
Rogue Seasonality Detection in Supply Chains

by

Vinaya Shukla

A thesis submitted in partial fulfilment of the requirements for 
the degree o f Doctor of Philosophy in Cardiff University

Logistics Systems Dynamics Group 
Logistics and Operations Management Section 

Cardiff Business School, Cardiff University

March 2010



UMI Number: U584427

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, th ese  will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 584427
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Ca r d if f
U N I V E R S I T Y

DECLARATION

This work has not previously been accepted in substance for any degree and 
is not concurrently submitted in candidature for any degree.

C a r d if f

B u s in e s s
S c h o o l

Signed

Date
TVtS’ Jo  T.0 | 0

(candidate)

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of 
. P  . V v . J t l .............. (insert MCh, Md. MPhil, PhD etc, as appropriate)

^  M
Signed \ ........................................  (candidate)

Date l £ . | .  9A.lyO 1 0

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise 
stated.
Other sources are acknowledged by footnotes giving explicit references.

Signed ^    (candidate)

Date.................................. ..9.X\y 0> 0

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- 
library loan, and for the title and summary to be made available to outside organisations.

Signed .........................(candidate)

D ate...........V i  J O .'t I  V  I 0

ii



Abstract

Supply chains face disturbances in the provision of goods and services to customers. 
A key disturbance which is endogenously generated from the nature of the ordering 
process used is rogue seasonality, which is characterised by orders and other supply 
chain variables showing cyclicality in their profiles and this cyclicality not present in 
exogenous demand. It is observed in many supply chains and is a cause of significant 
economic loss for entities in these chains. A useful way to manage rogue seasonality 
could be by detecting its presence and intensity in a system and then taking 
appropriate and timely action for its mitigation. Called “sense and respond”, this 
approach has been used in various domains extensively, but its application in supply 
chain management has been limited. This thesis explores the application of this 
approach for managing rogue seasonality, with the findings from it particularly 
relevant for a context where many multiple echelon supply chains are being managed 
by a focal company.

Multiple methods are used to analyse each of the rogue seasonality generation and 
detection components of the thesis. For understanding rogue seasonality generation, 
system dynamics simulations of single and three echelon linear and four echelon non­
linear (Beer game) systems are used. The impact of different demand processes and 
parameters, delays, order of delays, ordering processes, backlogs and batching on 
rogue seasonality is assessed. The simulation analysis is supported with empirical 
contexts from the steel and grocery sectors. The understanding gained on rogue 
seasonality together with the related contextual data is used in the sense or detection 
part of the thesis. The signature based approach, with the signature derived from 
clustering of time series data of variables is explored for detection, with the data 
represented in alternative domains such as amplitudes of Fourier transforms, 
autocorrelation function, coefficients of autoregressive model, cross correlation 
function and coefficients of discrete wavelet transform.

The thesis determined the signature and index for detecting rogue seasonality. While 
the signature, which is based on the cluster profiles of the system variables indicates 
the presence of rogue seasonality, the intensity of rogue seasonality is indicated by the 
index. In a multi supply chain context, the index could be used to identify problematic 
supply chains from a rogue seasonality perspective and initiate appropriate 
management action. At present there is no measure for rogue seasonality and defining 
an index for the same constitutes a major contribution of this thesis. Among 
alternative time series representations, the frequency domain representation based on 
Fourier transform was found to be the most appropriate for deriving the signature and 
index. This is also a major contribution of the diesis, as the comprehensive assessment 
of time series representations carried out in this study has not been done in many 
studies across domains, and those that have done so, have not used any supply chain 
related data in the assessment. Finally, the framework for exploiting the index for 
managing rogue seasonality is proposed.
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Chapter 1 -  Introduction

This chapter presents the background and motivation of the research. The main 

themes are explained in brief and then collated to formulate the research questions. 
This is followed by a description of the structure of the thesis.

1.1 Research background

The research in this thesis has been conducted as a part of the five-year Mass 

Customised Collaborative Logistics for Sustainable Manufacturing (McCLOSM) 
flagship project of the Innovative Manufacturing Research Centre (IMRC) at Cardiff 

University. This project is sponsored by the Engineering and Physical Sciences 

Research Council (EPSRC) and was undertaken jointly with policy makers, trade 

bodies and a number of industrial partners from diverse sectors such as food, steel and 

construction. The author’s role in the project was to look at how collaboration and 

information sharing can be used for the detection of disturbances and consequent 
mitigation of risks in a supply chain.

1.1.1 Disturbances in supply chains

Supply chains, which consist of all intermediate entities connecting producers and 

consumers such as vendors, manufacturers, distributors and retailers routinely face 

disturbances, which prevent them from realising their performance objectives (Davis, 

1993). Defined as random or unexpected occurrences that deviate from ‘normal’ 

(Svensson, 2000), these disturbances could arise from customer demand, suppliers, 

internal manufacturing processes, environmental factors or control systems (Davis, 

1993; Mason-Jones and Towill, 1998; Juttner, 2005). Amongst these, disturbances 

from control systems, which originate from use of inappropriate information and/or 

inappropriate ordering/control algorithms to match supply and demand, affect a large 

number of supply chains. Practitioners either passively accept them or ignore them, 

(Geary et. al, 2002; McCullen and Towill, 2002) both of which cause economic loss 

for the firms in the supply chain (Metters, 1997; Lee et al., 1997a, b).
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1.1.2 Control disturbances

Two kinds of control disturbances have been identified in the literature. One is the 
Bullwhip effect in which variability in orders is amplified as one moves from 

downstream to upstream echelons (Forrester, 1961; Lee et al., 1997a, b). The second 

is endogenous generation of seasonality in orders and other supply chain variables 
(Forrester, 1961; Kim and Springer, 2008). This seasonality, which is generated by a 

company’s own internal processes such as inventory and production control systems, 

is not present in exogenous demand and is therefore also referred to as rogue 
seasonality (McCullen and Towill, 2002).

Extensive research has been conducted on the Bullwhip effect (Geary et al, 2006; 

Miragliotta, 2006) including its occurrence in different empirical sectors (Miragliotta, 

2006), its multiple causes such as demand signal processing and lead time (Forrester 

effect), batching, shortage gaming, price promotion and behavioural (Geary et al., 

2006) and various approaches for its measurement. Moreover, different methods such 

as statistical, control theory, system dynamics simulation and management games 
(specifically Beer game) have been used to study it. On the other hand, the literature 

highlights only two studies focussed on rogue seasonality (Thornhill and Naim, 2006; 
Kim and Springer, 2008). Rogue seasonality is present in many supply chains (Kaipia 

et al., 2006; Lee et al., 1997a; Torres and Moran, 2006) and its presence causes cost 
inefficiency. Costs to the extent of 10-20 % could be reduced by elimination of such 

seasonal variations as per Metters (1997). The study of rogue seasonality is therefore 

important and forms the focus of this thesis.

1.13 “Sense and respond” based approach to manage rogue seasonality

One approach to manage rogue seasonality is to minimise its generation and intensity 

through appropriate choice of forecasting and ordering parameters. Kim and Springer 

(2008) used this approach to determine the conditions under which strong or weak 

seasonality could be endogenously generated in a dyadic system based on analytical 

system dynamics analysis. However, such an approach may not be very effective in 

real environments. This is because, supply chains in general are quite complex which 
makes them difficult to control (McCarthy and Tan, 2000; Baader and Montanus,
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2008). At the same time, optimal control policies and parameters established in 
theoretical studies are too simplistic in relation to this complex reality, having been 

developed under dyadic settings. Finally, there is additional uncertainty from the way 

these policies and parameters are applied in practice in real environments because of 

behavioural biases (Bendoly and Cotteleer, 2008; Croson et al., 2005). One alternative 

is to use the “sense and respond” based approach which is particularly suited for 
dynamic environments.

The “sense and respond” approach involves use of information to sense changes in the 

environment or context and then, based on it, initiating appropriate management 
response. This approach has been applied in different strategic and operating contexts, 

with its potential use also recognised in supply chain risk management by researchers 

such as Hendricks and Singhal (2003) and Craighead et al. (2007). The “sense and 

respond” based approach could potentially be used to manage rogue seasonality.

1.1.4 Signature based approach for detection

Among the various alternatives available for sensing or detection, the signature based 

approach was considered because of its flexibility in handling different profiles and 

numbers of variables as well as availability of a wider choice of techniques for 
application. Though application of this approach in the supply chain management 

domain has been limited, it has been successfully applied in various other domains 

such as finance, equipment maintenance, healthcare and computer systems (Edge and 

Sampai, 2009; Lee et al., 2006; Lamma et al., 2006; Zhu et. al., 2001).

Use of the signature based approach involves choosing the techniques for determining 

the signature or rule/s of detection as well as the nature of information to be fed to 

these techniques. Clustering is the most common technique for analyzing multiple 

time series data (Liao, 2005) and it was therefore used for signature formulation. 
Signatures based on clustering involve finding similarity or dissimilarity relationships 

among the time series profiles of the operating variables, allocating them to separate 
homogenous groups or clusters and relating the profile of clusters to a particular 

disturbance.
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In terms of nature of information used for formulating signatures, either raw time 

series could be used or it could be transformed to other domains, and features from 

these domains used. Typical features that have been applied in time series clustering 

studies in different disciplines are: the amplitudes of Fourier transforms (FT) 

(Agrawal et al., 1993), coefficients from an autoregressive (AR) model (Kalpakis et 

al., 1999), wavelet coefficients from discrete wavelet transform (DWT) (Chan and Fu, 

1999), autocorrelation function (ACF) (Wang and Wang, 2000) and cross correlation 

function (CCF) which is a feature of pairs of time series (Bohte et al., 1980). 

However, two issues regarding these time series clustering studies stand out. Firstly, 
none of these studies used supply chain contextual data in their analysis. Since the 

effectiveness of feature/s is domain specific, findings from these studies have limited 
applicability for the supply chain as well as rogue seasonality contexts. Secondly, few 

studies have compared the performance of their features with other features, and those 

that have, have used only one or two features in the comparison (Keogh and Kasetty, 

2003; Liao, 2005). The most appropriate time series transformation and feature for 

analyzing supply chains in general and rogue seasonality in particular, therefore, is an 

open question.

1.2 Research questions

To summarise, the study of rogue seasonality is important because it is present in 
many real world supply chains and is a cause of significant economic loss for entities 

in these chains. One way to minimise this loss is by detecting, diagnosing and 
discriminating rogue seasonality from exogenous disturbances and using it to improve 

the timeliness and quality of remedial management action. Christopher and Lee 

(2004) highlighted the need for intelligent alerts for out of control situations and the 

importance of detection based approaches in supply chains. Use of this approach for 

the detection of rogue seasonality was explored by Thornhill and Naim (2006) who 

proposed a lookup table based on spectra PCA (principal component analysis) for the 

same. However, this study was not comprehensive. Data from only a single case study 

was used and only a single detection technique (spectra PCA or SPCA) was tested. 

The technique also required significant manual intervention, which meant subjectivity 

in the detection process. A more objective and automated approach for rogue 
seasonality detection, is therefore required. Such a detection based approach would be
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especially useful in an environment where many multiple echelon supply chains are 
being managed by a focal company.

Use of the “sense and respond” approach is explored, which involves processing of 

system information to sense or detect rogue seasonality and then taking appropriate 

management action (respond) to reduce its intensity and thereby related economic 
loss. For detecting rogue seasonality, signature based approaches are tried with the 

signatures derived from clustering of time series information of system variables. The 
signature could be in the form of a subjective rule or an objective index which 

indicates the intensity of rogue seasonality. No such index measure exists for rogue 
seasonality at present, in contrast to the Bullwhip effect, for which multiple measures 

have been proposed. Establishment of the signature and index also provide the 
opportunity to automate the rogue seasonality detection process and in this way 

address one of the limitations of the study by Thornhill and Naim (2006).

The nature of system information, in terms of whether it is in the time or other 

domains such as amplitudes of FT, AR model parameters, DWT coefficients, ACF 

and CCF affects the effectiveness of the signature. Given that the best domain 

representation for clustering supply chain data is not established, all these alternative 

domains need to be tried to determine the same for the rogue seasonality signature. 

Finally, information on only a few rather than all the variables could be available, and 

therefore, it is important to assess sensitivity of the findings to the same.

An important consideration in this research is the rogue seasonality context to be used 

for assessing the effectiveness of different aspects of the detection process. While a 

simulated context provides controlled experimentation and in this way facilitates 

different rogue seasonality contexts to be assessed, real world examples of rogue 

seasonality help in increasing the external validity of the findings. When used 
together, they complement each other effectively. Use of multiple contexts increases 

the validity of the research findings on a generic basis also (Shukla et al., 2009; Boyer 

and Swink, 2008).

Putting together the various aspects of the detection process with the different rogue 
seasonality contexts, the following research questions emerge which this thesis seeks 

to answer:
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1) What signature and index could be used for detecting rogue seasonality in a linear 
supply chain? What is the best feature (domain representation) and the 
appropriate system variables for deriving them?

2) Can the signature and index identified from the linear supply chain be applied to a 

non-linear supply chain with backlogs and batching? Is the best feature and 

appropriate variables for detecting rogue seasonality in this non-linear system the 
same as in the linear system?

3) Can the signature and index be used for detecting rogue seasonality in real supply 

chains? Are the best features and system variables for deriving the signature and 
index the same as found in RQ1 and RQ2?

4) How can rogue seasonality detection' be used in a managerial framework?

The linear supply chain system was considered as it is analytically tractable (Towill, 

1982) and therefore yields exact solutions which could be used for a more accurate 

assessment of different aspects of the detection process. On the other hand the non­

linear supply chain with backlogs and batching is a more realistic system and it was 

therefore also analysed. Finally, the empirical rogue seasonality contexts used, add to 

the limited knowledge base of the same. The linear, non-linear and empirical contexts 

used are discussed in the Methodology chapter where they are best explained.

In terms of research questions, these establish the process of rogue seasonality 

detection in terms of the signature and index as indicators of rogue seasonality, 

appropriate system variables to be used and the domain in which they should be 

represented (as features) in each of linear, non-linear and empirical contexts 

individually. This multi context assessment of different aspects of detection increase 

the robustness of the findings with respect to the same. Finally, RQ 4 is aimed at 

using the detection facilitated by RQ 1, 2, 3 to improve the management of rogue 

seasonality in an unseen setting.

1.3 Structure of the thesis

This thesis is organised into seven chapters as shown in Figure 1.1.

Chapter 1 introduces the background and motivation for the research. Gaps in 

research are collated to form the research questions:
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Chapter 2 reviews the literature around the core research theme. Supply chain 

disturbances, control disturbances including Bullwhip and rogue seasonality, “sense 

or detect and respond” based approaches for rogue seasonality detection and 

applicability of signatures based on clustering of alternative domain representations of 
system variables are reviewed. A major part of this work is included in the 
presentation made at the 14th International Annual EurOMA Conference in 2007 
whose full reference is as follows:

Shukla, V. and Naim, M. M. (2007). "An operations management framework for  

disturbance detection in supply networks", Proceedings o f  the 14th International 

Annual EurOMA Conference, June 17-20, Ankara, Turkey.

Rogue seasonality context and data

Alternative time series transformations and features for rogue 
seasonality signature and index computation

Chapter 1
Introduction

Chapter 3
Methodology

Chapter 2
Literature Review

Real supply 
chain context 

(Case studies)

Chapter 6

RQ 3
answered

Non-linear 

supply chain 
system 

(Simulated)

RQ 2
answered

Chapter 5

Linear supply 

chain system 
(Simulated)

Chapter 4

RQ 1 
answered

Chapter 7

Managerial implications and Conclusions 

RQ 4 answered

Figure 1.1 Overall Thesis Structure
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Chapter 3 discusses alternative methodologies and the rationale for choosing a multi 

methodology simulation and case study based approach for understanding rogue 

seasonality as well as generating related contextual data. Alternative domain 
representations or time series transformations (features) that could be applied for 

rogue seasonality detection are also discussed. Some of the work in this chapter is 

included in the presentation made at the 39th International Conference on Computers 

& Industrial Engineering in 2009 whose full reference is as follows:

Shukla, V. and Naim, M. M. (2009). "The impact o f  capacity constraints on supply 

chain dynamics ”, Proceedings o f  the 39th International Conference on Computers 

and Industrial Engineering, July 6-8, Troyes, France

Chapter 4 uses single and three echelon simulated linear supply chain systems to 
demonstrate the mechanics of rogue seasonality generation. The signature, index of 

rogue seasonality and the most appropriate time series transformation (and feature) 

and system variables for computing the same (answer to RQ 1) are also determined 

from analysis of these systems. This work has been resubmitted to the International 

Journal of Production Economics and is under review. Its full reference is as follows: 

Shukla, V., Naim, M. M. and Thornhill, N. "Rogue seasonality detection in supply 

chains'', International Journal o f  Production Economics, Under review

Chapter 5 assesses the validity of the findings obtained from the linear supply chain 

system (signature, index, best time series transformations and features, system 

variables) on a simulated non-linear supply chain system with backlogs and batching. 

Use of different number of echelons (four), a different control system and an 

additional variable for shipment (affects dynamics as well as computation of the 

index) compared to the linear system provide further robustness to the findings. A 

part of the work in this chapter has been published in the International Journal of 

Production Research. Its full reference is as follows:
Shukla, V., Naim, M. M., and Yaseen, E. A. (2009). "Bullwhip and backlash in 

supply pipelines." International Journal o f  Production Research, 47(23), pp. 6477- 

6497.

Chapter 6 tests the validity of the findings from the simulation analysis on the data 

from two case studies. Monthly data from a steel case study and daily data from a 
grocery (soluble coffee) case study are analysed in a similar fashion as chapters 4 and
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5 to answer RQ 3 and in the process support or disprove the simulation findings. The 
steel case study data analysis is included in the paper resubmitted to the International 

Journal of Production Economics which is being reviewed (same as in Chapter 4) 

while the grocery case study findings were presented at the 14th Logistics Research 

Network Annual Conference in 2009. The full reference for the latter is as follows: 
Shukla, V. and Naim, M. M. (2009). "Investigation o f  disturbances in a grocery 

supply chain ”, Proceedings o f  the 14th LRN Annual Conference, September 9-11, 

Cardiff, UK.

Finally, Chapter 7 collates the findings from linear and non-linear simulation and the 

empirical case studies to answer the research questions. Implications of these findings 

for the managers is also discussed; specifically, the framework which they could use 

to manage rogue seasonality. This chapter also describes the contributions of the 

research as well as its limitations and suggests areas of further study.

1.4 Summary

This chapter has provided background information on the research theme, the aims of 
the research and the research questions addressed in this thesis. The structure and 
contents of the thesis are also explained to give the reader a better understanding of 

the research process followed.
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Chapter 2 — Literature Review

This chapter provides an overview of previous research in all areas related to the core 

theme of the thesis, which is rogue seasonality and its detection. Initially, supply 
chain management and disturbances in supply chains are discussed, together with the 

need to focus on and investigate individual disturbances in detail. The next part 

highlights the significance of control disturbance, its manifestation as the Bullwhip 

effect and rogue seasonality, and the fact that a large body of research has been 
conducted on the former while research on the latter has been limited. This leads to 

the rationale of focussing on the rogue seasonality control disturbance. After 
discussing the limitations of alternative design based approaches due to system 

complexity and behavioural dynamics, managing the rogue seasonality by using 

detection based approaches is explained. Subsequently, the relative merits of the two 
generic methods of detection: change point detection and signature based methods are 
presented, together with the suitability of the latter for detection in supply chain 

contexts. Next, details of the signature based methods which are mostly based on time 
series clustering and the different time series representations (transformations) and 

features used in clustering are provided. Finally, all the different threads are drawn 

together and summarised and from these the research questions are developed.

2.1 About supply chain management

Consumers need products and producers produce them. However, difficulties arise 

when one tries to link the two together. This happens because while consumers are 

geographically scattered, products are manufactured only at a few centralised 
locations so as to take advantage of economies of scale. Consumers are also 

demanding in terms of service and expect instant availability while manufacturing and 
delivery of products takes time. Finally, consumers are also quite price sensitive and 

therefore the producer-consumer linkage needs to be efficient as well. These are 
fundamental issues which are faced by most organisations and give rise to questions 

such as: What kind of structures should be used to supply products to consumers? 
When, where, and how much should be produced and supplied? Finally,_how best to 

address these questions while meeting the twin objectives of efficiency and high 

customer service?
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The study of supply chain management helps answer these questions, where supply 
chain refers to all entities between producers and consumers (such as distributors, 
wholesalers, transporters and retailers) which are linked together by the upstream flow 
of orders (which also constitutes information flow) and downstream flow of material. 

The information flow is typically used by individual echelons for planning purposes 

that is distribution and production planning. Traditionally, entities along the supply 

chain have operated independently with their own, often conflicting, objectives 

(Ganeshan and Harrison, 1995). However, recently there has been increasing 

recognition of the benefits from coordinating the actions of these entities. Such an 
integration strategy is called supply chain management.

Supply chain and supply chain management definitions in the literature recognise the 
systemic nature of supply chains and the benefits from such an approach. For 

example, Stevens (1989) defines a supply chain as “a system whose constituent parts 
include material suppliers, production facilities, distribution services and customers 

linked together by the feed forward flow of materials and feedback flow of 

information.” According to Christopher (1992), a supply chain is the network of 

organisations which are involved through upstream and downstream linkages in the 

different processes and activities, where each produces value in the form of products 

and services in the hands of the ultimate consumer.

Supply chain management, on the other hand, are those approaches which integrate 

the constituent parts of organisations in the supply chain. Integration ensures that 

merchandise is produced and distributed in the right quantities, to the right locations, 

and at the right time so that both the requirements of providing high customer service 
and minimum system wide costs are met (Simchi-Levi et al., 2002). A more holistic 

perspective is used by Chopra and Meindl (2004), who state that supply chain 
activities begin with a customer order and end when a satisfied customer has paid for 

its purchase. According to them, the main objective of a supply chain is to match 

supply with demand while maximising the overall value generated, that is, the 

difference between product price and cost incurred by the supply chain in fulfilling 
the customer demand. Matching supply with demand and managing the supply chain 

as a system is difficult. One of the main reasons for this difficulty is the unpredictable
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disturbances which constantly prevent the supply chain from achieving its 
performance objectives (Davis, 1993).

2.2 Disturbances in supply chains

Supply chains are prone to disturbances. Defined as random or unexpected 

occurrences that deviate from ‘normal’ (Svensson, 2000), these could be major but 

infrequent such as earthquakes and terrorist attacks or minor but frequent such as 

delays in material deliveries, unanticipated process losses and information 

interruptions which negatively impact firms across the network. A spate of major and 

minor disturbances in well known companies has brought this subject into sharper 
focus in recent times. For example, a ten minute fire at one of its Tier 2 component 

manufacturers caused Ericsson a financial loss of $220 million (Norrman and Jansson, 
2004) while in another case Cisco had to write off inventory worth $2.25 billion 
because of its dysfunctional planning in a deteriorating economy associated with the 

“Dot-com” crash (Barrett, 2001). Besides these well known and widely publicised 

disturbances, there are other routinely occurring disturbances of a lower scale such as 
delays in material deliveries, unanticipated process losses and information 

interruptions which cause loss in revenues (lower product availability, loss of 
customer goodwill) as well as an increase in costs (waste generation and reduction in 

process efficiencies). Since these disturbances are frequent, supply chain planners 
tend to internalise them as the “cost of doing business” (Stauffer, 2003). However, 

over a period of time, the cost implications of such routine disturbances to an 

organisation are significant. It is to be noted that ‘disturbances’ have been used almost 

synonymously with other terms such as ‘risks’ in the literature. While risks refer to 
the potential of a negative consequence, disturbances have been used more in terms of 
the active occurrence of a negative event. For example, in the context of supplier 

delivery, risk refers to the possibility of material not being delivered on time leading 
to a loss in production while disturbance refers to the actual realisation of this event. 
Since their underlying meaning is the same, risk and disturbance have been used 

interchangeably in the rest of the thesis.

Disturbances have been studied from a multidimensional perspective by different 

authors. Cavinato (2004) used a holistic perspective by considering disturbances 
arising in any of the physical, financial, informational, relational, or innovational
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flows in the supply chain. However, a majority of researchers have considered an 
order fulfilment perspective (physical and information flows), although their 

classification of disturbances and focus for managing these disturbances are different. 
An exemplar rather than exhaustive compilation of studies on supply chain 

disturbances is given in Table 2.1. The key observations from this table are 
summarised below.

• The negative impact of supply chain disturbances on organisational performance is 

recognised by almost all studies, though the nature and extent of the impact is 

anecdotal in many cases. A more quantitative estimate is provided by Hendricks and 

Singhal (2005) who determined the association between supply chain “glitches” 

(same as disturbances) and operating performance by analysing the financial 
statements of the affected companies. They found that firms with “glitches” reported 

on average 7% lower sales growth, 11% higher growth in cost, and 14% higher 
growth in inventories compared to a sample of firms of similar size from similar 

industries without “glitches”. The companies with “glitches” also showed a slower 
economic recovery: operating income, sales, total costs, and inventories did not 

improve in the two-year time period after the announcement of the “glitch”. Similarly, 
Wagner and Bode (2008) used a cross sectional survey to highlight the negative 

correlation between supply, demand risks and supply chain performance.

• Most studies are either purely conceptual or empirical but even in the empirical 

based studies, the research has been conducted at a high level using primarily 

qualitative approaches (Svensson, 2000; Zsidisin, 2003; Norrman and Jansson, 2004). 

More quantitative, empirical survey based studies on disturbances by Hendricks and 
Singhal (2005) and Wagner and Bode (2008) also have a similar macro orientation. 

Another aspect about the studies on supply chain disturbances is their non 

consideration of realistic multi echelon structures. This could be because of 

difficulties both in getting access to such data as well as in analysing it, in particular 

where there is evidence of ’rippling’ of disturbances as they cascade across echelons 
making the data dynamically complex to scrutinize. This is evident from studies such 
as Harland et al. (2003) and Hallikas et al. (2002), which are among the few empirical 

studies about disturbances in multi-echelon supply chains, but who have also used the 

high level descriptive explanation and analysis approach.
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Table 2.1 Select studies on Supply Chain Disturbances

Authors Disturbance basis used Research method Focus of analysis
Svensson (2000) Supply as source o f disturbance

Quantitative / Qualitative and Atomistic (direct) 
/ Holistic (indirect) nature o f disturbances

Empirical (Case study 
and survey)

Conceptual framework for supply vulnerability in terms o f Quantitative /  
Qualitative and Atomistic (direct) /  Holistic (Indirect) disturbances

Zsidisin et. al. (2000, 
2004); Zsidisin (2003)

Supply as source o f disturbance Empirical (Case 
study)

Risk identification, assessment and management practices in companies

Giunipero and 
Eltantawy (2004)

Supply as source o f disturbance Conceptual Risk management and factors that affect level of investment on the same

Blackhurst et al. (2008) Supply as source o f disturbance Empirical (Case 
study)

Index for assessing and monitoring supply risk

Johnson (2001) Supply and Demand as sources o f disturbance Empirical -  
Secondary data

Investigation o f risk management practice in toy industry

Lindroth and 
Norrman* (2001)

Supply and Demand as sources o f disturbance Empirical (Case 
study)

Identification o f risks and risk mitigation by sharing o f risks

Davis (1993) Supply, Demand, Manufacturing as sources of 
disturbance

Analytical and 
Conceptual

Conceptual framework for uncertainty assessment and mitigation

Harland et. al. (2003) Supply, Demand and Process as sources o f 
disturbance in a network environment

Empirical (Case 
study)

Risk identification, assessment and management in a network 
environment using a proposed tool

Hallikas e ta l (2002) Supply and Demand as sources o f disturbance 
in a network environment

Empirical (Case 
study)

Identification and assessment o f risks in a network environment for the 
cases considered. Related conceptual framework and tool proposed.

Norrman and Jansson 
(2004)

Sources o f Disturbance -  Supply, Demand, 
Process and Environmental as sources o f 
disturbance in a network environment

Empirical (Case 
study)

Risk identification, assessment and management processes used in the 
case study

Juttner (2005) Environmental, Network and Organizational as 
sources of disturbance

Empirical (Focus 
group) and 
Conceptual

Risk identification, assessment and management practices

Kleindorfer and Saad 
(2005)

Nature o f Disturbance -  Risks in coordinating 
supply and demand, disruptions to normal 
activities

Conceptual Risk assessment and mitigation for disruption risk management



Table 2.1 Continued

Authors Disturbance basis used Research method Focugof analysis' * " *£* * ‘ * . , * /

Craighead et. al (2007) Risks in coordinating supply and demand, 
disruptions to normal activities

Empirical (Case 
study) and Conceptual

Design characteristics and mitigation capabilities that affect the severity 
o f disruptions

Mason-Jones and 
Towill(1998)

Demand, Manufacturing, Supply, Control 
systems as sources o f disturbance

Simulation Control and demand uncertainty reduction through information sharing

Gaonkarand 
Viswanadham (2004)

Planning level -  Operational, Tactical, Strategic
Scale o f Disturbance - Deviation, Disruption, 
Disaster

Conceptual and 
Analytical

Conceptual framework for the classification o f risks. Risk management 
by designing robust supply chains based on prior identification and 
assessment o f risks

Christopher and Lee 
(2004)

Control system as source o f disturbance Conceptual Risk management

Wilding (1998) Control systems as source o f disturbance Conceptual Endogenous uncertainty generation ffom inappropriate/non-holistic 
decision/supply chain control processes

Towill (2005) Control as source o f disturbance (specifically on 
Bullwhip)

Conceptual Possibility o f reducing bullwhip by use o f appropriate control 
algorithms

Sheffi (2001) Environment as the source o f disturbance Conceptual Risk management

Chopra and Sodhi** 
(2004)

Supply, Demand, Process and Environmental as 
sources o f disturbance

Conceptual Optimal and holistic risk management

Hendricks and Singhal 
(2005)

Mismatch o f demand with supply (supply chain 
glitch); Supply, demand and process as major 
sources o f glitches

Empirical (survey) Extent o f adverse impact o f supply chain glitches on operating 
performance (lower sales growth and higher costs, assets and 
inventories)

Wagner and Bode 
(2008)

Supply, Demand, Regulatory, legal and 
bureaucratic, infrastructure and catastrophic

Empirical (survey) Operationalisation o f the supply chain risk construct and relationship 
between supply chain risks and supply chain performance

Tang and Tomlin 
(2008)

Supply, Demand, Process and Environmental as 
sources o f disturbance

Analytical Risk management by deploying demand, supply and process 
flexibilities

Wilson (2007) Transport as source o f disturbance Simulation (System 
Dynamics)

Impact on supply chain performance from transport disruption in 
different echelons

Business risks (Financial, Business, Regulatory, Legal) and product design related ris cs were not included as the focus is on the product delivery process.
* Proposed a framework for positioning supply chain risk issues in terms o f unit o f analysis -  type o f risk (in terms o f scale) -  risk handling focus;** Exact risk nomenclature used is different



• Most studies have categorized disturbances on the basis of their source or origin, 
though the sources used differ across studies. Studies by Svensson (2000), Zsidisin

(2003), Zsidisin et al. (2000, 2004), Giunipero and Eltantawy (2004) and Blackhurst 
et al. (2008) focus on disturbances originating at the supplier such as machine 

breakdowns, capacity constraints and quality problems. Others such as Johnson 
(2001) and Hallikas et al. (2002) have added demand related disturbances with Davis 

(1993) and Harland et al. (2003) further adding process related disturbances. Demand 
disturbance refers to variations in nature and volume of customer demand while 
process disturbance refers to disturbances such as those mentioned above for supplier 
disturbance which occur in an echelon’s own value adding process. Inappropriate 
information and control systems for matching supply and demand and its associated 
implications is recognised as a control disturbance by Mason-Jones and Towill (1998) 
and Christopher and Lee (2004). However, few studies have recognised it as a 

separate disturbance with most including it within demand risk. Finally, disruptive 

events such as earthquakes, terrorist incidents, fires and strikes have been classified as 
a separate environmental disturbance or disruption by Norrman and Jansson (2004), 

Juttner (2005) and Kleindorfer and Saad (2005).

• In terms of managing risks or disturbances, the Association of Insurance and Risk 

Managers (AIRMIC, 2002) prescribes four generic steps, which adapted for supply 
chain risks by Norrman and Johnson (2004) are: Risk identification (Identification of 

direct and indirect potential sources that could negatively affect the supply chain), 
Risk assessment (Prioritization of the risks identified based on their probability of 
occurrence and consequences), Risk management (Implementation of actions such as 

accepting, avoiding, reducing, sharing or transferring risks to reduce its consequences 

or probability of occurrence or both), Risk monitoring (Monitoring of large 

unresolved risks). Empirical evidence from the studies suggests that very few 

organizations follow these four steps rigorously. A study by the Computer Sciences 

Corporation had a similar observation: 43% of 142 companies studied reported their 

supply chains to be vulnerable to disruptions out of which 55% did not have any 
documented contingency plans (Poirier and Quinn, 2003). One reason for this could 

be the scarcity of suitable managerial techniques as highlighted by Christopher and 

Lee (2004) and Blackhurst et al. (2008).

16



Disturbances impact organisational performance negatively. The movement towards 
increased responsiveness, higher levels of agility and lower inventory levels has 

further increased the potential occurrence of such disturbances and resulting loss to 
organisations (Christopher, 2002). The subject of supply chain risk management is 

therefore important and requires intensive study. However, the concept of risk in 
supply chains is still in its infancy (Juttner et al., 2003). Most studies on the subject 

are at a ‘high’ conceptual level which provide a ‘big picture’ understanding of the 
risks and their management, but lack details. Researchers are unable to ‘drill down’ to 
the key variables influenced by or influencing the disturbances, the relationships 
among them and methodologies or tools to manage them. These studies also have 

lower practical utility as real applications require dealing with detailed decision rules, 
controls, procedures and circumstances. This has been highlighted by Blackhurst et al. 

(2005) who comment that from a practical perspective high level studies provide 
limited insights into how to deal with disturbances. Therefore, instead of the generic 

‘big picture’ approach to study disturbances, there is a need to focus on individual 
disturbances and investigate them in detail. Such an approach was used by Svensson 

(2000) and Blackhurst et al. (2008) for supply and by Wilson (2007) for transport 
disturbance, although the detailed nature of investigation as used in the thesis is much 

more comprehensive.

This thesis focuses on control disturbance. Control disturbance is endogenously 

generated from use of inappropriate information and/or control algorithms to match 
supply with demand (Mason-Jones and Towill, 1998; Geary et al., 2002). It has severe 

negative cost implications for firms and therefore its study is important. For example, 
Metters (1997) showed an individual firm incurring 10% to 30% additional costs from 
control disturbances. Propagation of these disturbances causes the cost implication to 

be even more severe in a multi echelon supply chain. Moreover, because of the casual 
attitudes of practitioners who either neglect them, or ignore them or passively accept 

them (McCullen and Towill, 2002) these disturbances continue to affect many supply 

chains. Though a few researchers such as Wilding (1998), Christopher and Lee (2004) 
and Towill (2005) have studied these disturbances, their approach was primarily 

conceptual while in this thesis a detailed data based approach is used. Moreover, the 
analysis in the thesis is based on multi echelon supply chains, and therefore
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contributes both to the limited literature on analysis of such structures and also 
increases the external validity of the findings.

23  Supply chain control disturbance

Each echelon in a multi echelon supply chain is required to solve a fundamental 

problem, which is: “how much to order from its upstream echelon which satisfies 

customer demand but also keeps its inventory level low”. This is the supply chain 
control problem. It is analogous to the production/inventory control problem whose 
purpose is to transform incomplete information about the market place into 

coordinated plans for production and replenishment of raw materials (Axsater, 1985). 
The task is difficult as both market place demand and receipts from suppliers is 
uncertain and generally involves the use of information such as demand, inventory 
and orders in the pipeline in the decision making, which are applied in a mathematical 

way using replenishment rules or on the basis of judgement. For a multi echelon 

supply chain the difficulties are manifold. This is because of the dynamic complexity 

from the interactions of individual echelons with different ordering practices and the 
generation of endogenous disturbances called control disturbances (Mason-Jones and 

Towill, 1998). These disturbances have been characterised by Geary et al. (2002) as 
arising from unavailability, non timeliness and inaccuracy of information and/or use 
of inappropriate control systems which use this information to determine 

procurement, supply and manufacturing orders. Typical control disturbances are the 

Bullwhip effect (Lee et al., 1997a, b) in which the order variability is increasingly 
amplified from downstream to upstream echelons and rogue or endogenously 
generated seasonality (McCullen and Towill, 2002) in which orders and other supply 
chain variables oscillate when no oscillation is present in the exogenous demand or 

oscillate at a frequency different from exogenous demand. Both these effects were 
demonstrated by Forrester (1961) using a simulation experiment. However, since 

then, while there has been extensive research on the Bullwhip effect (Geary et al., 
2006), research on rogue seasonality has been minimal (Kim and Springer, 2008).

2.3.1 The Bullwhip effect

The Bullwhip effect has been observed in various empirical sectors such as apparel,
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grocery, food, automotive, electronics and retail and across a number of echelons 
(Miragliotta, 2006). This effect has also been studied extensively using various 
methods (Geary et al., 2006; Miragliotta, 2006; Disney and Lambrecht, 2007). 
Different causes have been identified for its generation with researchers typically 
focussing on a single cause in their respective study.

23.1.1 Causes of the Bullwhip effect

The Bullwhip effect is associated with the upstream amplification of orders and Lee et 
al (1997a, b) identified and analysed four rational causes for its occurrence. Besides 
these rational causes, two additional causes from a behavioural perspective (bounded 
rationality and related biases in decision making) have been proposed by Sterman 
(1989) and Croson et al. (2005).

a) Demand signal processing and lead times (Forrester effect) -  The Bullwhip effect 
arises from the compounding of forecasts due to use of downstream orders rather than 

end customer demand in forecasting. Delays in information transmission and 

shipment further accentuate the order amplification as longer delays mean more safety 

stocks and safety stocks are typically added to forecasted demand for determining 
order quantity (Axsater, 2000). Studies have varied the nature of demand, forecasting 

process, inventory replenishment rules and tried information sharing to determine its 

impact on the Bullwhip effect (Miragliotta, 2006).

b) Order batching -  Aggregation of orders in a supply chain is the cause of order 
amplification in this case. Reasons for aggregation or batching could be economies of 

scale in production or transport (Burbidge, 1989), use of manufacturing resource 
planning (MRP) systems, the “hockey stick” phenomenon when multiple companies 

order at the same time (Lee et al, 1997a, b), economic order quantity (EOQ) based 
ordering and economic production quantity (EPQ) based production where set up 
times/costs are high (Hejazi and Hilmola, 2006). Analytical and simulation studies on 
this cause of Bullwhip have found a positive correlation between batch size and order 

amplification (Kelle and Milne, 1999; Holland and Sodhi, 2004; Potter and Disney, 

2006; Cachon, 1999; Riddalls and Bennett, 2001).

c) Rationing and Gaming — First highlighted by Houlihan (1987), this refers to the 
tendency of customers to over order during perceived threats of shortages or delivery
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unreliability. For example, a perception of production capacity shortage could prompt 
customers to inflate their orders, so that even after rationing they could still receive 
their desired requirement (Lee et al., 1997a, b) or to place multiple orders with 
different suppliers, which could be subsequently cancelled when the perception/actual 

shortage situation improved. Both these situations create demand distortions and 
amplifications. Cisco’s inventory write off problem (Barrett, 2001) was primarily on 

account of this cause. Few studies have addressed this cause of Bullwhip and those 
which have, have studied it from a contracting perspective using analytical methods 
(Cachon and Lariviere, 1999a, b, c).

d) Price fluctuation or the Promotion effect -  This is related to the practice of using 
promotions to stimulate demand. Demand increases in the short term, as customers 
take advantage of this opportunity to forward buy but the resulting excess stock 
causes demand in subsequent periods to fall. This distortion in demand has a 

significant adverse impact on the supply chain dynamics. This cause of Bullwhip has 
also seen limited research with one of the few studies on this subject being by 

Lummus et al. (2003).

e) Behavioural causes -  Two additional causes of Bullwhip have been proposed 

which are attributed to non rationality in decision making and have been identified on 
the basis of experimentation with human subjects in a role playing game, the Beer 

game (Sterman, 1989). The supply line underweighting (SLU) cause is characterised 

by participants underestimating the supply line (orders placed but not delivered) and 

placing excess orders resulting in the Bullwhip effect (Sterman, 1989). A different 
behavioural bias called coordination stock was identified by Croson et al. (2005) who 

observed variability in orders despite the demand being constant and which was 
known to all the players. According to the authors this was because individual players 

ordered more so as to avoid the risk of poor decisions made by other players.

23.1.2 Methods used to study the Bullwhip effect

Researchers have used various methods to study this subject such as statistical or 
operational research (OR) methods, control theory methods, system dynamics 

simulation and management games.
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a) Statistical/OR methods — This approach involves the formulation of the problem 

as a difference equation under assumed operating conditions (demand, lead time, 
forecasting and ordering processes) which is explicitly solved by minimising a cost 
function (or surrogate). The dynamic performance such as order amplification is 

implied by the mathematical solution. This method has mostly been used to study the 
Forrester effect under different settings. For example, Lee et al. (1997b) and Chen et 

al. (2000) investigated the impact of stationary AR (1) demand, different forecasting 
techniques and an adaptive base stock policy while Daganzo (2004) focused on the 
relative value of past demand information on the Bullwhip effect.

b) Control theory methods -  This method involves representing the supply chain 

(structure as well as forecasting and ordering policies) in an input-output format 

which is then converted into a transfer function and analysed to draw conclusions 
about its impact on the Bullwhip effect. The impact of different demand processes, 

forecasting techniques, and ordering policies have been investigated using this 
approach, a summary of which is provided in the review papers by Ortega and Lin

(2004) and Sarimveisa et al. (2008).

c) Systems dynamics simulation - This method was advocated by Forrester (1961) 

as a method of investigating the dynamical effects in large, complex systems. This 
method’s usage involves representing the relationships between variables as causal 

loop diagrams, converting them into differential equations and then visually studying 
the output profiles of variables to understand the cause effect relationships. This 

approach has significant advantages vis-&-vis analytical studies in terms of ability to 

handle multi echelon structures, arbitrary demand process, forecasting and ordering 

policies as well as non-linearities such as backlogs and capacity constraints. It has 
therefore been extensively applied for understanding supply chain dynamics 

especially the Bullwhip effect in multiple settings. For example, Potter and Lalwani 
(2008) use system dynamics simulation to investigate the impact of demand 
amplification on freight transport while Wilson (2007) uses it to assess the impact of 

transport disruption on supply chain performance. A review of studies based on 
system dynamics modeling in supply chain management is given in Angerhofer and 

Angel ides (2000).
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d) Management games -  Management games, especially the Beer game (Sterman, 
1989) has been used to understand the Bullwhip effect. This game represents a typical 

production-distribution system with four echelons (retailer, wholesaler, distributor and 
factory) where the player managing each echelon enacts the role of an inventory 

manager and makes decisions on ordering from his/her supplier. The decision 
environment is complex with a non-stationary demand pattern, time delays in ordering 

and shipment, uncertainty in behaviour of suppliers and customers, short response 
times and the need to optimise inventory/backlogs. Despite being a considerable 

simplification of reality, the Beer game structure is still representative of many real 
world supply chains and it is therefore not surprising to see the game being used in 

many Bullwhip related studies (Croson and Donohue 2003, 2006, Disney et al. 2004, 
Diana and Katok 2006). Though the focus of these studies has been on the 

behavioural origins of the Bullwhip effect and for which the role playing version of 
the game was used, the Beer game has also been simulated in many studies (van 

Ackere et al., 1993; De Souza et al., 2000; Shukla et al., 2009). Beer game 
incorporates non-linearities from backlogs, multiple echelons, time delays as well as 

the shipment variable which make it realistic and therefore more attractive for 

simulation.

23.13  Measurement of the Bullwhip effect

Multiple measures of Bullwhip have been proposed in the literature, which originate 

from the different methods used to study it. Studies such as Lee et al. (1997b) and 

Chen et al. (2000), which use statistical methods, consider the ratio between order and 
demand variances as the measure, with a ratio greater than one indicating Bullwhip. 

Disney and Towill (2003) however, argue that this measure reflects only half of the 

Bullwhip problem and suggest inclusion of the ratio between net stock and demand 
variance in the measurement. Use of the coefficient of variation rather than variance 
has been suggested by Fransoo and Wouters (2000) as it eliminates mean differences 

between the profiles while Taylor (1999) has proposed standard deviation in place of 
variance. Taylor (1999) also demonstrated the intra organisational existence of 
Bullwhip, unlike most studies which focus only on Bullwhip across organisations, and 

highlighted the need to measure it using activity level information.
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System dynamics based studies typically use a step input as the test demand pattern, 
and hence peak order value is used as the measure of order amplification and 
Bullwhip. This is used as the Bullwhip measure in Beer game studies also, which use 

step as the exogenous demand profile. Researchers using the filter theory approach 

such as Dejonckheere et al. (2003) have defined “noise bandwidth” as the Bullwhip 
measure which is the area under the squared frequency response (FR) curve. What is 
the best measure among the above? Towill et al. (2007) tried different measures: peak 
order, variance and noise bandwidth with a simulated data set and found Bullwhip 

assessment to be conflicting. While no Bullwhip was indicated by the variance 

measure, the peak order and noise bandwidth measures indicated significant 
Bullwhip. They rightly caution that “Bullwhip is in reality not a generic term meaning 
the same thing to all system users. Instead it is application specific”. In terms of the 

Bullwhip measure to be used they state that “which Bullwhip measure to use should 

not depend on the mathematics/simulation tools exploited in scheduling packages, but 
on the user operating scenario”. Hence, the appropriate measure to be used is entirely 
contextual and based on requirements.

Overall it was found that research on control disturbance related to the Bullwhip 

effect has been extensive. It has been studied empirically, its causes have been 

identified by using multiple methods, various measures have been proposed for its 
measurement and ways to mitigate it have been suggested. Also, most cause and 
mitigation oriented studies have focussed on design aspects such as design of 
structure and information flows (number of echelons, information sharing, lead times) 
and design of control practices (forecasting and ordering), the assumption being that 

Bullwhip can be designed away. The other control disturbance besides the Bullwhip 

effect is rogue seasonality which is discussed below.

23.2  Rogue seasonality

Rogue seasonality refers to cyclic patterns in orders and other supply chain variables, 
which are endogenously generated from the inventory and production control systems 
used, and are not present in exogenous customer demand. In the case of cyclicality 
being present in exogenous demand, rogue seasonality manifests itself as orders and 

other supply chain variables oscillating at a different frequency than exogenous 
demand. Rogue seasonality could wrong foot the decision makers who, believing
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rogue seasonality to be real demand, could either be unnecessarily ramping their 

production up or down and increasing their on-costs or buffering themselves via use 
of inventory and increasing their holding costs. Moreover, rogue seasonality may not 
be localised but may propagate due to the Forrester effect, causing cost inefficiencies 
throughout the supply network. Metters (1997) showed that costs to the extent of 10- 
20% could be reduced by elimination of such seasonal variations.

Rogue seasonality is present in many supply chains and to highlight this, sample data 
available in the literature is used as given in Figure 2.1. The data was used in the 
context of Bullwhip in the respective studies.

The first plot in Figure 2.1 depicts the dynamics in a three echelon electronic supply 

chain (Kaipia et al., 2006). Rogue seasonality is evident with the oscillation frequency 
of the upstream variable (Supplier shipments to OEM) different from customer sales 

(channel sell-through). The second plot (Lee et al., 1997a) shows the orders placed 

not only amplified in relation to actual sales, but also oscillating with almost constant 

periodicty, though no such periodicity is apparent in the actual sales profile. Finally, 
the third plot is the ouput generated from the empirical simulation of a four echelon 

beverage supply chain which also shows periodic oscillations in the most upstream 
variable (procurement) whose periodicity is different from customer sales (Torres and 

Moran, 2006).

23.2.1 Previous research on rogue seasonality

Few studies have looked at rogue seasonality specifically with most studies 

considering it together with Bullwhip. This is also evident in the recent review of 
Bullwhip effect by Miragliotta (2006). It was first demonstrated by Forrester (1961) 
who used a three echelon factory-distributor-retailer simulation model to demonstrate 

the Bullwhip effect as well as the generation of seasonality (periodicity of 5-10 

months) from random customer demand. He highlighted the role of system 

characteristics such as its structure, feedback loops, time delays and ordering policies 
for this generation. McCullen and Towill (2002) also used a similar approach to 
demonstrate and explain both Bullwhip and rogue seasonality. Oscillation in orders 

and inventory was also observed in a role playing four echelon supply chain game 
(Beer game) which was subjected to a step change in demand (Sterman, 1989).
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Besides the reasons suggested by Forrester, an additional factor suggested for this 
behaviour was the the inability of the players to account for the supply line (SLU).

Some other studies such as those by Towill (1982), Towill and del Vecchio (1994), 

Towill et al. (2007), Dejonckheere et al. (2003) and Jaksic and Rusjan (2008) have 

indirectly studied amplification of rogue frequencies in view of their use of control 
theory, specifically frequency response (FR) analysis to study the Bullwhip effect. 
These studies have exploited the mathematical equivalence between time and 
frequency domain representations to analyse the order amplification in the latter 
domain with Dejonckheere et al. (2003) even deriving a measure of Bullwhip effect in 

this domain called “noise bandwidth” (area under the squared frequency response of 

the order variable). Jaksic and Rusjan (2008) and Dejonckheere et al. (2003) also 
studied the impact of different forecasting and replenishment policies on order 
amplification using the frequency domain approach. However, it is to be noted that in 

these Bullwhip oriented studies, frequency domain analysis is done for only one 

(order) variable with information on all frequency channels being used. Though rogue 
seasonality is also analysed in the frequency domain which is suited for data with 

cyclicality, (Chatfield, 2004), the nature of analysis is different as will be seen in later 
chapters.

The literature review identified only two studies which were exclusively focussed on 
rogue seasonality. Kim and Springer (2008) used an analytical system dynamics 

approach with a dyadic structure to determine the conditions under which rogue 
seasonality could arise in a supply chain. The study assessed the role of ordering 
policy parameters, that is, the weights assigned to inventory gap and pipeline gap 
terms in generating strong and weak cyclicality, where strong cyclicality was defined 
for the behaviour where variables (specifically inventory and pipeline stock) 
alternately overshot and undershot their equilibrium values before converging while 

cyclicality was defined to be weak if they did so only once. Though focussed on rogue 
seasonality, the study by Kim and Springer is not comprehensive; it considers only a 

dyadic structure, it does not consider the impact of forecasting policies on the 

dynamics and analyses the dynamics of only two system variables (inventory and 

pipeline stock). Secondly, the study defines rogue seasonality from a subjective 
perspective, though with a frequency bias; a profile with multiple oscillations is
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classified as strong cyclicality while that with one or less cycle as weak cyclicality. 
On the other hand, studies such as Metters (1997) consider amplitude of seasonality to 

be a more relevant factor in terms of adverse impact on cost efficiency of operations. 
Finally, Kim and Springer complicate their classification of rogue seasonality further, 
by introducing another factor called external shock whose magnitude (small/large) 
also determines the nature of rogue seasonality (strong / weak).

The second study on rogue seasonality is empirically oriented and uses the context of 
a steel supply network (Thornhill and Naim, 2006). Multiple variables are analysed 

using a specific technique to characterise the cyclical disturbances in the network. The 
technique called spectra principal component analysis (SPCA) involves the use of 
spectra (frequency domain representation) to make variable profiles invariant to lags, 
PCA (Principal Component Analysis) to reduce dimensionality by exploiting the 

correlation between the spectra and plotting and clustering the spectra to discriminate 
rogue seasonality from seasonality in exogenous demand. However, this exploratory 

study used only a single technique for rogue seasonality detection and tested it using 

only one case study. The technique used was also not automatic and required many 
decisions to be made in terms of choosing the number of principal components (which 
also needed to be less than three to enable plotting), deciding cluster membership 

from the plots and interpreting profiles of the clusters. Findings from this study by 

Thornhill and Naim need to be validated and extended through multiple rogue 

seasonality contexts, alternative techniques for detection, and use of a more automated 

process.

It is evident that rogue seasonality is present in many supply chains and cause 

significant cost inefficiency which makes its study quite important. However, the 
research focus on it has been quite limited, with most studies continuing to treat it as a 
part of the Bullwhip effect. Thus far no measure for rogue seasonality has been 
defined. Also, an exhaustive search of the literature revealed just two studies with an 
exclusive focus on rogue seasonality. The first study had a limited scope and was 

focussed on identifying ordering control parameters to reduce rogue seasonality 
generation and is therefore similar to the vast majority of similar Bullwhip effect 

studies, which seek to design out control disturbances by appropriate choice of 

policies and parameters. The second study investigated rogue seasonality in an
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empirical setting but limited themselves to one supply network and one technique, 
with the technique used also requiring manual inputs during application.

A more rigorous and intensive study of the rogue seasonality in supply chains is 
therefore required similar to that done for the Bullwhip effect (see Section 2.3.1). One 

way to proceed would be to follow the Bullwhip research pathway and design control 
policies which eliminate or minimise the generation of rogue seasonality.

2 3 3  Issues with design based approaches to manage control disturbances

A vast majority of studies on control disturbances (mostly Bullwhip effect oriented 
and one on rogue seasonality) have focussed on determining appropriate control 

parameters so that such disturbances could be a-priori designed out of the system. 

Though no doubt important, such an approach may be less effective in many real 
world environments. This is because real decision making contexts are in general 
complex, and therefore, less amenable to control. More importantly, the prescriptions 
for controlling such complex contexts have mostly been derived using simplistic 

dyadic structures and which unrealistically assume complete rationality in decision 
making.

233.1 Complexity in supply chains

Real world supply chains are complex. The major factors which make supply chains 

to be complex are:

• Multiple information and material flows -  A complex web of interlinked 
information and material flows spanning multiple suppliers, manufacturers and 

distributors (Lee and Billington, 1993) which have arisen from market pressures to 

drive down costs, introduce new products and expand into new markets.

• Dynamic nature and uncertainty -  This arises from the state of flux and transient 
state that supply chains continuously operate in (Haywood and Peck, 2004) from 
changes such as in marketplace demands and product specifications, uncertainties 
such as in capacity, availability, manufacturing and transportation times and quality 

and continuous improvement initiatives within the organizations and the wider
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industry as a whole. The interactions between the supply chain partners and 
propagation of uncertainties further complicate the dynamics (Parunak, 1999).

• Conflicting objectives among partners - Difference in the constraints and 

objectives of individual companies cause multiple rather than a single, unified plan for 
the supply chain (Ganeshan and Harrison, 1995; Hausman, 2003). Even if a few 

partners in a supply network have conflicting objectives, such as maximisation of 

their individual profits, this could disturb the dynamics across the network both in 
terms of information/material flows as well as profitability.

The resulting complexity from dynamic interactions, among multiple echelons with 

different objectives, in an environment which is uncertain, makes design based control 
difficult. This has been recognised by many researchers such as Baader and Montanus 

(2008) who comment that “Because o f the growing complexity o f logistical structures, 
the number o f planning parameters has expanded so dramatically, that an all 
encompassing optimisation is not possible. Planning proceeds sequentially, in which 
actions o f previous steps are assumed as constant for optimisation o f parameters at 
the next step. Hence, in planning one generally restricts the focus to a selection o f the 
most important planning parameters. The lofty goals o f avoiding “events ” can 

therefore not be realised.” Similarly, McCarthy and Tan (2000), Radjou (2002) and 

Lawrie (2003) also agree with the viewpoint that since supply chains/networks often 
display unpredictable behaviour, they can never be completely controlled through top- 

down planning, however collaborative it might be.

Another related factor is that while the complexity of supply chains has increased 

significantly, the design prescriptions to manage this complexity have not kept pace. 
Most studies on Bullwhip (covered in Section 2.3.1) and the study by Kim and 

Springer (2008) on rogue seasonality, which have proposed control design policies 
and parameters to minimise the magnitude of such disturbances, have done so using 

dyadic, and therefore, analytically tractable structures. These policies and parameters 
therefore have limited applicability in real world applications. Another reason for the 
limited applicability is that these policies and parameters have been derived on the 
basis of complete rationality in decision making, while departures from rationality are 

well known in most real world environments.
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2.3.3.2 Irrationality in decision making

Most theoretical work in operations management including control design is based on 

a normative or prescriptive approach and assumes that decision makers are rational 
and perfect optimisers. However, detailed tracking of individuals’ decisions shows 

that their observed behaviour often does not fit the predictions of such theoretical 
models. Rather than conforming to traditional assumptions of narrow self interest and 

unbounded rationality, people exhibit decision making biases, use heuristics, and 
prefer outcomes that are not strictly value maximising. The Beer game, despite being 

a much simpler decision making environment compared to the real world, clearly 
highlights this divergence between the theoretical and practical. In the game, players 
take up individual roles (retailer, wholesaler, distributor and factory) in a serial, 

decentralised supply chain, with each player needing to make just one decision every 

period: how much to order from its supplier which fills downstream customers 
demand but does not create either surplus inventory or excess backlogs. Players are 

found to be unable to apply appropriate ordering policies even in this relatively simple 
situation. Many players in the game do not adequately account for the supply line 

(orders placed but not yet received) in their ordering rule and cause the generation of 
both Bullwhip and rogue seasonality across the supply chain (Sterman, 1989). Even 
with a simplified decision context with a less complex demand pattern and 

information sharing between the players, inappropriate ordering behaviour is still 

observed. For example, Croson and Donohue (2006) used uniform demand instead of 
step demand used by Sterman and ensured sharing of individual inventory level 

information across the supply chain but still noted the persistence of the supply line 
underweighting behaviour in ordering. Similarly, Wu and Katok (2006) used uniform 

exogenous demand, made supply line visible to the respective players and even 
repeated the games so that players could benefit from the learning in the previous 
game but still observed the same underweighting bias in ordering behaviour. Even a 
constant demand and which was known to all players in the study by Croson et al.

(2005) generated Bullwhip effect and rogue seasonality though a rational response in 
such a situation would have generated a flat order profile at the level of exogenous 
demand. Communication of the optimal ordering rule to the players, in a subsequent 

phase of the experiment, also did not improve the ordering behaviour.
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Experiments other than the Beer game have also noted the divergence from 
predictions of rational models. For example, Schweitzer and Cachon (2000), in their 

investigation of newsvendor decisions, which are fundamental models of supply chain 
systems, demonstrated that choices made by human subjects in the experiment 

systematically deviated from those that maximized expected profit. Subjects 
consistently ordered amounts lower than the expected profit-maximizing quantity for 

high-profit products and higher than the expected profit-maximizing quantity for low- 
profit products so as to reduce ex-post inventory error, the absolute deviation between 

the amount ordered and realized demand. Similarly, Loch and Wu (2007) in their 
review of behavioural operations management refer to a study by Rapoport (1966, 

1967) who found that decision makers in a stochastic multistage inventory task 
generally under-controlled the system, and orders were correlated with past demand 

even when demand draws were independent. The behavioural bias in decision making 
is also evident in information technology (IT) based decision support systems (DSS), 

where decision makers, when swamped with significant amounts of information and 
complexity resort to use of heuristics or simple rules of thumb (Bendoly and Speier, 

2008). Even in an empirical enterprise resource planning (ERP) context, which 
typically imposes strong and difficult to change structures, Bendoly and Cotteleer 

(2008) observed systematic circumvention of protocols.

In summary, rationality in decision making has been contradicted in a range of 

studies. This is on account of the numerous cognitive, informational, temporal and 
other limitations which bind human rationality (Loch and Wu, 2007; Bendoly et. al, 

2006). In the context of real world supply chains, with all their complexities in 
material and information flows, most of the above highlighted limitations would be 

operative, causing decision making to be not entirely rational. Normative control 

policies and parameters, which are based on rationality in decision making, would 

therefore be less effective in designing away control disturbances in such 

environments.

Hence to summarise, supply chains are complex entities and therefore difficult to 
control. Moreover, the policies and parameters used for control are too simplistic in 

relation to reality (and hence less effective), having being developed under dyadic 
settings. Finally, there is additional uncertainty about the way these policies and
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parameters are applied in practice, due to the behavioural biases in decision making. 
Hence, a top-down design based approach for managing control disturbances has 

significant limitations. Though important and relevant, it needs to be complemented 

with a bottom-up sense and respond based approach. Rather than uniformly applying 
generic control design/parameter prescriptions on all supply chains, the more 

problematic ones could be identified (sensed) to which appropriately contextualised 
generic rules are applied (respond). This is akin to the management by exception 
philosophy.

2.4 Sense or detect and respond based approach

The sense and respond (SR) based approach was conceptualised by Haeckel (1999) in 

a strategic context, who recognised the difficulty in planning in an environment where 
unpredictability was the norm. He drew inspiration from Peter Drucker who wrote 

that “uncertainty in the economy, society, politics has become so great so as to render 

futile, i f  not counterproductive, the kind o f planning most companies still practice: 
forecasting based on probabilities ”. The SR approach uses a four step decision 
making cycle called SIDA (Sense-Interpret-Decide-Act) as depicted in Figure 2.2 

below. It is adapted from the OODA loop cycle (an acronym for "observe, orient, 

decide and act) used by Col. John Boyd (USAF) to explain the significant successes 
of U.S. fighter pilots over their North Korean counterparts during the Korean War. 
The OODA loop essentially states that if one makes informed decisions and takes 
action faster than one’s enemy, then one will outperform the enemy. As the speed of 
the OODA cycle increases, the enemy remains continually (both tactically and 

intellectually), a step behind.

Air force OODA loop B usiness team ing loop
What's going on out there ?
(Environmental Information)

Decide

Orient Interpret

Act Act

Observe Sense

How do we do things around here ? 
(Business processes)

Figure 2.2 Decision making loops related to sense and respond approach
(Haeckel, 1993)
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The components of SIDA are:

• Sense: Refers to the use of probes or data to assess changes in the context

• Interpret: Involves applying context to the data, that is, transforming it into 
information by using methods such as filters, models and data mining

• Decide: Refers to choosing a particular option from an alternative set of options 
based on the interpretation of the situation

• Act: Refers to implementing or acting on the choices made

Use of information is central to SIDA with Haeckel (1993) using the term “manage by 
wire” for businesses which is analogous to modem aviation’s fly-by-wire systems. 
The SR framework has been used in many studies at the strategic level including a 

recent one by Mathiassen and Vainio (2007) who used it to investigate the dynamic 
capabilities in two small software companies. The concept of sense or detect (the 
terms sense and detect have been used interchangeably hereon) has also been applied 

at an operational level and across multiple domains. This is summarised in Table 2.2.

Table 2.2 Application o f detection based approach in different domains

Domain > t^ fc ilifor iiia tion  used Nature of .T 
Detection

Authors

Finance Spend pattern -  nature, amount, 
location, frequency

Consumer fraud Edge and Sampai (2009)

Telecom Geographical origin and destination o f 
call, call time, duration and day o f  the 
week when call made

Consumer fraud Phua et al. (2005)
Fawcett and Provost (1997) 
Cortes and Pregibon (2001)

Stock Trading Options and stock related information 
such as volumes, different kinds o f 
prices and market news

Insider trading in 
stocks

Donoho (2004)

Equipment
Maintenance

Operating parameters, vibration 
characteristics, cutting fluid chemistry

Condition 
monitoring/ fault 
detection o f 
equipment

Raheja et al (2006) 
Lee et al. (2006) 
Olsson et al. (2004) 
Jeong et al. (2006)

Healthcare Individual and population health 
indicators such as absenteeism from 
work, physician visits, laboratory tests 
and drugs consumption

Early detection o f 
disease outbreaks

Buckeridge et al. (2005) 
Lamma et al., (2006)

Computer
Systems

Data trail left by users and system 
activity information like number o f 
accesses, time o f  day, number o f 
logins/failures

Unauthorized
intrusion

Lee and Stolfo (1998) 
Zhu et. al. (2001)

Environment Seismic signals Earthquakes Dzwinel et al (2003)
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The successful application of detection based approaches in a wide range of domains 

gives confidence that it could be applied in supply chain management applications 
including rogue seasonality. However, it is first necessary to understand the current 
status of detection based approaches in supply chain management. Also, SR being an 

information centric approach, it is also important to understand the nature and extent 
of information availability within supply chains; and finally, what techniques could 
use this information to enable detection.

2.4.1 Status of detection based approaches in supply chain management

The need for detection based approaches has been recognised by many recent studies 
on supply chain risk management. For example, Hendricks and Singhal (2003) 

suggest development of the ability to predict supply chain glitches (or disturbances) as 
a means of mitigating the negative economic effects of such glitches. According to 
them “Firms often come to know about problems too late to avoid or minimize the 
adverse consequences. A desirable capability would be the ability to predict potential 
glitches. Developing predictive capabilities involves selecting and tracking leading 
indicators o f future business performance; extracting, integrating and transforming 

data from different systems to generate the leading indicators; delivering information 
on these indicators on a real-time basis; and providing visibility into the extended 

supply chain, including internal operations, suppliers, and customers”.

Similarly, Craighead et al. (2007), using a multiple-method, multiple-source empirical 

research design identify early warning capability as key to reducing the severity of the 
impact of a supply chain disturbance with warning capability defined as “the 

interactions and coordination of supply chain resources to detect a pending or realised 
disturbance”. According to them the quicker a supply chain disturbance is detected 

and pertinent information about it communicated to the relevant entities, the more 

time the supply chain would have to inoculate itself from its negative effects resulting 
in a reduction in the severity of the impact. They also highlight the need for this 
warning capability to span multiple echelons and be communicated on an exception 

basis.

The need for visibility and predictive analysis systems to identify potential problems 

and ensure quicker response is also highlighted by Handfield et al. (2008) while
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Elkins et al. (2008) suggest the creation of an “exception” event detection and early 
warning system for real time supply chain operations and supply based management. 

Inputs from senior managers in logistics and supply chain functions were used to 
formulate these recommendations. Finally, Bodendorf and Zimmermann (2005) 

highlight the importance of disturbance detection by describing the behaviours of two 
companies who faced supplier breakdowns in which one had and the other did not 
have a detection system. The plots are given in Figure 2.3.
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Figure 2.3 Benefits of automatic disturbance detection in a supply chain context 
(adapted from (Bodendorf and Zimmermann, 2005)

The plots show how with reduction in reaction time, the options to mitigate the impact 
of a disturbance drop sharply, with a resultant increase in the cost of problem solving. 

Though these diagrams are not based on real data, the non linear profiles assumed are 
close to representing what happens in reality. The company without an automatic 
disturbance detection system knows about the supplier breakdown only when it does 

not receive the material as ordered. Because all the planning would have been based 
around processing this material including use of labour and machines, the sudden non 

arrival of material means fewer options to redeploy these and in an extreme case 

could result in idling of resources. The adverse cost implication of such an occurrence 
would obviously be very high. In contrast, the company with an automatic disturbance
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detection system gets greater reaction time, which it uses to reschedule production 
and/or use alternate source and/or prepare the customer for late arrival, all of which 
reduce the cost implication of the disturbance.

In terms of the current state of detection approaches, these are not available at the 
supply chain level at present. For other approaches which are available, their 
operational aspects are not known. These are discussed below. In this thesis we 

confine ourselves only to information based automated detection approaches.

Tracking and tracing systems are used by the logistics sector to record and 

disseminate information relating to product movement and delivery across multiple 
transportation/warehousing stages and detecting any delays in the same (Hoek, 2002). 

However, very little analytical processing is involved. The operational scope of 
disturbance detection in these systems is also restricted to a single logistics service 
provider (Karkkainen et al., 2004), though there are some recent examples of such 
systems being used to handle multiple shippers and customers. For supply chains, 

Supply Chain Event Management (SCEM) systems are being used to detect 
discrepancies in transaction ordering and order fulfilment processes (Otto, 2003). 

These are information centric systems normally integrated with ERP systems in which 
the status of all predefined events are monitored vis-^-vis plans, and in case of 

deviations exceeding specified thresholds, notifications are issued or corrective 

actions automatically triggered. The SCEM system is also intra enterprise and lacks 

intelligence to identify new problems or predict initiation of problems (Bodendorf and 

Zimmermann, 2005).

Recently, researchers at IBM have tried to incorporate in an SCEM system, both a 
predictive ability for events/disturbances as well as an action ability to neutralise the 

impact of disturbances through use of analytical techniques such as simulation, 
optimisation and data mining (Buckley et al., 2006). They demonstrated the 
effectiveness of their approach using two pilot case studies: demand conditioning in 

personal computers and inventory management in a technology supply chain. 

However, their explanation was at a high level and offered limited insights on 
information and the analytical techniques used. Finally, prognostic logistics which use 

real time information to predict the future state of a system (Cruz et al, 2007) and 
autonomic logistics (Menotti, 2004) which refer to technologies that predict failure in
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operating systems, monitor stockage levels in consumables, automatically report 
impending failures and order replacements without human intervention are concepts 

related to detection. However, very few studies have covered these subjects and those 
that have, have also given only high level descriptions of the application contexts.

Overall, sense or detect and respond seems to be a promising approach for application 
in supply chain problems, especially those pertaining to disturbances, as highlighted 

by several recent studies on the subject. Though this approach has been applied at 
both strategic as well as operational levels and across various domains, its application 

in supply chain management has been limited and it has been applied within a limited 

context. Few research studies have discussed detection based approaches in supply 

chain management and even fewer have provided details about the information and 
techniques that they used for detection.

2.4.2 Supply chain information in the context of detection

Information available for detection is a function of the level of trust and the nature of 

collaborative relationship among the supply chain partners. It therefore varies across 
supply chains. At one extreme, there are entities in traditional supply chains sharing 
only order information, while at the other extreme in a collaborative planning and 
replenishment (CPFR) relationship, information on multiple variables such as 

demand, stocks, orders, production, shipments, returns, capacity, capacity utilisation 
and backlogs is shared (Lee and Whang, 2000; Fliedner, 2003). Other collaborative 

formats such as vendor managed inventory (VMI) typically share sales and inventory 
information (Disney and Towill, 2003). While the information sharing at present is 

predominantly used for improving the replenishment processes, the same could be put 
to use for detecting disturbances. This has been highlighted by many researchers such 

as Tang (2006) who identify information management as a separate category for 
managing supply chain risks and Elkins et al. (2008) who emphasise the role of 

visibility of material and information flows for a similar application.

2.4.3 Generic approaches and techniques of detection

Given that detection oriented studies in supply chain management did not provide 
operational details about techniques used, it is important to explore generic techniques
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that could be applied in the present context. There are broadly two kinds of 
information based approaches for disturbance detection as depicted in Figure 2.4: 
Change point detection or statistical based and signature based.

Change point detection 
/Statistical methods Signature based
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Figure 2.4. Generic disturbance detection techniques 

2.43.1 Change point detection techniques

Change point detection approaches, which are also referred to as statistical 
approaches, are based on assessing a change in the profile of a variable in statistical 

terms such as a change in probability distribution or a change in the parameters of a 
fitted distribution (Basseville and Nikiforov, 1993). In case of the change being 

significant based on a specified threshold, the test signal is characterized as a 
disturbance. This technique has been extensively applied in the manufacturing and 

process industries (Montgomery, 2005; Venkatasubramanian et al., 2003) after 

adapting it for different information profiles such as She wart for stationary time 
series, cumulative sum or CUSUM for detecting small shifts, exponentially weighted 
moving average or EWMA for correlated time series, and approaches based on fitting 
models like AR1MA or regression to data for detecting small shifts and generic time 
series. Multivariate generalizations of these techniques, where the multiple variables 
are combined into a mean vector using the correlations between the variables are also 

being used in detection.
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At the supply chain level use of change point techniques for detection has been quite 

limited (McCarthy and Wasusri, 2002; Morgan and Dewhurst, 2007). One reason is 
that supply chains typically involve a large number of variables and the relevant 
change point detection technique, such as of the multivariate kind which could be 

applied in such a case, lose their effectiveness with an increase in the number of 
monitored variables (Woodall and Montgomery, 1999). Secondly, supply chains are 
cascaded mutli-stage processes and modelling such processes and fixing thresholds 
for disturbance detection is difficult (Tsung et al., 2008; Batson and Gough, 2007). 

Fixing thresholds is also diffficult because supply chain variables are typically non 
stationary with a mix of various trend and seasonality components. Given the 
difficulties in applying these techniques at a supply chain level for detecting 
disturbances, focus shifts to the alternative signature based techniques.

2.43.2 Signature based techniques

Signature based techniques are based on developing signatures or characteristic 
profiles of variables associated with different disturbances. A test instance consisting 
of a profile of relevant variables is compared with these signatures to determine extent 
of similarity. If found similar, based on a user defined threshold, the test instance is 

classified as a disturbance of the corresponding type. Signature based techniques are 
gaining in popularity in various domains in view of their flexibility, as they do not 
have any constraints in terms of number of variables as in change point detection 
techniques, and availability of greater variety of tools. In fact all the studies cited in 

Table 2.2 have used signature based techniques for detection. There are two parts to 
signature based techniques: a) Techniques to determine signatures or rules of 

detection from information, b) The nature of information used in these techniques: 

raw time series or time series which had been transformed into a different domain.

General data mining literature suggests three kinds of techniques for determining 
signatures or rules: Classification, Association and Clustering (Han and Kamber, 
2006; Tan et al., 2005). In the classification technique, a set of pre-categorized data 
objects are used to develop signatures or rules, which are subsequently used to 
classify new objects. On the other hand Association rules derive multi variable 
correlations that is correlating which two events or things are associated together. In 

the context of disturbance detection this could mean determining what time based
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sequences of events (patterns or distinguishing features) of different variables are 
frequently encountered with a disturbance. Finally, clustering techniques are 

concerned with the partitioning of data sets into a small number of homogenous 
groups or clusters so that data objects in a group share the same properties, while 

those in different groups are dissimilar. Rules are derived from the nature of clusters 
formed. Though all the three techniques are used for static data, for time series data, 
clustering has been used the most (Liao, 2005).

In terms of the nature of information to be used in clustering, use of raw time series, 
though easier to interpret, creates problems in computation due to large, high 
dimensional data sets as well as lower accuracy because of interference from noise. 
The use of alternative time series features has therefore been explored such as 
amplitudes of Fourier transform (FT) (Agrawal et al., 1993; Caiado et al., 2006), 

coefficients from an autoregressive (AR) model (Kalpakis et al., 1999; Maharaj, 2000; 
Ting et al., 2003), wavelet coefficients of discrete wavelet transform (DWT) (Chan 

and Fu, 1999; Lin et al., 2004; Zhang et al., 2005), autocorrelation function (ACF) 
(Wang and Wang, 2000; Vlachos et al., 2006) and cross correlation function (CCF) 

which is a feature of pairs of time series (Bohte et al., 1980; Baragona, 2001; Aono et 

al., 2006).

The problem with these studies is that most of them have demonstrated the 
effectiveness of their respective features using synthetic, non contextual data. Since 

the results and effectiveness of different features is domain specific and none of these 
studies have used any supply chain related data, their applicability in the supply chain 

context is limited. Secondly, few studies have compared the performance of their 

features with other features, and those that have, have used only one or two features in 
the comparison (Keogh and Kasetty, 2003; Liao, 2005). Hence, applying and testing 
different time series transformations and features for time series clustering of supply 

chain data constitutes a gap.

2.5 Summary

The subject of disturbances in supply chains has received increased academic as well 
as practitioner interest in recent times. Researchers have studied this subject from 
different perspectives such as understanding the source of these disturbances, their
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assessment and management. However, most of them have used a conceptual or 
empirical approach with quantitative data driven approaches being used by very few 

researchers. Even the empirical studies have being conducted at a high level using 
primarily qualitative approaches (Svenssson, 2000; Zsidisin, 2003; Norrman and 

Jansson, 2004). Such studies provide only a limited usefulness. This is because 
researchers and practitioners are unable to understand the key variables influenced 

by/influencing the disturbance, the relationships among them and methodologies or 
tools to manage them (Blackhurst et al., 2005). Non consideration of realistic multi 
echelon structures in these studies further limit their practical utility.

A more useful approach is to focus on individual causes of disturbance and investigate 
them in detail using multi echelon structures and quantitative approaches. This 
practically relevant approach would help create risk management tools and techniques 
whose scarcity has deterred companies from adopting risk management practices 
(Christopher and Lee , 2004; Blackhurst et al., 2008). This approach has been 

followed in the study.

Disturbances can originate from demand, supply, process, control and environmental 

sources. Among these, control disturbance, which is endogenously generated from use 
of inappropriate information and/or control algorithms to match supply with demand 
(Mason-Jones and Towill, 1998) has a significant negative impact on cost efficiency 

(Metters, 1997; Lee et. al, 1997a, b) and also affects a large number of supply chains 
(Geary et. al, 2002; McCullen and Towill, 2002). The two manifestations of control 
disturbance are, the Bullwhip effect (Lee et al., 1997a, b) in which the variability in 

orders is amplified from downstream to upstream echelons and rogue seasonality 
(Forrester, 1961; McCullen and Towill, 2002) in which seasonality in supply chain 

variables is generated endogenously.

Extensive research has been conducted on the Bullwhip effect. It’s manifestation in 

multiple empirical sectors has been studied (Miragliotta, 2006), its causes such as 
demand signal processing and lead time (Forrester effect), batching, shortage gaming, 
price promotion and behavioural have been investigated (Geary et al., 2006), different 
methods such as statistical, control theory, system dynamics simulation and 
management games (specifically Beer game) have been used to study it and various
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measures have been proposed for its measurement. On the other rogue seasonality 
has been investigated in very few studies.

The review of the literature revealed only two studies which were exclusively focused 

on rogue seasonality. The study by Kim and Springer (2008) applied analytical system 

dynamics approach to determine the conditions governing the strength of rogue 
seasonality generated. Specifically, the role of ordering policy parameters, that is, the 
weights assigned to inventory gap and pipeline gap terms in generating strong and 
weak cyclicality was assessed. However, the analysis was limited in scope; a dyadic 
structure was used, the analysis did not assess the impact of forecasting policies on the 

dynamics and the rogue seasonality strength was inappropriately defined from a 

subjective perspective with a frequency bias. The study by Kim and Springer (2008) 
also did not investigate the impact of various relevant factors such as demand 

processes and parameters, batching, backlogs and different order of delays (Sterman, 
2000) on rogue seasonality as has been done for the Bullwhip effect. The second 

study on rogue seasonality by (Thornhill and Naim, 2006) is empirically oriented and 
uses the context of a steel supply network to characterise cyclical disturbances in the 

network. However, this exploratory study used only a single technique for rogue 

seasonality detection and tested it using only one case study. The technique used was 

also not automatic and required numerous manual interventions. The study of rogue 
seasonality is important as it is present in many supply chains (Kaipia et al., 2006; Lee 

et al., 1997a; Torres and Moran, 2006) and causes significant cost inefficiency as in 
the case of the Bullwhip effect (Metters, 1997). It therefore needs to be investigated in 

a rigourous fashion as has been done for the Bullwhip effect.

One approach to manage rogue seasonality is to minimise its generation through 

appropriate choice of forecasting and ordering policies and parameters. This approach 
was used by Kim and Springer (2008) who used system dynamics analysis of a dyadic 
system to determine the conditions (ordering policy parameters) under which strong 
and weak endogenous seasonality could arise in a supply chain. Such analytical 
design based approaches have also been proposed for controlling the Bullwhip effect 
(Lee et al., 1997b; Chen et al., 2000). However, the effectiveness of these approaches 

in real environments is limited. This is because supply chains in reality are quite 
complex, because of the dynamic interactions among multiple echelons in an
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uncertain and continuously disturbed environment, which makes them difficult to 
control (McCarthy and Tan, 2000; Baader and Montanus, 2008). At the same time, 

appropriate control policies and parameters determined in the studies are too 
simplistic in relation to this complex reality, having being developed under dyadic 
settings (Chen et al., 2000; Daganzo, 2004). Moreover, the actual nature of the 

application of these policies and parameters in real applications is also uncertain. This 

is because, while in the studies these have been determined on the basis of complete 
rationality in decision making, in actual practice behavioural biases and significant 

departures from rationality take place in many decision making situations (Schweitzer 
and Cachon, 2000; Bendoly and Cotteleer, 2008; Croson et al., 2005; Wu and Katok, 

2006). Top down planning therefore needs to be complemented with a bottom-up 
sense or detect and respond based approach. Instead of uniformly applying generic 

control policy and parameter prescriptions to all supply chains, the more problematic 
ones (in terms of rogue seasonality in this case) could be identified (detect) to which 

generic rules which have been appropriately contextualised are applied (respond).

Sense and respond is a management approach for an unpredictable and dynamic 

environment It has been applied in various strategic (Haeckel, 1999) as well as 
operating contexts such as in fraud detection (finance), fault detection (equipment 

maintenance), disease outbreak detection (healthcare) and unauthorised intrusion 

detection (computer systems). Anomalies are sensed using system information and 

relevant analysis techniques on the basis of which management takes action 
(respond). The utility of the sense and respond approach in the context of supply chain 
risk management has also been recognised (Bodendorf and Zimmermann, 2005; 
Hendricks and Singhal, 2003; Craighead et al., 2007; Handfield et al., 2008) though 
its actual application in this domain has been limited. Few research studies have 
discussed detection based approaches in supply chain management and even fewer 
have provided details about the nature of application. This thesis explores the 
application of the sense and respond approach in rogue seasonality management. In an 

environment where multiple supply chains are being managed, the more problematic 
ones in terms of rogue seasonality could be sensed, to which generic rules which have 

been appropriately contextualised are applied (respond).
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Change point detection or statistical and signature based approaches are the two 
generic approaches for detection. Change point detection approaches are based on 
assessing a change in the profile of the variable in statistical terms such as in 
probability distribution (Basseville and Nikiforov, 1993). It has seen limited 
applications in supply chain contexts (McCarthy and Wasusri, 2002; Morgan and 
Dewhurst, 2007) because it is less effective with multi echelon cascaded structures, 

when the number of variables is large and the variable profiles are non stationary 
(Woodall and Montgomery, 1999; Tsung et al., 2008) all of which are relevant to 

supply chains. On the other hand signature based approaches, which are based on 

developing signatures/profiles of variables that can be associated with a disturbance, 
have none of the above constraints. Though application of this approach in supply 
chain management domain has also been limited, it has been applied in other domains 

such as finance, equipment maintenance, healthcare and computer systems and is 
gaining in popularity because of its flexibility and greater availability of 

tools/techniques for application. Signature based approaches were therefore 
considered for rogue seasonality detection.

Use of signature based approaches involves choosing techniques to determine 
signatures or rules of detection and the nature of information to be used in these 
techniques (raw time series or time series which had been transformed/converted into 
a different domain). The data mining literature suggests Classification, Association 

and Clustering as the three techniques for determining signatures or rules (Han and 
Kamber, 2006; Tan et al., 2005) out of which clustering has been used the most for 

time series data (Liao, 2005). Signatures based on clustering involve finding the 
similarity/dissimilarity relationships among the time series profiles of the operating 
variables, allocating them to separate homogenous groups or clusters and relating the 
profile of clusters to the relevant disturbance. In terms of the nature of information 
used in clustering, either raw time series could be used or it could be transformed into 
other domains with features from the transformation used in clustering. Typical 
features that have been used in time series clustering studies in different domains are 
amplitudes of Fourier transform (FT) (Agrawal et al., 1993; Caiado et al., 2006), 
coefficients from an autoregressive (AR) model (Kalpakis et al., 1999; Maharaj, 
2000), wavelet coefficients of discrete wavelet transform (DWT) (Chan and Fu, 1999; 
Lin et al., 2004), autocorrelation function (ACF) (Wang and Wang, 2000; Vlachos et
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al., 2006) and cross correlation function (CCF) which is a feature of pairs of time 
series (Bohte et al., 1980; Baragona, 2001). However, none of these studies have used 
supply chain related data. Since the results and effectiveness of different features is 
domain specific, applicability of findings from these studies to the supply chain 
context is limited. Secondly, few studies have compared the performance of their 
features with other features, and those that have, have used only one or two features in 

the comparison (Keogh and Kasetty, 2003; Liao, 2005). Hence, applying and testing 
different time series transformations and features in time series clustering of supply 
chain data constitutes a gap. Here it may be noted that a major limitation in Thornhill 
and Naim’s study was that they did not compare their proposed SPCA technique with 

other techniques

2.6 Research Questions

The focus of this thesis is on applying the sense or detect and respond based approach 

to manage rogue seasonality which has not been investigated in the past. This requires 

rogue seasonality contexts which are well understood so that they could be used for 
assessing the effectiveness of different aspects of detection. Moreover, different 
contexts are required so that the detection approach is rigourously validated. In 

contrast, the study by Thornhill and Naim (2006) used just one case study to justify 

their SPCA detection technique.

Since only a limited number of studies have investigated rogue seasonality, the 

Bullwhip effect was used as a reference to identify different contexts that could be 
used. The search was limited to simulation contexts as the exploratory nature of 

research required detailed and controlled investigation. Two simulated contexts were 
found to have been extensively used for analysing the Bullwhip effect; one based on 

linear supply chain models (Towill, 1982; John et al., 1994) and the other based on 
non-linear Beer game models (Van Landeghem and Vanmaele, 2002; O’Donnell et 

al., 2006). Since, use of common approaches promotes effective knowledge building, 
these models were used in the present study. Findings from simulation have high 
internal validity but their external validity is low. Therefore, empirical rogue 

seasonality contexts also need to be used in the analysis.
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The second part of the research involved using the different rogue seasonality 
contexts to establish the best approach for its detection. This includes a signature for 

rogue seasonality which could indicate its presence, an objective numerical indicator 
or ‘index’ of rogue seasonality intensity and the best time series transformation 

techniques (or features) and variables to be used for their computation. At present 
there is no ‘index’ for measuring rogue seasonality though there are multiple 
measures for the Bullwhip effect. Finally, the ability to sense or detect rogue 
seasonality needs to be exploited to better manage rogue seasonality in a practical 
setting which requires a structured managerial framework.

This links to the four research questions that are addressed in the thesis:

1) What signature and index could be used for detecting rogue seasonality in a linear 
supply chain? What is the best feature (domain representation) and the 

appropriate system variables for deriving them?

2) Can the signature and index identified from the linear supply chain be applied to a 

non-linear supply chain with backlogs and batching? Is the best feature and 
appropriate variables for detecting rogue seasonality in this non-linear system the 
same as in the case of the linear system?

3) Can the signature and index be used for detecting rogue seasonality in real supply 

chains? Are the best features and system variables for deriving the signature and 

index the same as found in RQ1 and RQ2?

4) How can rogue seasonality detection be used in a managerial framework?

Answers to these questions would help establish a robust mechanism for automatic 

detection of rogue seasonality including identification of supply chains with high 

rogue seasonality intensities so that management could focus on such cases and effect 
mitigative action. Automation in rogue seasonality detection was identified to be one 

of the areas for future research in the study by Thornhill and Naim (2006).
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Chapter 3 - Methodology

The previous chapter highlighted the research gaps and the relevance of the research 
questions. This chapter gives details of the methods used to carry out the research, 
including their explanation, justification and placement within the wider context of 
alternative methods.

First, the philosophical approaches and methods used in supply chain management 
research are discussed. Next, the philosophical stance of the thesis and the research 
design used to answer the research questions are explained. Finally, details of the 
methods used are provided. These include simulation and case studies for contextual 
rogue seasonality data and time series transformation techniques and clustering for rogue 
seasonality detection.

3.1 Research philosophies and paradigms

Meaningful and productive research requires a sound and relevant philosophical basis. 
This is because unconscious research and naive investigative activities rarely lead to 
more than simply confirming what is already known (Arbnor and Bjerke, 1997). The 
philosophical position is represented as a research paradigm, which is a central element 
of the research process and represents the researcher’s perspective on the world (Naslund, 
2002). The background of the researcher is therefore a significant factor in determining 
the philosophy underpinning the research.

A research paradigm has three elements: ontology, epistemology and methodology 
(Denzin and Lincoln, 1994). Ontology focuses on the “nature of reality” or the “nature of 
knowledge” (Guba, 1990). Defined as the science of being, it refers to the assumptions 
that a particular approach to enquiry makes about the nature of social reality, specifically 
whether the reality is viewed from an objective or subjective perspective. Epistemology 
on the other hand deals with how the world is perceived and is appropriately defined as 
the science of the methods of knowledge. It refers to the claims or assumptions made 
about the ways in which it is possible to gain knowledge of the reality. Together,
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epistemological and ontological assumptions influence methodology, which deals with 
how knowledge about the world is gained. Defined as “a body of methods, procedures, 
concepts and rules (Merriam-Webster Dictionary 2004), methodology is the rationale or 
basis for the selection of methods used to gather data. It needs to be appropriate in 
relation to the research questions and objectives to be addressed.

Positivism and Interpretivism are the two main paradigms used in business research 
(Bryman and Bell, 2004). Positivism advocates the application of the natural sciences’ 
methods in business research and believes in an objective reality which can be confirmed 
by the senses, measured and generalized. The quantitative research methodology is 
usually associated with positivism and is characterized by a numerical orientation and 
emphasis on the measurement and analysis of causal relationships between variables 
(Saunders et al., 2002). The Interpretivism paradigm on the other hand holds an opposite 
view to Positivism: reality is not considered external to the actors as in positivism but a 
part of the subjective interpretation of the actors themselves. Human beings and their 
interactions are considered to be distinctive, with the principles of natural science not 
considered applicable for social systems. Qualitative research methodologies (Saunders et 
al., 2002) are usually associated with the Interpretivism paradigm, where there is greater 
emphasis on human behaviour and its role in the research context.

While the above provides a generic explanation about research philosophies and 
paradigms, it is important to understand which of these philosophies have been used in 
supply chain management research.

3.2 Nature of research in supply chain management

Supply chain management is an interdisciplinary subject. It incorporates many different 
scientific traditions (Arlbjom and Halldorsson, 2002), has been influenced by economic 
and behavioural approaches mainly through the business disciplines of marketing and 
management (Mentzer and Kahn, 1995), but also borrowing from engineering and 
computing (Stock, 1997). The dominant stream of research has therefore been based on 
the positivistic paradigm similar to that for economics and engineering. This is borne out 
by the literature surveys on research methods used in logistics and supply chain
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management by Mentzer and Kahn (1995), Frankel et al. (2005) and Sachan and Datta 

(2005) as given in Table 3.1. The most used research methods o f survey, simulation and 

mathematical modeling all come under the positivistic paradigm.

T a b le  3 .1 : R e s e a rc h  m e th o d s  a p p l ie d  in logistics  a n d  su p p ly  ch a in  
m a n a g e m e n t

Category Mentzer and 
Kahn* (1995)

Frankel et al., 
(2005)**

Sachan and 
D attaA (2005)

Survey 54% 37% 35%

Simulation 15%
15%

5%

Math Modelling 4% 10%

Interviews 14% 19% 7%

Case Studies 3% 7% 16%

Archival Studies 10% 7%
27%

Others 0% 15%

• %  of articles in Journal o f Business Logistics (1978-1993)
• • % of articles in Journal o f Business Logistics (1998-2003)
A % of articles in Journal o f Business Logistics, International Journal o f  Physical Distribution and Logistics 

Management and Supply Chain Management -  An International Journal (1999-2003)

3.3 P h i lo so p h ica l  s ta n c e  o f  th e  thes is

Each o f the two main components o f the thesis, rogue seasonality generation and rogue 

seasonality detection, determine the philosophical stance to be used in the thesis. Rogue 

seasonality has a similar origin as demand amplification or the Bullwhip effect, which 

has mostly been studied under the positivistic philosophy using quantitative 

methodologies (Geary et al., 2006). The positivistic philosophical approach could 

therefore be used to study rogue seasonality generation as well. With regard to detection 

o f rogue seasonality, most generic techniques o f detection are derived from the 

Mathematics/Engineering/Computer science domains, which have a quantitative 

orientation and are based on positivism. Therefore on both counts, positivism seems to be 

an appropriate philosophy for conducting the research envisaged in the thesis. On the 

other hand, the alternative interpretivism philosophy was considered inappropriate 

because rogue seasonality disturbances are not based on judgement but are actually
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generated. Similarly, rogue seasonality assessment and measurement are considered to 

have an objective and numerical basis rather than being subjective.

Another factor which affects the philosophical underpinnings o f research is the 

background o f the researcher. Although the author has conducted research based on both 

positivism and interpretivism philosophies, his leanings are more towards the former. 

Research in this thesis has therefore been undertaken from a positivistic perspective. 

Details o f the process used for conducting the research are explained in the following 

sections.

3.4 R e s e a rc h  des ign

Research design is a framework to conduct research that links the data to be collected and 

analysed for answering the research questions. It provides the opportunity for "building, 

revising and choreographing" (Miles and Huberman, 1994) the overall research study. 

The choice o f research design reflects decisions about the priority being given to a range 

o f dimensions o f the research process (Bryman and Bell, 2004). The overall framework 

used in the thesis is given in Figure 1.1 but adapted in Figure 3.1 below for further 

clarification.

Literature Review

Rogue seasonality 
context and data

Simulation

Non linear 
model with 

different context

Alternative techniques 
for rogue seasonality 
signature and index

Case Study

Case
study 1

Case
study 2

C h 6

Answers to 
research questions

Figure 3.1 Research framework used in the thesis
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3.5 Literature review process

The literature review is the starting point as well as the foundation of most research 
processes (Saunders et al., 2002). It is used to understand the current state of knowledge 
of the subject, its limitations and to generate and refine ideas to fit with the research 
context under study. The nature of the research in this thesis being of an exploratory and 
innovative nature, an exhaustive literature search was conducted. The different sources 
used in the search include:
a) Key word searches in all the major databases such as Scopus, Proquest, Emerald, 
IngentaConnect and Science Direct. An indicative list of terms used are given below:

• ‘Risks’, ‘Disturbances’, ‘Uncertainties’, ‘Vulnerabilities’, ‘Disruptions’ and
‘Failures’ with ‘supply chains’, ‘logistics’ and ‘supply networks’

• ‘Rogue seasonality’ ‘Endogenous cyclicality’, ‘Bullwhip’, with ‘logistics’ and
‘supply chains’

• ‘Statistical process control’, ‘Failure mode and Effects analysis (FMEA)’, ‘Decision 
support systems’, ‘Knowledge discovery’, ‘Artificial intelligence’, ‘Data mining’, 
‘Risk monitoring’, ‘Event Management’, ‘Sense and Respond’, ‘Adaptive’, 
‘Autonomic’ with ‘logistics’ and ‘supply chains’

• ‘Change point detection’, ‘Signature’, ‘Fourier Transform’, ‘Autocorrelation’,
‘Wavelets’, ‘Autoregressive’ and ‘Cross Correlation’ with ‘Time series’ and ‘Time
series Clustering’

b) Internet search engines primarily Google and Google Scholar to discover and access 
the latest books and presentations on the research subject.
c) Periodic access and review of related journals such as ‘Journal o f Operations 
Management ’, ‘International Journal o f Operations and Production Management ’, 
‘Journal o f Business Logistics’, ‘International Journal o f Production Economics', 
*International Journal o f Production Research’, ‘International Journal o f Physical 
Distribution and Logistics Management ‘System Dynamics Review ’, ‘ European Journal 
of Operational Research', Journal o f Quality Technology’ and ‘Data Mining and 
Knowledge Discovery’ so as to include relevant studies which could have been missed in 

the key word search.
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d) Tracing back references

e) Accessing the websites of key individuals who are active in the field for working 
papers and presentations.

3.6 Rogue seasonality context and data

A multi-methodology approach was used as such approaches provide methodological 
triangulation and increase the validity of the findings (Jick, 1979; Seaker et al., 1993; 
Shukla et al., 2009; Boyer and Swink, 2008). Such approaches are quite prevalent in 
logistics and supply chain management research (Frankel et al., 2005). The multi­
methodology approach used in the thesis combined simulation with case studies. 
Simulation enables controlled experimentation and, therefore, findings from it have high 
internal validity. However, its use of simplified models make it less realistic from a real 
world perspective, that is, it gives lower external validity. On the other hand, case study 
involves the investigation of contemporary phenomenon within a real life context, that is, 
without any investigator control. Hence, when used together, simulation and case study 
methods complement each other effectively, by enabling cross-validation of results and 
allowing the investigator to assess whether generic findings occur in reality and vice- 
versa.

3.6.1 Simulation

Simulation is defined as “the process of designing a model of a real system and 
conducting experiments with it either to understand the behaviour of the system, or to 
evaluate various strategies to improve the operation of the system” (Shannon, 1975). 
Simulation has many advantages such as facilitating what-if testing on alternative supply 
chain scenarios within controlled conditions and the flexibility of compressing and 
expanding time to understand the dynamic behaviour of a system (Law and Kelton, 
2000). According to Banks et al. (1999), simulation is an appropriate tool for studying 
internal interactions in complex systems or subsystems, providing valuable insights into the 
effect of each variable and highlighting those likely to have a large impact. Simulation is 
among the most commonly used techniques in operations research and management (Law
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and Kelton, 2000) as well as in logistics and supply chain management research as is 
evident from Table 3.1 and also highlighted by Terzi and Cavalieri (2004).

There is a historic precedent of using simulation to study supply chain dynamics 
including both Bullwhip effect and rogue seasonality (Forrester, 1961). In the specific 
context of this thesis and answering the research questions, simulation provided 
controlled experimentation, where parameters in the simulation model could be varied 
and rogue seasonality of different intensities and characteristics generated in the profiles 
of variables. This data, with known rogue seasonality intensities, could subsequently be 
inputted into alternative time series transformation techniques to evaluate their individual 
effectiveness in rogue seasonality detection.

Different kinds of simulation have been developed to cater to different requirements. For 
studying supply chain dynamics, the two major simulation approaches that have been 
used are discrete event simulation (DES) and systems dynamics or SD (Riddalls et al., 
2000; Kleijnen, 2005; Akkermans and Dellaert, 2005).

3.6.1.1 Discrete event simulation (DES)

Discrete event simulation (DES) is used for analysing discrete event dynamic systems 
(DEDS), which usually consist of jobs and resources. In a typical simulation, jobs 
(individual physical entities in a majority of applications) travel from resource to resource 
through a series of queues and activities in a stochastic fashion, where their onward 
progress through the system is determined. For example, in a model of a supply chain, the 
jobs are raw materials that progress through machines and buffer inventories (both 
resources) where their attributes are changed and they arrive at the retailer as finished 
goods. Discrete event simulation models are often used for systems where entities are 
processed in a linear fashion with limited feedback (Sweetser, 1999; Tako and Robinson, 
2009). They are considered more appropriate for discrete processes and those which 
involve detailed operational analysis of a specific, well-defined system, such as a 
production line or call centre; systems change at specific points in time: resources fail, 
operators take breaks, shifts change, and so forth (Greasley, 2004). Discrete event
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simulation has been similarly applied in supply chain domain also (Terzi and Cavalieri, 
2004).

This thesis with its focus on rogue seasonality has a supply chain or multi echelon 
orientation. Also, feedback loops play an important part in the generation of rogue 
seasonality (Kim and Springer, 2008). Discrete event simulation is less suited on both 
these aspects as discussed in the previous paragraph. It was therefore not used in the 
thesis.

3.6.1.2 Systems dynamics (SD) simulation

Systems Dynamics (SD) simulation was advocated as a method of investigating 
dynamical effects in large, complex systems by Forrester (1961) and involves simulation 
in continuous or pseudo-continuous time. It simulates aggregate behaviour and is best 
suited for problems where feedback plays a significant role in determining the dynamic 
behaviour of the system (Akkermans and Dellaert, 2005). Structures with many echelons 
as well as those with complex, non linear relationships between variables can be studied 
using SD simulation.

A typical SD simulation involves representing the relationships between variables as 
causal loop diagrams, converting them into differential equations, subjecting the system 
to an exogenous shock and then visually studying the output profiles of variables to 
understand cause-effect relationships. Additionally, alternative scenarios are tested by 
adjusting the parameters of a system, adding new linkages and feedback loops or 
rearranging components of the system to assess their impact on the dynamic profiles and 
cause effect relationships in the system.

The causal loop diagram (CLD) used in SD simulation depicts the linkages and feedback 
loops among the elements in the system, as well as between the system and its operating 
environment which helps the decision-maker in understanding a complex, inter-related 
system. The specific characteristics of CLD representation are:
• Variables in a CLD are connected by causal links, represented by arrows, indicating the 

influence amongst the variables
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• In each causal link, the variable at the tail of the arrow is the independent variable while 
the variable at the head of the arrow is the dependent variable

• A positive (+) causal link means that when the independent variable increases 
(decreases), the dependent variable increases above (decreases below) what it would 
have been if the independent variable did not change.

• A negative (-) causal link means that when the independent variable increases 
(decreases), the dependent variable decreases below (increases above) what it would 
have been if the independent variable did not change.

The underlying mathematical relationships driving the simulation (differential and 
algebraic equations) are developed after transforming the CLD into an equivalent level 
and flow structure or block diagram in control engineering. The four important concepts 
related to level and flow suggested by Forrester (1961) and which are used in formulating 
the simulation equations are:
1. Levels which describe accumulations within the system and are drawn as tanks. 

Levels represent the present values of the variable they contain that have resulted 
from the accumulated difference between inflows and outflows. For example, in the 
case of production-inventory control, inventory is a level determined by the inflow of 
goods produced and outflow of goods sold

2. Flows, which transport the content of one level to another. For example, the inflow of 
goods produced and outflow of goods sold, as discussed earlier

3. Decision functions, which control the rates of flows between levels (drawn as valves). 
For example, in the case of production-inventory control, the rate of issue of 
production orders is a decision function

4. Information channels, which connect the levels to the decision functions. For 
example, the levels of inventory and WIP could be used to decide the production 
order rate decision

It is notable that since SD models simulate aggregate dynamics, rates such as order rate, 
and production rate are used, rather than orders or production quantities. The algebraic 
and differential equations from the level and flow structure are generally solved using 
numerical techniques to generate the simulation output profiles. The discretisation 
required in numerical solution techniques causes SD simulations to be pseudo-continuous
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rather than continuous. Whiile specialist packages such as Vensim®, Prosim® and
iThink® have been developed for SD simulation, the same can also be done in a
spreadsheet where the difference equations could be coded.

This thesis is focused on rogue seasonality which is endogenously generated from the
feedback loops in the repknishment-inventory control system as discussed in the 
literature review. Also, the control system is operative at an aggregate level. Simulation 
based on system dynamics is appropriate on both these counts. Moreover, SD simulation 
has been used to understand aond model the dynamics associated with the related bullwhip 
effect (Angerhofer and Angjelides, 2000; Akkermans and Dellaert, 2005; Potter and 
Disney 2006; Villegas and Smith 2006; Wilson, 2007). SD simulation was therefore used 
to understand rogue seasonality generation as well as for generating related contextual 
data.

Although SD simulation has been extensively used and has many advantages, it has one 
major drawback. It does not have a theoretical basis or analytical support for deciding 
how to vary parameters, feedback loops and components to improve system performance 
(Ansoff and Slevin, 1968)- Simulation essentially proceeds on a trial and error basis and 
is therefore cumbersome, time consuming and provides limited insight. Control theory 
has been suggested as a way t)o strengthen the theoretical base of SD simulation.

3.6.1.3 Control theory and its use in production-inventory problems

Control theory has been used to study production-inventory dynamics in its own right 
independent of SD simulation (Ortega and Lin, 2004). Used extensively in the past for 
studying engineering systems (Nise, 1995), these learnings were subsequently applied to 
production-inventory control problems using the analogous dynamics between the two 
contexts. Control theory is Atypically used in production-inventory control systems by 
mathematically representing tithe causal relationships and feedback loops in the system in 
terms of differential equations or differential equations transformed by Laplace transform 
to the continuous ‘5 * domaini or differential equations transformed by the z transform to 
the discrete ‘z ’ domain and wsing these representations to analyse dynamics of relevant 
variables (Ortega and Lin, 23(304; Sarimveisa et al., 2008). Generally, simple structures
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(linear and with one or two echelons) are analysed using control theory. Also, analysis is 
at an aggregate level (similar to system dynamics) and with deterministic inputs (Ortega 
and Lin, 2004). A comprehensive list of reasons for using control theory and transfer 
function techniques in production and inventory control is given in Disney and Towill 
(2002). (Transfer function is used to represent the dynamics o f the system 
mathematically; it algebraically relates a system's output to its input in the ‘s ’ (using 
Laplace transform) or ‘z ’ (z transform) domain and is essentially a polynomial 
representation in ‘s 'or  ‘z*) The reasons provided by Disney and Towill (2002) are:
• Block diagram, an intrinsic part of control theory, provides a simplistic representation 

of the casual relationships between system components and helps identify important 
system structures (Nise, 1995).

• Use of standard forms and notations in control theory simplifies benchmarking and 
promulgation of models describing best practice (Towill, 1970). It enables adoption of 
best practices and parameters from hard (engineering) systems (Towill, 1982).

• Use of transfer function simplifies the capture and representation of the dynamics of the 
system (Popplewell and Bonney, 1987)

• Standard control theory techniques enable dynamic performance metrics of systems 
such as settling time, peak overshoots and rise times to be calculated without recourse 
to simulation (Nise, 1995)

• Problems could be transferred across domains (time, V , ‘z’, ‘co )  to exploit benefits of 
operating in those domains (Disney and Towill, 2002). For example, conversion to 

frequency (co) domain enables easier analysis of systems with cyclical characteristics. It 
also enables simpler computation, as the dynamics of multi echelon structures can be 
easily computed by straight forward vector multiplication for linear systems. (Bissell, 
1996). Moreover, frequency response analysis could be used to examine the critical 
design parameters and identify ranges of parameter values that give good transient 
response performance (Ortega and Lin, 2004)

• Transfer functions could be integrated with simulation for additional system analysis 

(Disney and Towill, 2002).
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The major studies applying control theory in production-inventory control problems, 
include the study by Tustin (1953) who first explored the application of control theory in 
the design of ‘soft* systems, where the analysis included modelling of an economic 
system. Valuable insight into a production control system was given by Simon (1952) 
using a basic servo mechanism theory by considering a continuous time model in the V  
domain. He described a simple system for inventory control using feedback loops and 
linear differential equations to control the rate of production for a single product. 
Subsequently, Vassian (1955) used a discrete model for the analysis of an inventory 
control system using difference equations and the application of ‘z’ transforms. Axater 
(1985), who reviewed earlier research on control theory applications in production and 
inventory control, highlighted the fact that dynamic effects and the importance of 
feedback are illustrated extremely well by the use of control theory. Ortega and Lin
(2004) and Sarimveisa et al. (2008) have reviewed recent research on the application of 
control theoretic methods to production-inventory systems. Previous work on application 
of transfer function techniques in the field of production and operations management has 
been summarised by Disney and Towill (2002).

An important contribution in control theory, especially with regard to its use to strengthen 
the theoretical base of systems dynamics was made by Towill (1982). Instead of using a 
complex model with repeatedly coupled non-linear linkages like Forrester (1961), he split 
the model into more elementary linear two echelon systems, which allowed a greater 
depth of analysis, whilst still capturing the salient attributes of system behaviour (Berry et 
al., 1995). The analysis was based on a combination of control theory and systems 
dynamics. An early guide on use of this combined approach is given in Edgehill and 
Towill (1989) who state that although control theory requires making assumptions 
regarding linearity, basic understanding of system behaviour from control theory 
techniques enhances the insights obtained from subsequent simulation for production 
inventory control problems. Since then, a series of investigations based on this combined 
control theory and simulation based approach (Naim and Towill, 1994) have been carried 
out and has led to the development and analysis of different control systems as well as 
different ways of utilizing control theory to complement systems dynamics.
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In this thesis, the combined control theory and simulation approach using simple 
structures is used for rogue seasonality analysis. Such an approach provides better 
understanding of the dynamics of variables compared to Forrester’s approach of using 
large scale complex models. The understanding gained from the simple structures could 
be transferred to larger, more complex structures.

a) Control system variants and the choice of Automatic Pipeline Inventory and 

Order Based Production Control System (APIOBPCS)

The first control system analysed by Towill (1982) was the Inventory and Order based 
Production Control system (IOBPCS), a periodic review algorithm for issuing orders into 
a supply pipeline, where orders placed are based on average consumption over a period of 
time and a fraction of the difference between desired and actual inventory (inventory 
deviations or error). IOBPCS is representative of industrial practice in the UK (Coyle, 
1977). Towill was concerned with finding a good solution to balance production 
adaptation and inventory costs using “best practice” analogues from hard control system 
theory, and used the latter together with simulation in the study. Since then, different 
variants of IOBPCS have been developed with all of them designed via the use of control 
theory together with simulation. Details of these variants are given in Disney and Towill
(2005) with each of them constructed by defining some or all of the following five 
components:
• The lead time, which represents the time between placing an order and receiving the 

goods in inventory. In manufacturing sites, lead time incorporates production delays 
while in distribution lead time is from order transmission and shipment delays

• The desired inventory setting, which can either be fixed or a multiple of current average 
sales rates

• The demand policy, which in essence is a forecasting mechanism that averages the 
current market demand. The demand policy is a feed-forward loop within the 
replenishment policy

• The inventory policy, which is a feedback loop that controls the rate at which inventory 
deficit (difference between desired inventory and actual inventory) is recovered
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• The pipeline policy, which is a feedback loop that determines the rate at which W1P 

deficit (difference between desired WIP level and actual WIP level) is recovered

In this thesis, different variants o f the Automated Pipeline IOBPCS or APIOBPCS model 

have been used (John et al., 1994; Mason-Jones et al., 1997). This is a general, versatile 

model which has been applied in multiple contexts. It mimics the heuristics used by 

humans to replenish inventory (Sterman, 1989; John et al., 1994), has been shown to 

replicate industrial practice (Evans et al., 1997), represents the logic contained within 

MRP systems (Fowler, 1999) and can represent lean and agile supply chains (Towill et 

al., 2001), order-up-to policy (Dejonckheere et al., 2003), vendor managed inventory 

systems (Disney and Towill, 2003) and remanufacturing systems (Tang and Naim, 2004). 

The causal loop diagram o f the APIOBPCS model is given in Figure 3.2, with Appendix 

A detailing its block diagram representation and difference equations for a single echelon 

model.

Safes/Demand

Perceived lead 
tine

Tire to average 
sales/demand

Forecast
sales/demand

Tine to adjust 
pjpchne/WfP defict

Actual inventoryCompletion rate
rate)

Lead tme
Inventory defict

Time to adjust 
memory defict

Figure 3.2 Causal loop diagram o f the APIOBPCS model (John et al., 1994)

The ordering policy in APIOBPCS can be described as follows; “the order placed is equal 

to the average sales rate plus a fraction (1/Tj) o f the inventory error plus a fraction (1/TW) 

o f the work-in-process (WIP) error” where T, is termed the ‘lim e to adjust inventory” and 

Th the ‘lim e  to adjust WIP” . Consumption/sales/demand rate (CONS), forecast
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consumption/sales/demand rate (AVCONS), order rate (ORATE), work in progress level 
(WIP), desired work in progress level (DWIP), production completion or receipts into 
inventory rate (COMRATE), actual inventory level (AINV), error between desired and 
actual inventory level (EINV) are the system variables in a single echelon APIOBPCS 
system. In terms of parameters used, average sales rate is calculated using exponential 
smoothing and is dependent on a parameter Ta related to the exponential smoothing 

parameter a. While Tp is a physical parameter, Tiy Tw and Ta are decision parameters 

whose values are set according to performance criteria such as the minimisation of order 
variance, inventory availability and the speed of response to changes in demand. John et 
al. (1994) proposed parameter values which gave good dynamic performance in an 
APIOBPCS system and these are given in Appendix A. The focus of this thesis is, 
however, on generation of rogue seasonality rather than getting a good dynamic 
performance and, therefore, other parameter values are also applied.

b) Use of control theory as a complement to simulation

Use of control theory complements simulation in several ways, as discussed in this 
section earlier. The original use suggested by Towill (1982) was that it removes ‘ad- 
hocism* in simulation. Good systems design practices and parameters from ‘hard* 
systems are applied to production inventory problems on the basis of control theory and 
serve as an effective starting point in simulations of large scale systems. Secondly, 
control theory also gives insights into the steady state dynamics and provides a cross 
check for simulation. Subjecting the transfer functions of interest (V  or ‘z’ domain) of a 
specific system to limiting conditions enables determination of the initial and steady state 
dynamics in the time domain without simulation (based on initial and final value 
theorems). The inverse transform approach helps in assessing the correctness of the 
simulation formulation. The system is subjected to a deterministic input and the analytical 
response (of different variables) obtained by inverse transforming the function is 
compared to the simulation output, with a good correlation between them, indicating the 
correctness of the simulation formulation. John et al. (1994) used initial and final value 
theorems as well as the inverse transform approach to establish the validity of their 
simulation output for the APIOBPCS system.
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In this thesis, control theory is used to complement simulation but in a different way to 
that described above. Transfer functions in the ‘5 ’ (continuous) domain are computed 
using the Laplace transform first. This ‘s’ domain representation for APIOBPCS is given 
in Appendix B. Alternatively, ‘z’ (discrete) domain using z transform could have been 
used, as findings from both V  and ‘z’ domains are qualitatively similar (Disney et al., 
2006). However, algebraic manipulation based on the ‘s’ domain is preferred because of 

its tractability (Dejonckheere et al., 2003) and was therefore used. Thereafter, (ijo) r) was 

substituted for ‘s ’ in the transfer function/s and its absolute value in terms of ‘co ’ (angular 
frequency) determined. Called the frequency response (FR) or amplitude response (Amp 
R) (both FR and Amp R will be used interchangeably in the rest o f the thesis) this 
function gives the ratio of amplitudes of sinusoidal output to sinusoidal input at various 

frequencies (co). Effectively, by this approach, the transfer function in the ‘s’ domain is 

converted to the frequency ( ‘co’) domain as the latter is more suited for data with cyclical 
characteristics. FR derives its usefulness because of two facts: First, a sinusoidal input to 
a linear system at a particular frequency yields a sinusoidal output at the same frequency 
(though with a different amplitude and phase) (Towill and del Vecchio, 1994; 
Dejonckheere et al., 2003; Jaksic and Rusjan, 2008) and second every time series consists 
of and can be broken up into its constituent sinusoids at different frequencies (using 
Fourier transform). Hence, analytically computed FR highlights the input frequencies that 
would be amplified (FR > 1), attenuated (FR < 1) and the extent of
amplification/attenuation, independent of the nature of exogenous input. In this thesis, FR 

is analysed at critical frequencies such as zero frequency (©0), frequency at which FR is 

maximum (co max fr)> frequency at which crossover from amplification to attenuation takes 

place or FR = 1 (co crossover) and very high frequency (co«,; 00 is used as surrogate for high) 
for each unique variable in the control system. Such an approach provided adequate 
insights on rogue seasonality generation and more importantly its characteristic signature 
that could be used subsequently, for its detection in an unseen setting. Detailed analysis 
of individual transfer functions was therefore not performed, especially since the focus of 

this thesis is on the latter, rather than the former.
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The manual computation o f the transfer function and its conversion to the frequency 

domain being quite unwieldy, Matlab® symbolic toolbox was used for the same. 

Following the control theory analysis, simulation is used to generate contextual rogue 

seasonality data which is validated by comparing it with the analytically derived FR 

values at critical points such as co max f r .

3.6 .1 .4  S im u la t io n  as  a p p l ie d  in th e  thes is

The motivation o f  using simulation was to understand rogue seasonality generation and to 

generate rogue seasonality data o f different characteristics and intensities which could be 

individually applied to different time series techniques/features to assess their 

effectiveness in detecting rogue seasonality. The overall simulation design used is 

summarized in Table 3.2 below.

A sequential modelling process, moving from simpler to more complex structures was 

used to enable an easier understanding o f the rogue seasonality dynamics (single echelon 

linear to three echelon linear to four echelon non linear). Use o f different structures also 

strengthened the robustness o f  findings with regard to rogue seasonality signature, index 

and best techniques for rogue seasonality detection. This explains the logic o f research 

questions 1 and 2.

T a b le  3.2 S im u la t io n  des ign  used  fo r  ro g u e  sea so n a l i ty  an a ly s is

Supply chain 
structure

Structure details Control system* Other variants used in 
simulation

Linear 
(Chapter 4)

Single echelon, three 
echelon

MTO (Make to order) Different demand 
processes and 
parameters; Lead 
time/delay and 
distribution of lead time

MTS (Make to stock)

Non linear
(Chapter 5)

Beer game (Sterman, 
1989), a four echelon 
distribution structure

Hybrid MTO-MTS with 
Optimal parameters

Different demand 
processes and 
parameters; Lead 
time/delay; Batching 
with different batch 
sizes/No Batching

Hybrid MTO-MTS with 
Unoptimal parameters

* D erived from  generic APIOBPCS by change o f  param eters
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For a linear system, multi echelon structures were created by coupling together similar 

single echelon structures (consumption rate o f an echelon was made equivalent to the 

order rate at its downstream echelon) while the well known Beer game (Sterman, 1989) 

was used for simulating the non linear structure. The Beer game was used for simulation, 

as it represents a typical four echelon production-distribution system (retailer, wholesaler, 

distributor and factory) with ordering and shipment delays across echelons and non 

linearities from backlogs. The Beer game has been simulated in many different contexts 

as given in Table 3.3.

T a b le  3.3 - S tu d ie s  w h ich  h av e  u sed  B ee r  g a m e  s im u la t io n

R eference R esearch  context

van Ackere et al. (1993) Assessing impact o f  ordering delay reduction, echelon elimination and 
sharing o f demand information sharing on Bullwhip

Larsen et al. (1999) Generation o f  chaotic behaviour from ordering policies

Hong-Minh et al. (2000)
Impact o f  alternative policies such as EPOS, centralised stock control by 
factory .bypassing an echelon and echelon elimination on lateral emergency 
transshipments

De Souza et al. (2000)
Impact o f  shortage gaming, capacity constraints, information and material 
delays, poor coordination, demand signaling and order batching on supply 
chain dynamics

Van Landeghem and 
Vanmaele (2002)

Relevance o f  robust supply chain planning i.e. planning which incorporates 
uncertainties; Stochastic demand used with stochastic factory breakdowns and 
repairs, stochastic product spoilage and four alternative decision policies

O’Donnell et al. (2006) Use o f  genetic algorithm to determine optimal ordering policy for individual 
echelons

Paik and Bagchi (2007)

Significance o f  demand forecast updating, order batching, rationing and 
shortage gaming, price variation, material and information lead time, machine 
breakdown, capacity limitations and number o f  echelons on the Bullwhip 
effect

Hwamg and Xie (2008)
Investigation o f  chaos from factors such as demand pattern, ordering policy, 
demand information sharing and lead time

Shukla et al. (2009) Investigation o f  shipment dynamics or “backlash” effect

While in the role playing version o f the Beer game, decisions on order quantities from 

respective upstream echelons are made by human participants, in the simulated version as 

used in the thesis, APIOBPCS and its variants are used for the same. According to
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Sterman (1989), the generalised decision rule represented by APIOBPCS characterizes 
experiential decisions well, as it captures the essential attributes of any minimally 
sensible stock management procedure consisting of replacement of expected losses, 
correction of discrepancies between the desired and actual stock and a consideration of 
the work in progress. From his analysis of the Beer game data, Sterman found that the 
orders placed by most players conformed to APIOBPCS though, the parameters used by 
individual players were different.

Though APIOBPCS was used, variants other than the optimal parameters suggested by 
John et al. (1994) were also considered so as to simulate rogue seasonalities with 
different characteristics. Specifically, make to order (MTO) and make to stock (MTS) 
strategies or control systems are considered, because according to Buxey (1995) and 
Safizadeh and Ritzman (1997) these are more commonly found in industry than a mixture 
of MTO and MTS systems. Moreover, they are contrasts in terms of use of CONS or 
sales information (in the ordering decisions) and were therefore expected to yield 
different rogue seasonality characteristics. On the other hand, other researchers such as 
Anderson Jr et al. (2005) suggest that hybrid MTO-MTS strategies are more commonly 
used, and therefore it was also considered in the thesis.

Parameters within the hybrid MTO-MTS system were also varied. Two cases, Optimal 
and Unoptimal were considered, with these definitions being from a Bullwhip 
perspective. Optimal parameters are those which have been suggested by John et al 
(1994) for good dynamic behaviour, that is, low order amplification while Unoptimal 
parameters do not incorporate any pipeline feedback and are associated with greater order 
amplification (Sterman, 1989). Though the choice of Optimal parameters and Unoptimal 
parameters options are based on the Bullwhip effect, it was expected that these would 
generate rogue seasonality of different characteristics in the system as per the study by 

Kim and Springer (2008).

Other variants were applied to the simulation for assessing the robustness of the rogue 
seasonality findings. Delay or lead time was varied as it impacts the supply chain 
dynamics (Forrester, 1961; Chen et al., 2000). Similarly, the nature of demand affects the
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dynamics of the operating variables and was also therefore varied (Gilbert, 2005). Unlike 
most systems dynamics models, which are analysed by simulating them with a step or 
impulse function (Sterman, 2000; John et al, 1994; Towill et al., 2007), in this research 
most of the analysis is based on a stochastic stimulus (demand profile). This is because 
the simulation output is not just used for understanding rogue seasonality generation but 
more importantly is an input for developing and assessing rogue seasonality detection 
protocols (signature and index for measurement). The latter forms the thrust of this thesis 
and use of the more realistic stochastic demand profiles (Chopra and Meindl, 2001) in the 
same in comparison to step/impulse enhances the validity of the findings. Even 
otherwise, studies such as those by Dejonckheere et al. (2004) and Jaksic and Rusjan 
(2008) have based their analysis predominantly on stochastic demand profiles. Details of 
the stochastic demand pattern used in the thesis and the rationale for using them have 
been detailed in the respective chapters. Finally, batching of orders and shipments is a 
common practice and therefore sensitivity of the findings to the same was also assessed.

3.6.1.5 Tools and techniques used

There are two major tools for system dynamics simulation: specialist simulation packages 
such as Vensim®, Stella® and iThink® and spreadsheet. Simulation packages provide 
ease in developing and analyzing complex models (graphical approach). However, 
getting the skills to make models in these packages is time consuming. Understanding the 
dynamics of individual variables and relating it to other variables is also less intuitive in 

these packages.

The alternative of spreadsheet simulation on the other hand offers a fast, easy way to 
build simulation models with maximum flexibility and learning. It involves entering the 
inputs and decisions into a spreadsheet and then relating them appropriately, by means of 
formulas, to obtain the outputs (Winston, 2005). Excel also has an in built Visual Basic 
Application (VBA) programming platform, which allows users to create their own 
computational functions as well to develop code/macros for automating routine tasks. 
VBA also allows use of controls such as scroll bar, spin button, option button, command 
button and check box to dynamically change simulation parameter values and related
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linked profiles of variables, thereby enabling better visualization and understanding of the 
dynamics. Add-ins such as for risk management (Crystal Ball®) and data mining 
(XLSTAT®) have further enhanced the capability of spreadsheets. The recent special 
issue of Interfaces focused on spreadsheet modeling is testimony to the relevance and 
usefulness of spreadsheets within the management community (LeBlanc and Grossman, 
2008) which includes a discussion of Hewlett-Packard’s experience in building and 
applying spreadsheet-based decision-support tools for forecasting, planning, 
procurement, and product management (Olavson and Fry, 2008). Similarly, Smith (2003) 
used three real world examples to show how spreadsheet modeling could be used for 
supply chain decision making.

The spreadsheet’s flexibility in incorporating alternative model structures and parameters 
and the more intuitive understanding of dynamic behaviour that it provided were the key 
factors in the decision to use it for simulation. Another factor was that Excel links well 
with Matlab® which was used for performing various time series transformations for 
rogue seasonality detection. The use of spreadsheet for simulation is well established and 
has been used in multiple contexts (John et al., 1994; Disney and Towill, 2003; Tang and 
Naim, 2004) and therefore provided confidence that it could be applied in the context of 
this thesis for rogue seasonality analysis. The final factor was that the author was already 
quite familiar with spreadsheets and VBA.

Spreadsheet simulation involved transferring the relevant difference equations 
(MTO/MTS and Beer game) into an Excel spreadsheet. However, changes such as in 
demand processes and parameters, lead time and lead time distributions also needed to be 
simulated and its impact on the behaviour of variables understood. Therefore, rather than 
making separate spreadsheets for each case, two generic simulators based on VBA were 
built: a generic APIOBPCS simulator and a Beer game simulator. These are depicted in 
Figures 3.3 and 3.4 below. The approach used in each case was the same as suggested by 
Smith (2003); a ‘control panel* sheet consisting of different VBA controls (scroll bar, 
spin button, option button, command button and check box) and the actual data models 
on other worksheets. In the APIOBPCS simulator, the VBA controls are associated with 
different simulation variants such as control parameters (Tj, Ta, Tw), delay/lead time (Tp),
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lead time distributions (order of delay), demand processes and parameters and provide 
dynamic change capability. These simulation variants are linked to the simulation model, 
thereby effecting appropriate changes in the simulation data which in turn changes the 
linked plots of different variables on the ‘control panel’ page. Hence, this VBA enabled 
approach helps in relating changes in simulation variants to the dynamic profiles of 
different variables and therefore makes understanding of the dynamics easier. The three 
echelon APIOBPCS simulation was simulated by having three separate linked 
workbooks, with each workbook containing a similar single echelon APIOBPCS 
simulator. A similar approach as that used for the APIOBPCS simulator, was used to 
build the Beer game simulator.

While the simulator based approach was used for initial understanding of the rogue 
seasonality dynamics, it could not be used to generate the large volumes of contextual 
data required for a statistical assessment of the best time series techniques and features 
for rogue seasonality detection. A combined Excel, VBA and Matlab approach was used 
for the same.

An important part of the simulation process is the verification and validation of the 
simulation model (Law and Kelton, 2000; Sterman, 2000). Validation is the process of 
determining the accuracy of the simulation model compared to the system under study 
and is more appropriate for empirical simulation models, where there is a benchmark for 
comparison. Since, established generic models such as APIOBPCS and the Beer game 
w'ere used in the thesis, the validation aspect was already covered. Verification on the 
other hand, is described as the process for checking the correctness of the translation from 
conceptual (causal loop) to a computer model, which in the case of the spreadsheet model 
means ensuring the correctness of the formulas and logic used in the model. The models 
were verified in different ways. Firstly, model outputs specifically oscillation frequency 
of the variables were compared to that suggested by control theory i.e. frequency 
response or amplitude ratio (FR or Amp R). Secondly, the exogenous demand variable 
was made constant across time, which, if the difference equations are correctly coded 
causes all variables to have a similar constant profile across time. Finally, similar 
conditions as that used in benchmark studies such as John et al. (1994) and Sterman
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(2000) were applied to the APIOBPCS and Beer game simulators respectively and the 
profiles and values of the model variables compared.

3.6.2 Case studies

Case studies are used in the thesis along with simulation because use of such multi­
methodology approach increases the validity of the findings. Case study is a preferred 
strategy in exploratory research because of its focus on contemporary phenomenon within 
a real life context and lack of investigator control (Yin, 1994). This explains the logic of 
research question 3. Decisions to be made when using the case study method are the 
nature and number of cases.

Case Selection: Case-based research can be expensive in terms of cost and time 
expended and therefore the nature of the case/s selected is an important part of the 
decision process. According to Eisenhardt (1989), the cases selected should be from an 
appropriate population in order to avoid as much as possible extraneous variations, while 
Stuart et al. (2002) suggests that case selection should consider the potential effects of 
industry, organization size, manufacturing processes and inter-organizational aspects. The 
choice of cases should follow theoretical rather than statistical reasons. Pettigrew (1990) 
proposes three criteria for case selection: (a) Extreme situations (b) Polar types as a way 
of disconfirming patterns from one case study to the other (c) High experience levels. He 
also describes as “planned opportunism” the practicalities of the process of choosing and 
gaining access to research sites.

The second important issue is whether single or multiple cases should be chosen and 
whether there is an optimum number for the latter. Eisenhardt (1989) advocates the use of 
four to ten cases, depending on the number of critical causal variables, in order to get 
proper results from case study research, but there are opponents to her approach who 
emphasize the importance of fewer cases, even single-case studies. Yin (1994) for 
example claims that a single case can be an appropriate research design when the case 
represents a unique or extreme case. Similarly, Stuart et al. (2002) claims to have 
conducted successful case research using as few as one to three companies.
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Appropriateness of the cases with respect to the research context therefore seems more 
important than the number of cases.

In the thesis two case studies from contrasting industries are used and provide different 
contexts for rogue seasonality analysis and detection. One study is from the steel industry 
characterized by stable demand profiles, while the other is from the grocery industry 
where the demand profiles are irregular and volatile. Monthly data was collected and 
analysed for the former while daily data was used for the latter. Both the case studies 
were analysed using predominantly an information centric approach focused on rogue 
seasonality.

3.7 Time series transformations and features used for rogue seasonality detection

As discussed earlier, this thesis has two parts: rogue seasonality generation and rogue 
seasonality detection. While the previous sections talked about rogue seasonality 
generation and related contextual data from simulation and case studies, this section 
discusses the time series transformation techniques and features used for rogue 
seasonality detection. The contextual rogue seasonality data (with different characteristics 
and intensities) consisting of time series of different variables are input into these 
techniques, and rogue seasonality detection is enabled based on appropriate signature and 
index. The relevance of signature based techniques and the inappropriateness of change 
point detection techniques for detection on a generic basis has been explained in the 
literature review chapter.

In signature based methods, signatures are usually derived on the basis of clustering or 
finding similarity relationships among the time series profiles of the operating variables. 
Time series clustering is predominantly based on the following three approaches (Liao, 
2005): a) Raw data based (time series data used for clustering), b) Feature based (features 
extracted from the time series are used for clustering) and, c) Model based (time series is 
converted into a model and the model parameters are used for clustering). Clustering 
approaches based on time series data, though easier to interpret, have problems in 
computation (large, high dimensional data sets) as well as lower accuracy because of
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interference from noise. Feature based and model based approaches are therefore 
preferred (Liao, 2005; Keogh and Kasetty, 2003). Some of the commonly used features 
include amplitudes of Fourier transform (FT), wavelet coefficients of discrete wavelet 
transform (DWT), autocorrelation function (ACF) and cross correlation function (CCF) 
which is a feature of pairs of time series. The autoregressive (AR) model is the most 
commonly used model based approach. Details about these feature and model based 
approaches are given in the following paragraphs and summarized in Table 3.4.

a) Fourier transform (FT): This is an old technique involving decomposition of a time 
series into its constituent sinusoids at different frequencies (as per equation 3.1) which 
has been used to analyze periodic signals extensively (Chatfield, 2004). Periodicity in the 
data gets reflected as peak amplitude/s at corresponding frequency channel/s in the FT 
analysis.

X ,  = *, exp( 2ntf‘ ) (3 .1)
Vn l?i »

\x,\ ~ Amplitude o f sinusoid offrequency / ;  x, =  signal values at t =  0, n-1

Frequency (f) =  [0, J,... n-1] (1/T), T =  total sampling time, j  =  V—7

The utility of FT in time series clustering is, however, of recent origin with Agrawal et al. 
(1993) establishing the equivalence of similarity relationships between the time and 
frequency domains. This formed the basis of a fast and accurate method of clustering any 
time series (using fast Fourier transform) by using the amplitudes of the first few 
frequencies as features (non inclusion of high frequencies which are typically associated 
with noise ensures greater clustering accuracy). Variations of this technique have been 
tried in different studies such as Wu et al. (2000), Caiado et al. (2006) and Vlachos et al. 

(2006) as given in Table 3.4.

The FT based approach being suited for data with cyclicality, it was considered for rogue 
seasonality analysis by Thornhill and Naim (2006). However, their nature of application 
is different from the way FT based approach has been used in the thesis. While they used 
FT to eliminate lags between variable profiles for effective profile comparisons and 
subsequent manual clustering, in this thesis FT (using amplitudes from FT) has been
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T ab le  3 .4

Review of studies using different transformation techniques and features in time series clustering

Reference Transformation/Features used Comparison with 
alternative methods

Clustering Technique Data used for 
evaluation

A
R

IM
A

/A
R

 
M

O
D

E
L

Tong and Pabas 
(1990) Residuals from ARIMA model No Hierarchical clustering and MDS; 

Euclidean dissimilarity measure
Benchmark socio economic 
dataset with seasonality

Piccolo (1990) AR model parameters No Hierarchical clustering and MDS; 
Euclidean dissimilarity measure

Economic time series with 
seasonality

Deng etal. (1997) ARM A model parameters No Classification and query matching; 
Euclidean dissimilarity measure

Synthetic dataset with real 
context

Kalpakis et al. 
(2001) Cepstra of time scries derived from AR model Yes; FT, DWT, PCA, and ACF

Partitioning around medoids; Euclidean 
distance between cepstra as dissimilarity 
measure

Synthetic as well as 
benchmark datasets

Maharaj (2000) AR model parameters No Hierarchical clustering based on p value 
of a hypothesis test

Synthetic as well as 
economic dataset

Xiong and Yeung 
(2002) ARMA/AR model parameters Yes; Cepstra of time series derived 

from AR model
Expectation Maximisation (EM) 
clustering

Synthetic as well as 
benchmark datasets

Ting et al. (2003) AR model parameters Yes; FT Classification and query matching; 
Euclidean dissimilarity measure

Synthetic as well as stock 
price data sets

FO
U

R
IE

R
 

TR
A

N
SF

O
R

M
 

(F
T

) Wuet. al. (2000) Amplitudes from FT Yes; DWT(Haar) Classification and query' matching; 
Euclidean dissimilarity measure

Stock price datasets

Caiado et al. (2006) Amplitudes from FT Yes; AR model, ACF, PACF, 
1ACF

Hierarchical and k-means clustering; New 
dissimilarity measure based on 
periodogram

Synthetic and economic 
dataset

Thornhill and Naim 
(2006)

FT + PCA (principal component analysis) No Visual clustering by plotting Supply chain dataset

MDS: Multidimensional Scaling SOM: Self organising map PCA: Principal Component analysis
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T ab le  3 .4  C on tin u ed

Reference Transformation/Features used Comparison with 
alternative methods

Clustering Technique Data used for 
evaluation

A
U

T
O

C
O

R
R

E
L

A
T

IO
N

 
FU

N
C

TI
O

N
 

(A
C

F
) Wang and Wang 

(2000)
Shape, trend, cyclic components, ACF and 
Partial ACF

Yes; Wavelet transformation of 
time scries (linear B-spline wavelet 
functions)

Classification and query matching; 
Euclidean dissimilarity measure

Synthetic as well as stock 
price data set

Vlachos cl al. (2006) ACF with amplitudes from FT Yes; Cepstra of time scries derived 
from AR model

Hierarchical clustering; New dissimilarity 
measure based on periodogram

Synthetic as well as 
science, medicine and 
manufacturing datasets

ST
A

T
IS

T
IC

A
L

FE
A

T
U

R
E

S McHutchon et. al. 
(2005)

Max, min. average, range, std deviation, root 
mean square (rms), shape factor, crest factor, 
impulse factor, kurtosis

Yes; DWT (Daubechies 4th order) 
with statistical features Visual clustering by plotting

Synthetic dataset with real 
maintenance condition 
monitoring context

Wang etal. (2006)
Trend, seasonality, periodicity, autocorrelation, 
skewness, kurtosis, chaos, nonlinearity and self- 
similarity

Yes; ACF, HMM, SAA
Hierarchical clustering and SOM; 
Euclidean dissimilarity measure

Synthetic as well as 
benchmark datasets

C
R

O
SS

C
O

R
R

E
L

A
T

IO
N

(C
C

F)

Bohtc et al. (1980) Cross correlation between time scries No Own method/program Socio economic time 
series

Goutte et al. (1999) Cross correlation between time series No Hierarchical and k-means clustering Biomedical dataset

Baragona(2001) Cross correlation between residual series 
generated from fitting AR models

No Metaheuristic methods -  Simulated 
annealing, tabu search, genetic algorithm

Synthetic datasets

Aono et al. (2006) Cross correlation between time series No Classification and query matching Biomedical dataset

D
IS

C
R

E
T

E
W

A
V

E
L

E
T

T
R

A
N

SF
O

R
M

(D
W

T
)

Chan and Fu(1999) DWT (Haar) coefficients Yes; FT Classification and query matching; 
Euclidean dissimilarity measure

Synthetic as well as stock 
price data sets

Lin et al. (2004) DWT (Haar) coefficients Yes; FT k-means and its variant; Euclidean 
dissimilarity measure

Benchmark datasets

Zhang et al. (2005) DWT (Haar) coefficients No Classification and query matching; 
Euclidean dissimilarity measure

Benchmark datasets
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directly used for automatic clustering. Despite its advantages, the FT based analysis has 
some deficiencies such as poor resolution of frequencies (especially for short series) and 
inefficient representation of non stationary/irregular profiles. Also, operating in the 
frequency domain lessens the intuitive feel of the results. Use of alternative time series 
techniques and features was therefore considered.

b) Discrete wavelet transform (DWT): Fourier Transform (FT), though a popular 
approach in time series clustering applications, is less efficient for non 
stationary/irregular signal profiles. Localised variations in such signals require more 
frequency channels for accurate representation because sinusoids represent global rather 
than local contributions to data. Wavelets are able to represent such signals more sparsely 
and accurately because:
a) They have an oscillatory profile of limited duration which is localised in both time as 

well as frequency domains
b) Their irregular and asymmetric profile can better represent discontinuities
c) Availability of wavelets with different characteristics such as shape and span 

(Daubecheis, Coiflets) can better fit different signal profiles
Figure 3.5 depicts a few commonly used wavelet profiles. An excellent coverage of time 
series analysis using wavelets is given in Percival and Walden (2000).

Mever Mexican HatCoiflet 1Daubechies 4
08
0 8
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Figure 3.5 Profiles of some commonly used wavelets (Percival and Walden, 2000)

Wavelet based time series clustering applications involve use of discrete wavelet 
transformation (DWT) to compute wavelet coefficients which are then used as features in 
clustering. The coefficients represent the correlation between the original signal and the 
local oscillation represented by the wavelet basis function. The basis functions in turn are 
generated by time translation and frequency scaling of the analysing (mother or 
prototype) wavelet and can be mathematically represented as follows:
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Basis function *¥jk (t) = 2J 2 (2J t -  k ) where is the mother wavelet function

2i is the scaling o f t and 2'jk is the translation in t. It is to be noted that only dyadic 
(power of 2) time translations and frequency scaling is used in order to balance the 
competing requirements of accuracy and computational efficiency.
Any real function can be represented in terms of wavelet coefficients as given below:

Any real function f ( t )  = cJk \Fjk (t)\  cjtk = (4^ * (/), /(/))  the wavelet coefficients of
j .k  ' '

the DWT.
Operationally, the relevant decision parameters for this transformation are 1) Choice of 
mother wavelet, and 2) Level of decomposition of the signal.

In terms of choice of mother wavelet, the Haar wavelet was used as it is easy to
comprehend and has been extensively used in time series clustering applications (Li et al.,
2002) which is also evident from Table 3.4. It can be mathematically represented as

" 1, i f  0 <t < 0.5 
* HooA' >>= J  »l , i f 0 . 5 < t < l  

0, otherwise

The mechanism of wavelet decomposition of the signal and the use of wavelet 
coefficients for clustering proceeds as follows: Decomposition of the signal proceeds 
hierarchically, starting with the highest frequency and gradually moving to lower 
frequencies as the decomposition level is increased. A time sequence of length N (which 
is required to be of power two can be broken down to any level upto log2N with the
wavelet coefficients at any level represented by {Aj, Dj, D2, D f. The D/s are the
detail coefficients representing the high frequency part of the signal with reducing 
frequency as we move from Di to Dj to while the lowest frequency part of the signal is 
represented by Aj or the approximation part. The broad trend of the time series is 
preserved in the approximation part whereas the localised changes are kept in the detail 
part. Clustering is done using only the approximation part of the sequence Aj while the 

D j ’s  are discarded.

In terms of comparing DWT with DFT, a few studies have done so, with some finding it 
superior to DFT (Kahveci and Singh, 2001) and others finding them equivalent (Wu et
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al., 2000). However, no study has used discrete wavelet transform for data with cyclical 
features as used in this thesis.

c) Autocorrelation function (ACF): Autocorrelation function (ACF) of a time series 
reveals its time delayed correlation, that is, correlation between values of a time series 
across different time intervals or lags as given in equation 3.2. ACF for each time series 
(up to specified lags) are used as features for similarity assessment and clustering. 
Features in this method are therefore extracted from the time domain itself.

oscillates with the same period as in the time domain. However, studies based on use of 
this method are limited. Wang and Wang (2000) used the Euclidean distance between 
ACFs to discriminate between two synthetically generated time series. Caiado et al. 
(2006) used Euclidean distance between ACF, in comparison with other techniques, to 
cluster and discriminate between stationary and non stationary synthetic time series and 
obtained around 75% clustering accuracy. Vlachos et al. (2006) used ACF along with FT 
in the context of periodicity detection and extraction of important periodic features. 
However, their focus of application was on individual time series. No study has used 
ACF in the context of clustering multiple data series with multiple cyclical characteristics 
as considered in the thesis.

d) Cross correlation function (CCF): Cross correlation function (CCF) defines the 
correlation between pairs of time series across various lags as per equation 3.3.

N - k

ACF k= Ta______________  (3.2)
£  (xt - p ) 2

p  = mean o f data series, k = lag, N  = number o f data points

This method is suited for rogue seasonality detection as ACF of a cyclical data series

p* and Py are the means of the two data series 
k =  lag and N  =  number of data points
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This CCF based method has also seen limited applications in time series clustering 
studies. Bohte et al. (1980) used the cross correlation similarity measure for clustering a 
socio-economic time series. Baragona (2001) used cross correlation between residuals 
generated from fitting high order autoregressive (AR) models to the time series as the 
similarity measure in clustering. Clustering was done using metaheuristic techniques and 
synthetic time series were used for the evaluation. Goutte et al. (1999) used the cross 
correlation similarity measure and hierarchical clustering for clustering time series in 
neuro imaging while Aono et al. (2006) used the same similarity measure for pattern 
recognition and classification of bio-signals. The CCF based method has not been used 
for data with cyclicality, though like ACF, it operates in the time domain which makes 
interpretation of results from it easier.

e) Autoregressive model (AR): Model based methods have roots in statistical time series 
analysis. The basis of this approach is that any time series can be represented as a 
function of its values in the previous time periods (Box and Jenkins, 1976). The number 
of past time periods used is reflected in the order of the model, which is a decision 
parameter. Operationally, an AR model is fitted to each time series up to the specified 
order by minimizing the sum of square errors and using the respective model coefficients 
as features for clustering. Equation 4.4 gives an AR model of order p.

Xt =  at Xt.i +  a2 Xt.2 +  ctj X,.3 +   CLpX,-p+ Zt (3.4)

p= model order, a i ... ocpi AR coefficients and Zt ~  random process 

E(Zt) = 0 & Var (ZJ =  a \

Advantages in using the AR model approach include significant dimensionality reduction 
(improves computational efficiency) and ability to cluster time series of different lengths.

The AR model based approach and its variants have been used in various studies. Piccolo 
(1990) clustered fourteen economics related time series using the Euclidean distance 
between the AR coefficients and could discriminate them on the basis of their seasonal 
component. Ting et al. (2003) also used the Euclidean distance between the AR 
coefficients to cluster synthetic data with seasonality characteristics and found this
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method to be more accurate and efficient (in terms of number of parameters used) than 
FT. Maharaj (2000) used the p  value of the hypothesis test based on the differences 
between the AR coefficients as the dissimilarity measure to cluster synthetic as well as 
economic datasets. Kalpakis et al. (1999) used the Euclidean distance between cepstra 
calculated from the AR model of each time series for clustering. Some researchers such 
as Tong and Dabas (1990) and Deng et al. (1997) have used ARIMA rather than AR 
model representations for the time series. ARIMA model representations have MA 
(moving average part) and I (a part reflecting trend in the data) beside the AR term/s and 
are an equivalent but more compact representation of a time series than pure 
autoregressive (AR) but less intuitive and computationally slower.

f) Statistical features: This method like the model based approach seeks to overcome 
difficulties in clustering long time data series (high dimensionality), data series with 
missing data or data whose lengths are unequal. Instead of a point to point distance 
metric, it uses the statistical features of the data sets for clustering. For example, Wang et 
al. (2006) use trend, seasonality, periodicity, autocorrelation, skewness, kurtosis, chaos, 
nonlinearity and self-similarity as features and the Euclidean distance for clustering. They 
showed this method to be effective for synthetic and benchmark data sets. McHutchon et 
al. (2005) applied other statistical features such as max, min, average, range, standard 
deviation, root mean square (rms), shape factor, crest factor, impulse factor, kurtosis and 
showed their utility in discriminating faults in a remote condition monitoring context. The 
use of statistical features for time series clustering is not sufficiently matured: there are 
limited studies on this subject and the best/most appropriate features to be used for 
different contexts have not been established. Moreover, use of aggregate statistical 
measures for profiles in this method reduces intuitiveness/explanation of the results 

obtained.

In summary, each technique discussed above has some relative advantages over other 
techniques. However, Table 3.4 highlights that few studies have compared the 
performance of their techniques and features with other rival techniques, and those that 
have, have done so with one or two techniques (Keogh and Kasetty, 2003; Liao, 2005). 
Secondly, the data that these studies have used to establish the superiority of a particular
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technique has a bias (Keogh and Kasetty, 2003). Primarily synthetic, non contextual data 
is used in most of the studies, with a few supplementing it with empirical data but that too 
on stock price or the finance domain as evident in Table 3.4. Since the results and 
effectiveness of different techniques are domain specific, and none of these studies has 
used any supply chain related data, their applicability in the supply chain context is 
limited. In this thesis, therefore, all the time series transformation techniques except 
statistical features have been applied and their effectiveness compared. Moreover, the 
data used for this assessment (from simulation and case studies) have a supply chain 
context. Statistical features were not used as they are not matured for application.

Different number of features were considered for each transformation technique to assess 
sensitivity of the results to the same. For example, for Fourier transform (FT), the feature 
options considered were FT 7 (amplitudes of first seven frequencies), FT 28 (amplitudes 
of first twenty eight frequencies), FT Total (amplitudes of all frequencies) and FT 80% 
energy (as many frequencies that have 80% of the total energy) for both linear and non 
linear simulation data analysis. For other transformations also, different numbers of 
features were similarly considered. The number of features used are discussed in detail in 
Chapter 4. For the case study analysis, the number of features used are different from 
simulation, due to data availability issues with the former. All time series transformations 
in the thesis were computed using Matlab® (see Appendix D).

3.8 Clustering and rogue seasonality signature

Profiles of different variables, either in the time or transformed domain, are required to be 
analysed to determine the characteristic signature for rogue seasonality. Though any of 
the three commonly used techniques of Classification, Association and Clustering could 
be applied for this analysis (these techniques are explained in Section 2.4.3.2 ), clustering 
was preferred because it is the most commonly used technique in time series applications 
(Liao, 2005). Moreover, for rogue seasonality, intial insights obtained from control theory 
analysis suggested clustering to be more appropriate for signature determination as 

discussed in the next chapter.
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Clustering techniques are concerned with partitioning of data sets (profiles of variables in 
time/transformed domain in this case) into a small number of homogenous groups or 
clusters with a characteristic profile of clusters associated with rogue seasonality deemed 
to be the latter’s signature. Amongst the many clustering methods, two of the most 
popular ones are k-means and hierarchical (Tan et al., 2005). The k-means method is an 
iterative process that searches for division of data objects into (A) clusters to minimize the 
sum of Euclidean distances between each object and its closest cluster centre. Though it 
is a robust and scalable method, it is sensitive to the initial selection of cluster centres and 
requires the number of clusters (k) to be specified before clustering. The hierarchical 
clustering method on the other hand does not require a priori specification of the number 
of clusters and yields good visualisation of cluster formation (Everitt, 1993). Both these 
attributes are important in view of the exploratory nature of the rogue seasonality 
signature subject, and therefore hierarchical clustering was used. In hierarchical 
clustering, each point (time series represented as a point in multidimensional space) is 
merged into clusters based on their relative closeness or similarity relationships. The 
clusters formed are again clustered on the same basis and this process is repeated until 
finally there is one all encompassing cluster. Hierarchical clustering is graphically 
displayed as a tree like diagram called the dendogram which gives the order in which the 
cluster-sub-cluster relationships formed at different stages. Clustering of data in the thesis 
was done using the well known XLSTAT® software which directly takes inputs from the 

Excel spreadsheet.

Use of hierarchical clustering requires three decision choices: a) Similarity measure, b) 
Basis for merging two clusters and, c) Where to cut the dendogram to determine the 
number of clusters. The dissimilarity measure used for all except the CCF method was 
the Euclidean distance as it is commonly used in time series clustering (Agrawal et. al., 
1993; Liao, 2005) and gives results of comparable accuracy vis-^-vis various other 
similarity measures (Keogh and Kasetty, 2003). It works well with all the time series 
techniques considered and is also fairly intuitive and easy to implement. It is defined as 

follows:
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dE = l ^ x n - y j i ) 1 (3.5)

dg -  Euclidean distance
Xj and yj are p  dimensional vectors

For CCF, two measures of similarity have been used in the literature. One is a composite 
similarity measure based on all the cross correlation values at different lags (Bohte et al., 
1980) while the other one uses the maximum cross correlation value within the specified 
maximum lags (Baragona, 2001) as the similarity measure. We used the method by 
Baragona because of its intuitive simplicity.

For merging two clusters, Ward’s algorithm, a popular method was used (Halkidi et. al., 
2001). This forms a cluster hierarchy by merging clusters that result in the smallest 
increase in the value of the sum-of-squares variance. At each clustering step, all possible 
mergers of two clusters are tried, the sum-of-squares variance computed for each and the 
one with the smallest value is selected. As this algorithm works only with Euclidean 
distance dissimilarity, it is not suited for the CCF method. Hence, complete linkage 
clustering was used for the CCF method instead, in which clusters are merged based on 
relative proximity or distance between them, with distance being the maximal object-to- 
object distance between the clusters.

Finally, the decision on where to cut the dendogram and identify clusters, depends on its 
tree structure and patterns of branches. For dendograms, in which branches are separated 
and join far apart, distinct clusters of the variables attached to the branches can be 
identified. However, for others, identifying clusters and hence pattern of relationships 
between the variables is subjective and difficult. This is further complicated by issues 
such as the scale used. Hence, an alternative approach based on direct use of dissimilarity 
values between the variables was considered for rogue seasonality detection.

3.9 Index of rogue seasonality

Identifying clusters and hence pattern of relationships between the variables is subjective 
and difficult. Hence, an alternative approach based on using an index derived from the 
dissimilarity values between the various supply chain operating variables was considered.
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This index was defined so as to objectively detect and assess rogue seasonality intensity 
in a generic sense. Subsequently, it was also used as a basis to evaluate the effectiveness 
of different time series techniques and features for rogue seasonality detection. Since, 
definition of the index emerged from the simulation results, it is best explained in the 
relevant section which is the next chapter.

3.10 Conclusion

This chapter has explained the philosophy, methodology and methods used to conduct the 
research and answer the research questions. The basis for adopting a positivistic stance 
and using quantitative methodologies was covered initially, followed by an explanation 
of the two main research threads: rogue seasonality analysis and related contextual data 
and rogue seasonality detection. The rationale of using a multi methodology, simulation 
and case study approach for rogue seasonality analysis was explained followed by details 
of the simulation process used: systems dynamics with control theory for better analytical 
support, APIOBPCS control system (John et al., 1994) and its variants such as make to 
order (MTO) and make to stock (MTS) in linear system and hybrid MTO-MTS in non 
linear system (Beer game) and spreadsheet (Excel), Visual Basic for applications (VBA) 
and Matlab as the tools of simulation. Details of the two case studies used, one from the 
steel industry and the other from the grocery industry were explained next. Finally, rogue 
seasonality detection in terms of signature of rogue seasonality and index of rogue 
seasonality were covered. This included the conceptualisation of the rogue seasonality 
signature by clustering features obtained from alternative time series transformations 
such as Fourier transformation (FT), auto correlation function (ACF), cross correlation 
function (CCF), autoregressive modelling (AR model) and discrete wavelet transform 
(DWT). The nature and application of each transformation technique in generic time 
series clustering applications as well as the appropriateness of using hierarchical 
clustering was explained. Finally, the relevance of the rogue seasonality index and its role 
in eliminating some of the deficiencies of rogue seasonality signature was briefly 
highlighted.
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Chapter 4 — Analysis of rogue seasonality in a linear 
supply chain system

This chapter analyses rogue seasonality in a simulated linear supply chain system. 
Continuous control theory (V  domain) together with system dynamics simulation of 
make to order (MTO) and make to stock (MTS) systems is used in the analysis. First, a 
single echelon system is analysed using control theory (specifically frequency response or 
FR) to understand the dynamics of variables in rogue seasonality generation and a 
potential signature that could be used for its detection. These findings are then validated 
using system dynamics simulation. The signature is then quantified to define a numerical 
index as an indicator of the intensity of rogue seasonality. Subsequently, the effectiveness 
of the signature and index is assessed using a large scale three echelon simulation. This 
involved varying the magnitude and order of delays as well as exogenous demand 
processes and their parameters to generate rogue seasonalities of different characteristics 
and intensities in the system. Alternative time series transformations such as Fourier 
transform (FT), autocorrelation function (ACF), cross correlation function (CCF), 
discrete wavelet transform (DWT) and autoregressive (AR) model are then applied on the 
system variables and the rogue seasonality signature and index derived in each case, 
using their respective features. The different features are compared in terms of 
consistency in assessing rogue seasonality, ability to discriminate rogue seasonalities of 
different intensities and stochastic robustness, to determine the best feature for rogue 
seasonality detection.

4.1 Rogue seasonality in single echelon systems

A sequential modelling process from simple to complex structures enables better 
understanding of the dynamics of systems. A single echelon APIOBPCS is therefore 
initially used to understand the dynamics associated with rogue seasonality. Specifically, 
make to order (MTO) and make to stock (MTS) systems derived from the APIOBPCS 
archetype are used, with the rationale for the choice of these systems having been 
explained in Chapter 3.
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While the APIOBPCS based MTS system has been extensively studied (Mason-Jones and 
Towill, 1997; Disney and Towill, 2005), the study of the MTO system has been limited. 
Moreover, alternative information flow and feedback structures have been used to model 
the latter. For example, Naim et al. (2007) use APIOBPCS with parameter values 0, oo 

and oo for Ta, Ti and Tw respectively to model the MTO system; inventory and work in 
progress feedback are eliminated and quantity ordered is equivalent to demand. Lead time 
(Tp) is considered constant (i.e. independent of demand) in this approach, implying an 
infinite production/order processing capacity. A similar approach is used by Towill 
(2005). On the other hand, researchers such as Wikner et al. (2007) recognize the 
capacity to be limited in their modeling approach. All the demand placed on this system 
is not met and surplus orders are temporarily stored in an order book, information on 
which is used in the ordering policy to effectively manage capacity and lead time 
flexibilities. Similar approaches as Wikner et al. (2007) though with different 
terminologies have been proposed by Helo (2000) and Anderson Jr et al. (2005).

In this thesis, though either of the above two approaches could be used to model an MTO 
system, the approach of Naim et al. (2007) and Towill (2005) is actually used. This is 
because the focus here is on detection of rogue seasonality which required use of systems 
exhibiting contrasting rogue seasonality characteristics and intensities. Modeling an MTO 
system in the way suggested by Naim et al. (2007) ensures no rogue seasonality 
generation, which meant that it could be an effective baseline for devising rogue 
seasonality detection and measurement protocols.

For an MTS system, there was no such dilemma as for the MTO system. The parameters 

suggested by Naim et al. (2007), which are Ta = Tw = oo, Ti = Tp were used which were 
substituted into the APIOBPCS difference equations and transfer functions to derive them 

for an MTS system.

The MTO and MTS systems are analysed for different order of delays. Order of delay 
reflects the distribution of output around the average delay. In a system with order of 
delay one, the input is completely mixed and a proportion of the output starts exiting the 
system immediately after inputs into the system. This is analogous to chemical
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processing. On the other hand in an order of delay infinity system, input and output enter 
and exit the system after a fixed average delay and in the same sequence, as may be 
found in automotive assembly. Both order of delay one and infinity were used so as to not 
only make the models more representative (as observed in practice), but also to generate 
different rogue seasonality characteristics in the systems. Further details about order of 
delay are provided in Sterman (2000).

The transfer functions of variables for the MTO and MTS systems are given in Appendix 
B. A noticeable fact is that unlike in the generic APIOBPCS system (John et al., 1994), 
number of unique variables in these systems are fewer which is because many variables 
are equivalent to one other as evident in equations B.9, B.ll, B.18, B.19, B.20 in 
Appendix B. The MTO and MTS systems are analysed using a combined control theory- 
system dynamics simulation approach as proposed by Towill (1982). The benefits of such 
a combined approach have been discussed in the Methodology chapter (Section 3.6.1.3) 
and are therefore not repeated here.

4.1.1 Control theory (frequency response) analysis

Each single echelon MTO and MTS system is first analysed using the FR approach based 
on Towill and del Vecchio (1994), Dejonckheere et al. (2003) and Jaksic and Rusjan 
(2008) which involves representing the profile of variables in the frequency domain. This 
approach is suited for data with cyclical characteristics (Chatfield, 2004), and was 
therefore considered for the analysis of rogue seasonality. In this approach, the transfer 
function of each variable of interest is first converted from the V , (continuous) to the 

frequency (‘co’) domain by substituting (tja)’) in place of V  and determining the absolute 
value of the function. This function called FR gives the ratio of amplitude of the 
sinusoidal output to sinusoidal input at various frequencies (co) and is therefore also 
referred to as amplitude response (Amp R). Since every time series consists of and can be 
broken down into its constituent sinusoids at different frequencies (each with different 
amplitudes), the FR profile provides information about the frequencies in the input time 
series that would be amplified (corresponding to FR > 1), attenuated (corresponding to 
FR < 1) and for whom there would be no change (corresponding to FR =1).
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Based on the above approach, FR as a function of frequency (co) is derived for each 
unique variable in each analysed system, specifically MTO and MTS with order of delay 
one and infinity. Here unique means that the other system variables are either equivalent 
to or are a multiple of these variables and therefore equivalent post-amplitude scaling, 
which is a typical step used in profile comparisons. The FR profiles are then analysed at 

critical frequencies such as at zero frequency (coo), frequency at which FR is maximum 

( ©  max f r ) ,  frequency at which crossover from amplification to attenuation takes place, 

that is, FR = 1 (©crossover) and very high frequency (co®; a> is used as surrogate for very 
high). This is to understand the frequency characteristics of the system, get insights about 
rogue seasonality and a potential signature that could be associated with its presence. A 
summary of the analysis is given in Table 4.1. Matlab® symbolic toolbox was used for 
performing the relevant computations.

4.1.1.1 Frequency response (FR) analysis of a MTO system

The summary of the FR analysis given in Table 4.1 highlights the fact that each system 
has only a few unique variables. Secondly, FR for each variable is computed relative to 
exogenous demand (CONS).

The FR profiles of unique variables in the MTO systems, both delay order one as well as 
infinity have a maximum value of either one or Tp. Those which have a maximum value 
of one would not amplify any frequency in the CONS input. For example, the maximum 
FR value of COMRATEJCONS for delay order one system is one, which means that the 
COMRATE would not amplify any frequency in CONS. Other variables which have a 
maximum FR value of Tp such as EWIP/CONS for delay order one and infinity and 
EINV/CONS for delay order infinity have FR profiles which are either continuously 
increasing or decreasing. Amplitude scaling of these profiles with respect to Tp (typically 
applied before comparing profiles) means no amplification of any frequency in CONS by 
EWIP and EINV variables either. Therefore, with none of the variables in an MTO 
system amplifying any frequency in CONS, no seasonality distinct from CONS (referred 
to as rogue seasonality in the subsequent sections) is generated by the system.
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TABLE 4.1 -  Frequency response (FR) functions of variables in make to o rder (MTO) and make to stock (MTS) systems
Outputs are given here in terms o f  angular frequencies (oj)

Frequency response (FR) function of unique variables
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4.1.1.2 Frequency response (FR) analysis of a MTS system

In contrast to MTO systems, all unique variables in MTS systems have FR profiles which 
are increasing-decreasing and with an intermediate maxima. Although such profiles have 
been discussed in the past by Towill and del Vecchio (1994), it was in the context of 
IOBPCS, not an MTS system as considered here, and only for a single variable (order or 
ORATE). Moreover, their nature of analysis was graphical and not analytical as done 
here. Dejonckheere et al. (2003) have also similarly discussed the FR profile of only the 
order variable in their analysis and for an order up to system (which can be used to 
represent APIOBPCS). Their FR analysis was also not comprehensive and restricted to 
select parameter (ordering) combinations. Finally, Jaksic and Rusjan (2008), who used 
Dejonckheere et al.'s approach but with a different replenishment rule, also had a similar 
issue with regard to their nature of analysis. These three studies also differ from the 
present study in terms of the frequency range that is used in the analysis. While the 
former use FR profile information across the entire frequency range (to understand the 
Bullwhip effect and determine its magnitude called noise bandwidth), rogue seasonality 
analysis and assessment is based on only the amplification range frequency (i.e. 
frequencies for which FR >1). This will be clearer in the next paragraph.

The FR profiles of all variables in the MTS system are greater than one in the frequency 

range © o to © crossover indicating that these frequencies in CONS are amplified by the 
system variables. This endogenous amplification of frequencies, independent of the 
frequency characteristics of CONS, is referred to as rogue seasonality generation in the 
system. A feature of rogue seasonality generation, and which is evident in each of MTS 
delay order one and infinity systems, is that the FR profiles of the variables in the system 
are similar to each other. Since every CONS can be broken down into its constituent 
sinusoids and FR for a variable represents the extent to which it amplifies each of these 
sinusoids, similarity among FR profiles of variables means that all these variables would 
show a similar oscillatory time series profile which would be different from the CONS 

profile. However, since a range of frequencies from © o to ©crossover are amplified, each 
with a different degree of amplification (as represented by the FR), the time series

90



profiles of variables would show a mixture of cycles although they would have a 
dominant cycle at frequency co max Fr .

Another observation with regard to MTS systems is that the maximum FR value 
(maximum amplification) is independent of lead time (Tp) for all variables (except 
W1P/CONS in delay order infinity system) and corresponds to a frequency which is 
inversely related to Tp. This means that an increase/decrease in Tp would reduce/increase 
the time period (or frequency) of oscillation of the profiles without having any impact on 
their amplitudes. This observation seems to be at variance with Kim and Springer (2008), 
who suggest that increasing/decreasing lead time (Tp) generates strong/weak cyclicality. 
However, the strength of seasonality definitions used in the two cases are different and 
therefore the results are not exactly comparable. Kim and Springer use a subjective 
definition, albeit one with a frequency bias; endogenous seasonality in a profile is strong 
if it showed multiple oscillations before reaching equilibrium and weak if it did so once or 
less. On the other hand the definition used in this thesis is based on the intensity or 
amplitude of rogue seasonality. Observation of maximum FR being independent of lead 
time (Tp) also seems to contradict the direct relationship between Tp and Bullwhip 
(increase/decrease in Tp leads to increase/decrease in Bullwhip) pointed out by many 
researchers (Lee et al., 1997a; Towill and McCullen (1999). However, here also there is 
no contradiction as Bullwhip is based on the square of the FR profile across the whole 
frequency range (the measure of Bullwhip effect called “noise bandwidth” suggested by 
Dejonckheere et al. (2003) is based on the area under the squared FR profile) while the 
rogue seasonality analysis and findings are based on the FR profile and that too in a 

limited frequency range where FR > 1.

4.1.1.3 Evolution of rogue seasonality signature

The MTS and MTO systems discussed above, in which variables exhibit, do not exhibit 
rogue seasonality provide effective discrimination, and therefore, a basis for developing 
the signature for the same. In the MTS system, the FR profiles of most of the unique 
variables and hence most available variables are similar. At the same time, because these 

variables amplify frequencies between coo and ©crossover *n CONS, they would be
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dissimilar from the latter. With similarity of FR translating into similarity in profiles in 
the frequency domain, this characteristic presentation of profiles (many variables are 
similar to each other and dissimilar from CONS) could be used as a signature to indicate 
the presence of rogue seasonality in a new case. In contrast to this, in a system without 
rogue seasonality such as MTO, the profiles of variables do not show amplification at 
any frequency and hence would not be dissimilar to CONS.

While the signature for rogue seasonality could be defined at a conceptual level as above, 
it needs to be shown and verified using time series data from these MTO and MTS 
systems. This is required because of the following reasons:

a) Even though the FR profiles of different variables in MTS systems are similar, which 
has been identified to be an indicator of rogue seasonality, the similarity is not exact 

as can be seen in Table 4.1. For example, in the MTS delay order one system, © maxFR> 

©crossover and maximum FR values for ORATE/CONS and COMRATE/CONS are 
marginally different. The same is true for other variables such as ORATE/CONS and 
WIP/CONS in the MTS delay order infinity system. Simulation is required to assess if 
these marginal dissimilarities affect the conceptual logic of the rogue seasonality 
signature.

b) Another factor which affects the alignment of variables and could therefore impact the 

effectiveness of the signature is that multiple frequencies between ©o and ©crossover are 

amplified, not just one frequency.

c) Finally, the earlier assumption about amplitude scaling (with Tp), of variables having a 
maximum FR value of Tp in MTO systems needs to be assessed, Also, there is a need 
to apply all, rather than only unique variables and show them to be effective in 
formulating the rogue seasonality signature.

Single echelon MTO and MTS systems are therefore simulated and the time series 
profiles of variables generated from the simulation are used to determine the rogue 

seasonality signature.
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4.1.2 Simulation output analysis

Details of the simulation are provided in the Methodology chapter (Sections 3.6.1.4 and 
3.6.1.5). Each system was excited with Gaussian CONS and the time series profiles of the 
system variables were analyzed. These profiles are also transformed into the frequency 
domain using Fourier transform (FT) and their spectra profiles compared with the 
findings from the analytical FR analysis given in Table 4.1. Gaussian CONS was used in 
the analysis because it has a flat spectra, that is, its energy is distributed uniformly across 
all frequency channels, which makes it easier to understand the system frequency 
characteristics.

As discussed earlier, determining similarity relationships between variables is key to the 
process of signature formulation. Clustering being a well established technique for 
assessing similarity relationships between objects (or time series in this case), it was 
therefore applied here. Details on clustering are provided in the Methodology chapter 
(Section 3.8) and therefore not repeated here. Suffice to say that a hierarchical clustering 
method was used, in which the order in which the cluster-sub cluster relationships are 
formed at different stages is graphically displayed as a tree like diagram called 
dendogram. For branches which are separated and join far apart, distinct clusters of the 
variables attached to the branches can be identified. Figure 4.1 depicts the time series and 
spectra profiles of the variables and their clustering for MTO and MTS systems with 
delay (Tp) of 7 excited with Gaussian CONS. The time series profiles are all normalised 
(i.e. mean centred and amplitude scaled, the latter with respect to o) while the spectra 
profiles are scaled with respect to the largest spectral peak because this enables better 
visualization of the frequency characteristics. Also, the spectra profiles can be seen to 
stop at 0.5 on the frequency axis. This is because the Nyquist sampling theorem requires 
a sinusoidal signal to be sampled at least twice per cycle (Chatfield, 1996).

4.1.2.1 Simulation output analysis of MTO systems

The profiles of variables from simulated MTO systems are shown in the first two rows of 
Figure 4.1. The time trends of the system variables (terms defined in this section earlier)
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Figure 4.1 Time series, spectra and their clustering for single echelon MTO and MTS 
systems excited by Gaussian demand (CONS)
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are shown in the first panel and the spectra derived from Fourier transformation (FT) in 
the third panel. An inspection of these plots shows a close similarity between the CONS, 
ORATE, AVCONS and DWIP profiles, in both the time as well as spectral 
representations. Based on the APIOBPCS structure (Figure 3.2 and Appendix A) and the 
parameters of the MTO system, such a relationship between the profiles is expected. With 
no demand smoothing and no pipeline and inventory feedback CONS, AVCONS and 
ORATE are equivalent. Their profile in turn is similar to DWIP as the latter is 
proportional to AVCONS and normalised time series data is used. The behaviour of 
COMRATE, however, changes with the order of delay. For a first order delay, the 
production or delivery pipeline acts as a low pass filter, that is, COMRATE transmits the 
low frequencies and filters the high frequencies in CONS. This behaviour of COMRATE 
for an order of delay one system is as per its decreasing analytical FR profile and which is 
evident in both its time series as well as spectra profiles. For the order of delay infinity 
system, COMRATE is ORATE shifted by lead time Tp, so that their spectra being 
invariant to phase shifts in the time domain, are similar. Finally, it was mentioned in 
Section 4.1.1 that variables such as EWIP/CONS (for delay order one) and EINV/CONS 
and EWIP/CONS (for delay order one and infinity), despite having maximum FR values 
of Tp (which is greater than one and hence associated with amplification) would not 
behave as such because of their a-priori normalization with Tp. The time series and 
spectra profiles of these variables validate the same.

From the perspective of rogue seasonality, it is evident that in MTO systems, the CONS 
profile is transmitted to other variables without distortion, that is, other variables do not 
have frequencies different from those in CONS. Hence, rogue seasonality is not 
generated in such systems, which was seen earlier in the analytical FR analysis as well. 
Clustering of variables, in both time as well as spectra representation, highlights this 
result, that is, CONS is similar to most of the other system variables and is clustered with 
them. Though time and frequency domains seem to be equally effective in this case, a 
more detailed profile comparison highlights the disadvantage of operating in the time 
domain. For example, AINV and EINV, despite being similar (inverted versions of each 
other as DINV is constant) are clustered separately in the time domain. Similarly, the



profiles of COMRATE and ORATE in a delay order infinity system, being delayed 
versions of each other are actually similar but still clustered separately in the time 
domain. The spectra representation correctly recognizes the similar nature of variable 
profiles in both cases.

4.1.2.2 Simulation output analysis of MTS systems

The profiles of variables from a simulated MTS system are shown in the bottom two rows 
of Figure 4.1. All the variables except CONS are seen to oscillate at similar frequencies 
in each of MTS delay order one and delay order infinity systems. Though this is apparent 
in the time profiles, the spectra profiles highlight the same more clearly. The behaviour of 
the profiles, are also as expected from their analytical FR analysis given in Table 4.1. For 
example, the frequency of oscillation of variables in an order of delay one system, as 
evident from peaks in their spectra is 0.02, which is equivalent to the frequency 

associated with maximum amplification (© m ax  f r )  suggested by the analytical FR analysis.

It is to be noted that the analytical FR analysis is in terms of angular frequency (co) and 
therefore needs to be divided by 2 k  to relate it to the abscissa in the spectra plot, which is 
in terms of frequency. The oscillation frequency of variables in the delay order infinity 
system at 0.03, evident from their time series plots and peaks in their spectra is also 
equivalent to that expected from their analytical FR analysis. The analytical FR analysis 
also suggested that the peak amplification of system variables in an MTS delay order 
infinity system is greater than that in the delay order one system. The time series and 
spectra profiles of these systems validate this as well. The spectra of variables in the 
delay order infinity system show a higher spectral peak and less distribution of energies 
in other frequency channels than delay order one. Variables in the former also show more 
consistent cyclicality than the latter. Hence overall, the good correspondence between the 
simulation output and the findings of the analytical FR analysis effectively verifies the 
simulation model used.

Table 4.1 also clearly shows the significant smoothing of other operating variables 
compared to CONS in MTS systems. This is evident in both the time and frequency
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domains (spectra) and can be intuitively explained on the basis of the system structure 
and control policies used. ORATE in a MTS system depends upon AVCONS and EINV. 
AVCONS is based on a long term forecast and is not updated regularly based on CONS 
while EfNV is reduced by a factor of Tt (time to adjust inventory), when used to compute 
ORATE. Hence, ORATE is not influenced directly by CONS but only indirectly through 
a smoothed EINV. This is what causes dissimilarity between ORATE and CONS which 
gets passed on to create dissimilarity between other variables and CONS also.

The cluster profiles in Figure 4.1 clearly highlight the nature of clustering of CONS as a 
discriminating factor between presence and absence of rogue seasonality. Comparing 
rows 1 and 2 with 3 and 4 in Figure 4.1 shows that, while CONS is clustered with the 
other variables in the MTO systems where no rogue seasonality is present, it is clustered 
separately from the other variables in the MTS systems associated with rogue seasonality. 
Also seen in MTS systems, is other variables being clustered together which is because of 
similarity from generation of cyclicality (rogue seasonality) of a similar frequency. The 
extent of CONS dissimilarity in MTS systems also indicates the intensity of rogue 
seasonality. This is evident when we compare clustering profiles of MTS delay order one 
with delay order infinity system in rows 3 and 4 of Figure 4.1.

The signature for rogue seasonality can therefore be simply expressed in terms of whether 
internal system variables cluster or do not cluster with CONS. When the latter is true, 
rogue seasonality is considered present, otherwise not. This signature based approach 
builds on the findings of Thornhill and Naim (2006). Multiple variables are used in 
deriving the signature recognizing a similar manifestation of rogue seasonality in the steel 
case study which they used. While Thornhill and Naim’s rogue seasonality detection 
approach involved making assumptions and manual discretion, the signature based 
approach proposed here is quite general and can be applied in an automated fashion. A 
key question in this approach is the domain representation or feature to be used for 
signature development. Between time and spectra representations, the signature 
developed from the latter appears to be better as seen in Figure 4.1. Rogue seasonality 
intensity in the MTS order of delay infinity system is greater than in the order of delay 
one system as in Table 4.1 and this is accurately represented in the spectra representation.
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CONS is more distinctly clustered from other variables in the order of delay infinity 
system than in order of delay one system. However, the signature in the time domain does 
not reflect the same.

4.1.3 Index of rogue seasonality

Rogue seasonality detection based on the signature as discussed above, has advantages 
over the approach suggested by Thornhill and Naim (2006). However, it still has a few 
deficiencies. One deficiency is that framing of the signature involves assessment of 
cluster membership and cluster profiles. This introduces subjectivity into the process. 
There are further complications from issues such as the dissimilarity scale used in cluster 
visualisation. Also, the way the signature is defined, it appears to be more appropriate for 
a binary (0 1) categorisation of rogue seasonality i.e. whether rogue seasonality was 
present or absent. However, in reality, rogue seasonality is present in most supply chains 
(Kim and Springer, 2008), but with different intensities. A numerical indicator of rogue 
seasonality intensity, and which would also enable its detection would be useful and was 
therefore explored.

This alternative approach involves defining an index based on the similarity relationships 
between the supply chain variables. The index definition is based on the hypothesis that 
rogue seasonality generation and propagation creates significant variation in the profiles 
of variables. With rogue seasonality, the other variables excluding CONS such as AINV 
and W1P get a cyclical profile and thus become quite similar to each other, while 
becoming dissimilar to CONS. The dissimilarity between CONS and the other variables 
is therefore compared to the dissimilarity between the other variables themselves. In the 
case where the ratio between the two is large it indicates rogue seasonality of greater 
intensity for the reason given above. The formal definition of the index is as follows:

Minimum dissimilarity between CONS and the other variables
Rogue Seasonality Index (4.1)

Average dissimilarity between all variables except CONS

Dissimilarity is measured in terms of the Euclidean distance between the variables (time 
or feature domain) for all the techniques except CCF, where it is measured as (/ -  max 
correlation) between two time series within specified maximum lags. The rationale for
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choosing these dissimilarity measures has been explained in the Methodology chapter. 
The term ‘index* used in subsequent sections and chapters, refers to this definition of the 
rogue seasonality index.

The index as defined above is tested on MTO and MTS delay order one and infinity 
systems to assess its effectiveness in characterizing the intensity of rogue seasonality (see 
Figure 4.1). The index values in the time domain for MTO delay order one, MTO delay 
order infinity, MTS delay order one and MTS delay order infinity systems are 0, 0, 0.88 
and 0.91 respectively which accurately indicate absence, absence, medium intensity and 
high intensity of rogue seasonality respectively. The corresponding values using spectra 
(or frequency domain representation) are 0, 0, 3.98 and 7.04 which not only correctly 
characterize the increasing intensity of rogue seasonality but do so with greater 
discrimination between different intensities than in the time domain. This comparative 
superiority of spectra vis-a-vis time is, however, based on the analysis of a single 
instance, and requires validation through multiple replications.

4.2 Rogue seasonality signature and index assessment in three echelon MTS 
systems with different time series transformations and features

The rogue seasonality signature and index were understood and validated using single 
echelon MTO and MTS delay order one and infinity systems in the earlier section. Also, 
time and frequency domain representations were used to derive them, out of which the 
latter was found to be better. The validity of signature, index and the effectiveness of 
alternative time series transformations is now sought to be established with multi echelon 
systems. Three echelon MTS systems are therefore simulated, with these systems being 
created by coupling together of the corresponding single echelon systems. The coupling 
is done by making ORATE of the downstream echelon equivalent to the CONS of the 
upstream echelon. For deriving the signature and index, other time series transformations 
and features (besides time and spectra) discussed in Section 3.7, are also assessed. The 
plots based on these different feature representations for simulated order of delay one and 
infinity systems (MTS three echelon) are given in Figures 4.2 and 4.3 respectively. A 
delay of 7 at each echelon and Gaussian noise as the exogenous demand is used as in the 
case of the single echelon analysis. Also, the time series data is normalized before
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applying the different transformation techniques. It is to be noted that a single echelon 
MTS system has seven system variables (see Figure 4.1) which means that the three 
echelon MTS system analysed here should have 21 system variables. The list of these 
variables can be seen in the time domain analysis in Figure 4.2 with the number 
associated with the variable indicating the echelon number. For example, CONS 1 means 
demand faced by echelon 1 which means exogenous demand for the system.

Theoretically, in a linear system, if the same ordering parameters are used in each 
echelon in a multi echelon system, the frequency characteristics of the multi echelon 
system is similar to that for the single echelon (Towill and del Vecchio, 1994). In the case 
of the three echelon MTS systems considered here, the amplified ORATE frequencies 
from the first echelon act as CONS for the second echelon which further amplifies these 
frequencies (which are in the amplification range) and this is repeated for echelon number 
three as well. The amplification frequency ranges of the three echelons are aligned 
because all the three echelons are assumed to have the same parameters as well as lead 
time (Tp), the latter being a key determinant of the frequency characteristics (see Table 
4.1). Variables in each of the three echelons in this three echelon system are expected to 
oscillate at a common frequency.

Figures 4.2 and 4.3 confirm the above. Most variables in delay order one and infinity 
systems are seen to oscillate at frequencies of 0.02 and 0.03 respectively, as identified 
from peaks in their spectra. These frequencies correctly correspond to maximum FR 
values derived for single echelon systems (see Table 4.1). The oscillation frequencies of 
0.02 and 0.03 are also clearly evident in the time (especially for delay order infinity) and 
autocorrelation function domains. In the AR model representation, though the profile of 
other internal variables appears to have changed from rogue seasonality, these do not 
clearly reflect cyclicality. In this representation, a time series with cyclicality should 
show a peak at the order corresponding to time period of the cycle with smaller peaks at 
multiples of the same. The DWT coefficient representation indicates cyclicality but the 
cycle length is not clearly evident; repeated averaging by the Haar wavelet has smoothed 
and therefore distorted the cyclicality characteristics. Finally, CCF directly indicates 
dissimilarity.



In terms of the effectiveness of each domain representation or feature in representing the 
rogue seasonality signature, FT amplitude, ACF and CCF are seen to be better than others 
for both order of delay one as well as order of delay infinity systems. In each of these 
cases, the exogenous demand (CONS 1) is distinctly clustered from the other variables, 
with the latter being clustered together. On the other hand, time and DWT coefficient 
domains, yield a signature of lesser clarity (CONS 1 is not that distinctly separated from 
other variables in the dendogram) with AR model features being between the two (FT, 
ACF, CCF and time, DWT) in terms of effectiveness of the signature derived from it.

The plots in Figure 4.2 and 4.3 also clearly depict the rationality of the rogue seasonality 
index for certain features. The system variables excluding CONS 1 show cyclicality, and 
therefore have similar profiles and low dissimilarity with each other resulting in a small 
denominator in the index computation. CONS 1 does not show cyclical behaviour and 
hence is quite dissimilar from the other variables so that the numerator in the index 
computation is large. Hence, when rogue seasonality is present, the index value should be 
a large number. This is clearly evident for FT, ACF and CCF features though the values 
of the indices for these as well as other features show a large variance. For example, for 
the MTS delay order infinity system (Figure 4.3), the index value derived in the time 
domain is 0.91 while it is 7.12 in the CCF domain with other features yielding index 
values between these two. More importantly, the index values based on some features are 
not consistent i.e. they do not vary as expected. For example, the MTS delay order 
infinity system generates rogue seasonality of greater intensity than the corresponding 
delay order one system (Table 4.1) and the same should be reflected in their index values 
derived from different features. However, only FT and ACF features i.e. index values 
derived from these features show this consistency; index values based on FT for delay 
order one and infinity systems are 3.54 and 3.93 while the corresponding values for ACF 
feature are 3.08 and 4.20. Index values based on other features decrease rather than 
increase from the delay order one to delay order infinity system.

The above analysis demonstrated the validity of the signature and index for rogue 
seasonality detection along with the relative effectiveness of different features in deriving 
them. However, valid conclusions cannot be drawn from the analysis of just one instance
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as used here; single instance of stochastic demand from a single (Gaussian) demand 
process, single system structure (in terms of delay or lead time) and one set of parameters 
for each feature (e.g. lag 28 for ACF, order 28 for AR model). Moreover, only one 
definition of the rogue seasonality index was used and other definitions need to be 
considered to assess its stability and robustness in measuring rogue seasonality intensity. 
A detailed simulation experiment incorporating all these aspects was therefore conducted.

4.3 Detailed simulation of three echelon MTS systems

A detailed simulation analysis was done to rigorously evaluate the rogue seasonality 
index as a measure of rogue seasonality intensity and determine the most appropriate 
features and system variables for deriving it. Three sets of analyses were conducted:

1) Generate rogue seasonality of different characteristics and intensities in the system and 
system variables

2) Use different time series transformations and features (with different parameters for 
each feature) to derive the rogue seasonality index and in this way determine the best 
feature parameter combination for index computation (and therefore rogue seasonality 
detection). Time series data of system variables from step 1 are used.

3) Use different definitions of rogue seasonality index and repeat step 2.

4.3.1 Generation of rogue seasonality of different characteristics and intensities

Details of the simulation design used for generating time series data with different rogue 
seasonality characteristics and intensities are given in Table 4.2. Only the MTS system 
showed rogue seasonality and therefore it was the only one used in the simulation. Delay 
between ordering and receipt of goods, which in this case is only the production time, 
was varied as it plays a key role in supply chain dynamics (Forrester, 1961; Chen et al., 
2000). However for MTS systems, a change in delay only changes the time period of 
seasonality or cyclicality and not its intensity as discussed earlier. Delay (Tp) of 3, 7 and 
14 days were chosen to correspond to Vi week, 1 week and 2 weeks delay in production. 
Order of delay in the system, which reflects the distribution of the output around the
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average delay, also affects the dynamics and was therefore independently varied. Orders 
of delay one and infinity were used, the rationale for which has been explained earlier.

Table 4.2 - Simulation design for generating rogue seasonality o f different
characteristics and intensities

Structure and num ber of echelons Linear, Three Echelons

Supply chain control (Ordering) Make to stock (MTS)

O rder of delay One, infinity/pipeline

Delay (time) 3,7,14

Demand process and param eters AR (1): p = -0.8,-0.5, 0.1
MA(1): 0 = 0.7, 0.4, -0.2
AR(2): pi = 0.1 p2= -0.8, pi = 0.7p2 = -0.2
MA(2): 0, = 0.7 02 = -0.2, 0, = 0.1 02 = -0.8
Gaussian

Exogenous seasonality Absent, Present (Amplitude: 1 frequency: 0.01, 
frequency: 0.09)

V ariables input into transform ation 
techniques/features for rogue 
seasonality index computation

All variables, Only order and inventory variables

100 replications of each based on common random numbers
*  Gaussian randomness

In terms of choice of exogenous demand, demand for many goods follow autoregressive 
(AR) and moving average (MA) processes of different orders (Chopra and Meindl, 2001). 
AR and MA of orders 1 and 2 besides random (Gaussian) demand processes were 

therefore considered. Within each process, parameter values such as p's for AR (1) and 

AR(2) and 0’s for MA (1) and MA(2) were varied to generate rogue seasonality of 
different intensities in the system variables. The underlying basis for this is as follows. 
The frequency response (FR) of the variables which is the ratio of the sinusoidal output to 
the sinusoidal input at various frequencies (Table 4.1) is computed relative to the 
exogenous demand (CONS). Therefore, if CONS had a significant low frequency 
component, which corresponded to the amplification frequency range, then the rogue 
seasonality intensity generated in the variables would be high. In contrast, if the low 
frequency component in CONS was low, the rogue seasonality intensity generated in the 
variables would also be low. The parameters within each demand process were therefore 
chosen in such a way as to have different proportions of the low frequency amplification
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range component so that rogue seasonality with different intensities could be generated. 
For this, spectra as a function of parameter values was derived for each demand process 
and this is explained and depicted in Appendix C. Principles given in Gottman (1981) 
were used in the derivation. Spectra plots for the parameters considered for each demand 
process highlight their different low frequency amplification range content. For example, 
for the AR (1) process, spectra energy in the low frequency amplification range increases 
with an increase in the parameter value p from -0.8 through -0.5 to 0.1.

Exogenous seasonality of different frequencies was added to the demand pattern to make 
it more realistic. Two frequencies were considered: one within the amplification range 

(i.e. less than ©crossover) and the other beyond the amplification range (i.e. greater than 

©crossover)- ©crossover being a function of delay (Table 4.1), the specific frequencies added 
were such that they met the within and beyond amplification range requirement for all the 
delays considered.

Finally, in terms of the system variables used for index computation, besides using all the 
variables, use of select variables (specifically order and inventory) was also used. The 
latter was considered because from a practical perspective many organisations may 
choose to share information on only a few rather than all the variables. Order and 
inventory are the most common variables on which information is shared amongst 
companies (Lee and Whang, 2000). Moreover, use of these variables has also been 
suggested in the context of complete assessment of the Bullwhip effect dynamics (Disney 
and Towill, 2003). Therefore, index was also computed using the order and inventory 
information of all echelons.

One hundred independent replications were generated for each case using common 
random numbers. The data generation was done using Excel0 and Matlab°.

4.3.2 Different features assessed for effectiveness in rogue seasonality index 
computation

Alternative time series transformation techniques and features were evaluated to 
determine the most appropriate one for rogue seasonality index computation. All the
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commonly used techniques and features as discussed in the Methodology chapter as well 
as in Section 4.2 were applied and evaluated. Table 4.3 describes the transformations 
used and the features extracted, with different parameters for each feature. Matlab© was 
used for all transformations, after normalizing the data to eliminate mean and amplitude 
scale differences. Appendix D gives the Matlab code used for performing the time series 
transformations, extracting features with different parameters and using them to compute 
the rogue seasonality indices.

Table 4.3 - Time series transformation techniques, features and parameters 
for each feature used for rogue seasonality index computation

Fourier transform  

(FT)

Amplitudes used as features. Number o f frequencies (parameters) 
considered:
a) Total (FT Total) b) First 7 (FT 7) c) First 28 (FT 28) 
d) Number with 80% of total energy in the data series (FT 80% Energy)

Autocorrelation function 
(ACF)

Autocorrelation upto specified lags used as features. Number of lags 
(parameters) considered:
a) 7 (ACF 7) b) 28 (ACF 28)

Cross correlation 
function (CCF)

Maximum cross correlation between pairs o f variables within maximum 
lags specified, used as the feature/similarity measure.
Maximum lags (parameters) considered: a) 7 (CCF 7) b) 28 (CCF 28)

Autoregressive model 
(AR Model)

Coefficients o f the fitted AR model, up to specified orders used as 
features. Order o f AR model (parameters) considered:
a) 7 (AR 7) b) 28 (AR 28)
c) Minimum AIC (Akaike, 1981) (AR AIC)

Discrete wavelet 
transform  (DWT) -H a a r  
wavelet

Wavelet coefficients from DWT at different levels used as features. Levels 
(parameters) considered:
a) 5 (DWT 5) b) Based on minimum Shannon entropy (Shannon 

and Weaver, 1964) (DWT Shannon)
Time series data without any transformation was used as the default for comparison (Raw Time)

Bracketed text are referred to as feature parameter combination in the rest o f the thesis

a) Fourier transform (FT): Different number of frequencies (referred to as parameters) 
are considered to assess the sensitivity of the index/indices to the same. The FT Total 
option used includes amplitudes of all frequencies in the computation and in this way 
ensures that rogue seasonality frequencies do not get excluded. Though this option does 
not improve the computational efficiency vis-&-vis the time domain, it does increase the 
clustering accuracy from better alignment of similar but leading/lagging profiles. The
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latter point has been highlighted in the study by Thornhill and Naim (2006). Other 
options considered use lesser number of frequencies so as to increase the computational 
efficiency (from dimensionality reduction) as well as the clustering accuracy (from noise 
elimination; the higher frequencies not used are generally associated with noise). FT 7 
and FT 28 frequency options involving the use of first 7 and 28 frequencies were 
considered, with 7 and 28 chosen so as to correspond to a week and month respectively. 
Despite their advantages, these options carry greater risk of rogue seasonality frequencies 
getting excluded from the analysis due to inappropriate choice of parameters (number of 
frequencies).

The final option, FT 80% Energy, eliminates the need to choose number of frequencies. 
This is chosen on the basis of the distribution of energy (square of amplitude) across 
different frequencies for that variable. 80% Energy refers to the fact that as many initial 
frequencies are used, which have cumulatively eighty percent of the total signal energy. 
The FT 80% Energy option eliminates the risks as in FT 7 and FT 28, of relevant 
frequencies associated with rogue seasonality not being considered while at the same 
time providing better dimensionality reduction than FT Total.

b) Autocorrelation function (ACF): ACF’s were calculated for 7 and 28 lags (referred 
to as ACF 7 and ACF 28 respectively) to assess sensitivity of the results to the number of 
parameters while ensuring correspondence with other features which also use 7 and 28 
terms in the index computation.

c) Cross correlation function (CCF): In this method the similarity between two time 
series was defined to be the absolute maximum correlation between them within the 
maximum lags specified. The maximum lags specified were 7 and 28 (referred to as CCF 
7 and CCF 28) similar to other methods which meant that the cross correlation function 

was evaluated within ± 7 and ± 28 lags.

d) Autoregressive model (AR model): In this method an AR model is generated for 
each time series up to a specified order with the coefficients of the model then used for 
index computation. Orders of 7 and 28 (referred to as AR 7 and AR 28) were considered 
for the same reasons as other techniques. An approach based on the Akaike Information
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Criteria (AR AIC) (Akaike, 1981) which does not require a-priori specification of model 
order was also considered. Here optimal order is automatically chosen by trading off 
model order with error in model fitting based on the equation given below. However, in 
an analysis of multi variables, the optimal order for individual variables could be 
different. For such cases the maximum optimal order across variables was used as the 
order for each variable.

Optimal order = min (AIC) where AIC = n
i-fl

/ n )
1—1

+ 2 k (4.2)

k = number o f parameters in the statistical model (model order in this case) 
n = number o f observations and £) is the error between observation andfitted model

e) Discrete Wavelet Transform (DWT)-Haar: Wavelet coefficients, which essentially 
represent the correlation between the original and the local oscillation represented by the 
wavelet basis function (Percival and Walden, 2000) were used for index computation in 
this method. Signals could be decomposed to different levels before computation of the 
index, details of which are explained in the Methodology chapter. Level 5 (referred to as 
DWT 5) was chosen, as it gives 32 approximation coefficients, which is close to the 28 
coefficients used in other methods. A higher level, to correspond to 7 coefficients in 
other methods, was not used as the approximation coefficients were excessively 
smoothed. A parameter free approach was also tried in which the appropriate level could 
be automatically selected on the basis of data characteristics i.e. did not require a priori 
level specification. This was based on the Shannon entropy function (Shannon and 
Weaver, 1964) which can be regarded as a quantitative measure of uncertainty. At each 
level, signal energies are used to evaluate this entropy function with the level selected 
being the one where its value is the minimum. This level corresponds to maximum 
information availability as information is equivalent to the removal of uncertainty.

Level o f entropy (H) = - ̂  EJk * logEjk; Ejh is the wavelet energy at scale j  and instant k
k

N
This can also be represented as H = - ^ s j  * log s f ; s: signal and s,.- wavelet coefficients

i-i
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4.3.3 Different rogue seasonality index definitions considered

The rogue seasonality index has been defined earlier in Section 4.1.3 on page 98. The 
effectiveness of this definition of the rogue seasonality index has been demonstrated 
earlier. However, in certain cases it may not indicate rogue seasonality accurately. For 
example, there could be a case where rogue seasonality is present in the supply chain and 
such cyclicality is evident in most variables; however, there are few variables which are 
not showing cyclicality, as a result of which they remain similar to CONS, causing the 
index value to be low due to a small numerator and thus giving an erroneous indication of 
rogue seasonality intensity. To eliminate this possibility, an alternative definition of the 
rogue seasonality index called Alternate 1 or Alt 1 is proposed, which considers average 
rather than minimum dissimilarity between CONS and the other variables in the 
numerator. Finally, a third definition of the rogue seasonality index called Alternate 2 or 
Alt 2 is proposed, which incorporates the inherent variability in the variables by using 
standard deviation.

(Alternate 1 or Alt 1) =

(Alternate 2 or Alt 2) =

(4.3Average dissimilarity between CONS and the other variables 

Average dissimilarity between all variables except CONS

Minimum dissimilarity between CONS and the other variables 
- Average dissimilarity between all variables except CONS

Standard deviation of dissimilarity between all variables except CONS

In the simulation analysis, computations are made considering each of the three 
definitions. The Matlab® code used for computing these indices is given in Appendix D.

4.4 Analysis of output from detailed simulation of three echelon MTS system

The output of the detailed simulation is essentially the index values based on different 
feature parameter combinations for each simulated system. Taking the example of an 
MTS system with average delay 3 and order of delay 1, excited with one instance of AR 
(1) demand process with p 0.1, the rogue seasonality index is calculated based on each of 
raw time, FT Total, FT 7, FT 28, FT 80 % Energy, AR 7, AR 28, AR AIC, ACF 7, ACF 
28, CCF 7, CCF 28, DWT (Level 5) and DWT (Level Shannon) feature parameter

(4.4)
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combinations. This is replicated 100 times to calculate the average as well as coefficient 
of variation (standard deviation/average) values for each combination. Although this 
exercise is done for each of the three index definitions (index, Alt 1 and Alt 2), output for 
only the index (equation 4.1) is presented in order to reduce the complexity from excess 
data. However, the outputs from the three indices are compared, with the extent of 
correlation between them indicating the robustness of the logic of the index.

The simulation output is discussed in the following sequence. First the case where 
exogenous demand does not have seasonality and all the variables are used in index 
computation is analysed. Next the exogenous demand with seasonality case is analysed; 
the impact of seasonality on the index is discussed together with the changes required to 
ensure the index’s continued validity as a measure of rogue seasonality intensity. Finally, 
the case where only order and inventory variables are used in the index computation is 
discussed.

4.4.1 Case I: Exogenous demand without seasonality and all variables used

4.4.1.1 General observations

Table 4.4 gives the index values for the AR (1) demand process for this case with those 
for other demand processes given in Appendix E, these values having been computed 
using different feature parameter combinations. Though AR (1) is used as the basis for 
analysis, any of the other demand processes could also have been used instead.

The index values for all feature parameter combinations are seen to be greater than zero. 
A zero value is associated with a system such as MTO that does not exhibit any rogue 
seasonality. Since only MTS systems are simulated, and all such systems with non zero 
lead time exhibit rogue seasonality, this signifies that all feature parameter combinations 
could be used to compute the index. However, the index values across different 
combinations show a large variance, with the values for some combinations being 
particularly low.
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Table 4.4 - Rogue seasonality index for a three echelon MTS system based on different 
feature parameter combinations; All variables used in computation of the index
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The index value from the time domain is less than 1 for all demand-delay combinations. 

The magnitude o f change in the index value, from changes in demand parameter/order o f 

delay in this domain is also small. A specific case can be seen in Figure 4.1 where MTS 

order o f  delay one and order o f delay infinity cases have index values based on the time 

domain of 0.88 and 0.91. This is not surprising as data in the time domain is unable to 

identify similarities in leading/lagged profiles, which makes the average dissimilarity 

among the other variables (excluding CONS) much larger than that between CONS and 

these variables. A similar low index value is observed from use o f DWT coefficients.
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The index values obtained from the AR model features have reasonable magnitudes, 
though they have a higher proportion of values less than one as compared to other 
features. The largest index values are obtained using features from the FT, ACF and CCF 
techniques, thereby indicating their greater discriminating power in assessing the 
presence and intensity of rogue seasonality. However, the index values vary with the 
parameters used. For example, for the FT feature, significant volatility in the average 
index values is seen for the FT 7 and FT 28 parameter options as compared to FT Total 
and FT 80% Energy. Overall, the wide range of responses obtained from simulation 
makes it difficult to identify the best feature parameter combination for rogue seasonality 
detection. A systematic and objective basis to collate and compare these responses is 
therefore required.

4.4.1.2 Criteria for structured comparison of feature parameter combinations

Three criteria were defined to compare the effectiveness of different feature parameter 
combinations for index computation. These are:

a) Consistency -  An ideal or appropriate feature parameter combination is that which 
gives index values, consistent with changes in demand parameters and order of delays. 
By consistency, it is implied that demand parameters or order of delays associated with 
actual increase/decrease in rogue seasonality, would show a similar change 

(increase/decrease) in index values. For example, for the AR (1) demand process, as p, 
the autoregressive parameter, changes from -0.8 to -0.5 to 0.1 the rogue seasonality 
intensity increases (discussed earlier in Section 4.3.1). A consistent feature parameter 
combination from a demand perspective would therefore be that, which yields index 

values which change similarly with p. A similar behaviour is expected for other demand 
processes such as AR (2), MA (1) and MA (2), in each of which the parameters chosen 
are such as to generate rogue seasonality of different intensities. In terms of consistency 
based on order of delay, a system with an order of delay infinity produces rogue 
seasonality of greater intensity than order of delay one, as discussed earlier. A consistent 
feature parameter combination from an order of delay perspective would yield index 
values that vary similarly with order of delay; lower index value for delay order one and 
higher index value for delay order infinity.
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b) Magnitude of index (Discrimination) - An ideal or appropriate feature parameter 
combination is that which yields index values of greater magnitude than other feature 
parameter combinations for the same system. This increases the discrimination between 
presence/absence of rogue seasonality as well as between rogue seasonalities of different 
intensities. A ranking system was used, where for each demand parameter, delay and 
order of delay combination, the feature parameter combinations were ranked based on 
their average index values. The sum of ranks for all parameter, delay and order of delay 
combinations was used as the basis for classification; the lower the sum of ranks the 
better was that feature parameter combination on the discrimination criteria.

c) Coefficient of variation of index (Stochastic robustness) - An ideal feature 
parameter combination is that which yields index values with smaller coefficient of 
variation, and hence, is more robust to stochastic variations than other combinations. A 
ranking system similar to magnitude of index was used, with the only difference being 
that a higher rank was given for the feature parameter combination having a lower 
coefficient of variation value.

4.4.1.3 Comparison of feature parameter combinations based on defined criteria

Using the index values (average and coefficient of variation) given in Table 4.4 and 
Appendix E, the different feature parameter combinations were analysed in a structured 
way based on the above criteria. A summary of this analysis is given in Tables 4.5a, b, c.

Table 4.5a gives the consistency of the index with respect to demand parameters and 
order of delays for different feature parameter combinations. The shaded cells indicate 
the maximum (best) values for that row. The maximum possible consistency values used 
in the tables are derived as follows. For example, for AR (1), its maximum consistency 
for demand parameters is 12, because use of three demand parameters (p = -0.8, -0.5 and 
0.1) means two comparisons for each of three delays (3, 7, 14) and two order of delays 
(order 1 and infinity). Similarly, its maximum consistency for order of delays is 9 as there 
are two orders of delays implying one comparison for each of the three demand 
parameters and three delays. These were similarly arrived at for other demand processes. 
The table shows that the FT and ACF based features yield the most consistent index
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Table 4.5: Structured evaluation of feature parameter combinations used for rogue 
seasonality index computation in a three echelon MTS system; All variables used
Table 4.5a Highligh ted  indicates best

C onsistency of rogue seasonality  index for different dem and p ro cesses  and order of delays (Number of cases)

Nature of
Demand
P rocess

C onsistency Basis

an d n e re m e le re

Raw
Time

FT Total FT 7 FT 26 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 6)

DWT Haar 
(Level 

Shannon)

AR 1 LRjmafia pflfimoiers
Order of delay 719 0/9

3/12
4/9

6/12
9/9

11/12
1/9

11/12
0/9

11/12
0/9

11/12
9/9

12/12
9/9

12/12
2/9

12/12
4/9

1/12
1/9

6/12
7/9

MA 1 Demand parameters 12/12 12/12 4/12 6/12 7/12 6/12 6/12 6/12 11/12 11/12 11/12 4/12 10/12
Order of delay 7/9 0/9

3/6
4/9
1 /ft

9/9
C/fi

1/9 0/9
2/8

0/9 9/9 3/9
C/R

5/9 5/9 7/9
AR 2 Lrw' ■ K® •  v >w 3

Order of delay 4/6 — ■ 1/6 3/6
sjl\J
6/5 2/6 1/6 1/6

t)/0
6/6

6/6 D/O 6/6
3/6

I /t>
3/6

e/o
6/6

MA 2 Demand parameters 6/6 6/6 0/6 3/6 1/6 1/6 1/6 6/6 -------- 6/6 0/6 0/8
Order of delay 4n 6 ^ o * 3/6 6/6 o n 0/6 0/6 6/6 1/6 2/6 1/6 5/6

G a u ss ia n Order of delay 2/3 3/3 1/3 1/3 3/3 on 0/3 0/3 3/3 3/3 0/3 _____ 1/3 1/3 2/3

Overall Consistency • 
Demand and Order of 
delay

59/69 68/69 14/69 26/69 64/69 25/69 21/69 21/69 67/69 69/69 42/69 60/69 17/69 49/69

Table 4.5b
Rank analysis based  on the m agnitude of rogue seasonality  index
(For assessing the discrimination ability of the index derived from different feature parameter combinations)

Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level ()

DWT Haar 
(Level 

Shannon)

Sum of Ranks - AR (1)
Minimum / best possible 18 203 98 195 128 74 144 183 159 22 89 89 39 243 224

Sum of Ranks - MA (1)
Minimum / best possible 18 204 102 191 125 89 133 173 151 28 104 90 34 242 224

Sum of Ranks - AR (2)
Minimum / best possible 12 133 59 120 80 71 97 121 112 18 56 57 23 163 150

Sum of Ranks - MA (2)
Minimum / best possible 12 136 64 130 84 49 99 118 113 17 58 57 25 161 149

Sum of Rsnks • G aussian
Minimum / best possible 8 65 31 71 50 25 45 61 54 8 28 25 12 81 74

Sum of Ranks ■ TOTAL 
Minimum / best possible 66 741 364 707 467 308 618 666 689 93 336 318 133 890 821

magnitude of rogue seasonality index (as these would provide better discrimination in rogue seasonality assessment) These ranks are then summed up first by each demand process 
such as AR (1). MA (1) end then all together to denve a total sum of ranks Feature parameter combinations with a lower total sum of ranks are considered better

Table 4.5c
Rank analysis based  on the coefficient of variation of rogue seasonality  index
(For assessing the stochastic stability of the index derived from different feature parameter combinations)

Lower the coefficient of vanation the higher the rank is used  a s  basts
Raw

Time
FT Total FT 7 FT 28 FT 80% 

Energy
AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)
DWT Haar 

(Level 
Shannon)

Sum of Ranks - AR (1)
Minimum / best possible 16 21 63 215 95 109 202 187 211 186 191 106 153 63 68

Sum of Ranks -MA(1) 
Minimum / beat possible 18 18 64 213 103 98 219 192 217 181 190 90 134 90 81

Sum of Ranks - AR (2) 
Minimum / best possible 12 12 43 129 67 73 145 141 155 116 120 57 88 61 53

Sum or Ranks - MA (2)
Minimum / best possible 12 12 43 150 70 68 132 128 134 125 136 65 96 54 47

Sum of Ranks - G aussian 
Minimum / best possible 6 6 19 76 32 27 75 70 77 56 58 26 41 27 40

Sum of Ranks - TOTAL 
Minimum / best possible 66 69 232 783 387 37* 773 718 794 664 696 344 612 318 289

Coefficient of variation is sam e a s  SD/Avg Their values are b ased  on 100 replications for each

Raw
Time

FT Total FT 7 FT 28 FT 80S 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 6)

DWT Haar 
(Level 

Shannon)

Sum of Ranks - TOTAL (magnitude as 
well as coefnctent of variation of the 
index)
Minimum / best possible 132

810 586 1490 834 *83 1291 1374 1383 767 1030 662 645 1206 1110
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values from both demand parameter as well as order of delay perspectives. This is 
primarily on account of their ability to ignore leads/lags between the data profiles. FT and 
ACF are well established for analysing univariate data with seasonality, but this analysis 
shows that these are also effective in the context of multiple data series with seasonal 
characteristics.

The features however, differ in terms of their parameter sensitivity. While ACF features 
show a marginal change in consistency with the change in parameters from 7 to 28, the 
change is significant for the FT features. FT 7 and FT 28 with the first seven and twenty 
eight frequencies show poor consistency, which improves when more frequencies are 
used as in the FFT 80 % Energy option, with the highest consistency being for the 
FT Total option where all frequencies are used in the index computation. The behaviour 
of FT 7 and FT 28 is on account of non inclusion of relevant rogue frequencies within the 
first 7 and 28 frequencies used in these options (this risk associated with these options 
was highlighted earlier). As regards other features such as CCF and time domain analysis, 
these were found to give slightly lower consistencies than ACF and FT, which is 
understandable, as both are based on direct comparisons of time series profiles, though 
CCF has some advantages as it looks at lags/leads in relationships also. The DWT and the 
AR model features, however, showed the lowest consistencies. For DWT, this is because 
wavelets, like the time domain, are also not invariant to leads/lags in data profiles. 
Moreover, the Haar wavelet used is discontinuous and therefore less able to capture the 
smooth profiles of the variables. The result for the AR model is however surprising, as 
this approach has been shown to be effective by Ting et al. (2003) and Caiado (2006). 
This could be due to the larger number of variables used here as well as the significant 
non-stationarity induced in the data from rogue seasonality.

The sum of ranks based on average index magnitudes and the coefficient of variation are 
given in Tables 4.5b and 4.5c respectively. As discussed earlier, the best transformation 
technique and feature is that which yields both the highest index values as well as has the 
lowest coefficient of variation. However, many feature parameter combinations are seen 
to be not similarly good or bad on both these criteria. The sum of ranks for both criteria 
have therefore been aggregated together and presented at the bottom of Table 4.5c. FT is
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seen to be balanced in meeting both criteria for some parameters such as FT Total and FT 
80% energy. This is evident in their lowest total sum of ranks, though individually they 
do not have the lowest ranks in either criterion. However, other FT parameters such as FT 
7 and FT 28 appear to be less adequate. CCF meets both criteria effectively, while ACF, 
which showed good consistency, was found to be deficient in the coefficient of variation 
criteria. DWT and AR model based techniques, which were behind other features on the 
consistency criteria were similarly placed on these criteria also.

Time based indices are both a less valid measure of rogue seasonality intensity as well as 
a less effective discriminator of rogue seasonalities of different intensities. As discussed 
earlier, this is because of the lack of alignment of the cyclic profiles of variables in the 
time domain. Lower validity is evident in Table 4.5a which shows the consistency 
(measure of validity) of the time domain index to be relatively low for most demand 
process and order of delay combinations. The lower discrimination effectiveness is 
evident in Table 4.5b with the sum of ranks of the time based index values being 
relatively higher (indicating a lower index value) for most combinations. Index based on 
the time domain is therefore less appropriate and useful than other techniques despite 
having advantages such as ease in computation and interpretation.

Overall, based on all the three criteria, FT and specifically the FT Total feature parameter 
combination was judged to be the best for rogue seasonality detection. Using fewer 
numbers of parameters as in FT 7 and FT 28, though improving efficiency in 
computation, was seen to reduce accuracy and effectiveness of detection significantly. 
Intermediate approaches such as FT 80 % Energy therefore seem a good compromise. 
Index values based on ACF features showed good consistency to varying demand and 
delay characteristics as well as discrimination ability in view of their large index 
magnitudes. However, their coefficient of variation was greater relative to other 
techniques suggesting lower robustness to stochastic variability. With regard to CCF, 
index values calculated from its features were not very consistent, though it performed 
adequately on the other two criteria. Finally, the AR model and the DWT were found to 
be the worst in each of the three criteria. In fact, for some AR model and DWT 
parameters, the performance on the criteria was worse than even that for the time domain.
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4.4.1.4 Comparison of alternative index definitions

The index values based on different feature parameter combinations for different systems 

(demand processes and parameters, delay and order o f delay) were computed on the basis 

o f the three index definitions individually and correlated with each other. This was done 

at an individual (stochastic instance) level rather than from averages. Also, the parameter 

options within each feature were combined together while computing the correlation 

coefficient for that feature. Table 4.6 gives the correlation coefficient between the 

alternative index definitions.

T a b le  4.6 - C o rre la tio n  coeffic ien t be tw een  a l te rn a tiv e  rogue 
seaso n a lity  ind ices in a lin e a r  th re e  echelon  M T S system  —
All v a r ia b le s  used  in c o m p u ta tio n  o f  th e  ind ices

I n d e x  a n d  A l t  
1

I n d e x  a n d  A l t  
2

A l t  1 a n d  
A l t  2

T i m e 0 . 0 5 0 . 9 7 0 . 2 2
F T 0 . 9 6 0 . 9 5 0 . 8 5
A R  M o d e l 0 . 9 7 0 . 9 8 0 . 9 4
A C F 0 . 9 9 0 . 9 7 0 . 9 6
C C F 0 . 9 5 0 . 9 8 0 . 9 4
D W T 0 . 2 8 0 . 7 6 0 . 2 9

Highlighted indicates low correlation (considered had)

Table 4.6 shows that for most o f the features (FT, AR Model, ACF, CCF), correlation 

between the alternative rogue seasonality index definitions is high implying that indices 

derived in these domains are robust and less sensitive to the nature o f dissimilarity 

measurement between CONS and the other variables: minimum or average or in terms of 

standard deviation. This does not hold for indices derived in the time domain and using 

DWT coefficients (correlation is low for certain combinations). One reason for this is that 

the index values in these domains are quite low and therefore relative dispersion between 

alternative indices is more than that in the other domains.

4.4.2 Case I I : Exogenous dem and with seasonality and all variables used

Exogenous demand with seasonality was considered in order make the analysis more 

realistic. Two separate analyses, one with sinusoidal cyclicality o f frequency 0.01 and the 

other with frequency 0.09 (unit amplitude in both cases) were carried out. The seasonality 

was added to the stochastic demand process before the analysis, with the analysis being

118



of a similar nature as in the previous section. Frequency of 0.01 was within the 
amplification range and 0.09 beyond the amplification range, that is, in the attenuation 
range for all the systems considered (the ranges are determined by delay or Tp). In this 
way, such contrasting situations that could be encountered in practice were covered.

The spectra plots of system variables for this case revealed transmission of the exogenous 
seasonality to other variables/echelons at the same frequency. While the upstream system 
variables in the 0.01 frequency case showed amplification, they were attenuated in the 
0.09 frequency case. Rogue seasonality generated endogenously by the system was 
visible, though, significantly masked for the system with amplification. The nature of the 
variable profiles therefore seem to depend on the frequency of the exogenous seasonality 
in relation to the characteristic amplification/attenuation frequency range of the system, 
and this has the potential to corrupt the index definition logic. The index may not give an 
accurate indication of rogue seasonality intensity in such cases, and such cases are quite 
common as system structure is generally unknown and exogenous seasonality strong.

A better approach would be to filter out the exogenous seasonality from all variables 
before calculating the rogue seasonality index. This is possible since exogenous 
seasonality is transmitted upstream to many variables, and can therefore by identified on 
that basis. Therefore, in a test system whose rogue seasonality is being assessed, if many 
variables across multi echelons including exogenous demand have high signal energy at a 
particular frequency, this implies that the seasonality is exogenous in nature. Using a 
notch filter, a well known filtering technique in signal processing (Orfanidis, 2002), this 
common frequency can be filtered out from all the variables, whereafter the index could 
be calculated in the usual way based on any feature parameter combination. This 
approach was tested for a few feature parameter combinations (those found most 
appropriate in the earlier analysis) and found it to be effective. Figure 4.4 gives the scatter 
plot between index values without seasonality and with seasonality and notch filtering for 
seasonalities of 0.01 and 0.09. The dispersion in the index values for each of the three 
feature parameter combinations considered is low which demonstrates the effectiveness 
of the notch filtering based approach. The index is therefore an effective measure for 
rogue seasonality even for cases where exogenous demand has seasonality; however,
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Figure 4.4 Variation in rogue seasonality index from exogenous demand having an 
additional seasonal component (seasonal component is notch filtered before index 
computation)
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prior notch filtering is required to filter out the exogenous seasonality.

4.4.3 Case III: Exogenous demand without seasonality and only order and 
inventory variables used

The rationale for doing this analysis was that in the real world, information on all the 
variables as considered earlier, may not be available. Order is a rudimentary information 
while inventory information is also being increasingly shared across supply chains. It was 
therefore assumed that information on order and inventory would be available for most 
supply chains. Therefore, instead of using all the available variables, as was done 
previously, only order and inventory variables (from all echelons) were used in 
computing the index. The rest of the analysis was done in a similar fashion as earlier.

The index values for the AR (1) demand process for different delay-order of delay 
combinations and based on different feature-parameter combinations is given in Table 4.7 
with the same analysis for other demand processes given in Appendix F. A comparison of 
the index values between an “all variables used” case (Table 4.4) and the “orders and 
inventory variables used” case (Table 4.7) for the AR (1) demand process shows only 
small differences. For example, in the “all variables used” case, the average index values 
for delay (Tp) 3 and order of delay 1 system based on FT Total are 1.71, 2.34 and 2.60 
(for p -0.8, -0.5 and 0.1) while the corresponding values for the “order and inventory 
variables used” case are 1.46, 2.1 and 2.52. The same is true for the other demand 
processes also. Such a result is expected because both order and inventory variables show 
rogue seasonality and whether one uses all the variables in the index computation or a 
subset of these variables, the definition of the index ensures that the difference between 
their index values is limited. This invariance of index value to the number of variables 
used also strengthens the definition of the index.

Tables 4.8a, b and c give the evaluation of different feature parameter combinations on 
the basis of consistency, magnitude of index (discrimination) and coefficient of variation 
of the index (stochastic robustness) where only order and inventory variables were used. 
Similar to the “all variables used” case (Tables 4.5 a, b, c), FT (specifically FT Total) 
feature parameter combination is seen to be the most appropriate for rogue seasonality
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Table 4.7 - Rogue seasonality index of a three echelon MTS system 
based on different feature parameter combinations;
Demand process: AR (1); Only order and inventory variables used

l m <  on 100 repScm tkxit tor aacf)
O rdorof Oolay AR(1)

Damand
Param atara

Raw
Tfcna

FT Total FT 7 FT 21 FT 30V 
Enorgy

AR 7 ARM AR AIC ACF 7 ACF 21 CCF 7 CCF 21 DWT Haar 
(Laval 0)

DWT Haar 
(Laval 

Shannon)

n
■
a

f c

A h a --0.6 Avaraga
SO/Avg

0.00
0.01

1.40
0.00

3.22
0.17

2.74
0.13

1.01
0.13

0.00
0.10

0.89
0.10

0.90
0.10

1.01
0.14

140
0.12

1.50
0.15

4.50
0.15

0.51
0.07

0.52
0.12

ORDER 1 R h o - 4 4 Avaraga
SO/Avg

0.02
0.01

2.10
0.00

1.01 
0 30

3.53
0.00

2.05
0.10

0.00
0.17

0.85
0.17

0.80
0.17

3.41
0.12

1.75
0.10

3.09
0.10

3.09
0.10

0.47
0.10

0.01
0.13

Rho -0 .1 Avaraga
SO/Avg

ois
0.01

2 42  
0 05

0 3 3
0.30

i i *
0.10

6.40
0 00

6.64
03 3

6.6e
0.32

0.02
0.33

4.00
0.12

1.03
0.12

4.61
0.07

4.87
0.07

0.37
0.11

0.57
0.26

R h o - 4 4 Avaraga
SO/Avg

0.03
0.01

2.20
0.10

0.21
0.43

0.33
0.13

2.33
0 14

0.02
0.10

0.99
0 40

0.09
0.20

4.47
0.18

2.00
0.17

2.34
0.16

3.00
0.17

041
0.10

0 63
0 04

ORDER
INFINITY

R h o - 4 4 Avaraga
SO/Avg

0.03
001

2.72
0.00

0 3 3
0.37

0.33
0.20

311
0.12

0 90
0 2 0

1.04
0 47

1 OS 
0.27

5.81
0.17

2.33
0.18

3.10
0.14

4.45
0.15

0.44
0.10

007
006

Rho -0 .1 Avaraga
SO/Avg

0.01
0.01

2.1)
0 00

0.10
0.50

in 
t

 
*0 

0 i)o
0 00

1.10
0.40

140
041

1.23
0.42

5.94
0.19

2.30
0.20

3.30
0.13

4.92
0.13

0.44
0.17

0.67
0.15

De
lay

 
(T

p) 
■ 

7

ORDER 1

R h o - 4 4 Avaraga
SO/Avg

0.04
0.01

2.23
0.11

5.50
0 4 0

3.30
0.13

1.02
0.10

1.10
0.17

1.17
0.10

1.18
0.17

3.40
0.10

2.10
0.17

2.03
0.16

3.10
0.18

0.55
007

0.61
0.08

R h o - 4 4 Avaraga
SO/Avg

0.04
0.01

2.01
0.00

4.70
0 4 0

6.66
0.12

3.10
0.14

1.37
0.25

1.32
0 4 3

1.30
0.24

5.32
0.19

2.01
0.17

4.18
0.13

6.48
0.14

0.55
0.06

0.65
0.12

R h o -0 .1 Avaraga
SO/Avg

0.03
0.01

3.10
0.00

3.00
0.30

3.52
0.11

3.17
0 0 0

1.08
0.01

1.70
0.47

1.05
0.01

0.81
040

2.82
0.18

5.00
0.11

7.05
0.12

0.48
0.07

0.62
041

ORDER
INFINITY

R h o - 4 4 Avaraga
SO/Avg

0.04
0.01

2.75
0.12

0.35
0.01

3.10
0.13

3.13
0.10

1.32
041

140
0.19

1.20
0.19

0.07
042

3 40
0 43

2.71
0.18

3.88
0 40

0.45
0.14

0.64
0.05

R h o - 4 4 Avaraga
SO/Avg

6.03
0.01

344
0.11

0 4 5
0.48

3.14
0.13

4.00
0.15

1.65
0 40

1.60
0 44

1.4l
0 44

10.06
042

3.Vo
0 45

4.60
0.16

5.31
0.18

0.42
0.14

0.66
0.06

R h o -0 .1 Avaraga
SO/Avg

0.02
0.01

iio
0.11

0 4 0
0.40

2.70
0.13

6.64
0.11

4.64
0.00

2.31
0.51

2.52
0.00

28.17
04 5

3.80
0.26

3.66
0.16

811
0.10

0.42
0.15

0.65
0.18

•

*

3

ORDER 1

R h o - 4 4 Avaraga
SO/Avg

6*6
0.01

247
0.13

4.14
0 44

3.45
0.14

3.00
0.17

1.40
0.15

1.4*
0.14

1.40
0.15

0.41
045

3.86
048

2.71
0.16

4.63
042

0.57
0.00

0.65
0.06

R h o - 4 4 Avaraga
SO/Avg

“ 5 7 5
0.01

------------n s
0.13

4.51
0.23

— n ;
0.13

4.10
0.17

T35
0 2 0

1.78
0.19

”  ' 1.64 
0.10
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0.25

4.76
0.31

3.64
0.14

lo i
0.19

---- 581
00 6

0.67
000

R h o -0 .1 Avaraga
SO/Avg

0.04
0.01
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0.12
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02 2

3.03
0.13

3.02
0.14
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0.58

3 00 
0.44

3.74
0.54

11.00
0.20

546
0.34

3.77
0.13

8.13
0.17

0.53
0.07

0.05
0.19

ORDER
INFINITY

R h o - 4 4 Avaraga
SO/Avg

0.04
0.01

3.34
01 0

1.51
0.40

6.60
0.10

4.53
0.20

1.03
0.20

1.64
0.18

1.66
0.10

13.00
0.31

0.53
0.31

2.58
0.10

4.51
045

0.500.11 0.65
0.07

Rho * 4 4 Avaraga
SO/Avg

063001 i l l0.10 0.51
3 40010 6.14

042
2.02
0.27

1.80
044

1.88
0.25

22.78
0.33

7.53
0.33

66s
0.18

5.58
043

0.550.11 0.66
0.07

R h o -0 .1 Avaraga
SO/Avg

0.02001 i l l0.10 0.02
0.50

2.060.10 3.800.10 550  
0 70

3.42
0.40

3.00
0.54

32 40 
0.30

le i
0.35

3.110.10 5.79
041

0.520.12 0.660.10
80 : Standard Deviation: Avg: Average

index computation followed by ACF with AR and DWT features at the bottom. A similar 
rationale, as discussed in the previous paragraph applies here for this observation. Finally, 
Table 4.9 gives the correlation coefficient between the alternative index definitions where 
again the results are similar to that the “all variables used” case i.e. high correlation 
coefficient for the FT, AR model, ACF and CCF features and low correlation coefficient 
for the time domain and DWT coefficients.
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T ab le  4.8: S t ru c tu r e d  e v a lu a tio n  o f  fe a tu re  p a r a m e te r  c o m b in a tio n s  used  fo r  ro g u e  
seaso n a lity  in d e x  c o m p u ta tio n  in a th re e  ech e lo n  M T S  sy stem ;
O nly o r d e r  a n d  in v e n to ry  v a r ia b le s  used

Table 4.8a H ighlighted indicates best

C onsistency of rogue seasonality  index for different dem and p ro c e s se s  and o rder of delays (Number of c ases )

Nature of
Osmsnd
Procsss

C onsistency Basis Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 6)

DWT Haar 
(Level 

Shannon)

AR 1 Demand parameters 3/12 11/12 3/12 3/12 8/12 11/12 11/12 11/12 12/12 12/12 12/12 12/12 2/12 7/12
Order of delay 2/9 0/9 0/9 9/9 4/9 1/9 9/9

U 1  4 Demand parameters 6/12 4/12 6/12 8/12 7/12 6/12 6/12 12/12 12/12 11/12 12/12 3/12 10/12PnM 1 Order of delay 3/9 9/9 0/9 2/9 9/9 8/9 9/9 9/9 4/9 6/9 4/9 9/9
Demand parameters 0/6 3/6 3/6 3/6 3/6 6/6 6/6 5/6 6/6 1/6 6/6MF\ L Order of delay 4/6 1/6 2/6 4/6 4/6 4/6 5/6 2/6 4/6 4/6 6/6

M A 7 Demand parameters 0/6 1/6 0/6 4 2/6 0/6 0/6 6/6 6/6 0/6 0/6IHn s Order of delay 2/6 0/6 0/6 4/6 6/6 6/6 6/6 5/6 6 o 1/6 2/6 1/6 6/6
G aussian Order of delay 0/3 on 3/3 3/3 3/3 3/3 3/3 3/3 0/3 1/3 1/3 3/3

Overall Consistency - 
Demand and Order of 
delay

20/69 66/69 12/69 16/69 67/69 64/69 61/69 60/69 67/69 69/69 44/69 63/69 17/69 66/69

fable 4.8b
Rank analysis based  on the m agnitude of rogue seasonality  index
(For assessing  the discrimination ability of the index derived from different feature parameter combinations)

Larger the rogue seasonality  index higher the rank is u sed  as  basis
Raw

Time
FT Total FT 7 FT 28 FT 80% 

Energy
AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 6)
DWT Haar 

(Level 
Shannon)

Sum of Ranks - AR (1)
Minimum / best possible 18 195 106 162 122 98 151 181 161 24 88 89 43 243 224

Sum of Ranks - MA (1)
Minimum / best possible 18 200 107 157 115 112 140 171 148 38 108 85 39 243 224

Sum of Ranks - AR (2)
Mirsmim / best possible 12 131 59 103 75 85 101 122 109 20 57 54 27 165 150

Sum of Ranks • MA (2)
l*nrrmsn / best possible 12 137 68 104 81 55 102 122 112 16 61 58 29 163 150

Sum of Ranks ■ G aussian
Minimixn / best possible 6 65 37 62 47 31 47 59 52 9 29 25 11 81 74

Sum of Ranks • TOTAL
Mkamixn / best possible 66 728 377 688 440 381 641 666 682 107 343 311 149 896 822

For every demand process, delay and order of delay combination, each feature parameter combination is ranked relative to others, with the highest rank allotted to that with the larges! 
magnitude of rogue seasonality index (as these would provide better discrimination in rogue seasonality assessm ent) These ranks are then summed up first by each demand process 
such as AR (1). MA (1) and then all together to derive a  total sum of ranks. Feature parameter combinations with a lower total sum of ranks are considered better

Table 4.8c
Rank analysis based  on the  coefficient of variation of rogue seasonality  index
(For assessing  the stochastic stability of the index derived from different feature parameter combinations)

Lower the coefficient of variation the higher the rank is u sed  a s  basis
Raw

Time
FT Total FT 7 FT 28 FT 80% 

Energy
AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 6)
DWT Haar 

(Level 
Shannon)

Sum of Ranks - AR (1)
Minimum / best possible 18 18 58 236 94 108 203 176 197 188 186 117 147 68 91

Sum of Ranks - MA (1)
Minimum / best possible 18 18 54 226 110 94 222 192 214 177 180 100 127 72 101

Sum of Ranks - AR (2)
Minimum / best possible 12 12 38 137 68 73 149 130 144 124 117 63 84 55 64

Sum of Ranks ■ MA (2)
Minimum / best possible 12 12 41 160 70 70 134 119 125 131 125 69 90 49 63

Sum of Ranks - G aussian
Minimum / best possible 6 6 16 73 30 24 80 69 76 57 56 31 38 25 48

Sum of Ranks • TOTAL
Minimum / best possible 66 66 207 832 372 369 788 686 766 677 664 380 486 269 367

Coefficient o< variation is same as SD/Avg, Their values are based on 00 replications for each

Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar] 
(Level 6)

DWT Haar 
(Level 

S h a n n o n ]

Sum of Ranks • TOTAL (m agnitude as 
well as coefficient of variation of the 
index)
Minimum / best possible 132

794 684 1420 812 760 1329 1341 1338 784 1007 691 636 1184 1189
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T a b le  4.9 - C o r re la t io n  co e ffic ien t b e tw een  a l te rn a t iv e  ro g u e  
se a so n a lity  ind ices in a lin e a r  th re e  eche lon  M T S  system  -  
O n ly  o rd e rs  a n d  in v e n to ry  v a r ia b le s  used

I n d e x  a n d  
A l t  1

I n d e x  a n d  
A l t  2

A l t  1 a n d  
A l t  2

T i m e 0 . 2 0 0 . 9 2 0 . 2 2
F T 0 . 9 8 0 . 9 9 0 . 9 5
A R  M o d e l 0 . 9 9 0 . 9 7 0 . 9 6
A C F 1 . 0 0 0 . 9 8 0 . 9 8
C C F 0 . 9 7 0 . 9 8 0 . 9 6
D W T 0 . 0 3 0 . 3 8 0 . 1 9

Highlighted indicates low  correlation (considered bad)

4.5 Conclusions

This chapter investigated rogue seasonality detection in a linear supply chain system 

to answer Research Question one. This required determining the signature for rogue 

seasonality, quantifying the signature to determine an index as an objective measure 

o f  rogue seasonality intensity, evaluating alternative transformation techniques (and 

features) and sets o f system variables to determine the most appropriate one for index 

computation (and therefore for rogue seasonality detection). Fourier transform (FT), 

discrete wavelet transform (DWT), autocorrelation function (ACF), cross correlation 

function (CCF) and autoregressive model (AR model) were the techniques which 

were tried besides time series data being used as a benchmark. Sets o f system 

variables considered were all system variables and order and inventory variables.

The signature o f  rogue seasonality was determined on the basis o f the clustering 

profile o f the supply chain variables, specifically whether exogenous demand did or 

did not get clustered with the other internal operating variables such as inventory and 

work in process. Rogue seasonality was considered present if  the latter was true, 

otherwise not. To overcome the subjectivity involved in assessing the signature from 

the cluster profiles, an objective measure called the rogue seasonality index was 

defined which is based on comparing the dissimilarities amongst the variables in 

relation to the dissimilarity between these variables and the exogenous demand. It was 

found to be a robust and accurate indicator o f  rogue seasonality intensity in a supply 

chain. For example, the index value for a supply chain which does not show rogue 

seasonality characteristics (make to order or MTO) is 0 while it is greater than 0 for 

systems with rogue seasonality (make to stock or MTS). Also, greater intensity o f 

rogue seasonality in the supply chain gets reflected as a higher index value. Though 

three definitions o f index were tried, a high correlation between the index values



based on these definitions indicated that they were essentially measuring the same 
thing and any of them could be used. The index was also evaluated with different sets 
and number of variables (all variables, only orders and inventory variables), where 
again the index values did not change substantially, and were able to indicate the 
rogue seasonality intensity accurately. The index is therefore also robust to choice of 
variables as long as most of the variables exhibited the same type of behaviour (rogue 
cyclicality or no rogue cyclicality). In any case, use of multiple variables in the 
computation of the index makes it less susceptible to inconsistencies in some variable 
profiles. Finally, the index definition is applicable even in the case of exogenous 
demand having seasonality; exogenous seasonality is required to be identified on the 
basis of its common presence in demand and other variable profiles and filtered before 
computation of the index.

Compared to other features, the FT feature was found to be better for computing the 
index (and therefore for rogue seasonality detection), with index values derived from 
it showing high consistency, discrimination ability and stochastic stability. FT has 
been shown to be effective on a generic basis for individual time series by Agrawal et 

al. (1993), Caiado et al. (2006) and Vlachos et al. (2006). This study shows that it can 
also be applied to multivariate data as well as data with inconsistent periodicity and 
thus validates the findings of Thornhill and Naim (2006). Parameters used, which for 
FT is the number of frequency channels, were found to significantly impact the index 
values and hence effectiveness of detection. FT Total which uses features from all the 
frequency channels was found to perform better than options such as FT 7 and FT 28 
which use a lesser number of frequencies. However, FT 80% Energy option was close 
to FT Total in terms of all the assessment criteria used and could be used instead of 
the latter for computing the index. Regarding other features, ACF was a close second 
to FT in terms of rogue seasonality detection. DWT and AR model features on the 
other hand were found to be the least effective. The findings for DWT are surprising, 
as the multi resolution property of wavelets was expected to yield better results than 
FT. With regard to the AR model based approach, it can be concluded that it is less 

effective for data with cyclical characteristics.

In the next chapter a more realistic context is used to validate the answers to research 

questions obtained in this chapter.
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Chapter 5 - Analysis of rogue seasonality in a non-linear 
supply chain system

The previous chapter used the context of a linear supply chain to answer research 
question one. Specifically, signature and index for detecting the rogue seasonality and 
assessing its intensity were proposed and tested, together with the best time series 
transformation technique (feature and its parameter) to be used to derive them. In this 
chapter, answers to the research question obtained from chapter one will be evaluated 
using a non-linear supply chain context. Specifically, the Beer game (Sterman, 1989) 
supply chain system is used. This is because it has been used by many researchers to 
study the Bullwhip effect (see sections 2.3.1.1, 2.3.1.2 and 3.6.1.4) and therefore serves 
as a benchmark for comparison purposes. This system allows non-linearities such as 
backlogs and batching to be incorporated so that their impact on rogue seasonality 
generation and detection (signature and index) could be assessed. Here, the system is also 
used to assess the impact of alternative control systems and other variables such as 
shipment on the rogue seasonality dynamics. The rationale for analyzing these is 
explained below:

a) Backlogs: Backlogs are cumulative pending deliveries because of non availability of 
stock in earlier periods and assume that customers are willing to wait for these 
deliveries. Backlogs cause non linearities in system operations (Sterman, 2000) and 
they can be observed in many sectors.

b) Batching: Aggregation of orders or batching is a common practice because of 
economies of scale in production/transport, use of MRP systems, economic order 
quantity (EOQ) based ordering and economic production quantity (EPQ) based 
production. Though the impact of batching has been studied by researchers such as 
Cachon (1999), Kelle and Milne (1999), Holland and Sodhi (2004), Potter and Disney 
(2006) and Riddalls and Bennett (2001), their focus was on the Bullwhip effect. Here 
we are considering the impact of batching on rogue seasonality which has not been 
considered before.
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c) H ybrid (M TO -M TS) control system: The hybrid MTO-MTS system is considered 

to be more widely used than pure MTO/MTS systems by researchers such as 

Anderson Jr et al (2005). The impact of the hybrid system was therefore assessed.

d) Shipm ent: Shipment is also a common system variable like order and inventory, (Lee 

and Whang, 2000). Moreover, its inclusion in the model structure ensures a more 

realistic bi-directional (both upstream and downstream) propagation of the dynamics 

(Shukla and Naim, 2009).

This chapter is structured as follows. First, the Beer game supply chain system is 

described. Next, I explain the control theory or FR analysis o f a single echelon in this 

system (linear representation i.e. without backlogs). Subsequently, development o f the 

system dynamics model o f the total Beer game system is explained, together with 

generation o f  rogue seasonality (in this system) and the effectiveness o f the signature and 

index for its detection. Finally, detailed simulation (multiple replications) with different 

stochastic demand processes, lead times, ordering policies, batch sizes for rogue 

seasonality generation and different feature parameter combinations with alternative 

index definitions for rogue seasonality detection is used to identify the most appropriate 

feature for index computation (and therefore rogue seasonality detection).

5.1 D escription of the non- linear (Beer gam e) supply chain system

The Beer game supply chain system used in this study mimics the ordering and 

production decisions o f a four echelon supply chain (Retailer R, Wholesaler W, 

Distributor D and Factory F) with flow o f orders upstream from the Retailer through to 

the Factory and flow o f material or shipments downstream as shown in Figure 5.1.
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Figure 5.1 Schematic of the Beer game supply chain system (Sterman, 1989)
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The Beer game supply chain system operates as follows. The Retailer receives the 
customer’s demand, it ships the quantity demanded to the customer and then decides how 
much to order from its upstream echelon or Wholesaler. This procedure then gets 
repeated at each echelon with placement of orders to the immediate supplier to fulfill the 
expected demand from the immediate customer. It is assumed that in the case of the 
supplier being unable to meet demand in certain periods due to occurrence of stock out, a 
backlog is created which the supplier is required to service in later periods. With the goal 
of the system being to minimize costs on a cumulative basis, and penalties applied for 
carrying both excess inventory as well as backlogs, ordering decision making is difficult. 
This difficulty is further compounded from delays in the system; order information and 
shipment delays between echelons (2 time periods each) and production delay (3 time 
periods) at the factory, the delays being of the pipeline kind (delay of order infinity). In 
the simulated version of the game, the player is replaced by an ordering heuristic at each 
echelon. This is explained in a subsequent section.

The Beer game was originally used to demonstrate the behavioural cause of the Bullwhip 
effect where the role playing version of the game was used (see Section 2.3.1). However 
recently, this game has also been simulated by many researchers, primarily to understand 
and improve its dynamic behaviour (see Table 3.3). In the context of rogue seasonality 
investigation, though any structure or system could be used for simulation, use of 
common structures/systems permits model validation, comparison of results and hence 
more effective knowledge building. Thus the Beer game system was considered more 
appropriate. A further reason (for using this system) was that, despite simplification, it is 
still reasonably representative of real world supply chains (Larsen et al., 1999).

At the heart of the Beer game simulation is the control system driving each echelon’s 
ordering decisions; the hybrid MTO-MTS control system was used in the present case. 
The APIOBPCS control system (John et al., 1994), which is a hybrid system was used as 
Sterman (1989) found it to be representative of the ordering heuristics used by players in 
the game. Its parameters were however varied in order to generate rogue seasonality of 
different characteristics and intensities; specifically Optimal parameters and Unoptimal 
parameters options were used. Parameter values associated with good dynamic
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performance in relation to the Bullwhip effect suggested by John et al. (1994) are referred 
to as Optimal parameters (see Appendix A). On the other hand in the Unoptimal 
parameters option, the pipeline feedback term (Tw) is set to infinity (so that there is no 
pipeline feedback) with all the other parameter values being the same as in the Optimal 
parameters option. Sterman (1989) observed that lack of pipeline feedback is associated 
with greater order amplification (Bullwhip effect) and hence Unoptimal parameters is 
termed as such. Though Optimal and Unoptimal parameters options are defined on the 
basis of the Bullwhip effect, it was expected that these would generate rogue seasonality 
of different characteristics in the system (Kim and Springer, 2008).

5.2 Frequency response analysis of a hybrid MTO-MTS system

The total Beer game system is not analytically tractable as it is a high order non-linear 
differential equation (Sterman, 1989). One option is to analyse each echelon in the system 
individually, and use the insights so obtained to understand the total system behaviour. 
However, the system considered here is non linear and analytical techniques such as 
control theory can only handle linear problems. A way to tackle this problem is to ignore 
the backlogs and treat each echelon as linear; then carry out a similar control theory (FR 
analysis) as in the previous chapter, but with a hybrid MTO-MTS system and Optimal 
parameters and Unoptimal parameters options. The transfer functions of variables for 
individual echelons could then be coupled together to derive them for the total Beer game 
system (transfer functions as well as FR), which could be compared with the FR’s of 
those variables computed from the Beer game simulation output (in which the impact of 
backlogs and associated non-linearities is included). Such an analysis would not only help 
in understanding the role and extent of impact of backlog related non-linearities on 
system behaviour, but also in validating the Beer game simulation model. This approach 
was used in this chapter with APIOBPCS being used as ordering system at each echelon. 
The analysis summary for a single echelon based on linear control theory is given in 
Table 5.1 which involved the use of Matlab® in the computations (See Appendix G for a 
sample computation). FR analysis of the whole Beer game system is explained in a 
subsequent section. Table 5.1 gives the FR values of key system variables (ORATE, 
COMRATE, AINV, WIP) at critical frequencies for both the Optimal parameters and
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Table 5.1 — Frequency response (FR) functions of variables a t select points for hybrid  M TO -M TS system s
(Order of delay in the systems is considered to be infinity)

Outputs are given here in terms of angular frequencies <a»

Transfer functions for different variables FR at freq (a>) = 
0 or too

Freq (a>) for 
max FR

Max FR
Freq (a>) 
at FR = 1 or

ORATE 1 ^ 5 5 + 4T'4*4 - \ M T 3s3 - 4 8 7 ^ 2 + 2 0 1 6 7 ^  +576
1

1.014
1.688 (constant)

2.135

CONS g t£ s6 + 12TSp s 5 -  \40T 4s4 + \2 0 T 3s 3 + 612T2s 2 + 1 4 4 0 7 ^  + 576 Tl P TP

COMRATE \4 T 3s 3 - M T 2s 2 + \44T p s  +48
1

1.014
1.688 (constant)

2.135

CONS ST4s 4 +6QT3s 3 + \2 4 T 2s 2 + 1 4 4 7 ^  + 48 tp tp

W1P 6Tp (7 Tp s  + 2 ) 0.937
1 -62 * Tp

Complex function 
ofTpCONS 2 T 4 s 4 + \5 T 3s 3 + 3 \T 2 s 2 + 36T p s  +12 T Tl P

A1NV xrTl ( * Ty + 2 3 T p , 2 + m s  )
0

0.983
1.863 * Tp Complex function

CONS ~ 2 T 4 s 4 + \5 T 3s 3 + 3 \T 2s 2 + 36T p s  +12 TP ofTp

ORATE_ 3 T p 3 + \9T2s2 +42Tps + 12
1

1.311
3.335 (constant)

2.208

CONS 2T4s4 + \5TpS3 + l9 T p S 2 +30Tp s  +12 TP tp

COMRATE _ 3 T p 3 - I T T 2! 2 +30TpS + 12
1

1.311
3.335 (constant)

2.208

CONS 2T 4s4 + \5 T 3s 3 + \9 T 2s 2 +30Tp s  +12 TP TP

WIP Tp 0 6 Tp s  +12) 1.298
3.09 *Tp Complex function 

ofTpCONS 2TpS4 + \5TpS3 + 197'pj2 +30Tp s  +12 TP
TP

AIN V 2TpS2 +12T 2s2 + 36T 2s

0
1.305

3.01 *Tp Complex function
CONS 2T 4s4 + \5 T 3s3 + \9 T 2s 2 +30Tp s  +12 TP ofTp

Unoptimal parameters: Pipeline feedback is not considered; other parameter values are same as that in John et al. (1994)
All profiles are similar: increasing trend, attainment o f a peak and decreasing trend thereafter with w
Frequency response function has been derived by substituting j*a)for s (co= angular frequency) and taking the magnitude o f  the resulting complex function

u>o



Unoptimal parameters options. The transfer function expressions have high orders 
because of use of 2nd order Pade approximation (Nise, 1995) for pipeline delay. All the 
variables in both Optimal and Unoptimal parameters systems have similar FR profiles 
which are increasing-decreasing with an in-between maxima. The FR profile values are 
also greater than one for a range of frequencies, signifying amplification and rogue 
seasonality generation in these hybrid MTO-MTS systems. However, the intensity of 
rogue seasonality generated in the Optimal Parameters option is in between that which is 
generated in MTO and MTS systems which is reflected in the max FR values of the 
variables in these systems. For example, while the max FR value of ORATE/CONS for 
the MTS delay order infinity system is 2.307 (Table 4.1), its value for the hybrid MTO- 
MTS system {Optimal parameters) is 1.688 and 0 for MTO (order of delay infinity 
system). The same is true for the other analyzed system variables as well. This variation 
in rogue seasonality intensity can be explained on the basis of the different proportion of 
exogenous demand (CONS) being used in the ordering decision; CONS is not used at all 
in an MTS system, used completely in an MTO system and used partially in the hybrid 
MTO-MTS system. However, other terms in the ordering rule also play a role, which is 
apparent when the two hybrid system options are compared. The max FR values of all 
variables in the Unoptimal parameters option are greater than those in Optimal 
parameters indicating greater rogue seasonality intensity in the former vis-a-vis the latter. 
This is because of no pipeline damping being applied in the former option.

The analytical FR analysis of hybrid MTO-MTS systems strengthens the hypothesis 
about rogue seasonality manifestation, which is multiple variables oscillating at a similar 
frequency with this frequency not being present in CONS. The logic of the signature and 
index for detecting and measuring rogue seasonality therefore, also applies. However, 
these judgments are based on the analysis of only a few system variables, a single 
echelon system and which is also linearly represented, that is, non-linearities from 
backlogs are ignored. Analysis of the total Beer game system is therefore required, to 
both assess the propagation of rogue seasonality dynamics in different variables/ echelons 
as well as the applicability of its signature and index. A system dynamics simulation 
facilitates such an analysis, and was therefore used. The simulation analysis also helps in
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assessing the impact of multiple rather than a single frequency being amplified and 
marginal dissimilarities in the FR profiles of variables, on the signature and index of 
rogue seasonality.

5.3 System dynamics simulation of the Beer game system

The system dynamics simulation model of the Beer game supply chain was constructed in 
Excel with Visual Basic for applications (VBA), the latter for easy visualization of the 
dynamics (see Figure 3.4). The difference equations used in the model formulation are 
given in Table 5.2 and are developed as follows. The different exogenous demand 
processes applied at the Retailer are given in equation 5.1b while equations 5.1c, 5.2a and 
5.2b model the delays in order information and shipments which are of the pipeline kind 
(delay of order infinity). Inventory and backlogs are modeled separately in equations 5.6 
and 5.7 respectively. Shipments are included in the model to take account of non- 
linearities associated with the backlog situation. Shipments are set to zero when there is 
no inventory available, and when inventory does become available, the echelon ships 
what is ordered plus any backlog that has been accumulated (equations 5.3, 5.4, 5.5). 
Equation 5.8 gives the computation for exponential smoothing forecasting while the work 
in process is calculated in equations 5.10a and 5.10b. The work in process computation 
for all except the factory echelon includes three terms: orders that have been placed but 
not transmitted to the upstream echelon, shipments made by the upstream echelon but not 
yet received and backlogs. In the case of the factory, the orders placed are received after a 
fixed production delay and therefore work in process includes just the previous orders 
placed term. The ordering decision based on APIOBPCS is captured in equation 5.14 
with the batching constraints on orders and shipments being applied in equations 5.15 and 
5.16. The decision parameters used in the model are lead times (or delays) in order 
information, shipping and factory production, APIOBPCS parameters Ta, Tit and Tw and 
batch size b.

5.4 Verification o f Beer game simulation and rogue seasonality analysis

Any simulation model needs to be assessed for correctness (verified) before using it in a
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Table 5.2 -  Difference equations used to simulate the Beer game supply chain system

J = Supply chain echelon with J = 1,2,3,4 representing the Retailer, Wholesaler, Distributor and Factory respectively
Incoming OrderJ (J = 1 to 4, t < 24) = 4  Initial condition; Rest of the equations are for t > 24 (5.1a)
Incoming OrderJ (J = I, t) = 8 [Step demand change] or = 4 + e , [Gaussian process] or = 4 + e , - 0|£ ,.i - 02e  ,.2 +  0qe [MA (q) process (5.1b)

with parameters 0i — 0q] or = 4 + e , + p,X ,.| + p2X ,.2 + — ppX ti, [AR (p) process with parameters pi — pp]
(J = 2to4,t) = Orderj*,(t-LTonJer) (5.1c)

Shipment ReceivedJ (J = I to 3, t) = ShippingJ+l (t -  LT .hipping) (5.2a) Shipment ReceivedJ (J = 4, t) = Order1 (t -  LT production) (5.2b)
Maximum Possible Shipping1 (J = 1 to 4, t) = InventoryJ (t-1) + Shipment Received1 (t) (5.3)
Desired Shipping1 (J = 1 to 4, t) = Backlog1 (t-1) + Incoming OrderJ (t) (5.4)
ShippingJ (J = 1 to 4, t) = MIN [Desired ShippingJ (t), Maximum Possible Shipping1 (t)] (5.5)
Actual InventoryJ (J = 1 to 4, t) = Actual Inventory1 (t-1) + Shipment ReceivedJ (t) - Shipping1 (t) (5.6)
BacklogJ (J = 1 to 4, t) = Backlog1 (t-1) + Incoming OrderJ (t) - Shipping1 (t) (5.7)
Expected Incoming OrderJ (J = 1 to 4, t) = Expected Incoming Order1 (t-1) + a [Incoming OrderJ (t) -  Expected Incoming OrderJ (t -1)] where (5.8)
a = 1/ (1+ T,/At); T.is the time to average sales or orders for the respective level of the supply chain; At is our simulation time increment set at 1
Desired WIP or DWIP1 (J = 1 to 4, t) = Tp * Expected Incoming OrderJ (t) where Tp is the lead time between placing an order and receiving the (5.9)
material for a J or supply chain level; Tp (J = 1 to 3) = LT + LT ^.ng -  1; Tp (J = 4) = LT factory production- 1

I'T'onfe,-! Ŝhtpptng ~l -1
WIPJ(J= 1 to3,t)= Y j Order' (t-i) + £  Shipping,+1 (t-k) + Backlog,+l (t) (5.10a) WIPJ(J = 4,t)= £  Order'(t-i) (5.10b)

1 0 1

Error in WIP or EWIPJ (J = 1 to 4, t) = D WIPJ (t) -  WIPJ (t) (5.11)
Desired Inventory or DINVJ (J = 1 to 4, t) = 12 (5.12)
Error in Inventory or EINVJ (J = 1 to 4, t) = DINV1 (t) -  Actual InventoryJ (t) + Backlog1 (t) (5.13)
OrderJ (J = 1 to 4, t) = MAX [0, Expected Incoming Order1 (t) + (EINVJ (t) /Tj) + (EWIP1 (t) /Tw)] (5.14)
where 1/Tj= fraction of inventory feedback and 1/TW= fraction of pipeline or WIP feedback
OrderJ (J = 1 to 4, t) = Ceiling (Order J/b), where b = batch size (5.15)
Shipping1 (J = 1 to 4, t) = Floor (Shipping J/b) (5.16)
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research context. Two approaches for model verification are used. The first approach 
involves comparing the FR or Amplitude responses (Amp R) computed from the 
simulated Beer game output to the analytically derived ones for a linear four echelon 
system with a similar structure as the Beer game that is same delays and order of delays 
at different echelons. Select system variables are compared in this way. The second 
verification approach involves subjecting the simulation to the same conditions as used 
by Sterman (1989) in his experiment and comparing the profiles of variables obtained (to 
those obtained by him).

5.4.1 Verification of Beer game simulation by frequency response (FR) analysis

The analytically computed FR for a linear representation of the Beer game system is 
compared to that computed from the simulated Beer game output and this is depicted in 
Figure 5.2. The analytical FR computation is for a four echelon APIOBPCS with the 
same delays and order of delays in individual echelons as the Beer game system used. 
Matlab® is used for the multi echelon computation (see sample in Appendix G) which 
uses the single echelon analysis given in Table 5.1.

System variables ORATE/CONS, COMRATEJCONS, AINV/CONS and WIP/CONS in 
each of the four echelons for each of the Optimal parameters and Unoptimal parameters 
are compared. The Beer game simulation uses lead times of 2 (order information), 2 
(shipment) and 3 (production) which are the same as that used by Sterman (1989). 
Autoregressive of order two (AR 2: pi = 0.1 p2 = -0.8) is used as the demand process, 
which is because it has low energy in the amplification range frequencies (see Appendix 
C), which means lower backlogs (and associated non-linearities) and therefore greater 
clarity in the FR profiles. The FR profiles are averaged over 30 replications for a 
smoother representation. The analysis of Figure 5.2 reveals the following:

a) All variables in all echelons in the simulated system have FR peaks at the same 
frequency as suggested by the analytical analysis of the equivalent linear system. For 
example, the frequency associated with peak FR for Retailer, Wholesaler and Distributor 
echelons in both the simulated and analytical systems is 0.04 for the Optimal parameters 
option. Lead time of 4 (order information + shipment) is used in the analytical
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computation. On the other hand for the factory echelon with a lead time of 3, the peak FR 
frequency computed analytically is 0.05 which again matches with that in the simulated 
system. The corresponding peak FR frequency values for Unoptimalparameters are 0.05 
and 0.07 which are also the same in the analytical and simulated systems.

b) The max FR values of variables in the Unoptimal parameters option are greater than 
those in the Optimal parameters option for simulated systems across all echelons. The 
analytical FR analysis for a linear system given in Table 5.2 suggests the same. 
However, a comparison of the max FR values of variables between the analytically 
derived (linear representation) and simulated systems shows the former to be greater than 
the latter in all cases. This is because WIP in the simulated system is greater than in a 
corresponding linear system because of backlogs (WIP in a linear system just consists of 
past orders). Because of this ORATE in the simulated system is lower (than for the linear 
system) which has a concomitant impact on other variables.

The good correlation between analytical and simulated outputs as observed above, 
verifies the simulation model. Moreover, all variables in all echelons oscillating at a 
similar frequency in the Unoptimal parameters option, which has non linearity from 
backlogs suggest that, the characteristic manifestation of rogue seasonality and therefore 
the logic of its signature and index all retain their validity in non linear systems. Some of 
the other observations for linear system such as max FR for Unoptimal parameters being 
greater than that for Optimal parameters are also evident in the non-linear (Beer game) 
system. There is also a close correspondence between the frequencies associated with 
max FR for the linear (analytical) and simulated (Beer game -  non linear) systems.

5.4.2 Verification of Beer game simulation by time domain analysis

The time series outputs from the simulated Beer game system are used, both for verifying 
the simulation model as well as for showing generation of rogue seasonality. A step 
demand change at the Retailer is used to excite the simulation. This not only facilitates 
good visualization of the dynamic behaviour, but also enables comparison of the profiles 
of the variables with Sterman (1989) who used the same demand pattern. The simulated
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data analysis here uses all the system variables unlike the analytical FR analysis where 
only select system variables were used. Finally, the impact of batching on the time series 
profiles of variables is also highlighted. The normalized time series profiles of system 
variables (36 numbers) for each of Optimal parameters, Unoptimal parameters and 
Optimal parameters with batching cases are given in Figure 5.3. It is to be noted that the 
lead times for the batching case at 3 3 4 (for ordering, shipment and production) are 
higher than those for the other cases considered (2 2 3). This was done to more 
effectively highlight the impact of batching on the profiles of variables.

Sterman (1989) depicted order and inventory profiles in his experimentation with the role 
playing version of the Beer game. Profiles in his study cannot be exactly compared to 
those generated in the Beer game simulation replicated here. This is because the focus in 
this case is on rogue seasonality, with variables normalized to enable effective profile 
comparisons while Sterman’s focus was on amplification or Bullwhip effect. However, 
the profiles of variables in the two cases, still have some visible similarities. A sudden 
jump in exogenous demand at the retailer creates a backlog situation due to system delays 
in ordering and receiving material, which in turn increases the tendency to over order on 
account of feedback loops. Orders and backlogs therefore get increasingly amplified in 
upstream echelons. However, over time, this gets reversed as the distorted order 
information manifests itself as increased material receipts, causing both excess inventory 
as well as dampening future orders. An oscillating profile is thus created which is evident 
in the order (variable numbers 9, 18, 27 and 36) and net inventory profiles (variable 
numbers 4, 13, 22 and 31) of all echelons. Shipping profiles which depend on order as 
well as backlog profiles show a similarly oscillating profile but with attenuation from 
factory to the retailer (called the backlash effect by Shukla et al (2009)). Other variables 
such as orders received and shipments received are delayed versions of the order and 
shipping variables and hence have similar oscillatory characteristics. Hence, most 
variables (except forecast and desired WIP) show oscillatory characteristics, though the 
exogenous demand (step) did not have the same, indicating rogue seasonality is generated
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in this system.

A comparison of the variable profiles for the Unoptimal parameters option with that of 
Optimal parameters shows the greater amplitude of the former despite a significant 
masking of the difference from normalization. In a linear system, the intensity of rogue 
seasonality (as reflected in the amplitude of the relevant sinusoid) in the Unoptimal 
parameters case is greater than that in Optimal parameters, but here it is also seen to be 
true for the Beer game system which is non-linear. This was also evident in the FR 
analysis earlier. A comparison of the batching case with the non batching case shows the 
order and shipping variables (and therefore order received and shipment received 
variables also) being clipped because of batching (for example variables numbers 2, 9, 12 
and 18 in the far right panel of Figure 5.3). However, the other internal variables are not 
affected by the batching constraint and retain their smooth oscillatory profiles. Rogue 
seasonality characteristics are therefore modified but still retained in the Beer game 
system with batching. The batch size used in Figure 5.3 is same as the average demand 
i.e. orders are rounded up and shipments rounded down to a multiple of average demand 
(4 in this case) at each echelon.

5.4.3 Rogue seasonality signature and index assessment

Having analysed the generation of rogue seasonality in select variables through analytical 
FR analysis and then in most variables in a simulated Beer game system by time series 
analysis, the next issue is to test the effectiveness of the signature and index of rogue 
seasonality. A simulation output is used for this where the simulation was based on 
autoregressive of order two (AR 2: pi = 0.1 p2 = -0.8) as the demand process, ordering, 
shipping and production lead times of 2, 2, 3 respectively and Unoptimal parameters, 
Optimal parameters and Pass on orders (MTO) as the control systems. The last control 
system was used as a reference, similar to that in the linear systems case (Chapter 4). The 
rogue seasonality signature and index was computed using FT Total as the feature 
parameter combination which was identified as the best combination in Chapter 4. 
Figure 5.4 gives the signature and index for each of the three control systems based on FT 
Total.
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The rogue seasonality signature is based on cluster profiles of system variables, 
specifically if CONS is clustered together with other variables or distinct from them. 
Where the latter is true, the presence of rogue seasonality is indicated, otherwise not. In 
Figure 5.4, CONS is seen to be clustered with the other variables in the pass on orders 
(MTO) system indicating no rogue seasonality generation in this system. This is an 
accurate assessment as MTO systems do not generate rogue seasonality (see Chapter 4). 
Similarly, in both the hybrid systems (Optimal parameters and Unoptimal parameters) in 
which rogue seasonality is generated as seen in earlier sections, the rogue seasonality 
signature again gives the correct indication; CONS is clustered separately from the other 
variables, with the latter clustered together. However, the separation of CONS with the 
variables is not complete as in the linear case; instead of all the variables being clustered 
away from CONS, one or two variables (shipping related variables at the Retailer) are 
clustered with CONS. This is a realistic possibility, especially in an analysis which 
involves multiple variables in multiple echelons. The signature definition needs to be 
appropriately modified as follows: rogue seasonality is considered present if CONS is 
separately clustered from most (not all) of the variables and these variables are clustered 
together. This requires ‘most’ to be specified as per the application context.

Though modification of the signature definition enables its continued use in rogue 
seasonality detection, it still has the same limitations as in the linear system case; 
subjectivity in the process and its inability to characterize the intensity of rogue 
seasonality. The latter limitation is evident when the cluster profiles of the Unoptimal 
parameters option is compared with that for Optimal parameters. Even though the 
intensity of rogue seasonality in the former is known to be higher than the latter (see 
Table 5.1 and the earlier discussion in Section 5.3.1), this is not reflected in the cluster 
profiles.

The alternative index based approach involves using the index as an indicator of rogue 
seasonality intensity in the supply chain. Though three definitions of index have been 
proposed earlier, specifically ‘index’, Alt 1 and Alt 2 based on equations 4.1, 4.3 and 4.4 
respectively, ‘index’ based on equation 4.1 is used here. It was defined in Chapter 4 as 
the ratio of minimum dissimilarity between CONS and the other variables to average
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dissimilarity between all the other variables except CONS. The index values computed 
for the MTO, Hybrid system (Optimal parameters) and Hybrid system (Unoptimal 
parameters) are 0, 1.07 and 1.22 respectively as seen in Figure 5.4. These accurately 
indicate the presence of rogue seasonality as well as discriminate systems having 
different rogue seasonality intensities (Optimal and Unoptimal parameters cases). The 
latter was not possible with the signature.

The index also does not require any modification to accommodate variables such as the 
shipping variable (which does not show rogue seasonality in contrast to most other 
variables and remains similar to CONS), as was required in case of the signature. This is 
because, though the presence of such variables reduces the numerator in the index, the 
remaining variables being aligned at common amplification frequencies reduces the 
denominator significantly to still yield a high index value which accurately characterises 
the presence and intensity of rogue seasonality. This is evident in the index values 
computed for Optimal and Unoptimal parameters options (1.07 and 1.22 respectively), 
which are relatively much higher than the 0 value associated with a system without rogue 
seasonality and therefore indicates both the presence as well as intensity of rogue 
seasonality accurately, despite one of the variables (shipping variable) being similar to 
CONS. Alternatively, this issue about one/a few inconsistent variables skewing the index 
value could be altogether avoided by using alternative indexes Alt 1 and Alt 2, which use 
average rather than minimum dissimilarity in the numerator.

The analysis in the preceding sections explained the generation of rogue seasonality in 
non linear systems with backlogs and batching, which use hybrid MTO-MTS ordering 
system and include shipment in the dynamics. The generation of rogue seasonality of 
greater intensity in the Unoptimal parameters case in comparison to Optimal parameter 
was also highlighted. Finally, the validity of the signature (with appropriate modification) 
and index for such systems was also established. The only issue with the previous 
analysis is that it was based on limited experimentation. Moreover, the index was 
computed with only one feature parameter combination (FT Total) and without 
considering alternative index definitions such as Alt 1 and Alt 2. A detailed simulation 
experiment incorporating all these aspects was therefore carried out.
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5.5 Detailed simulation of the Beer game system

The detailed simulation of the Beer game system had the following three parts as in the 
case of the linear system: generation of rogue seasonality of different characteristics and 
intensities in the system, inputting of the time series data of system variables so obtained 
into various transformations and using the respective features to derive the rogue 
seasonality index/indices (and this way assessing the appropriateness of the 
transformations/features) and finally repeating the above with alternative index 
definitions to assess their respective effectiveness. The simulation design is given in 
Table 5.3.

Table 5.3 - Simulation design for generating rogue seasonality of different 
characteristics and intensities in the Beer game system

Structure, num ber of echelons 
and order of delay

Beer game supply chain system
• Four echelon production-distribution structure
• Provision for backlogs between echelons
• Order infinity/pipeline delay for orders and shipments

Supply chain control 
(Ordering)

Hybrid MTO-MTS with Optimal parameters (John, 1994)
Hybrid MTO-MTS with Unoptimal parameters (no pipeline feedback)

Lead time (Ordering*-
Shipping*-Factory
production)

1 1 2 
2 2 3  
3 3 4

Demand process and 
param eters

AR (2): pi = 0.1 p2 = -0.8 
MA (1): 0 = -0.2 
MA (2): 0, = 0.1 02 = -0.8

Batching**
(O rders and Shipping )

No batching;
Batch size o f 50% of average demand per period (Batch 50%) 
Batch size o f 100% of average demand per period (Batch 100%)

Variables input into 
transform ation 
techniques/features for rogue 
seasonality index computation

All variables, Only order and inventory

30 replications of each based on common random numbers

* For all echelons
** Orders are rounded up and shipping down to multiples o f batch size; Batch sizes used were 0 (No Batching), 

2 (Batch 50%) and 4 (Batch 100%) with average demand per period considered equal to 4
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The simulated Beer game system structure is the same as used by Sterman (1989); four 
echelons, a sequential order and shipment flow with no information sharing between 
echelons, pipeline delays in ordering, shipping and production and infinite shipping 
capacity in the distribution echelons and production capacity at the factory. Different 
ordering heuristics (Optimal and Unoptimal parameters) are applied to generate rogue 
seasonalities of different intensities. The impact of these heuristics on rogue seasonality 
generation has been discussed earlier.

With regard to choice of demand processes and parameters, these have been considered 
as their low frequency (amplification range) frequency content is different (see Appendix 
C) which means that they would generate rogue seasonality of different intensities. The 
logic for this is the same as in the linear case (Chapter 4, Section 4.3.1), though here there 
are additional complexities from backlogs, batching and shipment dynamics.

With regard to choice of lead times (or delays), the base case used is 2, 2, 3 (ordering, 
shipping, production delay at the factory) which is the same as that used by Sterman 
(1989). Alternative delays of 1, 1, 2 and 3, 3, 4 are also considered to assess the 
sensitivity of the findings to delays. Though the intensity of oscillation is unaffected by a 
change in lead time in linear systems and only the oscillation frequency changes (max FR 
is independent of lead time Tp for many variables as seen in Table 5.1), this may not apply 
in a system with backlogs and associated non-linearities. The choice of lead times also 
helps in assessing the robustness of the index. Unlike the linear system analysis, where 
the same delay was applied to all the three echelons (for any choice of delay), here the 
lead time (production) for the factory echelon is different from the lead times (ordering + 
shipping) in other echelons. For example, lead times of 2, 2, 3 mean that while each of 
the Retailer, Wholesaler and Distributor echelons have a delay of 4, the factory has a 
delay of 3 (production). A similar logic applies in the case of lead times 3, 3,4. Since, the 

relevant amplification frequencies, comax fr  and ©crossover are both related to delay, the 
difference in delays between the distribution and the factory echelons misaligns their 
cyclic profiles, which helps in assessing whether the index was a robust indicator under 
such circumstances.

144



Next, the impact of alternative batch sizes on the generation and presentation of rogue 
seasonality is assessed by considering the following cases: no batching and batch sizes of 
50% and 100% of average demand per period (translates to batch sizes of 0, 2 and 4 for 
the average demand period used of 4). For any choice of batch size, it is the same in all 
echelons. The batch sizes considered are appropriate as these are essentially batching in 
transportation associated with the distribution structure used.

Finally, in terms of the system variables used for index computation, besides all 
variables, order and inventory variables are also used and assessed. Thirty independent 
replications were generated for each simulated case based on common random numbers. 
Excel© together with Matlab© was used for the data generation process.

In terms of the transformation techniques, the same techniques, features and their 
parameters as are used as in the linear system analysis (See Table 4.3). This is done to 
ensure that the findings from the two analyses could be compared. The alternative index 
definitions evaluated are also the same as in equations 4.1,4.3 and 4.4.

5.6 Analysis of output from detailed simulation of the Beer game system

The two cases, all variables used and only order and inventory variables used in index 
computation are discussed separately below.

5.6.1 Case IV: All variables used in index computation

The analysis is presented in three sub-sections. First, the impact of different simulation 
variants on rogue seasonality is assessed using FR of select system variables computed 
from the simulated Beer game. Next, the index values for simulated systems (demand 
processes/lead times/ordering policies/batch sizes) based on different feature parameter 
combinations are analysed. This includes comparing the values across demand 
processes, ordering policies, lead times and batch sizes as well as with corresponding 
linear systems to assess whether the index was behaving as expected. Structured 
assessment, based on the criteria of consistency, discrimination ability and stochastic 
robustness, of alternative feature parameter combinations is also covered in this sub
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section. In the final sub-section, correlation between the three alternative index 
definitions proposed in Chapter 4 is discussed.

5.6.1.1 Understanding the impact of different factors on rogue seasonality

In a system with backlogs such as the Beer game, the impact of a combination of factors 
such as ordering policies, demand processes and parameters and lead time combinations 
on rogue seasonality is essentially the impact of each factor in a linear system and the 
alterations to the same from backlogs and batching (non-linearities). Knowledge of the 
extent of backlogs created (or alternatively the fill rate achieved) from different 
combinations of factors used in the simulation is therefore necessary. The average fill 
rate (a measure of backlogs) from 30 replications for the distributor and factory echelons 
(where maximum backlogs are created) for different simulation combinations was 
between 80% and 100%. This is a realistic fill rate for a hybrid system; pure MTO 
systems have higher backlogs/lower fill rates and pure MTS systems much lower. Next 
we understand the impact of each simulation variant on rogue seasonality generation. FR 
profiles averaged over 30 replications are used for this. It is to be noted that backlogs and 
their impact are an intrinsic part of each analysis.

a) Impact of lead time: To understand the impact of lead times (or delays) on rogue 
seasonality, the Beer game is simulated with lead times of (1,1,2), (2,2,3) and (3,3,4) 
with MA (1), 0 = -0.2 used as the exogenous demand and ordering based on Unoptimal 
parameters. The echelon-wise FR profiles computed from the simulation data for 
ORATE/CONS, COMRATE/CONS, AINV/CONS and WIP/CONS are given in Appendix
H.l. The FR profiles show that for a particular lead time case, all variables in all 
echelons have the same frequency (slightly different for the factory as discussed earlier) 
associated with the peak FR value; and this is true for each of the analysed lead time 
cases. The characteristic presentation of rogue seasonality, as discussed in this chapter 
earlier as well as in Chapter 4, is therefore evident. In terms of the impact of lead time on 
rogue seasonality intensity, in a linear system there is no impact as seen in Table 5.1. 
However, this is also apparent in this system with backlogs; the peak FR values for 
variables such as ORATE/CONS are approximately equivalent for alternative lead time
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cases in the case of each echelon. The peak FR values for variables such as AINV/CONS 
and WIP/CONS are, however, different for different lead time cases as expected because 
they are proportional to lead time.

b) Impact of batching: The impact of batching is analysed similarly as lead time and 
depicted in Appendix H.2 with batch sizes of 50% and 100% being used (defined with 
reference to average demand per period which was considered to be 4; means batch sizes 
of 2 and 4 are used). The FR profiles show a significant irregularity (lack of smoothness) 
which is on account of batching as well as backlog related non-linearities. However, the 
characteristic presentation of rogue seasonality is still evident from the profiles of the 
variables which means that the signature and index of rogue seasonality are valid for 
cases with batching as well. Similar to the lead time case, the peak FR values for 
variables such as ORATE/CONS do not change significantly with batch sizes. This 
indicates the rogue seasonality intensities for different batch sizes to be not very different 
from each other.

The impact of ordering policies {Optimal, Unoptimal parameters) in a system with 
backlogs has been discussed earlier in Section 5.4.1. Finally, regarding the impact of 
alternative demand processes and parameters in a system with backlogs, the basic logic 
used in the linear system analysis (those with higher spectral energy in the low frequency 
amplification range frequencies would show greater rogue seasonality intensity) is also 
applicable here. However, in a system with backlogs, the regularity of the profiles would 
be lower as seen in the batching and lead time analysis earlier.

5.6.1.2 Analysis of index values based on alternative feature parameter 
combinations

The average index values (30 replications), based on different feature parameter 
combinations for all demand process, lead time, ordering process (Optimal/Unoptimal) 
and batch size combinations are given in Appendix 1.1. We first assess whether the index 
is able to capture the expected rogue seasonality characteristics and intensities discussed 
in the previous sub-section. The index based on FT Total, which was identified as the 
best feature parameter combination in the linear systems analysis, is used for this.
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a) The system variables in a hybrid MTO-MTS system with Optimal parameters (delay 
order infinity assumed) have a max FR value of 1.69 while it is 2.31 for those in MTS 
delay order infinity system. The intensity of rogue seasonality in the former is lower than 
in the latter and this should be reflected in their relative index values. FT Total index 
values for the hybrid MTO-MTS system with Optimal parameters (Appendix 1.1) are 
actually lower than that for MTS delay order infinity system (Appendix E) in each 
corresponding case.

b) In terms of impact of change in lead time on rogue seasonality intensity, in a linear 
system there should be no impact but in system with backlogs, as used here, there could 
be a marginal impact from the latter. Here again the FT Total accurately reflects this. For 
example, the index based on FT Total for systems with lead times 3 3 4 and 2 2 3 are
1.22 and 1.21 (demand process AR (2) pi 0.1 p2 -0.8, Unoptimal parameters; no 
batching). The behaviour of the index again is as expected.

c) Similar to lead time, batching (specifically the batch sizes used) is also expected to 
cause a minimum change in the rogue seasonality intensity as discussed earlier using the 
FR analysis. The index based on FT Total accurately reflects this. For example, the index 
values for no batch, batch (50% or 2), batch (100% or 4) are 1.22, 1.19, 1.19 (demand 
process AR (2) pi 0.1 p2 -0.8, LT 334, Unoptimal parameters)

The index, if based on the appropriate feature parameter combination, is therefore able to 
characterise the rogue seasonality intensity even in systems with non-linearities from 
backlogs and batching. While we previously used the index based on FT Total (it being 
the best in the linear system), there is a need to assess if it is the best for the current 
context as well. Alternative feature parameter combinations are therefore evaluated in a 
structured way using the criteria of consistency, discrimination ability and stochastic 
robustness (see Section 4.4.1.2). While the latter two criteria are used exactly in the same 
way as in Chapter 4, for the consistency criteria, consistency in relation to ordering policy 
{Optimal and Unoptimal parameters) rather than order of delay is assessed. The 
structured analysis is given in Tables 5.4 a, b and c.
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Table 5.4: Structured evaluation of different feature parameter combinations for 
rogue seasonality index computation in the Beer game system;
All variables used in computation of the index

Table 5.4a

C o n s is te n c y  o f ro g u e  s e a s o n a li ty  Index fo r  d iffe ren t d e m a n d  a n d  o rd e rin g  p ro c e s s e s

C o n s i s t e n c y  B a s i s  

D e m a n d  P r o c e s s '

R a w

T im e

FT

T o ta l

F T  7 F T  28 F T  801k 

E n e r g y

A R  7 A R  2 8 A R  A IC A C F  7 A C F  28 C C F  7 C C F  28 D W T  H e a r  
( L e v e l  6)

D W T  H a a r  

(L e v e l  
S h a n n o n )

a )  M A 2 (B, 0  1 9 ,  -0  8 ) w ith  MA1 (B -0  2 ) 9 /1 8 1 7 /1 8 2 /1 8 9 /1 8 1 8 /1 8 1 8 /1 8 1 8 /1 8 ^ 8 ^ 1 7 /1 8 1 6 /1 8 9 /1 8 8 /1 8 4 /1 8 2 /1 8

b )  U A 1  (B -0  2 )  w ith  A R 2  ( p , 0  1 p ,  -0  8 ) 1 6 /1 8 1 8 /1 8 5 /1 8 7 /1 8 1 8 /1 8 8 /1 8 6 /1 8 8 /1 8 6 /1 8 5 /1 8 1 S /1 S 1 8 /1 8 1 5 /1 8

O r d e r i n g  p r o c e s s  U n o p t im a l  w i th  O p t im a l  f o r

6 /9 5 /9 3 /9 2 /9 6 /9 6 /9 7 /9 7 /9 6 9 7 /9 2 /9 2 /9 3 /9

e; w a i  r  -o 2
c ) A R 2  (p , 0 .1  p , - 0  8>

4 /9

6 /9

7 /9

8 /9

4 /9

2 /9

5 /9

8 /9

7 /9

7 /9 9 /9 9 /9 9 /9

7 /9

8 /9

7 /9

8 /9

4 /9

5 /9

4 /9

6 /9

5 /9

6 /9

8 /9

5 /9

O v e r a l l  C o n s i s t e n c y  - D e m a n d  a n d  O r d e n n g  p r o c e s s 4 1 /8 2 6 5 /6 3 1 8 /8 3 2 9 /8 3 8 4 /8 3 5 0 /8 3 5 1 /8 3 6 1 /8 3 4 4 /8 3 4 3 /8 3 3 8 /8 3 3 6 /8 3 2 4 /8 3 3 9 /8 3

* fo r  c o r r e s p o n d in g  le a d  t im e  (L T ). o r d e r in g  a n d  b a tc h in g  c o m b in a t io n  r e p e a t e d  fo r  a ll c o m b in a t io n s

Table 5.4b

R ank  a n a ly s is  b a s e d  o n  th e  m a g n itu d e  o f ro g u e  s e a s o n a li ty  index
(For a s s e ss in g  the  discrim ination ability of th e  index derived from different feature param eter com binations)

L arger the  rogue  sea so n a lity  ind ex  h igher the rank  is u se d  a s  b a s is
R a w

T im e

FT

T o ta l

F T  7 F T  28 F T  80 %  
E n e r g y

A R  7 A R  2 8 A R  A IC A C F  7 A C F  28 C C F  7 C C F  28 D W T  H a a r  

( L e v e l  5)

D W T  H a a r  

( L a v e  
S h a n n o n )

S u m  o f  R a n k s  - M A (2) 
M in im u m  /  b e s t  p o s s ib l e  18
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6 0 3 3 4 3 1 4 7 6 1 0 4 1 5 3 7 9 2 3 9 6 3 9 7 6 6 6 6 8 0 4 4 1 6 381 1 2 7 1 1 0 7 0

1 4 9



Table 5.4a gives the consistency of the index with respect to demand process (and 
parameters) and ordering processes (Unoptimal and Optimal parameters) for different 
feature parameter combinations. FT Total shows the highest consistency amongst all 
feature parameter combinations as in the linear case. It has a high consistency in absolute 
terms as well (55/63 or 87%), though, which is lower than that in the linear system (68/69 
or 99%). This is on account of the non-linearities from backlogs and batching in the 
former. Other parameter options within FT such as FT 80% energy also show a similarly 
high consistency as FT Total, though consistency for FT 7 and FT 28 is much lower as in 
the linear case. Consistencies for time, AR and DWT features are also lower as similarly 
observed in the linear case. The only surprise is for the ACF feature; while it was at par 
with the FT Total in terms of consistency in the linear case, it is much lower than the FT 
Total in this case and only marginally better than the time domain.

The sum of ranks based on the average and coefficient of variation of index values is 
given in Tables 5.4b and 5.4c respectively with their aggregated sum given at the bottom 
of Table 5.4c. The best feature parameter combination is that for which the index values 
are the highest but at the same time whose coefficient of variation of index values are the 
lowest. The FT Total has the lowest aggregated sum of ranks amongst all the feature 
parameter combinations considered, indicating it to be the most balanced in meeting the 
above considerations which was also the case in the linear system analysis (see Table 
4.5). As regards other feature parameter combinations, they are similarly placed relative 
to each other in terms of aggregate ranks as in the linear case.

Based on all the three criteria, the FT Total feature parameter combination was found to 
be the best for rogue seasonality index computation with FT 80 % Energy a close second 
as in the linear case. Other findings are also similar to that in the linear case. The index 
computed in the time domain was found to be a less valid measure of rogue seasonality 
(low consistency) and a less effective discriminator of rogue seasonalities of different 
intensities (low index values). AR and DWT features were found to be among the worst 
on each criterion while CCF features showed low consistency. The only surprising 
finding was with regard to ACF features which showed lower consistency both in



absolute terms as well as relative to FT features (FT Total and FT 80% Energy) compared 

to the linear system.

5.6.1.3 Com parison of alternative index definitions

The correlation between the alternative index definitions (based on equations 4.1, 4.3 and 

4.3) for different features are given in Table 5.5. These were computed in a similar 

fashion as in the linear system analysis. Table 5.5 highlights the fact that the correlation 

between alternative index definitions for most o f the features (FT, AR Model, ACF, 

CCF) is high. This means that when these features are used, any of the three index 

definitions could be used for index computation (and therefore rogue seasonality 

detection) without loss o f accuracy. However, the comparison o f the correlation 

coefficients given in Table 5.5 with those for the linear system given in Table 4.6, show 

the former to be lower which again can be explained by the greater system complexity 

(and its associated impact on the data variables) from the simultaneous application of 

backlogs, batching and other factors. The correlation between index definitions in the 

time domain and using DWT coefficients is low as was seen in the linear case.

Table 5.5: Correlation between alternative rogue 
seasonality indices in the Beer game system -  All 
variables used in computation of the indices

Index and Alt 
1

Index and Alt 
2

Alt 1 and Alt 2

Time 0.67 0.84 0.37
FT 0.84 0.97 ~ 0.75
AR Model 0.85 0.98 0.84
ACF 0.87 0.99 0.86
CCF 0.79 0.97 0.66
DWT 0.64 0.64 0.40
Parameter options for each feature have been combined together 

Highlighted indicates low correlation (considered bad)

5.6.2 Case V: Only o rd er and inventory variables used in the index com putation

The average and the coefficient o f variation o f the index values are given in Appendices 

J.l and J.2 respectively while Appendix J.3 gives the structured evaluation o f alternative 

feature parameter combinations based on the criteria o f consistency, discrimination
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ability and stochastic robustness. Finally, Appendix J.4 gives the correlation between 
alternative index definitions for different features. A comparison of the average index 
values between an “all variables used” case (Appendix 1.1) and the “orders and inventory 
variables used” case (Appendix J.l) for feature parameter combinations such as FT Total 
shows only small differences. For example, in the “all variables used” case, the average 
index values for Unoptimal and Optimal parameters ordering are 1.22 and 1.18 (lead 
times 3 3 4, no batching, excited with the demand process AR (2): pi 0.1, p2 -0.8). The 
corresponding values for the “order and inventory variables used” case are 1.45 and 1.30. 
The same is true for the other demand processes as well. This implies that use of fewer 
but representative variables such as order and inventory variables, give a similar 
indication of rogue seasonality intensity.

The structured evaluation of alternative feature parameter combinations, which is given 
in Appendix J.3, shows the FT Total to be among the most consistent feature parameter 
combination. The index value based on the FT Total also provides the maximum 
discrimination between rogue seasonalities of different intensities while being stable in 
stochastic terms. FT 80% Energy is close to the FT Total on all of the evaluation criteria. 
ACF features on the other hand, show similar consistency and discrimination ability as 
the FT Total, but were found to be lacking in the stochastic robustness criteria. Other 
features such as AR, DWT, Time and CCF also were found to be lacking in one or more 
criteria.

Finally, J.4 gives the correlation coefficient between the alternative index definitions 
where again the results are similar to the “all variables used” case (Table 5.5) i.e. high 
correlation coefficient for the FT, AR model, ACF and CCF features and low correlation 
coefficient for the time domain and DWT coefficients.

5.7 Conclusions

This chapter analyzed rogue seasonality generation in a non-linear (Beer game) system. 
Backlogs, batching in ordering and shipping, shipping variable and hybrid MTO-MTS 
system with Optimal and Unoptimal parameters were applied to the system and their 
impacts analysed. The outputs from the simulated system were used to assess the
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effectiveness of the rogue seasonality signature and index, together with the best features 
(and parameters) to be used for deriving them.

The signature of rogue seasonality was found to be valid for the Beer game system 
notwithstanding its greater complexity than the linear system used in Chapter 4 with four 
echelons, a greater number of variables, echelons having different lead times and all the 
other factors including non-linearities mentioned in the previous paragraph. The signature 
was able to accurately record the rogue seasonality generation. However, unlike the 
signature in the linear system, where all the other variables were clustered together and 
separate from CONS, in this case one variable (the shipping variable) continued to be 
clustered with CONS. Recognizing that this could arise in real systems as well, rogue 
seasonality definition was modified as follows: rogue seasonality is considered present if 
CONS is separately clustered from most of the variables (the threshold needs to be 
defined) and these variables are clustered together.

The rogue seasonality index was found to be an accurate barometer of rogue seasonality 
intensity. While the index value for the make to order (MTO) system was 0, it was higher 
(>1) for the hybrid MTO-MTS system with Optimal parameters and the highest for the 
hybrid system with Unoptimal parameters. These index values are as expected based on 
their respective rogue seasonality intensities (from analytical frequency response (FR) 
analysis).

In terms of feature parameter combinations to be used for index computation, FT Total 
was found to be the best followed closely by FT 80% Energy. Index values derived from 
them showed high consistency (both in absolute and relative terms), discrimination 
ability and stochastic stability. This finding is similar to that for the linear system. 
Relative performance of the other feature parameter combinations on these criteria is also 
the same as their performance in the linear system. In terms of the appropriateness of 
alternative index definitions, the correlation between the index values based on these 
definitions was high for FT, AR Model, ACF and CCF features as in the linear case. 
However, the extent of correlation (reflected in the value of correlation coefficient) in the 
Beer game system was lower. This is on account of the greater system complexity (and
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its associated impact on the data variables) from the simultaneous application of 
backlogs, batching and other factors. Finally, use of order and inventory variables gave 
the same overall findings as when all the variables are used (as discussed above).
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Chapter 6 -  Analysis of rogue seasonality in empirical 
contexts

Chapters 4 and 5 used simulated linear and non-linear supply chain contexts to analyze 
rogue seasonality. Rogue seasonality’s characteristic presentation as multiple system 
variables oscillating in sync with each other, with the oscillation not present in the 
exogenous demand, was highlighted. The signature based on the clustering profiles of 
variables in relation to exogenous demand was found to be an effective indicator of the 
presence/absence of rogue seasonality. However, to get a sense of the intensity rather 
than just the presence or absence of rogue seasonality, a numerical index was proposed 
and tested and found to be a valid measure. It is based on the dissimilarity between the 
other variables and exogenous demand in relation to the dissimilarity between the other 
variables themselves. Different time series transformation techniques were explored for 
computing the index out of which the FT Total feature parameter combination was found 
to be the best followed closely by FT 80% Energy. In this chapter, time series data from 
two empirical contexts are used to validate the above findings on rogue seasonality.

First a steel case study is analysed. Steel being an industrial product is characterized by 
relatively stable demand profiles and (consequently) similarly stable profiles of other 
supply chain variables. Monthly sampled data could therefore accurately capture the 
dynamics associated with rogue seasonality in this case and hence used. The second 
context is of a supply chain network in the grocery sector (a more volatile sector) and 
where, time series data of supply chain variables sampled at a higher rate (than monthly) 
is used.

Each case study is discussed separately one after the other as their rogue seasonality 
contexts are different. First, the steel case study context is explained which is followed by 
a discussion of the methods used by Thornhill and Naim (2006) and their findings. The 
case study and data used here is the same as used by them and this would bring more 
clarity to the contribution of the present work. Next, the different kinds of analysis 
performed on the data is discussed which are:
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• Transformation of the data to different domains, and use of the features from 
these domains for clustering based signature formulation

• Index computation from alternative feature parameter combinations to identify the
best one for the same and therefore for rogue seasonality detection

• Assessing the impact of using order and inventory variables instead of all
available variables on the index values

• Comparing the index values derived from alternative index definitions considered 
as in equations 4.1,4.3 and 4.4

After the analysis of the steel case study, the grocery case study is similarly analysed, 
discussed and presented.

6.1 Description of the steel case study context and its analysis based on the

spectral principal component technique

The steel supply network used in this study is depicted in Figure 6.1 which shows the 
flow of order and material across the network. The network consists of four autonomous 
business units: Steel works, Section mill, Bar mill and Rod mill. The Steel works 
produces steel billets of different qualities and specifications which are used as raw 
materials by the other three mills. These three mills then produce an even wider range of 
products which are sold to customers which include stock holders as well as end users. 
Though being a part of the same holding group, the four units are managed independently 
and operate as separate profit centres. Their production control is also not centralised 
with scheduling done independently of the others at each unit.

The study being information centric, data on different system variables across the 
network was required, which was originally collected from the company’s management 
information systems. However, for the purposes of the present study, this data was 
already available, which includes variables such as customer orders, production output, 
dispatches, receipts, and inventory levels. These variables are similar to those used in the 
simulation analysis. Figure 6.1 lists these variables for each business unit. The meanings 
of these variables are mostly self-evident from their descriptions; the order book variables 
(numbers 29, 30) are the orders accepted by a company that have not yet been delivered
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Order Book Section Mill ( 30 )
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Rod Mill Total Stocks ( 36 )

Each variable is num bered to  fa c ilita te  ease in representation  

Figure 6.1. Steel case study network, its constituent dyads and the variables used in analyzing them



to the customer and are akin to backlogs. Monthly time series data for each variable 
was available for 6 years (72 months).

The steel case study context used in this chapter has been used by Thornhill and Naim 
(2006) to demonstrate the effectiveness of the spectral principal component analysis 
(SPCA) technique in identifying rogue seasonality. SPCA is derived from PCA where 
PCA (principal components analysis) is the dimensional reduction technique which 
converts a number of correlated features of the data into a smaller number of 
uncorrelated features called principal components (PCs), with the first few PCs being 
used to represent the original data for further analysis. In SPCA, PCA is done for the 
spectra so that time delays or phase shifts caused by network dynamics are eliminated 
from the analysis. In Thornhill and Naim’s study, SPCA was used for identifying 
rogue seasonality. The time series data for all the variables in the network was first 
normalized and detrended after which it was transformed into a spectra representation 
(using Fourier transform). Then, the dimensionality of the spectra for each variable 
was reduced to 3 dimensions using PCA, so as to plot each variable in the 3 
dimensions. Clusters of variables were manually identified, with the clusters mapped 
on to the network structure to identify variables which shared common cyclical 
characteristics as well as in relation to exogenous demand which was then used as the 
basis for identifying rogue seasonality. In the steel network, the SPCA approach was 
able to detect two cyclical disturbances. One was externally induced from the 
customer orders and the other was generated internally from the production planning 
systems and hence termed as rogue seasonality.

Though the SPCA based approach could successfully detect rogue seasonality in the 
steel network, it was lacking in certain respects which are practical and scientific in 
nature. These have been highlighted by Thornhill and Naim themselves and suggested 
as areas of future work. The first is the significant manual element in the detection 
process, such as deciding the number of principal components, assessing the cluster 
memberships of the variables and interpreting the clusters all of which introduce 
subjectivity into the process. Moreover, the process requires the number of principal 
components (PC) to be not more than three so that the variables represented in terms 
of the PC’s could be plotted and the clusters manually visualized. Though this 
representation of all variables with 3 PC’s was possible for the steel network data, it
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may not work in other contexts having different data characteristics. The second issue 
is with regard to the use of just one technique, SPCA, in the study which was not 
compared to other potential techniques to establish its superiority or otherwise.

The aim here is therefore, to use the steel case study data to validate the signature and 
index of rogue seasonality so that the case for automatic rogue seasonality detection 
based on these could be strengthened. It is also to establish the best time series 
transformation technique (and feature) for signature formulation and index 
computation using real data.

6.2 Rogue seasonality analysis o f the steel case study based on signature and 

index

The steel case study network is not analysed as such but is instead broken up into its 
three constituent dyads as seen in Figure 6.1: Steel works-Section mill, Steel works- 
Bar mill and Steel works-Rod mill and analysed separately. This is because Thornhill 
and Naim’s study determined the mills to be using different ordering strategies. The 
Section and Bar mills used the make to stock (MTS) and the Rod mill the make to 
order (MTO) strategy with the former showing rogue seasonality characteristics and 
the latter not showing it. By splitting the network into dyads, systems with contrasting 
rogue seasonality characteristics could be analysed. However, it is important to note 
that even though these dyadic systems are being termed as MTO and MTS systems, 
actually they are all hybrid MTO-MTS systems but with orders having a greater 
influence in the ordering decision in the former (MTO) and lesser in the latter (MTS). 
This is because for industrial products of the kind considered here, specifically steel 
products, hybrid strategies are generally used. Pure MTO policies are not used as 
economies of scale in production means build up of stocks. Likewise, demand from 
customers is specific and hence the pure MTS policy is also not used. In the case of 
the steel case study the hybrid nature of the systems is borne out by the variables used 
(see Figure 6.1). For example, the Section and Bar mills have order book variables 
implying that these are not operating on a pure MTS basis. Similarly, the Rod mill has 
a stocks variable which implies that it is also not operating on a pure MTO basis.

Each dyad is analysed separately on the basis of its system variables which includes 
the signature as well as the index values derived from different feature parameter
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combinations. The sequence of steps used in the analyses are as follows:

• The time series data of different variables was checked for consistency using
analytical techniques.

• Data was de-trended so as to avoid its appearance in the zero frequency channel. 
Also, all low frequencies reflecting long term patterns (below a specified 
threshold) were filtered. The threshold used here is the same as that used by 
Thornhill and Naim (2006) at frequency 0.125 (time period greater than 8 
months).

• For the index computation, all common frequencies shared between orders and 
other variables reflecting transmission of exogenous demand were filtered out in 
line with the discussion in Section 4.4.2. For the Steel works-Section mill dyad, 
this corresponded to the frequencies 0.25 (4 month cycle) and 0.17 (6 month 
cycle), for the Steel works-Bar mill it was 0.25 (4 month cycle) and for the Steel
works-Rod mill 0.25 (4 month cycle) and 0.33 (3 month cycle). Filtering is done
by replacing the values in the frequency channels (to be filtered) with zero.

• Data was normalised and each of FT, ACF and CCF transformations were applied 
to the data, with time domain used as the reference. AR and DWT transformations 
were ignored as they were found to be ineffective for rogue seasonality detection 
(signature and index computation) in the earlier linear and non-linear system 
analyses. The features from the transformations were plotted and clustered to 
formulate the signature with order variable being the exogenous demand. Index 
values were also computed from each feature parameter combination (two 
parameters used for each feature); FT Total and FT 80% Energy, lags/max lags of 
18 and 36 for ACF and CCF. Finally, the index values were computed using the 
three alternative index definitions in each case.

The findings from the analysis are discussed under three sub sections. First, the rogue 
seasonality signatures derived from alternative features are discussed to subjectively 
assess the best feature for this application. Next the index values derived from these 
features (with different parameters) are discussed. The feature parameter 
combinations are also compared in a structured way on the consistency and 
discrimination ability criteria as in chapters 4.and 5. Finally, correlation coefficient 
between the index values based on the alternative index definitions is discussed.
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6.2.1 Analysis of rogue seasonality signature derived from different features

The profiles of variables based on FT, time, ACF and CCF features together with their 
clustering for signature formulation are given in Figures 6.2, 6.3, 6.4 and 6.5 
respectively. All three dyads are shown in each figure for effective comparison.

The unfiltered and filtered spectra (square of FT amplitudes) plots and the 
hierarchical clustering plot based on the latter for each of the three dyads is given in 
Figure 6.2. The logic of filtering out the low frequencies (as discussed previously) is 
apparent from the unfiltered plot; most variables have significant energy at the low 
frequencies and these frequencies are seen to mask the relevant high frequencies in 
many cases. The filtered spectra plots of Steel works-Section mill and Steel works- 
Bar mill dyads show rogue seasonality being generated in these systems. In the Steel 
works-Section mill dyad, while the exogenous demand (variable 9) shows 
seasonalities of only 6 and 4 months (corresponding frequencies of 0.17 and 0.25), 
other variables show an additional seasonality (rogue) of 3 months (frequency 0.33).

Similarly, in the case of the Steel works-Bar mill dyad many variables show 
additional seasonalities of 3 and 6 months (frequencies of 0.33 and 0.17) which is not 
present in the exogenous demand pattern (variable 23). In both these dyads therefore, 
the presence of rogue seasonality is effectively indicated; seasonal patterns in 
multiple variables whose frequency is different from those in exogenous demand. On 
the other hand in the Steel works-Rod mill dyad, all the variables are 
indistinguishable from the exogenous demand (variable 37) indicating no rogue 
seasonality generation in this system. Looking at the clustering profiles of the 
variables, it is seen that exogenous demand (variables 9 or 23) is clustered reasonably 
separately from the other variables in the two dyads with rogue seasonality (Steel 
works-Section mill and Steel works-Bar mill) and reasonably together with the other 
variables in the case of Steel works-Rod mill dyad which does not show rogue 
seasonality. The signature, which is based on the cluster profiles of the variables (see 
Sections 4.1.1 and 4.1.2) is therefore quite effective in indicating the 
presence/absence of rogue seasonality for the FT Total feature parameter 

combination.
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Autocorrelation function (ACF) domain -  Upto lag 36
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Cross correlation function (CCF) domain -  W ithin lags ± 36
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Figure 6.5. Cross correlation between variables (within maximum lags ± 36) and 
clustering based on it for the three dyads in the supply network

In the time domain (see Figure 6.3), neither the profiles of the variables nor the 

signature based on clustering of the profiles are able to discriminate between the 

dyads which have and those which do not have rogue seasonality which was possible 

with the FT feature. The same is true for the CCF feature. Figure 6.5 shows that the
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dissimilarity (based on CCF) of exogenous demand with the other variables in 
relation to the dissimilarities among the variables themselves is not significantly 
different for dyads which have/do not have rogue seasonality. The signature in this 
case, which is based on clustering of the variables using the CCF based dissimilarity, 
is therefore also similarly ineffective. On the other hand the ACF based 
representation (see Figure 6.4) performs relatively better than the CCF and time 
domains.

Cyclicality in the profiles is visible in both unfiltered and filtered ACF plots, with 
low frequency cycles clearly evident in the former. In the filtered ACF plots, the low 
frequencies are seen to have been filtered out. Also, a mixture of 2 to 6 months cycles 
can be seen in all the variables for all the three dyads. In terms of profiles of variables 
in relation to exogenous demand, one would expect to see the former to be 
significantly different from the latter for the dyads with rogue seasonality (Steel 
works-Section mill and Steel works-Bar mill). However, this is seen to be true only 
for the second dyad where exogenous demand (variable 23) is clustered away from 
the other variables. Not only is the rogue seasonality accurately indicated for this 
dyad, but the related signature is also validated. However, for the first dyad the 
signature was unable to indicate rogue seasonality; exogenous demand was clustered 
together with the other variables for this dyad indicating absence of rogue seasonality 
as per the definition of the signature, though in reality rogue seasonality is present, as 
seen in the FT analysis. For the third dyad (Steel works-Rod mill), absence of rogue 
seasonality was accurately indicated by the signature; exogenous demand (variable 
37) was clustered with the other variables.

Therefore, overall the signature in the FT domain was found to be reasonably 
effective in indicating the presence/absence of rogue seasonality. Signature in the 
ACF domain was partially effective while those in the CCF and time domains were 
not effective. The next step is to assess the index as a measure of the intensity of 
rogue seasonality and then use the index value for a structured comparison of 
different feature parameter combinations.

6.2.2 Structured comparison o f feature parameter combinations for index 
computation

The index values based on equation 4.1 were computed for each dyad based on each
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feature parameter considered: time, FT Total, FT 80% Energy, ACF 18, ACF 36, CCF 
18 and CCF 36. This was done twice; first using all the variables (as given in Figure 
6.1) and then using only the order and inventory variables. The different feature 
parameter combinations were compared in a structured way using the criteria of 
consistency and discrimination ability (stochastic stability criteria was not used as it is 
not applicable for empirical data). The consistency criteria uses the fact that the dyads 
operating on an MTS basis which show rogue seasonality characteristics should have 
a higher index value than the MTO dyad which does not show rogue seasonality (the 
basis for this has been discussed in chapter 4). The criteria on discrimination ability 
which is based on ranking of the index values is applied slightly differently here than 
in chapters 4 and 5. In those chapters (chapters 4 and 5), only systems with rogue 
seasonality (MTS and hybrid MTS-MTO) were used in the structured comparison of 
feature parameter combinations so a larger index value was the only basis for 
assigning ranks. On the other hand in the present analysis, systems with rogue 
seasonality (MTS dyads) are clubbed together with those without the same (MTO 
dyad) so that while ranks are assigned to those with greater index values in the 
former, in the latter (MTO) case smaller index values would better represent absence 
of rogue seasonality and were therefore assigned higher ranks. It is also to be noted 
that the structured comparison of the “all variables used” and “order and inventory 
variables used” cases is done together because of paucity of data. Table 6.1 gives the 
summary output of the analysis whose key points are:

• The index values for the MTS systems (Steel works-Section mill and Steel 
works-Bar mill dyads) are much lower and for the MTO system (Steel works-Rod 
mill dyad) much higher than those observed for MTS and MTO systems in the linear 
supply chain system analysis in chapter 4. Two factors can be used to explain this. 
The first is that, although the dyads are being referred to as MTS and MTO systems 
they are actually both hybrid MTS-MTO systems (discussed at the start of section 
6.2) though one is closer to the former (MTS) and the other closer to the latter 
(MTO). This is corroborated when the index values of these dyads are compared with 
those for a hybrid MTS- MTO system. For example, the index value for the 
simulated hybrid MTS-MTO system (see chapter 5, Figure 5.4) at 1.07 is close to the 
index values for the dyads as given in Table 6.1. The low index values of the dyads 
are in conformity with their clustering based signatures seen earlier which neither
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Table 6.1: Assessment of select feature parameter combinations used for 
rogue seasonality index computation in the steel case study

System Description Raw Time FT Total FT 80% 
Energy

ACF 18 ACF 36 CCF 18 CCF 36

All av a ilab le  
v a r ia b le s  u se d

MTO: Steel Works-Rod Mill Dyad 084 084 089 0.76 0.72 0.97 099
MTS: Steel Works-Section Mill Dyad 0.80 090 092 067 0.72 0 70 0.71
MTS: Steel Works-Bar Mill Dyad 0 79 0 94 0 96 093 0 95 0.97 098

Only O rd e r a n d  
Inventory  
v a r ia b le s  u s e d

MTO: Steel Works-Rod Mill Dyad 093 0.82 0 90 0 82 0.76 0.93 0.94
MTS: Steel Works-Section Mill Dyad 090 1.22 1.46 065 0 64 0.92 094
MTS: Steel Works-Bar Mill Dyad 0.87 1 06 1.21 1.06 1.01 0.91 092

Number of cases where MTS > MTO; Max possible 4/4
(Measures consistency of index) 0/4 4/4 4/4 2/4 3/4 0/4 0/4

Sum of ranks (Rowwise ranking; For MTS larger values get 
higher rank & reverse for MTO; Best 8, Worst 56)** 
(Measures discrimination ability of index)

42 23 24 30 23 40 42

■ Level 3 used instead of Shannon criteria
“  Since there are 2 cases of MTO and 4 cases of MTS, the ranks in the former are multiplied by 2 to eliminate bias in the sum of ranks

showed exogenous demand to be very distinctly clustered from other variables nor 

clustered very closely with them for the FT Total feature.

The second contributing factor for the significant difference in index values between 

the dyads in the steel case study and the corresponding simulated systems in chapter 

4 is the presence o f noise in the steel data as well as its varying character across the 

variables, which is typical o f most real world datasets. In contrast in simulation, noise 

was only introduced in one variable (CONS or exogenous demand) with all the other 

variables being determined deterministically on the basis o f the simulation equations. 

Moreover, the noise introduced in CONS was also stationary (Gaussian with a mean 

o f  0 and standard deviation o f 1).

Overall, the inference that could be drawn from the index values o f the steel dyads is 

that, in reality it is unrealistic to expect supply chains with rogue seasonality to yield 

high index values, and those without, low index values as was observed in the 

analysis o f  linear and non linear supply systems (chapters 4 and 5). The difference in 

the index values between the cases when rogue seasonality is present to when it is not 

present would be lower in reality. Careful setting o f thresholds for the same would 

therefore be necessary for practical situations. The relevance o f the magnitude o f 

index as a criterion for structured comparison o f different feature parameter 

combinations (see section 4.4.1.2) also becomes apparent.
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• In terms o f comparing the “all available variables used” with the “order and 

inventory variables used” case, the index values (based on FT Total) for the latter are 

marginally greater than for the former in case o f MTS systems. A similar marginal 

difference between these cases was seen in the analysis o f linear (Section 4.4.3) and 

non-linear (Section 5.6.2) supply chain systems. Hence, use o f a limited set o f 

relevant variables (such as order and inventory variables) instead o f all the variables 

does not significantly impact the index value and therefore the effectiveness o f rogue 

seasonality detection.

• The structured comparison o f the feature parameter combinations based on the 

criterion o f consistency and discrimination ability reveals FT Total and FT 80 % 

Energy to be the best for rogue seasonality detection followed closely by ACF 

(specifically ACF 36 feature param eter combination) with CCF being the worst 

among those considered. This finding is exactly similar to that found in the 

simulation analysis o f linear as well as non-linear (Beer game) systems.

6.2.3 C om parison  of a lternative  index definitions

The index values were computed using alternative index definitions (index, Alt 1 and 

Alt 2) for each dyad for each feature parameter combination used. Correlation 

coefficient between the index values based on the three index definitions was then 

used to assess whether the indices were measuring the same thing. These correlation 

coefficient values are given in Table 6.2. The correlation coefficient is quite high for 

FT and ACF indicating that these features are less susceptible to changes in the index 

definitions and are therefore more robust for rogue seasonality assessment.

Table 6.2: Correlation between alternative rogue 
seasonality indices for the steel case study* data

Index and Alt 1 Index and Alt 
2

Alt 1 and Alt 
2

Time 0.50 0.49 0.60
FT 0.95 0.94 0.97
ACF 0.96 0.82 0.79
CCF 0.28 0.63 0.69

* Includes cases where all variables are used in the computation 
o f  the index as well as where only orders and inventory are used

Highlighted indicates low correlation (considered bad)
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6.3 Discussion of the steel case study findings

Analysis of the steel case study corroborates the findings on rogue seasonality 
obtained from the simulation analysis in chapters 4 and 5. The presentation of rogue 
seasonality as multiple variables oscillating in sync with each other at same 
frequency/ies, with one or more of these oscillation frequencies not present in the 
exogenous demand, is validated. The signature of rogue seasonality which is, 
exogenous demand being clustered away from the other variables when rogue 
seasonality is present, is also validated. However, the validity of the signature was 
found to differ across the features used to derive the signature. While the FT feature 
showed perfect validity, validity for signature based on ACF was partial and 
signatures based on time and CCF were completely ineffective in characterizing 
presence/absence of rogue seasonality.

Comparison of different feature parameter combinations for computing the index 
revealed, FT Total to be the best followed by FT 80 % Energy. These were also the 
best and second best in the case of simulated linear and non-linear (Beer game) supply 
chain systems. In the present analysis, FT feature being the best for index computation 
is in conformity with it giving the signature with the highest validity as discussed 
earlier. The use of order and inventory variables for index computation rather than all 
the available variables causes only a marginal change in the index values. Finally, 
index values based on alternate index definitions were found to be significantly 
correlated with each other when these were computed using FT and ACF features. 
Index values derived from these features are therefore robust to variations in the way 
these are computed.

Overall, this analysis validates the findings in Thornhill and Naim (2006). Frequency 
representation based on FT was found to be the best technique for rogue seasonality 
detection as observed by them. However, here we used an automated as well as a 
more generalisable approach which did not require compression of the profiles within 
three principal components, manual clustering and cluster evaluation and use of the 
look up table. Moreover, multiple techniques such as ACF and CCF besides the time 
domain were evaluated in the determination of FT as the best technique while 
Thornhill and Naim used just the time domain in the comparison. In terms of rogue 
seasonality in different steel units, Thornhill and Naim gave a black and white
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interpretation; Section mill and Bar mill were exhibiting rogue seasonality while no 
rogue seasonality was evident in the Rod mill. As against this the signature and index 
based analysis here suggests Section mill and Bar mills to be having a greater rogue 
seasonality intensity than the Rod mill. This is a more realistic analysis given that all 
supply chains exhibit rogue seasonality but with differing intensities (Kim and 
Springer, 2008).

Next rogue seasonality generation in a grocery case study is discussed whose context 
is different from the previous case study. First daily data, which is more noisy is used 
as compared to monthly data used in the steel case study. Secondly, individual SKU’s 
are analysed rather than aggregating all the products into tons and analyzing on that 
basis as was done in the steel case study analysis. The rogue seasonality analysis in 
the grocery case study is therefore of individual SKU’s in one supply chain rather 
than one product (aggregated in tons) in multiple supply chains as used for the steel 
case study.

6.4 Description o f the grocery case study context

The grocery supply chain network used in the study is depicted in Figure 6.6. The 
structure of the network including the nature of material and information flows is 
based on discussions with the focal company’s supply chain planning personnel. The 
flow of material (coffee) takes place as follows. The manufacturing facility of the 
company M produces coffee (in batches) which is transferred to one of its two 
distribution centres (DC’s) (the factory keeps negligible stocks) from where it is either 
shipped to the large primary customers (managed by company M itself) or shipped to 
a depot of the distributor WD who distributes goods to M’s small customers, called 
radial customers. Some inter DC transfer of material also takes place due to 
misallocation or errors such as in forecasting. Distributor WD, which manages the 
distribution of goods to M’s radial customers, is also a Wholesaler for the same set of 
goods. The network of depots used to distribute company M’s goods (11 depots 
relevant to company M and uniquely assigned to each DC) is therefore also used by 
WD for stocking and shipping goods to its wholesale customers. In terms of ordering 
practice, radial customers place their orders to company M who ensures timely 
delivery of goods by coordinating with WD. Any shortfalls at the WD depot are met 
by dispatching appropriate quantity of goods from the DC so that requirements of the
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radial customer could be met. Therefore, in principle, company M’s radial customers 
should not face any stock out situation; however in practice, the same entity (WD) 
managing the roles of both Wholesaler and Distributor means that there is scope for 
goods meant for M’s radial customers getting diverted to WD’s wholesale customers 
especially during shortage situations.

Four dynamically representative SKU’s (SKU 1 to 4) were analysed for which data on 
system variables across the network such as orders and dispatches between entities in 
the network as well as the inventory level of entities was used. This data was 
provided on a date wise variable/entity wise basis for each SKU and required to be 
aligned and mapped to the structure given in Figure 6.6 for better understanding. 
However, such detailed, elemental level (individual DC and depot level) information 
is useful for analyzing operational disturbances, while our focus is on rogue 
seasonality, which is systemic in nature. The data fields for individual DC’s and 
individual depots are therefore aggregated together with this aggregate data (given in 
Figure 6.6) used for subsequent analysis. One year’s worth of daily time series data 
was used, the latter because initial discussions revealed all transaction times between 
entities to be less than a week (i.e. in days). Use of a weekly or monthly sampling 
frequency could have masked the embedded rogue frequencies. Next we discuss 
details of the data analysis.

6.5 Rogue seasonality analysis of the grocery case study based on signature 
and index

Each of the 4 SKU’s was analysed using the aggregated system variables given in 
Figure 6.6. This involved formulating the signature and computing the index using 
different feature parameter combinations. The salient aspects of the analysis are 
summarised below:

• The time series data of different variables was first checked for consistency 
and adjusted for errors as well as for inappropriate recording, missing and duplicate 
data. Next, the data was aggregated, de-trended and normalised before being used for 
signature formulation and index computation. De-trending eliminates low frequencies 
which are irrelevant from the point of rogue seasonality but interfere in the process of 
signature formulation and index computation. Normalisation ensures that differences
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in scale as well as in amplification between the variables are eliminated and variables 
are only compared on the basis of their profiles.

• A supply network is analysed (see Figure 6.6) unlike the previous linear, non­
linear (Beer game) and steel case study analyses which were all supply chains. For 
example, DC to all primary customers and DC to all WD depots form a network and 
information on both these flows is included in the analyses. This could be done in the 
present context because of two factors. First, there are no allocation issues between 
the two flows and associated interference between their profiles as typically happens 
in a network structure. The high stock level at the DC’s upstream from large 
production batches eliminated the need for allocation of material among the 
downstream entities and demand from both, primary customers as well as WD depots 
could be met simultaneously. Secondly, the transaction dynamics in both the flows are 
similar with time batching being similarly operative and goods needing to be 
despatched on a weekly/biweekly basis. Their flow or despatch profiles are therefore 
similar (though the volumes are different).

• For the index computation, all common frequencies shared between orders and 
other variables reflecting transmission of exogenous demand were filtered out in line 
with the discussion in Section 4.4.2 as well as Section 6.2 for the steel case study. The 
specific frequencies that were filtered out for each SKU are:
SKU 1: Cycles of 3, 7 and >180 days (frequencies 0.3, 0.14 and 0.005)
SKU 2: Cycle of 7 days (frequency 0.14)
SKU 3: Cycle of 7 days (frequency 0.14)
SKU 4: Cycles of 3 and 7 days (frequencies 0.3, 0.14)

The low frequency (cycle time >180 was present only in some (not all) variables in 
SKUs 2, 3 and 4 and hence was not filtered out as was done in the case of SKU 1. 
Filtering was done by replacing the values in the frequency channels (to be filtered) 

with zero.

• FT, ACF and CCF transformations were applied to the data, with time domain 
used as the reference as in the steel case study analysis. AR and DWT transformations 
were ignored because they were found to be the ineffective for rogue seasonality 
detection (signature and index computation) in the earlier linear and non-linear system 
analyses. The features from the transformations were plotted and clustered to 
formulate the signature. Index values were also computed from each feature
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parameter combination (two parameters used for each feature); FT Total and FT 80% 
Energy, lags/max lags of 15 and 30 (to correspond to half a month and 1 month) for 
ACF and CCF. All the three index definitions were used to compute the index values 
in each of the analysed cases.

The basis for deriving the signature and index used here, is however different from 
that used in the previous linear, non-linear (Beer game) and steel case study analyses. 
In the previous analyses, rogue seasonality was generated in the echelon facing 
exogenous demand which was then transmitted to upstream echelons. The profiles of 
variables in all echelons were therefore similar to each other and different from 
exogenous demand. Exogenous demand was therefore used as the reference for 
formulating the signature and computing the index. In the present analysis involving a 
distribution network, the echelons have a short term transportation focus; they operate 
in a mode where goods are despatched as needed (analogous to MTO). All the 
distribution echelons would therefore have a similar profile with the only change 
coming at the factory echelon which is required to produce goods in batches (process 
nature of operations). Rogue seasonality or seasonality which is not present in 
exogenous demand but is endogenously generated, gets generated at the 
manufacturing or factory echelon. This then gets transmitted to upstream echelons 
(with respect to the factory) where it has an adverse impact on the cost economics. 
Therefore, instead of exogenous demand, despatch from factory to the DC’s 
(representing factory activity) is the relevant reference in the present context which 
was used to formulate the signature and compute the index.

The findings from the analysis are discussed under three sub sections. First, the rogue 
seasonality signatures derived from alternative features are discussed to subjectively 
assess the best feature for this application. Next the index values derived from these 
features (with different parameters) are discussed; the features are also compared in a 
structured way on the criteria of consistency and discrimination ability (these criteria 
have been discussed in chapter 4). Finally, correlation coefficient between the index 
values based on the alternative index definitions is discussed.

6.5.1 Analysis o f rogue seasonality signature derived from different features

The profiles of variables based on FT, time, ACF and CCF features together with their
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clustering (for signature form ulation) for SK U ’s 1 to 4 are given in figures 6.7, 6.8, 

6.9 and 6.10. The aggregated data used in the analysis (in term s o f  cases) are: 

Despatch: M anufacturing to D C ’s (1), Inventory at D C ’s (A), Despatch: D C ’s to all 

prim ary custom ers (B), D espatch: D C ’s to all W D depots (C), Inventory at all WD 

depots (D) and, orders received from  and distributed to all com pany M custom ers 

from  all W D depots (E).

The tim e dom ain plot for SKU 1 (see figure 6.7) clearly reveals the discontinuous 

nature o f  ordering and despatch profiles even after aggregation (1, B, C, E). This plot 

also highlights the periods in w hich there w ere no supplies from  m anufacturing to the 

D C ’S (1) resulting in low  total inventory at the D C ’s (variable A ) w hich in turn 

reduced the despatches from  D C ’s to prim ary custom ers (variable B) as well as to 

W D depots (C), the last causing a reduction in service from  W D depots to M ’s 

custom ers (E). N o additional insight such as pattern/relationships between the 

variables is provided by the tim e dom ain plots. C lustering o f  the data (and associated 

signature) is also influenced by the nil values o f  the variables in m any tim e periods.

O n the other hand the unfiltered spectra p lo t (frequency dom ain) clearly highlights the 

relationship between the variables. T im e batching effects are clearly apparent in the 

form  o f  3 day and 7 day cyclicality in d ispatch and order profiles (apparent as peaks 

in the plots and m arked appropriately) w hich  get transm itted upstream  till the dispatch 

profile at the m anufacturing echelon. This m anufacturing to DC dispatch profile 

how ever, has an additional 14 day cyclicality  besides the 7 day cyclicality. This could 

be on account o f  a change in production schedule due to the earlier problem s in 

production w hen nothing was produced in certain periods. This additional cyclicality 

(rogue seasonality) generated from  internal operations, and w hich is unrelated to 

exogenous dem and, could create unnecessary costs for vendors upstream  o f  the 

m anufacturing facility i f  not correctly identified. The signature based on clustering o f  

the variables is effective in detecting this rogue seasonality. The cluster profile o f  the 

filtered spectra shows variable 1 (D ispatch from  m anufacturing to D C ’s) to be 

reasonably distinctly clustered from  the other variables. The rogue seasonality 

intensity is m oderate as reflected in the low  peak value o f  the 14 day cyclicality w hich 

explains w hy variable 1 is not m ore distinctly clustered from  the other variables. The 

cluster profile (signature) based on the A C F feature on the other hand does not
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indicate rogue seasonality at all; variable 1 is alw ays clustered w ith the other 

variables. The same is true for the signature based on the CCF feature.

W hile rogue seasonality is generated in SKU 1, w e next look at a contrasting case 

w here no such rogue seasonality is generated. SKU 2 is one such case whose 

unfiltered spectra plot in Figure 6.8, shows tim e batching related cyclicality o f  7 days 

being transm itted from  dow nstream  to upstream  echelon variables and till the dispatch 

from m anufacturing to D C ’s variable. H owever, no additional cyclicality is seen in 

the profile o f  the last variable unlike in SKU 1. The tim e p lo t o f  SKU 2 shows no 

problem s in  m anufacturing w ith regular dispatches being m ade to D C ’s. N o 

production rescheduling was required w hich could have created additional cyclicality 

as in SKU 1. The absence o f  rogue seasonality is accurately recorded by the signature 

in the frequency dom ain (spectra); variable 1 is clustered w ith  the other variables. In 

term s o f  effectiveness o f  signatures derived from  other features in capturing the 

absence o f  rogue seasonality, A CF is effective while tim e and CCF are less effective.

SKU 3 and SKU 4 w hose profiles are plotted in Figures 6.9 and 6.10 also do not show 

rogue seasonality as evident from  their unfiltered spectra plots. The signatures based 

on spectra and A CF are effective in representing the absence o f  rogue seasonality as 

in the case o f  SKU 2, w hile CCF and tim e are not.

In sum m ary, rogue seasonality is generated in only one o f  the four SK U ’s analysed 

(SK U  1) w ith  the generation taking place at the factory or m anufacturing echelon and 

its adverse im pact being felt on echelons upstream  o f  the factory. Only signature in 

the FT  dom ain (spectra) could discrim inate betw een the presence and absence o f  

rogue seasonality. W ith regards to other features, the signature based on the ACF 

feature correctly indicated the absence o f  rogue seasonality though not its presence. 

Signatures based on tim e and CCF w ere even less effective. The next step is to assess 

the index as a m easure o f  the intensity o f  rogue seasonality and then use the index 

value for a structured com parison o f  different feature param eter com binations.

6.5.2 Structured comparison o f feature parameter combinations for index 

computation

The index values based on equation 4.1 w ere com puted for each SKU based on each
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feature parameter considered: time, FT Total, FT 80% Energy, ACF 15, ACF 30, CCF 

15 and CCF 30. Given the limited availability o f  variables, the option o f trying out an 

even lesser number for index computation was not feasible. The different feature 

parameter combinations were compared in a structured way using the criteria o f 

consistency and discrimination ability (stochastic stability criteria is not relevant for 

empirical data and hence was not used). The consistency criteria uses the fact that the 

index value for an SKU showing rogue seasonality characteristics should be higher 

than those not showing the same while the discrimination ability criteria is based on 

the magnitude o f the index value as discussed in previous chapters. Table 6.3 gives 

the summary output o f the analysis.

T a b le  6.3 E v a lu a tio n  o f  d if fe re n t fe a tu re  p a r a m e te r  co m b in a tio n s  used  
fo r  ro g u e  se a so n a lity  in d ex  c o m p u ta tio n  in  th e  g ro c e ry  case  s tu d y

System  Description Raw
Time

FT Total FT 80% 
Energy

ACF 15 ACF 30 CCF 15 CCF 30

SKU 1 - Shows rogue seasonality 0.98 0.97 1.25 0.50 0.54 0.93 0.94
SKU 2 - No rogue  seaso n ality 0.91 0.82 0.79 0.35 0.34 1.08 1.09

SKU 3 - No rogue  seaso n ality 0.92 0.81 0.88 0.28 0.30 1.00 1.01

SKU 4 - No ro g u e  seaso n ality 0.84 0.72 0.85 0.27 0.23 1.02 1.01

Number of c a se s  where Shows rogue 
seasonality  > No rogue seasonality; 
Max possib le 3/3
(M easu res co n sisten cy  of index)

3/3 3/3 3/3 3/3 3/3 0/3 0/3

Sum of ranks (R ow w ise  ranking; L arger v a lu es 
g e t h igher rank for 'Shows rogue seasonality' & 
re v e rse  for 'No rogue seasonality', B est 6. 
W orst 42)* (M easu res 
discrim ination  abilitv of index)

20 19 15 26 22 34 32

* Since there is one case  of ‘Shows rogue seasonality' and three ca ses  of 'No rogue seasonality’, the ranks in the former are multiplied 
by 3 to eliminate bias in sum of ranks

• The index values (based on FT Total) are greater for the SKU with rogue 

seasonality than those without the same. The logic o f the index is therefore effectively 

validated. However, the difference between their index values is low. For example, 

the index value for SKU 1 which shows rogue seasonality is 0.97 (not very high) 

while it is between 0.7 and 0.8 for SKU’s 2 to 4 which do not show rogue seasonality 

(not very low). The case for careful setting o f thresholds to detect presence o f rogue 

seasonality discussed in the previous chapter is strengthened from these findings.

The structured comparison o f the feature parameter combinations based on the 

criterion o f  consistency and discrimination ability reveals FT 80 % Energy to be the
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best followed by FT Total for rogue seasonality detection. This is in conformity with 

the earlier findings on signatures based on FT (or spectra) being the most accurate in 

indicating the presence/absence o f  rogue seasonality. FT features are followed by 

ACF, though the index values based on the latter are quite low in the absolute sense.

6.5.3 C om parison  of a lte rn a tiv e  index  definitions

The index values were computed using alternative index definitions (index, Alt 1 and 

Alt 2) for each SKU for each feature param eter combination used. The correlation 

coefficient between the index values based on the three index definitions was then 

used to assess whether the indices w ere measuring the same thing. These correlation 

coefficient values are given in Table 6.4. Correlation coefficients between the index 

definitions were high when the FT feature was used. As against this, the other features 

had at least one correlation coefficient w hich was low.

T able 6.4 C o rre la tio n  betw een alternative  rogue 
seasonality indices fo r  th e  grocery  case study data

Index and 
Alt 1

Index and 
Alt 2

Alt 1 and 
Alt 2

Time 0.95 0.55 0.65

FT 0.95 0.89 0.95

ACF 0.74 0.90 0.53

CCF 0.79 0.99 0.77
P a ra m eter  op tion s a e a c h  fea tu re  h ave  b een  com bined  toge th er  

w hen  calculating correla tion  coeffc ien t for that feature

6.6 Discussion of the g rocery  case study  findings

Rogue seasonality generation in a grocery (soluble coffee) network was investigated 

using the data on system variables for four SK U ’s. Rogue seasonality was found to be 

generated in 1 SKU and at the m anufacturing echelon. Long production stoppages 

caused rescheduling o f  production at the manufacturing echelon resulting in the 

generation o f an additional 14 day seasonality which was not present in any variable 

in any downstream echelon including exogenous demand. Because rogue seasonality 

was generated at the m anufacturing echelon and all downstream echelon variables 

were synchronized with the exogenous dem and, that is, operating in a MTO fashion , 

the original signature and index o f  rogue seasonality based on exogenous demand as
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the reference required revision. Instead o f  exogenous dem and, dispatch from  

m anufacturing to the D C ’s was used as the reference.

The m odified signature (clustering based on the new  reference) w as form ulated using 

alternative tim e series transform ations (and features) and assessed in term s o f  its 

effectiveness in detecting the presence/absence o f  rogue seasonality. The FT feature 

(spectra) w as found to be m ost accurate in the same. A nalysis o f  index values 

revealed the index value for SKU w ith  rogue seasonality to be higher than each o f  the 

other SK U ’s w ithout rogue seasonality (based on FT features). However, the 

difference in value betw een system s w ith rogue seasonality to those w ithout it to be 

sm all, thereby strengthening the case for fixation o f  appropriate thresholds for rogue 

seasonality detection. Com parison o f  different feature param eter com binations for 

com puting the index revealed FT  80 %  Energy to be the best followed by FT Total. 

The FT based index values com puted using alternative index definitions w ere also 

highly correlated w ith each other.

6.7 Conclusions

A nalysis o f  rogue seasonality in tw o em pirical contexts in this chapter validated the 

sim ulation analysis findings. FT features w ere found to be the best for signature and 

index com putation and therefore for rogue seasonality detection. A lso, use o f  a subset 

o f  the available variables but representative variables was equally effective in rogue 

seasonality detection. The em pirical analysis, however, also inform ed us about some 

o f  the difficulties in applying these findings in real environm ents especially in an 

autom atic mode.

B oth the steel and grocery case studies validated the characteristic m anifestation o f  

rogue seasonality as m ultiple variables oscillating in sync w ith each other. However, 

they differed in term s o f  the signature and index to be used for detecting this 

seasonality. W hile in one case exogenous dem and was used as the reference for 

deriving the signature and index, in the other case, w here m anufacturing echelon was 

responsible for generating the rogue seasonality, dispatch from  the same was used as 

the reference. Choosing appropriate references for different supply chains is therefore 

an additional pre processing step that w ould be required before operating the index 

based autom atic rogue seasonality detection approach. The em pirical case study
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analysis also highlighted the difference in index values between system s w ith rogue 

seasonality arid those w ithout it to be not very large. This requires thresholds to be 

appropriately specified so that system s w ith different rogue seasonality intensities 

could be discrim inated.
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Chapter 7 -  Discussion and Conclusions

This chapter presents an overview o f the research findings in relation to the research 

questions presented in Chapter 1. A fter a brief review o f the research background and 

process used, these findings are discussed in terms o f  their contribution to theory and 

practice. The limitations o f  the research are then explained together with avenues for 

further study.

7.1 Research background and process

This thesis has studied rogue seasonality, which is observed in many real world supply 

chains and reduces the cost efficiency o f  operations but has received only a limited 

academ ic interest. The focus is on its detection, specifically, in identifying supply chains 

with high rogue seasonality intensities so that timely and appropriate mitigative action 

could be initiated. Such an approach, which comes under the sense and respond 

m anagem ent philosophy, has been applied in different disciplines but not in supply chain 

management.

A pplication o f  the sense or detection requires information about the system, techniques 

which use this information to detect a problem or anomaly, and relevant contexts to test 

and establish the effectiveness o f  the process. This rogue seasonality oriented study used 

time series information on operating variables such as orders, inventory, dispatches, 

shipm ents and backlogs with a separate analysis based on the use o f only order and 

inventory variables. Use o f  the signature based technique was explored for detection, 

with the signature formed by clustering o f  these variables represented in alternative 

dom ains (and relevant features) such as time, amplitudes o f  FT, ACF, CCF, coefficients 

o f  D W T and coefficients o f  AR model. The effectiveness o f  the detection process was 

assessed on different rogue seasonality contexts, such as a simulated three echelon linear 

supply chain, a simulated four echelon non-linear (Beer game) supply chain and two 

em pirical supply chains. Such a multi-context analysis gives greater generalisability to 

the findings and was therefore used. Since each o f  these contexts is significantly different 

from each other, they have been classified as a separate research question.
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7.2 Discussion on research questions

Research question 1

What signature and index could be used for detecting rogue seasonality in a linear 

supply chain? What is the best feature (domain representation) and the appropriate 

system variables for deriving them?

This question was addressed in Chapter 4 by analyzing a three echelon linear system. 

Rogue seasonality was seen to manifest itself as multiple system variables oscillating in 

sync, with exogenous demand not exhibiting this oscillatory profile. This characteristic 

presentation o f  rogue seasonality was captured in its signature which is defined as 

follows. I f  the exogenous demand variable is not clustered with other variables such as 

orders, inventory and work in process then rogue seasonality is considered present, 

otherwise not. The signature, defined in this way is a little subjective and therefore a 

numerical index was also defined for rogue seasonality which is based on comparing the 

dissimilarities amongst the variables in relation to the dissimilarity between these 

variables and the exogenous demand. W hile only the presence or absence o f  rogue 

seasonality is indicated by the signature, the index specifies the intensity o f  rogue 

seasonality in the relevant supply chain system

The index was evaluated on different configurations o f  the linear system, and found to be 

a reliable and accurate indicator o f  rogue seasonality intensity with systems with no rogue 

seasonality, moderate rogue seasonality intensity and high rogue seasonality intensity 

giving index values o f 0, greater than 0 and significantly greater than 0 respectively. 

Alternative definitions o f  the index based on use o f  average instead o f  minimum 

dissimilarity (between exogenous and the other variables) and dissimilarities expressed in 

terms o f  standard deviation were found to be strongly correlated with each other implying 

their robustness as a measure and that any o f  them could be used in practice. The index is 

also effective for the case o f exogenous demand having seasonality but requires this 

seasonality to be identified on the basis o f  its common occurrence in demand and other 

variables and filtered out before computation o f  the index.
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Among the different features evaluated, amplitude o f Fourier transform (FT) was found 

to be the m ost appropriate for signature formulation and index computation and therefore 

for rogue seasonality detection. Index values based on the FT feature varied with the 

rogue seasonality intensity as expected (high consistency) and were effective in 

discriminating rogue seasonalities o f  different intensities (discrimination ability) while 

being stochastically stable. W ithin FT, the option involving use o f  information in all the 

frequency channels was found to be the best. The second option, in which the number o f 

frequency channels used is based on the distribution o f  energy among these channels was 

close to the previous option on all the assessment criteria (for the 80% energy option 

used). With regard to use o f  variables, using only order and inventory variables rather 

than all the available variables did not cause a significant change in the index value. The 

index is therefore robust to choice o f  variables as long as the behaviour o f  these variables 

is not totally inconsistent with the behaviour o f the other variables.

Research question 2

Can the signature and index identified from the linear supply chain be applied to a 

non-linear supply chain with backlogs and batching? Is the best feature and 

appropriate variables for detecting rogue seasonality in this non-linear system the 

same as in the linear system?

This question is aimed at assessing the validity o f  the findings obtained from RQ 1 on a 

non-linear supply chain with backlogs and batching. This question has been addressed in 

Chapter 5.

The system used for answering this question not only used backlogs and batching but also 

had a greater number o f  echelons (four) and a greater number o f  variables, including the 

shipment variable. Configurations with different levels o f  batching and backlogs were 

analysed with fill rate going down to 80% in certain cases.

The signature discussed in RQ 1 was assessed on this system and found to be effective, 

though there was a minor difference in the nature o f  the signature compared to that in the 

linear system. W hile all the other variables were clustered together and separate from
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exogenous demand in the linear case, in the present case one variable continued to be 

clustered with the exogenous demand. Though this occurrence is associated with a non­

linear system, it could occur in any multi-echelon system having a large number o f 

variables. To incorporate the above possibility, the rogue seasonality signature definition 

was modified as follows. Rogue seasonality is considered present if  the exogenous 

demand is separately clustered from most rather than all the variables. The value o f  

‘most* would need to be defined which would be on the basis o f  the total available 

system variables as well as the desired sensitivity o f detection.

The index value accurately reflects changes in the rogue seasonality intensity as in the 

case o f  the linear system. However, the index was less consistent in absolute terms which 

can be explained as due to the simultaneous influence o f backlogs and batching in a multi 

echelon system. In terms o f  the features and parameters for index computation, 

amplitudes o f  FT with all frequency channels being used was found to be the most 

appropriate as in the linear case with frequency channels based on 80% energy the second 

best. The correlation between the index values based on alternative index definitions was 

high for most o f  the features and use o f  order and inventory variables gave the same 

overall findings as when all the variables are used. Both these findings are similar to that 

for the linear system. Overall, alm ost all the findings for the linear system are found to be 

valid for the non linear system. In the next question, the validity o f  these findings are 

assessed in empirical contexts.

Research question 3

Can the signature and index be used for detecting rogue seasonality in real supply 

chains? Are the best features and system variables for deriving the signature and 

index the same as found in RQ 1 and RQ 2?

Two empirical rogue seasonality contexts, one in steel and the other in the grocery sector, 

were used to supplement the findings from linear and non-linear simulation. This 

question is answered in Chapter 6.
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The steel case study validated the characteristic presentation o f  rogue seasonality 

observed in the analysis o f  simulated systems, which is, multiple variables oscillating in 

sync with each other at similar frequency/ies, with one or more o f  these oscillation 

frequencies not present in the exogenous demand. The signature, which was derived from 

the amplitudes o f  FT and using all the frequency channels was found to be effective in 

indicating the presence or absence o f  rogue seasonality. Similarly, the index was able to 

discriminate systems with high and low rogue seasonality intensities. However, the 

difference in index value between the systems with high and low rogue seasonality 

intensity was found to be low and much lower than that observed in the case o f  linear and 

non-linear systems. This highlights the need for careful setting o f  thresholds so as to 

categorise systems with different rogue seasonality intensities accurately. The findings on 

the best features and parameters to be used for signature and index, the relationship 

between alternative index definitions and regarding use o f order and inventory variables 

instead o f  all the variables are sim ilar to that for the linear and non-linear systems.

The grocery case study identifies and analyses a different rogue seasonality context than 

that discussed in the simulations and steel case study. Rogue seasonality generation is 

analysed at the SKU level which was done for 4 SKU’s. Rogue seasonality generation 

was observed in only one SKU (SKU 1) and it was generated not in the echelon facing 

exogenous demand as in the case o f  previous simulated systems or systems in the steel 

case study, but further upstream in the manufacturing echelon. While all the echelons 

downstream o f  the manufacturing echelon for this SKU do not show any rogue 

seasonality as they operate on a tim e batching basis, upstream echelons are expected to 

show rogue seasonality as it would be transmitted to them from the manufacturing 

echelon. The definitions o f  signature and index, which assume the presence or absence o f  

rogue seasonality characteristics across the whole system rather than parts o f  the system 

therefore need to be revised. Instead o f  exogenous demand as a fixed reference, the 

reference needs to be flexible so as to be relevant for the different nature and origins o f  

rogue seasonality. For example in the case o f  SKU 1, rather than exogenous demand, a 

more relevant reference for deriving the signature and index is a variable at the 

manufacturing echelon (Dispatch from manufacturing to D C ’s) which is therefore used.
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Three other SKU’s which did not exhibit rogue seasonality were used for comparison 

with the same reference as above, used in each case.

The signature and index with the modified reference were found to be effective in 

discrim inating cases with rogue seasonality (SKU 1) to those without them (SKU 2 TO 

4). However, the difference in the index value between the two cases (SKU 1 and SKU 2 

to 4 individually) was small, which strengthens the need for fixing appropriate thresholds 

as proposed in the case o f the steel analysis also. In terms o f the features and parameters 

to be used for deriving the signature and index, amplitudes o f FT and using all the 

frequency channels as well as those with 80% o f the signal energy were found to be the 

most appropriate as in the case o f  all the previous contexts. The FT based index values 

com puted using alternative index definitions were also found to be highly correlated with 

each other.

The answers to the first three research questions can be summarized as follows:

• The signature based on variable cluster profiles is effective in detecting the 

presence/absence o f  rogue seasonality with the signature derived from the amplitudes 

o f  FT and using all the frequency channels or as many frequency channels that have 

80% o f  the signal energy, both o f  which are similarly effective. The definition o f  the 

signature needs to be flexible, so as to accommodate similar minor inconsistencies as 

seen in RQ 2, that may be found in the real world data. Also, the reference used for 

deriving the signature needs to be based on the nature and origin o f  rogue seasonality 

as seen in RQ 3. Though exogenous demand may still be the most relevance reference 

in a majority o f  cases, it is important to confirm the same at the outset.

• The index was found to be an accurate and robust indicator o f  the rogue seasonality 

intensity in a supply chain with a higher value reflecting a greater intensity. It is 

robust because multiple variables used in its computation make it less susceptible to 

inconsistencies in some variables. The index needs to be computed from amplitudes 

o f  the FT o f  the variables, with similar features being used as discussed for the 

signature above. Also, a similar requirement and caution regarding the reference used 

apply, as for the signature. Among the three index definitions proposed, any o f  them
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could be used for computing the index, as index values based on them were found to 

be strongly correlated with each other when FT features are used. However, since 

index and Alt 1 (based on equations 4.1 and 4.3) make more intuitive sense they 

should be preferred. Finally, specifying threshold/s for the index values so as to 

classify rogue seasonality intensity as high or low is important as this would form the 

basis for management attention. For the simulation system, this was easy as a system 

w ithout rogue seasonality yielded a 0 index value which could be used as a baseline. 

However, in real systems, the difference in index values between systems with low 

rogue seasonality and high rogue seasonality is not very large and therefore the 

process o f  establishing thresholds is quite important.

• Use o f  order and inventory variables instead o f  all the available variables was found to 

not significantly impact the index value. Both the options are relevant. While the 

former is relevant as information on other variables may not be available and 

computation and interpretation is easier, the latter provides stability and robustness to 

the index.

Given this knowledge about detecting rogue seasonality at a technical level, the next task 

is to exploit this knowledge at a managerial level to manage rogue seasonality. This takes 

us to the research question 4.

Research question 4

How can rogue seasonality detection be used in a managerial framework?

Figure 7.1 shows the chart which specifies how rogue seasonality could be managed 

using the index seasonality index. W hile Thornhill and Naim (2006) gave a conceptual 

framework for such an application, this thesis strengthens it by providing a quantitative 

and automated basis. The scenario envisaged in Figure 7.1 is one in which many multi 

echelon supply chains are being managed by a focal company. This is a realistic scenario 

given the many examples o f such centralized monitoring o f supply chains such as C isco’s 

eHub initiative (Grosvenor and Austin, 2001) and initiatives by Eaton Corporation 

(Supply & Demand Chain Executive, February 2006) and Honda (W ard’s Autoworld,
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July 2006) to operate supply chain wide systems for advance warning o f potential 

problems.

Data Pre-processing
• Missing data
• De trend 
•Normalise
• Filter high amplitude common 
frequencies between exogenous 
demand and other variables 
Decide reference for signature/index

No Is index value high?Take no further action 4

Yes

Yes No
Update

Update

^ T s  the causev\  
controllable and the 
«s£ost impact large?*'

Investigate

Effect remedy

Data Collection
• Frequency
• Variables
• Multiple supply /value chains

Data analysis
• Fourier transform with parameters
• Generation of cluster profiles/signature
• Rogue seasonality index computation

Threshold:
Absolute index value (New case)
Index value history and actions (Old case)

Figure 7.1 Flow chart for the practical application o f the rogue seasonality index
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The first step is to decide the supply chains whose rogue seasonality intensity would be 

detected and managed, the information that would be available and used given the nature 

o f  relationship between players in the supply chain and the nature o f  dynamics in the 

supply chains. The last point ensures that the choice o f sampling frequency for system 

variables is appropriate in relation to the dynamics. For example, monthly data was 

adequate in the steel case study analysis while the grocery case study analysis required 

daily data on supply chain variables. Next, the time series information o f  different 

variables is processed so that their profiles could be compared. M ost o f the processing 

steps mentioned have been applied in the steel and grocery case study analyses earlier. 

An important addition is the reference variable to be used for signature and index 

com putation which could be decided on the basis o f an initial sample data analysis.

The time series data o f  variables represented in terms o f the FT feature is used to create 

the rogue seasonality signature and index. Application o f the index requires the 

specification o f  thresholds which could be used to classify rogue seasonality intensities 

appropriately for management action. The following approach is proposed for the same.

A common index threshold could be specified for all newly added supply/value chains 

which is kept low enough to classify relatively more supply chains as having high rogue 

seasonality and investigated. The investigation could involve assessing the cost 

implications o f  rogue seasonality. For example, a supply chain with a high index value, 

could have surplus capacity and/or high flexibility, meaning less adverse cost impact 

from rogue seasonality and therefore not needing management intervention. The second 

aspect o f  assessment could be on the causal factors and the extent to which those could be 

controlled to minimise rogue seasonality. For example, a low level o f  trust among the 

focal com pany and its partners could make changes such as ordering heuristics difficult. 

Once sufficient history o f  index values and related management interventions is 

available, specific maximum thresholds for each supply or value chain could be 

prescribed for regular monitoring and detection o f  significant deviations. Since, the index 

does not carry information on the profiles o f  the variables, the signature may be used to 

com plem ent it wherever required.
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The index is therefore proposed to be used not only for detecting rogue seasonality but 

also for assessing changes in its characteristics over time, akin to statistical process 

control (SPC) in a manufacturing environment. Use o f multiple variables in the index’s 

computation reduces its variability and therefore makes it easier to specify robust 

thresholds. Once an instance o f  high rogue seasonality is detected, actions such as those 

proposed by Kim and Springer (2008) could be effected. This would mean either 

decreasing the supply lead times (Tp) and/or increase the time to adjust inventory (Ti) 

and/or reduce the time to adjust WIP (Tw) all o f  which reduce the propensity o f  strong 

cyclicality. Since, these prescriptions are based on a dyadic setting, an alternative and 

better approach would be to work with the entities in the problem supply chain and 

design specific policies to reduce rogue seasonality.

7.3 R esearch  con tribu tions

This research investigated the generation o f  rogue seasonality in different contexts and 

defined the decision elements to detect and manage it. The detection process involved 

clustering o f  time series data o f  variables represented in alternative domains. The major 

contributions o f  this thesis are in the following areas.

U nderstand ing  o f rogue seasonality : Rogue seasonality has not been treated separately 

from the Bullwhip effect in m ost studies (Forrester, 1961; Miragliotta, 2006) and the few 

studies that have done so, have not investigated it comprehensively. For example, Kim 

and Springer’s (2008) study used only a dyadic structure, did not consider the impact o f 

forecasting policies, analysed the dynam ics o f  only two variables (inventory and pipeline 

stock) and used an inappropriate definition o f  rogue seasonality based on frequency and 

which was also subjective. The other study on rogue seasonality by Thornhill and Naim 

(2006) is empirically oriented but similarly limited in terms o f analysis.

This thesis carries out a comprehensive and rigourous investigation o f  rogue seasonality. 

Studies o f  this nature have been done on the Bullwhip effect but not on rogue seasonality. 

The study provides understanding about the impact o f different demand processes and 

param eters, delays, order o f  delays, control policies, linear and non-linear structures and
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batching on generation o f  rogue seasonality. Empirical contexts, which were o f the multi 

echelon kind, were also analyzed from the perspective o f  rogue seasonality. There are 

very few empirical supply chain studies based on multi echelon structures so this study 

contributes to the same while also providing insights about the causes and characteristic 

presentation o f  rogue seasonality from a practical perspective.

R ogue seasonality  m anagem ent by the  sense and  respond app ro ach : Only a few 

studies in supply chain management have explored the application o f the sense and 

respond approach, despite its utility (for managing disturbances) being highlighted by 

many researchers and it being successfully applied in various other disciplines. This study 

does so for the rogue seasonality context. All the decision elements pertaining to the 

application o f  the sense and respond approach are determined in the thesis which include 

the signature and index for indicating the presence/absence and intensity o f  rogue 

seasonality, the system variables and the time series transformation to be used (among 

various alternatives) and the process based on using this information to manage rogue 

seasonality. A comprehensive analysis was used for determination o f  these decision 

elements unlike recent related studies such as by Thornhill and Naim (2006) whose 

findings on identification o f  rogue seasonality are based on a single case study, a single 

technique for detection and a subjective detection process.

The thesis has also contributed in respect o f  the decision elements as follows.

M easure  o f rogue seasonality: Unlike the Bullwhip effect for which multiple measures 

have been proposed, there is no measure for rogue seasonality. This thesis has proposed 

an index, which indicates the intensity o f  rogue seasonality in a multi echelon structure 

and could be used to identify problem atic supply chains in practical settings. A 

comparison o f the normalized profiles o f variables is associated with the index 

computation i.e. the amplification in the variables is eliminated, which means that the 

index gives an assessment o f  rogue seasonality in a supply chain system which is 

independent o f  Bullwhip.

T im e series tran sfo rm a tio n  techniques (and features) evaluated : Time series 

clustering studies in the literature (across domains) have generally evaluated one/few 

transformation techniques (and features) and used non contextual simulated data or data
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on stock prices for the same. The findings from these studies are therefore, less valid for 

the supply chain context as the appropriate features for time series clustering are domain 

specific. All the techniques (and features) for time series clustering which were assessed 

in previous studies individually, w ere used in the evaluation and include time, Fourier 

(FT), discrete wavelet (DWT), autocorrelation function (ACF), cross correlation function 

(CCF) and autoregressive model (AR model). Also, supply chain contextual data, both 

simulated and empirical, was used in the evaluation. The contribution o f the thesis is 

therefore in establishing the best technique (and feature) for clustering time series data 

from the supply chain domain including for rogue seasonality. FT feature was identified 

as that best technique, which, though sim ilar to the finding in Thornhill and Naim (2006), 

was determined on the basis o f  a rigourous evaluation process involving a greater number 

o f  alternative techniques and different rogue seasonality contexts.

The thesis has also made a minor contribution in terms o f  the Excel-VBA-Matlab process 

used for carrying out the large scale simulation which the author has not come across. 

This process was used in the simulation analysis o f both linear as well as non-linear 

systems. Another minor contribution relates to the frequency response based analysis o f 

the Beer game system in the thesis w hich has not been considered in the past.

7.4 Limitations of the research and suggestions for further study

Though this thesis carried out a comprehensive investigation on rogue seasonality 

generation and its detection, it still has a few limitations which are summarised below.

a) Supply networks were not considered in the analysis except for the grocery case study, 

with most o f the analysis being based on supply chains. Though networks can be 

treated as combinations o f  supply chains, the dynamics could change in case o f 

interference between parallel chains. An important question is whether the signature 

and index would be valid for network structures and, if  not, what modifications are 

required for various network configurations.

b) The index based identification o f  the problematic supply chain is useful. However, it 

would be more useful if  the primary culprit (echelon) responsible for the high rogue
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seasonality intensity is also identified at the same time. Computing the index values at 

select points along the supply chain/network could probably be used for the same.

c) This study proposed a flowchart for managing rogue seasonality on the basis o f  

detecting it using the index. This flowchart needs to be tested and validated in an 

empirical setting with the same applying to the index as well.

d) Finally in terms o f techniques, though all the contemporary techniques and which 

could be easily interpreted from a management perspective were tried, use o f  new 

techniques such as Support Vector Machines could be explored in order to improve 

the detection performance especially in more complex systems.
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Appendix A
Block diagram and difference equations for a single echelon APIOBPCS system (John et al., 1994)

Causal loop diagram of the APIOBPCS system given in Figure 3.2 is converted into an equivalent block diagram 
representation, a common approach in control theory (Nise, 1995) which clearly identifies the stock and flow structure. 
Difference equations are developed from this structure which are transferred to a Microsoft Excel spreadsheet for generation 
o f the time series profiles o f variables. Though the equations described here are for a single echelon, these can be coupled 
together to simulate multi echelon systems by making the ORATE of the downstream echelon equal to the demand signal of 
the upstream echelon. While the APIOBPCS model defined below is for the production echelon, it is valid for distribution 
echelons such as wholesaler, distributor also by appropriate modification o f terms used (WIP in the distribution context refers 
to orders in the pipeline i.e. orders placed but against which goods have not yet been received, COMRATE refers to the rate 
at which orders get completed i.e. goods are received, Tp refers to the delay or lead time between placing orders and receiving 
goods).

T.

CONSAVCONS
ForecastDINV

AINVORATEEINV COMRATE
Production

WIP

EWIP
DWIP

Forecast: AVCONS (t) = AVCONS (t -1 ) + a  [CONS (t) -  AVCONS (t -1)] (A. 1)
where; a  = 1/ (1+ Ta/A t), CONS (t) is the demand at time t, and for 
a linear, time invariant system is a surrogate for sales, Ta is the time 
to average demand, A t is our simulation time increment set at 1

Production Order Rate: ORATE (t) = AVCONS (t) + [EINV (t -1 )  / TJ + [EWIP (t -1 ) / Tw] (A.2)
where; Tj is the time to adjust inventory and Tw the time to adjust 
work in process or WIP

Work in process level: WIP (t) = WIP (t-1) + ORATE (t) -  COMRATE (t-1) (A.3)

Completion Rate/Receipts into inventory rate: COMRATE (t) = WIP (t) / Tp -  First order lag (A.4a)
COMRATE (t) = ORATE (t +TP) -  Pure delay lag (A.4b)
where Tp is the actual production lead time

Actual Inventory level: AINV (t) = AINV (t-1) + COMRATE (t) -  CONS (t) (A.5)

Error in Inventory: EINV (t) = DINV -  AINV (t) (A.6)
where DINV is the desired or target inventory level (assumed constant)

Error in Work in Process or EWIP: EW IPJt) = DWIP (t) -  WIP (t) (A.7a)
where; DWIP (t) = Tp * AVCONS (t); (A.7b)
T'p is the estimated production lead time

Parameters suggested for good dynamic performance (John et al., 1994)
Tj (time to adjust inventory) = Tp
Ta (time to average demand) = 2*TP
_TW (time to adjust work in progress or WIP) = 2*TP
Tp (Estimated delay or production lead time) = Tp

(A.8)
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Appendix B

T ra n s fe r  functions fo r single echelon A PIO B PC S (hybrid  M TO -M TS), m ake to o rd e r 
(M TO ) and  m ake to stock (M TS) systems

APIOBPCS system: Obtainedfrom block diagram in Appendix A

A[CONS  = — !— —  (B .l)  DWIP = Tp (AVCONS) — (B.2) AINV  = - {COMRATE -  CONS ) —  (B.3) 
CONS \ + Ta s s

EWIP = D W IP -  WIP —  (B.4)

COMRATE = ___1___(0rder i)  0 r =  e 'Tps (for order infinity) » ( ,V  - 6(j7>> + 12 (2nd order Pade’s approx.) — (B.5)
(sTp )2 + 6 (sTp ) + 12 (Nise, 1995)ORATE 1 + Tp s

1 FWIP F1NVWIP = - {ORATE-COM RATE)-(B .6) EINV = DINV -  AINV - (B.7) ORATE = AVCONS + + (B.8)
5 Tw T'i

M T O  systetxt: Parameter values Ta = 0 , T- = oo, Tw = oo substituted into Equations 1 to 8 and solved

O rder of delay 1

ORATE _ AVCONS 

CONS CONS
= 1--------(B.9)

DWIP

CONS
= 7\ (B.10) AINV EINV _  W7P

CONS CONS CONS
(B.l 1)

COMRATE

CONS (1 + Tp s)
( B .l2)

CONS (1 + Tp s)
(B.13)

EWIP _ TpS

CONS (1 + Tp s)
(B.14)

O rder of delay infinity

Equations (9), (10) and (11) are the same as in above

COMRATE =  ( \2 -6 T p s + TpS2 ) _ EINV =  127*p

COWS (12 + 6Tp s + T 2s 2 ) CONS 2 2(12 + 6TpS + T p S  )

—3 2 ,~2
FW7P * J + 6/ s

-- (B .l 6) ——— - =  P P — (B .l 71
CONS (\2 + 6Tp s + TpS2 )

M T S system : Parameter values Ta =<x>,Ti = T ^ , T w = oo substituted into Equations 1 to 8 and solved. 

O rder of delay 1

AVCONS DWIP q   E W  ^ ORATE ___ B J9 EWIP_ _ _ J V I f_ .  (B 20)
CONS CONS CONS CONS P CONS CONS ~ CONS

ORATE  (B.21) COMRATE = L_    __(B2J)
CONS (1 + 7 -ds + t I s2 ) c o n s  (l + Tp s  +  J(l + Tp s + T2s 2 )

O rder of delay infinity

Equations (18), (19) and (20) are the same as in above

ORATE (\2 + 6Tp s + TpS2 )  ( B 24) COMRATE ( 1 2 - 6Tp s +  T 2s 2 )  (B .25)

CONS (\2 + 6TDs + 7T2s 2 + T 3s3 ) CONS (12 + 6Tp s + 7F2*2 + T3s 3 )

WIP 127\,
= ----------------------1 ------------------ — (B.26)

CONS (\2  + 6TDs + 7 T l s 2 + T l s 3 )
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Appendix C

Theoretical spectral density plots for different AR and MA time series processes

Spectral density for an MA (q) process defined by X,= et - 0i£ t-i - 02  ̂t-2............0q£ t-q can be analytically
derived and represented as

Spectral density- px( f  ) = (a t2 /  2n)((l + 0,2 + 022 +------- 0q3 )+(-0, +0,02+0203-+-----0q_,0q)2cos,1+ ... ^
( - 0 2  +0t0} + 0204 +-------- 0q_2Oq)2cos2A +------------(-0q~i + 0t0 ,)2cos(q-l)X )

Spectral density at a particular frequency is proportional to the square o f  the amplitude at that frequency
A = 2 k/ where f -  frequency
0 * = Variance o f the white noise process

0/, 02  6  q are the parameters o f  the MA process
For MA (1) process /> ,( /)  = (1 + 0 2 - 2 0 c o s 2 7f) (cr ,2 / 2 n ) ----------- (C.2)

For M A (2) process /> ,( / )  = (1 + 0 ,2 + 0 22 + ( - 0 ,  + 0 ,0 2)2cosA  - ( 0 2)2cos2A )(a , 2 1 I n )  (C .3 )

Since any MA (q) process can be equivalently represented in terms of an AR (p) process, the spectral density 
for the latter can be derived. An AR (p) is represented by X , -  e , + piX,.j + P2X ,.2 + —  PpX,.p where p’s are 
the parameters of the AR model.

For AR (1) process p x( f )  = ( l /( l  + p 2 -2 p c o s2 ))(< r e2 ! 2 n ) ---------(C.4)

For AR (2) process p x( / )  = (1 /((l + p  2 + p22) - 2 P l ( \ -  p 2)co s2 n f - 2 p 2 cos4;/))(cre2 12n) (C .5 )
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Appendix D

M atlab code for different time series transform ations and use o f relevant features** for 
com putation* of the rogue seasonality index

Raw tim e and  F ourier transfo rm  (FT)

% Input required at command window is Allfiles = {'Filel.xls'; 'File2.xls';..}
q= 1;
num = 1;
while num <= size(AUfiles,l)
A = Allfiles{num,l};
% A is the name of the workbook 
[type,sheets] = xlsfinfo(A);
% k is number of sheets in the workbook A 

k =1;
while k <= size(sheets,2)

B = xlsread(A,k);
B( 1:24,:)=[];
E = zscore(B);
[NR NC] = size(E); 
data = E; 
clusteval 
F = abs(fft(E»; 
red = ((NR-2)/2)+ 3;
F(red:end,:)=[]; 
data = F; 
clusteval 
G = F(l:8,:); 
data = G; 
clusteval 
H = F(l:29,:); 
data = H; 
clusteval 
I = F.A2;
L = I./repmat(sum(I),size(I,l),l);
M = flipdim(sortrows(L,l),l);
N = cumsum (M);
cutoff = min(find(N (:,1)> 0.8));
P = flipdim(sortrows(F,l),l); 
data = P(l:cutoff,:); 
clusteval
clear B E F G H I L M N P  data clustereval j NR NC red ; 
k = k+1; 

end
clear A k; 

num = num + 1; 
end

* For multiple sheets in multiple Excel workbooks 
** Different param eters fo r  each feature as p er  Table 4.3
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Appendix D continued

Autoregressive model (AR Model)

% Input reqd at command window is Allfiles = {'Filel.xls'; 'File2.xls';..}
userentry = input('Input AR orders to be considered with gaps between the numbers 's');
q= 1
orders = str2num(user_entiy); 
maxorder = max(orders,[],2); 
fornum files= l:size(Allfiles,l) 

filenme = Allfiles{numfiles,l};
[type,sheets] = xlsfmfo(filenme);
% i is number of sheets in the workbook A 
for i = 1 :size(sheets,2)

sheeti = x!sread(fi!enme,i); 
sheeti( 1:24,:)=[]; 
normsheeti = zscore(sheeti);
[NR NC] = size(normsheeti); 
forj = l:size(orders,2) 

ord = orders(j); 
for k = 1 :NC

[a(k,:) e(k)]= aryule(normsheeti(:,k),ord);
AIC (k)= (NR*log(e(k)))+2*ord; 

end
a(:,l)= []; 
a = -a; 
data = a'; 
clusteval 
clear a e k AIC; 

end

for m = 1: maxorder 
for n = 1:NC

[a(n,:) e(n)]= aryule(normsheeti(:,n),m);
AIC (m,n)= (NR*log(e(n)))+2*m; 
clear a e; 

end 
end
[c colindx] = min(AIC); 
optorder = max(colindx); 
for o = 1:NC

a(o,:)= aryuIe(normsheeti(:,o),optorder); 
end
a(:,l)= []; 
a = -a; 
data = a'; 
clusteval
clear a c o m n j colindx optorder AIC sheeti normsheeti NR NC ord ; 

end 
end
clear numfiles orders maxorder user entry;
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Appendix D continued

Autocorrelation function (ACF) and Cross correlation function (CCF)

% Input reqd at command window is Allfiles = {'Filel.xls'; 'File2.xls';..} 
user_entry = input('Input acf or ccf as required ', ’s'); 
choice = userentry;
user entry = input('Input lags to be considered with gaps between the numbers ',': 
lags = str2num(user_entry);
q= i;
fornum files= l:size(Allfiles,l) 

filenme = Allfiles{numfiles,l};
[type,sheets] = xlsfmfo( filenme);
% i is number of sheets in the workbook A 
for i = 1 :size(sheets,2)

sheeti = xlsread(filenme,i);
sheeti( 1:24,:)=[];
sheeti = zscore( sheeti);
[NR NC] = size(sheeti); 
for j = l:size(lags,2) 

lag = lags(j);
acfccf = xcov(sheeti,lag,'coeff); 
acf = acfccf(:, 1 :(NC+1 ):NCA2);
acf(l:lag+l,:)*[];
[ccfsim maxwtlag] = max(abs(acfccf)); 
ccfsim = reshape(ccfsim,NC,NC)'; 
ccfdesim = 1 - ccfsim; 
ccfdesim (abs(ccfdesim)<0.0001)= 0; 
maxwtlag = reshape((maxwtlag-(lag+l)),NC,NC)'; 
switch choice 

case 'acf 
data = acf; 
clusteval 

case 'ccf
AA = ccfdesim; 
clustevalccf

end
clear acfccf acf ccfsim maxwtlag ccfdesim lag j ; 

end
clear sheeti NR NC i ; 

end
clear filenme type sheets; 

end
clear A llfiles user entry choice;



Appendix D continued

D iscrete w avelet transfo rm  (DW T) -  H aa r

% Input reqd at command window is Allfiles = {'Filel.xls'; 'File2.xls';..} 
user_entry = input('Input type of wavelet to consider 's'); 
wvlet = userentry;
user entry = input('Input different levels to be considered with gaps; 0 for min shannon basis 's'); 
choices = str2num(user_entry); 
dwtmode('zpd'); 
q = 1;
for numfiles= l:size(Allfiles,l) 

filenme = Allfiles{numfiles,l};
[type,sheets] = xlsfmfo(filenme);
% i is number of sheets in the workbook A 
for i = 1 :size(sheets,2)

sheeti = xlsread(filenme,i); 
sheeti( 1:24,:)=[]; 
sheeti = zscore(sheeti);
[NR_o NC] = size(sheeti); 
sheeti(NR_o+1:2Anextpow2(NR_o),:)=0;
NR_n = size(sheeti,l); 
for j = l:size(choices,2) 

choice = choices(j); 
if choice ~= 0 

for k = 1 :NC
[C L] = wavedec(sheeti(:,k),choice,wvlet);
A (:,k) = appcoef(C,L,wvlet,choice); 

end
data = A; 
clusteval
clear k C L choice A; 

else
for n = 1 :NC

entlow er = wentropy(sheeti(:,n),'shannon'); 
for m = 1 :wmaxlev(NR_n,wvlet)

[C L] = wavedec(sheeti(:,n),m,wvlet); 
enthigher = wentropy(C,'shannon'); 
clear C L;
if ent higher > ent lower 

Min_ent(n)= m-1; 
break 

else
ent lower = ent higher; 

end 
end
clear m ent higher ent lower; 

end
if min(Min_ent)= 0
common_ent = round(median(Min_ent));
else
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com monent = min(Minent); 
end
for p = 1 :NC

[C L] -  wavedec(sheeti(:,p),common_ent, wvlet); 
A (:,p) = appcoef(C,L,wvlet,common_ent); 

end
data = A; 
clusteval
clear p C L A common ent; 

end
clearj ; 

end
clear sheeti i NR_o NR_n NC ; 

end
clear filenme type sheets; 

end
clear Allfiles user entry choices wvlet numfiles;

Rogue seasonality index computationA (Clusteval)

AA = squareform(pdist(data'));
A A (AA==0)=0.000000001;
BA = AA;
BA (1,:)=[];
BA(:,1M];
XA = m ean(BA (find(triu(BA,l))));
ZA = std(BA(fmd(triu(BA, 1))));
A It A = min(AA( 1,2:end))/XA ;'
AltB = mean(AA( 1,2:end))/XA ;
AltC = (min(AA( 1,2:end))- XA)/ZA ; 
evaltotal(q,:) = ([AltA, AltB, AltC]); 
q = q+l; q
clear data AA BA XA ZA AltA AltB AltC ;

A Same fo r  all except cross correlation function (CCF) fo r  which f irs t line o f  the code is rem oved
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Appendix E

A verage and  coefficient of varia tion  of rogue seasonality index values fo r a 3 echelon M TS system 
based on d ifferen t fea tu re  p a ram e te r  com binations; All variables used in the index com putation

D em and Process: M A (1)
Based on 100 replications for each

Order of 
Delay

MA (1)
Demand
Parameters

Raw
Time

FT
Total

FT 7 FT 28 FT 80V, 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 5)

DWT Haar 
(Level 

Shannon)

De
lay

 
(T

p) 
= 

3

ORDER 1

Theta -  0.7 Average
SD/Avg

064
002

1.42
007

1.31
009

1.56
009

1.22
0.09

1 08 
0 19

1.07
019

1.08
0.19

1 44
0.11

093
0.10

1.87
008

1 89
009

044
0.11

050
011

Theta -  0.4 Average
SD/Avg

072
001

2 18 
0.06

091
021

2 38 
0.08

223
0.08

0 98 
0 24

096
023

098 
0 24

2 80
0.11

1 58 
0 10

355
008

361
008

047
009

055
0.08

Theta « -0.2 Average
SD/Avg

074
001

2 56 
005

026
034

207
010

248
006

1 05 
034

1.01 
0 32

1 05 
0.33

3 62 
0.11

1 82 
0.12

489
008

5 02 
008

0 35 
0.12

0 52 
0.19

ORDER
INFINITY

Theta « 0.7 Average
SD/Avg

0.77
003

2 32 
0 10

0 17 
051

037
0.15

220
0.14

1 08 
0 18

095
0.18

0.96
0.19

425 
0 19

1 94
020

2 74 
0.14

3.70 
0 16

049
0.14

0 63 
0 03

Theta » 0.4 Average
SD/Avg

0 83
001

296
008

0 35 
039

035
0.19

334
0.12

094 
0 19

0 83 
020

084
021

6 42 
0 18

2 56 
0.19

3 87 
013

5 24 
015

048
015

066
006

Theta »-0.2 Average
SD/Avg

084
002

305
008

0.13
062

0.41
0.24

299
009

099
028

0 87 
0.34

0.89
034

6.41
0.19

264
0.20

3 53 
0.13

523 
0 13

0.44
017

067
0.10

De
lay

 
(T

p) 
= 

7

ORDER 1

Theta -  0.7 Average
SD/Avg

0.74 
0 03

1 89 
0 10

2.20
0.13

237
0.13

1.82
0.12

1 97 
032

1.93
0.28

200
0.31

223
0.18

1.24
0.18

2 19 
0 12

281
0.14

0.51
0.12

0.55
007

Theta -  0.4 Average
SD/Avg

087
001

302
0.09

249
0.17

341
0.10

3.46
0.12

1 88
0 32

1.77
0.29

1.87
032

592
0.19

2 36 
018

4.02
0.11

6.17
014

0.59 
0 09

066
0.08

Theta -  -0.2 Average
SD/Avg

090
001

3.31
0.08

1.67
0.27

3.07
009

3.25
0.08

203
0.51

1.90
0.45

203
0,52

8.40
0.19

266
0.17

446
0.09

7.69
0.12

0.51
009

066
0.17

ORDER
INFINITY

Theta -  0.7 Average
SD/Avg

0 79 
003

2.40
0.12

038
0.41

3.04
0.14

2.49
0.14

2.07
0.25

1.57 
0 19

157
019

5.17
021

241
024

240
0.17

3.44
0.18

052
0.11

0.63
0.04

Theta -  0.4 Average
SD/Avg

0 89
001

344
011

020
040

3.41
0.13

4.27
0.16

1 81 
028

1.43
027

1.44
028

1670
0.21

3.99
025

364
0 16

5.75
0.17

0 47 
0.13

069
0.06

Theta -  -0.2 Average
SD/Avg

091
001

358
0.11

0 26 
0 48

2.90
0.13

3 59 
0.11

1 98 
043

1.78
043

1 86 
046

30 44
020

4.31
026

370
0.15

6.07
0.16

046
014

0.70
0.15

De
lay

 
(T

p) 
= 

14

ORDER 1

Theta ■ 0.7 Average
SQ/Avg

083
003

244
0.13

2.77
020

285 
0 15

2.74
0.17

294
022

280
0.18

296
020

421 
0 25

230
0.26

2.27
013

399
0.19

0 58 
0.08

0.63
0.07

Theta -  0.4 Average
SD/Avg

095 
0 02

361
0 12

375 
0 18

336
0.12

4.81
017

273
026

257
025

2.71
026

11.77
025

426
025

345
011

7 78 
0.17

064
006

0.73
007

Theta -  -0.2 Average
SD/Avg

0 98 
0.01

377
0.11

354 
0 17

2 94 
011

3.77
0.12

3 62 
0.55

309
045

3 46 
0.53

1672 
0 25

4.76
0.25

357
0.10

8 87 
016

060
0.06

0.74
0.16

ORDER
INFINITY

Theta -  0.7 Average
SD/Avg

084
0.03

288
0.17

1 64 
0.41

325
0.17

349
0.20

2 83 
0 18

231
0.15

2 33 
0.15

7.50
0.31

4 41
0.31

2.21 
0 19

4.01
024

060
0.11

0.67
0.04

Theta -  0.4 Average
SD/Avg

094
001

3 97 
0.16

1 26 
0 48

345 
0 16

562
0.24

257
025

2.16
025

2.18 
0 25

24 12
031

769
032

301
0.16

6 13 
022

061
013

0.73
0.07

Theta -  -0.2 Average
SD/Avg

0 97 
0.01

4 05 
0.15

0 89 
0 54

302
0.15

4.10
0.15

3.10
047

259 
0 39

271
042

39.87
032

835 
0 33

304
015

631
020

0.57
0.13

0.74
0.16

D em and Process: G aussian  random
Based on 100 replications for each

Order of 
Delay

Raw
Time

FT Total FT 7 FT 28 FT 8054 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level S)

DWT Haar 
(Level 

Shannon)

C1 II
ORDER 1 Average

SD/Avg
0 75
001

260
005

02 3
050

2 29 
0.10

262
0 0 6

1 04
034

1 00 
033

1 03 
034

3 68 
0.11

1 87 
0.11

518
006

5.31
00 6

0 39 
0.11

0 52 
0,17

(0 ll

Q  H ORDER Average 0 85 3.14 025 0 59] 3 19 0 94 0 82 0 84| 674 269 388 5.72] 0 46 0 65

INFINITY SD/Avg 001 008 05 3 0.16| 0.09 025 0 29 0 29|I 020 012 0.13|| 0.14 0.11

s r  n
ORDER 1 IlAverage 

ISD/Avg | q| ooe | I q 1 821 
| 0 3S|

1.931 
1 0.42|■ a I 8.16] 

I 0.12|
| 054] 
| 0 09|

[ 0 65 
0 15

JTJ ll

Q  H ORDER Average 092 366 024 3 08 3.81 1 921 1.69! 1.72 28 49] 434 392 642 | 0.46] 068

INFINITY SD/Avg 0.01 011 044 0.13| 0.12 0 39| | 0.43 0 20 026 0.15 0.16 0.14] 0.15

>» *"
ORDER 1 Average

SD/Avg I q 3.84]
I 0.11

I 3.67] 
I 0.17|

3.55 
I 0.55

I 1627] 
I 0.25|

I 476
0.25

3.77
0.10

I 9 25 
0.16

0.72
0.15

2S ii
© -~- 
Q  “ ■ ORDER Average 0.97 4 13 096 3.15 4 3 9 3 43] 2.77 2 89 37 75 838 | 3.16 6.57 058 0.72

INFINITY SD/Avg 0 01 015 0.55 0.15 0 16 0 54 043 046 0 32 0.33 015 0.20 0.13 0.15

2 2 1



Appendix E continued

Demand Process: AR (2)
Based on 100 replications tor each

Order of 
Delay

AR (2) Demand 
Parameters

Raw
Time

FT
Total

FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haai 
(Level 5)

DWT Haar 
(Level 

Shannon)

De
lay

 
(T

p) 
= 

3 ORDER 1
Rho1«0,1 Rho2“-0.8 Average

SD/Avg
0.70
001

1 26 
0.09

1 28 
0.11

160
0.10

0 80 
0.15

084
025

082
0.24

0.84
0.25

1.31
0.15

093
012

2 06 
009

2 08 
0.09

0.43
0.11

0 50 
0.18

Rho1-0.7 Rho2--0.2 Average
SD/Avg

0.69
0.02

224
006

0.26 
0 30

1 47 
0.13

1 94
007

1.14
0.41

1.08
0.39

1.13
0.40

3 14 
0.13

1 60 
0.13

329 
0 08

340 
0 09

025
0.17

052
0.16

ORDER
INFINITY

Rho1-0.1 Rho2--0.8 Average
SD/Avg

0.79
002

230
010

0.14
051

0.39
0.13

2.18 
0 15

0.93
0.21

083 
0 24

084
025

431
018

2.14
018

2.92 
0 13

3 89 
0 15

0.46
0.16

0.60
0.11

Rho1-0.7 Rho2»-0.2 Average
SD/Avg

0.61
0.03

268 
0 09

0 74 
026

0 52 
0.25

2 44
0.10

097
0.31

0.77
034

079
035

528
0.20

2 47 
0.20

2 62 
0.14

3 94 
0.14

0 55 
021

0.67
007

De
lay

 
(T

p) 
= 

7 ORDER 1

Rho1**0.1 Rho2“-0.8 Average
SD/Avg

082
002

205 
0 11

242
0.13

2.71
0.13

1.71
0.18

1 22 
025

1 19 
0 24

1.21
025

307
0.21

1.66
0.19

269
012

360
0.15

054 
0 11

0.57
0.09

Rho 1«0.7 Rho2“-0.2 Average
SD/Avg

0.87
002

300
008

1 15 
036

2 57 
0.09

275
0.08

1.35 
0 38

1 26 
0 38

1 30 
039

829
0.18

2.53
0.17

344
0 10

6.11 
0 12

044
0 10

0.68
0.14

ORDER
INFINITY

Rho1-0.1 Rho2“-0.8 Average
SD/Avg

0 85 
0 02

2 63 
0 12

026 
0 51

3 18 
0.14

2.75
0.18

1 33 
024

1.19
027

1 20 
0.27

746
023

3 10 
024

2 82 
0.17

4.11 
0 18

050
0.12

CM 
O

)
<o 

O
 

o 
d

Rho1-0.7 Rho2"-0.2 Average
SD/Avg

090 
0 02

329
0.11

046
026

2 49 
0.13

3.11
0.11

1 04 
0 34

096
034

0 98
034

32 66 
0.20

4.14
026

3 11 
0 15

508 
0 17

046
012

073
0.10

De
lay

 
(T

p) 
= 

14 ORDER 1
Rho1-0.1 Rho2»-0.8 Average

SD/Avg
090
002

274
0.14

320  
0 19

3.14 
0 13

2 94 
0.19

1 65 
0.29

1 62 
0 28

1 65 
0.28

627
026

321
0.26

266 
0 12

5 16 
0.19

0.61
0.07

064
008

Rho1»0.7Rho2»-0.2 Average
SD/Avg

0.97
0.01

3.48
0.11

3.21 
0 17

2.59
0.11

3 30 
0.12

1.24
0.31

1.19
031

1.19 
0 32

16,87
025

465
025

302
010

766
0.16

0 57 
008

078
0.12

ORDER
INFINITY

Rho1«0.1 Rho2«-0.8 Average
SD/Avg

0.90
002

3.18
0.17

1 49 
043

3 39 
0.17

388
0.21

1 63 
0.22

1 55 
0.23

1 56 
0.23

11 26 
0.31

583
031

248
0.18

4.71
0.24

061
0.12

065
0.12

Rho1«0.7 Rho2«-0.2 Average
SD/Avg

0.96
002

3.79
0.15

0.80
0.47

272
016

365
0.15

1.00
0.29

0.96
0.27

094
0.29

4225
0.32

8 13 
033

2 70 
0 15

5.61
020

055 
0 14

0 79 
010

Demand Process: MA (2)
B ased  on 100 replications for each

Order of 
Delay

MA (2) Demand Parameters Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haaf 
(Level 5)

DWT Haai 
(Level

De
lay

 
(T

p) 
■ 

3 ORDER 1

Theta1»0.7 Theta2--0.2 Average
SD/Avg

066
002

1.83
007

1.26
0.14

223
0.08

1 67 
0.11

1 05 
0.17

1.05
0.17

1.05
0.17

2 18 
0.12

1.31
0.10

2 39 
0 10

2 42 
0.10

0.49
0.09

053
006

Theta1-0.1 Theta2»-0.8 Average
SD/Avg

0.73
0.01

300 
0 05

024
0.43

2 i i  
0.12

3 05 
0.07

1.12
0.27

1.05
0 24

1 05 
024

465
0.12

i . i i  
0 12

5 72 
008

5 89 
008

033 
0 12

046
0.14

ORDER
INFINITY

Theta 1-0.7 The»2--0.2 Average
SO/Avg

077 
0 02

2 57 
0.09

0.11 
0 58

038
014

2 84
0.13

099 
0 16

0 90 
0.16

091
0.17

475
0.18

2.17 
0 19

2 87 
0 14

387 
0 16

0.44
0.15

063
0.03

Theta 1-0.1 Theta2»-0.8 Average
SD/Avg

0.81 
0 02

3.13
0.06

0 15 
075

037
0.23

3.13 
0 09

096
020

0 89
021

089
020

6.13 
0 19

269
020

3.41
0.13

502
0.14

041
0.18

0.61
006

De
lay

 
(T

p) 
= 

7 ORDER 1

Theta 1-0.7 Theta 2--0.2 Average
SD/Avg

081
002

2 74 
0 10

2 65 
0 16

3 34 
0.11

3.28
0.13

1 80 
028

1.74
026

1.80 
0 28

4 95
0 19

2 15 
0 18

3 32 
0 12

4 85
0 15

060
0.10

065
006

Th*ta1-0.1 Theta2--0.8 Average
SD/Avg

0 89 
0.01

4.57
008

1 49
0 30

302
0.09

3.57 
0 08

1.77
0.25

1.64
0.24

1.65
0.25

10 09 
0 19

2 86
0.17

4 33 
0.10

7 80 
0.12

049 
0 09

060
0.13

ORDER
INFINITY

Theta 1-0 7 Theta2--0.2 Average
SD/Avg

0.85
0.02

3 18 
0.11

021
0.55

344
0.13

446
0.14

1.77
024

1.43
0.21

1.44
0.21

1227
021

363
025

3 19 
0.17

4 90 
0.18

048
0.13

068
0.03

Theta 1-0.1 Theta 2--0.8 Average
SD/Avg

0.91
0.02

370
0.11

034
043

279
013

3 76 
0 11

1 64
022

1 46 
023

1 46
022

3925 
0 21

4.44
026

3 56 
0 16

5 90 
0.17

046
0.13

063
0.15

De
lay

 
(T

p) 
= 

14 ORDER 1

Thetal-0.7 Theta2--0.2 Average
SD/Avg

0.91
002

3.40 
0 13

3.70
0.18

343 
0 12

524
0.18

2 57 
020

2 46 
0.17

2 57 
0.18

994
025

398
025

308 
0 12

666 
0 19

0.65
0.06

072
0.05

Theta 1-0.1 Theta 2--0.8 Average
SD/Avg

098
001

391
0.11

352 
0 17

287
011

394
012

2 39 
023

2 23 
026

2 22 
0.24

1954
025

5.01
0.25

343
0.11

8 83 
0.16

0.60
007

067
0.14

ORDER
INFINITY

Theta 1-0.7 Theta 2--0.2 Average
SD/Avg

0.91
002

3 79 
0 16

1.39
045

355 
0 16

663
021

2 39 
0.18

2 02 
0.17

2.03
0.17

1932
031

7 18 
0.31

2 79 
0.17

5.57
0.23

061
0.12

0 72 
0.04

Theta 1-0.1 Theta2--0.8 Average
SD/Avg

096
0.01

4.14
0.15

084
051

2.93 
0 15

422
0.15

2 06 
0.21

1 87 
0.23

"  i i s  
0.22

50.09
0.33

861
033

2 94
0.15

6.17
0.21

0.57
0.13

“  6 .Vo
0.11

SD; Standard Deviation, Avg: Average, Coefficient o f  variation : SD / Avg
Raw Tim* Based on data  In the  time domain
FT Total, FT 7. FT 28 B ased on amplitude* o( total, first 7 and first 28 frequencies after fourter transform
FT 80%  Energy B ased on amplitudes of first a s  many frequencies a s  have 80% of the energy in the data  after fourler transform
AR 7 AR 28 B ased on autoregressive param eters (AR) of tim e series represented as AR models of order 7 and 28
AR AIC B ased on autoregressive param eters (AR) of time sane* represented as AR models of order defined by minimising Akaike Information criteria (AIC) 
ACF 7, ACF 28  B ased on autocorrelations upto lag 7 and lag 28
CCF 7. CCF 26 B ased on dyadic cross correlations between variables upto max t 7 lags and 1 28 lags 
DWT (Level 5): Based on coefficients from discrete w avelet decomposition upfo level 5 using Haar wavelet
DWT (Level Shannon) B ased on coefficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet

2 2 2



Appendix F

A verage an d  coefficient o f varia tio n  o f rogue seasonality  index values fo r a 3 echelon M TS system 
based on d iffe ren t fea tu re  p a ra m e te r  com binations; O nly o rd e r and  inventory  variab les used in 
the index com putation  

D em and Process: M A (1)
B a se d  on 100 replications for each

Order of 
Delay

MA (1)
Demand
Parameters

Raw
Time

FT
Total

FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haai 
(Level 5)

DWT Haai 
(Level 

Shannon)

De
lay

 
(T

p) 
= 

3

Theta -  0.7 Average
SD/Avg

0 84
001

1 22 
0.07

3 55 
0 14

1 90 
0 13

0.94 
0 09

1 02 
0 12

1.01
0.12

1.02 
0 12

1.21
0.11

082
0 10

1.46
009

1.46
009

047
0.10

060
0.19

ORDER 1 Theta ■ 0.4 Average
SD/Avg

0 91 
0 02

1 95 
006

1.77 
0 30

3 26 
0 10

1 84
0 10

0 86
0 22

065
0.21

0 86
0.22

279 
0 12

1 52 
0.10

2 96 
009

296
009

047 
0 09

0.59
0.15

Theta -  -0.2 Average
SD/Avg

0.91
002

2 49 
005

0 38 
031

280 
0 10

242 
0 06

0 93 
034

090
033

093
034

4 91
012

1.90 
0 12

4 59 
007

4 59
007

0 35 
0,12

0 58 
025

ORDER
INFINITY

Theta •  0.7 Average
SD/Avg

0 91 
0.01

205 
0 10

020 
0 54

037
0.17

1 82 
0.14

1 17 
0 23

1 25 
023

1 26
024

351 
0 19

1.67 
0 19

2 38 
0 15

3 13 
0 16

048
0.14

0 64 
0 06

Theta -  0.4 Average
SD/Avg

0 92
001

264
008

0 37 
034

0 34 
020

2 92
0 12

1 02 
029

1.08
030

1 10 
030

5 63 
0 18

2 24 
0 19

323 
0 14

4 52 
0 15

0 46
0.16

"  0 67 
0 09

Theta -  -0.2 Average
SD/Avg

091 
0 01

2 73 
008

0 17 
061

0 38 
024

2 67 
009

1.23 
0 44

1 25 
045

1 29 
046

583 
0 19

2 34 
020

321 
0 13

4.71 
0 13

0 44
0.19

0 69
0.13

De
lay

 
(T

p) 
= 

7

Theta -  0.7 Average
SD/Avg

092 
0 01

1 57 
0 10

4 34
0 19

226
0.14

1 25 
0.11

1 61 
0 26

1 58 
024

1 62 
026

1.57 
0 18

1 08 
0 17

1 86
0 13

2.11
014

0 49
0.10

0 52 
0 12

ORDER 1 Theta ■ 0.4 Average
SS^a. _

0 94
001

269
0 09

4 90 
026

366
0.12

277
0.14

1 51 
027

1 43 
025

1 50 
027

4 44
0 19

2 33 
0 18

394 
0 13

5 05 
0.14

0 54 
0.07

0 62 
0.13

Theta •  -0.2 Average
SD/Avg

0 93 
0 02

3 15 
0 09

2 82
0 38

3 43 
0 11

309
009

208
064

1 83 
048

207
064

6 84
020

2 81 
0 18

4 80
0.11

6 79 
012

0.47
007

0 63 
0.21

Theta -  0.7 Average
SD/Avg

0 93
001

2 11 
0 11

0 49
0 57

278 
0 14

1 93 
0 14

1 94
027

1 79 
022

1.81
0.23

397
0.21

205
0.24

220 
0 16

296 
0 18

0 49
0.13

0 58 
009

ORDER
INFINITY

Theta > 0.4 Average
SD/Avg

093
0.01

3.10 
0 11

0 25 
050

3 11 
0.13

3 68 
0.15

1.76
031

1 66 
028

1 68 
028

1372
022

353
025

3 43 
0 16

5 15 
0 17

043
0.15

0 65 
0.10

Theta ■ -0.2 Average
SD/Avg

091
0.01

3 25 
0.11

0 29 
047

2 64 
0.13

325
0.11

2 53 
0 59

2 33 
049

257
0.57

28 85
026

3 87 
026

3 56 
0 16

562 
0 16

042 
0 15

067
0.18

De
lay

 
(T

p) 
= 

14

Theta •  0.7 Average
SD/Avg

094
0 01

2 03 
0 13

2 92 
025

2 76 
0 16

1 80
016

2.16 
0 19

209
0.17

2.18
0.18

2 78 
024

1 96
027

206 
0 15

3.07
020

051
007

0 57 
0.10

ORDER 1 Theta -  0.4 Average
SD/Avg

0 95 
0.01

3 26 
0 13

4 35 
0 23

3 38 
0.13

377 
0 18

2.11
025

2 00 
024

209
024

8.10
025

431
0.31

3 44
0.141

662
0.19

0 56 
006 0.11

Theta > -0.2 Average
SD/Avg

0 94 
002

354
012

4 20 
021

2 97 
0.13

3 53 
0.13

363
049

2 90 
038

3.44
0.47

11.97
026

5 26 
034

367
0.13

7 96 
017

053
007

0 67 
0 18

ORDER
INFINITY

Theta -  0.7 Average
SD/Avg

094
001

2 56 
0 17

1 80 
045

3 03 
0.17

2 65 
020

2 39
020

2 22 
0 18

225
018

567
030

379 
0 30

2 18 
019

346
0.24

0 55 
0 10

060
008

Theta -  0.4 Average
SD/Avg

093
001

364 
0 16

’ 1 28 
0 51

3 18 
0 16

4 82
0 23

2 43 
0 33

217
029

220
0.30

18 86
032

706
032

301 
0 17

5 45 
023

0 55 
0 11

066 
0 10

Theta ■ -0.2 Average
SD/Avg

092
001

373 
0 16

0 89 
056

2 78 
0 16

3 76 
0 16

4 15 
0 56

3 10 
042

341
047

32 90 
036

7 83 
035

3 05 
0.16 0.21 0 13

0 68 
0 18

D em and Process: G aussian  ran d o m
Based on 100 replications fo r each

Order of 
Delay

Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level S)

DWT Haar 
(Level 

Shannon)

ORDER 1 Average 0  94
001

2 49 
0 05

0 32 
0 54

3.13
0 09

2 50 
006

0 90 
0 32

0 87 
030

0 90 
032

4 67
0.12

1 93 
0.11

4 74
007

4 74
0.07

0 39 
0 10

0 56 
024

J3 I '

3 ? ORDER Average 0 92 2 81 0 25 0 54 2 86 1 101 115 1 181 6 10 2 38 351 5.12 0 45 0  66

INFINITY SD/Avg 001 008 0 50 0.16 009 0 3e|I 0 37 0 3s| 0.19 02 0 0 13 013 0.15 014

O R D E R  1 |Avera0e I 0 94| TTsl H 5 ]  362] 3 23] 1771
O R D E R  1 | SD/Avg | 0 01| 0 09|  0 3 5 | 0 1 1 |  0 1 0 | Q 49| 0 42|

6 60 
020

281 
0  181

TTT
0 11

7 121
0  12l

049
006

0 62 
0 19

IORDER
INFINITY

Average
SD/Avg

092

0.01
3 32 026

0 11 047

r 80| 3 44] 2 26

I.13I 0 1 2 I 057

2 13 2 24 26 21

047 051 025

3 90] 

0 26

3 76] 

0 16

591] 

0 16

0 64 

0 18

ORDER 1 Average
SD/Avg

095] 3~59l T JH  3 121 3 711 3 44| 2 87] 3 34] 11 571 5 201 3 86[
0 011 0 1 2 ! 0 2 2 I 0 13 I 0 14| 0 5S| 0 44| 0 54| 0 26| 0 34| 0 13|

824 
0 17

054
0.06I

065
0.18

J2 11
ORDER
INFINITY

Average

SD/Avg

093 380 096 290] 4.01 4 89 3 34] 370] 30 81 784 3 17 590 0 53

001 0 16 0 57 o .ie l 0.16 0.70 0 4e| 0 5 e | 0.35 0.34 0 16 021 0.12

065

0.16

2 2 3



Appendix F Continued 

Demand Process: AR (2)
B a sed  on 100 replications tor each

Order of 
Delay

AR (2) Demand 
Parameters

Raw
Time

FT Total FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 5)

DWT Haar 
(Level 

Shannon)

De
lay

 
(T

p) 
= 

3 ORDER 1
Rho1-0.1 Rho2«-0.8 Average

SD/Avg
083
002

1 08 
0.09

3 26 
0 14

1 92 
0.14

0 62 
0.15

0 81 
028

0 79 
027

0 81
027

1 10 
0 15

081 
0 13

1 63 
0 09

1 63 
009

0 46 
0.10

0 58 
029

Rho1-0,7 Rho2=-0.2 Average
SD/Avg

081
002

2.27 
0 06

033 
0 30

194
0 13

1 99 
0 07

1.15
046

1 09 
043

1 14 
0.45

4 97
0 12

1.72 
0 14

324
008

3 24 
008

0.28 
0 16

0 59 
0.16

ORDER
INFINITY

Rho1“0.1 Rho2=-0 8 Average
SD/Avg

092
0.01

2 03 
0 10

0.17 
0 48

0 39 
0 12

1.79 
0 15

1.02
028

1 03 
032

1 05 
0 32

364 
0 18

1 85 
0 18

249 
0 14

324
0.15

0 44
0 16

060 
0 12

Rho1«0.7 Rho2»-0.2 Average
SD/Avg

085
003

2 40 
009

0 79 
023

0 55 
0 24

2 17 
0.10

1 34 
0 41

1.15
039

1 20 
0 40

485
021

2 19 
021

2 34 
0.14

349
0.14

054
022

"TW
008

De
lay

 
(T

p) 
= 

7 ORDER 1
Rho1»0.1 Rho2--0.S Average

SD/Avg
0 92 
0.01

1.72
0.11

4.97
0.17

269
0.14

1.18 
0 19

1 24 
024

1.19
0.23

1 22 
024

2.15
0.21

1 49 
0 18

2 37 
0 14

275
0.15

0.51
008

0.54 
0 15

Rho1»0.7 Rho2--0.2 Average
SD/Avg

087
0.02

2.90
008

1 88
046

2 90 
0.11

2.67
0.09

1.44
039

1.32 
0 36

1.42 
0 38

6 92
0.20

270
0.17

379
0.11

5 52 
0.12

0.41
008

065
0.17

ORDER
INFINITY

Rhol-0.1 Rho2=-0.B Average
SD/Avg

0 93 
0.01

2.33
0.12

035
063

2 92 
0 14

2.14
018

1.46
027

1 39 
0.27

1 41 
0.27

5.77
024

2.67
023

2 63 
016

3.61 
0 18

046
0.14

057
0.12

Rho1-0.7 Rho2»-0.2 Average
SD/Avg

0.88
002

2.99
0.11

047 
0 24

2 26 
0.14

2.81
0.12

1 23 
0 39

1.13
036

1.17
037

32 94
0.28

374
027

2 97 
0 16

4 76 
0 16

0.42
0.14

6.70
0.12

De
lay

 
(T

p)=
 

14 ORDER 1
Rho1«0.1 Rho2--0.8 Average

SD/Avg
095
0.01

2 34 
014

3.51 
0 24

3.11
015

1 94 
019

1 53 
021

1 48
0.21

1.51
0.21

4 15 
026

2 86 
0 27

2.51
0.15

4.10
020

054
006

057
008

Rho1=0,7 Rho2=-0.2 Average
SD/Avg

090
002

330 
0 12

3.81
0.21

261 
0 12

3 13 
0.13

1 18 
0 38

1.10 
0 36

1.13
0.38

12 21 
026

523
035

3.13
0.14

6 95 
0 17

050
008

0.71
0.14

ORDER
INFINITY

Rho1=0.1 Rho2«-0.8 Average
SD/Avg

094
001

2 86
0.17

1 58
0,47

3 15 
0.17

2 96
0.21

1 63 
0.21

1 55 
0.21

1 57 
0.21

854
0.31

5.13
0.31

2 46
0 19

4.10
0.24

0 55 
0.11

058
0.13

Rho1-0.7 Rho2«-0.2 Average
SD/Avg

090
0.02

3 50 
0 16

0 81 
049

2 50 
0 16

336 
0 15

1 03 
033

096 
0 31

097
033

3560
038

766
036

271
0.16

509
0.21

0.50 
0 14

0,72
0.11

Demand Process: MA (2)
Based on 100 replications for each

Order of MA (2) Demand Parameters Raw FT Total FT 7 FT 28 FT 80% AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar DWT Haar
Delay Time Energy (Level 5) (Level

Shannon)

Theta1-0.7 Theta2»-0.2 Average 0 90 1 59 2 87 2 90 1.23 0 96 0 95 096 2.01 1.22 1.89 1 89 050 0.57
SD/Avg 0.01 0.07 020 0.12 012 0 12 0.11 0.12 013 0.11 0.11 0.11 008 0.14

fO ORDER 1
II
a

Thetal-0.1 Theta2--0.8 Average
SD/Avg

0.89
002

302 
0 05

0 35 
039 0.13

3 12 
0.06

0 99 
023

092
0.19

0.93
020

801
0.12

2 30 
0 13

554
008

554
0.08

0.34
0.12

048
0 18

>*id
0)
a

Theta1«0.7 Theta2«-0.2 Average 093 2 28 0 13 0.37 2 30 1 03 1 10 1.10 4.07 1 88 2 51 3 32 042 065

ORDER
INFINITY

SD/Avg 0.01 0 09 054 0 14 013 023 0.24 0.25 0.17 0 18 0.14 0.16 0.17 007

Theta1-0.1 Theta2--0.8 Average
SD/Avg

089
002

2 80 
0 08

0.21
066

034
022

2 80 
009

1 07 
0 26

098
0.23

099
0.24

5.61
020

2 39 
020

302
0.14

4.42
0.14

0.4^
0.21

562
008

Theta 1=0.7 Theta2«-0.2 Average 0 94 2 38 5.41 351 1 46 1.41 1.45 361 206 3 12 3 85 055 0 61
SD/Avg 001 0 10 022 0.13 0.15 023 0.22 0.23 020 0 18 0.14 0 16 0.07 0 12

ORDER 1
II

Theta1-0.1 TheU2--0.8 Average 0.91 3 47 236 3.41 3 49 1 44 1 29 1.30 8.61 3 09 4.82 7.10 0.46 0.55
a SD/Avg 002 008 0.40 0.11 009 022 0 21 0.21 0.21 0.17 0 12 0.12 0.07 0.15
h
>*
IQ Theta 1-0.7 Theta2«-0.2 Average 0 94 3.07 1 97 323 376 1 65 1 56 1.57 984 3 19 3.00 4 34 044 0 64
»w
o ORDER

INFINITY
SD/Avg 001 0.15 1 09 0 13 019 025 022 022 022 024 0.17 0.18 014 008

o
Thetal-0.1 Theta2--0.8 Average 090 3 36 036 2 53 340 1 54 1 39 1 39 41 29 4 01 341 5.44 644 0 59

SD/Avg 002 0.11 041 0.13 0.12 0.26 024 024 029 0.27 0 16 0.17 0 14 0 17

Theta1-0.7 Theta2»-0.2 Average 095 3 01 4 24 345 346 1 90 1 83 1 89 674 390 302 5 54 057 065
Tj SD/Avg 001 0 13 024 0.14 0.17 0 16 0 15 0 16 025 029 0 15 020 006 0.09

ORDER 1
II Theta1-0.1 Theta2--0.8 Average 0 93 3 72 420 2 90 375 1 80 1 61 1 62 14 26 r*3 3 57 807 052 0 60
a SD/Avg 002 0.12 0.21 013 0.13 0.17 022 0 20 026 036 0.14 0.18 0.07 0.15

l -

j d ' ORDER
Theta1»0.7 Theta2--0.2 Average

SD/Avg
094
0.01

345 
0 16

1 42 
0 48

328 
0 16

509
0.21

2 06 
0.21

1 90 
0 19

1.91 
0 19

14 93
031

6 51 
031

2 78 
0.18

4 92
0 23

0 56
0.11

0 66
007

0)
Q INFINITY

Theta 1-0.1 Theta2»-0.8 Average 6.91 3 82 0 84 2 to 3,87 1 90 1 69 1 68 42 98 8 12 2 95 5 58 6.6i 0 63
SD/Avg 002 0 16 0 53 0 16 0 16 024 0.27 027 0 40 036 0 16 0.21 0 13 011

SD Standard Deviation. Avg Average
R aw  T im e  B a ae d  o n  d a ta  in th e  tim e  d o m a in
FT  T ota l. FT 7, FT 2 8  B a a e d  on  a m p litu d e s  o t  to ta l, f irst 7  a n d  first 2 8  fre q u e n c ie s  a fte r  fou rier  tran sfo rm
F T  8 0 %  E nergy  B a se d  on  a m p litu d e s  o f fu s t a s  m a n y  f re q u e n c ie s  a s  h a v e  8 0 %  o f th e  e n e rg y  in th e  d a ta  a fte r  fou rier  tran s fo rm
AR 7. AR 28  B a s e d  on  a u to re g re s s iv e  p a ra m e te r s  (AR) o f tim e  s e n s e  r e p r e s e n te d  a s  AR m o d e ls  of o rd e r  7  a n d  28
AR AIC B a se d  o n  a u to re g re s s iv e  p a ra m e te r s  (AR ) of tim e  s e n e s  re p re s e n te d  a s  AR m o d e ls  of o rd e r d e fin e d  by  m in im ising  A kalke  in fo rm ation  c n te n a  (AIC)
A C F 7. ACF 2 8  B a se d  o n  a u to c o rre la tio n s  up to  la g  7  a n d  lag  28
C C F  7. C C F  2 8  B a se d  o n  dy a d ic  c ro s s  c o rre la tio n s  b e tw ee n  v a n a b le s  up to  m a x  1 7  la g s  a n d  ± 2 8  lags 
D W T  (L evel 5 ) B a s e d  o n  c o e ffic ie n ts  from  d is c re te  w a v e le t d eco m p o s itio n  up to  le v e l S  u sin g  H a a r  w av e le t
D W T  (L eve l S h a n n o n )  B a s e d  o n  c o e ffic ie n ts  from  d isc re te  w a v e le t d e co m p o s itio n  up to  le v e l d e fin e d  by  m in im um  S h a n n o n  e n tro p y  u sin g  H aa r  w a v e le t
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Appendix G

Sample of Matlab code used for different tasks in Beer game system analysis

Analytical determination of critical points in frequency response as in Table 5.1 
Example used: WIP / CONS for system with unoptimal parameters

syms num den finnum finden Tp to s j conj comaxamp co ampone maxamp 
num = 36*TpA2*s+12*Tp;
den =  2*TpA4*sA4+15*TpA3*sA3+19*TpA2*sA2+30*Tp*s+12;
num = subs(num,sj*co);
num = subs(numjA3,-j)
num = subs(numjA2,-l)
den = subs(den,sJ*co);
den = subs(denjA4,l)
den = subs(denJA3,-j)
den = su b s(d en jA2 ,-l)
conj = den;
conj = subs(conj j ,- j)
finden = expand(den*conj)
finden = subs(findenJA2 ,- l)
finnum  = expand(num *conj)
finnum  =  subs(finnum jA2 ,-l)
fmnum = ((144*Tp-516*TpA5*coA4+852*TpA3*coA2)A2+(72*TpA2*co+72*TpA6*CDA5-504*TpA4*coA3)A2)A0.5; 
co_maxamp = solve(diff(finnum/fmden,co),co) 
maxamp = subs(finnum/finden,co,(o_maxamp) 
coampone = solve((finnum/fmden)-l,co)

C om pu ta tion  and  plo tting  o f frequency  response fo r a fou r echelon system (as used in F igure 5.2) 
E xam ple  used: O R A T E  (Factory)/C O N S fo r system w ith optim al p a ram eters , LT  223 
R elevan t single echelon tra n s fe r  function  given in T able 5.1 is utilised

syms numl num2 deni den2 Tp Tpl s
numl = subs(expand((14*TpA5*sA5+4*TpA4*sA4-168*TpA3*sA3-48*TpA2*sA2+2016*Tp*s+576)A3),Tp,4); 
num2 = subs(expand((14*TplA5*sA5+4*TplA4*sA4-168*TplA3*sA3- 
48*TplA2*sA2+2016*Tpl*s+576)Al),Tpl,3); 
deni = subs(expand((8*TpA6*sA6+12*TpA5*sA5-
140*TpA4*sA4+120*TpA3*sA3+672*TpA2*sA2+1440*Tp*s+576)A3),Tp,4); 
den2 = subs(expand((8*TplA6*sA6+12*TplA5*sA5-
140*T p 1 A4*sA4+120*Tp 1A3 *sA3+672*T p 1 A2*sA2+1440*Tp 1 *s+576)Al ),Tpl ,3);
btemp = sym2poly(expand(numl*num2));
atemp = sym2poly(expand(denl*den2));
if size(atemp,2)> size(btemp,2)
a = atemp;
b = zeros(size(a));
b(l+size(atemp,2)-size(btemp,2):end)= btemp(l :end); 
else
b = btemp; 
a = zeros(size(b));
a (l+size(btemp,2)-size(atemp,2):end) = atemp(l :end);

2 2 5



end
B = abs(fft(A));
C = zeros(728,2); 
for i=  1:727
C(i+1,2)=B(i+1,2)/B(i+l, 1); 
end
C(2:end,l)=l/728:1/728:727/728; 
C(366:end,:)=[];
C(:,l)=C(:,l)*2*pi; 
C(:,3)=abs(freqs(b,a,C(:, 1))); 
C(:,l)=C(:,l)/2*pi;
C(2:end,l >=1/728:1/728:364/728; 
plot(C(:, 1 ),C(:,2),'b') 
hold on
plot(C(:,l),C(:,3),'r') 
xlabel 'Frequency (O' 
ylabel 'Amplitude Ratio' 
set(gca,’xtick',[0 0.1 0.2 0.3 0.4 0.5])

Average frequency response (amplitude ratio) computation for various variables in simulated 
Beer game system; Computation across multiple sheets in multiple Excel workbooks 
Relevant for Figure 5.2, Appendices H.l, H.2

fileno = 1;
while fileno <= size(Allfiles,l) 
selctfile = AUfiles{num,l};
[type,sheets] = xlsfinfo( selctfile);

shtno = 1; 
while shtno <= size(sheets,2) 

timedata = xlsread(selctfile, shtno); 
timedata( 1:24,:)=[];
timedata = timedata(:,[2 3 5 10 13 16 18 23 26 29 31 36 39 42 44 49 52]); 
fftdata = abs(fft(timedata)); 
fftdata(3 66: end,: )=[]; 

for i = 2:size(fftdata,2) 
fftdata(:,i)=fftdata(:,i)./fftdata(:, 1); 
end
fftdata( :,!)=[]; 
if shtno =  1 
ampratio = fftdata; 
else
ampratio(:,:,shtno)= fftdata; 
end;
shtno = shtno+1; 
end
meanampratio = mean(ampratio,3);
fmeanampratio = zeros(size(meanampratio,l),size(meanampratio,2)+l);
fmeanampratio(:,2:end)=meanampratio;
fmeanampratio(2:end,l)=l/728:1/728:364/728;
xlswrite(selctfile,fmeanampratio,'Amp Ratio Avg','B5');
fileno = fileno + 1;



Appendix H - Frequency response (FR) of select variables computed from Beer game simulation outputs

H .l Different lead times
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H.2 Different batch sizes
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Appendix I

Index values fo r the B eer gam e system based on d ifferent feature param ete r com binations: 
All variab les used in the index com putation

1.1 A verage index values

Demand Process: AR(2) pi: 0.1 p2: -0.8

Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level 

Shannon)

LT 
33

4 Unoptimal
No Batch 
Batch 50% 
Batch 100%

0 78 
077 
0 91

1.22 
1.19 
1 19

017
030
054

1.25 
1.07 
0 92

1.30 
1 43 
1.61

099 
095 
0 83

091 
0 79 
0.65

0.91
0.79
065

2.10 
1 89 
1 62

1.13
1.14 
0 89

1 04 
1 00 
0 92

1.28
1.20
1.07

044
0.41 
0 37

061 
0 50 
0 50

Optimal
No Batch 
Batch 50% 
Batch 100%

075 
0 78 
0 79

1 18 
1.14 
1.07

041
050
0.48

1.37
0.78
065

0 82 
1.27 
1.41

074 
087 
0 79

0 69 
0.67 
0.53

069
0.67
053

1.31
1.23
1.16

080
099
0.80

1 25 
097 
090

1 80 
1.08 
0 96

050 
0 32 
0 35

0.58 
0 45 
0,42

LT 
22

3 Unoptimal
No Batch 
Batch 50% 
Batch 100%

0 72 
072 
0 73

121
1.10
095

0.13 
0.19 
0 39

1 19 
0.87 
0.71

1.05
1.13
1.20

0 90 
0 83 
0.75

0.81
0.72
0.60

0 82 
0.72 
060

1 98 
1 86
1.31

1.19 
1.25 
0 89

1.22 
1 05 
083

1.21 
0 90

0 44
0.38
0.34

0 59 
048 
0.48

Optimal
No Batch 
Batch 50% 
Batch 100%

0,67
0.72
073

1 04
1.07
092

0.21 
0.41 
0 39

1 12 
0.69 
058

0.74 
0 99 
1.07

064
0.77
0.75

060 
0 58 
0 56

060
058
0.56

1.03
1.28
1.10

0 79 
1.21 
082

1.27 
1 04 
083

1 49 
1.10 
0 85

044
0 31 
0.31

053
048
0.49

LT 
11

2 Unoptimal
No Batch 
Batch 50% 
Batch 100%

061
0.61
061

0.85 
0 93 
0 83

006 
009 
0 09

026
0.26
0.21

056
059
0.62

061
0.59
051

060
060
056

0.60
060
0.55

0.73
0.92
1.04

0.75
093
0.98

0 .#
091
092

0 78 
0.91 
0 92

031 
0 32 
025

047
0.43
0.48

Optimal
No Batch 
Batch 50% 
Batch 100%

056
061
0.61

062
081
093

0.07
010
0.11

0.29
0.26
0.27

052 
061 
0 67

045
0.44
049

044
050 
0 54

0 44
0.47
0.51

0.42
0.83
1.14

044
069
1.16

0 79 
0.76 
094

0.79 
076 
0 94

0 23 
0 24 
0 26

032
0.45
0.60

Dem;and Proc:ess: IVL\(1)<3: - 0 . : [

Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level 

Shannon)

LT 
33

4 Unoptimal
No Batch 
Batch 50% 
Batch 100%

091
088
088

1.47
1.41
1.29

0 17 
018 
0 28

080
099
086

1.52
1.54
1.36

1.12
068
064

1 03 
0.62 
056

1.05
063
057

1 64 
1 82 
1.31

091
1.05
0.77

1 38 
1 35 
1.25

1 58 
1 65 
1.45

0 28 
0 32 
0 34

0.66 
068 
0 89

Optimal
No Batch 
Batch 50% 
Batch 100%

085
090
090

2 03 
1.35 
1.07

0 30 
0 43 
036

1 66 
092 
057

2.04
1.46
1.11

093
046
029

0 84
0.40
0.28

085
040
028

377
1.25
043

1.40 
0.78 
0 30

1.73
1.67
1.21

2 99 
2 08 
1.35

050 
0.35 
0 35

063 
0 61 
0 52

LT 
22

3 Unoptimal
No Batch 
Batch 50% 
Batch 100%

0 83 
0.62 
083

1 49 
1.44 
127

0.11 
0.14 
0 25

064
055 
0 55

1.61 
1 58 
1.35

082 
055 
0 46

0.76 
0 53 
0.43

077 
0.53 
0 42

1.57 
1.70 
1 10

1 18 
1.24 
0 83

1 39 
1 41 
1 22

1 68 
1.71 
1 36

030
0.31
032

0 61 
0 62 
066

Optimal
No Batch 
Batch 50% 
Batch 100%

0 76
083
084

1 83 
1 30 
1.10

0 18 
021 
0 23

1.23
069
049

1.80 
1 39 
1.13

0 73 
0.42 
023

065
036
0.25

066 
0 36 
0.25

2.16
102
035

1.27
077
0.35

'

1 90 
1 62 
1 29

1 87 
1 36

0 39 
0 29 
0 30

0 55 
0 55 
054

LT 
11

2 Unoptimal
No Batch 
Batch 50% 
Batch 100%

064
071
0.71

133
1.30
1.25

0 18 
030 
0.37

0.15
0.31
045

1.35
1.29

0 68 
0.74 
0.61

063
0.70
0.61

064
072
0.61

1.24 
1 04 
0.85

1.00
060

1 58 
125

1 45 
1.61 
1 26

0.24 
0 34 
0.38

0 44
0.51 
0 52

Optimal
No Batch 
Batch 50% 
Batch 100%

0 52 
065 
0.73

1.19
1.11
1.16

004
023
0.31

029
0.23
0.34

1.14
1.11
1.13

0 53 
049 
021

0 52 
0.51 
0.35

0.52
0.50
0.26

0.91
060
028

088
0.61
0.41

1.11
1.33
1.23

1.12
1.34
1.24

018
0.24
0.27

0 35 
0.35 
0.52

Demand Process: MA(2) 0j: 0.1 02: -0.8
(Based on 30 replications for each case)

Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level 

Shannon)
No Batch 0.93 1 63 0.20 0 82 1 79 1 18 1.20 1.20 2 00 098 1 39 1 53 029 0.67

s Unoptimal Batch 50% 0 89 1.50 0.15 0 88 1.70 1.20 1 36 1.37 1 99 1 09 1 30 1.57 0.29 064

n Batch 100% 0 88 1.44 0.21 086 1 63 1 23 1.27 1.28 1.72 097 124 1.44 029 066
h - No Batch 085 1 95 0 29 1 38 2.10 0 98 0.97 097 366 1.31 1.54 2.37 048 0,58
□ Optimal Batch 50% 0 87 1.61 0 39 1.10 1 83 1 02 1.15 1.15 2 09 1 09 1.59 2 28 036 0.56

Batch 100% 0.90 1.25 034 062 1.35 0 82 096 097 086 059 1.27 1.51 032 0.50
No Batch 084 1 56 009 058 1 79 0 89 092 0 92 1.70 1.16 1 47 0.26 058

n Unoptimal Batch 50% 0 82 1.51 012 051 1 80 079 098 096 1.81 1 29 1.37 1.64 029 057
CN
N Batch 100% 082 1.40 022 049 1.59 088 099 097 1.41 1.01 1.23 1 36 029 062
H No Batch 0 75 1 89 018 1 21 205 0 74 0.74 0 73 2 62 1 43 1 80 2 31 038 0 49
_J Optimal Batch 50% 0 80 1.64 019 084 1 76 082 096 096 1 70 1.10 1.72 207 030 0.49

Batch 100% 085 1 29 0 22 0 52 1.40 075 090 090 083 068 1 43 1 55 027 0.45
No Batch 0 82 1 59 006 024 1 88 071 0 73 072 1 60 1 29 019 037

Ol Unoptimal Batch 50% 070 1 57 020 020 1 83 0 98 1 02 1 02 1 58 145 1.50 1 52 0 25 043
T- Batch 100% 0 72 1.47 0 34 0 36 1.73 1.17 1 18 1.19 1.45 1 29 1.27 1.28 031 046

H No Batch 054 1 54 011 0 46 1 65 064 066 066 1 48 1.40 1.16 0 23 0 33
□ Optimal Batch 50% 064 1 40 008 0 30 1 54 1 00 1 24 1.23 1 22 1.15 1 28 1.29 0.19 035

Batch 100% 0 74 1.39 0 27 029 1 44 1 18 1.41 1.41 1 02 096 1 30 1.31 0 24 042

Raw Time: B ased on data in the tim e dom ain
FT Total. FT 7. FT 28 Based on am plitudes of total, first 7 and first 28 frequencies after fourier transform
FT 80% Energy Based on amplitudes of first a s  many frequencies as have 80% of the energy in the data after founer transform
AR 7, AR 28 Based on autoregressive param eters (AR) of time series represented as AR models of order 7 and 28
AR AIC Based on autoregressive param eters (AR) of time sen es  represented as  AR m odels of order defined by minimising Akaike information cnteria (AIC) 
ACF 7, ACF 28: Based on autocorrelations upto lag 7 and lag 28
CCF 7, CCF 28: Based on dyadic cross correlations between variables upto m ax t  7 lags and ± 28 lags 
DWT (Level 5) Based on coefficients from discrete wavelet decomposition upto level 5 using Haar wavelet
DWT (Level Shannon): Based on coefficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet
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Appendix I continued

1.2 Coefficient of varia tion  of index values

D em and Process: AR(2) pi: 0.1 P2: -0.8

II-J 
h- Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level S)

DWT Haar 
(Level 

Shannon!
No Batch 003 008 038 009 0 20 0 14 0 14 0 14 0 16 0 13 006 006 0.15 0 15

S t Unoptimal Batch 50% 0 03 009 037 0.12 0 16 0.11 0.15 0.15 0 12 0.14 007 008 0 14 0.10
CO Batch 100% 0 03 0 09 025 0 19 0 16 0 12 0 13 0 14 0.15 0.14 009 0.10 0 24 0.12
t- No Batch 0 03 0 13 0 30 0 16 020 0 22 021 021 0.23 0 20 009 0 11 0 11 0.15_J Optimal Batch 50% 003 009 022 0 14 0.15 008 010 010 009 0.12 009 012 0.15 006

Batch 100% 003 0 09 026 0 24 0 16 0.11 022 022 0 10 0.14 0.11 0 12 0.18 009
No Batch 0 03 0 09 0 37 0 12 0.18 0 13 0 14 0.14 0 14 0 14 0.07 0 07 0 16 008

CO Unoptimal Batch 50% 003 009 0 43 0 12 0.16 006 0 10 011 0.13 014 0 08 008 015 0.10CslCM Batch 100% 0 03 0.10 029 0 17 016 009 0 11 011 0 16 0 17 0.10 0.10 0 17 007
i- No Batch 0 03 0 09 031 0 14 0 15 0 18 0 19 0 20 0.15 0.12 0 08 0.09 012 0 14
-1 Optimal Batch 50% 003 009 0 16 0 14 016 005 009 009 009 0 10 009 0.10 015 007

Batch 100% 003 0 10 026 0 15 0.16 009 0 16 0.15 0 12 0 16 0.11 0.11 0 15 0.12
No Batch 002 006 058 0 13 0 14 0 15 0.15 0.15 0 11 0.10 007 007 0.18 021

CM Unoptimal Batch 50% 002 0 07 0.41 0.16 0.14 009 009 009 0.11 0.11 006 0.06 0.21 012
Batch 100% 0 02 008 034 0 19 0 14 0.10 0.10 0.10 0 15 0.15 005 0.05 0.18 007

K No Batch 000 0 05 0 44 009 0.11 0.20 021 021 010 0.10 007 0 07 0.16 029
Optimal Batch 50% 002 007 038 0.14 0.13 009 009 009 013 0.11 006 006 0.15 0.22

Batch 100% 0 02 0.07 0 49 021 0.14 0.16 0 13 0.14 0.12 0.10 007 0 07 0.19 006

D em and Process: MA(1) 0: -0.2

1
! Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level

No Batch 0 02 006 0.39 0 17 0.07 0 20 0 18 0.19 0.15 0 16 007 0 07 0.20 0.26
Unoptimal Batch 50% 001 006 0 41 0 16 0.10 0 12 014 0.14 0 16 0.18 006 0 05 0.17 0.16rt

CO Batch 100% 002 0 07 0 33 0.15 0.09 023 026 025 0.20 0.19 0.06 0 07 020 017
H No Batch 001 006 0 30 0 10 007 0 30 028 0.28 0 13 0 15 0.07 0 09 0.14 0 19
_J Optimal Batch 50% 002 008 025 0.17 0.10 0.14 0.15 0.14 0.21 0.20 007 0 09 0.11 0.21

Batch 100% 002 0 07 0 29 0.21 0.11 0.29 0.21 0.22 0 34 027 0.08 0 11 0.12 008
No Batch 002 008 056 0 17 0 08 0 17 0.19 0 20 0 15 0.15 0.08 0 09 0.18 023

CO Unoptimal Batch 50% 001 005 032 020 0.07 0.11 0 13 0.13 0.12 013 006 006 0.21 019CMCM Batch 100% 0 01 005 020 0 16 009 020 0.21 0.21 0 15 0 15 005 0 05 0.14 019
K No Batch 001 005 030 011 0 07 029 026 0 26 0.12 011 007 0.07 0.15 0 17
—J Optimal Batch 50% 002 0 05 037 015 0.07 009 0.14 0.14 012 0.12 006 006 0.10 024

Batch 100% 0 01 004 035 016 0 09 025 017 0.17 0.31 026 007 0.08 0 17 0 13
No Batch 0 02 005 0 26 0 14 006 0 14 0 16 0 15 0 10 0.10 008 0.09 0 17 021

CM Unoptimal Batch 50% 0.01 004 0 16 015 0.07 0 09 008 009 0.12 0.11 006 0.06 0.14 0.21
v -
Y" Batch 100% 001 004 0 22 0 13 006 0 11 0 09 009 0 10 009 004 0.04 0.17 009

H- No Batch 0 02 0 05 046 0 17 006 021 021 021 009 009 0 07 0 07 021 0 18
Optimal Batch 50% 003 0.04 0 20 0.13 006 0 14 0.14 0.13 009 008 007 0 07 0 15 015

Batch 100% 001 005 026 0.15 0 07 031 0.18 0 26 030 0.15 0.04 0.04 0 20 0 15

D em and Process: MA(2) Gj: 0.1 6 2 : -0.8

II Ordering Batch Raw
Time FT Total FT 7 FT 28 FT 80% 

Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 5)

DWT Haar 
(Level 

Shannon)
No Batch 0.03 004 0 37 0.13 007 029 028 028 0 12 0.11 006 0.05 0.26 0 19

St Unoptimal Batch 50% 001 004 036 0.13 007 0 12 0.12 0.12 0.13 0.15 005 0.05 0.16 020
CO Batch 100% 002 004 0.31 009 0.07 0.10 0.11 0.11 0.11 0.11 005 0.05 0 15 0.18
H No Batch 0 01 006 0 28 0.14 008 0 26 024 024 0 10 0.13 007 0.11 0 14 0.11
-1 Optimal Batch 50% 0.02 0 06 030 0.13 008 009 0.12 0.12 0.12 0.15 007 0.08 0.14 0.11

Batch 100% 0.01 0.07 0 29 0 18 009 0 12 0.12 012 0.21 0.18 0.06 0.08 0.13 007
No Batch 002 0 05 044 018 009 0 11 0.11 0.11 0 12 015 008 009 0.21 022

CO Unoptimal Batch 50% 001 005 033 021 008 009 0.11 0.11 0.13 0.13 0 08 009 0.19 0.17CM(M Batch 100% 001 004 0 32 017 0.06 0 13 0.15 0.15 0 10 009 006 005 0.16 0.17

t - No Batch 001 0 05 0 32 0 10 006 020 020 020 0.11 0.12 0 07 009 0.15 0 15
-1 Optimal Batch 50% 002 0 05 034 0.14 0.07 0.12 0.12 0.12 0.11 0.11 0 05 0 06 0.16 0.15

Batch 100% 001 006 0 25 021 0.10 0 12 0.13 0.12 0 16 0.13 007 0 07 0.15 0.14
No Batch 0 02 0 05 056 0 20 007 0 11 010 0.11 011 011 0 09 009 0.19 0.17

CM Unoptimal Batch 50% 0 03 0 04 032 0.14 006 005 006 006 0.11 0.11 0.07 0.07 0.19 0 20
Batch 100% 001 003 0.21 0 14 0 07 0 05 0.05 0 05 009 0.09 004 004 0.12 009

h* No Batch 0 02 0 05 0 29 0 16 006 0 14 0.13 0.14 0 10 010 007 0 07 0.16 0 12
Optimal Batch 50% 002 004 0 49 0 18 006 006 006 006 0 10 009 005 005 0.16 0 16

Batch 100% 001 005 024 0 13 0 08 006 0 05 005 0.10 010 0.05 0 05 0.16 005
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Appendix J

Index values fo r the Beer gam e system based on different featu re p aram eter 
com binations: Only o rd er and  inventory7 variables used in the index com putation 

J . l  A verage index values

D em and Process: AR(2) p i: 0.1 p2: -0.8

Lead
Time Ordering Batch Raw

Tima FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level 

Shannon)
No Batch 0 70 1.45 0 42 1 56 1 40 1 49 1 32 1.34 2 58 1 55 1 18 1 52 0 49 050

Unoptimal Batch 50% 084 1 43 034 1.07 2.25 091 086 0 86 2 05 1.27 1 30 1 58 036 0 45
Mr> Batch 100% 1 04 1 41 0 46 080 343 0 69 078 0 78 1.77 080 1.41 1 60 030 0.57
»- No Batch 0 61 1 30 0 85 1 80 074 0 74 076 076 1.40 1 00 1 33 211 044 0.43

Optimal Batch 50% 0 83 1.19 043 071 1.64 0 93 0 89 0 89 1 15 091 1.07 1.18 0.27 0.38
Batch 100% 0 93 1 20 0 39 056 2.81 0.94 0 67 067 1 09 067 1.33 1.40 026 038
No Batch 067 164 027 1 79 1.52 1.37 1.21 1.24 306 1 78 1 65 2.17 048 0.51

n Unoptimal Batch 50% 078 1 55 024 0 95 2.33 079 0.77 0.77 2 50 1.73 1 65 1.91 0 35 0.41
<M
N Batch 100% 0.91 1.31 0 30 060 295 0 75 068 068 1.41 090 1.23 1.31 0.28 038
»- No Batch 056 1 18 047 1.74 071 067 068 0 68 1.36 1.02 1 53 1.84 043 040
-1 Optimal Batch 50% 073 1.23 041 069 1.64 080 0.78 079 1 44 1.44 1.37 1.45 027 038

Batch 100% 0.90 1 19 0 30 0 49 2 26 085 074 0.75 1.05 0.77 1.17 1.19 0.24 041
No Batch 0.67 0 89 021 067 067 1.05 095 099 0.77 0.79 0 89 0 89 0.37 0.48

M Unoptimal Batch 50% 0.71 1 08 0 17 042 0.91 053 0.54 054 1.07 1.10 1.04 1.04 0.34 043
T* Batch 100% 079 1 19 008 0.19 1.32 046 050 0.49 1.37 1.37 1.16 1.16 0 21 0.37
H No Batch 048 068 027 0 80 049 042 041 0.41 044 047 0 99 0 99 028 029
-1 Optimal Batch 50% 0 55 083 0.21 0 48 069 0.37 042 0.40 0.67 0.73 084 084 0.26 034

Batch 100% 0.67 1.13 0.15 0 35 1.06 039 042 0.40 1.33 1.41 0 99 099 026 0 54

D em and Process: MA(1) 0: -0.2
Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level 

Shannon)
No Batch 082 1 93 033 1 42 2.17 1.72 1 46 1.56 420 1 94 1.74 2.10 034 0 58

2 Unoptimal Batch 50% 083 1 62 026 1.24 1.87 065 063 0.63 2 86 1 60 1.74 2.27 030 0.57
no
<*> Batch 100% 0 90 1 38 026 093 1.50 0.72 068 069 1.87 095 1 66 1 96 029 062
t - No Batch 068 2.71 0 57 2 52 270 0 98 0 94 096 5 68 2 30 1 95 453 043 0.50
-1 Optimal Batch 50% 0 76 1 40 058 1 03 1 59 050 0.52 050 1.44 1.11 1 63 2.28 0 29 050

Batch 100% 086 099 031 0.51 1 04 035 039 037 041 0.27 1 39 1.53 0 27 044
No Batch 0 72 1 84 020 085 206 1.17 1 03 1.07 301 1 93 1 60 2 03 0 30 0.50

n Unoptimal Batch 50% 077 160 023 065 1.84 0 56 0.57 056 238 1.59 1.78 225 031 0 52
CMN Batch 100% 085 1 30 0.23 053 1.41 0 57 057 0.57 1 23 0.90 1 65 1 88 029 058
H No Batch 061 2 47 0 38 2.14 2 44 0 76 072 073 459 2.14 2 75 4 03 0.37 0.44
_J Optimal Batch 50% 069 1.41 036 090 1.60 045 0 48 0.46 1 59 1.20 2.01 2 33 027 045

Batch 100% 081 1 03 020 0.44 1 08 026 0.34 028 0 35 0 33 1.43 1 48 0.23 0.45
No Batch 053 1 65 0 37 0 28 174 1.11 097 1.01 2 20 1.91 1 88 1 89 0.27 0.37

CM Unoptimal Batch 50% 061 1 50 0 74 053 1.64 0 70 066 068 1.72 1.52 206 206 039 044
v-
rm Batch 100% 072 1 26 049 048 1.34 056 056 056 1 00 091 1 79 1.79 0.35 047

No Batch 0 41 1 66 009 064 1 62 048 0 47 0 48 1.71 1 66 1 77 020 028
_J Optimal Batch 50% 053 1 32 0 50 046 1 40 0.41 043 0 42 1 15 1.12 1.71 1.71 027 0.32

Batch 100% 069 1 16 0 33 0 36 1.19 0.17 0 29 021 038 052 1.44 1.44 024 0.41

D em and Process: MA(2) 0j: 0.1 02: -0.8
   (Based oo 30 replications for each case)

Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haai 
(Level 

Shannen)
No Batch 0 83 1 88 0 31 1 30 2.1? 1 63 1.73 4 44 1 64 1.73 1 99 034 056

Unoptimal Batch 50% 081 1.67 023 1.19 202 1.22 1.51 326 1 66 1.59 205 027 048
rri
f t Batch 100% 0 86 1.52 0.21 097 1.77 1.41 165 2 25 1.19 1 61 1.92 026 0.56
t - No Batch 068 267 0 57 222 283 093 095 694 251 1.81 369 041 0 46
-1 Optimal Batch 50% 072 1.81 070 1.42 2.21 1.11 1 45 2.71 1.74 1 68 274 0.31 044

Batch 100% 0 81 1 20 0.33 059 1.33 096 1.31 086 0.62 1.36 1 61 025 0.41
No Batch 072 1.75 0 13 0 82 2.06 1 16 1 24 2 59 1.42 1.72 026 047

f t Unoptimal Batch 50% 0.74 1.68 0.17 0.61 205 0 82 1 08 260 1.71 1 63 2 05 029 046
CM
CM Batch 100% 080 1 43 0.24 049 1 65 097 1.20 1.55 1.12 1.59 1 82 0.27 0.50
h- No Batch 0 59 259 036 1 96 2 80 0.77 076 6 65 2 63 360 036 038
_J Optimal Batch 50% 065 1 79 0.38 1.22 2.21 0.91 1 26 320 1.88 2 12 262 0.27 038

Batch 100% 074 1.27 023 0 53 1.44 0 87 1.23 0 98 0 84 1.56 1.66 023 0.35
No Batch 050 1 94 0 11 037 088 0 95 361 1 63 1 64 021 029

CM Unoptimal Batch 50% 058 1.64 036 0.32 235 1 05 1.21 3 08 2 46 1.87 1 87 0.27 0 35
Batch 100% 069 1.61 0 48 043 1.91 1 28 1.47 1 97 1 65 1 78 1.78 0 30 041

H No Batch 041 2 17 021 0 85 244 060 0 63 338 300 1 80 1 80 023 0.25
□ Optimal Batch 50% 051 1.71 0 16 055 206 092 1.22 271 231 1 66 1.66 020 0 27

Batch 100% 065 1 46 036 0 36 1 60 1 10 1 42 1 60 1.43 1 55 1.55 022 031

R a w  T im e  B a a e d  on  d a ta  in th e  tim e  d om ain
FT T ota l. F T  7 . FT 28  B a a e d  on  a m p litu d e s  of total, firat 7 a n d  first 2 8  fre q u en c ie s  afte r  fo u n ef  tran sfo rm
FT SOM E nergy  B a a e d  on  a m p litu d e s  of first a s  m a n y  fre q u en c ie s  a s  h a v e  80%  of th e  e n e rg y  in th e  d a ta  afte r  fourier tran sfo rm
AR 7 AR 28  B a se d  on  a u to re g re s s iv e  p a ra m e te rs  (AR) of tim e  a e r ie s  re p re se n te d  a s  AR m o d e ls  of o rd e r 7 a n d  2 8
AR AIC B a se d  on  a u to re g re s s iv e  p a ra m e te r s  (AR) of tim e s e n e s  r e p re se n te d  a s  AR m o d e ls  of o rder d e fin e d  by  m in im ising  A kaike in form ation  c rite ria  (AIC) 
ACF 7. ACF 28  B a se d  on  a u to co rre la tio n s  up to  lag 7 a n d  la g  28
C C F 7. C C F 2 8  B a se d  on  d y ad ic  c ro s s  co rre la tions b e tw ee n  v a ria b le s  up to  m a x  t 7 lag s a n d  128  lag s 
DW T (L evel 5) B a se d  on  c o effic ie n ts  from  dM crete w av e le t de co m p o sitio n  up to  le v el 5  u sing  H aar w ave le t
DW T (L evel S h a n n o n l B a se d  o n  co effic ien ts  from  d isc re te  w av e le t d e c o m p o s itio n  up to  le v e l de fin e d  by m in im um  S h a n n o n  e n tropy  u sing  H aar w av e le t

231



Appendix J continued

J.2  C oefficient of varia tion  of index values

D em and Process: AR(2) pj: 0.1 P2 : -0.8

Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 6)

DWT Haar 
(Level 

Shannon)
No Batch 0 02 0 09 0 39 0.12 021 0 10 012 0.12 0 22 0.18 0 10 0 08 0.13 0.09

Unoptimal Batch 50% 002 0.07 035 0 14 0.11 0.11 0.12 0.12 0.15 0.19 009 008 014 023
co
CO Batch 100% 0 02 0.11 027 0.21 01 5 0 14 0 12 0.13 022 0.17 0.10 0.10 025 027
H No Batch 0 02 0 14 0 30 0 19 020 036 035 0.36 024 0.21 0 09 0.12 0.12 016
_J Optimal Batch 50% 003 006 0 26 0.15 0.10 0 08 008 008 010 0.15 009 0.12 0 16 0.10

Batch 100% 0.03 008 0 30 027 0 13 0 13 023 0.24 0 13 0.18 0.13 0.13 0 17 023
No Batch 002 0 08 0 28 0 15 0 14 0.13 012 0.13 0 15 013 008 0 09 0.14 013

CO Unoptimal Batch 50% 002 007 040 0.15 0.12 0 07 0.07 0.07 0.13 0.13 009 010 018 0.12CMCM Batch 100% 002 0 08 0 30 0 19 0 13 011 0 11 0.11 0 15 017 009 0.09 017 0 17
H No Batch 0 02 0 10 031 0.16 0 15 027 0 29 0 30 0.16 0 14 0 10 0.10 0 10 0 16
_ l Optimal Batch 50% 0.03 0 07 028 0.17 008 006 006 006 0.13 0.14 009 0.10 0.17 0.11

Batch 100% 0 03 006 0 29 0 17 009 0 10 0 15 0.15 0.11 0 19 0 12 0.12 0.14 020
No Batch 0 01 006 066 0 16 0 14 0 29 027 0 29 012 011 008 0 08 019 024

CM Unoptimal Batch 50% 0 02 0 05 049 017 0.11 010 0 10 0 10 0.11 0.10 0 07 0 07 0.21 0.27T“ Batch 100% 0 02 006 0 35 0 16 009 0 12 011 0.11 0.11 011 0 07 007 022 0 22
t- No Batch 000 006 046 0 12 0 12 0 27 0 29 0 29 011 0.11 0 08 008 016 0 30

Optimal Batch 50% 002 007 0 43 0 18 0 12 0 10 0.10 010 0.14 012 0 07 007 015 026
Batch 100% 003 0 08 064 027 0 16 0 17 0 15 0 17 016 0 17 0 13 013 0.19 022

D em and Process: MA(1) 0: -0.2
Lead
Time Ordering Batch Raw

Time FT Total FT 7 FT 28 FT 80% 
Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 

(Level 5)

DWT Haar 
(Level

No Batch 003 007 0.27 0.14 0 09 0 34 031 036 0 13 023 0 12 0 10 027 027
2 Unoptimal Batch 50% 002 008 035 0.14 0.11 0.11 0.11 0 12 0 16 0.18 008 008 0.21 0.23
r t
n Batch 100% 0 02 007 030 0 14 009 0.18 0 16 0.17 017 0.17 0.07 0 08 022 0.23
» - No Batch 0 01 0.07 0 29 0.12 0 08 0 43 044 0.46 0.22 0.17 0 08 0 10 0.11 0 17
- i Optimal Batch 50% 003 010 0.31 0.21 0 12 0.15 0.12 0.14 024 0.23 007 012 0.11 024

Batch 100% 0.03 009 0 32 022 0 14 033 025 0.27 0.38 0.32 010 0.12 0 13 018
No Batch 002 009 060 0.18 0 09 0.21 0.20 023 0 22 0.17 0.10 0.12 024 025

CO Unoptimal Batch 50% 002 007 040 0.21 009 0.12 0.12 0.12 020 0.16 0 08 008 0.24 0 24
CMCM Batch 100% 002 007 025 0.16 0.12 0 26 0.23 024 0 16 0.16 005 007 0.15 026
J - No Batch 002 0.05 0 38 0.13 006 0 37 0 39 0.40 0 15 0.10 008 0.07 014 0.16
- J Optimal Batch 50% 0 02 005 038 0 16 0.07 009 0.09 0.11 0.15 0.11 0.06 0.07 0.11 0.23

Batch 100% 0 03 006 037 0 18 0.11 0.27 0 16 0 25 033 0,29 008 0.09 0.17 015
No Batch 0 02 0.07 0 22 0.18 007 0 30 0.27 031 0.11 0.10 0 10 0.10 0.20 017

CM Unoptimal Batch 50% 0 03 004 020 0.17 006 0.11 0.11 0.12 0.10 009 006 0.06 0.17 017
T- Batch 100% 004 004 028 0.18 007 0 14 012 0.13 0.11 0.10 004 0.04 0.22 020

H No Batch 002 005 0 48 020 006 0 20 021 021 009 0 09 0 07 0.07 023 0 17
- 1 Optimal Batch 50% 003 004 023 0.12 006 015 015 0 15 010 009 008 0 08 0.17 0.22

Batch 100% 0.03 006 032 0 19 0 08 0 32 0 19 029 036 020 007 0 07 023 0 19

D em and Process: M A(2) 0i: 0.1 Qj' -0.8
  (Based on 30 replications for each case)

!! Ordering Batch Raw
Time FT ToUl FT 7 FT 28 FT 80% 

Energy AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level S) (Level

Shannon)
No Batch 0 03 0 05 0 29 009 0 09 027 030 028 0 12 0.15 009 0 09 024 0.18

■m- Unoptimal Batch 50% 0.02 0 05 0 32 010 009 0 14 015 0.15 013 017 008 0.07 0.16 0.27rtn Batch 100% 0 03 0 05 0 30 008 0.10 0 14 0 13 0 13 0 09 0.14 006 0.06 0.19 0.17

H No Batch 001 006 032 0 12 007 028 0 28 0 28 020 0.18 008 0 12 0.11 0.11-1 Optimal Batch 50% 003 006 0 29 0 13 009 0.10 0 10 009 0.16 017 007 009 0.13 012
Batch 100% 003 009 033 022 0.11 0 13 0.11 009 0 24 0.23 0 07 0.10 0.12 0.18
No Batch 0 03 0 09 0 55 0 13 0.12 017 0 19 0 18 020 021 0 10 0.13 0.30 0.19

Unoptimal Batch 50% 003 0.07 040 0 20 0.10 013 012 0.12 0 23 0.15 0 11 0.11 0.24 018
CM(M Batch 100% 0.03 004 0 35 0 15 006 0.14 0 13 0.14 009 009 006 0.05 0.21 0.22

h- No Batch 002 0 05 036 011 006 023 020 0 19 0 19 0.14 0 07 0.10 0.13 0 12-1 Optimal Batch 50% 003 0.05 035 0 14 0.07 0.12 0.10 0.10 017 0.13 005 0.07 0.14 0.13
Batch 100% 004 008 0 32 0 23 0 13 0 14 0 12 0.12 0 20 0.18 009 0.10 013 015
No Batch 0 03 0 07 0 51 0 26 009 0.17 0.17 0 17 0 16 0.15 0 12 0.12 022 0 14

CM Unoptimal Batch 50% 003 0.05 0 28 0 18 007 009 0 10 0.11 0.14 013 009 0 09 022 019
T"* Batch 100% 0 03 0 05 0 26 0 18 009 0 09 008 009 0 14 0 13 0 07 0 07 015 020
h- No Batch 0 02 006 028 0 17 008 019 017 0 18 0 14 0.13 0 09 0 09 015 007
- l Optimal Batch 50% 002 004 044 020 006 0 06 0 08 0 08 0.11 010 0 06 006 020 0.15

Batch 100% 0 03 005 034 0 16 008 007 009 009 0.10 0 08 006 0 06 023 016

2 3 2



Appendix J continued

J.3  S tru c tu red  evaluation of featu re  p a ram e te r com binations used for index 
com putation

J.3.1 Consistency assessment of rogue seasonality index
Consistency Baals Raw

Time
FT

Total
FT 7 FT 28 FT 8054 

Energy
AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Han 

(Level 5)
DWT Haar 

(Level 
Shannon)

a) MA2 (0 , 0 1 01 -0 8) with MA1 (0  -0 2> 2/18 15/18 7/18 8/18 16/18 14/18 17/18 — TtTTS 5/18 6/18 4/18 0/18
: MA i .. : 2, Ai'f AR2 .o, C • p. C 8 5/18 14/18 e/18 9/18 10/18 8/18 8/18 8/18 11/18 11/18 17/18 6/18 13/18

Ordering process: Unoptimal with Optimal for
a) MA2 ( 0 ,  0 1 0 ,  -0 8) 9/9 4/9 3/9 2/9 5/9 8/9 6/9 7/9 6/9 4/9 4/9 4/9 5/9

b) MA1 (0  -0 2) 9/9 ■ 5/9 7/9 7/9 5/9 7/9 9/9
C) AR2 (p, 0 1 pj -0.8) 9/9 9/9 1/9 5/9 9/9 5/9 6/9 6/9 9/9 8/9 7/9 7/9 8/9 7/9

Overall Consistency - Demand and Ordering process M/83 48/63 21/63 29/63 47/63 44/63 46/63 46/63 50/63 46/63 39/63 39/63 30/63 38/63

* for corresponding lead time (LT), ordering and batching combination repeated for all combinations

J.3  .2 R ank analysis based on the m agnitude of index
(For a s s e s s in g  the  discrim ination ability of the  index derived  from  differen t featu re  param eter com binations)

Raw
Time

FT
Total

FT 7 FT 28 FT 8064 
Energy

ART AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 5)

DWT Haar 
(Level 

Shannon)
Sum of Ranks - MA<2) 
Minimum / best possible 18 189 86 235 181 48 161 124 133 36 96 87 48 242 220

Sum of Ranks -MA(1) 
Minimum / best possible 18 151 82 219 154 62 173 175 176 62 110 S3 28 242 199

Sum of Ranks - AR (2) 
Minimum / best possible 18 154 76 234 143 75 142 164 154 61 96 80 50 239 217

Sum of Ranks - TOTAL 
Mmimurn / best possible 54 494 244 688 478 185 476 463 463 159 302 220 128 723 636

with the highett rank allotted to that with the largest magnitude of rogue; Thease are then sum med up for that dem and process

J.3.3 Rank analysis based on the coefficient of index
(For a s s e s s in g  the  s to ch a s tic  stability  of the  index derived from  differen t featu re  param eter com binations)

Raw
Time

FT
Total

FT 7 FT 28 FT 8061 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar
(Level 5)

DWT Haar 
(Level 

Shannon)

Sum of Ranks - MA(2) 
Minimum / best possible 18 18 37 251 174 85 159 152 154 176 168 66 79 194 173

Sum of Ranks - MA (1) 
Minimum / best possible 16 18 41 2M 158 77 186 162 191 168 150 63 71 174 193

Sum of Ranks - AR (2) 
Minimum / best possible 18 18 49 249 192 132 126 133 147 165 161 70 79 177 187

Sum of Ranks - TOTAL 
Minimum / best possible 54 54 127 734 524 294 471 447 492 509 479 199 229 545 553

Raw
Time

FT
Total

FT 7 FT 28 FT 80% 
Energy

AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar 
(Level 5)

DWT Haar 
(Level 

Shannon]

Sum of Ranks - TOTAL (magnitude as well as 
coefficient of variation of the Index)
Minimum / best possible 108

548 371 1422 1002 479 947 910 955 668 781 419 355 1268 1189

J.4  C orre la tion  between a lte rna tive  rogue seasonality indices

Index and Alt 1 Index and Alt 2 Alt 1 and Alt 
2

Time 0.69 0.85 0.33
FT 0.93 0.96 0.84
AR Model 0.90 0.97 0.90
ACF 0.96 0.96 0.88
CCF 0.81 0.90 0.56
DWT 0.21 0.21 0.04
Parameter options for each feature have been combined together

Highlighted indicates low correlation (considered bad)
W J
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