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Summary

Phospholipase C zeta (PLCQ is a sperm specific isoform of phospholipase C. It 
has been shown to produce a long lasting series of calcium oscillations and 
triggers the activation of development when introduced into mammalian eggs. It 
is not known how PLC£ is regulated or if its effects are specific to eggs. Here 
Chinese Hamster Ovary (CHO) cells were transfected with cDNA encoding PLC£ 
tagged with enhanced yellow fluorescent protein (eYFP) or luciferase (LUC). 
Comparisons were made between these cells and cells transfected with the 
catalytically inactive PLC?, the corresponding reporter gene, or nontransfected 
cells. PLC^ exhibited variable levels of nuclear localisation in a manner that 
depended upon time after transfection. Analysis of resting intracellular calcium 
levels in transfected CHO cells produced no evidence that PLC? expression has 
a significant effect upon calcium homeostasis. The calcium response to ATP 
receptor stimulation also remained unchanged after PLC? expression. A lack of 
any clear effect on cell viability enabled the generation of a stably transfected 
PLC? cell line. Individual cells were estimated to be expressing PLC? within and 
above the range required to initiate calcium transients in eggs, and are therefore 
considered to be expressing at levels comparable with that of sperm. Despite the 
lack of effect on calcium in CHO cells, the injection of either cytosolic extracts, or 
whole cells, from the PLC£ transfected cell line were able to cause calcium 
oscillations in mouse eggs. Such an effect was not seen with control CHO cells. 
These data suggest that PLC? is inactive when expressed in CHO cells and yet 
active when subsequently introduced into an egg. The results imply that the 
enzymatic activity of PLC? may be reversibly inhibited in somatic cells, or else 
specifically stimulated by factors in the egg cytoplasm.
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CHAPTER 1 
INTRODUCTION



CHAPTER 1 INTRODUCTION 

1.1 Calcium (Ca2*) Signalling

1.1.1 A fundamental ionic messenger

Calcium is an ubiquitous intracellular messenger that regulates a wide range of 

cellular processes, including muscle contraction, neurotransmission, gene 

transcription, cellular proliferation, apoptosis and fertilization (Berridge et al., 

2003; Bootman et al., 2001a; Clapham, 1995; Jayaraman et a/., 1997). Resting 

cytosolic free Ca2+ levels are typically ~100nM (Berridge, 1997; Bootman et a/., 

2001a). This level can increase to more than 1-1 OpM in response to various 

stimuli such as depolarisation, mechanical deformation, hormonal activation or 

exposure to a Ca2+ ionophore (Bootman et al., 2001a). Elevation of the 

intracellular calcium, either via influx from the extracellular environment or 

release from intracellular stores acts as a trigger to switch “on” various cellular 

processes. The subsequent removal of cytosolic Ca2+ then acts to switch them 

“o ff. This simplistic theory is in fact dependent on a complex interplay between 

several channels, pumps and exchangers as illustrated in Figure 1.1 (Berridge et 

al., 2000).

1.1.2 Calcium Influx

Ca2+ influx occurs via Ca2+ entry channels located at the plasma membrane 

(PM). The various Ca2+entry channels are grouped according to their mechanism 

of activation (Bootman eta!., 2001a). Receptor-operated Ca2+ channels (ROCCs) 

are found primarily on the PM of nerve terminals and secretory cells.
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Figure 1.1 The Ca2+ signalling network

Figure based upon Berridge etal., (2003).
Calcium can enter the cell via activation of receptor; voltage or store operated Ca2+ channels 
(ROCCs, VOCCs, SOCCs) located on the plasma membrane (PM). (For simplicity only one Ca2+ 
channel type is indicated at the PM). External stimuli also give rise to the formation of second 
messengers that release stored Ca2+ from within the endoplasmic/sarcoplasmic reticulum 
(ER/SR) via the inositol-1,4,5-trisphosphate (lnsP3R) or the ryanodine receptor (RyR). The 
majority of Ca2+ within the cytoplasm remains bound to buffers (shown as yellow circles), while a 
small amount binds to effectors that activate various cellular processes that operate over a broad 
temporal spectrum (shown to the right of the figure). The intracellular effectors and buffers 
release Ca + prior to its removal from the cell via a range of exchangers and pumps. Ca2+ is 
extruded from the cell via the Na+/Ca2+ exchanger (NCX) and the plasma membrane Ca2+ 
ATPase (PMCA), or it can be sequestered back into the ER/SR via the sarco(endo)plasmic 
reticulum Ca2+ ATPase (SERCA). Mitochondria play a role in the sequestration of Ca via a 
uniporter, this Ca2+ is then released slowly into the cytoplasm through a mitochondrial NCX. The 
golgi apparatus has been shown to contribute to elevations in cytosolic Ca2+ levels through 
InsPaR activation present on the golgi membrane. The Golgi also has the ability to sequester Csr 
via the secretory pathway Ca2+ ATPase (SPCA) and a Ca2+ ATPase belonging to the SERCA  
family. Cell survival is dependant on Ca + homeostasis, whereby Ca2+ fluxes during the “off’ 
reactions (red arrows) exactly match those during the “on” reactions (green arrows).
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They are activated by an agonist binding to the extracellular domain of the 

channel. Acetylcholine is a commonly known agonist, responsible for the 

transmission of neuronal impulses at nerve terminals through the synaptic cleft 

(Alberts et a/., 1997; Bootman e ta l., 2001a).

Voltage operated Ca2+ channels (VOCCs) are largely present in excitable cells 

such as muscle and neuronal cells. Interestingly the Ca2+ increase observed at 

fertilisation in many types of oocytes is known to be due to activation of VOCCs, 

such as in the sea urchin (Chambers et al., 1979; David et al., 1988). 

Depolarisation of the PM activates these channels resulting in the influx of 

extracellular Ca2+. They are composed of five protein subunits (a1, a2, p, y, 6) 

with multiple isoforms, resulting in a number of different possible channel 

isoforms (Bootman et al., 2001a).

Store operated Ca2+ channels (SOCCs) are gated by a poorly understood 

mechanism triggered by the depletion of intracellular Ca2+ stores (Bootman et al., 

2001a). The most studied and best characterised SOCCs are the Ca2+ release- 

activated Ca2+ (CRAC) channels, which were first identified in human T cells and 

mast cells (Hoth et al., 1992; Lewis et al., 1989). The search for the genes that 

code for the CRAC channel lead to the discovery of two proteins, Orail and 

STIM1, which are now considered to play obligatory roles in the activation of 

SOCCs. Orail is a four transmembrane protein present in the PM with 

intracellular N- and C- termini. Stiml is a typel transmembrane protein located 

primarily on the ER. Upon store depletion Stiml have been shown to translocate 

into puncta that accumulate in ER regions closely associated with the PM (Liou
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et al., 2005). The redistribution of Stiml is believed to be the initiator of SOC  

entry as puncta formation has been shown to preceed CRAC channel activation 

by 6-10s (Wu et al., 2006). Furthermore, live cell imaging has revealed that Stiml 

forms oligomers within 5s after store depletion prior to its translocation (Liou et 

al., 2007). Studies have shown that Stiml interacts functionally with Orail to 

activate SOC entry (Potier et al., 2008), however the precise mechanism by 

which Stim 1 conveys information regarding store depletion to Orail channels 

remains to be determined. Accumulating evidence indicates that STIM1 acts as a 

sensor of Ca2+ store content, while Orail is believed to be a pore-forming CRAC 

channel subunit (Gwack et al., 2007; Mignen et al., 2007). The C-type transient 

receptor potential class of ion channels (TRPCs) have also been suggested as 

candidates for forming SOCCs (Birnbaumer et al., 1996; Hardie et al., 1993; 

Selinger et al., 1993), however their activity is believed to be distinct from CRAC  

channels (Smyth et al., 2006).

1.1.3 Intracellular stores and Ca2+ releasing agents

1.1.3.1 Phosphoinositides and inositol 1,4,5-trisphosphate (lnsP3)

Phosphatidylinositol (PI) is a ubiquitous eukaryotic lipid whose phosphorylated 

derivatives (collectively known as phosphoinositides) have been implicated in a 

number of important cell signalling events including cell survival, cell division and 

membrane trafficking (Cullen et al., 2001). The structure of PI consists of a myo­

inositol headgroup connected to a diacylglycerol via a phosphodiester linkage 

(Figure 1.2). The 3, 4 and 5 hydroxyl groups of the inositol head group can be
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phosphorylated by a variety of kinases (Figure 1.3). To date, seven 

phosphoinositides have been identified; three phosphatidylinositol 

monophosphates [phosphatidylinositol 3-phosphate (Ptdlns3P), 

phosphatidylinositol 4-phosphate (Ptdlns4P) and phosphatidylinositol 5- 

phosphate (Ptdlns5P)], three phosphatidylinositol bisphosphates 

[(phosphatidylinositol 3,4-bisphosphate (Ptdlns3,4P2), phosphatidylinositol 3,5- 

bisphosphate (Ptdlns3,5P2) and phosphatidylinositol 4,5-bisphosphate 

(Ptdlns4,5P2)], and phosphatidylinositol 3,4,5 trisphosphate (Ptdlns3,4,5P3).

Myo-inositol head group

Phosphodiester linkage

Diacylglycerol

Figure 1.2 Phosphatidylinositol (PI)
The structure of Phosphoinositol (PI) contains a myo-inositol head group connected to a 
diacylglycerol via a phosphodiester linkage. In mammalian cells the fatty add moiety is typically 
stearoyi-arachidonyl. The inositol head group can be phosphorylated at one of three currently 
identified positions, 30H, 40H and 50H for a total of one, two or three times by a variety of 
kinases.
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The reversible production of phosphoinositides is catalyzed through the 

combined actions of a number of specific phosphatases and phosphoinositide 

kinases which have not been fully identified. In the canonical phosphoinositide 

pathway Ptdlns acts as a substrate for PI 4-Kinases, generating Ptlns(4)P which 

in turn acts as a substrate for PI 5-Kinases to produce Ptlns(4,5)P2. PI 5-Kinases 

are found at the PM, at focal adhesions, in the nucleus and the golgi. PI 4- 

Kinases are found in the cytosol, nucleus and associated with the ER, but are not 

strongly associated with the PM (Doughman et al., 2003). Ptlns(4,5)P2 is 

hydrolysed by activated phospholipase C (PLC) proteins resulting in the 

synthesis of two second messengers, diacylglycerol (DAG), which activates 

protein kinase C (PKC), and inositol-1,4,5-trisphosphate (InsPs). lnsP3 binds to 

lnsP3 receptors (InsPsR) stimulating Ca2+ release from the endoplasmic 

reticulum. The localisation of Ptlns(4,5)P2 in mammalian eggs is unknown. 

Experiments involving the glutathione S-transferase tagged PH domain of PLC61 

have revealed the distribution of Ptlns(4,5)P2 in somatic cells (Watt et al., 2002). 

Ptlns(4,5)P2 was labelled in the plasma membrane and also in intracellular 

membranes including Golgi, endosomes and ER, as well as electron dense 

structures within the nucleus. Mammalian sperm PLC activity has been shown to 

induce Ca2+ dependent lnsP3 formation in a cytoplasmic sea urchin egg 

preparation (Rice et al., 2000). This data suggests that the Ca2+ wave in both 

mammals and sea urchin eggs could be generated via Ca2+ induced lnsP3 made 

in the cytoplasm.
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Recent work has uncovered a role for Ptdlns(3)P and Ptdlns(3,5)P2 in the 

regulation of vesicular trafficking through the recruitment of Fab1p-YOPB- 

Vps27p-EEA1 (FYVE) domain-containing proteins (Wurmser et al., 1999). The 

sole function of Ptdlns(4)P was previously considered to be acting as a substrate 

for the generation of Ptdlns(3,4)P2 and Ptdlns(4,5)P2. However, recent studies 

have demonstrated a role in the recruitment of proteins that are involved in 

vesicular trafficking from the trans-Golgi network (TGN) to the plasma 

membrane, including adaptor-protein (AP)-1 (Wang et al., 2003) and the four 

phosphate adaptor protein (FAPP) 1 and 2 (Godi et al., 2004). Ptdlns(5)P was 

recently discovered to bind to the plant homeodomain (PHD) finger of inhibitor of 

growth protein-2 (ING2), a candidate tumor suppressor protein (Gozani et al., 

2003). Tandem PH domain containing protein-1 (TAPP-1) and TAPP-2 have 

been found to selectively bind Ptdlns(3,4)P2. The biological significance of this 

interaction remains elusive, however it suggests a more specific role other than 

simply a by-product of Ptdlns(3,4,5)P3 breakdown (Sasaki et al., 2007). 

Ptdlns(3,4,5)P3 is an important second messenger in numerous signalling 

pathways involved in the control of cell growth, survival, metabolism, motility and 

immune responses. Proteins that bind Ptdlns(3,4,5)P3 are diverse in nature and 

include adaptor molecules, protein kinases and exchange factors for the small G 

proteins Arf (Cantley, 2002; Stephens et al., 2005; Vanhaesebroeck et al., 2005).
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Figure 1.3 Phosphoinositide metabolism

The figure shows the main pathways of phosphoinositide synthesis in mammalian cells. The 
combined action of phosphoinositide kinases (PIxKs) and phosphatases (X-Pases) generates 
multiple phosphoinositides phosphorylated at the 3, 4 and 5 positions either alone or in 
combination. Some of the reactions have been established in vitro but not yet in vivo. For the 
sake of clarity, only the enzymatic activity (3-,4-, or 5- kinase/phosphatase) is indicated and in 
some cases the identification of the enzyme is mentioned (Types I, II and III PI 3-kinases). The 
figure also shows the turnover of Ptdlns(4,5)P2 by phospholipase C (PLC) to yield soluble inositol- 
1,4,5P3and membrane-embedded diacylglycerol (DAG). The canonical phosphoinositide pathway 
is highlighted in blue. (Adapted from (Payrastre eta!., 2001)

1.1.3.2. The inositol 1,4,5-trisphosphate receptor (lnsP3R)

The activation of Phospholipase C (PLC) by a variety of stimuli including ligand 

interaction with G protein linked receptors is a common mechanism for 

modulating the intracellular Ca2+ concentration [C a2+]j. Activation of PLC leads to 

the hydrolysis of the membrane lipid phosphatidylinositol 4,5 bisphosphate 

(PIP2), generating inositol 1,4,5 trisphosphate (lnsP3) and diacylglycerol (DAG) 

(Berridge, 1993; Putney et al., 1993). lnsP3 diffuses freely throughout the 

cytoplasm and binds to its receptor (lnsP3Rs), which is a ligand-gated C a2+
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release channel (Ferris et al., 1989; Maeda et a/., 1991). InsPaRs are situated 

primarily on the membrane of the endoplasmic/ sarcoplasmic reticulum (ER/SR) 

(Ferreri-Jacobia et al., 2005; Otsu etal., 1990; Ross etal., 1989). Conformational 

change upon activation of this receptor/channel complex induces Ca2+ release 

from the lumen of the intracellular store into the cytoplasm. Three InsPaR 

isoforms have been identified (InsPaR Type 1, 2 & 3), that are approximately 

70% homologous in their overall amino acid sequence (Mackrill et al., 1997). 

InsPaR isoforms are expressed in almost all mammalian cell types and their 

relative distribution is tissue type/function dependant (Vermassen et al., 2004). 

The Type 1 isoform is the most widely studied InsPaR subtype, and is expressed 

predominantly in cerebellar Purkinje neurons (Furuichi et al., 1993). Genetic 

knockout of the Type 1 isoform in the mouse has been shown to cause 

neurological defects (Matsumoto et al., 1996). The Type 1 isoform is also 

expressed in relatively high amounts in smooth muscles (Nixon et al., 1994) and 

is the predominant isoform found in oocytes (Kume et al., 1993). The role of Type 

1 InsPaRs in fertilization was demonstrated in hamster eggs using the InsPaR- 

specific function blocking antibody 18A10, which blocked the Ca2+ oscillations 

induced by InsPa at fertilization (Miyazaki et al., 1992). The Type 2 isoform is 

expressed primarily in cardiac myocytes (Perez et al., 1997), and genetic 

deletion of the mouse lnsPaR2 has been shown to abolish the arrhythmogenic 

effect of endothelin in this cell type (Li et al., 2005). The Type 3 isoform is 

expressed in the brain, kidney, gastrointestinal epithelium, and pancreatic islets 

(Blondel etal., 1993; Taylor et al., 1999).
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Each InsPaR comprises four subunits of approximately 300KDa (Bootman et al., 

2001a). Each InsPaR subunit has a ligand binding domain located towards the 

end of a large cytoplasmic NH2-terminus, six transmembrane (TM) spanning 

domains which contribute to the formation of the channel pore, and a relatively 

short COOH-terminus as illustrated in Figure 1.4 (Foskett et al., 2007). InsPaRs 

also contain another functionally distinct region termed the modulatory domain 

which is located between the pore domain and the InsPa binding domain. The 

modulatory domain contains binding sites for Ca2+ and ATP. In addition to InsPa, 

Ca2+ also regulates InsPaR activation (Berridge, 1997; Bootman et al., 1999). 

InsPaR function is stimulated by cytosolic Ca2+ concentrations of 0.5-1 pM, unlike 

concentrations >1pM which inhibit their opening (Bootman et al., 1999). Binding 

of Ca2+ to InsPaR Type 1 has been shown to induce structural changes in the 

receptor, indicating that Ca2+ regulates InsPaR gating activity through the 

rearrangement of functional domains (Hamada et al., 2002). In the presence of 

InsPa, ATP increases activity of InsPaRs by binding to high affinity binding sites 

located within the modulatory domain (Maes et al., 2000).

Phosphorylation and dephosphorylation modulates lnsP3R function (DeSouza et 

al., 2002; Jayaraman et al., 1996), and numerous consensus phosphorylation 

sites have been identified (Patel et al., 1999). InsPaRs are regulated by 

phosphorylation by numerous kinases, including protein kinase A (PKA), protein 

kinase G (PKG), protein kinase C (PKC), protein tyrosine kinases (PTKs) and 

CaMKII (Foskett et al., 2007; Patel et al., 1999; Thrower et al., 2001). A large 

number of protein interactions with the InsPaR have been described (for review
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see (Patterson et al., 2004), many of which involve allosteric modulation of 

channel gating which may contribute to the diversity of spatially and temporally 

distinct InsPaR signalling properties.

Figure 1.4 The Inositol 1,4,5- 
trisphosphate receptor (IP3R)

(From (Foskett et al., 2007) 
Schematic representation of three of 
the four subunits (in different colours) 
of a single tetrameric IP3R ligand 
gated Ca + channel. lnsP3 binds to 
the NH2-terminus which elicts a 
conformational change that activates 
the channel. Part of the loop 
connecting the 5th and 6 
transmembranes helices contributes 
to the formation of the channel pore 
which enables Ca2+ efflux from the 
lumen of the ER

T

1.1.3.2.1 lnsP3R Downregulation

One of the mechanisms by which cells adapt during long term exposure to an 

agonist is by down-regulation of cell surface receptors, characterised by a 

reduction in the cellular content of these proteins. It has been found that chronic 

stimulation of receptors linked to lnsP3 formation leads to a decrease in the 

number of lnsP3Rs and a decrease in sensitivity of the intracellular Ca2+ stores to 

lnsP3 (Wojcikiewicz et al., 1991; Wojcikiewicz et al., 1992). The large 

conformational changes that occur as a result of lnsP3 binding to its receptor 

appears to be the essential trigger for receptor degradation (Zhu et al., 1999). 

The precise proteolytic mechanism responsible for lnsP3R degradation has yet to

Endoplasmic 
reticulum

cytoplasm
C O O H '& y
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be identified, but has been proposed to involve the ubiquitin/ proteasome 

pathway (Oberdorf et al., 1999). Activation of Phosphoinositide C linked 

receptors has been shown to cause InsPaR ubiquitination in a range of cell types 

(Oberdorf ef al., 1999). The cystein protease and proteasomal inhibitor ALLN and 

the highly specific proteasome inhibitor Lactacystin prevented InsPaR 

downregulation induced by activation of these receptors (Bokkala et al., 1997). 

This suggests that lnsP3Rs can be degraded by the proteasome, a cytosolic 26S 

multi protein complex that recognises and degrades poly-ubiquitinated proteins. 

Downregulation of InsPaR has been shown to inhibit Ca2+ release in mouse eggs 

(Brind et al., 2000; Jellerette et al., 2000), and has been proposed to partly 

explain the cessation of Ca2+ oscillations 3-4 hours after fertilisation.

1.1.3.3 The Ryanodine Receptor

Another ligand gated Ca2+ release channel that is structurally and functionally 

similar to the InsPaR is the Ryanodine receptor (RyR). RyRs are the largest 

known ion channel with a total molecular mass of ~2.2MDa and around twice the 

conductance of InsPaRs (Franzini-Armstrong et al., 1997). They are present on 

the ER/SR membranes of muscle and non-muscle cells (Fleischer et al., 1989; 

Lai et al., 1988). Each subunit of its tetrameric protein structure is comprised of 

~5000 amino acids, -90%  of which constitutes a large cytoplasmic NH2-terminus 

that is essential for the regulation of the channel pore (Franzini-Armstrong et al., 

1997; Mackrill, 1999). The three RyR isoforms that have been identified (RyR1, 

RyR2 and RyR3) have different physiological functions which are reflected by
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their tissue specific expression. RyR1 is expressed primarily in skeletal muscle 

whilst RyR2 fulfils the same function in cardiac muscle and in brain cells 

(Berridge, 1997). RyR3 is expressed in the central nervous system and in

smooth muscle (Berridge, 1997; Liu et al., 2001). The RyR channels are

activated by low Ca2+ concentrations (1-1 OpM), reaching a broad maximum near 

100pM and inhibited by high Ca2+ concentrations (1-10mM) (Chen et al., 1997; 

Chu et al., 1993; Copello et al., 1997; Laver et al., 1995). Calcium induced 

calcium release (CICR) from RyR channels is stimulated by cyclic adenosine 

diphosphate ribose (cADPR). cADPR is produced from nicotinamide adenine 

dinudeotide (NAD) by ADP-ribosyl cyclase. It is unclear if cADPR acts a direct 

ligand for RyR channels, or whether it stimulates CICR by binding to an

accessory protein. The Ca2+ wave observed at fertilisation is generally

considered to be generated by InsPaRs. RyRs do not contribute to the fertilisation 

response in mouse eggs (Swann et al., 2001), however they appear to make a 

substantial contribution to the mechanisms underlying the fertilisation Ca2+ wave 

in fish and echinoderm eggs (Fluck et al., 1999; Galione et al., 1993). Ruthenium 

Red, a RyR antagonist, has been shown to reduce the propagation velocity of the 

Ca2+ wave in sea urchin eggs (Galione etal., 1993).

1.1.3.4 Nicotinic acid adenine dinucleotide phosphate (NAADP)

Nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified an 

extremely potent Ca2+-mobilizing messenger (Genazzani et al., 1997; Lee et al., 

1995). Similar to cADPR, NAADP is also believed to be synthesized by members 

of the ADP-ribosyl cyclase family (Aarhus et al., 1995; Lee et al., 1991).
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However, a recent study involving sea urchin sperm suggests the presence of a 

new NAADP synthase (Vasudevan et al., 2008) which has raised questions 

regarding an already limited understanding of NAADP biosynthesis. Its Ca2+ 

releasing properties have been examined in a broad range of cell types from a 

variety of organisms including sea urchin and starfish oocytes (Chini et al., 1995; 

Churchill et al., 2002; Lee et al., 1995; Lim et al., 2001; Santella et al., 2000), 

heart cells (Bak et al., 2001) and pancreatic cells (Cancela et al., 1999; 

Yamasaki et al., 2004). Pharmacological experiments involving selective 

inhibitors of InsPaRs and RyRs suggests that NAADP activates a distinct Ca2+ 

mobilising mechanism, involving a receptor/channel complex that has yet to be 

identified (Galione et al., 2005). Recent evidence suggests that two-pore 

channels (TPCs) located within the endolysosomal system are involved in 

NAADP-induced Ca2+ mobilisation (Calcraft etal., 2009; Galione et al., 2009).

1.1.3.5 The Mitochondria as an intracellular Ca2+ store

Mitochondria may also be viewed as a Ca2+ store. If necessary, mitochondria can 

significantly buffer cytosolic Ca2+ increases (Bootman et al., 2001b). Ca2+ is 

sequestered by a low affinity uni porter that operates at high speed that is driven 

by the mitochondria’s membrane potential. Despite the low affinity of the 

uniporter, the mitochondria are able to modulate intracellular calcium due to their 

close proximity to other Ca2+ release sites which exposes them to increased local 

Ca2+concentration [Ca2+] (Csordas eta l., 1999). Increasing the [Ca2+] within the 

mitochondria activates enzymes involved in the citric acid cycle, leading to
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enhanced production of ATP (Bootman et al., 2001b). Calcium is released slowly 

from the mitochondria via the Na+ dependant exchanger, to then be dealt with by 

various pumps and exchangers which act to re set basal Ca2+ levels and ensure 

the replenishment of intracellular stores.

1.1.3.6 The Golgi apparatus as an intracellular Ca2+ store

The Golgi apparatus is involved in sorting and processing secretory and 

membrane proteins prior to them reaching their final destination within the cell. 

Golgi function is regulated by changes in Ca2+ levels either within the Golgi 

lumen or the adjacent cytoplasm (Burgoyne et al., 2003; Wuytack et al., 2003). 

The Golgi is recognized as a Ca2+ store containing both release and 

sequestration apparatus (Pinton et al., 1998). The production of InsP3 activates 

InsPaR located on the Golgi membrane resulting in Ca2+ release. The Golgi has 

been shown to act in unison with the ER to elevate cytoplasmic Ca2+ in response 

to agonist stimulation (Missiaen et al., 2004b). Ca2+ release from the Golgi has 

been shown to contribute to the shaping of intracellular Ca2+ signals (Missiaen et 

al., 2004b). Two types of Ca2+ ATPases are present on the Golgi membrane, 

one belonging to the secretory pathway calcium ATPase family (SPCA) and the 

other belonging to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 

family (Van Baelen et al., 2004; Wuytack et al., 2003). Altering the expression/ 

activity of the Golgi calcium ATPases, thus affecting their ability to sequester 

Ca2+, has a profound effect on cellular function. Hailey-Hailey disease, an
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autosomal dominant blistering skin disorder, is caused by mutations in the gene 

encoding Golgi localised SPCA1, demonstrating its important role in maintaining 

Ca2+ homeostasis (Missiaen etal., 2004a; Sudbrak etal., 2000).

1.1.4 Removal of cytoplasmic Ca2+

The plasma membrane Ca2+-ATPase (PMCA) utilises the energy generated by 

ATP hydrolysis to pump Ca2+ from the cytosol to the extracellular environment 

(Berridge et al., 2003). Following a rise in cytoplasmic Ca2+, the Na+/ Ca2+ 

exchanger (NCX) rapidly extrudes Ca2+ from the cell in exchange for Na+ ions 

(Berridge et al., 2000). Another mechanism by which Ca2+ is removed from the 

cytosol is via the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) which 

pumps Ca2+ into the lumenal spaces of the internal stores upon which they are 

located. It is critical for cell survival that the fluxes that switch “on” the Ca2+ 

reactions are counteracted by those that switch them “ofF (Carafoli, 2002).

1.1.5 Ca2+ - Friend or Foe?

Ca2+ signals enable cells to function properly. However, it is vital that this cellular 

messenger is carefully regulated. Cells can tolerate a brief rise in cytosolic Ca2+, 

however a sustained increase would result in persistent activation of Ca2+ 

controlled processes which would ultimately lead to necrotic cell death (Berridge 

et al., 2000). Mitochondria act only as a temporary safety mechanism during 

periods of Ca2+ overload. Despite having a large capacity for Ca2+ uptake, the 

continuous pumping of Ca2+ into the mitochondrial matrix depletes the organelles 

energy reserve, thus depriving cells of the ATP necessary to remove Ca2+ out of
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the cytoplasm through the pumps (Carafoli, 2002). Defects involving one or more 

component of the complex pathway involved in the generation, processing and 

control of Ca2* signals have been implicated in a variety of disease states. 

Examples include cardiac and skeletal myopathies (Benkusky et a/., 2004; 

George et al., 2005; Pogwizd et al., 2001), liver, kidney and pancreatic 

dysfunction (Matsuda et al., 2001; Shibao etal., 2003; Vassilev et al., 2001) and 

neuropathology (Mattson etal., 1998; Tang etal., 2003; Verkhratsky, 2005).

1.1.6 Spatio Temporal aspects of Ca2+ Signals

Cells protect themselves against the potentially harmful effects of Ca2+ by 

creating low amplitude Ca2+ signals or, more typically, by presenting the signals 

in a pulsatile manner. The up stroke of each transient is generated by the “ON” 

reactions that introduce Ca2* into the cytoplasm, and the subsequent decline 

depends on the “OFF” reactions that pump Ca2+ out of the cell or back into the 

internal stores. Single transients that activate cellular processes such as muscle 

contraction and neurotransmitter release are generated in response to periodic 

stimulation (Berridge et al., 2003). In contrast, many tissues receive continuous 

stimulation over a prolonged period, during which the Ca2* signal is presented as 

brief transients that are produced rhythmically, giving rise to highly regular Ca2* 

oscillations whose frequencies vary with the degree of stimulation. Cytosolic Ca2* 

oscillations are a major feature of Ca2* signalling in a wide range of cellular 

processes including oocyte activation at fertilisation (Ozil et al., 1995), liver
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Figure 1.5 Temporal aspects of Ca2+ signalling

(Adapted from (Krebs et al., 2007) The majority of Ca2+ signals appear as brief transients that can 
be utilized to set up complex temporal patters of Ca2+ signalling. The up stoke of each transient is 
generated by the “ON” reactions (green arrow) that introduce Ca2+ into the cytoplasm. The “OFF" 
reactions (red arrow) which are responsible for the removal of Ca2+ from the cytoplasm, prevent a 
sustained increase in Ca2+ levels and consequently protects the cell. In some cells these 
transients are produced in response to periodic stimulation (yellow arrows). Many other tissues 
receive continuous stimulation over a prolonged period (yellow bar), giving rise to highly regular 
Ca2+ oscillations whose frequency depends on the level of stimulation.

metabolism (Robb-Gaspers et al., 1998), smooth muscle contraction (Filosa et 

al., 2004), and lymphocyte activation (Feske, 2007).

Cells utilise highly sophisticated mechanisms which enable them to interpret 

changes in frequency of the Ca2+ oscillations. Such frequency modulation enable 

cells to regulate specific responses such as exocytosis (Tse et al., 1993), 

mitochondrial ATP production (Hajnoczky et al., 1995) and the control
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ofdifferential gene transcription (Berridge et al., 2003). Cells have developed 

decoders that respond to the duration and frequency of the Ca2+ signal, 

examples of which include protein kinase C (PKC) (Oancea et al., 1998) and 

calmodulin dependent protein kinase II (CaM Kinase II) (De Koninck et al., 1998). 

In addition to this temporal aspect, Ca2* signals are also highly organized in 

space. Ca2* microdomains are formed within cells as a result of brief opening of 

either Ca2* entry channels in the PM or release channels in the ER/SR. The 

movement of Ca2* throughout the cell is restricted by its limited diffusion and 

cytosolic Ca2* buffering. These microdomains enable cells to perform highly 

localised signalling functions such as neurotransmitter release (Grosche et al., 

1999; Sharma et al., 2003; Simkus et al., 2002). These confined plumes of Ca2* 

have been categorized according to the channels that produce them. Brief 

opening of VOCCs in the PM produces a sparklet (Wang et al., 2001), and small 

groups of RyRs on the SR generate sparks (and syntillas) (Cheng et al., 1993; 

De Crescenzo et al., 2004), whereas the lnsP3Rs produce puffs. Ca2* sparks and 

puffs comprise the basic building blocks of global Ca2* signalling. lnsP3Rs and 

RyRs must be sufficiently sensitive enabling them to respond to the local Ca2* 

puff or spark produced by their neighbours. These channels contribute to the 

positive feedback process of Ca2*-induced Ca2* release (CICR), whereby the 

Ca2* signal is propagated throughout the cytoplasm as a regenerative wave 

(Berridge et al., 2000). Ca2* oscillations are generated by successive rounds of 

Ca2* release and diffusion from small groups of lnsP3Rs or RyRs located on the 

ER/SR. It has been proposed that Ca2* oscillations are terminated by inactivation
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of lnsP3Rs, allowing Ca2+ to be pumped back into the ER, thereby lowering the 

cytosolic calcium concentration before the lnsP3Rs are resensitised to deliver the 

next pulse of Ca2+ (Berridge, 2007; Oancea et al., 1996). A popular mechanism 

of Ca2+ oscillations involves positive and negative feedback loops of Ca2+ acting 

directly on the lnsP3R (De Young et al., 1992). At low Ca2+ concentrations the 

lnsP3R is stimulated by Ca2+, but at higher Ca2+ concentrations the lnsP3R is 

closed by Ca2+ (Bezprozvanny et al., 1991).
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Figure 1.6 Spatial aspects of Ca2+ signalling.

Localised Ca2+ signals that arise from either individual or small groups of ion channels are 
depicted in panel A. Voltage operated Ca2+ channels (VOCCs) in the plasma membrane (PM) 
give rise to sparklets, and ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) 
produce sparks (and syntillas), whereas the inositol 1,4,5-trisphosphate receptor (lnsP3R) 
produce puffs. Panel B illustrates the regenerative Ca2+ waves created by the process of Ca2+- 
induced Ca2+ release (CICR), whereby lnsP3Rs and RyRs with increase sensitivity become 
activated by the diffussion of Ca2+ from a neighbouring puff/spark and respond by releasing 
further Ca +. The receptors are sensitive enough to pass the signal over long distances 
(represented by the gaps) along the ER/SR membrane.
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1.2. Calcium and Fertilisation

1.2.1 Mammalian Fertilisation

The fertilisation process relies on the fusion of two haploid gametes derived from 

genetically distinct individuals of the same species. Female and male gametes 

are morphologically distinct, and are generated by meiosis from germ cells 

contained within sexually differentiated organs. The male gametes 

(spermatozoa) are produced from spermatogonia within the testis, and female 

gametes (oocytes) are produced from oogonia within the ovaries (Kupker et al., 

1998). If the fertilizing sperm and the oocyte successfully locate and activate 

each other, the diploid zygote begins to divide by mitosis to form a multicellular 

organism (blastocyst), and ultimately an embryo (Florman et al., 2006).

The process of activation involves large changes in the metabolism of the two 

gametes that are initiated by signals that trigger changes in the intracellular Ca2+ 

concentration [Ca2+]j. An increase in intracellular Ca2+ within the oocyte is 

recognised as a general feature of the fertilization process (Carafoli et al., 2001; 

Santella et al., 2004). The increase in Ca2+ can occur as a single transient or as 

repetitive oscillations, depending on the animal species (Strieker, 1999). The 

importance of Ca2+ in the regulation of oocyte physiology at fertilisation has been 

well documented, and it is generally accepted that in mammals, activation of 

InsPaRs is responsible for the rise in Ca2+ (Runft et al., 2002; Williams, 2002). 

More recently, information has began to emerge highlighting the importance of 

Ca2+ in the activation of sperm prior to fertilisation (Darszon et al., 2005).

23



1.2.2 Oogenesis

Oogenesis, or female gametogenesis, is the mechanism by which the female 

gamete forms, grows and matures (Figure 1.7). This process begins during the 

early stages of female embryonic development, whereby primordial germ cells 

(oogonia) migrate to the embryonic ovaries and undergo several mitotic divisions. 

Approximately 7 million germ cells are formed during the second to seventh 

month of gestation. The majority of oogonia die following this period of rapid 

cellular division, while the remaining oogonia enter the first meiotic division 

(Pinkerton et al., 1961). These latter cells, called the primary oocytes, are 

arrested during late prophase of the first meiotic division, at which point they are 

maintained until puberty (Edwards, 1965). Each primary oocyte is enveloped by a 

primordial follicle consisting of a single layer of epithelial granulosa (follicle) cells. 

With the onset of adolescence, groups of primary oocytes periodically resume 

meiosis when exposed to the correct hormonal stimulation. The primary follicle 

enters a stage of growth forming gravian follicles, during which the primary 

oocyte undergoes an increase in diameter from <20pm to 80pm or 120pm in 

mice and humans respectively (Grundzinskas et al., 1995). Growing oocytes 

develop a large nucleus termed the germinal vesicle (GV), and a thick 

oligosaccharide based extracellular coat, the zona pellucida (ZP), which 

surrounds the plasma membrane. During the growth of the follicle, there is an 

increase in the number of granulosa cells which form concentric layers around 

the oocyte. In addition to this an antrum (cavity) forms, which is filled with 

secretions derived from follicular cells and the oocyte become surrounded by
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several layers of granulosa cells known as the cumulus oophorus. These cells 

remain associated with the oocyte during ovulation, secreting hormones that are 

important for sperm capacitation and the acrosome reaction (discussed later) 

(Tesarik et al., 1988) and act as a screen to remove abnormal sperm (Nottola et 

al., 1998). Graafian follicles migrate towards the periphery of the ovary in 

preparation for final maturation and release of the oocyte (Grundzinskas et al., 

1995). Shortly after the initial follicle growth, the pituitary gland begins secreting 

luteinizing hormone (LH). In response to LH, the cell enters the first meiotic 

division whereby the germinal vesicle is broken down, and the spindle apparatus 

forms resulting in the segregation of the homologous chromosomes. One set of 

chromosomes is retained by the oocyte, while the other is extruded in a small 

daughter cell refered to as the first polar body (Donahue, 1968; Wassarman et 

al., 1976). During the second meiotic cycle the oocyte is arrested in its second 

metaphase (Mil) and at this point it is released from the ovary. Only oocytes 

arrested in the Mil stage can be activated by sperm, and meiotic division is 

resumed in response to intracellular signals within the oocyte following activation. 

Fertilisation results in the extrusion of a second polar body, leading to 

degeneration of the 1st polar body, and pronuclear formation.
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Figure 1.7: Oogenesis and 
fertilisation
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1.2.3 Spermatogenesis

Spermatogenesis is the process by which male germ cells (spermatogonia) 

develop into mature spermatozoa within the testis (Figure 1.8). Spermatogonia 

lie on the basal lamina of the convoluted seminiferous tubules where they 

undergo mitosis. This acts to maintain the spermatogonia population and also 

produces the cells that begin differentiation (primary spermatocytes). These 

diploid cells (46XY) migrate through the junctions at the base of Sertoli cells 

towards the lumen of the seminiferous tubules and undergo two meiotic divisions. 

During the first division the diploid primary spermatocytes separate into two 

haploid cells (23X or 23Y) termed secondary spermatocytes. The cells quickly 

proceed through this stage and undergo a second meiotic division whereby the 

chromatids separate forming spermatids that contain 23 single half 

chromosomes. Spermatids undergo a period of morphological development in 

vesicles within the sertoli cells during which they aquire their distinctive shape 

(Figure 1.8). This shape comprises a sperm head containing the nucleus and 

acrosome, a midpiece abundant in mitochondria and a long tail, or flagellum, 

containing a central complex of microtubules which form the axoneme that is 

responsible for sperm motility (Kupker et al., 1998). These general characteristics 

are shared by the majority of mammalian species, though there are variations in 

the size and shape of the head, and in the lengths and relative amount of the 

different components of the flagellum (Roosen-Runge, 1977). Spermatozoa are 

extruded from the sertoli cells into the lumen of the seminiferous tubules before
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Figure 1.8 Spermatogenesis
Schematic representation of male gametogenesis (See text for details). The lower panel 
illustrates the characteristic shape of a single sperm cell. The head contains a large dense 
nucleus and a single large vesicle termed the acrosome. The midpiece contains numerous 
mitochondria which provide energy for sperm motility. The tail contains a complex of microtubules 
which form the axoneme, responsible for sperm motility. The tail is not shown to scale, and is 
typically 10-15 times larger than the remainder of the cell.
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being transported to an accessory storage organ, the epididymis, where they 

undergo a period of functional development resulting in mature, motile sperm 

cells that have fertilising ability (Clermont, 1972; Kupker et al., 1998). 

Spermatozoa are moved to the urethra during coitus, where they are met by 

secretions (including water, buffering salts, acid phosphatases, cholesterol and 

phospholipids) from various accessory glands prior to ejaculation. In humans the 

development of mature spermatozoa from spermatogonial stem cells takes 65 

days (Dym, 1994). Approximately 100 million sperm are made per day and each 

ejaculation releases 200 million sperm (Reijo etal., 1995).

1.2.3.1 Sperm Capacitation and Acrosome Reaction

Spermatozoa require a period of incubation in the female reproductive tract 

where they undergo a series of biochemical modifications, which gives them the 

ability to fertilize the egg (Austin, 1951; Austin et al., 1952). This process, termed 

sperm capacitation, is a complex physiological event that is accompanied by an 

increase in sperm respiration and motility. Numerous cellular events occur during 

capacitation including an increase in intracellular Ca2+ and cAMP concentrations 

(Breitbart et al., 1985), cholesterol efflux from the plasma membrane that 

increases membrane fluidity (Cross, 2004), and increased intracellular pH and 

tyrosine phosphorylation (Dorval et al., 2002; Galantino-Homer et al., 2004; 

Visconti etal., 1999). Tyrosine phosphorylation of several sperm proteins play an 

important role in sperm capacitation (Visconti et al., 1998), and it has been 

demonstrated for example that the inhibition of protein kinase A (PKA) can inhibit
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the capacitation of spermatozoa (Visconti et al., 1995). Reactive oxygen species 

(ROS) have been suggested to play an important role in capacitation-related 

phosphorylation of several proteins in human sperm (Aitken, 1989). Roles for 

Ca2+ and HCO3' have been suggested in the upregulation of adenyl cyclase in 

sperm (Visconti et al., 1998). There is no direct evidence for a specific ligand 

which induces capacitation, however a role for epidermal growth factor (EGF) 

has been suggested, since its receptor tyrosine kinase EGFR has been identified 

in the head of bovine sperm (Lax et al., 1994). Activation of EGFR results in 

tyrosine phosphorylation and activation of PLCy; both of which are essential to 

the process of capacitation (Spungin et al., 1995).

In order to reach the surface of the oocyte, the spermatozoa must penetrate both 

the cumulus matrix and the zona pellucida (ZP). The cumulus acts as a selective 

barrier, controlling the entry of sperm whose functional ability has been 

compromised, and only allows fully capacitated, acrosome intact sperm to reach 

the zona and the oocyte (Westphal et al., 1993). Numerous observation suggest 

that PH20, a glycosyl-phosphatidylinositol-linked protein (expressed on the 

plasma membrane in response to capacitation), may be involved in the cumulus- 

dispersing activity of the sperm (Lin et al., 1994). PH20 has hyaluronidase 

activity, which allows sperm with intact acrosomes to traverse the cumulus matrix 

(Myles et al., 1997). Once contact has been made with the ZP, capacitated 

sperm undergo the acrosome reaction. This Ca2+ dependent mechanism enables 

the outer acrosomal membrane and the overlying plasma membrane to come 

into close proximity, to fuse, to secrete the acrosomal content, and to trigger the
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opening of SOCCs in the plasma membrane. The release of the acrosomal 

contents, notably the enzymes hyaluronidase and acrosin, combined with 

vigorous sperm motility is required for the passage of the sperm through the zona 

(Talbot, 1985). This process enables the sperm to contact and fuse with the 

plasma membrane of the oocyte (Evans, 2002; Wassarman etal., 2001).

1.2.3.2 Calcium signalling in sperm

Recent data has shown that Ca2+ signalling plays a major role in the important 

sperm functions that occur after ejaculation. Intracellular Ca2+ regulates sperm 

chemotaxis (Eisenbach, 1999), motility and hyperactivation (Carlson et al., 2003; 

Suarez et al., 2003), acrosome reaction (Kirkman-Brown et al., 2002) and also 

plays a role in the process of capacitation. During fertilisation, the ability of the 

sperm to locate the egg is modulated by Ca2+ changes induced in the sperm by 

soluble components released by the outer layers of the egg. During chemotaxis, 

the swimming trajectory of sperm is dictated by Ca2+ spikes in the flagellum. 

Voltage gated Ca2+ channels as well as a cAMP-regulated Ca2+ transporter may 

be involved in the Ca2+ increase that gives rise to the asymmetry of flagellar 

movement (Cook et al., 1994; Nishigaki et al., 2004). The Ca2+ rise in the 

flagellum is followed by a Ca2+ rise in the sperm head, and the duration of the 

Ca2+ signal is regulated by two Ca2+ clearance mechanisms, a K+-dependent 

Na+/Ca2+ exchanger (NCKX) and a plasma membrane Ca2+-ATPase (PMCA) 

pump. Mammalian sperm display hyperactivated motility prior to fertilisation. 

Hyperactivation is characterised by an increase in flagellar bend amplitude and
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beat asymmetry, and is required for successful fertilisation as it increases the 

ability of the sperm to make contact with the egg and penetrate its extracellular 

coat. Recent data suggests that sperm hyperactivation may be regulated by the 

emptying of an lnsP3-dependent intracellular store (Ho et al., 2001). The PMCA 

pump (isoform 4) is located almost exclusively in the tail of the sperm and is 

essential for extruding Ca2+ during hyperactivated motility. Recently, Catsper, a 

novel family of sperm cation channels, has been described. Catspers are 

distributed in the principal piece of the sperm tail, and mediate Ca2+ influx 

required for hyperactivated movement (Kirichok et al., 2006). Immunolocalisation 

experiments have shown that the sperm acrosome appears to function as an 

InsPaR containing Ca2+ store activated by agonists linked to PLC. Mobilisation of 

acrosomal Ca2+ appears to play a direct role in activation of the acrosome 

reaction (De Bias etal., 2002; Herrick etal., 2005).

1.2.4. Calcium change at Fertilisation

One of the earliest and most important changes in the oocyte at fertilisation is a 

transient increase in Ca2+, resulting from its release from intracellular stores, 

which stimulates the entire program of development. The suggestion that a Ca2+ 

increase plays a role in fertilisation dates back to the early 1920s when it was 

demonstrated that egg activation could be induced by promoting Ca2+ entry from 

the extracellular medium by pricking the egg with a needle (Jaffe, 1985; Loeb, 

1921). One of the morphological changes that occur at egg activation includes 

the cortical reaction, where the content of the cortical granule is extruded into the
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extracellular space (Jaffe et al., 2001; Schuel, 1985). Experiments involving the 

use of the Ca2+ ionophore A23187 demonstrated that the triggering of the cortical 

reaction and activation of development is dependent upon the increase in 

intracellular Ca2+ (Steinhardt, 2006; Steinhardt et al., 1974a). The observation 

that sperm interaction induces an increase in Ca2+ at the sperm entry site that 

then propagates to the opposite side of the egg was originally documented in 

medaka fish by experiments using injected aequorin (Ridgway et al., 1977). It is 

now recognised that an increase in Ca2+ is a general feature of the fertilisation 

process, and is a crucial event in activation of plants, animals and non­

mammalian species (Digonnet et al., 1997; Jaffe, 1983; Zucker et al., 1978). 

Depending on the animal species, the increase may occur as a single Ca2+ 

transient or as a series of repetitive oscillations (Strieker, 1999). In mammalian 

eggs a long lasting series of Ca2+ oscillations of constant amplitude continue at 

regular intervals (approximately every 7-20 minutes) for several hours after 

sperm-oocyte fusion, and persist until pronuclear (PN) formation (Carroll, 2001; 

Kline etal., 1992; Marangos etal., 2003; Miyazaki et al., 1993) (Figure 1.9). The 

first transient is distinctively longer in duration and larger in amplitude (Swann et 

al., 1994). The Ca2+ oscillations induced by sperm at fertilisation are both 

necessary and sufficient for the completion of the numerous events of egg 

activation, including membrane hyperpolarisation, changes in the pattern of 

protein synthesis, pronuclear formation and meiotic resumption (Kline et al., 

1992; Ozil etal., 2005; Schultz etal., 1995).
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Figure 1.9 Ca2+ oscillations during 
mammalian egg activation

This figure shows a fluorescent trace of 
the long lasting series of Ca2+ oscillations 
that are initiated in a mouse egg by 
sperm. These oscillations persist until 
pronuclear (PN) formation. (Image 
courtesy of K.Swann)

1.3 The Sperm Factor

1.3.1 W hat signalling pathw ay is involved in the generation of Ca2+ 
oscillations during m am m alian fe rtilisa tion?

A large body of evidence implicates the lnsP3 signalling pathway as the source of 

Ca2+ release from the ER during mammalian fertilisation. Early observations in 

sea urchin eggs showed a substantial increase the levels of polyphosphoinositide 

at fertilisation (Turner et al., 1984), and lnsP3 generation was later found to 

coincide with the Ca2+ transient (Ciapa et al., 1992). The critical role of lnsP3 and 

the lnsP3Rs in the development of Ca2+ oscillations at fertilisation has been more 

recently illustrated in studies using mouse and hamster eggs, where Ca2+ 

oscillations are abolished by the microinjection of antibodies that inhibit lnsP3Rs 

(Miyazaki et al., 1992). Downregulation of lnsP3Rs has also been found to inhibit 

Ca2+ transients in mouse eggs (Brind et al., 2000; Jellerette et al., 2000), a 

mechanism that has been proposed to partly explain the cessation of Ca2+ 

oscillations 3-4 hours after fertilisation.
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Three main hypotheses have been proposed to explain the generation of Ca2+ 

oscillations in fertilised oocytes (Figure 1.10). All of which are consistent with the 

delay of several minutes observed between oocyte contact and the initiation of 

Ca2+ oscillations (Whitaker et a i, 1989). The conduit hypothesis, is an early 

hypothesis that involves a mechanism by which the sperm head, once fused with 

the oocyte, acts as a non-selective channel, allowing influx of extracellular Ca2+ 

via pores in the sperm membrane into the oocyte cytosol (Jaffe, 1991). The Ca2+ 

release from the ER was proposed to be a result of Ca2+ induced Ca2+ release 

(CICR). Injection of Ca2+ into fish and frog eggs has been shown to produce a 

Ca2+ wave (Nuccitelli, 1991), however this hypothesis fails to explain many 

features of Ca2+ changes in fertilised oocytes. It appears to be an unlikely 

mechanism for mammalian egg activation given the more recent observation that 

sperm is able to trigger repetitive Ca2+ transients in the absence of extracellular 

Ca2+ (Jones etal., 1998; Swann, 1996).

The contact/receptor hypothesis suggests that upon sperm-oocyte contact, 

receptor-ligand interaction on the PM of the oocyte leads to the generation of 

intracellular messengers that trigger a series of signalling events that initiate Ca2+ 

release from the ER (Foltz et a i, 1993; Schultz et a i, 1995). There are surface 

proteins that play a role in sperm-egg interactions, however there is no evidence 

to suggest that they are linked to intracellular signalling (Runft et a i, 2002). 

According to this hypothesis, the generation of the Ca2+ increase might occur 

through several different routes, all ultimately leading to the activation of 

Phospholipase C (PLC) (Ciapa et a i, 2000). Ambiguous results with a number of
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G-protein activators and inhibitors have significantly reduced the interest in 

conventional G-protein/PLC/lnsP3 involvement (Runft et al., 2002). In 

echinoderms, it has become apparent that Ca2+ release may be triggered by a 

tyrosine kinase receptor that acts via a PLCy-mediated pathway (Townley et al., 

2006).

The Content hypothesis has been proposed to explain the generation of Ca2+ 

oscillations at fertilisation (Swann, 1990; Swann et al., 1994). It describes a 

mechanism by which a soluble sperm factor is released into the egg, capable of 

activating the lnsP3 signalling pathway and the subsequent Ca2+ release from the 

ER. Injection of hamster sperm extracts into mammalian eggs produced a series 

of Ca2+ oscillations much like those seen during in vitro fertilisation (Strieker, 

1997; Swann, 1990; Swann et al., 1994). Further support for this hypothesis 

comes from the clinical technique, intra-cytoplasmic sperm injection (ICSI) 

(Palermo et al., 1992), which involves direct injection of intact sperm thus 

avoiding sperm-oocyte membrane contact. This technique has been shown to 

lead to normal activation and development of oocytes (Nakano et al., 1997; 

Tesarik et al., 1994). The sperm factor hypothesis appears to be consistent 

between species. Pig sperm extracts have been shown to generate Ca2+ 

oscillations in cow, mouse and hamster eggs (Swann, 1990; Wu et al., 1997). 

Furthermore, fish sperm extracts were also able to induce oscillations in mouse 

eggs (Coward eta!., 2003).
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Figure 1.10 Main hypotheses for intracellular Ca2+ increase at fertilisation

Schematic diagram showing the three main hypotheses to explain how sperm initiates the 
elevation in Ca + release from the ER of the oocyte during mammalian fertilisation.
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1.3.2. The sperm factor is a novel phospholipase C isoform

Early candidates for the sperm factor included small molecules such as lnsP3 

(Tosti eta!., 1993), NAADP+ (Lim et al., 2001) and NO (Kuo etal., 2000). Despite 

having the ability to generate intracellular Ca2+ release in non-mammalian 

species, none of these were capable of elicting a long period of Ca2+ oscillations 

observed during in vitro fertilisation in mammalian oocytes (Swann, 1994). 

Studies utilising various fractionation techniques suggested that the sperm factor 

was a protein (Strieker, 1997; Swann, 1996; Wu et al., 1998), of ~30-100kDa in 

size (Parrington et al., 2002; Rice et al., 2000). Other potential candidates have 

included a 33kDa glucosamine-6-phosphate isomerase, termed Oscillin 

(Parrington et al., 1996), and a truncated form of the c-kit receptor (tr-kit) (Sette 

et al., 1997). None of these proteins however have been shown to be capable of 

generated fertilisation-like Ca2+ transients when injected into mammalian oocytes 

(Wolny et al., 1999; Wolosker et al., 1998; Wu et al., 1998). The identification of 

the sperm factor has involved the isolation and purification of sperm extracts. In 

vitro PLC assays revealed that these extracts possessed a PLC activity, at least 

100 times greater than that present in other tissues known to express PLC 

isoforms (Rice et al., 2000). PLC became an obvious candidate for the sperm 

factor, not only due to the fact that the PI pathway is responsible for Ca2+ release 

at fertilisation, but also as several PLC isoforms have been shown to be 

expressed in mammalian sperm (Fukami, 2002). Despite this, microinjection of 

recombinant proteins corresponding to most of the known isoforms expressed in 

sperm, including PLC(31, y1, y2 and 61 failed to mimic the Ca2+ oscillations

38



observed at fertilisation (Jones et al., 2000; Parrington et al., 2002; Runft et al., 

2002), or only managed to initiate Ca2+ oscillations at non-physiological 

concentrations (Mehlmann et al., 2001). Recent analysis of a mouse testis 

expressed sequence tag (EST) database revealed a novel PLC sequence. This 

led to the production of a full length cDNA encoding sperm protein, termed PLC? 

(Saunders et al., 2002). PLC? was found to be smaller than the other PLC 

isoforms and its expression was found to be testis specific. Microinjection of 

complimentary RNA (cRNA) encoding mouse (Saunders et al., 2002), human 

and monkey (Cox et al., 2002) PLC? into mouse eggs produced fertilisation-like 

Ca2+ responses. Furthermore, these Ca2+ oscillations were abolished when PLC? 

was immunodepleted by an anti-PLC? antibody, from native sperm extracts 

(Saunders et al., 2002; Swann et al., 2004). The amount of PLC? required to 

initiate Ca2+ transients correlates with the approximate concentration of PLC? in a 

single sperm (20-50fg) (Saunders et al., 2002). Studies involving transgenic mice 

that generate RNAi to interfere with PLC? expression in testis have shown that 

levels of PLC? are half of those of normal mice, causing premature termination of 

Ca2+ oscillations during fertilisation (Knott etal., 2005).

1.3.2.1 The Phospholipase C family

Mammalian phospholipases are an essential group of enzymes that play a 

central role in phosphatidylinositol metabolism and lipid signalling pathways in a 

Ca2+ dependent manner. Fourteen isoforms of PLC have been identified so far, 

grouped into six subfamilies that differ in mode of activation, catalytic regulation,
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cellular localisation and membrane binding activity; p(1-4), y(1,2), 5(1-4), e, ? and 

n(1,2) (Cockcroft et al., 1992; Fukami, 2002; Hwang et al., 2005; Kelley et al., 

2001; Nakahara et al., 2005; Rhee, 2001; Rhee et al., 1997; Saunders et al., 

2002; Song et al., 2001). As described previously, these enzymes catalyse the 

hydrolysis of PIP2 to generate the second messengers lnsP3 and DAG. The 

presence of distinct regulatory domains in PLC isoforms causes them to be 

susceptible to different modes of activation and allow them to participate in 

different signalling pathways (Rhee, 2001). The domain organisation of the six 

subfamilies of PLC are illustrated in Figure 1.11.

1.3.2.2 PLC Domain Functions

All PLC isoforms except PLCe and PLC? possess a Pleckstrin Homology (PH) 

domain at the NH2 terminal. The PH domain comprises approximately 120 amino 

acids is proposed to be essential for plasma membrane association of many 

proteins involved in intracellular signalling. This membrane association was first 

described in PLC51 (Rhee, 2001). Membrane binding is also regulated in a 

negative feedback by lnsP3 , which binds to the PH domain, thus inactivating it 

(Williams, 1999). X-ray crystallography studies have indicated that the PH 

domains of all isoforms share a common architecture, consisting of a p-sandwich 

closed off at one end by a C-terminal a-helix (Ferguson et al., 1995). The EF- 

hand domain consists of four helix-loop-helix motifs that are divided into pair-wise 

lobes. The loop region that links the two perpendicularly positioned a-helices 

possesses Ca2+ binding residues (Kretsinger et al., 1973). EF hands always 

occur in pairs because one loop stabilises the other. The second lobe of the EF
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hand domain interacts with the conserved (C2) domain, and its removal renders 

the enzyme inactive, probably due to tertiary structure destabilisation (Emori et 

al., 1989; Nakashima et al., 1995). All PLC isoforms have two regions of high 

sequence homology consisting of two building blocks, the X and Y domains.

PLC delta (5)

PLC zeta (£)

PLC eta (n)

PLC beta (p) PH

PLC gamma (y)

,PH

PH

PLC epsilon (c)
PH ]— 0 0 0 ( ^ —1~^~]—[~^~1— —[ R A [—[ RA |

Figure 1.11 Domain topographies of the phospholipase C isoform families.

Schematic diagram of the domain organisation of the known PLC subfamilies, illustrating the 
plecktrin homology (PH) domains which target the PLC to membrane bound proteins, the EF- 
hands which bind Ca2\  the X and Y catalytic domains, and the PKC-homology type II (C2) 
domain which binds lipids. The Scr homology (SH) domains bind to phosphorylated tyrosine 
residues in target proteins. The ras exchanger motif (REM) and cell division cycle 25 (CDC25) 
domains catalyse guanosine diphosphate (GDP) to guanosine triphosphate (GTP), an activity that 
is regulated by Ras associating (RA) domains.
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X and Y are organised in eight repetitive beta sheet/alpha helix sequences, 

forming a distorted barrel (Ellis et al., 1998; Williams, 1999). The catalytic 

mechanism involves a two step acid/base catalysis of the inositol 1-phosphate- 

glycerol bond that links the inositol headgroup to the DAG lipid anchor (Ellis et 

al., 1998). There is an interruption strand between strands four and five of the 

catalytic domain, which forms a large loop, termed the X-Y linker sequence, 

which differs considerably between PLC isozymes. For example, in the PLC5 

group, the X-Y linker is relatively short (46 amino acids). Proteolysis of this 

negatively charged region results in activation of the enzyme, and it is thought to 

play an important regulatory function (Rebecchi et al., 2000; Williams, 1999). The 

PKC-homology type II (C2) domain is a protein structural motif, comprising -120  

amino acid residues, that is involved in targeting proteins to cell membranes. The 

secondary structure of the C2 domain comprises 8 p-sheets, forming an anti­

parallel beta-sandwich motif (Williams, 1999). Membrane binding is facilitated by 

Ca2+ in three Ca2+ binding regions (CBR) which induces a conformational change 

in the domain. Ca2+ bound to CBRs does not take part in catalysis directly, but 

stabilises interactions with anionic phospholipids (Stahelin etal., 2001).

1.3.2.3 plc ;

PLC? is a soluble protein of approximately 70KDa, the smallest of the PLC family 

identified to date, and is most closely related to PLC61 (Saunders et al., 2002). 

Mouse PLC? is comprised of a tandem pair of EF hands at the N-terminus,
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followed by the catalytic XY domain and a C2 domain in the C-terminus. 

However, unlike other PLC isozymes, PLC? lacks the pleckstrin homology (PH) 

domain. Despite this, PLC? is similar to PLC51 sharing 38% identity and 49%  

sequence homology in 647 of its residues (Miyazaki eta!., 2006). The expression 

of PLC? in mouse eggs following the microinjection of cRNA gives rise to a series 

of fertilisation like Ca2+ oscillations (Saunders et al., 2002). The amount of PLC? 

contained in a single sperm has been estimated to be around 20-50fg (Saunders 

et al., 2002). Tagging PLC? with Venus fluorescent protein, Myc epitope or 

luciferase has enabled the quantification of the amount of PLC? protein produced 

following the microinjection of cRNA. The expression of levels comparable to that 

contained in a single sperm was shown to be sufficient to cause Ca2+ oscillations 

equivalent to those seen at fertilisation (Nomikos et al., 2005; Saunders et al., 

2002; Yoda et al., 2004). Recombinant PLC? has also been found to generate 

Ca2+ oscillations when injected into mouse eggs, although a greater amount of 

protein is required (~300fg) (Kouchi et al., 2004). The mechanism of action of 

PLC? remains unknown. It is unclear how PLC? targets its membrane bound 

substrate, PIP2 or how the activity of this enzyme is regulated. PLC? appears to 

be in an active state upon entry into the oocyte, however it remains uncertain 

how this protein maintains itself within the sperm and whether its effects are 

specific to eggs. Recent studies suggest that PLC? expressed in cell lines can 

cause Ca2+ oscillations and alter phenotype (Coward et al., 2006; Kuroda et al., 

2006). The transient expression of PLC? tagged with eYFP was assessed in 

COS cells (derived from the kidney cell line of the African green monkey)(Coward
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et al., 2006). Images taken of COS cells displaying expression of PLC?-eYFP 

show the existence of two main patterns of fluorescence: either a grainy 

cytoplasmic distribution or a nuclear distribution. Kuroda et al. (2006) reported 

Ca2+ oscillations in somatic cells following the expression of PLC?. The results 

show that 24 hours after transfection, repetitive Ca2+ spikes at intervals of ~3 

minutes were observed in COS cells expressing venus tagged PLC?. No Ca2+ 

oscillations were observed in any of the cells expressing the inactive D210R 

mutant or in non-transfected COS cells. This study also reports the nuclear 

accumulation of PLC? in COS cells and its D210R mutant. In contrast to the 

observations of Coward et al.,(2006), the confocal images taken of cells 48 and 

72 hours after transfection suggest an increase in active import into the nucleolus 

over time, with no report of cells displaying any other patterns of distribution. It is 

suggested that the less marked nucleolar accumulation observed in cells 

expressing the D210R mutant could be due to its inability to induce Ca2+ 

oscillations. Broad ectopic expression of PLC? in transgenic mice appears to 

have no effect with the exception of ovarian abnormalities in females. This 

suggests that the activity of PLC? is restricted to oocytes when low level 

expression is forced ectopically in multiple tissues, however the expression levels 

were not quantified (Yoshida et al., 2007).
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1.4 Aims of this study

In this study, the expression of PLC? was examined in Chinese Hamster Ovary 

(CHO) cells in order to establish if it can trigger Ca2+ signals or compromise cell 

viability, and to determine if mammalian cell lines could otherwise be used for 

making recombinant PLC? protein. Chapter 3 describes the first specific aim of 

this thesis, which includes the optimisation of recombinant PLC? expression in 

CHO cells using different methods of nucleic acid delivery. This chapter also 

describes the cellular localisation of transiently expressed eYFP-PLC? and 

examines the effects of PLC?-LUC expression on intracellular Ca2+. Chapter 4 

describes a comprehensive analysis of the effects of PLC? expression on basal 

Ca2+ handling and receptor induced Ca2+ mobilisation. Chapter 5 describes the 

generation of a CHO cell line stably expressing PLC?, with the aim of obtaining 

relatively homogeneous cell populations where the vast majority of cells 

expressed the recombinant protein. This chapter also examines the activity of the 

PLC? produced by this cell line in eggs. Chapter 6 will summarise the overall 

results from chapters 3 to 5 and provide a general discussion of the findings in 

this thesis.
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CHAPTER 2 
MATERIALS AND METHODS



Chapter 2 Materials and Methods 

2.1 Materials

2.1.1 General laboratory reagents and chemicals

All chemicals and reagents were obtained from Sigma or Invitrogen unless 

otherwise stated. All reagents were dissolved in dH20  and stored at room 

temperature unless otherwise stated. All filter sterilisation was through 0.2pm 

filters (Satorius).

2.1.2 Bacterial cell culture reagents

All growth media and antibiotics were obtained from Sigma, sterile plastic and 

glassware were obtained from Fisher or Greiner. All glassware was washed in 

detergent free water and autoclaved (135°C, 90min) prior to use. Growth media 

were autoclaved under the same conditions prior to the addition of antibiotics. 

Aseptic technique was used in all protocols and surfaces were swabbed with 

70% (v/v) methanol before and after use.

Listed below are the reagents used for bacterial cell culture:

■ Luria Bertani (LB) medium: 1% (w/v) tryptone, 0.5% (w/v) yeast extract,

0.5% (w/v) NaCI. Autoclaved. Medium cooled to <50°C before antibiotic 

addition. Stored at 4°C.

■ LB-Agar medium: LB medium, 1.5% (w/v) agar. Autoclaved. Medium 

cooled to <50°C before antibiotic addition. Plates were freshly prepared 

before use.
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■ Ampicillin 100mg/ml stock: filter sterilised and stored at -20°C, used at a 

working concentration of 100pg/ml.

■ S.O.C. medium (Invitrogen) Stored at 4°C.

■ Bacterial cells: TOP10 chemically competent Escherichia coli (Invitrogen). 

Prepared by members of the WHRI laboratory using the CaCb treatment 

method (Hanahan, 1983). Stored in 100pl aliquots at -80*0 for up to 6 

months.

2.1.3 Molecular biology reagents

Listed below are the reagents used for molecular biology techniques:

■ Wizard® Plus SV Miniprep DNA Purification system (Promega) 

comprising:

o Cell Resuspension Solution

■ 50mM Tris-HCI, 10mM EDTA, 100pg/ml RNase A; pH 7.5 

o Cell Lysis Solution

■ 0.2M NaOH, 1% SDS (w/v) 

o Neutralisation Solution

■ 4.09M guanidine hydrochloride, 0.759M potassium acetate, 

2.12M glacial acetic acid; pH4.2

o Column Wash Solution

■ 60mM potassium acetate, 8.3M Tris-HCI, 40pM EDTA, 60% 

Ethanol; pH 7.5

■ Plasmid Maxi kit (Qiagen®) comprising:
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o Resuspension Buffer (Buffer P1)

■ 50mM Tris-CI, 10mM EDTA, 100|jg/ml Rnase A ; pH 8.0 

o Cell Lysis Buffer (Buffer P2)

■ 200mM NaOH, 1% SDS (w/v) 

o Neutralization Buffer (Buffer P3)

■ 3M potassium acetate; pH 5.5 

o Equilibration Buffer (Buffer QBT)

■ 750mM NaCI, 50mM MOPS pH 7.0, 15% isopropanol (v/v), 

0.15% Triton® X-100 (v/v)

o Column Wash Buffer (Buffer QC)

■ 1M NaCI, 50mM MOPS pH 7.0, 15% isopropanol (v/v) 

o Elution Buffer (Buffer QF)

■ 1.25M NaCI, 50mM Tris-CI pH 8.5, 15% isopropanol (v/v) 

Agarose powder (ultra pure, Eurogentec)

TAE Buffer, 1x: 40mM Tris, 20mM acetic acid, 1mM EDTA.

Ethidium bromide (EtBr), aqueous solution, 10mg/ml.

DNA loading buffer, 2 x stock: 50% (v/v) TAE Buffer 1x, 50% (v/v) 

glycerol, 0.25% (w/v) orange G.

DNA restriction enzymes: EcoRI and Ncol. Restriction enzymes and 

appropriate buffers were stored at -20°C.

Molecular weight DNA marker: Hyperladder I (10Kb), obtained from 

Invitrogen. Stored at -20°C.
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2.1.4 Plasmid vectors

2.1.4.1 pCR3 and pcDNA3.1

Vectors pCR3 and pcDNA3.1 (Invitrogen) contain a cytomegalovirus (CMV) 

promoter (Pcmv) that initiates transcription in mammalian cells. The vectors also 

contain the ampicillin resistance gene for selection in E.coli, and a T7 promoter 

upstream of the multiple cloning site for in vitro expression of recombinant 

proteins. These vectors were utilised in the production of the cDNA constructs 

used in this thesis (see methods section 2.2.1 for further details).

Figure 2.1 Mammalian expression vectors pCR3 and pcDNA3.1

PLC^-LUC was constructed in the mammalian expression vector pCR3 
(M.Nomikos). eYFP-PLC£ was constructed in the mammalian expression vector 
pcDNA3.1 (C.Saunders). See section 2.2.1 for further details. Expression was 
driven by a CMV promoter in all cDNA constructs. (Images from Invitrogen)

\

T7 Promoter Hind III Kpn I Sac r  BamH I Spe r  Xma III*

LGACCCAlAGCTTGGTAcfcGAGCTbdGATCCAbTAGTAAcbGC
'CTGGGTTCGAACCATGGCTCGAGCCTAGGTGATCATTGCCG

PC R  P ro d u ct

SP6 Promoter

Sites are not unique to 
the multiple cloning site

pcDNA3.1 (+/-)
5428/5427 bp
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2.1.5 Chinese Hamster Ovary (CHO) cell line culture reagents

The CHO cell line was derived from a biopsy of an ovary of an adult Chinese 

hamster by T.T.Puck in 1957 (Puck et al., 1958). They are adherent, and exhibit 

typical epithelial cell morphology. All growth media and reagents were supplied 

by Gibco/ Invitrogen and all chemicals were supplied by Sigma unless otherwise 

stated. Sterile culture flasks were supplied by Nunc (Fisher) or Greiner. Poly-D- 

lysine coated glass bottomed cell culture dishes were supplied by World 

precision instruments (WPI). Class I cell culture containment hoods were used 

for all procedures. Aseptic technique was used in all protocols and surfaces were 

swabbed with 70% ethanol before and after use.

Listed below are the reagents used for the culture of CHO cells:

■ F-12 Nutrient Mixture (Ham) supplemented with filter sterilised 10% (v/v) 

foetal bovine serum (FBS) and 100pg/ml penicillin/streptomycin 

(supplemented media referred to as complete F-12). Stored at 4°C and 

warmed to 37°C prior to use.

■ Trypsin-EDTA, 1x in hepes buffered salt solution (HBSS). Stored at -20°C.

■ Saline solution, NaCI 0.9% (w/v) supplied by Baxter Medical Supplies.

■ Cryopreservation medium: FBS containing 10% (v/v) dimethyl sulphoxide 

(DMSO), filter sterilized. Freshly prepared.

■ Phosphate buffered saline (PBS): 137mM NaCI, 2.7mM KCI, 4.3mM 

Na2 HP0 4 , 1.4mM KH2 P0 4 , pH adjusted to 7.4 using HCL. Filter sterilised.
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■ Trypan Blue™ reagent (Sigma-Aldrich), 0.4%. Used as an addition of 

100pl to a 0.5ml, 1 x 105 cell suspension in PBS pH 7.4.

2.1.6 DNA Transfection materials and reagents

Listed below are the materials and reagents used for the transfection of CHO 

cells and their subsequent analysis:

■ Lipofectamine™ 2000 Tranfection reagent. Used as per manufacturers 

instructions. Stored at 4°C (Invitrogen)

■ Hepes buffered saline (HBS) 2x: 280mM NaCI, 10mM KCI, 1.5mM 

Na2 HP0 4 , 10mM glucose, 50mM Hepes, pH adjusted to 7.5 filter sterilised 

and stored at -20°C.

■ Calcium Chloride, 2M stock. Filter sterilised and stored at -20°C.

■ Pesda microbubbles: Perfluorobutane gas (F2 Chemicals Ltd), 5% 

Glucose, 10% (w/v) BSA.

■ FITC-dextran (10KDa), 10mg/ml stock stored at -20°C. For cell 

sonoporation this was dilued in KRH buffer to obtain a final concentration 

of100pg/ml.

■ Propidium Iodide, 1 mg/ml stock stored at -20°C. Used at a working 

concentration of 20pg/ml.

■ Femtotip® microinjection capillaries (Eppendorf)

■ KCI Hepes Buffer: 100mM KCI, 20mM Hepes, pH adjusted to 7.2. Divalent 

metal ions were removed with the chelating resin Chelex 100 (Sigma). 

Filter sterilised and stored at 4°C.
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■ Cell extract buffer: KCI Hepes Buffer, 1mM EDTA, 200|jM PMSF. Freshly 

prepared.

■ Alexa Fluor® 594 10,000 MW Dextran conjugate was obtained from 

Invitrogen and dissolved in dH20  to obtain a stock concentration of

5mg/ml, which was stored at -20°C. For use, this was then diluted 1 in 2 in

KCL Hepes to obtain a working concentration of 2.5mg/ml

■ Leibovitz’s L-15 medium supplemented with 5% FBS and 100pg/ml

penicillin/streptomycin (all filter sterilised). Stored at 4°C and warmed to

37°C prior to use.

■ Luciferase assay buffer: 50mM Tris HCI, 5mM MgCI2, 1mM EDTA, 1mM 

ATP, 0.5mM DTT, 1 mg/ml BSA. Freshly prepared.

■ Digitonin, 10mM stock.

■ Luciferin, 2mM stock, stored at -20°C.

■ Flow cytometry Buffer: 1x PBS, 1mM EDTA, 5% (v/v) FBS. Filter 

sterilised, freshly prepared.

2.1.7 Calcium (Ca2+) imaging reagents

Listed below are the reagents used during Ca2+ imaging experiments:

■ Krebs-Ringer-Hepes (KRH) buffer: 120mM NaCI, 25mM Hepes, 4.8mM 

KCI, 1.2mM KH2 P0 4 , 1.2mM M gS04, 1.3mM CaCI2, pH adjusted to 7.4. 

Filter sterilised and stored at 4°C.
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■ Ca2+ free KRH buffer: 120mM NaCI, 25mM Hepes, 4.8mM KCI, 1.2mM

KH2 P0 4 , 1.2mM MgSO^ 1 mM EGTA, pH adjusted to 7.4. Filter sterilised

and stored at 4°C.

■ Calcium dyes:

o Oregon Green Bapta dextran (OGBD), 2mM stock. (Molecular

Probes, Invitrogen). Stored at -20°C. For experiments this was

injected at a pipette concentration of 0.5mM. 

o Fluo-3 and Fura Red™ acetoxymethyl (AM) esters were obtained 

from Molecular Probes (Invitrogen) and dissolved in a solution of 

20% pluronic acid in DMSO to obtain a stock concentration of 1mM, 

which could be stored at -20°C but were usually freshly prepared. 

For use in CHO cell experiments, this was then diluted in serum 

free F-12 medium to obtain a working concentration of 10pM. For 

egg experiments Fura Red AM was used at a working 

concentration of 4pM. 

o Fura PE3 acetoxymethyl (AM) ester was obtained from Sigma. For 

egg experiments this was used at a working concentration of 4pM.

■ Adenosine trisphosphate (ATP), 10mM stock solution freshly prepared 

and placed on ice. For use, this was then diluted in KRH to obtain a final 

concentration of 100pM.

■ lonomycin, 100pM stock, stored at -20°C. For use, this was then diluted in 

KRH to obtain a final concentration of 5pM.

54



2.1.8 Statistical analysis

Numerical data was stored in spreadsheets and plotted in graphical form using 

Excel (Microsoft) and GraphPad Prism. Data was expressed as mean ± standard 

error of the mean (SEM), where SEM is defined as standard deviation / V (n-1) 

(n= number of observations). Unless stated all data in this thesis was derived 

from a minimum of three separate observations. Data sets of equal variance 

were analysed using One Way Analysis of Variance (ANOVA). In addition to the 

Bonferroni multiple comparisons post hoc test where applicable. Comparisons of 

two independent samples were analysed using an unpaired student’s f-test. Data 

were considered statistically significant if p<0.05 (p value is the probability that 

any particular outcome would have arisen by chance).

2.1.9 Health and safety

All reagents were handled and stored as recommended by manufacturer’s safety 

guidelines. All experiments were performed in accordance with COSHH 

regulations and local college regulations. All genetic manipulation was carried out 

in accordance with GMAG guidelines. All bacteria and mammalian cell culture 

waste was disinfected prior to disposal.
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2.2 Methods

2.2.1 DNA Constructs

All DNA constructs shown in this thesis were kindly provided by Michail Nomikos 

(Luciferase tagged) or Christopher Saunders (enhanced yellow fluorescent 

protein (eYFP) tagged). The ezymatically inactive eYFP-D210RPLC£ construct was 

derived from eYFP-PLC? in collaboration with Andreas Rossbach. Diagramatic 

structural details of the DNA constructs are shown below (Figure 2.2). In addition 

to the PLC<J constructs, pCR3-LUC and pcDNA3.1-eYFP were used as controls 

in this thesis. Restriction digests with ECORI (Luciferase tagged constructs) or 

Ncol (eYFP tagged constructs) were performed to ensure successful ligation, 

and to confirm the presence and correct orientation of the insert (See Chapter 3).

A)

LUC

pCR3

B)

eYFP

LUC

pCR3

Figure 2.2:
Luciferase and eYFP tagged 
DNA constructs

Schematic diagrams showing the 
structural details of (A) the 
pCR3-LUC and PLC^-LUC 
constructs (Courtesy of 
M.Nomikos), and (B) the 
pcDNA3.1-eYFP and eYFP- 
PLC£ constructs (Courtesy of 
C.Saunders)

eYFP



2.2.2. In vitro site-directed mutagenesis

The eYFP tagged D210RPLC? construct was created in collaboration with Andreas 

Rossbach using the eYFP-PLC£ construct (Christopher Saunders) and the 

method of in vitro site-directed mutagenesis (SDM). Mutagenesis of the aspartate 

residue at position 210 to arginine to produce D210RPLC? was performed using the 

Stratagene Quikchange XL SDM kit. This technique utilises a dsDNA vector with 

an insert of interest and two synthetic oligonucleotide primers, both containing 

the desired mutation. The primers (complementary to opposite strands of the 

construct) are extended during temperature cycling by DNA polymerase, 

generating a mutated plasmid. Dpn I endonuclease treatment digests the 

parental DNA, whilst the mutation-containing synthesised DNA remains intact. 

The thermocycling reaction, digest of parental DNA and transformation were set 

up according to the manufacturer’s instructions.

2.2.3 Plasmid DNA propagation

2.2.3.1 Bacterial Transformation

Bacterial transformation and subsequent isolation of plasmid DNA enables the 

production of large quantities of highly pure DNA suitable for eukaryotic cell 

transfection. Bacteria are an appropriate host as they replicate exogenous 

plasmid DNA with high fidelity independent of the bacterial genome, enabling it to 

be easily isolated.

Chemically competent bacterial cells (50pl) were inoculated with 100ng of 

plasmid DNA and incubated on ice for 15 minutes. The cells were subjected to a
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heat shock at 42°C for 30 seconds in a water bath before being transferred 

immediately to ice for 2 minutes. The cells were placed into a 15ml snap cap 

tube containing SOC media (500pl) which was then incubated for 1 hour at 37°C 

with gentle rotary agitation at 225rpm. Two unequal volumes of the cell 

suspension were plated onto LB-Agar plates containing ampicillin (this ensures 

different densities of colony growth, avoiding lawn growth ensuring successful 

isolation of individual colonies). Plates were incubated overnight at 37°C until 

colonies were visible.

2.2.3.2 Small scale plasmid isolation (plasmid DNA miniprep)

Typically between 5-10 colonies were selected and screened for the presence of 

the plasmid using the following method; The 3mls of LB media supplemented 

with 100mg/ml Ampicillin were inoculated with a single colony and incubated 

overnight at 37°C with gentle rotary agitation at 225rpm. Subsequently 1ml of 

each culture was pelleted (14,000xg for 1 minute) and DNA isolation was 

performed by the alkaline lysis method employed by the Wizard SV Miniprep 

plasmid purification kit (Promega). The remaining culture was reserved for large 

scale plasmid isolation (section 2.2.3.4). Briefly, bacterial pellets were 

resuspended in 250pl of Resuspension solution (containing RNase A), prior to 

being lysed during a 3 minute incubation with 250pl Lysis solution. A high salt 

environment was created by the addition of 350pl Neutralisation solution, which 

results in the precipitation of all cell debris via the precipitation of potassium 

dodecyl sulphate (KDS) (co-precipitated in insoluble salt-detergent complexes).
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The precipitate was subsequently removed by centrifugation at 14,000xg for 

10min, and the cleared lysate was applied to a mini spin column containing a 

silica-gel DNA binding membrane. The column was centrifuged at 14,000xg for 

2min, then was washed twice with an 80% ethanol buffer. DNA was eluted from 

the column in 30pl 10mM Tris pH 8.5. Recombinant plasmids were then analysed 

as in section 2.2.3.3 before being prepared on a larger scale (section 2.2.3.4).

2.2.3.3 Analysis of recombinant plasmids

Recombinant plasmids were verified by restriction enzyme mapping. Isolated 

DNA was digested using the EcoRI (luciferase tagged constructs) or Ncol (eYFP 

tagged constructs) restriction enzyme for 2 hours at 37°C, and the resulting 

fragments were analysed via agarose gel electrophoresis. An agarose gel was 

prepared by dissolving 1% agarose (Eurogentec) in TAE (1x) buffer and heating 

in a microwave oven. The solution was cooled to <50°C before the addition of 

ethidium bromide (0.2pg/ml final concentration), and poured into a pre­

assembled gel tray (Bio-Rad). Once the gel was set, DNA samples in 30% (v/v) 

DNA loading buffer (1x) were loaded onto the gel alongside a DNA molecular 

weight marker (10Kb, Invitrogen). Electrophoresis was performed in a gel tank 

containing TAE (1x) with a constant voltage (typically 10v per cm of gel). The gel 

was visualized with UV transillumination and imaged using a gel documentation 

system (Bio-Rad) with Hamamatsu camera and Quantity One software. Typically 

95-100% of colonies showed the correct pattern of DNA restriction fragment.
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2.2.3.4 Large scale plasmid isolation (plasmid DNA maxi prep)

Large scale plasmid isolation (plasmid DNA maxi prep) was performed following 

observation of the correct restriction fragments. LB media (200ml, supplemented 

with 100mg/ml Ampicillin) was inoculated with 1ml of the mini prep transformant 

culture (see above) and grown overnight at 37°C with rotary agitation at 225rpm. 

Cultures were centrifuged (10,000xg, 10 minutes, 4°C, JLA16:250 fixed angle 

rotor, Avanti J-25, Beckman) and large scale plasmid isolation was carried out 

using the Qiagen Maxi Prep Kit which uses an ion-exchange resin method. 

Bacterial pellets were resuspended in 10ml of Buffer P1 (resuspension buffer, 

containing Rnase A), prior to the addition of 10ml of Buffer P2 (lysis buffer). 

Following a 5 minute incubation at room temperature, 10ml of Buffer P3 

(neutralisation buffer) was added, and the samples were placed on ice for 30 

minutes. The resulting precipitate was removed by centrifugation (20,000xg, 30 

minutes, 4°C, JA25:50 fixed angle rotor, Avanti J-25, Beckman), and the 

supernatant was applied to a Qiagen-tip 500 silica gel column, which had been 

equilibrated using Buffer QBT (equilibration buffer). The plasmid DNA was 

washed twice with 30ml of Buffer QC (column wash buffer), then eluted with 15ml 

of Buffer QF (elution buffer). Plasmid DNA was precipitated using isopropanol 

(0.7 volumes), and harvested via centrifugation (20,000xg, 30min, 4°C). The 

DNA pellet was washed with 5ml of 70% ethanol and further centrifuged 

(20,000xg, 10min, 4°C). The plasmid DNA was dissolved in 700pl 10mM Tris pH 

8.0. Plasmid DNA purity and concentration (pg/ml) was determined by UV 

spectrophotometry (Perkin-elmer MBA2000). Samples were diluted 1:50 and
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measured in duplicate at an absorbance of 260nm (A260). The DNA concentration 

was calculated using the following equation: A260 value of 1 = 50pg/ml of double 

stranded DNA. Plasmid purity was determined by measuring the ratio of 

A26o/A28o, with values £ 1.9 indicating high levels of purity. Plasmid DNA was then 

further analysed by restriction digest mapping and agarose gel elecrophoresis as 

described previously, before being stored at -20°C.

2.2.4 Chinese Hamster Ovary (CHO) cells

CHO cells were maintained in complete F-12 (cF-12) media (see section 2.1.5) in 

a humidified atmosphere of 5% CO 2 at 37°C. The culture media was changed 

every 2 days and cells were routinely passaged upon confluency (typically every 

3-4 days) using the following method. Adherent cells were washed with saline 

and detached from the culture flasks using trypsin-EDTA for 3 minutes at 37°C. 

cF-12 (5mls) was added to the cell suspension prior to the cells being pelleted by 

centrifugation (1,200xg for 3 minutes), and re-suspended in fresh cF-12 (6mls). 

Subsequently 20pl of this cell suspension was removed for haemocytometric 

analysis (Neubauer haemocytometer), a method used to determine the correct 

volume of cells required to obtain the optimum seeding density (Typically 2.5 -  5 

x105 cells per 75cm2 culture flask). In order to maintain cell stocks, cells (~5 x 

106) were detached and pelleted as described above, and re-suspended in 1ml 

of cryopreservation medium (see section 2.1.5). Cell suspensions were placed in 

sealed screw top cryo-vials (NUNC), and gradually cooled to -80°C using 

insulating tissue paper, before being placed in liquid nitrogen for long term
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storage. When required, cells were thawed rapidly by hand and gradually 

introduced to increasing volumes of pre-warmed cF-12 (to a maximum of 5ml) 

prior to centrifugation (1,200xg for 3min). Cells were re-suspended in cF-12, 

seeded into a 25cm2 culture flask, and culture media was changed after 4 hours.

2.2.5 DNA Transfection

2.2.5.1 Calcium Phosphate mediated transfection

CHO cells were seeded in 6 well plates or in Poly Lysine coated glass bottomed 

culture dishes (WPI) 24 hours prior to transfection, and at ~70-80% confluency 

were transfected with high purity (A260/A280 > 1 -9) plasmid DNA using the calcium 

phosphate precipitation method (Chen et al., 1987). Briefly, a mixture of plasmid 

DNA (2-8pg), 18.5pl of 2M CaCI2 and sterile dH20 (total volume of 150pl) was 

added dropwise (over a period of 30 seconds) to 150pl of pre-warmed 2x HBS 

with continuous mixing. Transfection complexes (125mM CaCh, 300pl final 

volume) were incubated at room temperature for no longer than 30 minutes. The 

mixture was vortexed briefly and added dropwise to the cells in cF-12 (3ml), 

before being mixed gently and incubated in a humidified atmosphere of 5% C 0 2 

at 37°C for 16-18 hours. Cells were washed twice with 0.9% w/v saline solution in 

order to remove precipitates, before incubation (humidified, 5% C02,37°C) in cF- 

12 for a further 6 hours.
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2.2.5.2 Lipid mediated transfection (Lipofectamine2000y Invitrogen)

CHO cells were seeded in 6 well plates or in Poly Lysine coated glass bottomed 

culture dishes (WPI) 24 hours prior to transfection, and at -80-90%  confluency 

were transfected with high purity (A260/A280 > 1.9) plasmid DNA using cationic 

lipid mediated transfection (Lipofectamine2000, Invitrogen). This method was 

carried out according to manufacturer’s instructions. Briefly, plasmid DNA (2-8pg) 

was diluted with F-12 medium (without FBS or antibiotics) to a total volume of 

250pl. Lipofectamine2000 reagent (10pl) was also diluted with F-12 medium 

(240pi) and both mixtures were incubated at room temperature for 5 minutes. 

Lipid and DNA complexes were then combined (drop wise over a period of 30 

seconds), prior to further incubation at room temperature for no longer than 20 

minutes. During this time, cells were washed twice with 0.9% w/v saline solution 

before addition of the tranfection complexes in 2mls of F-12 medium, followed by 

incubation (humidified, 5% C 02,37°C) for 6 hours. Transfection complexes were 

removed, and the cells were incubated in complete F-12 for a further 16-18hours 

prior to testing for transgene expression.

2.2.5.3 Sonoporation

Sonoporation of cells using ultrasound (US) has recently gained interest for its 

potential as an alternative means of non-viral gene delivery (Bao et al., 1997; 

Kim et al., 1996; Taniyama et al., 2002). Initial studies utilised devices operating 

at kilohertz (kHz) frequencies (Fechheimer et al., 1987), however due to 

excessive cell damage, applications using megahertz (MHz) frequencies now
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appear to be more prevalent (Huber et al., 2000; Liang et al., 2004). The 

application of US to a liquid causes the formation and implosion of vapour filled 

microbubbles, or cavities, in the solution. The energy release associated with this 

is believed to be sufficient to permeabilise adjacent cell membranes and lead to 

DNA delivery (Deng et al., 2004; Unger et al., 2001). This process is referred to 

as cavitation. Microbubble contrast agents (CA) are believed to lower the energy 

threshold for cavitation (Unger et al., 2001), and have been shown to enhance 

gene delivery for applications using higher frequency US (1-3MHz) both in vitro 

and in vivo (Bao et al., 1997; Lawrie et al., 2000; Taniyama et al., 2002). The 

ability of ultrasonic standing waves (USW) to suspend small particles and cells at 

MHz frequencies has been widely studied in recent years (Coakley, 1997; Lee et 

al., 2005). Cells and particles in suspension exposed to an USW experience a 

force driving them towards the pressure node plane (Khanna et al., 2003) as 

indicated schematically in the figure below. It has been noted that increasing the 

proximity between cavitating CA’s and cells increases the probability of cell 

sonoporation (Ward et al., 2000). Standing wave systems offer an advantage 

over travelling wave fields by encouraging this bubble cell interaction.
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A)
Half wavelength standing wave

B )

Quarter wavelength standing wave

Glass reflector

Pressure -  
node plane .

Carrier layer

Piezoelectric Transducer
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Pressure 
node 
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Carrier layer

Piezoelectric Transducer

Figure 2.3: Particle movement towards the nodal plane of an USW

Current applications of this technology have focused on using devices that 

concentrate particles or suspensions of cells near the centre of the fluid cavity 

(Figure 2.3A). However, using a different combination of layer geometries, it is 

possible to focus particles up against the glass reflector (Figure 2.3B) (Harris et 

al., 2004). This %A mechanism has been utilised in the design of the novel USW 

minichamber used in this thesis (see figure 2.4). This presented us with the 

ability to expose adherent cells to cavitating CA’s held in close proximity by an 

USW, thus enabling real time monitoring of the biological response to US 

exposure. The method of using USW fields has been examined in our laboratory 

for macromolecular uptake (Khanna et al., 2006) and DNA transfection 

(unpublished observations) of cells in suspension. During this thesis an attempt 

was made to optimize sonoporation in a 1/4 wavelength USW as a means of 

permeabilising and transfecting adherent cells, and to compare this with existing
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transfection methodologies. CHO cells were seeded on circular glass cover slips 

(manufacturer) 24 hours prior to ultrasound exposure (~70% confluency upon 

exposure). Growth media was replaced with KRH buffer plus 4mg/ml BSA, 

containing FITC-dextran 10KDa (100pg/ml) and 2-10% PESDA microbubbles. 

Cells were exposed to a 1.72MHz ultrasonic standing wave at 40-80V for various 

pulse lengths (2sec-1min). Cells were subsequently washed three times with 

KRH buffer, and incubated with propidium iodide (PI; 20pg/ml) for 5 minutes. 

Optimum parameters for FITC-dextran uptake were used for plasmid DNA 

transfection experiments. Cells were exposed to USW at 40V in KRH buffer 

containing 100ng-10pg of plasmid DNA and 5% PESDA microbubbles. 

Fluorescence images were captured on a Nikon Diaphot 200 microscope 

equipped with a cooled CCD camera.

Figure 2.4 Design of the USW Quarter wavelength minichamber
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2.2.5.3.1 Perfluorocarbon-exposed sonicated dextrose albumin (PESDA) 
microbubbles

Perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles 

were prepared by methods similar to those previously described (Porter et al., 

1995). Briefly, 5ml of perfluorobutane gas was hand agitated with a 3:1 mixture of 

5% glucose and 10% BSA. This mixture then underwent sonication (Jencons Ltd) 

at 20kHz for 80 seconds, prior to a 30 minute incubation on ice.

2.2.5.4 Microinjection

Microinjection involves injecting DNA directly into cells, or even the cell nucleus 

using a very fine needle. CHO cells were seeded in Poly Lysine coated glass 

bottomed culture dishes (WPI) 24 hours prior to transfection, and at -50-60 / 70- 

80% confluency were transfected with high purity (A260/A280 > 1.9) plasmid DNA 

as follows. Plasmid DNA (100ng) was mixed with filter sterilised KCL Hepes 

buffer (section 2.1.6) and 2.5mg/ml Alexa 594-dextran (10,000 Mw), to a final 

volume of 12pl, prior to centrifugation at 14,000xg for 1 hour at 4°C. Alexa 594 

was omitted from the injection solution for experiments involving the use of Fura 

Red. Microinjection was performed semi-automatically with a Femtojet 

(Eppendorf, Germany) attached to an InjectMan NI2 (Eppendorf) mounted on an 

Axiovert 200 inverted fluorescence microscope (Carl Zeiss). Femtotips 

(Eppendorf) with an inner diameter of 0.5pm and an outer diameter of 1.0pm 

were used for all injections. Injection capillaries were backfilled with 3pl of the 

injection solution using sterile microloaders (Ependorf). The injection angle was 

set at 45°, and each tip was used for the injection of 50-70 cells. The injection
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time remained constant at 0.1s (lowest possible setting), and a constant 

compensation pressure of 80hPa was applied to the capillary. Cells were 

transferred to complete L-15 medium (section 2.1.5), and typically 50-100 cells 

were injected per culture dish over a period of 30-45 minutes with an injection 

pressure of 90hPa at 37°C. The medium was exchanged immediately for pre- 

warmed complete F-12, and cells were transferred to an incubator (humidified, 

5% C02,37°C) prior to imaging transgene expression 3-48 hours later.

2.2.6 Measurement of luciferase expression and intracellular Ca2+ in CHO 
cells

For experiments involving luciferase tagged constructs, CHO cells were 

microinjected as described in section 2.2.5.4 with 100ng of plasmid DNA mixed 

with 0.5mM Oregon Green BABTA dextran (Molecular Probes) in KCL Hepes 

buffer. Cells were transferred to an incubator (humidified, 5% C02,37°C) for 3-48 

hours in complete F-12 medium before being incubated with 100pM luciferin. 

Cells were imaged on a Zeiss Axiovert 100 microscope equipped with a cooled 

intensified charge-coupled device (ICCD) camera (Photek Ltd, UK), encased 

within a purpose built dark box. An ICCD is a charge-coupled device (CCD) that 

is optically connected to an image intensifier that is mounted in front of the CCD. 

The ICCD camera is depicted in Figure 2.5. Image intensifies are comprised of 

three functional elements mounted in close proximity to one another in the 

following sequence: a photocathode, a microchannel plate (MCP) and a 

phosphor screen. Photons generated by the bioluminescent sample fall onto the 

photocathode and are converted to photoelectrons. The photoelectrons are
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accelerated towards the MCP which amplifies the signal by generating a cascade 

of secondary electrons. The multiplied electrons are accelerated towards the 

phosphor screen which finally converts them back to photons which are guided to 

the CCD by a fibre optic taper. Cells were monitored for luminescence by 

integrating light emission for 20 minutes before Ca2+ was monitored in the same 

cells for 1 hour with low level excitation light from a halogen lamp.

High voltage

CCD Camera

Optional GM10-50  
Gate Unit

Figure 2.5 Intensified charge-coupled device (ICCD) camera (Photek)

A) Schematic representation of the ICCD camera from Photek Ltd. Light is collected onto the front 
of the camera before being intensified and imaged as described above (section 2.2.6).
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2.2.7 Measurment of luminescence using a luminometer

Luminometers detect and measure light using an extremely sensitive 

photomultiplier tube (PMT). PMTs are comprised of a vacuum-tube containing a 

photocathode which converts the light to photoelectrons (made of a compound 

semiconductor, mostly consisting of alkali metals); one or more secondary- 

electron-emitting electrodes or dynodes which amplify the number of 

photoelectrons; and an anode which collects the secondary electrons and 

provides the electrical output signal. Due to the very large amplification provided 

by the secondary emission mechanism, PMTs are capable of multiplying the 

current produced by incident light by as much as 107 times. Experiments in this 

thesis were performed using a custom built luminometer equipped with an S20 

PMT cooled to -20°C using a peltier cooler (Figure 2.6). The S20 PMT contains a 

multialkali (Na-K-Sb-Cs) photocathode that has a high, wide spectral response in 

the ultraviolet and near infra red ranges of the elecromagnetic spectrum. 

Samples were placed into a 5ml tube and positioned in front of the PMT. The 

injection port located directly above the sample enables the addition small 

volumes of reagents to the sample using a pressure controlled 50pl Syringe 

(Hamilton Ltd, Carnforth, U.K.). The output signal is connected to a current to 

voltage converter and photon counter, and is received by a computer in the form 

of photons per second. CHO cells (-1 .5  x 106) transfected with luciferase tagged 

constructs were trypsinised and washed twice with 1x PBS, before being 

resuspended in luciferase assay buffer (section 2.1.6). Cells were lysed by the 

addition of 40pM digitonin and placed in the luminometer. Background light
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emmision was recorded for each sample before the addition of 100pM luciferin. 

Luciferase activity was measured for 10 minutes, and expressed as counts per 

second.

Syringe

Shutter

Cooled Housing 
(-20°C)Photocathode

HV supply 
(0.789kV)

PMT
Anode

Silver mirror Glass insulated window

Counter Timer

Computer

Amplifier and 
Discriminator

Figure 2.6 Luminometer

Schematic diagram of a custom built luminometer. The light emitted from the sample following the 
addition of lysis buffer is collected and amplified as described above (section 2.2.7).
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2.2.8 Confocal laser scanning microscopy (CLSM)

Confocal laser scanning microscopy (CLSM) offers several advantages over 

conventional fluorescence microscopy, including controllable depth of field and 

elimination of image degrading out of focus fluorescent light. The acquisition of 

time resolved confocal image series (known as time series) provides the 

possibility of visualizing and quantifying dynamic changes within living 

specimens, even in the range of microseconds. The Leica TCS SP5 (True 

confocal scanner equipped with 5 spectrophotometer channels) equipped with 

the Leica DMI 6000 inverted microscope (Figure 2.7) was used for experiments 

involving eYFP-tagged constructs, including live cell experiments and 

experiments using paraformaldehyde fixed cells. Cells were visualised using an 

oil immersion, 63x objective lens (numerical aperture = 1.23) and images were 

acquired at 512 x 512 pixel resolution. eYFP fluorescence (excitation and 

emission peaks at 514nm and 527nm respectively) was visualised using the 

488nm laser line from an argon laser (set at 20% source power), with the PMT 

set to detect emission at 510-540nm. Alexa-594 fluorescence (excitation and 

emission peaks at 594nm and 617nm respectively) was visualised using the 

561 nm He:Ne laser line at 20% power, with the PMT set to detect emission at 

600-630nm. Fluo 3 fluorescence (excitation and emission peaks at 506nm and 

526nm respectively) was visualised using the 488nm laser line from an argon 

laser (set at 20% source power), with the PMT set to detect emission at 510- 

540nm. Fura Red fluorescence (excitation and emission peaks at 488nm and 

597nm respectively) was visualised using the 488nm laser line from an argon
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laser (set at 20% source power), with the PMT set to detect emission at 580- 

610nm.

0 Visible range lasers I up to SI ©  Multi Function Port IMFP) © XI-emission port

0 ID laser ©  Tandem Scanner © Spectrophotometer prism

0 UV laser ©  Calibration target © PMT channel 1

© Visible range AOTF ©  Field rotation optics © PMT channel 2

IflEOM ©  Objective lens © PMT channel 3

© UVAOTF ©  Transmitted fight dedector © PMT channel 4 (optional FlIMi

© UV optics imaging ©  Reflected light NOD © PMT channel 5 (optional FUM'i

© A08S ©  Confocal detection pinhole

Acousto Optical Beam Splitter ©  Filter- and polarizer wheel

Figure 2.7 The Leica SP5 Confocal laser scanning microscope
The Leica SP5 uses an acousto-optical tunable filter (AOTF) to control the excitation laser light 
and an acousto-optical beam splitter (AOBS) instead of filter blocks to convey the excitation laser 
light to the sample and to reflect the emitted light from the sample to the scan head. The emitted 
light is passed through a pinhole that prevents the out of focus light from dectected by the 
photomultiplier tube (PMT). The PMT converts light into an electrical signal that is recorded by the 
computer equipped with Leica confocal software. Image taken from 
www. zmb. uzh.ch/resources/download/CLSM.pdf
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2.2.8.1 Intracellular Ca2+ imaging

For experiments involving eYFP tagged constructs, CHO cells were seeded in 

poly lysine coated glass bottomed culture dishes (WPI) 24 hours prior to 

transfection, and at -50 -60  / 70-80% confluency were transfected with high purity 

(A260/A280 > 1.9) plasmid DNA as described in section 2.2.5.4. Cells were 

visualized for intracellular Ca2+ between 3 to 48 hours after transfection using 

CLSM. Prior to imaging, cells were loaded with the Ca2+ indicator dye Fluo-3 AM 

/ Fura Red AM (10pM in 20% w/v pluronic acid) in un-supplemented F-12 

medium. The dye containing solution was added to each culture dish as a 200pl 

meniscus and incubated at 37°C and 5% CO2 for 90 minutes. Cells were then 

immersed in F-12 medium prior to imaging, for which they were washed and 

transferred to Krebs-Ringer-Hepes buffer. The Ca2+ dependent fluorescence of 

Fluo-3 / Fura Red was visualized using CLSM as described is section 2.2.8. 

Experiments were structured to analyze either the signal variability in the Ca2+ 

dependent Fluo-3 / Fura Red traces in the absence of any chemically induced 

response or to incorporate the addition of a known pharmacological modulator of 

intracellular Ca2+ (Chapter 4). For signal variability (SV) analysis data was 

acquired every 100ms for 30 second duration (300 frames/experiment) at 512 x 

512 pixel resolution. For the analysis of intracellular Ca2+ handling, cells were 

imaged for 100 frames before the addition of ATP (100pM) and for a further 500 

frames (1 minute in total). Cells in separate culture dishes were used per 

application of ATP to negate the effect of sequential ATP application in the same 

population of cells. Following an experimental series, 15-20 cells were selected
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per area (typically 4-6 areas per dish) and data acquired from regions of interest 

(ROIs) of ~40pm2 (>150 pixels). These were collected and analyzed using Leica 

software. Further analysis was carried out using Microsoft Excel, The Single 

Transient Analysis (STA) program (designed by Steven Barberini using MATLAB 

software), and GraphPad Prism. Chapter 4 describes the precise derivation of 

mathematical operations used to calculate signal variability in this thesis.

2.2.8.2 Preparation and Fluorescence analysis of fixed cells

Cells expressing eYFP-tagged constructs /  cells loaded with fluo 3 were fixed 

with freshly prepared paraformaldehyde (4% (w/v) in PBS) to preserve their 

fluorescence in order to examine the relationship between voltage and intensity/ 

signal variability during CLSM. Cells were washed twice with PBS (pH 7.4) and 

fixed using paraformaldehyde (4% (v/v)). Fixed cells were rehydrated with PBS 

(pH 7.4) for 2 hours, and rinsed briefly with in dH20 prior to being mounted in 

FluoSave™ (Calbiochem). Fixed cells were dried at room temperature for 30 

minutes and stored at 4°C. Fluorescence analysis of fixed cells was performed 

using confocal microscopy within 7 days.

2.2.9 Flow Cytometry and Fluorescence activated cell sorting (FACS)

Flow cytometry is a powerful technique that allows simultaneous multi parametric 

analysis of the physical and/or chemical characteristics of single particles, usually 

cells, as they flow in a fluid stream through an optical-to-electronic detection 

apparatus. The properties measured include a particle’s relative size, relative
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granularity or inner complexity (i.e. shape of the nucleus, the amount and type of 

the cytoplasmic granules or the membrane roughness), and relative fluorescence 

intensity. A beam of light (usually laser light of a single wavelength) is directed 

onto a hydro-dynamically-focused stream of fluid, and any suspended particle or 

cell from 0.2 - 150pm in size passing through the laser intercept scatters the light 

in some way. Any fluorescent molecules found within the cells or attached to the 

cells surface will be excited into emitting light at a longer wavelength than the 

light source. A number of detectors are aimed at the point where the laser 

intercepts the stream of fluid (see figure 2.8): one in line with the beam of light 

(Forward scatter or FSC) and several perpendicular to it (Side scatter or SSC) 

and one or more fluorescence detectors. FSC correlates with cell size and the 

extent of SSC depends on the cells granularity. The electronics system converts 

the detected light signals into electronic signals that can be processed by a 

computer. The data generated by flow cytometry can be plotted in a single 

dimension, to produce a histogram, in two-dimensional dot plots or even in three 

dimensions. Following lipid mediated transfection, CHO cells underwent selection 

for the eYFP-PLC? and CONT-eYFP plasmids using G418 (500pg/ml). A sample 

of cells was removed from the culture at 5 hours, and then daily for a period of 

two weeks. Cells were collected by trypsinisation, adjusted to a density of 1 x 106 

cells/ml in Flow buffer (section 2.1.6) and analysed for YFP expression on a BD 

FACSCalibur (San Diego, CA, USA), using 488nm Argon laser excitation and 

530nm emission band pass filter.
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Figure 2.8 Flow Cytometry Optics

Simplified Layout of the optical system of a typical two colour flow cytometer (as viewed from 
above). Cells are depicted passing through the line of the 488nm argon laser. Fluorescence 
emitted by a cell at 90° to the excitation line is captured by three separate detectors after 
negotiating a series of barriers and filters. Band pass (BP) filters are desinged to restrict 
transmission of wavelengths either above (long pass or LP) or below (short pass or SP) their 
designated limits. The 585/42 BP allows the passage of wavelenghts 21 nm either side of 585nm.
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Flow Cytometry data was analysed using Flow Jo flow cytometry analysis 

software.

Fluorescence activated cell sorting (FACS) is a specialised form of flow 

cytometry that allows heterogeneous mixtures of cells to be sorted into two or 

more containers, one cell at a time, based upon the specific light scattering and 

fluorescent characteristics of each cell (Figure 2.9). CHO cells that had 

previously undergone lipid mediated transfection and subsequent selection for 

the eYFP-PLC£ plasmid were cultured for 4 weeks before being subjected to 

FACS. Cells were collected by trypsinisation and adjusted to a density of 1 x 106 

cells/ml in flow buffer (section 2.1.6). Cell sorting was performed by the Central 

Biotechnology Services (CBS) facility at Cardiff University using a Beckman 

Coulter MoFlo high speed FACS machine (Dako-formerly Cytomation) with 

488nm Argon laser excitation and a 530/40nm emission bandpass filter. Cells 

were selected on the basis of cell viability and YFP fluorescence intensity and 

sorted at a rate of approximately 7000 cells per second.
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Figure 2.9 Fluorescence activated cell sorting (FACS)

Schematic diagram illustrating the basic principle of fluorescence activated cell sorting (FACS). 
FACS enables rapid separation of cells from a mixed population based upon preselected 
characteristics such as fluorescence emission, fluorescence intensity, cell size and cell viability. 
Following the hydrodynamic focussing of the sample, each cell is interogated with a beam of light. 
The computer determines how the cell will be sorted prior to it reaching the break off point. As the 
drop is created an electrical charge is applied to the stream and the newly formed drop will form 
with a charge. The charged droplets then fall through an electrostatic deflectin system that diverts 
droplets into containers based upon their charge. (SSC: side scatter, FSC: Forward scatter)
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2.2.10 Clonal selection of cells expressing eYFP-PLC?

Non-clonal G418 resistant CHO cells stably expressing eYFP-PLC? were 

collected by trypsinisation and adjusted to a density of 15, 5 and 1.5 cells/ml of 

cF-12 medium containing G418 (500pg/ml). The suspensions were transferred 

into flat bottomed 96 well plates (200pl/well). Single colony wells were assessed 

for YFP transgene expression by flow cytometry (section 2.2.9).

2.2.11 Preparation of cell extract for injection into mouse eggs

CHO cells (~ 2 x 107) stably transfected with eYFP tagged constructs were 

harvested by trypinisation and pelleted by centrifugation (1200 x g, for 3 

minutes). Cells were washed twice in 1x PBS and once in Cell extract buffer 

(section 2.1.6), then resuspended in a mimimal volume of Cell extract buffer 

(50% of pellet volume). Cells were lysed with 3 cycles of freeze-thaw using liquid 

nitrogen, before being subjected to ultracenrifugation (Beckman Optima TLX) at

100,000 xg for 1 hour at 4°C. The resulting supernatant was concentrated using 

a Microcon centrifugal filter device (10KD, Millipore) as per manufacturers 

instructions, snap frozen, and stored at -80°C.

2.2.12 Mouse Egg experiments

Mouse egg experiments were carried out in collaboration with Karl Swann and 

Yangsong Yu. Metaphase II eggs were collected from six week old female mice 

that had been stimulated to superovulate by injection of pregnant mare serum 

(PMS, Folligon) and human chorionic gonadotrophin (hCG, Folligon). Eggs were 

collected 14 hours post hCG administration and maintained in droplets of
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HKSOM (see table 2.1) under mineral oil at 37°C. Prior to experiments, eggs 

were washed with M2 medium (Sigma)

For cell extract injections, eggs were incubated with 4pM Fura Red AM for 20 

minutes. Injection needles were formed by pulling borosilicate glass capillaries 

(Harvard Apparatus Ltd, 1.5mm outer diameter and 0.86mm internal diameter) 

with an internal filament using a vertical pipette puller (Model P-30; Sutter 

Instruments). Injection needles were backfilled with ~1pl of cell extract (diluted 1 

in 5 with KCI hepes buffer) using sterile micropipettes (Ependorf). Eggs were 

microinjected using an inverted microscope (TE2000, Nikon) equipped with 

hydraulic manipulators and a pressure pulse system. The volume of solution 

injected was estimated by the diameter of cytoplasmic displacement caused by 

the injection; which was ~1-5% of the eggs volume.

For single CHO cell injections, eggs were incubated with 4pM Fura PE3 AM for 

30 minutes. CHO cells were harvested by trypsinisation (section 2.2.4) and 

resuspended in M2 medium. Injection needles were formed as described above 

ensuring an internal diameter slightly less than that of a single CHO cell. Single 

eggs were all injected with single cells using a Piezoinjector from Primetech 

(Japan).

Eggs were monitored for Ca2+ oscillatory activity in M2 medium using an 

epifluorescence microscope equipped with excitation and emission wheels and a 

cooled CCD camera (Photometries Ltd). Ca2+ was measured as a fluorescence 

excitation ratio of 350/380nm. Emission was measured with a 535nm bandpass 

filter of 40nm band width.
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CHAPTER 3 
OPTIMISING EXPRESSION AND MONITORING

Ca2+ IN CHO CELLS
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CHAPTER 3 Optimising expression and monitoring Ca2+ in CHO cells

3.1 Introduction

3.1.1 Transfection methods

The process of introducing recombinant DNA into eukaryotic cells is defined as 

“transfection”, and is considered a powerful tool for investigating the function of a 

gene of interest. Essentially, transfection is a method that neutralises the issue of 

introducing negatively charged molecules into cells with a negatively charged 

membrane. Numerous transfection techniques have been established over the 

past few decades that can be broadly classified as either chemical reagents or 

physical methods.

Calcium phosphate co-precipitation became a popular chemical transfection 

technique following the systematic examination of this method in the early 1970s 

(Graham et al., 1973). The authors studied the effect of different cations, cationic 

and phosphate concentrations, and pH on the parameters of transfection. 

Calcium phosphate co-precipitation is widely used because the components are 

easily available and inexpensive, the protocol is easy to use and many different 

types of cultured cells can be transfected. A precipitate is produced by carefully 

mixing a buffered phosphate solution with a solution containing calcium chloride 

and DNA. The solution is dispersed onto the cultured cells and is taken up via 

endocytosis. Although early chemical transfection methods helped to establish 

transfection techniques, a number of alternative approaches now exist offering 

relatively higher efficiency, lower variability, and lower toxicity for a greater 

variety of cell types.
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By 1980, artificial liposomes were being used to deliver DNA into cells (Fraley et 

al., 1980). The development of synthetic cationic lipids by Feigner and 

colleagues was the next advancement in this technique commonly referred to as 

lipofection (Feigner et al., 1987). The cationic head group of the lipid compound 

associates with the negatively charged phosphates of the DNA molecules. 

Sufficient liposome is used so that the liposome/nucleic acid complex has an 

overall net positive charge. This positive charge is attracted to the negative 

charge on the surface of the cell and the complex is taken up via endocytosis. 

Many different types of liposomes are commercially available for use in the 

transfection of mammalian cells including the frequently cited lipofectamine 

reagents (Invitrogen).

Alternative transfection techniques are available that do not rely on complexing 

the DNA for transefection. These physical methods include microinjection, 

electroporation and biolistic particle delivery. Direct microinjection of DNA into 

cultured cells is an effective technique to deliver DNA into individual cells, 

requiring specialised injection equipment, considerable labour, and technical 

expertise (Capecchi, 1980). This method is generally efficient; 50-100% of cells 

injected express the delivered DNA, although it is not suitable for studies 

requiring a large number of transfected cells. This technique has been used to 

transfer DNA into embryonic stem cells that are used to produce transgenic 

organisms (Bockamp et al., 2002).

Electroporation is a popular physical method of transfection, often used for cell 

types that are particularly resilient to milder methods of gene transfer. This
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method was first reported for gene transfer studies in 1982 (Wong et al., 1982), 

and relies upon perturbation of the cell membrane by short pulses of high voltage 

which forms pores that allow the passage DNA into the cell (Shigekawa et al., 

1988). This technique requires the cells to be suspended in buffer, and even 

under optimal conditions approximately 50% of the cells die due to shock. Those 

that survive typically require 48 hours to recover and show efficient uptake of the 

DNA.

Another physical method of transfection is biolistic particle delivery, also referred 

to as particle bombardment or the “gene gun” approach (Yang et al., 1990; Ye et 

al., 1990). This method requires precipitation of the DNA onto gold particles, and 

relies upon high velocity delivery of these DNA/gold microcarriers to recipient 

cells. Initially used for DNA delivery into plants, this technique has since been 

used to deliver DNA into cultured cells as well as cells in vivo (Burkholder et al., 

1993; Klein et al., 1992; Ogura et al., 2005). As with other physical methods, this 

technique requires special equipment and is relatively costly.

Many novel methods have been developed for mammalian cell transfection, most 

of which claim improved efficiency, reduced toxicity or wider versatility. For 

example positively charged, highly branched molecules termed ‘dendrimers’ 

complex with negatively charged DNA and transfect cells in a manner similar to 

liposomes (Tang et al., 1996). They are reported to have decreased toxicity over 

their liposome counterparts. Also a method termed ‘magnetofection’ has been 

shown to enhance delivery in a variety of cell types (Plank et al., 2003), whereby 

DNA is complexed to magnetic particles, and a magnet is placed underneath the
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tissue culture dish in order to bring DNA complexes into contact with a cell 

monolayer.

Our laborartory has examined the ability of ultrasonic standing waves (USW) to 

induce macromolecular uptake (Khanna et al., 2006) and DNA transfection 

(unpublished observations) in cell suspensions by a process referred to as 

sonoporation (Discussed in Chapter 2, section 2.2.5.3). This chapter reports 

briefly on the suitability of this novel method for the transfection of adherent cells, 

and compares this technique with a selection of more established transfection 

methodologies.

3.1.2 Reporter genes

It is often desirable to measure the expression of a transgene following its 

transfection into a mammalian cell. The attachment or fusion of a reporter gene 

to the gene of interest is a method used frequently for this purpose. The two 

genes are under the same promoter and are transcribed into a single messenger 

RNA molecule, which is subsequently translated into protein. Many different 

reporter systems are in widespread use, and are typically chosen because the 

characteristics they confer on cells expressing them are easily identified and 

measured using established, convenient assays. Reporter genes can be useful 

in characterising gene expression in a number of ways, such as estimating 

transfection efficiency (percentage of cells transfected with a plasmid) or by 

acting as a surrogate for the subcellular localisation of another gene of interest.
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3.1.2.1 Green fluorescent protein and its derivatives

Green fluorescent protein (GFP) has gained wide-spread use as a tool to 

visualise spatial and temporal patterns of gene expression in living tissue. The 

cloning of GFP from the jellyfish Aequorea victoria (Prasher et al., 1992) and 

subsequent expression in nonjellyfish systems (Chaifie et al., 1994; Inouye et al., 

1994) presented a protein that has since been used as an intrinsic intracellular 

reporter of gene expression, protein localisation and cell linage in vivo (Cubitt et 

al., 1995; Gerdes et al., 1996; Niswender et al., 1995). Wild type (WT) GFP, 

when excited by blue light, emits a fluorescent and easily detectable green light 

(emission maximum at 508nm) with a spectral pattern similar to that of 

fluorescein. Its fluorescence is not dependant upon additional co-factors or 

substrates, making it useful in many cell types (Heim et al., 1994; Inouye et al., 

1994). In addition to this, GFP fluorescence is stable, species independent, and 

can be monitored non-invasively in living cells using fluorescence microscopy or 

flow cytometry (Chaifie et al., 1994; Inouye et al., 1994). Following the cloning 

and expression of W T GFP, genetic manipulations were performed in attempts to 

alter its fluorescent properties. A variant of GFP (enhanced GFP or eGFP) was 

developed, which contains chromophore mutations (S65T and F^L), resulting in a 

protein 35 times brighter than W T GFP with increased photostability and an 

augmented excitation peak that was shifted to 488nm (Cormack et al., 1996; 

Zhang et al., 1996). A broad range of fluorescent protein genetic variants have 

been developed that feature fluorescence emission spectral profiles spanning 

almost the entire visible light spectrum. The enhanced yellow fluorescent protein
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(eYFP) variant used in this thesis is structurally equivalent to GFP with five 

additional mutations (S65G, V68L, Q69K, S72A, and T203Y) that increase the 

emission wavelength to 527nm and the brightness (Grynkiewicz et al., 1985; 

Tsien, 1998). eYFP has been used previously as a reporter gene to study the 

expression of PLC£ in somatic cells (Coward et al., 2006).

3.1.2.2 Bioluminescence

Bioluminescence is a natural process in which living organisms convert chemical 

energy into visible light. Many different organisms, ranging from bacteria and 

fungi to beetles and fish are endowed with the ability to emit light (Campbell, 

1988; Wilson et al., 1998). The majority of bioluminescent insects are beetles 

belonging to the families of Elateridae (e.g. click beetles), Phengodidae (the 

railroad worm) and Lampyridae (the fireflies) (Campbell, 1988; Wilson et al., 

1998).

Fireflies exhibit there characteristic flashing light from an abdominal organ 

(lantern) as a signal between potential mates. Each species of firefly has a 

unique pattern of flashes to provide distinction from other species in the 

geographical area. Fireflies emit light ranging in colour from green to yellow (550- 

580nm) (Wood, 1995). The flashes of light are a result of an oxygen-dependent 

bioluminescent reaction that occurs between the luciferase enzyme and its 

substrate, luciferin.

The luciferase from the North American Firefly Photinus pyralis was the first to be 

cloned of all the beetle luciferases and has become the best characterised (de
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Wet et al., 1987; de W et et al., 1985). (From here onwards the generic term 

‘firefly luciferase’ or ‘luciferase’ will be used to refer specifically to the luciferase 

of the firefly P.pyralis).

Firefly luciferase has long been used in biology as an indicator for monitoring 

ATP since the discovery that ATP is required for the bioluminescent reaction 

(McElroy, 1947). The cloning an sequencing of the firefly luciferase gene (luc) 

(de Wet et al., 1987; de W et et al., 1985) and its successful expression in a 

variety of organisms has rapidly expanded the applicability of firefly luciferase as 

a reporter for gene expression and an indicator for molecular signals in vivo 

(Aflalo, 1991; Sala Newby et al., 1999). Luciferase assays are very sensitive, 

rapid and utilise readily available substrates from commercial sources, making 

them a widely used analytical tool.

As indicated in figure 3.1, luciferase (Luc) catalyses the oxidative decarboxylation 

of luciferin (LH2) in the presence of MgATP2'. Firstly, the carboxylate group of 

luciferin is activated by acylation with ATP, in the presence of Mg2+. The enzyme 

bound luciferyl adenylate (LH2-AMP) is oxidised by molecular oxygen, with the 

intermediate formation of a cyclic peroxide (dioxetanone) and a molecule of 

AMP. The dioxetanone is decarboxylated releasing energy to generate C 0 2 and 

an electronically excited state of oxyluciferin (*). Relaxation of oxyluciferin to the 

ground state is accompanied by the emission of light (Amax = 562nm) (Deluca, 

1976; Sala Newby etal., 1999; Wilson eta!., 1998; Wood, 1995).
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Figure 3.1 The firefly luciferase-luciferin 
bioluminescent reaction

Left: Picture of the North American firefly beetle 
reproduced from:
http://en. wikipedia. org/wiki/File:Photinus_pyralis_ 
Firefly_3.jpg
Firefly luciferase (Luc) catalyses the 
decarboxylation of luciferin (LH2) in the presence 
of ATP, 0 2 and Mg2+, producing a yellow-green 
light as described in the reaction sequence 
outlined below. (See text for details)

(1) Luc + LH2 + MgATP2 - Luc*LH 2-AM P + PPj + Mg 2+

(2) Luc*LH2-AMP + 0 2 Luc*oxyluciferin* + AMP + C02

(3) Luc-oxyluciferirV Luc*oxyluciferin + LIGHT

3.1.3 Monitoring intracellular Ca2+ using fluorescent indicators

For over two decades researchers have been using fluorescent Ca2+ indicators to 

study the regulation of intracellular Ca2+. A wide variety of Ca2+ indicators are 

currently available, with excitation and emission spectra ranging from UV to 

visible colours. The most commonly used indicators are chemical fluorescent 

probes whose optical properties change when they bind Ca2+. Fluorescent Ca2+ 

indicators were originally derived from BAPTA (a membrane permeable Ca2+ 

chelating agent), and most of the classical members of this group were created 

by Tsien and colleagues in the 1980s (Grynkiewicz et al., 1985; Minta et al.,
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1989; Tsien, 1980; Tsien, 1981; Tsien et al., 1982). They can be broadly divided 

into single and dual (ratiometric) wavelength indicators on the basis of their 

spectral changes in response to Ca2+ elevation. Single wavelength Ca2+ sensitive 

indicators such as Fluo-3 change their emission intensity upon binding Ca2+. 

However, the intensity of the emission is directly proportional to both the ambient 

Ca2+ and the indicator concentration, so careful calibration is required.

Ratiometric indicators, such as Fura-2 offer the advantage of eliminating 

artefacts that may arise due to indicator concentration. They are used to 

measure the ratio of fluorescent signals at two distinct wavelengths, which 

enables the precise quantification of changes in Ca2+ concentration. However, 

the majority of ratiometric indicators require UV excitation, which can damage 

cells and result in enhanced autofluorescence. In addition, the exclusive 

requirement for UV excitation may be limited by hardware and experimental 

considerations.

The majority of fluorescent indicators are cell impermeant. It is therefore 

necessary to adopt one of the many invasive or biochemical techniques that are 

available to introduce the indicator into the cytoplasm of the cell. Many of the 

fluorescent Ca2+ indicators are available as acetoxymethyl (AM) ester derivatives 

(Tsien, 1981; Tsien et al., 1982). The AM form of the indicators can passively 

diffuse across cell membranes, and undergo hydrolysis by endogenous 

esterases once they reach the cell cytoplasm. This results in cleavage of the AM 

group which restores the cell-impermeant properties of the indicator, thus 

preventing leakage from the cell. Due to the low aqueous solubility of the AM
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forms, some dispersing agents such as Pluronic F-127 are often used to facilitate 

cell loading (Takahashi et al., 1999). Not all fluorescent Ca2+ indicators are 

available as the cell-permeable ester form.

Several of the indicators experience the issue of compartmentalisation. This is 

overcome by linking the indicator to a dextran of >10,000 molecular weight. 

These indicator-dextran conjugates cannot cross the plasma membrane and 

therefore require some invasive techniques for introducing them into the cell (e.g. 

microinjection or scrape loading). Once inside the cell, the indicator is retained 

within the cytosol providing more precise estimations of the cytosolic ion 

concentration over extended periods of observation (Takahashi et al., 1999).

3.1.4 Previous studies involving the expression of PLC? in somatic cells

In April 2006, Coward et al. published a paper describing the in vivo gene 

transfer and expression of a recombinant form of PLC? in mouse sperm. As part 

of that study, the transient expression of PLC? tagged with eYFP was assessed 

in COS cells (derived from the kidney cell line of the African green monkey) and 

in Human Embryonic Kidney (HEK) 293 cells. Images taken of COS cells 

displaying expression of PLC^-eYFP show the existence of two main patterns of 

fluorescence: either a grainy cytoplasmic distribution or a nuclear distribution. 

Myc or Venus tagged PLC£ has also been shown to localise to the pronucleus 

(PN) of mouse zygotes and early embryos (Halet et al., 2002; Sone et al., 2005). 

Ca2+ oscillations stop at the time of PN formation (Jones et al., 1995), but 

continue without stopping with the prevention of PN formation by injection of a 

lectin, WGA (Marangos et al., 2003). The translocation of PLC? into the PN is
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therefore considered to play an important role in the cessation of Ca2+ 

oscillations at the interphase of a cell cycle (Halet et al., 2004; Kono et al., 1995; 

Marangos et al., 2003). Coward et al.,(2006) offer no explanation as to why 

PLC?-eYFP displays these two distinct patterns of localisation in COS cells, 

however suggest that this may be linked to cell cycle events. HEK 293 cells were 

transfected with the same PLC?-eYFP in order to confirm that this construct was 

generating a protein of the correct molecular weight. Immunoblotting revealed a 

protein band with an apparent molecular weight of ~100kDa, consistent with the 

addition of the eYFP protein (27kDa) to the mouse PLC? protein (74kDa).

In September 2006, Kuroda et al. reported on the role of the X/Y linker region 

and N-terminal EF-hand domain in nuclear translocation and Ca2+ oscillation- 

inducing activity of PLC?. This was the first study to demonstrate Ca2+ oscillations 

in somatic cells following the expression of PLC?. The results show that 24 hours 

after transfection using FuGENE6 (Roche Diagnostics), repetitive Ca2+ spikes at 

intervals of ~3 minutes were observed in 12/17 COS cells expressing venus 

tagged PLC?. No Ca2+ oscillations were observed in any of the 18 cells 

expressing the inactive D210R mutant or in non-transfected COS cells. This 

study also reports the nuclear accumulation of PLC? in COS cells and its D210R 

mutant. In contrast to the observations of Coward et al.,(2006), the confocal 

images taken of cells 48 and 72 hours after transfection suggest an increase in 

active import into the nucleolus over time, with no report of cells displaying any 

other patterns of distribution. It is suggested that the less marked nucleolar
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accumulation observed in cells expressing the D210R mutant could be due to its 

inability to induce Ca2+ oscillations.

In 2007, Yoshida et al. successfully induced broad ectopic PLC? expression in 

transgenic mice. Reverse transcription polymerase chain reaction (RT-PCR) and 

immunoblot analysis confirmed recombinant PLC? protein expression in a range 

of tissues, including heart, skeletal muscle, lung, liver, spleen, kidneys, testes 

and ovaries. Their experiments revealed that endogenous PLC£ expression 

initially had no effect, and the mice appeared healthy. Their oocytes matured 

normally and established Mil, but subsequently exhibited autonomous Ca2+ 

oscillations, second polar body extrusion, pronucleus formation and 

parthenogenetic development. Transgenic males remained largely 

asymptomatic; however females developed abdominal swellings caused by 

benign ovarian teratomas. Yoshida et a/.,(2007) conclude that the activity of 

PLC? is restricted to oocytes when low level expression is forced ectopically in 

multiple tissues, however the level of PLC£ in somatic tissues was not 

established. They suggest that the cellular machinery required to transduce PLC? 

signalling is restricted to the tissues in which PLC? is normally active. They 

propose that this may involve tissue specific accessory factors such as adaptors 

that bind PLC?.

In 2008, Ito et al. published a paper which reported the difference in Ca2+ 

oscillation inducing activity and nuclear translocation ability of PLC£ between 

mouse, rat, human and medaka fish. PLC? from all species was capable of 

inducing Ca2+ oscillations in mouse eggs with variable degrees of activity.
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Species differences were observed in nuclear translocation experiments 

involving mouse and rat eggs. Unlike mouse; rat, human and medaka PLC£ did 

not accumulate in the pronucleus (PN) of mouse eggs. Also, rat PLC? could not 

enter rat PN, whereas mouse could. Experiments involving the expression of 

PLC£ from these four animal species in COS cells also show apparent 

differences in their nuclear translocation ability. These differences however only 

partially reflect the observations reported in eggs. Mouse PLC? was strongly 

accumulated in the nucleoli of COS cells at 48 hours after transfection as had 

been reported previously (Kuroda et al., 2006). In contrast, rat PLC? displayed a 

cytoplasmic distribution with no obvious signs of nuclear translocation. Despite 

their absence from the mouse PN, nuclear translocation was observed for both 

human and medaka PLC^ in COS cells. Ito et al.,(2008) suggest that the nuclear 

translocation of human PLC? in COS cells may be due to the fact that human and 

monkey PLC? share identical nuclear localisation sequences (NLS). They also 

propose that the nuclear translocation observed with medaka PLC£ could be a 

result of diffusion due to its relatively smaller size.

These data all suggest that a systematic investigation of PLC? expression in 

somatic cells is warranted.

96



3.1.5 Objectives

The most suitable transfection technique and conditions for a particular cell type 

must be systematically and empirically determined because inherent properties 

of the cell influence the success of any specific transfection method. The 

preliminary aim of this chapter was to determine the most appropriate 

transfection techniques for examining the effects of transient expression of PLC? 

in CHO cells, and for the eventual production of a stable cell line (Chapter 5). 

The advantages and disadvantages of a variety of commonly used transfection 

methods were compared together with a brief assessment of the applicability of 

the novel technique of sonoporation that has been used experimentally in our 

laboratory.

This chapter reports on the pattern of cellular localisation observed with eYFP- 

PLC£, and examines the effect of transient PLC£-LUC expression on Ca2+ 

homeostasis.
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3.2 Results

3.2.1 Restriction digests of the DNA constructs

The constructs shown in this thesis were prepared by Michail Nomikos, 

Christopher Saunders, or in collaboration with Andreas Rossbach. Diagrammatic 

structural details of the DNA constructs are shown in Chapter 2 (section 2.2.1). 

Restriction digests were used to confirm successful ligation, and to ensure that 

the plasmids had not undergone any deletions or spontaneous recombination 

with the bacterial DNA during propagation. Digests of the DNA constructs with 

restriction enzymes yields several fragments of different molecular weights which 

can be identified after agarose gel electrophoresis and act as a ‘fingerprint’ for 

the complete recombinant plasmid. Figure 3.2.1 shows the predicted DNA 

cleavage fragments for each construct.

For the luciferase tagged constructs, EcoRI cuts once in the multiple cloning site 

of the pCR3 vector and once at the 587 position of luciferase sequence, resulting 

in two bands for each construct. The predicted size of the bands after digestion 

for the luciferase tagged constructs are 6156 and 587bp for pCR3-LUC, and 

6156 and 2542bp for PLC?-LUC (Figure 3.2.1).

For the eYFP construct, Ncol cuts three times in the pcDNA3.1 vector backbone 

at positions 610, 2751 and 3486, and once at position 860 of the eYFP insert, 

resulting in 4 bands. The predicted sizes of the bands after digestion are 3347bp, 

1891 bp, 735bp and 250bp (Figure 3.2.1).

For the eYFP-PLC? and eYFP-D210RPLC? constructs, Ncol cuts three times in the 

pcDNA3.1 vector backbone at positions 610,4727 and 5462, and three times at
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DNA Construct Restriction
enzyme

Estimated Fragments (base pair)

LUC EcoRI 6156bp 587bp

PLCS-LUC EcoRI 6156bp 2542bp

eYFP Ncol 3347bp 1891 bp 735bp 250bp

eYFP-PLCS Ncol 3347bp 1900bp 1485bp 735bp 482bp 250bp

eYFP-D210R-
PLC£

Ncol 3347bp 1900bp 1485bp 735bp 482bp 250bp

Figure 3.2.1 Predicted restriction fragments of the DNA constructs
A) Construct maps illustrating the restriction digest sites of the specified enzymes (represented by 
the black arrows) and the subsequent restriction fragment sizes (base pairs). The luciferase 
(LUC) reporter is indicated in blue, the enhanced yellow fluorescent protein (eYFP) reporter is 
indicated in green and mouse PLC zeta (mPLCO is indicated in red.
B) Summary of the expected sizes of the cleavage fragments for each of the DNA constructs.
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positions 860, 2345 and 2827 of the eYFP-PLC^ insert, resuiting in 6 bands. The 

predicted sizes of the bands after digestion are 3347bp, 1900bp, 1485bp, 735bp, 

482bp and 250bp (Figure 3.2.1).

Figure 3.2.2 shows the characteristic band patterns observed following agarose 

gel electrophoresis. This data indicated that the DNA constructs had been 

generated in the correct orientation, and that they were not altered by DNA 

propagation. Base pair substitutions which resulted from site directed 

mutagenesis were verified by automated cycle sequencing. This confirmed that 

no other mutations apart from those intended were introduced into the cDNA 

sequence. It should be noted that the introduced mutation did not alter any of the 

restriction sites.

Band size 
(bp)

Mw
Marker

LUC PLC£- 
LUC

eYFP eYFP- eY F P - Mw
PLC? D210R M arker

PLC? Band size
(bp)

Figure 3.2.2 Restriction digest patterns of the DNA constructs
Figure 3.2.2 shows a 1% agarose gel demonstrating the characteristic restriction patterns 
obtained following enzymatic digestion of DNA maxi preps corresponding to positive clones of the 
constructs indicated above. Luciferase (LUC) and enhanced yellow fluorescent protein (eYFP) 
tagged constructs were digested using the EcoRI and Ncol restriction enzymes respectively. 
Molecular weight marker (Mw Marker = Hyperladder I).
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3.2.2 Expression of the DNA constructs in mouse eggs

cRNA corresponding to luciferase tagged constructs were prepared (by Michail 

Nomikos) and microinjected (by Karen Campbell) in mouse eggs (Nomikos et al., 

2005). The left panel of figure 3.3A shows that the eggs injected with cRNA 

encoding PLC?-LUC construct caused a series of Ca2+ oscillations in eggs that 

lasted several hours. At the end of the fluorescence recording interval, 

luminescence was measured from the same eggs (in the absence of 

fluorescence excitation) to confirm luciferase expression (Figure 3.3A right 

image).

cRNA corresponding to eYFP tagged constructs were prepared and 

microinjected (by Yuansong Yu) in mouse eggs. Figure 3.3B shows that the eggs 

injected with cRNA encoding eYFP-PLC? also caused a series of Ca2+ 

oscillations in eggs that lasted several hours.

The X and Y  domains of PLC? contain the active residues 178His (Histidine), 

210Asp (Aspratate) and 223His (Histidine) that have been shown to be involved 

in catalysis (Ellis et al., 1993; Ellis et al., 1998). These residues are conserved 

across all PLC families (Katan, 1998). DNA constructs containing the mutation of 

Aspartate at residue 210 in PLC? to an arginine residue (D210R-PLC?) have 

previously been injected into eggs and have failed to produce Ca2+ oscillations 

(Saunders et al., 2002). This suggests that 210Asp is essential for PLC? enzyme 

activity.

101



(A) PLC^-LUC
it)©
Q.O

CMa)o
c0)o
it)a>
k .
o3
LL

1 Hour

(B)

it)©
T—
a

sc<1)O
it)a>
i_
o3

Figure 3.3 Eggs injected with PLC^-LUC and eYFP-PLC^.

(A) Eggs were injected with OGBD and cRNA encoding PLC^-LUC. Left panel shows a 
representative fluorescence trace from a single egg showing the changes in intracellular Ca2+ 
levels that were measured continuously for 4 hours. The right panel shows an integrated image 
over 30 minutes of the luciferase luminescence signal from the same eggs from which Ca2+ 
measurments were taken. (Images courtesy of Karen Campbell) (Nomikos et al., 2005).
(B) Eggs were injected with Fura 2 dextran and cRNA encoding eYFP-PLC^. The red line 
represents the changes in intracellular Ca2+ levels from a single egg that was measured 
continuously for 2 hours. The green line represents the eYFP expression levels from the same 
egg. (Image courtesy of Yuansong Yu).

30 min

eYFP-PLCC
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3.2.3 Optimising plasmid DNA transfection in CHO cells using chemical 
methods

The performance of calcium phosphate co-precipitation and the cationic liposome 

formulation Lipofectamine™ 2000 (Invitrogen) for transfection of CHO cells was 

assessed using the eYFP-PLC? and PLC?-LUC DNA constructs (described in 

Chapter 2, section 2.2.5). To obtain the highest transfection efficiencies, 

experimental conditions were optimized by varying the DNA(pl) : transfection 

reagent (pi) ratios, and by ensuring that cells were greater than 90% confluent 

(as recommended by the manufacturer).

For CHO cells transfected with eYFP-PLC^, recombinant eYFP expression was 

assessed 24 hours after transfection by comparing the number of cells exhibiting 

eYFP fluorescence with the total number of cells present (Figure 3.4A). Four 

separate fields of view were analysed from 3 separate transfections for each 

experimental condition. These results show that when a fixed amount of 

transfection reagent is used, it is possible to increase the expression levels of 

recombinant eYFP in CHO cells by increasing the DNA concentration from 2pg to 

6pg (for Lipofectamine 2000) and 8pg (for calcium phosphate). An increase in 

the DNA concentration from 6pg to 8pg with Lipofectamine 2000 failed to 

enhance the levels of eYFP expression further. When comparing the eYFP 

expression levels obtained with both chemical transfection reagents, 

Lipofectamine 2000 resulted in superior transfection efficiencies for each of the 

DNA concentrations assessed. The expression levels of eYFP were increased 

significantly (p<0.05) by using Lipofectamine 2000, both for4pg and 6pg of DNA.
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Figure 3.4 Calcium phosphate and Lipofectamine 2000 transfections of CHO cells
CHO cells were transfected with either the eYFP-PLC^ (A) or PLC^-LUC (B) DNA construct using 
the standard calcium phosphate co-precipitation/ Lipofectamine 2000 protocol (as described in 
Chapter 2, section 2.2.5). For cells transfected with eYFP-PLC^ (A), the endogenous 
fluorescence of eYFP was used to determine the efficiency of plasmid transfection by comparison 
with the total number of cells present 24 hours after transfection. For cells transfected with PLC£- 
LUC (B), cells were harvested 24 hours after transfection and assayed for luciferase activity (as 
described in Chapter 2, section 2.2.7). Data are presented as mean ± S.E.M. (n=3). cps denotes 
luminescent counts per second. * = p<0.05.

104



This data shows that Lipofectamine 2000 is more efficient for the transfection of 

eYFP-PLC? in CHO cells when compared with calcium phosphate co­

precipitation. The highest transfection efficiencies (~20-25%) were obtained with 

a DNA (p g ): Lipofectamine 2000 (pi) ratio of 3:5 (6pg:10pl).

For CHO cells transfected with PLC£-LUC, luciferase activity was assessed 24 

hours after transfection by the addition of 100pM luciferin to the cell lysate. The 

resultant bioluminescent reaction took place in a custom made luminometer (see 

chapter 2, section 2.2.7), the average signal (cps) was taken over 60 seconds 

and expressed as cps per 103 cells (Figure 3.4B). Three separate transfections 

were analysed for each experimental condition. These results show that when a 

fixed amount of transfection reagent is used, it is possible to increase the 

luciferase activity in CHO cells by increasing the DNA concentration from 2pg to 

6pg (for lipofectamine 2000) and 4pg (for calcium phosphate). An increase in the 

DNA concentration from 6pg to 8pg with lipofectamine 2000, and 4pg to 8pg with 

calcium phosphate failed to enhance the luciferase activity further. When 

comparing the levels of luciferase activity obtained with both chemical 

transfection reagents, lipofectamine 2000 resulted in higher cps for each of the 

DNA concentrations assessed. The average signal (cps) was increased 

significantly (p<0.05) by using Lipofectamine 2000, for 4pg, 6pg and 8pg of DNA. 

This data shows that Lipofectamine 2000 is more efficient for the transfection of 

PLC^-LUC in CHO cells when compared with calcium phosphate co-precipitation. 

The highest transfection efficiency, demonstrated by a luciferase activity of
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~25,000 cps/103 cells was obtained with a DNA (pg) : Lipofectamine 2000 (pi) 

ratio of 3:5 (6pg:10pl).

Despite the optimisation of DNA transfection with both calcium phosphate and 

Lipofectamine 2000, initial imaging experiments revealed that cells displaying 

reporter gene expression were unevenly distributed throughout the cell culture 

dish and often failed to lie within close proximity to one another. This had a 

noticeable effect on the cells numbers obtainable for transient gene expression 

analysis in single fields of view. Figure 3.5 is representative of the typical cell 

numbers expressing PLC^-LUC 24 hours following transfection with 

lipofectamine 2000. On average, -2 0  cells per field of view were observed using 

a x10 magnification objective (Figure 3.5A). This combined with the integration 

time required to identify the cells displaying luciferase expression made it 

increasingly difficult to locate more than 1 or 2 cells per field of view when using 

an objective of higher magnification power (x40 oil immersion) (Figure 3.5B). 

Although well suited to experiments involving the generation of stable cell lines, 

due to the total number of cells transfected in a single culture dish (Chapter 5), 

these chemical transfection techniques do not appear to be suitable for the 

analysis of transient gene expression in this instance, especially if experiments 

require the use of higher magnification objectives.
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Figure 3.5 Expression of PLC^-LUC in CHO cells following Lipofectamine 2000 
mediated transfection
CHO cells were imaged for PLC^-LUC expression 24 hours following lipofectamine 2000 
mediated transfection, in a buffer containing 100pM luciferin using the Photek imaging system (as 
described in Chapter 2, section 2.2.6). Figure 3.4A is representative of the typical number of cells 
showing luciferase expression (Left panel) when imaged using a x10 magnification objective. Also 
shown in the panel on the right is the Hoechst fluorescence image of the same cells, 
demonstrating the total number of cells in the field of view. Figure 3.4B is representative of the 
optimal number of cells showing luciferase expression (Left panel) when imaged using a x40 oil 
immersion objective. The panel on the right is the Fluo 3 fluorescence image of the same cells, 
demonstrating the total number of cells in the field of view.
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3.2.4 Optimising plasmid DNA transfection in CHO cells using physical 
methods

3.2.4.1 Sonoporation

Sonoporation has been used successfully in our laboratory to induce 

macromolecular uptake (Khanna et al., 2006) and DNA transfection (unpublished 

observations) of CHO cells in suspension. In order to establish the suitability of 

this relatively novel method for the transfection of adherent CHO cells, an 

analogous experimental design was employed.

Firstly, a new ultrasonic standing wave (USW) minichamber was designed in 

order to accommodate glass cover slips upon which CHO cells were grown 

(Chapter 2, figure 2.4). The optimum parameters were established by 

assessment of the levels of FITC-dextran uptake together with the levels of cell 

viability (determined by propidium iodide staining). Optimisation of this technique 

involved varying the voltage intensity (40-80V), the duration of the ultrasound 

pulse (2sec-1min), cell density (50-100% confluency) and contrast agent 

concentration (2-10%).

Initial permeabilisation experiments seemed promising, with isolated areas of the 

glass coverslip displaying reasonable levels of FITC-dextran uptake with 

relatively little effect on cell viability as illustrated in Figure 3.6. Despite the non- 

uniform nature of the macromolecular uptake across the cover slip, positively 

labelled cells appeared in distinct regions and displayed increased proximity 

when compared to that of chemical transfection methodologies. It should be 

noted however that the levels of FITC-dextran uptake shown in Figure 3.6 were
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not easily reproducible, and it is therefore unlikely that consistent transfection 

results could be achieved using this technique.

CHO cells were then exposed under these optimised experimental conditions 

(70% confluency, 40V, 2sec pulse length, 5% contrast agent) to a range of eYFP 

DNA concentrations (100ng-10pg). None of the DNA concentration tested 

resulted in transient eYFP expression in CHO cells when imaged over a 72 hour 

period following ultrasound exposure. This data suggests that further optimisation 

beyond the scope of this thesis is required to successfully transfect adherent 

CHO cells using the method of sonoporation.

Figure 3.6 Sonoporation induced macromolecular uptake by adherent CHO cells

This figure shows a fluorescence image of adherent CHO cells demonstrating the optimum levels 
of FITC-Dextran uptake (Green) obtainable following ultrasound exposure (1.72MHz, 40V) for 2 
seconds. Imaged using a x40 oil immersion objective. (The average cell count in a single area 
was -5 0  cells). Cell viability was assessed using propidium iodide (shown in red). These distinct 
areas of FITC-dextran loaded cells were not seen uniformely throughout the glass coverslip, and 
were not easily reproducible.
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3.2.4.2 Microinjection

Although less suitable for studies requiring large numbers of transfected cells, 

single cell microinjection permits the precise control of the amount, timing and 

location of delivery (Zhang et a/., 2008). This robust physical delivery method 

achieves high transduction efficiency in the majority of cell types, including 

cultured primary cells and oocytes.

The injection parameters that can be optimised when using the FemtoJet 

microinjector system include the injection pressure (Pi), injection time (Ti) and 

compensation pressure (Pc). The Pi is the pressure which is needed to drive the 

fluid from the capillary into the cells and together with the Ti determines the 

volume of the sample injected. It is crucial to use an optimal Pi; using a low Pi 

may result in inefficient injection while using higher Pi values risks damaging the 

internal structure of the cell. The Pc maintains a low positive pressure inside the 

capillary to prevent back filling of the needle, and is dependent upon the viscosity 

of the sample (Bartoli etal., 1997).

Microinjection into adherent CHO cells was carried out under phase contrast 

microscopy, initially using ranges of Pi (50-100 hPa), Pc (20-70 hPa) and Ti (0.1- 

0.5 secs). Determination of the most suitable microinjection conditions was 

carried out in two stages. Firstly, FITC-dextran was used as a marker of 

successful injection. This was followed by the assessment of cell viability using 

propidium iodide. Cells were injected under phase microscopy using a range of 

times and pressures to find the optimal Pi, Pc and Ti parameters that did not 

cause cell damage such as prolonged deformation or cell rupture. Having
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identified the optimal parameters, cDNA encoding eYFP was injected into the 

nuclei of CHO cells to verify that, under the microinjection conditions determined 

above, the cells remained viable and expression-competent.

Following extensive evaluation of specific microinjection protocols, optimal 

conditions for transfection efficiency and cell viability were determined at injection 

pressure (Pi) of 90 hPa, compensation pressure (Pc) of 80 hPa and an injection 

time (Ti) of 0.1 seconds. These conditions typically resulted in a transfection 

efficiency of >75% as depicted in Figure 3.7. Transfection efficiencies were 

determined by comparing the number of cells showing eYFP expression (Figure 

3.7A) with the total number of cells successfully injected (indicated by Alexa 594- 

dextran fluorescence, Figure 3.7B). It can be seen that the intensity of Alexa 594 

signal is not homogenous in all microinjected cells. The differences in signal 

could be an artefact of the heterogeneity of cell size and shape, but it is also 

possible that it is an indicator of the amount of sample injected into each of the 

cells. The levels of eYFP expression are also heterogeneous in all microinjected 

cells; however this does not appear to correlate with the intensity of the Alexa 

594 signal, which suggests that expression levels may be determined by factors 

other than the amount of cDNA delivered into the cell. Figure 3.7C shows that 

cells that have undergone microinjection have a slightly ruffled appearance 3 

hours after cDNA delivery. Despite this, the cells remain viable and are able to 

express recombinant eYFP for at least 48 hours.

Due to the precise control over the location of delivery using this technique, the 

number of cells available for fluorescence analysis in a single filed of view at
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higher magnification is greatly improved when compared to the other transfection 

methodologies assessed during this study. Figure 3.7 is representative of the 

typical number of cells expressing recombinant eYFP 3 hours following 

microinjection when viewed using a x63 oil immersion objective.

This data suggests that microinjection is a suitable transfection technique for the 

analysis of transient gene expression, enabling the imaging of very large 

numbers of cells (15-25 cells per experiment, n = 4-6).

A) B) C)

Figure 3.7 Microinjection of cDNA encoding eYFP into CHO cells

CHO cells imaged for eYFP expression (A) and Alexa 594-dextran fluorescence (B) using 
confocal microscopy (x63 magnification). (C) is a phase contrast image of the same field of view. 
Images were taken 3 hours after DNA microinjection.
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3.2.5 Cellular localisation of eYFP-PLC?

Previous studies have reported differing results in terms of the cellular 

localisation observed when expressing PLC£ in somatic cells. Coward et at., 

(2006) report two main patterns of distribution; either grainy cytoplasmic 

distribution or nuclear distribution, and suggest that this could be linked to cell 

cycle events. Others describe an active import into the nucleus of somatic cells, 

which is considered to be a time (Kuroda et al., 2006) or species (Ito et a/., 2008) 

dependent phenomenon. The lipid mediated transfection techniques employed in 

all of these studies have the disadvantage of being unable to permit the precise 

control of timing and amounts of exogenous material introduced into the cell. An 

optimised and well controlled microinjection strategy enables the control of these 

parameters, allowing a more defined time course analysis of the cellular 

translocation of recombinant expression.

DNA constructs encoding eYFP, eYFP-PLC? and eYFP-D210RPLC? were 

successfully microinjected into CHO cells, using the parameters described above 

(3.2.4.2). The use of Alexa-594 conjugated dye enabled the easy visual detection 

of microinjected cells without interference of the eYFP fluorescent signal. Injected 

cells were visualised using confocal microscopy 3, 5, 24 and 48 hours following 

the delivery of the DNA.

Figure 3.8 shows that high levels of recombinant eYFP expression were detected 

as early as three hours after DNA delivery and persisted for at least 2 days, for 

all of the DNA constructs examined. The expression of eYFP alone (Figure 3.8, 

top panel) showed that the fluorescent signal in the cells nucleus was

113



comparable to that in the cytoplasm of 100% of the cells analysed. This pattern 

of localisation remained unchanged throughout all of the time points examined. 

This suggests that eYFP passively diffuses into the nucleus of somatic cells. 

eYFP was not accumulated in the nucleoli of CHO cells, as indicated by black 

spots in the nucleus.

eYFP-PLC? dislayed two distinct patterns of localisation over the duration of the 

time course experiment (Figure 3.8, bottom panel). At 3 and 5 hours following 

DNA delivery, 100% of cells showed a clear cytoplasmic distribution, with no sign 

of obvious nuclear translocation. In contrast to this, at 24 hours the majority of 

cells (-78% ) show noticeable nuclear translocation. Particularly, the fluorescence 

in the nucleoli was strikingly enhanced. At 48 hours, the majority of cells (-82% ) 

also showed obvious nuclear translocation, however at this later time point the 

eYFP signal in the nucleoplasm was comparible to that of the nucleoli. The cells 

that did not show obvious nuclear translocation at 24 and 48 hours maintained a 

clear cytoplasmic distribution identical to that observed at 3 and 5 hours. This 

data suggests that the nuclear import of PLC? is relatively slow, while PLC£ that 

entered the nucleoplasm is concentrated to nucleoli.

For eYFP-D210RPLC? (Figure 3.8, centre panel) the pattern of cellular localisation 

3 and 5 hours following DNA delivery was comparable to that of eYFP-PLC?, with 

100% of the cells showing a clear cytoplasmic distribution. Unlike eYFP-PLC?, 

eYFP-D210RPLC? did not show any obvious signs of nuclear accumulation at later 

time points (24/48 hours), and the majority of cells (>90%) maintained the same
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Figure 3.8 Cellular localisation of PLC£ and its inactive D210R mutant in CHO cells.

Confocal images acquired at the indicated time after microinjection of respective cDNA. Each image is representative of the pattern of 
localisation observed in the majority of cells at each time point. The number of cells displaying the indicated pattern of localisation is 
shown in white alongside the total number of cells analysed in each instance. Scale bar represents 10pm.



cytoplasmic localisation. The remaining cells displayed a less obvious 

cytoplasmic accumulation, whereby the fluorescent signal in the cytoplasm was 

comparable to that of the nucleus; however they showed no distinct pattern of 

nuclear translocation. This data suggests that the nuclear accumulation of PLC? 

may be linked to its activity in somatic cells, as the inactive D210R mutant fails to 

show any signs of nuclear translocation.

3.2.6 Ca2+ in CHO cells expressing PLC?-LUC

Calcium oscillations induced by PLC? expression have previously been reported 

in somatic cells (Kuroda et al., 2006). Here, CHO cells were injected with cDNA 

encoding LUC or PLC£-LUC together with the fluorescent indicator Oregon 

Green Bapta Dextran (OGBD) to measure Ca2+. The image in Figure 3.9 shows a 

group of cells that were both luminescent (representing recombinant expression) 

and fluorescent (used as a marker of successful microinjection in addition to 

measurement of intracellular Ca2+).

Intracellular Ca2+ was measured in cells 3, 5 and 24 hours following 

microinjection. The average luminescence recorded in single CHO cells 

expressing PLC?-LUC ranged from 1-10cps, whilst the luminescence in cells 

expressing LUC alone ranged from 1-15cps. The addition of 100pM ATP was 

used to assess the cells response to receptor induced Ca2+ mobilisation 

(Examined in more detail in Chapter 4). Figures 3.10 to 3.12 show examples of
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the Ca2+ changes observed in some, but not all cells at 3, 5 and 24 hours 

respectively. Table 3.1 summarises the results of these experiments, indicating

B)

Figure 3.9 Luminescence and Fluorescence in the same cells

The luminescence (A) and fluorescence (B) images are shown of a group of CHO cells that had 
been injected with cDNA encoding PLC^-LUC and OGBD.

the proportion of cells displaying Ca2+ oscillations, the frequency of the

oscillations and the proportion of cells presenting a response to the addition of

ATP.

Ca2+ oscillations were recorded in <40% of cells expressing PLC^-LUC at 3, 5 

and 24 hours following microinjection of cDNA. The centre panels of figures 3.10 

to 3.12 show representative traces of typical pattern of oscillations observed. 

Statistical analysis revealed no significant change in the frequency of the

oscillations between the individual time-points analysed (Table 3.1).
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Tables 3.1 shows that a comparable proportion of cells (-30-35% ) either 

expressing LUC alone or injected with OGBD also show Ca2+ oscillations at 3, 5 

and 24 hours. Figures 3.10 to 3.12 show representative traces of the typical 

pattern of oscillations observed in these cells. The frequencies of the Ca2+ 

oscillations recorded were also comparable to those observed in cells expressing 

PLC^-LUC. Statistical analysis revealed no significant changes in either the 

proportion of cells displaying Ca2+ oscillations or the frequencies at which they 

occur between cells expressing PLC?-LUC and either of the control groups (LUC 

and OGBD).

Table 3.1 shows that almost all cells (>99%) show a response to the addition of 

ATP (100pM). Examples of the typical Ca2+ changes observed as a result of this 

purinergic receptor stimulation are shown in figures 3.10 to 3.12. Statistical 

analysis revealed that the expression of PLC?-LUC did not alter the proportion of 

cells showing a response to ATP induced Ca2+ mobilisation.

This data suggests that the Ca2+ oscillations observed in CHO cells are not 

induced specifically by the expression of PLC^-LUC, and a more likely to be as a 

result of spontaneous Ca2+ activity within the somatic cell line. The expression of 

PLC^-LUC does not appear to affect receptor induced Ca2+ mobilising, 

suggesting that the cells Ca2+ signalling network remains unchanged. It is 

possible however that the expression of PLC? induces subtle changes in the Ca2+ 

homeostasis of somatic cells that are not apparent without more detailed analysis 

(See Chapter 4).
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Figure 3.10 Ca2+ changes observed in CHO cells 3 hours following microinjection

CHO cells were microinjected with the fluorescent Ca2+ indicator OGBD (0.5mM) together with 
cDNA encoding LUC (top panel) or PLC^-LUC (centre panel). Cells were also injected with 
OGBD alone (bottom panel). The traces are representative of typical Ca2+ changes observed in 
some, but not all cells within each experimental group. Cells were imaged for OGBD fluorescence 
for at least 30 minutes prior to the addition of ATP (100pM, red arrow).
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Figure 3.11 Ca2+ changes observed in CHO cells 5 hours following microinjection

CHO cells were microinjected with the fluorescent Ca2+ indicator OGBD (0.5mM) together with 
cDNA encoding LUC (top panel) or PLC^-LUC (centre panel). Cells were also injected with 
OGBD alone (bottom panel). The traces are representative of typical Ca2+ changes observed in 
some, but not all cells within each experimental group. Cells were imaged for OGBD fluorescence 
for at least 30 minutes prior to the addition of ATP (100pM, red arrow).
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Figure 3.12 Ca2+ changes observed in CHO cells 24 hours following microinjection

CHO cells were microinjected with the fluorescent Ca2+ indicator OGBD (0.5mM) together with 
cDNA encoding LUC (top panel) or PLC^-LUC (centre panel). Cells were also injected with 
OGBD alone (bottom panel). The traces are representative of typical Ca2+ changes observed in 
some, but not all cells within each experimental group. Cells were imaged for OGBD fluorescence 
for at least 30 minutes prior to the addition of ATP (100pM, red arrow).
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3 HOURS

5 HOURS

24 HOURS

Proportion of cells 
showing oscillations

(%)

Frequency
(Spikes/hour)

Proportion of cells 
responding to ATP

(%)

n number 
(total cells)

LUC 35.1 ± 3.6 6.9 ±0 .9 99.8 ±0.3 4(47)

PLC^-LUC 36.0 ± 3.0 7.9 ± 1.0 99.3 ±0 .5 4(45)

OGBD 31.9 ±3 .7 7.0 ± 0.7 100 3(18)

LUC 25.1 ± 8.6 6.0 ±0 .9 100 4(29)

PLCS-LUC 31.0 ±3 .2 5.7 ±0 .6 99.8 ±0 .3 4(50)

OGBD 31.1 ±5 .9 6.0 ±0 .9 100 3(13)

LUC 31.0 ±4 .8 5.9 ±0 .8 99.0 ± 0.4 4(22)

PLCS-LUC 33.4 ± 3.9 6.2 ±1 .0 99.0 ± 0.6 4(21)

OGBD 29.0 ± 2.4 6.5 ± 0.8 99.3 ±0 .3 3(14)

Table 3.1 Ca2+ changes in CHO cells expressing PLC^-LUC at 3, 5 and 24 hours 
following microinjection.

CHO cells were injected with OGBD and cDNA encoding LUC or PLC^-LUC. Cells were also 
injected with OGBD alone. Cells were imaged for OGBD fluorescence at 3, 5 and 24 hours 
following microinjection. Data is given as mean ± S.E.M. n= the number of experimental runs. 
The total number of cells analysed is shown in parentheses.
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3.2.7 Resting intracellular Ca2+ levels in cells expressing PLC£-LUC

Basal Ca2+ levels in cells expressing PLC?-LUC were calculated from OGBD 

fluorescence data using the following equation:

[Ca2+] = Kd (F - Fmin)/(Fmax - F)

(Grynkiewicz et a/., 1985)

Where Kd, the dissociation constant for the rate of Ca2+ dissociation from OGBD 

in the cell cytoplasm was taken from the published value of 430nM (Thomas et 

al., 2000). Fmaxand Fmm represent maximum and minimum fluorescence signals 

respectively, and F represents fluorescent signal at any time. Fmax was the peak 

fluorescence after the addition of ionomycin (5pM) (Figure 3.13). lonomycin is a 

pore forming ionophore which mobilises intracellular Ca2+, enabling the 

calibration of the Ca2+ dependent fluorescence of OGBD. Fmin was approximated 

to be zero since the fluorescence of OGBD is extremely low in the absence of 

Ca2+ (Molecular probes). Figure 3.14 shows that the expression of PLC^-LUC in 

CHO cells does not affect the resting intracellular Ca2+ levels when compared 

with cells expressing LUC or cells injected with OGBD. This data suggests that 

the expression of PLC? in somatic cells has no obvious effect on resting 

intracellular Ca2+or spontaneous Ca2+ oscillations.
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Figure 3.13. Determination of maximal (Fmax) Ca2+ dependent intracellular OGBD 
fluorescence.
Fmax was determined at the end of each experiment by the addition of the ionophore ionomycin 
(5pM). This value in conjuction with the initial fluorescence (F), were used to calculate the resting 
intracellular Ca2+ concentration.
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Figure 3.14 Resting intracellular Ca2+ levels in CHO cells expressing PLC^-LUC
Resting intracellular Ca2+ levels were calculated by the method detailed in section 3.2.7. 
Intracellular Ca2+ levels of cells expressing PLC^-LUC (red) were compared with that of cells 
expressing LUC alone (blue) and cells injected with OGBD only (green). Data are given as mean 
± S.E.M (n=>3, 5-10 cells per experiment).
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3.3 Discussion

3.3.1 Microinjection is a suitable technique for the study of transient PLC? 
expression in somatic cells

Many techniques have been used for introducing cDNA into somatic cells, 

including chemical transfection (either by commercial lipid or calcium phosphate 

mediated transfer) and physical methods such as microinjection, elecroporation 

or sonoporation. Physical transfection methodologies are often used when either 

lipid or chemical mediated transfection is not possible (e.g. for expression in 

primary cells) and are not always considered to be the optimal choice for use in 

cell lines for various reasons, depending on the nature of the study. For example, 

microinjection cannot practically be used for expression in large populations of 

cells such as when attempting to establish a stably transfected cell line.

Calcium phosphate and lipid mediated transfer using Lipofectamine 2000 were 

optimised in this study, and were shown to generate moderate levels of 

recombinant protein expression. These techniques offer the advantage of being 

rapid and simple to perform, generating large numbers of successfully 

transfected cells with minimal effort. However, such techniques fail to permit the 

precise control of the amount, timing and location of cDNA delivery.

High transfection efficiencies were routinely obtained with the use of 

microinjection once the optimised conditions had been established. This 

technique offers control over the timing of cDNA delivery which allows for more 

accurate time course analysis in transient expression studies. Also, the proximity 

of cells displaying recombinant protein expression was greatly improved which 

enabled the analysis of larger cell numbers.
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3.3.2 Cellular localisation of PLC? in somatic cells appears to be dependent 
upon time after transfection

Macromolecular transport between the nucleus and cytoplasm of eukaryotic cells 

occurs via large multi-protein structures termed nuclear pore complexes (NPCs) 

that are embedded in the nuclear envelope (Suntharalingam et al., 2003; Tran et 

a/., 2006). Passive diffusion of molecules < 40kDa through NPCs does occur, 

however most macro molecules require specific transport signal sequences to 

enter and exit the nucleus via the NPC (Lange et al., 2007). Many proteins 

contain predicted nuclear localisation signal (NLS) and nuclear export signal 

(NES) sequences which are required for entering and exiting the nucleus. These 

targeting signals consist of a weak consensus of three to four hydrophobic 

residues which are often identified by computer searches (Pemberton et al., 

2005).

The site or region of the PLC? molecule responsible for its nuclear translocation 

ability has been shown to include residues 374-381 in the X/Y linker region, in 

which the basic amino acids Arg376, Lys377, Arg378, Lys379 and Lys381 are 

considered essential (Kuroda et al., 2006). Nuclear accumulation of PLC£ in 

somatic cells was reported to be a slow process, demonstrated by increasing 

levels of PLC^-Venus in the nucleoplasm of COS cells between 48 and 72 hours 

following lipid mediated transfection (Kuroda et al., 2006). The results in this 

chapter demonstrate a more marked increase in nuclear localisation with time 

after transfection, with CHO cells showing no obvious nuclear accumulation until 

24 hours after cDNA delivery by microinjection. This data also suggests that the
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transport of PLC£ into the nucleus of somatic cells is a gradual process 

dependent upon time after transfection.

It must be noted however that not all cells display an obvious pattern of nuclear 

accumulation at 24 and 48 hours following microinjection. Approximately 20% of 

cells have a distinct cytoplasmic distribution identical to the pattern observed at 

earlier time points. (Coward et al., 2006) also reported this cytoplasmic pattern of 

distribution in somatic cells 48 hours following transfection of PLC?, and suggest 

that it may be linked to cell cycle events. This is an interesting theory that 

supports the proposal that the nuclear localisation of PLC? observed in mouse 

zygotes and early embryos (Halet et al., 2004; Sone et al., 2005; Yoda et al., 

2004) may explain the cell cycle dependent regulation of Ca2+ oscillations after 

fertilisation (Halet etal., 2004; Sone eta l., 2005).

PLC61 has a nuclear import signal at a lysine-rich sequence in the C terminus of 

the X domain (Okada et al., 2002); however it is not accumulated to the PN 

(Yoda et al., 2004) or the nucleus (Yamaga et al., 1999). Nuclear import and 

export is balanced due to the existence of an export signal at a leucine rich 

sequence in EF1 (Kuroda et al., 2006; Yamaga et al., 1999). Kuroda et al., 

(2006) propose that I31-C43 in EF1 of PLC£ may correspond to the export signal 

sequence of PLC61, however this has not been experimentally verified. Should 

PLC£ contain a nuclear export signal, then differences in the rate of nuclear 

import and export may account for the two distinct patterns of cellular localisation 

observed.
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3.3.3 PLC£ expression has no obvious effect on intracellular Ca2+ 
homeostasis in somatic cells

PLC? expression has been reported to induce Ca2+ oscillations in -70%  of COS 

cells 24 hours following transfection, whilst the expression of D210R was without 

effect (Kuroda et al., 2006). This observation was made from a relatively small 

experimental group, with less than 20 cells in each category. In contrast to this, 

the results of this chapter suggest that the expression of PLC? has no effect on 

the cellular Ca2+ homeostasis of somatic cells. The oscillations recorded in cells 

expressing PLC£ were found to be present in a comparable proportion of cells in 

both control groups (i.e. cells expressing LUC alone, and cells injected with 

OGBD). Statistical analysis revealed no differences in the frequency of the 

oscillations observed, either between experimental groups or between each of 

the time points examined. CHO cells expressing PLC? also retained a response 

to receptor induced Ca2+ mobilisation, and resting Ca2+ levels were unaffected. It 

is possible that the oscillations observed are induced by the method of 

microinjection, or they could be due to spontaneous Ca2+ activity within this cell 

type. Calcium signalling is believed to play a crucial role in driving cells through 

different stages of the cell-division cycle (Kao et al., 1990; Poenie et al., 1985). 

For example, a surge in Ca2+ controls the nuclear envelope breakdown and exit 

from mitosis in eggs (Steinhardt et al., 1988). Changes in intracellular Ca2+ have 

also been shown to characterise the metaphase-anaphase transition (Poenie et 

al., 1986; Ratan et al., 1986) and G1/S phase transition (Russa et al., 2009) in 

some somatic cells, however the significance of these Ca2+ changes in the cell
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cycle remains to be determined. There is no evidence to suggest that the 

oscillations observed in this study are a direct result of PLC£ expression. These 

results show that PLC£ appears to have no obvious effect on intracellular Ca2+ 

homeostasis in somatic cells, irrespective of its cellular localisation, which 

suggests that its activity is specific to oocytes.
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CHAPTER 4 
INVESTIGATING THE EFFECTS OF PLC? 

EXPRESSION ON RECEPTOR INDUCED Ca2+ 
MOBILISATION AND HOMEOSTASIS
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CHAPTER 4 INVESTIGATING THE EFFECTS OF PLC? EXPRESSION ON 
RECEPTOR INDUCED Ca2+ MOBILISATION AND HOMEOSTASIS 

4.1 Introduction

4.1.1 Analysis of agonist induced Ca2+ transients

This study investigates the intracellular Ca2+ ([Ca2+]j) changes induced by 

adenosine triphosphate (ATP) in CHO cells expressing PLC£. [Ca2+]i was 

measured with the fluorescent Ca2+ indicator Fluo 3 in single cells (Chapter 2, 

section 2.2.8.1). The proposal is that a change in agonist-induced Ca2+ release 

will be evident if there is any major alteration of the lnsP3 signalling pathway.

In addition to its important role in cellular metabolism, ATP has also been shown 

to act as an extracellular signalling molecule (Burnstock, 1990; Dubyak et al., 

1993). ATP acts on many receptors including P2-purinergic receptors which have 

been classified into two main subtypes on the basis of their agonist and 

antagonist selectivity, and their molecular structure (for reviews see (Fredholm et 

al., 2000; Khakh, 2001; von Kugelgen et al., 2000). P2X receptors are ligand- 

gated ion channels which conduct Na+ and Ca2+ from the extracellular medium. 

To date, seven separate genes coding for P2X subunits have been identified and 

named as P2X1 through to P2X7 (Gever et al., 2006; North, 2002). P2X receptor 

subunits are comprised of two transmembrane spanning domains connected by 

a large extracellular loop, with intracellular carboxyl and amino termini. ATP 

binds to the extracellular loop of the P2X receptor, resulting in a conformational 

change in the structure of the ion channel that causes the opening of the ion- 

permeable pore allowing cations to enter the cell. In contrast, P2Y receptors are
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G-protein coupled receptors (GPCRs), with a structure comprising seven 

transmembrane helices. To date, eight mammalian P2Y-receptors have been 

identified that have been subdivided into the five G(q)-coupled subtypes (P2Y1 , 

P2Y2 , P2Y4 , P2Y6 , P2Y11), and three G(ircoupled subtypes (P2Y12, P2Y13, P2Y14) 

linking them with phosphoinositide and adenylate cyclase metabolism 

respectively (von Kugelgen, 2006). The G(P) protein is a heterotrimeric G protein 

subunit that activates phospholipase C (PLC). PLC hydrolyses PIP2 resulting in 

the formation of two second messengers, DAG and lnsP3 (Berridge, 1993; 

Putney et al., 1993). DAG activates protein kinase C (PKC), and lnsP3 binds to 

InsPsR on the ER which leads to Ca2+ release (Ferris et al., 1989; Maeda et al., 

1991). With prolonged P2Y receptor activation, there is an associated Ca2+ influx 

in response to Ca2+ store depletion which is referred to as capacitative Ca2+ entry 

(CCE).

It has been shown that CHO cells endogenously express P2Y1 , P2Y2 and P2X7 

receptors (Iredale et al., 1993; Marcet et al., 2003; Marcet et al., 2004; Michel et 

al., 1998). In populations of CHO cells, the addition of ATP results in a rapid 

increase in intracellular Ca2+ followed by a slowly declining secondary (plateau­

like) phase. Omission of Ca2+, and inclusion of a non-specific calcium channel 

antagonist, such as Ni2+ in the extracellular medium, has been shown to prevent 

this secondary phase, suggesting that Ca2+ influx forms part of the overall 

response (Burnstock, 1990).
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Figure 4.1 Signalling pathways of P2-purinergic receptors activated by ATP

Adenosine triphosphate (ATP) acts on two types of P2-purinergic receptors, one of which (P2X) is 
a ligand gated ion channel, and the other (P2Y) is a G-protein coupled receptor linked to the 
phosphoinositide signalling pathway via the Gq alpha subunit. Gq activates phospholipase C 
(PLC) which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to form second messengers 
diacyl glycerol (DAG) and inositol-1,4 ,5-triphosphate (lnsP3). lnsP3 activates lnsP3 receptors 
(lnsP3R) on the endoplasmic reticulum (ER) which opens calcium (Ca2+) channels allowing 
mobilisation of Ca2+ into the cytosol.

4.1.2 Objective

In light of the involvement of lnsP3Rs in the Ca2+ cycling observed at fertilisation, 

this chapter investigated whether the expression of PLC? in CHO cells alters 

agonist-induced lnsP3R-dependent Ca2+ handling. This chapter also investigated 

whether PLC? expression induces subtle changes in basal cellular Ca2+ handling 

in this cell type. The methods implemented in this analysis are described in detail 

in section 4.2.



4.2 Method Development

4.2.1 Investigating the Ca2+ entry component of the ATP-induced transient 
in CHO cells.

The CHO cell line used in the present study was found to respond to ATP as had 

been shown previously (Burnstock, 1990), with the omission of extracellular Ca2+ 

resulting in a characteristically different response which clearly lacked the 

secondary phase, whilst the initial rapid increase in intracellular Ca2+ remained 

intact (Figure 4.2). This is a clear demonstration that the primary response 

following the addition of ATP is mediated solely by Ca2+ release from the ER, 

whilst the persistent elevation is underpinned by Ca2+ influx. This suggests that 

the Ca2+ response investigated in this thesis involves the combined action of P2Y 

purinergic receptors and capacitative calcium entry.

6O-1

5 min
ATP

Figure 4.2 The ATP-induced transient in CHO cells
The effect of extracellular Ca2+ on the intracellular Ca2+ response elicted by ATP (100pM). CHO 
cells were loaded with the Ca2+ indicator Fluo 3 prior to imaging. Under control conditions (1.3mM 
extracellular Ca2+, represented by the blue line) the initial rapid increase in intracellular Ca2+ was 
followed by a slowly declining secondary plateau phase. However the omission of calcium from 
the extracellular medium (represented by the red line) resulted in a characteristically different 
response which clearly lacked the secondary plateau. Each of the traces shown is representative 
of 99% of the responses (n = 4,18-20 cells per experiment).
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4.2.2 Analysis methods implemented in the assessment of Ca2+ handling

The following characteristics of the Ca2+ responses in CHO cells were quantified 

in order to assess whether the expression of PLC? alters cellular lnsP3R- 

dependent Ca2+ handling. These parameters are illustrated and defined in figure 

4.3.

I. The amplitude of the Ca2+ release: This represents the magnitude of the 

change in Fluo 3 fluorescence following ATP addition, and was expressed as F- 

Fo/Fo, where F is the maximum fluorescence observed and Fo is the resting Fluo 

3 fluorescence determined in resting cells.

II. Rate of Ca2+ release: This is represented by a change in Fluo 3 fluorescence 

as a function of time (dF/dt), and was expressed as the relative increase in 

fluorescence over time, from basal to peak fluorescence.

III. The proportion of cells that did not exhibit ATP-induced Ca2+ release was 

analysed. These cells are referred to as being non-responsive.

IV. Basal cellular Ca2+ handling was examined using a form of noise analysis 

termed signal variability (SV) (Section 4.2.3).
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I. Amplitude of the 
Ca + release 
= F- Fo/Fq

A

Time

ti t2

Rate of Ca 
release
= (F-F0) / (t2-ti)

t

Non-responsive cells

IV. Signal Variability (SV) 
analysis of basal Ca2+ 
= sum of point to point 
differences from t3 to U 
(Section 4.2.3)

Figure 4.3 Schematic representations of the ATP-induced Ca2+ transient analysis 
parameters
I., II. and IV represent typical Ca2+ transients induced by the addition of ATP (100pM) in CHO 
cells loaded with fluo 3. The equations for the parameters measured are detailed alongside each 
figure. F = maximum fluorescence; F0 = basal fluorescence; U= time of agonist addition; t2 = time 
at which maximum fluorescence occurs. t3 to tt = 30 second time period used to calculate basal 
Ca2+ signal variability (SV). III. represents a typical trace of a cell that did not exhibit agonist- 
induced Ca2+ release. The black arrow corresponds to the time of the agonist addition.
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4.2.3 Analysis of basal cellular Ca2+ handling

This chapter examines the effect of PLC£ expression on basal cellular Ca2+ 

handling using a form of ‘noise analysis’ termed signal variability (SV). George 

and colleagues recently developed this novel calculation which quantifies subtle 

changes in cellular Ca2+ cycling that can be used to determine cell-to-cell signal 

variability, in addition to agonist-induced changes within the same cell (George et 

al., 2006). Commonly used indices of variability including standard deviation 

(SD), variance (SD2) and coefficient of variance (CoV = SD/mean) are all 

intrinsically linked to a constant mean signal level. Because of the drift in signal 

frequently observed in our CLSM experiments, these tools are not reliable 

measures of signal variability. The applicability of SV to cellular Ca2+ analysis has 

been extensively characterised (George et al., 2006) and its utility in signal noise 

analysis over and above SD, Variance and CoV have been shown (Fry, 2008). 

SV is calculated by the sum of point to point differences in Ca2+ dependent 

fluorescence signals and as such is not influenced by the small drift in the 

fluorescence signal frequently observed in CLSM experiments. SV is defined in 

figure 4.4.

As a pre requisite for this analysis, this chapter also examines the relationships 

between SV, mean fluorescence intensity and PMT voltage settings. This 

highlights the issues faced when comparing basal Ca2+ homeostasis between 

different cells exhibiting a broad range of fluorescence intensities.
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Figure 4.4 Definition of Signal Variability (SV)

Signal Variability is the sum of the moduli of the differences between successive intensity values.
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4.2.4 The use of fluo-3 to measure changes in intracellular Ca2+

The Ca2+ indicator fluo-3 was initially chosen to determine changes in 

intracellular Ca2+ in CHO cells expressing eYFP tagged constructs. This indicator 

was used due to its large dynamic range, low compartmentalisation tendency 

and appropriate apparent Ca2+ binding affinity (Thomas et al., 2000). Despite 

these desirable properties, fluo-3 has an almost identical excitation/emission 

profile to eYFP (Figure 4.5) and as a result it is not possible to easily distinguish 

between their respective fluorescences. These data are entirely consistent with 

that obtained in cells using a lambda scanning protocol and confocal microscopy 

(data not shown).

488
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Figure 4.5 Fluorescence emission spectra of enhanced yellow fluorescent protein 
(eYFP) and fluo-3.
The green line represents the emission spectra for eYFP and the dark blue line represents the 
emission spectra for fluo 3. The vertical light blue line indicates the position of the 488nm laser 
line. Spectra generated using Molecular Probe’s Fluorescence Spectra Viewer (Invitrogen). 
http://probes.invitrogen.com/servlets/spectraviewer
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This posed two potential problems: 1) Cells expressing the eYFP tagged 

constructs may not be easily identified by their fluorescence when loaded with 

fluo-3, and 2) Changes in the intensity of fluorescence emitted in the 510-540nm 

region may not be solely due to Ca2+ dependent changes in fluo-3 if the eYFP 

fluorescence was altered by the addition of the agonist or Ca2+ itself. However, 

cells expressing eYFP tagged constructs were easily identified due to the 

fluorescence intensity of eYFP being significantly higher than that of fluo-3 

(Figure 4.6A). Additionally, the fluorescence intensity of eYFP remains unaltered 

following ATP induced Ca2+ mobilisation from the intracellular stores (Figure 

4.6B). This suggests that the fluorescence changes observed upon agonist 

addition to fluo-3 loaded cells expressing eYFP tagged constructs are due 

exclusively to changes in the fluorescence of fluo-3.
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Figure 4.6 eYFP Fluorescence is independent of ATP-induced Ca2+ release

A) Typical eYFP fluorescence intensity 3 hours following microinjection of DNA constructs is 
significantly higher than the fluorescence intensity exhibited by cells loaded with the Ca2+ 
indicator fluo-3. Data were acquired from regions of interest (ROI) representing single resting 
(non-stimulated) cells, of approximately 40pm2. Data are shown as mean ± S.E.M (n=4, the 
number of cells analysed is shown in the parentheses). ***=p<0.001. B) The amplitude of the 
change in eYFP fluorescence (F/F0) is given as the maximum fluorescence determined following 
ATP addition (F) expressed as a percentage of the eYFP fluorescence measured in resting cells 
(F0, 100%). Data represent mean values ± S.E.M  (n=4, the number of cells analysed is shown in 
the parentheses).
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4.2.5 Heterogeneity of eYFP expression

CHO cells display heterogeneous levels of eYFP fluorescence intensities during 

transient expression following microinjection, presumably as a result of varying 

levels of DNA delivery between cells (figure 4.7). In order to assess the 

association between fluorescence intensity and signal variability (SV), regions of 

interest (~40pm2 , >150 pixels) from 4 separate experiments were selected. The 

average fluorescence intensities per pixel were obtained at a photomultiplier tube 

(PMT) voltage setting of 1000V using a laser power of 20%. The relationship 

between fluorescence intensity and SV for each region of interest ROI is outlined 

in the scatter plot in figure 4.7(c). The fluorescence signal becomes increasingly 

saturated at fluorescence intensities above 120 (mean pixel value) due to an 8- 

bit image resolution that results in 28 (or 256) levels of intensity for each pixel. 

The signal from a defined ROI which typically comprises >150 pixels is 

intrinsically linked to sub-saturation pixels. As pixels within the ROI progressively 

saturate, the SV will appear to decrease. Therefore, two options presented 

themselves: either to set a threshold of fluorescence intensity above which data 

would be eliminated, or to adjust the PMT voltage setting thus enabling cells 

exhibiting higher levels of expression to be included in the analysis. Eliminating 

the data would have sacrificed a large number of data points and would also 

have prevented the examination of cells displaying higher levels of PLC? 

expression, hence this option was ruled out.
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Figure 4.7 Heterogeneity of eYFP expression following microinjection

a) eYFP expression in CHO cells 24 hours after DNA microinjection. Bar represents 20pm.
b) Bar chart representing actual eYFP fluorescence intensities across the transient phase of 
expression. Images were acquired at PM T voltage settings ranging 750V-1000V, and single cell 
fluorescence intensities were corrected post acquisition using the Boltzman equation in figure 4.8. 
Data is presented as mean ± SEM (n=4, number of cells analysed is shown in parentheses). 
*=p<0.05, **=p<0.01
c) Scatter Plot of data obtained from CHO cells expressing eYFP at 24 hours post DNA 
microinjection. All images were acquired at a PMT setting of 1000V. Each dot represents the 
signal variability (SV) and fluorescence intensity (arbitary units) of a single region of interest (ROI) 
(n=4)
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4.2.6 Understanding the effect of PMT voltage on fluorescent signals

Due to the correlation between signal variability and relative fluorescence 

intensity shown in figure 4.7 (c) (discussed further in section 4.2.7), It was 

important to assess the association between both of these parameters at 

different PMT voltage settings. Regions of interest (~40pm2) from 4 separate 

experiments were selected. The mean fluorescence intensities per pixel were 

obtained at PMT voltages ranging from 500-1250V in 100V increments, using a 

laser power of 20%. The relationship between PMT voltage, fluorescence 

intensity and SV for each ROI was plotted for fluo3 and eYFP (see figure 4.8).
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Figure 4.8 The dependency of fluorescence intensity and signal variability (SV) on 
PMT voltage settings.
PMT voltage plotted against (a) relative fluorescence intensity and (b) signal variability (SV) for 
fluo-3 and eYFP. (n = 4 for all traces, >74 ROI in each instance). The data was fitted to a 
Boltzman equation yielding the non-linear regression shown above each trace. The Boltzman 
sigmoidal equation is defined as Y=bottom+(top-bottom)/(1+exp((V50-X)/slope)).
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4.2.7 Correction of fluorescence signal intensity and signal variability (SV) 
for PMT Voltage

Given the dependency of fluorescence signal intensity and signal variability on 

voltage (Figure 4.8), experimental data would need correcting using the 

equations given in Figure 4.8. The linear portion of the relationship between 

voltage and fluorescence intensity /  SV for eYFP exists between -800V  and 

1100V. Due to the heterogeneity of eYFP expression, experiments were 

performed at PMT settings spanning this voltage range (Figure 4.9). The gradual 

decrease in PMT settings from 3-24 hours reflects the incremental increase in 

eYFP expression, such that a fluorescence signal intensity of approximately 120 

could be achieved at lower voltage settings. Upon data analysis, differences in 

voltage settings between experimental groups were found to create an artefact in 

the basal cellular Ca2+ handling data. Consequently, the experimental protocol 

employed during the investigation of cells expressing eYFP tagged constructs 

meant that fluorescent signals required correction post-aquisition. All SV and 

fluorescence intensities values were corrected to a PMT setting of 1000V using 

the equations outlined in figure 4.8.
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Figure 4.9 Photom ultiplier Tube (PM T) voltage settings used for Ca2+ imaging 
experiments on cells expressing eYFP-tagged constructs
CHO cells expressing eYFP tagged constructs and loaded with the Ca indicator fluo 3 were 
imaged at PMT voltage settings spanning the 800V-1100V range. Wild type (WT) CHO cells 
loaded with fluo 3 were imaged at -1 1 0 0 V  in all instances. Data is expressed as mean ± SEM 
(n=4, >360 cells in each experimental group. *=p<0.05, **=p<0.01, ***=p<0.001 when compared 
to WT CHO cells)
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4.2.8 Understanding the relationship between fluorescence intensity and 
SV

Initial analysis of Ca2+ signalling revealed a striking and expected correlation 

between signal variability (SV) and relative fluorescence intensity (Figure 4.10). 

Log transformation of fluorescence intensity produced a linear association 

between these parameters, enabling direct comparisons to be made between 

mean SV of different experimental groups. Due to this linear relationship, all 

comparisons of mean SV will be considered alongside relative fluorescence 

intensity values for the same experiments.
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Figure 4.10 Correlation between signal variability (SV) and mean fluorescence 
intensity
Scatter plot of data obtained from fluo-3 loaded CHO cells expressing eYFP showing the 
relationship between signal variability (SV) and mean fluorescence intensity (n=8, >600 cells). 
The rise in the intensity of the fluorescent signal is associated with an increase in SV (a). Log 
transformation of fluorescence intensity reveals a linear association with an r  value of = 0.8136 
and a p value of <0.001. Note that the data displayed here bears the typical profile of 
fluorescence intensities below 120 units as described in figure 4.7c.

0.8136
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4.3 Results

4.3.1 Microinjection of CHO cells does not alter cellular Ca2+ handling

Although the data presented in Chapter 3 suggests that under optimised 

conditions, microinjection was well tolerated by CHO cells, the microinjection 

procedure itself may modulate some aspects of cellular phenotype and 

signalling. Consequently, control experiments were performed to assess whether 

any changes in Ca2+ handling were attributable to microinjection. CHO cells 

microinjected with the buffer used for all microinjection experiments (KCI Hepes 

containing 2.5mg/ml Alexa 594) were compared with wild type CHO cells. Cells 

were loaded with fluo-3 AM and imaged for Ca2+ dependent fluo-3 fluorescence 

in KRH buffer using CLSM at 3, 5, 24 and 48 hours following microinjection. The 

average fluorescence intensities per pixel were obtained at a photomultiplier tube 

(PMT) setting of 1000V, using a laser power of 20%. Data were acquired from 

regions of interest (ROI) of ~40pm 2 representing global Ca2+ environments. 

Analysis revealed that the microinjection procedure did not alter the amplitude or 

temporal characteristics of the ATP-induced Ca2+ transient, and the number of 

cells displaying no response to ATP also remained unchanged (Figure 4.11). 

Signal variability (SV) analysis showed that microinjection did not have an effect 

the basal Ca2+ handling of CHO cells (Figure 4.12).
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Figure 4.11 Analysis of the effects of microinjection on the ATP-induced Ca2+ 
transient in CHO cells over a 48 hour time period.
The following parameters of the ATP-induced Ca2+ transients in wild type (WT) CHO cells (black) 
or CHO cells microinjected with KCL Hepes Buffer (B) (white) were analysed at 3, 5, 24 and 48 
hours: A) Amplitude of the Ca2+ release (F-Fo/Fo), B) Rate of the Ca + release, plotted as a 
change in the Ca2+ dependent Fluo 3 fluorescence per second and C) The number of cells 
exhibiting no response. Data are given as mean ± SEM. (n=4, number of cells analysed is shown 
in parentheses).
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Figure 4.12 Microinjection does not have an effect on basal cellular Ca handling
Signal variability (SV), where SV is the sum of point to point differences in Ca + signals over a 30 
second time period remains unchanged in CHO cells microinjected with KCI Hepes Buffer (B, 
white) when compared with wild type (WT) CHO cells (black) at 3, 5, 24 and 48 hours following 
microinjection. Changes in SV are considered alongside mean fluorescence intensities for each 
experimental group due to the linear relationship between these parameters. Data are given as 
mean ± SEM. (n=4, number of cells analysed is shown in parentheses).
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4.3.2 The expression of eYFP-PLC? does not alter the spatio-temporal 
characteristics of the ATP-induced Ca2+ transient.

The data presented in chapter 3 suggests that CHO cells are capable of 

expressing high levels of PLC? without any obvious effect upon Ca2+ handling. 

This raises the question as to how cell types other than the oocyte are capable of 

retaining PLC£ in a seemingly inactive state. Detailed analysis of intracellular 

Ca2+ handling could reveal subtle changes in the Ca2+ signalling machinery that 

may lead to a possible explanation of how cells are capable of expressing this 

protein whilst maintaining an apparently normal phenotype.

The ATP-induced Ca2+ transients of CHO cells expressing eYFP-PLC? were 

analysed using the parameters outlined in figure 4.3. They were compared with 

the agonist responses of CHO cells expressing eYFP alone, the inactive mutant 

eYFP-D210RPLC? and wild type (W T) CHO cells. Transfected cells were 

microinjected with high-purity plasmid DNA as described in Chapter 2 section 

2.2.5.4, and visualised for fluo-3 dependent changes in intracellular Ca2+ at 3, 5, 

24 and 48 hours after injection using CLSM. The average fluorescence 

intensities per pixel were obtained at photomultiplier tube (PMT) settings ranging 

from 800V to 1100V, using a laser power of 20%. Data were acquired from 

regions of interest (ROI) of ~40pm 2 representing global Ca2 environments. 

Analysis revealed that PLC£ expression at 3, 5, 24 and 48 hours did not alter the 

amplitude or temporal characteristics of the ATP-induced Ca2 transient, and the 

number of cells responding to ATP stimulation also remained unchanged 

(Figures 4.13 and 4.14).
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Figure 4.13 The expression of PLC£ has no effect on the ATP-induced Ca2+ 
transient in CHO cells at 3 and 5 hours post microinjection.
The following parameters of the ATP-induced Ca2+ transients in wild type (WT) CHO cells (black), 
and cells expressing eYFP (green), eY FP -D210RPLC£ (blue) or eYFP-PLC^ (red) were analysed at 
3 and 5 hours following transfection: A) Amplitude of the Ca2+ release (F- F0/Fo). B) Rate of the 
Ca2+ release, plotted as a change in the C a2+ dependent Fluo 3 fluorescence per second and C) 
The number of cells exhibiting no response. Data are given as mean ± SEM. (n=4, number of 
cells analysed is shown in parentheses).
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Figure 4.14 The expression of PLC^ has no effect on the ATP-induced Ca2+ 
transient in CHO cells over at 24 and 48 hours post microinjection.
The following parameters of the ATP-induced C a2+ transients in wild type (W T) CHO cells (black), 
and cells expressing eYFP (green), e Y F P -D210RPLC£ (blue) or eYFP-PLC^ (red) were analysed at 
24 and 48 hours following transfection: A) Amplitude of the Ca2+ release (F- Fo/F0), B) Rate of the 
Ca2+ release, plotted as a change in the C a2+ dependent Fluo 3 fluorescence per second and C) 
The number of cells exhibiting no response. Data are given as mean ± SEM. (n=4, number of 
cells analysed is shown in parentheses).
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4.3.3 The expression of eYFP-PLC? does not alter cellular basal Ca2* 
handling

SV was implemented to assess the basal Ca2+ handling in CHO cells expressing 

eYFP-PLC? at 3, 5, 24 and 48 hours following DNA microinjection. Comparisons 

were made with wild type (W T) CHO cells, and cells expressing eYFP or the 

inactive mutant eYFP-D210RPLCC Due to the aforementioned relationship 

between voltage, fluorescence intensity and signal variability (section 4.2.7), data 

were corrected post-acquisition to a PMT setting of 1000V. Data were acquired 

from regions of interest (ROI) of ~40pm2 representing global Ca2+ environments. 

Analysis revealed that the expression of PLC£ in CHO cells had no effect on 

basal cellular Ca2+ handling when compared with eYFP expressing controls 

(Figures 4.15 and 4.16). All cells expressing eYFP tagged constructs have 

significantly higher SV when compared with W T CHO cells; however this 

difference is almost certainly a consequence of eYFP expressing cells exhibiting 

significantly higher fluorescence intensities (Figures 4.15 and 4.16). It is possible 

however; that the subtle changes in Fluo-3 dependent Ca2+ signals may be 

concealed as a result of the higher levels of noise observed with eYFP 

fluorescent signals or indeed the unavoidable use of post-acquisition data 

correction.
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Figure 4.15 PLC^ expression has no effect on basal cellular Ca2+ handling at 3 and 
5 hours post microinjection
Signal variability (SV), where SV is the sum of point to point differences in Ca2+ signals over a 30 
second time period remains unchanged in CHO cells expressing eYFP-PLC^ (red) when 
compared with eYFP expressing control cells (eYFP; green and eYFP- 210RPLC£; blue) at 3 and 5 
hours following transfection. Changes in SV  are considered alongside mean fluorescence 
intensities for each experimental group due to the linear relationship between these parameters. 
Data are given as mean ± SEM. ** represents p<0.01 when compared with wild type (WT) CHO 
cells (n=4, number of cells analysed is shown in parentheses).
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Figure 4.16 PLC£ expression has no effect on basal cellular Ca2+ handling at 24 
and 48 hours post m icroinjection
Signal variability (SV), where SV is the sum of point to point differences in Ca2+ signals over a 30 
second time period remains unchanged in CHO cells expressing eYFP-PLC^ (red) when 
compared with eYFP expressing control cells (eYFP; green and eYFP-D210RPLC£ blue) at 24 and 
48 hours following transfection. Changes in SV are considered alongside mean fluorescence 
intensities for each experimental group due to the linear relationship between these parameters. 
Data are given as mean ± SEM. ** represents p<0.01 when compared with wild type (WT) CHO  
cells (n=4, number of cells analysed is shown in parentheses).
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4.3.4 The use of Fura Red enables the analysis of SV to be made 
independently of eYFP expression.

As a way of addressing the issues raised in section 4.2.4, SV was assessed 

under the same experimental conditions using a Ca2+ indicator that can easily be 

distinguished from the eYFP fluorescence signal (Figure 4.17). This prevented 

the need to adjust PMT voltage settings and consequently avoided any post­

acquisition data correction.
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Figure 4.17 Fluorescence em ission spectra of enhanced yellow fluorescent 
protein (eYFP) and Fura Red.
The green line represents the emission spectra for eYFP and the red line represents the emission 
spectra for Fura Red. The vertical light blue line indicates the position of the 488nm laser line. 
Spectra generated using Molecular Probe’s Fluorescence Spectra Viewer (Invitrogen). 
http://probes.invitrogen.com/servlets/spectraviewer

Transfected cells were microinjected with high-purity plasmid DNA as described 

in section 2.2.5.4, and visualised for Fura Red dependent changes in intracellular 

Ca2+ at 5 and 24 hours after injection using CLSM. The average fluorescence
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intensities per pixel were obtained at photomultiplier tube (PMT) settings of 

1000V, using a laser power of 20%. Data were acquired from regions of interest 

(ROI) of -40pm2 representing global Ca2+ environments. Analysis revealed that 

the expression of PLC? in CHO cells had no effect on basal cellular Ca2+ 

handling when compared with eYFP expressing controls and wild type (WT) 

CHO cells (Figure 4.18), confirming the assertion in section 4.3.4 that any 

significant changes in SV were a consequence of differences in eYFP 

fluorescence intensities between experimental groups.
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Figure 4.18 The use of Fura Red to assess SV confirms that PLC^ expression has 
no effect on basal cellular Ca2+ handling at 5 and 24 hours post microinjection
Signal variability (SV), where SV is the sum of point to point differences in Ca signals over a 30 
second time period remains unchanged in CHO cells expressing eYFP-PLC^ (red) when 
compared with eYFP expressing control cells (eYFP; green and eYFP- PLC£ blue) and wild 
type (WT) CHO cells (black) at 5 and 24 hours following transfection. Data are given as mean ± 
SEM. (n=4, number of cells analysed is shown in parentheses).
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4.4 Discussion

4.4.1 Microinjection does not affect Ca2+ signalling in CHO cells over a 48 
hour time period.

This chapter demonstrates that microinjection does not have an effect on the 

agonist-induced lnsP3R-dependent Ca2+ transient, or on cellular basal Ca2+ 

handling in CHO cells 3-48 hours after DNA delivery. Microinjection did not alter 

the amplitude or rate of Ca2+ release of the transient generated by the addition of 

extracellular ATP. The proportion of cells failing to respond to agonist stimulation 

also remained unchanged. Analysis of signal variability (SV) revealed that 

microinjection also has no effect on Ca2+ cycling in resting (non-stimulated) CHO 

cells. This method of DNA delivery was therefore deemed suitable for the 

assessment of the affects of transient PLC£ expression on Ca2+ signalling in this 

cell type.

4.4.2 The advantages and disadvantages of the use of Fluo 3 as a Ca2+ 
indicator in cells expressing enhanced yellow fluorescent protein (eYFP).

The use of a ratiometric Ca2+ indicator would have been favourable, due to their 

ability of providing Ca2+ measurements that are independent of indicator 

concentration, thereby avoiding issues with uneven indicator distribution. 

However, such indicators require UV excitation which was not achievable with 

the lasers available on the confocal microscope used in this study. This limited us 

to the use of single wavelength indicators, preferably those exhibiting a large 

dynamic range (i.e. the change in intensity upon Ca2 binding is large, giving a
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higher signal-to-noise ratio thus allowing the measurement of small changes in 

Ca2 ) and minimal compartmentalisation. Despite Fluo-3 having an almost 

identical emission profile to eYFP, preventing distinction between their respective 

fluorescences, it was shown that the eYFP fluorescence was independent of ATP 

or the mobilized Ca2+. This indicates that the determination of agonist-induced 

Ca2+ release in this study, calculated by the measurement of relative changes in 

intracellular fluorescence was entirely attributable to Ca2+ dependent changes in 

fluo 3 fluorescent signals. However, eYFP was expressed at levels which 

resulted in significantly higher fluorescence intensities when compared with fluo 

3. This meant that we could not discount the possibility that any subtle changes 

in cellular basal Ca2+ handling were being concealed by the noise of the eYFP 

signal. Fura Red is a visible wavelength excitation fluorescence indicator that 

offers both single wavelength and ratiometric Ca2+ measurement by excitation at 

420nm and 480nm. When used as a single wavelength indicator with excitation 

at 488nm, Fura red exhibits a decrease in emission upon Ca2+ binding. When 

measuring a large Ca2+ transient the signal falls to background levels. This 

property renders Fura Red less suitable as an indicator for measuring the spatio- 

temporal characteristics of the ATP-induced Ca2+ transients in CHO cells. Fura 

Red does however offer certain advantages in the analysis of SV of basal cellular 

Ca2+ handling in cells expressing eYFP, namely due to its red emission profile 

which eliminates interference from the yellow part of the visible spectrum.

This chapter also reports on the issues faced when using a novel method of 

‘noise’ analysis to determine C a2+ signal variability in cells exhibiting a broad
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range of fluorescent intensities, with emphasis on the need to employ an 

experimental set up that utilises a Ca2+ indicator with a fluorescence emission 

that can be easily distinguished from the emission of the reporter protein.

4.4.3 PLC? expression does not alter intracellular Ca2+ handling in CHO 
cells.

Acknowledging the limitations of the present experimental system, the data 

presented in this chapter is consistent with the concept that PLC? does not alter 

agonist-induced Ca2+ responses or basal intracellular Ca2+ signals in CHO cells 

between 3 and 48 hours following DNA microinjection. This finding is confirmed 

by the use of the enzymatically inactive D210R mutant, which is entirely 

comparable to the data derived from full length PLC?. The amplitude and rate of 

Ca2+ release of the agonist-induced transient remained unchanged when 

compared with that of wild type (W T) CHO cells, and cells expressing eYFP or 

the inactive mutant D210R-PLC?. The proportion of cells failing to respond to 

agonist stimulation was also unaffected. Analysis of signal variability (SV) 

revealed that PLC£ expression has no effect on Ca2+ cycling in resting (non­

stimulated) CHO cells. These findings suggest that PLC? expression fails to 

perturb the InsPaR-dependent signalling pathway in CHO cells at the time points 

assessed. The possibility that PLC£ expression stimulates InsPaR-induced Ca2+ 

release in CHO cells at time points other than those examined can not be 

discounted. Additional experiments involving the microinjection of RNA encoding 

PLC£, or indeed PLC£ protein could enable the monitoring of intracellular Ca2+ at 

earlier time points. This could reveal if PLC£ has an initial effect on Ca
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signalling upon its introduction to the intracellular environment of CHO cells that 

is subsequently “switched off’ resembling the cessation of Ca2+ oscillations at 

fertilisation. However, time limitations precluded these interesting further 

investigations.



CHAPTER 5 
STABLE EXPRESSION OF PLC? IN CHO CELLS
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CHAPTER 5 STABLE EXPRESSION OF PLC? IN CHO CELLS 

5.1 Introduction

5.1.1 Mammalian expression systems

The production of protein in mammalian cells is an important tool in which 

recombinant protein function and effects of protein expression on dynamic cell 

signalling pathways can be studied. Cultivated mammalian cells possess the 

appropriate machinery for protein folding and post-translational modification that 

enable the production of fully active proteins with correct conformation. Chinese 

Hamster Ovary (CHO ) cells are widely used for transfection, expression and 

large scale recombinant protein production. Since CHO cells provide precise and 

stable glycosylation, they have the ability to produce a post-translationally 

modified product that is a more accurate in vitro rendition of the natural protein 

(Sheeley et al., 1997; W erner et a i ,  1998). Transfected genetic material can be 

expressed in target cells either temporarily or permanently depending on the 

methods utilized and the experimental questions being investigated.

Transient transfections are used most commonly to analyze the short term (~48 

hours) consequences of protein expression. Genetic material is introduced and 

gene products are expressed in the target cells however the nucleic acids do not 

integrate into the host cell genome. Within a few days most of the foreign DNA is 

degraded by nucleases or diluted by cell division, and after a few weeks its 

presence can no longer be detected. Stably transfected cells produce 

recombinant proteins on a continuous basis (months to years), and therefore
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require the transfected DNA to replicate in synchrony with the cell. This occurs as 

a result of spontaneous and random integration of the transfected DNA into the 

cells genome by recombination (Chisholm, 1995). As integration is a rare 

phenomenon (1 in 104 for mammalian cells), cells exhibiting stable expression 

must be selected and amplified by using selectable markers, for example by 

transfecting a gene of non-mammalian origin that establishes drug resistance in 

cell culture. Frequently, the DNA of interest is transfected with the selectable 

marker on the same plasmid, with a separate transcription unit.

One of the most commonly used selectable markers in mammalian culture is the 

bacterial aminoglycoside phosphotransferase gene (neo). Expression of this 

gene confers resistance to the antibiotic G418 sulphate (Geneticin®, Invitrogen) 

by directing the synthesis of the aminoglycoside phosphotransferase enzyme 

(APH), which renders the antibiotic inactive through phosphorylation. G418 is 

similar in structure to neomycin, kanamycin and gentamycin which kill non- 

resistant eukaryotic cells by blocking protein synthesis through interference with 

the function of the 80S ribosomal subunit. After transfection, cells are grown in a 

medium containing the selective anitibiotic. Selective pressure is applied over a 

period of 2-3 weeks or more, with frequent changes of medium to eliminate dead 

cells and debris, until stable transfectants, which appear as distinct antibiotic- 

resistant clones, can be isolated and subcloned to multiwell plates for further 

propagation in selective medium.

Transient transfection of cells has the advantage of being a rapid process 

particularly useful for monitoring the efficiency of transfection procedures and for
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verifying plasmid expression. Conversely, stably transfected cell lines circumvent 

the need for repeated transient transfection. Despite the time and effort involved 

in the generation and screening of stable cell clones expressing the protein of 

interest, once established, the stably transfected cell population provides a 

source of biological material that is readily available for further experimentation. 

As discussed in chapter 3, transient expression of PLC£ tagged with venus 

(Kuroda et a/., 2006) and eYFP (Coward et a!., 2006) has been previously 

documented in COS-7 cells (a mammalian cell line derived from the kidney cells 

of the African green monkey). These investigations reported on the cellular 

localisation of the protein and its effects on Ca2+ homeostasis during the transient 

expression period. Despite the existence of these expression studies, a 

mammalian cellular system providing stable expression of PLC£ has yet to be 

reported.

5.1.2 Oocyte activation

The sperm factor theory describes a mechanism by which a soluble sperm factor 

is responsible for fertilisation induced Ca2+ oscillations (Swann, 1990; Swann et 

a/., 1994). The identification of the sperm factor has been investigated by 

isolation and purification of sperm extracts. Dale et a/.,(1985) demonstrated that 

injection of a soluble fraction of sea urchin spermatozoa activates unfertilised sea 

urchin eggs and produced signs that a Ca2+ increase had taken place. This result 

was the first to suggest that fertilisation could occur successfully without any 

sperm-egg surface interaction. Since then, the method of injecting sperm extracts
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has been employed to investigate the sperm factor theory across a range of 

species. In the species studied so far including pig (Machaty et a i, 2000), 

hamster (Swann, 1990), mouse (Swann, 1994), human (Homa et a i, 1994) and 

cow (Wu et a i,  1997), sperm extract injections activates oocytes with repetitive 

intracellular Ca2+ oscillations, similar to those that occur during fertilisation. In 

addition to this non-mammalian sperm extracts from xenopus, chicken and fish 

are also able to induce Ca2+ oscillations in mouse eggs (Coward et a i, 2003; 

Dong etal., 2000). Parthenogenetic activation of mammalian oocytes is artificially 

induced by chemical agents including calcium ionophore (Steinhardt et a i, 

1974b), ethanol (Cuthbertson, 1983), strontium (Fraser, 1987) and 

cyclohexamide (Bos-Mikich et a i,  1995). However, unlike sperm extracts the 

majority of the parthenogenetic treatments cause a monotonic increase in 

intracellular Ca2+.

Another indisputable body of evidence in support of the soluble sperm factor 

theory came from intra-cytoplasmic sperm injection (ICSI), in which a single 

sperm is injected directly into an egg. This process, which bypasses the 

interaction of the sperm and egg, gives rise to intracellular Ca2+ oscillations 

(Nakano et a i, 1997) and results in successful egg activation and development 

(Kimura et a i, 1995b). It has been shown that round spermatids (precursor male 

gametes) possess the potential to achieve fertilisation and embryonic 

development when injected into eggs (Kimura et a i, 1995a; Kimura et a i, 

1995c). However, the injection of round spermatids alone in mouse eggs is not 

capable of inducing an increase in intracellular Ca2 and fails to result in egg



activation (Kimura e ta l., 1995a; Kimura et a i,  1995c; Sato eta!., 1998). Methods 

for assisted egg activation for successful fertilisation by round spermatid injection 

include; the application of a high voltage pulse (Kimura et al., 1995a; Kimura et 

a i, 1995c; Sasagawa et al., 1996), and simultaneous injection with the InsPaR 

agonist adenophostin (Sato et a i ,  1998) or sperm extracts (Sakurai et a i, 1999). 

The expression of recombinant PLC? using a mammalian cell expression system 

could provide a means of generating an alternative egg activation agent.

5.1.3 Objective

Chapter 4 describes how the transient expression of PLC? fails to modulate Ca2+ 

signalling in CHO cells, perhaps signifying that this protein is retained in an 

inactive form in this cell type. However, the possibility that this method of 

expression has resulted in the production of a form of PLC? that is not fully 

functional cannot be overlooked. The overall aim of this chapter was to use CHO 

cells as a stable cellular expression system to produce PLC? protein at high 

levels. The Ca2+ mobilizing activity of the PLC£ produced in this somatic cell line 

was subsequently examined in mouse oocytes.
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5.2 Results

5.2.1 Establishing a mammalian system for the stable expression of PLC?

5.2.1.1 G418-mediated selection of cells expressing eYFP tagged 
constructs

Because each eukaryotic cell line demonstrates a different sensitivity to the 

selective antibiotic G418 (with some exhibiting complete resistance to it), the 

optimum concentration required to kill non-transfected cells must be established 

for each new cell line or strain used for stable transfection. This is achieved by 

determining a killing curve for the cell line of interest. Prior to transfection, a 

dose-dependence curve was conducted on CHO cells to determine a suitable 

working concentration of G418 that would eliminate non-resistant cell populations 

(Figure 5.1). Since G418 only kills cells that are actively growing, CHO cells were 

seeded at a low density (1 x 105) in wells of a 6 well plate in order to prevent the 

cells becoming confluent over the duration of the experiment. The cells were 

exposed to increasing concentrations of G418 (0-1 mg/ml, in 100pg/ml 

increments) for 8 days (n=3 per dose). Cells remaining after the 8 day incubation 

were harvested and counted by haemocytometry, shown in Figure 5.1. 

Increasing concentrations of G418 resulted in greater levels of cell death over the 

8 day period. The dose at which G418 kills 50% of cells (Tox50) was ~100pg/ml. 

For this study, the concentration of G418 deemed sufficient to select for stable 

expression was 500pg/ml, as it was the lowest dose that eliminates the majority 

of cells following an 8 day incubation.
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Figure 5.1 G418 dose-dependent elimination of non-resistant cell populations

CHO cell exposure to a range of G418 concentrations (0-1 mg/ml) resulted in a dose dependent 
elimination of cells after 8 days. Tox50 (dose which resulted in the death of 50% of cells) is 
displayed on the graph, (data is presented as mean ± S.E.M. n=3 for each dose).

5.2.1.2 CHO cells express eYFP-PLC? at low fluorescence intensities 
following antibiotic selection

The overall aim within this chapter was to devise a method to produce the PLC? 

protein at levels high enough for assessment of its Ca2+ mobilising activity within 

oocytes. The presence of the neo  gene on the eYFP tagged constructs enabled 

the selection of cells exhibiting stable expression following lipid mediated 

transfection using G418 (500pg/ml). Selective pressure was applied to cells that 

had undergone transfection either with the eYFP or eYFP-PLC? construct for a 

period of two weeks, until distinct antibiotic-resistant clones were evident. eYFP 

facilitated the assessment of the generation of these stably transfected cells by 

flow cytometry. Figure 5.2 (a) is a typical two dimensional dot plot of forward 

scatter (FSC) vs side scatter (SSC), generated from data acquired by flow
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Figure 5.2 Flow cytom etry data
Figure 5.2 (a) is a typical two dimentional dot plot of forward scatter (FSC) vs side scatter (SSC). 
The majority of the cells appear as a dense population of dots; each dot represents one acquired 
event. The isolated subset of cells used for further analysis is indicated by the gate drawn on the 
dot plot; thus excluding small cellular debris and large aggregates from subsequent analysis. The 
percentage of cells typically isolated within this gated region is indicated on the plot. 3 separate 
FSC vs SSC profiles measuring 5000 individual events/cells are acquired for each sample 
analysed by flow cytometry.
Figure 5.2 (b) shows typical overlayed histograms that were derived from two-dimentional dot 
plots as shown in figure 5.2 (a). This data is representative of the distribution of fluorescence 
intensities for the events acquired 2 days following transfection. The red line represents non­
transfected CHO cells (negative control) and serves as a reference point against which all other 
experimental samples are compared. Cells expressing eYFP at fluorescence intensities that are 
higher than CHO cell auto-fluorescence are referred to as being positively labelled. The threshold 
for positively labelled cells is indicated by the horizontal blue line. The proportion of cells to the 
right of this threshold is used to calculate the percentage of positively labelled cells, as indicated 
by the gate drawn on the trace.
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cytometric analysis of a single experimental sample. Dot plots display data from 

each particle/cell as a dot within both coordinate axis; one dot represents one 

acquired event. FSC provides a measure of the size of each event, whilst SSC is 

a measure of the granularity or inner complexity (i.e. shape of the nucleus, the 

amount and type of the cytoplasmic granules or the membrane roughness). The 

positions of the dots reflect the relative intensities of the two measured 

parameters for the event. The majority of cells appear as the most dense 

population of dots. Gates/ regions are a feature of flow cytometry analysis 

software that enables definition of boundaries around populations of interest. It is 

done by graphically drawing the gate/region after the raw data plot has been 

created, as illustrated in figure 5.2 (a). Gates are most often drawn to isolate 

subsets of cells for further analysis. For all flow cytometry experiments in this 

study, gating was used to isolate the majority of cells (typically >95%) which 

appear as the dense population of dots, and to exclude small cellular debris and 

large aggregates from subsequent analysis. The data from this isolated 

population was then used to construct a histogram depicting the number of cells 

and their relative fluorescence intensities as shown in figure 5.2 (b). Histograms 

are useful for flow cytometry data analysis as they allow the visualisation of the 

distribution of a single measured parameter (e.g. fluorescence) for the acquired 

events.

Overlayed histogram plots, as shown in figure 5.2 (b) are a valuable means of 

qualitatively comparing fluorescence intensities of different samples. 

Percentages of positive-expressing cells with fluorescence intensity values above
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a set threshold (e.g. cell autofluorescence) can be determined by drawing a gate 

once the histogram has been generated. Negative control samples (i.e. non­

transfected CHO cells) were acquired at the beginning of each flow cytometric 

analysis in order to establish a baseline reference point. The sensitivity of the 

fluorescent channel photomultiplier tube (PM T) was adjusted so that the negative 

control cells appear with intensities that are near zero but still on scale. This 

sample allows the assessment of the natural or auto-fluorescence of CHO cells, 

and establishes a reference point that can be used when describing the intensity 

of eYFP positive cells in subsequent experimental samples. Fluorescent 

intensities of experimental samples are relative to control samples, and cells 

expressing eYFP above the level of cell background auto-fluorescence are 

^escribed as being positively labelled. Positively labelled cells are gated for as 

illustrated in figure 5.2 (b) and expressed as a percentage of total cells. Following 

lipid mediated transfection, a sample of cells was removed from culture at 5 

hours, and then daily for a period of two weeks in order to assess levels of eYFP 

expression.

The data in Figure 5.3 shows that the typical transfection efficiencies for eYFP  

and eYFP-PLC? transfectants were 3.9 ± 0.1%  and 3.4 ± 0.3% respectively at 5 

hours, with the percentage of positively labelled cells rising to 28.4 ± 0.5% and 

16.6 ± 0.5% at day 2 corresponding to the peak of the transient transfection 

period. Following this, the levels of positively labelled cells fall to 10.6 ± 0.4%  

(eYFP) and 1.1 ± 0.2%  (eYFP-PLC£) which coincides with the period prior to 

complete antibiotic selection when non-transfected cells comprise part of the
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Figure 5.3 Analysing the generation of stable cell populations by flow cytometry
Figure 5.3 shows the proportion of positively labelled cells over a period of 2 weeks following the 
transfection of CHO cells with DNA encoding eYFP (represented by the green line) or eYFP- 
PLC£ (represented by the blue line). The red line represents non-transfected CHO cells (negative 
control) and serves as a reference point against which all other experimental samples are 
compared. Data is expressed as a percentage of the total number of cells (mean ± S.E.M). 
Results are representative of at least 6 separate transfections.

overall population. After 8 days of selective pressure, the point at which the 

majority of non-transfected cells are eliminated, the number of positively labelled 

cells increased gradually, before reaching a plateau of ~ 26% (eYFP) and ~ 4%  

(eYFP-PLCO- After the 14th day, the proportion of positively labelled cells failed 

to increase significantly beyond this level (data not shown). The overlayed 

histogram in figure 5.2 (b) shows that both eYFP and eYFP-PLC? stably 

transfected cell populations contain a large proportion of cells that are not 

positively labelled. It is possible that these cells fail to express the protein of
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interest; however this does not explain their resistance to G418. A more probable 

explanation is that they express eYFP at levels that fall below the limit of positive 

detection, and as a result are not easily distinguishable from CHO cell 

autofluorescence. eYFP-PLC? stables express significantly less positively 

labelled cells when compared with eYFP stables, thus making selection of a 

highly expressing clone by serial dilution more difficult.
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5.2.1.3 Enrichment of the stable eYFP-PLC? cell line

As a means of increasing the total number of positively labelled cells within the 

stably transfected eYFP-PLC? population (i.e. cells with fluorescence intensities 

distinguishable from CHO cell auto-fluorescence), cell suspensions were 

subjected to fluorescence activated cell sorting (FACS). Positively sorted cells 

characterised by fluorescence intensities that are higher than CHO cell 

autofluorescence were selected and cultured in the presence of G418 to maintain 

selection of eYFP-PLC£ expressing cells. A sample of cells was removed from 

the culture 7 days post FACS and analysed by flow cytometry (Figure 5.4 b). 

FACS failed to eliminate all cells expressing below the positively labelled 

threshold. However, the proportion of positively labelled cells increased from 3.8 

± 0.6% to 22.4 ± 0.2%, thus increasing the probability of isolating a highly 

expressing clone by serial dilution. FACS sorted cells were subjected to serial 

dilution, and cells propagated from single clone colonies were screened by flow 

cytometry. Two of the thirty six single clone colonies exhibited a shift in 

fluorescence as depicted in figure 5.4 (c), with 67.2 ± 0.4% of cells displaying 

eYFP fluorescence intensities ~100 fold higher than CHO cell auto-fluorescence, 

whilst the remaining cells within the population continued to express at levels 

below the limit of positive detection.

Repeated propagation of these cells by serial dilution out-cloning, failed to 

increase the proportion of positively labelled cells resulting in a dual expressing 

population. However, an additional round of FACS selecting for the positively 

labelled cells, combined with further propagation by serial dilution out cloning
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Figure 5.4 Enrichm ent of the stable eYFP-PLC^ cell line
This figure shows overlayed histograms representing the distribution of fluorescence intensities of 
non-transfected cells (negative control, red line), and cells exhibiting stable expression of eYFP- 
PLC£ (green line). The horizontal blue line represents the threshold for positive detection. Each 
histogram was generated by flow cytometric analysis, and corresponds to a different stage in the 
process of enrichment of eYFP expression; these stages are indicated to the right of the figure. 
Transfected cells that had been selected by G418 for a period of two weeks (A) were subjected to 
fluorescence activated cell sorting (FACS) (B). Single cell clones were then generated by serial 
dilutions (C), which were subsequently enriched further by an additional round of FACS and out- 
cloning (D).The proportion of positively labelled cells are indicated on each histogram (expressed 
as a percentage of total cells, mean ± SEM  of three acquisitions measuring 5000 events).
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resulted in the isolation of the cell population depicted in figure 5.4 (d). This cell 

line exhibits stable expression of eYFP-PLC? with 97.6 ± 0.1% of cells displaying 

fluorescence intensities ~100 fold higher than CHO cell autofluorescence. This 

pattern of stable expression was maintained for 4 months despite continual cell 

propagation, and is unaffected by cryostorage (as described in Chapter 2, 

section 2.2.4).

In addition to flow cytometric analysis, images were taken of the cells during 

each stage of the enrichment process using CLSM (Figure 5.5). The viability of 

the cells exhibiting stable eYFP-PLC? expression does not appear to be 

compromised. These data suggest that CHO cells are capable of tolerating high 

levels of stable PLC£ expression. The level of eYFP-PLC? expression exhibited 

by this stable cell population should reflect high levels of protein production, 

which will facilitate the assessment of the Ca2+ mobilising activity of this 

mammalian cell line generated PLC? in mouse oocytes.
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Figure 5.5 Images of the stable eYFP-PLC^ cell line
Figure 5.5 shows confocal images of the stable eYFP-PLC£ cell line at each stage of the 
enrichment process. See text for further details. Scale bar represents 50pm.
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5.2.2 Microinjection of eYFP-PLC? cell extracts

One possibility is that CHO cells tolerate high levels of eYFP-PLC? as it is being 

expressed in a form that is not fully functional. The following experiment involving 

the injection of cell extracts into mouse oocytes was carried out in order to 

determine if the PLC£ generated possesses Ca2+ mobilising activity. Cell extract 

injections were peformed in collaboration with Karl Swann. Metaphase ll-arrested 

mouse eggs were collected and loaded with Fura red as described in Chapter 2, 

section 2.2.13. Intracellular Ca2+ was monitored immediately following 

microinjection of cell extracts prepared from non-transfected CHO cells (negative 

control), and cells exhibiting stable expression of eYFP (-73 .4  ± 0.6% positively 

labelled), or eYFP-PLC^ (97.6 ± 0.1% positively labelled) (cell extracts were 

prepared as described in Chapter 2, section 2.2.11). Typically 3-5 eggs were 

injected over a period of 10-20 seconds before being transferred to the 

fluorescence imaging system within 1-2 minutes. Figure 5.6 shows that no 

change in intracellular Ca2+ was observed following microinjection of either the 

negative control (n=4) or eYFP extract (n=6). Microinjection of extracts prepared 

from cells expressing eYFP-PLC? induced a rapid increase in intracellular Ca2+ 

within 1-2 minutes followed by series of repetitive Ca2+ oscillations in 100% of 

oocytes (n=14). The frequency of the Ca2+ oscillations observed was 11.4 ± 1.4 

spikes/hour, which persisted for the duration of the recording (typically 1-1.5 

hours). These data suggests that the stable eYFP-PLC^ cell line is expressing 

some active PLC? that is capable of inducing Ca2+ oscillations in oocytes that are 

comparable to those observed with sperm extract injections (Swann, 1994).
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Figure 5.6 Microinjection of cell extracts into mouse oocytes

This figure shows the intracellular C a2+ responses in mouse oocytes following the microinjection 
of extracts prepared from cells expressing eYFP-PLC^ (A), eYFP (B) or non-transfected CHO  
cells (C). Each trace is a recording from a single oocyte, and is representative of the typical 
observations made in each experimental group. The number of eggs within each group is 
indicated on every trace alongside the Ca2+ oscillation frequencies observed (expressed as mean 
± SEM). The image to the right shows a bright field image of oocytes that have been injected with 
the eYFP-PLC^ extract.
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5.2.3 Microinjection of single CHO cells expressing eYFP-PLC?

It is possible that a large proportion of the PLC? expressed by the eYFP-PLC? 

cell line is inactive and this cannot be assesed by the injection of cell extracts. 

The following experiment involving the microinjection of single CHO cells into 

mouse oocytes was carried out in order to estimate the amount of active PLC£ 

contained within a single CHO cell. Single cell injections were performed in 

collaboration with Yuansong Yu using a technique comparable to that of ISCI. 

Metaphase ll-arrested mouse eggs were collected and loaded with Fura PE3-AM 

as described in Chapter 2. Single CHO cells were drawn into the end of a 

micropipette of internal diameter slightly less than that of the cell, so as to break 

or weaken the cell wall while disturbing as little as possible the cytoplasm that 

surrounds the nucleus, a method devised by (Briggs et al., 1952). This technique 

also resembles a method that is commonly used for cloning experiments 

whereby cell nuclei are transferred into enucleated oocytes (Wakayama et al., 

1999). Intracellular Ca2+ was monitored immediately following microinjection of 

either non-transfected CHO cells (negative control), or cells expressing eYFP- 

PLC? (from the enriched stable cell population). Single cells were injected into 

single mouse eggs before being transferred to the fluorescence imaging system 

within 1-2 minutes. Figure 5.7 shows that no change in intracellular Ca2+ was 

observed following the microinjection of negative control cells (n=14). The 

injection of cells expressing eYFP-PLC? induced a series of repetitive Ca2+ 

oscillations in 15/23 eggs which persisted for the duration of the recording 

(typically 1-6 hours). As observed with the cell extract injections (Figure 5.6) the
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Ca2+ response was rapid, with the initial transient taking place within minutes of 

the cell injection. The frequency of the Ca2+ oscillations observed was 4.3 ± 0.8 

spikes/hour. This data suggests that individual CHO cells are expressing active 

PLC£ at levels capable of inducing Ca2+ oscillations in mouse oocytes that are 

comparable to those observed following sperm extract injections (Swann, 1994).

A) 4.3 ± 0.8 spikes/hour (n=15)
0 .2 -

0 .1- ULU
i

o.o-
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B)

£
8
§
80)
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0 .0 5 -
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0.02J
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I 1
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Figure 5.7 Microinjection of individual CHO cells into mouse oocytes

This figure shows the intracellular C a2+ responses in mouse oocytes following the microinjection 
of single intact CHO cells either expressing eYFP-PLC^ (A), or non-transfected controls (B). Each 
trace is a recording from a single oocyte, and is representative of the typical observations made 
in each experimental group. The number of eggs within each group is indicated on every trace 
alongside the Ca2+ oscillation frequencies observed (expressed as mean ± SEM).
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5.3 Discussion

5.3.1 Generation and enrichment of the stable eYFP-PLC? cell line

To date, there have been no reports of a stable cell line expressing PLC?. 

Expression of the recombinant PLC£ protein has proven difficult in bacterial 

expression systems, particularly with regards to expressing the more potent 

human form of the protein. Following antibiotic selection of CHO cells transfected 

with eYFP-PLC^, it would have been easy to assume that these mammalian cells 

also had difficulty expressing this protein, as upon microscopic inspection, only a 

very small percentage expressed eYFP above the limit of positive detection. This 

could imply that the cells had somehow managed to downregulate/switch off the 

expression of this protein whilst retaining their resistance to antibiotic selection. 

Upon examination by flow cytometry, it became clear that the majority of the cells 

within this selected population were most likely expressing eYFP-PLC? at very 

low levels that were not easily distinguishable from CHO cell auto-fluorescence. 

The option of enriching the cell population by serial dilution techniques alone was 

considered unsuitable due to the low probability of isolating a clone that would 

express above the limit of positive detection. This chapter demonstrates that the 

combination of fluorescence activated cell sorting (FACS) and serial dilution out 

cloning is a viable method for enrichment of stable cell lines exhibiting low levels 

of expression. This has resulted in the generation of a cell line with high levels of 

stable eYFP-PLC? expression that is clearly distinguishable from cellular 

autofluorecence. The enrichment process has produced the first mammalian 

expression system to offer high levels of PLC£ protein production which could be 

valuable for subsequent experimental analysis of its mechanism of activation.



5.3.2 The PLC? produced in CHO cells causes Ca2+ oscillations in mouse 
oocytes.

One of the main advantages of mammalian expression systems is that they 

possess the appropriate machinery for protein folding and post-translational 

modification that enable the production of fully active proteins with correct 

conformation. The results from previous chapters within this study revealed that 

the expression of eYFP-PLC? had no effect on Ca2+ in CHO cells, and the 

possibility that this expression system had resulted in the production of a form of 

PLC? that was not fully functional could not be disregarded. A suitable means of 

examining the activity of this protein was considered to be its delivery into mouse 

oocytes, a system in which the effects of PLC? have been well characterised. 

Injection of either cytosolic extracts or whole cells from the eYFP-PLC? cell line 

produced Ca2+ oscillations in mouse eggs, confirming that the PLC£ generated by 

this mammalian expression system is fully functional. Interestingly, despite 

individual cells expressing enough PLC£ to trigger Ca2+ oscillations in an oocyte, 

the Ca2+ homeostasis in the somatic cell line remained unperturbed. These 

results imply that the enzymatic activity of PLC£ may be reversibly inhibited in 

somatic cells, or else specifically stimulated by factors in the egg cytoplasm.
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CHAPTER 6 GENERAL DISCUSSION

6.1 PLC? and the implications of the current results

In the quest to explain the generation of Ca2+ oscillations at fertilisation, the 

content hypothesis was proposed as an alternative to receptor mediated 

activation of the lnsP3 pathway (Swann, 1990; Swann et a/., 1994). This theory 

describes a mechanism by which a soluble sperm factor is released into the egg, 

capable of activating the lnsP3 signalling pathway and the subsequent Ca2+ 

release from the ER. Microinjection of sperm extracts, or whole sperm in eggs 

produced a series of Ca2+ oscillations in a range of different species much like 

those seen at fertilisation (Kyozuka et al., 1998; Palermo et a/., 1992; Strieker, 

1997; Swann, 1990; Swann et al., 1994; Tang et al., 2000; Wu etal., 1997).

It was proposed that a sperm specific PLC activity could explain the ability of a 

soluble, mammalian sperm extract to cause Ca2+ oscillations (Jones et al., 2000; 

Jones et al., 1998; Parrington et al., 2002). However, microinjection of 

recombinant proteins corresponding to most of the known PLC isoforms 

expressed in sperm, including PLC01, y1, y2 and 51 failed to mimic the Ca2+ 

oscillations observed at fertilisation (Jones et al., 2000; Parrington et al., 2002; 

Runft et al., 2002), or only managed to initiate Ca2+ oscillations at non- 

physiological concentrations (Mehlmann et al., 2001). Analysis of a mouse testis 

expressed sequence tag (EST) database led to the production of a full length 

cDNA encoding a novel sperm specific PLC sequence, termed PLC? (Saunders 

eta l., 2002). Microinjection of cRNA encoding mouse (Saunders et al., 2002), 

human and simian (Cox et al., 2002) PLC? into mouse eggs produced fertilisation
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like Ca2+ responses. Furthermore, these oscillations were abolished when PLC? 

was immunodepleted from native sperm extracts (Saunders et al., 2002; Swann 

et al., 2004). The presence of PLC? has also been demonstrated in boar and 

hamster sperm (Saunders et al., 2002). Microinjecting recombinant PLC? that 

was synthesised using a baculovirus expression system Was able to trigger Ca2+ 

oscillations in mouse eggs (Kouchi et al., 2004). Significantly, the amount of 

PLC? required to initiate Ca2+ transients in eggs correlates with the approximate 

concentration of PLC? in a single sperm (20-50fg) (Saunders et al., 2002). PLC? 

is becoming increasingly accepted as the physiological activator of embryo 

development in mammals and perhaps other vertebrates. The mechanism of 

action of PLC? is still unclear; it is not known how it is regulated or if its effects 

are specific to eggs, and it may be autonomously active when introduced into the 

egg by the sperm during fertilisation.

Relatively little work has focused on examining the activity of PLC? in somatic 

cells. Previous studies have reported on the cellular localisation of PLC? (Coward 

et al., 2006; Ito et al., 2008; Kuroda et al., 2006) and its ability to induce Ca2+ 

oscillations (Kuroda et al., 2006) in mammalian cell lines. The findings of this 

thesis also confirm the nuclear translocation ability of PLC? in somatic cells, 

however the results suggest that this phenomenon is linked to time after 

transfection as apposed to the Ca2+ mobilising activity of PLC? that has been 

suggested previously (Kuroda et al., 2006).

CHO cells were transfected with luciferase or eYFP tagged PLC?. The frequency 

of the spontaneous Ca2+ oscillations observed in these cells was unaffected by
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PLC? expression. Similarly, there was no evident change in resting Ca2+ levels, 

nor any subtle change in the variability in resting Ca2+. There were no differences 

in the response to extracellular ATP when compared with control eYFP 

transfected cells, or to cells transfected with eYFP tagged to a catalytically 

inactive PLC?. Overall, there is no evidence to suggest that PLC? perturbs Ca2+ 

homeostasis in somatic cell lines.

Despite the lack of effect on Ca2+ in CHO cells, either injection of cytosolic 

extracts, or whole cells from a stably transfected eYFP-PLC? cell line were able 

to induce Ca2+ oscillations in mouse eggs. This effect was not seen with 

untransfected CHO cells. These data suggest that PLC? is inactivated when 

expressed in a cell line and yet active when subsequently introduced into an egg. 

Broad ectopic expression of PLC? has been shown to have minimal effects in 

transgenic mice (Yoshida et al., 2007). The authors conclude that the activity of 

PLC? may be restricted to oocytes, and suggest that this is the only tissue that 

possesses the cellular machinery required to transduce PLC? signalling. It is 

important to mention that the low level of ectopic expression observed in the 

transgenic mice was not quantified. The results of this thesis imply that somatic 

cells are capable of tolerating much higher levels of PLC?, which was shown to 

be active upon its introduction into mouse eggs.

6.2 Estimation of protein expression levels

An effective way to measure how much protein is being expressed in living cells 

is to use cDNA constructs tagged with firefly luciferase. Unlike fluorescence
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based methods, luminescence does not suffer from interference from auto­

fluorescence, and as a result provides a highly sensitive technique for the 

qualification of protein levels. When considering that mouse PLC? is active in 

mouse eggs at concentrations as low as 1-1 OnM (Kouchi et al., 2004), this issue 

of sensitivity is particularly significant. One advantage of fluorescent probes is 

that high resolution confocal imaging can be employed, which is better suited to 

studies concerning the cellular localisation of the expressed protein. Photon 

imaging cameras, like the one used in this thesis, enable the identification of 

which individual cells are expressing luciferase allowing the quantitative analysis 

of how much luciferase-tagged protein is being expressed.

Previous work in our laboratory lead to the construction of a calibration curve 

which has enabled users of our photon imaging system to ascertain the amount 

of PLC?-LUC protein that was being expressed in eggs following cRNA injections 

(Campbell, 2007; Nomikos et al., 2005; Swann et al., 2007). To do this, mouse 

eggs had been injected with known amounts of firefly luciferase cRNA or protein. 

After luminescence imaging, eggs from each group were lysed with 1% Triton 

x100 in a PBS buffer containing 1mM MgCI2, 1mM ATP and 100pM luciferin. The 

lysis took place in a custom built luminometer (see Chapter 2, section 2.2.7) and 

the average signal (cps) was taken over 60 seconds. The luminometer was 

calibrated with purified native luciferase protein. A relationship was then obtained 

(Figure 6.1) that can be used to calculate unknown protein content in eggs that 

have been injected with a luciferase tagged construct.
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Figure 6.1 Calibration for quantification of protein expression
Calibration curve constructed to calculate the amount of PLC^-LUC protein being expressed, 
(provided by Karl Swann).

In the experiments presented in this thesis, the average luminescence signal 

recorded in single CHO cells expressing PLC?-LUC ranged from 1-10cps. The 

experimental setup used for recording the expression in cells was estimated to 

be approximately one and a half times more sensitive than the set up used for 

the calibration in eggs. With this in mind, 10cps from a single cell equates to 

~6cps had the same set up have been employed. Using the calibration in figure 

6.1, the amount of PLC? protein expressed in a single CHO cell with an average 

signal of 10cps was estimated to be approximately 130fg. Individual cells are 

expressing within and above the range of PLC? required to initiate Ca2+ 

oscillations in eggs (20-50fg) (Saunders et al., 2002), and are therefore 

considered to be expressing at levels comparable with that of sperm. When 

comparing the relative volume of an average CHO cell (~2pl) to that of an egg
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(~200pl), these cells are clearly capable of tolerating ~200-300 fold more PLC? 

than the amount required to induce Ca2+ release in an egg.

The calibration of eYFP is not as straightforward due to variation in experimental 

factors such as excitation light, focal depth and camera sensitivity; all of which 

would require standardisation with recombinant eYFP. However, with this in 

mind, it is possible to estimate levels of protein expression based on the following 

assumptions. The detection limit of wild type GFP in a typical mammalian cell 

has been determined to be ~1pM over cellular autofluorescence (Niswender et 

al., 1995). Mutant GFPs with improved extinction coefficients decrease this limit 

and allow the detection of lower levels of fluorescence (Cormack et al., 1996; 

Heim et al., 1995). It is reasonable to assume that the cells of the stable eYFP- 

PLC? population which were typically ~10-100 fold brighter than cellular 

autofluorescence contain at least 10pM eYFP-PLC?. Consequently, an estimate 

of the amount of eYFP-PLC? (100,000 Mw) per typical CHO cell of 1-2pL volume 

equates to approximately 1-2pg. This approximate calculation suggests that the 

stably transfected CHO cells generated as part of this thesis have a cytoplasmic 

concentration of PLC? ~1000 fold higher than the amount required to induce 

Ca2+ oscillations in an egg, which is consistent with the PLC?-LUC results. It is 

possible that a proportion of the 1-2pg of protein is inactivated; however the 

single cell injection experiments (Chapter 5) confirm that individual CHO cells 

contain at least the required amount of active PLC? to induce Ca2+ release in an 

egg.
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6.2.1 Cell extract injections

The generation of cell extract enables the isolation of protein from a large 

number of cells. The cytosolic fraction of cells expressing eYFP-PLC? was 

prepared into a 20pl extract as described in Chapter 2, section 2.2.11. The 

number of cells used in all extract preparations was calculated using 

haemocytometry (typically ~2 x 107 cells). Extracts were diluted (1 in 5) in order 

to facilitate injection, and taken together with the estimated injection volume of 

~1-5pl, a calculation was performed in order to determine the number of cells that 

correspond to the amount of extract injected. This revealed that amount of cell 

extract delivered into eggs was equivalent to injecting ~1-5 CHO cells. This data 

also suggests that individual cells expressing eYFP-PLC? are expressing PLC? 

at levels capable of inducing Ca2+ oscillations in eggs; an estimation which is 

supported by experiments involving single cell injections.

6.3 The conundrum of PLC? expression in cells

The data presented in this thesis demonstrates that somatic cells can tolerate 

levels of PLC? 100 -1000 fold higher than the amount required to induce Ca2+ 

release in an egg, without exhibiting any apparent perturbations in Ca2+ 

homeostasis. This suggests that PLC? is completely inactivated when expressed 

in a somatic cell line. However, injections of cytosolic extracts, or whole cells 

from the eYFP-PLC? transfected cell line confirmed that the PLC? expressed 

within these cells is capable of inducing Ca2+ release upon its introduction into 

mouse eggs. The results imply that the enzymatic activity of PLC? may be
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reversibly inhibited in somatic cells, or else specifically stimulated by factors in 

the egg cytoplasm. These hypotheses are considered in the following sections.

6.4 Inhibition of PLC? activity in somatic cells

If the activity of PLC? is inhibited in somatic cells, it is worth considering the 

following possible mechanisms.

6.4.1 Nuclear Translocation

It is possible that nuclear sequestration may be involved in the inhibition of PLC? 

activity. The expression of PLC?-Venus in mouse eggs increases for up to 3 

hours following cRNA injection until a steady level is attained at 4-5 hours (Yoda 

et al., 2004). Expressed PLC? is distributed homogenously throughout the egg 

cytoplasm without membrane association or any localisation. Interestingly, PLC? 

translocates into the pronucleus (PN) formed at 5-6 hours (Yoda et al., 2004), 

which is consistent with an earlier observation that the PN formed after 

fertilisation has Ca2+ releasing activity when introduced into an unfertilized egg 

(Kono et al., 1995). Previous work has shown that Ca2+ oscillations after 

fertilisation (Deguchi et al., 2000; Jones, 1998) or after injection of RNA encoding 

PLC? (Larman et al., 2004) cease around the time of PN formation, suggesting 

that nuclear translocation of PLC? may be responsible for the termination of 

oscillations. Ca2+ oscillations continue over 10 hours when PN formation is 

prevented by injection of a lectin, W GA (Marangos et al., 2003), or when a point 

mutation is added to a putative nuclear translocation signal (NLS) region of PLC? 

(Larman et al., 2004). During early development, Ca2+ oscillations reappear at
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the stage of nuclear envelope breakdown just before the first cell division (15-16 

hours after fertilisation) and cease after the first cleavage (Larman et al., 2004). 

Subsequently, PLC? translocates again to the nuclei of the 2 cell embryo after 

the first cleavage (Larman et al., 2004; Sone et al., 2005). These results have 

lead to the view that the movement of PLC? between the cytoplasm and the 

nucleus may turn on and off a series of lnsP3-dependant Ca2+ rises in a cell cycle 

dependent manner.

However, this is unlikely to explain the lack of PLC? activity observed in the 

current study since no changes in Ca2+ were observed before nuclear 

translocation had taken place (3 and 5 hours following DNA delivery). Nuclear 

sequestration of PLC? may also be limited by capacity, and it is unlikely that all of 

the PLC? is localised to the nucleus at high expression levels, such as in the 

stably transfected eYFP-PLC? cell line. This suggests that there may be other 

mechanisms for inhibiting the activity of PLC? in somatic cells.

6.4.2 Downregulation of I11SP3R

In eggs, lnsP3R downregulation and Ca2+ store depletion have been proposed as 

possible alternative mechanisms for the termination of Ca2+ oscillations following 

fertilisation (Jellerette et al., 2000). Cells also have the ability to adapt to long 

term exposure to an agonist by down regulation of receptors. Chronic stimulation 

of receptors linked to lnsP3 formation has been shown to cause a reduction in the 

number of lnsP3R and a decrease in sensitivity of the intracellular Ca2+ stores to 

lnsP3 (Wojcikiewicz et al., 1991; Wojcikiewicz et al., 1992). Downregulation of 

lnsP3R has been shown to inhibit Ca2+ release in mouse eggs (Brind etal., 2000;
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Jellerette et al., 2000), and has been proposed to partly explain the cessation of 

Ca2+ oscillations 3-4 hours after fertilisation. It is reasonable to assume therefore 

that lnsP3R downregulation could account for the lack of effect of PLC? on Ca2+ 

in somatic cells.

Results in mouse oocytes have shown that different levels of PLC? protein 

expression alter the pattern of Ca2+ oscillations observed (Yu et al., 2008b). 

Increased expression of PLC? correlates with a quicker onset and higher 

frequency of Ca2+ oscillations. Interestingly, higher levels of PLC? expression 

also cause a gradual decrease in spike amplitude and a more rapid termination 

of Ca2+ transients. The experimental protocol employed during this study made it 

impractical to monitor the intracellular Ca2+ of cells expressing PLC? sooner than 

3 hours following cDNA delivery. It is therefore possible that PLC? does perturb 

the intracellular Ca2+ in somatic cells at earlier time points, which would suggest 

that somatic cells, like eggs, possess an innate ability to limit the duration of Ca2+ 

signals initiated by PLC?. This could involve downregulation of lnsP3Rs.

Sperm extracts have been shown to trigger Ca2+ oscillations in rat hepatocytes 

(Berrie et al., 1996). Two distinct types of oscillations were recorded, either an 

early transient that displayed further secondary oscillations during the falling 

phase, or late transients that were more variable in peak height. Hepatocytes 

displayed between one and 19 early transients, and up to eight of the later 

transients (n= 10 cells). Ca2+ oscillations were initiated within minutes following 

extract injection, and were shown to continue for approximately 1.5 hours. This 

data shows that PLC? is capable of inducing Ca2+ oscillations in hepatocytes
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which appear to be limited in their duration. In order to assess if PLC? is capable 

of inducing a similar Ca2+ response in CHO cells, future experiments could 

involve the injection of RNA encoding PLC? with a prolonged Ca2+ imaging 

period, much like the experiments performed using mouse oocytes. It would also 

be interesting to observe the effects of injecting extracts prepared from the stably 

transfected eYFP-PLC? cell line into CHO cells.

High levels of PLC? promote sustained DAG production in mouse eggs which 

can lead to PKC-mediated Ca2+ influx and subsequent overloading of Ca2+ stores 

(Yu et al., 2008a). The series of secondary Ca2+ oscillations induced by PKC 

overstimulation have been proposed to have a major negative effect on eggs; 

such as failure to develop to blastocyst stages despite having formed pronuclei 

(Berrie et al., 1996; Yu et al., 2008a). Downregulation of InsPaR could account 

for the lack of PLC? activity in CHO cells; however it is possible that cells would 

experience adverse effects of sustained DAG production and subsequent PKC 

activation, such as changes in Ca2+ homeostasis and cell proliferation. The 

results of this thesis do not indicate any marked irregularities in CHO cells 

expressing PLC? that would indicate persistent DAG production, however such 

an effect cannot be ruled out. It would be interesting to assess the levels of DAG 

in cells expressing PLC?. This could be achieved by performing a protein 

phosphorylation assay using a PKC substrate, such as MARCKS (Myristoylated 

Alanine Rich C Kinase Substrate) protein (Arbuzova et al., 1998). Also, DAG 

production in the plasma membrane could be assessed using a fluorescently 

tagged Cl domain of PKC (Yu et al., 2008a).
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In addition to this, CHO cells expressing PLC? have a comparible Ca2+ response 

to extracellular ATP when compared with control eYFP transfected cells and with 

cells transfected with eYFP tagged to a catalytically inactive PLC?. It is 

reasonable to assume that the agonist response would be modified in some way 

had the lnsP3Rs become downregulated. So it seems again unlikely that lnsP3R 

downregulation alone explains the lack of PLC? activity in somatic cells. A more 

precise method of assessing possible lnsP3R downregulation as a result of PLC? 

expression would be to perform an immunoblot for InsPaRs, which could be 

carried out using the stably transfected eYFP-PLC? cell line.

6.4.3 Regulation of PLC? by phosphorylation

One possibility is that PLC? is regulated by phosphorylation. Reversible 

phosphorylation is a highly effective means of switching the activity of target 

proteins. Phosphorylation and dephosphorylation, catalysed by protein kinases 

and protein phosphatases, can modify the function of a protein in many ways; 

such as facilitating or inhibiting movement between subcellular compartments, by 

increasing or decreasing its biological activity, or by initiating or disrupting 

protein-protein interactions (Cohen, 2002). There are a number of bioinformatic 

resources available which allow users to search for motifs within DNA sequences 

of proteins that are likely to be phosphorylated by specific protein kinases. 

Entering the DNA sequence of PLC? into a commonly used world-wide-web 

interfaced bioinformatics computer program (Obenauer et al., 2003) identified 

potential phosphorylation sites for PKC, CamKII and various other kinases.
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Phosphorylation could therefore provide an alternative mechanism for regulating 

the activity of PLC? in somatic cells. Alternatively, it may be that the regulation of 

PLC? requires a specific protein kinase that is only present within the egg. There 

are no previous studies discussing the phosphorylation of PLC?, and there is no 

clear evidence either for or against it as a potential means of regulation.

6.5 Mechanism of action of PLC?

Another means of regulating the activity of PLC? could involve the way in which it 

targets PIP2. The four well characterised isoforms of PLC (p, y, 5, z) interact with 

plasma membranes by different mechanisms (Rebecchi et al., 2000; Rhee, 

2001). The pleckstrin homology (PH) domain functions to target PLC51 with high 

affinity and specificity to the lipid PIP2 (Ferguson et al., 1995; Garcia et al., 1995; 

Lemmon, 2003; Lemmon et al., 2000; Lemmon et al., 1995), whilst PLCs p, y, 

and z bind to specific plasma membrane proteins (Kelley et al., 2006; Kelley et 

al., 2004; Suh et al., 2008; Wang et al., 1999). Membrane interactions are 

important to PLCs as they enhance the catalytic activity of the enzyme by 

exposing them to higher local concentrations of their PIP2 substrate (Rebecchi et 

al., 2000; Rhee, 2001). It remains to be determined whether PLC? is targeted to 

membranes via protein-protein interactions like the P, y, and z isoforms, or via 

protein-lipid interactions like the 51 isoform. It is also unclear which type of 

membrane PLC? targets. It is possible that it interacts with either a distinct 

vesicular PIP2-containing membrane, or a PIP2-containing microdomain within 

the plasma membrane (Rice eta l., 2000; Swann et al., 2001).
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Previous work has shown that the binding of PLC? to PIP2 may involve the X-Y 

linker or the C2 domain (Nomikos et al., 2007). These domains were expressed 

as GST fusion proteins and their binding to phosphoinositides spotted on PIP 

strip membranes was examined. The results were compared to the binding 

capacity of the equivalent domains of PLC61. Both PLC61 and PLC? were shown 

to bind PIP2 , but only the X-Y and C2 domains from PLC? were shown to bind 

PIP, and to a lesser extent to PIP2 (Nomikos et al., 2007). This data suggests that 

the X-Y linker region and C2 domain play an important role in targeting PLC? to 

its substrate.

In addition to this, the unique properties of the different PLC? domains have been 

investigated by generating a series of PLC chimeras involving the substitution of 

the domains of PLC51 (PH, C2, EF hands and X-Y linker) into PLC? (Gonzalez 

Garcia, 2008). These chimeras were tagged with luciferase and their Ca2+ 

oscillation inducing activity was monitored in mouse eggs. The addition of the PH 

domain of PLC51 to PLC? did not alter its activity in eggs. Replacing either the X- 

Y linker or EF hand domain of PLC? with those from PLC51 leads to a reduction 

in the ability of these chimeras to induce Ca2+ oscillations. Interestingly, replacing 

the C2 domain of PLC? with that of PLC51 totally abolished its Ca2+ releasing 

activity in mouse eggs (Gonzalez Garcia, 2008). These results suggest that the 

C2 domain of PLC? is essential for its activity in eggs. It is possible that the 

association of PLC? with its specific plasma membrane target may be mediated 

by the interaction of X-Y linker or C2 domain with another membrane targeting 

protein, thereby compensating for its inherent lack of PH or SH domains.
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6.6 Is there an Egg specific factor?

The work in this thesis suggests a conundrum for understanding how somatic 

cells tolerate high levels of PLC?. The conundrum that exists in nature is that 

sperm cells also show no evidence of abnormal PI signalling despite containing 

~1000 times more PLC? than the amount required to trigger Ca2+ release and PI 

turnover in an egg. This is comparable to the situation observed in somatic cells 

during this study, whereby CHO cells are also capable of tolerating relatively high 

levels of PLC? expression. When PLC? is introduced into an egg by sperm it 

appears to be fully active, and induces a Ca2+ response within minutes. This was 

also the case with injections of either cell extract or single cells from the stably 

transfected eYFP-PLC? cell line. The question remains as to how PLC? is 

seemingly inactive when expressed in sperm and somatic cells and yet active 

when subsequently introduced into an egg. The data presented in this thesis 

does not rule out a specific inhibition of PLC? in somatic cells; however, the 

stimulation of PLC? by egg specific factor not only explains these observations, 

but also offers an interesting explanation for the conundrum that exists in nature. 

As mentioned previously, it is possible that PLC? associates with its specific 

membrane target by interacting with another membrane targeting protein, much 

like the PLC p, y, and £ isoforms. Based on the experimental findings of this 

thesis, one can propose a hypothetical mechanism for PLC? action that involves 

an interaction with an egg specific factor (Figure 6.2). If the interaction involved 

the C2 domain, this would be analogous to the mechanism of action of PLCp 

(Suh et al., 2008). It is likely that this factor is associated with a membrane due to
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the cellular location of PIP2> however it remains to be determined if this involves 

the plasma membrane or the membrane of an intracellular organelle. Once PLC? 

is associated with this egg specific factor, it could then bind and hydrolyse its 

substrate leading to the generation of lnsP3 and subsequent Ca2+ release from 

intracellular stores. Identification of this egg specific factor interaction could 

involve the use of a pull down assay, whereby PLC? is expressed as a fusion 

protein (e.g. myc tagged) in eggs and then immobilised using an affinity ligand 

specific to the fusion tag. The entire complex could then be eluted from the 

affinity support and evaluated by SDS-PAGE. Having identified the egg specific 

factor, it would be interesting to then introduce this protein into somatic cells 

expressing PLC? in order to examine the effects on Ca2+ signalling.
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Figure 6.2 Hypothetical m echanism  of PLC£ action based on the findings of this 
thesis.
(See text for explanation and references)
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