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Abstract

Supply chains face disturbances in the provision of goods and services to customers.
A key disturbance which is endogenously generated from the nature of the ordering
process used is rogue seasonality, which is characterised by orders and other supply
chain variables showing cyclicality in their profiles and this cyclicality not present in
exogenous demand. It is observed in many supply chains and is a cause of significant
economic loss for entities in these chains. A useful way to manage rogue seasonality
could be by detecting its presence and intensity in a system and then taking
appropriate and timely action for its mitigation. Called “sense and respond”, this
approach has been used in various domains extensively, but its application in supply
chain management has been limited. This thesis explores the application of this
approach for managing rogue seasonality, with the findings from it particularly
relevant for a context where many multiple echelon supply chains are being managed
by a focal company.

Multiple methods are used to analyse each of the rogue seasonality generation and
detection components of the thesis. For understanding rogue seasonality generation,
system dynamics simulations of single and three echelon linear and four echelon non-
linear (Beer game) systems are used. The impact of different demand processes and
parameters, delays, order of delays, ordering processes, backlogs and batching on
rogue seasonality is assessed. The simulation analysis is supported with empirical
contexts from the steel and grocery sectors. The understanding gained on rogue
seasonality together with the related contextual data is used in the sense or detection
part of the thesis. The signature based approach, with the signature derived from
clustering of time series data of variables is explored for detection, with the data
represented in alternative domains such as amplitudes of Fourier transforms,
autocorrelation function, coefficients of autoregressive model, cross correlation
function and coefficients of discrete wavelet transform.

The thesis determined the signature and index for detecting rogue seasonality. While
the signature, which is based on the cluster profiles of the system variables indicates
the presence of rogue seasonality, the intensity of rogue seasonality is indicated by the
index. In a multi supply chain context, the index could be used to identify problematic
supply chains from a rogue seasonality perspective and initiate appropriate
management action. At present there is no measure for rogue seasonality and defining
an index for the same constitutes a major contribution of this thesis. Among
alternative time series representations, the frequency domain representation based on
Fourier transform was found to be the most appropriate for deriving the signature and
index. This is also a major contribution of the thesis, as the comprehensive assessment
of time series representations carried out in this study has not been done in many
studies across domains, and those that have done so, have not used any supply chain
related data in the assessment. Finally, the framework for exploiting the index for
managing rogue seasonality is proposed.
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List of Abbreviations and Symbols

/Symbol

Abbreviation

Description

ACF

Auto Correlation Function — Correlation of a dataset or time series
with itself offset by 1,....n lags or time periods. The numerical
suffix with ACF used in the thesis, refers to number of lags

AINV

Actual INVentory — The actual inventory of goods at the echelon
in context

AmpR

Amplitude Response — The amplitude gain (ratio of output to input
sinusoid amplitude) of the system at each frequency

APIOBPCS

Automatic Pipeline, Inventory and Order based Production Control
System — Generic structure of the ordering decision used in this
thesis and which has three components: Work in progress or orders
placed but not yet received feedback loop (automatic pipeline), the
inventory feedback loop and the feed forward of the forecasted
sales (orders)

AR model

Autoregressive model — It is a linear predictive model of a time
series where the value at a particular time is a function of its values
in the previous time periods. The number of past time periods used
is referred to as the order of the model and is represented as a
suffix with AR or AR model in the thesis

AlIC

Akaike’s Information Criterion — It is a criterion used for selecting
a model (among competing models) and involves trading off the
model’s complexity (measured by number of parameters in the
model) and the model fit (measured by sum of squared residuals)

AVCONS

AVerage CONSumption — A forecast generated by the echelon in
question and which is a component in the ordering decision

CCF

Cross Correlation Function — Correlation between two datasets or
time series offset by 1,....n lags. The numerical suffix with CCF,
used in the thesis, refers to number of lags () considered

COMRATE

COMpletion rate — The rate of receipts of goods (against orders
placed earlier) which could be from external suppliers or internally
from production

CONS

CONSumption — The demand rate or sales of the system under
study. This could be at the end customer or other intermediate
entities in the supply chain

DINV

Desired INVentory — Refers to the desired inventory at an echelon

DWIP

Desired Work in Progress — The desired or expected WIP going
through an echelon in the supply chain and which is computed by
multiplying the best estimate of production/distribution lead time
with the average demand

DWT

Discrete Wavelet Transform — Involves transformation of the data
set/time series into an alternate domain represented by the wavelet
basis functions and where the wavelet scales and positions (used in
the transformation) are based on powers of two. The numerical
suffix with DWT, used in the thesis, reflects the level of
decomposition of the signal
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Abbreviation
/Symbol

Description

EINV

Error in Inventory — The difference between the desired or target
inventory level (DINV) and the actual level of inventory (AINV)

EWIP

Error in Work in Progress — The difference between the desired
work in progress (DWIP) and the actual WIP levels.

f

Frequency of a sinusoidal signal expressed in units of cycles per
time period

FR

Frequency Response — It is a measure at various frequencies of a
system's output spectrum in response to an input signal and
consists of amplitude response (Amp R) and phase response

FT

Fourier Transform — Involves transformation of a time series into
its constituent sinusoids in terms of amplitude and phase of
different frequencies. The suffix with FT (as used in the thesis)
reflects the number of initial frequencies used for a subsequent
analysis after FT

LT

Lead time — The delay between order placement and receipt of
goods into inventory

MA model

Moving Average model - It is a linear regression of the current
value of the time series against previous (unobserved) white noise
error terms or random shocks. The number of previous error terms
used is referred to as the order of the model and is represented as a
suffix with MA in the thesis

MTO

Make to Order - Manufacturing strategy geared to satisfy customer
requirements only upon receipt of a customer's order.

MTS

Make to Stock — A build-ahead manufacturing strategy where
production plans are based upon sales forecasts and/or historical
demand; goods are produced and stocked in anticipation of
demand and customer demand is met from these stocks

ORATE

Order Rate — The production or goods order rate

PCA

Principal component analysis — It is a mathematical procedure that
transforms a number of possibly correlated variables into a smaller
number of uncorrelated variables called principal components. The
original data is expressed in terms of the principal components for
further analysis

MA model parameters; As many parameters (6,.....0,) are used as
the order of the model

AR model parameters; As many parameters (pi,.....p n) are used as
the order of the model

Laplace transform parameter-A complex frequency in
mathematical terms

SKU

Stock keeping unit — A unique identifier for each distinct product
which enables a company to systematically track its inventory or
availability

SPCA

Spectral principal component analysis — Principal component
analysis done on the spectra of the time series variables so that
time shifts in the data caused by delays and lags in the process
dynamics are eliminated
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Ta Time to average consumption — A constant used in the forecasting
mechanism that defines how “fast” a signal is followed. It is the
average age of the forecast

T; Time to adjust inventory — A constant that specifies the number of
time periods over which the error in inventory is adjusted

Tp The actual lead time between placement and receipt of order. It is
the same as LT

Tw Time to adjust work in progress or WIP - A constant that specifies
the number of time periods over which the error in work in
progress is adjusted

WIP Work in progress — The volume of products that have been ordered
but not yet received

® Angular frequency - Frequency of a sinusoidal signal expressed in
units of radians per time period.

© max FR Frequency which corresponds to the maximum frequency response

value

@ Crossover

Frequency which corresponds to transition of the FR profile from
amplification to attenuation i.e. where FR value is equal to 1
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Chapter 1 — Introduction

This chapter presents the background and motivation of the research. The main
themes are explained in brief and then collated to formulate the research questions.

This is followed by a description of the structure of the thesis.
1.1 Research background

The research in this thesis has been conducted as a part of the five-year Mass
Customised Collaborative Logistics for Sustainable Manufacturing (McCLOSM)
flagship project of the Innovative Manufacturing Research Centre (IMRC) at Cardiff
University. This project is sponsored by the Engineering and Physical Sciences
Research Council (EPSRC) and was undertaken jointly with policy makers, trade
bodies and a number of industrial partners from diverse sectors such as food, steel and
construction. The author’s role in the project was to look at how collaboration and
information sharing can be used for the detection of disturbances and consequent

mitigation of risks in a supply chain.

1.1.1 Disturbances in supply chains

Supply chains, which consist of all intermediate entities connecting producers and
consumers such as vendors, manufacturers, distributors and retailers routinely face
disturbances, which prevent them from realising their performance objectives (Davis,
1993). Defined as random or unexpected occurrences that deviate from ‘normal’
(Svensson, 2000), these disturbances could arise from customer demand, suppliers,
internal manufacturing processes, environmental factors or control systems (Davis,
1993; Mason-Jones and Towill, 1998; Juttner, 2005). Amongst these, disturbances
from control systems, which originate from use of inappropriate information and/or
inappropriate ordering/control algorithms to match supply and demand, affect a large
number of supply chains. Practitioners either passively accept them or ignore them,
(Geary et. al, 2002; McCullen and Towill, 2002) both of which cause economic loss
for the firms in the supply chain (Metters, 1997; Lee et al., 1997a, b).



1.1.2 Control disturbances

Two kinds of control disturbances have been identified in the literature. One is the
Bullwhip effect in which variability in orders is amplified as one moves from
downstream to upstream echelons (Forrester, 1961; Lee et al., 1997a, b). The second
is endogenous generation of seasonality in orders and other supply chain variables
(Forrester, 1961; Kim and Springer, 2008). This seasonality, which is generated by a
company’s own internal processes such as inventory and production control systems,
is not present in exogenous demand and is therefore also referred to as rogue
seasonality (McCullen and Towill, 2002).

Extensive research has been conducted on the Bullwhip effect (Geary et al, 2006;
Miragliotta, 2006) including its occurrence in different empirical sectors (Miragliotta,
2006), its multiple causes such as demand signal processing and lead time (Forrester
effect), batching, shortage gaming, price promotion and behavioural (Geary et al.,
2006) and various approaches for its measurement. Moreover, different methods such
as statistical, control theory, system dynamics simulation and management games
(specifically Beer game) have been used to study it. On the other hand, the literature
highlights only two studies focussed on rogue seasonality (Thornhill and Naim, 2006;
Kim and Springer, 2008). Rogue seasonality is present in many supply chains (Kaipia
et al., 2006; Lee et al., 1997a; Torres and Moran, 2006) and its presence causes cost
inefficiency. Costs to the extent of 10-20 % could be reduced by elimination of such
seasonal variations as per Metters (1997). The study of rogue seasonality is therefore
important and forms the focus of this thesis.

1.1.3 “Sense and respond” based approach to manage rogue seasonality

One approach to manage rogue seasonality is to minimise its generation and intensity
through appropriate choice of forecasting and ordering parameters. Kim and Springer
(2008) used this approach to determine the conditions under which strong or weak
seasonality could be endogenously generated in a dyadic system based on analytical
system dynamics analysis. However, such an approach may not be very effective in
real environments. This is because, supply chains in general are quite complex which

makes them difficult to control (McCarthy and Tan, 2000; Baader and Montanus,



2008). At the same time, optimal control policies and parameters established in
theoretical studies are too simplistic in relation to this complex reality, having been
developed under dyadic settings. Finally, there is additional uncertainty from the way
these policies and parameters are applied in practice in real environments because of
behavioural biases (Bendoly and Cotteleer, 2008; Croson et al., 2005). One alternative
is to use the “sense and respond” based approach which is particularly suited for

dynamic environments.

The *“sense and respond” approach involves use of information to sense changes in the
environment or context and then, based on it, initiating appropriate management
response. This approach has been applied in different strategic and operating contexts,
with its potential use also recognised in supply chain risk management by researchers
such as Hendricks and Singhal (2003) and Craighead et al. (2007). The “sense and
respond” based approach could potentially be used to manage rogue seasonality.

1.1.4 Signature based approach for detection

Among the various alternatives available for sensing or detection, the signature based
approach was considered because of its flexibility in handling different profiles and
numbers of variables as well as availability of a wider choice of techniques for
application. Though application of this approach in the supply chain management
domain has been limited, it has been successfully applied in various other domains
such as finance, equipment maintenance, healthcare and computer systems (Edge and
Sampai, 2009; Lee et al., 2006; Lamma et al., 2006; Zhu et. al., 2001).

Use of the signature based approach involves choosing the techniques for determining
the signature or rule/s of detection as well as the nature of information to be fed to
these techniques. Clustering is the most common technique for analyzing multiple
time series data (Liao, 2005) and it was therefore used for signature formulation.
Signatures based on clustering involve finding similarity or dissimilarity relationships
among the time series profiles of the operating variables, allocating them to separate
homogenous groups or clusters and relating the profile of clusters to a particular

disturbance.



In terms of nature of information used for formulating signatures, either raw time
series could be used or it could be transformed to other domains, and features from
these domains used. Typical features that have been applied in time series clustering
studies in different disciplines are: the amplitudes of Fourier transforms (FT)
(Agrawal et al., 1993), coefficients from an autoregressive (AR) model (Kalpakis et
al., 1999), wavelet coefficients from discrete wavelet transform (DWT) (Chan and Fu,
1999), autocorrelation function (ACF) (Wang and Wang, 2000) and cross correlation
function (CCF) which is a feature of pairs of time series (Bohte et al., 1980).
However, two issues regarding these time series clustering studies stand out. Firstly,
none of these studies used supply chain contextual data in their analysis. Since the
effectiveness of feature/s is domain specific, findings from these studies have limited
applicability for the supply chain as well as rogue seasonality contexts. Secondly, few
studies have compared the performance of their features with other features, and those
that have, have used only one or two features in the comparison (Keogh and Kasetty,
2003; Liao, 2005). The most appropriate time series transformation and feature for
analyzing supply chains in general and rogue seasonality in particular, therefore, is an

open question.
1.2 Research questions

To summarise, the study of rogue seasonality is important because it is present in
many real world supply chains and is a cause of significant economic loss for entities
in these chains. One way to minimise this loss is by detecting, diagnosing and
discriminating rogue seasonality from exogenous disturbances and using it to improve
the timeliness and quality of remedial management action. Christopher and Lee
(2004) highlighted the need for intelligent alerts for out of control situations and the
importance of detection based approaches in supply chains. Use of this approach for
the detection of rogue seasonality was explored by Thornhill and Naim (2006) who
proposed a lookup table based on spectra PCA (principal component analysis) for the
same. However, this study was not comprehensive. Data from only a single case study
was used and only a single detection technique (spectra PCA or SPCA) was tested.
The technique also required significant manual intervention, which meant subjectivity
in the detection process. A more objective and automated approach for rogue

seasonality detection, is therefore required. Such a detection based approach would be



especially useful in an environment where many multiple echelon supply chains are

being managed by a focal company.

Use of the “sense and respond” approach is explored, which involves processing of
system information to sense or detect rogue seasonality and then taking appropriate
management action (respond) to reduce its intensity and thereby related economic
loss. For detecting rogue seasonality, signature based approaches are tried with the
signatures derived from clustering of time series information of system variables. The
signature could be in the form of a subjective rule or an objective index which
indicates the intensity of rogue seasonality. No such index measure exists for rogue
seasonality at present, in contrast to the Bullwhip effect, for which multiple measures
have been proposed. Establishment of the signature and index also provide the
opportunity to automate the rogue seasonality detection process and in this way
address one of the limitations of the study by Thornhill and Naim (2006).

The nature of system information, in terms of whether it is in the time or other
domains such as amplitudes of FT, AR model parameters, DWT coefficients, ACF
and CCF affects the effectiveness of the signature. Given that the best domain
representation for clustering supply chain data is not established, all these alternative
domains need to be tried to determine the same for the rogue seasonality signature.
Finally, information on only a few rather than all the variables could be available, and

therefore, it is important to assess sensitivity of the findings to the same.

An important consideration in this research is the rogue seasonality context to be used
for assessing the effectiveness of different aspects of the detection process. While a
simulated context provides controlled experimentation and in this way facilitates
different rogue seasonality contexts to be assessed, real world examples of rogue
seasonality help in increasing the external validity of the findings. When used
together, they complement each other effectively. Use of multiple contexts increases
the validity of the research findings on a generic basis also (Shukla et al., 2009; Boyer
and Swink, 2008).

Putting together the various aspects of the detection process with the different rogue
seasonality contexts, the following research questions emerge which this thesis seeks

to answer:



1) What signature and index could be used for detecting rogue seasonality in a linear
supply chain? What is the best feature (domain representation) and the
appropriate system variables for deriving them?

2) Can the signature and index identified from the linear supply chain be applied to a
non-linear supply chain with backlogs and batching? Is the best feature and
appropriate variables for detecting rogue seasonality in this non-linear system the

same as in the linear system?

3) Can the signature and index be used for detecting rogue seasonality in real supply
chains? Are the best features and system variables for deriving the signature and
index the same as found in RQ1 and RQ2?

4) How can rogue seasonality detection be used in a managerial framework?

The linear supply chain system was considered as it is analytically tractable (Towill,
1982) and therefore yields exact solutions which could be used for a more accurate
assessment of different aspects of the detection process. On the other hand the non-
linear supply chain with backlogs and batching is a more realistic system and it was
therefore also analysed. Finally, the empirical rogue seasonality contexts used, add to
the limited knowledge base of the same. The linear, non-linear and empirical contexts

used are discussed in the Methodology chapter where they are best explained.

In terms of research questions, these establish the process of rogue seasonality
detection in terms of the signature and index as indicators of rogue seasonality,
appropriate system variables to be used and the domain in which they should be
represented (as features) in each of linear, non-linear and empirical contexts
individually. This multi context assessment of different aspects of detection increase
the robustness of the findings with respect to the same. Finally, RQ 4 is aimed at
using the detection facilitated by RQ 1, 2, 3 to improve the management of rogue

seasonality in an unseen setting.
1.3  Structure of the thesis
This thesis is organised into seven chapters as shown in Figure 1.1.

Chapter 1 introduces the background and motivation for the research. Gaps in

research are collated to form the research questions:



Chapter 2 reviews the literature around the core research theme. Supply chain
disturbances, control disturbances including Bullwhip and rogue seasonality, “sense
or detect and respond” based approaches for rogue seasonality detection and
applicability of signatures based on clustering of alternative domain representations of
system variables are reviewed. A major part of this work is included in the
presentation made at the 14™ International Annual EurOMA Conference in 2007
whose full reference is as follows:

Shukla, V. and Naim, M. M. (2007). "An operations management framework for

disturbance detection in supply networks", Proceedings of the 14" International

Annual EurOMA Conference, June 17-20, Ankara, Turkey.
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Introduction
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l

|
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Chapter 7

Managerial implications and Conclusions
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Figure 1.1 Overall Thesis Structure




Chapter 3 discusses alternative methodologies and the rationale for choosing a multi
methodology simulation and case study based approach for understanding rogue
seasonality as well as generating related contextual data. Alternative domain
representations or time series transformations (features) that could be applied for
rogue seasonality detection are also discussed. Some of the work in this chapter is
included in the presentation made at the 39" International Conference on Computers
& Industrial Engineering in 2009 whose full reference is as follows:

Shukla, V. and Naim, M. M. (2009). "The impact of capacity constraints on supply

chain dynamics”, Proceedings of the 39" International Conference on Computers

and Industrial Engineering, July 6-8, Troyes, France

Chapter 4 uses single and three echelon simulated linear supply chain systems to
demonstrate the mechanics of rogue seasonality generation. The signature, index of
rogue seasonality and the most appropriate time series transformation (and feature)
and system variables for computing the same (answer to RQ 1) are also determined
from analysis of these systems. This work has been resubmitted to the International
Journal of Production Economics and is under review. Its full reference is as follows:
Shukla, V., Naim, M. M. and Thornhill, N. "Rogue seasonality detection in supply

chains", International Journal of Production Economics, Under review

Chapter 5 assesses the validity of the findings obtained from the linear supply chain
system (signature, index, best time series transformations and features, system
variables) on a simulated non-linear supply chain system with backlogs and batching.
Use of different number of echelons (four), a different control system and an
additional variable for shipment (affects dynamics as well as computation of the
index) compared to the linear system provide further robustness to the findings. A
part of the work in this chapter has been published in the International Journal of
Production Research. Its full reference is as follows:

Shukla, V., Naim, M. M., and Yaseen, E. A. (2009). "Bullwhip and backlash in

supply pipelines." International Journal of Production Research, 47(23), pp. 6477-

6497.

Chapter 6 tests the validity of the findings from the simulation analysis on the data
from two case studies. Monthly data from a steel case study and daily data from a

grocery (soluble coffee) case study are analysed in a similar fashion as chapters 4 and
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5 to answer RQ 3 and in the process support or disprove the simulation findings. The

steel case study data analysis is included in the paper resubmitted to the International

Journal of Production Economics which is being reviewed (same as in Chapter 4)

while the grocery case study findings were presented at the 14™ Logistics Research

Network Annual Conference in 2009. The full reference for the latter is as follows:
Shukla, V. and Naim, M. M. (2009). "Investigation of disturbances in a grocery
supply chain”, Proceedings of the 14" LRN Annual Conference, September 9-11,
Cardiff, UK.

Finally, Chapter 7 collates the findings from linear and non-linear simulation and the
empirical case studies to answer the research questions. Implications of these findings
for the managers is also discussed; specifically, the framework which they could use
to manage rogue seasonality. This chapter also describes the contributions of the

research as well as its limitations and suggests areas of further study.
14 Summary

This chapter has provided background information on the research theme, the aims of
the research and the research questions addressed in this thesis. The structure and
contents of the thesis are also explained to give the reader a better understanding of

the research process followed.



Chapter 2 — Literature Review

This chapter provides an overview of previous research in all areas related to the core
theme of the thesis, which is rogue seasonality and its detection. Initially, supply
chain management and disturbances in supply chains are discussed, together with the
need to focus on and investigate individual disturbances in detail. The next part
highlights the significance of control disturbance, its manifestation as the Bullwhip
effect and rogue seasonality, and the fact that a large body of research has been
conducted on the former while research on the latter has been limited. This leads to
the rationale of focussing on the rogue seasonality control disturbance. After
discussing the limitations of alternative design based approaches due to system
complexity and behavioural dynamics, managing the rogue seasonality by using
detection based approaches is explained. Subsequently, the relative merits of the two
generic methods of detection: change point detection and signature based methods are
presented, together with the suitability of the latter for detection in supply chain
contexts. Next, details of the signature based methods which are mostly based on time
series clustering and the different time series representations (transformations) and
features used in clustering are provided. Finally, all the different threads are drawn

together and summarised and from these the research questions are developed.
2.1 About supply chain management

Consumers need products and producers produce them. However, difficulties arise
when one tries to link the two together. This happens because while consumers are
geographically scattered, products are manufactured only at a few centralised
locations so as to take advantage of economies of scale. Consumers are also
demanding in terms of service and expect instant availability while manufacturing and
delivery of products takes time. Finally, consumers are also quite price sensitive and
therefore the producer-consumer linkage needs to be efficient as well. These are
fundamental issues which are faced by most organisations and give rise to questions
such as: What kind of structures should be used to supply products to consumers?
When, where, and how much should be produced and supplied? Finally, how best to
address these questions while meeting the twin objectives of efficiency and high

customer service?
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The study of supply chain management helps answer these questions, where supply
chain refers to all entities between producers and consumers (such as distributors,
wholesalers, transporters and retailers) which are linked together by the upstream flow
of orders (which also constitutes information flow) and downstream flow of material.
The information flow is typically used by individual echelons for planning purposes
that is distribution and production planning. Traditionally, entities along the supply
chain have operated independently with their own, often conflicting, objectives
(Ganeshan and Harrison, 1995). However, recently there has been increasing
recognition of the benefits from coordinating the actions of these entities. Such an

integration strategy is called supply chain management.

Supply chain and supply chain management definitions in the literature recognise the
systemic nature of supply chains and the benefits from such an approach. For
example, Stevens (1989) defines a supply chain as “a system whose constituent parts
include material suppliers, production facilities, distribution services and customers
linked together by the feed forward flow of materials and feedback flow of
information.” According to Christopher (1992), a supply chain is the network of
organisations which are involved through upstream and downstream linkages in the
different processes and activities, where each produces value in the form of products

and services in the hands of the ultimate consumer.

Supply chain management, on the other hand, are those approaches which integrate
the constituent parts of organisations in the supply chain. Integration ensures that
merchandise is produced and distributed in the right quantities, to the right locations,
and at the right time so that both the requirements of providing high customer service
and minimum system wide costs are met (Simchi-Levi et al., 2002). A more holistic
perspective is used by Chopra and Meindl (2004), who state that supply chain
activities begin with a customer order and end when a satisfied customer has paid for
its purchase. According to them, the main objective of a supply chain is to match
supply with demand while maximising the overall value generated, that is, the
difference between product price and cost incurred by the supply chain in fulfilling
the customer demand. Matching supply with demand and managing the supply chain

as a system is difficult. One of the main reasons for this difficulty is the unpredictable
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disturbances which constantly prevent the supply chain from achieving its

performance objectives (Davis, 1993).
2.2 Disturbances in supply chains

Supply chains are prone to disturbances. Defined as random or unexpected
occurrences that deviate from ‘normal’ (Svensson, 2000), these could be major but
infrequent such as earthquakes and terrorist attacks or minor but frequent such as
delays in material deliveries, unanticipated process losses and information
interruptions which negatively impact firms across the network. A spate of major and
minor disturbances in well known companies has brought this subject into sharper
focus in recent times. For example, a ten minute fire at one of its Tier 2 component
manufacturers caused Ericsson a financial loss of $220 million (Norrman and Jansson,
2004) while in another case Cisco had to write off inventory worth $2.25 billion
because of its dysfunctional planning in a deteriorating economy associated with the
“Dot-com” crash (Barrett, 2001). Besides these well known and widely publicised
disturbances, there are other routinely occurring disturbances of a lower scale such as
delays in material deliveries, unanticipated process losses and information
interruptions which cause loss in revenues (lower product availability, loss of
customer goodwill) as well as an increase in costs (waste generation and reduction in
process efficiencies). Since these disturbances are frequent, supply chain planners
tend to internalise them as the “cost of doing business” (Stauffer, 2003). However,
over a period of time, the cost implications of such routine disturbances to an
organisation are significant. It is to be noted that ‘disturbances’ have been used almost
synonymously with other terms such as ‘risks’ in the literature. While risks refer to
the potential of a negative consequence, disturbances have been used more in terms of
the active occurrence of a negative event. For example, in the context of supplier
delivery, risk refers to the possibility of material not being delivered on time leading
to a loss in production while disturbance refers to the actual realisation of this event.
Since their underlying meaning is the same, risk and disturbance have been used

interchangeably in the rest of the thesis.

Disturbances have been studied from a multidimensional perspective by different
authors. Cavinato (2004) used a holistic perspective by considering disturbances

arising in any of the physical, financial, informational, relational, or innovational
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flows in the supply chain. However, a majority of researchers have considered an
order fulfilment perspective (physical and information flows), although their
classification of disturbances and focus for managing these disturbances are different.
An exemplar rather than exhaustive compilation of studies on supply chain
disturbances is given in Table 2.1. The key observations from this table are

summarised below.

¢ The negative impact of supply chain disturbances on organisational performance is
recognised by almost all studies, though the nature and extent of the impact is
anecdotal in many cases. A more quantitative estimate is provided by Hendricks and
Singhal (2005) who determined the association between supply chain “glitches”
(same as disturbances) and operating performance by analysing the financial
statements of the affected companies. They found that firms with “glitches” reported
on average 7% lower sales growth, 11% higher growth in cost, and 14% higher
growth in inventories compared to a sample of firms of similar size from similar
industries without “glitches”. The companies with “glitches” also showed a slower
economic recovery: operating income, sales, total costs, and inventories did not
improve in the two-year time period after the announcement of the “glitch”. Similarly,
Wagner and Bode (2008) used a cross sectional survey to highlight the negative

correlation between supply, demand risks and supply chain performance.

e Most studies are either purely conceptual or empirical but even in the empirical
based studies, the research has been conducted at a high level using primarily
qualitative approaches (Svensson, 2000; Zsidisin, 2003; Norrman and Jansson, 2004).
More quantitative, empirical survey based studies on disturbances by Hendricks and
Singhal (2005) and Wagner and Bode (2008) also have a similar macro orientation.
Another aspect about the studies on supply chain disturbances is their non
consideration of realistic multi echelon structures. This could be because of
difficulties both in getting access to such data as well as in analysing it, in particular
where there is evidence of 'rippling’ of disturbances as they cascade across echelons
making the data dynamically complex to scrutinize. This is evident from studies such
as Harland et al. (2003) and Hallikas et al. (2002), which are among the few empirical
studies about disturbances in multi-echelon supply chains, but who have also used the

high level descriptive explanation and analysis approach.
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Table 2.1 Select studies on Supply Chain Disturbances

Quantitative / Qualitative and Atomistic (direct)
/ Holistic (indirect) nature of disturbances

and survey)

Authors Disturbance basis used 'Research method | Focus of analysis .
Svensson (2000) Supply as source of disturbance Empirical (Case study | Conceptual framework for supply vulnerability in terms of Quantitative /

Qualitative and Atomistic (direct) / Holistic (Indirect) disturbances

Zsidisin et. al. (2000,

Supply as source of disturbance

Empirical (Case

Risk identification, assessment and management practices in companies

2004); Zsidisin (2003) study)
Giunipero and Supply as source of disturbance Conceptual Risk management and factors that affect level of investment on the same
Eltantawy (2004)
Blackhurst et al. (2008) | Supply as source of disturbance Empirical (Case Index for assessing and monitoring supply risk
study)
Johnson (2001) Supply and Demand as sources of disturbance Empirical - Investigation of risk management practice in toy industry
Secondary data
Lindroth and Supply and Demand as sources of disturbance Empirical (Case Identification of risks and risk mitigation by sharing of risks
Norrman* (2001) study)
Davis (1993) Supply, Demand, Manufacturing as sources of | Analytical and Conceptual framework for uncertainty assessment and mitigation
disturbance Conceptual

Harland et. al. (2003)

Supply, Demand and Process as sources of
disturbance in a network environment

Empirical (Case
study)

Risk identification, assessment and management in a network
environment using a proposed tool

Hallikas et al (2002)

Supply and Demand as sources of disturbance

Empirical (Case

Identification and assessment of risks in a network environment for the

disturbance in a network environment

in a network environment study) cases considered. Related conceptual framework and tool proposed.
Norrman and Jansson | Sources of Disturbance — Supply, Demand, Empirical (Case Risk identification, assessment and management processes used in the
(2004) Process and Environmental as sources of study) case study

activities

Juttner (2005) Environmental, Network and Organizational as | Empirical (Focus Risk identification, assessment and management practices
sources of disturbance group) and
Conceptual
Kleindorfer and Saad | Nature of Disturbance — Risks in coordinating | Conceptual Risk assessment and mitigation for disruption risk management
(2005) supply and demand, disruptions to normal




Table 2.1 Continued

Authors Disturbance basis used Research method | Focus,of analysis

Craighead et. al (2007) | Risks in coordinating supply and demand, Empirical (Case Design characteristics and mitigation capabilities that affect the severity
disruptions to normal activities study) and Conceptual | of disruptions

Mason-Jones and Demand, Manufacturing, Supply, Control Simulation Control and demand uncertainty reduction through information sharing

Towill (1998) systems as sources of disturbance

Gaonkar and Planning level — Operational, Tactical, Strategic | Conceptual and Conceptual framework for the classification of risks. Risk management

Viswanadham (2004) | Scale of Disturbance - Deviation, Disruption, Analytical by designing robust supply chains based on prior identification and
Disaster assessment of risks

Christopher and Lee Control system as source of disturbance Conceptual Risk management

(2004)

Wilding (1998) Control systems as source of disturbance Conceptual Endogenous uncertainty generation from inappropriate/non-holistic

decision/supply chain control processes

Towill (2005) Control as source of disturbance (specifically on | Conceptual Possibility of reducing bullwhip by use of appropriate control
Bullwhip) algorithms

Sheffi (2001) Environment as the source of disturbance Conceptual Risk management

Chopra and Sodhi** Supply, Demand, Process and Environmental as | Conceptual Optimal and holistic risk management

(2004) sources of disturbance

Hendricks and Singhal | Mismatch of demand with supply (supply chain | Empirical (survey) Extent of adverse impact of supply chain glitches on operating

(2005) glitch); Supply, demand and process as major performance (lower sales growth and higher costs, assets and
sources of glitches inventories)

Wagner and Bode Supply, Demand, Regulatory, legal and Empirical (survey) Operationalisation of the supply chain risk construct and relationship

(2008) bureaucratic, infrastructure and catastrophic between supply chain risks and supply chain performance

Tang and Tomlin Supply, Demand, Process and Environmental as | Analytical Risk management by deploying demand, supply and process

(2008) sources of disturbance flexibilities

Wilson (2007) Transport as source of disturbance Simulation  (System | Impact on supply chain performance from transport disruption in

Dynamics) different echelons

Business risks (Financial, Business, Regulatory, Legal) and product design related risks were not included as the focus is on the product delivery process.
* Proposed a framework for positioning supply chain risk issues in terms of unit of analysis — type of risk (in terms of scale) — risk handling focus;** Exact risk nomenclature used is different
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* Most studies have categorized disturbances on the basis of their source or origin,
though the sources used differ across studies. Studies by Svensson (2000), Zsidisin
(2003), Zsidisin et al. (2000, 2004), Giunipero and Eltantawy (2004) and Blackhurst
et al. (2008) focus on disturbances originating at the supplier such as machine
breakdowns, capacity constraints and quality problems. Others such as Johnson
(2001) and Hallikas et al. (2002) have added demand related disturbances with Davis
(1993) and Harland et al. (2003) further adding process related disturbances. Demand
disturbance refers to variations in nature and volume of customer demand while
process disturbance refers to disturbances such as those mentioned above for supplier
disturbance which occur in an echelon’s own value adding process. Inappropriate
information and control systems for matching supply and demand and its associated
implications is recognised as a control disturbance by Mason-Jones and Towill (1998)
and Christopher and Lee (2004). However, few studies have recognised it as a
separate disturbance with most including it within demand risk. Finally, disruptive
events such as earthquakes, terrorist incidents, fires and strikes have been classified as
a separate environmental disturbance or disruption by Norrman and Jansson (2004),
Juttner (2005) and Kleindorfer and Saad (2005).

e In terms of managing risks or disturbances, the Association of Insurance and Risk
Managers (AIRMIC, 2002) prescribes four generic steps, which adapted for supply
chain risks by Norrman and Johnson (2004) are: Risk identification (Identification of
direct and indirect potential sources that could negatively affect the supply chain),
Risk assessment (Prioritization of the risks identified based on their probability of
occurrence and consequences), Risk management (Implementation of actions such as
accepting, avoiding, reducing, sharing or transferring risks to reduce its consequences
or probability of occurrence or both), Risk monitoring (Monitoring of large
unresolved risks). Empirical evidence from the studies suggests that very few
organizations follow these four steps rigorously. A study by the Computer Sciences
Corporation had a similar observation: 43% of 142 companies studied reported their
supply chains to be vulnerable to disruptions out of which 55% did not have any
documented contingency plans (Poirier and Quinn, 2003). One reason for this could
be the scarcity of suitable managerial techniques as highlighted by Christopher and
Lee (2004) and Blackhurst et al. (2008).
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Disturbances impact organisational performance negatively. The movement towards
increased responsiveness, higher levels of agility and lower inventory levels has
further increased the potential occurrence of such disturbances and resulting loss to
organisations (Christopher, 2002). The subject of supply chain risk management is
therefore important and requires intensive study. However, the concept of risk in
supply chains is still in its infancy (Juttner et al., 2003). Most studies on the subject
are at a ‘high’ conceptual level which provide a ‘big picture’ understanding of the
risks and their management, but lack details. Researchers are unable to ‘drill down’ to
the key variables influenced by or influencing the disturbances, the relationships
among them and methodologies or tools to manage them. These studies also have
lower practical utility as real applications require dealing with detailed decision rules,
controls, procedures and circumstances. This has been highlighted by Blackhurst et al.
(2005) who comment that from a practical perspective high level studies provide
limited insights into how to deal with disturbances. Therefore, instead of the generic
‘big picture’ approach to study disturbances, there is a need to focus on individual
disturbances and investigate them in detail. Such an approach was used by Svensson
(2000) and Blackhurst et al. (2008) for supply and by Wilson (2007) for transport
disturbance, although the detailed nature of investigation as used in the thesis is much

more comprehensive.

This thesis focuses on control disturbance. Control disturbance is endogenously
generated from use of inappropriate information and/or control algorithms to match
supply with demand (Mason-Jones and Towill, 1998; Geary et al., 2002). It has severe
negative cost implications for firms and therefore its study is important. For example,
Metters (1997) showed an individual firm incurring 10% to 30% additional costs from
control disturbances. Propagation of these disturbances causes the cost implication to
be even more severe in a multi echelon supply chain. Moreover, because of the casual
attitudes of practitioners who either neglect them, or ignore them or passively accept
them (McCullen and Towill, 2002) these disturbances continue to affect many supply
chains. Though a few researchers such as Wilding (1998), Christopher and Lee (2004)
and Towill (2005) have studied these disturbances, their approach was primarily
conceptual while in this thesis a detailed data based approach is used. Moreover, the

analysis in the thesis is based on multi echelon supply chains, and therefore
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contributes both to the limited literature on analysis of such structures and also

increases the external validity of the findings.
23 Supply chain control disturbance

Each echelon in a multi echelon supply chain is required to solve a fundamental
problem, which is: “how much to order from its upstream echelon which satisfies
customer demand but also keeps its inventory level low”. This is the supply chain
control problem. It is analogous to the production/inventory control problem whose
purpose is to transform incomplete information about the market place into
coordinated plans for production and replenishment of raw materials (Axsater, 1985).
The task is difficult as both market place demand and receipts from suppliers is
uncertain and generally involves the use of information such as demand, inventory
and orders in the pipeline in the decision making, which are applied in a mathematical
way using replenishment rules or on the basis of judgement. For a multi echelon
supply chain the difficulties are manifold. This is because of the dynamic complexity
from the interactions of individual echelons with different ordering practices and the
generation of endogenous disturbances called control disturbances (Mason-Jones and
Towill, 1998). These disturbances have been characterised by Geary et al. (2002) as
arising from unavailability, non timeliness and inaccuracy of information and/or use
of inappropriate control systems which use this information to determine
procurement, supply and manufacturing orders. Typical control disturbances are the
Bullwhip effect (Lee et al., 1997a, b) in which the order variability is increasingly
amplified from downstream to upstream echelons and rogue or endogenously
generated seasonality (McCullen and Towill, 2002) in which orders and other supply
chain variables oscillate when no oscillation is present in the exogenous demand or
oscillate at a frequency different from exogenous demand. Both these effects were
demonstrated by Forrester (1961) using a simulation experiment. However, since
then, while there has been extensive research on the Bullwhip effect (Geary et al,,

2006), research on rogue seasonality has been minimal (Kim and Springer, 2008).

2.3.1 The Bullwhip effect

The Bullwhip effect has been observed in various empirical sectors such as apparel,
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grocery, food, automotive, electronics and retail and across a number of echelons
(Miragliotta, 2006). This effect has also been studied extensively using various
methods (Geary et al., 2006; Miragliotta, 2006; Disney and Lambrecht, 2007).
Different causes have been identified for its generation with researchers typically

focussing on a single cause in their respective study.
2.3.1.1 Causes of the Bullwhip effect

The Bullwhip effect is associated with the upstream amplification of orders and Lee et
al (1997a, b) identified and analysed four rational causes for its occurrence. Besides
these rational causes, two additional causes from a behavioural perspective (bounded
rationality and related biases in decision making) have been proposed by Sterman
(1989) and Croson et al. (2005).

a) Demand signal processing and lead times (Forrester effect) — The Bullwhip effect
arises from the compounding of forecasts due to use of downstream orders rather than
end customer demand in forecasting. Delays in information transmission and
shipment further accentuate the order amplification as longer delays mean more safety
stocks and safety stocks are typically added to forecasted demand for determining
order quantity (Axsater, 2000). Studies have varied the nature of demand, forecasting
process, inventory replenishment rules and tried information sharing to determine its

impact on the Bullwhip effect (Miragliotta, 2006).

b) Order batching — Aggregation of orders in a supply chain is the cause of order
amplification in this case. Reasons for aggregation or batching could be economies of
scale in production or transport (Burbidge, 1989), use of manufacturing resource
planning (MRP) systems, the “hockey stick” phenomenon when multiple companies
order at the same time (Lee et al, 1997a, b), economic order quantity (EOQ) based
ordering and economic production quantity (EPQ) based production where set up
times/costs are high (Hejazi and Hilmola, 2006). Analytical and simulation studies on
this cause of Bullwhip have found a positive correlation between batch size and order
amplification (Kelle and Milne, 1999; Holland and Sodhi, 2004; Potter and Disney,
2006; Cachon, 1999; Riddalls and Bennett, 2001).

c) Rationing and Gaming — First highlighted by Houlihan (1987), this refers to the

tendency of customers to over order during perceived threats of shortages or delivery
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unreliability. For example, a perception of production capacity shortage could prompt
customers to inflate their orders, so that even after rationing they could still receive
their desired requirement (Lee et al., 1997a, b) or to place multiple orders with
different suppliers, which could be subsequently cancelled when the perception/actual
shortage situation improved. Both these situations create demand distortions and
amplifications. Cisco’s inventory write off problem (Barrett, 2001) was primarily on
account of this cause. Few studies have addressed this cause of Bullwhip and those
which have, have studied it from a contracting perspective using analytical methods
(Cachon and Lariviere, 1999a, b, c).

d) Price fluctuation or the Promotion effect — This is related to the practice of using
promotions to stimulate demand. Demand increases in the short term, as customers
take advantage of this opportunity to forward buy but the resulting excess stock
causes demand in subsequent periods to fall. This distortion in demand has a
significant adverse impact on the supply chain dynamics. This cause of Bullwhip has
also seen limited research with one of the few studies on this subject being by
Lummus et al. (2003).

e) Behavioural causes — Two additional causes of Bullwhip have been proposed
which are attributed to non rationality in decision making and have been identified on
the basis of experimentation with human subjects in a role playing game, the Beer
game (Sterman, 1989). The supply line underweighting (SLU) cause is characterised
by participants underestimating the supply line (orders placed but not delivered) and
placing excess orders resulting in the Bullwhip effect (Sterman, 1989). A different
behavioural bias called coordination stock was identified by Croson et al. (2005) who
observed variability in orders despite the demand being constant and which was
known to all the players. According to the authors this was because individual players

ordered more so as to avoid the risk of poor decisions made by other players.
2.3.1.2 Methods used to study the Bullwhip effect

Researchers have used various methods to study this subject such as statistical or
operational research (OR) methods, control theory methods, system dynamics

simulation and management games.
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a) Statistical/lOR methods ~ This approach involves the formulation of the problem
as a difference equation under assumed operating conditions (demand, lead time,
forecasting and ordering processes) which is explicitly solved by minimising a cost
function (or surrogate). The dynamic performance such as order amplification is
implied by the mathematical solution. This method has mostly been used to study the
Forrester effect under different settings. For example, Lee et al. (1997b) and Chen et
al. (2000) investigated the impact of stationary AR (1) demand, different forecasting
techniques and an adaptive base stock policy while Daganzo (2004) focused on the

relative value of past demand information on the Bullwhip effect.

b) Control theory methods — This method involves representing the supply chain
(structure as well as forecasting and ordering policies) in an input-output format
which is then converted into a transfer function and analysed to draw conclusions
about its impact on the Bullwhip effect. The impact of different demand processes,
forecasting techniques, and ordering policies have been investigated using this
approach, a summary of which is provided in the review papers by Ortega and Lin
(2004) and Sarimveisa et al. (2008).

¢) Systems dynamics simulation - This method was advocated by Forrester (1961)
as a method of investigating the dynamical effects in large, complex systems. This
method’s usage involves representing the relationships between variables as causal
loop diagrams, converting them into differential equations and then visually studying
the output profiles of variables to understand the cause effect relationships. This
approach has significant advantages vis-a-vis analytical studies in terms of ability to
handle multi echelon structures, arbitrary demand process, forecasting and ordering
policies as well as non-linearities such as backlogs and capacity constraints. It has
therefore been extensively applied for understanding supply chain dynamics
especially the Bullwhip effect in multiple settings. For example, Potter and Lalwani
(2008) use system dynamics simulation to investigate the impact of demand
amplification on freight transport while Wilson (2007) uses it to assess the impact of
transport disruption on supply chain performance. A review of studies based on
system dynamics modeling in supply chain management is given in Angerhofer and
Angelides (2000).
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d) Management games — Management games, especially the Beer game (Sterman,
1989) has been used to understand the Bullwhip effect. This game represents a typical
production-distribution system with four echelons (retailer, wholesaler, distributor and
factory) where the player managing each echelon enacts the role of an inventory
manager and makes decisions on ordering from his/her supplier. The decision
environment is complex with a non-stationary demand pattern, time delays in ordering
and shipment, uncertainty in behaviour of suppliers and customers, short response
times and the need to optimise inventory/backlogs. Despite being a considerable
simplification of reality, the Beer game structure is still representative of many real
world supply chains and it is therefore not surprising to see the game being used in
many Bullwhip related studies (Croson and Donohue 2003, 2006, Disney et al. 2004,
Diana and Katok 2006). Though the focus of these studies has been on the
behavioural origins of the Bullwhip effect and for which the role playing version of
the game was used, the Beer game has also been simulated in many studies (van
Ackere et al., 1993; De Souza et al.,, 2000; Shukla et al., 2009). Beer game
incorporates non-linearities from backlogs, multiple echelons, time delays as well as
the shipment variable which make it realistic and therefore more attractive for

simulation.
23.1.3  Measurement of the Bullwhip effect

Multiple measures of Bullwhip have been proposed in the literature, which originate
from the different methods used to study it. Studies such as Lee et al. (1997b) and
Chen et al. (2000), which use statistical methods, consider the ratio between order and
demand variances as the measure, with a ratio greater than one indicating Bullwhip.
Disney and Towill (2003) however, argue that this measure reflects only half of the
Bullwhip problem and suggest inclusion of the ratio between net stock and demand
variance in the measurement. Use of the coefficient of variation rather than variance
has been suggested by Fransoo and Wouters (2000) as it eliminates mean differences
between the profiles while Taylor (1999) has proposed standard deviation in place of
variance. Taylor (1999) also demonstrated the intra organisational existence of
Bullwhip, unlike most studies which focus only on Bullwhip across organisations, and

highlighted the need to measure it using activity level information.
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System dynamics based studies typically use a step input as the test demand pattern,
and hence peak order value is used as the measure of order amplification and
Bullwhip. This is used as the Bullwhip measure in Beer game studies also, which use
step as the exogenous demand profile. Researchers using the filter theory approach
such as Dejonckheere et al. (2003) have defined “noise bandwidth” as the Bullwhip
measure which is the area under the squared frequency response (FR) curve. What is
the best measure among the above? Towill et al. (2007) tried different measures: peak
order, variance and noise bandwidth with a simulated data set and found Bullwhip
assessment to be conflicting. While no Bullwhip was indicated by the variance
measure, the peak order and noise bandwidth measures indicated significant
Bullwhip. They rightly caution that “Bullwhip is in reality not a generic term meaning
the same thing to all system users. Instead it is application specific”. In terms of the
Bullwhip measure to be used they state that “which Bullwhip measure to use should
not depend on the mathematics/simulation tools exploited in scheduling packages, but
on the user operating scenario”. Hence, the appropriate measure to be used is entirely

contextual and based on requirements.

Overall it was found that research on control disturbance related to the Bullwhip
effect has been extensive. It has been studied empirically, its causes have been
identified by using multiple methods, various measures have been proposed for its
measurement and ways to mitigate it have been suggested. Also, most cause and
mitigation oriented studies have focussed on design aspects such as design of
structure and information flows (number of echelons, information sharing, lead times)
and design of control practices (forecasting and ordering), the assumption being that
Bullwhip can be designed away. The other control disturbance besides the Bullwhip

effect is rogue seasonality which is discussed below.

2.3.2  Rogue seasonality

Rogue seasonality refers to cyclic patterns in orders and other supply chain variables,
which are endogenously generated from the inventory and production control systems
used, and are not present in exogenous customer demand. In the case of cyclicality
being present in exogenous demand, rogue seasonality manifests itself as orders and
other supply chain variables oscillating at a different frequency than exogenous

demand. Rogue seasonality could wrong foot the decision makers who, believing
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rogue seasonality to be real demand, could either be unnecessarily ramping their
production up or down and increasing their on-costs or buffering themselves via use
of inventory and increasing their holding costs. Moreover, rogue seasonality may not
be localised but may propagate due to the Forrester effect, causing cost inefficiencies
throughout the supply network. Metters (1997) showed that costs to the extent of 10-

20% could be reduced by elimination of such seasonal variations.

Rogue seasonality is present in many supply chains and to highlight this, sample data
available in the literature is used as given in Figure 2.1. The data was used in the

context of Bullwhip in the respective studies.

The first plot in Figure 2.1 depicts the dynamics in a three echelon electronic supply
chain (Kaipia et al., 2006). Rogue seasonality is evident with the oscillation frequency
of the upstream variable (Supplier shipments to OEM) different from customer sales
(channel sell-through). The second plot (Lee et al., 1997a) shows the orders placed
not only amplified in relation to actual sales, but also oscillating with almost constant
periodicty, though no such periodicity is apparent in the actual sales profile. Finally,
the third plot is the ouput generated from the empirical simulation of a four echelon
beverage supply chain which also shows periodic oscillations in the most upstream
variable (procurement) whose periodicity is different from customer sales (Torres and
Moran, 2006).

23.2.1 Previous research on rogue seasonality

Few studies have looked at rogue seasonality specifically with most studies
considering it together with Bullwhip. This is also evident in the recent review of
Bullwhip effect by Miragliotta (2006). It was first demonstrated by Forrester (1961)
who used a three echelon factory-distributor-retailer simulation model to demonstrate
the Bullwhip effect as well as the generation of seasonality (periodicity of 5-10
months) from random customer demand. He highlighted the role of system
characteristics such as its structure, feedback loops, time delays and ordering policies
for this generation. McCullen and Towill (2002) also used a similar approach to
demonstrate and explain both Bullwhip and rogue seasonality. Oscillation in orders
and inventory was also observed in a role playing four echelon supply chain game

(Beer game) which was subjected to a step change in demand (Sterman, 1989).
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Besides the reasons suggested by Forrester, an additional factor suggested for this

behaviour was the the inability of the players to account for the supply line (SLU).

Some other studies such as those by Towill (1982), Towill and del Vecchio (1994),
Towill et al. (2007), Dejonckheere et al. (2003) and Jaksic and Rusjan (2008) have
indirectly studied amplification of rogue frequencies in view of their use of control
theory, specifically frequency response (FR) analysis to study the Bullwhip effect.
These studies have exploited the mathematical equivalence between time and
frequency domain representations to analyse the order amplification in the latter
domain with Dejonckheere et al. (2003) even deriving a measure of Bullwhip effect in
this domain called “noise bandwidth” (area under the squared frequency response of
the order variable). Jaksic and Rusjan (2008) and Dejonckheere et al. (2003) also
studied the impact of different forecasting and replenishment policies on order
amplification using the frequency domain approach. However, it is to be noted that in
these Bullwhip oriented studies, frequency domain analysis is done for only one
(order) variable with information on all frequency channels being used. Though rogue
seasonality is also analysed in the frequency domain which is suited for data with
cyclicality, (Chatfield, 2004), the nature of analysis is different as will be seen in later

chapters.

The literature review identified only two studies which were exclusively focussed on
rogue seasonality. Kim and Springer (2008) used an analytical system dynamics
approach with a dyadic structure to determine the conditions under which rogue
seasonality could arise in a supply chain. The study assessed the role of ordering
policy parameters, that is, the weights assigned to inventory gap and pipeline gap
terms in generating strong and weak cyclicality, where strong cyclicality was defined
for the behaviour where variables (specifically inventory and pipeline stock)
alternately overshot and undershot their equilibrium values before converging while
cyclicality was defined to be weak if they did so only once. Though focussed on rogue
seasonality, the study by Kim and Springer is not comprehensive; it considers only a
dyadic structure, it does not consider the impact of forecasting policies on the
dynamics and analyses the dynamics of only two system variables (inventory and
pipeline stock). Secondly, the study defines rogue seasonality from a subjective

perspective, though with a frequency bias; a profile with multiple oscillations is
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classified as strong cyclicality while that with one or less cycle as weak cyclicality.
On the other hand, studies such as Metters (1997) consider amplitude of seasonality to
be a more relevant factor in terms of adverse impact on cost efficiency of operations.
Finally, Kim and Springer complicate their classification of rogue seasonality further,
by introducing another factor called external shock whose magnitude (small/large)

also determines the nature of rogue seasonality (strong / weak).

The second study on rogue seasonality is empirically oriented and uses the context of
a steel supply network (Thornhill and Naim, 2006). Multiple variables are analysed
using a specific technique to characterise the cyclical disturbances in the network. The
technique called spectra principal component analysis (SPCA) involves the use of
spectra (frequency domain representation) to make variable profiles invariant to lags,
PCA (Principal Component Analysis) to reduce dimensionality by exploiting the
correlation between the spectra and plotting and clustering the spectra to discriminate
rogue seasonality from seasonality in exogenous demand. However, this exploratory
study used only a single technique for rogue seasonality detection and tested it using
only one case study. The technique used was also not automatic and required many
decisions to be made in terms of choosing the number of principal components (which
also needed to be less than three to enable plotting), deciding cluster membership
from the plots and interpreting profiles of the clusters. Findings from this study by
Thomhill and Naim need to be validated and extended through multiple rogue
seasonality contexts, alternative techniques for detection, and use of a more automated

process.

It is evident that rogue seasonality is present in many supply chains and cause
significant cost inefficiency which makes its study quite important. However, the
research focus on it has been quite limited, with most studies continuing to treat it as a
part of the Bullwhip effect. Thus far no measure for rogue seasonality has been
defined. Also, an exhaustive search of the literature revealed just two studies with an
exclusive focus on rogue seasonality. The first study had a limited scope and was
focussed on identifying ordering control parameters to reduce rogue seasonality
generation and is therefore similar to the vast majority of similar Bullwhip effect
studies, which seek to design out control disturbances by appropriate choice of

policies and parameters. The second study investigated rogue seasonality in an
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empirical setting but limited themselves to one supply network and one technique,

with the technique used also requiring manual inputs during application.

A more rigorous and intensive study of the rogue seasonality in supply chains is
therefore required similar to that done for the Bullwhip effect (see Section 2.3.1). One
way to proceed would be to follow the Bullwhip research pathway and design control

policies which eliminate or minimise the generation of rogue seasonality.
2.3.3 Issues with design based approaches to manage control disturbances

A vast majority of studies on control disturbances (mostly Bullwhip effect oriented
and one on rogue seasonality) have focussed on determining appropriate control
parameters so that such disturbances could be a-priori designed out of the system.
Though no doubt important, such an approach may be less effective in many real
world environments. This is because real decision making contexts are in general
complex, and therefore, less amenable to control. More importantly, the prescriptions
for controlling such complex contexts have mostly been derived using simplistic
dyadic structures and which unrealistically assume complete rationality in decision
making.

2.3.3.1 Complexity in supply chains

Real world supply chains are complex. The major factors which make supply chains

to be complex are:

e Multiple information and material flows — A complex web of interlinked
information and material flows spanning multiple suppliers, manufacturers and
distributors (Lee and Billington, 1993) which have arisen from market pressures to

drive down costs, introduce new products and expand into new markets.

o Dynamic nature and uncertainty — This arises from the state of flux and transient
state that supply chains continuously operate in (Haywood and Peck, 2004) from
changes such as in marketplace demands and product specifications, uncertainties
such as in capacity, availability, manufacturing and transportation times and quality

and continuous improvement initiatives within the organizations and the wider
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industry as a whole. The interactions between the supply chain partners and
propagation of uncertainties further complicate the dynamics (Parunak, 1999).

e Conflicting objectives among partners - Difference in the constraints and
objectives of individual companies cause multiple rather than a single, unified plan for
the supply chain (Ganeshan and Harrison, 1995; Hausman, 2003). Even if a few
partners in a supply network have conflicting objectives, such as maximisation of
their individual profits, this could disturb the dynamics across the network both in

terms of information/material flows as well as profitability.

The resulting complexity from dynamic interactions, among multiple echelons with
different objectives, in an environment which is uncertain, makes design based control
difficult. This has been recognised by many researchers such as Baader and Montanus
(2008) who comment that “Because of the growing complexity of logistical structures,
the number of planning parameters has expanded so dramatically, that an all
encompassing optimisation is not possible. Planning proceeds sequentially, in which
actions of previous steps are assumed as constant for optimisation of parameters at
the next step. Hence, in planning one generally restricts the focus to a selection of the
most important planning parameters. The lofty goals of avoiding ‘“events” can
therefore not be realised.” Similarly, McCarthy and Tan (2000), Radjou (2002) and
Lawrie (2003) also agree with the viewpoint that since supply chains/networks often
display unpredictable behaviour, they can never be completely controlled through top-

down planning, however collaborative it might be.

Another related factor is that while the complexity of supply chains has increased
significantly, the design prescriptions to manage this complexity have not kept pace.
Most studies on Bullwhip (covered in Section 2.3.1) and the study by Kim and
Springer (2008) on rogue seasonality, which have proposed control design policies
and parameters to minimise the magnitude of such disturbances, have done so using
dyadic, and therefore, analytically tractable structures. These policies and parameters
therefore have limited applicability in real world applications. Another reason for the
limited applicability is that these policies and parameters have been derived on the
basis of complete rationality in decision making, while departures from rationality are

well known in most real world environments.
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2.3.3.2 Irrationality in decision making

Most theoretical work in operations management including control design is based on
a normative or prescriptive approach and assumes that decision makers are rational
and perfect optimisers. However, detailed tracking of individuals’ decisions shows
that their observed behaviour often does not fit the predictions of such theoretical
models. Rather than conforming to traditional assumptions of narrow self interest and
unbounded rationality, people exhibit decision making biases, use heuristics, and
prefer outcomes that are not strictly value maximising. The Beer game, despite being
a much simpler decision making environment compared to the real world, clearly
highlights this divergence between the theoretical and practical. In the game, players
take up individual roles (retailer, wholesaler, distributor and factory) in a serial,
decentralised supply chain, with each player needing to make just one decision every
period: how much to order from its supplier which fills downstream customers
demand but does not create either surplus inventory or excess backlogs. Players are
found to be unable to apply appropriate ordering policies even in this relatively simple
situation. Many players in the game do not adequately account for the supply line
(orders placed but not yet received) in their ordering rule and cause the generation of
both Bullwhip and rogue seasonality across the supply chain (Sterman, 1989). Even
with a simplified decision context with a less complex demand pattern and
information sharing between the players, inappropriate ordering behaviour is still
observed. For example, Croson and Donohue (2006) used uniform demand instead of
step demand used by Sterman and ensured sharing of individual inventory level
information across the supply chain but still noted the persistence of the supply line
underweighting behaviour in ordering. Similarly, Wu and Katok (2006) used uniform
exogenous demand, made supply line visible to the respective players and even
repeated the games so that players could benefit from the learning in the previous
game but still observed the same underweighting bias in ordering behaviour. Even a
constant demand and which was known to all players in the study by Croson et al.
(2005) generated Bullwhip effect and rogue seasonality though a rational response in
such a situation would have generated a flat order profile at the level of exogenous
demand. Communication of the optimal ordering rule to the players, in a subsequent

phase of the experiment, also did not improve the ordering behaviour.
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Experiments other than the Beer game have also noted the divergence from
predictions of rational models. For example, Schweitzer and Cachon (2000), in their
investigation of newsvendor decisions, which are fundamental models of supply chain
systems, demonstrated that choices made by human subjects in the experiment
systematically deviated from those that maximized expected profit. Subjects
consistently ordered amounts lower than the expected profit-maximizing quantity for
high-profit products and higher than the expected profit-maximizing quantity for low-
profit products so as to reduce ex-post inventory error, the absolute deviation between
the amount ordered and realized demand. Similarly, Loch and Wu (2007) in their
review of behavioural operations management refer to a study by Rapoport (1966,
1967) who found that decision makers in a stochastic multistage inventory task
generally under-controlled the system, and orders were correlated with past demand
even when demand draws were independent. The behavioural bias in decision making
is also evident in information technology (IT) based decision support systems (DSS),
where decision makers, when swamped with significant amounts of information and
complexity resort to use of heuristics or simple rules of thumb (Bendoly and Speier,
2008). Even in an empirical enterprise resource planning (ERP) context, which
typically imposes strong and difficult to change structures, Bendoly and Cotteleer

(2008) observed systematic circumvention of protocols.

In summary, rationality in decision making has been contradicted in a range of
studies. This is on account of the numerous cognitive, informational, temporal and
other limitations which bind human rationality (Loch and Wu, 2007; Bendoly et. al,
2006). In the context of real world supply chains, with all their complexities in
material and information flows, most of the above highlighted limitations would be
operative, causing decision making to be not entirely rational. Normative control
policies and parameters, which are based on rationality in decision making, would
therefore be less effective in designing away control disturbances in such

environments.

Hence to summarise, supply chains are complex entities and therefore difficult to
control. Moreover, the policies and parameters used for control are too simplistic in
relation to reality (and hence less effective), having being developed under dyadic

settings. Finally, there is additional uncertainty about the way these policies and
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parameters are applied in practice, due to the behavioural biases in decision making.
Hence, a top-down design based approach for managing control disturbances has
significant limitations. Though important and relevant, it needs to be complemented
with a bottom-up sense and respond based approach. Rather than uniformly applying
generic control design/parameter prescriptions on all supply chains, the more
problematic ones could be identified (sensed) to which appropriately contextualised
generic rules are applied (respond). This is akin to the management by exception

philosophy.
2.4  Sense or detect and respond based approach

The sense and respond (SR) based approach was conceptualised by Haeckel (1999) in
a strategic context, who recognised the difficulty in planning in an environment where
unpredictability was the norm. He drew inspiration from Peter Drucker who wrote
that “uncertainty in the economy, society, politics has become so great so as to render
futile, if not counterproductive, the kind of planning most companies still practice:
forecasting based on probabilities”. The SR approach uses a four step decision
making cycle called SIDA (Sense-Interpret-Decide-Act) as depicted in Figure 2.2
below. It is adapted from the OODA loop cycle (an acronym for "observe, orient,
decide and act) used by Col. John Boyd (USAF) to explain the significant successes
of U.S. fighter pilots over their North Korean counterparts during the Korean War.
The OODA loop essentially states that if one makes informed decisions and takes
action faster than one’s enemy, then one will outperform the enemy. As the speed of
the OODA cycle increases, the enemy remains continually (both tactically and
intellectually), a step behind.

Alir force OODA loop Business learming loop

What's going on out there ?
(Environmental information)

(o=
Observe
o) b= G b

How do we do things around here 7
(Business processes)

Figure 2.2 Decision making loops related to sense and respond approach
(Haeckel, 1993)
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The components of SIDA are:

Sense: Refers to the use of probes or data to assess changes in the context

Interpret: Involves applying context to the data, that is, transforming it into

information by using methods such as filters, models and data mining

Decide: Refers to choosing a particular option from an alternative set of options

based on the interpretation of the situation

Act: Refers to implementing or acting on the choices made

Use of information is central to SIDA with Haeckel (1993) using the term “manage by

wire” for businesses which is analogous to modem aviation’s fly-by-wire systems.

The SR framework has been used in many studies at the strategic level including a

recent one by Mathiassen and Vainio (2007) who used it to investigate the dynamic

capabilities in two small software companies. The concept of sense or detect (the

terms sense and detect have been used interchangeably hereon) has also been applied

at an operational level and across multiple domains. This is summarised in Table 2.2.

Table 2.2 Application of detection based approach in different domains

Domain | Typical laformation used __-| Natureof . | Authors
; v Detection - ~| -
Finance Spend pattern — nature, amount, Consumer fraud Edge and Sampai (2009)
location, frequency
Telecom Geographical origin and destination of | Consumer fraud Phua et al. (2005)
call, call time, duration and day of the Fawcett and Provost (1997)
week when call made Cortes and Pregibon (2001)
Stock Trading Options and stock related information | Insider trading in | Donoho (2004)
such as volumes, different kinds of | stocks
prices and market news
Equipment Operating parameters, vibration | Condition Raheja et al (2006)
. characteristics, cutting fluid chemistry | monitoring/ fault | Lee et al. (2006)
Maintenance detection of Olsson et al. (2004)
equipment Jeong et al. (2006)
Healthcare Individual and population health | Early detection of | Buckeridge et al. (2005)
indicators such as absenteeism from | disease outbreaks | Lamma et al., (2006)
work, physician visits, laboratory tests
and drugs consumption
Computer Data trail left by users and system | Unauthorized Lee and Stolfo (1998)
Systems activity information like number of | intrusion Zhu et. al. (2001)
accesses, time of day, number of
logins/failures
Environment Seismic signals Earthquakes Dzwinel et al (2003)
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The successful application of detection based approaches in a wide range of domains
gives confidence that it could be applied in supply chain management applications
including rogue seasonality. However, it is first necessary to understand the current
status of detection based approaches in supply chain management. Also, SR being an
information centric approach, it is also important to understand the nature and extent
of information availability within supply chains; and finally, what techniques could

use this information to enable detection.
2.4.1 Status of detection based approaches in supply chain management

The need for detection based approaches has been recognised by many recent studies

on supply chain risk management. For example, Hendricks and Singhal (2003)
suggest development of the ability to predict supply chain glitches (or disturbances) as
a means of mitigating the negative economic effects of such glitches. According to
them “Firms often come to know about problems too late to avoid or minimize the
adverse consequences. A desirable capability would be the ability to predict potential
glitches. Developing predictive capabilities involves selecting and tracking leading
indicators of future business performance; extracting, integrating and transforming
data from different systems to generate the leading indicators; delivering information
on these indicators on a real-time basis; and providing visibility into the extended

supply chain, including internal operations, suppliers, and customers”.

Similarly, Craighead et al. (2007), using a multiple-method, multiple-source empirical
research design identify early warning capability as key to reducing the severity of the
impact of a supply chain disturbance with warning capability defined as “the
interactions and coordination of supply chain resources to detect a pending or realised
disturbance”. According to them the quicker a supply chain disturbance is detected
and pertinent information about it communicated to the relevant entities, the more
time the supply chain would have to inoculate itself from its negative effects resulting
in a reduction in the severity of the impact. They also highlight the need for this
warning capability to span multiple echelons and be communicated on an exception

basis.

The need for visibility and predictive analysis systems to identify potential problems

and ensure quicker response is also highlighted by Handfield et al. (2008) while
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Elkins et al. (2008) suggest the creation of an “exception” event detection and early
warning system for real time supply chain operations and supply based management.
Inputs from senior managers in logistics and supply chain functions were used to
formulate these recommendations. Finally, Bodendorf and Zimmermann (2005)
highlight the importance of disturbance detection by describing the behaviours of two
companies who faced supplier breakdowns in which one had and the other did not

have a detection system. The plots are given in Figure 2.3.
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Figure 2.3 Benefits of automatic disturbance detection in a supply chain context
(adapted from (Bodendorf and Zimmermann, 2005)

The plots show how with reduction in reaction time, the options to mitigate the impact
of a disturbance drop sharply, with a resultant increase in the cost of problem solving.
Though these diagrams are not based on real data, the non linear profiles assumed are
close to representing what happens in reality. The company without an automatic
disturbance detection system knows about the supplier breakdown only when it does
not receive the material as ordered. Because all the planning would have been based
around processing this material including use of labour and machines, the sudden non
arrival of material means fewer options to redeploy these and in an extreme case
could result in idling of resources. The adverse cost implication of such an occurrence

would obviously be very high. In contrast, the company with an automatic disturbance
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detection system gets greater reaction time, which it uses to reschedule production
and/or use alternate source and/or prepare the customer for late arrival, all of which

reduce the cost implication of the disturbance.

In terms of the current state of detection approaches, these are not available at the
supply chain level at present. For other approaches which are available, their
operational aspects are not known. These are discussed below. In this thesis we

confine ourselves only to information based automated detection approaches.

Tracking and tracing systems are used by the logistics sector to record and
disseminate information relating to product movement and delivery across multiple
transportation/warchousing stages and detecting any delays in the same (Hoek, 2002).
However, very little analytical processing is involved. The operational scope of
disturbance detection in these systems is also restricted to a single logistics service
provider (Karkkainen et al., 2004), though there are some recent examples of such
systems being used to handle multiple shippers and customers. For supply chains,
Supply Chain Event Management (SCEM) systems are being used to detect
discrepancies in transaction ordering and order fulfilment processes (Otto, 2003).
These are information centric systems normally integrated with ERP systems in which
the status of all predefined events are monitored vis-a-vis plans, and in case of
deviations exceeding specified thresholds, notifications are issued or corrective
actions automatically triggered. The SCEM system is also intra enterprise and lacks
intelligence to identify new problems or predict initiation of problems (Bodendorf and

Zimmermann, 2005).

Recently, researchers at IBM have tried to incorporate in an SCEM system, both a
predictive ability for events/disturbances as well as an action ability to neutralise the
impact of disturbances through use of analytical techniques such as simulation,
optimisation and data mining (Buckley et al., 2006). They demonstrated the
effectiveness of their approach using two pilot case studies: demand conditioning in
personal computers and inventory management in a technology supply chain.
However, their explanation was at a high level and offered limited insights on
information and the analytical techniques used. Finally, prognostic logistics which use
real time information to predict the future state of a system (Cruz et al, 2007) and

autonomic logistics (Menotti, 2004) which refer to technologies that predict failure in

36



operating systems, monitor stockage levels in consumables, automatically report
impending failures and order replacements without human intervention are concepts
related to detection. However, very few studies have covered these subjects and those

that have, have also given only high level descriptions of the application contexts.

Overall, sense or detect and respond seems to be a promising approach for application
in supply chain problems, especially those pertaining to disturbances, as highlighted
by several recent studies on the subject. Though this approach has been applied at
both strategic as well as operational levels and across various domains, its application
in supply chain management has been limited and it has been applied within a limited
context. Few research studies have discussed detection based approaches in supply
chain management and even fewer have provided details about the information and

techniques that they used for detection.
2.4.2 Supply chain information in the context of detection

Information available for detection is a function of the level of trust and the nature of
collaborative relationship among the supply chain partners. It therefore varies across
supply chains. At one extreme, there are entities in traditional supply chains sharing
only order information, while at the other extreme in a collaborative planning and
replenishment (CPFR) relationship, information on multiple variables such as
demand, stocks, orders, production, shipments, returns, capacity, capacity utilisation
and backlogs is shared (Lee and Whang, 2000; Fliedner, 2003). Other collaborative
formats such as vendor managed inventory (VMI) typically share sales and inventory
information (Disney and Towill, 2003). While the information sharing at present is
predominantly used for improving the replenishment processes, the same could be put
to use for detecting disturbances. This has been highlighted by many researchers such
as Tang (2006) who identify information management as a separate category for
managing supply chain risks and Elkins et al. (2008) who emphasise the role of

visibility of material and information flows for a similar application.
2.4.3 Generic approaches and techniques of detection

Given that detection oriented studies in supply chain management did not provide

operational details about techniques used, it is important to explore generic techniques
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that could be applied in the present context. There are broadly two kinds of
information based approaches for disturbance detection as depicted in Figure 2.4:

Change point detection or statistical based and signature based.

Change point detection

/Statistical methods S based
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n al Multivariate Time Domain quuemy Model
Domain
— CUSUM l
Chan AR Model
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EWMA Con:“;;i on Fourier  Wavelet
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Shewart Hotelling's T2 S
chart Classification Rules
Association Rules
Clustering Rules

Figure 2.4. Generic disturbance detection techniques
2.43.1 Change point detection techniques

Change point detection approaches, which are also referred to as statistical
approaches, are based on assessing a change in the profile of a variable in statistical
terms such as a change in probability distribution or a change in the parameters of a
fitted distribution (Basseville and Nikiforov, 1993). In case of the change being
significant based on a specified threshold, the test signal is characterized as a
disturbance. This technique has been extensively applied in the manufacturing and
process industries (Montgomery, 2005; Venkatasubramanian et al., 2003) after
adapting it for different information profiles such as Shewart for stationary time
series, cumulative sum or CUSUM for detecting small shifts, exponentially weighted
moving average or EWMA for correlated time series, and approaches based on fitting
models like ARIMA or regression to data for detecting small shifts and generic time
series. Multivariate generalizations of these techniques, where the multiple variables
are combined into a mean vector using the correlations between the variables are also

being used in detection.
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At the supply chain level use of change point techniques for detection has been quite
limited (McCarthy and Wasusri, 2002; Morgan and Dewhurst, 2007). One reason is
that supply chains typically involve a large number of variables and the relevant
change point detection technique, such as of the multivariate kind which could be
applied in such a case, lose their effectiveness with an increase in the number of
monitored variables (Woodall and Montgomery, 1999). Secondly, supply chains are
cascaded mutli-stage processes and modelling such processes and fixing thresholds
for disturbance detection is difficult (Tsung et al., 2008; Batson and Gough, 2007).
Fixing thresholds is also diffficult because supply chain variables are typically non
stationary with a mix of various trend and seasonality components. Given the
difficulties in applying these techniques at a supply chain level for detecting
disturbances, focus shifts to the alternative signature based techniques.

2.4.3.2 Signature based techniques

Signature based techniques are based on developing signatures or characteristic
profiles of variables associated with different disturbances. A test instance consisting
of a profile of relevant variables is compared with these signatures to determine extent
of similarity. If found similar, based on a user defined threshold, the test instance is
classified as a disturbance of the corresponding type. Signature based techniques are
gaining in popularity in various domains in view of their flexibility, as they do not
have any constraints in terms of number of variables as in change point detection
techniques, and availability of greater variety of tools. In fact all the studies cited in
Table 2.2 have used signature based techniques for detection. There are two parts to
signature based techniques: a) Techniques to determine signatures or rules of
detection from information, b) The nature of information used in these techniques:

raw time series or time series which had been transformed into a different domain.

General data mining literature suggests three kinds of techniques for determining
signatures or rules: Classification, Association and Clustering (Han and Kamber,
2006; Tan et al., 2005). In the classification technique, a set of pre-categorized data
objects are used to develop signatures or rules, which are subsequently used to
classify new objects. On the other hand Association rules derive multi variable
correlations that is correlating which two events or things are associated together. In

the context of disturbance detection this could mean determining what time based
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sequences of events (patterns or distinguishing features) of different variables are
frequently encountered with a disturbance. Finally, clustering techniques are
concerned with the partitioning of data sets into a small number of homogenous
groups or clusters so that data objects in a group share the same properties, while
those in different groups are dissimilar. Rules are derived from the nature of clusters
formed. Though all the three techniques are used for static data, for time series data,
clustering has been used the most (Liao, 2005).

In terms of the nature of information to be used in clustering, use of raw time series,
though easier to interpret, creates problems in computation due to large, high
dimensional data sets as well as lower accuracy because of interference from noise.
The use of alternative time series features has therefore been explored such as
amplitudes of Fourier transform (FT) (Agrawal et al.,, 1993; Caiado et al., 2006),
coefficients from an autoregressive (AR) model (Kalpakis et al., 1999; Maharaj, 2000;
Ting et al., 2003), wavelet coefficients of discrete wavelet transform (DWT) (Chan
and Fu, 1999; Lin et al., 2004; Zhang et al., 2005), autocorrelation function (ACF)
(Wang and Wang, 2000; Vlachos et al., 2006) and cross correlation function (CCF)
which is a feature of pairs of time series (Bohte et al., 1980; Baragona, 2001; Aono et
al., 2006).

The problem with these studies is that most of them have demonstrated the
effectiveness of their respective features using synthetic, non contextual data. Since
the results and effectiveness of different features is domain specific and none of these
studies have used any supply chain related data, their applicability in the supply chain
context is limited. Secondly, few studies have compared the performance of their
features with other features, and those that have, have used only one or two features in
the comparison (Keogh and Kasetty, 2003; Liao, 2005). Hence, applying and testing
different time series transformations and features for time series clustering of supply

chain data constitutes a gap.
2.5 Summary

The subject of disturbances in supply chains has received increased academic as well
as practitioner interest in recent times. Researchers have studied this subject from

different perspectives such as understanding the source of these disturbances, their
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assessment and management. However, most of them have used a conceptual or
empirical approach with quantitative data driven approaches being used by very few
researchers. Even the empirical studies have being conducted at a high level using
primarily qualitative approaches (Svenssson, 2000; Zsidisin, 2003; Norrman and
Jansson, 2004). Such studies provide only a limited usefulness. This is because
researchers and practitioners are unable to understand the key variables influenced
by/influencing the disturbance, the relationships among them and methodologies or
tools to manage them (Blackhurst et al., 2005). Non consideration of realistic multi

echelon structures in these studies further limit their practical utility.

A more useful approach is to focus on individual causes of disturbance and investigate
them in detail using multi echelon structures and quantitative approaches. This
practically relevant approach would help create risk management tools and techniques
whose scarcity has deterred companies from adopting risk management practices
(Christopher and Lee , 2004; Blackhurst et al., 2008). This approach has been
followed in the study.

Disturbances can originate from demand, supply, process, control and environmental
sources. Among these, control disturbance, which is endogenously generated from use
of inappropriate information and/or control algorithms to match supply with demand
(Mason-Jones and Towill, 1998) has a significant negative impact on cost efficiency
(Metters, 1997; Lee et. al, 1997a, b) and also affects a large number of supply chains
(Geary et. al, 2002; McCullen and Towill, 2002). The two manifestations of control
disturbance are, the Bullwhip effect (Lee et al., 1997a, b) in which the variability in
orders is amplified from downstream to upstream echelons and rogue seasonality
(Forrester, 1961; McCullen and Towill, 2002) in which seasonality in supply chain

variables is generated endogenously.

Extensive research has been conducted on the Bullwhip effect. It’s manifestation in
multiple empirical sectors has been studied (Miragliotta, 2006), its causes such as
demand signal processing and lead time (Forrester effect), batching, shortage gaming,
price promotion and behavioural have been investigated (Geary et al., 2006), different
methods such as statistical, control theory, system dynamics simulation and

management games (specifically Beer game) have been used to study it and various
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measures have been proposed for its measurement. On the other rogue seasonality

has been investigated in very few studies.

The review of the literature revealed only two studies which were exclusively focused
on rogue seasonality. The study by Kim and Springer (2008) applied analytical system
dynamics approach to determine the conditions governing the strength of rogue
seasonality generated. Specifically, the role of ordering policy parameters, that is, the
weights assigned to inventory gap and pipeline gap terms in generating strong and
weak cyclicality was assessed. However, the analysis was limited in scope; a dyadic
structure was used, the analysis did not assess the impact of forecasting policies on the
dynamics and the rogue seasonality strength was inappropriately defined from a
subjective perspective with a frequency bias. The study by Kim and Springer (2008)
also did not investigate the impact of various relevant factors such as demand
processes and parameters, batching, backlogs and different order of delays (Sterman,
2000) on rogue seasonality as has been done for the Bullwhip effect. The second
study on rogue seasonality by (Thornhill and Naim, 2006) is empirically oriented and
uses the context of a steel supply network to characterise cyclical disturbances in the
network. However, this exploratory study used only a single technique for rogue
seasonality detection and tested it using only one case study. The technique used was
also not automatic and required numerous manual interventions. The study of rogue
seasonality is important as it is present in many supply chains (Kaipia et al., 2006; Lee
et al., 1997a; Torres and Moran, 2006) and causes significant cost inefficiency as in
the case of the Bullwhip effect (Metters, 1997). It therefore needs to be investigated in

a rigourous fashion as has been done for the Bullwhip effect.

One approach to manage rogue seasonality is to minimise its generation through
appropriate choice of forecasting and ordering policies and parameters. This approach
was used by Kim and Springer (2008) who used system dynamics analysis of a dyadic
system to determine the conditions (ordering policy parameters) under which strong
and weak endogenous seasonality could arise in a supply chain. Such analytical
design based approaches have also been proposed for controlling the Bullwhip effect
(Lee et al., 1997b; Chen et al., 2000). However, the effectiveness of these approaches
in real environments is limited. This is because supply chains in reality are quite

complex, because of the dynamic interactions among multiple echelons in an
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uncertain and continuously disturbed environment, which makes them difficult to
control (McCarthy and Tan, 2000; Baader and Montanus, 2008). At the same time,
appropriate control policies and parameters determined in the studies are too
simplistic in relation to this complex reality, having being developed under dyadic
settings (Chen et al.,, 2000; Daganzo, 2004). Moreover, the actual nature of the
application of these policies and parameters in real applications is also uncertain. This
is because, while in the studies these have been determined on the basis of complete
rationality in decision making, in actual practice behavioural biases and significant
departures from rationality take place in many decision making situations (Schweitzer
and Cachon, 2000; Bendoly and Cotteleer, 2008; Croson et al., 2005; Wu and Katok,
2006). Top down planning therefore needs to be complemented with a bottom-up
sense or detect and respond based approach. Instead of uniformly applying generic
control policy and parameter prescriptions to all supply chains, the more problematic
ones (in terms of rogue seasonality in this case) could be identified (detect) to which

generic rules which have been appropriately contextualised are applied (respond).

Sense and respond is a management approach for an unpredictable and dynamic
environment It has been applied in various strategic (Haeckel, 1999) as well as
operating contexts such as in fraud detection (finance), fault detection (equipment
maintenance), disease outbreak detection (healthcare) and unauthorised intrusion
detection (computer systems). Anomalies are sensed using system information and
relevant analysis techniques on the basis of which management takes action
(respond). The utility of the sense and respond approach in the context of supply chain
risk management has also been recognised (Bodendorf and Zimmermann, 2005;
Hendricks and Singhal, 2003; Craighead et al., 2007; Handfield et al., 2008) though
its actual application in this domain has been limited. Few research studies have
discussed detection based approaches in supply chain management and even fewer
have provided details about the nature of application. This thesis explores the
application of the sense and respond approach in rogue seasonality management. In an
environment where multiple supply chains are being managed, the more problematic
ones in terms of rogue seasonality could be sensed, to which generic rules which have

been appropriately contextualised are applied (respond).
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Change point detection or statistical and signature based approaches are the two
generic approaches for detection. Change point detection approaches are based on
assessing a change in the profile of the variable in statistical terms such as in
probability distribution (Basseville and Nikiforov, 1993). It has seen limited
applications in supply chain contexts (McCarthy and Wasusri, 2002; Morgan and
Dewhurst, 2007) because it is less effective with multi echelon cascaded structures,
when the number of variables is large and the variable profiles are non stationary
(Woodall and Montgomery, 1999; Tsung et al., 2008) all of which are relevant to
supply chains. On the other hand signature based approaches, which are based on
developing signatures/profiles of variables that can be associated with a disturbance,
have none of the above constraints. Though application of this approach in supply
chain management domain has also been limited, it has been applied in other domains
such as finance, equipment maintenance, healthcare and computer systems and is
gaining in popularity because of its flexibility and greater availability of
tools/techniques for application. Signature based approaches were therefore

considered for rogue seasonality detection.

Use of signature based approaches involves choosing techniques to determine
signatures or rules of detection and the nature of information to be used in these
techniques (raw time series or time series which had been transformed/converted into
a different domain). The data mining literature suggests Classification, Association
and Clustering as the three techniques for determining signatures or rules (Han and
Kamber, 2006; Tan et al., 2005) out of which clustering has been used the most for
time series data (Liao, 2005). Signatures based on clustering involve finding the
similarity/dissimilarity relationships among the time series profiles of the operating
variables, allocating them to separate homogenous groups or clusters and relating the
profile of clusters to the relevant disturbance. In terms of the nature of information
used in clustering, either raw time series could be used or it could be transformed into
other domains with features from the transformation used in clustering. Typical
features that have been used in time series clustering studies in different domains are
amplitudes of Fourier transform (FT) (Agrawal et al., 1993; Caiado et al., 2006),
coefficients from an autoregressive (AR) model (Kalpakis et al., 1999; Maharaj,
2000), wavelet coefficients of discrete wavelet transform (DWT) (Chan and Fu, 1999;
Lin et al., 2004), autocorrelation function (ACF) (Wang and Wang, 2000; Vlachos et
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al., 2006) and cross correlation function (CCF) which is a feature of pairs of time
series (Bohte et al., 1980; Baragona, 2001). However, none of these studies have used
supply chain related data. Since the results and effectiveness of different features is
domain specific, applicability of findings from these studies to the supply chain
context is limited. Secondly, few studies have compared the performance of their
features with other features, and those that have, have used only one or two features in
the comparison (Keogh and Kasetty, 2003; Liao, 2005). Hence, applying and testing
different time series transformations and features in time series clustering of supply
chain data constitutes a gap. Here it may be noted that a major limitation in Thornhill
and Naim’s study was that they did not compare their proposed SPCA technique with

other techniques
2.6 Research Questions

The focus of this thesis is on applying the sense or detect and respond based approach
to manage rogue seasonality which has not been investigated in the past. This requires
rogue seasonality contexts which are well understood so that they could be used for
assessing the effectiveness of different aspects of detection. Moreover, different
contexts are required so that the detection approach is rigourously validated. In
contrast, the study by Thornhill and Naim (2006) used just one case study to justify
their SPCA detection technique.

Since only a limited number of studies have investigated rogue seasonality, the
Bullwhip effect was used as a reference to identify different contexts that could be
used. The search was limited to simulation contexts as the exploratory nature of
research required detailed and controlled investigation. Two simulated contexts were
found to have been extensively used for analysing the Bullwhip effect; one based on
linear supply chain models (Towill, 1982; John et al., 1994) and the other based on
non-linear Beer game models (Van Landeghem and Vanmaele, 2002; O’Donnell et
al., 2006). Since, use of common approaches promotes effective knowledge building,
these models were used in the present study. Findings from simulation have high
internal validity but their external validity is low. Therefore, empirical rogue

seasonality contexts also need to be used in the analysis.
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The second part of the research involved using the different rogue seasonality
contexts to establish the best approach for its detection. This includes a signature for
rogue seasonality which could indicate its presence, an objective numerical indicator
or ‘index’ of rogue seasonality intensity and the best time series transformation
techniques (or features) and variables to be used for their computation. At present
there is no ‘index’ for measuring rogue seasonality though there are multiple
measures for the Bullwhip effect. Finally, the ability to sense or detect rogue
seasonality needs to be exploited to better manage rogue seasonality in a practical

setting which requires a structured managerial framework.
This links to the four research questions that are addressed in the thesis:

1) What signature and index could be used for detecting rogue seasonality in a linear
supply chain? What is the best feature (domain representation) and the

appropriate system variables for deriving them?

2) Can the signature and index identified from the linear supply chain be applied to a
non-linear supply chain with backlogs and batching? Is the best feature and
appropriate variables for detecting rogue seasonality in this non-linear system the

same as in the case of the linear system?

3) Can the signature and index be used for detecting rogue seasonality in real supply
chains? Are the best features and system variables for deriving the signature and
index the same as found in RQ1 and RQ2?

4) How can rogue seasonality detection be used in a managerial framework?

Answers to these questions would help establish a robust mechanism for automatic
detection of rogue seasonality including identification of supply chains with high
rogue seasonality intensities so that management could focus on such cases and effect
mitigative action. Automation in rogue seasonality detection was identified to be one

of the areas for future research in the study by Thornhill and Naim (2006).
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Chapter 3 - Methodology

The previous chapter highlighted the research gaps and the relevance of the research
questions. This chapter gives details of the methods used to carry out the research,
including their explanation, justification and placement within the wider context of

alternative methods.

First, the philosophical approaches and methods used in supply chain management
research are discussed. Next, the philosophical stance of the thesis and the research
design used to answer the research questions are explained. Finally, details of the
methods used are provided. These include simulation and case studies for contextual
rogue seasonality data and time series transformation techniques and clustering for rogue

seasonality detection.

3.1 Research philosophies and paradigms

Meaningful and productive research requires a sound and relevant philosophical basis.
This is because unconscious research and naive investigative activities rarely lead to
more than simply confirming what is already known (Arbnor and Bjerke, 1997). The
philosophical position is represented as a research paradigm, which is a central element
of the research process and represents the researcher’s perspective on the world (Naslund,
2002). The background of the researcher is therefore a significant factor in determining

the philosophy underpinning the research.

A research paradigm has three elements: ontology, epistemology and methodology
(Denzin and Lincoln, 1994). Ontology focuses on the “nature of reality” or the “nature of
knowledge” (Guba, 1990). Defined as the science of being, it refers to the assumptions
that a particular approach to enquiry makes about the nature of social reality, specifically
whether the reality is viewed from an objective or subjective perspective. Epistemology
on the other hand deals with how the world is perceived and is appropriately defined as
the science of the methods of knowledge. It refers to the claims or assumptions made

about the ways in which it is possible to gain knowledge of the reality. Together,
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epistemological and ontological assumptions influence methodology, which deals with
how knowledge about the world is gained. Defined as “a body of methods, procedures,
concepts and rules (Merriam-Webster Dictionary 2004), methodology is the rationale or
basis for the selection of methods used to gather data. It needs to be appropriate in

relation to the research questions and objectives to be addressed.

Positivism and Interpretivism are the two main paradigms used in business research
(Bryman and Bell, 2004). Positivism advocates the application of the natural sciences’
methods in business research and believes in an objective reality which can be confirmed
by the senses, measured and generalized. The quantitative research methodology is
usually associated with positivism and is characterized by a numerical orientation and
emphasis on the measurement and analysis of causal relationships between variables
(Saunders et al., 2002). The Interpretivism paradigm on the other hand holds an opposite
view to Positivism: reality is not considered external to the actors as in positivism but a
part of the subjective interpretation of the actors themselves. Human beings and their
interactions are considered to be distinctive, with the principles of natural science not
considered applicable for social systems. Qualitative research methodologies (Saunders et
al., 2002) are usually associated with the Interpretivism paradigm, where there is greater

emphasis on human behaviour and its role in the research context.

While the above provides a generic explanation about research philosophies and
paradigms, it is important to understand which of these philosophies have been used in

supply chain management research.

3.2  Nature of research in supply chain management

Supply chain management is an interdisciplinary subject. It incorporates many different
scientific traditions (Arlbjern and Halldorsson, 2002), has been influenced by economic
and behavioural approaches mainly through the business disciplines of marketing and
management (Mentzer and Kahn, 1995), but also borrowing from engineering and
computing (Stock, 1997). The dominant stream of research has therefore been based on
the positivistic paradigm similar to that for economics and engineering. This is borne out

by the literature surveys on research methods used in logistics and supply chain

48



management by Mentzer and Kahn (1995), Frankel et al. (2005) and Sachan and Datta
(2005) as given in Table 3.1. The most used research methods of survey, simulation and
mathematical modeling all come under the positivistic paradigm.

Table 3.1: Research methods applied in logistics and supply chain
management

Category Mentzer and Frankel et al., Sachan and
Kahn* (1995) (2005)**  DattaA (2005)
Survey 54% 37% 35%
Simulation 15% 5%
' 15%
Math Modelling 4% 10%
Interviews 14% 19% 7%
Case Studies 3% 7% 16%
Archival Studies 10% 7%
27%
Others 0% 15%

* % of articles in Journal o fBusiness Logistics (1978-1993)

e+ % of articles in Journal of Business Logistics (1998-2003)

A % of articles in Journal o fBusiness Logistics, International Journal o f Physical Distribution and Logistics
Management and Supply Chain Management - An International Journal (1999-2003)

3.3 Philosophical stance of the thesis

Each of the two main components of the thesis, rogue seasonality generation and rogue
seasonality detection, determine the philosophical stance to be used in the thesis. Rogue
seasonality has a similar origin as demand amplification or the Bullwhip effect, which
has mostly been studied under the positivistic philosophy using quantitative
methodologies (Geary et al.,, 2006). The positivistic philosophical approach could
therefore be used to study rogue seasonality generation as well. With regard to detection
of rogue seasonality, most generic techniques of detection are derived from the
Mathematics/Engineering/Computer science domains, which have a quantitative
orientation and are based on positivism. Therefore on both counts, positivism seems to be
an appropriate philosophy for conducting the research envisaged in the thesis. On the
other hand, the alternative interpretivism philosophy was considered inappropriate

because rogue seasonality disturbances are not based on judgement but are actually
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generated. Similarly, rogue seasonality assessment and measurement are considered to

have an objective and numerical basis rather than being subjective.

Another factor which affects the philosophical underpinnings of research is the
background of the researcher. Although the author has conducted research based on both
positivism and interpretivism philosophies, his leanings are more towards the former.
Research in this thesis has therefore been undertaken from a positivistic perspective.
Details of the process used for conducting the research are explained in the following

sections.

3.4 Research design

Research design is a framework to conduct research that links the data to be collected and
analysed for answering the research questions. It provides the opportunity for "building,
revising and choreographing" (Miles and Huberman, 1994) the overall research study.
The choice of research design reflects decisions about the priority being given to a range
of dimensions of the research process (Bryman and Bell, 2004). The overall framework
used in the thesis is given in Figure 1.1 but adapted in Figure 3.1 below for further

clarification.

Literature Review

Answers to

. . research questions
Alternative techniques 4

for rogue seasonality
signature and index

Rogue seasonality
context and data

Simulation Case Study
Eggelln\l:i’i[rl Case Case
different context study 1 study 2
Cho

Figure 3.1 Research framework used in the thesis
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3.5 Literature review process

The literature review is the starting point as well as the foundation of most research
processes (Saunders et al., 2002). It is used to understand the current state of knowledge
of the subject, its limitations and to generate and refine ideas to fit with the research
context under study. The nature of the research in this thesis being of an exploratory and
innovative nature, an exhaustive literature search was conducted. The different sources
used in the search include:

a) Key word searches in all the major databases such as Scopus, Proquest, Emerald,

IngentaConnect and Science Direct. An indicative list of terms used are given below:

e ‘Risks’, ‘Disturbances’, ‘Uncertainties’, ‘Vulnerabilities’, ‘Disruptions’ and
‘Failures’ with ‘supply chains’, ‘logistics’ and ‘supply networks’

e ‘Rogue seasonality’ ‘Endogenous cyclicality’, ‘Bullwhip’, with ‘logistics’ and
‘supply chains’

e ‘Statistical process control’, ‘Failure mode and Effects analysis (FMEA)’, ‘Decision
support systems’, ‘Knowledge discovery’, ‘Artificial intelligence’, ‘Data mining’,
‘Risk monitoring’, ‘Event Management’, ‘Sense and Respond’, ‘Adaptive’,
‘Autonomic’ with ‘logistics’ and ‘supply chains’

e ‘Change point detection’, ‘Signature’, ‘Fourier Transform’, ‘Autocorrelation’,
‘Wavelets’, ‘Autoregressive’ and ‘Cross Correlation’ with ‘Time series’ and ‘Time

series Clustering’

b) Internet search engines primarily Google and Google Scholar to discover and access

the latest books and presentations on the research subject.

c) Periodic access and review of related journals such as ‘Journal of Operations

Management’, ‘International Journal of Operations and Production Management’,

‘Journal of Business Logistics', ‘International Journal of Production Economics’,

‘International Journal of Production Research’, ‘International Journal of Physical

Distribution and Logistics Management’, ‘System Dynamics Review’, ‘European Journal

of Operational Research’, ‘Journal of Quality Technology’ and ‘Data Mining and

Knowledge Discovery’ so as to include relevant studies which could have been missed in

the key word search.
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d) Tracing back references
e) Accessing the websites of key individuals who are active in the field for working

papers and presentations.
3.6  Rogue seasonality context and data

A multi-methodology approach was used as such approaches provide methodological
triangulation and increase the validity of the findings (Jick, 1979; Seaker et al., 1993;
Shukla et al., 2009; Boyer and Swink, 2008). Such approaches are quite prevalent in
logistics and supply chain management research (Frankel et al., 2005). The multi-
methodology approach used in the thesis combined simulation with case studies.
Simulation enables controlled experimentation and, therefore, findings from it have high
internal validity. However, its use of simplified models make it less realistic from a real
world perspective, that is, it gives lower external validity. On the other hand, case study
involves the investigation of contemporary phenomenon within a real life context, that is,
without any investigator control. Hence, when used together, simulation and case study
methods complement each other effectively, by enabling cross-validation of results and
allowing the investigator to assess whether generic findings occur in reality and vice-

versa.
3.6.1 Simulation

Simulation is defined as “the process of designing a model of a real system and
conducting experiments with it either to understand the behaviour of the system, or to
evaluate various strategies to improve the operation of the system” (Shannon, 1975).
Simulation has many advantages such as facilitating what-if testing on alternative supply
chain scenarios within controlled conditions and the flexibility of compressing and
expanding time to understand the dynamic behaviour of a system (Law and Kelton,
2000). According to Banks et al. (1999), simulation is an appropriate tool for studying
internal interactions in complex systems or subsystems, providing valuable insights into the
effect of each variable and highlighting those likely to have a large impact. Simulation is

among the most commonly used techniques in operations research and management (Law
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and Kelton, 2000) as well as in logistics and supply chain management research as is
evident from Table 3.1 and also highlighted by Terzi and Cavalieri (2004).

There is a historic precedent of using simulation to study supply chain dynamics
including both Bullwhip effect and rogue seasonality (Forrester, 1961). In the specific
context of this thesis and answering the research questions, simulation provided
controlled experimentation, where parameters in the simulation model could be varied
and rogue seasonality of different intensities and characteristics generated in the profiles
of variables. This data, with known rogue seasonality intensities, could subsequently be
inputted into alternative time series transformation techniques to evaluate their individual

effectiveness in rogue seasonality detection.

Different kinds of simulation have been developed to cater to different requirements. For
studying supply chain dynamics, the two major simulation approaches that have been
used are discrete event simulation (DES) and systems dynamics or SD (Riddalls et al.,
2000; Kleijnen, 2005; Akkermans and Dellaert, 2005).

3.6.1.1 Discrete event simulation (DES)

Discrete event simulation (DES) is used for analysing discrete event dynamic systems
(DEDS), which usually consist of jobs and resources. In a typical simulation, jobs
(individual physical entities in a majority of applications) travel from resource to resource
through a series of queues and activities in a stochastic fashion, where their onward
progress through the system is determined. For example, in a model of a supply chain, the
jobs are raw materials that progress through machines and buffer inventories (both
resources) where their attributes are changed and they arrive at the retailer as finished
goods. Discrete event simulation models are often used for systems where entities are
processed in a linear fashion with limited feedback (Sweetser, 1999; Tako and Robinson,
2009). They are considered more appropriate for discrete processes and those which
involve detailed operational analysis of a specific, well-defined system, such as a
production line or call centre; systems change at specific points in time: resources fail,

operators take breaks, shifts change, and so forth (Greasley, 2004). Discrete event
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simulation has been similarly applied in supply chain domain also (Terzi and Cavalieri,
2004).

This thesis with its focus on rogue seasonality has a supply chain or multi echelon
orientation. Also, feedback loops play an important part in the generation of rogue
seasonality (Kim and Springer, 2008). Discrete event simulation is less suited on both
these aspects as discussed in the previous paragraph. It was therefore not used in the

thesis.

3.6.1.2 Systems dynamics (SD) simulation

Systems Dynamics (SD) simulation was advocated as a method of investigating
dynamical effects in large, complex systems by Forrester (1961) and involves simulation
in continuous or pseudo-continuous time. It simulates aggregate behaviour and is best
suited for problems where feedback plays a significant role in determining the dynamic
behaviour of the system (Akkermans and Dellaert, 2005). Structures with many echelons
as well as those with complex, non linear relationships between variables can be studied

using SD simulation.

A typical SD simulation involves representing the relationships between variables as
causal loop diagrams, converting them into differential equations, subjecting the system
to an exogenous shock and then visually studying the output profiles of variables to
understand cause-effect relationships. Additionally, alternative scenarios are tested by
adjusting the parameters of a system, adding new linkages and feedback loops or
rearranging components of the system to assess their impact on the dynamic profiles and

cause effect relationships in the system.

The causal loop diagram (CLD) used in SD simulation depicts the linkages and feedback
loops among the elements in the system, as well as between the system and its operating
environment which helps the decision-maker in understanding a complex, inter-related
system. The specific characteristics of CLD representation are:

« Variables in a CLD are connected by causal links, represented by arrows, indicating the

influence amongst the variables
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* In each causal link, the variable at the tail of the arrow is the independent variable while
the variable at the head of the arrow is the dependent variable

* A positive (+) causal link means that when the independent variable increases
(decreases), the dependent variable increases above (decreases below) what it would
have been if the independent variable did not change.

* A negative (-) causal link means that when the independent variable increases
(decreases), the dependent variable decreases below (increases above) what it would
have been if the independent variable did not change.

The underlying mathematical relationships driving the simulation (differential and

algebraic equations) are developed after transforming the CLD into an equivalent level

and flow structure or block diagram in control engineering. The four important concepts
related to level and flow suggested by Forrester (1961) and which are used in formulating
the simulation equations are:

1. Levels which describe accumulations within the system and are drawn as tanks.
Levels represent the present values of the variable they contain that have resulted
from the accumulated difference between inflows and outflows. For example, in the
case of production-inventory control, inventory is a level determined by the inflow of
goods produced and outflow of goods sold

2. Flows, which transport the content of one level to another. For example, the inflow of
goods produced and outflow of goods sold, as discussed earlier

3. Decision functions, which control the rates of flows between levels (drawn as valves).
For example, in the case of production-inventory control, the rate of issue of
production orders is a decision function

4. Information channels, which connect the levels to the decision functions. For
example, the levels of inventory and WIP could be used to decide the production
order rate decision

It is notable that since SD models simulate aggregate dynamics, rates such as order rate,

and production rate are used, rather than orders or production quantities. The algebraic

and differential equations from the level and flow structure are generally solved using
numerical techniques to generate the simulation output profiles. The discretisation

required in numerical solution techniques causes SD simulations to be pseudo-continuous
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rather than continuous. While specialist packages such as Vensim®, Prosim® and
iThink® have been developed for SD simulation, the same can also be done in a

spreadsheet where the differemce equations could be coded.

This thesis is focused on rogue seasonality which is endogenously generated from the
feedback loops in the replenishment-inventory control system as discussed in the
literature review. Also, the cantrol system is operative at an aggregate level. Simulation
based on system dynamics is. appropriate on both these counts. Moreover, SD simulation
has been used to understand and model the dynamics associated with the related bullwhip
effect (Angerhofer and Angglides, 2000; Akkermans and Dellaert, 2005; Potter and
Disney 2006; Villegas and Smith 2006; Wilson, 2007). SD simulation was therefore used
to understand rogue seasonality generation as well as for generating related contextual
data.

Although SD simulation has been extensively used and has many advantages, it has one
major drawback. It does not have a theoretical basis or analytical support for deciding
how to vary parameters, feediback loops and components to improve system performance
(Ansoff and Slevin, 1968). Simulation essentially proceeds on a trial and error basis and
is therefore cumbersome, time consuming and provides limited insight. Control theory

has been suggested as a way o strengthen the theoretical base of SD simulation.

3.6.1.3 Control theory and its use in production-inventory problems

Control theory has been used to study production-inventory dynamics in its own right
independent of SD simulation (Ortega and Lin, 2004). Used extensively in the past for
studying engineering systems (Nise, 1995), these learnings were subsequently applied to
production-inventory control problems using the analogous dynamics between the two
contexts. Control theory is typically used in production-inventory control systems by
mathematically representing the causal relationships and feedback loops in the system in
terms of differential equations or differential equations transformed by Laplace transform
to the continuous ‘s’ domaim or differential equations transformed by the z transform to
the discrete ‘z’ domain and wusing these representations to analyse dynamics of relevant

variables (Ortega and Lin, 2004; Sarimveisa et al., 2008). Generally, simple structures

56



(linear and with one or two echelons) are analysed using control theory. Also, analysis is

at an aggregate level (similar to system dynamics) and with deterministic inputs (Ortega

and Lin, 2004). A comprehensive list of reasons for using control theory and transfer
function techniques in production and inventory control is given in Disney and Towill

(2002). (Transfer function is used to represent the dynamics of the system

mathematically; it algebraically relates a system’s output to its input in the ‘s’ (using

Laplace transform) or 2’ (z transform) domain and is essentially a polynomial

representation in ‘s’ or ‘z’) The reasons provided by Disney and Towill (2002) are:

 Block diagram, an intrinsic part of control theory, provides a simplistic representation
of the casual relationships between system components and helps identify important
system structures (Nise, 1995).

o Use of standard forms and notations in control theory simplifies benchmarking and
promulgation of models describing best practice (Towill, 1970). It enables adoption of
best practices and parameters from hard (engineering) systems (Towill, 1982).

e Use of transfer function simplifies the capture and representation of the dynamics of the
system (Popplewell and Bonney, 1987)

o Standard control theory techniques enable dynamic performance metrics of systems
such as settling time, peak overshoots and rise times to be calculated without recourse
to simulation (Nise, 1995)

¢ Problems could be transferred across domains (time, ‘s’, ‘z°, ‘@) to exploit benefits of
operating in those domains (Disney and Towill, 2002). For example, conversion to
frequency (w) domain enables easier analysis of systems with cyclical characteristics. It
also enables simpler computation, as the dynamics of multi echelon structures can be
easily computed by straight forward vector multiplication for linear systems. (Bissell,
1996). Moreover, frequency response analysis could be used to examine the critical
design parameters and identify ranges of parameter values that give good transient
response performance (Ortega and Lin, 2004)

« Transfer functions could be integrated with simulation for additional system analysis

(Disney and Towill, 2002).
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The major studies applying control theory in production-inventory control problems,
include the study by Tustin (1953) who first explored the application of control theory in
the design of ‘soft’ systems, where the analysis included modelling of an economic
system. Valuable insight into a production control system was given by Simon (1952)
using a basic servo mechanism theory by considering a continuous time model in the ‘s’
domain. He described a simple system for inventory control using feedback loops and
linear differential equations to control the rate of production for a single product.
Subsequently, Vassian (1955) used a discrete model for the analysis of an inventory
control system using difference equations and the application of ‘z’ transforms. Axater
(1985), who reviewed earlier research on control theory applications in production and
inventory control, highlighted the fact that dynamic effects and the importance of
feedback are illustrated extremely well by the use of control theory. Ortega and Lin
(2004) and Sarimveisa et al. (2008) have reviewed recent research on the application of
control theoretic methods to production—inventory systems. Previous work on application
of transfer function techniques in the field of production and operations management has
been summarised by Disney and Towill (2002).

An important contribution in control theory, especially with regard to its use to strengthen
the theoretical base of systems dynamics was made by Towill (1982). Instead of using a
complex model with repeatedly coupled non-linear linkages like Forrester (1961), he split
the model into more elementary linear two echelon systems, which allowed a greater
depth of analysis, whilst still capturing the salient attributes of system behaviour (Berry et
al., 1995). The analysis was based on a combination of control theory and systems
dynamics. An early guide on use of this combined approach is given in Edgehill and
Towill (1989) who state that although control theory requires making assumptions
regarding linearity, basic understanding of system behaviour from control theory
techniques enhances the insights obtained from subsequent simulation for production
inventory control problems. Since then, a series of investigations based on this combined
control theory and simulation based approach (Naim and Towill, 1994) have been carried
out and has led to the development and analysis of different control systems as well as

different ways of utilizing control theory to complement systems dynamics.
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In this thesis, the combined control theory and simulation approach using simple
structures is used for rogue seasonality analysis. Such an approach provides better
understanding of the dynamics of variables compared to Forrester’s approach of using
large scale complex models. The understanding gained from the simple structures could

be transferred to larger, more complex structures.

a) Control system variants and the choice of Automatic Pipeline Inventory and
Order Based Production Control System (APIOBPCS)

The first control system analysed by Towill (1982) was the Inventory and Order based

Production Control system (IOBPCS), a periodic review algorithm for issuing orders into

a supply pipeline, where orders placed are based on average consumption over a period of

time and a fraction of the difference between desired and actual inventory (inventory

deviations or error). IOBPCS is representative of industrial practice in the UK (Coyle,

1977). Towill was concermned with finding a good solution to balance production

adaptation and inventory costs using “best practice” analogues from hard control system

theory, and used the latter together with simulation in the study. Since then, different

variants of IOBPCS have been developed with all of them designed via the use of control

theory together with simulation. Details of these variants are given in Disney and Towill

(2005) with each of them constructed by defining some or all of the following five

components:

 The lead time, which represents the time between placing an order and receiving the
goods in inventory. In manufacturing sites, lead time incorporates production delays
while in distribution lead time is from order transmission and shipment delays

» The desired inventory setting, which can either be fixed or a multiple of current average
sales rates

» The demand policy, which in essence is a forecasting mechanism that averages the
current market demand. The demand policy is a feed-forward loop within the
replenishment policy

« The inventory policy, which is a feedback loop that controls the rate at which inventory

deficit (difference between desired inventory and actual inventory) is recovered
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* The pipeline policy, which is a feedback loop that determines the rate at which WI1P

deficit (difference between desired WIP level and actual WIP level) is recovered

In this thesis, different variants of the Automated Pipeline IOBPCS or APIOBPCS model
have been used (John et al., 1994; Mason-Jones et al., 1997). This is a general, versatile
model which has been applied in multiple contexts. It mimics the heuristics used by
humans to replenish inventory (Sterman, 1989; John et al., 1994), has been shown to
replicate industrial practice (Evans et al.,, 1997), represents the logic contained within
MRP systems (Fowler, 1999) and can represent lean and agile supply chains (Towill et
al., 2001), order-up-to policy (Dejonckheere et al., 2003), vendor managed inventory
systems (Disney and Towill, 2003) and remanufacturing systems (Tang and Naim, 2004).
The causal loop diagram of the APIOBPCS model is given in Figure 3.2, with Appendix

A detailing its block diagram representation and difference equations for a single echelon

model.
Safes/Demand
Tire to average Forecast Percelyed lead
tine
sales/demand sales/demand
Tine to adjust
pjpchne/WTP defict
Completion rate Actual inventory
rate)
Lead tme

Inventory defict

Time to adjust
memory defict

Figure 3.2 Causal loop diagram ofthe APIOBPCS model (John et al., 1994)

The ordering policy in APIOBPCS can be described as follows; “the order placed is equal
to the average sales rate plus a fraction (1/7j) of the inventory error plus a fraction ({/TW
ofthe work-in-process (WIP) error” where 7, is termed the ‘lime to adjust inventory” and

T the ‘lime to adjust WIP”. Consumption/sales/demand rate (CONS), forecast
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consumption/sales/demand rate (AVCONS), order rate (ORATE), work in progress level
(WIP), desired work in progress level (DWIP), production completion or receipts into
inventory rate (COMRATE), actual inventory level (AINV), error between desired and
actual inventory level (EINV) are the system variables in a single echelon APIOBPCS
system. In terms of parameters used, average sales rate is calculated using exponential
smoothing and is dependent on a parameter 7, related to the exponential smoothing
parameter a. While 7, is a physical parameter, 7}, T, and T, are decision parameters
whose values are set according to performance criteria such as the minimisation of order
variance, inventory availability and the speed of response to changes in demand. John et
al. (1994) proposed parameter values which gave good dynamic performance in an
APIOBPCS system and these are given in Appendix A. The focus of this thesis is,
however, on generation of rogue seasonality rather than getting a good dynamic

performance and, therefore, other parameter values are also applied.
b) Use of control theory as a complement to simulation

Use of control theory complements simulation in several ways, as discussed in this
section earlier. The original use suggested by Towill (1982) was that it removes ‘ad-
hocism’ in simulation. Good systems design practices and parameters from ‘hard’
systems are applied to production inventory problems on the basis of control theory and
serve as an effective starting point in simulations of large scale systems. Secondly,
control theory also gives insights into the steady state dynamics and provides a cross
check for simulation. Subjecting the transfer functions of interest (‘s’ or ‘z’ domain) of a
specific system to limiting conditions enables determination of the initial and steady state
dynamics in the time domain without simulation (based on initial and final value
theorems). The inverse transform approach helps in assessing the correctness of the
simulation formulation. The system is subjected to a deterministic input and the analytical
response (of different variables) obtained by inverse transforming the function is
compared to the simulation output, with a good correlation between them, indicating the
correctness of the simulation formulation. John et al. (1994) used initial and final value
theorems as well as the inverse transform approach to establish the validity of their

simulation output for the APIOBPCS system.
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In this thesis, control theory is used to complement simulation but in a different way to
that described above. Transfer functions in the ‘s> (continuous) domain are computed
using the Laplace transform first. This ‘s’ domain representation for APIOBPCS is given
in Appendix B. Alternatively, ‘z’ (discrete) domain using z transform could have been
used, as findings from both ‘s’ and ‘z’ domains are qualitatively similar (Disney et al.,
2006). However, algebraic manipulation based on the ‘s’ domain is preferred because of
its tractability (Dejonckheere et al., 2003) and was therefore used. Thereafter, (‘j@’) was
substituted for ‘s’ in the transfer function/s and its absolute value in terms of ‘e’ (angular
frequency) determined. Called the frequency response (FR) or amplitude response (Amp
R) (both FR and Amp R will be used interchangeably in the rest of the thesis) this
function gives the ratio of amplitudes of sinusoidal output to sinusoidal input at various
frequencies (w). Effectively, by this approach, the transfer function in the ‘s’ domain is
converted to the frequency (‘w’) domain as the latter is more suited for data with cyclical
characteristics. FR derives its usefulness because of two facts: First, a sinusoidal input to
a linear system at a particular frequency yields a sinusoidal output at the same frequency
(though with a different amplitude and phase) (Towill and del Vecchio, 1994;
Dejonckheere et al., 2003; Jaksic and Rusjan, 2008) and second every time series consists
of and can be broken up into its constituent sinusoids at different frequencies (using
Fourier transform). Hence, analytically computed FR highlights the input frequencies that
would be amplified (FR > 1), attenuated (FR < 1) and the extent of
amplification/attenuation, independent of the nature of exogenous input. In this thesis, FR
is analysed at critical frequencies such as zero frequency (wo), frequency at which FR is
maximum (® max Fr), frequency at which crossover from amplification to attenuation takes
place or FR = 1 (@ crossover) and very high frequency (0.,  is used as surrogate for high)
for each unique variable in the control system. Such an approach provided adequate
insights on rogue seasonality generation and more importantly its characteristic signature
that could be used subsequently, for its detection in an unseen setting. Detailed analysis
of individual transfer functions was therefore not performed, especially since the focus of

this thesis is on the latter, rather than the former.
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The manual computation of the transfer function and its conversion to the frequency
domain being quite unwieldy, Matlab® symbolic toolbox was used for the same.
Following the control theory analysis, simulation is used to generate contextual rogue
seasonality data which is validated by comparing it with the analytically derived FR

values at critical points such as co max rr.

3.6.1.4 Simulation as applied in the thesis

The motivation ofusing simulation was to understand rogue seasonality generation and to
generate rogue seasonality data of different characteristics and intensities which could be
individually applied to different time series techniques/features to assess their
effectiveness in detecting rogue seasonality. The overall simulation design used is

summarized in Table 3.2 below.

A sequential modelling process, moving from simpler to more complex structures was
used to enable an easier understanding of the rogue seasonality dynamics (single echelon
linear to three echelon linear to four echelon non linear). Use of different structures also
strengthened the robustness of findings with regard to rogue seasonality signature, index
and best techniques for rogue seasonality detection. This explains the logic of research

questions 1and 2.

Table 3.2 Simulation design used for rogue seasonality analysis

Supply chain Structure details Control system* Other variants used in
structure simulation

Different demand
processes and
parameters; Lead

MTS (Make to stock) time/delay and
distribution of lead time
Different demand
processes and

MTO (Make to order)
Linear Single echelon, three
(Chapter 4) echelon

Hybrid MTO-MTS with
Beer game (Sterman, Optimal parameters parameters; Lead

1.9 89.)’ a.four cchelon time/delay; Batching
distribution structure Hybrid MTO-MTS with  with different batch

Unoptimal parameters sizes/No Batching

Non linear
(Chapter 5)

*Derivedfrom generic APIOBPCS by change ofparameters
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For a linear system, multi echelon structures were created by coupling together similar

single echelon structures (consumption rate of an echelon was made equivalent to the

order rate at its downstream echelon) while the well known Beer game (Sterman, 1989)

was used for simulating the non linear structure. The Beer game was used for simulation,

as it represents a typical four echelon production-distribution system (retailer, wholesaler,

distributor and factory) with ordering and shipment delays across echelons and non

linearities from backlogs. The Beer game has been simulated in many different contexts

as given in Table 3.3.

Table 3.3 - Studies which have used Beer game simulation

Reference
van Ackere et al. (1993)

Larsen et al. (1999)

Hong-Minh et al. (2000)

De Souza et al. (2000)

Van Landeghem and
Vanmaele (2002)

O’Donnell et al. (2006)

Paik and Bagchi (2007)

Hwamg and Xie (2008)

Shukla et al. (2009)

Research context

Assessing impact of ordering delay reduction, echelon elimination and
sharing of demand information sharing on Bullwhip

Generation of chaotic behaviour from ordering policies

Impact of alternative policies such as EPOS, centralised stock control by
factory .bypassing an echelon and echelon elimination on lateral emergency
transshipments

Impact of shortage gaming, capacity constraints, information and material
delays, poor coordination, demand signaling and order batching on supply
chain dynamics

Relevance of robust supply chain planning i.e. planning which incorporates
uncertainties; Stochastic demand used with stochastic factory breakdowns and
repairs, stochastic product spoilage and four alternative decision policies

Use of genetic algorithm to determine optimal ordering policy for individual
echelons

Significance of demand forecast updating, order batching, rationing and
shortage gaming, price variation, material and information lead time, machine
breakdown, capacity limitations and number of echelons on the Bullwhip
effect

Investigation of chaos from factors such as demand pattern, ordering policy,
demand information sharing and lead time

Investigation of shipment dynamics or “backlash” effect

While in the role playing version of the Beer game, decisions on order quantities from

respective upstream echelons are made by human participants, in the simulated version as

used in the thesis, APIOBPCS and its variants are used for the same. According to
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Sterman (1989), the generalised decision rule represented by APIOBPCS characterizes
experiential decisions well, as it captures the essential attributes of any minimally
sensible stock management procedure consisting of replacement of expected losses,
correction of discrepancies between the desired and actual stock and a consideration of
the work in progress. From his analysis of the Beer game data, Sterman found that the
orders placed by most players conformed to APIOBPCS though, the parameters used by

individual players were different.

Though APIOBPCS was used, variants other than the optimal parameters suggested by
John et al. (1994) were also considered so as to simulate rogue seasonalities with
different characteristics. Specifically, make to order (MTO) and make to stock (MTS)
strategies or control systems are considered, because according to Buxey (1995) and
Safizadeh and Ritzman (1997) these are more commonly found in industry than a mixture
of MTO and MTS systems. Moreover, they are contrasts in terms of use of CONS or
sales information (in the ordering decisions) and were therefore expected to yield
different rogue seasonality characteristics. On the other hand, other researchers such as
Anderson Jr et al. (2005) suggest that hybrid MTO-MTS strategies are more commonly

used, and therefore it was also considered in the thesis.

Parameters within the hybrid MTO-MTS system were also varied. Two cases, Optimal
and Unoptimal were considered, with these definitions being from a Bullwhip
perspective. Optimal parameters are those which have been suggested by John et al
(1994) for good dynamic behaviour, that is, low order amplification while Unoptimal
parameters do not incorporate any pipeline feedback and are associated with greater order
amplification (Sterman, 1989). Though the choice of Optimal parameters and Unoptimal
parameters options are based on the Bullwhip effect, it was expected that these would
generate rogue seasonality of different characteristics in the system as per the study by
Kim and Springer (2008).

Other variants were applied to the simulation for assessing the robustness of the rogue
seasonality findings. Delay or lead time was varied as it impacts the supply chain
dynamics (Forrester, 1961; Chen et al., 2000). Similarly, the nature of demand affects the
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dynamics of the operating variables and was also therefore varied (Gilbert, 2005). Unlike
most systems dynamics models, which are analysed by simulating them with a step or
impulse function (Sterman, 2000; John et al, 1994; Towill et al., 2007), in this research
most of the analysis is based on a stochastic stimulus (demand profile). This is because
the simulation output is not just used for understanding rogue seasonality generation but
more importantly is an input for developing and assessing rogue seasonality detection
protocols (signature and index for measurement). The latter forms the thrust of this thesis
and use of the more realistic stochastic demand profiles (Chopra and Meindl, 2001) in the
same in comparison to step/impulse enhances the validity of the findings. Even
otherwise, studies such as those by Dejonckheere et al. (2004) and Jaksic and Rusjan
(2008) have based their analysis predominantly on stochastic demand profiles. Details of
the stochastic demand pattern used in the thesis and the rationale for using them have
been detailed in the respective chapters. Finally, batching of orders and shipments is a

common practice and therefore sensitivity of the findings to the same was also assessed.
3.6.1.5 Tools and techniques used

There are two major tools for system dynamics simulation: specialist simulation packages
such as Vensim®, Stella® and iThink® and spreadsheet. Simulation packages provide
ease in developing and analyzing complex models (graphical approach). However,
getting the skills to make models in these packages is time consuming. Understanding the
dynamics of individual variables and relating it to other variables is also less intuitive in

these packages.

The alternative of spreadsheet simulation on the other hand offers a fast, easy way to
build simulation models with maximum flexibility and learning. It involves entering the
inputs and decisions into a spreadsheet and then relating them appropriately, by means of
formulas, to obtain the outputs (Winston, 2005). Excel also has an in built Visual Basic
Application (VBA) programming platform, which allows users to create their own
computational functions as well to develop code/macros for automating routine tasks.
VBA also allows use of controls such as scroll bar, spin button, option button, command

button and check box to dynamically change simulation parameter values and related
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linked profiles of variables, thereby enabling better visualization and understanding of the
dynamics. Add-ins such as for risk management (Crystal Ball®) and data mining
(XLSTAT®) have further enhanced the capability of spreadsheets. The recent special
issue of Interfaces focused on spreadsheet modeling is testimony to the relevance and
usefulness of spreadsheets within the management community (LeBlanc and Grossman,
2008) which includes a discussion of Hewlett-Packard’s experience in building and
applying spreadsheet-based decision-support tools for forecasting, planning,
procurement, and product management (Olavson and Fry, 2008). Similarly, Smith (2003)
used three real world examples to show how spreadsheet modeling could be used for

supply chain decision making.

The spreadsheet’s flexibility in incorporating alternative model structures and parameters
and the more intuitive understanding of dynamic behaviour that it provided were the key
factors in the decision to use it for simulation. Another factor was that Excel links well
with Matlab® which was used for performing various time series transformations for
rogue seasonality detection. The use of spreadsheet for simulation is well established and
has been used in multiple contexts (John et al., 1994; Disney and Towill, 2003; Tang and
Naim, 2004) and therefore provided confidence that it could be applied in the context of
this thesis for rogue seasonality analysis. The final factor was that the author was already

quite familiar with spreadsheets and VBA.

Spreadsheet simulation involved transferring the relevant difference equations
(MTO/MTS and Beer game) into an Excel spreadsheet. However, changes such as in
demand processes and parameters, lead time and lead time distributions also needed to be
simulated and its impact on the behaviour of variables understood. Therefore, rather than
making separate spreadsheets for each case, two generic simulators based on VBA were
built: a generic APIOBPCS simulator and a Beer game simulator. These are depicted in
Figures 3.3 and 3.4 below. The approach used in each case was the same as suggested by
Smith (2003); a ‘control panel’ sheet consisting of different VBA controls (scroll bar,
spin button, option button, command button and check box) and the actual data models
on other worksheets. In the APIOBPCS simulator, the VBA controls are associated with

different simulation variants such as control parameters (T, Ts, Tw), delay/lead time (Tp),
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lead time distributions (order of delay), demand processes and parameters and provide
dynamic change capability. These simulation variants are linked to the simulation model,
thereby effecting appropriate changes in the simulation data which in turn changes the
linked plots of different variables on the ‘control panel’ page. Hence, this VBA enabled
approach helps in relating changes in simulation variants to the dynamic profiles of
different variables and therefore makes understanding of the dynamics easier. The three
echelon APIOBPCS simulation was simulated by having three separate linked
workbooks, with each workbook containing a similar single echelon APIOBPCS
simulator. A similar approach as that used for the APIOBPCS simulator, was used to

build the Beer game simulator.

While the simulator based approach was used for initial understanding of the rogue
seasonality dynamics, it could not be used to generate the large volumes of contextual
data required for a statistical assessment of the best time series techniques and features
for rogue seasonality detection. A combined Excel, VBA and Matlab approach was used

for the same.

An important part of the simulation process is the verification and validation of the
simulation model (Law and Kelton, 2000; Sterman, 2000). Validation is the process of
determining the accuracy of the simulation model compared to the system under study
and is more appropriate for empirical simulation models, where there is a benchmark for
comparison. Since, established generic models such as APIOBPCS and the Beer game
were used in the thesis, the validation aspect was already covered. Verification on the
other hand, is described as the process for checking the correctness of the translation from
conceptual (causal loop) to a computer model, which in the case of the spreadsheet model
means ensuring the correctness of the formulas and logic used in the model. The models
were verified in different ways. Firstly, model outputs specifically oscillation frequency
of the variables were compared to that suggested by control theory i.e. frequency
response or amplitude ratio (FR or Amp R). Secondly, the exogenous demand variable
was made constant across time, which, if the difference equations are correctly coded
causes all variables to have a similar constant profile across time. Finally, similar

conditions as that used in benchmark studies such as John et al. (1994) and Sterman
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(2000) were applied to the APIOBPCS and Beer game simulators respectively and the

profiles and values of the model variables compared.

3.6.2 Case studies

Case studies are used in the thesis along with simulation because use of such multi-
methodology approach increases the validity of the findings. Case study is a preferred
strategy in exploratory research because of its focus on contemporary phenomenon within
a real life context and lack of investigator control (Yin, 1994). This explains the logic of
research question 3. Decisions to be made when using the case study method are the

nature and number of cases.

Case Selection: Case-based research can be expensive in terms of cost and time
expended and therefore the nature of the case/s selected is an important part of the
decision process. According to Eisenhardt (1989), the cases selected should be from an
appropriate population in order to avoid as much as possible extraneous variations, while
Stuart et al. (2002) suggests that case selection should consider the potential effects of
industry, organization size, manufacturing processes and inter-organizational aspects. The
choice of cases should follow theoretical rather than statistical reasons. Pettigrew (1990)
proposes three criteria for case selection: (a) Extreme situations (b) Polar types as a way
of disconfirming patterns from one case study to the other (c) High experience levels. He
also describes as “planned opportunism” the practicalities of the process of choosing and

gaining access to research sites.

The second important issue is whether single or multiple cases should be chosen and
whether there is an optimum number for the latter. Eisenhardt (1989) advocates the use of
four to ten cases, depending on the number of critical causal variables, in order to get
proper results from case study research, but there are opponents to her approach who
emphasize the importance of fewer cases, even single-case studies. Yin (1994) for
example claims that a single case can be an appropriate research design when the case
represents a unique or extreme case. Similarly, Stuart et al. (2002) claims to have

conducted successful case research using as few as one to three companies.
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Appropriateness of the cases with respect to the research context therefore seems more

important than the number of cases.

In the thesis two case studies from contrasting industries are used and provide different
contexts for rogue seasonality analysis and detection. One study is from the steel industry
characterized by stable demand profiles, while the other is from the grocery industry
where the demand profiles are irregular and volatile. Monthly data was collected and
analysed for the former while daily data was used for the latter. Both the case studies
were analysed using predominantly an information centric approach focused on rogue

seasonality.
3.7  Time series transformations and features used for rogue seasonality detection

As discussed earlier, this thesis has two parts: rogue seasonality generation and rogue
seasonality detection. While the previous sections talked about rogue seasonality
generation and related contextual data from simulation and case studies, this section
discusses the time series transformation techniques and features used for rogue
seasonality detection. The contextual rogue seasonality data (with different characteristics
and intensities) consisting of time series of different variables are input into these
techniques, and rogue seasonality detection is enabled based on appropriate signature and
index. The relevance of signature based techniques and the inappropriateness of change
point detection techniques for detection on a generic basis has been explained in the

literature review chapter.

In signature based methods, signatures are usually derived on the basis of clustering or
finding similarity relationships among the time series profiles of the operating variables.
Time series clustering is predominantly based on the following three approaches (Liao,
2005): a) Raw data based (time series data used for clustering), b) Feature based (features
extracted from the time series are used for clustering) and, c) Model based (time series is
converted into a model and the model parameters are used for clustering). Clustering
approaches based on time series data, though easier to interpret, have problems in

computation (large, high dimensional data sets) as well as lower accuracy because of
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interference from noise. Feature based and model based approaches are therefore
preferred (Liao, 2005; Keogh and Kasetty, 2003). Some of the commonly used features
include amplitudes of Fourier transform (FT), wavelet coefficients of discrete wavelet
transform (DWT), autocorrelation function (ACF) and cross correlation function (CCF)
which is a feature of pairs of time series. The autoregressive (AR) model is the most
commonly used model based approach. Details about these feature and model based

approaches are given in the following paragraphs and summarized in Table 3.4.

a) Fourier transform (FT): This is an old technique involving decomposition of a time
series into its constituent sinusoids at different frequencies (as per equation 3.1) which
has been used to analyze periodic signals extensively (Chatfield, 2004). Periodicity in the
data gets reflected as peak amplitude/s at corresponding frequency channel/s in the FT

analysis.

1 = - 27;jft
X, = —— .
s = 'E-l x, exp( - ) @G

|x,| = Amplitude of sinusoid of frequency f, x, = signal values att = 0,.....n-1
Frequency (f) = [0, 1,... n-1] (1/T), T = total sampling time, j = Ny

The utility of FT in time series clustering is, however, of recent origin with Agrawal et al.
(1993) establishing the equivalence of similarity relationships between the time and
frequency domains. This formed the basis of a fast and accurate method of clustering any
time series (using fast Fourier transform) by using the amplitudes of the first few
frequencies as features (non inclusion of high frequencies which are typically associated
with noise ensures greater clustering accuracy). Variations of this technique have been
tried in different studies such as Wu et al. (2000), Caiado et al. (2006) and Viachos et al.
(2006) as given in Table 3.4.

The FT based approach being suited for data with cyclicality, it was considered for rogue
seasonality analysis by Thornhill and Naim (2006). However, their nature of application
is different from the way FT based approach has been used in the thesis. While they used
FT to eliminate lags between variable profiles for effective profile comparisons and

subsequent manual clustering, in this thesis FT (using amplitudes from FT) has been
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Table 3.4

Review of studies using different transformation techniques and features in time series clustering

ARIMA/AR MODEL

FOURIER

TRANSFORM

(FT)

Reference

Tong and Pabas
(1990)

Piccolo (1990)

Deng etal. (1997)

Kalpakis et al.
(2001)

Maharaj (2000)

Xiong and Yeung
(2002)

Ting et al. (2003)

Wuet. al. (2000)

Caiado et al. (2006)

Thornhill and Naim

(2006)

MDS: Multidimensional Scaling

Transformation/Features used

Residuals from ARIMA model

AR model parameters

ARMA model parameters

Cepstra of time scries derived from AR model

AR model parameters

ARMA/AR model parameters

AR model parameters

Amplitudes from FT

Amplitudes from FT

FT + PCA (principal component analysis)

SOM: Self organising map

Comparison with
alternative methods

No

No

Yes; FT, DWT, PCA, and ACF

No

Yes; Cepstra of time series derived
from AR model

Yes; FT

Yes; DWT(Haar)

Yes; AR model, ACF, PACF,
1ACF

No

Clustering Technique

Hierarchical clustering and MDS;
Euclidean dissimilarity measure

Hierarchical clustering and MDS;
Euclidean dissimilarity measure

Classification and query matching;
Euclidean dissimilarity measure

Partitioning around medoids; Euclidean
distance between cepstra as dissimilarity
measure

Hierarchical clustering based on p value
of a hypothesis test

Expectation Maximisation (EM)
clustering

Classification and query matching;
Euclidean dissimilarity measure

Classification and query' matching;
Euclidean dissimilarity measure

Hierarchical and k-means clustering; New
dissimilarity measure based on
periodogram

Visual clustering by plotting

PCA: Principal Component analysis

Data used for
evaluation

Benchmark socio economic
dataset with seasonality

Economic time series with
seasonality

Synthetic dataset with real
context

Synthetic as well as
benchmark datasets

Synthetic as well as
economic dataset

Synthetic as well as
benchmark datasets

Synthetic as well as stock
price data sets

Stock price datasets

Synthetic and economic
dataset

Supply chain dataset



Table 3.4 Continued

Reference
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Bohtc et al. (1980)

Goutte et al. (1999)

Baragona(2001)

CROSS
CORRELATION
(CCF)

Aono et al. (2006)

Chan and Fu(1999)

Lin et al. (2004)

DISCRETE
WAVELET
TRANSFORM
(DWT)

Zhang et al. (2005)

Transformation/Features used

Shape, trend, cyclic components, ACF and
Partial ACF

ACF with amplitudes from FT

Max, min. average, range, std deviation, root
mean square (rms), shape factor, crest factor,
impulse factor, kurtosis

Trend, seasonality, periodicity, autocorrelation,
skewness, kurtosis, chaos, nonlinearity and self-
similarity

Cross correlation between time scries

Cross correlation between time series

Cross correlation between residual series
generated from fitting AR models

Cross correlation between time series

DWT (Haar) coefficients

DWT (Haar) coefficients

DWT (Haar) coefficients

Comparison with
alternative methods

Yes; Wavelet transformation of
time scries (linear B-spline wavelet
functions)

Yes; Cepstra of time scries derived
from AR model

Yes; DWT (Daubechies 4thorder)
with statistical features

Yes; ACF, HMM, SAA

Yes; FT

Yes; FT

Clustering Technique

Classification and query matching;
Euclidean dissimilarity measure

Hierarchical clustering; New dissimilarity
measure based on periodogram

Visual clustering by plotting

Hierarchical clustering and SOM;
Euclidean dissimilarity measure

Own method/program

Hierarchical and k-means clustering

Metaheuristic methods - Simulated
annealing, tabu search, genetic algorithm

Classification and query matching

Classification and query matching;
Euclidean dissimilarity measure

k-means and its variant; Euclidean
dissimilarity measure

Classification and query matching;
Euclidean dissimilarity measure

Data used for
evaluation

Synthetic as well as stock
price data set

Synthetic as well as
science, medicine and
manufacturing datasets

Synthetic dataset with real
maintenance condition
monitoring context

Synthetic as well as
benchmark datasets

Socio economic time
series

Biomedical dataset

Synthetic datasets
Biomedical dataset

Synthetic as well as stock
price data sets

Benchmark datasets

Benchmark datasets
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directly used for automatic clustering. Despite its advantages, the FT based analysis has
some deficiencies such as poor resolution of frequencies (especially for short series) and
inefficient representation of non stationary/irregular profiles. Also, operating in the
frequency domain lessens the intuitive feel of the results. Use of alternative time series

techniques and features was therefore considered.

b) Discrete wavelet transform (DWT): Fourier Transform (FT), though a popular

approach in time series clustering applications, is less efficient for non

stationary/irregular signal profiles. Localised variations in such signals require more

frequency channels for accurate representation because sinusoids represent global rather

than local contributions to data. Wavelets are able to represent such signals more sparsely

and accurately because:

a) They have an oscillatory profile of limited duration which is localised in both time as

well as frequency domains

b) Their irregular and asymmetric profile can better represent discontinuities

c) Availability of wavelets with different characteristics such as shape and span
(Daubecheis, Coiflets) can better fit different signal profiles

Figure 3.5 depicts a few commonly used wavelet profiles. An excellent coverage of time

series analysis using wavelets is given in Percival and Walden (2000).
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Figure 3.5 Profiles of some commonly used wavelets (Percival and Walden, 2000)

Wavelet based time series clustering applications involve use of discrete wavelet
transformation (DWT) to compute wavelet coefficients which are then used as features in
clustering. The coefTicients represent the correlation between the original signal and the
local oscillation represented by the wavelet basis function. The basis functions in turn are
generated by time translation and frequency scaling of the analysing (mother or

prototype) wavelet and can be mathematically represented as follows:
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Basis function ¥, (1) = 2’ 2w (2/t—k) where ¥ is the mother wavelet function

2 is the scaling of t and 27k is the translation in t. It is to be noted that only dyadic
(power of 2) time translations and frequency scaling is used in order to balance the
competing requirements of accuracy and computational efficiency.

Any real function can be represented in terms of wavelet coefficients as given below:

Any real function f(t)= Zc ¥4 (1); cx = (¥, (D), (1)) the wavelet coefficients of
/.

the DWT.
Operationally, the relevant decision parameters for this transformation are 1) Choice of

mother wavelet, and 2) Level of decomposition of the signal.

In terms of choice of mother wavelet, the Haar wavelet was used as it is easy to
comprehend and has been extensively used in time series clustering applications (Li et al.,
2002) which is also evident from Table 3.4. It can be mathematically represented as
Lif0<t<0S5
Yoo (1) = L -1, if0.5<t< 1
0, otherwise
The mechanism of wavelet decomposition of the signal and the use of wavelet
coefTicients for clustering proceeds as follows: Decomposition of the signal proceeds
hierarchically, starting with the highest frequency and gradually moving to lower
frequencies as the decomposition level is increased. A time sequence of length N (which
is required to be of power two can be broken down to any level upto log,N with the
wavelet coefficients at any level represented by {4, D;....... D,, D;}. The D;’s are the
detail coefficients representing the high frequency part of the signal with reducing
frequency as we move from D, to D; to while the lowest frequency part of the signal is
represented by A; or the approximation part. The broad trend of the time series is
preserved in the approximation part whereas the localised changes are kept in the detail
part. Clustering is done using only the approximation part of the sequence 4; while the

D;’s are discarded.

In terms of comparing DWT with DFT, a few studies have done so, with some finding it

superior to DFT (Kahveci and Singh, 2001) and others finding them equivalent (Wu et
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al., 2000). However, no study has used discrete wavelet transform for data with cyclical

features as used in this thesis.

c) Autocorrelation function (ACF): Autocorrelation function (ACF) of a time series
reveals its time delayed correlation, that is, correlation between values of a time series
across different time intervals or lags as given in equation 3.2. ACF for each time series
(up to specified lags) are used as features for similarity assessment and clustering.

Features in this method are therefore extracted from the time domain itself.

N-k
ACF = g(x. ~B) X~ H) (32)
N
d(x,-n)

1=]

M = mean of data series, k = lag, N = number of data points

This method is suited for rogue seasonality detection as ACF of a cyclical data series
oscillates with the same period as in the time domain. However, studies based on use of
this method are limited. Wang and Wang (2000) used the Euclidean distance between
ACFs to discriminate between two synthetically generated time series. Caiado et al.
(2006) used Euclidean distance between ACF, in comparison with other techniques, to
cluster and discriminate between stationary and non stationary synthetic time series and
obtained around 75% clustering accuracy. Vlachos et al. (2006) used ACF along with FT
in the context of periodicity detection and extraction of important periodic features.
However, their focus of application was on individual time series. No study has used
ACF in the context of clustering multiple data series with multiple cyclical characteristics

as considered in the thesis.

d) Cross correlation function (CCF): Cross correlation function (CCF) defines the

correlation between pairs of time series across various lags as per equation 3.3.

N-#&
D(x, U NV = H,)
CCFy = =l (3.3)

N N

Stx,-u, ) D (v, -u,)’

i=} =}

M. and p, are the means of the two data series
k = lag and N = number of data points
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This CCF based method has also seen limited applications in time series clustering
studies. Bohte et al. (1980) used the cross correlation similarity measure for clustering a
socio-economic time series. Baragona (2001) used cross correlation between residuals
generated from fitting high order autoregressive (AR) models to the time series as the
similarity measure in clustering. Clustering was done using metaheuristic techniques and
synthetic time series were used for the evaluation. Goutte et al. (1999) used the cross
correlation similarity measure and hierarchical clustering for clustering time series in
neuro imaging while Aono et al. (2006) used the same similarity measure for pattern
recognition and classification of bio-signals. Thc CCF based method has not been used
for data with cyclicality, though like ACF, it operates in the time domain which makes

interpretation of results from it easier.

e) Autoregressive model (AR): Model based methods have roots in statistical time series
analysis. The basis of this approach is that any time series can be represented as a
function of its values in the previous time periods (Box and Jenkins, 1976). The number
of past time periods used is reflected in the order of the model, which is a decision
parameter. Operationally, an AR model is fitted to each time series up to the specified
order by minimizing the sum of square errors and using the respective model coefficients

as features for clustering. Equation 4.4 gives an AR model of order p.

Xi=aXiag+taXita X3+ ... X pt+ Z, 3.4)
p= model order, a,_a,: AR coefficients and Z, ~ random process

E(Z)=0 & Var(Z) = o!

Advantages in using the AR model approach include significant dimensionality reduction

(improves computational efficiency) and ability to cluster time series of different lengths.

The AR model based approach and its variants have been used in various studies. Piccolo
(1990) clustered fourteen economics related time series using the Euclidean distance
between the AR coefficients and could discriminate them on the basis of their seasonal
component. Ting et al. (2003) also used the Euclidean distance between the AR

coefficients to cluster synthetic data with seasonality characteristics and found this
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method to be more accurate and efficient (in terms of number of parameters used) than
FT. Mabharaj (2000) used the p value of the hypothesis test based on the differences
between the AR coefficients as the dissimilarity measure to cluster synthetic as well as
economic datasets. Kalpakis et al. (1999) used the Euclidean distance between cepstra
calculated from the AR model of each time series for clustering. Some researchers such
as Tong and Dabas (1990) and Deng et al. (1997) have used ARIMA rather than AR
model representations for the time series. ARIMA model representations have MA
(moving average part) and I (a part reflecting trend in the data) beside the AR term/s and
are an equivalent but more compact representation of a time series than pure

autoregressive (AR) but less intuitive and computationally slower.

f) Statistical features: This method like the model based approach seeks to overcome
difficulties in clustering long time data series (high dimensionality), data series with
missing data or data whose lengths are unequal. Instead of a point to point distance
metric, it uses the statistical features of the data sets for clustering. For example, Wang et
al. (2006) use trend, seasonality, periodicity, autocorrelation, skewness, kurtosis, chaos,
nonlinearity and self-similarity as features and the Euclidean distance for clustering. They
showed this method to be effective for synthetic and benchmark data sets. McHutchon et
al. (2005) applied other statistical features such as max, min, average, range, standard
deviation, root mean square (rms), shape factor, crest factor, impulse factor, kurtosis and
showed their utility in discriminating faults in a remote condition monitoring context. The
use of statistical features for time series clustering is not sufficiently matured: there are
limited studies on this subject and the best/most appropriate features to be used for
different contexts have not been established. Moreover, use of aggregate statistical
measures for profiles in this method reduces intuitiveness/explanation of the results

obtained.

In summary, each technique discussed above has some relative advantages over other
techniques. However, Table 3.4 highlights that few studies have compared the
performance of their techniques and features with other rival techniques, and those that
have, have done so with one or two techniques (Keogh and Kasetty, 2003; Liao, 2005).
Secondly, the data that these studies have used to establish the superiority of a particular
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technique has a bias (Keogh and Kasetty, 2003). Primarily synthetic, non contextual data
is used in most of the studies, with a few supplementing it with empirical data but that too
on stock price or the finance domain as evident in Table 3.4. Since the results and
effectiveness of different techniques are domain specific, and none of these studies has
used any supply chain related data, their applicability in the supply chain context is
limited. In this thesis, therefore, all the time series transformation techniques except
statistical features have been applied and their effectiveness compared. Moreover, the
data used for this assessment (from simulation and case studies) have a supply chain

context. Statistical features were not used as they are not matured for application.

Different number of features were considered for each transformation technique to assess
sensitivity of the results to the same. For example, for Fourier transform (FT), the feature
options considered were FT 7 (amplitudes of first seven frequencies), FT 28 (amplitudes
of first twenty eight frequencies), FT Total (amplitudes of all frequencies) and FT 80%
energy (as many frequencies that have 80% of the total energy) for both linear and non
linear simulation data analysis. For other transformations also, different numbers of
features were similarly considered. The number of features used are discussed in detail in
Chapter 4. For the case study analysis, the number of features used are different from
simulation, due to data availability issues with the former. All time series transformations

in the thesis were computed using Matlab® (see Appendix D).
3.8 Clustering and rogue seasonality signature

Profiles of different variables, either in the time or transformed domain, are required to be
analysed to determine the characteristic signature for rogue seasonality. Though any of
the three commonly used techniques of Classification, Association and Clustering could
be applied for this analysis (these techniques are explained in Section 2.4.3.2 ), clustering
was preferred because it is the most commonly used technique in time series applications
(Liao, 2005). Moreover, for rogue seasonality, intial insights obtained from control theory
analysis suggested clustering to be more appropriate for signature determination as

discussed in the next chapter.
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Clustering techniques are concerned with partitioning of data sets (profiles of variables in
time/transformed domain in this case) into a small number of homogenous groups or
clusters with a characteristic profile of clusters associated with rogue seasonality deemed
to be the latter’s signature. Amongst the many clustering methods, two of the most
popular ones are k-means and hierarchical (Tan et al., 2005). The k-means method is an
iterative process that searches for division of data objects into (k) clusters to minimize the
sum of Euclidean distances between each object and its closest cluster centre. Though it
is a robust and scalable method, it is sensitive to the initial selection of cluster centres and
requires the number of clusters (k) to be specified before clustering. The hierarchical
clustering method on the other hand does not require a priori specification of the number
of clusters and yields good visualisation of cluster formation (Everitt, 1993). Both these
attributes are important in view of the exploratory nature of the rogue seasonality
signature subject, and therefore hierarchical clustering was used. In hierarchical
clustering, each point (time series represented as a point in multidimensional space) is
merged into clusters based on their relative closeness or similarity relationships. The
clusters formed are again clustered on the same basis and this process is repeated until
finally there is one all encompassing cluster. Hierarchical clustering is graphically
displayed as a tree like diagram called the dendogram which gives the order in which the
cluster-sub-cluster relationships formed at different stages. Clustering of data in the thesis
was done using the well known XLSTAT® software which directly takes inputs from the
Excel spreadsheet.

Use of hierarchical clustering requires three decision choices: a) Similarity measure, b)
Basis for merging two clusters and, c) Where to cut the dendogram to determine the
number of clusters. The dissimilarity measure used for all except the CCF method was
the Euclidean distance as it is commonly used in time series clustering (Agrawal et. al.,
1993; Liao, 2005) and gives results of comparable accuracy vis-a-vis various other
similarity measures (Keogh and Kasetty, 2003). It works well with all the time series
techniques considered and is also fairly intuitive and easy to implement. It is defined as

follows:
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de = ,/i(x,k — )’ (3.5)
k=1

dg = Euclidean distance
x;and y;are p dimensional vectors

For CCF, two measures of similarity have been used in the literature. One is a composite
similarity measure based on all the cross correlation values at different lags (Bohte et al.,
1980) while the other one uses the maximum cross correlation value within the specified
maximum lags (Baragona, 2001) as the similarity measure. We used the method by

Baragona because of its intuitive simplicity.

For merging two clusters, Ward’s algorithm, a popular method was used (Halkidi et. al.,
2001). This forms a cluster hierarchy by merging clusters that result in the smallest
increase in the value of the sum-of-squares variance. At each clustering step, all possible
mergers of two clusters are tried, the sum-of-squares variance computed for each and the
one with the smallest value is selected. As this algorithm works only with Euclidean
distance dissimilarity, it is not suited for the CCF method. Hence, complete linkage
clustering was used for the CCF method instead, in which clusters are merged based on
relative proximity or distance between them, with distance being the maximal object-to-

object distance between the clusters.

Finally, the decision on where to cut the dendogram and identify clusters, depends on its
tree structure and patterns of branches. For dendograms, in which branches are separated
and join far apart, distinct clusters of the variables attached to the branches can be
identified. However, for others, identifying clusters and hence pattern of relationships
between the variables is subjective and difficult. This is further complicated by issues
such as the scale used. Hence, an alternative approach based on direct use of dissimilarity

values between the variables was considered for rogue seasonality detection.

3.9 Index of rogue seasonality

Identifying clusters and hence pattern of relationships between the variables is subjective
and difficult. Hence, an alternative approach based on using an index derived from the

dissimilarity values between the various supply chain operating variables was considered.
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This index was defined so as to objectively detect and assess rogue seasonality intensity
in a generic sense. Subsequently, it was also used as a basis to evaluate the effectiveness
of different time series techniques and features for rogue seasonality detection. Since,
definition of the index emerged from the simulation results, it is best explained in the

relevant section which is the next chapter.
3.10 Conclusion

This chapter has explained the philosophy, methodology and methods used to conduct the
research and answer the research questions. The basis for adopting a positivistic stance
and using quantitative methodologies was covered initially, followed by an explanation
of the two main research threads: rogue seasonality analysis and related contextual data
and rogue seasonality detection. The rationale of using a multi methodology, simulation
and case study approach for rogue seasonality analysis was explained followed by details
of the simulation process used: systems dynamics with control theory for better analytical
support, APIOBPCS control system (John et al., 1994) and its variants such as make to
order (MTO) and make to stock (MTS) in linear system and hybrid MTO-MTS in non
linear system (Beer game) and spreadsheet (Excel), Visual Basic for applications (VBA)
and Matlab as the tools of simulation. Details of the two case studies used, one from the
steel industry and the other from the grocery industry were explained next. Finally, rogue
seasonality detection in terms of signature of rogue seasonality and index of rogue
seasonality were covered. This included the conceptualisation of the rogue seasonality
signature by clustering features obtained from alternative time series transformations
such as Fourier transformation (FT), auto correlation function (ACF), cross correlation
function (CCF), autoregressive modelling (AR model) and discrete wavelet transform
(DWT). The nature and application of each transformation technique in generic time
series clustering applications as well as the appropriateness of using hierarchical
clustering was explained. Finally, the relevance of the rogue seasonality index and its role
in eliminating some of the deficiencies of rogue seasonality signature was briefly
highlighted.
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Chapter 4 — Analysis of rogue seasonality in a linear

supply chain system

This chapter analyses rogue seasonality in a simulated linear supply chain system.
Continuous control theory (‘s’ domain) together with system dynamics simulation of
make to order (MTO) and make to stock (MTS) systems is used in the analysis. First, a
single echelon system is analysed using control theory (specifically frequency response or
FR) to understand the dynamics of variables in rogue seasonality generation and a
potential signature that could be used for its detection. These findings are then validated
using system dynamics simulation. The signature is then quantified to define a numerical
index as an indicator of the intensity of rogue seasonality. Subsequently, the effectiveness
of the signature and index is assessed using a large scale three echelon simulation. This
involved varying the magnitude and order of delays as well as exogenous demand
processes and their parameters to generate rogue seasonalities of different characteristics
and intensities in the system. Alternative time series transformations such as Fourier
transform (FT), autocorrelation function (ACF), cross correlation function (CCF),
discrete wavelet transform (DWT) and autoregressive (AR) model are then applied on the
system variables and the rogue seasonality signature and index derived in each case,
using their respective features. The different features are compared in terms of
consistency in assessing rogue seasonality, ability to discriminate rogue seasonalities of
different intensities and stochastic robustness, to determine the best feature for rogue

seasonality detection.
4.1 Rogue seasonality in single echelon systems

A sequential modelling process from simple to complex structures enables better
understanding of the dynamics of systems. A single echelon APIOBPCS is therefore
initially used to understand the dynamics associated with rogue seasonality. Specifically,
make to order (MTO) and make to stock (MTS) systems derived from the APIOBPCS
archetype are used, with the rationale for the choice of these systems having been

explained in Chapter 3.
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While the APIOBPCS based MTS system has been extensively studied (Mason-Jones and
Towill, 1997; Disney and Towill, 2005), the study of the MTO system has been limited.
Moreover, alternative information flow and feedback structures have been used to model
the latter. For example, Naim et al. (2007) use APIOBPCS with parameter values 0, o
and o for Ta, Ti and Tw respectively to model the MTO system; inventory and work in
progress feedback are eliminated and quantity ordered is equivalent to demand. Lead time
(Tp) is considered constant (i.e. independent of demand) in this approach, implying an
infinite production/order processing capacity. A similar approach is used by Towill
(2005). On the other hand, researchers such as Wikner et al. (2007) recognize the
capacity to be limited in their modeling approach. All the demand placed on this system
is not met and surplus orders are temporarily stored in an order book, information on
which is used in the ordering policy to effectively manage capacity and lead time
flexibilities. Similar approaches as Wikner et al. (2007) though with different
terminologies have been proposed by Helo (2000) and Anderson Jr et al. (2005).

In this thesis, though either of the above two approaches could be used to model an MTO
system, the approach of Naim et al. (2007) and Towill (2005) is actually used. This is
because the focus here is on detection of rogue seasonality which required use of systems
exhibiting contrasting rogue seasonality characteristics and intensities. Modeling an MTO
system in the way suggested by Naim et al. (2007) ensures no rogue seasonality
generation, which meant that it could be an effective baseline for devising rogue

seasonality detection and measurement protocols.

For an MTS system, there was no such dilemma as for the MTO system. The parameters
suggested by Naim et al. (2007), which are Ta = Tw = oo, Ti = Tp were used which were
substituted into the APIOBPCS difference equations and transfer functions to derive them

for an MTS system.

The MTO and MTS systems are analysed for different order of delays. Order of delay
reflects the distribution of output around the average delay. In a system with order of
delay one, the input is completely mixed and a proportion of the output starts exiting the

system immediately after inputs into the system. This is analogous to chemical
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processing. On the other hand in an order of delay infinity system, input and output enter
and exit the system after a fixed average delay and in the same sequence, as may be
found in automotive assembly. Both order of delay one and infinity were used so as to not
only make the models more representative (as observed in practice), but also to generate
different rogue seasonality characteristics in the systems. Further details about order of

delay are provided in Sterman (2000).

The transfer functions of variables for the MTO and MTS systems are given in Appendix
B. A noticeable fact is that unlike in the generic APIOBPCS system (John et al., 1994),
number of unique variables in these systems are fewer which is because many variables
are equivalent to one other as evident in equations B.9, B.11, B.18, B.19, B.20 in
Appendix B. The MTO and MTS systems are analysed using a combined control theory-
system dynamics simulation approach as proposed by Towill (1982). The benefits of such
a combined approach have been discussed in the Methodology chapter (Section 3.6.1.3)

and are therefore not repeated here.
4.1.1 Control theory (frequency response) analysis

Each single echelon MTO and MTS system is first analysed using the FR approach based
on Towill and del Vecchio (1994), Dejonckheere et al. (2003) and Jaksic and Rusjan
(2008) which involves representing the profile of variables in the frequency domain. This
approach is suited for data with cyclical characteristics (Chatfield, 2004), and was
therefore considered for the analysis of rogue seasonality. In this approach, the transfer
function of each variable of interest is first converted from the ‘s’, (continuous) to the
frequency (‘@’) domain by substituting (‘j@°) in place of ‘s’ and determining the absolute
value of the function. This function called FR gives the ratio of amplitude of the
sinusoidal output to sinusoidal input at various frequencies (®) and is therefore also
referred to as amplitude response (Amp R). Since every time series consists of and can be
broken down into its constituent sinusoids at different frequencies (each with different
amplitudes), the FR profile provides information about the frequencies in the input time
series that would be amplified (corresponding to FR > 1), attenuated (corresponding to

FR < 1) and for whom there would be no change (corresponding to FR =1).
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Based on the above approach, FR as a function of frequency (o) is derived for each
unique variable in each analysed system, specifically MTO and MTS with order of delay
one and infinity. Here unique means that the other system variables are either equivalent
to or are a multiple of these variables and therefore equivalent post-amplitude scaling,
which is a typical step used in profile comparisons. The FR profiles are then analysed at
critical frequencies such as at zero frequency (wo), frequency at which FR is maximum
(o max Fr), frequency at which crossover from amplification to attenuation takes place,
that is, FR = | (®crossover) and very high frequency (ww; o is used as surrogate for very
high). This is to understand the frequency characteristics of the system, get insights about
rogue seasonality and a potential signature that could be associated with its presence. A
summary of the analysis is given in Table 4.1. Matlab® symbolic toolbox was used for

performing the relevant computations.
4.1.1.1 Frequency response (FR) analysis of a MTO system

The summary of the FR analysis given in Table 4.1 highlights the fact that each system
has only a few unique variables. Secondly, FR for each variable is computed relative to

exogenous demand (CONS).

The FR profiles of unique variables in the MTO systems, both delay order one as well as
infinity have a maximum value of either one or Tp. Those which have a maximum value
of one would not amplify any frequency in the CONS input. For example, the maximum
FR value of COMRATE/CONS for delay order one system is one, which means that the
COMRATE would not amplify any frequency in CONS. Other variables which have a
maximum FR value of T, such as EWIP/CONS for delay order one and infinity and
EINV/CONS for delay order infinity have FR profiles which are either continuously
increasing or decreasing. Amplitude scaling of these profiles with respect to T, (typically
applied before comparing profiles) means no amplification of any frequency in CONS by
EWIP and EINV variables either. Therefore, with none of the variables in an MTO
system amplifying any frequency in CONS, no seasonality distinct from CONS (referred

to as rogue seasonality in the subsequent sections) is generated by the system.
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TABLE 4.1 - Frequency response (FR) functions of variables in make to order (MTO) and make to stock (MTS) systems

Outputs are given here in terms ofangularfrequencies (0j)

MTO

Delay order I

MIS

Delay order infinity

Delay order infinity

Delay order 1

Frequency response (FR) function of unique variables

COMRATE
CONS 1 + Tp0O>2

e 2%

CONS 1T ,V

COMRATE _ | (TPO) - 60Tp0)2 +144)2 +(12Tpg)3 - 144Tpa,)2

CONS (12- TQ2)2 +3555
EINV (I2Tp0>2 -144Tp )2 +(72T2a>)2
coNs (12- T02)2 +361p02
EWIP J(Ip0>4 +24Tp0>2)2 +(72Tify
CONS (12-T 232)2 +36T2a)2
ORATE UYﬁ@,
CONS (1-T2c2)2 +T292
COMRATE
NS (1150,%)% 1174
ORATE ~(Tp 04 60Tp(o2 +144)2 +(TpO,* +24T30,3)2

VAN VAN A VAN ;
a2l ) Teorha 150,/

COMRATE yOWpV4 -132T2G2 +144/ +(60T3¢3 -TpO,5 - !44Tpo,/

CONS 1p0,6 +37Tp<od - 1327292 +144
WP 127
CONS

(12- 7Tp ¢ 2)2 +(6Ipo, - T30,3)2

Profile of FR
function

FR at frcq Freq (D) for
(co)=0 or coo max FR

all

0856

0707

306

1306

1.293

Max FR

1.468
(constant)

1.155
(constant)

2.307
(constant)

2.307
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2.141%7;
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(ffl) = 00 or
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©oo

NA 0

NA

NA

NA
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4.1.1.2  Frequency response (FR) analysis of a MTS system

In contrast to MTO systems, all unique variables in MTS systems have FR profiles which
are increasing-decreasing and with an intermediate maxima. Although such profiles have
been discussed in the past by Towill and del Vecchio (1994), it was in the context of
IOBPCS, not an MTS system as considered here, and only for a single variable (order or
ORATE). Moreover, their nature of analysis was graphical and not analytical as done
here. Dejonckheere et al. (2003) have also similarly discussed the FR profile of only the
order variable in their analysis and for an order up to system (which can be used to
represent APIOBPCS). Their FR analysis was also not comprehensive and restricted to
select parameter (ordering) combinations. Finally, Jaksic and Rusjan (2008), who used
Dejonckheere et al.’s approach but with a different replenishment rule, also had a similar
issue with regard to their nature of analysis. These three studies also differ from the
present study in terms of the frequency range that is used in the analysis. While the
former use FR profile information across the entire frequency range (to understand the
Bullwhip effect and determine its magnitude called noise bandwidth), rogue seasonality
analysis and assessment is based on only the amplification range frequency (i.e.

frequencies for which FR >1). This will be clearer in the next paragraph.

The FR profiles of all variables in the MTS system are greater than one in the frequency
range wo t0 Wcrossover iNdicating that these frequencies in CONS are amplified by the
system variables. This endogenous amplification of frequencies, independent of the
frequency characteristics of CONS, is referred to as rogue seasonality generation in the
system. A feature of rogue seasonality generation, and which is evident in each of MTS
delay order one and infinity systems, is that the FR profiles of the variables in the system
are similar to each other. Since every CONS can be broken down into its constituent
sinusoids and FR for a variable represents the extent to which it amplifies each of these
sinusoids, similarity among FR profiles of variables means that all these variables would
show a similar oscillatory time series profile which would be different from the CONS
profile. However, since a range of frequencies from wp t0 Wcrossover are amplified, each

with a different degree of amplification (as represented by the FR), the time series
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profiles of variables would show a mixture of cycles although they would have a

dominant cycle at frequency ©® max Fr-

Another observation with regard to MTS systems is that the maximum FR value
(maximum amplification) is independent of lead time (T,) for all variables (except
WIP/CONS in delay order infinity system) and corresponds to a frequency which is
inversely related to T,. This means that an increase/decrease in T, would reduce/increase
the time period (or frequency) of oscillation of the profiles without having any impact on
their amplitudes. This observation seems to be at variance with Kim and Springer (2008),
who suggest that increasing/decreasing lead time (Tp) generates strong/weak cyclicality.
However, the strength of seasonality definitions used in the two cases are different and
therefore the results are not exactly comparable. Kim and Springer use a subjective
definition, albeit one with a frequency bias; endogenous seasonality in a profile is strong
if it showed multiple oscillations before reaching equilibrium and weak if it did so once or
less. On the other hand the definition used in this thesis is based on the intensity or
amplitude of rogue seasonality. Observation of maximum FR being independent of lead
time (T,) also seems to contradict the direct relationship between T, and Bullwhip
(increase/decrease in T, leads to increase/decrease in Bullwhip) pointed out by many
researchers (Lee et al., 1997a; Towill and McCullen (1999). However, here also there is
no contradiction as Bullwhip is based on the square of the FR profile across the whole
frequency range (the measure of Bullwhip effect called “noise bandwidth” suggested by
Dejonckheere et al. (2003) is based on the area under the squared FR profile) while the
rogue seasonality analysis and findings are based on the FR profile and that too in a

limited frequency range where FR > 1.
4.1.1.3  Evolution of rogue seasonality signature

The MTS and MTO systems discussed above, in which variables exhibit, do not exhibit

rogue seasonality provide effective discrimination, and therefore, a basis for developing
the signature for the same. In the MTS system, the FR profiles of most of the unique
variables and hence most available variables are similar. At the same time, because these

variables amplify frequencies between o and @crossover in CONS, they would be
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dissimilar from the latter. With similarity of FR translating into similarity in profiles in
the frequency domain, this characteristic presentation of profiles (many variables are
similar to each other and dissimilar from CONS) could be used as a signature to indicate
the presence of rogue seasonality in a new case. In contrast to this, in a system without
rogue seasonality such as MTO, the profiles of variables do not show amplification at

any frequency and hence would not be dissimilar to CONS.

While the signature for rogue seasonality could be defined at a conceptual level as above,
it needs to be shown and verified using time series data from these MTO and MTS

systems. This is required because of the following reasons:

a) Even though the FR profiles of different variables in MTS systems are similar, which
has been identified to be an indicator of rogue seasonality, the similarity is not exact
as can be seen in Table 4.1. For example, in the MTS delay order one system, ®max Fr,
Ocrossover @nd maximum FR values for ORATE/CONS and COMRATE/CONS are
marginally different. The same is true for other variables such as ORATE/CONS and
WIP/CONS in the MTS delay order infinity system. Simulation is required to assess if
these marginal dissimilarities affect the conceptual logic of the rogue seasonality

signature.

b) Another factor which affects the alignment of variables and could therefore impact the
effectiveness of the signature is that multiple frequencies between wo and ®crossover are

amplified, not just one frequency.

c) Finally, the earlier assumption about amplitude scaling (with Tp), of variables having a
maximum FR value of T, in MTO systems needs to be assessed, Also, there is a need
to apply all, rather than only unique variables and show them to be effective in

formulating the rogue seasonality signature.

Single echelon MTO and MTS systems are therefore simulated and the time series
profiles of variables generated from the simulation are used to determine the rogue

seasonality signature.
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4.1.2 Simulation output analysis

Details of the simulation are provided in the Methodology chapter (Sections 3.6.1.4 and
3.6.1.5). Each system was excited with Gaussian CONS and the time series profiles of the
system variables were analyzed. These profiles are also transformed into the frequency
domain using Fourier transform (FT) and their spectra profiles compared with the
findings from the analytical FR analysis given in Table 4.1. Gaussian CONS was used in
the analysis because it has a flat spectra, that is, its energy is distributed uniformly across
all frequency channels, which makes it easier to understand the system frequency

characteristics.

As discussed earlier, determining similarity relationships between variables is key to the
process of signature formulation. Clustering being a well established technique for
assessing similarity relationships between objects (or time series in this case), it was
therefore applied here. Details on clustering are provided in the Methodology chapter
(Section 3.8) and therefore not repeated here. Suffice to say that a hierarchical clustering
method was used, in which the order in which the cluster-sub cluster relationships are
formed at different stages is graphically displayed as a tree like diagram called
dendogram. For branches which are separated and join far apart, distinct clusters of the
variables attached to the branches can be identified. Figure 4.1 depicts the time series and
spectra profiles of the variables and their clustering for MTO and MTS systems with
delay (Tp) of 7 excited with Gaussian CONS. The time series profiles are all normalised
(i.e. mean centred and amplitude scaled, the latter with respect to 0) while the spectra
profiles are scaled with respect to the largest spectral peak because this enables better
visualization of the frequency characteristics. Also, the spectra profiles can be seen to
stop at 0.5 on the frequency axis. This is because the Nyquist sampling theorem requires

a sinusoidal signal to be sampled at least twice per cycle (Chatfield, 1996).
4.1.2.1 Simulation output analysis of MTO systems

The profiles of variables from simulated MTO systems are shown in the first two rows of

Figure 4.1. The time trends of the system variables (terms defined in this section earlier)
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are shown in the first panel and the spectra derived from Fourier transformation (FT) in
the third panel. An inspection of these plots shows a close similarity between the CONS,
ORATE, AVCONS and DWIP profiles, in both the time as well as spectral
representations. Based on the APIOBPCS structure (Figure 3.2 and Appendix A) and the
parameters of the MTO system, such a relationship between the profiles is expected. With
no demand smoothing and no pipeline and inventory feedback CONS, AVCONS and
ORATE are equivalent. Their profile in turn is similar to DWIP as the latter is
proportional to AVCONS and normalised time series data is used. The behaviour of
COMRATE, however, changes with the order of delay. For a first order delay, the
production or delivery pipeline acts as a low pass filter, that is, COMRATE transmits the
low frequencies and filters the high frequencies in CONS. This behaviour of COMRATE
for an order of delay one system is as per its decreasing analytical FR profile and which is
evident in both its time series as well as spectra profiles. For the order of delay infinity
system, COMRATE is ORATE shifted by lead time T, so that their spectra being
invariant to phase shifts in the time domain, are similar. Finally, it was mentioned in
Section 4.1.1 that variables such as EWIP/CONS (for delay order one) and EINV/CONS
and EWIP/CONS (for delay order one and infinity), despite having maximum FR values
of T, (which is greater than one and hence associated with amplification) would not
behave as such because of their a-priori normalization with T,. The time series and

spectra profiles of these variables validate the same.

From the perspective of rogue seasonality, it is evident that in MTO systems, the CONS
profile is transmitted to other variables without distortion, that is, other variables do not
have frequencies different from those in CONS. Hence, rogue seasonality is not
generated in such systems, which was seen earlier in the analytical FR analysis as well.
Clustering of variables, in both time as well as spectra representation, highlights this
result, that is, CONS is similar to most of the other system variables and is clustered with
them. Though time and frequency domains seem to be equally effective in this case, a
more detailed profile comparison highlights the disadvantage of operating in the time
domain. For example, AINV and EINV, despite being similar (inverted versions of each

other as DINV is constant) are clustered separately in the time domain. Similarly, the
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profiles of COMRATE and ORATE in a delay order infinity system, being delayed
versions of each other are actually similar but still clustered separately in the time
domain. The spectra representation correctly recognizes the similar nature of variable

profiles in both cases.

4.1.2.2 Simulation output analysis of MTS systems

The profiles of variables from a simulated MTS system are shown in the bottom two rows
of Figure 4.1. All the variables except CONS are seen to oscillate at similar frequencies
in each of MTS delay order one and delay order infinity systems. Though this is apparent
in the time profiles, the spectra profiles highlight the same more clearly. The behaviour of
the profiles, are also as expected from their analytical FR analysis given in Table 4.1. For
example, the frequency of oscillation of variables in an order of delay one system, as
evident from peaks in their spectra is 0.02, which is equivalent to the frequency

associated with maximum amplification (wmax rr) suggested by the analytical FR analysis.

It is to be noted that the analytical FR analysis is in terms of angular frequency (®) and
therefore needs to be divided by 2x to relate it to the abscissa in the spectra plot, which is
in terms of frequency. The oscillation frequency of variables in the delay order infinity
system at 0.03, evident from their time series plots and peaks in their spectra is also
equivalent to that expected from their analytical FR analysis. The analytical FR analysis
also suggested that the peak amplification of system variables in an MTS delay order
infinity system is greater than that in the delay order one system. The time series and
spectra profiles of these systems validate this as well. The spectra of variables in the
delay order infinity system show a higher spectral peak and less distribution of energies
in other frequency channels than delay order one. Variables in the former also show more
consistent cyclicality than the latter. Hence overall, the good correspondence between the
simulation output and the findings of the analytical FR analysis effectively verifies the

simulation model used.

Table 4.1 also clearly shows the significant smoothing of other operating variables

compared to CONS in MTS systems. This is evident in both the time and frequency
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domains (spectra) and can be intuitively explained on the basis of the system structure
and control policies used. ORATE in a MTS system depends upon AVCONS and EINV.
AVCONS is based on a long term forecast and is not updated regularly based on CONS
while EINV is reduced by a factor of 7; (time to adjust inventory), when used to compute
ORATE. Hence, ORATE is not influenced directly by CONS but only indirectly through
a smoothed EINV. This is what causes dissimilarity between ORATE and CONS which

gets passed on to create dissimilarity between other variables and CONS also.

The cluster profiles in Figure 4.1 clearly highlight the nature of clustering of CONS as a
discriminating factor between presence and absence of rogue seasonality. Comparing
rows 1 and 2 with 3 and 4 in Figure 4.1 shows that, while CONS is clustered with the
other variables in the MTO systems where no rogue seasonality is present, it is clustered
separately from the other variables in the MTS systems associated with rogue seasonality.
Also seen in MTS systems, is other variables being clustered together which is because of
similarity from generation of cyclicality (rogue seasonality) of a similar frequency. The
extent of CONS dissimilarity in MTS systems also indicates the intensity of rogue
seasonality. This is evident when we compare clustering profiles of MTS delay order one

with delay order infinity system in rows 3 and 4 of Figure 4.1.

The signature for rogue seasonality can therefore be simply expressed in terms of whether
internal system variables cluster or do not cluster with CONS. When the latter is true,
rogue seasonality is considered present, otherwise not. This signature based approach
builds on the findings of Thornhill and Naim (2006). Multiple variables are used in
deriving the signature recognizing a similar manifestation of rogue seasonality in the steel
case study which they used. While Thornhill and Naim’s rogue seasonality detection
approach involved making assumptions and manual discretion, the signature based
approach proposed here is quite general and can be applied in an automated fashion. A
key question in this approach is the domain representation or feature to be used for
signature development. Between time and spectra representations, the signature
developed from the latter appears to be better as seen in Figure 4.1. Rogue seasonality
intensity in the MTS order of delay infinity system is greater than in the order of delay

one system as in Table 4.1 and this is accurately represented in the spectra representation.
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CONS is more distinctly clustered from other variables in the order of delay infinity
system than in order of delay one system. However, the signature in the time domain does

not reflect the same.
4.13 Index of rogue seasonality

Rogue seasonality detection based on the signature as discussed above, has advantages
over the approach suggested by Thornhill and Naim (2006). However, it still has a few
deficiencies. One deficiency is that framing of the signature involves assessment of
cluster membership and cluster profiles. This introduces subjectivity into the process.
There are further complications from issues such as the dissimilarity scale used in cluster
visualisation. Also, the way the signature is defined, it appears to be more appropriate for
a binary (0 1) categorisation of rogue seasonality i.e. whether rogue seasonality was
present or absent. However, in reality, rogue seasonality is present in most supply chains
(Kim and Springer, 2008), but with different intensities. A numerical indicator of rogue
seasonality intensity, and which would also enable its detection would be useful and was

therefore explored.

This alternative approach involves defining an index based on the similarity relationships
between the supply chain variables. The index definition is based on the hypothesis that
rogue seasonality generation and propagation creates significant variation in the profiles
of variables. With rogue seasonality, the other variables excluding CONS such as AINV
and WIP get a cyclical profile and thus become quite similar to each other, while
becoming dissimilar to CONS. The dissimilarity between CONS and the other variables
is therefore compared to the dissimilarity between the other variables themselves. In the
case where the ratio between the two is large it indicates rogue seasonality of greater

intensity for the reason given above. The formal definition of the index is as follows:

Minimum dissimilarity between CONS and the other variables
Rogue Seasonality Index = 4.1)
Average dissimilarity between all variables except CONS

Dissimilarity is measured in terms of the Euclidean distance between the variables (time
or feature domain) for all the techniques except CCF, where it is measured as (/ — max

correlation) between two time series within specified maximum lags. The rationale for
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choosing these dissimilarity measures has been explained in the Methodology chapter.
The term ‘index’ used in subsequent sections and chapters, refers to this definition of the

rogue seasonality index.

The index as defined above is tested on MTO and MTS delay order one and infinity
systems to assess its effectiveness in characterizing the intensity of rogue seasonality (see
Figure 4.1). The index values in the time domain for MTO delay order one, MTO delay
order infinity, MTS delay order one and MTS delay order infinity systems are 0, 0, 0.88
and 0.91 respectively which accurately indicate absence, absence, medium intensity and
high intensity of rogue seasonality respectively. The corresponding values using spectra
(or frequency domain representation) are 0, 0, 3.98 and 7.04 which not only correctly
characterize the increasing intensity of rogue seasonality but do so with greater
discrimination between different intensities than in the time domain. This comparative
superiority of spectra vis-a-vis time is, however, based on the analysis of a single

instance, and requires validation through multiple replications.

4.2 Rogue seasonality signature and index assessment in three echelon MTS
systems with different time series transformations and features
The rogue seasonality signature and index were understood and validated using single
echelon MTO and MTS delay order one and infinity systems in the earlier section. Also,
time and frequency domain representations were used to derive them, out of which the
latter was found to be better. The validity of signature, index and the effectiveness of
alternative time series transformations is now sought to be established with multi echelon
systems. Three echelon MTS systems are therefore simulated, with these systems being
created by coupling together of the corresponding single echelon systems. The coupling
is done by making ORATE of the downstream echelon equivalent to the CONS of the
upstream echelon. For deriving the signature and index, other time series transformations
and features (besides time and spectra) discussed in Section 3.7, are also assessed. The
plots based on these different feature representations for simulated order of delay one and
infinity systems (MTS three echelon) are given in Figures 4.2 and 4.3 respectively. A
delay of 7 at each echelon and Gaussian noise as the exogenous demand is used as in the

case of the single echelon analysis. Also, the time series data is normalized before
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applying the different transformation techniques. It is to be noted that a single echelon
MTS system has seven system variables (see Figure 4.1) which means that the three
echelon MTS system analysed here should have 21 system variables. The list of these
variables can be seen in the time domain analysis in Figure 4.2 with the number
associated with the variable indicating the echelon number. For example, CONS 1 means

demand faced by echelon 1 which means exogenous demand for the system.

Theoretically, in a linear system, if the same ordering parameters are used in each
echelon in a multi echelon system, the frequency characteristics of the multi echelon
system is similar to that for the single echelon (Towill and del Vecchio, 1994). In the case
of the three echelon MTS systems considered here, the amplified ORATE frequencies
from the first echelon act as CONS for the second echelon which further amplifies these
frequencies (which are in the amplification range) and this is repeated for echelon number
three as well. The amplification frequency ranges of the three echelons are aligned
because all the three echelons are assumed to have the same parameters as well as lead
time (T}), the latter being a key determinant of the frequency characteristics (see Table
4.1). Variables in each of the three echelons in this three echelon system are expected to

oscillate at a common frequency.

Figures 4.2 and 4.3 confirm the above. Most variables in delay order one and infinity
systems are seen to oscillate at frequencies of 0.02 and 0.03 respectively, as identified
from peaks in their spectra. These frequencies correctly correspond to maximum FR
values derived for single echelon systems (see Table 4.1). The oscillation frequencies of
0.02 and 0.03 are also clearly evident in the time (especially for delay order infinity) and
autocorrelation function domains. In the AR model representation, though the profile of
other internal variables appears to have changed from rogue seasonality, these do not
clearly reflect cyclicality. In this representation, a time series with cyclicality should
show a peak at the order corresponding to time period of the cycle with smaller peaks at
multiples of the same. The DWT coefTicient representation indicates cyclicality but the
cycle length is not clearly evident; repeated averaging by the Haar wavelet has smoothed
and therefore distorted the cyclicality characteristics. Finally, CCF directly indicates

dissimilarity.
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In terms of the effectiveness of each domain representation or feature in representing the
rogue seasonality signature, FT amplitude, ACF and CCF are seen to be better than others
for both order of delay one as well as order of delay infinity systems. In each of these
cases, the exogenous demand (CONS 1) is distinctly clustered from the other variables,
with the latter being clustered together. On the other hand, time and DWT coefficient
domains, yield a signature of lesser clarity (CONS 1 is not that distinctly separated from
other variables in the dendogram) with AR model features being between the two (FT,

ACF, CCF and time, DWT) in terms of effectiveness of the signature derived from it.

The plots in Figure 4.2 and 4.3 also clearly depict the rationality of the rogue seasonality
index for certain features. The system variables excluding CONS 1 show cyclicality, and
therefore have similar profiles and low dissimilarity with each other resulting in a small
denominator in the index computation. CONS 1 does not show cyclical behaviour and
hence is quite dissimilar from the other variables so that the numerator in the index
computation is large. Hence, when rogue seasonality is present, the index value should be
a large number. This is clearly evident for FT, ACF and CCF features though the values
of the indices for these as well as other features show a large variance. For example, for
the MTS delay order infinity system (Figure 4.3), the index value derived in the time
domain is 0.91 while it is 7.12 in the CCF domain with other features yielding index
values between these two. More importantly, the index values based on some features are
not consistent i.e. they do not vary as expected. For example, the MTS delay order
infinity system generates rogue seasonality of greater intensity than the corresponding
delay order one system (Table 4.1) and the same should be reflected in their index values
derived from different features. However, only FT and ACF features i.e. index values
derived from these features show this consistency; index values based on FT for delay
order one and infinity systems are 3.54 and 3.93 while the corresponding values for ACF
feature are 3.08 and 4.20. Index values based on other features decrease rather than

increase from the delay order one to delay order infinity system.

The above analysis demonstrated the validity of the signature and index for rogue
seasonality detection along with the relative effectiveness of different features in deriving

them. However, valid conclusions cannot be drawn from the analysis of just one instance
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as used here; single instance of stochastic demand from a single (Gaussian) demand
process, single system structure (in terms of delay or lead time) and one set of parameters
for each feature (e.g. lag 28 for ACF, order 28 for AR model). Moreover, only one
definition of the rogue seasonality index was used and other definitions need to be
considered to assess its stability and robustness in measuring rogue seasonality intensity.

A detailed simulation experiment incorporating all these aspects was therefore conducted.

4.3  Detailed simulation of three echelon MTS systems

A detailed simulation analysis was done to rigorously evaluate the rogue seasonality
index as a measure of rogue seasonality intensity and determine the most appropriate

features and system variables for deriving it. Three sets of analyses were conducted:

1) Generate rogue seasonality of different characteristics and intensities in the system and

system variables

2) Use different time series transformations and features (with different parameters for
each feature) to derive the rogue seasonality index and in this way determine the best
feature parameter combination for index computation (and therefore rogue seasonality

detection). Time series data of system variables from step 1 are used.

3) Use different definitions of rogue seasonality index and repeat step 2.

4.3.1 Generation of rogue seasonality of different characteristics and intensities

Details of the simulation design used for generating time series data with different rogue

seasonality characteristics and intensities are given in Table 4.2. Only the MTS system
showed rogue seasonality and therefore it was the only one used in the simulation. Delay
between ordering and receipt of goods, which in this case is only the production time,
was varied as it plays a key role in supply chain dynamics (Forrester, 1961; Chen et al.,
2000). However for MTS systems, a change in delay only changes the time period of
seasonality or cyclicality and not its intensity as discussed earlier. Delay (T) of 3, 7 and
14 days were chosen to correspond to % week, 1 week and 2 weeks delay in production.

Order of delay in the system, which reflects the distribution of the output around the
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average delay, also affects the dynamics and was therefore independently varied. Orders

of delay one and infinity were used, the rationale for which has been explained earlier.

Table 4.2 - Simulation design for generating rogue seasonality of different
characteristics and intensities

Structure and number of echelons Linear, Three Echelons
Supply chain control (Ordering) Make to stock (MTS)
Order of delay One, infinity/pipeline
Delay (time) 3,7,14

Demand process and parameters AR (1): p=-0.8,-0.5, 0.1

MA(1):0=0.7, 0.4, -0.2

AR(2): p;=0.1 p,=-0.8, py=0.7p, =-0.2
MA(2):06,=0.76,=-0.2,0;,=0.16,=-0.8
Gaussian

Exogenous seasonality Absent, Present (Amplitude: 1 frequency: 0.01,
frequency: 0.09)

Variables input into transformation All variables, Only order and inventory variables
techniques/features for rogue
seasonality index computation

100 replications of each based on common random numbers

* Gaussian randomness
In terms of choice of exogenous demand, demand for many goods follow autoregressive
(AR) and moving average (MA) processes of different orders (Chopra and Meindl, 2001).
AR and MA of orders 1 and 2 besides random (Gaussian) demand processes were
therefore considered. Within each process, parameter values such as p’s for AR (1) and
AR(2) and @’s for MA (1) and MA(2) were varied to generate rogue seasonality of
different intensities in the system variables. The underlying basis for this is as follows.
The frequency response (FR) of the variables which is the ratio of the sinusoidal output to
the sinusoidal input at various frequencies (Table 4.1) is computed relative to the
exogenous demand (CONS). Therefore, if CONS had a significant low frequency
component, which corresponded to the amplification frequency range, then the rogue
seasonality intensity generated in the variables would be high. In contrast, if the low
frequency component in CONS was low, the rogue seasonality intensity generated in the
variables would also be low. The parameters within each demand process were therefore

chosen in such a way as to have different proportions of the low frequency amplification
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range component so that rogue seasonality with different intensities could be generated.
For this, spectra as a function of parameter values was derived for each demand process
and this is explained and depicted in Appendix C. Principles given in Gottman (1981)
were used in the derivation. Spectra plots for the parameters considered for each demand
process highlight their different low frequency amplification range content. For example,
for the AR (1) process, spectra energy in the low frequency amplification range increases

with an increase in the parameter value p from -0.8 through -0.5 to 0.1.

Exogenous seasonality of different frequencies was added to the demand pattern to make
it more realistic. Two frequencies were considered: one within the amplification range
(i.e. less than ®cossover) and the other beyond the amplification range (i.e. greater than
Ocrossover): Werossover bEINg a function of delay (Table 4.1), the specific frequencies added
were such that they met the within and beyond amplification range requirement for all the

delays considered.

Finally, in terms of the system variables used for index computation, besides using all the
variables, use of select variables (specifically order and inventory) was also used. The
latter was considered because from a practical perspective many organisations may
choose to share information on only a few rather than all the variables. Order and
inventory are the most common variables on which information is shared amongst
companies (Lee and Whang, 2000). Moreover, use of these variables has also been
suggested in the context of complete assessment of the Bullwhip effect dynamics (Disney
and Towill, 2003). Therefore, index was also computed using the order and inventory

information of all echelons.

One hundred independent replications were generated for each case using common

random numbers. The data generation was done using Excel® and Matlab®.

4.3.2 Different features assessed for effectiveness in rogue seasonality index
computation

Alternative time series transformation techniques and features were evaluated to

determine the most appropriate one for rogue seasonality index computation. All the
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commonly used techniques and features as discussed in the Methodology chapter as well
as in Section 4.2 were applied and evaluated. Table 4.3 describes the transformations
used and the features extracted, with different parameters for each feature. Matlab© was
used for all transformations, after normalizing the data to eliminate mean and amplitude
scale differences. Appendix D gives the Matlab code used for performing the time series
transformations, extracting features with different parameters and using them to compute

the rogue seasonality indices.

Table 4.3 - Time series transformation techniques, features and parameters
for each feature used for rogue seasonality index computation

Fourier transform Amplitudes used as features. Number of frequencies (parameters)
considered:
(FT) a) Total (FT Total)  b) First 7(FT 7) ) First 28 (FT 28)

d) Number with 80% of total energy in the data series (FT 80% Energy)

Autocorrelation function | Autocorrelation upto specified lags used as features. Number of lags

(ACF) (parameters) considered:

a)7(ACF7) b)28(ACF 28)
Cross correlation Maximum cross correlation between pairs of variables within maximum
function (CCF) lags specified, used as the feature/similarity measure.

Maximum lags (parameters) considered: a) 7 (CCF 7)  b) 28 (CCF 28)
Autoregressive model Coefficients of the fitted AR model, up to specified orders used as
(AR Model) features. Order of AR model (parameters) considered:

a)7(AR7) b)28 (AR 28)
¢) Minimum AIC (Akaike, 1981) (AR AIC)

Discrete wavelet Wavelet coefficients from DWT at different levels used as features. Levels
transform (DWT) —Haar (parameters) considered:
wavelet a)S(DWTS) b)Based on minimum Shannon entropy (Shannon

and Weaver, 1964) (DWT Shannon)

Time series data without any transformation was used as the default for comparison (Raw Time)

Bracketed text are referred to as feature parameter combination in the rest of the thesis

a) Fourier transform (FT): Different number of frequencies (referred to as parameters)
are considered to assess the sensitivity of the index/indices to the same. The FT Total
option used includes amplitudes of all frequencies in the computation and in this way
ensures that rogue seasonality frequencies do not get excluded. Though this option does
not improve the computational efficiency vis-a-vis the time domain, it does increase the

clustering accuracy from better alignment of similar but leading/lagging profiles. The
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latter point has been highlighted in the study by Thornhill and Naim (2006). Other
options considered use lesser number of frequencies so as to increase the computational
efficiency (from dimensionality reduction) as well as the clustering accuracy (from noise
elimination; the higher frequencies not used are generally associated with noise). FT 7
and FT 28 frequency options involving the use of first 7 and 28 frequencies were
considered, with 7 and 28 chosen so as to correspond to a week and month respectively.
Despite their advantages, these options carry greater risk of rogue seasonality frequencies
getting excluded from the analysis due to inappropriate choice of parameters (number of

frequencies).

The final option, FT 80% Energy, eliminates the need to choose number of frequencies.
This is chosen on the basis of the distribution of energy (square of amplitude) across
different frequencies for that variable. 80% Energy refers to the fact that as many initial
frequencies are used, which have cumulatively eighty percent of the total signal energy.
The FT 80% Energy option eliminates the risks as in FT 7 and FT 28, of relevant
frequencies associated with rogue seasonality not being considered while at the same

time providing better dimensionality reduction than FT Total.

b) Autocorrelation function (ACF): ACF’s were calculated for 7 and 28 lags (referred
to as ACF 7 and ACF 28 respectively) to assess sensitivity of the results to the number of
parameters while ensuring correspondence with other features which also use 7 and 28

terms in the index computation.

c) Cross correlation function (CCF): In this method the similarity between two time
series was defined to be the absolute maximum correlation between them within the
maximum lags specified. The maximum lags specified were 7 and 28 (referred to as CCF
7 and CCF 28) similar to other methods which meant that the cross correlation function

was evaluated within + 7 and * 28 lags.

d) Autoregressive model (AR model): In this method an AR model is generated for
each time series up to a specified order with the coefficients of the model then used for
index computation. Orders of 7 and 28 (referred to as AR 7 and AR 28) were considered

for the same reasons as other techniques. An approach based on the Akaike Information
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Criteria (AR AIC) (Akaike, 1981) which does not require a-priori specification of model
order was also considered. Here optimal order is automatically chosen by trading off
model order with error in model fitting based on the equation given below. However, in
an analysis of multi variables, the optimal order for individual variables could be
different. For such cases the maximum optimal order across variables was used as the

order for each variable.

inn

Optimal order = min (AIC) where AIC = n [In ( Z gl /n )] +2k (4.2
im]

k = number of parameters in the statistical model (model order in this case)

n = number of observations and &, is the error between observation and fitted model

e) Discrete Wavelet Transform (DWT)-Haar: Wavelet coefficients, which essentially
represent the correlation between the original and the local oscillation represented by the
wavelet basis function (Percival and Walden, 2000) were used for index computation in
this method. Signals could be decomposed to different levels before computation of the
index, details of which are explained in the Methodology chapter. Level 5 (referred to as
DWT 5) was chosen, as it gives 32 approximation coefficients, which is close to the 28
coefficients used in other methods. A higher level, to correspond to 7 coefficients in
other methods, was not used as the approximation coefficients were excessively
smoothed. A parameter free approach was also tried in which the appropriate level could
be automatically selected on the basis of data characteristics i.e. did not require a priori
level specification. This was based on the Shannon entropy function (Shannon and
Weaver, 1964) which can be regarded as a quantitative measure of uncertainty. At each
level, signal energies are used to evaluate this entropy function with the level selected
being the one where its value is the minimum. This level corresponds to maximum

information availability as information is equivalent to the removal of uncertainty.

Level of entropy (H) = - Z E, *logE , ; Ejis the wavelet energy at scale j and instant k
;

N
This can also be represented as H = - Z s} *log s}, s: signal and s;: wavelet coefficients
in]
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4.3.3 Different rogue seasonality index definitions considered

The rogue seasonality index has been defined earlier in Section 4.1.3 on page 98. The
effectiveness of this definition of the rogue seasonality index has been demonstrated
earlier. However, in certain cases it may not indicate rogue seasonality accurately. For
example, there could be a case where rogue seasonality is present in the supply chain and
such cyclicality is evident in most variables; however, there are few variables which are
not showing cyclicality, as a result of which they remain similar to CONS, causing the
index value to be low due to a small numerator and thus giving an erroneous indication of
rogue seasonality intensity. To eliminate this possibility, an alternative definition of the
rogue seasonality index called Alternate 1 or Alt 1 is proposed, which considers average
rather than minimum dissimilarity between CONS and the other variables in the
numerator. Finally, a third definition of the rogue seasonality index called Alternate 2 or
Alt 2 is proposed, which incorporates the inherent variability in the variables by using
standard deviation.

( Average dissimilarity between CONS and the other variables

Alternate 1 or Alt 1) = (4.3
(Alternate I or ) Average dissimilarity between all variables except CONS ‘

-

([ Minimum dissimilarity between CONS and the other variables
- Average dissimilarity between all variables except CONS

(Alternate 2 or Alt2) =
Standard deviation of dissimilarity between all variables except CONS

.

In the simulation analysis, computations are made considering each of the three

definitions. The Matlab® code used for computing these indices is given in Appendix D.

4.4 Analysis of output from detailed simulation of three echelon MTS system

The output of the detailed simulation is essentially the index values based on different
feature parameter combinations for each simulated system. Taking the example of an
MTS system with average delay 3 and order of delay 1, excited with one instance of AR
(1) demand process with p 0.1, the rogue seasonality index is calculated based on each of
raw time, FT Total, FT 7, FT 28, FT 80 % Energy, AR 7, AR 28, AR AIC, ACF 7, ACF
28, CCF 7, CCF 28, DWT (Level 5) and DWT (Level Shannon) feature parameter
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combinations. This is replicated 100 times to calculate the average as well as coefficient
of variation (standard deviation/average) values for each combination. Although this
exercise is done for each of the three index definitions (index, Alt 1 and Alt 2), output for
only the index (equation 4.1) is presented in order to reduce the complexity from excess
data. However, the outputs from the three indices are compared, with the extent of

correlation between them indicating the robustness of the logic of the index.

The simulation output is discussed in the following sequence. First the case where
exogenous demand does not have seasonality and all the variables are used in index
computation is analysed. Next the exogenous demand with seasonality case is analysed;
the impact of seasonality on the index is discussed together with the changes required to
ensure the index’s continued validity as a measure of rogue seasonality intensity. Finally,
the case where only order and inventory variables are used in the index computation is

discussed.

4.4.1 CaseI: Exogenous demand without seasonality and all variables used

4.4.1.1 General observations

Table 4.4 gives the index values for the AR (1) demand process for this case with those
for other demand processes given in Appendix E, these values having been computed
using different feature parameter combinations. Though AR (1) is used as the basis for

analysis, any of the other demand processes could also have been used instead.

The index values for all feature parameter combinations are seen to be greater than zero.
A zero value is associated with a system such as MTO that does not exhibit any rogue
seasonality. Since only MTS systems are simulated, and all such systems with non zero
lead time exhibit rogue seasonality, this signifies that all feature parameter combinations
could be used to compute the index. However, the index values across different
combinations show a large variance, with the values for some combinations being

particularly low.
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Table 4.4 - Rogue seasonality index for a three echelon MTS system based on different

feature parameter combinations; All variables used in computation of the index

Demand Process: AR(1)
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The index value from the time domain is less than 1 for all demand-delay combinations.

The magnitude of change in the index value, from changes in demand parameter/order of

delay in this domain is also small. A specific case can be seen in Figure 4.1 where MTS

order of delay one and order of delay infinity cases have index values based on the time

domain of 0.88 and 0.91. This is not surprising as data in the time domain is unable to

identify similarities in leading/lagged profiles, which makes the average dissimilarity

among the other variables (excluding CONS) much larger than that between CONS and

these variables. A similar low index value is observed from use of DWT coefficients.
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The index values obtained from the AR model features have reasonable magnitudes,
though they have a higher proportion of values less than one as compared to other
features. The largest index values are obtained using features from the FT, ACF and CCF
techniques, thereby indicating their greater discriminating power in assessing the
presence and intensity of rogue seasonality. However, the index values vary with the
parameters used. For example, for the FT feature, significant volatility in the average
index values is seen for the FT 7 and FT 28 parameter options as compared to FT Total
and FT 80% Energy. Overall, the wide range of responses obtained from simulation
makes it difficult to identify the best feature parameter combination for rogue seasonality
detection. A systematic and objective basis to collate and compare these responses is

therefore required.

4.4.1.2  Criteria for structured comparison of feature parameter combinations

Three criteria were defined to compare the effectiveness of different feature parameter

combinations for index computation. These are:

a) Consistency — An ideal or appropriate feature parameter combination is that which
gives index values, consistent with changes in demand parameters and order of delays.
By consistency, it is implied that demand parameters or order of delays associated with
actual increase/decrease in rogue seasonality, would show a similar change
(increase/decrease) in index values. For example, for the AR (1) demand process, as p,
the autoregressive parameter, changes from -0.8 to -0.5 to 0.1 the rogue seasonality
intensity increases (discussed earlier in Section 4.3.1). A consistent feature parameter
combination from a demand perspective would therefore be that, which yields index
values which change similarly with p. A similar behaviour is expected for other demand
processes such as AR (2), MA (1) and MA (2), in each of which the parameters chosen
are such as to generate rogue seasonality of different intensities. In terms of consistency
based on order of delay, a system with an order of delay infinity produces rogue
seasonality of greater intensity than order of delay one, as discussed earlier. A consistent
feature parameter combination from an order of delay perspective would yield index
values that vary similarly with order of delay; lower index value for delay order one and

higher index value for delay order infinity.
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b) Magnitude of index (Discrimination) - An ideal or appropriate feature parameter
combination is that which yields index values of greater magnitude than other feature
parameter combinations for the same system. This increases the discrimination between
presence/absence of rogue seasonality as well as between rogue seasonalities of different
intensities. A ranking system was used, where for each demand parameter, delay and
order of delay combination, the feature parameter combinations were ranked based on
their average index values. The sum of ranks for all parameter, delay and order of delay
combinations was used as the basis for classification; the lower the sum of ranks the

better was that feature parameter combination on the discrimination criteria.

¢) Coefficient of variation of index (Stochastic robustness) - An ideal feature
parameter combination is that which yields index values with smaller coefficient of
variation, and hence, is more robust to stochastic variations than other combinations. A
ranking system similar to magnitude of index was used, with the only difference being
that a higher rank was given for the feature parameter combination having a lower

coefTicient of variation value.

4.4.1.3 Comparison of feature parameter combinations based on defined criteria

Using the index values (average and coefficient of variation) given in Table 4.4 and
Appendix E, the different feature parameter combinations were analysed in a structured

way based on the above criteria. A summary of this analysis is given in Tables 4.5a, b, c.

Table 4.5a gives the consistency of the index with respect to demand parameters and
order of delays for different feature parameter combinations. The shaded cells indicate
the maximum (best) values for that row. The maximum possible consistency values used
in the tables are derived as follows. For example, for AR (1), its maximum consistency
for demand parameters is 12, because use of three demand parameters (p = -0.8, -0.5 and
0.1) means two comparisons for each of three delays (3, 7, 14) and two order of delays
(order 1 and infinity). Similarly, its maximum consistency for order of delays is 9 as there
are two orders of delays implying one comparison for each of the three demand
parameters and three delays. These were similarly arrived at for other demand processes.

The table shows that the FT and ACF based features yield the most consistent index
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Table 4.5: Structured evaluation of feature parameter combinations used for rogue
seasonality index computation in a three echelon MTS system; All variables used

Table 4.5a Highlighted indicates best

Consistency of rogue seasonality index for different demand processes and order of delays (Number of cases)

Nature of Consistency Basis Raw  FT Total FT 7 FT 26 FT 80% AR7 AR28 ARAIC ACF7 ACF28 CCF7 CCF28 DWT Haar DWT Haar
Demand Time Energy (Level 6) (Level
Process Shannon)
AR 1 LRjnifid peFGmiers 3/12 6/12 11/12 11/12 11/12 11/12 12/12 12/12 12/12 1/12 6/12
Order of delay 719 0/9 4/9 9/9 1/9 0/9 0/9 9/9 9/9 2/9 4/9 19 7/9
MA 1 Demand parameters 12/12 12/12 4/12 6/12 7/12 6/12 6/12 6/12 11/12 11/12 11/12 4/12 10/12
Order of delay 719 0/9 4/9 9/9 1/9 0/9 0/9 9/9 3/9 59 5/9 719
AR 2 Lw m K®e vaw3 3/6 1/t 2/8 /0 6/6 5] 6/6 I ¢/o
Order of delay 4/6 —n 1/6 3/6 6/5 2/6 1/6 1/6 6/6 3/6 3/6 6/6
MA 2 Demand parameters 6/6 6/6 0/6 3/6 1/6 1/6 1/6 6/6 —6/6 0/6 0/8
Order of delay 4n 6" 0% 3/6 6/6 on 0/6 0/6 6/6 1/6 2/6 1/6 5/6
Gaussian Order of delay 2/3 3/3 13 1/3 33 on 0/3 0/3 3/3 3/3 0/3 13 13 2/3
Overall Consistency *
Demand and Order of 59/69 68/69  14/69 26/69 64/69 25/69 21/69 21/69 67/69 69/69 42/69 60/69 17/69 49/69
delay
Table 4.5b

Rank analysis based on the magnitude of rogue seasonality index
(For assessing the discrimination ability of the index derived from different feature parameter combinations)

Raw  FT Total FT 7 FT 28 FT 80% AR7 AR28 ARAIC ACF7 ACF28 CCF7 CCF28 DWT Haar DWT Haar

Time Energy (Level () (Level
Shannon)
Sum of Ranks - AR (1)
Minimam / best possible 18 203 98 195 128 74 144 183 159 2 89 89 39 243 224
Sum of Ranks - MA (1)
Minimam / bost possible 18 204 102 191 125 89 133 173 151 28 104 90 34 242 224
Sum of Ranks - AR (2)
Minimum / best possible 12 133 50 120 80 71 97 121 112 18 56 57 23 163 150
Sum of Ranks - MA (2) 136 64 84 99 1 8 57 149
Minimum / best possible 12 130 49 g 113 7 5 25 161
Sum of Rsnks * Gaussian
Minimum / best possible § 65 31 71 50 25 45 61 54 8 28 25 12 81 74
f Ranks mTOTAL
Sum of Ranks aTO 741 64 707 467 308 618 666 689 93 336 318 133 890 821

Minimum / best possible 66

magnitude of rogue seasonality index (as these would provide better discrimination in rogue seasonality assessment) These ranks are then summed up first by each demand process
such as AR (1). MA (1) end then all together to denve a total sum of ranks Feature parameter combinations with a lower total sum of ranks are considered better

Table 4.5¢

Rank analysis based on the coefficient of variation of rogue seasonality index

(For assessing the stochastic stability of the index derived from different feature parameter combinations)
Lower the coefficient of vanation the higher the rank is used as basts
Raw  FT Total FT 7 FT 28 FT 80% AR7 AR28 ARAIC ACF7 ACF28 CCF7 CCF28 DWT Haar DWT Haar

Time Energy (Level 5) (Level
Shannon)
Sum of Ranks - AR (1) 21 63 215 95 100 202 187 211 186 191 106 153 63 68
Minimum / best possible 16
Sum of Ranks -MA(1)
i ! 90 134 90 81
Minimum / beat possible 18 18 64 213 103 98 219 192 217 181 190
Sum of Ranks - AR (2)
1
Minimum / best possible 12 12 43 129 67 73 145 141 155 116 120 57 88 6 53
Sum or Ranks - MA (2)
54 4
Minimum / best possible 12 12 43150 70 68 132 128 134 125 136 65 96 7
Sum of Ranks - Gaussian 6 19 76 2 27 75 70 77 56 58 26 41 27 40
Minimum / best possible 6
Sum of Ranks - TOTAL 6 B2 783 387 375 773 718 794 664 696 344 612 318 289

Minimum / best possible 66
Coefficient of variation is same as SD/Avg Their values are based on 100 replications for each

Raw  FT Total FT 7 FT 28 FT 80S AR7 AR28 ARAIC ACF7 ACF28 CCF7 CCF28 DWT Haar DWT Haar

Time Energy (Level 6) (Level
Shannon)

Sum of Ranks - TOTAL (magnitude as
well as coefnctent of variation of the 810 s86 1490 834 *§3 1201 1374 1383 767 1030 662 645 1206 1110

index)
Minimum / best possible 132
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values from both demand parameter as well as order of delay perspectives. This is
primarily on account of their ability to ignore leads/lags between the data profiles. FT and
ACEF are well established for analysing univariate data with seasonality, but this analysis
shows that these are also effective in the context of multiple data series with seasonal

characteristics.

The features however, differ in terms of their parameter sensitivity. While ACF features
show a marginal change in consistency with the change in parameters from 7 to 28, the
change is significant for the FT features. FT 7 and FT 28 with the first seven and twenty
eight frequencies show poor consistency, which improves when more frequencies are
used as in the FFT 80 % Energy option, with the highest consistency being for the
FT Total option where all frequencies are used in the index computation. The behaviour
of FT 7 and FT 28 is on account of non inclusion of relevant rogue frequencies within the
first 7 and 28 frequencies used in these options (this risk associated with these options
was highlighted earlier). As regards other features such as CCF and time domain analysis,
these were found to give slightly lower consistencies than ACF and FT, which is
understandable, as both are based on direct comparisons of time series profiles, though
CCF has some advantages as it looks at lags/leads in relationships also. The DWT and the
AR model features, however, showed the lowest consistencies. For DWT, this is because
wavelets, like the time domain, are also not invariant to leads/lags in data profiles.
Moreover, the Haar wavelet used is discontinuous and therefore less able to capture the
smooth profiles of the variables. The result for the AR model is however surprising, as
this approach has been shown to be effective by Ting et al. (2003) and Caiado (2006).
This could be due to the larger number of variables used here as well as the significant

non-stationarity induced in the data from rogue seasonality.

The sum of ranks based on average index magnitudes and the coefficient of variation are
given in Tables 4.5b and 4.5¢c respectively. As discussed earlier, the best transformation
technique and feature is that which yields both the highest index values as well as has the
lowest coefTicient of variation. However, many feature parameter combinations are seen
to be not similarly good or bad on both these criteria. The sum of ranks for both criteria

have therefore been aggregated together and presented at the bottom of Table 4.5¢. FT is
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seen to be balanced in meeting both criteria for some parameters such as FT Total and FT
80% energy. This is evident in their lowest total sum of ranks, though individually they
do not have the lowest ranks in either criterion. However, other FT parameters such as FT
7 and FT 28 appear to be less adequate. CCF meets both criteria effectively, while ACF,
which showed good consistency, was found to be deficient in the coefficient of variation
criteria. DWT and AR model based techniques, which were behind other features on the

consistency criteria were similarly placed on these criteria also.

Time based indices are both a less valid measure of rogue seasonality intensity as well as
a less effective discriminator of rogue seasonalities of different intensities. As discussed
earlier, this is because of the lack of alignment of the cyclic profiles of variables in the
time domain. Lower validity is evident in Table 4.5a which shows the consistency
(measure of validity) of the time domain index to be relatively low for most demand
process and order of delay combinations. The lower discrimination effectiveness is
evident in Table 4.5b with the sum of ranks of the time based index values being
relatively higher (indicating a lower index value) for most combinations. Index based on
the time domain is therefore less appropriate and useful than other techniques despite

having advantages such as ease in computation and interpretation.

Overall, based on all the three criteria, FT and specifically the FT Total feature parameter
combination was judged to be the best for rogue seasonality detection. Using fewer
numbers of parameters as in FT 7 and FT 28, though improving efficiency in
computation, was seen to reduce accuracy and effectiveness of detection significantly.
Intermediate approaches such as FT 80 % Energy therefore seem a good compromise.
Index values based on ACF features showed good consistency to varying demand and
delay characteristics as well as discrimination ability in view of their large index
magnitudes. However, their coefficient of variation was greater relative to other
techniques suggesting lower robustness to stochastic variability. With regard to CCF,
index values calculated from its features were not very consistent, though it performed
adequately on the other two criteria. Finally, the AR model and the DWT were found to
be the worst in each of the three criteria. In fact, for some AR model and DWT

parameters, the performance on the criteria was worse than even that for the time domain.
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4.4.1.4 Comparison of alternative index definitions

The index values based on different feature parameter combinations for different systems
(demand processes and parameters, delay and order of delay) were computed on the basis
of the three index definitions individually and correlated with each other. This was done
at an individual (stochastic instance) level rather than from averages. Also, the parameter
options within each feature were combined together while computing the correlation
coefficient for that feature. Table 4.6 gives the correlation coefficient between the
alternative index definitions.

Table 4.6 - Correlation coefficient between alternative rogue
seasonality indices in a linear three echelon MTS system —
All variables used in computation of the indices

Index and Alt Index and Alt Alt 1 and

1 2 Alt 2
Time 0.05 0.97 0.22
FT 0.96 0.95 0.85
AR Model 0.97 0.98 0.94
ACF 0.99 0.97 0.96
CCF 0.95 0.98 0.94
DWT 0.28 0.76 0.29

Highlighted indicates low correlation (considered had)

Table 4.6 shows that for most of the features (FT, AR Model, ACF, CCF), correlation
between the alternative rogue seasonality index definitions is high implying that indices
derived in these domains are robust and less sensitive to the nature of dissimilarity
measurement between CONS and the other variables: minimum or average or in terms of
standard deviation. This does not hold for indices derived in the time domain and using
DWT coefficients (correlation is low for certain combinations). One reason for this is that
the index values in these domains are quite low and therefore relative dispersion between

alternative indices is more than that in the other domains.

442 Case I1: Exogenous demand with seasonality and all variables used

Exogenous demand with seasonality was considered in order make the analysis more
realistic. Two separate analyses, one with sinusoidal cyclicality of frequency 0.01 and the
other with frequency 0.09 (unit amplitude in both cases) were carried out. The seasonality

was added to the stochastic demand process before the analysis, with the analysis being
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of a similar nature as in the previous section. Frequency of 0.01 was within the
amplification range and 0.09 beyond the amplification range, that is, in the attenuation
range for all the systems considered (the ranges are determined by delay or T). In this

way, such contrasting situations that could be encountered in practice were covered.

The spectra plots of system variables for this case revealed transmission of the exogenous
seasonality to other variables/echelons at the same frequency. While the upstream system
variables in the 0.01 frequency case showed amplification, they were attenuated in the
0.09 frequency case. Rogue seasonality generated endogenously by the system was
visible, though, significantly masked for the system with amplification. The nature of the
variable profiles therefore seem to depend on the frequency of the exogenous seasonality
in relation to the characteristic amplification/attenuation frequency range of the system,
and this has the potential to corrupt the index definition logic. The index may not give an
accurate indication of rogue seasonality intensity in such cases, and such cases are quite

common as system structure is generally unknown and exogenous seasonality strong.

A better approach would be to filter out the exogenous seasonality from all variables
before calculating the rogue seasonality index. This is possible since exogenous
seasonality is transmitted upstream to many variables, and can therefore by identified on
that basis. Therefore, in a test system whose rogue seasonality is being assessed, if many
variables across multi echelons including exogenous demand have high signal energy at a
particular frequency, this implies that the seasonality is exogenous in nature. Using a
notch filter, a well known filtering technique in signal processing (Orfanidis, 2002), this
common frequency can be filtered out from all the variables, whereafter the index could
be calculated in the usual way based on any feature parameter combination. This
approach was tested for a few feature parameter combinations (those found most
appropriate in the earlier analysis) and found it to be effective. Figure 4.4 gives the scatter
plot between index values without seasonality and with seasonality and notch filtering for
seasonalities of 0.01 and 0.09. The dispersion in the index values for each of the three
feature parameter combinations considered is low which demonstrates the effectiveness
of the notch filtering based approach. The index is therefore an effective measure for

rogue seasonality even for cases where exogenous demand has seasonality; however,
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3 echelon MTS system; All demand processes and parameters; Delay order one and infinity;
Lead time (Tp) = 3; Index computedfrom all variables is used

Figure 4.4 Variation in rogue seasonality index from exogenous demand having an
additional seasonal component (seasonal component is notch filtered before index

computation)
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prior notch filtering is required to filter out the exogenous seasonality.

4.43 Case III: Exogenous demand without seasonality and only order and
inventory variables used
The rationale for doing this analysis was that in the real world, information on all the
variables as considered earlier, may not be available. Order is a rudimentary information
while inventory information is also being increasingly shared across supply chains. It was
therefore assumed that information on order and inventory would be available for most
supply chains. Therefore, instead of using all the available variables, as was done
previously, only order and inventory variables (from all echelons) were used in

computing the index. The rest of the analysis was done in a similar fashion as earlier.

The index values for the AR (1) demand process for different delay-order of delay
combinations and based on different feature-parameter combinations is given in Table 4.7
with the same analysis for other demand processes given in Appendix F. A comparison of
the index values between an “all variables used” case (Table 4.4) and the “orders and
inventory variables used” case (Table 4.7) for the AR (1) demand process shows only
small differences. For example, in the “all variables used” case, the average index values
for delay (Tp) 3 and order of delay 1 system based on FT Total are 1.71, 2.34 and 2.60
(for p -0.8, -0.5 and 0.1) while the corresponding values for the “order and inventory
variables used” case are 1.46, 2.1 and 2.52. The same is true for the other demand
processes also. Such a result is expected because both order and inventory variables show
rogue seasonality and whether one uses all the variables in the index computation or a
subset of these variables, the definition of the index ensures that the difference between
their index values is limited. This invariance of index value to the number of variables

used also strengthens the definition of the index.

Tables 4.8a, b and c give the evaluation of different feature parameter combinations on
the basis of consistency, magnitude of index (discrimination) and coefficient of variation
of the index (stochastic robustness) where only order and inventory variables were used.
Similar to the “all variables used” case (Tables 4.5 a, b, ¢), FT (specifically FT Total)

feature parameter combination is seen to be the most appropriate for rogue seasonality
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Table 4.7 - Rogue seasonality index of a three echelon MTS system
based on different feature parameter combinations;
Demand process: AR (1); Only order and inventory variables used

Based on 100 replications for each
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index computation followed by ACF with AR and DWT features at the bottom. A similar
rationale, as discussed in the previous paragraph applies here for this observation. Finally,
Table 4.9 gives the correlation coefficient between the alternative index definitions where
again the results are similar to that the “all variables used” case i.e. high correlation
coefTicient for the FT, AR model, ACF and CCF features and low correlation coefficient

for the time domain and DWT coefficients.
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Table 4.8: Structured evaluation of feature parameter combinations used for rogue

seasonality index computation in a three echelon MTS system;

Only order and inventory variables used

Table 4.8a

Highlighted indicates best

Consistency of rogue seasonality index for different demand processes and order of delays (Number of cases)

Nature of Consistency Basis

Osmsnd

Procsss

AR 1 Demand parameters
Order of delay
Demand parameters

Pl 4 Order of delay
Demand parameters

MR\ Order of delay
Demand parameters

Nih ¢ Order of delay

Gaussian Order of delay

Overall Consistency -
Demand and Order of
delay

fable 4.8b

Rank analysis based on the magnitude of rogue seasonality index

Raw
Time

3/12
2/9
6/12
3/9
0/6
4/6
0/6
2/6
0/3

20/69

FT Total

11/12

99

66/69

FT 7

3/12
0/9
4/12
0/9
3/6
1/6
1/6
0/6

12/69

FT 28

3/12
0/9
6/12
2/9
3/6
2/6
0/6
0/6

on

16/69

FT 80%
Energy

8/12
9/9
8/12
9/9

4
4/6
3/3

67/69

AR 7

11/12

7/12

3/6
4/6
2/6
6/6

3/3

64/69

AR 28 AR AIC

11/12

6/12

4/6

0/6
6/6

3/3

61/69

11/12

6/12
8/9
3/6
4/6
0/6
6/6
3/3

60/69

ACF 7 ACF 28

12/12

12/12
9/9
6/6
5/6
6/6
5/6
33

67/69

12/12

12/12
9/9
6/6

3/3

69/69

CCF7 CCF 28 DWT Haar DWT Haar
(Level 6) (Level

Shannon)

12/12 12/12 2/12 7/12
4/9 1/9 9/9

11/12 12/12 3/12 10/12
4/9 6/9 4/9 9/9
5/6 6/6 1/6 6/6
2/6 4/6 4/6 6/6
6/6 0/6 0/6

1/6 2/6 1/6 6/6
0/3 1/3 1/3 3/3
44/69 63/69 17/69 66/69

(For assessing the discrimination ability of the index derived from different feature parameter combinations)
Larger the rogue seasonality index higher the rank is used as basis
ACF 7 ACF 28

Sum of Ranks - AR (1)
Minimum / best possible 18

Sum of Ranks - MA (1)
Minimum / best possible 18

Sum of Ranks - AR (2)
Mirsmim / best possible 12

Sum of Ranks « MA (2)
I*nrrmsn / best possible 12

Sum of Ranks mGaussian
Minimixn / best possible 6

Sum of Ranks * TOTAL
Mkamixn / best possible 66

Raw

Time

195

200

131

137

65

728

FT Total

106

107

59

68

37

377

FT 7

162

157

103

104

62

688

FT 28

122

115

75

81

47

440

FT 80%

Energy

98

112

85

55

31

381

AR 7

151

140

101

102

47

641

AR 28 AR AIC

181

171

122

122

59

666

161

148

109

112

52

682

24

38

20

107

88

108

57

61

29

343

CCF 7 CCF 28 DWT Haar DWT Haar
(Level 6) (Level

Shannon)

89 43 243 224

85 39 243 224

54 27 165 150

58 29 163 150

25 11 81 74
311 149 896 822

For every demand process, delay and order of delay combination, each feature parameter combination is ranked relative to others, with the highest rank allotted to that with the larges!
magnitude of rogue seasonality index (as these would provide better discrimination in rogue seasonality assessment) These ranks are then summed up first by each demand process
such as AR (1). MA (1) and then all together to derive a total sum of ranks. Feature parameter combinations with a lower total sum of ranks are considered better

Table 4.8¢

Rank analysis based on the coefficient of variation of rogue seasonality index

(For assessing the stochastic stability of the index derived from different feature parameter combinations)
Lower the coefficient of variation the higher the rank is used as basis
ACF 7 ACF 28

Sum of Ranks - AR (1)
Minimum / best possible
Sum of Ranks - MA (1)
Minimum / best possible 18
Sum of Ranks - AR (2)
Minimum / best possible

Sum of Ranks mMA (2)
Minimum / best possible 12

8

2

Sum of Ranks - Gaussian
Minimum / best possible 6
Sum of Ranks « TOTAL
Minimum / best possible 66

Sum of Ranks * TOTAL (magnitude as
well as coefficient of variation of the
index)

Minimum / best possible 132

Raw
Time

Time

794

FT Total

58

54

38

41

207

FT Total

684

FT 7

236

226

137

160

73

832

FT 7

1420

FT 28

94

110

68

70

30

372

FT 28

812

FT 80%
Energy

108

94

73

70

24

369

FT 80%
Energy

760

AR 7

203

222

149

134

80

788

AR 7

1329

AR 28 AR AIC

176

192

130

119

69

686

197

214

144

125

76

766

AR 28 AR AIC

1341

1338

188

177

124

131

57

677

186

180

117

125

56

664

ACF 7 ACF 28

784

1007

Coefficient o< variation is same as SD/Avg, Their values are based on 00 replications for each

CCF 7 CCF 28 DWT Haar  DWT Haar
(Level 6) (Level

Shannon)

117 147 68 91
100 127 72 101
63 84 55 64

69 90 49 63

31 38 25 48
380 486 269 367
CCF 7 CCF 28 DWT Haar] DWT Haar
(Level 6) (Level

Shannon]

691 636 1184 1189



Table 4.9 - Correlation coefficient between alternative rogue
seasonality indices in a linear three echelon MTS system -
Only orders and inventory variables used

Index and Index and Alt 1 and

Alt 1 Alt 2 Alt 2
Time 0.20 0.92 0.22
FT 0.98 0.99 0.95
AR Model 0.99 0.97 0.96
ACF 1.00 0.98 0.98
CCF 0.97 0.98 0.96
DWT 0.03 0.38 0.19

Highlighted indicates low correlation (considered bad)

4.5 Conclusions

This chapter investigated rogue seasonality detection in a linear supply chain system
to answer Research Question one. This required determining the signature for rogue
seasonality, quantifying the signature to determine an index as an objective measure
of rogue seasonality intensity, evaluating alternative transformation techniques (and
features) and sets of system variables to determine the most appropriate one for index
computation (and therefore for rogue seasonality detection). Fourier transform (FT),
discrete wavelet transform (DWT), autocorrelation function (ACF), cross correlation
function (CCF) and autoregressive model (AR model) were the techniques which
were tried besides time series data being used as a benchmark. Sets of system

variables considered were all system variables and order and inventory variables.

The signature of rogue seasonality was determined on the basis of the clustering
profile of the supply chain variables, specifically whether exogenous demand did or
did not get clustered with the other internal operating variables such as inventory and
work in process. Rogue seasonality was considered present if the latter was true,
otherwise not. To overcome the subjectivity involved in assessing the signature from
the cluster profiles, an objective measure called the rogue seasonality index was
defined which is based on comparing the dissimilarities amongst the variables in
relation to the dissimilarity between these variables and the exogenous demand. It was
found to be a robust and accurate indicator of rogue seasonality intensity in a supply
chain. For example, the index value for a supply chain which does not show rogue
seasonality characteristics (make to order or MTO) is 0 while it is greater than O for
systems with rogue seasonality (make to stock or MTS). Also, greater intensity of
rogue seasonality in the supply chain gets reflected as a higher index value. Though

three definitions of index were tried, a high correlation between the index values



based on these definitions indicated that they were essentially measuring the same
thing and any of them could be used. The index was also evaluated with different sets
and number of variables (all variables, only orders and inventory variables), where
again the index values did not change substantially, and were able to indicate the
rogue seasonality intensity accurately. The index is therefore also robust to choice of
variables as long as most of the variables exhibited the same type of behaviour (rogue
cyclicality or no rogue cyclicality). In any case, use of multiple variables in the
computation of the index makes it less susceptible to inconsistencies in some variable
profiles. Finally, the index definition is applicable even in the case of exogenous
demand having seasonality; exogenous seasonality is required to be identified on the
basis of its common presence in demand and other variable profiles and filtered before

computation of the index.

Compared to other features, the FT feature was found to be better for computing the
index (and therefore for rogue seasonality detection), with index values derived from
it showing high consistency, discrimination ability and stochastic stability. FT has
been shown to be effective on a generic basis for individual time series by Agrawal et
al. (1993), Caiado et al. (2006) and Vlachos et al. (2006). This study shows that it can
also be applied to multivariate data as well as data with inconsistent periodicity and
thus validates the findings of Thornhill and Naim (2006). Parameters used, which for
FT is the number of frequency channels, were found to significantly impact the index
values and hence effectiveness of detection. FT Total which uses features from all the
frequency channels was found to perform better than options such as FT 7 and FT 28
which use a lesser number of frequencies. However, FT 80% Energy option was close
to FT Total in terms of all the assessment criteria used and could be used instead of
the latter for computing the index. Regarding other features, ACF was a close second
to FT in terms of rogue seasonality detection. DWT and AR model features on the
other hand were found to be the least effective. The findings for DWT are surprising,
as the multi resolution property of wavelets was expected to yield better results than
FT. With regard to the AR model based approach, it can be concluded that it is less

effective for data with cyclical characteristics.

In the next chapter a more realistic context is used to validate the answers to research

questions obtained in this chapter.

125



|t it i i R

Chapter 5 - Analysis of rogue seasonality in a non-linear

supply chain system

The previous chapter used the context of a linear supply chain to answer research
question one. Specifically, signature and index for detecting the rogue seasonality and
assessing its intensity were proposed and tested, together with the best time series
transformation technique (feature and its parameter) to be used to derive them. In this
chapter, answers to the research question obtained from chapter one will be evaluated
using a non-linear supply chain context. Specifically, the Beer game (Sterman, 1989)
supply chain system is used. This is because it has been used by many researchers to
study the Bullwhip effect (see sections 2.3.1.1, 2.3.1.2 and 3.6.1.4) and therefore serves
as a benchmark for comparison purposes. This system allows non-linearities such as
backlogs and batching to be incorporated so that their impact on rogue seasonality
generation and detection (signature and index) could be assessed. Here, the system is also
used to assess the impact of alternative control systems and other variables such as
shipment on the rogue seasonality dynamics. The rationale for analyzing these is

explained below:

a) Backlogs: Backlogs are cumulative pending deliveries because of non availability of
stock in earlier periods and assume that customers are willing to wait for these
deliveries. Backlogs cause non linearities in system operations (Sterman, 2000) and

they can be observed in many sectors.

b) Batching: Aggregation of orders or batching is a common practice because of
economies of scale in production/transport, use of MRP systems, economic order
quantity (EOQ) based ordering and economic production quantity (EPQ) based
production. Though the impact of batching has been studied by researchers such as
Cachon (1999), Kelle and Milne (1999), Holland and Sodhi (2004), Potter and Disney
(2006) and Riddalls and Bennett (2001), their focus was on the Bullwhip effect. Here
we are considering the impact of batching on rogue seasonality which has not been

considered before.
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c) Hybrid (MTO-MTS) control system: The hybrid MTO-MTS system is considered
to be more widely used than pure MTO/MTS systems by researchers such as

Anderson Jr et al (2005). The impact of the hybrid system was therefore assessed.

d) Shipment: Shipment is also a common system variable like order and inventory, (Lee
and Whang, 2000). Moreover, its inclusion in the model structure ensures a more
realistic bi-directional (both upstream and downstream) propagation of the dynamics

(Shukla and Naim, 2009).

This chapter is structured as follows. First, the Beer game supply chain system is
described. Next, I explain the control theory or FR analysis of a single echelon in this
system (linear representation i.e. without backlogs). Subsequently, development of the
system dynamics model of the total Beer game system is explained, together with
generation of rogue seasonality (in this system) and the effectiveness of the signature and
index for its detection. Finally, detailed simulation (multiple replications) with different
stochastic demand processes, lead times, ordering policies, batch sizes for rogue
seasonality generation and different feature parameter combinations with alternative
index definitions for rogue seasonality detection is used to identify the most appropriate

feature for index computation (and therefore rogue seasonality detection).

5.1 Description of the non- linear (Beer game) supply chain system

The Beer game supply chain system used in this study mimics the ordering and
production decisions of a four echelon supply chain (Retailer R, Wholesaler W,
Distributor D and Factory F) with flow of orders upstream from the Retailer through to

the Factory and flow of material or shipments downstream as shown in Figure 5.1.

Incoming Outgoing Incoming _ i Incoming Outgoing Incoming Incongin
orders orders orders orders orders orders (Kﬁg
In\enU*\ Invent! Invent!
Shipment Shipment Shipment Shipment Shipment Shipment
delay delay delay delay delay delay
Retailer W holesaler Distributor Factory
» Material flow ! Information flow

Figure 5.1 Schematic ofthe Beer game supply chain system (Sterman, 1989)
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The Beer game supply chain system operates as follows. The Retailer receives the
customer’s demand, it ships the quantity demanded to the customer and then decides how
much to order from its upstream echelon or Wholesaler. This procedure then gets
repeated at each echelon with placement of orders to the immediate supplier to fulfill the
expected demand from the immediate customer. It is assumed that in the case of the
supplier being unable to meet demand in certain periods due to occurrence of stock out, a
backlog is created which the supplier is required to service in later periods. With the goal
of the system being to minimize costs on a cumulative basis, and penalties applied for
carrying both excess inventory as well as backlogs, ordering decision making is difficult.
This difficulty is further compounded from delays in the system; order information and
shipment delays between echelons (2 time periods each) and production delay (3 time
periods) at the factory, the delays being of the pipeline kind (delay of order infinity). In
the simulated version of the game, the player is replaced by an ordering heuristic at each

echelon. This is explained in a subsequent section.

The Beer game was originally used to demonstrate the behavioural cause of the Bullwhip
effect where the role playing version of the game was used (see Section 2.3.1). However
recently, this game has also been simulated by many researchers, primarily to understand
and improve its dynamic behaviour (see Table 3.3). In the context of rogue seasonality
investigation, though any structure or system could be used for simulation, use of
common structures/systems permits model validation, comparison of results and hence
more effective knowledge building. Thus the Beer game system was considered more
appropriate. A further reason (for using this system) was that, despite simplification, it is

still reasonably representative of real world supply chains (Larsen et al., 1999).

At the heart of the Beer game simulation is the control system driving each echelon’s
ordering decisions; the hybrid MTO-MTS control system was used in the present case.
The APIOBPCS control system (John et al., 1994), which is a hybrid system was used as
Sterman (1989) found it to be representative of the ordering heuristics used by players in
the game. Its parameters were however varied in order to generate rogue seasonality of
different characteristics and intensities; specifically Optimal parameters and Unoptimal

parameters options were used. Parameter values associated with good dynamic
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performance in relation to the Bullwhip effect suggested by John et al. (1994) are referred
to as Optimal parameters (see Appendix A). On the other hand in the Unoptimal
paramelters option, the pipeline feedback term (7,,) is set to infinity (so that there is no
pipeline feedback) with all the other parameter values being the same as in the Optimal
parameters option. Sterman (1989) observed that lack of pipeline feedback is associated
with greater order amplification (Bullwhip effect) and hence Unoptimal parameters is
termed as such. Though Optimal and Unoptimal parameters options are defined on the
basis of the Bullwhip effect, it was expected that these would generate rogue seasonality

of different characteristics in the system (Kim and Springer, 2008).
5.2 Frequency response analysis of a hybrid MTO-MTS system

The total Beer game system is not analytically tractable as it is a high order non-linear
differential equation (Sterman, 1989). One option is to analyse each echelon in the system
individually, and use the insights so obtained to understand the total system behaviour.
However, the system considered here is non linear and analytical techniques such as
control theory can only handle linear problems. A way to tackle this problem is to ignore
the backlogs and treat each echelon as linear; then carry out a similar control theory (FR
analysis) as in the previous chapter, but with a hybrid MTO-MTS system and Optimal
parameters and Unoptimal parameters options. The transfer functions of variables for
individual echelons could then be coupled together to derive them for the total Beer game
system (transfer functions as well as FR), which could be compared with the FR’s of
those variables computed from the Beer game simulation output (in which the impact of
backlogs and associated non-linearities is included). Such an analysis would not only help
in understanding the role and extent of impact of backlog related non-linearities on
system behaviour, but also in validating the Beer game simulation model. This approach
was used in this chapter with APIOBPCS being used as ordering system at each echelon.
The analysis summary for a single echelon based on linear control theory is given in
Table 5.1 which involved the use of Matlab® in the computations (See Appendix G for a
sample computation). FR analysis of the whole Beer game system is explained in a
subsequent section. Table 5.1 gives the FR values of key system variables (ORATE,
COMRATE, AINV, WIP) at critical frequencies for both the Optimal parameters and
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Table 5.1 —Frequency response (FR) functions of variables at select points for hybrid MTO-MTS systems

(Order ofdelay in the systems is considered to be infinity)

Transfer functions for different variables

X ORATE
(=)
-

g £ CONS

O o

73

>

@ COMRATE
-

2 e CONS

= g

I

O 5 wip
o

= = CONS

< E

5 g

>\ Qi

2o AINV
= CONS
=

ORATE.

@ CONS

£ 8

"?\ o

= g COMRATE
-
o]

2 2 CONS

= 3

8 § wIP
Qy

= = CONS

j=jpe)

8

S

T E AINV

CONS

6Tp (7 Tps +2)

xI(*Ty+ 23

1"55+4T'4*4 -\M T 3s3-487"2+20167~ +576

eT£56 + 12THs5 - \40T4s4 +120T3s3 +612T2s2 +14407"

\4T3s3-M T 2s2 +\44Tps +48

ST4s4 +60T3s3 +124T2s2+1447" +48

2T4s4 +\5T3s3 +3\T2s2+36Tps +12

Tp,2+m s )

~2T4s4 +\5T3s3+3\T2s2 +36Tps +12

3Tp3+\9T2s2 +42Tps +12

Tp 06 Tps +12)

2T4s4 +\5TpS3 +19TpS2 +30Tps +12

3Tp3-ITT2!2 +30TpS +12

2T4s4 +\5T3s3+19T2s2 +30Tps +12

2TpS4 +\5TpS3 +197'pj2 +30Tps +12

2TpS2+12T2s2 +36T2s

2T4s4 +\5T3s3 +\19T2s2 +30Tps +12

FR at freq (@) =

0 or too

TP

Freq (2>) for
max FR

1.014

Ip

1.014

TP

0.937

Ip

0.983

1.311

P

1.311

1.298

1.305

P

Max FR

1.688 (constant)

1.688 (constant)

1-62 * Tp

1.863 * Tp

3.335 (constant)

3.335 (constant)

3.09 *Tp

3.01 *Tp

Unoptimal parameters: Pipelinefeedback is not considered; other parameter values are same as that in John et al. (1994)
All profiles are similar: increasing trend, attainment ofapeak and decreasing trend thereafter with w
Frequency responsefunction has been derived by substitutingj*a)for s (co= angularfrequency) and taking the magnitude o fthe resulting complexfunction

°%

Outputs are given here in terms ofangularfrequencies <w»

Freq (2>)
at FR=1or

2.135

2.135

TP

Complex function
of Tp

Complex function
of Tp

2.208

TP

2.208

Complex function
of Tp

Complex function
of Tp



TR TSR

Unoptimal parameters options. The transfer function expressions have high orders
because of use of 2nd order Pade approximation (Nise, 1995) for pipeline delay. All the
variables in both Optimal and Unoptimal parameters systems have similar FR profiles
which are increasing-decreasing with an in-between maxima. The FR profile values are
also greater than one for a range of frequencies, signifying amplification and rogue
seasonality generation in these hybrid MTO-MTS systems. However, the intensity of
rogue seasonality generated in the Optimal Parameters option is in between that which is
generated in MTO and MTS systems which is reflected in the max FR values of the
variables in these systems. For example, while the max FR value of ORATE/CONS for
the MTS delay order infinity system is 2.307 (Table 4.1), its value for the hybrid MTO-
MTS system (Optimal parameters) is 1.688 and 0 for MTO (order of delay infinity
system). The same is true for the other analyzed system variables as well. This variation
in rogue seasonality intensity can be explained on the basis of the different proportion of
exogenous demand (CONS) being used in the ordering decision; CONS is not used at all
in an MTS system, used completely in an MTO system and used partially in the hybrid
MTO-MTS system. However, other terms in the ordering rule also play a role, which is
apparent when the two hybrid system options are compared. The max FR values of all
variables in the Unoptimal parameters option are greater than those in Optimal
parameters indicating greater rogue seasonality intensity in the former vis-a-vis the latter.

This is because of no pipeline damping being applied in the former option.

The analytical FR analysis of hybrid MTO-MTS systems strengthens the hypothesis
about rogue seasonality manifestation, which is multiple variables oscillating at a similar
frequency with this frequency not being present in CONS. The logic of the signature and
index for detecting and measuring rogue seasonality therefore, also applies. However,
these judgments are based on the analysis of only a few system variables, a single
echelon system and which is also linearly represented, that is, non-linearities from
backlogs are ignored. Analysis of the total Beer game system is therefore required, to
both assess the propagation of rogue seasonality dynamics in different variables/ echelons
as well as the applicability of its signature and index. A system dynamics simulation

facilitates such an analysis, and was therefore used. The simulation analysis also helps in
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assessing the impact of multiple rather than a single frequency being amplified and
marginal dissimilarities in the FR profiles of variables, on the signature and index of

rogue seasonality.
5.3 System dynamics simulation of the Beer game system

The system dynamics simulation model of the Beer game supply chain was constructed in
Excel with Visual Basic for applications (VBA), the latter for easy visualization of the
dynamics (see Figure 3.4). The difference equations used in the model formulation are
given in Table 5.2 and are developed as follows. The different exogenous demand
processes applied at the Retailer are given in equation 5.1b while equations S.1c, 5.2a and
5.2b model the delays in order information and shipments which are of the pipeline kind
(delay of order infinity). Inventory and backlogs are modeled separately in equations 5.6
and 5.7 respectively. Shipments are included in the model to take account of non-
linearities associated with the backlog situation. Shipments are set to zero when there is
no inventory available, and when inventory does become available, the echelon ships
what is ordered plus any backlog that has been accumulated (equations 5.3, 5.4, 5.5).
Equation 5.8 gives the computation for exponential smoothing forecasting while the work
in process is calculated in equations 5.10a and 5.10b. The work in process computation
for all except the factory echelon includes three terms: orders that have been placed but
not transmitted to the upstream echelon, shipments made by the upstream echelon but not
yet received and backlogs. In the case of the factory, the orders placed are received after a
fixed production delay and therefore work in process includes just the previous orders
placed term. The ordering decision based on APIOBPCS is captured in equation 5.14
with the batching constraints on orders and shipments being applied in equations 5.15 and
5.16. The decision parameters used in the model are lead times (or delays) in order
information, shipping and factory production, APIOBPCS parameters T, T}, and 7, and

batch size b.
54 Verification of Beer game simulation and rogue seasonality analysis

Any simulation model needs to be assessed for correctness (verified) before using it in a
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Table 5.2 — Difference equations used to simulate the Beer game supply chain system

J = Supply chain echelon with J = 1, 2, 3, 4 representing the Retailer, Wholesaler, Distributor and Factory respectively
Incoming Order’ (J = 1 to 4, t < 24) = 4 -— Initial condition; Rest of the equations are for t > 24

Incoming Order ’ (J = 1, t) = 8 [Step demand change] or = 4 + € , [Gaussian process] or =4 + € - /€ . - 0,€ .o + ----=—-0.€ 1q [MA (q) process

with parameters 6, —- 0] or =4 +¢,+p X .y + p2X 12 + —-ppX 1, [AR (p) process with parameters p, — p,]
(I=21t04,t)=0rder’ " (t = LT orger)

Shipment Received ' (J = 1 to 3, t) = Shipping "' (t = LT wipping)  (5-22) Shipment Received ’(J = 4, t) = Order ’ (t = LT gactory production)
Maximum Possible Shipping ' (J = 1 to 4, t) = Inventory ’ (t-1) + Shipment Received ()

Desired Shipping ’ (J = 1 to 4, t) = Backlog ’ (t-1) + Incoming Order ’ (t)

Shipping ’ (J = 1 to 4, t) = MIN [Desired Shipping ’ (t), Maximum Possible Shipping ’ (t)]

Actual Inventory ’ (J =1 to 4, t) = Actual Inventory ’ (t-1) + Shipment Received ’ (t) - Shipping ’ (t)

Backlog’ (J = 1 to 4, t) = Backlog ’ (t-1) + Incoming Order ’ (t) - Shipping ’ (t)

Expected Incoming Order ' (J=1 to 4, t) = Expected Incoming Order’ (t-1) + « [Incoming Order ¥ (t) - Expected Incoming Order ' (t-1)] where
a=1/(1+ T,/At); T,is the time to average sales or orders for the respective level of the supply chain; At is our simulation time increment set at 1

Desired WIP or DWIP’ (J = 1 to 4, t) = T, * Expected Incoming Order ! (t) where T, is the lead time between placing an order and receiving the
material for a J or supply chain level; T, (J =110 3) = LT gger + LT shipping = 15 Tp (J =4) = LT factory production— 1

LT o 1 LTgse -1

LTgimming =1
WIP'(J=1t03,t)= Z Order’ (t-i) + !f' Shipping ! (t-k) + Backlog ' (t)  (5.10a) WIP'(J=4,1)= Z Order’ (t-i)
0

1 1
Error in WIP or EWIP’ (J =1t0 4, t) = DWIP’ (t) - WIP’ (1)
Desired Inventory or DINV' (J =1 to 4, t) = 12
Error in Inventory or EINV’ (J = 1 to 4, t) = DINV’ (t) — Actual Inventory ’ (t) + Backlog’ (t)

Order’ (J =1 to 4, t) = MAX [0, Expected Incoming Order’ (t) + (EINV ’ (t)/T;) + (EWIP ’ (t) /T.)]
where 1/T;= fraction of inventory feedback and 1/T,, = fraction of pipeline or WIP feedback

Order’ (J = 1 to 4, t) = Ceiling (Order */b), where b = batch size
Shipping ’ (J = 1 to 4, t) = Floor (Shipping '/b)

(5.1a)
(5.1b)

(S.1¢)
(5.2b)
(5.3)
(5.9)
(3-5)
(5.6)
5.7
(5.8)

(5.9)

(5.10b)

(5.11)
(5.12)
(5.13)
(5.14)

(5.15)
(5.16)

el




research context. Two approaches for model verification are used. The first approach
involves compariﬁg the FR or Amplitude responses (Amp R) computed from the
simulated Beer game output to the analytically derived ones for a linear four echelon
system with a similar structure as the Beer game that is same delays and order of delays
at different echelons. Select system variables are compared in this way. The second
verification approach involves subjecting the simulation to the same conditions as used
by Sterman (1989) in his experiment and comparing the profiles of variables obtained (to
those obtained by him).

5.4.1 Verification of Beer game simulation by frequency response (FR) analysis

The analytically computed FR for a linear representation of the Beer game system is
compared to that computed from the simulated Beer game output and this is depicted in
Figure 5.2. The analytical FR computation is for a four echelon APIOBPCS with the
same delays and order of delays in individual echelons as the Beer game system used.
Matlab® is used for the multi echelon computation (see sample in Appendix G) which

uses the single echelon analysis given in Table 5.1.

System variables ORATE/CONS, COMRATE/CONS, AINV/CONS and WIP/CONS in
each of the four echelons for each of the Optimal parameters and Unoptimal parameters
are compared. The Beer game simulation uses lead times of 2 (order information), 2
(shipment) and 3 (production) which are the same as that used by Sterman (1989).
Autoregressive of order two (AR 2: p; = 0.1 p, = -0.8) is used as the demand process,
which is because it has low energy in the amplification range frequencies (see Appendix
C), which means lower backlogs (and associated non-linearities) and therefore greater
clarity in the FR profiles. The FR profiles are averaged over 30 replications for a

smoother representation. The analysis of Figure 5.2 reveals the following:

a) All variables in all echelons in the simulated system have FR peaks at the same
frequency as suggested by the analytical analysis of the equivalent linear system. For
example, the frequency associated with peak FR for Retailer, Wholesaler and Distributor
echelons in both the simulated and analytical systems is 0.04 for the Optimal parameters

option. Lead time of 4 (order information + shipment) is used in the analytical
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computation. On the other hand for the factory echelon with a lead time of 3, the peak FR
frequency computed analytically is 0.05 which again matches with that in the simulated
system. The corresponding peak FR frequency values for Unoptimal parameters are 0.05

and 0.07 which are also the same in the analytical and simulated systems.

b) The max FR values of variables in the Unoptimal parameters option are greater than
those in the Optimal parameters option for simulated systems across all echelons. The
analytical FR analysis for a linear system given in Table 5.2 suggests the same.
However, a comparison of the max FR values of variables between the analytically
derived (linear representation) and simulated systems shows the former to be greater than
the latter in all cases. This is because WIP in the simulated system is greater than in a
corresponding linear system because of backlogs (WIP in a linear system just consists of
past orders). Because of this ORATE in the simulated system is lower (than for the linear

system) which has a concomitant impact on other variables.

The good correlation between analytical and simulated outputs as observed above,
verifies the simulation model. Moreover, all variables in all echelons oscillating at a
similar frequency in the Unoptimal parameters option, which has non linearity from
backlogs suggest that, the characteristic manifestation of rogue seasonality and therefore
the logic of its signature and index all retain their validity in non linear systems. Some of
the other observations for linear system such as max FR for Unoptimal parameters being
greater than that for Optimal parameters are also evident in the non-linear (Beer game)
system. There is also a close correspondence between the frequencies associated with

max FR for the linear (analytical) and simulated (Beer game — non linear) systems.
5.4.2 Verification of Beer game simulation by time domain analysis

The time series outputs from the simulated Beer game system are used, both for verifying
the simulation model as well as for showing generation of rogue seasonality. A step
demand change at the Retailer is used to excite the simulation. This not only facilitates
good visualization of the dynamic behaviour, but also enables comparison of the profiles

of the variables with Sterman (1989) who used the same demand pattern. The simulated
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data analysis here uses all the system variables unlike the analytical FR analysis where
only select system variables were used. Finally, the impact of batching on the time series
profiles of variables is also highlighted. The normalized time series profiles of system
variables (36 numbers) for each of Optimal parameters, Unoptimal parameters and
Optimal parameters with batching cases are given in Figure 5.3. It is to be noted that the
lead times for the batching case at 3 3 4 (for ordering, shipment and production) are
higher than those for the other cases considered (2 2 3). This was done to more

effectively highlight the impact of batching on the profiles of variables.

Sterman (1989) depicted order and inventory profiles in his experimentation with the role
playing version of the Beer game. Profiles in his study cannot be exactly compared to
those generated in the Beer game simulation replicated here. This is because the focus in
this case is on rogue seasonality, with variables normalized to enable effective profile
comparisons while Sterman’s focus was on amplification or Bullwhip effect. However,
the profiles of variables in the two cases, still have some visible similarities. A sudden
jump in exogenous demand at the retailer creates a backlog situation due to system delays
in ordering and receiving material, which in turn increases the tendency to over order on
account of feedback loops. Orders and backlogs therefore get increasingly amplified in
upstream echelons. However, over time, this gets reversed as the distorted order
information manifests itself as increased material receipts, causing both excess inventory
as well as dampening future orders. An oscillating profile is thus created which is evident
in the order (variable numbers 9, 18, 27 and 36) and net inventory profiles (variable
numbers 4, 13, 22 and 31) of all echelons. Shipping profiles which depend on order as
well as backlog profiles show a similarly oscillating profile but with attenuation from
factory to the retailer (called the backlash effect by Shukla et al (2009)). Other variables
such as orders received and shipments received are delayed versions of the order and
shipping variables and hence have similar oscillatory characteristics. Hence, most
variables (except forecast and desired WIP) show oscillatory characteristics, though the

exogenous demand (step) did not have the same, indicating rogue seasonality is generated
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in this system.

A comparison of the variable profiles for the Unoptimal parameters option with that of
Optimal parameters shows the greater amplitude of the former despite a significant
masking of the difference from normalization. In a linear system, the intensity of rogue
seasonality (as reflected in the amplitude of the relevant sinusoid) in the Unoptimal
parameters case is greater than that in Optimal parameters, but here it is also seen to be
true for the Beer game system which is non-linear. This was also evident in the FR
analysis earlier. A comparison of the batching case with the non batching case shows the
order and shipping variables (and therefore order received and shipment received
variables also) being clipped because of batching (for example variables numbers 2, 9, 12
and 18 in the far right panel of Figure 5.3). However, the other internal variables are not
affected by the batching constraint and retain their smooth oscillatory profiles. Rogue
seasonality characteristics are therefore modified but still retained in the Beer game
system with batching. The batch size used in Figure 5.3 is same as the average demand
i.e. orders are rounded up and shipments rounded down to a multiple of average demand

(4 in this case) at each echelon.
5.4.3 Rogue seasonality signature and index assessment

Having analysed the generation of rogue seasonality in select variables through analytical
FR analysis and then in most variables in a simulated Beer game system by time series
analysis, the next issue is to test the effectiveness of the signature and index of rogue
seasonality. A simulation output is used for this where the simulation was based on
autoregressive of order two (AR 2: p; = 0.1 p, = -0.8) as the demand process, ordering,
shipping and production lead times of 2, 2, 3 respectively and Unoptimal parameters,
Optimal parameters and Pass on orders (MTO) as the control systems. The last control
system was used as a reference, similar to that in the linear systems case (Chapter 4). The
rogue seasonality signature and index was computed using FT Total as the feature
parameter combination which was identified as the best combination in Chapter 4.
Figure 5.4 gives the signature and index for each of the three control systems based on FT
Total.
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The rogue seasqnality signature is based on cluster profiles of system variables,
specifically if CONS is clustered together with other variables or distinct from them.
Where the latter is true, the presence of rogue seasonality is indicated, otherwise not. In
Figure 5.4, CONS is seen to be clustered with the other variables in the pass on orders
(MTO) system indicating no rogue seasonality generation in this system. This is an
accurate assessment as MTO systems do not generate rogue seasonality (see Chapter 4).
Similarly, in both the hybrid systems (Optimal parameters and Unoptimal parameters) in
which rogue seasonality is generated as seen in earlier sections, the rogue seasonality
signature again gives the correct indication; CONS is clustered separately from the other
variables, with the latter clustered together. However, the separation of CONS with the
variables is not complete as in the linear case; instead of all the variables being clustered
away from CONS, one or two variables (shipping related variables at the Retailer) are
clustered with CONS. This is a realistic possibility, especially in an analysis which
involves multiple variables in multiple echelons. The signature definition needs to be
appropriately modified as follows: rogue seasonality is considered present if CONS is
separately clustered from most (not all) of the variables and these variables are clustered

together. This requires ‘most’ to be specified as per the application context.

Though modification of the signature definition enables its continued use in rogue
seasonality detection, it still has the same limitations as in the linear system case;
subjectivity in the process and its inability to characterize the intensity of rogue
seasonality. The latter limitation is evident when the cluster profiles of the Unoptimal
parameters option is compared with that for Optimal parameters. Even though the
intensity of rogue seasonality in the former is known to be higher than the latter (see
Table 5.1 and the earlier discussion in Section 5.3.1), this is not reflected in the cluster

profiles.

The alternative index based approach involves using the index as an indicator of rogue
seasonality intensity in the supply chain. Though three definitions of index have been
proposed earlier, specifically ‘index’, Alt 1 and Alt 2 based on equations 4.1, 4.3 and 4.4
respectively, ‘index’ based on equation 4.1 is used here. It was defined in Chapter 4 as

the ratio of minimum dissimilarity between CONS and the other variables to average
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dissimilarity between all the other variables except CONS. The index values computed
for the MTO, Hybrid system (Optimal parameters) and Hybrid system (Unoptimal
parameters) are 0, 1.07 and 1.22 respectively as seen in Figure 5.4. These accurately
indicate the presence of rogue seasonality as well as discriminate systems having
different rogue seasonality intensities (Optimal and Unoptimal parameters cases). The

latter was not possible with the signature.

The index also does not require any modification to accommodate variables such as the
shipping variable (which does not show rogue seasonality in contrast to most other
variables and remains similar to CONS), as was required in case of the signature. This is
because, though the presence of such variables reduces the numerator in the index, the
remaining variables being aligned at common amplification frequencies reduces the
denominator significantly to still yield a high index value which accurately characterises
the presence and intensity of rogue seasonality. This is evident in the index values
computed for Optimal and Unoptimal parameters options (1.07 and 1.22 respectively),
which are relatively much higher than the 0 value associated with a system without rogue
seasonality and therefore indicates both the presence as well as intensity of rogue
seasonality accurately, despite one of the variables (shipping variable) being similar to
CONS. Alternatively, this issue about one/a few inconsistent variables skewing the index
value could be altogether avoided by using alternative indexes Alt 1 and Alt 2, which use

average rather than minimum dissimilarity in the numerator.

The analysis in the preceding sections explained the generation of rogue seasonality in
non linear systems with backlogs and batching, which use hybrid MTO-MTS ordering
system and include shipment in the dynamics. The generation of rogue seasonality of
greater intensity in the Unoptimal parameters case in comparison to Optimal parameter
was also highlighted. Finally, the validity of the signature (with appropriate modification)
and index for such systems was also established. The only issue with the previous
analysis is that it was based on limited experimentation. Moreover, the index was
computed with only one feature parameter combination (FT Total) and without
considering alternative index definitions such as Alt 1 and Alt 2. A detailed simulation

experiment incorporating all these aspects was therefore carried out.
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5.5 Detailed simulation of the Beer game system

The detailed simulation of the Beer game system had the following three parts as in the

case of the linear system: generation of rogue seasonality of different characteristics and

intensities in the system, inputting of the time series data of system variables so obtained

into various transformations and using the respective features to derive the rogue

seasonality index/indices (and this way assessing the appropriateness of the

transformations/features) and finally repeating the above with alternative index

definitions to assess their respective effectiveness. The simulation design is given in

Table 5.3.

Table 5.3 - Simulation design for generating rogue seasonality of different
characteristics and intensities in the Beer game system

Structure, number of echelons
and order of delay

Beer game supply chain system
e Four echelon production-distribution structure
o Provision for backlogs between echelons
o Order infinity/pipeline delay for orders and shipments

Supply chain control

Hybrid MTO-MTS with Optimal parameters (John, 1994)

(Ordering) Hybrid MTO-MTS with Unoptimal parameters (no pipeline feedback)
Lead time (Ordering*- 112
Shipping*-Factory 223
production) 334
Demand process and AR (2): p1=0.1p,=-0.8
parameters MA (1):6=-0.2
MA (2):6,=0.10,=-0.8
Batching** No batching;
(Orders and Shipping ) Batch size of 50% of average demand per period (Batch 50%)

Batch size of 100% of average demand per period (Batch 100%)

Variables input into
transformation
techniques/features for rogue
seasonality index computation

All variables, Only order and inventory

30 replications of each based on common random numbers

* For all echelons

%% Orders are rounded up and shipping down to multiples of batch size; Batch sizes used were 0 (No Batching),
2 (Batch 50%) and 4 (Batch 100%) with average demand per period considered equal to 4
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The simulated Beer game system structure is the same as used by Sterman (1989); four
echelons, a sequential order and shipment flow with no information sharing between
echelons, pipeline delays in ordering, shipping and production and infinite shipping
capacity in the distribution echelons and production capacity at the factory. Different
ordering heuristics (Optimal and Unoptimal parameters) are applied to generate rogue
seasonalities of different intensities. The impact of these heuristics on rogue seasonality

generation has been discussed earlier.

With regard to choice of demand processes and parameters, these have been considered
as their low frequency (amplification range) frequency content is different (see Appendix
C) which means that they would generate rogue seasonality of different intensities. The
logic for this is the same as in the linear case (Chapter 4, Section 4.3.1), though here there

are additional complexities from backlogs, batching and shipment dynamics.

With regard to choice of lead times (or delays), the base case used is 2, 2, 3 (ordering,
shipping, production delay at the factory) which is the same as that used by Sterman
(1989). Alternative delays of 1, 1, 2 and 3, 3, 4 are also considered to assess the
sensitivity of the findings to delays. Though the intensity of oscillation is unaffected by a
change in lead time in linear systems and only the oscillation frequency changes (max FR
is independent of lead time T}, for many variables as seen in Table 5.1), this may not apply
in a system with backlogs and associated non-linearities. The choice of lead times also
helps in assessing the robustness of the index. Unlike the linear system analysis, where
the same delay was applied to all the three echelons (for any choice of delay), here the
lead time (production) for the factory echelon is different from the lead times (ordering +
shipping) in other echelons. For example, lead times of 2, 2, 3 mean that while each of
the Retailer, Wholesaler and Distributor echelons have a delay of 4, the factory has a
delay of 3 (production). A similar logic applies in the case of lead times 3, 3, 4. Since, the
relevant amplification frequencies, Wmax FrR aNd Ocrossover are both related to delay, the
difference in delays between the distribution and the factory echelons misaligns their
cyclic profiles, which helps in assessing whether the index was a robust indicator under

such circumstances.
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Next, the impact of alternative batch sizes on the generation and presentation of rogue
seasonality is assessed by considering the following cases: no batching and batch sizes of
50% and 100% of average demand per period (translates to batch sizes of 0, 2 and 4 for
the average demand period used of 4). For any choice of batch size, it is the same in all
echelons. The batch sizes considered are appropriate as these are essentially batching in

transportation associated with the distribution structure used.

Finally, in terms of the system variables used for index computation, besides all
variables, order and inventory variables are also used and assessed. Thirty independent
replications were generated for each simulated case based on common random numbers.

Excel© together with Matlab© was used for the data generation process.

In terms of the transformation techniques, the same techniques, features and their
parameters as are used as in the linear system analysis (See Table 4.3). This is done to
ensure that the findings from the two analyses could be compared. The alternative index

definitions evaluated are also the same as in equations 4.1, 4.3 and 4.4.
5.6 Analysis of output from detailed simulation of the Beer game system

The two cases, all variables used and only order and inventory variables used in index

computation are discussed separately below.

5.6.1 CaseIV: All variables used in index computation

The analysis is presented in three sub-sections. First, the impact of different simulation
variants on rogue seasonality is assessed using FR of select system variables computed
from the simulated Beer game. Next, the index values for simulated systems (demand
processes/lead times/ordering policies/batch sizes) based on different feature parameter
combinations are analysed. This includes comparing the values across demand
processes, ordering policies, lead times and batch sizes as well as with corresponding
linear systems to assess whether the index was behaving as expected. Structured
assessment, based on the criteria of consistency, discrimination ability and stochastic

robustness, of alternative feature parameter combinations is also covered in this sub
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section. In the final sub-section, correlation between the three alternative index

definitions proposed in Chapter 4 is discussed.
5.6.1.1 Understanding the impact of different factors on rogue seasonality

In a system with backlogs such as the Beer game, the impact of a combination of factors
such as ordering policies, demand processes and parameters and lead time combinations
on rogue seasonality is essentially the impact of each factor in a linear system and the
alterations to the same from backlogs and batching (non-linearities). Knowledge of the
extent of backlogs created (or alternatively the fill rate achieved) from different
combinations of factors used in the simulation is therefore necessary. The average fill
rate (a measure of backlogs) from 30 replications for the distributor and factory echelons
(where maximum backlogs are created) for different simulation combinations was
between 80% and 100%. This is a realistic fill rate for a hybrid system; pure MTO
systems have higher backlogs/lower fill rates and pure MTS systems much lower. Next
we understand the impact of each simulation variant on rogue seasonality generation. FR
profiles averaged over 30 replications are used for this. It is to be noted that backlogs and

their impact are an intrinsic part of each analysis.

a) Impact of lead time: To understand the impact of lead times (or delays) on rogue
seasonality, the Beer game is simulated with lead times of (1,1,2), (2,2,3) and (3,3,4)
with MA (1), 6 = -0.2 used as the exogenous demand and ordering based on Unoptimal
parameters. The echelon-wise FR profiles computed from the simulation data for
ORATE/CONS, COMRATE/CONS, AINV/CONS and WIP/CONS are given in Appendix
H.1. The FR profiles show that for a particular lead time case, all variables in all
echelons have the same frequency (slightly different for the factory as discussed earlier)
associated with the peak FR value; and this is true for each of the analysed lead time
cases. The characteristic presentation of rogue seasonality, as discussed in this chapter
earlier as well as in Chapter 4, is therefore evident. In terms of the impact of lead time on
rogue seasonality intensity, in a linear system there is no impact as seen in Table 5.1.
However, this is also apparent in this system with backlogs; the peak FR values for

variables such as ORATE/CONS are approximately equivalent for alternative lead time
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cases in the case of each echelon. The peak FR values for variables such as AINV/CONS
and WIP/CONS are, however, different for different lead time cases as expected because

they are proportional to lead time.

b) Impact of batching: The impact of batching is analysed similarly as lead time and
depicted in Appendix H.2 with batch sizes of 50% and 100% being used (defined with
reference to average demand per period which was considered to be 4; means batch sizes
of 2 and 4 are used). The FR profiles show a significant irregularity (lack of smoothness)
which is on account of batching as well as backlog related non-linearities. However, the
characteristic presentation of rogue seasonality is still evident from the profiles of the
variables which means that the signature and index of rogue seasonality are valid for
cases with batching as well. Similar to the lead time case, the peak FR values for
variables such as ORATE/CONS do not change significantly with batch sizes. This
indicates the rogue seasonality intensities for different batch sizes to be not very different

from each other.

The impact of ordering policies (Optimal, Unoptimal parameters) in a system with
backlogs has been discussed earlier in Section 5.4.1. Finally, regarding the impact of
alternative demand processes and parameters in a system with backlogs, the basic logic
used in the linear system analysis (those with higher spectral energy in the low frequency
amplification range frequencies would show greater rogue seasonality intensity) is also
applicable here. However, in a system with backlogs, the regularity of the profiles would

be lower as seen in the batching and lead time analysis earlier.

5.6.1.2 Analysis of index values based on alternative feature parameter

combinations

The average index values (30 replications), based on different feature parameter
combinations for all demand process, lead time, ordering process (Optimal/Unoptimal)
and batch size combinations are given in Appendix I.1. We first assess whether the index
is able to capture the expected rogue seasonality characteristics and intensities discussed
in the previous sub-section. The index based on FT Total, which was identified as the

best feature parameter combination in the linear systems analysis, is used for this.
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a) The system variables in a hybrid MTO-MTS system with Optimal parameters (delay
order infinity assumed) have a max FR value of 1.69 while it is 2.31 for those in MTS
delay order infinity system. The intensity of rogue seasonality in the former is lower than
in the latter and this should be reflected in their relative index values. FT Total index
values for the hybrid MTO-MTS system with Optimal parameters (Appendix 1.1) are
actually lower than that for MTS delay order infinity system (Appendix E) in each

corresponding case.

b) In terms of impact of change in lead time on rogue seasonality intensity, in a linear
system there should be no impact but in system with backlogs, as used here, there could
be a marginal impact from the latter. Here again the FT Total accurately reflects this. For
example, the index based on FT Total for systems with lead times 3 3 4 and 2 2 3 are
1.22 and 1.21 (demand process AR (2) p; 0.1 p; -0.8, Unoptimal parameters; no

batching). The behaviour of the index again is as expected.

¢) Similar to lead time, batching (specifically the batch sizes used) is also expected to
cause a minimum change in the rogue seasonality intensity as discussed earlier using the
FR analysis. The index based on FT Total accurately reflects this. For example, the index
values for no batch, batch (50% or 2), batch (100% or 4) are 1.22, 1.19, 1.19 (demand
process AR (2) p; 0.1 p2 -0.8, LT 334, Unoptimal parameters)

The index, if based on the appropriate feature parameter combination, is therefore able to
characterise the rogue seasonality intensity even in systems with non-linearities from
backlogs and batching. While we previously used the index based on FT Total (it being
the best in the linear system), there is a need to assess if it is the best for the current
context as well. Alternative feature parameter combinations are therefore evaluated in a
structured way using the criteria of consistency, discrimination ability and stochastic
robustness (see Section 4.4.1.2). While the latter two criteria are used exactly in the same
way as in Chapter 4, for the consistency criteria, consistency in relation to ordering policy
(Optimal and Unoptimal parameters) rather than order of delay is assessed. The

structured analysis is given in Tables 5.4 a, b and c.
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Table 5.4: Structured evaluation of different feature parameter combinations for

rogue seasonality index computation in the Beer game system;
All variables used in computation of the index

Table 5.4a

Consistency of rogue seasonality Index for different demand and ordering processes

Consistency Basis Raw FT FT 7 FT 28  FT 801k AR 7 AR 28 AR AIC ACF7 ACF28 CCF7  CCF28
Time  Total Energy

Demand Process'

a) MA2 (B.0 19, -0 8) with MAI (B -0 2) 9/18  17/18 2/18 9/18 18/18 18/18 18/18 & 8~ 17/18 16/18 9/18 8/18
b) UAT (B -0 2) with AR2 (p, 0 1p,-08) 16/18 18/18 5/18 7/18 18/18 8/18 6/18 8/18 6/18 5/18 1S/18 18/18
Ordering process Unoptimal with Optimal for
6/9 5/9 3/9 2/9 6/9 6/9 79 7/9 69 719 2/9 2/9
e; wai r -0 2 4/9 7/9 4/9 5/9 7/9 719 7/9 4/9 4/9
c¢) AR2 (p, 0.1 p.,-0 8 6/9 8/9 2/9 8/9 719 9/9 9/9 9/9 8/9 8/9 5/9 6/9
Overall Consistency - Demand and Ordenng process 41/82 65/63 18/83 29/83 84/83 50/83 51/83 61/83 44/83 43/83 38/83 36/83

DWT Hear DWT Haar
(Level 6) (Level
Shannon)
418 218
15/18

3/9
509 8/9
6/9 519
24/83 39/83

*for corresponding lead time (LT). ordering and batching combination repeated for all combinations

Table 5.4b

Rank analysis based on the magnitude of rogue seasonality index
(For assessing the discrimination ability ofthe index derived from different feature parameter combinations)

Larger the rogue seasonality index higher the rank is used as basis

Raw FT FT 7 FT 28 FT 80% AR 7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28
Time  Total Energy
N fR ks - MA(2
um of Ranks ® 174 62 246 192 32 156 124 122 57 126 80 57
Minimum / best possible 18
Sum of Ranks-M A (1) 130 6 237 l6s s 172 187 187 82 126 60 24
Minimum / best possible 18
Sien of Ranks « AR (2) 1as 6 243 153 25 147 177 169 46 84 81 51
Mimmjm /best possible 18
Sum of Ranks - TOTAL 449 190 728 613 169 478 488 478 185 338 231 132

Minimum / best possible 54

DWT Haar DWT Haar
(Level 5) (Lave
Shannon)

237 208

225 174

237 209

899 591

For a particular demand process for each of lead time ordenng and batching variations, each feature parameter combinalion is ranked relative to others

with the highest rank allotted to that with the largest magnitude of rogue. Thease are then summed up for that demand process

Table 5.4¢

Rank analysis based on the coefficient of variation of rogue seasonality index
(For assessing the stochastic stability of the index derived from different feature parameter combinations)

Lower the coefficient ot venation the higher the rank is used
Raw FT FT 7 FT 28 FT 80% AR7 AR 28 AR AIC ACF 7 ACF 28 CCF 7 CCF 28
Tims  Total Encrey
Sum of Ranks * MA(2) 18 37 252 197 93 148 147 149 159 160 64 79
Minimum /best possible 18
Sum of Ranks -MA (1) 18 43 244 159 81 180 175 187 162 152 60 71
Minimum / best possible 18
Sum of Ranks - AR (2) 16 73 252 172 194 17 153 162 149 154 60 79
Minimum / best possible 18
Sum of Ranks » TOTAL 54 153 748 628 368 445 476 498 470 496 184 229

Minimum / best possible 54

as basis
DWT Haar DWT Haai
(Level 6) (Level
Shannon)
208 179
175 183
189 117
872 479

Coefficient of vanation is same as SD/Avg. Their values are based on 100 repl cations fbr each

Raw FT FT 7 FT 28  FT 80% AR 7 AR 28 AR AIC ACF 7 ACF28 CCF7  CCF28
Tima  Total Energy

Sum of Ranks + TOTAL (magnitude as well as coefficient

of venation of the tndei) 603 343 1476 1041 537 923 963 976 666 804 416 381

Minimum / best possible 106
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Table 5.4a gi{'es the consistency of the index with respect to demand process (and
parameters) and ordering processes (Unoptimal and Optimal parameters) for different
feature parameter combinations. FT Total shows the highest consistency amongst all
feature parameter combinations as in the linear case. It has a high consistency in absolute
terms as well (55/63 or 87%), though, which is lower than that in the linear system (68/69
or 99%). This is on account of the non-linearities from backlogs and batching in the
former. Other parameter options within FT such as FT 80% energy also show a similarly
high consistency as FT Total, though consistency for FT 7 and FT 28 is much lower as in
the linear case. Consistencies for time, AR and DWT features are also lower as similarly
observed in the linear case. The only surprise is for the ACF feature; while it was at par
with the FT Total in terms of consistency in the linear case, it is much lower than the FT

Total in this case and only marginally better than the time domain.

The sum of ranks based on the average and coefficient of variation of index values is
given in Tables 5.4b and 5.4c respectively with their aggregated sum given at the bottom
of Table 5.4c. The best feature parameter combination is that for which the index values
are the highest but at the same time whose coefficient of variation of index values are the
lowest. The FT Total has the lowest aggregated sum of ranks amongst all the feature
parameter combinations considered, indicating it to be the most balanced in meeting the
above considerations which was also the case in the linear system analysis (see Table
4.5). As regards other feature parameter combinations, they are similarly placed relative

to each other in terms of aggregate ranks as in the linear case.

Based on all the three criteria, the FT Total feature parameter combination was found to
be the best for rogue seasonality index computation with FT 80 % Energy a close second
as in the linear case. Other findings are also similar to that in the linear case. The index
computed in the time domain was found to be a less valid measure of rogue seasonality
(low consistency) and a less effective discriminator of rogue seasonalities of different
intensities (low index values). AR and DWT features were found to be among the worst
on each criterion while CCF features showed low consistency. The only surprising

finding was with regard to ACF features which showed lower consistency both in
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absolute terms as well as relative to FT features (FT Total and FT 80% Energy) compared

to the linear system.
5.6.1.3 Comparison of alternative index definitions

The correlation between the alternative index definitions (based on equations 4.1, 4.3 and
4.3) for different features are given in Table 5.5. These were computed in a similar
fashion as in the linear system analysis. Table 5.5 highlights the fact that the correlation
between alternative index definitions for most of the features (FT, AR Model, ACF,
CCF) is high. This means that when these features are used, any of the three index
definitions could be used for index computation (and therefore rogue seasonality
detection) without loss of accuracy. However, the comparison of the correlation
coefficients given in Table 5.5 with those for the linear system given in Table 4.6, show
the former to be lower which again can be explained by the greater system complexity
(and its associated impact on the data variables) from the simultaneous application of
backlogs, batching and other factors. The correlation between index definitions in the

time domain and using DWT coefficients is low as was seen in the linear case.

Table 5.5: Correlation between alternative rogue
seasonality indices in the Beer game system - All
variables used in computation of the indices

Index and Alt Index and Alt Alt 1 and Alt 2

1 2
Time 0.67 0.84 0.37
FT 0.84 0.97 ~0.75
AR Model 0.85 0.98 0.84
ACF 0.87 0.99 0.86
CCF 0.79 0.97 0.66
DWT 0.64 0.64 0.40

Parameter options for each feature have been combined together

Highlighted indicates low correlation (considered bad)
5.6.2 Case V:Only order and inventory variables used in the index computation

The average and the coefficient of variation of the index values are given in Appendices
J.1 and J.2 respectively while Appendix J.3 gives the structured evaluation of alternative

feature parameter combinations based on the criteria of consistency, discrimination
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ability and stochastic robustness. Finally, Appendix J.4 gives the correlation between
alternative index definitions for different features. A comparison of the average index
values between an “all variables used” case (Appendix I.1) and the “orders and inventory
variables used” case (Appendix J.1) for feature parameter combinations such as FT Total
shows only small differences. For example, in the “all variables used” case, the average
index values for Unoptimal and Optimal parameters ordering are 1.22 and 1.18 (lead
times 3 3 4, no batching, excited with the demand process AR (2): p; 0.1, p, -0.8). The
corresponding values for the “order and inventory variables used” case are 1.45 and 1.30.
The same is true for the other demand processes as well. This implies that use of fewer
but representative variables such as order and inventory variables, give a similar

indication of rogue seasonality intensity.

The structured evaluation of alternative feature parameter combinations, which is given
in Appendix J.3, shows the FT Total to be among the most consistent feature parameter
combination. The index value based on the FT Total also provides the maximum
discrimination between rogue seasonalities of different intensities while being stable in
stochastic terms. FT 80% Energy is close to the FT Total on all of the evaluation criteria.
ACEF features on the other hand, show similar consistency and discrimination ability as
the FT Total, but were found to be lacking in the stochastic robustness criteria. Other
features such as AR, DWT, Time and CCF also were found to be lacking in one or more

criteria.

Finally, J.4 gives the correlation coefficient between the alternative index definitions
where again the results are similar to the “all variables used” case (Table 5.5) i.e. high
correlation coefficient for the FT, AR model, ACF and CCF features and low correlation

coefficient for the time domain and DWT coefTicients.

5.7 Conclusions

This chapter analyzed rogue seasonality generation in a non-linear (Beer game) system.
Backlogs, batching in ordering and shipping, shipping variable and hybrid MTO-MTS
system with Optimal and Unoptimal parameters were applied to the system and their

impacts analysed. The outputs from the simulated system were used to assess the
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effectiveness of the rogue seasonality signature and index, together with the best features

(and parameters) to be used for deriving them.

The signature of rogue seasonality was found to be valid for the Beer game system
notwithstanding its greater complexity than the linear system used in Chapter 4 with four
echelons, a greater number of variables, echelons having different lead times and all the
other factors including non-linearities mentioned in the previous paragraph. The signature
was able to accurately record the rogue seasonality generation. However, unlike the
signature in the linear system, where all the other variables were clustered together and
separate from CONS, in this case one variable (the shipping variable) continued to be
clustered with CONS. Recognizing that this could arise in real systems as well, rogue
seasonality definition was modified as follows: rogue seasonality is considered present if
CONS is separately clustered from most of the variables (the threshold needs to be

defined) and these variables are clustered together.

The rogue seasonality index was found to be an accurate barometer of rogue seasonality
intensity. While the index value for the make to order (MTO) system was 0, it was higher
(>1) for the hybrid MTO-MTS system with Optimal parameters and the highest for the
hybrid system with Unoptimal parameters. These index values are as expected based on
their respective rogue seasonality intensities (from analytical frequency response (FR)

analysis).

In terms of feature parameter combinations to be used for index computation, FT Total
was found to be the best followed closely by FT 80% Energy. Index values derived from
them showed high consistency (both in absolute and relative terms), discrimination
ability and stochastic stability. This finding is similar to that for the linear system.
Relative performance of the other feature parameter combinations on these criteria is also
the same as their performance in the linear system. In terms of the appropriateness of
alternative index definitions, the correlation between the index values based on these
definitions was high for FT, AR Model, ACF and CCF features as in the linear case.
However, the extent of correlation (reflected in the value of correlation coefficient) in the

Beer game system was lower. This is on account of the greater system complexity (and

153



its associated impact on the data variables) from the simultaneous application of
backlogs, batching and other factors. Finally, use of order and inventory variables gave

the same overall findings as when all the variables are used (as discussed above).
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Chapter 6 — Analysis of rogue seasonality in empirical

contexts

Chapters 4 and 5 used simulated linear and non-linear supply chain contexts to analyze
rogue seasonality. Rogue seasonality’s characteristic presentation as multiple system
variables oscillating in sync with each other, with the oscillation not present in the
exogenous demand, was highlighted. The signature based on the clustering profiles of
variables in relation to exogenous demand was found to be an effective indicator of the
presence/absence of rogue seasonality. However, to get a sense of the intensity rather
than just the presence or absence of rogue seasonality, a numerical index was proposed
and tested and found to be a valid measure. It is based on the dissimilarity between the
other variables and exogenous demand in relation to the dissimilarity between the other
variables themselves. Different time series transformation techniques were explored for
computing the index out of which the FT Total feature parameter combination was found
to be the best followed closely by FT 80% Energy. In this chapter, time series data from

two empirical contexts are used to validate the above findings on rogue seasonality.

First a steel case study is analysed. Steel being an industrial product is characterized by
relatively stable demand profiles and (consequently) similarly stable profiles of other
supply chain variables. Monthly sampled data could therefore accurately capture the
dynamics associated with rogue seasonality in this case and hence used. The second
context is of a supply chain network in the grocery sector (a more volatile sector) and
where, time series data of supply chain variables sampled at a higher rate (than monthly)

is used.

Each case study is discussed separately one after the other as their rogue seasonality
contexts are different. First, the steel case study context is explained which is followed by
a discussion of the methods used by Thornhill and Naim (2006) and their findings. The
case study and data used here is the same as used by them and this would bring more
clarity to the contribution of the present work. Next, the different kinds of analysis

performed on the data is discussed which are:
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e Transformation of the data to different domains, and use of the features from
these domains for clustering based signature formulation

¢ Index computation from alternative feature parameter combinations to identify the
best one for the same and therefore for rogue seasonality detection

» Assessing the impact of using order and inventory variables instead of all
available variables on the index values

e Comparing the index values derived from alternative index definitions considered

as in equations 4.1, 4.3 and 4.4

After the analysis of the steel case study, the grocery case study is similarly analysed,

discussed and presented.

6.1 Description of the steel case study context and its analysis based on the

spectral principal component technique

The steel supply network used in this study is depicted in Figure 6.1 which shows the
flow of order and material across the network. The network consists of four autonomous
business units: Steel works, Section mill, Bar mill and Rod mill. The Steel works
produces steel billets of different qualities and specifications which are used as raw
materials by the other three mills. These three mills then produce an even wider range of
products which are sold to customers which include stock holders as well as end users.
Though being a part of the same holding group, the four units are managed independently
and operate as separate profit centres. Their production control is also not centralised

with scheduling done independently of the others at each unit.

The study being information centric, data on different system variables across the
network was required, which was originally collected from the company’s management
information systems. However, for the purposes of the present study, this data was
already available, which includes variables such as customer orders, production output,
dispatches, receipts, and inventory levels. These variables are similar to those used in the
simulation analysis. Figure 6.1 lists these variables for each business unit. The meanings
of these variables are mostly self-evident from their descriptions; the order book variables

(numbers 29, 30) are the orders accepted by a company that have not yet been delivered
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MTS: Steel Works-Section Mill Dyad

Steel Works variables

FG Billets Total Stocks ( 38 )

FG Billets Despatches to Bar/Section mill (40 )

FG Billets Production (43 )

Section Mill variables
Section Mill Total Orders (9 )
Section Mill Production ( 1)

Section Mill Despatches Total (6 )

Section Mill Receipts from FG (10 )

Section Mill Billet Stocks total ( 13 )
Section Mill Total Stocks (14 )
Order Book Section Mill (30 )

MTS: Steel Works-Bar Mill Dyad

FG Billets Total Stocks (38 )

FG Billets Despatches to Bar/Section mill (40 )

FG Billets Production (43 )

Bar Mill Total Orders (23 )

Bar Mill Production (15 )

Bar Mill Despatches Total (20 )
Bar Mill Receipts from FG (24 )
Bar Mill Billet Stocks total ( 27 )
Bar Mill Total Stocks (28 )

Bar Mill Order Book (29 )

MTO: Steelworks-Rod Mill Dyad

Steel Works variables

FG Billets Total Stocks (38)

FG Billets Despatches to Rod mill ( 39 )

FG Billets Production (43 )

Rod Mill variables

Rod Ml Total Orders ( 37 )
Rod Ml Production (32 )

Rod Mill Billet Stocks total (35 )

Rod Mill Total Stocks (36 )

Each variable is numbered tofacilitate ease in representation

its constituent dyads and the variables used in analyzing them



to the customer and are akin to backlogs. Monthly time series data for each variable

was available for 6 years (72 months).

The steel case study context used in this chapter has been used by Thornhill and Naim
(2006) to demonstrate the effectiveness of the spectral principal component analysis
(SPCA) technique in identifying rogue seasonality. SPCA is derived from PCA where
PCA (principal components analysis) is the dimensional reduction technique which
converts a number of correlated features of the data into a smaller number of
uncorrelated features called principal components (PCs), with the first few PCs being
used to represent the original data for further analysis. In SPCA, PCA is done for the
spectra so that time delays or phase shifts caused by network dynamics are eliminated
from the analysis. In Thornhill and Naim’s study, SPCA was used for identifying
rogue seasonality. The time series data for all the variables in the network was first
normalized and detrended after which it was transformed into a spectra representation
(using Fourier transform). Then, the dimensionality of the spectra for each variable
was reduced to 3 dimensions using PCA, so as to plot each variable in the 3
dimensions. Clusters of variables were manually identified, with the clusters mapped
on to the network structure to identify variables which shared common cyclical
characteristics as well as in relation to exogenous demand which was then used as the
basis for identifying rogue seasonality. In the steel network, the SPCA approach was
able to detect two cyclical disturbances. One was externally induced from the
customer orders and the other was generated internally from the production planning

systems and hence termed as rogue seasonality.

Though the SPCA based approach could successfully detect rogue seasonality in the
steel network, it was lacking in certain respects which are practical and scientific in
nature. These have been highlighted by Thornhill and Naim themselves and suggested
as areas of future work. The first is the significant manual element in the detection
process, such as deciding the number of principal components, assessing the cluster
memberships of the variables and interpreting the clusters all of which introduce
subjectivity into the process. Moreover, the process requires the number of principal
components (PC) to be not more than three so that the variables represented in terms
of the PC’s could be plotted and the clusters manually visualized. Though this

representation of all variables with 3 PC’s was possible for the steel network data, it

158



may not work in other contexts having different data characteristics. The second issue
is with regard to the use of just one technique, SPCA, in the study which was not

compared to other potential techniques to establish its superiority or otherwise.

The aim here is therefore, to use the steel case study data to validate the signature and
index of rogue seasonality so that the case for automatic rogue seasonality detection
based on these could be strengthened. It is also to establish the best time series
transformation technique (and feature) for signature formulation and index

computation using real data.

6.2 Rogue seasonality analysis of the steel case study based on signature and

index

The steel case study network is not analysed as such but is instead broken up into its
three constituent dyads as seen in Figure 6.1: Steel works-Section mill, Steel works-
Bar mill and Steel works-Rod mill and analysed separately. This is because Thornhill
and Naim’s study determined the mills to be using different ordering strategies. The
Section and Bar mills used the make to stock (MTS) and the Rod mill the make to
order (MTO) strategy with the former showing rogue seasonality characteristics and
the latter not showing it. By splitting the network into dyads, systems with contrasting
rogue seasonality characteristics could be analysed. However, it is important to note
that even though these dyadic systems are being termed as MTO and MTS systems,
actually they are all hybrid MTO-MTS systems but with orders having a greater
influence in the ordering decision in the former (MTO) and lesser in the latter (MTS).
This is because for industrial products of the kind considered here, specifically steel
products, hybrid strategies are generally used. Pure MTO policies are not used as
economies of scale in production means build up of stocks. Likewise, demand from
customers is specific and hence the pure MTS policy is also not used. In the case of
the steel case study the hybrid nature of the systems is borne out by the variables used
(see Figure 6.1). For example, the Section and Bar mills have order book variables
implying that these are not operating on a pure MTS basis. Similarly, the Rod mill has

a stocks variable which implies that it is also not operating on a pure MTO basis.

Each dyad is analysed separately on the basis of its system variables which includes

the signature as well as the index values derived from different feature parameter

159



combinations. The sequence of steps used in the analyses are as follows:

The time series data of different variables was checked for consistency using

analytical techniques.

Data was de-trended so as to avoid its appearance in the zero frequency channel.
Also, all low frequencies reflecting long term patterns (below a specified
threshold) were filtered. The threshold used here is the same as that used by
Thornhill and Naim (2006) at frequency 0.125 (time period greater than 8

months).

For the index computation, all common frequencies shared between orders and
other variables reflecting transmission of exogenous demand were filtered out in
line with the discussion in Section 4.4.2. For the Steel works-Section mill dyad,
this corresponded to the frequencies 0.25 (4 month cycle) and 0.17 (6 month
cycle), for the Steel works-Bar mill it was 0.25 (4 month cycle) and for the Steel
works-Rod mill 0.25 (4 month cycle) and 0.33 (3 month cycle). Filtering is done

by replacing the values in the frequency channels (to be filtered) with zero.

Data was normalised and each of FT, ACF and CCF transformations were applied
to the data, with time domain used as the reference. AR and DWT transformations
were ignored as they were found to be ineffective for rogue seasonality detection
(signature and index computation) in the earlier linear and non-linear system
analyses. The features from the transformations were plotted and clustered to
formulate the signature with order variable being the exogenous demand. Index
values were also computed from each feature parameter combination (two
parameters used for each feature); FT Total and FT 80% Energy, lags/max lags of
18 and 36 for ACF and CCF. Finally, the index values were computed using the

three alternative index definitions in each case.

The findings from the analysis are discussed under three sub sections. First, the rogue
seasonality signatures derived from alternative features are discussed to subjectively
assess the best feature for this application. Next the index values derived from these
features (with different parameters) are discussed. The feature parameter
combinations are also compared in a structured way on the consistency and
discrimination ability criteria as in chapters 4.and 5. Finally, correlation coefficient

between the index values based on the alternative index definitions is discussed.
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6.2.1 Analysis of rogue seasonality signature derived from different features

The profiles of variables based on FT, time, ACF and CCF features together with their
clustering for signature formulation are given in Figures 6.2, 6.3, 6.4 and 6.5

respectively. All three dyads are shown in each figure for effective comparison.

The unfiltered and filtered spectra (square of FT amplitudes) plots and the
hierarchical clustering plot based on the latter for each of the three dyads is given in
Figure 6.2. The logic of filtering out the low frequencies (as discussed previously) is
apparent from the unfiltered plot; most variables have significant energy at the low
frequencies and these frequencies are seen to mask the relevant high frequencies in
many cases. The filtered spectra plots of Steel works-Section mill and Steel works-
Bar mill dyads show rogue seasonality being generated in these systems. In the Steel
works-Section mill dyad, while the exogenous demand (variable 9) shows
seasonalities of only 6 and 4 months (corresponding frequencies of 0.17 and 0.25),

other variables show an additional seasonality (rogue) of 3 months (frequency 0.33).

Similarly, in the case of the Steel works-Bar mill dyad many variables show
additional seasonalities of 3 and 6 months (frequencies of 0.33 and 0.17) which is not
present in the exogenous demand pattern (variable 23). In both these dyads therefore,
the presence of rogue seasonality is effectively indicated; seasonal patterns in
multiple variables whose frequency is different from those in exogenous demand. On
the other hand in the Steel works-Rod mill dyad, all the variables are
indistinguishable from the exogenous demand (variable 37) indicating no rogue
seasonality generation in this system. Looking at the clustering profiles of the
variables, it is seen that exogenous demand (variables 9 or 23) is clustered reasonably
separately from the other variables in the two dyads with rogue seasonality (Steel
works-Section mill and Steel works-Bar mill) and reasonably together with the other
variables in the case of Steel works-Rod mill dyad which does not show rogue
seasonality. The signature, which is based on the cluster profiles of the variables (see
Sections 4.1.1 and 4.1.2) is therefore quite effective in indicating the
presence/absence of rogue seasonality for the FT Total feature parameter

combination.
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Figure 6.2. Profiles of variables in the frequency domain and clustering based on these profiles

for the three dyads in the supply network
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the three dyads in the supply network
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Figure 6.5. Cross correlation between variables (within maximum lags = 36) and
clustering based on it for the three dyads in the supply network

In the time domain (see Figure 6.3), neither the profiles of the variables nor the
signature based on clustering of the profiles are able to discriminate between the
dyads which have and those which do not have rogue seasonality which was possible

with the FT feature. The same is true for the CCF feature. Figure 6.5 shows that the
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dissimilarity (based on CCF) of exogenous demand with the other variables in
relation to the dissimilarities among the variables themselves is not significantly
different for dyads which have/do not have rogue seasonality. The signature in this
case, which is based on clustering of the variables using the CCF based dissimilarity,
is therefore also similarly ineffective. On the other hand the ACF based
representation (see Figure 6.4) performs relatively better than the CCF and time

domains.

Cyclicality in the profiles is visible in both unfiltered and filtered ACF plots, with
low frequency cycles clearly evident in the former. In the filtered ACF plots, the low
frequencies are seen to have been filtered out. Also, a mixture of 2 to 6 months cycles
can be seen in all the variables for all the three dyads. In terms of profiles of variables
in relation to exogenous demand, one would expect to see the former to be
significantly different from the latter for the dyads with rogue seasonality (Steel
works-Section mill and Steel works-Bar mill). However, this is seen to be true only
for the second dyad where exogenous demand (variable 23) is clustered away from
the other variables. Not only is the rogue seasonality accurately indicated for this
dyad, but the related signature is also validated. However, for the first dyad the
signature was unable to indicate rogue seasonality; exogenous demand was clustered
together with the other variables for this dyad indicating absence of rogue seasonality
as per the definition of the signature, though in reality rogue seasonality is present, as
seen in the FT analysis. For the third dyad (Steel works-Rod mill), absence of rogue
seasonality was accurately indicated by the signature; exogenous demand (variable

37) was clustered with the other variables.

Therefore, overall the signature in the FT domain was found to be reasonably
effective in indicating the presence/absence of rogue seasonality. Signature in the
ACF domain was partially effective while those in the CCF and time domains were
not effective. The next step is to assess the index as a measure of the intensity of
rogue seasonality and then use the index value for a structured comparison of

different feature parameter combinations.

6.2.2 Structured comparison of feature parameter combinations for index
computation

The index values based on equation 4.1 were computed for each dyad based on each
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feature parameter considered: time, FT Total, FT 80% Energy, ACF 18, ACF 36, CCF
18 and CCF 36. This was done twice; first using all the variables (as given in Figure
6.1) and then using only the order and inventory variables. The different feature
parameter combinations were compared in a structured way using the criteria of
consistency and discrimination ability (stochastic stability criteria was not used as it is
not applicable for empirical data). The consistency criteria uses the fact that the dyads
operating on an MTS basis which show rogue seasonality characteristics should have
a higher index value than the MTO dyad which does not show rogue seasonality (the
basis for this has been discussed in chapter 4). The criteria on discrimination ability
which is based on ranking of the index values is applied slightly differently here than
in chapters 4 and 5. In those chapters (chapters 4 and S), only systems with rogue
seasonality (MTS and hybrid MTS-MTQO) were used in the structured comparison of
feature parameter combinations so a larger index value was the only basis for
assigning ranks. On the other hand in the present analysis, systems with rogue
seasonality (MTS dyads) are clubbed together with those without the same (MTO
dyad) so that while ranks are assigned to those with greater index values in the
former, in the latter (MTO) case smaller index values would better represent absence
of rogue seasonality and were therefore assigned higher ranks. It is also to be noted
that the structured comparison of the “all variables used” and “order and inventory
variables used” cases is done together because of paucity of data. Table 6.1 gives the

summary output of the analysis whose key points are:

] The index values for the MTS systems (Steel works-Section mill and Steel
works-Bar mill dyads) are much lower and for the MTO system (Steel works-Rod
mill dyad) much higher than those observed for MTS and MTO systems in the linear
supply chain system analysis in chapter 4. Two factors can be used to explain this.
The first is that, although the dyads are being referred to as MTS and MTO systems
they are actually both hybrid MTS-MTO systems (discussed at the start of section
6.2) though one is closer to the former (MTS) and the other closer to the latter
(MTO). This is corroborated when the index values of these dyads are compared with
those for a hybrid MTS- MTO system. For example, the index value for the
simulated hybrid MTS-MTO system (see chapter S, Figure 5.4) at 1.07 is close to the
index values for the dyads as given in Table 6.1. The low index values of the dyads

are in conformity with their clustering based signatures seen earlier which neither
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Table 6.1: Assessment of select feature parameter combinations used for
rogue seasonality index computation in the steel case study

System Description Raw Time FT Total FT80% ACF 18 ACF36 CCF 18 CCF 36
Energy

_ MIO: Steel Works-Rod Mil Dyad 084 084 089 076 072 097 099

All available . X ion Ml d
variables used M1 Steel Works-Section Mill Dya 080 090 092 067 072 070 071
MTS: Steel Works-Bar Mill Dyad 079 0% 09 093 095 0.97 098
Only Order and MIO: Steel Works-Rod Mill Dyad 093 0.82 090 08 076 0.93 0.94
Inventory MTS: Steel Works-Section Mill Dyad 090 2 146 065 064 0.92 094
variables used  \rs: Steel Works-Bar Mill Dyad 087 106 121 106 101 091 092

Number of cases where MIS > MTO; Max possible 4/4

(Measures consistency of index) 04 44 44 24 34 04 04

Sum of ranks (Rowwise ranking; For MTS larger values get
higher rank &reverse for MTO; Best 8, Worst 56)** 42 23 24 30 23 40 42
(Measures discrimination ability of index)

mLevel 3 used instead of Shannon criteria
“ Since there are 2 cases of MTO and 4 cases of MTS, the ranks in the former are multiplied by 2 to eliminate bias in the sum of ranks

showed exogenous demand to be very distinctly clustered from other variables nor

clustered very closely with them for the FT Total feature.

The second contributing factor for the significant difference in index values between
the dyads in the steel case study and the corresponding simulated systems in chapter
4 is the presence of noise in the steel data as well as its varying character across the
variables, which is typical of most real world datasets. In contrast in simulation, noise
was only introduced in one variable (CONS or exogenous demand) with all the other
variables being determined deterministically on the basis of the simulation equations.
Moreover, the noise introduced in CONS was also stationary (Gaussian with a mean

of 0 and standard deviation of 1).

Overall, the inference that could be drawn from the index values of the steel dyads is
that, in reality it is unrealistic to expect supply chains with rogue seasonality to yield
high index values, and those without, low index values as was observed in the
analysis of linear and non linear supply systems (chapters 4 and 5). The difference in
the index values between the cases when rogue seasonality is present to when it is not
present would be lower in reality. Careful setting of thresholds for the same would
therefore be necessary for practical situations. The relevance of the magnitude of
index as a criterion for structured comparison of different feature parameter

combinations (see section 4.4.1.2) also becomes apparent.
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. In terms of comparing the “all available variables used” with the “order and
inventory variables used” case, the index values (based on FT Total) for the latter are
marginally greater than for the former in case of MTS systems. A similar marginal
difference between these cases was seen in the analysis of linear (Section 4.4.3) and
non-linear (Section 5.6.2) supply chain systems. Hence, use of a limited set of
relevant variables (such as order and inventory variables) instead of all the variables
does not significantly impact the index value and therefore the effectiveness ofrogue

seasonality detection.

. The structured comparison of the feature parameter combinations based on the
criterion of consistency and discrimination ability reveals FT Total and FT 80 %
Energy to be the best for rogue seasonality detection followed closely by ACF
(specifically ACF 36 feature parameter combination) with CCF being the worst
among those considered. This finding is exactly similar to that found in the

simulation analysis of linear as well as non-linear (Beer game) systems.

6.2.3 Comparison of alternative index definitions

The index values were computed using alternative index definitions (index, Alt 1 and
Alt 2) for each dyad for each feature parameter combination used. Correlation
coefficient between the index values based on the three index definitions was then
used to assess whether the indices were measuring the same thing. These correlation
coefficient values are given in Table 6.2. The correlation coefficient is quite high for
FT and ACF indicating that these features are less susceptible to changes in the index

definitions and are therefore more robust for rogue seasonality assessment.

Table 6.2: Correlation between alternative rogue
seasonality indices for the steel case study* data

Index and Alt 1 Index and Alt Alt 1 and Alt

2 2
Time 0.50 0.49 0.60
FT 0.95 0.94 0.97
ACF 0.96 0.82 0.79
CCF 0.28 0.63 0.69

* Includes cases where all variables are used in the computation
ofthe index as well as where only orders and inventory are used

Highlighted indicates low correlation (considered bad)
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6.3  Discussion of the steel case study findings

Analysis of the steel case study corroborates the findings on rogue seasonality
obtained from the simulation analysis in chapters 4 and 5. The presentation of rogue
seasonality as multiple variables oscillating in sync with each other at same
frequency/ies, with one or more of these oscillation frequencies not present in the
exogenous demand, is validated. The signature of rogue seasonality which is,
exogenous demand being clustered away from the other variables when rogue
seasonality is present, is also validated. However, the validity of the signature was
found to differ across the features used to derive the signature. While the FT feature
showed perfect validity, validity for signature based on ACF was partial and
signatures based on time and CCF were completely ineffective in characterizing

presence/absence of rogue seasonality.

Comparison of different feature parameter combinations for computing the index
revealed, FT Total to be the best followed by FT 80 % Energy. These were also the
best and second best in the case of simulated linear and non-linear (Beer game) supply
chain systems. In the present analysis, FT feature being the best for index computation
is in conformity with it giving the signature with the highest validity as discussed
earlier. The use of order and inventory variables for index computation rather than all
the available variables causes only a marginal change in the index values. Finally,
index values based on alternate index definitions were found to be significantly
correlated with each other when these were computed using FT and ACF features.
Index values derived from these features are therefore robust to variations in the way

these are computed.

Overall, this analysis validates the findings in Thornhill and Naim (2006). Frequency
representation based on FT was found to be the best technique for rogue seasonality
detection as observed by them. However, here we used an automated as well as a
more generalisable approach which did not require compression of the profiles within
three principal components, manual clustering and cluster evaluation and use of the
look up table. Moreover, multiple techniques such as ACF and CCF besides the time
domain were evaluated in the determination of FT as the best technique while
Thornhill and Naim used just the time domain in the comparison. In terms of rogue

seasonality in different steel units, Thornhill and Naim gave a black and white
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interpretation; Section mill and Bar mill were exhibiting rogue seasonality while no
rogue seasonality was evident in the Rod mill. As against this the signature and index
based analysis here suggests Section mill and Bar mills to be having a greater rogue
seasonality intensity than the Rod mill. This is a more realistic analysis given that all
supply chains exhibit rogue seasonality but with differing intensities (Kim and
Springer, 2008).

Next rogue seasonality generation in a grocery case study is discussed whose context
is different from the previous case study. First daily data, which is more noisy is used
as compared to monthly data used in the steel case study. Secondly, individual SKU’s
are analysed rather than aggregating all the products into tons and analyzing on that
basis as was done in the steel case study analysis. The rogue seasonality analysis in
the grocery case study is therefore of individual SKU’s in one supply chain rather
than one product (aggregated in tons) in multiple supply chains as used for the steel

case study.

6.4  Description of the grocery case study context

The grocery supply chain network used in the study is depicted in Figure 6.6. The
structure of the network including the nature of material and information flows is
based on discussions with the focal company’s supply chain planning personnel. The
flow of material (coffee) takes place as follows. The manufacturing facility of the
company M produces coffee (in batches) which is transferred to one of its two
distribution centres (DC’s) (the factory keeps negligible stocks) from where it is either
shipped to the large primary customers (managed by company M itself) or shipped to
a depot of the distributor WD who distributes goods to M’s small customers, called
radial customers. Some inter DC transfer of material also takes place due to
misallocation or errors such as in forecasting. Distributor WD, which manages the
distribution of goods to M’s radial customers, is also a Wholesaler for the same set of
goods. The network of depots used to distribute company M’s goods (11 depots
relevant to company M and uniquely assigned to each DC) is therefore also used by
WD for stocking and shipping goods to its wholesale customers. In terms of ordering
practice, radial customers place their orders to company M who ensures timely
delivery of goods by coordinating with WD. Any shortfalls at the WD depot are met
by dispatching appropriate quantity of goods from the DC so that requirements of the
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Figure 6.6 Grocery case study network structure and the variables used for the rogue seasonality analysis



radial customer could be met. Therefore, in principle, company M’s radial customers
should not face any stock out situation; however in practice, the same entity (WD)
managing the roles of both Wholesaler and Distributor means that there is scope for
goods meant for M’s radial customers getting diverted to WD’s wholesale customers

especially during shortage situations.

Four dynamically representative SKU’s (SKU 1 to 4) were analysed for which data on
system variables across the network such as orders and dispatches between entities in
the network as well as the inventory level of entities was used. This data was
provided on a date wise variable/entity wise basis for each SKU and required to be
aligned and mapped to the structure given in Figure 6.6 for better understanding.
However, such detailed, elemental level (individual DC and depot level) information
is useful for analyzing operational disturbances, while our focus is on rogue
seasonality, which is systemic in nature. The data fields for individual DC’s and
individual depots are therefore aggregated together with this aggregate data (given in
Figure 6.6) used for subsequent analysis. One year’s worth of daily time series data
was used, the latter because initial discussions revealed all transaction times between
entities to be less than a week (i.e. in days). Use of a weekly or monthly sampling
frequency could have masked the embedded rogue frequencies. Next we discuss

details of the data analysis.

6.5 Rogue seasonality analysis of the grocery case study based on signature

and index

Each of the 4 SKU’s was analysed using the aggregated system variables given in
Figure 6.6. This involved formulating the signature and computing the index using
different feature parameter combinations. The salient aspects of the analysis are

summarised below:

. The time series data of different variables was first checked for consistency
and adjusted for errors as well as for inappropriate recording, missing and duplicate
data. Next, the data was aggregated, de-trended and normalised before being used for
signature formulation and index computation. De-trending eliminates low frequencies
which are irrelevant from the point of rogue seasonality but interfere in the process of

signature formulation and index computation. Normalisation ensures that differences
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in scale as well as in amplification between the variables are eliminated and variables

are only compared on the basis of their profiles.

. A supply network is analysed (see Figure 6.6) unlike the previous linear, non-
linear (Beer game) and steel case study analyses which were all supply chains. For
example, DC to all primary customers and DC to all WD depots form a network and
information on both these flows is included in the analyses. This could be done in the
present context because of two factors. First, there are no allocation issues between
the two flows and associated interference between their profiles as typically happens
in a network structure. The high stock level at the DC’s upstream from large
production batches eliminated the need for allocation of material among the
downstream entities and demand from both, primary customers as well as WD depots
could be met simultaneously. Secondly, the transaction dynamics in both the flows are
similar with time batching being similarly operative and goods needing to be
despatched on a weekly/biweekly basis. Their flow or despatch profiles are therefore

similar (though the volumes are different).

. For the index computation, all common frequencies shared between orders and
other variables reflecting transmission of exogenous demand were filtered out in line
with the discussion in Section 4.4.2 as well as Section 6.2 for the steel case study. The
specific frequencies that were filtered out for each SKU are:

SKU 1: Cycles of 3, 7 and > 180 days (frequencies 0.3, 0.14 and 0.005)

SKU 2: Cycle of 7 days (frequency 0.14)

SKU 3: Cycle of 7 days (frequency 0.14)

SKU 4: Cycles of 3 and 7 days (frequencies 0.3, 0.14)
The low frequency (cycle time > 180 was present only in some (not all) variables in
SKUs 2, 3 and 4 and hence was not filtered out as was done in the case of SKU 1.
Filtering was done by replacing the values in the frequency channels (to be filtered)

with zero.

. FT, ACF and CCF transformations were applied to the data, with time domain
used as the reference as in the steel case study analysis. AR and DWT transformations
were ignored because they were found to be the ineffective for rogue seasonality
detection (signature and index computation) in the earlier linear and non-linear system
analyses. The features from the transformations were plotted and clustered to

formulate the signature. Index values were also computed from each feature
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parameter combination (two parameters used for each feature); FT Total and FT 80%
Energy, lags/max lags of 15 and 30 (to correspond to half a month and 1 month) for
ACF and CCF. All the three index definitions were used to compute the index values

in each of the analysed cases.

The basis for deriving the signature and index used here, is however different from
that used in the previous linear, non-linear (Beer game) and steel case study analyses.
In the previous analyses, rogue seasonality was generated in the echelon facing
exogenous demand which was then transmitted to upstream echelons. The profiles of
variables in all echelons were therefore similar to each other and different from
exogenous demand. Exogenous demand was therefore used as the reference for
formulating the signature and computing the index. In the present analysis involving a
distribution network, the echelons have a short term transportation focus; they operate
in a mode where goods are despatched as needed (analogous to MTO). All the
distribution echelons would therefore have a similar profile with the only change
coming at the factory echelon which is required to produce goods in batches (process
nature of operations). Rogue seasonality or seasonality which is not present in
exogenous demand but is endogenously generated, gets generated at the
manufacturing or factory echelon. This then gets transmitted to upstream echelons
(with respect to the factory) where it has an adverse impact on the cost economics.
Therefore, instead of exogenous demand, despatch from factory to the DC’s
(representing factory activity) is the relevant reference in the present context which

was used to formulate the signature and compute the index.

The findings from the analysis are discussed under three sub sections. First, the rogue
seasonality signatures derived from alternative features are discussed to subjectively
assess the best feature for this application. Next the index values derived from these
features (with different parameters) are discussed; the features are also compared in a
structured way on the criteria of consistency and discrimination ability (these criteria
have been discussed in chapter 4). Finally, correlation coefficient between the index

values based on the alternative index definitions is discussed.
6.5.1 Analysis of rogue seasonality signature derived from different features

The profiles of variables based on FT, time, ACF and CCF features together with their
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Figure 6.7 Profiles and clustering using different features for grocery case study product with manufacturing induced rogue seasonality (SKU 1)
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Figure 6.8 Profiles and clustering using different features for grocery case study product without manufacturing induced rogue seasonality (SKU 2)
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Figure 6.9 Profiles and clustering using different features for grocery case study product without manufacturing induced rogue seasonality (SKU 3)
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Figure 6.10 Profiles and clustering using different features for grocery case study product without manufacturing induced rogue seasonality (SKU 4)

VO



clustering (for signature formulation) for SKU’s 1 to 4 are given in figures 6.7, 6.8,
6.9 and 6.10. The aggregated data used in the analysis (in terms of cases) are:
Despatch: Manufacturing to DC’s (1), Inventory at DC’s (A), Despatch: DC’s to all
primary customers (B), Despatch: DC’s to all WD depots (C), Inventory at all WD
depots (D) and, orders received from and distributed to all company M customers
from all WD depots (E).

The time domain plot for SKU 1 (see figure 6.7) clearly reveals the discontinuous
nature of ordering and despatch profiles even after aggregation (1, B, C, E). This plot
also highlights the periods in which there were no supplies from manufacturing to the
DC’S (1) resulting in low total inventory at the DC’s (variable A) which in turn
reduced the despatches from DC’s to primary customers (variable B) as well as to
WD depots (C), the last causing a reduction in service from WD depots to M’s
customers (E). No additional insight such as pattern/relationships between the
variables is provided by the time domain plots. Clustering of the data (and associated

signature) is also influenced by the nil values of the variables in many time periods.

On the other hand the unfiltered spectra plot (frequency domain) clearly highlights the
relationship between the variables. Time batching effects are clearly apparent in the
form of 3 day and 7 day cyclicality in dispatch and order profiles (apparent as peaks
in the plots and marked appropriately) which get transmitted upstream till the dispatch
profile at the manufacturing echelon. This manufacturing to DC dispatch profile
however, has an additional 14 day cyclicality besides the 7 day cyclicality. This could
be on account of a change in production schedule due to the earlier problems in
production when nothing was produced in certain periods. This additional cyclicality
(rogue seasonality) generated from internal operations, and which is unrelated to
exogenous demand, could create unnecessary costs for vendors upstream of the
manufacturing facility if not correctly identified. The signature based on clustering of
the variables is effective in detecting this rogue seasonality. The cluster profile of the
filtered spectra shows variable 1 (Dispatch from manufacturing to DC’s) to be
reasonably distinctly clustered from the other variables. The rogue seasonality
intensity is moderate as reflected in the low peak value of the 14 day cyclicality which
explains why variable 1 is not more distinctly clustered from the other variables. The

cluster profile (signature) based on the ACF feature on the other hand does not
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indicate rogue seasonality at all; variable 1 is always clustered with the other

variables. The same is true for the signature based on the CCF feature.

While rogue seasonality is generated in SKU 1, we next look at a contrasting case
where no such rogue seasonality is generated. SKU 2 is one such case whose
unfiltered spectra plot in Figure 6.8, shows time batching related cyclicality of 7 days
being transmitted from downstream to upstream echelon variables and till the dispatch
from manufacturing to DC’s variable. However, no additional cyclicality is seen in
the profile of the last variable unlike in SKU 1. The time plot of SKU 2 shows no
problems in manufacturing with regular dispatches being made to DC’s. No
production rescheduling was required which could have created additional cyclicality
as in SKU 1. The absence of rogue seasonality is accurately recorded by the signature
in the frequency domain (spectra); variable 1 is clustered with the other variables. In
terms of effectiveness of signatures derived from other features in capturing the

absence of rogue seasonality, ACF is effective while time and CCF are less effective.

SKU 3 and SKU 4 whose profiles are plotted in Figures 6.9 and 6.10 also do not show
rogue seasonality as evident from their unfiltered spectra plots. The signatures based
on spectra and ACF are effective in representing the absence of rogue seasonality as

in the case of SKU 2, while CCF and time are not.

In summary, rogue seasonality is generated in only one of the four SKU’s analysed
(SKU 1) with the generation taking place at the factory or manufacturing echelon and
its adverse impact being felt on echelons upstream of the factory. Only signature in
the FT domain (spectra) could discriminate between the presence and absence of
rogue seasonality. With regards to other features, the signature based on the ACF
feature correctly indicated the absence of rogue seasonality though not its presence.
Signatures based on time and CCF were even less effective. The next step is to assess
the index as a measure of the intensity of rogue seasonality and then use the index

value for a structured comparison of different feature parameter combinations.

6.5.2 Structured comparison of feature parameter combinations for index

computation

The index values based on equation 4.1 were computed for each SKU based on each
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feature parameter considered: time, FT Total, FT 80% Energy, ACF 15, ACF 30, CCF
15 and CCF 30. Given the limited availability of variables, the option of trying out an
even lesser number for index computation was not feasible. The different feature
parameter combinations were compared in a structured way using the criteria of
consistency and discrimination ability (stochastic stability criteria is not relevant for
empirical data and hence was not used). The consistency criteria uses the fact that the
index value for an SKU showing rogue seasonality characteristics should be higher
than those not showing the same while the discrimination ability criteria is based on
the magnitude of the index value as discussed in previous chapters. Table 6.3 gives

the summary output ofthe analysis.

Table 6.3 Evaluation of different feature parameter combinations used
for rogue seasonality index computation in the grocery case study

System Description Raw FT Total FT 80% ACF 15 ACF 30 CCF 15 CCF 30
Time Energy

SKU 1 - Shows rogue seasonality 0.98 0.97 1.25 0.50 0.54 0.93 0.94

SKU 2 - No rogue seasonality 0.91 0.82 0.79 0.35 0.34 1.08 1.09

SKU 3 - No rogue seasonality 0.92 0.81 0.88 0.28 0.30 1.00 1.01

SKU 4 - No rogue seasonality 0.84 0.72 0.85 0.27 0.23 1.02 1.01

Number of cases where Shows rogue
co s e
seasonall.ty No rogue seasonality; 3 33 33 33 33 /3
Max possible 3/3
(Measures consistency of index)
Sum of ranks (Rowwise ranking; Larger values
get higher rank for 'Shows rogue seasonality’ &
reverse for 'No rogue seasonality’, Best 6. 20 19 15 26 22 34

W orst 42)* (Measures

discrimination abilitv of index)
*Since there is one case of ‘Shows rogue seasonality' and three cases of 'No rogue seasonality’, the ranks in the former are multiplied
by 3 to eliminate bias in sum of ranks

. The index values (based on FT Total) are greater for the SKU with rogue
seasonality than those without the same. The logic ofthe index is therefore effectively
validated. However, the difference between their index values is low. For example,
the index value for SKU 1 which shows rogue seasonality is 0.97 (not very high)
while it is between 0.7 and 0.8 for SKU’s 2 to 4 which do not show rogue seasonality
(not very low). The case for careful setting of thresholds to detect presence of rogue

seasonality discussed in the previous chapter is strengthened from these findings.

The structured comparison of the feature parameter combinations based on the

criterion of consistency and discrimination ability reveals FT 80 % Energy to be the
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best followed by FT Total for rogue seasonality detection. This is in conformity with
the earlier findings on signatures based on FT (or spectra) being the most accurate in
indicating the presence/absence of rogue seasonality. FT features are followed by

ACF, though the index values based on the latter are quite low in the absolute sense.

6.5.3 Comparison of alternative index definitions

The index values were computed using alternative index definitions (index, Alt 1 and
Alt 2) for each SKU for each feature parameter combination used. The correlation
coefficient between the index values based on the three index definitions was then
used to assess whether the indices were measuring the same thing. These correlation
coefficient values are given in Table 6.4. Correlation coefficients between the index
definitions were high when the FT feature was used. As against this, the other features
had at least one correlation coefficient which was low.

Table 6.4 Correlation between alternative rogue
seasonality indices for the grocery case study data

Index and Index and Alt 1 and

Alt 1 Alt 2 Alt 2
Time 0.95 0.55 0.65
FT 0.95 0.89 0.95
ACF 0.74 0.90 0.53
CCF 0.79 0.99 0.77

Parameter options a each feature have been combined together

when calculating correlation coeffcient for that feature

6.6 Discussion of the grocery case study findings

Rogue seasonality generation in a grocery (soluble coffee) network was investigated
using the data on system variables for four SKU’s. Rogue seasonality was found to be
generated in 1 SKU and at the manufacturing echelon. Long production stoppages
caused rescheduling of production at the manufacturing echelon resulting in the
generation of an additional 14 day seasonality which was not present in any variable
in any downstream echelon including exogenous demand. Because rogue seasonality
was generated at the manufacturing echelon and all downstream echelon variables
were synchronized with the exogenous demand, that is, operating in a MTO fashion ,

the original signature and index of rogue seasonality based on exogenous demand as
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the reference required revision. Instead of exogenous demand, dispatch from

manufacturing to the DC’s was used as the reference.

The modified signature (clustering based on the new reference) was formulated using
alternative time series transformations (and features) and assessed in terms of its
effectiveness in detecting the presence/absence of rogue seasonality. The FT feature
(spectra) was found to be most accurate in the same. Analysis of index values
revealed the index value for SKU with rogue seasonality to be higher than each of the
other SKU’s without rogue seasonality (based on FT features). However, the
difference in value between systems with rogue seasonality to those without it to be
small, thereby strengthening the case for fixation of appropriate thresholds for rogue
seasonality detection. Comparison of different feature parameter combinations for
computing the index revealed FT 80 % Energy to be the best followed by FT Total.
The FT based index values computed using alternative index definitions were also
highly correlated with each other.

6.7 Conclusions

Analysis of rogue seasonality in two empirical contexts in this chapter validated the
simulation analysis findings. FT features were found to be the best for signature and
index computation and therefore for rogue seasonality detection. Also, use of a subset
of the available variables but representative variables was equally effective in rogue
seasonality detection. The empirical analysis, however, also informed us about some
of the difficulties in applying these findings in real environments especially in an

automatic mode.

Both the steel and grocery case studies validated the characteristic manifestation of
rogue seasonality as multiple variables oscillating in sync with each other. However,
they differed in terms of the signature and index to be used for detecting this
seasonality. While in one case exogenous demand was used as the reference for
deriving the signature and index, in the other case, where manufacturing echelon was
responsible for generating the rogue seasonality, dispatch from the same was used as
the reference. Choosing appropriate references for different supply chains is therefore
an additional pre processing step that would be required before operating the index

based automatic rogue seasonality detection approach. The empirical case study
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analysis also highlighted the difference in index values between systems with rogue
seasonality and those without it to be not very large. This requires thresholds to be
appropriately specified so that systems with different rogue seasonality intensities

could be discriminated.
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Chapter 7 — Discussion and Conclusions

This chapter presents an overview of the research findings in relation to the research
questions presented in Chapter 1. After a brief review of the research background and
process used, these findings are discussed in terms of their contribution to theory and
practice. The limitations of the research are then explained together with avenues for
further study.

7.1 Research background and process

This thesis has studied rogue seasonality, which is observed in many real world supply
chains and reduces the cost efficiency of operations but has received only a limited
academic interest. The focus is on its detection, specifically, in identifying supply chains
with high rogue seasonality intensities so that timely and appropriate mitigative action
could be initiated. Such an approach, which comes under the sense and respond
management philosophy, has been applied in different disciplines but not in supply chain

management.

Application of the sense or detection requires information about the system, techniques
which use this information to detect a problem or anomaly, and relevant contexts to test
and establish the effectiveness of the process. This rogue seasonality oriented study used
time series information on operating variables such as orders, inventory, dispatches,
shipments and backlogs with a separate analysis based on the use of only order and
inventory variables. Use of the signature based technique was explored for detection,
with the signature formed by clustering of these variables represented in alternative
domains (and relevant features) such as time, amplitudes of FT, ACF, CCF, coefficients
of DWT and coefficients of AR model. The effectiveness of the detection process was
assessed on different rogue seasonality contexts, such as a simulated three echelon linear
supply chain, a simulated four echelon non-linear (Beer game) supply chain and two
empirical supply chains. Such a multi-context analysis gives greater generalisability to
the findings and was therefore used. Since each of these contexts is significantly different

from each other, they have been classified as a separate research question.
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7.2 Discussion on research questions

Research question 1

What signature and index could be used for detecting rogue seasonality in a linear
supply chain? What is the best feature (domain representation) and the appropriate

system variables for deriving them?

This question was addressed in Chapter 4 by analyzing a three echelon linear system.
Rogue seasonality was seen to manifest itself as multiple system variables oscillating in
sync, with exogenous demand not exhibiting this oscillatory profile. This characteristic
presentation of rogue seasonality was captured in its signature which is defined as
follows. If the exogenous demand variable is not clustered with other variables such as
orders, inventory and work in process then rogue seasonality is considered present,
otherwise not. The signature, defined in this way is a little subjective and therefore a
numerical index was also defined for rogue seasonality which is based on comparing the
dissimilarities amongst the variables in relation to the dissimilarity between these
variables and the exogenous demand. While only the presence or absence of rogue
seasonality is indicated by the signature, the index specifies the intensity of rogue

seasonality in the relevant supply chain system

The index was evaluated on different configurations of the linear system, and found to be
a reliable and accurate indicator of rogue seasonality intensity with systems with no rogue
seasonality, moderate rogue seasonality intensity and high rogue seasonality intensity
giving index values of 0, greater than O and significantly greater than O respectively.
Alternative definitions of the index based on use of average instead of minimum
dissimilarity (between exogenous and the other variables) and dissimilarities expressed in
terms of standard deviation were found to be strongly correlated with each other implying
their robustness as a measure and that any of them could be used in practice. The index is
also effective for the case of exogenous demand having seasonality but requires this
seasonality to be identified on the basis of its common occurrence in demand and other

variables and filtered out before computation of the index.
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Among the different features evaluated, amplitude of Fourier transform (FT) was found
to be the most appropriate for signature formulation and index computation and therefore
for rogue seasonality detection. Index values based on the FT feature varied with the
rogue seasonality intensity as expected (high consistency) and were effective in
discriminating rogue seasonalities of different intensities (discrimination ability) while
being stochastically stable. Within FT, the option involving use of information in all the
frequency channels was found to be the best. The second option, in which the number of
frequency channels used is based on the distribution of energy among these channels was
close to the previous option on all the assessment criteria (for the 80% energy option
used). With regard to use of variables, using only order and inventory variables rather
than all the available variables did not cause a significant change in the index value. The
index is therefore robust to choice of variables as long as the behaviour of these variables

is not totally inconsistent with the behaviour of the other variables.

Research question 2

Can the signature and index identified from the linear supply chain be applied to a
non-linear supply chain with backlogs and batching? Is the best feature and
appropriate variables for detecting rogue seasonality in this non-linear system the

same as in the linear system?

This question is aimed at assessing the validity of the findings obtained from RQ 1 on a
non-linear supply chain with backlogs and batching. This question has been addressed in

Chapter 5.

The system used for answering this question not only used backlogs and batching but also
had a greater number of echelons (four) and a greater number of variables, including the
shipment variable. Configurations with different levels of batching and backlogs were

analysed with fill rate going down to 80% in certain cases.

The signature discussed in RQ 1 was assessed on this system and found to be effective,
though there was a minor difference in the nature of the signature compared to that in the

linear system. While all the other variables were clustered together and separate from
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exogenous demand in the linear case, in the present case one variable continued to be
clustered with the exogenous demand. Though this occurrence is associated with a non-
linear system, it could occur in any multi-echelon system having a large number of
variables. To incorporate the above possibility, the rogue seasonality signature definition
was modified as follows. Rogue seasonality is considered present if the exogenous
demand is separately clustered from most rather than all the variables. The value of
‘most’ would need to be defined which would be on the basis of the total available

system variables as well as the desired sensitivity of detection.

The index value accurately reflects changes in the rogue seasonality intensity as in the
case of the linear system. However, the index was less consistent in absolute terms which
can be explained as due to the simultaneous influence of backlogs and batching in a multi
echelon system. In terms of the features and parameters for index computation,
amplitudes of FT with all frequency channels being used was found to be the most
appropriate as in the linear case with frequency channels based on 80% energy the second
best. The correlation between the index values based on alternative index definitions was
high for most of the features and use of order and inventory variables gave the same
overall findings as when all the variables are used. Both these findings are similar to that
for the linear system. Overall, almost all the findings for the linear system are found to be
valid for the non linear system. In the next question, the validity of these findings are

assessed in empirical contexts.

Research question 3

Can the signature and index be used for detecting rogue seasonality in real supply
chains? Are the best features and system variables for deriving the signature and
index the same as found in RQ 1 and RQ 2?

Two empirical rogue seasonality contexts, one in steel and the other in the grocery sector,
were used to supplement the findings from linear and non-linear simulation. This

question is answered in Chapter 6.
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The steel case study validated the characteristic presentation of rogue seasonality
observed in the analysis of simulated systems, which is, multiple variables oscillating in
sync with each other at similar frequency/ies, with one or more of these oscillation
frequencies not present in the exogenous demand. The signature, which was derived from
the amplitudes of FT and using all the frequency channels was found to be effective in
indicating the presence or absence of rogue seasonality. Similarly, the index was able to
discriminate systems with high and low rogue seasonality intensities. However, the
difference in index value between the systems with high and low rogue seasonality
intensity was found to be low and much lower than that observed in the case of linear and
non-linear systems. This highlights the need for careful setting of thresholds so as to
categorise systems with different rogue seasonality intensities accurately. The findings on
the best features and parameters to be used for signature and index, the relationship
between alternative index definitions and regarding use of order and inventory variables

instead of all the variables are similar to that for the linear and non-linear systems.

The grocery case study identifies and analyses a different rogue seasonality context than
that discussed in the simulations and steel case study. Rogue seasonality generation is
analysed at the SKU level which was done for 4 SKU’s. Rogue seasonality generation
was observed in only one SKU (SKU 1) and it was generated not in the echelon facing
exogenous demand as in the case of previous simulated systems or systems in the steel
case study, but further upstream in the manufacturing echelon. While all the echelons
downstream of the manufacturing echelon for this SKU do not show any rogue
seasonality as they operate on a time batching basis, upstream echelons are expected to
show rogue seasonality as it would be transmitted to them from the manufacturing
echelon. The definitions of signature and index, which assume the presence or absence of
rogue seasonality characteristics across the whole system rather than parts of the system
therefore need to be revised. Instead of exogenous demand as a fixed reference, the
reference needs to be flexible so as to be relevant for the different nature and origins of
rogue seasonality. For example in the case of SKU 1, rather than exogenous demand, a
more relevant reference for deriving the signature and index is a variable at the

manufacturing echelon (Dispatch from manufacturing to DC’s) which is therefore used.
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Three other SKU’s which did not exhibit rogue seasonality were used for comparison

with the same reference as above, used in each case.

The signature and index with the modified reference were found to be effective in
discriminating cases with rogue seasonality (SKU 1) to those without them (SKU 2 TO
4). However, the difference in the index value between the two cases (SKU 1 and SKU 2
to 4 individually) was small, which strengthens the need for fixing appropriate thresholds
as proposed in the case of the steel analysis also. In terms of the features and parameters
to be used for deriving the signature and index, amplitudes of FT and using all the
frequency channels as well as those with 80% of the signal energy were found to be the
most appropriate as in the case of all the previous contexts. The FT based index values
computed using alternative index definitions were also found to be highly correlated with

each other.
The answers to the first three research questions can be summarized as follows:

o The signature based on variable cluster profiles is effective in detecting the
presence/absence of rogue seasonality with the signature derived from the amplitudes
of FT and using all the frequency channels or as many frequency channels that have
80% of the signal energy, both of which are similarly effective. The definition of the
signature needs to be flexible, so as to accommodate similar minor inconsistencies as
seen in RQ 2, that may be found in the real world data. Also, the reference used for
deriving the signature needs to be based on the nature and origin of rogue seasonality
as seen in RQ 3. Though exogenous demand may still be the most relevance reference

in a majority of cases, it is important to confirm the same at the outset.

o The index was found to be an accurate and robust indicator of the rogue seasonality
intensity in a supply chain with a higher value reflecting a greater intensity. It is
robust because multiple variables used in its computation make it less susceptible to
inconsistencies in some variables. The index needs to be computed from amplitudes
of the FT of the variables, with similar features being used as discussed for the
signature above. Also, a similar requirement and caution regarding the reference used

apply, as for the signature. Among the three index definitions proposed, any of them
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could be used for computing the index, as index values based on them were found to
be strongly correlated with each other when FT features are used. However, since
index and Alt 1 (based on equations 4.1 and 4.3) make more intuitive sense they
should be preferred. Finally, specifying threshold/s for the index values so as to
classify rogue seasonality intensity as high or low is important as this would form the
basis for management attention. For the simulation system, this was easy as a system
without rogue seasonality yielded a 0 index value which could be used as a baseline.
However, in real systems, the difference in index values between systems with low
rogue seasonality and high rogue seasonality is not very large and therefore the

process of establishing thresholds is quite important.

o Use of order and inventory variables instead of all the available variables was found to
not significantly impact the index value. Both the options are relevant. While the
former is relevant as information on other variables may not be available and
computation and interpretation is easier, the latter provides stability and robustness to

the index.

Given this knowledge about detecting rogue seasonality at a technical level, the next task
is to exploit this knowledge at a managerial level to manage rogue seasonality. This takes

us to the research question 4.

Research question 4

How can rogue seasonality detection be used in a managerial framework?

Figure 7.1 shows the chart which specifies how rogue seasonality could be managed
using the index seasonality index. While Thornhill and Naim (2006) gave a conceptual
framework for such an application, this thesis strengthens it by providing a quantitative
and automated basis. The scenario envisaged in Figure 7.1 is one in which many multi
echelon supply chains are being managed by a focal company. This is a realistic scenario
given the many examples of such centralized monitoring of supply chains such as Cisco’s
eHub initiative (Grosvenor and Austin, 2001) and initiatives by Eaton Corporation
(Supply & Demand Chain Executive, February 2006) and Honda (Ward’s Autoworld,

192



July 2006) to operate supply chain wide systems for advance warning of potential

problems.
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Figure 7.1 Flow chart for the practical application of the rogue seasonality index
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The first step is to decide the supply chains whose rogue seasonality intensity would be
detected and managed, the information that would be available and used given the nature
of relationship between players in the supply chain and the nature of dynamics in the
supply chains. The last point ensures that the choice of sampling frequency for system
variables is appropriate in relation to the dynamics. For example, monthly data was
adequate in the steel case study analysis while the grocery case study analysis required
daily data on supply chain variables. Next, the time series information of different
variables is processed so that their profiles could be compared. Most of the processing
steps mentioned have been applied in the steel and grocery case study analyses earlier.
An important addition is the reference variable to be used for signature and index

computation which could be decided on the basis of an initial sample data analysis.

The time series data of variables represented in terms of the FT feature is used to create
the rogue seasonality signature and index. Application of the index requires the
specification of thresholds which could be used to classify rogue seasonality intensities

appropriately for management action. The following approach is proposed for the same.

A common index threshold could be specified for all newly added supply/value chains
which is kept low enough to classify relatively more supply chains as having high rogue
seasonality and investigated. The investigation could involve assessing the cost
implications of rogue seasonality. For example, a supply chain with a high index value,
could have surplus capacity and/or high flexibility, meaning less adverse cost impact
from rogue seasonality and therefore not needing management intervention. The second
aspect of assessment could be on the causal factors and the extent to which those could be
controlled to minimise rogue seasonality. For example, a low level of trust among the
focal company and its partners could make changes such as ordering heuristics difficult.
Once sufficient history of index values and related management interventions is
available, specific maximum thresholds for each supply or value chain could be
prescribed for regular monitoring and detection of significant deviations. Since, the index
does not carry information on the profiles of the variables, the signature may be used to

complement it wherever required.
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The index is therefore proposed to be used not only for detecting rogue seasonality but
also for assessing changes in its characteristics over time, akin to statistical process
control (SPC) in a manufacturing environment. Use of multiple variables in the index’s
computation reduces its variability and therefore makes it easier to specify robust
thresholds. Once an instance of high rogue seasonality is detected, actions such as those
proposed by Kim and Springer (2008) could be effected. This would mean either
decreasing the supply lead times (T,) and/or increase the time to adjust inventory (Ti)
and/or reduce the time to adjust WIP (T,,) all of which reduce the propensity of strong
cyclicality. Since, these prescriptions are based on a dyadic setting, an alternative and
better approach would be to work with the entities in the problem supply chain and

design specific policies to reduce rogue seasonality.
7.3 Research contributions

This research investigated the generation of rogue seasonality in different contexts and
defined the decision elements to detect and manage it. The detection process involved
clustering of time series data of variables represented in alternative domains. The major

contributions of this thesis are in the following areas.

Understanding of rogue seasonality: Rogue seasonality has not been treated separately
from the Bullwhip effect in most studies (Forrester, 1961; Miragliotta, 2006) and the few
studies that have done so, have not investigated it comprehensively. For example, Kim
and Springer’s (2008) study used only a dyadic structure, did not consider the impact of
forecasting policies, analysed the dynamics of only two variables (inventory and pipeline
stock) and used an inappropriate definition of rogue seasonality based on frequency and
which was also subjective. The other study on rogue seasonality by Thornhill and Naim

(2006) is empirically oriented but similarly limited in terms of analysis.

This thesis carries out a comprehensive and rigourous investigation of rogue seasonality.
Studies of this nature have been done on the Bullwhip effect but not on rogue seasonality.
The study provides understanding about the impact of different demand processes and

parameters, delays, order of delays, control policies, linear and non-linear structures and
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batching on generation of rogue seasonality. Empirical contexts, which were of the multi
echelon kind, were also analyzed from the perspective of rogue seasonality. There are
very few empirical supply chain studies based on multi echelon structures so this study
contributes to the same while also providing insights about the causes and characteristic

presentation of rogue seasonality from a practical perspective.

Rogue seasonality management by the sense and respond approach: Only a few
studies in supply chain management have explored the application of the sense and
respond approach, despite its utility (for managing disturbances) being highlighted by
many researchers and it being successfully applied in various other disciplines. This study
does so for the rogue seasonality context. All the decision elements pertaining to the
application of the sense and respond approach are determined in the thesis which include
the signature and index for indicating the presence/absence and intensity of rogue
seasonality, the system variables and the time series transformation to be used (among
various alternatives) and the process based on using this information to manage rogue
seasonality. A comprehensive analysis was used for determination of these decision
elements unlike recent related studies such as by Thornhill and Naim (2006) whose
findings on identification of rogue seasonality are based on a single case study, a single

technique for detection and a subjective detection process.

The thesis has also contributed in respect of the decision elements as follows.

Measure of rogue seasonality: Unlike the Bullwhip effect for which multiple measures
have been proposed, there is no measure for rogue seasonality. This thesis has proposed
an index, which indicates the intensity of rogue seasonality in a multi echelon structure
and could be used to identify problematic supply chains in practical settings. A
comparison of the normalized profiles of variables is associated with the index
computation i.e. the amplification in the variables is eliminated, which means that the
index gives an assessment of rogue seasonality in a supply chain system which is

independent of Bullwhip.

Time series transformation techniques (and features) evaluated: Time series
clustering studies in the literature (across domains) have generally evaluated one/few

transformation techniques (and features) and used non contextual simulated data or data
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on stock prices.for the same. The findings from these studies are therefore, less valid for
the supply chain context as the appropriate features for time series clustering are domain
specific. All the techniques (and features) for time series clustering which were assessed
in previous studies individually, were used in the evaluation and include time, Fourier
(FT), discrete wavelet (DWT), autocorrelation function (ACF), cross correlation function
(CCF) and autoregressive model (AR model). Also, supply chain contextual data, both
simulated and empirical, was used in the evaluation. The contribution of the thesis is
therefore in establishing the best technique (and feature) for clustering time series data
from the supply chain domain including for rogue seasonality. FT feature was identified
as that best technique, which, though similar to the finding in Thornhill and Naim (2006),
was determined on the basis of a rigourous evaluation process involving a greater number

of alternative techniques and different rogue seasonality contexts.

The thesis has also made a minor contribution in terms of the Excel-VBA-Matlab process
used for carrying out the large scale simulation which the author has not come across.
This process was used in the simulation analysis of both linear as well as non-linear
systems. Another minor contribution relates to the frequency response based analysis of

the Beer game system in the thesis which has not been considered in the past.
7.4  Limitations of the research and suggestions for further study

Though this thesis carried out a comprehensive investigation on rogue seasonality

generation and its detection, it still has a few limitations which are summarised below.

a) Supply networks were not considered in the analysis except for the grocery case study,
with most of the analysis being based on supply chains. Though networks can be
treated as combinations of supply chains, the dynamics could change in case of
interference between parallel chains. An important question is whether the signature
and index would be valid for network structures and, if not, what modifications are

required for various network configurations.

b) The index based identification of the problematic supply chain is useful. However, it

would be more useful if the primary culprit (echelon) responsible for the high rogue
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seasonality intensity is also identified at the same time. Computing the index values at

select points along the supply chain/network could probably be used for the same.

¢) This study proposed a flowchart for managing rogue seasonality on the basis of
detecting it using the index. This flowchart needs to be tested and validated in an

empirical setting with the same applying to the index as well.

d) Finally in terms of techniques, though all the contemporary techniques and which
could be easily interpreted from a management perspective were tried, use of new
techniques such as Support Vector Machines could be explored in order to improve

the detection performance especially in more complex systems.
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Appendix A
Block diagram and difference equations for a single echelon APIOBPCS system (John et al., 1994)

Causal loop diagram of the APIOBPCS system given in Figure 3.2 is converted into an equivalent block diagram
representation, a common approach in control theory (Nise, 1995) which clearly identifies the stock and flow structure.
Difference equations are developed from this structure which are transferred to a Microsoft Excel spreadsheet for generation
of the time series profiles of variables. Though the equations described here are for a single echelon, these can be coupled
together to simulate multi echelon systems by making the ORATE of the downstream echelon equal to the demand signal of
the upstream echelon. While the APIOBPCS model defined below is for the production echelon, it is valid for distribution
echelons such as wholesaler, distributor also by appropriate modification of terms used (WIP in the distribution context refers
to orders in the pipeline i.e. orders placed but against which goods have not yet been received, COMRATE refers to the rate

at which orders get completed i.e. goods are received, T, refers to the delay or lead time between placing orders and receiving
goods).

Tl
AVCONS CONS
Forecast
TP
AINV
Production COMRATE I| —>
——b>
Forecast: AVCONS (t) = AVCONS (t-1) + a [CONS (t) - AVCONS (t-1)] (A.1)

where; a =1/ (1+ T,/A t), CONS (t) is the demand at time t, and for
a linear, time invariant system is a surrogate for sales, T, is the time
to average demand, A t is our simulation time increment set at 1

Production Order Rate: ORATE (t) = AVCONS (t) + [EINV (t~1)/ T;] + [EWIP (t -1) / T,)] (A2)
where; T; is the time to adjust inventory and T,, the time to adjust
work in process or WIP

Work in process level: WIP (t) = WIP (t-1) + ORATE (t) - COMRATE (t-1) (A3)
Completion Rate/Receipts into inventory rate: COMRATE (t) = WIP (t) / T, -- First order lag (A.4a)

COMRATE (t) = ORATE (t +T}) - Pure delay lag (A.4b)
where T, is the actual production lead time

Actual Inventory level: AINV (t) = AINV (t-1) + COMRATE (t) - CONS (t) (A.5)

Error in Inventory: EINV (t) = DINV - AINV (1) (A.6)
where DINV is the desired or target inventory level (assumed constant)

Error in Work in Process or EWIP: EWIP (t) = DWIP (t) - WIP (t) (A.7a)
where; DWIP (t) = T, * AVCONS (t); (A.7b)

T, is the estimated production lead time

Parameters suggested for good dynamic performance (John et al., 1994)

T; (time to adjust inventory) = T,

T, (time to average demand) = 2*T,, (A.8)
_Tw (time to adjust work in progress or WIP) = 2*T,

T, (Estimated delay or production lead time) =T,

213



Appendix B

Transfer functions for single echelon APIOBPCS (hybrid MTO-MTS), make to order
(MTO) and make to stock (MTS) systems

APIOBPCS system: Obtainedfrom block diagram in Appendix A

A[CONS = — '— — (B.])

DWIP = Tp (AVCONS) — (B.2)
CONS \+ Tas

AINV = - {COMRATE - CONS) — (B.3)
s

EWIP = DWIP- WIP — (B.4)

COMRATE = __ 1 (Order i) Or = e'Tps (for order infinity) » (,V
ORATE 1+1Ips

(sTp )2 +6(sTp ) + 12 (Nise, 1995)

WIP = ' fORATE-COMRATE)-(B.6)y EINV=DINV- AINV- (B.7) ORATE = AVCONS +

- 6(j7>>+12 (2ndorder Pade’s approx.) — (B.5)

FWIP  FINV
+ (B.8)
S w T
MTO systetxt: Parameter values Ta = 0, T- = oo, Tiwv = cosubstituted into Equations 1to 8 and solved
Order of delay 1
ORATE _ AVCONS DwWIP AINV EINV WiP
- = 1-——(B.9) =7 (B.10) - (B.1D
CONS CONS CONS CONS CONS CONS
EWIP pS
COMRATE (B.12) (B.13) - P (B.14)
CONS  (1+1ps) CONS (1+1ps) CONS (1+1ps)
Order of delay infinity
Equations (9), (10) and (11) are the same as in above
32 2
COMRATE = (\2-6Tps +TpS2) _ EINV = 127p Fw7pP I +8/ s
—~-(B16) ——-= p P° — (B.17I
COWS 12+ 6Tps +T2s2) CONS (12 +67TpS + TS %) CONS (12 +6Ips +TpS2)
MTS system: Parameter values Ta =<x>,Ti =T",Tw = oo substituted into Equations 1to 8 and solved.
Order of delay 1
AVCONS DWIP q EW A ORATE __ B J9 EWIP. __JVIf . (B 20)
CONS CONS CONS CONS P CONS CONS ~ CONS
ORATE (B.21) COMRATE= L (
CONS (1+7 DS+T1IS2) CONS (I+Fs + H+1TIps+T2
Order of delay infinity
Equations (18), (19) and (20) are the same as in above
ORATE (12 +6Tps +TpS2) (B 24) COMRATE (12-6Ips+ T2s2) (B.25)
CONS (\2+6TDs +7T2s2 +T353) CONS (12+6Tps+7F2%2 +T3s3)
wipP 127\
= I —(B.26)
CONS

(\2+6TDs+7Tls2+Tls3)
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Appendix C

Theoretical spectral density plots for different AR and MA time series processes

Spectral density for an MA (q) process defined by X,= et - 0if t-i - 02" t-2............ Ogf t-q can be analytically
derived and represented as

Spectraldensity- px(f) =(at2/ 2n)((l +0,2+ 02+ ---—-- 0g3)+ (-0, +0,02+0203+----- 0q ,0g)2cos, 1+ ...
(-02 +0t0} +0204 +--—--—-—- 0q 2Qy)2cos2A +------------ (-0g4+010,)2cos(q-)X )

Spectral density at a particular frequency is proportional to the square of the amplitude at that frequency
A =2k wheref - frequency
0 *= Variance of the white noise process

v, 02 6 g are the parameters of the MA process
For MA (1) process />,(/)=(1+02-20co0s2%)(cr,2/2n) ———-—- (C.2)

For MA (2) process />,(/)=(1+0,2+022+ (-0, +0,02)2cosA -(0 2)2c052A)(a,211n) (C.3)

Since any MA (q) process can be equivalently represented in terms ofan AR (p) process, the spectral density
for the latter can be derived. An AR (p) is represented by X , - e, +piX,.j + P2X,.2+ — PpX.pwhere p’s are

the parameters of the AR model.

For AR (1) process px(f) =(l/(1+p2-2pcos2))(<re2!2n)--—-——-(C.4)
For AR (2) process px(/) =A/((01+p 2+p22)-2PI(\- p2)cos2nf-2p 2cos4;/))(cre212n) (C.5)
zv 0=0.7 0=04 0-.02
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Appendix D

M atlab code for different time series transformations and use of relevant features** for
computation® of the rogue seasonality index

Raw time and Fourier transform (FT)

% Input required at command window is Allfiles = {'Filel.xls"; 'File2.xls';..}
q=1;
num = 1;
while num <= size(AUfiles,l)
A = Allfiles{num,l};
% A is the name of'the workbook
[type,sheets] = xIsfinfo(A);
% k is number of sheets in the workbook A
k=1;
while k <= size(sheets,2)
B = xlIsread(A,k);
B(1:24,))=[];
E = zscore(B);
[NR NC] = size(E);
data = E;
clusteval
F = abs(fft(E»;
red = (NR-2)/2)+ 3;
F(red:end,:)=[];
data=F;
clusteval
G =F(:8,:);
data = G;
clusteval
H=F(1:29,:);
data = H;
clusteval
1=F.A;
L = I./repmat(sum(I),size(L,1),]);
M = flipdim(sortrows(L,l),1);
N = cumsum (M);
cutoff= min(find(N (:,1)> 0.8));
P = flipdim(sortrows(F,l),1);
data = P(l:cutoff,:);
clusteval
clear BEFGHILMNP data clusterevalj NR NC red ;
k=k+1;
end
clear A k;
num = num + 1;
end

*  For multiple sheets in multiple Excel workbooks
**  Differentparametersfor eachfeature asper Table 4.3
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Appendix D continued

Autoregressive model (AR Model)

% Input reqd at command window is Allfiles = {'Filel.xls"; 'File2.xls';..}

userentry = input('Input AR orders to be considered with gaps between the numbers
q=1
orders = str2num(user_entiy);

maxorder = max(orders,[],2);

fornumfiles= l:size(Allfiles,l)

filenme = Allfiles {numfiles,l};

[type,sheets] = xIsfmfo(filenme);

% 1 is number of sheets in the workbook A

for i= 1l:size(sheets,2)

sheeti = x!sread(filenme,i);
sheeti( 1:24,:)=[];
normsheeti = zscore(sheeti);
[NR NC] = size(normsheeti);
forj = l:size(orders,2)
ord = orders(j);
for k= 1:NC
[a(k,:) e(k)]= aryule(normsheeti(:,k),ord);
AIC (k)= (NR*log(e(k)))+2*ord;

end

a(LD= [

a=-a

data = a';

clusteval

clear a e k AIC;
end

for m = l:maxorder
forn= L:NC
[a(n,:) e(n)]= aryule(normsheeti(:,n),m);
AIC (m,n)= (NR*log(e(n)))+2*m;
clear a¢;
end
end
[c colindx] = min(AIC);
optorder = max(colindx);
for o= 1:NC
a(0,:)= aryule(normsheeti(:,0),optorder);
end
a(,D= [l
a=-a;
data = a';
clusteval
clear ac o m nj colindx optorder AIC sheeti normsheeti NR NC ord ;

end

end

clear numfiles orders maxorder user entry;

)
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Appendix D continued

Autocorrelation function (ACF) and Cross correlation function (CCF)

% Input reqd at command window is Allfiles = {'Filel.xls'; 'File2.xls';..}
user_entry = input('Input acf or ccfas required ', ’s');
choice = userentry;
user entry = input('Input lags to be considered with gaps between the numbers ',"
lags = str2num(user_entry);
fornumfiles= l:size(Allfiles,l)
filenme = Allfiles {numfiles,l};
[type,sheets] = xIsfmfo(filenme);
% 1 is number of sheets in the workbook A
for 1= l:size(sheets,2)
sheeti = xIsread(filenme,i);
sheeti( 1:24,:)=[];
sheeti = zscore(sheeti);
[NR NC] = size(sheeti);
forj = l:size(lags,2)
lag = lags(j);
acfccf= xcov(sheeti,lag,'coeff);
acf= acfecf(:, L(INC+1):NCA2);

[ccfsim maxwtlag] = max(abs(acfccf));
ccfsim = reshape(ccfsim,NC,NC)';
ccfdesim = 1 - ccfsim;
ccfdesim (abs(ccfdesim)<0.0001)= 0;
maxwtlag = reshape((maxwtlag-(lag+1)),NC,NC)";
switch choice
case 'acf
data = acf;
clusteval
case 'ccf
AA = ccfdesim;
clustevalccf
end
clear acfccfacfccfsim maxwtlag ccfdesim lagj ;
end
clear sheeti NR NC i ;
end
clear filenme type sheets;
end
clear Allfiles user entry choice;



Appendix D continued

Discrete wavelet transform (DWT) - Haar

% Input reqd at command window is Allfiles = {'Filel.xls"; 'File2.xls';..}
user_entry = input('Input type of wavelet to consider 's');
wvlet = userentry;
user entry = input('Input different levels to be considered with gaps; 0 for min shannon basis 's");
choices = str2num(user_entry);
dwtmode('zpd');
q=1
for numfiles= l:size(Allfiles,l)
filenme = Allfiles {numfiles,l};
[type,sheets] = xIsfmfo(filenme);
% 1 is number of sheets in the workbook A
for i= 1:size(sheets,2)
sheeti = xlIsread(filenme,i);
sheeti( 1:24,:)=[];
sheeti = zscore(sheeti);
[NR o NC] = size(sheeti);
sheeti(NR_o+1:2Anextpow2(NR _0),:)=0;
NR_n = size(sheeti,l);
forj = l:size(choices,2)
choice = choices(j);
if choice ~= 0
for k= I:NC
[C L] = wavedec(sheeti(:,k),choice,wvlet);
A (:,k) = appcoef(C,L,wvlet,choice);

end

data = A;

clusteval

clear k C L choice A;
else

for n= 1:NC

entlower = wentropy(sheeti(:,n),'shannon');
for m = l:wmaxlev(NR _n,wvlet)
[C L] = wavedec(sheeti(:,n),m,wvlet);
enthigher = wentropy(C,'shannon');
clear CL;
ifent higher > ent lower
Min_ent(n)= m-1;
break
else
ent lower = ent higher;
end
end
clear m ent higher ent lower;
end
ifmin(Min_ent)= 0
common_ent = round(median(Min_ent));

else



commonent = min(Minent);
end
forp= 1:NC

[C L] - wavedec(sheeti(:,p),common_ent,wvlet);
A (:,p) = appcoef(C,L,wvlet,common_ent);

end
data = A;
clusteval

clear p C L A common ent;
end
clearj ;
end
clear sheeti iNR_o NR n NC ;
end
clear filenme type sheets;
end

clear Allfiles user entry choices wvlet numfiles;

Rogue seasonality index computationA (Clusteval)

AA = squareform(pdist(data'));
AA(AA==0)=0.000000001;

BA = AA;

BA(1,)=[1;

BA(:,IM];

XA = mean(BA((find(triu(BA,l))));
ZA = std(BA(fmd(triu(BA, 1))));
ATtA = min(AA(1,2:end))/XA ;'
AltB = mean(AA(1,2:end))/XA ;
AltC = (min(AA( 1,2:end))- XA)/ZA ;
evaltotal(q,:) = ([AlItA, AltB, AltC]);

q=qH;

gar data AA BA XA ZA AltA AltB AltC ;

ASamefor all except cross correlationfunction (CCF)for whichfirst line ofthe code is removed
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Appendix E

Average and coefficient of variation of rogue seasonality index values for a 3 echelon MTS system
based on different feature parameter combinations; All variables used in the index computation

Demand Process: MA (1)

=3

Delay (Tp)

=7

Delay (Tp)

Day (Tp) =14

Demand Process: Gaussian random
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Appendix E continued

Demand Process: AR (2)

Delay (Tp) =3

=7

Delay (Tp)

Delay (Tp) =14

Order of
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SD; Standard Deviation, Avg: Average, Coefficient of variation : SD / Avg

FT Total, FT 7. FT 28 Based on amplitude* o( total, first 7 and first 28 frequencics after fourter transform
FT 80% Energy Based on amplitudes of first as many frequencies as have 80% of the energy in the data after fourler transform
AR 7 AR 28 Based on autoregressive parameters (AR) of time series represented as AR models of order 7 and 28

AR AIC Based on autoregressive parameters (AR) of time sanc* represented as AR models of order defined by minimising Akaike Information criteria (AIC)

ACF 7, ACF 28 Based on autocorrelations upto lag 7 and lag 28
CCF 7. CCF 26 Based on dyadic cross correlations between variables upto max 7 7 lags and 1 28 lags
DWT (Level 5): Based on coefficients from discrete wavelet decomposition upfo level 5 using Haar wavelet
DWT (Level Shannon) Based on cocfficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet
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Appendix F

Average and coefficient of variation of rogue seasonality index values for a 3 echelon MTS system
based on different feature parameter combinations; Only order and inventory variables used in
the index computation

Demand Process: MA (1)

Based on 100 replications for each

Orderof  MA(I) Raw FT  FT7 FT28 FI80% AR7 AR28 ARAIC ACF7 ACF28 CCF7 CCF28 DWTHaai  DWT Haai
Delay Demand Time  Total Energy (Level 5) (Level
Parameters Shannon)
Theta . 0.7  Average 084 122 355 190 094 102 101 102 121 082 146 146 047 060
" SD/Avg 001 007 014 013 009 012 012 012 011 010 009 009 0.10 0.19
Average 091 195 1.77 326 184 08 065 086 279 152 29 296 047 0.59
Tt 4
o ORDER 1 Theta m0 SD/Avg 002 006 030 010 010 022 021 022 012 010 009 009 009 0.15
Il Theta - 02 Average 091 249 038 280 242093 090 093 491 190 459 459 035 058
@ “ SD/Avg 002 005 031 010 006 034 033 034 012 012 007 007 0,12 025
= Theta » 07  Average 091 205 020 037 182 117 125 126 351 167 238 313 048 064
& " SD/Avg 001 010 054 0.17 0.14 023 023 024 019 019 015 016 0.14 006
ORDER @ 4 Average 092 264 037 034 202 102 108 110 563 224 323 452 046 " 067
INFINITY “ SD/Avg 001 008 034 020 012 029 030 030 018 019 014 015 0.16 009
Theta . .02 Average 091 273 017 038 267 123 125 129 583 234 321 471 0 44 069
> SD/Avg 001 008 061 024 009 044 045 046 019 020 013 013 0.19 0.13
Theta . 07  Average 092 157 434 226 125 16l 158 162 1.57 108 186 211 049 052
1 SD/Ave 001 010 019 0.14 011 026 024 026 018 017 013 014 0.10 012
Average 094 269 490 366 277 151 143 150 444 233 394 505 054 062
ORDER 1 Theta w0.4 SS7a 001 009 026 0.2 014 027 025 027 019 018 013 0.14 0.07 0.13
~ g
I Theta - .02  Average 093 315 282 343 309 208 183 207 684 281 480 679 0.47 063
= "~ SD/Avg 002 009 038 011 009 064 048 064 020 018 011 012 007 021
=)
2 Theta . 07 Average 093 211 049 278 193 194 179 1.81 397 205 220 296 049 058
3 " SD/Avg 001 011 057 0 14 014 027 022 023 021 024 016 018 0.13 009
ORDER ., Average 093 310 025 31 368 176 166 168 1372 353 343 515 043 065
INFINITY “ SD/Avg 001 011 050 0.13 0.15 031 028 028 022 025 016 017 0.15 0.10
Theta .02 Average 091 325 029 264 325 253 233 257 2885 387 356 562 042 067
"~ SD/Avg 001 0.1 047 0.13 011 059 049 057 026 026 016 016 015 0.18
Theta - 07  Average 094 203 292 276 180 216 209 218 278 196 206 3.07 051 057
" SD/Avg 001 013 025 016 016 019 017 0.18 024 027 015 020 007 0.10
Average 095 326 435 338 377 211 200 209 8.10 431 344 662 056
< ORDER 1 Theta - 04 gpy/y 0 001 013 023 0.13 018 025 024 024 025 031 0.141 0.19 006 0.1
=
I Theta >0 Average 094 354 420 297 353 363 290 344 1197 526 367 796 053 067
2 “ SD/Avg 002 012 021 0.13 0.13 049 038 047 026 034 0.13 017 007 018
Theta . 0.7 Average 094 256 180 303 265 239 222 225 567 379 218 346 055 060
g " SD/Avg 001 017 045 0.17 020 020 018 018 030 030 019 0.24 010 008
ORDER @ o4 Average 093 364 128 318 482 243 217 220 1886 706 301 545 055 066
INFINITY “ SD/Avg 001 016 051 016 023 033 029 030 032 032 017 023 o011 010
Theta w.0o Average 092 373 089 278 376 415 310 341 3290 783 305 068
"~ SD/Avg 001 016 056 016 016 056 042 047 036 035 0.16 021 013 018

Demand Process: Gaussian random

Based on 100 replications for each

Order of Raw FT Total FT7 FT 28 FT 80% AR7 AR28 AR AIC ACF7 ACF28 CCF7 CCF 28 DWT Haar DWT Haar
Delay Time Energy (Level S) (Level
Shannon)
ORDER | Average 0 94 249 032 3.13 250 090 087 090 467 193 474 474 039 056
001 005 054 009 006 032 030 032 0.12 0.11 007 0.07 010 024

J3 1 '
3 ?  ORDER Average 092 281 025 054 286 Ll 115 s 610 238 351 5.12 045 0 66
INFINITY  SD/Avg 001 008 050 0.16 009 03l 037 03s|  0.19 020 013 013 0.15 014
QRDER 1 |Avera0e 1 094/ TTsl  H5] 353 323] 1771 6 60 281 TIT 7 121 049 062
ORDER 1 [SD/Avg | 0 0] 009 035] 011 0101 Q49 042 020 o181 011 0 121 006 019
ORDER Average 092 332 026 180 344] 226 213 224 2621 390]  376] 591] 064
INFINITY  SD/Avg 0.01 011 047 L131 0121 057 047 051 025 026 016 016 018
ORDER | Average 095] 3591  TJH 3121 3 711 344 2 87] 334 11 571 5201 386[ 824 054 065
SD/Avg 0011 012! 0221 0131 0 14| 058 0 44| 054 0 26| 034 013 017 0.061 0.18

21

ORDER Average 093 380 096 290] 401 48 334 370] 3081 784 317 590 053 065
INFINITY  SD/Avg 001 016 057 o.iel 0.16 0.70 0 4e| 05e| 035 0.34 016 021 0.12 0.16
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Appendix F Continued

Demand Process: AR (2)

=3

Delay (Tp)

=7

Delay (Tp)

Delay (Tpy= 14

Demand Process: MA (2)

oa 5Y

Tj

Order of
Delay

ORDER 1

ORDER

ORDER 1

ORDER
INFINITY

ORDER 1

ORDER

Order of
Delay

ORDER 1

ORDER
INFINITY

ORDER 1

ORDER
INFINITY

ORDER 1

ORDER
INFINITY

AR (2) Demand Raw FT Total FT7 FT28 FT 80% AR7 AR 28 AR AIC
Parameters Time Energy
RhoL-0.1 Rho2c08  GyE0e® 000 000 04 ota 015 028 027 027
werormeaz SR O00 e o g
GororRags A 0220007 0w e w6
wolormnor GmE T30 o0mo0moanogw bsom o
o1 mis-as e 0% Lmoam oo wo ueoam o
RhoDOT Rho2-02 qite® (00 08 046 orl 009 0% 03 0% 020
w1 o R D03 oms 2w amoue umoga o
R A A O R B R R
woor ms-as A S TMoamoapgwoam s oam
I T S VN R
Riol=0.1 Rho2c08 R O0H 008 00 o oa om oal od
woroy w0z A D0 3% oonzmo me o we o7
MA (2) Demand Parameters Raw FT Total FT 7 FT 28 FT 8% AR7 AR28 ARAIC ACF7
Time Energy

Theal07 Theu02 @R 000 0T 00 or ol on an o o
Theul01 Thewa2-08 GO 00 (W 05 o o6 03 ol 020 02
Theal07Thea2e02 G O ST 00 G G om0 025 0w
Theal-0. Theud-08 QR8G5 000 Gg o3 09 0% 0% 024 0%
Teal-07Theazc02 @R OO0 O G 0B ois 0% om 0B 0%
Thewl01 TheUZ-08  GEEE 0 000 G o o 022 o2 oal  odl
R A - S C S
Tl Teos SIS B0 G M0 aa s e w g
mesarmemar  NmE DS Q0 M0 e g w o
Thealo1 Thew-08 G 0 5B O 05 s o7 o 0% o
Thewno7 Thea2-02 GRS (T 0% 0 0% om om0l ol o3l
Moo Teas A 0030 0M0 dw o amomoue e e

Raw Time Baaed on data in the time domain

FT Total. FT 7, FT 28 Baaed on amplitudes ot total, first 7 and first 28 frequencies after fourier transform

FT 80% Energy Based on amplitudes of fust as many frequencies as have 80% of the energy in the data after fourier transform

AR 7. AR 28 Based on autoregressive parameters (AR) of time sense represented as AR models of order 7 and 28
AR AIC Based on autoregressive parameters (AR) of time senes represented as AR models of order defined by minimising Akalke information cntena (AIC)

ACF 7. ACF 28 Based on autocorrelations upto lag 7 and lag 28
CCF 7. CCF 28 Based on dyadic cross correlations between vanables upto max

1; lags and = 28 lags

DWT (Level 5) Based on coefficients from discrete wavelet decomposition upto level S using Haar wavelet
DWT (Level Shannon) Based on coefficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet

081

Based on 100 replications tor each

DWT Haar

163

013 009

172 324
014 008

185 249
018 014

219 234
021 0.14

149 237
018 014

270 379
0.17  0.11

267 263
023 016

374 297
027 016

286 251
027 0.15

523

3.13

035 0.14

513 246
031 019

766 271
036  0.16

ACF 28

1.22
0.11

230
013

188
018

239
020
206
018

309
0.17

319
024

401
0.27
390
029

r*3
036

651
031

812
036

163
009

324
008

324
0.15

349
0.14
275
0.15

552
0.12

3.61
018

476
016

4.10
020

695
017

4.10
0.24

509
0.21

ACF 7 ACF 28 CCF 7 CCF 28 DWT Haar

(Level 5)

046
0.10

0.28
016

044
016

054
022
0.51
008

0.41
008

046
0.14

0.42
0.14

054
006

050
008

055
0.11

0.50
014

Sh

Based on 100 replications for each
CCF 7 CCF 28 DWT Haar

1.89
0.11

554
008
251
0.14

302
0.14

4.82
012

3.00
0.17

341

016
302
015

357
0.14

278
0.18

295
016

189
0.11

554
0.08

332
0.16

4.42
0.14

434
0.18

544
0.17
554
020

807
0.18

492
023

558
0.21

(Level 5)

050
008

0.34
0.12

042
0.17

0.4~
0.21
055
0.07

0.46
0.07

044
014

644
014
057
006

052
0.07

056
0.11

6.61
013

(Level
annon)
058
029

059
0.16

060
012

"TW
008
0.54
015

065
0.17

057
0.12

6.70
0.12

057
008

0.71
0.14

058
0.13

0,72
0.11

DWT Haar

(Level

Shannon)

0.57
0.14

048
018

065
007

562
008
061
012

0.55
0.15

064
008

059
017
065
0.09

060
0.15

066
007

063
011

SD Standard Deviation. Avg Average
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Appendix G
Sample of Matlab code used for different tasks in Beer game system analysis

Analytical determination of critical points in frequency response as in Table 5.1
Example used: WIP / CONS for system with unoptimal parameters

syms num den finnum finden Tp to sj conj comaxamp co ampone maxamp
num = 36*TpA2*s+12*Tp;

den = 2*TpM*sM+15*TpA3*sA3+19*TpA2*sA2+30*Tp*s+12;

num = subs(num,sj*co);

num = subs(numjA3,-j)

num = subs(numjA2,-1)

den = subs(den,sJ*co);

den = subs(denjAd,l)

den = subs(denJA3,-j)

den = subs(denjA2,-1)

conj = den;

conj = subs(conjj,-j)

finden = expand(den*conj)

finden = subs(findenJA2,-1)

finnum = expand(num *conj)

finnum = subs(finnumjA2,-1)

fmnum = ((144*Tp-516*TpAS*coAd+852* TpA3*coR )R +(72*TpA*co+72*TpASDAS-504*Tp Ad*coA3)A2)A).5;
co_maxamp = solve(diff(finnum/fmden,co),co)

maxamp = subs(finnum/finden,co,(0_maxamp)

coampone = solve((finnum/fmden)-1,co)

Computation and plotting of frequency response for a four echelon system (as used in Figure 5.2)
Example used: ORATE (Factory)/CONS for system with optimal parameters, LT 223
Relevant single echelon transfer function given in Table 5.1 is utilised

syms numl num2 deni den2 Tp Tpl s

numl = subs(expand((14*TpAS*sAS+4*TpM*sA-168*TpA3*sA3-48*TpA*sA2+2016*Tp*s+576)A3),Tp,4);
num?2 = subs(expand((14*TplAS*sAS+4*TplM*sM-168*TplA3*sA3-
48*TplAR*sR+2016*Tpl*s+576)Al),Tpl,3);

deni = subs(expand((8*TpA6*sA+12*TpAS*sAS-
140*TpA*sM+120*¥*TpA3*sA3+672*TpA2*sA2+1440*Tp*s+576)A3),Tp.,4);

den2 = subs(expand((8*TplA6*sA6+12*TplAS*sAS-

140*Tp 1M *sA+120*Tp 1A3*sA3+672*Tp LA *sA2+1440*Tp 1*s+576)Al),Tpl ,3);
btemp = sym2poly(expand(numl*num?2));

atemp = sym2poly(expand(denl*den2));

if size(atemp,2)> size(btemp,2)

a = atemp;

b = zeros(size(a));

b(l+size(atemp,2)-size(btemp,2):end)= btemp(l :end);

else

b = btemp;

a = zeros(size(b));

a (I+size(btemp,2)-size(atemp,2):end) = atemp(l :end);
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end
B = abs(fft(A));
C = zeros(728,2);

fori= 1:727
C(i+1,2)=B(i+1,2)/B(+1, 1);
end

C(2:end,1)=1/728:1/728:727/728,;
C(366:end,:)=[];
C(,D=C(,D*2*pi;
C(:,3)=abs(freqs(b,a,C(:, 1)));
C(,D=C(:,1)/2*pi;
C(2:end,1>=1/728:1/728:364/728,;
plot(C(:, 1),C(:,2),'d")

hold on

plot(C(:,1),C(:,3),'r")

xlabel 'Frequency (O'

ylabel 'Amplitude Ratio'
set(gca,xtick',[0 0.1 0.2 0.3 0.4 0.5])

Average frequency response (amplitude ratio) computation for various variables in simulated
Beer game system; Computation across multiple sheets in multiple Excel workbooks
Relevant for Figure 5.2, Appendices H.I, H.2

fileno = 1;

while fileno <= size(Allfiles,])

selctfile = AUfiles {num,l};

[type,sheets] = xIsfinfo(selctfile);
shtno = 1;

while shtno <= size(sheets,2)

timedata = xIsread(selctfile,shtno);
timedata( 1:24,:)=[];
timedata = timedata(:,[2 3 5 10 13 16 18 23 26 29 31 36 39 42 44 49 52]);
fftdata = abs(fft(timedata));
fftdata(3 66:end,:)=[];

for i= 2:size(fftdata,2)

fftdata(:,i)=fftdata(:,i)./fftdata(:, 1);

end
fftdata(:,")=[];
ifshtno= 1

ampratio = fftdata;

else

ampratio(:,:,shtno)= fftdata;

end;

shtno = shtno+1;

end

meanampratio = mean(ampratio,3);

fmeanampratio = zeros(size(meanampratio,l),size(meanampratio,2)+1);
fmeanampratio(:,2:end)=meanampratio;
fmeanampratio(2:end,])=1/728:1/728:364/728;
xIswrite(selctfile,fmeanampratio,'Amp Ratio Avg','B5');
fileno = fileno + 1;



Appendix H - Frequency response (FR) of select variables computed from Beer game simulation outputs

H .1 Different lead times

" Retailer

Wholesaler Distributor
35r
3
.25
Q '
- T 10
H 12 X
- J
Y
0.5
02 0.3 0.4 0.5 0.1 03 0.3 05 02 0.3
Frequency (f) Frequency (f)
90
80
70
é g 60
& 25
L ©
< | 30
20
) ’
0.2 0.3 04 05 03 0.3 04 03 0.3
Frequency (f) Frequency (f) Frequency (f)
ORATE/ CONS COMRATE / CONS AINV/CONS WIP / CONS
P 150
H
J
50!
03 03
%8 Frequency (f) Frequency (f) Frequency (f)
-0

Amplitude ratio and frequency response (FR) are the same

10r

0.4 0.1 02 03 0.4
Frequency (f)

05
Frequency (f)

All average of 30 replications
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cl 100

Frequency (f)

System and Demand process used: MA (1): 0 = -0.2; Unoptimal parameters
LT ab c: Lead times a = ordering, b = shipping, ¢ = production
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00

B oo

CcC

00%

H.2 Different batch sizes

Retailer 35 Wholesaler Distributor Factory

30 70

25
< 10 © 50 nj 50

K i
0.2 03 0.4 0.5 0.1 02 0.3 0.4 0.5 0.2 0.3
Frequency (f) Frequency (f) Frequency (f) Frequency (f)
ORATE/ CONS COMRATE/CONS AINV/ CONS WIP / CONS All average of30 replications
250
30 100 I
0.4 0.4
Frequency (f) Frequency (f) Frequency (f)

System and Demand process used: MA (1): 0 = -0.2; Unoptimal parameters; LT 223
LT a b c: Lead times a = ordering, b = shipping, ¢ = production
Batch sizes are in terms of % of average demand per period; (Average demand per period considered = 4)
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Appendix I

Index values for the Beer game system based on different feature parameter combinations:
All variables used in the index computation

1.1

Average index values

Demand Process: AR(2) pi: 0.1 p2: -0.8

IT 223

T 112

Dem;and Proc:ess: IMD\(1)<3: -0 o]

Lead
Time

IT 223 IT 334

IT 112

Ordering

Unoptimal

Optimal

Unoptimal

Optimal

Unoptimal

Optimal

Ordering

Unoptimal

Optimal

Unoptimal

Optimal

Unoptimal

Optimal

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Raw
Time
078
077
091
075
078
079
072
072
073
0,67
0.72
073
061
0.61
061
056
061
0.61

Raw
Time
091
088
088
085
090
090
083
0.62
083
076
083
084
064
071
0.71
052
065
0.73

FT Total

122
1.19
119
118
1.14
1.07
121
1.10
095
104
1.07
092
0.85
093
083
062
081
093

FT Total

1.47
1.41

1.29
203
1.35
1.07
149
1.44
127
183
130
1.10
133
1.30
1.25
1.19
1.11

1.16

Demand Process: MA(2) 0j: 0.1

Lead
Time

@ Zos

Ordering

Unoptimal

Optimal

Unoptimal

Optimal

Unoptimal

Optimal

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Raw Time: Based on data in the time domain

Raw
Time

0.93
089
088
085
087
0.90
084
082
082
075
080
085
082
070
072
054
064
074

FT Total

163

1.50
1.44
195
1.61

1.25
156
1.51

1.40
189
1.64
129
159
157
1.47
154
140
1.39

FT7 FT28
017 1.25
030 1.07
054 092
041 1.37
050 0.78
0.48 065
0.13 119
0.19 0.87
039 0.71
0.21 112
0.41 0.69
039 058
006 026
009 0.26
009 0.21
0.07 0.29
010 0.26
0.11 0.27
FT7 FT28
017 080
018 099
028 086
030 166
043 092
036 057
0.11 064
0.14 055
025 055
018 1.23
021 069
023 049
018 0.15
030 0.31
0.37 045
004 029
023 0.23
0.31 0.34
02:-0.8
FT7 FT28
0.20 082
0.15 088
021 086
029 138
039 1.10
034 062
009 058
012 051
022 049
018 121
019 084
022 052
006 024
020 020
034 036
011 046
008 030
027 029

FT 80%
Energy

1.30
143
1.61
082
1.27
1.41
1.05
1.13
1.20
0.74
099
1.07
056
059
0.62
052
061
067

FT 80%
Energy

1.52
1.54
1.36
2.04
1.46
1.11
1.61
158
1.35
1.80
139
1.13

1.35
1.29
1.14
1.11

1.13

FT 80%
Energy

179
1.70
163
2.10
183
1.35
179
180
1.59
205

176
1.40
188
183
1.73
165
154
144

AR 7

099
095
083
074
087
079
090
083
0.75
064
0.77
0.75
061

0.59
051

045
0.44
049

AR 7

1.12
068
064
093
046
029
082
055
046
073
0.42
023
068
0.74
0.61

053
049
021

AR 7

118
1.20
123
098
102
082
089
079
088
074
082
075
071
098
1.17
064
100
118

AR 28

091
079
0.65
069
0.67
0.53
0381
0.72
0.60
060
058
056
060
060
056
044
050
054

AR 28

103
0.62
056
084
0.40
0.28
0.76
053
0.43
065
036
0.25
063
0.70
0.61
052
0.51
0.35

AR 28

1.20
136
1.27
0.97
1.15
096
092
098
099
0.74
096
090
073
102
118
066
124
141

AR AIC

091
0.79
065

069
0.67
053

082
0.72
060
060
058

0.56
0.60
060
0.55
044
0.47
051

AR AIC

1.05
063
057
085
040
028
077
0.53
042
066
036
0.25
064
072
0.61
0.52
0.50
0.26

AR AIC

1.20
1.37
1.28
097
1.15
097
092
096
097
073
096
090
072
102
1.19
066
1.23
1.41

ACF 7

2.10
189
162
131
1.23
1.16
198
186
131
1.03
1.28
1.10
0.73
0.92
1.04
0.42
0.83
1.14

ACF 7

164
182
1.31
377
1.25
043
1.57
1.70
110
2.16
102
035
1.24
104
0.85
0.91
060
028

ACF 7

200
199
1.72
366
209
086
1.70
1.81
1.41
262
170
083

158
1.45
148
122
102

ACF 28

113
1.14
089
080
099
0.80
1.19
1.25
089
079
121
082
0.75
093
0.98
044
069
1.16

ACF 28

091
1.05
0.77
1.40
0.78
030
118
124
083
1.27
077
0.35

1.00
060
088
0.61
0.41

ACF 28

098
109
097
131
109
059
1.16
129
1.01
143
1.10
068
160
145
129
1.40
1.15
096

FT Total. FT 7. FT 28 Based on amplitudes of total, first 7 and first 28 frequencies after fourier transform
FT 80% Energy Based on amplitudes of first as many frequencies as have 80% of the energy in the data after founer transform
AR 7, AR 28 Based on autoregressive parameters (AR) of time series represented as AR models of order 7 and 28
AR AIC Based on autoregressive parameters (AR) of time senes represented as AR models of order defined by minimising Akaike information cnteria (AIC)
ACF 7, ACF 28: Based on autocorrelations upto lag 7 and lag 28
CCF 7, CCF 28: Based on dyadic cross correlations between variables upto max t 7 lags and + 28 lags

DWT (Level 5) Based on coefficients from discrete wavelet decomposition upto level 5 using Haar wavelet

DWT (Level Shannon): Based on coefficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet

CCF 7

104
100
092
125
097
090
1.22
105
083
1.27
104
083
0.#

091

092
079
0.76
094

CCF7

138
135
1.25
1.73
1.67
1.21

139
141

122
190
162
129

158
125
1.11
1.33
1.23

CCF 28

1.28
1.20
1.07
180
1.08
096

121
090
149
1.10
0385
078
0.91
092
0.79
076
094

CCF 28

158
165
1.45
299
208
1.35
168
1.71
136

187
136
145
1.61
126
1.12
1.34
1.24

(Based on 30 replicat

CCF 7

139
130
124
1.54
1.59
1.27

1.37
123
180
1.72
143

1.50
1.27

128
130

CCF 28

153
1.57
1.44
237
228
1.51
147
1.64
136
231
207
155
129
152
1.28
1.16
1.29
1.31

DWT Haar
(Level 5)

044

0.41

037
050
032
035
044
0.38
0.34
044
031

0.31

031

032
025
023
024
026

DWT Haar
(Level 5)

028
032
034
050
0.35
035
030
0.31
032
039
029
030
0.24
034
0.38
018
0.24
0.27

DWT Haar

(Level 5)

029
0.29
029
048
036
032
0.26
029
029
038
030
027
019
025
031

023
0.19
024

DWT Haar

(Level

Shannon)

061
050
050
0.58
045
042
059
048
0.48
053
048
0.49
047
0.43
0.48
032
045
0.60

DWT Haar

(Level

Shannon)

ions for each case)

0.66
068
089
063

061

052
061

062
066
055
055
054
044
051

052
035
0.35
0.52

DWT Haar

(Level

Shannon)

229

0.67
064
066
0,58
0.56
0.50
058
057
062
049
0.49
0.45
037
043
046
033
035
042



Appendix I continued

1.2 Coefficient of variation of index values

Demand Process: AR(2) pi: 0.1 P2: -0.8

;: Ordering

St Unoptimal
©

t-

_J Optimal
@ Unoptimal
i-

-1 Optimal

™M Unoptimal

Optimal

Demand Process: MA(1) 0:

: Ordering

Unoptimal

rt P

@

H Optimal
Unoptimal

K

=J Optimal

@ Unoptimal

\a

H .
Optimal

Demand Process: MA(2) Gj: 0.1 62:

[ Ordering

St Unoptimal
@
H
-1 Optimal
@ Unoptimal
t-
-1 Optimal
™M Unoptimal
h*

Optimal

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Batch

No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%
No Batch
Batch 50%
Batch 100%

Raw
Time

003
003
003
003
003
003
003
003
003
003
003
003
002
002
002
000
002
002

Raw
Time

002
001
002
001
002
002
002
001
001
001
002
001
002
0.01
001
002
003
001

Raw
Time

0.03
001
002
001
0.02
0.01
002
001
001
001
002
001
002
003
001
002
002
001

FT Total FT7
008 038
009 037
009 025
013 030
009 022
009 026
009 037
009 043
0.10 029
009 031
009 016
010 026
006 058
007 041
008 034
005 044
007 038
0.07 049

-0.2

FT Total FT 7
006 039
006 04l
007 033
006 030
008 025
007 029
008 056
005 032
005 020
005 030
005 037
004 035
005 026
004 016
004 022
005 046
0.04 020
005 026

FT Total

004
004
004
006
006
0.07
005
005
004
005
005
006
005
004
003
005
004
005

FT7

037
036
0.31

028
030
029
044
033

032
032
034

025
056
032

0.21

029
049
024

FT 28 FT 80%
Energy
009 020
0.12 016
019 016
016 020
014 0.15
024 016
012 0.18
012 0.16
017 016
014 015
014 016
015 0.16
013 014
0.16 0.14
019 014
009 0.11
0.14 0.13
021 0.14
ey FT 8%
Energy
017 0.07
016 0.10
0.15 0.09
010 007
0.17 0.10
0.21 0.11
017 008
020 0.07
016 009
011 007
015 0.07
() 009
014 006
015 0.07
013 006
017 006
0.13 006
0.15 007
-0.8
ey FTE%
Energy
0.13 007
0.13 007
009 0.07
0.14 008
0.13 008
018 009
018 009
021 008
017 0.06
010 006
0.14 0.07
021 0.10
020 007
0.14 006
014 007
016 006
018 006
013 0 08

AR 7

014
0.11

012
022
008
0.11

013
006
009
018
005

009
015
009
0.10
0.20
009
0.16

AR 7

020
012
023
030
0.14
0.29
017
0.11
020
029
009
025
014
009
011
021
014
031

AR 7

029
012
0.10
026
009
012
011
009
013
020

0.12
012
011

005

005
014
006

006

AR 28

014
0.15
013
021

010
022
014
010
011
019
009
016
0.15
009
0.10
021

009
013

AR 28

018
014
026
028
0.15
0.21

0.19
013
0.21

026
0.14
017
016
008
009
021

0.14
0.18

AR B

028
0.12
0.11
024
0.12
0.12
0.11
0.11
0.15
020
0.12
0.13
010
006
0.05
0.13
006
005

AR AIC

014
0.15
014
021

010
022
0.14
011

011

020
009
0.15
0.15
009
0.10
021

009
0.14

AR AIC

0.19
0.14
025
0.28
0.14
0.22
020
0.13
0.21

026
0.14
0.17
015
009
009
021

0.13
026

AR AIC

028
0.12
0.11
024
0.12
012
0.11
0.11
0.15
020
0.12
0.12
0.11

006
005
0.14
006
005

ACF 7

016
012
0.15
023
009
010
014
0.13
016
0.15
009
012
011

0.11

015
010
013
0.12

ACF 7

0.15
016
0.20
013
0.21

034
015
0.12
015
0.12
012
0.31

010
0.12
010
009
009
030

ACF 7

012
0.13
0.11
010
0.12
0.21

012
0.13
010
0.11

0.11

016
011

0.11

009
010
010
0.10

ACF 28

013
0.14
0.14
020
0.12
0.14
014
014
017
0.12
010
016
0.10
0.11

0.15
0.10
0.11

0.10

ACF 8

016
0.18
0.19
015
0.20
027
0.15
013
015
011

0.12
026
0.10
0.11

009
009
008

0.15

ACF 8

0.11
0.15
0.11
0.13
0.15
0.18
015
0.13
009
0.12
0.11
0.13
011

0.11
0.09
010
009
010

CCF 7

006
007
009
009
009
0.11
0.07
008
0.10
008
009
0.11
007
006
005
007
006
007

CCF 7

007
006
0.06
0.07
007
0.08
0.08
006
005
007
006
007
008
006
004
007
007
0.04

CCF 7

006
005
005
007
007
0.06
008
008
006
007
005
007
009
0.07
004
007
005
0.05

CCF 28

006

008

0.10
011

012

012
007
008
0.10
0.09
0.10
0.11

007
0.06
0.05
007
006
007

CcCF 28

007
005
007
009
009
011
009
006
005
0.07
006
0.08
0.09
0.06
0.04
007
007
0.04

ccF 8

0.05
0.05
0.05
0.11
0.08
0.08
009
009
005
009
0 06
007
009
0.07
004
007
005
005

DWT Haar
(Level S)

0.15
014
024
01

0.15
0.18
016
015

017
012

015

015
0.18
0.21

0.18
0.16
0.15
0.19

DWT Haar
(Level 5)

0.20
0.17
020
0.14
0.11

0.12
0.18
0.21

0.14
0.15
0.10
017
017
0.14
0.17
021

015
020

DWT Haar
(Level 5)

0.26
0.16
015
014
0.14
0.13
0.21

0.19
0.16
0.15
0.16
0.15
0.19
0.19
0.12
0.16
0.16
0.16
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DWT Haar
(Level
Shannon!
015
0.10
0.12
0.15
006
009
008
0.10
007
014
007
0.12
021
012
007
029
0.22
006

DWT Haar
(Level

0.26
0.16
017
019
0.21

008

023

019
019
017
024
013
021

0.21

009
018
015
015

DWT Haar
(Level
Shannon)
019
020
0.18
0.11
0.11
007
022
0.17
0.17
015
0.15
0.14
0.17
020
009
012
016
005



Appendix J

Index values for the Beer game system based on different feature parameter
combinations: Only order and inventory7variables used in the index computation

J.1  Average index values

Demand Process: AR(2) pi: 0.1 p2: -0.8

; " DWT Haar
%?dd Ordering Batch RaW pr ol FT7 FT28  F130%  AR7  AR28 ARAIC ACF7 ACF28 CCF7 CCpag Dwi Haar (Level
ime Tima Energy (Level 5) Shannon)
No Batch 070 145 042 156 140 149 132 134 258 155 118 152 049 050
Unoptimal ~ Batch 50% 084 143 034 107 225 091 086 08 205 127 130 158 036 045
M Baich 100% 104 141 046 080 343 069 078 078 177 080 141 160 030 0.57
- No Batch 061 130 085 180 074 074 076 076 1.40 100 133 211 044 043
Optimal Batch 50% 08 119 043 071 164 093 089 089 115 091 1.07 118 027 0.38
Batch 100% 093 120 039 056 281 094 067 067 109 067 133 140 026 038
No Batch 067 164 027 179 152 137 121 124 306 178 165 2.17 048 0.51
R, Unoptimal  Baich 50% 078 155 024 095 233079 077 077 250 1.73 165 191 035 041
R Batch 100%  0.91 131 030 060 295 075 068 068 141 090 123 131 0.28 038
- No Batch 056 118 047 174 071 067 068 068 1.36 102 153 1.84 043 040
S Optimal Batch 50% 073 123 041 069 164 080 078 079 144 144 137 145 027 038
Batch 100% 090 119 030 049 226 085 074 0.75 1.05 077 117 1.19 0.24 041
No Batch 067 08 021 067 067 105 095 099 077 079 089 0589 037 048
M Unoptimal  Batch 50% 0.71 108 017 042 091 053 054 054 1.07 110 1.04 1.04 034 043
T Batch 100% 079 119 008  0.19 132 046 050 049 1.37 137 116 116 021 037
H No Batch 048 068 027 080 049 042 041 041 044 047 099 099 028 029
-1 Optimal Batch 50% 055 083 021 048 069 037 042 040 0.67 073 084 084 0.26 034
Batch 100% 067 113 0.5 035 1.06 039 042 040 133 141 0% 099 026 054
Demand Process: MA(1) 0: -0.2
DWT Haar
Lead () joring Batch Raw prroal FT7 FT2s F180%  Ap7  AR28  ARAIC ACF7 ACF28 CCF7 CCR2g Dol Haar (Level
Time Time Energy (Level 5) Shannon)
No Batch 082 193 033 142 217 172 146 156 420 194 174 2.10 034 058
2 Unoptimal  Batch 50% 083 162 026 124 187 065 063 063 286 160 174 227 030 057
fio Batch 100% 090 138 026 093 150 072 068 069 1.87 095 166 196 029 062
t- No Batch 068 271 057 252 270 098 09 096 568 230 195 453 043 0.50
-1 Optimal Batch 50% 076 140 058 103 159 050 052 050 1.4 L1l 163 228 029 050
Batch 100% 086 099 031 0.1 104 035 039 037 041 027 139 1.53 027 044
No Batch 072 18 020 085 206 L17 103 107 301 193 160 203 030 0.50
Unoptimal ~ Batch 50% 077 160 023 065 184 056 057 056 238 159 178 225 031 052
ﬁ" Batch 100% 085 130 023 053 141 057 057 057 123 0.90 165 188 029 058
o No Batch 061 247 038 214 244 076 072 073 459 214 275 403 037 044
I Optimal Batch 50% 069 141 036 090 160 045 048 046 159 120 201 233 027 045
Batch 100% 081 103 020 044 108 026 034 028 035 033 1.43 148 023 045
No Batch 053 165 037 028 174 11 097 Lo 220 191 188 189 027 037
M Unoptimal  Batch 50% 061 150 074 053 164 070 066 068 172 152 206 206 039 044
v Batch 100% 072 126 049 048 134 056 056 056 100 091 179 1.79 035 047
No Batch 041 166 009 064 162 048 047 048 171 166 177 020 028
_J Optimal Batch 50% 053 132 050 046 140 041 043 042 115 L2 171 171 027 032
Batch 100% 069 116 033 036 L19 017 029 021 038 052 1.4 1.4 024 041
Demand Process: MA(2) 0j: 0.1 02: -0.8
(Based oo 30 replications for each case)
DWT Haai
Lead ) jering  Batch Raw crromt FT7 FT28 FL80%  Ap7  AR28  ARAIC ACF7 ACE28 CCF7 CCRag DWl Haar (Level
Time Time Energy (Level 5) Shannen)
No Batch 083 188 031 130 217 163 171 444 164 173 199 034 056
. Unoptimal  Batch 50% 081 167 023 119 202 122 151 326 166 159 205 027 048
m Batch 100% 086 152 021 097 177 141 165 225 119 161 1.92 026 0.56
i No Batch 068 267 057 222 283 093 095 694 251 181 369 041 046
-1 Optimal Batch 50% 072 181 070 142 221 Ll 145 271 174 168 274 031 044
Batch 100% 08l 120 033 059 133 096 131 086 0.62 136 161 025 041
No Batch 072 175 013 082 206 116 124 259 142 1.72 026 047
¢ Unoptimal  Batch 50% 074 168 017 061 205 08 108 260 171 163 205 029 046
é&[ Batch 100% 080 143 024 049 165 097 1.20 1.55 112 159 182 027 0.50
h- No Batch 059 259 036 19 280 077 076 665 263 360 036 038
_J Optimal Batch 50% 065 179 038 122 221 091 126 320 188 212 262 027 038
Batch 100% 074 127 023 053 144 087 123 098 084 156 1.66 023 0.35
No Batch 050 194 011 037 088 095 361 163 164 021 029
M Unoptimal  Batch 50% 058 164 036 032 235 105 121 308 246 187 187 027 035
Batch 100% 069 161 048 043 191 128 147 197 165 178 178 030 041
H No Batch 041 217 021 085 244 060 063 338 300 180 180 023 025
O Optimal Batch 50% 051 171 016 055 206 092 122 271 231 166 1.66 020 027
Batch 100% 065 146 036 036 160 110 142 160 1.43 155 155 022 031
Raw Time Baaed on data in the time domain
FT Total. FT 7. FT 28 Baaed on amplitudes of total, firat 7 and first 28 frequencies after founef transform
FT SOM Energy Baaed on amplitudes of first as many frequencies as have 80% of the energy in the data after fourier transform
AR 7 AR 28 Based on autoregressive parameters (AR) of time aeries represented as AR models of order 7 and 28
AR AIC Based on autoregressive parameters (AR) of time senes represented as AR models of order defined by minimising Akaike information criteria (AIC)

ACF 7. ACF 28 Based on autocorrelations upto lag 7 and lag 28
CCF 7.

°F 28 Based on dyadic cross correlations between variables upto max

ts lags and lzx lags
DWT (Level 5) Based on coefficients from dMcrete wavelet decomposition upto level 5 using Haar wavelet
DWT (Level Shannonl Based on cocfficients from discrete wavelet decomposition upto level defined by minimum Shannon entropy using Haar wavelet
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Appendix J continued

J.2 Coefficient of variation of index values

Demand Process: AR(2) pj: 0.1 P2:-0.8

Lead () fering  Batch RaW prpol  FT7  FT28 1 S0%
Time Time Energy
No Batch 002 009 039 0.2 021
Unoptimal ~ Batch 50% 002 0.07 035 014 0.11
&® Batch 100% 002 011 027 021 015
H No Batch 002 014 030 019 020
J optimal Batch 50% 003 006 026 0.5 0.10
Batch 100% 0.03 008 030 027 013
No Batch 002 008 028 015 0 14
Unoptimal  Batch 50% 002 007 040  0.15 0.12
% Batch 100% 002 008 030 019 013
H No Batch 002 010 031 0.16 015
I optimal Batch 50% 0.03 007 028  0.17 008
Batch 100% 003 006 029 017 009
No Batch 001 006 066 016 014
W Unoptimal Batch 50% 002 005 049 017 0.11
Batch 100% 002 006 035 016 009
t- No Batch 000 006 046 012 012
Optimal Batch 50% 002 007 043 018 012
Batch 100% 003 008 064 027 016
Demand Process: MA(1) 0: -0.2
Lead ) dering Batch RaW pr rol  FT7  FT28 L) S0%
Time Time Energy
No Batch 003 007 027  0.14 009
2 Unoptimal  Batch 50% 002 008 035  0.14 0.11
It Batch 100% 002 007 030 014 009
»- No Batch 001 0.07 029  0.12 008
-i  Optimal Batch 50% 003 010 031 021 012
Batch 100% 0.03 009 032 022 014
No Batch 002 009 060  0.18 009
Unoptimal Batch 50% 002 007 040 0.21 009
Batch 100% 002 007 025  0.16 0.12
J- No Batch 002 005 038 013 006
-3 Optimal Batch 50% 002 005 038 016 0.07
Batch 100% 003 006 037 018 0.11
No Batch 002 007 022 0.8 007
(iM Unoptimal ~ Batch 50% 003 004 020  0.17 006
- Batch 100% 004 004 028 0.8 007
H No Batch 002 005 048 020 006
-1 Optimal Batch 50% 003 004 023 0.2 006
Batch 100%  0.03 006 032 019 008
Demand Process: MA(2) 0i: 0.1 Qj' -0.8
0
= Ordering Batch T'?;v; FT ToUl FT7 FT 28 g:rog/y"
No Batch 003 005 029 009 009
g Unoptimal  Batch 50% 0.02 005 032 010 009
n Batch 100% 003 005 030 008 0.10
Hl No Batch 001 006 032 012 007
=1 optimal Batch 50% 003 006 029 013 009
Batch 100% 003 009 033 022 0.11
No Batch 003 009 055 013 0.12
Unoptimal Batch 50% 003 0.07 040 020 0.10
Batch 100% 0.03 004 035 015 006
h1 No Batch 002 005 036 011 006
=1 optimal Batch 50% 003 0.05 035 014 0.07
Batch 100% 004 008 032 023 013
No Batch 003 007 051 026 009
M Unoptimal Batch 50% 003 0.05 028 018 007
T Batch 100% 003 005 02 018 009
h- No Batch 002 006 028 017 008
-1 Optimal Batch 50% 002 004 044 020 006
Batch 100% 003 005 034 016 008

AR 7

010
0.11

014
036
008
013
0.13
007
011

027
006
010
029
010
012
027
010
017

AR7

034
0.11

0.18
043
0.15
033

0.21

0.12
026
037
009
0.27
030
0.11

014
020
015
032

AR 7

027
014
014
028
0.10
013
017
013

0.14
023

0.12
014
0.17
009

009
019

006
007

AR 28

012
0.12
012
035
008
023
012
0.07
011
029
006
015
027

011

029
0.10
015

AR 28

031

0.11

016
044
0.12
025
0.20
0.12
0.23
039
0.09
016
0.27
0.11

012
021

015
019

AR 28

030
015
013
028
010
0.11

019
012
013
020
0.10
012
0.17
010
008

017

008
009

AR AIC

0.12
0.12
0.13
0.36
008

0.24
0.13
0.07
0.11

030
006
0.15
029
010
0.11

029
010
017

AR AIC

036
012
0.17
0.46
0.14
0.27
023
0.12
024
0.40
0.11

025
031

0.12
0.13
021

015
029

AR AIC

028
0.15
013
028
009
009
018
0.12
0.14
019
0.10
0.12
017
0.11

009
018
008
009

ACF 7

022
0.15
022
024
010
013
015
0.13
015
0.16
0.13
0.11
012
0.11
0.11
011
0.14
016

ACF 7

013
016
017
0.22
024
0.38
022
020
016
015
0.15
033

0.11

0.10
0.11

009
010
036

ACF 7

012
013
009
020
0.16
024
020
023
009
019
017
020
016
0.14
014
014
0.11

0.10

ACF 28

0.18
0.19
0.17
0.21

0.15
0.18
013

0.13
017
014
0.14
019
011

0.10
011

0.11

012
017

ACF 28

023
0.18
0.17
0.17
0.23
0.32
0.17
0.16
0.16
0.10
0.11

0,29
0.10
009
0.10
009
009
020

CCF 7

010
009
0.10
009
009
0.13
008
009
009
010
009
012
008
007
007
008
007
013

CCF 7

012
008
0.07
008
007
010
0.10
008
005
008
0.06
008
010
006
004
007
008
007

CCF 28

008
008
0.10
0.12
0.12
0.13
009
010
0.09
0.10
0.10
0.12
008
007
007
008
007
013

CCF 28

010
008
008
010
012
0.12
0.12
008
007
0.07
0.07
0.09
0.10
0.06
0.04
0.07
008
007

(Based on 30 replications for each case)

ACF 28

0.15
017
0.14
0.18
017
0.23
021

0.15
009
0.14
0.13
0.18
0.15
013
013
0.13
010
008

CCF 7

009
008
006
008
007
007
010
011
006
007
005
009
012
009
007
009
006
006

CCF 28

009
0.07
0.06
012
009
0.10
0.13
0.11
0.05
0.10
0.07
0.10
0.12
009
007
009
006
006

DWT Haar DWT Haar
(Level 6) (Level
Shannon)
0.13 0.09
014 023
025 027
0.12 016
016 0.10
017 023
0.14 013
018 0.12
017 017
010 016
0.17 0.11
0.14 020
019 024
0.21 0.27
022 022
016 030
015 026
0.19 022
DWT Haar DWT(LP;@;
(Level 5)
027 027
0.21 0.23
022 0.23
0.11 017
0.11 024
013 018
024 025
0.24 024
0.15 026
014 0.16
0.11 0.23
0.17 015
0.20 017
0.17 017
0.22 020
023 017
0.17 0.22
023 019
DWT Haar
(Level S) (Level
024 0.18
0.16 0.27
0.19 0.17
0.11 0.11
0.13 012
0.12 0.18
0.30 0.19
0.24 018
0.21 0.22
0.13 012
0.14 0.13
013 015
022 014
022 019
015 020
015 007
020 0.15
023 016
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Appendix J continued

J.3 Structured evaluation of feature parameter combinations used for index

computation

J.3.1

Consistency Baals

a) MA2 (0, 0 101 -0 8) with MAI (0 -0 2>
: MAQ L2 AIf AR2 .0, Cep. C8
Ordering process: Unoptimal with Optimal for
a) MA2(0.010,-08)
b) MAIL (0 -02)
OAR2 (p, 0 1pj-0.8)

Overall Consistency - Demand and Ordering process

J.3.2 Rank analysis based on the magnitude of index

Raw
Time

2/18
5/18

9/9

9/9
9/9

M/83

FT  FT7 FTr28 FT804

Total

15/18
14/18

4/9

9/9

48/63

718
e/

3/9

[]
19

21/63

8/18
918

2/9

59
59

29/63

Energy

16/18
10/18

59

7/9
99

47/63

Consistency assessment of rogue seasonality index

AR7  AR28  ARAIC
14/18 1718
8/18 8/18 8/18
8/9 6/9 7/9
5/9 6/9 6/9
44/63 46/63 46/63

ACF7 ACF28 CCF7
— TTIS 5/18
11/18 11/18 1718
6/9 4/9 49
79
9/9 89 7/9
50/63 46/63 39/63

CCF 28 DWT Han
(Level 5)

6/18 4/18
6/18

4/9 59

59 79

79 8/9
39/63 30/63

*for corresponding lead time (LT), ordering and batching combination repeated for all combinations

(For assessing the discrimination ability of the index derived from different feature parameter combinations)

Sum of Ranks - MA<Q)
Minimum / best possible 18

Sum of Ranks -MA(1)
Minimum / best possible 18
Sum of Ranks - AR (2)
Minimum / best possible 18

Sum of Ranks - TOTAL
Mmimurn / best possible 54

J.3.3 Rank analysis based on the coefficient of index

Raw
Time

189

151

154

494

FT
Total

86

82

76

244

FT7

235

219

234

688

FT 28

181

154

143

478

FT 8064
Energy

48

62

75

185

ART  AR28  ARAIC
161 124 133
173 175 176
142 164 154
476 463 463

ACF7 ACF28 CCF7
36 96 87
62 110 S3
61 96 80
159 302 220

with the highett rank allotted to that with the largest magnitude of rogue; Thease are then summed up for that demand process

(For assessing the stochastic stability of the index derived from different feature parameter combinations)

Sum of Ranks - MA(2)
Minimum / best possible 18

Sum of Ranks - MA (1)
Minimum / best possible 16

Sum of Ranks - AR (2)
Minimum / best possible 18

Sum of Ranks - TOTAL
Minimum / best possible 54

Sum of Ranks - TOTAL (magnitude as well as
coefficient of variation of the Index)
Minimum / best possible 108

J.4

Time

FT

AR Model
ACF

CCF
DWT

Raw
Time

Raw
Time

548

FT
Total

37

41

49

127

FT
Total

371

FT7

251

M

249

734

FT7

1422

FT 28

174

158

192

524

FT 28

1002

FT 8061
Energy

85
77
132

294

FT 80%
Energy

479

Index and Alt 1

0.69
0.93
0.90
0.96
0.81
0.21

AR7 AR28 ARAIC
159 152 154
186 162 191
126 133 147
471 447 492

AR7 AR28  ARAIC

947 910 955

Correlation between alternative rogue seasonality indices

ACF7 ACF28 CCF7
176 168 66
168 150 63
165 161 70
509 479 199

ACF7 ACF28 CCF7
668 81 419

Index and Alt 2 Alt 1 and Alt

0.85
0.96
0.97
0.96
0.90
0.21

2
0.33
0.84
0.90
0.88
0.56
0.04

Parameter options for each feature have been combined together
Highlighted indicates low correlation (considered bad)

CCF 28 DWT Haar
(Level 5)

48 242

28 242

50 239

128 723
CCF 28 DWT Haar
(Level 5)

79 194

71 174

9 177

229 545
CCF 28 DWT Haar
(Level 5)

355 1268
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DWT Haar
(Level
Shannon)

018
13/18

9/9
7/9

38/63

DWT Haar
(Level
Shannon)

220
199
217

636

DWT Haar
(Level
Shannon)

173
193
187

553

DWT Haar
(Level
Shannon]

1189

wJ



