the first quintile (which consisted of 754 genes) was selected 

for visualization. The visualization of these genes based on the scheme described above 

is shown in Figure 8.10.

As can be observed in the heatmap, there are several consistent expression patterns that 

are exhibited by the selected genes. The clustering of samples is influenced in varying 

degrees by each of these patterns, and the resultant grouping of clusters does not 

conform very well to the previously known classes of low and high grade samples.
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Figure 8 .1 0  GSD an a lys is  of th e  Ivsh ina b reast  ca n cer  d a ta se t .  Heatmap 

represents log median-centred gene expression values ranging from -2 (bright 

green) through 0 (black) to 2 (bright red). Black and blue cells in the picketplots 

indicate the presence of samples and genes w ithin corresponding sample classes 

and gene sets respectively, while white cells indicate the ir absence. All hierarchical 

clustering was carried out using correlation distance and average linkage. For ease 

of visualization, some GOBP terms that are very sim ilar to others have not been 

displayed, as have GOBP terms represented by less than 5 genes in the heatmap.
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The heatmap also indicates at least three major groups of genes. One of these clusters 

comprises primarily of genes involved in immune system processes -  they exhibit a 

strong expression pattern, and show little concordance with the cancer grades of the 

samples. The relatedness between these terms is also indicated by the large number of 

genes shared between them.

The second cluster comprises primarily of genes involved in cell division processes. The 

expression pattern exhibited by these genes correlates strongly with cancer grades: the 

majority of these exhibit up-regulation in the high-grade G3 and G2b samples, and 

down-regulation in the low-grade G1 and G2a samples. The importance of this 

biological theme of cell division and mitosis in the discrimination between low and high 

grade breast cancer samples has been evident in both the original study as well as further 

explorations described in Chapter 7.

The final cluster of genes exhibit a variety of relatively weaker expression patterns, and 

are annotated to GOBP terms representing a range of biological themes.

The results from this dataset suggest that exploratory analyses such as GSD can discover 

several biological themes within an experiment, each of which could be affected 

differently by the experimental conditions, or could be affected by different 

experimental conditions (and thus show different expression patterns). In this case, one 

of the biological themes discovered (i.e. cell division and mitosis) appears relevant to the 

intent of the researchers who conducted the experiment (i.e. discriminating between low 

and high grade cancer samples on the basis of their gene expression profiles).
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8 A Discussion

This chapter described two further extensions of the framework of GSD analysis of 

microarray data that could be of use to researchers.

It first described the development of a methodology that attempts to identify the most 

informative genes from amongst gene sets selected by GSD analysis. It was found that 

SD-GDV values of genes could allow ranking of the most informative genes, of which 

an arbitrary number of the highest ranking genes could then be selected. This was 

implemented by calculating SD-GDV values for genes considering all genes from all 

GSD-selected gene sets taken together.

Secondly, the chapter described a scheme for visualization of the results that allowed for 

integration of various types of information. Heatmaps of the selected genes displayed the 

various expression patterns exhibited by the genes. Picketplots were included to indicate 

the various gene sets that each of the selected genes was part of. Relationships between 

the gene sets could also be displayed by hierarchical clustering of the gene sets based on 

the genes shared between them.

The methodology designed to extract informative genes was applied to gene sets 

selected by GSD analysis of each of the four microarray datasets described in Chapter 7. 

While the number and proportion of informative genes varies across datasets, a uniform 

arbitrary cut-off for selection of genes was implemented in all cases to avoid user bias: 

in all cases, the top 20% of genes were selected after being ranked in decreasing order of 

their SD-GDV values. It was observed that this methodology could successfully extract 

the most informative genes.

Visualization of these results using the scheme developed indicated that it could 

successfully integrate gene expression data, phenotype data and functional annotation/
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meta-data in a format that was visually intuitive: expression patterns of the most 

informative genes could be observed in the heatmap (Eisen et al. 1998), along with 

sample class information. Also, genes within the heatmap could be mapped onto the 

GOBP terms selected by the primary GSD analysis step. Furthermore, relationships 

between the terms were also displayed and the hierarchical clustering of these terms 

could indicate larger underlying biological themes.

The methodology for extraction of informative genes is perhaps best suited to analysis of 

gene sets selected by the GSD methodology, as it is based on similar principles i.e. using 

the variability of correlation distances based on expression profiles. However, the 

methodology (as well as the scheme for visualization of results) could be used for 

further analysis of the results of any other gene set analysis method.
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Chapter 9: Sum m ary and G eneral D iscussion

This chapter comprises of summarization and discussion of the work described in the 

preceding chapters of this thesis. These have been divided into two sections representing 

work described in Parts A and B of this thesis.

9.1 Part A - Integration of microarray based experiments using 
lists of differentially expressed genes

This section summarizes and discusses Part A of this thesis, which comprises of 

Chapters 2-5. The primary question explored here was whether large-scale comparisons 

between microarray experiments could be carried out using genelists derived from those 

experiments instead of using the entire experimental datasets. Such a strategy could 

facilitate large-scale comparisons of many different microarray experiments in an 

unsupervised fashion, and in theory allow for the possibility of finding unexpected links 

between experiments. Such links could then be further explored using more 

sophisticated integrative techniques which in turn could lead to novel biological insight.

For this purpose, a database of genelists derived manually from published literature was 

used to compare genelists using statistical techniques. It was intended to estimate the 

utility of this strategy by observing the biological plausibility (if any) of the results 

generated. For example, carrying out unsupervised hierarchical clustering of the 

genelists on the basis of some metric indicating similarity between them (e.g. 

hypergeometric Z-scores), and observing if the resultant clusters reflected any 

underlying biology. Other issues that were desired to be explored included the extent to 

which biologically meaningful links between experiments could be found across species 

(in terms of evolutionary distance).
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9.1.1 Summary of results and explorations

Chapter 2 described explorations that helped build the experimental framework and 

strategies with which to carry out comparisons between microarray experiments using 

their genelists. Firstly, strategies were described regarding how genelists created from 

different experiments, using different Affymetrix platforms and across different species 

could be made comparable. Secondly, three different strategies with which the 

significance of the similarity between any two genelists could be quantified were tested. 

It was found that the hypergeometric statistical test was suitable for this purpose as it 

could control for the systematic effects of genelist length and gene universe size.

Chapter 3 then described the results of carrying out comparisons within a database of 

literature-derived genelists spanning a range of different platforms and species. An 

unexpected finding was that of implausibly high levels of similarity between genelists 

derived from the same array-type: hypergeometric Z-scores distributions derived from 

these comparisons were found to be centred between median values of 2-6. This finding 

is counter-intuitive as it is expected that most microarray experiments (and thus the 

genelists derived from them) are dissimilar to each other, and that this would lead to Z- 

score distributions centred on median values of close to zero, as is observed for 

comparisons between lists of randomly selected genes. A second related observation was 

that of a correlation between the size of a genelist and the levels of significance assigned 

for comparisons of that genelist to all other genelists from the same array-type. This 

again is of concern, because one of the reasons the hypergeometric statistical test was 

deemed suitable for these analyses was its ability to control for the systematic effects of 

genelist length.

Chapter 4 first described speculations regarding the reasons for these unexpected 

observations, and it was hypothesized that these are more likely to have occurred due to 

known transcriptional behaviours of genes that violate assumptions of the 

hypergeometric statistical test, rather than reflecting true biological similarities between
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genelists. It then described a statistical model called the ‘biased urn’ which involves the 

use, in the hypergeometric test, of a gene universe size that is different to that of the 

gene universe used to sample genelists. It was shown that under this model, comparisons 

between lists of randomly selected genes could exhibit both the excess levels of 

similarity and the correlation between genelist size and significance as are observed for 

the comparisons described in Chapter 3. To simulate these comparisons of literature- 

derived genelists, the average gene universe size shared between any two experiments 

was estimated by a re-calculation of the Z-scores with different universe sizes and using 

that gene universe size for which the Z-score distributions were centred on median 

values closest to zero. These estimates ranged from only 35-65% of genes represented 

on an array. It was then found that simulation of comparisons between the literature- 

derived genelists using the biased urn model with the estimated universe sizes yielded 

significance patterns that were very similar to those observed in Chapter 3.

This biased urn model and the use of an estimated average gene universe size thus 

represents a potential solution to control for violations of the assumptions of the 

hypergeometric test when used to assess comparisons between genelists derived from 

microarray experiments. However, this strategy has several caveats: firstly it is ad hoc 

and is heavily dependent on the set of genelists used in each analysis. A second issue of 

greater concern is that this methodology only controls for the observed biases at global 

levels (i.e. overall significance levels for many different comparisons taken together), 

and the use of a single estimated average gene universe size for all comparisons could 

lead to erroneous results if there is wide variability in the true sizes of the gene universes 

shared between any pair of experiments. Explorations of this aspect were described in 

Chapter 5 using a subset of the GNF human Gene Expression Atlas comprising the 

expression profiles of a wide range of normal human tissues carried out in the same 

laboratory using the same microarray platform (Affymetrix hgul33a). By simply using 

the number of genes found to be expressed in each tissue-type, it was shown the number 

of genes expressed in any two tissue-types varies greatly for two reasons. Firstly, 

systematic effects of the variability in the number of genes expressed in each tissue.
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Secondly, for biological reasons (particularly tissues-specific gene expression), similar 

tissue types share greater numbers of expressed genes than dissimilar tissue types. 

Finally it was shown that application of an average gene universe size leads to erroneous 

quantification of significance between lists of genes selected randomly from the 

expression universe of different tissue-types; the extent of this error is dependent on the 

magnitude of the difference between the average shared gene universe size used in the 

statistical test, and the true number of genes expressed in any pair of tissues.

9.1.2 The concept of a ‘gene universe’ in microarray data analysis

The concept of defining gene universes is relevant to analyses of microarray data for 

several related reasons. In this thesis, it was first mentioned in Section 1.3.1.1 with 

respect to multiple hypothesis correction techniques applied to p-values derived from 

gene-by-gene tests for differential expression. Because the stringency of the correction 

applied increases with the number of genes tested, it has become convention to remove 

from the gene universe, for an experiment, those genes that are highly unlikely to be 

flagged as differentially expressed by a statistical method (Huber et al. 2008; Scholtens 

and Heydebreck 2005). Such genes include those that are not expressed (due to technical 

or biological reasons), or those that exhibit low variability in expression levels (for 

example house-keeping genes that may be evolutionarily constrained to exhibit stable 

expression levels).

While decreasing the gene universe size could help increase the power (i.e. decrease the 

number of false negatives) of gene-by-gene testing for differential expression by 

decreasing the stringency of tests for multiple hypothesis correction, decreasing the gene 

universe size could help increase the specificity (i.e. decrease the number of false 

positives) of ORA-based approaches for functional analyses of genelists such as tests for 

enrichment of biological themes, like GO terms, in genelists. As Falcon and Gentleman 

point out, the use of an unfiltered gene universe (for example all genes represented on an
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array) could lead to the erroneous assessments of significance (Falcon and Gentleman 

2008). For this reason they include a ‘non-specific filtering’ step, as part of their GOstats 

tool for ORA, to filter out low-variability genes from further analyses because these are 

unlikely to be flagged as differentially expressed (Falcon and Gentleman 2007). The 

concept is similar to that of the biased urn model described in Chapter 4: statistical tests 

such as the hypergeometric test assess the significance of the overlap between any two 

sets of genes by comparing the observed overlap size with that which might be expected 

from two genelists of similar size comprising of genes selected from the same universe 

as the genelists being assessed. The inclusion, in the statistical gene universe, of genes 

that cannot be selected into genelists would decrease the expected overlap size and this 

would lead to assignment of higher levels of significance to an observed overlap than 

ought to be.

For this reason, in their review of ORA tools to assess enrichment of GO terms within 

genelists, Khatri et al criticize those tools that do not filter gene universe sizes; for 

example some tools even include genes that may not be represented on an array, by 

using all genes present in the entire genome of an organism. The inclusion of genes that 

can never be selected as differentially expressed, they argue, “represents a flagrant 

contradiction of the assumptions of the statistical models used” (Khatri and Draghici 

2005). The findings presented in this thesis then extend this criticism to the ORA-based 

comparisons between genelists derived from microarray experiments. The explorations 

show that, when using an unfiltered gene universe in the statistical model, not only is 

there a marked loss of specificity (reflected in the assignment of implausibly high levels 

of similarity between genelists), but also a loss of control of the systematic effects of 

genelist size (reflected in the correlation between genelist size and significance levels). 

These undesirable effects are observed in both the comparisons of genelists derived from 

real microarray experiments, and in the comparisons of lists of randomly selected genes 

using the biased urn model.
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The possible biological reasons for these effects are speculated on in Chapter 4, but the 

extent to which these effects could confound analyses is relatively understudied. The 

finding, in Chapter 4, that the estimated average gene universe size that is shared 

between any two experiments (which may be used to indicate the net effect of the 

transcriptional behaviours of genes that violate statistical assumptions) ranges from only 

35% to 65% of genes on an array would appear to be cause for concern. It is strongly 

suggests that a universe size of all genes represented on an array should not be used for 

comparisons of genelists derived from microarray based experiments.

These effects are particularly an issue for comparisons between experimentally derived 

genelists as compared to comparisons between an experimentally derived genelist and 

one derived from manual annotation (for example, as carried in ORA analyses for 

enrichment of GO terms within a genelist). This is because selection of genes into 

genelists that are derived from experiments is subject to the biological effects of gene 

expression patterns that violate statistical assumptions; this may not be the case for those 

derived from manual annotation (such as gene sets representing pathways or GO terms). 

Indeed, an experiment was carried out (data not shown) where ORA analysis was carried 

out on a series of genelists: none of the unexpected trends observed for comparisons 

between experimentally derived genelists (that is, excess levels of similarity and 

correlation between genelist length and significance) were observed; there also was very 

little difference in the results when using a filtered gene universe (only genes annotated 

with GO terms) as opposed to an unfiltered one (all genes on the array).
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9.1.3 Can genelists be used to compare microarray-based 
experiments?

9.1,3.1 Assessing the significance o f  the number o f  shared genes

The comparison of microarray-based experiments using genelists derived from them is 

based on the rationale that similarity between genelists implies similarity between the 

experiments. This strategy represents a potentially significant decrease in resource- 

intensiveness as compared to meta-analytical strategies requiring re-analysis and 

integration of entire microarray datasets. This would then allow for the possibility of 

large-scale comparisons between many different microarray experiments in an 

unsupervised fashion, which could lead to possible discovery of unexpected links 

between experiments and possible novel biological insights. However, the use of 

genelists to compare different microarray experiments carried out in different 

laboratories, on different platforms and across different species has been a controversial 

issue: there is generally little agreement even between genelists from similar 

experiments (Cahan et al. 2007; Cheadle et al. 2007; Ein-Dor et al. 2005; Jeffery et al. 

2006; Manoli et al. 2006; Tan et al. 2003), and agreement can found only when using 

very standardized experimental protocols and data analysis strategies (Bammler et al. 

2005; Irizarry et al. 2005; Larkin et al. 2005).

For this purpose, it was desired to explore whether carrying out comparisons between 

genelists derived from a wide range of experiments carried out at different laboratories, 

with different experimental protocols and data analysis methodologies, and across 

different species could still yield biologically plausible and useable results, if any. 

However, as described in Chapters 3 and 4, naive comparison of genelists using 

unfiltered gene universes could result in erroneous results: in these circumstances, 

statistical tests to assess similarity between genelists suffer a considerable loss of 

specificity, as well as loss of control of the systematic effects of genelist size. The biased 

urn model described in Chapter 4 can allow for ad hoc modelling and control for these
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statistical biases on a global scale by estimating the average gene universe size for any 

two microarray experiments. However, as explored in Chapter 5, this model could still 

yield erroneous results because of the use of a single estimated gene universe size when 

this size could vary widely due to both systematic effects and biological reasons (such as 

tissue-specific expression patterns).

A more accurate assessment of the similarity between genelists could be carried out by 

estimating the gene universe size for each experiment separately, and using for each 

comparison only those genes that are present in both universes for a pair of genelists. 

For example, consider two genelists x and y, with gene universes of X  and Y 

respectively. These genelists could be compared by using the intersect of x and y  (xy) 

and as the gene universe, the intersect of X  and Y (XY). This would also be reflected by 

filtering x and y  for any genes that are not present in XY. However, the estimation of the 

gene universe for each experiment (for example by removing un-expressed/low 

expression genes and/or low variability genes) is likely to involve re-analysis of the 

entire microarray dataset. Such a resource-intensive strategy would then defeat the 

purpose of comparing genelists as a computationally efficient alternative to more 

sophisticated meta-analytical strategies.

9.1.3.2 Assessing genelists fo r  shared biological themes

Another strategy that may be used to compare genelists from microarray experiments is 

to assess whether a pair of genelists share any underlying biological theme (such as GO 

terms or pathways) (Cheadle et al. 2007; Manoli et al. 2006; Shen et al. 2008). The 

rationale for this is that if two genelists share a common underlying biology, this may 

represent a true biological link between the experiments as opposed to a set of 

overlapping but functionally unconnected genes. Furthermore, this would do away with 

the requirement for assessing the significance of the size of overlap between genelists 

(which has been shown in this thesis to be highly problematic), and also provide direct 

biological insight of the link between the experiments (on the basis of the shared
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biological themes). There are at least three different methodologies that may be used for 

this purpose (Figure 9.1).

Firstly, ORA could be carried out for each of the genelists separately to detect biological 

themes (such as GO terms) that are enriched in each of the genelists (Figure 9.1a). GO 

terms common to both genelists can then be detected. However, it is possible that the 

enrichment may have been caused by different subsets of genes annotated with a 

particular GO term. An extreme example may be one where both genelists exhibit 

enrichment of a particular GO term, but do not actually share any genes in common.

Secondly, ORA could be carried out on solely the overlapping genes -  this would ensure 

that enrichment is due to the shared genes (Figure 9.1b). However, as would be the case 

in the first methodology, such analyses would still require estimation of the overlap of 

gene universe sizes for both experiments being compared; as discussed in Section 

9.1.3.1, this would require re-analysis of both experimental datasets. Using the example 

described in Section 9.1.3.1, the enrichment of GO terms in xy would require 

comparison with the distribution of GO terms in XY.

Thirdly, a more sophisticated analysis (Figure 9.1c) could be carried out by testing for 

enrichment of GO terms in the overlapping genes as compared to the distribution of GO 

terms in each of the genelists (as opposed to comparison with the distribution of GO 

terms in the gene universe). However, there is still a need for estimation of the gene 

universe that is shared between the two experiments because the genelists require to be 

filtered to reflect this. Using the example in Section 9.1.3.1, x and y  would require a 

filtering step to remove genes that are not present in XY. Furthermore, interpretation of 

results would be complicated. For example, three sets of GO terms would be derived: 

terms enriched with respect to both genelists, and those enriched with respect to only 

one or the other genelist.
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Figure 9.1 S trateg ies for detection  of biological th em es shared betw een  
genelists. Three different strategies are shown, all using the sam e schem e: the 

broken grey oval represents a se t of all gen es represented on an array; red 

circles/ovals represent experim entally derived genelists while the blue circles/ovals 

represent the gene universes for those experim ents. The yellow shaded areas 

indicate those gen es that would be tested  for enrichment of biological them es (such 

as GO term s), while the red and green shaded areas represent different gene  

universes that should be used for those tests.

Other issues of theme-based approaches described above include the inability to rank 

similarities between the genelists: the number of GO terms shared between genelists 

may not be an accurate metric because of the parent-child relationships between the 

terms.

Thus it may be concluded that simply using genelists to compare microarray 

experiments, even if supplemented with further information (such as the estimated 

average gene universe size calculated using the biased urn model, or detection of shared 

underlying biological themes) is problematic and likely to produce erroneous results. 

While it may be possible to improve the accuracy of these methods by incorporating 

knowledge about the gene universes for each these experiments, there are several issues 

regarding such a strategy. Firstly, estimation of the gene universes for each of these 

experiments is likely to be as resource-intensive as more sophisticated meta-analytical 

methodologies; this then makes it difficult to justify this strategy as a computationally 

efficient alternative. Secondly, the definition of a gene universe is problematic in itself.

In ORA-based approaches, the concept of genes in relation to gene universes is 

essentially binary: a gene is either absent or present in a gene universe. It is more likely 

that there exists, for each different experiment, a continuum of probabilities for the 

presence of a gene within the gene universe for that experiment; this is dependent on a 

range of technical and biological factors unique to each gene (such as discussed in 

Chapter 4).
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9.2 Part B -  Gene Set Discovery (GSD): a novel methodology for 
unsupervised threshold-free discovery of biological themes 
within microarray datasets

Part B of this thesis comprised of Chapters 6-8, and described explorations that led to 

the development of the GSD analytical framework for unsupervised theme discovery 

within microarray datasets. GSD comprises of three stages: selection of relevant gene 

sets, selection of informative genes within the selected gene sets, and a scheme for 

integrated visualization of results. Also described are the results of the application of the 

GSD methodology to the analysis of four different microarray datasets derived from 

Affymetrix expression profiling platforms.

9.2.1 Summary of results and explorations

Chapter 6 described explorations that led to the development of the first stage of GSD 

analysis, i.e. the selection of gene sets (that could represent biological themes and 

functional annotation, such as GO terms and pathways) from a microarray dataset, 

which could be of interest to a researcher, in an unsupervised fashion. The underlying 

hypothesis of GSD is that if the gene expression matrix for a particular gene set contains 

information, in terms of shared patterns of expression, then it is likely to be relevant to 

the experiment and therefore of interest to a researcher. It was thus desired to derive a 

metric that could indicate the level of such information within the expression matrix for 

any gene set. For this purpose, research focussed on the distance matrices that are 

commonly used for hierarchical clustering of genes and samples (for example, in 

heatmaps), because these distances represent quantifications of the relationships between 

genes and between samples based on similarities of their expression profiles.
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Simulations using hypothetical gene expression matrices into which known levels of 

information could be artificially introduced in a controlled manner were used to test 

several candidate metrics. Of these, the standard deviation of the sample distance matrix 

(SD-SDM) was selected as a suitable metric for two reasons: firstly, it was sensitive to 

the presence of information within a matrix, and there was a relationship between the 

level of information and SD-SDM values. The second desirable property is that, in the 

presence of more than one type of information (i.e. more than one gene expression 

pattern) within an expression matrix, SD-SDM values rank an expression matrix where 

different expression patterns lead to the same grouping of samples over one where 

different expression patterns each cause different groupings of samples. Thus, it allows 

for prioritization of gene sets which can be linked to a single stratification scheme for 

samples.

However, it was also found that SD-SDM values are subject to systematic effects of 

gene set size and the random presence of informative genes (i.e. genes exhibiting non- 

random expression patterns). Thus, it was desired to develop a methodology to assess 

the significance of the SD-SDM value observed for any gene set. Two possible 

strategies were tested for this purpose using simulation studies: firstly, a re-sampling 

based competitive strategy that involved creating a null distribution of SD-SDM values 

using sets of randomly selected genes. Secondly, a randomization based non-competitive 

strategy which involved creation of a null distribution by randomizing values within the 

expression matrix for the gene set being tested. The competitive strategy was deemed 

suitable as it could successfully control for both confounding factors.

While all explorations described in Chapter 6 were carried out using simulated 

microarray datasets, Chapter 7 then described the results of the application of the GSD 

methodology to four real-world microarray datasets. To assess how successfully GSD 

could select relevant gene sets for each of the datasets, assessment was carried out of the 

results, regarding whether they were biologically plausible and/or they were in 

concordance with the results of prior analyses of these datasets. In all cases, the GSD

256



Chapter 9: Summary and General Discussion

methodology was found to successfully identify relevant gene sets and biological themes 

for each experiment.

Chapter 8 then described the development and implementation of two further extensions 

of the GSD analytical pipeline. Firstly a metric was developed that could help identify 

and extract the most informative genes from within a gene set selected by GSD. This 

metric, the standard deviation of the gene distance vector (SD-GDV), is based on 

concepts similar to those that led to the implementation of SD-SDM values in the 

selection of gene sets, and was found to successfully rank genes on the basis of how well 

their expression patterns were shared. Secondly, a scheme was developed to visualize 

the results of GSD analyses. It was designed to integrate various types of information, 

such as the most informative genes from amongst gene sets selected by GSD, the 

different expression patterns exhibited by these genes, the gene sets that these genes 

belong to as well as the relationships between selected gene sets, and any phenotypic 

data that may be available for the samples.

9.2.2 Principles and utility of the GSD methodology

The GSD analytical framework can be considered to be novel in terms of the statistical 

methodologies underlying its functionality. As far as could be researched, no other 

technique was found to use SD-SDM values as measures of cluster ‘strength’, or SD- 

GDV values as a metric to determine the prevalence of the expression pattern exhibited 

by a single gene. While the primary utility of the GSD methodology (i.e. the ability to 

carry out gene set analysis in an unsupervised fashion), is not novel, there very few other 

options available to researchers for this purpose. Only three other such methodologies 

could be identified, and of these, two share the same underlying strategy. These 

methodologies are further discussed in the next section (Section 9.2.3).
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The GSD methodology brings together two traditionally disparate modes of analyses of 

microarray data, which are discussed in the following sections.

9.2.2.1 Functional analysis o f microarray data using biological themes

Biological interpretation of microarray data has been aided considerably by the 

development of databases containing functional annotation of genes (such as GO, 

KEGG and Biocarta), and of statistical methodologies and tools that allow for analysis 

of microarray data in terms of the biological themes represented in these databases 

(typically as sets of genes that are functionally related, or share some common 

underlying biological theme). The additional biological insight provided by such 

analyses allows for many more opportunities and greater scope for utility of the results 

of a microarray based experiment (Bild and Febbo 2005; Curtis et al. 2005).

For example, a list of genes may be identified through a microarray experiment to be 

predictive of a disease (e.g. cancer). Such results may be sufficient for certain analyses 

such as the identification of biomarkers. For example, the van’t Veer 70-gene breast 

cancer signature (v an ’t Veer et al. 2002) has been used in Mammaprint, a molecular 

diagnostic test to assess the risk of breast cancer metastasis (Slodkowska and Ross 

2009). However the utility of such analyses may be limited to such diagnostic tests.

Knowledge of the biological pathways and mechanisms underlying a disease can allow 

for improved options for diagnosis: for example, if a pathway is found to be 

differentially regulated in a disease, this knowledge allows for the potential use of 

antibody-based histo-pathological tests which can be easily carried out in standard 

clinical laboratories. Such diagnostics tests would represent considerable advantages to 

gene expression profiling based diagnostic tests using a list of disparate genes, in several 

aspects: technical (there would be no need for the extraction of RNA from tumour 

samples, which is problematic [particularly from formalin-fixed samples with degraded 

RNA]); logistical (samples can be processed on-site rather than sent to other
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laboratories); and financial (histo-pathological tests would be considerably less 

expensive than molecular diagnostic tests).

Similarly, knowledge of the higher level biological themes could allow for improved 

possibilities for intervention using drugs. Consider a pathway that is differentially 

regulated in the disease state, and several downstream targets of the pathway are 

selected into a list of differentially expressed genes. Intervention may then be carried out 

by treatment with drugs targeting each of these genes. However, there may be too many 

such targets; furthermore, there may be difficulties in designing drugs for them. On the 

other hand, if the underlying pathway (for example the p38 MAP kinase signalling 

pathway) is known, this creates the possibility of targeting a few regulatory genes (in 

this example, p38) rather than many different downstream targets. Furthermore, it would 

allow for selection of targets for which drugs could be more easily designed.

Some of the earliest techniques to carry out such functional analyses of microarray data 

were ‘threshold-based’ ORA methods (see Section 1.4.2) that detected enrichment of 

functional classes of genes within lists of differentially expressed genes. More recently, 

there has been the development of many ‘threshold-free’ methods for this purpose (see 

Section 1.4.3), such as GSEA, which do not require prior definition of a list of 

interesting genes.

9.2.2.2 Class discovery

A key feature of the vast majority of methodologies with which to carry out functional 

analyses of microarray data (or gene set analyses [GSA]) is that they require supervision 

in terms of sample phenotype classes: the user needs to define the sub-groups of samples 

across which differential patterns of expression are expected or desired to be detected. 

For threshold-based GSA methods, this is carried out by the prior definition of a list of 

genes that are found by some statistical test to be differentially expressed across two or 

more sample sub-groups. Threshold free methods directly detect gene sets that are 

differentially expressed across pre-defined sample sub-groups.
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While such analyses are appropriate for many experimental designs, there are also many 

situations where prior knowledge regarding sample sub-groups may not be known. 

Indeed, the very purpose of many microarray-based ‘class discovery’ studies (see 

Section 1.3.2) is the elucidation of distinct sample sub-groups based on gene expression 

profiles.

This mode of analysis is particularly used in studies of cancers: quite often it is found 

that a set of tumour samples are morphologically homogeneous and cannot be 

differentiated on the basis of histological techniques, but yet show diversity in terms of 

clinical variables such as survival rates and response to therapeutic drugs. For this 

purpose class discovery studies are carried out in order to find sub-groups of tumour 

samples based on their gene expression profiles that may then explain their behaviour 

with respect to these clinical variables. One particular publication regarding the use of 

microarrays concerned this very strategy: Alizadeh et al (Alizadeh et al. 2000) studied a 

set of diffuse large B-cell lymphomas that very morphologically indistinct, but exhibited 

a wide range of survival rates. Using class discovery techniques, they could identify two 

distinct sub-classes of these tumours, and found that these new sub-classes exhibited a 

significant difference in survival rates. The creators of the Ivshina breast cancer dataset 

(Ivshina et al. 2006) analyzed in Chapter 7 also carried out class discovery: using a 

classifier gene set, they identified two sub-classes of Grade 2 breast cancers which also 

showed a significant difference in survival rates (as well as other parameters). Other 

examples have been cited in Section 1.3.2.

9.2.2.3 Unsupervised theme discovery in microarray datasets using GSD

The GSD methodology described in this work brings together the two modes of analysis 

described above, such that it can be described as a methodology with which to carry out 

class discovery using biological themes, or equivalently, unsupervised gene set analysis.

The term ‘supervised’ has been generally used in the fields of machine learning and 

microarray data analysis (including this thesis -  See Section 1.3.1) to describe methods
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that require a priori knowledge of classes of entities; for example, in order to ‘train’ 

methodologies to be able to distinguish between sets of entities where such knowledge 

of classes may not be known (see Section 1.3.1.2). However, the concept of the level of 

‘supervision’ required by any analytical methodology can be thought to have a more 

generic meaning: that of the level of user-defined parameters and user-made decisions 

and input.

In theory, methodologies that require less supervision from users have greater potential 

for knowledge discovery and are thus more suited for exploratory analyses. For 

example, threshold-free GSA methods can be considered to be less supervised than 

threshold-based GSA methods, because they do not require the creation of list of 

differentially expressed genes. In the latter case, the researcher can choose from a range 

of statistical threshold levels to define differential expression, each of which could lead 

to different threshold-based GSA results (Pan et al. 2005). Furthermore, threshold-free 

methods allow for the possibility of discovering differentially regulated biological 

themes that may not be enriched within a list of genes exhibiting the greatest changes in 

gene expression (Ben-Shaul et al. 2005; Breitling et al. 2004; Huang da et al. 2009; Nam 

and Kim 2008; Subramanian et al. 2005).

GSD can thus be considered to be a threshold-free GSA method, because it seeks to 

identify relevant gene sets without requiring a list of genes selected by a researcher to be 

of interest. However, it represents a further decrease in supervision as compared to the 

vast majority of other threshold-free GSA methods: it does not require prior definition of 

samples classes across which differential patterns of gene expression are expected or 

desired to be detected. For example, if the GSD methodology is implemented on a 

dataset where sample classes are known a priori, it has the potential to identify gene sets 

that contain unexpected expression patterns i.e. those that would result in groupings of 

samples that are different from known sample classes. These may be due to unknown 

but biologically relevant factors, further analysis of which may lead to novel biological 

insight. Even if the gene sets detected by GSD exhibit expression patterns that result in
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clusters of samples that are as expected, GSD represents a more objective method to 

identify these gene sets.

However, it is surmised that GSD has greater potential utility in class discovery studies 

in which there may be no a priori knowledge regarding sample classes, which as 

discussed above, is particularly the issue in many studies of cancers. The amalgamation 

of the concepts of class discovery and theme-based analysis can allow a researcher to 

ask the question, “which biological theme can stratify this set of cancers?”.

The potential utility of the GSD methodology can be illustrated using the Ivshina breast 

cancer dataset, the analysis of which was described in Section 7.3.3. In the original 

study, the authors desired to understand the basis for wide range of survival rates of 

breast cancer patients exhibiting Grade 2 (G2) tumours. Firstly, they used a biological 

hypothesis: that G2 samples did not represent a continuum of tumour progression stages; 

rather they comprised of two sub-types. One of these sub-types was similar to the low- 

grade G1 samples that exhibited good prognosis (high survival rates), while the other 

was similar to the high grade G3 samples that exhibited bad prognosis (low survival 

rates). On the basis of this hypothesis, they used highly supervised techniques 

incorporating tumour grade information to develop a classifier gene set that could 

discriminate between G1 and G3 samples. They then applied this classifier to the G2 

samples and identified two sub-groups based on the similarity of their expression 

profiles to those of the G1 and G3 samples: G2a (1-like) and G2b (3-like). The 

subsequent discovery that these newly discovered G2 sub-types exhibited a significant 

difference in survival rates provided further evidence in support of the authors’ original 

hypothesis.

In contrast, GSD analysis was able to arrive at similar results using a shorter analytical 

pipeline, and with considerably less supervision: it did not require the authors’ 

hypothesis or knowledge of sample tumour grades. It identified a biological theme 

(mitosis/cell division) that exhibited a particular gene expression pattern. Simple
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hierarchical clustering of samples using the genes involved in this theme led to the 

discovery of two well differentiated classes of samples. It was then found that one 

cluster contained significant majorities of samples classified in the original study as 

either G1 or G2a, while the other contained significant majorities of G3 and G2b 

samples. Furthermore the samples in these clusters exhibited a difference in survival rate 

that was almost as significant as that achieved in the original study using knowledge of 

tumour grades and highly supervised techniques.

In addition, GSD could provide direct insight into the biological theme underlying the 

difference between good prognosis and bad prognosis samples, i.e. mitosis/cell division. 

As discussed in Section 9.2.2.1, such knowledge regarding biological themes allows for 

possibilities for improved diagnosis and intervention. For example, using the findings 

described above, breast cancer diagnoses may be carried out at standard clinical 

laboratories using simple histo-pathological tests utilizing antibody-based markers for 

mitosis (such as Ki67 or MCM2), as opposed to extracting RNA and sending off 

samples to be processed for gene expression profiling at remote locations based on the 

classifier gene set developed by Ivshina et al or Mammaprint. Furthermore, such 

diagnoses could identify which patients may require chemotherapeutic drugs, and that 

they may be treated with drugs specifically designed to target mitosis/cell division 

pathways.

Most cancer patients show differences in terms of which pathways are deregulated, and 

as Bild et al point out, knowledge of which pathways are deregulated in which patients 

allows for the possibility of administration of customized ‘cocktails’ of drugs to patients 

that target specifically those pathways that are found to be deregulated in those patients 

(Bild et al. 2006). The possibility of simultaneous discovery of patient sub-groups based 

on gene expression profiles along with direct identification of the biological themes 

underlying these patient stratifications allowed by GSD methodology thus makes it a 

very suitable potential option for such studies of cancers.
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9.2.3 Other methods for unsupervised theme discovery

While other methods have been developed that attempt to evaluate the importance of 

biological themes (21s gene sets) in microarray datasets without requiring prior 

knowledge of sample/phenotype class information, these are relatively few in number. 

This section discusses some of these methods, and how they compare to the GSD 

methodology.

9.2.3.1 Using average pair-wise gene correlation values to evaluate the importance o f 

biological themes

Pavlidis et al (Pavlidis et al. 2002) used the average of all pair-wise Pearson correlation 

coefficient values for all genes belonging to a gene set as one of three ‘functional class 

scores’ with which to evaluate the importance of that gene set within microarray data. 

The significance of this metric was assessed by comparison with a null distribution 

created using sets of randomly selected genes of the same length as the gene set being 

tested. This methodology was also used by Kim et al as the first step of their Gene Set 

Expression Coherence (GSECA) algorithm (Kim et al. 2007). This metric is similar to 

the M-GDD metric explored in Section 6.2, because the correlation distance between 

any pair of genes is calculated as 1-correlation coefficient (see Materials and Methods).

The rationale for the use of this metric is that gene sets in which most genes exhibit co­

expression are likely to be of interest to a researcher. However, Pavlidis et al themselves 

remark that such use of this measure of gene expression profile similarity to evaluate the 

functional classes of genes may be “too limiting” because “while it may sometimes be 

true that genes which cluster together have related functions, it is certainly not always 

the case that genes with related functions cluster together” (Pavlidis et al. 2002).

A related issue regarding the use of this metric is that it requires differentially expressed 

genes to change in the same direction. For example, consider a microarray dataset with
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two sample classes, A and B. For any particular gene set, the presence of a sub-group of 

genes that exhibit up-regulation in samples of class A and down-regulation in samples of 

class B would increase the magnitude of the average correlation coefficient between 

genes. However, the presence of another sub-group of genes exhibiting an expression 

pattern in the opposite direction (i.e. down-regulation in class A samples and up- 

regulation in class B samples) would cause a decrease in value of this metric. This 

would then lead to an undesirable decrease in significance assigned to that gene set. 

Indeed, Breitling et al remark that the ability of their iterative Group Analysis (iGA) 

method to not be sensitive to differences in expression pattern directions is “a very 

important feature, because genes that share a functional annotation may include 

activators as well as inhibitors of a certain process” (Breitling et al. 2004). This issue 

could become even more acute in datasets involving more than two classes of samples, 

where there is increased potential for diversity in gene expression patterns. It is for this 

reason that M-GDD values were rejected as potential metrics for the GSD methodology 

in Section 6.2.1.3. On the other hand, the SD-SDM values selected as metrics for the 

GSD methodology were shown to be insensitive to the presence of more than one gene 

expression pattern, as long as these patterns corresponded to the same sample groupings.

9.23.2 Annotation driven clustering o f samples using adSplit

Another method with which unsupervised theme discovery with microarray datasets can 

be carried out is adSplit (Lottaz et al. 2007). The feature that is in common to GSD and 

adSplit (and distinguishes them from other such methods to identify relevant gene sets 

without sample class information) is that both methods attempt to select for gene sets on 

basis of the ‘strength’ of sample clusters produced by a particular gene set. adSplit 

achieves this by using the diagonal linear discriminant (DLD) score introduced by von 

Heydebreck (von Heydebreck et al. 2001) as a measure of cluster strength for samples. 

This is conceptually similar to the SD-SDM values used in GSD. The significance of 

DLD scores is determined, similarly to GSD, by using a background distribution of DLD 

scores calculated for sets of randomly selected genes of the same size as the gene set 

being tested.
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However, there are several differences between adSplit and GSD. The primary 

difference is that adSplit uses to two-step approach to derive sample clusters: first a 

hierarchical clustering step is carried out to derive the first two sample clusters. These 

are then used to calculate cluster centroids for the second step, in which k-means 

clustering is used to identify two clusters of samples. The DLD score is then calculated 

for these two clusters. Thus adSplit is limited to the analysis of only two sample clusters 

at a time. Discovery of more sample clusters can only be achieved by iterative 

application of adSplit to previously discovered sample sub-clusters. On the other hand, 

the GSD methodology does not focus on the number of sample classes. Rather, the SD- 

SDM values utilized by GSD can reflect the strength of sample clusters without actually 

carrying out clustering (since only distances between samples are used).

adSplit also involves the use of several additional user-defined parameters. For example, 

for any gene set, only the top 50 genes (by default), when ranked according to the extent 

to which their expression patterns support the discovered clustering of samples, are used 

for calculation of DLD values. Also adSplit imposes a default minimum cluster size of 5 

samples for clusters derived using a gene set. Interestingly, the authors of adSplit also 

recommend that for any gene set, the top 5 most differentially expressed genes be 

ignored (and this is reflected in the default setting for adSplit), as their expression 

patterns may not be shared by most of the other genes in the gene set. On the other hand, 

GSD requires only two user defined parameters -  the first of which is a p-value cut-off 

for significant gene sets (which is also required by adSplit) and another to define the 

most informative genes (for example the top 20%, as used in all examples in this thesis).

It is difficult to choose between GSD and adSplit on theoretical bases. For example, it 

may be argued that GSD compares favourably because it has fewer user-defined 

parameters; this implies a decreased scope for user-induced bias (because it is possible 

that parameters can be changed to achieve results favoured by a researcher). The 

relatively shorter workflow of the GSD methodology also implies that it may be 

computationally efficient as compared to adSplit, especially in the analysis of datasets
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where there may be more than two classes of samples. However, it may also be argued 

that the additional adjustments made by adSplit (selection of a defined number of genes 

within a gene set prior to metric calculation, imposition of a minimum cluster size, and 

rejection of highly variable genes) could lead to biologically more accurate results.

To compare the results of GSD and adSplit, adSplit was used to analyze the four 

microarray datasets used in Chapter 7 to test the GSD methodology. To ensure that the 

results were comparable, the parameters for analysis were the same as used for GSD 

analysis in terms of data normalization (MAS5) and transformation (log and median 

centring), gene set database (GOBP terms), statistical settings (null distributions created 

using 10,000 sets of randomly selected gene sets, and a significance cut-off of p<0.01 

after FDR correction) (see Materials and Methods). The results of adSplit analyses, as 

compared to GSD analyses are displayed in Table 9.1

As can be observed, the biological themes selected by adSplit show some degree of 

biological plausibility and concordance with the results of GSD analyses: the sole term 

selected for the GNF dataset, G0:0048675_axon extension, could be reflective of the 

fact that brain/neuronal tissues comprise the largest group of similar tissues in the 

dataset; this is also thought to have been reflected by the selection of many nervous 

system-related GOBP terms selected by GSD analysis of the dataset. One of the four 

terms selected by adSplit analysis of the Ross AML dataset was also selected by GSD 

(G0:0019882_antigen presentation), while two of the other selected terms are children 

of it. The only term selected by adSplit analysis of the Broccoli liposarcoma dataset 

(G0:0009596_detection of pest, pathogen or parasite) is a child term of a one selected 

by GSD (GO:0009613_response to pest, pathogen or parasite). Nine and two out of the 

fourteen terms selected by adSplit analysis of the Ivshina breast cancer dataset are 

associated with the biological themes of cell division and immunity respectively; these 

are also the two dominant themes shared by GOBP terms selected by GSD analysis of 

this dataset. However, only one term was selected by both methods (G0:0000819_sister 

chromatid segregation).
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Dataset Number of 
selected terms GOBP terms selected by adSplit analysis

GNF
adSplit 1

G 0:0048675_axon extension
GSD 55

R oss AML
adSplit 4 GO:0019882_antigen presentation  

G0:0019884_antigen presentation, exogenous antigen 
G0:0019886_antigen processing, exogenous antigen via MHC class II 
G0:0006942_regulation of striated muscle contractionGSD 13

Broccoli
liposarcoma

adSplit 1
G0:0009596_detection of pest, pathogen or parasite

GSD 13

Ivshina
Breast
Cancer

adSplit 14

G0:0051329_interphase of mitotic cell cycle 
G 0:0006334_nucleosom e assembly 
G0:0050867_positive regulation of cell activation 
G 0:0007051_spindle organization and biogenesis 
G0:0000226_microtubule cytoskeleton organization and biogenesis 
G0:0007088_regulation of mitosis 
G0:0009596_detection of pest, pathogen or parasite 
G0:0006120_mitochondrial electron transport, NADH to ubiquinone 
G 0:0000075_cell cycle checkpoint 
G 0:0000819_sister chromatid segregation  
G0:0000070_mitotic sister chromatid segregation 
GO:0042110_T cell activation 
G0:0050863_regulation of T cell activation 
G 0:0050909_sensory perception of taste

GSD 50

Table 9 .1  R esu lts  o f adSplit a n a ly ses . The adSplit methodology was used to 

analyze the four datasets that GSD was tested on (in Chapter 7). Terms highlighted 

in red were also selected by GSD analysis.

Despite the similarities in the biological themes selected by either methodology, 

relatively few GOBP terms are common to both, and there are considerable differences 

between the levels of significance assigned to GOBP terms. Figure 9.2 shows Z-scores 

derived from each method plotted against each other. As can be observed, there is little 

or no correlation between the values; many GOBP terms are assigned high levels of 

significance by GSD but not by adSplit and vice-versa.
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GNF Ross AML
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1- 0.1

1- 0.1

0 5 10

Ivshina Breast Cancer

i—-0

10 15 200 5•5

Figure 9 .1  S ign ifican ce le v e ls  a ss ig n ed  by adSplit and GSD. Grey points 

represent Z-scores assigned by adSplit (Y-axes) to GOBP terms, relative to Z-scores 

assigned by GSD (X-axes) for the same datasets. Blue points represent terms 

selected by only adSplit (at FDR-corrected pcO .O l), while red points represent 

terms selected only by GSD. Green circled points represent terms selected by both 

methodologies. Legends show correlation coefficients for both sets of Z-scores.
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Based on the comparative analyses described above, it may be concluded that while 

similar biological themes may be discovered by both methods, GSD exhibits greater 

sensitivity than adSplit (as it selected significantly more terms). This is particularly 

advantageous for exploratory studies where sensitivity may be more important to a 

researcher than specificity.

9.2.4 Development and benchmarking of the GSD methodology

The work described in this thesis regarding the GSD methodology was intended to 

provide proof-of-principle that it could be used to perform unsupervised theme-based 

analyses of microarray datasets, and provide useful and biologically meaningful results.

There is scope for further development and refinement of the GSD methodology: for 

example, other more sophisticated metrics may be used to assess the variability of 

sample distance matrices, as opposed to the SD-SDM metric described in this thesis. 

Similarly a more sophisticated metric could be derived to replace the SD-GDV metric 

used to rank potentially informative genes.

In order to assess any additional utility and advantage provided by the GSD 

methodology for the purpose of unsupervised GSA of microarray datasets, a 

comprehensive benchmarking study could be carried out to compare GSD with other 

methods developed for this purpose (such as the three methods described in the previous 

section). Such a study would need to include many different datasets, tested using a 

range of different data pre-processing and transformation schemes, a range of different 

platforms, and range of different annotation-based sources of gene sets as well (such as 

KEGG pathways, other GO terms, etc.)

Indeed benchmarking could be carried out to assess whether methods for unsupervised 

GSA (such as GSD) could provide any advantage over using conventional threshold-
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based and threshold free GSA methods for datasets where sample phenotype classes are 

already known. Assessment could be carried out to determine whether unsupervised 

GSA methods can select similar themes as detected by supervised methods. If 

unsupervised GSA methods detect additional biological themes, further investigations 

could be carried out if these additional results could be of interest to a researcher, 

particularly if these themes represent different groupings of samples than are known.
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Chapter 10: M aterials and M ethods

10.1 Introduction

This chapter provides additional information to support the explorations and results 

described in all the preceding chapters. Details regarding the all technical methodologies 

used during this project are provided, as is further information regarding the data 

analyzed. These are presented on a chapter-wise basis, such that each of the following 

sections contains supplemental information specific to each of the previous chapters and 

are named as such.

All analyses were performed using the R (version 2.3.1) statistical programming 

interface (Ihaka and Gentleman 1996) utilizing Bioconductor (version 1.8) packages 

(Gentleman et al. 2004).

10.2 Strategies for large-scale integration of microarray data 
(Chapter 2)

Chapter 2 described a review and analysis of methods with which to compare disparate 

microarray experiments using lists of differentially expressed genes.

Much of the work described in the chapter concerns two main issues. The first of these 

was the use of biological annotation to enable comparisons of lists of genes from 

experiments carried out on different arrays and species. The second issue concerned 

reviewing the statistical methodologies that could possibly be used to assess the 

significance of the similarity between any pair of lists.
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10.2.1 Conversion of probeset IDs across array-types and species

All information regarding probeset IDs for each of the arrays analysed, as well as the 

biological annotation available for these, was extracted from Bioconductor libraries for 

each of the array types. The names of these libraries are displayed in Table 2.1 in 

Chapter 2.

For all analyses (for example, to observe the number of probeset IDs shared between 

different chip-types), only the non-control probesets were used. Control probesets were 

filtered out by removing all probeset IDs with the prefix ‘AFFX’.

10.2.1.1 Comparison o f list o f genes from  experiments involving the same species

For reasons described in Chapter 2, comparison of genelists from experiments carried 

out using the same organism required conversion of probeset IDs into species-specific 

biological annotation, regardless of whether the lists were derived from the same array 

or not.

Several different types of annotation are available within Bioconductor libraries for the 

probesets within each of the different types of arrays, and at least five types of 

annotation could be used in place of probeset IDs to compare genelists derived from the 

same species: Entrez Gene IDs (EGIDs), gene names, gene symbols, Unigene IDs and 

RefSeq IDs.

Annotation is not available for all probesets in any of the arrays analyzed. Also, there are 

differences in the number of probesets for which each of the different types of 

annotation is available. The numbers of probesets for which each of the five different 

types of annotation identified above are displayed in Table 10.1.
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Gene
Name

Entrez 
Gene ID Refseq ID Gene

symbol Unigene ID Total

hgu133a 20056 21803 21139 21435 21284 22215

hgu133plus2 41175 48081 45808 47365 46730 54613

hgu95a 11587 12154 11982 12119 12073 12559

mouse4302 40821 41614 37007 41208 40041 45037

moe430a 22181 22347 21764 22266 22123 22626

mgu74av2 11909 12229 11618 11987 11840 12422

Rat2302 22684 23241 23025 23239 22904 31042

rae230a 13198 13462 13311 13456 13314 15866

rgu34a 7863 7970 7849 7966 7873 8740

zebrafish 11004 12249 8372 12249 11254 15502

drosgenomel 0 13130 13086 13092 12914 13966

drosophila2 0 14232 14175 14181 13973 18769

celegans 0 18480 18473 18473 15099 22548

T able  10.1 N u m b e rs  of a n n o t a t e d  p r o b e s e t s  in A ffym etr ix  m ic ro a r ra y  

p la tfo rm s .  Annotations were derived from Bioconductor meta-data packages. Blue 

cells indicate the highest number of annotated probe-sets for each array-type.

As can be observed, in all cases, more probesets are annotated with EGIDs than with any 

other type of annotation. It was also found that across all chips, any probeset that did not 

have an EGID annotation was also not annotated with anything else.

As the meta-data packages for the Arabidopsis arrays did not include EGID annotation, 

this was derived from the Affymetrix NetAffx Analysis Centre (Liu et al. 2003).
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10,2.1.2 Comparison o f list o f genes from  experiments involving different species

Because EGIDs are species-specific, lists of EGIDs from the same species are 

comparable; however lists of EGIDs from different species are not. In order to facilitate 

comparison of genelists from different species, the Bioconductor ‘homology’ packages 

were utilized. These packages were built using source data from the NCBI Homologene 

database (Wheeler et al. 2008).

In this format, a set of homologous genes across several different species are linked by a 

unique Homologene ID. Thus, a human gene can be linked to a homologous mouse gene 

through the shared Homologene ID. For ease of conversion, a database of homologous 

genes shared between all the array-types analysed was created by extracting these 

relationships from the Bioconductor packages.

Inconsistencies were observed in the data contained within these packages. For example, 

when all EGIDs present on the human hgul33a array were taken, and all their 

homologous genes on the mouse mouse4302 array were identified using the 

hsahomology package, a total of 10673 pairs of homologous genes were found. 

However, when changing the order of species, i.e. taking all EGIDs present on the 

mouse4302 array and identifying all homologous genes present on the hgul33a array 

using the mmuhomology package, a total of 10709 pairs of homologous genes were 

identified. These two sets shared 10642 gene-pairs in common. This phenomenon was 

observed in all pairs of species analyzed. To ensure consistency, only those gene-pairs 

that could be identified using the homology packages for both species were used.
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10.2.2 Statistical methodologies to assess similarity between 
genelists

As described in Chapter 2, the size of overlap between two genelists may not accurately 

quantify the level of similarity between two genelists, because this measure is sensitive 

to systematic effects of genelist size and universe size. Three metrics were tested 

regarding the feasibility of their use in assessment of the significance of observed 

overlap size.

10.2.2.1 Fold Change

Consider two genelists of lengths LI and L2, which have an observed overlap size O.

The expected overlap size E can then be calculated as such:

E _  (T1 * L2)
N

Here N  represents the size of the gene universe. The fold change (FC) can then be 

calculated as the ratio of the observed overlap size to the expected overlap size, i.e. O/E. 

As these values are asymmetrical in nature, they are usually logged. This was carried out 

using the R function lo g  (), using the default base (exponential of 1, i.e. natural log).

10.2.2.2 Binary similarity

The binary or Jaccard similarity index is the size of the overlap divided by the total 

number of unique genes present in at least one of the two genelists. Consider two 

genelists A and B. In set theory terms, binary similarity (BS) can be calculated as:
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10.2.2.3 Hypergeometric distribution

The hypergeometric test and its variants have popularly been used in Over- 

Representation Analysis (ORA) studies, for example, to test for the enrichment of GO 

terms within a genelist.

Consider two genelists, of sizes L \ and L2 that come from a gene universe of size N, and 

have an observed overlap size of O. Using the hypergeometric distribution, at least two 

metrics can be derived that can help assess the significance of similarities between any 

pair of genelists. The first of these is a Z-score (Z) which is an ‘effect size’ that 

represents a standardization of the observed overlap size, taking into account the sizes of 

the genelists and of the gene universe. It is calculated as the difference between the 

observed (O) and expected (E) overlap size, divided by the standard deviation of 

observed size (sdO). Thus,

Z = O - E O -
L\*L2

N
sdO L ( L2 \ (, f L l - l }JL1 — 1------- 1 -

V y N  j I  N , V N - 1J

The second is a p-value (p) that is represents the cumulative probability of finding that 

two genelists of length LI  and L2 share O or more genes. It is calculated as:

'L \ '

\ l

N - L \
L 2 - i

/ =  o r N  ^
k L 2 j

Note that in both equations shown above, the positions of L\  and L2 are interchangeable 

(i.e. would lead to the same results). The formula for hypergeometric Z-scores was 

manually programmed into an R function. Hypergeometric p-values were derived using 

the R function p h y p e r  ( ) .
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10.3 Comparison of lists of differentially expressed genes using 
the hypergeometric test (Chapter 3)

Chapter 3 described the application of the hypergeometric distribution to assess the 

similarity between genelists derived from microarray-based experiments carried out on a 

range of Affymetrix array-types and species.

10.3.1 A local database of genelists manually extracted from 
published literature

For this purpose, a local database of genelists was created by manual extraction of 

genelists from published literature. Details of the numbers of genelists extracted for each 

Affymetrix array-types are shown in Table 3.1 in Chapter 3.

The genelists that were manually extracted from scientific publications, and any 

supplementary information provided, were those that were created using statistical tests 

and algorithms (for example, a t-test to assess differential expression of genes and 

subsequent multiple-hypothesis correction of p-values), rather than those created using 

manual curation (for example, a list of the top 20 genes exhibiting the highest levels of 

differential expression). The number of genelists derived from each of the publications 

varied widely; when more than one genelist could be derived from a single publication, 

they were collapsed into a single genelist using the R un ion  () function to achieve one 

genelist per publication.

Details of all genelists are provided in Appendix la. All genelists other than those for 

experiments performed on the Affymetrix hgul33a platform were kindly provided by 

Miss Hui-Sun Leong of the Department of Pathology at Cardiff University. All genelists 

are provided in Appendix lb.
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10.3.2 Comparison and statistical assessment of similarity between 
genelists across array-types and species

An overview of the technical methodology used to make genelists comparable and then 

assess their similarity is provided in Section 3.2 in Chapter 3.

The hypergeometric test provides a p-value for each test pair of genelists (see Section 

10.2.2.3), which represents the probability of the level of similarity (i.e. the number of 

shared genes) observed for that pair of genelists occurring by chance alone for genelists 

of that size, when sampled from the universe of that size. Typically a p-value of <0.05 is 

used as a cut-off level for significance i.e. a pair of genelists are only considered to 

exhibit statistically significant levels of similarity if that probability of such levels 

occurring by chance alone is less than 5%.

However, the simultaneous testing of many pairs of genelists creates an issue of multiple 

hypothesis testing. For example, consider that a genelist is compared to a set of 100 

other genelists; under the criterion of selecting those tests that yield p-values of <0.05, it 

is expected that 5 genelists would show significant similarity with the test genelist just 

by chance alone. These constitute Type I errors (false positives), and the number of 

these is expected to increase along with the number of simultaneous tests.

One of the popular methods to deal with this issue is control of the false-discovery rate 

(FDR) using the Benjamini-Hochberg method (Benjamini and Hochberg 1995). This 

methodology has been implemented throughout this thesis whenever there has been a 

need for multiple hypothesis correction, using the R function p . a d ju s t  ().
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10.3.3 Calculation of evolutionary distance between species

To calculate evolutionary distances between the different species from which genelists 

were compared, source data was extracted from the interactive Tree of Life (iTOL) 

project of the European Molecular Biology Laboratory (Letunic and Bork 2007). The 

multiple sequence alignment used to calculate distances within the tree between the 6 

species under investigation was downloaded. Using the Protdist program of the Phylip 

package of programs for phylogenetic analysis (Felsenstein 1993), distances could be 

calculated between each pair of species. This was carried out using the Dayhoff PAM 

matrix which comprises of empirically derived probabilities of the change of one amino 

acid within a protein sequence to another, and the distance computed is in units of the 

expected fraction of amino acids changed.

10.3.4 Extraction of genelists from the L2L database

As explorations of the local database of genelists indicated excess levels of similarity as 

assessed by the hypergeometric distribution, it was then desired to investigate if this 

phenomenon could also be observed amongst genelists collected in external databases. 

One such database is L2L (Newman and Weiner 2005), and this comprises of genelists 

that have been manually extracted from published literature. Genelists (where genes 

were represented as HUGO gene symbols) were downloaded from the L2L databases for 

experiments carried out on two human and two mouse Affymetrix arrays (see Table 3.4 

in Chapter 3) on the 26th of August, 2008. These genelists are provided in Appendix Ic.

While it was difficult to identify which genelists came from the same publication, it was 

possible to combine lists of genes that were found to be up or down-regulated in the 

same statistical test for differential expression within an experiment. This was carried 

out by combining those pairs of genelists whose names had the same prefix (for 

example, genelists with the names ‘XXX up’ and ‘XX dn’ were combined).
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10.3.5 Assessing the correlation between genelist length and 
significance

Section 3.3.3 described explorations indicating a link between gene set size and the 

levels of similarity of that genelist to all others from experiments carried out on the same 

array-type. Statistical assessment of this relationship was carried out using the Pearson’s 

product-moment test of correlation. Two metrics could be derived from this test: firstly 

an ‘effect size’ (called Pearson’s r), which varies between -1 and 1. A value of 0 implies 

no correlation; a positive r value indicates that the dependent variable increases with the 

causative variable, while a negative value indicates the opposite. The second metric is a 

p-value to indicate the significance of an observed r value. This was implemented using 

the R function c o r . t e s t  ().

10.4 Modelling violations of the assumptions of the 
hypergeometric distribution using the ‘biased urn'  model 
(Chapter 4)

Chapter 4 described explorations of the effect of changing the universe size used for the 

computation of Z-scores when using the hypergeometric distribution to assess the 

similarity between a pair of genelists. Also described was the implementation of the 

biased urn model, under which an estimated ‘average’ gene universe size is used to 

compute Z-scores instead of the total number of genes present on an array. This average 

size was estimated as follows: starting from a universe size of all genes on an array, a 

series of Z-scores distributions representing comparisons of all possible pairs of 

literature derived genelists was created by successively reducing the gene universe size. 

The median Z-scores for each of these distributions are plotted in Figure 10.1 against the 

gene universe size used for calculation of that distribution. The estimated average gene 

universe size was considered to be that which yielded a Z-score distribution centred on a 

median value closest to zero (vertical red lines in Figure 10.1).
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Figure 10.1  ad hoc e s t im ation  o f  th e  a v era g e  s ize  of th e  g e n e  universe  

shared b e tw e e n  any tw o  e x p er im en ts  using th e  b iased  urn m odel. Grey lines 

represent medians of a series of hypergeometric Z-score distributions for 

comparisons of all possible pairs of literature-derived genelists, created using a 

range of different gene universe sizes. X-axes represent gene universe sizes as the 

percentage of genes represented on each array; Y-axes represent hypergeometric 

Z-scores. The horizontal black line represents a median Z-score of 0, while the 

vertical red line represents the gene universe size used as an estimate of the 

average gene universe size for comparison between any two experiments.
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10.5 Exploring gene expression patterns with the GNF 
Expression Atlas (Chapter 5)

Chapter 5 described investigations of the variability of the sizes of the expression 

universes for a wide range of human tissue-types using the GNF Expression Atlas.

10.5.1 Data pre-processing and generation of expression universes

Original CEL files representing microarray data for human tissues were downloaded the 

Gene Expression Omnibus (GEO) database (Edgar et al. 2002), where this data was 

stored with the series identifier GSE1133. A total of 158 Affymetrix hgul33a samples 

were downloaded, which represented 79 different human tissues (two samples per 

tissue). Samples representing cancer cells and foetal tissues were removed, leaving 136 

samples representing 68 different normal human tissues.

The probe intensity values that comprise the CEL files were normalized and converted 

into probeset expression values using the Affymetrix Microarray Suite 5.0 (MAS5) 

algorithm (Affymetrix 2002). To avoid possible biases caused by the presence of more 

than one probeset representing the same EGID (as described in Chapter 2), one probeset 

was selected for each EGID represented on the hgul33a array. For this purpose, the 

median MAS5-normalized expression values for all probesets were recorded across all 

158 samples. For EGIDs having more than one probeset the one exhibiting the greatest 

median expression value was selected.

MAS5 Present/Marginal/Absent (PMA) calls were then used to identify genes that were 

expressed in each of the tissues (i.e. their expression universes). A gene was flagged as 

being expressed in a particular tissue if it was called as ‘Present’ by the MAS5 algorithm 

in at least one of the two samples that represented that tissue.
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MAS5 normalization of CEL files, and generation of PMA calls was carried out using 

the justMASO and detect ion. p. value () functions, respectively, both of which 

are available in the Bioconductor package simpleaf fy (Wilson and Miller 2005).

10.5.2 Hierarchical clustering of 68 human tissues using overlap  

sizes of expression universes

Section 5.2.3 described the use of hierarchical clustering for the unsupervised 

classification the 68 tissues. This was carried out to observe if the resultant groupings of 

samples could reflect tissue-specific expression patterns. Figure 10.2 displays the 

scheme used for the creation of a distance matrix for the clustering procedure. The 

simulations were designed to control for the effects of the variability in the sizes of the 

expression universes of different tissues on the size of overlap.
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Figure 10 .2  Deriving overlap s s iz e s  for u se  as  d is ta n ces  in hierarchical 

clustering of t is s u e s .
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10.5.3 Simulating the effects of using an estimated ‘average’ gene 

universe size.

Section 5.2.4 then described simulations to explore the behaviour of hypergeometric Z- 

scores, relative to the gene universe size used for their calculation, of comparisons 

between genelists created by random sampling of genes form universes of various sizes. 

Figure 10.3 displays the design for these simulations, which was formulated to enable 

control of the effects of genelist length on overlap size.
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Figure  10 .3  C alcu la t ion  of t h r e e  s e t s  of Z - s c o re s  u s in g  t h e  s a m e  s e t  of 

o v e r la p  s izes .
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10.6 Gene Set Discovery (GSD): Unsupervised identification of 
relevant biological themes within microarray datasets (Chapter 
6)

Chapter 6 described explorations using simulated gene expression matrices, and the 

development of GSD methodology as a tool to carry out unsupervised GSA.

10.6.1 Simulating gene expression matrices

The hypothetical gene expression matrices used in this chapter were intended to simulate 

log transformed, median-centred expression data. It is expected for genes that are not 

differentially expressed, expression values would vary around zero. Up-regulation is 

indicated by values >0; for example, when using log of base 2, a value of 1 represented a 

two-fold increase in expression as compared to the median value for that gene across all 

samples. Similarly, a value of -1 represents a two-fold decrease in expression.

Population of the hypothetical gene expression matrices with simulated expression 

values required estimation of the levels of variability of gene expression values expected 

in real-world data. For this purpose, 62 Affymetrix hgul33a microarray datasets 

downloaded by Dr. Peter Giles (Cardiff University) from GEO were used (data not 

shown). All datasets were logged and median-centred. If more than one probe-set was 

found to be annotated with the same EGID, the probe-set exhibiting the greatest 

variability in expression values (measured as IQR) was selected to represent that EGID; 

this process was carried out for each dataset separately. Standard deviations were 

calculated for each gene in every dataset, i.e. 62 standard deviation values were derived 

for each gene represented on the array. The median standard deviations for each gene 

were then derived. The median of these set of values was ~0.3.
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Thus, unchanged gene expression values were simulated by random selection from a 

normal distribution with a mean value of zero and a standard distribution of 0.3. 

Similarly, values representing up-regulation and down-regulation were randomly 

selected from normal distributions with means of 2 and -2 respectively, and a standard 

distribution of 0.3. This was carried out using the rnorm () function in R.

10.6.2 Distances and clustering

One of the most popular distance measures used to quantify the dissimilarity between 

genes and samples in a microarray dataset is the Pearson Correlation distance (see 

Section 1.3.2.1). The correlation distances used in this thesis are a variation of this; they 

differ in the aspect of using the cosine distances of median-centred gene expression data 

(as opposed to mean-centred data used in Pearson Correlation distance). This is because 

median values are more robust than mean values; the latter are more sensitive to outlier 

values. This was carried out by using the R function D i s t  () from the Bioconductor 

library amap. Hierarchical clustering was carried out using the average linkage method 

through the R function h e  l u s t  ( ) .

10.6.3 Significance testing in the GSD methodology

Chapter 6 described explorations that indicated that SD-SDM values may be suitable 

metrics to indicate the strength of sample clusters for a given set of genes. The 

significance of SD-SDM values observed for gene sets could be assessed by comparison 

with mull distributions of SD-SDM values; two strategies for creating null distributions 

were tested. A null distribution of 10,000 SD-SDM values was calculated for each 

separate length of gene set tested. Two metrics to quantify the significance of observed 

SD-SDM values could be derived: Z-scores and p-values. Z-scores provide ‘effect sizes’ 

which are standardized quantifications of the extent of deviation of an observed SD- 

SDM value from those in the null distribution. This was calculated as:
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_ Obs -  mean(Null)
Z ~ s.d.(Null) ’

Here, z  is the Z-score, Obs is the observed SD-SDM value and Null is the null 

distribution for the gene set being tested (based on its length). P-values represent the 

probability that an observed SD-SDM value could have been observed by chance alone. 

This was calculated as the number of SD-SDM values, in the corresponding null 

distribution for an observed SD-SDM value, that are greater than or equal to the 

observed SD-SDM value, divided by the size of the null distribution (10,000).

10.7 Application of the GSD methodology to four microarray 
datasets (Chapter 7)

Chapter 7 described the results of the application of the GSD methodology to four 

microarray datasets.

10.7.1 Data acquisition

The first dataset analyzed using the GSD methodology was a subset of the GNF 

Expression Atlas (Su et al. 2004). This is the same dataset that was used in Chapter 5. 

See section 10.5.1 for further details. The second dataset analyzed was the Ross AML 

dataset (Ross et al. 2004) created using the Affymetrix hgul33a platform. Raw data 

(CEL files) was downloaded from the website of the St. Jude Children’s Research 

Hospital (Tittp://www.stiuderesearch.org/data/AML 1 /rawFiles/). Only that subset of the 

data was used which represented tumour samples that could were categorized in the 

original study into one of five different AML sub-types. Samples that were classified as 

‘other’ were not considered. The third GSD analysis described was that of the Broccoli 

liposarcoma dataset, which was created using the Affymetrix hgul33plus2 platform. 

This was provided by Dr. Dominique Broccoli from the Curtis and Elizabeth Anderson
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Cancer Institute at the Memorial University Medical Centre, USA. The final GSD 

analysis was performed on the Ivshina breast cancer dataset (Ivshina et al. 2006). Both 

raw data (CEL files) and clinical data (used in survival analyses) were downloaded from 

the Gene Expression Omnibus (GEO) database (Edgar et al. 2002), where this data was 

stored with the series identifier GSE4922. Only data from the Uppsala cohort was used. 

This dataset was created using the Affymetrix hgul33 set platform, which includes both 

the hgul33a and hgul33b arrays. Only data from the hgul33a arrays was used.

10.7.2 Data pre-processing and transformation

All datasets were normalized using the MAS5 algorithm. This was carried out using the 

R function j u s t M a s  () which is available in the Bioconductor package s i m p l e a f f y  

(Wilson and Miller 2005). Normalized data was then further processed prior to 

application of the GSD methodology firstly by log transformation and then by median- 

centring. Log transformation was carried out with the R function l o g  ( )  .

10.7.3 Gene Ontology Biological Process terms

The series of gene sets representing biological themes used for GSD analyses of 

microarray datasets were Gene Ontology Biological Process (GOBP terms). Gene sets 

were created for each different Affymetrix platform separately. These were derived from 

the Bioconductor annotation package GO. This was carried out by extracting the GOBP 

term annotation for each EGID represented on any particular array. Gene sets for each 

GOBP term could then be created by selecting all genes which are annotated with. 

Because the Bioconductor annotation package provides for each EGID only the most 

specific GOBP annotation, the gene set for each GOBP term was also made to include 

all genes annotated with any descendant GOBP terms. For all GSD analyses, those 

GOBP terms comprising of less than 5 genes, or more than 10% of genes present on an 

array, were excluded.
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10.7.4 Hypergeometric tests

ORA analysis of the classifier developed by Ivshina et al (Ivshina et al. 2006) was 

carried out using the hypergeometric statistical test (see Section 10.2.2.3). The gene 

universe used for this purpose comprised of all EGIDs represented on the Affymetrix 

hgul33a array for which GOBP term annotation was available. Thus, two genes from 

the classifier (EGIDs 57758 and 83461) were excluded because they were not annotated 

with any GOBP terms. The hypergeometric test was also used to assess the enrichment 

of tumour grades in sample clusters derived from mitosis/cell cycle GOBP terms 

selected by GSD analysis of the Ivshina breast cancer dataset. The universe comprised 

of all samples in the dataset.

10.7.5 Survival analyses

Kaplan-Meier survival curves and assessment of the difference between survival rates 

were carried out using the R functions survfitO and coxph() respectively. Both 

functions are available as part of the R package survival.

10.7.6 Biomarkers

Figure 7.20 shows the expression values for three biomarkers in the Broccoli 

liposarcoma dataset. The first (7.20a) is that for the IGKV gene which is represented on 

the hgul33plus2 array by the probeset 214768_x_at. The second (7.20b) is that for the 

MCM2 which is a biomarker for proliferation, and is represented by the probeset 

202107_s_at. The third (7.20c) is that for the adipocytic biomarker leptin, which is 

represented by the probeset 207175_at. The data represented in the plots is log 

transformed MAS 5 expression data.
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10.8 Extraction of informative genes and visualization of GSD 
results (Chapter 8)

This chapter described two further extensions developed for the GSD framework of 

analysis. The first of these was a methodology to extract informative genes from within 

gene sets selected by the GSD methodology. The second was a scheme for integrated 

visualization of results.

10.8.1 Simulation of expression matrices

To simulate gene expression matrices to test the metric developed to extract informative 

genes, the same principles were used as for the simulations described in Chapter 6 (see 

Section 10.6.1)

10.8.2 Clustering of gene sets

Part of the scheme developed to visualize results of GSD analyses was displaying of 

relationships between GOBP terms. This was carried out by creating a binary matrix 

using genes selected as informative by GSD. In this matrix, the rows represented the 

genes and the columns represented GOBP terms. The presence of GOBP annotation for 

a gene was indicated by a cell value of 1, and absence by 0. Using this correlation 

distance matrix could be created for the GOBP terms, which was in turn used for 

hierarchical clustering using the average linkage method. The dendrogram derived from 

the clustering was used to represent relationships between the GOBP terms in the 

visualization scheme.
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10.9 Summary and General Discussion (Chapter 9)

Chapter 9 comprises primarily of summarization and discussion of the results and 

explorations described in Chapter 2-8.

10.9.1 Analysis of microarray datasets using adSplit

One of the few instances of primary research described in Chapter 9 involves analysis of 

microarray data using the adSplit methodology (Lottaz et al. 2007). This was carried out 

as an initial comparison between GSD and adSplit. For this purpose, the same datasets 

were used as had been used for GSD analyses described in Chapter 7, and the same pre­

processing (MAS5) and transformation (log and median-centring) steps were 

undertaken. The same series of GOBP terms were also used, except without GOBP 

terms that contained only 5 genes, because with the default settings, adSplit removes the 

top 5 most variable genes from analyses. For this purpose, the FDR correction was re­

applied to p-values derived from GSD, without these excluded GOBP terms.

The adSpit methodology was implemented using the diana2m eans () function 

available in the Bioconductor package a d S p lit .
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A ppendices

All appendices are provided in the attached CD-ROM.

Appendix I: Literature-derived genelists

(a) Details of literature-derived genelists

An Excel spreadsheet is provided containing the details of all the genelists that were 

manually extracted from the literature, and used for the comparisons described in 

Chapter 3.

(b) Literature-derived genelists

This comprises of a folder containing all the literature-derived genelists that were 

compared in Chapter 3. These are provided as R objects names after the Affymetrix 

arrays that the genelists were derived from. Each of the R objects contains a binary 

matrix called ‘EGMat’, where the rows represent all genes (as Entrez Gene IDs) on the 

respective array, and the columns represent experiments. A cell value of 1 indicates the 

presence of the gene represented by that row in the genelist derived from the experiment 

represented by that column; a value of 0 indicates its absence.

(c) Genelists from L2L

This comprises of a folder containing genelists that were downloaded from the L2L 

database and compared in Chapter 3. They are provided in a similar format as the 

genelists in Appendix lb, except that genes are represented by HUGO gene symbols 

rather than Entrez Gene IDs.
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Appendix II: R code for GSD analysis

(a) GOBP_lists

R code to derive Gene Ontology Biological Process (GOBP) annotations for all genes 

that are represented on a particular Affymetrix array.

(b) Transformer

R code for log transformation and median centring of MAS5 gene expression data, as 

well as the selection of a single probeset per Entrez Gene ID represented on the array.

(c) Null Distribution

R code to create the null distribution of SD-SDM values for comparison with those 

derived from GOBP terms.

(d) GSD

R code to calculate SD-SDM values for GOBP terms and the comparison of these with 

the null distribution SD-SDM values to derive p-values and Z-scores.

(e) Informative genes

R code to extract informative genes from within GOBP terms selected by GSD.

(f) Visualization

R code to visualize results of GSD analysis using an integrated scheme.

(g) GSD Usage
R code demonstrating how the above functions can be used, starting from MA5 data.
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