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Thesis Summary

This thesis is concerned with the rationality of human probability estimates, specifically 

the potential influence of outcome utility on estimates of probability. Intuitively, and 

normatively, the desirability of an outcome should not make that outcome seem more or less 

likely to occur. Chapter 1 provides a background to the subsequent empirical work by addressing 

some general issues surrounding a probabilistic approach to human reasoning. The major 

questions addressed are whether people represent uncertainty quantitatively and their competence 

at doing so, considered with reference to the status of extant biases in the literature on human 

probability judgment. Chapter 2 presents seven studies investigating the effect of negative utility 

on estimates of probability, using a minimal paradigm in which there is a visually defined, 

objective, probability. When there was an indication that future human action could influence the 

likelihood of an outcome (the outcome was, in some way, controllable), negative outcomes were 

rated as more likely to occur than neutral outcomes.. This moderating effect of control can be 

given a decision-theoretic explanation in terms of loss function asymmetry (e.g., Weber, 1994). 

Consequently, these effects can be understood as rational reactions to the recognition of the 

uncertainty of human cognition. Chapter 3 investigates the effects of positive utility using the 

same visual representation of probability. Across four studies, no effect of positive outcome 

utility was observed, a result consistent with the asymmetric loss function explanation proposed 

for the findings in Chapter 2. Chapter 4 presents a statistical-based critique of the ‘unrealistic 

optimism’ phenomenon (e.g., Weinstein, 1980). Additionally, two empirical studies failed to find 

any evidence that the ‘unrealistic optimism’ phenomenon is more than just a statistical artifact. 

The results from all three experimental chapters provide support for the contention that people’s 

probability estimates are not systematically biased by utility considerations.
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Introduction

“Uncertainty is the only certainty there is”

(John Allen Paulos)

To a greater or lesser extent, every aspect of human life is characterised by uncertainty. 

Having asked a colleague whether or not he shall see them in the office the following day, Andy 

should not be certain that he will see them on the next day upon receiving an affirmative reply. 

They, or he, might be taken ill and not make it to work, for example. O f course, some 

uncertainties are more uncertain than others. The likelihood of the 12:30 train from Cardiff to 

London leaving at 12:30, for example, is more uncertain than the likelihood of Andy seeing his 

colleague the next day.

In order to function successfully, people must be able to live with uncertainty in their 

lives. When Andy leaves the house to travel to work, he must make a decision about whether or 

not to carry an umbrella based on uncertain information from the weather forecaster, who may 

tell him that there is a 30% chance of rain. The standard way of representing uncertainty and 

quantifying it so as to guide rational action is through probabilities. Indeed, the standard 

normative model of decision making, ‘Subjective Expected Utility’ theory (SEU) (Savage, 1954) 

posits that, in order to guide rational action, people should combine the utility (the subjective 

‘goodness’ or ‘badness’) of a possible outcome with the probability of that outcome occurring. 

Returning to the earlier example, assume Andy assigns a utility value of -100 to the outcome 

‘getting wet’, a utility value of -10 to the outcome ‘carrying the burden that is an umbrella’ and a 

utility value of 0 to the outcome of ‘not carrying an umbrella and not getting wet’ (i.e., it does not 

rain). SEU prescribes that for each of the four combinations of events (Table 0.1), Andy should 

weight the utility of that outcome by the probability of that outcome, in order to calculate the
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expected utility (EU). To calculate the EU of carrying an umbrella, Andy should combine the 

utility associated with carrying an umbrella given that it rains with the probability of it raining 

and the utility associated with carrying an umbrella given that it does not rain with the probability 

of it not raining. The EU of carrying an umbrella is then computed by summing across the two 

uncertain outcomes (rain and no rain). Andy should then calculate the EU for not carrying an 

umbrella in the same manner and choose the action with the greatest EU. In this case, this 

corresponds to carrying an umbrella, as:

E U u m b r e iia  = (-10 x 30%) + (-10 x 70%) = -10 

E U n o  u m b re lla  = (-100 X 30%) + (0 X 70%) = -30

Table 0.1
The four key possible outcomes, and their utilities, under consideration when deciding whether 
or not to carry an umbrella

Weather Event (probability)
Rain (30%) No rain (70%)

Possible Umbrella -10 -10
Actions

No umbrella -100 0

A key aspect of many of the real-world probabilities that humans care about is that, in 

contrast to the majority of laboratory based judgment contexts, the probabilities associated with 

the potential outcomes are not well specified. Rather, the decision maker must engage in a 

process of reasoning in order to derive subjective estimates of the probability of different events. 

Thus, whilst a patient suffering from gangrene is aware that she does not want to die and she does 

not want to lose her leg, but she would rather lose her leg than die, the probabilities associated 

with dying if  the patient does not choose to have her leg amputated may not be immediately 

apparent. It is likely that the patient will seek information from a variety of sources in order to 

help her make a judgment of the relevant probabilities and thus help guide her decision.
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Similarly, a juror for a criminal case is aware that she does not want to find an innocent man 

guilty, or a guilty man innocent. Blackwell’s maxim, that it is better for ten guilty men to go free 

than one innocent man to be convicted (e.g., Nagel, Lamm, &  Neef, 1981), furthermore suggests 

that the former is a more negative outcome than the latter. To derive estimates as to the likelihood 

of the defendant’s guilt, the juror must make a judgment based on the evidence presented in 

court.

The examples presented above demonstrate that in real-world decision problems, whilst 

probability judgments are crucial, they cannot typically simply be ‘read o ff the environment, 

rather they must be constructed from the available evidence. Such construction might require 

complex reasoning or merely a simple estimate. However, once probabilistic information is not 

readily available to inform decision-theoretic calculations, there are a number of factors that 

might bias these probability judgments. A thorough understanding of potential biases is necessary 

to fully understand human judgment and decision making.

Although there are a number of important issues related to such probability judgments 

that have emerged from past research, the majority of judgment research has not specifically 

taken other aspects of the decision context into account, although reasoning researchers have 

begun to consider the potential for decision-theoretic concerns influencing reasoning (e.g., 

Bonnefon, in press). One salient feature of any decision context is the utility associated with 

different possible outcomes. In line with this, the systematic laboratory-based investigation of the 

effect of utility on probability estimates presented in this thesis therefore represents an emphasis 

on a key situational characteristic of real-world judgments.

For any important probability judgment, there w ill be utilities present. This is because a 

judgment is only ‘relevant’ if  it is made in order to inform a decision, and decisions always 

involve utilities. The more consequential a decision, the more extreme the utilities are likely to
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be. If  utility does bias judgments of probability, then such a bias is likely to be fundamental and 

prevalent throughout human life, as people are constantly making decisions in order to guide 

their actions. Moreover, given that more consequential decisions are associated with more 

extreme utilities, such a bias is likely to be amplified in precisely those decision-making contexts 

in which people are most concerned with accuracy — important and consequential decisions.

In SEU, probabilities and utilities should be combined to derive expected utilities. One 

assumption intrinsic to this model is that the processes of deriving these component parts, the 

probabilities and utilities, are independent. Edwards (1962) points out that whilst this assumption 

is not critical to the mathematical content of the model, “it is very difficult to see how the model 

could be applied to real decisions unless some such assumptions were made” (p. 43). This 

difficulty in applied settings is demonstrated when one considers the equation for SEU. If  utility 

biases judgments of probability then the calculation of either component in isolation becomes an 

incredibly complex task. It is our belief that this was what Edwards meant by the importance of 

the independence assumptions for the model to be applied to real decisions. Despite the seeming 

practical importance of the independence of judgments of probability and utility, typical studies 

of human judgment have been made in situations where utilities are not readily apparent (see e.g., 

Tversky &  Kahneman, 1974). Chapters 2, 3 and 4 of this thesis present a systematic investigation 

of the potential interdependence of probabilities and utilities.

The importance of whether outcome utility biases estimates of probability does not rest on 

the normative theory of SEU alone. This research question is equally important given any current 

mainstream descriptive theory of decision making. A ll theories of decision making assign both 

probability and utility a key role. Thus, the question of whether utility systematically biases 

estimates of probability is a fundamental question in human cognition.
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Descriptive theories that have sought to capture people’s deviations from the prescriptions 

of SEU are mostly variants on the normative model. These theories include: Rank-dependent 

expected utility models (Quiggin, 1993); Prospect theory (Kahneman & Tversky, 1979a); 

Cumulative prospect theory (Tversky &  Kahneman, 1992); Configural weight models (e.g., 

Bimbaum, 2004) and Regret theory (Loomes & Sugden, 1982). The most famous and influential 

of these, Prospect theory, was purposely designed in an attempt to achieve “the minimal set of 

modifications of expected utility theory that would provide a descriptive account of...choices 

between simple monetary gambles” (Kahneman, 2000, p. x, as cited in Brandstatter, Gigerenzer, 

& Hertwig, 2006, p. 411). Consequently, the practical issues of a possible interdependence 

between utilities and subjective probabilities is a key concern given any of these descriptions of 

human decision making.

There are two descriptive models of decision making that do not take the normative 

prescriptions of SEU as a starting point (see e.g., Oaksford, Chater, & Stewart, in press, for a 

review). However, both require judgments of probability in utility laden contexts. Decision by 

Sampling (DbS) (Stewart, Chater, &  Brown, 2006; Stewart &  Simpson, 2008) draws on 

psychophysical research demonstrating that people are better at relative judgments than absolute 

judgments. For example, it is easy to determine which of two lines is longer, but somewhat more 

difficult to specify the lengths of the lines according to some absolute measure (e.g., in 

centimetres). Stewart and colleagues propose, therefore, that people evaluate both the utility and 

probability of an uncertain outcome relative to a comparison sample, which can comprise of 

items in the current problem space, or other items from working memory. Consequently, the 

relative rank (r) of an attribute (e.g., utility of an outcome) is given by r = ( R -  1) / (N -  1), where 

R is the rank within the sample of N  comparison outcomes (which includes the target outcome). 

Thus, for example, within a comparison sample of gains (2, 5, 7, 100, 150, 20000}, the

5



subjective value of a gain of 7 is (3 -  1) / (6 -  1) = 2/5. Note that this subjective value is 

unaffected by the absolute size of the gains incorporated in the sample. The subjective value of a 

probability is calculated in the same way as for utilities, but if  the probabilities refer to losses 

then they are assigned a negative value.

DbS is not derived from the normative framework of SEU and it does not require the 

multiplicative combination of subjective probabilities and utilities, but it does propose a 

consideration of both probabilities and utilities (for further details, see Stewart & Simpson,

2008). Consequently, the question of whether they are subjectively interdependent is important 

from a DbS perspective.

Generalising Gigerenzer and colleagues’ research program into fast and frugal heuristics 

of cognition (e.g., Gigerenzer, Todd, & the ABC Research Group, 1999), Brandstatter et al.

(2006) proposed the priority heuristic as a descriptive process model of how choices are made. In 

the case of a choice between two gambles (or actions), it is proposed that people evaluate the 

prospects in the following order: Minimum gain, probability of minimum gain, maximum gain 

(for losses, simply replace ‘gain’ with ‘ loss’). If  the difference between the two prospects differs 

by more than a criterion amount at any stage in this process then the process is stopped and the 

decision maker chooses the more desirable prospect. In addition to assigning a key role to 

judgments of both utility and likelihood, Brandstatter et al. observe that the heuristic does not 

overcome considerations of expected utility when there is a marked difference in the expected 

utility associated with one choice versus the other. Rather, “the heuristic performed best when the 

ratio between expected values was about 2:1 or smaller” (p. 429).

The debate over the best descriptive model of human decision making is not one which 

will be addressed in this thesis. Having provided only a very brief overview of the core tenets of 

two decision making models that do not have their roots in SEU, it should be clear that they
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nevertheless assign crucial roles to both probability and utility. Thus, judgments situated in the 

context of real-world decisions must be made in the context of both probabilities and utilities.

The empirical work presented in this thesis is therefore of relevance to decision making, 

whichever descriptive model is endorsed.

The possibility of a biasing effect of utility on probability judgments intuitively also 

raises more basic level concerns over the rationality of human cognition. Such a bias would be 

analogous to believing the world to be a certain way simply because we do (or do not) want it to 

be that way. Consequently, the presence of such a bias might suggest a flaw in the most basic 

process of how probability judgments are derived. Given the prevalence of a decision-theoretic 

context for most consequential probability judgments, a utility bias on probability estimates 

would be near universal in its prevalence, and thus a far more critical challenge against human 

rationality than many of the other classic biases (e.g., the conjunction fallacy, base rate neglect, 

framing effects), which will be discussed in Chapter 1.

There are two important features of many real-world probability judgments that have yet 

to be highlighted explicitly, but which it is necessary to highlight in order to place the next 

chapter in context. Firstly, in all the judgment situations outlined above, including the gangrene 

patient, the juror, and even the case of deciding whether to take an umbrella to work, the 

judgment concerns that one particular occasion or event. Thus, this thesis is primarily concerned 

with single-event probabilities. When deciding whether to convict or acquit a defendant, the 

probability of guilt should be a subjective judgment based on the evidence presented in this 

single case. In deriving single-event probability estimates, people will, however, (and indeed, 

should) also make use of frequency data. Frequency information can inform single-event 

probability estimates as a guide to prior degree of belief (for example). In estimating the 

likelihood of a particular neighbour being a lawyer, if  I know that half of my neighbours are
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lawyers and half doctors, I should use this frequency information to inform my estimate of this 

particular neighbour being a lawyer (50%) (more on this below). Secondly, as real-world 

judgments are potentially associated with extreme consequences, these are the judgments for 

which it is most important that people get them right. For this reason, the framework theories 

used in this thesis w ill be normative ones: the issue of what constitutes a right decision is a 

normative question.

Overview of the Thesis

To supplement the description of SEU above, Chapter 1 will introduce the normative 

theory of Bayesian probability. In writing a thesis on the topic of probability judgments, it is 

important to acknowledge those research traditions that have questioned people’s ability to 

reason using probabilities. By way of providing a background to the present work, some key 

findings from this literature, as well as their counter-arguments are summarised, demonstrating 

that Bayesian probability is far from being a superhuman normative theory that mere mortals are 

utterly unable to approximate. Rather, given the right tasks and facilitators, people are often able 

to perform remarkably well on probability judgment tasks, as exemplified in a recent study of our 

own (Harris &  Hahn, 2009). Chapter 1 thus provides an introduction to the literature on human 

probability judgment, in order to place the subsequent empirical work in a firm theoretical 

context.

Having set the theoretical context for this work, Chapters 2, 3 and 4 provide a systematic 

investigation of the potential biasing effect of utility on estimates of probability. Despite a great 

deal of research often cited as evidence that utility does influence probability (e.g., Irwin, 1953), 

in the introduction to Chapter 2, we show that such a conclusion is premature. Furthermore, in 

Chapters 2 and 3 we undertake a systematic investigation of the possible interdependence of



event utility and probability estimates. From the research in these chapters, we conclude that 

whilst utility might lead to a biasing of probability estimates in practice, it w ill only do so 

through mediating mechanisms. Increased understanding of these mechanisms will allow the 

identification of those situations where probability estimates are most likely to be biased. In 

Chapter 2, the proposed mediating mechanism is loss function asymmetry. Hence, people bias 

their estimates of probability in one direction in order to guard against the consequences 

associated with a more costly error in the opposite direction. Such a bias can be considered 

rational in many situations (e.g., Batchelor & Peel, 1998). Chapter 4 extends this research by 

critiquing the ubiquitous finding o f unrealistic optimism in the Social Psychology literature, the 

phenomenon whereby people estimate negative events as less likely to happen to themselves than 

to others (e.g., Weinstein, 1980). We conclude that the existing evidence is not sufficient to 

enable the conclusion that this is a universal human bias. The conclusion from these three 

chapters is that there is presently insufficient evidence to suggest that probability estimates are 

routinely biased by utility, although there exist real-world situations in which a bias may emerge 

through various mediators.
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Chapter 1 - Theoretical Background

As outlined in the Introduction, this chapter w ill introduce the most established normative 

framework for probability judgments, as well as address various critiques of the normative 

frameworks of judgment and decision making. Specifically, this chapter aims to address two 

critiques that might be levied against the line of research pursued in this thesis. Firstly, why 

investigate yet another bias in human probability judgment? Do we not already know that people 

are poor at probabilistic reasoning? Errors such as the conjunction fallacy (e.g., Tversky &  

Kahneman, 1982) and base rate neglect (e.g., Kahneman &  Tversky, 1973), as well as biases of 

overconfidence (e.g., Lichtenstein, Fischhoff, &  Phillips, 1982), conservatism (e.g., Phillips &  

Edwards, 1966) and framing effects (e.g., Tversky &  Kahneman, 1981) might suggest that people 

are unable to even approximate the prescriptions of probability theory. We shall address this issue 

in the present chapter by arguing that people’s probability judgments might not be as susceptible 

to error as such research has often suggested and that these research lines are far from extinct (see 

also, e.g., Kynn, 2008). The second critique is more fundamental and was stated by Gerd 

Gigerenzer when he was the discussant in the ‘reasoning and uncertainty’ session at 

‘EUROCOGSCI 07,’ following the first presentation of work from this thesis (Studies 1 and 2). 

Gigerenzer seemed to claim that people simply do not represent single-event probabilities.

Having introduced the normative theory of Bayesian probability, we shall address each of 

the outlined critiques in turn, beginning with the more fundamental second question. This chapter 

will conclude with an example from our own research demonstrating good probabilistic 

reasoning by naive participants in a novel experimental paradigm (Harris & Hahn, 2009). The 

results from this study provide support for the contention that people are able to aspire to the 

normative prescriptions of Bayesian probability in many contexts.
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Bayesian Probability

Bayesian probability is derived directly from the fundamental mathematical axioms of 

probability theory and is concerned with the internal consistency and coherence of subjective 

probabilities. Within the Bayesian framework, therefore, probabilities are conceptualised as 

subjective degrees of belief, rather than as objective frequencies existing in the external 

environment.

Bayesian probability is not the only means with which it has been proposed that people 

can deal with uncertainty. Indeed, the fundamentality o f probability has been questioned by some 

researchers (see e.g., Politzer &  Bonnefon, 2009). Alternative rational theories for reasoning 

under uncertainty include (non-exhaustively): Plausible reasoning (e.g., Rescher, 1976), a 

“rational instrument” (p. 1) in which “the conclusion of a piece of reasoning takes its status from 

that of the “weakest” premiss” (p. xi), the Shafer-Dempster school of non-additive beliefs 

(Shafer, 1976), fuzzy set theory (Zadeh, 1965; see also, e.g., Schum, 1988, 1994), rough set 

theory (Pawlak, 1982), certainty factors (Shortliffe & Buchanan, 1975), epistemic belief theory 

(Spohn, 1990), possibility theory (e.g., Dubois &  Prade, 1988), and logical, argumentation-based 

approaches to uncertain reasoning and decision making (e.g., Amgoud, Bonnefon, &  Prade,

2005; Fox, Krause, & Ambler, 1992). A further alternative proposed in the literature is that of 

explanatory coherence (e.g., Thagard, 1989, 2000) by which hypothesis evaluation is a constraint 

satisfaction problem. Thagard proposes Explanatory Coherence as both a descriptive and 

normative theory. His argument, however, is made entirely on descriptive grounds citing factors 

such as the multitude of conditional probability judgments required for a probabilistic analysis of 

a problem, in conjunction with his argument that explanatory coherence is “psychologically 

natural in that it views inference as analogous to neurological processes in which multiple 

neurons interact in parallel” (Thagard, 2004, p. 236).
11



Probability theory, however, is a well established normative framework. Indeed, Lindley 

(1982) argues that “only probability is a sensible description of uncertainty” (p. 1). Specifically, 

Lindley (1982, 1994) demonstrates the ‘inevitability’ of the basic probability axioms, starting 

only with the assumptions that uncertainty can be represented by a number and that an urn 

containing some white and some black balls can represent a standard measurement of uncertainty 

(in the same way as length is measured with relation to the metre). The fundamental axioms of 

probability theory are (see also, e.g., Howson & Urbach, 1996): Probabilities are constrained to 

be real numbers between 0 and 1; tautologies are assigned probabilities of 1; the joint probability 

of exclusive events is equal to the sum of their individual probabilities. From these three axioms1, 

all the mathematical laws of probability necessarily follow. Furthermore, as shown by de Finetti 

(1974), given a scoring rule by which a person incurs a penalty of (1 - p )  if  an event is found to 

be true and p  if  an event is found to be false (where p  denotes a numerical value previously 

assigned by the person to the likelihood of the event in question), a person will necessarily incur 

a larger penalty if  their likelihood estimates do not obey the probability axioms (the so-called 

‘Dutch book’ argument). Lindley (1982, 1994) argues that if  other scoring rules are used then 

either people should provide responses that are, in reality, only transformations of probability 

(e.g., odds), or people should only estimate 0 or 1 (demonstrating the inadequacy of such a 

scoring rule). “All sensible rules lead back, via a possible transformation, to probability. 

Probability is inevitable” (Lindley, 1994, p. 6; see also, e.g., Cox, 1946; Horvitz, Heckerman, &

1 Some authors (e.g., Howson & Urbach, 1993) consider the definition: P(a \ b) 

be a fourth axiom of probability.

P( a&b)
-------------- , where P(b) ±0, to

p(b)
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Langlotz, 1986; Snow, 1998). Lindley’s argument is explicitly related to subjective probability, 

and he stresses the importance of considering it as a function both of the event being 

contemplated and of the knowledge of the person contemplating that event. Consequently, his 

argument is one in support of Bayesian probability.

Lindley’s (1982, 1994) arguments are examples o f ‘Dutch book’ arguments, which are 

frequently used to support the normative status of Bayesian probability (see e.g., Howson &  

Urbach, 1996). Dutch book arguments relate to a person’s betting tendencies, and rely on the 

relatively uncontroversial principle that it is undesirable to engage in a betting strategy by which 

your opponent, without having any special knowledge, is able to guarantee your loss. I f  an 

individual’s subjective beliefs are coherent with respect to the probability axioms, then this 

protects them against engaging in betting strategies that would guarantee a loss (Howson &  

Urbach, 1996), such as the following example: Suppose Nancy believes that there is a .75 chance 

of England winning the 2010 FIFA world cup. As a non-Bayesian, Nancy also believes there is a 

.55 chance of England not winning the 2010 FIFA world cup (thus violating the complementarity 

rule [.P(not a) = 1 -  P(a)]). According to her subjective probabilities, Nancy should be willing to 

wager £75 against a bookmaker’s £25 that England will win the cup. However, she should also 

be willing to wager £55 against a bookmaker’s £45 that England will not win the cup. Having 

bought both these bets, Nancy is doomed to lose money. Whether England win or don’t win the 

world cup, Nancy will collect £100 from the bookmaker. However, her total stake will have been 

£75 + £55 = £130, resulting in a net loss of £30 (see Howson & Urbach, 1996, for mathematical 

proofs as to the presence of Dutch book gambles for bets that do not obey the probability 

calculus). By contrast, if  Brenda the Bayesian also believed England to have a .75 chance of 

winning the cup, as a Bayesian she would be constrained to assigning a .25 chance to them not 

winning the cup. Consequently, she would be willing to place the same bet as Nancy on the
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possibility of England winning, but she would only be happy to bet £25 against a bookmaker’s 

£75 on the possibility of England not winning. The consistency in this betting pattern therefore 

saves Brenda from a guaranteed loss. For if  she is persuaded to bet on both the complementary 

events, she is guaranteed to break even, whilst Nancy would ensure a guaranteed loss for herself.

It is the root of Bayesian probability in the axioms of probability with their established 

normative status that makes it such an attractive framework within which to investigate human 

cognition. Given that we desire important real-world likelihood judgments to be right, we take 

the established norms of Bayesian probability as the normative framework within which we 

undertake our empirical investigation.

Do People Represent Uncertainty Quantitatively?

Having outlined the normative credentials of Bayesian probability, we now turn our 

attention to the more fundamental of the two critiques outlined above: Do people reason with 

probabilities? As outlined above, probabilities have been described as the inevitable normative 

way to represent uncertain beliefs (Lindley, 1982). In order for Bayesian probability to be a 

suitable normative framework within which to investigate human cognition, it would seem 

necessary for people to possess some sort of quantitative representation of uncertainty, otherwise 

probability could not be a meaningful psychological construct. At a more basic level, the methods 

used in this thesis will require participants to estimate probabilities. Such a methodology 

necessarily assumes that people are able to represent uncertainty quantitatively.

In order to address this question, we will consider evidence that is independent from the 

decision making literature discussed thus far. The first evidence for people’s sensitivity to 

uncertainty and, indeed, different degrees of uncertainty, comes from the number of verbal 

probability expressions that exist to express it. Table 1.1 shows 69 possible such expressions. In
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Table 1.1
A sample o f  verbal probability phrases in the English language.

Core terms Possible prefixes

Definitely
Definite
Likely

most; almost

un; very; highly; not; most 
im; most; very; quite; highlyProbable

Probably
Sure very; completely

slim; slight; sure; great; good; very good; 
there is a...; very low; poor; low; small; 
non-negligible; reasonable; meaningful; 
high;
very high; big 
very; almost 
absolutely; practically

Chance

Possible
Impossible
Might 
May 
Perhaps 
Toss-up 
Even odds 
Even chance
Certain almost; absolutely; nearly; close to; not
Doubtful
Can’t rule out
entirely
Chances are not 
great
Not inevitable 
One must consider 
It could be 
One can expect 
Reasonable to 
assume 
It seems 
It seems to me 
One should assume 
To be expected 
One chance out of 
two

Note. Phrases in this table are taken from: Beyth-Marom (1982); 
Budescu & Wallsten (1995); Mullet & Rivet (1991); Smits & Hoorens 
(2005); Wallsten, Budescu, & Zwick (1993).



the presence of such a rich corpus of language to convey uncertainty, it seems likely 

that people should have a good understanding of its quantitative nature. This is further 

supported by the acknowledgement that, despite such a rich corpus, people understand 

the vagueness associated with such terms and consequently they generally prefer to 

receive probabilistic information in numerical (as opposed to linguistic) form 

(Budescu, Weinberg, &  Wallsten, 1988; Erev &  Cohen, 1990; Wallsten, Budescu, 

Zwick, &  Kemp, 1993). Were uncertainty an inherently qualitative construct 

psychologically, it would be very strange for people to demonstrate such a preference 

for numerical information.

Recent research in neuroeconomics (whose goal is expressed as being “to 

better understand decision-making behavior by taking into account the cognitive and 

neural constraints on this process, as investigated by psychology and neuroscience, 

while also utilizing the mathematical decision models and multiplayer tasks that have 

emerged from the field o f economics” [Sanfey, 2007, p. 151 ]), has shown areas of 

brain activation that appear to be sensitive to manipulations of probability (e.g., 

Fiorillo, Tobler, &  Schultz, 2003; Morris, Arkadir, Nevet, Vaadia, &  Bergman, 2004). 

Fiorillo et al. and Morris et al. used single cell recordings of neuronal activation in 

monkeys and found sensitivity of dopamine neurons to reward probability such that 

neurons showed minimal responding to positive outcomes that were perfectly 

predicted (probability = 1). When, however, positive outcomes occurred with 

probabilities less than 1, the magnitude o f dopamine neurons responses increased as 

the probability of the reward decreased. Essentially, therefore, “the dopamine neurons’ 

response reflects mismatch between expectation and outcome in the positive domain” 

(Morris et al., 2004, p. 133). Moreover, Tobler, O'Doherty, Dolan, and Schultz (2007; 

see also, Knutson, Taylor, Kaufman, Peterson, &  Glover, 2005) effectively
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demonstrated the disassociation o f reward magnitude and probability in an 

experimental design that shed new light on decision making under risk. In a human 

fM R I study, Tobler et al. showed that brain activation in the caudate and ventro

medial putamen correlated with increases in both reward magnitude and probability. A  

medial preffontal region showed specific sensitivity to the probability manipulation 

whilst remaining insensitive to variations in reward magnitude. Most impressively, 

this study showed that activity in the medial and posterior striatum was specifically 

correlated with changes in expected value whilst remaining invariant to changes in 

reward magnitude and probability that did not produce a corresponding change in 

expected value. That is, for example, “activations differed insignificantly between 

stimuli predicting 100 reward points with P = 1.0 and 200 points with P  = 0.5 

(expected value 100 points), but activations were higher than for stimuli associated 

with an expected value o f 50 points and lower than for stimuli associated with an 

expected value of 150 points” (Tobler et al., 2007, p. 1626). The discovery that brain 

activation patterns in the medial and posterior striatum were sensitive to the 

multiplicative interaction o f probability and utility provides some support for the idea 

that the brain encodes probabilities quantitatively. Whether the manipulations of 

outcome utility and probability used in this study enable quite such a bold conclusion 

to be drawn is not clear, but it is nevertheless an intriguing piece of evidence.

This thesis w ill not make further mention of research from the emerging field 

of neuroeconomics. It suffices to say that, as the results of Tobler et al.’s (2007) study 

demonstrate, this is a research area with great promise and it may indeed hold the key 

to definitively deciding between competing descriptive accounts of human decision 

making behavior: “Demonstrating that brain areas do indeed weight and sum 

probabilities and values is an important piece of evidence that the family o f utility-
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theory models may well be an accurate representation of how the brain decides 

between alternatives” (Sanfey, 2007, p. 153).

More evidence suggesting that humans can represent uncertainty 

quantitatively, in a format that would be amenable to probabilistic reasoning comes 

from recent studies with infants. Teglas, Girotto, Gonzalez, & Bonatti (2007) 

presented evidence that 12 month old infants are able to quantify uncertainty, even in 

the absence of long run frequency data. Teglas et al. argued that infants are able to 

distinguish different probability levels (simple ‘more likely’ versus ‘less likely’ 

distinctions) for single-event probabilities dependent on the specific event 

characteristics. The studies that Teglas et al. used involved presenting infants with 

movies showing objects bouncing around inside a container. One object subsequently 

exited the container and infants looked significantly longer at the movie when the exit 

was improbable than when it was probable, thus demonstrating a recognition that this 

was an unexpected occurrence. For example, Teglas et al.’s Study 1 involved four 

objects inside a transparent container, which had an open pipe at its base, “as in a 

lottery game” (p. 19156). Three of these objects were identical, whilst one was of a 

different colour and shape. Infants looked at the movie significantly longer when the 

‘different’ object exited the container than when any of the three other objects exited 

the container. This and similar studies led Teglas and colleagues to conclude that 

infants were sensitive to the prior probabilities o f the various outcomes.

Evidence that infants can distinguish between a likely and an unlikely outcome 

for a single event probability can be taken as evidence that humans are predisposed to 

represent uncertainty quantitatively. The evidence is not, however, as conclusive as 

Teglas et al.’s (2007) study suggests. Girotto and Gonzalez (2008) conducted a series 

of studies to investigate whether children are able to revise their probabilistic beliefs in
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the light of new information. Girotto and Gonzalez tested children between the ages of 

3 years 8 months and 11 years 3 months. In Studies 1 and 2, the youngest children (all 

under 5 years old) were unable to perform above chance in choosing the more likely of 

two alternatives in a prior probability condition similar to that used in Teglas et al.’s 

studies with infants. In Girotto and Gonzalez’s prior probability condition, the 

children were shown two puppets with names that corresponded to their colour (e.g., 

Mr. Black and Mr. White). Children were told that Mr. Black owned the black chips 

and Mr. White owned the white chips. They were then shown four chips, three of 

which were one colour (e.g., black) and one o f which was the other colour (e.g., white) 

(as a memory aid, they were also given a piece o f card depicting the four chips). The 

chips were subsequently put in a bag. The experimenter told the children that they 

were going to pick a chip out of the bag and that the owner o f that chip would win a 

chocolate. Children were required to indicate which puppet they would like to be in 

order to win the chocolate (Study 1), or asked which puppet was more likely to win 

the chocolate (Study 2). I f  children understood the probability distribution in this task, 

they should have chosen to be the puppet who owned the predominant number of 

chips in the bag. Conceptually, this task is similar to that in Teglas et al., and yet the 

(approximately) 4 year old children in this study performed at chance, suggesting that 

they were unable to explicitly use the representation o f ordinal probability that the 

infants appeared to display in Teglas et al.’s study. This inconsistency does not 

invalidate Teglas et al.’s result, as the inconsistency may simply highlight the extra 

difficulty associated with verbally explicating such a representation. It does, however, 

suggest the need for further research in this area.

Girotto and Gonzalez (2008) recognised that the drawing of a chip from a box, 

although a single event, is nevertheless a random, repeatable event. In their Study 3
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they therefore used a non-repeatable, single, event produced by an intentional agent. 

Kindergartners (mean age 5 years 10 months, range 5 years 5 months to 6 years 5 

months) and older children were able to reliably use the probabilistic information 

provided to guide their decisions (again between a less likely and a more likely event). 

This study further supports human comprehension o f single-event probabilities, even 

in the absence o f educational experience. The weight o f evidence does, therefore, 

seem to support the contention that people represent uncertainty quantitatively, 

although further research is required to establish this contention beyond doubt.

Human Biases in Probability Judgment

A thesis investigating a potential bias relating to human probability judgment 

would not be complete without a discussion o f other biases previously highlighted in 

the literature (e.g., Kahneman, Slovic, &  Tversky, 1982; Phillips &  Edwards, 1966). 

Consequently, in this section we w ill provide a brief, critical summary of research 

demonstrating other failures of human probability judgment. Although the described 

biases might suggest that future work investigating the rationality of human 

probability judgment is obsolete, in reality such biases might be largely constrained to 

the laboratory and not accurately represent the competency of real-world human 

probability judgment. The tasks in which these biases manifest themselves require 

participants to aggregate unfamiliar probabilistic information, in a manner akin to a 

mathematics test. Even if  people were completely unable to approximate the 

prescriptions of probability theory in such tasks, the degree to which this research 

reflects human probabilistic reasoning in the real-world would remain unclear. The 

brief review presented next provides further support for this argument.

Throughout the 1970s and 1980s a substantial literature developed, questioning 

the rationality o f people’s probabilistic reasoning. This literature was dominated by

20



Kahneman and Tversky’s ‘heuristics and biases’ research program (e.g., Kahnemann, 

et al., 1982; Tversky &  Kahnemann, 1974), and also by research demonstrating that 

people’s belief updating is conservative with respect to Bayesian prescriptions (e.g., 

Edwards, 1968; Fischhoff &  Beyth-Marom, 1983; Peterson &  M iller, 1965; Peterson, 

Schneider, &  M iller, 1965; Phillips &  Edwards, 1966; Phillips, Hays, &  Edwards, 

1966; Slovic &  Lichtenstein, 1971). The conclusions o f these research programs 

hindered the potential growth in popularity o f Bayesian approaches in applied 

domains. The resistance to Bayesianism displayed by some applied researchers is 

summed up in a quote from Pennington and Hastie (1993, p. 213):

“It is generally known that the Bayesian system is an inadequate description of

human behavior under most conditions”.

It has, in fact, been claimed that the general conclusion of researchers and 

students without an expertise in judgment and decision making research echoes that of 

Pennington and Hastie (1993) (as noted in Christensen-Szalanski &  Beach, 1984).

Past research is not, however, as unequivocal as it is often portrayed (see e.g., Kynn, 

2008). Although the heuristics and biases program in particular has received much 

publicity, there is a considerable amount o f research that actually suggests people’s 

reasoning is able to approximate Bayesian prescriptions (see Kynn, 2008, for a concise 

review). Conclusions such as those expressed by Pennington and Hastie may arise 

partly from the citation bias in judgment research, whereby articles demonstrating 

poor human judgment are cited more often than those demonstrating good judgment. 

Although Christensen-Szalanski and Beach, in the wake of the heuristics and biases 

research, found that there were 37 articles demonstrating good human judgment
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between 1972 and 1981 and 47 demonstrating poor human judgment, the latter were 

calculated as being between six (Christensen-Szalanski &  Beach, 1984) and three 

times (Robins &  Craik, 1993) more likely to be cited than the former. In the following 

sections, we present a review of the most famous ‘non-Bayesian’ biases and the 

research they have prompted. We w ill introduce the biases and summarise some of the 

major critiques against the existence of the individual biases. At the end of the two 

sections that follow, the reader may conclude (as we do) that, although humans are not 

perfect Bayesian reasoners, they are not as inherently irrational as is often believed. 

There are certainly enough instances o f good probabilistic reasoning to motivate 

further research within this framework, as Bayesianism appears to be a normative 

standard that people can at least aspire to (see also, Parsons, 2001, p. 29).

Conservatism and Overconfidence

Conservatism was the predominant finding o f early research investigating 

whether Bayes’ Theorem could be considered a good descriptive model of human 

reasoning, that is, a model of what people actually do (e.g., Edwards, 1968; Peterson 

& Miller, 1965; Peterson, Schneider &  M iller, 1965; Phillips & Edwards, 1966; 

Phillips, Hays, &  Edwards, 1966). Typical tasks in which conservatism is observed are 

bookbag and poker chip tasks. In these tasks, different coloured chips (e.g., red and 

blue) are drawn from a bag in front o f the participant. Participants are told that the bag 

could consist o f one of a number of different proportions of red and blue chips. For 

example, the bag from which the chips are being drawn could be an 80/20 bag, a 60/40 

bag, a 40/60 bag, or a 20/80 bag (red/blue chips). For each possible bag, participants 

must estimate the probability that the chips are actually being drawn from that bag. In 

a typical, ‘online’, judgment task, participants revise these probability estimates 

following each draw from the bag. When compared against the prescriptions of Bayes’
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Theorem, participants’ probability estimates typically do not change as much as they 

should (i.e., they are conservative).

Later research using a different paradigm yielded a strong, replicable, result 

that appears opposite to the conservatism finding. This result was one of 

overconfidence (see e.g., Lichtenstein et al., 1982, for a review). Probability estimates 

are said to be overconfident if  they are anti-regressive with respect to the true, 

objective, probability. That is, i f  the true objective probability, P(x), lies below .5, an 

overconfident estimate w ill be less than P(x). Similarly, i f  P(x) is greater than .5, an 

overconfident estimate w ill be greater than P(x). The relationship between objective 

probability (x) and overconfident subjective probability (y) can therefore be expressed 

as:

y  = mx + c

where 0 < m < 1 and c > 0 (Figure 1.1). Overconfidence is the dominant finding from 

studies employing a calibration paradigm. In a calibration study, participants are 

typically required to answer a series o f true-false general knowledge questions, or 

multiple choice questions, and also to provide a confidence level, as a subjective 

degree of belief in the correctness of their answer. To determine the calibration o f the 

participants’ performance, the researcher places participants’ answers into ‘bins’ 

depending on the confidence level given. That is, all answers reported with a 

confidence between 85% and 95% are placed in a single ‘bin’. A well calibrated 

individual should therefore answer between 85% and 95% of these questions 

correctly. Typically, however, participants are overconfident (see Figure 1.1) in their 

confidence ratings. That is, of those questions which participants claim to be 90% sure 

of the answer, they answer less than 90% of them correctly. Likewise, i f  (in yet 

another instantiation o f the paradigm) participants are judging the probability that a
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statement is true and they report a probability of 10%, such an estimate is 

overconfident if  more than 10% of statements assigned such a probability are true. The 

intuitiveness of this labelling as overconfidence is clear when one considers that such 

a response is identical to one in which participants answer a true/false question as false 

and then report 80% confidence in their answer.

o
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Figure 1.1. Probability estimates that are anti-regressive from 0.5 (dotted line) 

represent overconfidence, whilst those regressive from 0.5 (dashed line) represent 
underconfidence. The solid line represents perfectly calibrated probability judgments.

The finding o f overconfidence has been much critiqued in the literature, 

leading to the conclusion that judgment researchers have “been overconfident in their 

conclusion that probability forecasters are overconfident” (Pfeifer, 1994, p. 203; see 

also, Soil, 1996). Erev, Wallsten and Budescu (1994) extended the scope of this 

critique by further accounting for results demonstrating conservative belief revision 

and demonstrating that both effects could be accounted for as resulting from the same 

statistical mechanism. Erev et al. noted that the data analysis in calibration studies 

(typically showing overconfidence) was ‘back to front’ from that in belief revision 

studies. That is, in calibration studies objective probabilities are analysed as a function 

of subjective probabilities to determine the match between the two. In revision-of-
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opinion studies, in which the dominant finding is one of underconfidence, or 

‘conservatism’ (see, Edwards, 1968; Fischhoff &  Beyth-Marom, 1983; Rapoport &  

Wallsten, 1972; Slovic &  Lichtenstein, 1971), subjective probabilities are analysed as 

a function o f objective probabilities. Erev et al. demonstrated that data from the same 

experiments could be re-analysed to show either over- or underconfidence depending 

on the analysis chosen. Furthermore, a model assuming an accurate underlying 

representation of the objective probability, but with an error component added to the 

response, led to responses that were regressive to the midpoint of the scale, which 

resembled overconfidence if  objective probability was analysed as a function of 

subjective probability and underconfidence i f  subjective probability was analysed as a 

function of objective probability. In other words, there was no real fact to the matter of 

whether responses were over- as opposed to underconfident. Furthermore, both might 

simply reflect unbiased, random error. Thus both overconfidence and conservatism 

may simply be results o f an error prone, but systematically unbiased judgment process 

with the opposing findings reflecting the different methods of data analysis employed 

(for a concise review of further critiques o f ‘conservatism’ see Ayton &  Wright,

1994).

This line o f research raises question marks over the validity of the methods and 

analyses used in studies demonstrating overconfidence and conservatism in human 

probability judgment. Subsequently, the extent o f either bias in human everyday 

reasoning is unclear, and it may even transpire that people are neither overconfident or 

conservative in their probability judgments.

‘Heuristics and Biases’

The heuristics and biases research program relates to a substantial body of 

work undertaken by Kahneman and Tversky (e.g., 1973, 1979b; Tversky &

25



Kahneman, 1973, 1974, 1982, 1983). Their research showed, using pencil-and-paper 

laboratory tasks, that people were almost universally susceptible to a variety of 

fundamental judgment biases, including: Framing effects (e.g., Tversky &  Kahneman, 

1981), base rate neglect (e.g., Kahneman &  Tversky, 1973), and the conjunction 

fallacy (e.g., Tversky &  Kahneman, 1982). A ll three o f these biases have generated a 

great deal of subsequent research.

Framing effects

Framing effects reflect the phenomenon that phrasing identical information in 

different ways affects the choices that people make. For example, if  people are 

informed that an experimental drug treatment has a 20% mortality rate within five 

years, they are less likely to choose the treatment than if  they are told it has an 80% 

survival rate (Marteau, 1989; McNeil, Pauker, Sox, &  Tversky, 1982; Wilson, Kaplan, 

& Schneidermann, 1987). Prima facie, this inconsistency in people’s choices when 

presented with logically equivalent information appears to be fallacious. McKenzie 

and colleagues (McKenzie &  Nelson, 2003; Sher &  McKenzie, 2006, 2008), however, 

have argued that although the information in the two ‘framing’ conditions is logically 

equivalent, it is not informationally equivalent. In natural language, there are a myriad 

of ways that this same information can be conveyed. That the speaker has chosen one 

means of conveyance is not random, and therefore provides information relevant to the 

hearer’s choice. McKenzie and colleagues have demonstrated that the way in which a 

speaker frames a decision provides information both about the action that they would 

recommend, and about its position relative to an implied reference point. In the above 

example, by framing the treatment in terms of its 80% survival rate, a physician is 

recommending that they would take the treatment, as well as providing information 

that 80% is better than the ‘standard’, and is thus a good statistic. By contrast, framing
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the treatment in terms of the 20% mortality rate implicitly conveys the information 

that a 20% mortality rate is higher than you should accept. According to the reference 

point hypothesis, and empirically supported in McKenzie and Nelson (2003) and Sher 

and McKenzie (2006), descriptions are more likely to be framed in terms of an 

attribute that is above the reference point, than one that is below the reference point. 

Sher and McKenzie (2006), for example, presented participants with one full glass of 

water and one empty glass o f water. They asked participants to transfer water from 

one glass to the other and then present ‘a half-full cup’, or a ‘half-empty cup.’ 

Assuming that the starting state for each cup represents its reference point, the 

reference point hypothesis predicts that participants should present the previously 

empty cup as the ‘half-full cup’ and the previously full cup as the ‘half-empty cup.’ 

These were precisely the results Sher and McKenzie observed.

McKenzie and colleagues’ critique of previous interpretations of the framing 

effect demonstrates the importance o f a full consideration of the information available 

to the participant during an experimental task. Furthermore, it demonstrates that 

framing effects do not necessarily imply that a participant is not rational. Similar, 

pragmatic-based, critiques have been levied against other tasks supposedly 

demonstrating the irrationality of people’s probability judgments.

The conjunction fallacy

The most pervasive and well-researched o f the biases identified by Kahneman 

and Tversky is the conjunction fallacy (e.g., Kahneman &  Tversky, 1982; Tversky &  

Kahneman, 1983). The significance o f the conjunction fallacy is demonstrated by the 

fact that a Google Scholar search with the term “conjunction fallacy” yielded 2,240 

hits (12/08/2009). Example materials that have led to the demonstration o f this bias 

are:
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“Linda is 31 years old, single, outspoken, and very bright. She majored in 

philosophy. As a student, she was deeply concerned with issues of 

discrimination and social justice, and also participated in anti-nuclear 

demonstrations” (Kahneman &  Tversky, 1982, p. 126).

In the simplest version o f this task, participants are asked which is more probable?

(i) Linda is a bank-teller;

(ii) Linda is a bank teller who is active in the feminist movement.

Between 80 and 90% of statistically naive participants typically rate (ii) as more 

probable than (i) (Hertwig &  Gigerenzer, 1999; Kahneman &  Tversky, 1982; Tversky 

&  Kahneman, 1983), thus violating the mathematical principle that the conjunction 

cannot be more probable them either one o f its constituent elements.

In order to report the ‘correct’ answer (that (i) is more probable), participants 

can ignore all the information presented in the materials and simply base their answer 

on the response options, as (i) must always be more likely than (ii) according to 

probability theory. Note, therefore, that these materials carry an element of pragmatic 

deceit. According to Grice’s (1975/2001) cooperative principle of conversation, the 

maxim of relation requires speakers to make their contribution relevant. I f  the ‘correct’ 

answer is most easily achieved by ignoring potentially distracting information then 

clearly the experimenter is flouting the maxim o f relation by including this irrelevant 

information (see also, Hilton, 1995, p. 250; Kahneman & Tversky, 1982). I f  

participants expect the experimenter to be co-operative in his utterances, then they are 

entitled to infer that information provided is relevant to their judgment, or why would 

it be provided? Consequently, they w ill erroneously try to make use o f it in the
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judgment task, potentially leading them to commit a conjunction error through an 

overweighting of its diagnosticity.

In addition to the issue outlined above, the conjunction fallacy has also been 

critiqued on a number o f other grounds including: The ambiguity of how to interpret 

‘Linda is a bank-teller’ (e.g., Agnoli &  Krantz, 1989; Dulany and Hilton, 1991; 

Macdonald, 1986; Markus &  Zajonc, 1985; Morier &  Borgida, 1984); the ambiguity 

of the word ‘probable’ (Hertwig & Gigerenzer, 1999); and the ambiguity of the word 

‘and’ in versions of the problem using ‘and’ to specify the conjunction, ‘Linda is a 

bank teller and is active in the feminist movement’ (Hertwig, Benz, &  Krauss, 2008). 

The ambiguity in this task is further demonstrated by a much higher percentage of 

‘don’t know’ responses in a Linda task than in a variety of other judgment tasks, both 

simple games of chance involving dice and coins and Tversky and Kahneman’s (1974) 

maternity ward study (Hertwig, Zangerl, Biedert, &  Margraf, 2008). A  further 

argument against the claim that the conjunction fallacy is evidence of human 

irrationality is presented in Bovens and Hartmann (2003). They recognise that the 

conjunction fallacy is not a violation of probability theory if  the information about 

Linda (that she is a bank teller etc.) is interpreted as being a report from a partially 

reliable source, rather than a statement o f fact. There is, therefore, debate concerning 

the degree to which a violation of the conjunction rule in the ‘Linda’ task truly 

represents a reasoning error (in addition to references above, see e.g., Chase, Hertwig, 

& Gigerenzer, 1998; Politzer &  Noveck, 1991; Wolford, Taylor, &  Beck, 1990; but 

see also, e.g., Bar-Hillel, 1991; Mellers, Hertwig, &  Kahneman, 2001; Tentori,

Bonini, &  Osherson, 2004).

Such research, along with McKenzie and colleagues’ research into framing 

effects (see above), has highlighted the importance of understanding the pragmatic
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implications involved in such judgment tasks. Hilton (1995) has also suggested a 

pragmatic explanation for results o f studies demonstrating base rate neglect (see also, 

Bimbaum, 1983). It should, however, be noted that Kahneman and Tversky 

themselves did not conclude from the heuristics and biases program that people are 

inherently irrational in their probability judgments. Their conclusion is more process 

oriented, arguing that people make their probability judgments through useful, but 

fallible heuristics such as representativeness and availability. The experiments were 

designed precisely in such a way so as to ‘bring out’ the fallibility o f these judgment 

processes (as hinted at above). Consequently, “it is not surprising that useful heuristics 

such as representativeness and availability are retained, even though they 

occassionally lead to errors in prediction or estimation” (Tversky &  Kahneman, 1974, 

p. 1130). In this thesis we are not concerned with the process by which people make 

their probability judgments. Rather, it is important to conclude at this point that, 

despite the straw-man based conclusions of (mostly) less experienced researchers (as 

noted in Christensen-Szalanski &  Beach, 1984), the heuristics and biases research 

program does not demonstrate that people’s probability judgments are inherently 

irrational (see also, Kynn, 2008).

One result arising from the ‘heuristics and biases’ debate is that there are often 

ways of improving people’s performance on such tasks. One way in which 

performance is greatly facilitated in such tasks is by the presentation of the 

information in a frequency format, rather than as a probability (e.g., Cosmides &  

Tooby, 1996; Gigerenzer, 1994; Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, &  

Woloshin, 2007; Gigerenzer &  Hoffrage, 1995).

Frequency representations are not, however, the only ways in which reasoning 

performance can be improved on such tasks. A number o f researchers have proposed,
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for example, that the improved performance on pencil-and-paper judgment tasks 

brought about by a frequency representation results not from the specific nature of this 

representation per se, but from its clarification of certain, relevant aspects of the 

reasoning problem (e.g., Agnoli &  Krantz, 1989; Ayton &  Wright, 1994; Barbey &  

Sloman, 2007; Evans, Handley, Perham, Over, &  Thompson, 2000; Girotto &  

Gonzalez, 2001; Johnson-Laird, Legrenzi, Girotto, Legrenzi, &  Cavemi, 1999;

Mellers &  McGraw, 1999; Sloman, Over, Slovak, &  Stibel, 2003; see also, Hattori &  

Nishida, in press). The “nested sets” hypothesis (e.g., Barbey &  Sloman, 2007; 

Sloman &  Over, 2003; Sloman et al., 2003) implies that frequency descriptions 

improve performance on traditional reasoning tasks, on which people are typically 

fallible (such as the conjunction fallacy and base rate neglect), because the importance 

of considering category instances (an ‘outside’ view of probability judgment) versus 

category properties (an ‘inside’ view of probability judgment) is highlighted. This 

account assumes that the representation of instances (as in a frequency description) 

makes the set inclusion relations between them transparent. The best example to 

demonstrate the importance of a recognition o f the set inclusion relations is the 

conjunction fallacy. Once the set inclusion relations inherent in a conjunction fallacy 

scenario are understood, specifically the recognition that the conjuncts are entailed by 

the conjunction, the fallaciousness o f judging the conjunction as more likely than 

either o f its conjuncts is made clear.

Agnoli and Krantz (1989; see also, Fisk &  Pidgeon, 1997) demonstrated that 

training with Euler circles (Figure 1.2) and highlighting that a category is smaller 

when extra properties are added to its definition, served to reduce instances o f the 

conjunction fallacy. Furthermore, Sloman et al. (2003) demonstrated that no 

facilitation in reasoning performance was observed for a frequency presentation when
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the nested-sets relation was made opaque, further supporting the view that it is the 

transparency o f the nested-sets relations rather than the frequency format per se that 

results in less reasoning errors.

Bank-tellers

Bank-tellers who 
are also active in 
the feminist 
movement

Figure 1.2. A Euler circle representation o f Kahneman and Tversky’s (1982) ‘Linda’
problem.

Base rate neglect

The nested sets hypothesis has also been proposed to account for improved 

reasoning performance brought about by frequency representations o f base rate 

neglect tasks (Sloman et al., 2003). Kahneman and Tversky (1973) provided the first 

systematic investigation o f base rate neglect, which is best demonstrated with 

reference to two of their experimental conditions. Kahneman and Tversky presented 

participants with the following cover story:

“A panel o f psychologists have interviewed and administered personality tests 

to 30 engineers and 70 lawyers, all successful in their respective fields. On the 

basis o f this information, thumbnail descriptions of the 30 engineers and 70
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lawyers have been written. You w ill find on your forms five descriptions, 

chosen at random from the 100 available descriptions. For each description, 

please indicate your probability that the person described is an engineer, on a 

scale from 0 to 100.” (Kahneman &  Tversky, 1973, p. 241).

When presented with only this information and asked to judge the probability that an 

individual chosen at random from this sample was an engineer, the median response 

was the normatively correct response of 30%. However, if  also presented with an 

uninformative description of the randomly chosen individual (Dick), the median 

estimate of Dick being an engineer or a lawyer were both 50%. Participants clearly 

appear to ignore the base rate information when provided with additional information, 

even though it was non-diagnostic. Kahneman and Tversky explained such responses 

in terms of the representativeness heuristic. The nondiagnostic description is equally 

representative of both engineers and lawyers and hence participants provide an 

estimate of 50%. This represents a normative violation of the prescriptions of Bayes’ 

rule, by which subsequent information should be combined with prior information to 

determine posterior probability. When subsequent information is non-diagnostic, the 

normatively correct posterior probability is equal to the prior probability.

Cosmides and Tooby (1996) demonstrated that a frequentist representation o f a 

traditional base rate neglect problem resulted in a large reduction in the instances of 

base rate neglect errors made by participants. Their investigation was based on an 

experimental scenario first used in Casscells, Schoenberger, and Graboys (1978), 

which demonstrated participants tending to completely neglect base rate information. 

Cosmides and Tooby ran a number o f experiments based on this scenario, including a 

version of the original Casscells et al. experiment designed to be conceptually
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identical to the frequency versions Cosmides and Tooby used (aside from its use of 

probabilities rather than frequencies [Cosmides &  Tooby, Experiment 5]). Using this 

scenario, Cosmides and Tooby did not observe total base rate neglect, but the 

normatively correct response was still rare. In Experiment 5, Cosmides and Tooby 

used the following scenario:

“The prevalence of a disease X  is 1/1000. A  test has been developed to detect 

when a person has disease X. Every time the test is given to a person who has 

the disease, the test comes out positive. But sometimes the test also comes out 

positive when it is given to a person who is completely healthy. Specifically, 

5% of all people who are perfectly healthy test positive for the disease.

What is the chance that a person found to have a positive result actually 

has the disease, assuming that you know nothing about the person’s symptoms 

or signs?_______ %” (Cosmides &  Tooby, 1996, p. 39).

The correct Bayesian solution to this problem, P(D\T) (probability that the person has

the disease given a positive test result) is given by Bayes’ Theorem:

P(D )P(T  I D)
P(D T) = -----------------v ’ v 1 ’--------------

P(D )P(T  | D) + P{^D )P (T  | -iD )

where P(D) is the prior probability that the person has the disease, P(T\D) is the 

sensitivity of the test -  the likelihood of a positive test result given the person has the 

disease. P(T\^D) is the false positive rate -  the likelihood of a positive test result 

when the person does not have the disease. Inserting the numbers from Cosmides and 

Tooby’s example:



Thus, the normatively correct response is 2%. In this version of the problem, only 

36% of participants gave this response (32% of participants demonstrated total base 

rate neglect by reporting 95%). When, however, the problem was presented in a 

frequency format, 72-80% of participants gave the normatively correct response 

(Cosmides &  Tooby, Experiment 2 Condition 1 and Experiment 3 Condition 2).

As stated above, Sloman et al. (2003) argue that it is not the frequency 

representation per se that improves reasoning performance on tasks such as this. 

Rather, one by-product o f a frequency representation is that it makes set inclusion 

relations clear. Sloman et al. found no difference in responses between problems 

represented in a frequency format, a probability format in which the nested-sets 

relations were made clear, or a probability format which was accompanied by Euler 

circles (Figure 1.3). The lack o f a difference between the probability format in which 

the nested-sets relations were made transparent and a frequency format demonstrated 

the merit o f the nested-sets hypothesis. The Euler circles manipulation served to 

strengthen the story and to demonstrate that there are a variety of manipulations which 

can improve participants’ reasoning performance once nested-sets relations are made 

transparent. Furthermore, Sloman et al. reported that the use of Euler circles did not 

provide an additive improvement in reasoning performance across conditions. Rather, 

it only improved performance in the probability condition in which the nested sets 

relations were not made transparent, providing evidence for the contention that it is the 

transparency o f these relations that is critical in improving reasoning performance on 

such word problems. These results provided more support for Sloman et al.’s assertion 

that: “Arithmetic operations that follow from transparent nested-set relations are easy 

to perform generally and not just in frequency problems” (Sloman et al., 2003, p. 298).
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Chance that a 
person has 
the disease All possibilities

Chance that a 
person tests 
positive for the 
disease

Figure 1.3. Euler circles used in the probability condition of Sloman et al.’s (2003)
Experiment 2.

Hattori and Nishida (in press) have provided a similar, but more specific 

account for base rate neglect, based on the principle o f equiprobability. We w ill not go 

into the details o f their account here, but it suffices to say that they too emphasise the 

importance of making task structure clear to participants. Furthermore, they provide 

yet more examples o f ways in which to improve performance on base rate neglect 

tasks, including the use o f stimuli with which participants have greater real-world 

knowledge. Such demonstrations further question the degree to which traditional 

pencil-and-paper judgment tasks reflect the competence of everyday probabilistic 

reasoning.

Summary

Recent research investigating the competency o f human probability judgment 

has raised question marks over the conclusion that people are inherently poor 

Bayesian reasoners. When tasks are constructed in such a way as to facilitate the 

correct understanding of a problem (even i f  this is a simple rephrasing in terms of 

everyday events with which people are familiar [e.g., Hattori & Nishida, in press]), 

people are often able to approximate the Bayesian response. Such results suggest
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Bayesianism as a standard to which human reasoning should aspire, and therefore as a 

suitable normative framework within which to undertake psychological research.

The ‘Probabilistic Turn '

The importance o f a thorough understanding of real-world probability biases is

further supported by the recent revival of interest in the question of the competence of

human probability judgment relating to a variety o f phenomena. In addition to the

work mentioned above relating to the conjunction fallacy (e.g., Bovens &  Hartmann,

2003) and framing effects (e.g., Sher &  McKenzie, 2008), we can add recent work

questioning the fallaciousness of people’s supposed misperceptions of randomness

(Hahn &  Warren, 2009). This renewal o f interest in human probability judgment has

coincided with a ‘probabilistic turn’ in cognitive science generally (see Chater &

Oaksford, 2008; Chater, Tenenbaum, &  Yuille, 2006; Oaksford &  Chater, 2009).

Within this ‘probabilistic turn’, Bayesian models have been applied to a variety of

areas o f human cognition, including: Causal cognition (e.g., Griffiths & Tenenbaum,

2005; Steyvers, Tenenbaum, Wagenmakers, &  Blum, 2003), vision (e.g., Weiss,

Simoncelli, &  Adelson, 2002), language acquisition and processing (e.g., Tenenbaum,

Griffiths, &  Kemp, 2006; for a review see, Chater &  Manning, 2006) and

sensorimotor control (for a review see, Kording &  Wolpert, 2006). In these areas,

human cognition has been shown to be well matched to the prescriptions of optimal

models. In the area o f sensorimotor control, for example, people seemingly

demonstrate a good understanding of the uncertainty associated with movement, to be

able to adopt a strategy that maximises reward, as prescribed by Bayesian Decision

Theory (e.g., Trommershauser, Maloney, &  Landy, 2003, 2008). Given the ability of

people to approximate the Bayesian standard in these tasks, the failure to do so in

many probability judgment tasks (see above) represents something o f a paradox. That
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people’s performance on these tasks can be improved (e.g., Hattori &  Nishida, in 

press; Sloman et al., 2003) represents one piece o f evidence suggesting that, perhaps, 

such a paradox is more illusory than real. As Chater et al. (2006) point out, it is not 

surprising that people struggle with probabilistic tasks, as people generally struggle 

with much of mathematics. However,

‘the fact that, for example, Fourier analysis, is hard to understand does not 

imply that it, and its generalizations, are not fundamental to audition and 

vision. The ability to introspect about the operations of the cognitive system 

are the exception rather than the rule -  hence, probabilistic models of 

cognition do not imply the cognitive naturalness o f learning and applying 

probability theory’ (Chater et al., 2006, p. 288)

The quote above further questions the degree to which demonstrations of probability 

judgment errors are troublesome for a probabilistic approach to cognition.

Despite the argument that ‘the cognitive naturalness of learning and applying 

probability theory’ (Chater et al., 2006, p. 288) is not necessary for a probabilistic 

account o f human cognition, all theories of decision making do assign expectancies a 

key role. People must therefore be able to represent these expectancies in some way, 

and if  such representations are susceptible to biases then so will the resulting decisions 

be. Thus, prevalent real-world biases of probability judgments are a fundamental 

research topic within a probabilistic account o f human cognition.
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An Example of Competent Probabilistic Reasoning

Thus far in this chapter, we have argued that there is evidence that people are 

likely to be able to represent uncertainty quantitatively. The established normative 

basis for a Bayesian approach to human reasoning supports continued research within 

this framework. Although a number o f judgment biases have been identified, we have 

argued that the scale o f these biases is unclear, and they are typically most apparent in 

pencil-and-paper laboratory tasks that resemble a mathematics test to participants.

That performance can be improved by clarifying certain aspects of these problems 

further questions their prevalence and relevance in real-world judgment situations. By 

contrast, for more fundamental cognitive abilities, the Bayesian framework appears to 

provide a good descriptive model of human behaviour (see e.g., Chater et al., 2006).

Having provided above a brief review o f research suggesting that people are 

poor at probabilistic reasoning tasks, in this section we w ill describe a study in which 

people appear to be very proficient, thus providing further support for a probabilistic 

approach to human reasoning. The described study (Harris &  Hahn, 2009) 

demonstrates rational belief updating on the basis o f multiple witness testimonies, and 

consequently has applied consequences for real-world decision making.

In real-world decision making contexts, including formal contexts such as the 

courtroom, people must often aggregate information they receive from different 

sources. Bovens and Hartmann (2003) demonstrated how, in Bayes’ Theorem, 

coherence, prior belief and source reliability combine to determine how likely a set o f 

testimonies is to be true. Two simple assumptions are required: Firstly, individual 

testimonies are assumed to be conditionally independent of each other, that is, the 

witnesses are conveying their own observations and have not, for example, influenced 

each other. Formally,
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P( Rl \ F)  = P( Rl \ F 9R2) 

where R{ is a report from source i and F  is the fact about which they are reporting. 

Secondly, witnesses are assumed to be partially reliable, that is they are not setting out 

to lie, but do not necessarily report the truth. Formally,

p > q >  0

where p  = the true positive rate (chance o f the witness stating F  is true given that F  is 

indeed true) and q = the false positive rate (chance o f the witness stating that F  is true 

when it is not). This also seems reasonable. I f  the witnesses are already known to be 

fully reliable (i.e., that what they say is the indubitable truth) then their reports are 

fully believed and no other feature o f the information set can influence the 

believability of that information. In addition, it is necessary for their reports to bear 

some relation to the truth (i.e. p  ^ q). Otherwise, the fact that they concur can be 

nothing other than a coincidence.

Consider that three witnesses provide reports relating to the culprit of a 

burglary: The first testifies that the burglar spoke French, the second testifies that the 

burglar was wearing a French football shirt, and the third, that the burglar was waving 

the Tricolore flag. Figure 1.4 shows the proportions o f people with such attributes in 

the population o f possible suspects. Figure 1.4 also provides information relating to 

the co-occurrence o f these attributes (their joint probability distribution). From Figure

1.4, we can read from the central part of the diagram that 10% of this hypothetical 

population are Tricolore waving, French football shirt wearing French speakers, whilst 

just 5% speak French without wearing either the football shirt or waving the flag (top 

left section). The different regions of overlap (the various ‘a ’ regions indicated in 

Figures 1.4) are included in the so-called probabilistic weight vector <u0, «i, «2,- • «n> 

(abbreviated in the following as a\). a0 captures the prior probability that all witnesses
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are correct, a\ the probability that all but one witness is correct (regardless of which 

one) and so on (see Figure 1.4).

In addition to the weight vector, ax, a further source o f influence on the 

believability of an information set is the reliability o f the witnesses. Bovens and 

Hartmann (2003) define their reliability parameter, r, directly from the Bayesian 

likelihood ratio, as 1 -  q/p. Given the assumptions above, Bovens and Hartmann (pp. 

131-133) simplify Bayes’ Theorem for the posterior degree of belief (P*) in the 

information set (Fi , . . .,/y ) having received reports (R\,...,Rn):

F(R19...,R„ IFI9...,F„)P(Fl9...,Fn) 1
P  * {Fx,..., Fn) = ---------------- — ------ — -------------=- Equation 1.1

r \ t i x , . . . ,7 v n )

to

P * (F t,...,Fn) = - 7—2----- Equation 1.2

/•=0

where r (“1- r”) equals q/p. This is a normative prescription for the updating of 

degree o f belief in the truth of a conjunction of facts ( Fx a  F2 a  ... a  Fn) reported by

multiple witnesses. The equations take into account witness reliability, prior 

probability judgments, and the degree to which the reports fit together. The influence 

of this latter factor on the posterior degree o f belief is evident from the a parameters’ 

interaction with reliability in the denominator o f Equation 1.2. Different weight is thus 

given to information dependent on its degree of consistency with the other information 

received. Equation 1.2 can be illustrated using the probabilistic information in Figure

1.4.
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French footbaTlljlmfwearers

Figure 1.4. The co-occurrence o f example attributes in the population o f suspects (the
joint probability distribution)

Implementing Equation 1.2 for Figure 1.4:

P*(F„...,F„) = . “0

Z ( a/ ' )
1=0

P * ( F  F )  = _____________ - _____________\ A i v * - 1 3 /  _ q  _ j  _ 2 X , _ 3 X
( a 0r  ) +  ( a lr  ) +  ( a 2r  ) +  ( a 3r  )

p * ( F  F )  = __________________ —__________________ = 6 6
,v ”’ (. 1 x 1) + (. 15 x .25) + (.05 x .252) + (.7 x .253)

In Harris and Hahn (2009), we undertook an empirical investigation to 

determine the extent to which people’s intuitions matched the prescriptions of the 

Bayesian formalisation. Participants read a cover story stating that a man had been 

murdered and police were searching for the body. The police had received tip-offs 

from a number o f witnesses (either two or three) as to the location of the body. These
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witnesses were described in such a way as to meet the conditional independence and 

partial reliability assumptions specified above. The tip-offs were represented visually 

on a map of the city, which participants were free to scrutinise at their leisure. In order 

to define participant reliability, participants were first presented with a map illustrating 

that the same witnesses had provided identical reports (i.e., they agreed perfectly on 

the possible location of the body) and participants were told the police’s posterior 

degree of belief in the truth o f those reports. As participants were informed that the 

police knew the reliability o f the two witnesses, this provided them with the 

information necessary to infer witness reliability. Subsequently, participants were 

asked to imagine that the same witnesses had in fact provided reports that were not 

identical, but which did overlap to some extent. Participants were asked to indicate 

how convinced, on a 21 point numerical scale, the police should be that the body is in 

the area shaded ‘red’, an area corresponding to the conjunction of the witness reports.2 

Once again, the reports were presented in a visual format, and different coloured 

shading was used to indicate regions o f different probabilistic overlap (e.g., Figure 

1.5).

Our results showed that participants’ posterior belief ratings were close 

approximations of the Bayesian norm, with the Bayesian model able to account for 

83% of the variance in participants’ ratings across the different maps used in the 

experiment. Moreover, participants’ ratings were much better predicted by the 

Bayesian model than they were by a cognitively simpler averaging model, which was 

only able to account for 50% of the variance in participants’ ratings (see Figure 1.6).

2 This area was ‘pink’ on some maps (e.g., map L2 in Figure 1.5).
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1&218.2 18.2

L2

Figure 1.5. Two examples of the maps used in Harris and Hahn (2009). Different 
coloured shading, and appropriate numbers inside the shaded grid squares illustrated 

how many (and which) witnesses had indicated a particular grid location as a possible
location of the body.
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Figure 1.6. A comparison of the fits o f a simple averaging model and the Bayesian
model with the observed ratings in Harris and Hahn (2009). Maps are arranged in 

order of increasing observed ratings. Error bars are plus and minus 95% confidence
intervals.

The results of this study again suggest that the Bayesian probability calculus is 

a normative standard for human reasoning to which people may be able to aspire. In 

this study, which used naturalistic materials and the sort of scenario with which people 

may already be familiar with from detective novels and television programmes, 

participants were able to process and aggregate complex information in a manner 

consistent with the prescriptions o f Bayesian probability. It seems very unlikely that 

participants could have performed so well on this task were they unable to represent 

uncertainty quantitatively.

In conclusion, a considerable body of research (see also, e.g., Griffiths &  

Tenenbaum, 2006) is building up, suggesting that people are more rational processors 

of probabilistic information than has previously been believed.
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Chapter Summary

The primary aim of this chapter was to address two fundamental critiques 

relating to a probabilistic approach to human reasoning: That people do not represent 

uncertainty quantitatively, and that past research demonstrating judgment errors in 

probabilistic reasoning has rendered such research pointless. These critiques were 

addressed with a critical review of the existing literature, and the illustration of 

proficient probabilistic reasoning in a recent study o f our own. We conclude that the 

extant evidence continues to suggest Bayesian probability as a suitable normative 

framework for human reasoning, and one which people should strive to aspire to. 

Consequently, it seems an appropriate framework within which to cite our empirical 

investigation. In the remainder o f this thesis, we turn our attention to the focal issue of 

whether estimates o f probability are fundamentally biased by considerations of 

outcome utility. In real-world decision making contexts, people are typically only 

interested in making probability judgments in order to guide decisions. When there are 

decisions to be made, there are also consequences to be envisioned, and hence utility

laden outcomes to be considered. The possibility o f a biasing effect of utility on 

probability estimates is therefore a potentially ubiquitous judgmental bias and one 

which would affect people throughout their daily lives in both routine decision 

making, and more formal decision making contexts, such as within the courtroom.
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Chapter 2 - Estimating the Probability of Negative 

Events

Chapter Overview

As outlined above, we are interested in the question of whether probability 

judgments are independent of event utility. It seems particularly important to be able 

to provide accurate assessments of the probability with which negative events occur 

so as to guide rational choice o f preventative actions. The question addressed in this 

chapter is whether or not our probability estimates for negative events are 

systematically biased by their severity. In a minimal experimental context including 

an unambiguous, objective representation o f probability, it is found that participants 

judge a controllable event as more likely to occur when its utility is extremely 

negative than when it is more neutral. No effect is observed when the event is not 

controllable. This result suggests a decision-theoretic explanation based on loss 

function asymmetries and supports the claim that probability estimates are not 

intrinsically biased by utilities.

Introduction

As already introduced, SEU (Savage, 1954) posits that when selecting between 

alternative courses o f action, individuals should select the alternative with the greatest 

expected benefit -  that is, individuals should seek to maximise the subjective expected 

utility o f their choice. The normative principles o f SEU dictate that the assessment of 

an outcome’s expected utility should be based on how probable that outcome is 

perceived to be (the expectancy component), and the subjective value attached to that 

outcome (the utility component). Our decision about whether or not to carry an
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umbrella, for example, should be based on how likely we think it is that it w ill rain 

and how bad it would be if  we were to get wet, compared to the irritation of carrying 

an umbrella with us unnecessarily if, in fact, it did not rain. Within this framework, 

probabilities and utilities are assumed to be independent constructs. Intuitively, one 

might not expect an individual’s estimate o f the chance o f rain to be based on their 

judgment o f how bad it would be if  they got caught without an umbrella. However, 

there is a long history o f research querying whether probabilities and utilities are in 

fact assessed independently.

Estimating Probabilities

Early research on decision-making (Crandall, Solomon &  Kellaway, 1955;

Edwards, 1953, 1962; Irwin, 1953; Marks, 1951; Morlock &  Hertz, 1964) gave some

grounds for believing that people’s estimates o f an event’s probability are influenced,

to some extent, by the event’s utility. However, these initial studies typically used

choice paradigms, and thus assessed probability judgments only indirectly. Given that

choice is governed by both probability and utility, and that both of these factors can

simultaneously and subjectively vary, it is very hard to isolate either factor using such

an approach. As such, the results from studies utilising decision-making paradigms

could generally be explained in terms of non-linear utility functions. One such

example of a phenomenon observed in decision making is that people seem to be

unduly influenced by the threat of negative consequences when assessing the best

course of action; in other words, ‘losses loom large’ (e.g. Kahneman &  Tversky,

1979a). Within Prospect theory, the ‘losses loom large’ phenomenon is explained with

reference to the non-linear utility function (typically convex for losses and concave for

gains). Consequently, no interdependence between probability and utility is necessary

to account for this (and related) findings in decision making or choice paradigms (see
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also, Edwards, 1962; Kadane &  Winkler, 1988). In addition, with respect to the 

specific ‘marked-card’ paradigm used in many of these studies, Windschitl, Smith, 

Rose and Krizan (in press) have provided support for a ‘biased-guessing’ account, 

which does not imply a biasing effect o f utility on subjective probabilities. The 

‘marked-card’ paradigm requires participants to guess whether they w ill draw a 

marked or non-marked card from a deck o f cards. The drawing of a marked card is 

associated with a value, which is either positive or negative. The typical finding is that 

there are more ‘yes’ responses to the question ‘w ill you choose a marked card’ when 

the marked card is associated with a positive outcome (e.g., Marks, 1951). Windschitl 

et al. argued that this does not imply that participants hold genuinely biased estimates 

of probability. Rather, they offer support for the contention that participants choose to 

provide an optimistic guess, whilst recognising that that guess is indeed optimistic. 

Consequently, although their guesses appear optimistic, participants maintain realism 

in their subjectively held probability estimates.

Some support for the idea that utilities might influence probability estimates 

emerges from research into the subjective interpretation of probability words (e.g., 

Weber &  Hilton, 1990). The concept of probability is inherently numerical, yet we 

often communicate probabilities through verbal descriptors such as ‘unlikely’, 

‘possible’ and ‘probable’. Several empirical studies have attempted to investigate how 

such verbal statements are selected and interpreted. In these experiments, participants 

are typically instructed to respond with a single numerical probability, or a probability 

range, to questions like the following:

“You have a wart removed from your hand. The doctor tells you it is possible 

it w ill grow back again within 3 months. What is the probability it w ill grow
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back again within 3 months?_________ ” (Wallsten, Fillenbaum, &  Cox,

1986, p. 574, italics added).

Weber and Hilton (1990; see also Verplanken, 1997) found that verbal probability 

expressions were assigned higher numerical probabilities when they referred to a 

severe (i.e. very negative) event as opposed to a more neutral event. In contrast, 

Fischer and Jungermann (1996) found that probability expressions referring to more 

severe events were given lower numerical values than those referring to more neutral 

events. Within this area o f research there is, therefore, conflicting evidence as to 

exactly how probability and utility interact.

Crucially, however, most of these findings seem to be examples of context 

effects inherent in natural language use (see e.g., Grice, 2001). Context effects on the 

interpretation and selection of vague terms are ubiquitous. There exist, for example, 

studies demonstrating the effect o f context on people’s interpretations of verbal 

expressions o f quantity. Borges and Sawyers (1974) and Cohen, Deamley, and Hansel 

(1958) demonstrated that people’s interpretation o f the exact numerical meaning of 

quantifiers depends, in part, on the absolute magnitudes of the quantities involved. 

When participants were asked to select ‘a few’, ‘some’, or ‘several’ marbles from a 

tray, the absolute number of marbles selected increased linearly with the total number 

of marbles in the tray. The base rate o f negative events also typically decreases with 

their severity (Weber &  Hilton, 1990). Hence, corresponding linguistic conventions 

for vague quantifications of probability such as ‘rare’ or ‘likely’ already predict the 

pattern found by the majority o f studies in this area -  namely a decrease in the 

numerical values assigned to probability expressions in the context of more severe 

events. Moreover, evidence for such decreases has been found in both the 

interpretation (Weber &  Hilton, 1990; Fischer &  Jungermann, 1996) and production
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of verbal probability expressions (Merz, Druzdzel, &  Mazur, 1991), suggesting a 

shared linguistic understanding. One cannot infer from such contextually bound 

variation in the numerical interpretation of verbal probability statements that people’s 

actual estimates o f probability are distorted by the utility of the outcome.

A different aspect o f the richness of natural language is demonstrated by 

Bonnefon and Villejoubert (2006). They proposed that probability expressions are 

often used pragmatically to decrease the impact of acts that threaten the ‘face’ 

(projected sense o f positive identity and public self-esteem) of an individual (Brown &  

Levinson, 1987; Goffman, 1967). In the following example, possibly is used not to 

communicate uncertainty, but rather out of politeness to reduce the impact on the 

individual’s ‘face’ : “Your bad breath is possibly the reason people shun you” 

(Bonnefon &  Villejoubert, 2006, p. 748). In fact, in this example, possibly denotes a 

high likelihood. Within the medical domain, the act o f informing a patient that they 

might develop a certain condition is a face threatening act whose threat increases as 

condition severity increases. Bonnefon and Villejoubert (2006, p. 748) therefore 

proposed that “the more severe the patient’s condition, the more likely a probability 

expression will be interpreted as a face-management device”, rather than as an 

expression of likelihood. With such an interpretation, the probability associated with 

the expression is increased. Crucially, however, both speaker and listener w ill be 

aware of the discrepancy between the underlying and expressed probabilities. 

Resulting ‘biases’ are therefore not genuine biases, as the listener is essentially 

correcting for the face-saving act of the speaker. Rather, the effect is simply a product 

of conversational convention and further demonstrates the pragmatic richness of 

natural language in conversational contexts.
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Staying with the medical domain, Wallsten (1981) reanalysed data presented in 

Fryback and Thombury (1976, as cited in Wallsten, 1981) and found that human 

diagnosticians (radiographers) overrated the probability of a “space-occupying lesion” 

(Wallsten, 1981, p. 147) being a malignant tumour as opposed to a benign cyst or 

simply a normal variation. Such a result may be seen as an instance of event severity 

(clearly a malignant tumour is a very severe event) biasing estimated probability. 

However, as recognised in Levy and Hershey (2008), event severity in these data is 

confounded with real-world prevalence as malignant tumours are relatively rare 

events. Thus, there is nothing to suggest that this result is anything more than a further 

instance o f the well established finding that low frequencies are over-estimated (e.g., 

Attneave, 1953; Lichtenstein, Slovic, Fischhoff, Layman, &  Combs, 1978). The same 

reasoning can explain the results from weather forecasting experiments in which 

forecasters have been shown to overestimate the probability of occurrence of severe 

weather events (Murphy &  Daan, 1984; Murphy &  Winkler, 1982).

A  further source that might suggest that people’s utilities systematically bias 

their probability judgments is research into estimates o f personal risk for negative life 

events. A sizeable literature reports that people are prone to ‘unrealistic optimism’ 

(e.g., Kirscht, Haefner, Kegeles &  Rosenstock, 1966; Weinstein, 1980, 1982, 1984). 

Individuals seemingly regard their own personal risk to be less than that o f the average 

person, displaying a kind of ‘invulnerability bias’ . On the assumption that one’s own 

illnesses are subjectively more negative events than another’s illnesses (especially if  

the ‘other’ is simply the ‘average person’) this would suggest that the increased 

severity o f an event leads to a (protective) depression of estimated probability. As the 

range o f negative life events included in these studies typically varies, examinations of 

correlations between the degree o f unrealistic optimism and event severity can test this
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interpretation more directly. It turns out that there is no evidence for such a 

relationship once other relevant variables (e.g. prior experience) are controlled for 

(Eiser, Eiser &  Pauwels, 1993; Heine &  Lehman, 1995; van der Velde, Hooykas &  

van der Pligt, 1992; van der Velde, van der Pligt &  Hooykas, 1994; Weinstein, 1982, 

1987, Weinstein, Sandman &  Roberts, 1990)3.

The most direct evidence for the independence o f probability and utility in the 

negative domain, to date, comes from a study by Pruitt and Hoge (1965); however, 

their study suffers from other methodological difficulties. Participants were presented 

with a sequence o f 24 flashes, each from one o f two lights. Participants were tested on

th
an unseen 25 flash. Participants were asked to rate the probability of a ‘Light A ’ (as 

opposed to ‘Light B ’) flash. Participants were also told that they would either lose or 

gain money if  the flash came from ‘Light A ’ on this trial, with the value of a ‘Light A ’ 

flash ranging from -50  cents to +50 cents. Pruitt and Hoge observed a positive linear 

relationship between the utility of the outcome and participants’ probability ratings. It 

is possible, however, that the pragmatics of the situation (i.e., the fact that they were 

taking part in an experiment) led participants to believe that it was unlikely that they 

would emerge from the study having to pay money to the experimenter. As such, 

participants may have reasonably assumed that rewarded outcomes would occur more

3 'The only exception is an experimental study by Taylor and Shepperd (1998) who led participants to 

believe they were being tested for a medical condition with either severe or non-severe consequences. 

An effect o f severity was found such that when participants were told that test results were imminent, 

optimism was elim inated  in the severe condition. This effect seems attributable to a desire not to ‘jinx’ 

things. No effect o f severity was found in participants who did not expect feedback.
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frequently than penalised outcomes. This hypothesis would predict the same linear 

trend observed in their data. In summary, there is presently no direct evidence for an 

effect of negativity on probability estimates.

There is, however, also a literature investigating whether outcome utility biases 

estimates of probability in the case of positive outcomes. Indeed, there have been more 

(and more direct) tests o f interdependence between utility and probability in the 

positive domain than in the negative domain (see Krizan &  Windschitl, 2007, for a 

review).

Price (2000) divided his participants into two teams and required them to 

estimate the probability that a member o f Team A would throw a dart closer to the 

bullseye than a member o f Team B. He found that members o f Team A gave 

significantly higher estimates than members o f Team B. This, coupled with a 

manipulation check that participants desired their own team members to win the 

contest, was taken as evidence for a wishful thinking effect. However, within the 

social psychological literature on groups there is an abundance of studies reporting 

such effects in contexts of intergroup competition (e.g. Blake & Mouton, 1961; 

Jourden &  Heath, 1996; Sherif &  Sherif, 1956), and these are well-explained by 

motivational and cognitive factors other than wishful thinking, such as the protection 

of the group’s positive self-image (Jourden &  Heath, 1996). Consequently, Price’s 

study cannot be considered to be a satisfactory test of a general wishful thinking bias.

In five empirical studies, Gendolla (1997) demonstrated that failures on 

important exams were rated as more surprising than failures on unimportant exams. 

Gendolla concluded that this effect was a result o f increased outcome desirability 

increasing outcome expectancy, which in turn made failure more surprising. Whilst he 

did produce evidence to support these relationships, this evidence does not support the
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contention that increased positive utility routinely biases expectancies. In his Study 3, 

Gendolla observed a “significant main effect o f outcome importance on rated effort 

expenditure.. .this indicated higher effort ratings in the important conditions than the 

unimportant ones” (Gendolla, 1997, p. 179). The resulting (marginal) main effect of 

outcome importance on expectancy can therefore be attributed to perceived greater 

effort, which would reasonably be associated with higher expectations of success, 

rather than a direct biasing effect of utility on expectancy.

The most extensive, direct, test o f the relationship between positive utility and 

subjective probability estimates (Bar-Hillel &  Budescu, 1995) found no evidence for 

an effect o f positive outcome utility on probability estimates. Bar-Hillel and Budescu 

observed a wishful thinking effect (such that good outcomes were rated as more 

probable than neutral outcomes) in only 30% of approximately 1300 probability 

judgments, leading them to title their paper, “The elusive wishful thinking effect.” 

They also highlighted that previous observations o f the wishful thinking effect outside 

controlled laboratory conditions (e.g. Babad &  Katz, 1991) can be well-explained as 

“an unbiased evaluation of a biased body of evidence” (Bar-Hillel &  Budescu, 1995, 

p. 100, see also Gordon, Franklin, &  Beck, 2005; Morlock, 1967). Bar-Hillel,

Budescu, and Amar (2008), for example, found potential evidence o f wishful thinking 

in the prediction of results in the 2002 and 2006 football World Cups. However, a 

further experiment showed that these results were more parsimoniously explained as 

resulting from a salience effect rather than a “magical wishful thinking effect” (Bar- 

Hillel et al., 2008, p. 282), that is, from a shift in focus that biases information 

accumulation rather than an effect of desirability per se. Moreover, tests o f the wishful 

thinking phenomenon have reported conflicting results with some finding evidence for 

wishful thinking (Price, 2000; Pruitt &  Hoge, 1965), others finding the opposite, a
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pessimism bias (Dai, Wertenbroch, &  Brendl, 2008; Mandel, 2008), while still others 

found little effect o f outcome utility at all (Bar-Hillel &  Budescu, 1995; Erev &  

Cohen, 1990). Consequently, as Krizan and Windschitl (2007) conclude in their 

extensive review of the literature on biasing effects o f positive outcomes, there is little 

evidence that desirability directly biases estimates o f probability.

In summary, despite a long history o f research potentially suggesting an 

influence o f outcome utility on probability judgments, this issue remains unsettled. 

Moreover, the lack of any direct tests in the negative domain means that the issue 

remains entirely open for probability estimates o f negative events.

Overview

In the following, we describe seven studies testing the proposition that the 

severity of negative events directly influences their perceived probability4. Study 1 

provides a demonstration that severe (extremely negative) events are assigned higher 

probability estimates than neutral events, a finding that is replicated twice (Studies 1 - 

3). By contrast, Studies 4 and 5 fail to replicate this effect in a different scenario. 

Finally, Studies 6 and 7 support an explanation for these differences in terms of loss 

asymmetry.

4 Studies 1, 2, 3, 6 & 7 were published in Harris, A. J. L., Comer, A., & Hahn, U. (2009). Estimating 

the probability of negative events. Cognition, 110, 51-64. The idea for Study 1 was conceived in 

collaboration with Adam Comer and Ulrike Hahn. The cover story for Study 1 was conceived by Adam 

Comer. The JAVA program that generated the different matrices was written by Ulrike Hahn
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A Direct Test of Severity Influence

Are severe outcomes perceived as more probable, or less probable, than neutral 

outcomes? In attempting to answer this fundamental question, it seems necessary to 

dispose of as many potential confounds as possible, and avoid the ambiguities that 

trouble the interpretation o f verbal probability expressions. We therefore wanted a task 

in which participants provided numerical estimates (see also, Pruitt &  Hoge, 1965, on 

the desirability o f numerical estimates). The main difficulty in choosing appropriate 

materials for such estimates is that, as noted, severity and probability are typically 

confounded in the real world (see also, e.g., Weber &  Hilton, 1990), such that ‘really 

bad’ events are less frequent than ‘moderately bad’ or neutral ones. At the same time, 

certain severe real-world events (e.g., accidents and fires) are judged as more 

prevalent than they truly are as a result of, for example, media coverage (e.g., Slovic, 

Fischhoff, &  Lichtenstein, 1982). This is typically construed as an example of the 

availability heuristic (e.g., Tversky &  Kahneman, 1973), which could potentially 

confound the results o f any experiment eliciting probability estimates of real-world 

events. Simply comparing estimates across events o f different severity would 

consequently be insufficient as a test for bias. What is required is an objective measure 

of the probabilities involved. Since such measures are difficult to obtain, and because 

differences in knowledge between people could furthermore give rise to rational 

deviations from these objective probabilities, we developed fictitious scenarios.

Crucial to our experimental design is the fact that participants are supplied with an 

objective basis for their subjective estimates and that this objective basis is identical 

across the severity manipulations. Any systematic difference that arises in 

participants’ estimates of probability across conditions is consequently directly 

attributable to the manipulation o f severity.
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Study 1

The purpose of Study 1 was to provide a direct demonstration of the effect of 

outcome severity on estimates o f outcome probability using a paradigm in which these 

estimates are anchored to an objective probability to which all participants have equal 

access. Specifically, the relevant probabilities were provided in a visual display. The 

use of visual displays as a means of presenting probabilistic information to 

participants has considerable precedent (e.g., Bar-Hillel &  Budescu, 1995; Cohen &  

Wallsten, 1991; Wallsten, Budescu, Rapoport, Zwick, &  Forsyth, 1986), but has not 

been used to directly investigate the relationship between the severity o f negative 

events and their probability. Participants saw cell matrices in which different coloured 

cells represented different outcomes. To make the interpretation of these matrices 

more natural, the cover story was chosen such that the spatial arrangement of the cells 

had a straightforward real-world correspondence. Specifically, the cells were 

presented as a graphical representation o f a large apple orchard. Yellow cells 

corresponded to apple trees bearing ‘bad’ apples; grey cells corresponded to ‘good’ 

apple trees. The matrix was made sufficiently large that counting the number of cells 

would have been extremely time consuming, thus ensuring that participants would be 

giving estimates even though they were being presented with an objective probability. 

The cover story associated with the display varied the significance of the ‘bad’ apples 

such that they were either fatally poisonous (the severe outcome) or tasted unpleasant 

(the neutral outcome). Participants were allocated to either the severe or the neutral 

cover story and asked to provide a probability estimate for the event in question. 

Crucially, however, all participants saw exactly the same visual displays. The 

paradigm therefore provided a direct test o f the hypothesis that outcome utility may 

alter the subjective probability of an event’s occurrence.
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Method

Participants

100 participants took part in Study 1. The study was conducted remotely using 

an internet host, iPsychExpts.com (Brand, 2005). 55 female and 45 male participants 

with a mean age of 30 completed the study, in an average time of 2.54 minutes. 50 

participants provided probability estimates o f severe outcomes, and 50 provided 

probability estimates o f neutral outcomes.

Design

Study 1 was designed to test the hypothesis that probability estimates of severe 

outcomes differ from probability estimates o f neutral outcomes. This hypothesis was 

tested using visual response matrices containing varying proportions of grey and 

yellow cells. Outcome severity was manipulated between participants, such that the 

yellow cells in the display matrices corresponded to outcomes of either extremely 

negative or neutral utility. The number o f yellow cells in the display matrices was 

manipulated within participants, such that everyone gave three estimates o f probability 

(low/medium/high outcome probability).

Materials

A visual display containing 2236 cells with a random distribution of grey and 

yellow cells was constructed with a simple JAVA program designed specifically for 

the study (see Figure 2.1). In the low probability condition of the study, the randomly 

distributed yellow cells were constrained to occupy less than 5% of the display. In the 

medium probability condition, 50% of the cells in the display were yellow. In the high 

probability condition, more than 90% o f the cells in the display were yellow. A ll 

participants viewed the same three matrices.
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Figure 2.1. An example of a cell matrix (from the medium probability level)

Depending on the outcome severity condition participants were randomly assigned to,

they read one of the following cover stories:

Severe outcome:

‘A farmer has just bought an orchard that contains over 1000 apple trees. The

picture below shows the layout of the orchard, with each coloured circle

representing an apple tree. Trees that are coloured GREY bear fruit that is

tasty, and delicious to eat. Trees that are coloured YELLOW have been

sprayed with a particularly potent type of pesticide, and bear fruit that is

fatally poisonous to humans. The farmer’s young daughter is always playing

in the orchard, and despite her father’s warnings, she often picks apples to eat

from the trees in the orchard.

Unfortunately, however, there is no way of knowing whether an apple

tree bears edible or inedible fruit without trying an apple from the tree (the
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colours grey and yellow simply represent the different types of apple). The 

safety of his daughter is extremely important to the farmer, who is very 

concerned that she might eat a poisonous apple by mistake.’

Neutral outcome:

‘A farmer has just bought an orchard that contains over 1000 apple 

trees. The picture below shows the layout o f the orchard, with each coloured 

circle representing an apple tree. Trees that are coloured GREY bear fruit that 

is tasty, and delicious to eat. Trees that are coloured YELLOW  bear fruit that 

is sour, and unsuitable for eating. Unfortunately, however, there is no way of 

knowing whether an apple tree bears edible or inedible fruit without trying an 

apple from the tree (the colours grey and yellow simply represent the different 

types of apple).’

In the severe outcome condition, participants were asked by the farmer to 

“estimate the chance of his daughter choosing an apple from a tree that bears fatally 

poisonous fruit (YELLOW ), if  she were to randomly pick an apple from any of the 

trees in the orchard”. In the neutral outcome condition, participants were asked to 

estimate the chance o f the daughter picking a sour and inedible apple.

Probability estimates were made on a 21 -point numerical scale from 0% 

(Absolutely Impossible) to 100% (Absolutely Certain). Participants responded by 

clicking on a radio button.

Procedure

The study was run through ipsychexpts.com. Having chosen to participate in 

the study, participants first viewed the consent screen, which was followed by a screen
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containing the general instructions for the study. The next three screens contained the 

experimental materials. Having completed the study, participants were required to 

enter their age and sex before finally being presented with a debriefing screen.

Results

As the study was conducted remotely using an internet host, we followed 

Bimbaum (2004b) and performed several basic checks prior to data analysis. A ll 

participants under the age of 18 were excluded (in line with departmental ethical 

guidelines), data from the same Internet Protocol (IP) address were excluded (in order 

to guard against multiple entries from the same individual), and participants with 

demographic details that aroused suspicion of fabrication (an age entry of 90 or over) 

were eliminated from subsequent analysis. In addition, we excluded participants who 

had obviously failed to understand the instructions in that they had provided estimates 

of the three, clearly distinct, levels o f probability that deviated from their basic rank 

order. Participants who failed to complete such a basic task in less than 15 minutes 

were also excluded, to ensure that people were estimating, and not counting the cells. 

Following these exclusions, 73 participants were included in the analysis, 40 in the 

severe outcome condition, and 33 in the neutral outcome condition.

A preliminary analysis was conducted to establish that the probability 

manipulation (i.e., the proportion of yellow cells in the display matrices) had in fact 

produced different probability estimates. Collapsing across both outcome severity 

conditions, a significant main effect of probability in the expected direction was 

observed, F{2, 142) = 1149.0,/?<.001, MSE = 87.9. More importantly, Figure 2.2 

displays these probability estimates, but split by outcome severity. At each level of the 

probability manipulation, the estimated proportion of yellow cells in the display 

matrices was higher in the severe outcome condition, producing an overall main effect
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of outcome severity, F (l, 71) = 7.36, p< .01, MSE = 174.60, etap2 = .09. There was no 

interaction between probability and severity, F(2, 142) = .75,/?>.05, MSE = 87.90.

100

Low Medium High

Probability Level

□ Neutral Outcome 
■ Sevsre Outcome

F igu re  2.2. The effect o f  outcome utility on probability judgments. Error bars are plus
and minus 1 standard error.

Study 2

Finding a statistically significant effect of outcome severity on judgments of 

probability in such a minimal paradigm with a patently fictitious story of no personal 

relevance to participants was sufficiently surprising that we sought to replicate this 

result. Study 2 was a direct replication of Study 1 with a different set of participants.

Method

Participants

52 female and 48 male participants with a mean age of 26 completed the study, 

in an average time of 2.56 minutes.

Design, materials and procedure

Study 2 was an exact methodological replication of Study 1.
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Results

The same basic checks were undertaken prior to analysis as were performed in

Study 1. On this occasion, however, data collection continued until there were 50

participants suitable for analysis, after exclusions, in each experimental group.

The results matched those of Study 1, with significant effects of probability,

F(2, 196) = 1656.09, p < .001, MSE = 88.75, and severity, F( 1, 98) = 4.07,/K .05, MSE 

2  l  ■= 127.67, etap = .04. The probability x severity interaction was, again, not significant, 

F(2, 196) = .004, /?>.05, MSE = 88.75.

Study 3

In order to test the generality o f the effect observed in Studies 1 and 2, we 

repeated the study with new matrices using different colours and different probability 

levels.

Method

Participants

An internet sample of 89 males and 182 females, aged between 19 and 64 

(median = 33 years) completed Study 3, in an average time of 2.91 minutes.

Design

The same mixed 3x2 design was employed as in Studies 1 and 2.

Materials

Three blue and black matrices were constructed using the JAVA program. In 

this study, the colour blue was used to represent ‘good’ apples, whilst black was used 

to represent ‘bad’ apples. The percentage of black cells in these matrices was
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approximately 20%, 50% and 80% for the three probability levels. As in Study 1, all 

participants viewed the same 3 matrices.

The same basic orchard premise was used in the cover stories, but some minor 

changes were made to the text to maximise the similarity between severe and neutral 

conditions: In the neutral outcome condition, the ‘bad’ trees had ‘been sprayed with a 

contaminated pesticide that, though not dangerous to humans, leaves the fruit tasting 

horribly sour.’ This change ensured that in both conditions the apples were sprayed 

with a pesticide (which was also ‘contaminated’ rather than a ‘particularly potent type 

o f in the severe condition) and that the effect o f the pesticide was in bold font in both 

conditions. In addition, a sentence was added to the end of the cover story stating that 

‘The happiness o f his daughter is important to the farmer, who is very concerned that 

she might eat a sour apple by mistake.’ The final modification made to the cover story 

was that in the severe condition the words ‘edible or inedible’ were replaced with the 

words ‘delicious or poisonous’.

Procedure

The procedure was identical to that in Study 1.

Results and Discussion

Participants were excluded prior to data analysis using the same criteria as in 

Studies 1 and 2. Following participant exclusions, there were 75 males and 152 

females, with 112 participants in the neutral outcome condition and 115 in the severe 

outcome condition.

The results for these participants are summarised in Figure 2.3. Again, there 

was a main effect of probability, F( 1.9, 389.6) = 1819.12,/?<.001, MSE = 94.81, and a 

main effect of severity, F (l, 206) = 4.13,/?<.05, MSE = 403.89, etap2 = .02. The
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probability x severity interaction was, once again, not significant, F( 1.9, 389.6) = 2.95, 

p>.05, MSE = 94.81 (Greenhouse-Geisser corrections applied). The results replicate 

exactly the findings of Studies 1 and 2 despite changes to colours and probabilities 

associated with the matrices, further suggesting that this is a robust effect, despite the 

minimal nature of this paradigm.
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Figure 2.3. Mean probability estimates made in Study 3. Error bars are plus and minus
1 standard error.

Study 4

So far, the effect has only been demonstrated with a single paradigm. 

Consequently, we designed both a new cover story and a different visual 

representation of probability for Study 4. The cover story introduced a bomber plane 

that had to drop the bomb it was carrying. The bomb would either fall safely in a river, 

or would explode on the land. From a visual representation of the landscape into 

which the bomb could fall, participants had to judge the probability that the bomb 

would fall on the land. In the severe condition the land was a densely populated city, 

whilst in the neutral condition it was uninhabited farmland.
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Method

Participants

An internet sample o f 44 males and 56 females aged between 18 and 60 

(median = 27 years) completed the study, in an average time of 2.52 minutes.

Design

The same mixed 3x2 (probability x outcome severity) design was used as in 

Studies 1-3.

Materials and procedure

Three visual displays were created in Microsoft’s “Paint” application. These 

visual displays consisted of a grey rectangle with a wavy blue line (representing a 

river) crossing the diagonal from the bottom left comer to the top right comer (see 

Figure 2.4). A circle, incorporating an area o f the rectangle containing both grey and 

blue was superimposed over the centre of the display. The three visual displays 

differed only in the thickness of the blue line representing the river. The low 

probability condition had the broadest river, whilst the high probability condition had 

the narrowest river.
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Figure 2.4. An example visual stimulus (from the medium probability level)

Depending on the outcome severity condition participants were randomly 

assigned to, they read one of the following cover stories:

Severe outcome:

‘A British bomber plane is running low on fuel. The only way the pilot can 

prevent it from crashing is to release the bomb it is carrying over the city 

landscape below. The blue river runs through the heart of a densely populated 

city (grey). I f  the bomb lands in the river then it will not explode and it can be 

safely defused by experts. I f  the bomb lands in the city then it will explode, 

killing all the inhabitants of the city.’

Neutral outcome:

‘A British bomber plane is running low on fuel. The only way the pilot can 

prevent it from crashing is to release the bomb it is carrying over the rural 

landscape below. The blue river runs through the heart of an expanse of
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uninhabited fields (grey). I f  the bomb lands in the river then it w ill not explode 

and it can be safely defused by experts. I f  the bomb lands in the fields then it 

w ill explode, but safely away from any humans.’

Both groups of participants read the remainder o f the cover story:

‘The pilot aims to drop the bomb within the circle depicted on the map. The 

pilot can ensure that the bomb lands within this circle, but owing to elements 

such as wind and thermal currents the bomb could land absolutely anywhere 

within this circle.’

Participants in the severe condition were then asked: ‘By looking at the 

diagram below, what do you think is the probability that the bomb w ill fall on the city, 

killing all the inhabitants?’, whilst those in the neutral condition were asked: ‘By 

looking at the diagram below, what do you think is the probability that the bomb will 

fall in the fields and explode?’

A ll other aspects of the study were identical to the preceding studies.

Results

Prior to data analysis, we excluded participants according to the same criteria 

as in the previous studies. Following participant exclusions, there remained 61 

participants (28 in the neutral outcome condition and 33 in the severe outcome 

condition).

Mean responses across all conditions were calculated and are reported in 

Figure 2.5. The expected effect of probability was observed, F(2, 118) = 492.54, 

/?<.001, MSE = 63.53. On this occasion, however, there was no effect o f severity, F (l,
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59) = .07,p>.05, MSE = 338.73, etap2 = .001, nor was there an interaction between 

probability and severity, F (2, 118) = .111,/?>.05, MSE = 63.53.

□ Neutral Outcome 
■ Severe Outcome

Low Medium High 

Probability level

Figure 2.5. The effects o f outcome utility on probability estimates. Error bars are plus
and minus 1 standard error.

Discussion

Study 4 failed to replicate the effect of outcome severity observed in Studies 1 

to 3. There were, however, perceptual differences between these studies that may have 

contributed to the different patterns of results observed. The discrete nature of the cells 

in the probability matrix used in the first three studies might give rise to a frequency- 

based representation of the information. In other contexts there have been systematic 

differences between reasoning using probabilities in frequency and non-frequency 

formats (e.g. Brase, 2008; see Gigerenzer &  Hoffrage, 1995, for a review) suggesting 

that this might be a critical difference between the scenarios.
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Study 5

Study 5 was therefore designed to reduce the perceptual differences between 

the two paradigms, whilst still keeping them distinct. Specifically, a grid was 

superimposed over the visual scene to approximate the frequency-based representation 

of probabilities (see Figure 2.6) in Studies 1-3. The cover story was subsequently 

modified accordingly.

Method

Participants

57 males and 108 females, aged between 18 and 72 (median = 35 years), 

completed this study, in an average time of 2.24 minutes, in return for 50 ipoints. For 

this study we used ipoints.co.uk™ to recruit participants, though the study continued 

to be run through ipsychexpts.com. Ipoints.co.uk sent an email to a subset o f its 

members advertising the study and informing them that they would receive 50 ipoints 

for completing it. Ipoints can be exchanged for goods and services via ipoints.co.uk, 

and one ipoint has a cash value of £0.01. Thus, participants were paid the equivalent 

of £0.50 for participating in this study.

Design

This study employed the same 3x2 (probability x outcome severity) mixed 

design as the preceding studies.

Materials and procedure

The cover story from Study 4 was adapted. The cover stories stated that there 

was a fault with the bomb jettison equipment. Participants were informed that the 

display depicted the bomb sights of an ageing plane. They were then told: ‘the
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accuracy of the sights is limited and, as such, the bomb could land in absolutely any of 

the grid squares within this circle.’

A ll other aspects of the study were identical to Study 4.

Figure 2.6. An example of the visual stimulus in Study 5 (from the medium
probability level).

Results

Participants were excluded from analysis using the same criteria as before. 

Following exclusions, 40 males and 70 females (55 in each condition), with a median 

age of 35.5 years, were included in the data analysis.

Mean probability estimates were calculated for the two experimental groups 

and are summarised in Figure 2.7.
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Figure 2 .7. The effects of outcome utility on probability estimates in Study 5. Error 
bars are plus and minus 1 standard error.

Data analysis yielded the same results as Study 4. The main effect of 

probability was significant, F(1.8, 193.1) = 1319.50,p<.001, MSE = 76.39, but there 

was no effect of outcome severity, F(l, 108) = .483,/?>.05, MSE = 238.50, etap2 = 

.004, nor was there an interaction between the two variables, F(1.8, 193.1) = .09, 

p>.05, MSE = 76.39 (Greenhouse-Geisser corrections applied).

Discussion

Study 5 replicated the null result observed in Study 4. Hence it is clear that it 

was not simply the presentation of the probabilities in a format amenable to a 

frequency-based representation of probability that led to the effect being observed in 

the orchards paradigm (Studies 1-3), but not with the bomber paradigm.

What, then, could be the critical difference between the two scenarios? One 

possibility is that the outcome is no longer under human control in the bomber 

paradigm, but potentially still is in the orchards paradigm. Specifically, the critical 

decision point has already passed in the bomber paradigm (the plane has already flown 

beyond its fuel capacity and its bomb will necessarily hit the area in question, either

73



because it is ‘ditched’ to save the plane or because it goes down with the plane); by 

contrast, participants in the orchards paradigm may believe that there is still a critical 

decision that could be made (e.g., the farmer could prevent his daughter from entering 

the orchard).

The potential relevance o f such a difference is suggested by a loss asymmetry 

account. This account is based on the idea that there are two types of errors that can be 

made in estimating probabilities, overestimates and underestimates. Crucially, the 

costs associated with these different errors are often not equivalent (see e.g., Weber,

1994). As an example, consider the possibility o f contracting meningitis if  a colleague 

has been admitted to hospital with the disease. I f  a person underestimates the 

possibility that they w ill catch meningitis then the consequences are potentially very 

negative; that is, the individual might not be prepared when they experience the initial 

symptoms and therefore they might not seek medical advice immediately and the 

disease will not be treated early enough. The costs associated with overestimating the 

possibility of contracting meningitis are not as negative: increased worry and some 

time to have one’s health checked. If, however, someone is considering the possibility 

that they will contract a cold, the asymmetry in the loss function is greatly reduced. 

The theory therefore predicts that probability estimates w ill be biased in order to 

reduce the likelihood of making the more costly error.

With reference to the present studies, the difference in the perceived human 

controllability of the different outcomes implies differences in the asymmetry of the 

loss functions associated with the severe and neutral event in each paradigm. 

Specifically, as there is no action that can be taken to alter the chance outcome in the 

bomber paradigm, there can be no asymmetry in the loss function -  whether you 

overestimate, underestimate, or correctly estimate the probability o f disaster makes no
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difference to whether or not the disaster w ill actually occur. By contrast, i f  participants 

perceived the orchards paradigm as a situation in which the farmer could potentially 

prevent his daughter from entering the orchard then a loss asymmetry exists in the 

‘severe’ condition of this task. The costs associated with an underestimate of the 

probability of the farmer’s daughter picking a fatally poisonous apple are clearly 

greater than those associated with an overestimate, as an underestimate might lead the 

farmer not to take the necessary steps to help prevent his daughter from entering the 

orchard and picking apples. Estimates are thus inflated in the severe outcome 

condition to reduce the likelihood of a costly underestimate.

Study 6

The purpose of this study was to test an asymmetric loss function based 

explanation for the different results observed using the two scenarios. We used the 

severe events from Studies 1 and 2 (where we had found an effect) and introduced a 

manipulation of outcome control. I f  the asymmetric loss function account applies, then 

higher probability estimates should be seen under conditions of control, than under 

conditions of no control.

Method

Participants

An internet sample of 81 males and 166 females, aged between 17 and 63 

years (median = 25 years) completed the study, in an average time of 3.06 minutes.

Design

A 3x2 (probability x controllability) mixed design was employed with 

probability manipulated within participants and controllability manipulated between
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participants. Each participant therefore made three probability judgments (one at each 

probability level). The order in which participants made these three probability 

judgments was randomised.

Materials and procedure

This study used the same materials as in the severe outcome condition of 

Studies 1 and 2. The controllability manipulation was based on the following, 

additional, text:

No-control:

‘As the safety o f his daughter is of great importance to the farmer he has tried 

many different solutions to try and protect his daughter. He has however been 

unable to keep his free-spirited daughter from playing in the orchard.

There remain no feasible steps that the farmer can possibly take to remove the 

chance that his daughter might eat a poisonous apple. Please estimate the 

chance of his daughter choosing an apple from a tree that bears fatally 

poisonous fruit, if  she were to randomly pick an apple from any of the trees in 

the orchard.’

High-control:

‘The safety of his daughter is extremely important to the farmer, who is very 

concerned that she might eat a poisonous apple by mistake. He is therefore 

trying to decide whether or not to erect an electric fence that carries a small 

risk of harming his daughter.
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In order to help him make his decision the farmer has asked you to estimate the 

chance of his daughter choosing an apple from a tree that bears fatally 

poisonous fruit i f  she were to randomly pick an apple from any of the trees in 

the orchard.’

There are two important pragmatic differences between the no-control and 

high-control conditions. Firstly, participants are informed either that ‘there remain no 

feasible steps that the farmer can possibly take to remove the chance of his 

daughter... ’ in the no-control condition, whilst in the high-control condition they are 

told, ‘he is therefore trying to decide whether or not to erect an electric fence... ’ The 

second difference is linked to participants’ perception of their own control over the 

negative outcome and is conveyed in participants’ instructions to estimate the 

probability. In the no-control condition, participants are simply asked to estimate the 

chance that the daughter w ill choose a fatally poisonous apple. In the high-control 

condition, participants read: ‘In order to help him make his decision the farmer has 

asked you to estimate the chance of his daughter choosing an apple... ’

In all other respects the procedure was identical to the preceding studies.

Results

Following exclusions (criteria as before), 65 males and 127 females were 

retained for analysis, 93 of whom were in the no-control condition and 99 in the high- 

control condition.

A mixed ANOVA was performed on the resulting data, summarised in Figure 

2.8. The significant effect of probability was again observed, F(1.7, 320.4) = 2949.42, 

p < .00 l, MSE = 102.86. Crucially, there was also a main effect of the controllability 

manipulation on participants’ probability estimates, F( 1, 190) = 6.27,/?<.05, MSE =
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225.92, etap2 = .03, such that probability estimates of the negative outcome were 

higher in the high-control condition. Additionally, the interaction between probability 

and the controllability manipulation was significant, F(1.7, 320.4) = 4.62,/?<.05, MSE 

= 102.86 (Greenhouse-Geisser corrections applied). This interaction is explained by 

the absence of a difference between the controllability conditions at the high 

probability level (Figure 2.8).

Low Medium High 

Probability level

Figure 2.8. Mean probability estimates in the high-control and no-control conditions 
of Study 6. Error bars are plus and minus 1 standard error.

Discussion

The results of Study 6 provide support for an asymmetric loss function based 

explanation of the biasing impact of negative utility on probability judgments. This 

study made the notion of controllability explicit in its manipulations. If  the loss 

asymmetry account is correct then there is an implicit sense of controllability in the 

version of the orchard cover story used in Studies 1 to 3. Hence it should be possible 

to match the data of the present study (with its explicit controllability manipulation) to 

the data from Studies 1 and 2 which used the same probability matrices (see Figure 

2.9).
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Figure 2.9. Plotted are the mean probability estimates of Studies 1 and 2 combined and the means 
of Study 6 in those conditions where no asymmetric loss function exists (left panel) and where an 
asymmetric loss function does exist (right panel). Error bars are plus and minus 1 standard error.

For there to be an asymmetry in the loss function associated with the 

probability estimate of an event, that event must be both controllable and severe; there 

is no asymmetry in the no-control condition of this study or the neutral outcome 

condition of Studies 1 and 2. A meta-analytic comparison of the relationships depicted 

in Figure 2.9 confirmed that the results for the respective conditions of Study 6 were 

analogous to the results of Studies 1 and 2.

Our meta-analytic procedure followed Rosenthal (1991). First, we compared 

the neutral conditions of Studies 1 and 2 (simply combining data from both, n = 83) 

with the no-control condition of Study 6 (n = 93).5 As the left panel of Figure 2.9 

shows, the respective means are virtually indistinguishable, and statistically there is no 

difference F (l, 174) = 1.35,/?>.05, MSE= 106.14, etap2 = .01. Second, we compared

5 The ipsychexpts.com software prohibited participation in any experiment reported in this chapter if the 

IP address of the potential participant was recognised as having already completed any of the 

experiments reported in this chapter. Consequently, no independence assumption is violated in these 

meta-analyses.
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the probability estimates in the severe outcome condition of Studies 1 and 2 

(combined n = 90) with those in the high-control condition of Study 6 (combined n = 

99) (right panel of Figure 2.9). Here there was some difference in that there was a 

significant interaction between probability and study, F(1.8, 333.2) = 3.95, p<.05, 

MSE = 106.67 (Greenhouse-Geisser correction applied). However, this interaction is 

compatible with the added explicitness of the event controllability in Study 6, 

compared to Studies 1 and 2, in that it is driven entirely by higher probability 

estimates at the low probability level of the high-control condition of Study 6, F (l, 

428) = 4.24,/?<.05, M SE=  163.53 (following Howell, 1997, pp. 470-471). Simple 

effects tests yielded no other significant differences between the points on the graphs 

in Figure 2.9.

One final source o f support for the loss function based explanation of Studies 1 

and 2 comes from a comparison of the effect sizes in those studies and the effect size 

of Study 6. A meta-analysis of the two manipulations comparing their effect sizes (r) 

(again following Rosenthal, 1991) finds no difference between the ‘severity’ effect of 

Studies 1 and 2 and the ‘controllability’ effect of Study 6.

In summary, the results of Study 6 coupled with the results of the meta- 

analytic comparison with Studies 1 and 2 provide good empirical support for a loss 

asymmetry account o f our findings thus far. The reason severity exerts an effect in 

Studies 1 and 2 is because the outcomes in question are still perceived to be under 

human control. The final test of this explanation would be to show that adding an 

element of control to the bomber scenario gives rise to the same effects observed in 

the orchards paradigm.
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Study 7

The asymmetric loss function account predicts that it should be possible to 

introduce an effect of outcome severity in the bomber scenario by modifying it to 

include an element o f controllability. To test this, we factorially combined a severity 

and a controllability manipulation within this scenario. The loss asymmetry account 

predicts an interaction between controllability and severity such that severe events are 

assigned higher probability estimates than neutral events in the high controllability 

condition. However, it predicts no difference between the remaining three estimates 

(the two no-control conditions and the high-control/neutral outcome condition). These 

predictions are illustrated in Figure 2.10.

| —♦— No-control 
j —m— High-control

Neutral Severe

Outcome severity

Figure 2.10. The interaction predicted in Study 7.

Method

Participants

An internet sample of 89 males and 177 females aged between 17 and 100(!) 

years completed the study, in an average time of 2.73 minutes. Once participants aged
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above 90 and under 18 were omitted, the age range was 18 to 69 years (median = 26 

years).

Design

The design was a 3x2x2 (probability x outcome severity x outcome 

controllability) mixed design in which probability was the within-subjects variable and 

outcome severity and controllability were combined factorially between subjects. 

Participants were randomly assigned to one o f the four conditions.

Materials

The visual displays were the same as those used in Study 5 (see Figure 2.6). 

However, in order to manipulate controllability it was necessary to use different cover 

stories.

The ‘high-control’ cover story read as below (in the severe outcome 

condition):

‘The RAF are in need of a new training site for their pilots. The location 

currently favoured would involve flying over the area pictured below, in which 

the white area represents a densely populated town and the blue area represents 

the river that flows through that town. Crashes and falling plane debris are not 

uncommon occurrences in RAF training sites, and if  falling debris were to land 

on a populous area, it would kill anybody beneath it. Any debris falling from 

the sky during training could land in any o f the grid squares in the picture 

below.

The RAF have asked you to use the picture below to estimate the chance that 

any falling debris would land on the densely populated dry land.’
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The final paragraph of this cover story should be emphasised. Participants were 

informed that a character in the scenario had asked for their probability judgment. As 

such, participants could legitimately infer that their judgments might affect the final 

outcome through choices made by characters within the scenarios. In the ‘no-control’ 

condition, the following sentence was inserted after the first one; ‘This is the only air 

space available to the RAF and hence must be used as the training of new pilots is 

essential.’ In addition, in the ‘no-control’ condition it was not the RAF asking for the 

probability judgment, thus minimising the perceived influence of participants’ 

probability judgments. The final paragraph in the ‘no-control’ condition therefore 

read:

‘By looking at the picture below, please estimate the chance that any falling

debris w ill land on the densely populated dry land.’

Outcome severity was manipulated within these cover stories by changing the white 

area from a ‘densely populated town’ to ‘uninhabited wasteland’ . I f  any debris was to 

fall in that area, participants were told it would Titter that area’.

Procedure

The procedure was identical to that in Study 1.

Results

Following exclusions (criteria as before), 205 participants were retained for 

analysis. Participants’ mean probability estimates in the four experimental conditions
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are shown in Figure 2.11. Visually, these results appear to be in line with our 

predictions (see Figure 2.10).

Figure 2.11. Mean probability estimates in the four experimental conditions of Study 
7. Error bars are plus and minus 1 standard error.

Statistically, we observe significant effects o f probability, F( 1.7, 342.9) =

= .02, and controllability, F (l, 201) = 4.48,/><.05, MSE = 222.41, etap = .02. In this 

overall ANOVA, the interaction between controllability and severity was not 

significant.

However, the results of planned simple effects tests (on their legitimacy in the 

absence o f a significant overall interaction see Howell, 1997, p. 415) were in line with 

our predictions. A significant effect of outcome severity was observed in the high- 

control condition, but not in the no-control condition, F( 1, 201) = 2.51,/?<.05, MSE = 

222.41; F (l, 201) = .27,p>.05, MSE = 222.41, as expected.

Another way to test the account is to apply Rosnow and Rosenthal’s (1995) 

test of the predicted pattern o f means. This test showed that the predicted pattern of 

results was supported by our data, F (l, 201) = 10.17,/?<.01, MSE = 222.41, r = .22. 

This result, which takes into account our specific predictions as to the pattern of the

58

.a
p

— No-control
High-control

a  48

44
Neutral Severe

Outcome severity

2810.62,pc.001, MSE = 65.33, severity, f ( l ,  201) = 4.17,p<05, MSE = 222.41, etap2

84



means, adds further support to our explanation of the utility/probability 

interdependence observed in Studies 1 to 3.

Discussion

Study 7 provides the first demonstration o f an effect of outcome severity on 

probability estimates with a different cover story (i.e., not involving the ‘orchards’ 

paradigm), and confirms that the critical difference between Studies 1 to 3, which 

found an effect o f severity, and Studies 4 and 5, which failed to find this effect, lies in 

the respective presence or absence of an element o f control. This further confirmation 

that an element of control is crucial for the effect o f severity to obtain directly supports 

the asymmetric loss function account.

Chapter Discussion

We have presented seven studies investigating the effect of outcome severity 

on probability estimates. Our studies used a minimal paradigm, in which an objective 

representation of the probability to be estimated was constantly available to 

participants. Studies 1, 2 and 3 (using the ‘orchards’ scenario) showed that severe 

events were rated as more likely to occur than neutral events. This result was not 

observed within the ‘bomber’ scenario (Studies 4 and 5). Studies 6 and 7 demonstrated 

the importance of the controllability o f the event in observing the effect of outcome 

severity on probability estimates; the effect was only observed for controllable events.

This overall pattern of results is explained through loss function asymmetry. 

Within the asymmetric loss function account it is assumed that people’s judgments are 

sensitive to the ‘uncertainty of the uncertainty’. For severe outcomes, it is often the 

case that the costs associated with underestimating their probability are greater than 

those associated with an overestimate. Probability judgments of such events are
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therefore inflated, which acts as a protective measure against the negative effects 

associated with an underestimate. However, there can only be costs associated with a 

mis-estimate o f the probability of an event if  a decision is subsequently based on this 

estimate. Thus this account is a decision-theoretic explanation and a loss asymmetry 

only exists i f  the event in question is somehow controllable (as a decision cannot make 

a difference if  the outcome is uncontrollable). This account thus also explains why no 

effect was observed between the two experimental conditions in Studies 4 and 5.

Lemer and Keltner (2001, Study 4) found that a fear inducement made people 

more pessimistic with regard to future events than happiness or anger inducements. 

Some might argue that in the orchards paradigm, our severity manipulation is evoking 

fear in people (possibly as a result of a simulation o f what may happen to the daughter 

[see also, Krizan &  Windschitl, 2007]), which leads them to overestimate the 

likelihood of the negative event occurring. Such an account would be plausible if  it 

were not for the results o f Studies 6 and 7. Such an account would not be able to 

account for the different results obtained under conditions of low and high 

controllability. In fact, i f  controllability were to have an effect, a fear based account 

would make the opposite predictions as fear is typically associated with low human 

controllability (as controllability is defined here) (e.g., Smith & Ellsworth, 1985), and 

thus would predict a greater effect under conditions o f low controllability than under 

conditions of high controllability. A fear based account does not, therefore, seem to be 

able to explain the data presented in this chapter.

Likewise, the data presented are not consistent with an account based on the 

surprisingness o f the outcome. Teigen and Keren (2002) found that participants 

reported greater surprise for positive outcomes than negative outcomes when the 

events were not controllable (that is, the outcomes were determined by chance). When
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an outcome was perceived as controllable (an ‘action outcome’), this result was 

reversed such that greater surprise was reported for the negative outcomes. If, as 

seems reasonable to assume (see e.g., Christensen, 1979; Fisk & Pidgeon, 1996, 1997, 

1998), people assign lower subjective probabilities to more surprising outcomes, this 

result corresponds to negative controllable outcomes receiving lower probability 

estimates than negative uncontrollable outcomes. Such a pattern is opposite to the one 

observed in the present study. This inconsistency provides further evidence for the 

lack of a simple relationship between subjective probability and surprise (see also, 

e.g., Maguire &  Maguire, 2009; Teigen &  Keren, 2002, 2003). The present loss 

asymmetry based account seems to be the most parsimonious account for the data 

presented in this chapter.

Asymmetric loss functions have received much attention in adjacent 

disciplines, especially economics (e.g. Batchelor &  Peel, 1998; Goodwin, 1996; 

Granger, 1969) and forecasting (e.g. Armstrong, 2001; Lawrence &  O’Connor, 2005; 

Lawrence, O ’Connor, &  Edmundson, 2000). Within these fields, asymmetric loss 

functions are ubiquitous. Furthermore, in many contexts, people’s sensitivity to these 

in their estimates has been shown to be rational (e.g., Batchelor & Peel, 1998; see also 

Whiteley & Sahani, 2008, and references therein). Lawrence and O’Connor (2005), 

for example, empirically manipulated the shape o f loss functions and found that 

people’s forecasts o f business data were sensitive to these different shapes. 

Asymmetric loss functions have been given far less consideration in psychology, and 

we are aware o f only a handful o f studies that have investigated the concept (e.g., 

Bimbaum, Coffey, Mellers and Weiss, 1992; Landy, Goutcher, Trommershauser, &  

Mamassian, 2007; Whiteley &  Sahani, 2008) or used it to explain past results (Weber,
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1994). What is novel about our present studies in this wider context is that they 

identify, and test experimentally, the importance of control.

Consideration o f this wider literature on asymmetric loss functions also 

clarifies what needs to be controlled. Biasing influences of loss asymmetry are found 

in meteorological forecasting (e.g., Solow &  Broadus, 1988), but clearly it is not the 

weather itself that is subject to control. What matters is simply the presence of further 

decisions on the basis of the estimated outcomes and the potential for these decisions 

to reduce associated costs (e.g., carrying an umbrella on a rainy day).

Identifying the impact of control also allows the resolution of inconsistencies 

in the literature investigating the interpretation o f verbal probability expressions. As 

noted in the introduction, verbal probability expressions are plagued by base rate 

effects and, in the real world, base rate and severity are confounded. Hence, genuine 

tests o f severity require a context in which base rates are controlled for. To date, only 

Weber and Hilton (1990) and Fischer and Jungermann (1996) have done this. 

However, in controlling for base rates, Fischer and Jungermann gave participants a 

rather unusual experimental question. Asked to make estimates relating to side effects 

of drugs they were told that “It is known that such drugs (i.e., drugs treating this 

disease) usually lead to headaches in 10 out o f 1000 cases. The information in the 

leaflet says that this particular drug “rarely” leads to headaches. Which numerical 

interval do you think matches the word “rarely”?” (Fischer & Jungermann, 1996, p.

156). Given that participants are being given an explicit anchor for their interpretations 

of probability expressions, it seems unsurprising that no effect of severity was found. 

Hence, Weber and Hilton’s studies are really the only ones to have examined a 

potential influence of severity while controlling for base rates in a meaningful way. 

However, their results were conflicting. Across two studies using regression analyses
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to factor out effects of base rate, and a further study in which they sought to 

manipulate base rates experimentally, they found higher estimates with increased 

severity only for some materials.

Specifically, only their first four medical scenarios, drawn from a previous 

study by Wallsten, Fillenbaum and Cox (1986) (see Table 2.1 [from Wallsten, 

Fillenbaum, &  Cox, 1986, p. 574]), showed a reliable positive influence between 

severity and probability. However, these were also the only scenarios that involved a 

decision and hence an element of control. In Weber and Hilton’s own scenarios, 

participants were asked to provide numerical probability estimates for statements by 

doctors given in the context of an annual medical check-up such as “your doctor tells 

you that there is a slight chance that you w ill develop an ulcer during the next year” 

(Weber &  Hilton, 1990, p. 784) or your doctor tells you that “It is likely that you will 

develop a severe and common type of influenza in the next year” (Weber & Hilton, 

1990, p. 787). No decision is implied in this context, so no increase with severity 

should be observed. By contrast, as can be seen from Table 2.1, the materials of 

Wallsten, Fillenbaum and Cox (1986) contrast a high-severity event involving a 

decision about a flu shot and its side effects, with low severity events involving little 

or no control. Consequently the strong relationship between severity and probability 

estimates observed for these four scenarios is consistent with our present results. 

Weber herself (Weber, 1994) posited that asymmetric loss functions might lead to 

effects of severity on the interpretation o f verbal probabilities. Realising, in addition, 

how the presence or absence of decisions and control affects loss asymmetries allows 

the seemingly conflicting findings in this area to be resolved.
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Table 2.1.
The scenarios used in Wallsten et al. (1986)

You normally drink about 10-12 cups of strong coffee a day. The doctor tells you that 

i f  you eliminate caffeine it is likely your gastric disturbances will stop.

What is the probability that your gastric disturbances will 

stop?_______________

You have a wart removed from your hand. The doctor tells you it is possible it will 

grow back again within 3 months.

What is the probability it w ill grow back again within 3 

months?

You severely twist your ankle in a game of soccer. The doctor tells you there is a 

slight chance it is badly sprained rather than broken, but that the treatment and 

prognosis is the same in either case.

What is the probability it is sprained?____________

You are considering a flu shot to protect against Type A influenza. The doctor tells 

you there is a chance of severe, life-threatening side effects.

What is the probability o f severe, life-threatening side effects?____________

90



Locating the Effect

The next issue to address is where in the overall process of generating and 

reporting a probability estimate participants are influenced by loss asymmetries.

Figure 2.12 illustrates the three major stages involved in the production of an estimate. 

Ascertaining the locus o f the present effect with respect to this diagrammatic 

representation (Figure 2.12) is not a straightforward task. What seems clear is that the 

present effect does not reside in the first stage o f the process. A ll the evidence required 

to make the probability estimate is available throughout the task in all our studies, and 

the differences we find across conditions cannot be construed as differences in the 

processing o f this information. In particular, the differences we observe are not based 

on the fact that people might take more care in making their estimates and are 

consequently more accurate when estimates are more important (i.e., under 

controllable, severe conditions). Across probability levels, participants’ estimates are 

higher when the outcome is severe. This means the estimates move above their 

objective values, in all but the high-probability condition where ‘increased accuracy’ 

and loss asymmetry based inflation happen to coincide. At the medium probability 

level, participants are already quite accurate in the neutral condition; the severity 

manipulation moves their estimates above the actual objective levels. In the low 

probability condition of Studies 1 and 2 the objective probability is less than 5%. 

However, the mean estimates in the neutral outcome condition lie at 13% and they 

become even higher, not lower, in the severe condition.

ReportInternal
Estimate

Evidence 
(accumulation and 

selection)

Figure 2.12. The process of making and reporting a probability estimate.
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O f course, the fact that participants are given all the information they require to 

make their estimates does not rule out the possibility that they could be drawing on 

other information in addition. Specifically, participants might use information about 

real-world base rate (Dai et al., 2008) or about real world ‘representativeness’

(Mandel, 2008; Windschitl &  Weber, 1999) as an additional source of knowledge in a 

context in which they find probability estimates difficult to make. However, effects in 

the orchards scenario are in the opposite direction to those predicted by an ‘associative 

representativeness’ or a ‘base rate influence’ account; participants w ill have had more 

experience of people picking sour rather than fatally poisonous apples, and sour apples 

are far more prevalent than apples sprayed with lethal pesticide.

Consequently, only the internal judgment and the report stage seem plausible 

sites for our loss asymmetry based effect. Do loss asymmetries bias participants’ 

internal estimates, or their reporting of those estimates? This issue is difficult to decide 

conclusively, but the evidence points toward a biasing effect of which participants are 

unaware. For one, across Studies 1 -7, those participants who did contact us with 

further questions following debriefing were interested exclusively in how accurate 

they had been. Past experimental research demonstrating effects of loss functions on 

estimates has been silent on the issue of whether or not participants might be aware of 

their bias (e.g., Bimbaum &  Stegner, 1979; Bimbaum et al., 1992; Bottom &  Paese, 

1999; Lawrence &  O’Connor, 2005; Weber, 1994), and there has been no empirical 

investigation of this issue. However, examination of the exact nature of loss 

asymmetry’s influence and the mechanisms posited in this research suggests, most 

likely, that these biases are not conscious. Most closely related to our findings is 

Weber and Hilton’s (1990) effect of loss asymmetry on the interpretation of verbal 

probability expressions. It makes little sense in this context that participants should
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consciously inflate an estimate of their own risk of disease in a fictitious doctor’s 

report, and indeed Weber (1994) viewed the effect as stemming from mental 

simulation processes for deriving the estimates themselves (as in Einhom &  Hogarth, 

1985; Hogarth &  Einhom, 1990).

Bottom and Paese (1999) had their participants engage in a bargaining task. 

Participants were assigned to pairs in which one o f them played the role o f a buyer and 

the other the role of a seller o f a used truck. Buyers were instructed to try to get a price 

below a “buyer’s reservation price” of $15,500, whilst sellers were instructed to 

attempt to agree a price above $13,500 (the seller’s reservation price). During the 

negotiation process, participants completed a form in which they estimated their 

opponent’s actual reservation price. In these forms, Bottom and Paese predicted and 

found evidence o f ‘wishful thinking’ based on loss function asymmetry. Crucially, 

there was no reason to consciously bias the report o f the price estimate, as this 

estimate was not seen by the opponent. It seems, therefore, that participants’ true, 

subjectively held, internal estimates of the reservation price were being affected by the 

asymmetric loss function, rather than merely their reports. Consideration of the 

feedback of these participants adds further support to this conclusion. At the 

conclusion of the experiment both parties in the negotiation disclosed their own 

reservation price. A number of optimistic buyers and sellers reported that they still 

believed their own optimistic estimates of their opponent’s price and concluded that 

their opponents were lying.

The final set o f experimental studies involving loss asymmetries and estimates 

we know of are those conducted by Bimbaum and colleagues (Bimbaum et al., 1992; 

Bimbaum &  Stegner, 1979). In their experiments, participants provided estimates of 

the price of a second-hand car from the point o f view of both the buyer and the seller.
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These two points of view induce different asymmetric concerns for over- or 

underestimating value: “when instructed to estimate the highest price that a buyer 

should pay, the judge [participant] considers it a costly error to set too high a price 

(because the buyer would suffer a loss) but a less costly error to offer too little 

(violating the instruction to judge the highest price)” (Bimbaum et al., 1992, p. 335). 

Thus their task is very similar to ours in that it requires what is ostensibly an estimate 

for the benefit of a third party. The bias induced by loss asymmetry figures in the best 

fitting models of this task in a mathematically non-trivial way that seems unlikely to 

be consciously accessible to participants.

In summary, related research provides some support for the contention that 

asymmetric loss functions are biasing participants’ subjectively held, internal 

representations of probability, rather than merely their reports of unbiased internal 

probabilities.

Whether our effect involves the internal estimate or its report, it is clear from 

the manipulations of control that outcome severity does not inherently bias 

probability. Specifically, there is no evidence for a simple ‘I fear...therefore I 

believe.. . ’ relationship, because the feared outcome is the same in conditions with and 

without control. Hence our results complement the consistent failure to find 

experimental evidence of an inherent bias, that is, “I wish for, therefore I believe in” 

(Bar-Hillel et al., 2008, p. 283), within the positive domain (Bar-Hillel &  Budescu, 

1995; Bar-Hillel et al., 2008; Krizan &  Windschitl, 2007). In particular, our results fit 

with Bar-Hillel and Budescu’s (1995) studies of wishful thinking in a similar 

paradigm in which the relevant objective probabilistic information was continuously 

available to participants. The apparent ‘elusiveness’ of the wishful thinking effect
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under these conditions is entirely consistent with the present findings in that there are 

no loss asymmetries associated with estimates o f those positive events.

Chapter Summary

We found experimental evidence that outcome severity influences probability 

estimates via sensitivity to loss asymmetry. This is the first clear evidence of the 

biasing influence of utility in the negative domain. It is also, to our knowledge, the 

first investigation of the impact of control on loss asymmetries. Identification of the 

role o f control allows one to make sense o f related, but seemingly mixed, results in the 

literature on the interpretation of verbal probability expressions (Weber &  Hilton, 

1990). Although the evidence suggests that utility does not inherently affect 

probability, the prevalence of asymmetric loss functions w ill mean that estimates of 

probability are frequently biased in practice.
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Chapter 3 - Estimating the Probability of Positive 

Events

Chapter Overview

Chapter 2 provided a systematic investigation o f the potential interdependence 

of negative utility and estimates of probability. The majority of the literature 

investigating the relationship between probability and utility has, however, concerned 

positive events. As outlined in the introduction to Chapter 2, the degree to which this 

literature suggests a direct influence of positive utility on probability estimates, a 

‘wishful thinking’ effect is unclear, since there are competing explanations in the 

majority of past studies. In this chapter we present four studies that use cover stories 

that are both affectively rich and increasingly personally relevant to test for a ‘wishful 

thinking’ effect. Despite these efforts, no effect o f positive utility was observed across 

the four studies.

Introduction

The studies reported in the last chapter demonstrated that people’s probability 

estimates are not routinely biased by considerations o f negative utility. We did, 

however, report evidence suggesting an indirect effect of event utility on probability 

estimates through the mediation of loss function asymmetries. In the introduction to 

Chapter 2, we highlighted that few studies directly tested the potential biasing effect of 

probability estimates by utility considerations, either negative or positive. However, 

the majority of research on the issue has concerned positive events (e.g., Babad, 1995; 

Babad &  Katz, 1991; Bar-Hillel &  Budescu, 1995; Granberg & Brent, 1983; McGuire,
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1960a, 1960b) and there are seemingly numerous indications from field study research 

suggesting that people are optimistic in that they overestimate the probability of 

positive events. Babad and Katz (1991) (see also, Babad, 1987), for example, 

demonstrated that wishful thinking in Israeli soccer fans persisted even when the 

dependent variable was sports betting, an activity which clearly rewards objectivity. 

Although such results suggest the presence of a wishful thinking bias in practice, the 

nature o f the bias is not clear from the results of such field studies, which necessarily 

lack the control of a laboratory study. As mentioned in Chapter 2, Bar-Hillel and 

Budescu (1995) posit that seeming optimism observed outside controlled laboratory 

settings can be well explained as “an unbiased evaluation of a biased body of 

evidence” (Bar-Hillel & Budescu, 1995, p. 100, see also Gordon et al., 2005; Morlock, 

1967). In this chapter, we w ill extend the direct test used in the previous chapter to test 

the influence of positive utility on probability estimates. Given that there can be no 

asymmetric loss function, by definition, for positive events, the results of the tests 

investigating the negative domain do not suggest that a wishful thinking effect should 

exist.6

It should by now be apparent that, in determining the effect of extreme utility 

on subjective probability, the approach taken has been to compare extreme utilities 

with more neutral utilities of the same valence. Such an approach is different to that in 

many previous studies which have been cited as evidence, or not, of an

6 Although Weber (1994) proposes that underestimates of positive outcomes do carry greater costs, we 

do not concur with this position. We define a cost as being a negative consequence. When dealing with 

possible positive outcomes, there are either positive consequences (the outcome occurs) or no 

consequences (the outcome does not occur).
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interdependence between probability and utility (e.g., Bar-Hillel &  Budescu, 1995; 

Irwin, 1953; Marks, 1951; Morlock, 1967; Pruitt &  Hoge, 1965). Irwin (1953), for 

example, reported a comparison of guesses made by participants when they were told 

that an outcome would win them a point (desirable) versus when it would lose them a 

point (undesirable).

There are conceptual reasons for examining positive events separately from 

negative events. There is a substantial body of research into affect suggesting that 

affect is not a unidimensional construct with negative affect at one end and positive 

affect at the other. Rather, negative affect and positive affect consistently emerge as 

two separate dimensions of self-reported mood, meaning that they are independent 

and, consequently (for example), a decrease in positive affect w ill not necessarily lead 

to a corresponding increase in negative affect (see e.g., Berscheid, 1983; Bradbum, 

1969; Isen, 1984; Watson, Clark, &  Tellegen, 1988; Watson &  Tellegen, 1985; Zevon 

& Tellegen, 1982; for a discussion see Taylor, 1991). This result has also been 

replicated cross-culturally (Watson, Clark, &  Tellegen, 1984), suggesting the 

fundamentally o f the distinction between positive affect and negative affect. 

Furthermore, a number of researchers have found positive and negative affect to be 

related to different personality factors. Costa and McCrae (1980), for example, 

reported a strong positive relationship between neuroticism and negative affect, which 

was not present for positive affect, and a positive relationship between positive affect 

and extraversion, which was not present for negative affect (see also, Tellegen, 1984; 

Warr, Barter, &  Brownbridge, 1983; Watson &  Clark, 1984). Taylor (1991) reviews 

evidence supporting the insight that negative events lead to the elicitation of more 

physiological, affective, cognitive and social processes than positive events which, in 

some respects “may take care of themselves” (Taylor, 1991, p. 80). This theoretical
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disassociation between positive and negative affect supports the present approach of 

investigating the effects o f positivity and negativity separately.

Many studies have already purported to find evidence of wishful thinking (the 

inflation of subjective probabilities concerning the occurrence of ‘good ‘events) in 

natural, real world settings (e.g., Babad, 1995; Babad &  Katz, 1991; Granberg &  

Brent, 1983). Within a controlled laboratory setting, Price (2000) reported the 

existence o f a wishful thinking effect in the laboratory using a competitive group 

paradigm, as described in the previous chapter. There, however, we argued that the 

effect observed by Price is well-explained by cognitive and motivational factors 

relating to intergroup competition (e.g., Blake &  Mouton, 1961; Jourden & Heath,

1996; Sherif &  Sherif, 1956). The existence of these confounding factors means that 

Price’s study cannot be considered a satisfactory demonstration of the wishful 

thinking effect.

In a related study, Slovic (1966) investigated the effect of outcome utility, not 

on subjective probabilities about future outcomes, but on posterior conditional 

probabilities, referring to the contents of five bags. His experiment resembled a 

traditional ‘conservatism’ task. Participants were asked to pick one of five bags 

ostensibly consisting o f different proportions o f red and blue chips. As chips are 

drawn from the bag, participants are required to estimate the probability that the bag 

has a particular proportion of red and blue chips. U tility was manipulated in this 

experiment by telling participants that they would gain or lose money if  the bag 

consisted of certain proportions of chips. Slovic’s results were mixed, with some 

participants seemingly demonstrating optimism, and others demonstrating pessimism. 

Moreover, these trends in the data failed to reach statistical significance. In 

Experiment II, participants were offered monetary incentives for accuracy. In this
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experiment, there was evidence that some participants ‘hedged their bets’ by 

consciously biasing their probability estimates in favour o f the bags associated with a 

monetary loss, in order to strategically protect themselves against losing money. This 

result demonstrates the pragmatic difficulties associated with using negative and 

positive monetary payoffs to manipulate outcome utility in experiments, a point also 

made in Chapter 2 with reference to the Pruitt and Hoge (1965) study.

The wishful thinking effect has, however, already been tested more directly 

within a controlled laboratory setting using a paradigm very similar to that introduced 

in Chapter 2. Bar-Hillel and Budescu (1995) used visual matrices (white and pink) to 

provide participants with an identical objective basis for their probability judgments 

across conditions and failed to find evidence of a wishful thinking effect. The outcome 

utility manipulation in this experiment was not however qualitatively equivalent to 

that employed in Chapter 2, and this is why the possible existence of a wishful 

thinking effect requires further investigation under controlled conditions.

In Bar-Hillel and Budescu’s (1995) design, desirability was manipulated only 

through the use of monetary incentives. A white square might, for example, represent 

a win of 50NS (New Israeli Shekels, at the time worth approximately $20), as in their 

high gain condition (Study 1, Experiment 1). Their failure to find significant results 

could result from the affective poverty of their desirability manipulation. Rottenstreich 

and Hsee (2001) have demonstrated a disassociation between affect and evaluation 

based on monetary value. Whilst having the same monetary value, a $500 coupon ‘that 

could be redeemed towards expenses associated with a summertime European 

vacation’ (Rottenstreich and Hsee, 2001, p. 187) was found to carry more affective 

value than a $500 coupon that could be redeemed as money towards university tuition 

payments. Similarly, Shaffer and Arkes (in press) demonstrated that, when evaluated
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separately in a between-subjects design, non-cash rewards tended to be evaluated 

more favourably than cash rewards of an equivalent value. Given our use o f between- 

subjects designs, necessary to avoid potential demand characteristics in these studies, a 

non-cash manipulation of outcome utility would seem to increase the likelihood of 

observing a wishful thinking effect in a laboratory study, as also posited by 

Rottenstreich and Hsee (2001, p. 185): “Although probability-outcome independence 

may hold across outcomes having different monetary values, the affective approach 

implies that it is unlikely to hold across outcomes having different affective values.”

In addition to the lack of an affective quality to the rewards used in Bar-Hillel 

and Budescu (1995), the specific hypothesis tested in their data analyses may have 

contributed to the null results reported in their paper. Bar-Hillel and Budescu assume 

that if  people’s probability judgments are influenced by outcome (un)desirability then 

this is in the direction of a general optimism effect, as represented by the top panel of 

Figure 3.1. Although not demonstrating a direct effect of utility on probability 

estimates, the results in the previous chapter demonstrate an indirect effect of utility 

on probability estimates in the direction of pessimism (see also, Dai et al., 2008; 

Mandel, 2008). Consequently, a general optimism effect does not appear to exist. In 

all of their analyses, Bar-Hillel and Budescu treat outcome desirability as a 

unidimensional variable with levels from very undesirable through to very desirable, 

as operationalised by the monetary gain or loss associated with the outcome. I f  our 

conceptualisation (that outcome desirability is a two dimensional variable) is, in fact, 

more accurate, as it appears to be (see also, Taylor, 1991), then it is of little surprise 

that the results o f their ANOVAs yielded no significant effect of wishful thinking in 

the majority of instances. For negative events ( if  a loss function asymmetry was 

present), the severity of the negative outcome would have been expected to exert the
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opposite to an optimism effect in some instances, which would consequently cancel 

out the desirability effect in the positive domain. Indeed, in Bar-Hillel and Budescu 

(1995, p. 80), when the outcome was assigned personal relevance (the condition in 

which all effects of outcome (un)desirability are expected to be greatest), for 5 out of 

the 10 target proportions in two different response formats, the judged probability of 

the target event was greater in the high loss condition than the low loss condition 

(whilst only 3 out of 10 showed the opposite effect). Averaging across the target 

proportions for each response format, higher probability estimates were made in the 

high loss condition than in the low loss condition. As their theoretical approach does 

not consider such a possibility, there is no further mention o f this bidimensionality in 

their paper.

o +

Value

o +

Value

Figure 3.1. A  graphical comparison of a general optimism theory (top panel) with an 
‘It can happen to me’ (Slovic, 1966, p. 23) theory (bottom panel). Reproduced with

permission from the author.
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Study 8

Study 8 used the paradigms developed in the previous chapter to investigate 

the effect of positive outcome utility on probability estimates. In concordance with the 

scenarios used in the previous chapter, we sought to maintain an affective quality in 

the stimuli we used for this investigation, in order to enhance the possibility of finding 

a wishful thinking effect. In addition, and in accordance with our thinking above, 

Slovic (1966) postulates that it is the affect associated with extremely positive 

outcomes that might lead to a wishful thinking effect.

Method

Participants

Participants were recruited via the ipsychexpts.com website. The same basic 

checks of the data as those described in Study 1 were carried out as the data were 

being collected. Participants whose data did not meet the eligibility criteria were 

excluded from subsequent analyses. Data collection continued until there were 50 

participants in each experimental condition (48 male and 52 female participants aged 

between 18 and 55 [median age = 23]).

Design

The hypothesis under investigation was whether probability estimates for 

extremely good (‘positive’) outcomes were different from those for more neutral 

( ‘neutral’) outcomes. The central independent variable of interest was therefore the 

utility o f the outcome, which was manipulated between participants through two 

different cover stories, one for each outcome utility. A second independent variable, as 

in the previous studies already described, was the objective probability o f the
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outcome. This second independent variable was manipulated within participants using 

the same visual matrices described in the previous chapter (Studies 1 and 2; see Figure 

2.1). The order in which participants saw the different probability matrices was 

randomised across participants. The dependent variable was the probability estimates 

obtained from participants.

Materials and procedure

The visual matrices used in this study were the same as those used in Studies 1 

and 2 above (see Figure 2.1). The procedure was likewise the same as for those studies 

and it was conducted over the internet using the website ipsychexpts.com. From the 

perspective of the participant, the only difference between this study and Study 1 was 

in the cover stories: Participants read that Rolex’s annual employee of the year is 

given the chance to take part in a lucky dip from a selection of identical boxes held in 

the company storeroom. Participants were informed that some of the boxes were 

empty whilst some contained ‘a diamond encrusted Rolex watch with a retail price of 

£9,820’ (in the positive outcome condition) or ‘a Rolex paperweight with a retail price 

of £9.99’ (in the neutral outcome condition). Participants were presented with the 

visual matrix and told that yellow cells represented boxes containing Rolex products, 

whilst the grey cells were empty.

Participants were asked to ‘estimate the chance that John will pick a box 

containing a diamond encrusted Rolex watch’ or ‘estimate the chance that John will 

pick a box containing a Rolex paperweight’. They then gave their responses by 

clicking on the appropriate radio button, the radio buttons ranged from 0% (absolutely
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impossible) to 100% (absolutely certain [100% certain]). The scale was further 

anchored at 50 (a 50/50 chance). Buttons were included for every 5% interval7.

After having made their three probability judgments and given their 

demographic details, participants were presented with a screen debriefing them as to 

the purpose of the study.

Results

Data exclusions had already been carried out before the data were analysed 

(see above). However, when analysing the data o f the 100 eligible participants, it was 

found that a 17 year old male had incorrectly been included. This participant was 

subsequently removed from analysis, in line with departmental ethical guidelines, and 

analysis continued. This removal meant that there were only 49 participants in the 

positive outcome condition.

Figure 3.2 summarises the results and subsequent statistical analyses indicated 

that whilst there was a significant effect of probability, F{2, 188) = 1434.254,/?<.001, 

MSE = 88.09, there was no effect of the outcome utility manipulation, F (l, 94) = .278, 

p> .05, MSE = 165.34, etap2 = .003, nor was there an interaction between probability 

level and outcome utility, F(2, 188) = .752,/?>.05, MSE = 88.09.

7 Adam Comer assisted with the writing of the cover story for Study 8.
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Figure 3.2. Mean probability estimates at the different probability levels in the 2 
experimental groups. Error bars are plus and minus 1 standard error.

Discussion

The results of Study 8 replicate Bar-Hillel and Budescu’s (1995) failure to find 

an effect of wishful thinking when participants are provided with an objective basis for 

their probability judgments. It could, however, be argued that the utility manipulation 

was not sufficiently strong to affect the probability estimates. A further study was 

designed that attempted to strengthen this manipulation to test the existence of a 

wishful thinking effect.

Study 9

In this study we sought to increase the strength of the manipulation of positive 

outcome utility, whilst still maintaining the third person nature of the scenario. 

Although the event included in the cover story concerned a third party, the potential 

eventual outcome was introduced as being beneficial to society as a whole. The cover 

stories were also piloted to ensure the validity of the manipulation. Six participants 

rated the desirability of the positive outcome and a further six rated the desirability of
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the neutral outcome. The positive outcome was rated as significantly more desirable 

than the neutral outcome, f(10) = 3.29, p<.01. Thus, the validity of the manipulation 

was confirmed.

Method

Participants

For this study we used ipoints.co.uk™ to recruit participants. The recruitment 

process was the same as for Study 5 and participants again received 50 ipoints for 

participating in this study. 58 males and 80 females, aged between 16 and 72 (median 

age = 34.5 years) participated in this study.

Design and materials

The design was identical to Study 1, with the same visual matrices used to 

provide an objective anchor for the probability estimates. A different cover story was 

written to manipulate outcome utility.

Neutral outcome:

‘Across the planet there is great variety in plant life. One thing that has been 

gained from the discovery of new plant species is numerous cures for different 

diseases. It seems probable therefore that there is an abundance of plant life in 

rainforests that can yet be discovered that may hold the key for the cure of cold 

sores. Cold sores are itchy and unsightly and many people would love the 

chance to find a genuine cure for these blemishes.

A team of investigative scientists are in the Amazonian rainforest searching for 

plants that may form the basis of a cure for cold sores. There are indeed plants 

with the capacity to cure cold sores within the rainforest. However, they are
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only found in some of the rainforest’s many research sites. The research team 

can only search one research site within the rainforest.

The matrix below depicts the different research sites located in the Amazonian 

rainforest. Plants with the capacity to cure cold sores only exist in those 

research sites represented by a YELLOW  square.

By looking at the matrix below, what do you think is the chance that the 

team are searching in a site containing plants with the capacity to cure 

cold sores (a YELLOW area), thus one day ridding millions of cold sore 

sufferers of these unsightly blemishes?’

Positive outcome:

The cover story in the positive outcome condition was the same except that the 

plants being searched for might form the basis for the cure of cancer, rather than cold 

sores. Aside from changing the words cold sores to cancer, the last sentence of the first 

paragraph contained a description of cancer intended to highlight the severity of the 

disease and therefore, we hoped, the extreme positivity o f finding a cure for the 

disease. The sentence read: ‘Cancer is one of the leading causes of death in the 

Western World, accounting for 25% of deaths in the UK. In 2004, 153,397 people 

died from cancer.’ In a further effort to increase the salience of the beneficial effect of 

finding these plants, the final clause of the final paragraph read: ‘thus one day saving 

the lives of millions of cancer sufferers across the globe?’

Procedure

The procedure for Study 9 was identical to that for Study 5.
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Results

Participants were excluded from the analysis using the same criteria as in 

Study 1. As was the case in Study 5 in the previous chapter, there were uneven 

numbers of participants in the experimental conditions. Following exclusions (criteria 

as before) there were 44 participants in the neutral outcome condition and 57 in the 

positive condition. As a result o f the large discrepancy between the sizes of the two 

experimental groups in this study, we decided to exclude the final 13 participants to 

submit data to the positive condition from the analysis thus leaving 44 participants in 

each experimental condition.

Despite the apparent validity o f the outcome utility manipulation (as suggested 

by the results o f the pilot study), the means presented in Figure 3.3 suggest little effect 

of the outcome utility manipulation. This is supported by a mixed ANOVA performed 

on the data. No significant effect of outcome utility was observed, F( 1, 86) = 1.05,

'y
p> .05, MSE = 481.24, etap = .012, nor was there an interaction between outcome 

utility and probability, F(2, 172) = .14,/?>.05, MSE = 144.77, etap = .002. It should 

be highlighted that not only was there no significant effect of the utility manipulation, 

but that the non-significant trends in the data were in the opposite direction to those 

predicted by the wishful thinking hypothesis.
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Figure 3.3. Mean probability estimates in Study 9. Error bars are plus and minus 1
standard error.

Discussion

Study 9 replicated the null result observed in Study 8, that is, no effect of 

outcome utility was observed on participants’ probability estimates for these positively 

valenced events. In addition, in Study 9, across all three probability levels there was a 

trend for lower probability estimates to be given in the positive outcome utility 

condition. The results of the pilot test that tested the strength of the manipulation, 

coupled with the trend for the results to be in the opposite direction suggests that 

participants truly did not exhibit a wishful thinking effect in this study. In order to 

make sure that this null result in Study 9 was not, however, an artifact of the 

recruitment method used, we carried out a direct replication of the study that did not 

recruit participants via ipoints.co.uk.
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Study 10

Method

Participants

An internet sample of 38 males and 62 females, aged between 38 and 62 

(median age = 34 years) participated in Study 10.

Design and materials

The study design and materials were identical to those of Study 9.

Procedure

The procedure was identical to that in Study 1.

Results

Following exclusions (criteria as before), there were 48 participants in the 

neutral condition and 52 in the positive outcome condition. The results of the study 

replicated those o f Study 9, showing a main effect of probability level, F{2, 196) = 

1411.92, ̂ ><.001, MSE = 92.31, but no effect of the utility manipulation, F( 1, 98) = 

0.02, p> .05, MSE = 249.85, etap = .000, or interaction between probability and utility, 

F(2, 196) = 2.25,£>>.05, MSE= 92.31, etap = .022. Moreover, Figure 3.4 shows that 

probability estimates tended to be slightly higher in the neutral condition than in the 

positive outcome condition (as in Study 9). In this study there was, however, a trend 

for the estimates at the high probability level to be higher in the positive outcome than 

in the neutral outcome condition.
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Figure 3.4. Mean probability estimates in Study 10. Error bars are plus and minus 1
standard error.

Discussion

The results of Studies, 8, 9 and 10, especially when considered in conjunction 

with the results of Bar-Hillel and Budescu (1995), suggest that the wishful thinking 

effect does not occur under controlled laboratory conditions. Such a result supports the 

argument that results showing that sports supporters believe their supported team is 

more likely to win than the opposition (e.g. Babad &  Katz, 1991), and that people 

predict their preferred outcome of a political election (e.g. Babad, 1995; Granberg &  

Brent, 1983) are the result of an “unbiased evaluation of a biased body of evidence.” 

(Bar-Hillel & Budescu, 1995, p. 100). The results of Babad (1995) and Granberg and 

Brent (1983), for example, could be explained by reference to the consensus bias 

which leads people to overestimate the number of people who share their point of 

view (e.g., Brown, 1982). The results of Babad and Katz (1991) similarly could be 

attributed to a bias in the knowledge base of sports fans who might subjectively 

‘know’ more of their supported teams strengths than the opposition’s. Alternatively, 

motivational and cognitive factors related to the group characteristic of a sports fan,
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such as the protection of the group’s positive self-image (Jourden &  Heath, 1996) 

could equally well explain these effects without necessitating an explanation in terms 

of wishful thinking.

In the introduction to this chapter, however, we suggested that the role of affect 

might be integral to the wishful thinking effect. In the two studies thus far reported, 

we have attempted to maintain an affective quality in our stimuli, whilst keeping the 

studies comparable with those reported in the previous chapter, by using third person 

scenarios. In order to thoroughly test for a wishful thinking effect we must now relax 

the latter constraint. Whilst it is undoubtedly an empirical question, it is sufficient here 

to assume that whilst negative events that affect unknown others can still induce 

significant negative affect in an individual, the same might not be true for positive 

events. It seems safe to assume that first-person manipulations of utility represent a 

stronger manipulation than do third-person manipulations. Thus, Study 11 provides a 

more powerful test of the wishful thinking hypothesis.

Study 11

The aim of Study 11 was to provide a controlled test of the ‘wishful thinking’ 

effect using a first person manipulation. Although the use of a first person 

manipulation reduces the similarity with the studies used in Chapter 2, it does increase 

comparability with previous experiments that have reported the existence of a ‘wishful 

thinking’ effect (e.g. Babad, 1995; Babad &  Katz, 1991; Gordon et al., 2005; Irwin, 

1953; Irwin &  Graae, 1968; Irwin &  Snodgrass, 1966; Price, 2000). As has been 

alluded to in Chapter 2, there are alternative explanations for the results of all the 

experiments in these papers. The presence of these alternative explanations means that 

it is not necessary to assume that there is a psychological interdependence between the
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constructs of probability and utility, constructs which, intuitively and normatively, 

should be independent (e.g., Edwards, 1962).

We have stressed the potential importance of an affective quality to the 

positive event being judged in observing a wishful thinking effect. Given their 

popularity despite their fat and sugar contents, we posited that the winning of a mars 

bar might provide an affordable positive event, the utility of which was primarily 

based on affective considerations (see e.g., Cantin &  Dube, 1999; Letarte, Dube &  

Troche, 1997; Zanna &  Rempel, 1988). So as to confirm this assumption, a pilot test 

was carried out. 13 females and 7 males first rated the degree to which five cognitive 

and five affective statements best described their attitude towards mars bars. A ll these

Q
statements were positive, as Study 11 was investigating a ‘wishful thinking’ effect. 

We were therefore interested in the basis of participants’ liking of mars bars. Having 

rated all ten statements, participants were required to indicate which of the ten 

statements best described their attitude towards mars bars. 16 participants indicated an 

affective statement at this stage, whilst four indicated a cognitive statement, %(l )  = 

7.2,/?<.01. Following Cantin and Dube (1999; see also, M illar & Millar, 1990), we 

thus concluded that positive attitudes towards mars bars are predominantly affect 

based. This justified our use of them in Study 11.

In line with our previous studies investigating the existence of an 

interdependence between utility and probability, Study 11 used the same probability 

matrices as already introduced. In so doing, the design of Study 11, once again,

8 The cognitive statements were: Mars bars are nutritious / provide energy / are full o f vitamins / satisfy 

hunger / are low in calories. The affective statements were: Mars bars give a pleasant mouthfeel / are 

palatable / are tasty / are gratifying / are not bland.
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closely resembled the experiments reported in Bar-Hillel and Budescu (1995). In 6 out 

of 7 experiments reported in that paper, Bar-Hillel and Budescu (1995, Study 1) failed 

to observe any evidence for a wishful thinking effect using visual matrices similar to 

ours, and a cash based manipulation of desirability. We argue that a cash based 

manipulation is affectively poor and it is therefore necessary to repeat their study 

using a more affectively rich reward in the desirable outcome condition.

Method

Participants

94 female and 6 male psychology undergraduates (aged 18-38 years; median = 

19 years) at Cardiff University participated in this study in return for course credit.

Design

Study 11 employed a slight change in design from our previous studies 

investigating the relationship between probability and utility. Outcome utility was 

again manipulated between participants over two levels, positive and neutral, by 

means of a cover story. The desirability of an outcome was manipulated by giving 

participants in the positive condition a mars bar i f  the critical event occurred (they 

drew a black straw). Participants in the positive condition therefore read the following 

text:

‘We are interested in how likely you believe outcomes to be. In the tin 

in front o f you, the buried end of some of the straws is black. In a minute you 

will be allowed to pick ONE straw from the tray. I f  you pick a black straw 

from the tray you will win the mars bar. The black and white cells in the 

picture below are distributed in the same proportions as the black and plain 

straws in the tray. The location of black cells in the picture below does not
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however correspond, in any way, with the location of the black straws. Based 

on the proportion of black cells in this matrix, please estimate the chance that 

you will pick a black straw from the tray in front of you, and therefore win a 

mars bar.

Please report this chance as a number between 0 (it is impossible that 

you w ill pick a black straw) and 100 (it is an absolute certainty that you will 

pick a black straw)_________________’

The text that participants read in the neutral condition was identical except that all 

reference to mars bars was removed.

We recognised that our utility manipulation was subjective and dependent 

upon our participants liking mars bars. For this reason, participants in the positive 

condition completed an extra section to the questionnaire, on a separate page, after 

having made their probability estimate. Participants were asked whether they liked 

mars bars and how much they liked / disliked them (a bit, moderately, a lot).

The inclusion of different levels of objective probability was important to 

maintain the generalisability of the study, but the experimental set-up necessitated its 

inclusion as a between participants, rather than within participants manipulation. Each 

participant therefore saw one of five probability matrices beneath the cover story.

Materials

Participants were handed a typed version of one of the cover stories with one 

of the black and white visual probability matrices below it. In front of the participants, 

as they read the cover story and filled in their probability rating was a circular metal 

tin with a depth of 10.5 cm and a diameter of 23.5 cm. The tin was a former ‘Roses’ 

chocolate tin and still had the corresponding artwork on the side. The tin was filled
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with wild bird seed to a level 2 cm below the top of the tin. Bedded in this bird seed 

were 120 plastic drinking straws, 114 of which had black tape around the end which 

had been buried in the bird seed (a proportion which corresponded to the proportion of 

black cells to white cells in the most black-dominant matrix). Without extracting them 

from the bird seed, the straws that had been blackened were indistinguishable from 

those that had not been.

In the positive outcome condition, a regular sized mars bar was placed in front 

of the tin, clearly visible to participants throughout the duration of the study. The 

purpose of this was two-fold. Firstly, participants could see that a mars bar was 

available to be won and thus participants were more likely to view the information 

provided as accurate. Secondly, ratings of the desirability of a liked food stuff have 

been shown to be higher in the presence of the food stuff than in its absence (Cornell, 

Rodin, &  Weingarten, 1989). Thus, having a mars bar in sight throughout the study 

should increase the subjective value of the mars bar (for those participants who like 

mars bars), and therefore increase the power of the experimental manipulation.

Procedure

Participants were asked to sit in a chair at a table. Upon the table was the 

experimental questionnaire with a consent form on top of it, the tin with the straws 

protruding from it, and if  participants were in the positive outcome condition then the 

mars bar was also visible on the table. Participants were asked to complete the consent 

form and then continue with the written part of the study in their own time. The 

experimenter asked each participant to inform him when they had completed the 

written part. Upon completion of the questionnaire, participants were allowed to pick a 

straw from the tin. I f  they were in the positive outcome condition and picked a black 

straw (100% of participants in this condition) then they were given the mars bar.
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Participants who subsequently said that they did not want the mars bar as they did not 

like them were asked if  they would like to take it anyway to give to a friend. Upon 

completion of the study, participants were thanked and debriefed.

Results

At the first stage o f analysis, the estimates of all 100 participants were included 

in a 5x2 (probability x outcome utility) factorial ANOVA. Participants who responded 

that they did not like mars bars were not excluded from the first analysis as it was felt 

that regardless of whether or not an individual liked mars bars, the presence of a 

reward should still enhance the desirability of the outcome with which that reward is 

associated. The mean probability estimates of all 100 participants are therefore plotted 

in Figure 3.5. The probability manipulation was successful, F(4, 90) = 59.73,/K .001, 

MSB = 182.02. The utility manipulation did not affect probability estimates, F (l, 90) = 

.29,/?>.05, MSE = 182.02, etap2 = .003, nor was there an interaction between 

desirability and probability, F(4, 90) = .06,p>.05, MSE = 182.02, etap = .003.

We collected data to ascertain whether participants viewed a mars bar as 

desirable. Subsequently, participants in the positive condition who reported that they 

did not like mars bars were excluded from the analysis. The recalculated means are 

displayed alongside the other means in Figure 3.5. By comparing the means of the 

positive condition from all participants (‘all positive’) with those of only those 

participants who reported that they liked mars bars ( ‘positive with exclusions’), it is 

clear that there is little difference between these means. A factorial ANOVA  

comparing the estimates of participants in the neutral condition with those of 

participants in the positive condition who liked mars bars again showed no effect of 

outcome utility, F (l, 81) = .12,/?>.05, MSE = 194.11, etap = .001, and no interaction
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between outcome utility and probability, F(4, 81) = .12,/?>.05, MSE = 194.11, etap = 

.006.
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Figure 3.5. Mean probability estimates from participants in the two outcome utility 
conditions, both with and without exclusions, and the five objective probability levels.

Error bars are plus and minus 1 standard error.

Discussion

The null result in Study 11 provides further evidence that people are able to 

maintain independence between their probability estimates and the utility of the 

outcomes whose likelihood of occurrence is being estimated. This conclusion is 

further strengthened by conducting a meta-analysis across Studies 8-11. Following 

Rosenthal (1991, pp. 73-74), we first computed the effect sizes for the manipulation of 

outcome utility across all three studies and concluded that there was no significant 

difference between the studies, x2(3) = .43,p>.50. Having observed this similarity 

across the studies, we were able to determine whether there was a significant effect of 

utility on probability estimates if  the data from all four studies were combined (see 

Rosenthal, 1991, p. 85). In this meta-analysis, no significant effect of utility was 

observed (z = 1.02,;? = .15). To further test the reliability of the null result observed
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across all three studies, we used the same meta-analytic procedure to conduct an 

analysis o f the probability estimates only at the low probability level. The rationale for 

this analysis was that in the real-world, positive outcomes associated with luck are 

comparatively rare (see Dai et al., 2008; Mandel, 2008). Consequently, these are the 

probability levels at which participants would most likely experience potential positive 

outcomes and so might best mirror real-world probability estimates. Once again 

however, the combination of probability values across all four studies still did not 

yield a significant effect o f outcome utility (z = 1.24, p  = .11). Although this result 

seems to approach significance, it is worth stressing that the direction of a possible 

effect at the low probability level across all four studies was in the opposite direction 

to that predicted by a wishful thinking hypothesis. Given the number of datapoints 

contributing to these meta-analyses, we are confident in our conclusion that we have 

observed no evidence of an effect of positive outcome utility on probability estimates 

in this chapter.

It is well known that conventional hypothesis testing cannot provide support in 

favour o f a null hypothesis, it can only make the alternative hypothesis less likely. 

Researchers have recently argued for the application of Bayesian statistical tests that 

can provide support for the null hypothesis over and above an alternative (e.g., 

Gallistel, 2009; Rouder, Speckman, Sun, Morey, &  Iverson, 2009). In order to provide 

further support for our contention that positive utility does not influence estimates of 

probability, we therefore used the Bayes Factor calculator at pcl.missouri.edu (Rouder 

et al., 2009) to test the viability of this null hypothesis. The functionality of this 

calculator is limited to /-tests. Given that we have already demonstrated that it is
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acceptable to combine the data from these studies, we carried out three large Mests on 

each probability level, combining data from Studies 8, 9 and 109. The results of the t- 

tests were then entered into the Bayes’ Factor calculator. It is important to first note 

that across the low and medium probability conditions the trend in the data suggested 

neutral outcomes to be estimated as more likely than very good outcomes, whilst in 

the high probability condition this trend was reversed. As Chapter 2 demonstrated 

only small effect sizes of utility on probability estimates, we used the unit information 

prior for the Bayes Factor calculations, as it is more suitable for such situations (see 

Rouder et al., 2009). The resulting Bayes factors for the low, medium and high 

probability levels were, respectively: 4.57, 3.10, and 7.74. These figures indicate the 

degree to which the data were more likely to have been sampled from a single source 

(i.e., no effect) than from two sources with different means (the alternative 

hypothesis). A ll these odds can be thought to correspond to ‘substantial’ evidence in 

favour of the null hypothesis (Kass &  Raftery, 1995, p. 777). It is also possible to 

reduce the scale of the prior on effect size. Smaller values of this scaling factor, r, 

correspond to smaller priors as to the size of the effect predicted by the alternative 

hypothesis (Rouder et al., 2009). By varying the size o f r, it is possible to provide yet 

another test of the null hypothesis:

“When the odds favoring the null approach one from above as the upper limit 

on the possible size of the effect aproaches zero, the null is unbeatable. When 

the odds never favor the alternative by more than a small amount for any

9 The use of different probability levels in Study 11 negated its inclusion in this analysis.
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assumed upper limit on the possible size of an effect, considerations of 

precision and parsimony favor the null” (Gallistel, 2009, p. 441).

The latter result is exactly that observed for all the Bayes Factors reported here, 

suggesting that the null hypothesis, that ‘there is no effect of positive outcome utility 

on probability estimates in these studies’, should be preferred over the alternative 

hypothesis. The analyses presented thus show no evidence for an effect of positive 

outcome utility on probability estimates within a controlled laboratory procedure, 

mirroring the results o f Bar-Hillel and Budescu (1995).

It should be noted that the cover stories of Studies 1, 2, 3, 6 and 7 in Chapter 2, 

where a significant result was observed, all featured a request from a character in the 

scenario for a probability estimate. In the present chapter, participants were simply 

asked to estimate a probability (by the experimenter). This raises the possibility that 

probability estimates were inflated in the severe and high control conditions of 

Chapter 2 because participants were (implicitly or explicitly) attempting to persuade 

the character to make the decision that they favoured, by making the negative 

consequences associated with not making that decision seem more likely. Such an 

explanation is entirely consistent with an asymmetric loss function approach. Future 

research should investigate such a possibility, and determine the degree to which a 

persuasive context is important, and whether such persuasion effects might be 

observed for outcomes with positive utilities. For example, were the leader of a team 

of investigative scientists to request a probability judgment when deciding whether or 

not to undertake the expedition described in Study 9, might a similar effect be 

observed as in Studies 1, 2, 3, 6 and 7, because participants believe that even a small 

chance of finding a cure for cancer is worth pursuing. What the results from both
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Chapters 2 and 3 do demonstrate, however, is a lack o f evidence for a direct biasing 

effect of utility on estimates of probability.

Chapter Summary

Across three different studies (and one replication) increasing in personal 

relevance, no effect of positive outcome utility on probability estimates was observed. 

The failure to observe such an effect is consistent with the results presented in the 

previous chapter. Although the previous chapter demonstrated that severe outcomes 

were sometimes rated as more likely to occur than neutral outcomes, this effect was 

attributed to the presence of an asymmetric loss function in the severe condition rather 

than being related to the utility manipulation per se. Therefore, our conclusion thus far 

is that there is no evidence that people’s probability estimates are generally biased by 

considerations of outcome utility. There is, however, one paradigm in which 

participants have consistently been reported to display optimism, and that is in 

comparative ratings of their likelihood of experiencing valenced future events (e.g., 

Weinstein, 1980). Participants’ ratings in this paradigm have consistently been 

interpreted as demonstrating ‘unrealistic optimism’. The next chapter addresses this 

phenomenon.

123



Chapter 4 - Investigating the True Status of ‘Unrealistic 

Optimism’

Chapter Overview

A robust finding in social psychology is that people judge negative events as 

less likely to happen to themselves than to the average person, a behaviour interpreted 

as showing that people are ‘unrealistically optimistic’ . We propose that the data fail to 

clearly establish that people are indeed unrealistic. We demonstrate how unbiased 

responses can result in data patterns commonly interpreted as indicative of optimism 

for purely statistical reasons. Specifically, we show how extant data from unrealistic 

optimism studies are plagued by the statistical consequences of sampling constraints 

and the response scales used, in combination with the comparative rarity of truly 

negative events. We further describe two new studies supporting these claims. The 

results of these studies lead us to conclude that the presence of such statistical artifacts 

means that, despite decades of research, there exists little compelling empirical 

evidence for the assertion that people are unrealistically optimistic about future life 

events.

Introduction

Chapters 2 and 3 have been concerned with the issue of whether outcome 

utility biases estimates of the probability of that outcome. Despite previous claims that 

utility does bias estimates of probability (e.g. Crandall et al., 1955; Edwards, 1953, 

1962; Irwin, 1953; Marks, 1951; Morlock &  Hertz, 1964; Pruitt &  Hoge, 1965), the 

present research echoes other recent findings in the literature suggesting that, once all 

other variables are controlled for, there is no evidence for a direct effect of outcome

124



utility on probability estimates (see also, e.g., Bar-Hillel &  Budescu, 1995; Bar-Hillel 

et al., 2008; Dai et al., 2008; Krizan & Windschitl, 2007; Mandel, 2008). In the real- 

world, however, a variety of potential mediators, including asymmetric loss functions 

(see Chapter 2) can lead to an indirect biasing effect of utility on probability estimates 

(e.g., Bar-Hillel et al., 2008; for a review see Krizan & Windschitl, 2007).

A ubiquitous finding related to the present research theme is that (seemingly) 

people “are often overoptimistic about the future” (Chambers, Windschitl, &  Suls, 

2003, p. 1343). The underlying phenomenon, referred to in the literature as unrealistic 

optimism, is that people perceive their own future as being better than the average 

person’s. That is, they rate positive future events as more likely to happen to 

themselves than the average person and negative events as less likely to happen to 

themselves than the average person (e.g., Burger &  Bums, 1988; Campbell, 

Greenauer, Macaluso, & End, 2007; Harris &  Guten, 1979; Harris &  Middleton, 1994; 

Kirscht et al., 1966; Lek & Bishop, 1995; Perloff &  Fetzer, 1986; Weinstein, 1980, 

1982, 1984, 1987, 1989a; Weinstein &  Klein, 1995; Whitley &  Hem, 1991).

Not only is unrealistic optimism seemingly a firmly established empirical 

phenomenon, it is also deeply embedded in applied work pertaining to risk perception 

and risk behaviour, as documented by the substantial body of literature relating to the 

phenomenon within health psychology (e.g., Cohn, Macfarlane, Yanez, & Imai, 1995; 

Gerrard, Gibbons, Benthin, & Hessling, 1996; Gerrard, Gibbons, & Bushman, 1996; 

Hampson, Andrews, Barckley, Lichtenstein, &  Lee, 2000; Lek & Bishop, 1995; 

Rothman &  Kiviniemi, 1999; van der Velde &  van der Pligt, 1991; van der Velde et 

al., 1992, 1994; Weinstein, 1999, 2000; Weinstein & Klein, 1996; Welkenhuysen, 

Evers-Kiebooms, Decruyenaere, &  van den Berghe, 1996). Here, researchers and 

practitioners are concerned that people will not take the necessary preventative steps 

to protect themselves because they underestimate their chances of contracting disease.
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It suffices to say, a clear understanding of the psychology of risk perception is 

essential for effective communication of health information. Consequently, the 

seeming discrepancy from the results observed using this paradigm and the 

conclusions from Chapters 2 and 3 needs reconciling. How might such reconciliation 

come about?

The first possibility is that unrealistic optimism occurs through a mediator, 

such that it is another example of the indirect biasing of probabilities by utilities (for a 

review see Krizan &  Windschitl, 2007). Indeed, there are a number of candidates for 

potential mediators of this effect in the literature (for a review see Helweg-Larsen &  

Shepperd, 2001). Taylor and Brown (1988; see also, Kirscht et al., 1966; Lund, 1925; 

Zakay, 1996) view the effect as resulting from a self-serving motivational bias 

designed to protect self-esteem and guard against depression. A second school of 

thought highlights the importance of cognitive factors as mediators of the effect (e.g., 

Chambers et al., 2003; Kruger, 1999; Kruger &  Burrus, 2004; Price, Pentecost &

Voth, 2002; Weinstein, 1980; for a review see Chambers & Windschitl, 2004).

It is, however, our contention that none of the above accounts are necessary to 

account for the unrealistic optimism phenomenon, as it can readily be accounted for as 

being a statistical artifact of the methods used in studies demonstrating the 

phenomenon. In this chapter, we therefore re-examine the assumption that people’s 

optimism is unrealistic. Specifically, we demonstrate that the results of studies 

demonstrating unrealistic optimism can parsimoniously be viewed as statistical 

artifacts, as opposed to demonstrations of a genuine human bias, and that responses 

made by participants in these studies could result from accurate probabilistic 

knowledge. In short, we argue that there presently exists no satisfactory evidence for 

the assertion that people genuinely exhibit the so-called unrealistic optimism bias. 

While future evidence could, of course, provide firm support for a genuine optimistic

126



bias, the evidence thus far does not justify the widely held view that people are 

unrealistically optimistic.

The Statistical Artifacts

“It is usually impossible to demonstrate that an individual’s optimistic 

expectations about the future are unrealistic. An individual might be quite 

correct in asserting that his or her chances of experiencing a negative event are 

less than average” (Weinstein, 1980, p. 806).

Without detailed individual knowledge about our participants, coupled (ideally) with 

an ability to see into the future, it is impossible to determine whether a specific 

individual is accurate in stating that they are less likely to experience a given event 

than the average person. However, it has been assumed that the realism of people’s 

expectations can readily be assessed at a group level. Campbell et al. (2007, p. 1275; 

see also Bauman &  Siegel, 1987, p. 331; Taylor &  Brown, 1988, p. 194), for example, 

state that:

“on a group level unrealistic optimism is evident when the majority of 

respondents feel that negative events are less likely to happen to them than the 

average person.”

Both the terms 'majority* and 'average' are ambiguous. The former can refer simply to 

the largest group (a 'simple majority') or to a group that constitutes more than 50% (an 

'absolute majority'); 'average', of course, can refer to a mean, median, or mode. In 

terms of detecting 'unrealism', simple majorities are useless, as it is readily possible to 

be the largest group, but nevertheless be below average, whether the average is 

assessed as the mean, median or mode (see Figure 4.1a). Absolute majorities, 

however, are only somewhat more constraining: while it is, by definition, impossible
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for more than 50% of observations to lie below the median, it is easily possible for the 

average construed as the mean or mode. Only a moderate degree of skew and a limited 

range of values are enough to give rise to distributions where the absolute majority is 

above or below the mean (Figure 4.1b), as also noted in Weinstein (1980, p. 809). 

Moreover, many real-world distributions have this property. In particular, it arises 

readily for binomial distributions associated with binary outcomes, for example, 

whether or not a person w ill experience a given negative life event. Hence, the 

presence or absence of a majority, at least below the average construed as the mean, 

will not allow reliable inference about whether or not expectations are unrealistic.

t s -

c d

Average (mean, mode, &  
median) =  10

<10: n = 4491

10: n =  1323

>10: n =  4186

Thus, the simple majority is

less than the average

10 IS

Number of Successes

Mean =  0.5 

Median and mode = 0 

<0.5: n =  605796 

O.5:n = 0 

>0.5:n =  394204

Thus, both the simple and absolute 
majorities are less than the mean.

2 3 4 5

numberofsuocesses

Figure 4.1. Sample distributions in which the majority outcome is less than the 
average. The histograms represent the outcome distributions of simple simulations of 
binomial numbers. Figure 4.1a (left panel) shows the results of 10,000 samples of 100 

trials of a binomial process in which the probability of success is 0.1. Figure 4. lb  
(right panel) presents a corresponding simulation result for a binomial process in 

which the probability of a success is 0.005.

Nevertheless, it has been suggested that further constraints on the size of the 

majority allow the desired inference. For example, McKenna (1993, p. 39) proposed 

that:
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“When as a group, the vast [italics added] majority perceive their chances of a 

negative event as being less than average then clearly this is not just optimistic 

but also unrealistic”.

The validity of such a conclusion depends on the frequency of the event being judged. 

The negative events used in unrealistic optimism studies are typically rare. To 

illustrate, cancer, which is a disease generally considered to be quite prevalent will 

affect less than half the population, approximately 40% (Office for National Statistics, 

2000)10. Moreover, contracting cancer is one of the least rare of the negative events 

typically used in unrealistic optimism studies. In these studies, it is more usual that the 

type of cancer w ill be specified (e.g., lung cancer). In Weinstein (1982), there were 

three cancer items: Lung cancer, skin cancer, and cancer. Lung cancer is the most 

common form of cancer in men, and third most common in women. However, across 

both sexes, it is predicted that only 6% of people w ill contract lung cancer (ONS, 

2000).

In order to clarify the impact of event rarity and to aid our subsequent 

exposition of the statistical problems associated with standard tests of unrealistic 

optimism, we introduce a simple thought experiment that we will refer back to 

throughout this chapter.

A Thought Experiment: ‘Unrealistic optimism9 in Perfect Predictors

In this thought experiment, we assume that people have perfect knowledge. 

Hence they know (for certain) whether or not they w ill eventually contract Disease X, 

which has a lifetime prevalence of 5% (that is, in the course of their lifetime, 5% of

10 All statistics reported are for England and Wales.
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people w ill contract Disease X). As they are perfect, our perfect predictors also know 

that the prevalence (base rate) of Disease X  is 5%.

Experiment

Participants are asked whether they have a chance of contracting Disease X  

that is smaller than, greater than, or the same as the average person.

Thought process

Participants know whether or not they w ill contract the disease and thus assign 

a percentage of either 0 or 100% to their chance. Participants also know the base rate 

of the disease which is the best answer they can give to the question “What is the 

chance of the average person...” (see also, Klar, Medding, &  Sarel, 1996). 

Consequently, they assign the average person a chance of 5%. To answer the question 

posed, participants would compare their chance (0 or 100%) with the average person’s 

chance (5%) to report whether their chance is greater or less than the average person’s.

Results

95% of these participants (a percentage presumably sufficiently high to be 

classified as a vast majority), knowing that their chance of catching Disease X  is 0%, 

will accurately report that they are less likely to catch the disease than the average 

person, whilst just 5% of participants will report that they are more likely to catch the 

disease than the average person. Crucially, the reports o f these perfect predictors 

cannot (by definition) be unrealistic.

In other words, even a ‘vast majority’ of people indicating that their chance of 

experiencing the event in question is less than the average person’s cannot guarantee 

that this group of people has anything other than entirely realistic expectations. For 

sufficiently rare events, not just the majority, but also the ‘vast majority’, of people
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can genuinely have a less than average (mean) chance of experiencing those events, as 

demonstrated in Figure 4.1b.

In summary, any evaluation based merely on the number o f people providing 

an ‘optimistic response’ relative to the number providing a non-optimistic response is 

insufficient evidence that a group of people are unrealistic in their reports.

A Different Methodology

The most popular measure for assessing unrealistic optimism was first used by 

Weinstein (1980). This measure does not ask participants simply to indicate whether 

their chance of experiencing a given event is greater or less than the average person’s. 

Rather, participants are required to make a comparative, quantitative, response 

indicating the degree to which they are more or less likely to experience an event than 

the average person. The logic of this approach is simple: Given a sufficiently large 

sample, the mean value of participants’ expressions of optimism and pessimism (with 

reference to the average person) should be realism. For example, with our perfect 

predictors, 95% of them have a 5% less than average chance (-5%) of contracting 

Disease X , whilst 5% have a 95% greater than average chance (+95%). I f  the members 

of this population accurately report these percentage differences, the mean of their 

responses will equal: (95% x -5 ) + (5% x 95) = 0 . Consequently, a population average 

less than zero demonstrates that at least some of the population are unrealistically 

optimistic regarding this negative event. Weinstein (1980) found mean responses less 

than zero for negative events and greater than zero for positive events. Thus, 

Weinstein’s participants seemingly displayed a kind of ‘invulnerability bias’, or 

unrealistic optimism.

However, this methodology is vulnerable to statistical artifacts. Specifically, 

studies using Weinstein’s method of comparative responses generally do not use a
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continuous -100% to +100% response scale. Rather, the response scale typically used 

in this paradigm is a seven point scale from -3 (chances much less than the average 

person) to +3 (chances much greater than the average person) (e.g., Covey & Davies, 

2004; Klar et al., 1996; Price et al., 2002; Weinstein, 1982, 1984,1987; Weinstein &  

Klein, 1995). It is the nature of this attenuated response scale that could be producing 

the results most commonly interpreted as demonstrating unrealistic optimism, as we 

shall now demonstrate with further reference to the thought experiment outlined 

above.

Returning to perfect predictors

In this version of our thought experiment, our perfect predictors are required to 

make a response on a -3 to +3 response scale regarding their relative chance of 

catching Disease X, which, once again, has a base rate of 5%. Thus 95% of these 

participants know that they have a slightly lower chance than the average person of 

catching Disease X  (because 0% is 5% less than the 5% average) and hence circle -1 

on the response scale.11 5% of these participants know that they have a much greater 

chance than the average person of catching this disease (because 100% is 95% greater 

than 5%) and therefore circle +3 on the response scale. The mean response of our 

population of perfect predictors is therefore -0.8 and not 0. Indeed, even for a 

representative sample of just 20 participants, such data would resemble significant 

‘unrealistic’ optimism, £(19) = 4,/? = .001.

11 Alternatively, participants might consider the relative difference, not the absolute difference in risk, 

in which case they evaluate the ratio of the difference between their risk and the average person’s risk 

and thus consider the distinction between 5% and 0% to be maximal. Consequently, assuming that 

participants consider their relative risk as a difference score constitutes a conservative assumption.
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Scale Attenuation

At the heart of this seeming paradox, where individually unbiased responses 

lead to a seemingly biased group level response, is the constrained nature of the 

response scale. The choice of the -3 to +3 response scale was justified in the original 

unrealistic optimism studies with the following considerations:

“It emphasizes the comparative aspect of the risk judgments, does not demand 

unnatural numerical estimates (such as percentile rankings), and, unlike a scale 

used previously (Weinstein, 1980), is not vulnerable to a few  extreme 

responses [italics added]” (Weinstein, 1982, p. 486).

While this might often be a desirable property o f scales, the problematic result of the 

thought experiment above stems directly from  the scale’s invulnerability to a few 

extreme responses in conjunction with the rarity o f Disease X. Only a small proportion 

of the population w ill contract the disease, and their responses are necessarily 

‘extreme’. Had this representative sample of participants been able to use the whole 

percentage range to indicate their relative chances, the mean response would have 

been zero. Figure 4.2, however, illustrates that even if  the ‘worse o ff (affected) were 

always to rate themselves as being maximally more likely to experience an event than 

the average person (i.e., +5 on a less attenuated -5 to +5 scale; +3 on the -3 to +3 

scale), for rare events the average response w ill be negative. The truncated scale 

simply does not allow the responses of the two groups to be far enough apart that they 

can numerically balance out.
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Figure 4.2. The effect of scale truncation on the mean difference score (y-axis) 
provided by perfect predictors for events of different base rates and for different 
negative ratings provided by those who will not experience the event (x-axis). 

Calculations assume that those people who will get the disease report the maximum 
value on the scale. The top panel shows the effect for a -5 to +5 response scale. The 

bottom panel shows the effect for a -3 to +3 scale.

Not all studies have used the -3 to +3 response scale. For example, Weinstein 

(1980) gave participants a 15 point scale with the values “100% less (no chance), 80% 

less, 60% less, 40% less, 20% less, 10% less, average, 10% more, 20% more, 40% 

more, 60% more, 80% more, 100% more, 3 times average, and 5 times average” 

(Weinstein, 1980, p. 809-811). Clearly this scale enables more extreme responses than 

the typical -3 to +3 scale. However, this is still not enough for our example of people 

with perfect knowledge about their susceptibility to a disease with a base rate of 5%. 

The ‘worse o ff minority who have a 100% chance of contracting the disease would
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want to state that they are 20 times (i.e., 100/5) more likely than the average person to 

contract the disease. The 15 point scale still does not, however, allow for such a 

response. Consequently, it can still give rise to an artifactual effect of seeming 

optimism, even though the effect will be less pronounced.

That greater scale attenuation leads to (seemingly) greater unrealistic optimism 

is demonstrated by comparing the two panels of Figure 4.2. Figure 4.2 displays 

statistical optimism (mean difference less than zero) and pessimism (mean difference 

greater than zero) in samples of perfect predictors for diseases with different base rates 

and in situations where the ‘better o ff majority (unaffected by the disease) report 

different ‘less than average’ chances. For example, in situations where the unaffected 

report -1, greater ‘optimism’ will be observed using the -3 to +3 response scale 

(bottom panel) than the less attenuated -5 to +5 scale (top panel). The seeming 

unrealistic pessimism shown for the more common events in Figure 4.2 results from 

the pessimistic nature of the response of +5 or +3 from the worse off minority for 

these events.

Directly in line with this is the empirical finding that greater optimism is 

observed when participants are given an attenuated (-4 to +4) scale than when they are 

given a larger (-100 to +100) scale (Otten &  van der Pligt, 1996). Hence, this finding 

can be taken as evidence that scale attenuation plays a genuine role in unrealistic 

optimism results.

However, Otten and van der Pligt (1996) still observed significant optimism 

using the -100 to +100 scale (with fixed increments of 1). Can this result be reconciled 

with the statistical artifact hypothesis? For one, extremely rare events w ill have base 

rates of less than 0.5%, that is, less than the smallest increment. This w ill make even 

this -100 to +100 response scale an attenuated response scale. However, there is also a
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further statistical mechanism through which accurate individual responses might 

appear optimistic at the group level.

Undersampling of the Minority

Unrealistic optimism studies typically obtain responses from a sample of the 

population, and not the population as a whole. It is a statistical consequence of 

binomial distributions that minorities in the population are more likely to be 

underrepresented than overrepresented in a sample of that population (see e.g., Fox &  

Hadar, 2006; Hertwig, Barron, Weber, & Erev, 2004; Ungemach, Chater, & Stewart, 

2009). Consequently, regardless of the response scale chosen, or the methodology 

used, the ‘worse o ff minority (those more likely than the average person to contract 

the disease) are more likely to be underrepresented in the sample than are the ‘better 

o ff majority. I f  underrepresented, the crucial influence of the positive responses from 

the worse off minority on the group average w ill be attenuated, leading to an overall 

appearance of optimism in the group data.

I f  we return to our hypothetical example in which all members of the 

population have perfect knowledge as to whether they w ill contract a given disease, 

the mean of these responses (given an unattenuated response scale) will be zero, 

assuming that responses are obtained from the whole population. I f  responses are only 

obtained from a sample o f that population, then the responses will mean to zero only 

in the event that the characteristics of the sample match the characteristics of the 

population. The recognition that the minority are more likely to be undersampled than 

oversampled from the population makes it more likely that the mean will be less than 

zero as opposed to greater than zero, again giving the statistical illusion of an 

optimistic bias. The magnitude of this undersampling can be estimated from 

distributions such as those shown in Figure 4.1 above: displayed are the results of
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samples drawn from a population in which a binary outcome (e.g., success/no success 

reflecting disease/no disease) occurs with a base rate corresponding to the respective 

probability of success. As the base rate becomes lower (right panel vs. left) the 

proportion of samples that contain fewer than average ‘successes’ becomes more and 

more extreme. Figure 4.3 graphs this excess proportion for different base rates and 

sample sizes in order to give a further indication of the effect of event rarity and study 

sample size on the extent to which the less likely outcome (the minority) is 

undersampled rather than oversampled relative to the population distribution.
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Figure 4.3. The excess of instances in which the minority was undersampled 
relative to the majority. Graphed are the results for 1 million simulated samples of size

25-400, for 5 different base rates.

As can be seen in Figure 4.3, the effect of minority undersampling decreases as 

sample size increases. This reflects the law of large numbers which states that as 

sample size increases, the more representative the sample will be of the total 

population (Bernoulli, 1713). This gives rise to a testable empirical prediction. I f  

minority undersampling is indeed contributing to the effects observed in unrealistic
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optimism studies, greater effect sizes should be observed in smaller samples, in which 

the minority is more likely to be undersampled. It should be noted that in general the 

same relationship between sample size and effect size would be predicted by the 

publishing bias towards significant results (the ‘file drawer problem’ [e.g., Rosenthal, 

1979; Sterling, 1959]): Studies investigating small effect sizes require large samples in 

order to attain statistical significance. Thus, phenomena with smaller effect sizes will 

be associated with studies containing larger samples. However, for research on a 

specific, single phenomenon such as unrealistic optimism, publishing bias against null 

results w ill not exert the same pressure. Studies on a single phenomenon (employing 

similar methodologies) should find similar effect sizes, simply because they are 

measuring the ‘same thing’, and, conceptually, measures of effect size seek to provide 

a measure of efficacy that is (largely) independent of sample size (e.g., Keppel, 

Saufley, & Tokunaga, 1992). Hence there is no general reason to expect a clear 

correlation between sample size and effect size across studies that all investigate 

unrealistic optimism. Therefore, the presence of any such correlation would be 

indicative of some other, underlying effect.

We found nine studies in which all the information was readily available to 

compute an estimate of the effect size (r), calculated from the t statistic (see 

Rosenthal, 1991, p. 19)12. The effect size was calculated for each study included in 

this meta-analysis and correlated with study sample size. A significant negative 

correlation was observed, r{9) = -.69,/?<.05 (2-tailed) (rad, = -.64) (see Figure 4.4). O f

12 These studies were: Burger & Bums (1988); Campbell et al. (2007); Lek & Bishop (1995); Otten & 

van der Pligt (1996, Study 1 and Study 2); Pyszczynski, Holt, & Greenberg (1987); Regan, Snyder, & 

Kassin (1995); Weinstein (1980); Weinstein & Klein (1995). Where appropriate, the analyses used data 

only from the control group.
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course, this meta-analytic correlation is based only on a small number of studies. This 

correlation, which accounts for 41% (r value adjusted for the small sample size [see 

Howell, 1997, p. 240]) of the variance in effect sizes across the nine studies, does 

however lend some support for the potential biasing effect of undersampling the 

minority in unrealistic optimism studies.
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Figure 4.4. The relationship between study sample size and the effect size of 
unrealistic optimism, based on a meta-analysis of nine published studies.

Real World Feasibility of the Statistical Artifacts

Thus far, we have demonstrated the conceptual frailty of the standard 

comparative test by demonstrating how seeming unrealistic optimism could be 

observed for perfect predictors. Furthermore, we have also presented initial empirical 

evidence for the statistical mechanisms proposed by showing that the effect size in 

published studies using this technique is moderated by both scale size (Otten & van 

der Pligt, 1996) and sample size (meta-analysis above). O f course, the participants in 

these real studies are not perfect predictors. However, complete knowledge of the 

future is not required, and we demonstrate in the following how the same statistical 

effects can arise given only partial (but again, intuitively, realistic) knowledge of the 

future. People’s knowledge of both their personal risk and the general, average risk



(base rate) stems from a variety of sources: In addition to accessible healthcare (where 

a doctor might, for example, inform an individual of their general level of health), 

public information campaigns, personal experience and family history all provide 

informative cues regarding the chance of contracting a certain disease. In fact, 

regarding personal risk, the strongest predictor is typically also the most accessible, 

given that “for many common diseases, having an affected close relative is the 

strongest predictor of an individual’s lifetime risk of developing the disease” (Walter 

& Emery, 2006, p. 472). For example, a longitudinal study investigating the 

relationship between family history and risk of coronary heart disease illustrates that 

relative risk is substantially different for men with and without a family history of 

heart disease. Hawe, Talmud, M iller and Humphries (2003) reported that men with a 

family history of heart disease were 1.73 times more likely to suffer a ‘coronary heart 

disease event’ than men without a family history. Added to this, smokers with a family 

history were 3.01 times more likely to suffer a ‘coronary heart disease event’ than non 

smokers with no family history. Were an unrealistic optimism study conducted with a 

sample in possession of this knowledge (because they had heard about this study, for 

example), what would the results look like?

O f the 2,827 males included in Hawe et al.’s (2003), 6.6% had a coronary 

event during the follow-up period. Consequently, the average risk with which people 

should compare themselves in a classic unrealistic optimism study would be 6.6% (see 

also Klar et al., 1996). 1,000 males answered “yes” to the question: “Has any person 

in your family ever had a heart attack” (Hawe et al., 2003, p. 99) whilst 1,827 

answered “no.” In the following, we will simulate the responses of participants from 

these two different groups on a -3 to +3 unrealistic optimism scale under the 

simplification that this is the only evidence these individuals have for their chances of 

suffering a heart attack. Given that 5.3% of males who did not have a family history of
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heart disease suffered a heart attack, it would be reasonable (and realistic) for all 1,827 

to answer “-1” (i.e., ‘I am slightly less likely than the average person to suffer a heart 

attack’). 9% of the males who did have a family history of heart disease suffered a 

heart attack. It therefore seems reasonable (and realistic) for all 1,000 of these males to 

answer “+1” (i.e., ‘I am slightly more likely than the average person to suffer a heart 

attack’). An increase in risk from 6.6% to 9.0% does not seem to merit a response 

higher than this on the scale (though clearly how people believe they should convert 

such a relative risk onto such a response scale is an empirical question, see also 

Footnote 10). However, assuming that these males did respond in this way, what 

would be the result of the statistical analysis of this hypothetical unrealistic optimism 

study? The mean response equals -0.29 and a single sample Mest confirms that this is 

significantly less than zero, t(2826) = 16.26,/?<. 001. Thus, such responses would be 

interpreted by an unrealistic optimism researcher as demonstrating unrealistic 

optimism. Moreover, a representative sample of only 60 people from these 2,827 

would give rise to a significant effect o f seeming unrealistic optimism, with 39 

reporting “-1” and 21 reporting “+1”, t{59) = 2.42,/?<.02. Once again, however, the 

responses made by each individual seem perfectly realistic. The observed effect stems 

entirely from the rarity of the event and the low discriminability of an attenuated 

response scale. This again demonstrates the unsatisfactory nature of using group data 

to infer a bias at the level of the individual. In the above example it would be hard to 

argue that any of the individuals’ responses were biased, but the group level results 

suggest exactly that.

More generally, any individual can have some knowledge reflecting a disease’s 

base rate and, typically, some personal information that increases or decreases their 

own likelihood of contracting the disease. The rational person should combine these 

two pieces of knowledge to update their degree of belief in their chance o f contracting
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the disease. We shall demonstrate that rational individual responses on a -3 to +3 

response scale can easily result in seemingly unrealistic optimism at a group level, 

even on the basis of a test result with extremely limited diagnosticity. Diagnosticity is 

captured in the ratio between a true positive ‘test’ result, P(e\h), and a false positive 

‘test’ result, P(e\^h) (where e is a positive test result, h is contracting the disease, and 

the negation symbol ‘^ ’ denotes the complement, that is, ‘not e’ or ‘not K  ). In this 

scenario, we w ill assume that this ratio is only 1.5:1 (and the same ratio is assumed to 

hold for negative ‘test’ results). Thus, P{e\h) = .6 and P(e\^h) = .4. Consider again the 

case of lung cancer which has a base rate of 6% (ONS, 2000). Equations 4.1 and 4.2 

(Bayes’ Theorem) show the normative updating of belief in contracting a disease, 

given a positive ‘test’ result, P(h\e), and a negative ‘test’ result, P(h\^e), respectively. 

In these equations, P(h) represents the prior degree o f belief that Disease X  will be 

contracted, which, if  people are rational and possess accurate knowledge, would equal 

the disease base rate (see also, Klar et al., 1996).

P(h | e) = -------------P(h)P(e \ h)  (Equation 4.1)
P(h)P(e | h) + P(-nh)P(e \ -,h)

_. - * P(h)P(—ie I h) • a
P(h - ie) = ------------------ -   — --------------  (Equation 4.2)

P(-,h)P(-ne\-,h) + P (h )P (-ie \h )

The proportion of people in the population who w ill receive a positive or negative test 

result is given by Equations 4.3 and 4.4 respectively.

P(h)P(e | h) + P(->h)P(e \ - ih) (Equation 4.3)

P(h)P(-ie | h) + P(-th)P(^e \ - ih) (Equation 4.4)

For the ratio of true results to false results outlined above, and the base rate of 6%, 

these equations mean that, overall, 41% of people should rate their chance of 

contracting lung cancer as 8.7% and 59% of people should rate their chance as 4.1%. 

As with the previous examples above, it is not clear how participants should translate
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these figures onto a -3 to +3 response scale. However, the deviations from the base 

rate seem comparable for both those receiving a positive test result and those receiving 

a negative result: 8.7% vs. 6% for the ‘worse o ff and 4.1% vs. 6% for the ‘better o ff. 

Consequently, 41% of responses o f+1 for the ‘worse o ff might rationally be 

combined with 59% of responses of -1 for the ‘better o ff, resulting in an average 

response of -0.18. Even on the basis of such a non-diagnostic test result, significant 

‘optimism’ would be observed in a representative sample of 115 participants, t ( \14) = 

1.98,/?=.05. Once again, seemingly rational responses at the individual level resemble 

a bias at the group level on such an attenuated scale. Moreover, minority 

undersampling would only serve to further exaggerate this effect.

As potential evidence against our claim that people have access to and might 

make some use of knowledge about risk factors stands Weinstein’s (1984) study. 

Weinstein collected data on actual risk factors in addition to people’s relative risk 

judgments. Weinstein reported that “associations between risk judgments and relevant 

risk factors were often weak or nonexistent” (p. 446). However, this summary 

assessment seems difficult to sustain: For seven out o f the ten events he considered, at 

least one of the events’ risk factors correlated significantly with absolute risk 

judgments for that event. For one of the three events where no relationship was 

observed (automobile accident injury), no comparative optimism was observed, whilst 

the other two events were suicide and mugging, events for which a significant 

correlation with a risk factor was observed subsequently in Weinstein (1989b). Hence 

there seems ample evidence of sensitivity to risk factors in Weinstein’s data, despite 

the fact that the strength of the risk factor-risk judgment relationship might have been 

attenuated through two mechanisms. Firstly, Weinstein’s analysis could not take into 

account any potential interplay between different risk factors in influencing personal 

risk; reported are only pairwise linear correlations for all risk factors, with no



consideration of potential interactions between different factors. Secondly, pairwise 

correlations between risk factors and risk judgments could be attenuated by the rarity 

of negative events. For rare events, only a minority of people will have strong risk 

factors, by definition. Thus, a lack of variability in the risk factor data w ill reduce the 

likelihood of observing strong correlations between risk factors and risk judgments (a 

similar observation is made in van der Velde et al., 1992, p. 24).

Furthermore, general studies on risk perception have reported results 

suggesting that people’s estimates of personal risk are grounded in an objective 

reality. These studies report that the more risk behaviours people engage in, the more 

vulnerable they rate themselves to negative consequences resulting from those 

behaviours (Cohn et al., 1995; Gerrard, Gibbons, &  Bushman, 1996; Martha, Sanchez, 

& Goma-i-Freixanet, 2009). Moreover, Gerrard, Gibbons, Benthin, and Hessling 

(1996) used a longitudinal design to demonstrate that change in risk behaviours 

predicted the corresponding change in ratings of vulnerability. This research suggests 

that people can and do recognise those factors that place them more at risk than others 

for certain negative events.13

13 The only other exception came from Bauman and Siegel (1987) who reported that 83% of the gay 

men in their sample who engaged in sexual practices that put them at high risk for contracting AIDS (66 

men in total) rated the risk o f their sexual practices (with regards to contracting AIDS) as 5 or less on a 

10 point scale (on which 10 indicated most risky). 85% of these men reported engaging in at least one 

practice which they believe reduced the risk o f AIDS, but which objectively made no difference. 

Consequently, the underestimation of risk reported in this study might be a result o f an accurate risk 

assessment based on inaccurate knowledge, rather than reflecting systematic optimism. In addition, 

Bauman and Siegel did not include any questions relating to participants’ knowledge about their sexual 

partners. Any men who engaged in high risk sexual practices with a partner who they knew to be HIV
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In summary, there is evidence to suggest both that people have access to 

sufficient knowledge and are sufficiently sensitive to it in their judgments of risk for 

the statistical mechanisms identified to ‘bite’ in practice.

Moderators of Unrealistic Optimism

We have argued that previous evidence of unrealistic optimism might merely 

be a statistical artifact. Such a contention might, however, seem difficult to uphold in 

light of detailed understanding of the phenomenon in terms of its moderators14. It is 

known that event frequency, specificity of the comparison target, experience with the 

event, event controllability, and mood/anxiety o f the participant all affect the degree of 

unrealistic optimism. In this section, we w ill argue that none of these known 

moderators conflict with the statistical artifact hypothesis.

Event Frequency

It is well-established that unrealistic optimism decreases as the frequency of 

the event increases (e.g., Chambers et al., 2003; Harris, Griffin, &  Murray, 2008; 

Kruger & Burrus, 2004; Weinstein, 1980, 1982, 1987). For example, Weinstein (1982, 

1984, 1987) found seemingly unrealistic optimism in participants’ judgments of their 

likelihood of contracting both lung and skin cancer, but no optimism for cancer in

negative would be quite accurate in reporting the riskiness o f these activities as low. In the absence of 

such a question, it is difficult to interpret Bauman and Siegel’s results.

14 We follow Helweg-Larsen and Shepperd (2001) in our use of the term ‘moderator’ by using it to refer 

to variables that have been shown to produce “differences...in people’s optimistic bias reports” 

(Helweg-Larsen & Shepperd, 2001, p. 75).
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general.15 The dependence on event frequency is itself at the heart of the statistical 

artifact hypothesis, as is evident from Figures 4.2 and 4.3. Given its prevalence of 

40% (ONS, 2000), cancer is common enough that a statistical ‘unrealistic optimism’ 

effect w ill rarely occur (see Figures 4.2 &  4.3). Hence, that unrealistic optimism is 

moderated by event frequency provides direct support for the statistical artifact 

hypothesis.

Specificity of the Comparison Target

The degree of unrealistic optimism decreases as the target with whom 

participants are comparing themselves becomes more specific (Burger & Bums, 1988; 

Harris &  Middleton, 1994; Klar et al., 1996; Perloff &  Fetzer, 1986, Regan et al., 

1995; Whitley & Hem, 1991; Zakay, 1984, 1996; see also Alicke, Klotz, 

Breitenbecher, Yurak, & Vredenburg, 1995).16 We have assumed in the preceding that 

the judgments people make of their own risks are qualitatively different from those 

they make for the average other. When assessing their own chances of experiencing a 

negative event, people are estimating a probability about a singular event (an 

epistemic probability). However, when assessing the chances of the average person 

experiencing the event, they estimate a frequentist probability which relies on 

distributional statistics, namely, the base rate, that is, what percentage of people 

contract cancer (see also Klar et al., 1996). As the comparison target is made more 

specific, the judgments between self and the target become more consistent, for they

15 An exception is Price et al. (2002) who reported evidence for an optimistic bias about the chance of 

contracting cancer in half of the conditions in their two studies.

16 The only exception was a study by Hoorens and Buunk (1993) that found little effect of the 

specificity of the comparison target.



are now able to estimate an epistemic probability for the unique event of this other, 

single, person contracting cancer. Given the assumption that people are estimating 

their risks o f experiencing rare events in these studies, once again it is probable that 

the likelihood of an individuated comparison target experiencing a negative event will 

be less than ‘the average person’; so less relative optimism should be observed. This 

proposal is further supported by Helweg-Larsen and Shepperd’s (2001) extensive 

review, which established that the moderating effect of the comparison target affected 

unrealistic optimism through the risk associated with the target comparison rather than 

the risk associated with the self.

The same conceptual difference between judgments about the self and 

judgments about the average person can also explain another finding, namely that, 

overall, comparative judgments are better predicted by judgments of self-risk than 

judgments of the average peer’s risk (e.g., Chambers et al., 2003; Kruger &  Burrus, 

2004; Price et al., 2002; Rose, Endo, Windschitl, &  Suls, 2008). Together with the 

moderating effect of event frequency, this finding has been used to support the 

egocentrism account of unrealistic optimism, which posits that people’s comparative 

judgments are predominantly based on their own absolute chances of experiencing an 

event with an insufficient consideration of the chances of others (Chambers et al., 

2003; Klar & Giladi, 1999; Kruger, 1999; Kruger & Burrus, 2004; Weinstein &  

Lachendro, 1982).17

17 One difficulty for this account lies in recent evidence by Price, Smith and Lench (2006) who found 

that comparative ratings between the self and the average member of a group were reduced when 

perceptions of the average member’s chance of experiencing an event increased, under circumstances 

where individual risk was held constant. This clearly indicates sensitivity to the average at least in some 

circumstances.
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However, there are, once again, purely statistical reasons why group risk might 

be a less powerful predictor. I f  indeed the average person’s risk is assessed by using 

raw statistical knowledge to make a distributional judgment, whereas a singular risk 

judgment is made for an individuated person such as the self then it is unsurprising 

that people’s comparative judgments are better predicted by self risk judgments than 

judgments of the average person’s risk: there is likely to be greater variability in 

singular judgments than distributional judgments, which usually increases predictive 

power (Howell, 1997, p. 266).

Experience with the Event and Event Controllability

Unrealistic optimism has been shown to decrease both as people’s experience 

with the event increases and as the perceived controllability of the event decreases 

(e.g., Harris et al., 2008; Helweg-Larsen, 1999; van der Velde et al., 1992; Weinstein, 

1980, 1982, 1987, 1989b; Zakay, 1984, 1996). Helweg-Larsen and Shepperd (2001) 

demonstrated that both these factors influenced estimates of personal risk, rather than 

estimates of the comparison target’s risk. Such a finding makes sense as both 

experience and controllability can be considered ‘sources of knowledge’. 

Consequently, given that family history will increase experience with a disease as well 

as increasing susceptibility to it (Walter & Emery, 2006), it can be expected to 

increase ratings of personal susceptibility whilst not changing perceptions of the target 

person’s susceptibility, thus making a relative response appear less optimistic.18 

Controllability also affects knowledge to the extent that people make efforts to avoid

18 Of course, were you to have knowledge that the target person had a family history of the disease (for 

example), then this knowledge would affect ratings of their susceptibility and thus increase the 

optimism of your response.
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undesirable but controllable events. Self-knowledge of one’s endeavour to avoid the 

event will increase the seeming optimism of one’s relative responses.

Typically, people have been faulted for not sufficiently taking into account 

protective measures made by the ‘average’ person (e.g., Chambers et al., 2003; Kruger 

& Burrus, 2004; Weinstein, 1980; Weinstein &  Lachendro, 1982). However, it is 

rational to assume that the event base rate (average person) both includes people who 

do and people who do not take protective measures. To see this one need only 

consider the way that the base rate in the ‘Real world feasibility of the statistical 

artifacts’ section above includes both people who receive a positive test result and 

people who receive a negative test result because the test evidence is only 

probabilistically related to the disease. Given that the base rate is comprised of both 

people who do and people who do not take protective measures, those who do take 

protective measures are in actual fact necessarily less at risk than the ‘average person’ 

(base rate).

For both experience and controllability, their impact is based on the fact that 

they provide sources of knowledge with which individuals can update their estimates 

of personal risk in the way outlined above; that is, they are analogous to test results. 

Experience of a disease means that people will know more about its causes (including, 

frequently, knowledge of family history), whilst event controllability provides people 

with knowledge of whether they do or do not take protective measures. Both allow 

people to differentiate their personal susceptibility from the average (base rate). 

Consequently people move further towards being perfect predictors, which amplifies 

the effects of scale attenuation. This increases the likelihood of a statistical illusion of 

unrealistic optimism.

Finally, in addition to being a source of knowledge, controllability will have a 

separate impact through its influence on event frequency. The controllability of a
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negative event is likely to reduce its base rate because people w ill tend to take 

protective measures to avoid it. Hence, the moderating effect of controllability is only 

interpretable once event frequency has been controlled for. Zakay (1984), for example, 

observed significant interactions between event valence and controllability in 

comparative responses. It is clear from his data, however, that these effects are readily 

explained with reference to the event’s perceived frequency, which is lower for 

controllable negative events and higher for controllable positive events, than it is for 

their uncontrollable counterparts.

Mood and Anxiety

Responses are typically less optimistic when a negative mood is induced in 

individuals (e.g., Abele & Hermer, 1993; Drake, 1984, 1987; Drake &  Ulrich, 1992; 

Salovey & Bimbaum, 1989) and unrealistic optimism is frequently not observed in 

dysphoric individuals (so-called ‘depressive realism’) (e.g., Alloy & Ahrens, 1987; 

Pietromonaco & Markus, 1985; Pyszczynski et al., 1987). This has led to the 

speculation that optimistic illusions “may be adaptive for mental health and well

being” (Taylor & Brown, 1988, p. 193). Importantly, Helweg-Larsen and Shepperd 

(2001) demonstrated that mood and anxiety influence the degree of optimism in 

people’s judgments predominantly via personal risk estimates: people are less 

optimistic about their own future when they are in a negative mood. This seems 

unsurprising (see e.g., Wisco, 2009) and, crucially, does not imply that people are 

more realistic on these occasions. Such a conclusion is warranted only if  ‘normal’ 

levels of optimism are indeed unrealistic, which is the very assumption challenged in 

this chapter. Unless this assumption can be independently supported, the moderating 

effects of mood demonstrate only that people in a negative mood are more negative 

about future life events; they do not identify who is more or less realistic, and it seems
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equally possible that dysphoric individuals are overly pessimistic. The same argument, 

finally, applies to other individual difference moderators of the effect, such as anxiety 

and defensiveness (see e.g., Harris et al., 2008), as well as cross-cultural results, which 

have generally found less ‘optimism’ in Eastern cultures (e.g., Chang, Asakawa, &  

Sanna, 2001; Heine &  Lehman, 1995).

Summary

What is known about the moderators of unrealistic optimism either directly 

supports, or is entirely compatible with, the possibility that ‘unrealistic optimism’ is 

solely a statistical artifact. Thus, the identification o f such moderators in the 

unrealistic optimism literature does not nullify the arguments presented here, which 

question the true status of unrealistic optimism. Rather, the moderators themselves 

might be bi-products of the statistical artifacts outlined.

A Critical Test of the Statistical Artifact Hypothesis

As we have seen so far, the rare nature o f negative events plays a critical role 

in producing what is potentially an illusion of unrealistic optimism at a group level. 

Furthermore, under the statistical artifact hypothesis, the rarer a negative event the 

greater is the degree of seeming optimism that should be seen, and, as just noted, this 

relationship has been observed in past studies (e.g., Chambers et al., 2003; Kruger &  

Burrus, 2004; Weinstein, 1980, 1982, 1987).

Our argument thus far has focussed on people’s estimates of negative events, 

as these constitute the bulk of the unrealistic optimism literature. However, the same 

statistical mechanisms should apply to judgments of the chance of experiencing 

positive events, on the reasonable assumption that very positive events, like very 

negative events, are rare. Again, the low base rate of extremely positive events implies 

that most people w ill not experience the event in question. For positive events,
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however, this failure constitutes a bad thing, not a good thing. Hence, the statistical 

mechanisms introduced above that push the group response towards the ‘majority’ 

outcome will result in seeming pessimism for positive events. By definition, this is the 

opposite of what should be found if  people were genuinely over-optimistic about their 

futures. Consequently, while the unrealistic optimism and statistical artifact 

hypotheses make the same predictions for negative events, they make opposite 

predictions for positive events.

Unfortunately, studies investigating the possibility of unrealistic optimism for 

people’s estimates of positive events are far fewer than those investigating negative 

events. The evidence from those that have included positive events is also much more 

equivocal than it is for negative events (e.g., Chang et al., 2001). Whilst some studies 

report pessimism (e.g., Moore &  Small, 2008), a number of others have reported 

optimism, such that people view themselves as more likely than the average person to 

experience positive events (e.g., Campbell et al., 2007; Regan et al., 1995; Weinstein, 

1980). However, the statistical artifact hypothesis only predicts unrealistic pessimism 

for rare events. For positive events that are relatively common, the reverse logic 

applies. For common events, the chance of not experiencing them constitutes the rare 

outcome. Scale attenuation and minority undersampling thus make it more likely that 

the average comparative response for common events will be positive, a result 

interpreted as pessimism for negative events and optimism for positive events. Thus, 

studies that have observed pessimism for rare positive events but optimism for 

common positive events (Chambers et al., 2003; Kruger &  Burrus, 2004) provide 

direct support for the statistical artifact hypothesis.

Moreover, the positive events in those studies which have largely found 

optimism are arguably not rare. Weinstein’s seminal (1980) paper, for example, used 

positive events (p. 810), such as “Owning your own home” and “Living past eighty”,
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which were far less rare than the negative events, and the statistical artifact hypothesis 

would not necessarily have predicted pessimism for them. This is supported further by 

Weinstein’s finding that the perceived probability of the event was the single biggest 

predictor of participants’ comparative judgments for positive events such that greater 

comparative responses (interpreted as greater ‘optimism’) were displayed the more 

prevalent the positive event was perceived to be.

Perhaps as a result of the practical implications of the unrealistic optimism 

phenomenon for negative events, particularly in health psychology, very few 

subsequent studies have further addressed unrealistic optimism in positive events. 

Some have used very similar materials to Weinstein (1980) (Pyszczynski et al., 1987; 

Regan et al., 1995) and, consequently, the same argument is levelled against them. 

Although frequency information was not directly collected in the study of Zakay 

(1984), if  it is inferred from ratings of self and other’s chances, then his results suggest 

optimism for frequent positive events and pessimism for rare positive events, precisely 

the pattern predicted by the statistical artifact hypothesis. Zakay (1996) also reports 

results in which the most prevalent positive events yield unrealistic optimism, whilst 

the least prevalent demonstrate pessimism.19 More recently, Campbell et al. (2007, p. 

1277) used positive events such as “keeping in touch with family” and “downloading 

music” when using the internet (events that are anything but rare for people who use 

the internet and consider these events to be positive) and found optimism. This 

preponderance of common positive events in unrealistic optimism research was also 

noted by Hoorens, Smits and Shepperd (2008) who concluded that “researchers have

19 The response scale used in Zakay (1996) (-100 to +100 for both self and others’ chances) makes it 

difficult to determine the actual perceived frequency of the events.
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particularly sampled common desirable events and rare undesirable events, the very 

kinds of events that are likely to produce comparative optimism” (p. 442). Their own 

study sought to overcome this limitation by having participants self-generate events; 

however, the most frequently generated event types in their study were again 

“variations on themes that typically appear in studies involving experimenter

generated lists of events” (Hoorens et al., 2008, pp. 445-446).

In summary, within the unrealistic optimism literature there is far less evidence 

with positive events, and it is unclear that the sometimes observed optimistic 

responses for positive events resulted from anything other than their statistical 

properties -  namely that they were much more prevalent than the negative events 

studied. Because positive events can distinguish directly between a genuine optimistic 

bias and our statistical artifact hypothesis, further tests are essential. Hence we 

conducted a replication of the ‘classic’ unrealistic optimism study, but maintained 

equal focus on positive and negative events. The key question was whether we would 

observe optimism or pessimism for rare positive events.

Study 12

Study 12 was a replication of a ‘classic’ unrealistic optimism study, with an 

equal focus on positive and negative events.

Method

Participants

102 female undergraduates, aged 18-24 years (median age = 19), from Cardiff 

University participated in this study in return for course credit or monetary payment. 

Only females were used in order to reduce unnecessary variability resulting from 

gender differences in the desirability of, and susceptibility to, different events.
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Materials

A 282 item questionnaire was developed. The questionnaire asked seven types 

of question about 40 life events. The remaining two questions were open-ended 

qualitative questions asking: “Please list any bad things that you think are more likely 

to happen to you than the average female student in your year” and “Please list any 

good things that you think are less likely to happen to you than the average female 

student in your year.” The purpose of these questions was to determine whether people 

are optimistic about all aspects of their life.

Table 4.1 (see results section) lists the future life events that were chosen for 

inclusion in this study. The majority of these items were taken from Weinstein (1980). 

26 items were taken directly from those described in Weinstein (1980, p. 810), and a 

further 12 were adapted from the original 42 items in Weinstein (1980) in order to 

update them, remove any ambiguity, ensure their relevance for UK undergraduate

91students in the year 2008, and, most importantly, create rarer positive events (for 

example, ‘living past 80’ was replaced with ‘living past 90’). We also added two, 

putatively rare, positive events not included in Weinstein (1980): ‘Marry a film star’ 

and an extra level of starting salary such that participants were asked about three 

levels of starting salary, as opposed to two in the original study.

20 Four of Weinstein’s original items were left out. These were: “Dropping out of college”, this was to 

reduce any extra variance introduced as a result of participants being both first and second year 

students, “Decayed tooth extracted” and “Having gum problems”, as such events may not be fu ture  

events for some of the sample, and “attempting suicide”, which was removed for ethical reasons.

21 Note that this study was completed in February and March (2008), before the onset of the economic 

crisis.
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The questionnaire was ordered into seven blocks with each block containing 

40 questions, such that each block asked a specific question about each life event.

Four of these question blocks, concerning relative chance, event controllability, event 

frequency and event desirability were theoretically motivated by either the unrealistic 

optimism or statistical artifact hypothesis. Three additional question blocks, 

concerning event importance, event desirability to the average person, and number of 

steps taken to approach/avoid the event relative to the average person were included 

for exploratory reasons. As the theoretically motivated questions were able to 

sufficiently answer the research question, the three ‘exploratory’ blocks will not be 

discussed further. At the beginning of the first block participants read:

‘In this experiment you will be asked to estimate your chance of experiencing 

different events in your life. For each event, please judge your chance of 

experiencing it, RELATIVE TO THE CHANCE OF THE AVERAGE 

FEMALE STUDENT IN  YOUR YEAR.

Please answer using the numerical scale, where a response of 0 means that you 

think your chances of experiencing the event AT SOME STAGE IN  YOUR 

LIFE are the same as the average female student’s AT SOME STAGE IN  

THEIR LIFE, a response of -5 means that you think your chances are much 

less than the average student, and +5 means you think your chances are much 

more than the average student.’

The 40 questions in this block were then phrased and responses scales designed as in 

the example below:

156



‘Compared with the average female student in your year, how likely do you think you 

are to like the job you do after you graduate from university? (Please circle)^

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

<--------------Less likely— <--------Same chance— ->—  More likely-----------------

This 11-point scale is less attenuated than the -3 to +3 response scale most typically 

used in unrealistic optimism studies. Consequently, our replication is a conservative 

test of the statistical account for previous unrealistic optimism.

Block 2 required participants to ‘indicate how desirable different life events are 

to you.’ An example question, and related response scale is:

‘How desirable is it to you to have a starting salary of more than £20,000? 

(Please circle)ID’

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

<- Undesirable-------------- <----------------- -> ---------------Desirable--------------->

The perceived controllability of events was collected in Block 3, which 

required participants ‘to estimate the degree to which certain life events are under your 

control.’ An example question and its response scale are:

‘How much control do you think you have over whether you will visit the Amazonian

V J C

rainforest? (Please circle)

0 1 2 3 4 5 6 7 8 9  10

 Uncontrollable f ------------------------->  Controllable----------------
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Block 4 required participants to ‘estimate the number of your peers who will 

experience different events in their life. For each event, please estimate how many 

women out of 100 average female students in your year w ill experience it.’ This 

response comprised the subjective frequency o f the event. An example question is:

‘Out of 100 female students in your year, how many do you think will have a

heart attack before they’re forty? ________________’

Design

A within-participants design was employed. Within each question block there 

were four potential orderings of the life events, and in each ordering participants rated 

positive and negative events alternately and similar questions (e.g. different starting 

salaries) were not located in close proximity to each other. Participants always 

completed Block 1 first as it comprised the main dependent variable of interest in the 

study. Six orders of the remaining six blocks (six because they included the three 

exploratory blocks which were not included in subsequent analyses) were devised 

such that each block occurred in a different position in each of these six orders and 

each block was not always adjacent to the same blocks.

Procedure

Participants completed the study in a large laboratory in groups of up to nine 

participants simultaneously. Participants were asked to complete the questionnaires in 

their own time and to ask the experimenter if  they had any questions. Upon 

completion, participants were thanked, paid as necessary, and debriefed as to the 

purpose of the study.
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Results

The first step in the analysis was to classify events as positive or negative. This 

classification was based on the mean ratings of desirability collected from participants 

for each event. 21 events were classified as negative (p<.05) and 19 were classified as 

positive (p<.05) on an 11-point -5 (undesirable) to +5 (desirable) scale. The subjective 

ratings were as had been expected with the exception of the event ‘marry a film star’ 

which was rated as a slightly negative event by our participants.

Table 4.1 shows the results for both positive and negative events, arranged in 

order of decreasing optimism, as indicated by the mean comparative judgment. A 

positive value in the mean comparative judgment column indicates that participants 

tended to rate their own chances of experiencing the event as greater than average, 

whilst a negative value indicates that participants rated their chances as less than 

average. In addition to ratings of comparative risk, Table 4.1 also shows the ratio of 

optimistic to pessimistic individual responses, as in Weinstein (1980). Consistent with 

Weinstein’s finding, the two measures are highly correlated with r = .l l  for positive 

events and -.93 for negative events, and the general pattern of results in the study is

99the same across the two measures. Consequently, we limit our analysis to the 

comparative responses, as in Weinstein (1980).

22 Given Cohen and Cohen’s (1983, p. 75) critique of correlations with ratios, we also conducted a 

correlation between the comparative responses and the number of optimistic responses given for each 

event. The resulting correlations (0.91 for positive events and -0.91 for negative events) make us 

confident that the results o f both modes of analysis are comparable.
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Table 4.1
*Unrealistic optimism ’ fo r  future life events.

........■.... —f™--------------i----------- 1 Mean comparative 
judgment of own

No. of optimistic ] j 
| responses divided by | Mean

Event
----------- ------------

chances
no. of pessimistic j perceived j 

responses | frequency j
I I I  : i | | | |

Positive events

Own own home 1 28 *** 11.17 *** 72 35
Like job after university 0 65 *** 2 39 *** 52 78
Starting salary >£20,000 0.4 ** 2.93 *** I 5316
Not spend a night in hospital in 5 years 0.25 ns. 1.39 ns. 53.38 :
Have a mentally gifted child 0.16 ns. 1.67 ns. 19.62
Visit Amazonian rainforest -0.12 ns. 0.98 ns. 10.31
Home's value doubles in 5 years j -0.19 ns. 0.80 ns. 25.50

Maintain a constant weight for 10 years h0.67 ** 0.73 ns. 32 86
Graduate with a first - 0.69 * * 0. 6 0 * : 25 71
Work recognised with an award i - 0.74 * * * 0.43 *** I 11 39
Last whole winter without being ill - 0.74 * * * 0.48 *** f 28.91 j
Receive good job offer before graduating -0.83 *** 0.24 * * * 27.05 ;
Starting salary >£30,000 - 0.84 * * * 0.31 *** ! 26.20
Achievements acknowledged in national press - 0.97 * * * 0.27 * * * 7.53 :
Earn >£80,000 in 10 years time I -1.08 *** 0.22 * * * 16.24
Nationwide recognition within profession -1.26 *** 0.23 *** 7.11
Starting salary >£40,000 -1.38 *** 0.16 *** 13.28
Marry a millionaire -1.52 *** 0.19 *** 4.01

Negative events

Marry a film star -1.84*** 9.43 *** 1.10 "l
Contract AIDS -1.75*** 8.86 *** 3.33
Diverced within 5 years of marriage -1.25*** 3.93 *** 32.56 :
Lung cancer -1.21 *** 4.18 *** 12.57
Have a drinking problem -0.88 *** 2.15*** 13.35
Be sued -0.82 *** 3.06 *** 10.51
Be fired from a job -0.66 *** 2.83 *** 22.28
Heart attack before 40 -0.65 *** 2.27 *** 6.09
Be unable to have children -0.07 ns. 0.96 ns. 11.20
Heart attack 0.03 ns. 1.03 ns. 17.48
Have car stolen 0.03 ns. 0.79 ns. 20.19
Out of work for 6 months 0.04 ns. 1.00 ns. 37.27
Be the victim of a mugging 0.09 ns. 0.71 ns. 24.25
Buy a car that turns out to be terrible 0.19 ns. 0.63 ns 39.35
Realise chose the wrong career 0.20 ns. 0 .58* 34.66
Be the victim of burglary 0.22 ns. 0.39 *** . 40.74 j
Be in bed ill for 2 or more days in a year 0.29 ns. 0.77 ns. 67.06 I
Forced to take an unattractive job 0.32* 0.43 *** 49.78
Cancer 0.34* 0.62 ns. 32.31
Break a bone 0.38 * 0.70 ns. 48.39
Injured in a road accident 0 41 *** 0.26 *** 26 92

i I | : | | j |

Note. ns. = nonsignificant. Means in bold and italic font represent significant pessimism.

*p <.05. **p < 0 1 .***p  <.001.
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Optimism for negative events, pessimism for positive events

As a first test of the general unrealistic optimism effect, participants’ 

comparative judgments of their own chances versus others’ chances were averaged 

across all negative events. The mean response was -0.32, a result which was 

significantly below the neutral point (zero), ^(101) = 4.52,/K .001 (2-tailed). This 

replicates the traditional ‘unrealistic optimism’ effect. We next employed the same 

analysis using responses to the positive events. The results for the positive events 

matched those for negative events: Participants rated the positive events as less likely 

to occur to themselves than the average person (mean = -0.46), /(101) = 5.46, p<. 001 

(2-tailed), thus displaying significant ‘pessimism’ at the group level, in line with the 

statistical artifact hypothesis. Our study was primarily based on Weinstein (1980) and 

yet he found optimism for positive events while we find pessimism. Our results do not 

constitute a failed replication, however, for the positive events in the present study 

were deliberately modified to make them rarer. Indeed, when comparing the results 

reported in Weinstein (1980, Table 1) with those in our study (Table 4.1), only two 

directly comparable events show opposite results (significant optimism in Weinstein’s 

study and significant pessimism in the current study). The first of these, ‘receiving a 

good job offer before graduation,’ might be explained by the increase in the number of 

university graduates between 1980 and 2008, thus making such an event rarer in 2008 

than it was in 1980. The contrasting results for, ‘your work recognized with an award’ 

might, speculatively, be related to cross-cultural differences. Otherwise, the results of 

our study and of Weinstein (1980) match.

In conclusion, (rare) positive events overall elicited pessimism, in line with the 

statistical artifact hypothesis and in opposition to the hypothesis of a genuine, 

optimistic bias.
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Comparing the effects ofperceived frequency and event valence

Looking more closely at Table 4.1, it is clear that although the overall analyses 

clearly replicate Weinstein’s (1980) result of seeming unrealistic optimism for 

negative events, the individual events present a much more equivocal pattern. The 

mean responses for 12 of the 21 negative events are in a pessimistic rather than 

optimistic direction (although only 4 are significantly so). Interestingly, the data for 

positive events seem more clear cut than the data for negative events. The mean 

responses for 14 of the 19 positive events are in a pessimistic direction, 12 of these 

significantly so. By contrast, the means for only 3 of the positive events were 

significantly optimistic. Across all events, therefore, the means were in an optimistic 

direction for 14 events, whilst they were in a pessimistic direction for 26 events (p=.08 

by the binomial test). To what extent is this variability across events explained by the 

statistical artifact hypothesis?

As a first test, events were divided into four categories on the basis of 

participants’ ratings of desirability and frequency: Positive -  rare; positive -  common; 

negative -  rare; negative -  common. Figure 4.5 shows the mean comparative 

probability judgments made for these events. Common events were viewed as 

comparatively more likely to occur to the self than the average person than rare events 

were, F{ 1, 101) = 146.50,/?<.001, MSE = 0.43, etap = .59. Notably, no other 

significant effects were observed in the analysis of variance (ANOVA). In particular, 

there was no effect of event valence on comparative ratings, F (l, 101) = 1.32,p > .05, 

MSE = 1.52, nor was there any interaction between frequency and valence, F{ 1, 101) = 

3.60,/?>.05, MSE = 0.30. As evident from Figure 4.5, the non-significant trend in 

comparative ratings for positive and negative events was actually in the direction of 

pessimism (negative events were rated as comparatively more likely than positive 

events).
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That differences in comparative ratings are driven exclusively by event 

frequency and not by event valence is further suggested by the fact the two most 

‘biased’ sets of comparative responses were for the most neutral items in our data set, 

marry a millionaire and marry a film star, both of which had mean desirability ratings 

that deviated from zero by less than one scale value. The large ‘bias’ here is, however, 

predicted by the statistical artifact hypothesis, precisely because these events were 

perceived to be the rarest events of their respective valences.

This further confirms that the data in Study 12 provided no evidence for a 

general unrealistic optimism effect.

0.4 n

c  0 .2  ^

TOi—
0)
>

'  - 0.2 -  

TO
|  -0.4 - 
o
°  - 0.6 -c
TO0)
2 - 0.8 -

Rare C om m on

Positive

Negative

Figure 4.5. Mean comparative ratings for events according to a 4 way classification on 
the basis of perceived prevalence and desirability. Error bars are plus and minus 1

standard error.

Regression analyses

The preceding analysis provided strong support for the contention that the 

comparative probability judgments in this study are affected by perceived frequency 

rather than event valence. Whilst perceived frequency appears to be the best predictor 

of comparative responses, we also wanted to assess this quantitatively. Furthermore, 

we had collected data from participants on event controllability, a known moderator, 

and on the desirability of the events in question. If ratings reflect a genuine optimistic
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bias, which represents a kind of ‘wishful thinking’, then one might expect this bias to 

increase with the perceived desirability of the event in question. We performed a 

regression analysis, which also included event valence (coded as a dummy variable), 

to determine the relative contributions of these variables in predicting the comparative 

judgments.

After transforming the predictor variables to z scores (see Howell, 1997, p.

517), we performed a forwards regression. Main effects were added at the first step of 

the regression, with n-way interactions added at the n* steps. At step 1, two significant 

predictors emerged in the regression model. As expected, the most powerful predictor 

was perceived frequency which accounted for 58.4% of the variance in the 

comparative judgments {beta weight = 0.56). Control added a further 6% predictivity 

to the regression model, F (l, 37) = 5.89,p<.05. At step 2 of the regression, the 

interaction between control and event valence added 5% to the predictiveness of the 

model {beta weight = 0.36), F{1, 36) = 6.24,/?<.05. This result is also in accordance 

with the statistical artifact hypothesis. The effect o f controllability should be 

moderated by event valence (giving rise to the observed interaction) because increased 

control has opposite consequences (i.e., approach positive events, avoid negative 

events) for events of different valence. This conclusion was supported by an 

inspection of the residuals from step 1 of the regression, with controllability 

dichotomised (via a median split) for the graphical illustration presented in Figure 4.6. 

Figure 4.6 also shows that deviations from the best fit regression line were, once 

again, in the direction of pessimism, not optimism (i.e., positive for negative events 

and negative for positive events when perceived control was low).
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Figure 4.6. The interaction between perceived control and event desirability 
after controlling for the significant effects observed at step 1 of the regression (main 

effects of perceived frequency and control)

No other significant predictors emerged from the regression model. From these 

statistics, it is clear that perceived frequency is the best predictor of participants’ 

comparative responses (see also, Chambers et al., 2003; Kruger & Burrus, 2004; 

Moore & Small, 2008; Rose et al., 2008), with desirability unable to significantly add 

any predictive power to the regression model. An additional, by-subjects, analysis of 

the relationship between frequency and comparative responses suggested that this 

result generalises not only across all events, but across the whole population (mean 

coefficient = .28; /[101] = 14.69,/X.001) (Lorch & Myers, 1990).

Summary of Study 12

The aim of Study 12 was to distinguish directly between two explanations for 

the extant data in the literature, a genuine optimistic bias and statistical artifacts. The 

primary test was whether rare positive events were rated as more likely to occur to the 

self than to the average person or vice versa. In line with the statistical artifact 

hypothesis, and in contrast to the predictions of a genuine bias account, rare positive 

events were rated as less likely to occur to the self than to the average person, thus
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resembling ‘pessimism’. Moreover, frequency was by far the best predictor of 

participants’ comparative responses; by contrast, neither desirability, nor event 

valence were significant predictors. These data highlight the difficulties in interpreting 

results obtained using this paradigm as reflecting genuine human biases. Thus, it must 

be concluded overall that previous results obtained using the comparative ratings 

paradigm fail to provide reliable evidence for the assertion that people are 

unrealistically optimistic.

Alternative Methods Investigating Unrealistic Optimism

Thus far, we have concentrated our discussion on the ‘direct’ method of 

eliciting comparative ratings as a test for unrealistic optimism, in which participants 

rate their own chances of experiencing an event relative to the average person. We 

have argued that this paradigm does not provide a sufficient test of the unrealistic 

nature of the ‘optimism’ observed. However, there are a number of further methods 

that have been used in unrealistic optimism research. Do these offer more robust 

support for the phenomenon?

The ‘Indirect’ Method for Examining Unrealistic Optimism

The first, and main, alternative to the ‘direct’ method is the so-called ‘indirect’ 

method. Though less prevalent than the ‘direct’ method (Weinstein & Klein, 1996), 

the ‘indirect’ method has been used by a number of studies in the literature (e.g., 

Dewbery, Ing, James, Nixon, & Richardson, 1990; Dewbery & Richardson, 1990; 

Eysenck & Derakshan, 1997; Hoorens & Buunk, 1993; Miller, Ashton, & McHoskey, 

1990; Pietromonaco & Markus, 1985; Pyszczynski et al., 1987; Salovey & Bimbaum, 

1989; van der Velde & van der Pligt, 1991; van der Velde et al., 1992, 1994; for a 

review see Helweg-Larsen & Shepperd, 2001). Within this paradigm, participants 

separately rate their own chance of experiencing an event and the average person’s
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chance of experiencing the same event (most typically on a seven-point scale from 1 

[extremely low chance] to 7 [extremely high chance]). The experimenter then 

calculates the relative judgment by subtracting the participant’s judgment of the 

average person’s chance of experiencing the event from the participant’s judgment of 

their own chance of experiencing the event. This procedure yields a difference score,

which (for negative events) is taken as evidence for relative optimism if  negative and

9 "2
for relative pessimism if  positive.

Minority undersampling holds for the indirect scale to the same degree as it 

does for the direct scale. Given, therefore, that for rare negative events the ‘worse o ff 

minority are more likely to be undersampled than oversampled, the average response 

using the indirect scale may again resemble optimism for purely statistical reasons.

The relationship between optimism and perceived frequency is, however, not 

as straightforward as it is for the direct method. For one, the indirect method is subject 

to scale latitude effects (Klar & Ayal, 2004). As the base rate, and hence average risk 

decreases, so does the opportunity for the ‘self responses to be lower than the 

‘average person’ responses. This should give rise to an inverse relationship between 

optimism and frequency.

Furthermore, the effects of scale attenuation are more complex for the indirect 

method. In order to demonstrate this we will once again use perfect predictors: Given 

that responses must be translated onto a 1-7 response scale, it is first necessary to 

ascertain how probability ratings should be translated onto such a scale. Table 4.2

23 For positive events, the reverse relationship holds. Typically, however, as with the majority of 

unrealistic optimism studies, the ‘indirect’ paradigm has assessed people’s risk ratings for negative 

events.
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shows two candidates for the rational translation of percentage estimates onto a 1-7 

scale. Using the same assumptions for our perfect predictors as before, we calculated 

the mean difference score by subtracting the rated risk of the average person from the 

mean rated self risk. Again, negative scores would typically be interpreted as 

optimism and positive as pessimism for negative events. Figures 4.7 and 4.8 show the 

mean difference scores obtained for events of different base rates using the two 

different translation criteria illustrated in Table 4.2. It can be seen that whilst the 

attenuated response scale makes it impossible for the perfect predictors to appear 

perfect at a group level, thus questioning the validity of this scale, there is no 

systematic relationship between the direction of their bias and perceived frequency. 

This is consistent with the weaker correlation between optimism and event frequency 

observed using the indirect method as opposed to the direct method (e.g., Klar & Ayal, 

2004; Price et al., 2002; Rose et al., 2008; see also, Chambers et al., 2003).

Table 4.2
Two possible translations (a) and (b) o f  percentage risks
onto a 7-point scale
Scale value Value meaning Percentage risk (a) Percentage risk (b)

1 extremely unlikely 0-9 0-14
2 very unlikely 10-29 15-29
3 unlikely 30-49 30-44
4 50/50 50 45-55
5 likely 51-70 56-70
6 very unlikely 71-90 71-85
7 extremely likely 91-100 86-100
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Figure 4.7. Predicted mean difference scores of perfect predictors reporting their (and 
the average person’s) chances of experiencing events of different base rates on a 1-7

scale (using translation a).
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Figure 4.8. Predicted mean difference scores of perfect predictors reporting their (and 
the average person’s) chances of experiencing events of different base rates on a 1-7

scale (using translation b).

Given that the relationship between event frequency and predicted optimism is 

not systematic, can the unrealistic optimism generally observed using the indirect
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method be explained purely by minority undersampling? In the real world, people are 

not perfect predictors. For non-perfect, but rational, predictors there is another 

statistical mechanism which w ill result in seeming optimism being observed at the 

group level. We shall refer to this mechanism as base rate regression. It is well 

documented that people overestimate the frequency o f rare events and underestimate 

the frequency of common events (e.g., Attneave, 1953; Lichtenstein et al., 1978), a 

phenomenon which can be explained in terms of statistical regression to the mean (see 

Figure 4.9, top panel) (e.g., Erev et al., 1994; Hertwig, Pachur, &  Kurzenhauser, 2005; 

Moore & Healy, 2008; Moore & Small, 2007, 2008). Evidence for the direct relevance 

of this to studies of unrealistic optimism comes from the finding that people generally 

overestimate, and are therefore pessimistic about, their absolute risk for negative 

events (e.g., Causse, Delhomme, &  Kouabenan, 2005; van der Velde et al., 1992,

1994; see also, Moore &  Small, 2007).

Regressive probability estimates can be simulated using the formula y  = mx + 

c, where x is the objective probability, m is less than 1 and c is solved for the condition 

where both objective (x) and subjective (y) probability estimates equal 0.5.24 From 

this, we can simulate the responses of a population o f rational Bayesians who have 

regressive estimates of the base rate and who have received test results relating to their 

likelihood of contracting a disease. For this test, people are four times more likely to 

contract the disease if  they receive a positive test score than if  they receive a negative

24 This regression equation is a psychological simplification at the extreme ends o f the probability scale. 

Probabilities of 0 and 1 will generally be estimated accurately by participants. We do not consider 

impossible or certain events in this chapter, nor does the following hinge in any way on extremely low 

or extremely high probabilities.
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Figure 4.9. The top panel illustrates the effect o f regression to the mean on probability 
estimates. The bottom panel demonstrates the effect of such base rate regression on 

mean difference scores for events of different base rates. Responses are made by 
predictors who have a result of a test with a likelihood ratio of 4:1. Responses are 

made on an unattenuated, indirect scale.

test score. Consequently, the test’s ‘hit’ rate, P(e\h), is .8 (the chance of a positive 

result given that they will contract the disease) and its ‘false positive’ rate, P(e\^h), is 

.2 (the chance of a positive result given that they will not contract the disease). 

Equations 4.1 and 4.2 (Bayes’ Theorem) illustrate how a rational person should update 

their degree of belief on receipt of evidence (e.g., a test result). As rational Bayesians, 

our hypothetical participants should update their degrees of belief based on their
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estimates of the base rate and the characteristics of the test (which we shall assume 

they have been told). To demonstrate the effect o f base rate regression in isolation, our 

simulations w ill involve an indirect method whereby participants rate both their own 

and the average person’s risk on an unattenuated, continuous, 0-100 scale. Figure 4.9 

(bottom panel) shows the resulting mean difference scores that are obtained from 

differently regressive estimates of the base rate, across the range of base rates for rare 

(and not so rare) events.

Figure 4.9 (bottom panel) demonstrates that the average response will be 

optimistic for rare negative events, given rational updating from a regressed estimate 

of the base rate. Unpublished data provide a first estimate of the scale of base rate 

regression in the context of unrealistic optimism studies: Clutterbuck (2008) presented 

participants with 10 standard negative events such as contracting particular cancers, 

diabetes, coronary heart disease, or being in a road traffic accident. Participants 

indicated the expected incidence within a sample o f 1,000 people. Their estimates 

were compared to actual figures published by the UK government and relevant health 

related charities (e.g., the British Heart Foundation). The actual mean rate for the 

events was approximately 50 per 1000; participants’ estimates, by contrast, were 

approximately 200 per 1000. This corresponds to an objective estimate of 5% and a 

subjective estimate of 20%. Thus, the regressive estimates assumed in Figure 4.9 seem 

inherently psychologically plausible and, in fact, might even be considered 

conservative (however, see also, Windschitl, 2002, on potential difficulties associated 

with the interpretation of such data).

The small but consistent effect shown in Figure 4.9 (bottom panel) arises on an 

unattenuated scale. Consequently, it applies to the direct method as well as the indirect 

method. The slightly curvilinear relationship with event frequency observed in Figure 

4.9 (bottom panel) is a consequence of the scale latitude effect that emerges with the
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indirect method. To the extent that the direct method is less susceptible to scale 

latitude (Klar &  Ayal, 2004), a somewhat stronger, linear relationship with event 

frequency will be observed.

In the context of the indirect method, our next question is how do scale 

attenuation effects interact with the effects of base rate regression? Figures 4.7 and 4.8 

demonstrated that the most widely used scale has peculiar properties in that events of 

certain base rates w ill provide negative average difference scores and events of other 

base rates will result in positive average difference scores, resulting purely from the 

translation of a frequency onto this 1-7 scale. However, as Figures 4.7 and 4.8 

demonstrate, it is not possible to make predictions as to whether participants’ 

difference scores should mean to zero, or some other number, without knowledge of 

both the precise base rate and participants’ translation strategies. Figure 4.10 shows 

the effect of base rate regression (y = 0.7x + 0.15, where y  = estimated base rate and x 

= true base rate) on average difference scores obtained for rare events (base rates less 

than 0.5), assuming that participants’ translate their chance estimates onto a seven 

point response scale as prescribed in the right hand column (b) of Table 4.2. The non- 

systematic effects of scale attenuation mean that for some base rates the average 

difference score is predicted to be positive. Overall, however, the effect of base rate 

regression makes comparative responses more negative even with attenuated response 

scales. This is illustrated in Figure 4.10 which, for example, shows that for base rates 

below 0.35 there appear to be considerably more negative difference scores than 

positive difference scores predicted by the base rate regression mechanism 

(represented by the solid line). Moreover, given that there is no predefined, ‘obvious’, 

way to translate real-world knowledge of risk onto a 1-7 response scale, participants 

have the option to translate it in such a way as makes their future look rosier. Such a 

strategy would not imply that people are genuinely unrealistically optimistic. Rather,



when a crude response scale forces on them the choice of seeming either pessimistic 

or optimistic, they choose the latter.
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Figure 4.10. The effect of base rate regression on responses translated onto a 1-7 
scale, using translation b. In the simulation, participants have received the result of a 

test with a likelihood ratio of 4:1. The dotted line indicates the effect of scale 
attenuation alone, whilst the solid line shows the mean difference score for events of 
different base rates, for individuals whose base rate estimates are regressive (y = 0.7x

+ 0.15).

As noted, the predictions depicted in Figure 4.10 are dependent on the 

translation strategy that participants use. Without knowledge of this strategy it is not 

possible for any theory to make detailed predictions. The statistical artifact hypothesis 

is unable to make strong predictions about the relationship between seeming optimism 

and frequency. At the same time, unrealistic optimism is unable to predict that rational 

responses should mean to zero, for this is not true for the majority of base rates (see 

Figures 4.7, 4.8, 4.10). One potential avenue for future research is therefore to 

determine the translation strategies participants use. Only with knowledge of this, and 

the base rate of the events under investigation, can precise predictions be made 

concerning what constitutes rational responses using the indirect response scale.
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In the meantime, however, minority undersampling and base rate regression 

will always lead mean difference scores to appear more negative (for rare events). 

Moreover, the vagaries of the ‘indirect’ scale, as highlighted above, make the data 

obtained from it even more difficult to interpret than those obtained using the ‘direct’ 

method.

Base rate regression versus differential regression.

Moore and colleagues (Moore &  Healy, 2008; Moore & Small, 2008) suggest 

that unrealistic optimism can be explained in terms of differential regression. We show 

here how differential regression is different from our base rate regression mechanism, 

and why differential regression cannot explain unrealistic optimism. The differential 

regression hypothesis assumes that people possess incomplete knowledge, but that 

their knowledge of themselves is less incomplete than their knowledge of other 

people. Incomplete knowledge results in estimates that regress towards the mean (e.g., 

Figure 4.9, top panel). Given that people’s knowledge of themselves is less incomplete 

than their knowledge of others, estimates of self risk w ill be less regressive than 

estimates of others’ risk. Consequently, for rare negative events (those for which 

unrealistic optimism is most prevalent, e.g., Study 12), participants’ estimates of their 

own risk will be greater than the base rate (as their estimates regress towards the 

midpoint of the scale). However, participants’ estimates of the average person’s risk 

are predicted to be greater than their estimates of self risk (resembling unrealistic 

optimism for negative events), as the more uncertain knowledge leads to a more 

regressive estimate.

There is, however, a crucial difference between unrealistic optimism and the 

contexts for which the differential regression account was originally devised, such as 

performance on a quiz. In the quiz case, both group and individual estimates are
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derived from a common prior. In such situations, people can have better knowledge 

about their own performance than about other people’s. However, in the context of 

unrealistic optimism studies, where participants provide estimates of the likelihood of 

experiencing binary future events, the estimate of the average person’s chance is the 

prior and participants derive estimates of their own risk from this prior (if updating 

their belief rationally, in accordance with the prescriptions of Bayes’ theorem, as 

assumed in Moore &  colleagues’ account). By this process, estimates of self risk are 

not more complete than estimates of the average person’s risk, as any incompleteness 

in knowledge of the average person’s risk w ill be propagated in derivations of self risk 

estimates. Moreover, for binary future events, whilst people may know the base rate 

perfectly, this is typically not possible for their own risk. Indeed, the incompleteness 

of this latter knowledge is not measured by deviation from the average, but from the 

extremes of 0% and 100%.

As a consequence of these conceptual differences, the Bayesian process 

assumed by Moore and colleagues (Moore & Healy, 2008; Moore & Small, 2008) 

does not in fact give rise to unrealistic optimism effects. This process is the very same, 

standard, process of rational Bayesian belief updating we have invoked throughout: 

“people begin with some prior expectation and then update their belief when they get 

new evidence” (Moore & Small, 2008, p. 164). The prior expectation is derived from 

the base rate, which also constitutes the average risk estimate: “I f  one were asked to 

estimate another person’s outcome yet knew nothing about that person, the group’s 

average would be a good opening assumption (or what statisticians call a priory ’ 

(Moore & Small, 2007, p. 973). Given evidence about their own susceptibility to 

future events, people update their chances of experiencing the event from this prior, as 

prescribed by Bayes’ Theorem (and outlined above). This does not, however, result in 

data suggesting unrealistic optimism at the group level. Consider our previous



example concerning a population of people who each receive a test result indicating 

their susceptibility to lung cancer. Without the mechanisms of scale attenuation or 

minority undersampling, the estimates o f self risk in this example (8.7% for 41% of 

the population and 4.1% for 59% of the population) average 6% (bar rounding error), 

which is the base rate. Furthermore, the result is not peculiar to this specific example.

It arises for any test characteristics or base rate values (see Appendix for proof).

In short, a rational Bayesian process w ill not inherently give rise to unrealistic 

optimism. Our base rate regression mechanism requires an error (albeit itself a both 

understandable and unbiased one): a misestimate of the base rate. Its effect rests on the 

discrepancy between the actual base rate and the perceived base rate: the absolute 

value of individual’s estimates is driven by the perceived base rate (because they are 

derived from it via Bayesian updating); the actual number o f individuals receiving 

particular test outcomes (or any other individuating information such as family 

history), however, is driven by the actual base rate. In other words, people’s estimates 

are based on how they think the world is. The proportions of people receiving the 

different test results, however, depend on the way the world actually is. Consequently, 

given a discrepancy between the actual and perceived base rate, the average self 

estimates will no longer equal either of these base rates (see Figure 4.9, bottom panel).

In contrast to the differential regression hypothesis, our ‘base rate regression’ 

mechanism will lead to more optimistic seeming responses, but this results from the 

discrepancy between the real base rate and the perceived base rate, not the discrepancy 

between estimates of self chance and the average person’s chance (as assumed by 

Moore & colleagues).
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Assignment to Percentiles

A further, possible test for unrealistic optimism is based on assignment to 

percentiles. Participants are required to estimate the percentile rank of their chances of 

experiencing an event relative to a specified sample (e.g., Moore & Small, 2008; 

Weinstein &  Lachendro, 1982). For example, Moore and Small asked participants to 

estimate their percentile rankings relative to all other participants in the experiment:

“I f  you think you are more likely than anyone else in this experiment to 

experience the event, enter “100” as your percentile. I f  you think that you are 

the least likely person to experience the event, enter “0” as your percentile. I f  

you think your chances are exactly in the middle, enter “50” as your percentile. 

All numbers between 0 and 100 are acceptable responses” (Moore &  Small, 

2008, p. 147).

A bias was inferred in this experiment if  the average percentile rank differed from 50 

(see also, Weinstein & Lachendro, 1982).

When percentile ranking scales are used in experiments investigating relative 

chances of experiencing binary events in the real-world (e.g., Moore &  Small, 2008; 

Weinstein & Lachendro, 1982), it is unlikely that even rational percentile rankings 

will mean to 50. Returning once more to perfect predictors, a percentile ranking is not 

appropriate, as it is meaningless to provide percentile rankings for essentially 

categorical data (either a person will experience the event or they will not). Given that 

the events being used in these studies are binary events, this in itself is a problem for 

this measure. However, percentile rankings seem inappropriate even for non-perfect 

predictors. Although people do have access to a variety of sources of information by 

which they may differentiate their chances of experiencing an event from those of the 

average person, these sources are limited. Consequently, it seems likely that the finest 

comparison people would be able to make on a percentile ranking scale would be
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approximately 20% (i.e., they may be able to divide the comparison group into fifths). 

Consider therefore a sample of 150 people (Moore & Small used 158 in their study). 

The 30 individuals who know that they are in the least likely fifth of individuals to 

experience an event would seem to be able to rationally respond (on this scale) with 

any number between 0 and 20% (as 20% of people have the same chance as them of 

experiencing the event). This is the same range as the other groups of people who 

could respond between 20 and 40%, 40 and 60% and so on. This example highlights 

the major problem with percentile rankings. As soon as there are people with equal 

chances to other people (i.e., ties in the data), the task: (a) becomes confusing for the 

participant, and (b) it can no longer be assumed that the mean rankings will be 50%. 

These points are further illustrated with a numerical example. I f  the 30 individuals in 

each fifth of the population above respond with 10%, 30%, 50%, 70%, 90%, then the 

mean percentile ranking is 50%. However, as 30 o f the participants are the least likely 

people to experience the event, it also seems rational for them to report a percentile 

ranking of 0%, and, in fact, this seems to be what is asked of them in the experimental 

instructions. This response strategy would give rise to percentile rankings of 0%, 20%, 

40%, 60%, 80% with a mean percentile ranking o f 40% (i.e., less than 50%). It would 

seem unsatisfactory to interpret this result as showing these participants to be 

unrealistically optimistic.

Longitudinal Studies

“It is usually impossible to demonstrate that an individual’s optimistic

expectations about the future are unrealistic” (Weinstein, 1980, p. 806).

I f  researchers could see into the future, it would be possible to compare individuals’ 

expectations with the outcomes that they will actually experience. Longitudinal
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studies essentially allow researchers to see into the future by comparing outcomes at 

Time 2 with expectations at Time 1. In the context of unrealistic optimism studies 

though, this is not as simple as might be thought. Typically, these studies involve 

estimates about binary events: For example, a person will either have a heart attack or 

not have a heart attack; they cannot have .7 of a heart attack. Consequently, these 

events are not amenable to a longitudinal design, as participants’ probabilistic 

expectations about experiencing these events are not directly comparable with the 

binary outcome values, at least at the level of the individual event.

In order to make meaningful comparisons between binary outcome events and 

probabilistic estimates of the likelihood of occurrence of those events, the events must 

be aggregated in some way. One potential method is to ask an individual to provide 

binary ratings of a number of events, providing either a ‘yes’ or ‘no’ response to the 

question of whether they w ill experience each one within a particular time frame (e.g., 

ten years). Ten years later, the researcher would check the number of those events that 

the participant experienced. The total number of ‘yes’ responses both for expectation 

and outcome would then be compared. For negative events, if  the number of ‘yes’ 

expectations is less than the number of ‘yes’ outcomes then that individual might be 

considered unrealistically optimistic. Prima facie, this appears to be a reasonable 

strategy. However, the nature of a participant’s task in this study seems problematic. 

When completing a questionnaire whilst healthy, and without the ability to forecast 

the future, it would seem bizarre for a participant to circle ‘yes’ to any life threatening 

events (e.g., road accident, cancer, kidney failure etc.). Yet it would seem 

inappropriate to attribute such a reluctance to unrealistic optimism.

At first consideration, a better method would be to adopt the approach used 

widely in the judgment literature in order to study the extent to which people’s 

probability assessments are ‘calibrated’. This requires a very large selection of
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potential events for which participants provide probability estimates. Events are then 

combined by ‘binning’ all events that the participant assigned a particular range of 

probabilities to (e.g., 10-20% chance; 21-30% chance etc.). The ‘calibration’ of the 

participant’s responses is then subsequently evaluated by calculating the proportion of 

events in each ‘bin’ that actually occurred. To the degree that the participant’s 

responses were well calibrated, between 10 and 20% of events that they assign a 10- 

20% chance of occurring should occur (see e.g., Keren, 1991; Lichtenstein et al.,

1982; Wallsten &  Budescu, 1983; Yates, 1990). Unfortunately, this method is itself 

subject to statistical artifacts (e.g., Erev et al., 1994), as discussed in Chapter 1.

In light of the problems highlighted above, it is no coincidence that 

longitudinal studies typically use non-binary dependent variables, for which a direct 

comparison can be made between prediction and outcome. Although therefore 

addressing slightly different questions, two such longitudinal studies have purportedly 

found evidence of optimism effects. Unfortunately, these studies suffer from other 

methodological difficulties.

Shepperd, Ouellette, and Fernandez (1996, Study 1) found that liberal arts 

university students estimated their starting salary (four months prior to graduation) as 

higher than that actually received by liberal arts graduates. However, the “average 

starting salary of graduating seniors across the university was noticeably higher” than 

that for liberal arts graduates specifically (Shepperd et al., 1996, p. 847). Four months 

prior to graduation it is conceivable that these students would not have known that 

they were likely to earn less than the average graduate of this university. Hence, even 

if  they were to have perfect knowledge of the mean starting salary for graduating 

seniors, and all considered themselves as completely ‘average’, given this statistic a 

significant optimistic bias could still have emerged from the data. Shepperd et al. 

(Study 2) found that students were optimistic in their predictions of their exam grade



when estimating it one month prior to the exam, although performance estimates were 

very well calibrated at the group level upon completing the exam.25 However, without 

knowledge of the content of the exam, it might not be surprising that students were 

optimistic prior to the exam. As exams tend to become more difficult as one 

progresses through the education system, an estimate based on past experience of 

exams is likely to appear optimistic relative to their actual performance. The most 

striking finding from Shepperd et al.’s study appears to be the accuracy of 

participants’ predictions having taken the exam.

Lachman, Rocke, Rosnick, and R yff (2008) reported that individuals aged 32- 

64 (the youngest respondents in this survey were 32 years old) predicted greater life 

satisfaction in ten years time than they subsequently reported experiencing at Time 2 

(between eight and ten years later). It is not, however, clear that these respondents 

were unrealistically optimistic. This is evidenced by another observed effect, namely 

that, in retrospect, participants at Time 2 rated their life satisfaction at Time 1 as lower 

than they did when they rated it at Time 1. Thus, it is possible that participants’ levels 

of life satisfaction had genuinely increased in this time, consistent with their 

predictions. Given this interpretation, the explanation o f the lack of a difference 

between present ratings of life satisfaction (mean ratings of 7.71 and 7.77 [on a 0-10 

scale]) at the two time points and the observed difference between future (at Time 1) 

and present (at Time 2) is that participants change their usage of the response scale as 

their degree of life satisfaction changes. Presumably, life satisfaction perceptions are 

most intuitive on a relative (or ordinal) scale (see e.g., Stewart et al., 2006).

25 That is until immediately prior to feedback when they displayed pessimism (a result not of interest to 

the present discussion).



Consequently, in the knowledge that they are reasonably happy with their lives, 

people’s present life ratings reflect this whilst allowing for them to become even more 

satisfied (for who knows how satisfied it is possible to be?!), and these ratings serve as 

an anchor for their ratings of past and future life satisfaction. Given this interpretation, 

these results demonstrate realism and not bias in these participants’ predictions of the 

future.

In summary, longitudinal designs enable the comparison of a predictive 

estimate with actual outcomes. However, such studies are difficult to conduct with the 

kinds of binary outcomes that have formed the focus o f unrealistic optimism research 

to date. Shepperd et al.’s (1996) and Lachman et al.’s (2008) non-binary events do 

enable meaningful comparisons to be made at the individual level. In the absence of 

confounding factors and results, such studies could provide good measures of potential 

optimism in people’s expectations. However, by moving away from well-specified 

binary events to general constructs such as life satisfaction, the study results are not as 

clear in their interpretation. For example, when investigating well-being there is little 

knowledge of the factors that participants themselves consider important for well

being, with different people citing different factors as important (Ryff, 1989).

What is Needed for a Direct Test of Unrealistic Optimism?

“The most obvious way in which unrealistic optimism would present itself 

would be as an underestimation o f the actual likelihood of experiencing a 

negative event.. .One major problem faced by such studies is the difficulty of 

determining the actual risk, the statistic that is accurate for the particular 

individual under investigation” (Weinstein &  Klein, 1996, p. 2).
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All of the methodological concerns affecting unrealistic optimism studies would be 

removed if  it were possible to compare participants’ judgments with an objective 

probability. Longitudinal studies provide one possibility by combining events into sets 

and considering outcome proportions (‘calibration’). Unfortunately, as discussed in 

the introduction to this thesis, this runs into well-known problems of its own (e.g.,

Erev et al., 1994). A final possibility, however, is to make use of known, objective, 

probabilities in the Context of an experimental design.

We therefore chose to conduct an experimental test of unrealistic optimism 

within the same paradigm as used in Chapters 2 and 3, using a visual representation of 

probability and a ‘self versus ‘average person’ manipulation. Given the previous 

success of this paradigm, it seems a good candidate paradigm for a direct test of the 

unrealistic optimism phenomenon. Given an objective probability that is constant 

across participants, it would not be possible to explain away any observed effect 

through statistical artifacts.

Study 13

Study 13 aimed to provide a direct, experimental, test of the unrealistic 

optimism phenomenon. Crucial to this design was the fact that participants were 

supplied with an objective basis for their subjective estimates and that this objective 

basis was identical across the experimental manipulations.

Method

Participants

96 Cardiff University undergraduate students participated in the study in return 

for either course credit or cash payment.
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Design

In order to test the hypothesis that people believe that their chance of 

contracting a disease is lower than the chance of other people like them (unrealistic 

optimism), the between participants independent variable was the potential victim; 

namely whether participants were judging their own (‘your’) chance of being exposed 

to an MRS A like disease, or ‘Sarah’s’ (who was also a Cardiff University student) 

chance. The full design was a 2 x 3 mixed design, as participants based their 

judgments on three different probability matrices, and therefore the within subjects 

variable was the three probability levels, high, medium and low. The dependent 

variable was the probability estimates, which participants made by writing a number 

between 0 (it is impossible that you [Sarah] w ill be put in a bed infected by the virus) 

and 100 (it is a certainty that you [Sarah] w ill be put in a bed infected by the virus). 

The order in which participants made their judgments using the high, low and medium 

probabilities was counterbalanced across participants in each condition.

Materials and procedure

In order to completely counterbalance the presentation order of the three 

probability matrices, six booklet orders were prepared for each condition. A booklet 

consisted of three pages. Each page repeated the same cover story. The cover stories, 

which contained the person manipulation, are reproduced below (the words used in the 

Sarah condition are included in italics):

‘Drug resistant viruses are becoming more and more prevalent in British 

hospitals. Many of these viruses are potentially deadly and MRSA is a well 

known example. At some stage in your/her life you/Cardiff University student 

Sarah w ill be admitted to hospital and unfortunately the prevalence of these
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drug resistant viruses is showing no signs of decreasing. In the future therefore 

you/she might well find yourself/herself facing the following situation. Please 

read the situation carefully and imagine that it is reality.

You have/Sarah has been admitted to a South Wales hospital for a 

routine procedure. However, an often fatal drug resistant virus is thriving in 

this hospital. 75% of people who become infected with this virus die from it. 

This virus contaminates a number of the hospital’s beds. The matrix below 

represents the distribution of hospital beds infected by the virus (BLACK 

squares). White squares represent those beds not infected by the virus.

By looking at the matrix below please estimate the chance that 

you/Sarah will be put in a bed infected by the virus (BLACK) thus exposing 

you/her to it.’

The matrix referred to in the text was one of three probability matrices (black and 

white versions of those used in Study 1).

Having completed a consent form and made their way through the 

experimental booklet, participants were thanked, debriefed as to the purpose of the 

study and paid (where appropriate).

Results

One participant was excluded from the analyses as their three probability 

estimates did not correspond to the basic rank order of the probability levels. After this 

exclusion there were 95 participants included in the data analysis, 47 in the ‘you’ 

condition and 48 in the ‘Sarah’ condition.

The probability variable was the only variable to have a significant effect on 

participants’ probability estimates, F(2, 186)= 1151.81,/K .001, MSE= 101.80.
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Neither the person manipulation, F (1, 93) = 1.958, p>.05, MSE = 206.02, etap = .02, 

nor the interaction between the two variables, F(2, 186) = .959,p>.05, MSE = 101.80, 

reached significance. Examining the pattern of the results (Figure 4.11), it seemed 

possible that there was a significant difference in probabilities relating to the self and 

to Sarah when the probabilities were low. As the unrealistic optimism effect is 

typically reported for events with low base rates, there was also a theoretical rationale 

to analyse the judgments of the low probabilities independently. A two-tailed t-test 

indicated that the difference between the two experimental groups in their probability 

judgments at the low probability level was not significant, /(93) = 1.66,p=.10. Despite 

the hypothesis for the present study being one-tailed, the two-tailed test was 

performed because the direction of the hypothesis was in the opposite direction to the 

pattern of the results. As such, not only did the results of Study 13 show no significant 

difference between the two groups’ risk ratings, but the (weak) trend in the data was in 

the opposite direction to that predicted by unrealistic optimism. O f course, this is 

simply a null effect, and one based on a hypothetical scenario. However, in Chapter 2 

this paradigm was found to be powerful enough to observe significant effects, as well 

as to demonstrate the importance of a moderating variable (event controllability), thus 

strengthening the interpretation of this null result.

187



100

□ You 

■ Sarah

low medium high

Probability level

Figure 4.11. Mean probability estimates made across probability levels by 
participants in both groups. Error bars and plus and minus 1 standard error.

What is the Future for Unrealistic Optimism?

We have introduced a range of statistical concerns that plague studies seeking 

to demonstrate that people are unrealistically optimistic about their futures (e.g., 

Weinstein, 1980, 1982, 1984, 1987). The statistical distribution of the events in the 

real world (specifically, the rarity of these events) coupled with the fact that minorities 

are more likely to be undersampled than oversampled, and the nature of the response 

scales used, mean that aggregate data resembling optimism can be found readily even 

with entirely unbiased predictors. In addition to this stands the likely effect of the fact 

that people’s estimates of event base rates are regressive.

In two studies we tested whether there was any evidence for genuine optimism, 

beyond the statistical artifacts these mechanisms will give rise to; neither of these 

studies found any such evidence. Study 12 replicated the traditional unrealistic 

optimism effect for negative events; however, this effect was driven by frequency as 

expected from a purely statistical perspective, and event desirability was not able to 

account for any variance in comparative judgments once perceived frequency was
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controlled for. Moreover, Study 12 did not find any evidence of unrealistic optimism 

in comparative responses to rare positive events, contrary to the predictions of 

unrealistic optimism, but as predicted by the Statistical Artifact Hypothesis. Study 13 

provided an experimental test of the unrealistic optimism phenomenon within a 

fictional scenario in which each participant’s true, objective probability of contracting 

a disease was independently specified. Again, no evidence for an unrealistically 

optimistic bias was observed under these controlled conditions. Consequently, the 

statistical artifacts highlighted in this chapter seriously question the validity of the 

conclusion that people are unrealistically optimistic.

The statistical artifacts introduced here can also explain a number of previously 

identified moderators of the effect, including: Specificity of the comparison target, 

event controllability, experience and event frequency. Moreover, statistical artifacts 

readily explain the weaker correlation typically observed between optimism and event 

frequency when measured using the indirect method as opposed to the direct method 

(e.g., Klar & Ayal, 2004; Price et al., 2002; Rose et al., 2008; see also, Chambers et 

al., 2003). Hence the artifacts identified would seem to cloud our understanding of the 

optimism phenomena, even if new evidence that provides robust support for 

unrealistic optimism were found.

How likely is such evidence to be found? In the final section of this chapter we 

examine the basic plausibility of the claim that people might be unrealistically 

optimistic in light of other research. For example, unrealistic optimism, though not 

clearly established empirically, might seem theoretically plausible in light of the fact 

that people are known to be subject to a range of other ‘positive’ biases such as a 

tendency to overconfidence, to overestimating their abilities and to an exaggeration of 

their degree of control.
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Related Phenomena

Unrealistic optimism may be perceived as similar to, and hence made plausible 

by, a number of other phenomena.

The planning fallacy (e.g., Buehler & Griffin, 2003; Buehler, Griffin, & 

MacDonald, 1997; Buehler, Griffin, & Ross, 1994; Kahneman & Tversky, 1979b; see 

also, Arnold, 1986; Kahneman & Lovallo, 1993) is the phenomenon whereby people 

predict that tasks will take less time to complete than they do and predict that they will 

complete more work in a given time period than they subsequently do. Thus, people 

could be considered overly optimistic in their planning predictions. This phenomenon 

appears robust. However, in none of these tasks are people required to give probability 

judgments; hence the planning fallacy seems conceptually rather distinct. 

Consequently, one would want to infer little from the existence of this fallacy on its 

own.

There are, however, a number of other phenomena that seem conceptually 

closer to unrealistic optimism such as the so-called illusion of control (e.g., Langer, 

1975; Langer & Roth, 1975), people’s seeming belief that they are better than average 

in terms of ability (e.g., Svenson, 1981), or the finding of overconfidence in 

calibration studies of probability judgment (e.g., Kahneman & Tversky, 1973). 

However, these biases have also come under scrutiny on statistical grounds, as we will 

discuss next. This has questioned the traditional, motivational based explanations for 

these phenomena and, in these cases too, has raised the possibility that people are not 

as biased or irrational as previously believed.

We have already summarised Erev et al.’s (1994) statistical account of over- 

and underconfidence in Chapter 1. Other related phenomena for which statistical 

accounts have been proposed include: The Hard/Easy effect (Juslin, Winman, & 

Olsson, 2000), the False Consensus effect (Dawes & Mulford, 1996), the Illusion of
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Control (Matute, Vadillo, Blanco, & Musca, 2007) and the Better-than- 

Average/Worse-than-Average effect (Moore & Healy, 2008; Moore & Small, 2007).

Moore and colleagues’ account of the Better-than-Average/Worse-than- 

Average effect (Moore & Healy, 2008; Moore & Small, 2007, 2008; see also, Kruger, 

Windschitl, Burrus, Fessel, & Chambers, 2008) is based on the underlying assumption 

that people have imperfect knowledge about their performance on a task, but their 

knowledge of other people’s performance is more imperfect. Although not a tenable 

assumption in unrealistic optimism studies (as discussed above), this assumption 

seems very plausible when considering the traditional Better-than-Average/Worse- 

than-Average effects. Moore and colleagues’ theory “is based on the Bayesian notion 

that people begin with some prior expectation and then update their belief when they 

get new evidence” (Moore & Small, 2008, p. 164). Imperfection of knowledge thus 

results in estimates that are regressive towards the prior expectation. Estimates are 

more regressive for others than for the self as people’s knowledge of others is worse 

than their knowledge of themselves. To illustrate this point, imagine the following 

example: Before taking a test, you expect to answer approximately 50% of questions 

correctly. Upon completion of the test, you realise that it was easier than you had 

expected. Consequently, you know that you have answered more than 50% of 

questions correctly. When asked to estimate your own performance, your estimate will 

be based on evidence (i.e., your experience of taking the test) which is imperfect. This 

imperfection will lead to the regression of your estimate towards your prior (as 

prescribed by Bayes’ Theorem), which was 50% (Moore & Healy, 2008; Moore & 

Small, 2007). Such a process will ensure these absolute estimates resemble 

underconfidence in such easy tasks. By contrast, if asked to estimate the test 

performance of another person, you do not have possession of the same evidence 

relating to their performance on the test. Consequently, these estimates will regress
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towards 50% to a greater degree than those for your self. Thus, for easy tasks, absolute 

underconfidence should be observed, but comparative overconfidence (relative to 

estimates of the average) should be observed, giving rise to the “Better-than- Average 

effect”. For difficult tasks, the reverse result is obtained: absolute overconfidence, but 

comparative underconfidence; the so-called “Worse-than-Average effect”.

A Summary of the Future for Unrealistic Optimism

It seems then that rather less support exists for the theoretical possibility of an 

optimistic bias regarding future life events than might be assumed. Key phenomena 

that could be linked to such a bias have themselves come under attack on the basis of 

statistical considerations.

Chapter Conclusions

We have introduced a range of methodological concerns that plague traditional 

studies ‘demonstrating’ that people are unrealistically optimistic. Typically, these 

demonstrations are based on people rating their chances of experiencing negative 

events as being less than the average person’s. At the root of these methodological 

concerns lies the fact that the negative events that form the focus of these studies are 

generally rare events. This gives rise to three statistical problems: the effects of scale 

attenuation, minority under-sampling, and base rate regression. All three are 

independent statistical mechanisms by which seeming optimism may emerge from 

entirely unbiased predictors.

Indeed, we demonstrated that the response scales used in optimism research 

give rise to seeming bias with predictors that are not only rational, but perfect, that is, 

in possession of fully accurate knowledge about the state of the world. This is true of 

the scales used in both the so-called ‘direct’ and ‘indirect’ methods. It would seem a 

minimum requirement for the validity of a response scale, that genuinely accurate
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responses do, in fact, appear accurate using that scale. Consequently, the response 

scales on which unrealistic optimism research is based seem to fail this most basic 

requirement of validity.

We then demonstrated how scale attenuation would generate seeming 

optimism with the direct method in the absence of perfect knowledge. Assuming only 

very weak, but unbiased, diagnostic information, ‘unrealistic optimism’ emerges 

readily, as we showed both analytically and with reference to specific examples 

modelled on extant research. Moreover, empirical evidence for the contention that 

scale attenuation contributes to seeming unrealistic optimism was cited. This research 

demonstrated that greater optimism was observed using a more attenuated response 

scale than a less attenuated response scale (Otten & Van der Pligt, 1996).

Minority under-sampling also affects both the direct and the indirect method. 

We provided empirical evidence for the role of minority under-sampling through a 

meta-analytic correlation between the sample sizes and effect sizes of previous 

studies.

Base rate regression can also affect both the direct and the indirect method, and 

there exists independent empirical support for the critical assumption that people’s 

estimates of probabilities are frequently regressive.

To probe further whether robust evidence for unrealistic optimism can, in fact, 

be found, we also conducted two studies of our own. These were designed such that 

the statistical problems identified could be ruled out as alternative explanations. 

Neither of these found any evidence of unrealistic optimism. Study 12 examined the 

conflicting predictions of the optimism and the statistical artifact hypothesis 

concerning low probability, positive events. The results obtained were in direct 

opposition to optimism, but in line with the statistical hypothesis. Study 13 failed to

193



find any evidence of optimism in an experimental paradigm that has successfully 

detected differences in closely related circumstances (see Chapter 2).

Finally, we considered other potential measures of unrealistic optimism, and 

summarised research relating to other phenomena that might make unrealistic 

optimism at least seem plausible. We concluded that unrealistic optimism is extremely 

hard to test. Similarly, many other, potentially related, phenomena have themselves 

been questioned in light of realistic statistical explanations for data that have been 

offered in support of them.

In summary, there seems, presently, to be no compelling evidence for a 

general, unrealistically optimistic bias. Furthermore, the outlook regarding such a bias, 

if anything, seems rather bleak, particularly when the results of this chapter are 

considered in conjunction with the results of Chapter 3, which found no evidence of a 

simple wishful thinking bias.

Some of us might sometimes be overoptimistic. Certain subgroups of the 

population might demonstrate a bias, for example, entrepeneurs, gamblers and 

smokers (e.g., Cooper, Woo, & Dunkelberg, 1988; Coventry & Norman, 1998; 

Delfabbro & Winefield, 2000; Griffiths, 1994, 1995; Hansen & Malotte, 1986; 

Ladouceur, Gaboury, Dumont, & Rochette, 1988; Lee, 1989; McKenna, Warburton, & 

Winwood, 1993; Rogers & Webley, 2001; Wagenaar, 1988; Walker, 1992; Weinstein, 

Marcus, & Moser, 2005; but see also Delfabbro, 2004; Rise, Strype, & Sutton, 2002; 

Sutton, 1999, 2002). Similarly, almost all of us might be optimistic about some very 

particular things, for example, the planning fallacy seems a near universal 

phenomenon, both empirically and anecdotally. The existence of a general optimistic 

bias cannot, however, be inferred from these more specific ones.

By questioning the status of unrealistic optimism, this chapter adds to the 

literature already suggesting that other human biases may simply be statistical artifacts
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(e.g., Dawes & Mulford, 1996; Erev et al., 1994; Juslin et al., 2000; Moore & Healy, 

2008; Pfeifer, 1994; Soli, 1996). A considerable, and growing, body of research thus 

suggests that people’s probability estimates may be more rational than often assumed. 

Moreover, the statistical account advanced means that it is not clear that there is any 

inconsistency between the lack of a wishful thinking effect, as observed in Chapter 3, 

and previous research findings.
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Chapter 5 - General Discussion

In the introduction to this thesis, we highlighted the importance of 

understanding probability judgments situated in the presence of utility-laden 

situations. In Chapters 2 and 3, we subsequently presented a systematic experimental 

investigation of the potential biasing effect of utility on probability estimates, whilst 

providing participants with an objective anchor for their estimates.

Chapter 2 first demonstrated an effect of outcome severity on probability 

estimates by which very negative events were judged more likely to occur than more 

neutral events. Subsequent investigation demonstrated that this effect was moderated 

by the controllability of the negative event, such that only controllable negative events 

were rated as more likely to occur, whilst uncontrollable negative events were 

assigned the same probability rating as neutral events. This led to the development of 

a decision-theoretic explanation for the effect in terms of asymmetric loss functions 

(e.g., Weber, 1994). The nature of this explanation means that the effect can be 

considered a rational response to a recognition that human judgment of uncertainty is, 

in itself, uncertain; it does not seem to be an irrational bias resulting solely from the 

utilities of the events considered.

Chapter 3 extended the empirical investigation to potential biasing effects of 

positive utility, and hence provided a controlled, laboratory based, experimental test of 

the ‘wishful thinking’ effect. Having developed an asymmetric loss function account 

of the results in Chapter 2, any effect of positive utility on estimates of probability 

would have to be explained through an alternative mechanism. Across four empirical 

studies, however, no effect of utility was observed on participants’ probability 

estimates.
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The null results reported in Chapter 3 appeared to contradict a robust result in 

social psychology, that people are unrealistically optimistic, in that, as a group they 

tend to judge themselves as less likely than the average person to experience negative 

life events. In Chapter 4, we argued that the results from the paradigms employed in 

unrealistic optimism research are confounded by statistical effects resulting from the 

methodologies employed. We demonstrated that responses from a variety of 

hypothetical, rational participants would likely be interpreted as unrealistically 

optimistic according to the rationale of the unrealistic optimism methodology. Whilst 

some of these hypothetical participants combined imperfect information rationally in 

order to make their responses, others had perfect knowledge as to whether or not they 

would experience certain events. In both cases, seemingly rational (or perfectly 

accurate) individual responses were shown to lead to a bias at the group level. Two 

original studies (Studies 12 and 13) failed to find evidence for an unrealistic optimism 

bias over and above effects predicted by the statistical artifacts identified.

In addition to questioning the status of a generally accepted conclusion in the 

literature, the experimental work in Chapter 4 provided a natural extension of that 

undertaken in Chapter 3, by further enhancing the personal relevance of the utility 

manipulation in the experimental materials. Chapter 3 first tested for a wishful 

thinking effect using purely third person stimuli (Study 8). Studies 9 and 10 also used 

third person stimuli, but in this instance those stimuli were intended to also carry 

direct relevance for the global population. Study 11 then failed to find an effect of a 

direct, first person, affective, manipulation of positive utility (the participant could win 

a mars bar) on probability estimates. In Chapter 4, Study 12 investigated the potential 

for a direct biasing effect of utility on people’s comparative probability judgments for 

real events in their own future. The failure to find evidence for a biasing effect of
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utility under these conditions adds considerable weight to the null results reported in 

Chapter 3. By questioning participants about their own future, specifically with 

respect to events rated as either very undesirable or very desirable, the materials are 

necessarily realistic and personally relevant.

Evidence therefore seems to be mounting that there are no direct effects of 

outcome utility on probability, whether in the positive or the negative domain (a 

conclusion echoed in Krizan & Windschitl, 2007). The effects of loss function 

asymmetry in Chapter 2 add to the experimental evidence suggesting the presence of 

mechanisms that can lead to the indirect biasing effect of utility on estimates of 

probability in practice. Figure 5.1 has been drawn to demonstrate where, in the overall 

process of producing a probability estimate, the different indirect mechanisms exert 

their influence. It can be seen that the majority of these mechanisms concern the 

evidence accumulation stage. Gordon et al. (2005) found that participants 

misremembering the source of predictions had a tendency to attribute more desirable 

predictions to the more reliable source. Bar-Hillel et al. (2008) found evidence that 

wishful thinking influenced information selection via salience: “I wish for, therefore I 

focus on, therefore I believe in” (Bar-Hillel et al., 2008, p. 283). Dai et al. (2008) and 

Mandel (2008) found evidence for a ‘value heuristic’, that is, base rate knowledge that 

the more positive an outcome, the more infrequent it is, which people use as additional 

evidence where information retrieval is difficult. The vulnerability of this stage of the 

probability estimation process to biasing factors is not surprising given recent research 

highlighting the effects of context and task demands on the construction of subjective 

probabilities (e.g., Lichtenstein & Slovic, 2006).

The failure to observe a direct effect of utility on probability estimates 

suggests that people’s judgments of probability are more rational than has previously
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been assumed. In real life judgment tasks, asymmetric loss functions might inflate 

estimates of those probabilities associated with negative events, but such a mechanism 

seems to fulfil a protective function. The identification of the phenomenon (and the
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1: Dai, Wertenbroch, & Brendl (2008)
2: Mandel (2008)
3: Gordon, Franklin, & Beck (2005)
4: Bar-Hillel, Budescu, & Amar (2008)
5: Harris (Chapter 2)

Figure 5.1. Locating indirect effects of utility in the probability estimation process.

others included in Figure 5.1) enables the recognition of those situations in which such 

inflations might be harmful and steps can subsequently be taken to reduce their 

negative effects. For judgment and decision making researchers, the seeming lack of a 

poorly understood, likely unexplainable, general interdependence between utility and 

probability should inspire optimism. Researchers typically seek rational explanations, 

which can subsequently guide rational interventions to improve the quality of human 

judgment and decision making.. Consequently, research such as that presented in this 

thesis has implications both for theoretical development, in terms of increasing our 

understanding about human judgment processes, and in applied settings. As mentioned
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in the introduction, probability judgments about utility laden outcomes are those that 

are most important in human life. For example, a juror’s judgment as to the likelihood 

of a suspect’s guilt, or a clinician’s judgment as to the probability of a patient having a 

potentially life-threatening disease are both situations in which an accurate probability 

estimate is desirable in order to guide rational decision making. By increasing 

understanding of the factors that do and do not bias such probability estimates, it 

might be possible for future research to improve the optimality of people’s judgment 

and decision making. The research presented here provides further support for the 

rationality of human judgment by demonstrating a bias only under conditions of loss 

asymmetry, conditions under which such a bias may be considered rational (e.g., 

Batchelor & Peel, 1998; see also Whiteley & Sahani, 2008, and references therein).

Rational or not rational, the effects of asymmetric loss functions, in 

conjunction with the other effects cited in Figure 5.1, mean that probability estimates 

will often be biased in practice. Our loss asymmetry-based influence of severity occurs 

only in circumstances where a decision might be made. However, it is only in 

situations in which probabilities inform decisions that we really care about the 

accuracy of estimates in the first place. Moreover, the practical implications seem 

potentially even greater when the nature of the materials with which we observed this 

effect is considered. In these studies, participants have no personal stake in the 

probabilities they are providing, given that the story involves entirely fictitious third 

parties. Furthermore, there is a clear objective probability that is made available to 

participants. If a reliable and replicable effect of outcome utility on estimates of 

probability can be observed within such a minimal paradigm, it is likely that 

influences of outcome severity on estimates of probability are pervasive and it is likely 

they will be larger under conditions of emotional involvement (as we experience
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within our own lives). Finally, the observed bias could operate in conjunction with 

previously identified biasing influences. This suggests that further investigations under 

more real-world circumstances are desirable.

These implications highlight the importance of a thorough understanding of the 

status of the biasing effect of asymmetric loss functions. There might be situations in 

which such a bias cannot be considered rational. These situations should be explored 

more fully in future work in order to best understand human judgment, and, where 

appropriate, to provoke research to investigate interventions designed to enhance its 

rationality. The next section addresses this question in more detail.

Future Work

As stated above, where biases are observed the natural follow-up is to 

determine whether they can be, or indeed should be attenuated. It seems reasonable to 

suggest that an optimal judgment strategy would be one in which probabilities are 

never biased by utilities, for the ‘badness’ of an event does not affect the likelihood of 

an event occurring, ceteris paribus. We have, however, argued that the biasing effect 

of asymmetric loss functions demonstrated in Chapter 2 is a rational response to 

uncertainty. How can this position be reconciled with the statement that the optimal 

strategy would be one of no bias? Central to this issue is the recognition that the 

biasing effect of asymmetric loss functions is a rational response to the uncertainty of 

the uncertainty. Thus, in situations in which people are more confident about their 

probability estimates, the bias should be attenuated.

The asymmetric loss function account also predicts that there will be situations

in which the effects observed in Chapter 2 can be reversed. In Studies 1, 2, 3, 6 and 7,

it is assumed that there are greater costs associated with an underestimate of the

probability of the chance outcome occurring (i.e., plane debris landing in a town; the
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farmer’s daughter eating a fatally poisonous apple) than with an overestimate of that 

probability. In both these situations, such an assumption seems reasonable as there are 

no costs associated with an underestimate (aside from in Study 6, where these costs 

are still noticeably less negative than those associated with an overestimate). By 

reducing the costs associated with an overestimate, and increasing the costs associated 

with an underestimate, the asymmetry in the loss function might switch such that an 

underestimate is more costly. For example, in the orchards paradigm, the ‘bad’ apples 

could cause severe stomach cramps that last for a 24 hour period, but the only way of 

stopping the daughter from entering the orchard could be for the farmer to move to a 

recently vacated farm 50 miles away, at cost to him, and also necessitating him to 

move his daughter’s school. In this instance, the costs associated with an 

underestimate may be less than those associated with an overestimate of the chance of 

the daughter eating a bad apple. Were probability estimates subsequently reduced in 

these situations, this would provide further evidence in favour of the role of 

asymmetric loss functions on biasing probability estimates.

The asymmetric-loss function explanation for the biasing effect of utility on 

probability estimates is also a decision-theoretic one, based on the costs associated 

with an underestimate. Such an effect can only be rational if it is further moderated in 

the process of actually making a decision, as opposed to simply making a probability 

estimate. This is because SEU (e.g., Savage, 1954) posits that both probabilities and 

utilities should be combined in the decision making process. Thus, if utilities influence 

estimates of probability and are subsequently included in the decision making process, 

they are effectively being ‘double-counted.’ Such behaviour could no longer be 

considered rational according to the normative framework of SEU. Were such 

‘double-counting’ to occur, then this would be an example of a bias for which
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preventative strategies might usefully be devised. Consequently, it seems an important 

avenue for future research to address the question of whether utilities may be ‘double- 

counted’ in this way. Such a possibility could be investigated by manipulating the 

actor in the orchards paradigm, and the presence of a decision. In the high 

controllability condition of Study 6, for example, participants were told that the farmer 

was considering whether or not to erect an electric fence to keep his daughter from 

playing in the orchard. In a ‘decision-present’ condition, the participant could be told 

that they had an opportunity to erect a fence, they could be asked to estimate the 

probability and also to make a decision whether or not to erect the fence (‘yes’ or 

‘no’). The decision question should be visible on the same page as the one where 

participants make their probability estimates. If ‘double-counting’ does occur then 

participants’ responses should be the same in a ‘decision-present’ condition as in a 

condition that exactly matches the high controllability condition of Study 6 (‘decision- 

absent’). I f ‘double-counting’ does not occur, suggesting enhanced rationality of the 

protective bias, then probability estimates should be lower in the ‘decision-present’ 

condition (indeed, they should be no different from those in a neutral outcome 

condition in Chapter 2) than in a ‘decision-absent’ condition.

Were the latter result to occur, it would not, however, necessarily imply 

enhanced rationality of the protective bias. DeKay, Patino-Echeverri and Fischbeck (in 

press) found that participants who preferred a precautionary action over a non- 

precautionary action tended to indicate that they would prefer this action regardless of 

the probabilities involved. According to our decision-theoretic explanation for biased 

probability estimates, these people would therefore see no reason to alter their 

probability estimates prior to making their decision, as the probabilities are not
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relevant to their decision. Clearly, however, the complete ignoring of probabilistic 

information would be a demonstration of irrationality.

Another area of future research that might be generated by this thesis is further 

investigation of the true status of unrealistic optimism. We acknowledged in Chapter 4 

that, although the present methodology cannot demonstrate the presence of this bias, 

and we were unable to find an effect within the matrix paradigm (Study 13), we have 

not provided conclusive evidence against its existence. Future research must develop a 

suitable paradigm within which this research question can be further addressed -  

specifically, a paradigm investigating real events in an individual’s own future, but 

one that is not susceptible to the statistical artifacts identified here. In the absence of 

such a paradigm there are additional questions of applied interest that arise from our 

work questioning the status of unrealistic optimism. One that we shall focus on here is 

that of so-called ‘depressive realism’ (e.g., Alloy & Ahrens, 1987; Pietromonaco & 

Markus, 1985; Pyszczynski et al., 1987). This phenomenon is partially based on the 

finding that dysphoric individuals do not display unrealistic optimism to the same 

degree as non-dysphoric individuals. Given our critique of the status of unrealistic 

optimism in Chapter 4, it is no longer possible to make this conclusion pertaining to 

people’s expectation of their future. All that can be said is that dysphoric individuals 

are more negative in their expectations for their future than non-dysphoric individuals. 

However, the degree to which depressives may be more negative can be investigated 

with a full study that includes not only rare negative events, but also common negative 

events, rare positive events and common positive events. The results of Study 12 

suggest that non-dysphoric individuals rate their chances of experiencing rare events 

as less than the average, and their chances of experiencing common events as greater 

than the average. ‘Depressive realism’ in relation to rare negative events might suggest
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that dysphoric individuals are more negative, but it might equally suggest that their 

responses are simply more regressive towards the mean. An investigation including 

common negative events and rare positive events comparing dysphoric individuals and 

non-dysphoric individuals can disassociate the predictions of these two potential 

explanations for previous results. Such research might have significant implications 

for our understanding of the cognitive processes underlying depression.

Finally, in the introduction to this thesis, we highlighted the importance of 

utility considerations for consequential judgments in the real-world. Thus, a pressing 

extension of the current research is into more real-world settings, as hinted at above. 

This extension must, however, be undertaken with caution and in conjunction with 

further laboratory tests. Where inconsistencies are found between results obtained in 

different settings, reasons for these inconsistencies must be sought. Many extant real- 

world demonstrations of biased probability estimates resulting from utility 

considerations may be considered to result from biased information accumulation (see 

e.g., Bar-Hillel & Budescu, 1995; Gordon et al., 2005). Whilst these findings are 

important and interesting in their own right, it must be recognised that they are distinct 

from the question of whether probability estimates are genuinely biased by 

considerations of outcome utility.

Conclusion
\

The work in this thesis presented a detailed investigation of the effects of 

utility on probability estimates. As such this work follows other recent research in 

reasoning psychology investigating potential ‘leakage’ from decision-theoretic 

considerations into reasoning and judgment processes (e.g., Bonnefon, in press). The 

conclusion from the present research has been something of a ‘thumbs-up’ for the 

competence of human probability judgment. Consequently, this work adds to an
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increasing body of work suggesting, once again (c.f. Peterson & Beach, 1967), that 

people might meaningfully aspire to the status of intuitive statisticians after all (e.g., 

Dawes & Mulford, 1996; Erev et al., 1994; Gigerenzer, Hell, & Blank, 1988; 

Gigerenzer & Hofffage, 1995; Griffiths & Tenenbaum, 2006; Juslin et al., 2000; 

Kynn, 2008; Moore & Healy, 2008).
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Appendix

To calculate the average response of the entire population, it is necessary to sum the 

average responses o f those people receiving a positive test result and those receiving a 

negative test result. These averages are obtained by multiplying the respective 

posterior degrees of belief (Equations 1 and 2) with the proportions of people 

expressing them (Equations 3 and 4). It can be seen from Equations 1 and 3 and from 

Equations 2 and 4 that this multiplication process w ill cancel out the denominators in 

Equations 1 and 4, leaving the average response o f the population equal to Equation 5. 

Due to the complimentary nature of P (-,e  \ h) and P{e \ h ) , Equation 5 reduces 

to P (h ) , which equals the base rate.

P(h)P(e | h)
P(h)P(e | h) + P (-,h )P (e  | h) (1)

P (h)P (^ e  | h)
P (^ h )P (^ e  | -iA) + P(h)P (—\e \ h)

(2)

P(h)P(e | h) + P (-,h )P (e \ —./z) (3)

P(h)P(-,e  | h) + P (^ h )P (^ e  | -,/*) (4)

P(h)P(-^e\h) + P(h)P(e\h) (5)
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