
CARDIFF
U N I V E R S I T Y

PRI F Y S C O L

CaeRDY|§>

BINDING SERVICES
Tel+44 (0)29 2087 4949
Fax +44 (0)29 20371921

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk

Flexible Information Management Strategies in

Machine Learning and Data Mining

A thesis submitted to the University of Wales, Cardiff

For the degree of

Doctor of Philosophy

By

Duc-Cuong Nguyen

Manufacturing Engineering Centre

School of Engineering

University of Wales, Cardiff

United Kingdom

2004

UMI Number: U584644

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584644
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

In recent times, a number of data mining and machine learning techniques have been

applied successfully to discover useful knowledge from data. Of the available

techniques, rule induction and data clustering are two of the most useful and popular.

Knowledge discovered from rule induction techniques in the form of If-Then rules is

easy for users to understand and verify, and can be employed as classification or

prediction models. Data clustering techniques are used to explore irregularities in the

data distribution. Although rule induction and data clustering techniques are applied

successfully in several applications, assumptions and constraints in their approaches

have limited their capabilities. The main aim of this work is to develop flexible

management strategies for these techniques to improve their performance.

The first part of the thesis introduces a new covering algorithm, called Rule

Extraction System with Adaptivity, which forms the whole rule set simultaneously

instead of a single rule at a time. The rule set in the proposed algorithm is managed

flexibly during the learning phase. Rules can be added to or omitted from the rule set

depending on knowledge at the time. In addition, facilities to process continuous

attributes directly and to prune the rule set automatically are implemented in the Rule

Extraction System with Adaptivity algorithm

The second part introduces improvements to the K-means algorithm in data

clustering. Flexible management of clusters is applied during the learning process to

help the algorithm to find the optimal solution. Another flexible management strategy

is used to facilitate the processing of very large data sets. Finally, an effective method

to determine the most suitable number of clusters for the K-means algorithm is

proposed. The method has overcome all deficiencies of K-means.

Acknowledgements

I would like to express my sincere gratitude to Professor D. T. Pham, my supervisor,

for creating the opportunity of my studying in the UK. I am grateful for his

invaluable guidance and for his consistent encouragement during the past three years.

The System Division of the School of Engineering, University of Wales, Cardiff is a

good place to study and work. I thank all its members for their friendship and help, in

particular, Dr. Stefan Dimov, for his technical advises.

I would especially like to thank my family for their mental support. Thanks also go to

my wife, Giao Quynh Nguyen, for her tolerance and belief over these years, and my

son, Vinh Due Nguyen, for his love.

This work is supported by the CVCP and the Manufacturing Engineering Centre,

School of Engineering, University of Wales, Cardiff.

Contents

Abstract i

Acknowledgements ii

Declaration iii

Contents iv

List of Figures ix

List of Tables xii

Abbreviations xiii

List of Symbols xiv

Chapter 1 Introduction 1

1.1. Background 1

1.2. Research Objectives 3

1.3. Thesis Structure 3

Chapter 2 Literature Review 5

2.1. Machine Learning & Data Mining 5

2.1.1. Machine Learning 5

2.1.2. Data Mining 9

2.2. Inductive Learning 18

2.2.1. Decision Tree 19

2.2.2. Covering Methods 20

2.2.2.1. Separate-Conquer-and-Reduce Algorithms 22

2.2.2.2. Separate-Conquer-Without-Reduction Algorithms 25

iv

2.2.2.3. Conquer-Without-Separation Algorithms 26

2.2.3. Pre-processing techniques for covering methods 27

2.2.3.1. Discretisation methods 27

2.2.3.2. Scaling-down techniques 28

2.2.3.3. Rule Representation 29

2.2.3.4. Rule Pruning 30

2.2.4. The covering methods developed in this research 32

2.3. Data Clustering 33

2.3.1. Overview of DC approaches 33

2.3.1.1. Hierarchical Clustering 35

2.3.1.2. Partitioning Clustering 38

2.3.1.3. Probabilistic Clustering 39

2.3.2. K-means 41

2.3.2.1. Improving K-means Performance 43

2.3.2.2. Scaling up K-means for large data sets 45

2.3.3. Research on the K-means method in this study 50

2.4. Summary 51

Chapter 3 Rule Extraction System with Adaptivity (RULES-A) 52

3.1. Preliminaries 52

3.2. Algorithm Description 53

3.3. Performance 62

3.3.1. Phase 1 Performance 63

3.3.2. Results after Phases 1 and 2 64

3.3.3. Results after Rule Simplification (Phase 3) 66

v

3.3.4. Comparison of the Overall Performance of RULES-A

with C5 and RULES 3+ 70

3.3.5. Algorithm Complexity 72

3.4. Summary 74

Chapter 4 Improvements to RULES-A 76

4.1. Preliminaries 76

4.2. Improvements 77

4.2.1. Discrete Attributes 77

4.2.2. Continuous Learning 84

4.3. The RULES-A 1 Algorithm 85

4.4. RULES-A1 Performance 89

4.5. Performance Improving Techniques 91

4.5.1. Early Stopping 91

4.5.2. Changing the Order of Training Objects 92

4.5.3. Performance Analysis 100

4.6. The Tic-Tac-Toe Problem 104

4.7. Summary 110

Chapter 5 Improvements to the K-means Algorithm 111

5.1 Preliminaries 111

5.2 Incremental K-means Algorithm 113

5.2.1 Conventions 113

5.2.2 Motivation 113

5.2.3 Evaluation of Distortion of Clusters 116

vi

5.2.4 Algorithm Description 121

5.2.5 Performance 123

5.2.6 Further Improvements 132

5.3 Two-Phase K-Means Algorithm 134

5.3.1 Algorithm Description 134

5.3.2 Performance 137

5.4 Summary 145

Chapter 6 Selection of Number of Clusters for K-Means 146

6.1 Preliminaries 146

6.2 Number of Clusters 146

6.2.1 Values of K Specified within a Range or Set 147

6.2.2 Values of K Specified by the User 152

6.2.3 Values of K Determined in a Later Processing Step 152

6.2.4 Values of K Equal to Number of Generators 154

6.2.5 Values of K Determined by Statistical Measures 156

6.2.6 Values of K Equated to the Number of Classes 157

6.2.7 Values of K Determined through Visualisation 158

6.2.8 Values of K Determined Using a Neighbourhood Measure 159

6.3 Factors Affecting the Selection of K 161

6.3.1 Approach Bias 161

6.3.2 Level of Detail 161

6.3.3 Internal Distribution versus Global Impact 162

6.3.4 Constraints for f(K) 163

vii

6.4 Number of Clusters for K-means

6.5 Performance

6.6 Summary

163

166

178

Chapter 7 Conclusion and Future Work 181

7.1 Conclusions 181

7.2 Future Research Directions 183

Appendix A Complexity Estimation of RULES-A 185

Appendix B Data Sets 188

References 192

List of Figures

Figure 2.1 The Machine Learning framework [Langley, 1996]. 6

Figure 2.2 The process model of DM [Chapman et al., 2000]. 12

Figure 2.3 Classification of covering methods. 21

Figure 2.4 A data set and the dendrogram obtained using a hierarchical clustering

algorithm [Jain et al., 1999]. 37

Figure 2.5 The original K-means algorithm 42

Figure 2.6 Bradley’s scalable framework for clustering [Bradley et al., 1998]. 46

Figure 3.1 The three phases of Rule Extraction System with Adaptivity

(RULES-A). 54

Figure 3.2 Phase 1 - Induction. 54

Figure 3.3 Phase 2 - Pruning. 55

Figure 3.4 Phase 3 - Rule simplification. 55

Figure 3.5 The splitting operation. 57

Figure 3.6 Illustrative example of the execution of RULES-A. 60

Figure 3.7 Illustrative induced rule sets. 69

Figure 3.8 The comparison between complexities of C4.5 and RULES-A. 73

Figure 4.1 Training set [Pham and Dimov, 1996]. 80

Figure 4.2 A step by step execution of RULES-A for the training set

in Figure 4.1. 81

Figure 4.3 The resultant rule set in Figure 4.2 represented as a decision tree. 83

Figure 4.4 The improved Rules Extraction System with Adaptivity

(RULES-A 1). 86

Figure 4.5 Phase 1 - Induction. 87

Figure 4.6 Phase 2 - Rule simplification. 88

Figure 4.7 The rule sets refinement during the learning process. 93

Figure 4.8 Conventions and 16 ending principles of the Tic-Tac-Toe game. 105

Figure 4.9 Examples of overlapping end principles of the Tic-Tac-Toe data set. 106

Figure 4.10 A decision tree for the Tic-Tac-Toe data set. 106

Figure 4.11 The resultant rule set from RULES 3+ with PRSET =10. 108

Figure 5.1 The results of applying K-means (K=4) on two split regions. 114

Figure 5.2 The modified K-means algorithm incorporating the jumping

operation proposed by Fritzke [Fritzke, 1997]. 115

Figure 5.3 The splitting of Cz into Czi and Cz2 after training. 118

Figure 5.4 The Incremental K-means algorithm. 122

Figure 5.5 The object distribution of the contrived data sets. 123

Figure 5.6 Clustering results of K-means, K-means with jumping operation,

Incremental K-means and Incremental K-means with termination

conditions. 128

Figure 5.7 Comparison of the running times of K-means, Incremental K-means

and Incremental K-means with termination conditions. 130

Figure 5.8 Clustering results of K-means, Incremental K-means and

Incremental K-means with cluster search. 133

Figure 5.9 The Two-Phase K-Means algorithm 135

Figure 5.10 The average cluster distortions for eight versions of K-means

when applied to the KDD98 data set, (a) 5 permutations and

(b) the worst case. 140

Figure 5.11 The average execution times of tested algorithms

on the KDD98 data set. 141

x

Figure 5.12 The average cluster distortions for eight versions of K-means

when applied to the CoverType data set, (a) 5 permutations and

(b) the worst case. 143

Figure 5.13 The average execution times of tested algorithms

on the CoverType data set. 144

Figure 6.1 Data clustering as a pre-processing tool. 153

Figure 6.2 The relationship between clusters can have an effect on the clustering. 155

Figure 6.3 Inappropriate data sets for the K-means approach. 160

Figure 6.4 Variations of the two-ring data set. 160

Figure 6.5 The ratio S k/ S k -i for data sets having uniform distributions 166

Figure 6.6 Comparison of the values of ak calculated using Equation 6.2 (b)

and the ratio S k/ S k -i - 167

Figure 6.7 Data sets and their corresponding j\K). 171

Figure 6.8 f(K) for the 12 benchmark data sets. 177

xi

List of Tables

Table 2.1 Assessment of ML classification algorithm [Michalski, 1998]. 8

Table 3.1 Result of cross-validation 10-fold testing of RULES-A

compared with C5. 63

Table 3.2 The performance of the rule sets before and after Phase 2. 65

Table 3.3 Comparison of rule sets’ performance before and after Phase 3. 67

Table 3.4 Comparison of C5 and RULES-A results. 71

Table 3.5 Comparison of RULES 3+ and RULES-A results. 71

Table 3.6 The number of iterations over the training sets during Phase 1 of

RULES-A. 73

Table 4.1 The main parameters of the selected data sets. 90

Table 4.2 Results of the ten-fold cross-validation testing of RULES-A1

against C5 and RULES 3+. 90

Table 4.3 Number of iterations required for RULES-A1 and RULES-A2

to converge on a rule set. 102

Table 4.4 The results of the cross-validation 10-fold testing of RULES-A2

against RULES-Al. 102

Table 4.5 The results of the cross-validation 10-fold testing of RULES-A3

against RULES-A1. 103

Table 4.6 The results of the cross-validation 10-fold testing of RULES-A3

against C5 and RULES 3+. 103

Table 5.1 Characteristics of test data sets 124

Table 6.1 The number of clusters used in different studies of the K-means

method. 148

Table 6.2 The recommended number of clusters based on f(K). 179

xii

Abbreviations

Al Artificial Intelligence

ML Machine Learning

DC Data Clustering

DM Data Mining

ARI Adaptive Rule Induction

S1 Bradley’s version of K-means with a buffer storing 1 % of the data set.

S10 Bradley’s version of K-means with a buffer storing 10% of the data set.

N1 Famstrom’s version of K-means with a buffer storing 1 % of the data set.

N10 Famstrom’s version of K-means with a buffer storing 10% of the data

set.

R1 The original K-means algorithm applied on 1% of the data set.

RIO The original K-means algorithm applied on 10% of the data set.

KM The original K-means algorithm applied on the whole data set.

2PK The Two-Phase K-means algorithm with a buffer storing 10% of the data

set.

xiii

List of Symbols

Accvai the accuracy of the rule set on the validation set.

AD the estimated decrease in the total distortion error when the centre of a

cluster is moved to a new position.

Al the estimated increase in the total distortion error when the centre of a

cluster is removed.

AM the estimated change in the total distortion error when the jumping

operation occurs.

°*k a weight factor.

C a cluster.

d(w, x) the distance between the cluster’s centre w and a position x in the

Euclidean space.

f(K) the evaluation function for the clustering result.

/- the distortion error of cluster z.

n the number of objects of the test data set.

N the number of objects belonging to the cluster (cluster’s capacity).

Nd the dimension of the Euclidean space.

S the sum of the squared distances between the objects in the cluster and the

centre of the Euclidean space.

Sk the sum of the distortion of clusters when the data is clustered with K

clusters by the K-means method.

X o the centre of the Euclidean space.

x* an object belonging to cluster C*.

w the centre of a cluster.

xiv

Chapter 1

Introduction

1.1. Background

In recent times, with new developments in information technology, information

systems can store an increasingly large amount of historical data about daily

activities. From the historical data, data mining and machine learning techniques can

be used to extract previously unknown and potentially useful knowledge. The derived

knowledge can then be applied to achieve economic, operational or other benefits.

Classification is a common task in data mining and machine learning. With the

assistance of human teachers, a learning system can induce classifiers from the

training data. Learned classifiers can be used to sort new objects into specified

classes.

Rule induction is a common method of generating classifiers. Classifiers in rule

induction are in the form of “If conditions Then actions" rules. Knowledge

represented as rules is easy for users to understand and verify. In addition, the rules

generated through the learning process can be utilised directly in knowledge-based

systems.

Covering methods are common techniques of rule induction. These methods create

rules directly by reasoning about the coverage by rules of the training data. They have

been applied widely and successfully.

On the other hand, data clustering is often employed to discover natural groups and

identify interesting distributions and patterns in the data. Clustering techniques

classify objects into groups based on their similarities. The result of clustering is a

scheme for grouping the data in a given data set or a proposal concerning regularities

or dependencies in the data. With these characteristics, cluster analysis is often used

as a pre-processing technique in data mining.

The K-means method is one of the most popular clustering techniques. K-means

divides the data into disjoint partitions. Each partition is represented by its centre.

Although rule induction and clustering techniques have found several successful

applications, a number of assumptions and constraints in their approaches have

limited their capabilities and reduced their performances. For example, the sequential

induction of rules by covering methods avoids the processing of relationships between

rules. This approach can cause a negative effect on the performance of the resultant

rule set. In clustering, the fixed number of clusters during the learning process of K-

means requires an unreliable initialisation step. This constraint makes the

performance of the method depend on chance. The main aim of this work is to

identify these constraints and then to develop flexible management strategies to

improve the performance of learning techniques.

1.2. Research Objectives

The overall research aim is to develop flexible management strategies for machine

learning and data mining techniques to improve their performance.

2

The main research objectives are:

• To clarify the effects on the performances of learning algorithms of assumptions

about and constraints on their learning approach

• To develop new covering methods with a more general learning approach using a

flexible strategy for managing the rule set.

• To improve existing clustering algorithms with a flexible management strategy.

1.3. Thesis Structure

Chapter 2 briefly reviews Machine Learning and Data Mining. The Data Mining

process is discussed. Rule Induction and Data Clustering are also reviewed in this

chapter.

Chapter 3 introduces the RULES-A, “Rule Extraction System with Adaptivity”, a

covering algorithm following the conquer-without-separation approach The

algorithm can induce the entire rule set simultaneously and has the ability to process

continuous attributes directly. Rule pruning is also applied to improve the

performance of the algorithm and reduce the complexity of the rule set.

Chapter 4 focuses on enhancements to RULES-A. The algorithm is improved with a

capability for handling discrete attributes1. Rule pruning and continuous learning after

1 In this thesis, the term ‘discrete attribute’ is used interchangeably with ‘nominal attribute’ which

means an attribute with an unordered value, such as a label or a symbol.

pruning are embedded in the learning process. Continuous learning after pruning is

examined and then an early stopping strategy is suggested. Learning from data sets

with varying object orders is also applied to find potentially better rule sets. The

performance of improved versions of RULES-A is evaluated on data sets with mixed

attribute types.

Chapter 5 describes improvements to the popular K-means algorithm First, the

Incremental K-means algorithm is introduced to reduce the dependence of the

algorithm on the initialisation of cluster centres. Second, the Two-Phase K-means

algorithm is presented to enable the K-means algorithm to be scaled up for very large

data sets.

Chapter 6 reviews and analyses current methods of selecting the number of clusters

for the K-means algorithm The chapter introduces a new measure to determine the

number of clusters by comparing the clustering results for the studied data and data

with the standard uniform distribution.

Chapter 7 summarises the thesis and proposes directions for further research.

Appendix A discusses the complexity of RULES-A.

Appendix B describes all the data sets used in the thesis.

4

Chapter 2

Literature Review

2.1. Machine Learning & Data Mining

2.1.1. Machine Learning

One of the long-term objectives of Artificial Intelligence (Al) research is the creation

of machine intelligence. If a machine has intelligence, it does not only behave as

though it has knowledge equipped by its creator, but it also learns new knowledge

from the environment by itself to improve its own performance. Knowledge thus

learned by a machine can even improve on human intelligence. Such self-learning is

essential for intelligent objects to exist in a changing world. Therefore, Machine

Learning (ML) is the key to artificial intelligence.

ML consists of techniques to “acquire high-level concepts and/or problem-solving

strategies through examples in a way analogical to human learning” [Michalski et al.

1998]. Through interaction with the environment, an intelligent machine can collect

observations and then generalise them to extract useful knowledge. With this new

knowledge, the intelligent machine can adapt and improve its behaviour according to

changes in the environment.

A framework for ML is shown in Figure 2.1 [Langley, 1996]. In this framework, the

learner (learning in the diagram) collects observations from the environment in order

Performance

Learning

KnowledgeEnvironment

Figure 2.1 - The Machine Learning framework [Langley, 1996].

6

to extract useful information to update its knowledge. The learner uses that knowledge

to perform tasks and interact with the environment. The dashed line, which indicates

an optional link from the knowledge to the learner, means that the learner can use its

learned knowledge to improve its learning strategy.

There are two types of learning. The first type is supervised, in which feedback takes

a large role in guiding the learning process. This feedback is often provided by a

human tutor. The second type of learning is unsupervised, where there is no feedback.

The learner can use unsupervised learning to discover new knowledge by itself.

Classification is one of the main tasks in supervised learning. Learning from a set of

pre-classified examples, classification techniques can categorise new observations

into pre-defined groups. There are two main phases in classification. Firstly, the

classifier learns from the training set of examples labelled with the desired class.

Secondly, the resultant classifier is used to classify previously unseen observations.

The assessment criteria for classification algorithms are summarised in Table 2.1

[Michalski, 1998].

Data Clustering (DC) is a typical unsupervised technique. DC groups similar objects

into clusters. Objects within a cluster are similar to others in the same cluster and

dissimilar from those in different clusters. DC is often used as a preliminary data

analysis tool to discover potential regularities and principles, and to generate

hypotheses concerning the nature of the data. DC is also a popular compression

technique in data communication.

7

Table 2.1 - Assessment of ML classification algorithms [Michalski, 1998].

Criterion Comments

Accuracy Percentage of correct classifications

Efficiency Computational complexity

Robustness Stability against noise and incompleteness

Special requirements Incrementality1, concept drift2

Concept complexity Representational issues

Transparency Comprehensibility for the human user

^ncrementality: capability of refining the previous knowledge.

2Concept drift: capability of changing the meaning of concepts from time to time.

8

2.1.2. Data Mining

Rapid developments in the number as well as the scale of computerised enterprise

systems makes many large information sources available. For example, a global

enterprise may have millions of daily transactions. A busy web site can be accessed

millions of times per day. All these activities are recorded in databases. This logged

information contains useful knowledge, which can be analysed to improve business

activities and direct future developments. At the same time, advances in computer

technologies also bring large increases in computational abilities. There is a

requirement for research to develop technologies to use this computational power to

discover the recorded information. A young branch of computer science, Data Mining

(DM), is a response to this need.

Mitchell [Mitchell, 1999] gave the following definition for DM:

“Data Mining: using historical data to discover regularities and improve future

decisions. ”

With a more application-oriented mindset, Fayyad [Fayyad et al., 1996] stated that:

“Data Mining, which is also referred to as knowledge discovery in databases, means

a process o f nontrivial extraction o f implicit, previously unknown and potentially

useful information, such as rules, constraints, regularities data in databases. ”

Using the recorded information, normally stored in databases, from several areas or

disciplines, DM techniques attempt to discover new knowledge. Learned knowledge

9

can manifest itself in several forms, such as classifiers, predictors, associations or

segmentations of data. DM results are often used in a supportive manner for decision

making or operational improvement. DM has been applied in many practical

applications in biomedical and DNA data analysis, financial data analysis, and

engineering [Bose and Mahapatra, 2001; Grossman et al., 2001; Han, 2001]. Several

potential problems are still waiting for DM research to be applied to them [Schafer et

al., 2001].

With the same purpose of “learning from data”, ML algorithms have a central role in

DM. However, these algorithms must be developed to suit the particular requirements

of DM. The first challenge is the higher level of noise in DM data. The robustness

criterion of an algorithm becomes more important while other criteria may be partly

relaxed. The second challenge is the large size of processed data sets. DM data sets

often have extremely large sizes. Comparing the benchmark data sets of the UCI

(University of California Irvine) DM repository [Hettich and Bay, 1999] and the UCI

ML repository [Blake et al., 1998], DM data sets are typically 10 and 100 times larger

than ML data sets in terms of the number of attributes and the number of objects,

respectively. The size of DM data sets in practice is often in the tera-byte range. With

such sizes, the processing time is extremely long. In addition, with traditional

algorithms, the data set is often assumed to be loaded fully into memory. Although the

memory size in computers has expanded rapidly in recent times, this assumption is

hardly consistent with current increases in data size. Therefore, the application of

probabilistic, sampling, buffering, parallel and incremental techniques to learning

algorithms becomes more important.

10

DM techniques are task-driven and data-driven. Instead of the concentration on

symbolic and conceptual knowledge of ML, most developments in DM are tied

closely to practical applications and the characteristics of their data. For example,

Association Rules is a DM technique that explores relationships between items in

market transactions. The learning algorithm is based on data characteristics that are

often binary and very sparse, to find correlations between items in transactions.

DM may be shown as an iterative process with 5 stages (Figure 2.2) [Chapman et al.,

2000]. A stage can be refined by feedback from later stages.

The first stage, Business and Data Understanding, makes a bridge between the DM

system and the existing database system This is carried out through the interaction

between DM consultants/developers and users. The DM consultants study domain

knowledge about the existing system, including system and knowledge structures,

available data sources, the meaning, role and importance of data entities. Unlike with

traditional problem solving methods in which the problem is defined precisely in the

first stage, DM consultants start with the user’s preliminary requirements and

recommend potential problems that could be solved with the available data. The set of

potential problems is refined and narrowed in later stages of the DM process. Data

sources and specifications, which are related to potential problems, are also

recognised.

Data Preparation consists of using pre-processing techniques to transform the data

and improve its quality to suit the requirements of the learning algorithms. Most

current DM algorithms only work on a single, flat data set, so that data has to be

Business and Data
Understanding

7\ / 7

/ \ 7

Data Preparation

\ \ /

7

7

/ \ k

Data Modelling

k\ /

7

7

/Sk

Post-Processing and
Model Evaluation

k

A

7

k

Knowledge
Deployment

Figure 2.2 - The process model of DM [Chapman et al., 2000].

12

extracted and transformed from distributed, relational or object-oriented databases to

a database with only one table. Pre-processing techniques include:

(1) Missing value processing. Some attribute values of an object can be left empty or

can have a special value *?' representing an “unknown” value. This often happens in

medical data because doctors cannot perform all the same tests on their patients. The

missing value of an attribute of an object can be replaced by the most common value

of the attribute, the average value of the attribute or a value calculated by correlation

with other values of the object.

(2) Duplicate elimination. When combining many sources to form a single table or

reducing certain unnecessary data attributes, some objects could be identical. These

objects can be eliminated in classification tasks to avoid redundancy. However, this

elimination can affect the distribution of data.

(3) Noise reduction. There are various kinds of noise associated with the input

sources, such as those associated with the sensors, the operators or the communication

environment. Noise can be reduced at this stage by applying statistical methods or can

be processed later by the learning algorithms.

(4) Standardisation/Normalisation. A continuous attribute can be normalised, so that

its value is in the range 0 to 1, or standardised, so that its average value is 0 and its

standard deviation is 1. These techniques balance the effects of the attributes on the

learning algorithms. Where there are mixed attributes, weighting techniques can be

used to balance between the effects of continuous and discrete attributes.

13

(5) Discretisation. Some learning algorithms require continuous attributes to be

discretised before their application. A continuous attribute can be discretised in an

unsupervised manner into equal intervals or variable-intervals using statistical

measures. It can be discretised in a supervised manner with respect to the object’s

class label [Dougherty et al., 1995]. Many discretisation techniques have been

developed recently using entropy-based [Fayyad and Irani, 1993], distance-based

[Cerquides and Lopez de Mantaras, 1997], wrapper-based and ‘‘minimum-description-

length principle”-based [Cai, 2001] approaches.

(6) Feature Extraction and Construction. Useful and meaningful information

regarding objects is selected and extracted in the first instance by applying domain

knowledge. However, statistical information, for example the average values of

attributes, and information from combined attributes, made up of two or more

attributes by logical or mathematical methods, are also useful. In addition, feedback

from the learning algorithm in the latter stages of the DM process can require the

extraction of some extra features to improve the overall performance.

(7) Dimension reduction. DM data often has hundreds of attributes. Some useful

feature extraction techniques have been developed to find attributes which are rich in

information. Data also can be filtered to find attributes to suit the characteristics of the

learning task using wrapper-based techniques [Kohavi and John, 1998], mathematical

programming [Bradley et al., 1998b] or principal component analysis [Fedorov et al.,

2003].

14

(8) Instance reduction. The extremely large volume of data involved slows down the

entire DM process. Instance reduction techniques are very useful in decreasing the

amount of data while only slightly degrading the entire performance. Data sampling,

the most common instance-reduction technique, is used to find meaningful

representatives, in terms of frequent objects. It has proved to be a useful tool for

several tasks, such as text classification [Lee and Corlett, 2003], learning robot

navigation [Winters and Victor, 2002], database accessing [Bisbal and Grimson,

2001] and training control systems [Horch and Isaksson, 2001].

The problems identified in the first stage are mainly solved in the third stage, Data

Modelling. The processed data is utilised by the learning algorithms to find hidden

and unknown principles.

The most important task in this stage is the selection of appropriate techniques for the

identified problems. The problems can be classified into one of the main DM tasks

using their declaration. However, each DM task can utilise a number of different

techniques. In addition, a technique often requires some parameters to be specified by

the user based on the characteristics of the data. Therefore, the selection of

appropriate techniques is dependent on the experience of DM consultants and is often

performed in a “trial-and-error” manner.

The learning algorithms also work closely with the pre-processing of the previous

stage. The pre-processing techniques have to be selected carefully to make sure there

is no loss of valuable information for the learning algorithms. Some specific

techniques have to be carried out due to the requirements of the particular learning

15

algorithm. For example, CN2 [Clark and Niblett, 1989, and Clark and Boswell, 1991]

requires continuous attributes to be discretised before applying the algorithm

The fourth stage is Post-processing and Model Evaluation. The preliminary result,

learned from the third stage, is introduced to users in order to validate and refine the

solution strategies. With the combination of identified problems and potential

techniques, several solutions can be induced.

Most of the techniques need some explanation from DM consultants in order for users

properly to understand their results. Certain techniques, such as Neural Networks,

require extra methods to transform their results into understandable forms. Other

techniques, such as Data Clustering, have no common method to evaluate their

results. In such cases, visualisation becomes a useful means for the user to evaluate

the DM results.

The DM results are validated with real data in the evaluation mode, which is carefully

controlled by the DM consultants and users. If the evaluation does not satisfy the

user’s expectations, or other potential solutions are available, or the processing carried

out in earlier stages is shown to be unsuitable, earlier stages in the DM process can be

repeated.

When the evaluation on real data of the DM solutions gains the user’s acceptance, the

learned model is deployed in a suitable and convenient form for users in the fifth

stage, Knowledge Deployment. The final DM solutions are often deployed in web

pages, which can be accessed throughout departments of the user’s company.

16

Authorised users can then apply the deployed model to analyse recent business data to

make business decisions.

Current techniques lack self-updating abilities to reflect changes in the business

context. Any modification requires a repeat of the DM process. Therefore,

commercial DM software is often designed as a flexible environment, in which DM

consultants can access and manipulate data, solve problems by means of learning

models and test solutions. From the result of evaluations and feedback from users,

DM consultants can easily make modifications to the DM process. The DM process is

refined through interaction between DM consultants and users until it reaches the

expectation of the latter.

The close relationship between stages in the DM process is important for DM

research. A DM algorithm cannot be developed in isolation without considering its

application context and is often created to serve a specific purpose. Understanding the

applied context is therefore essential for the development of a DM algorithm. The

techniques applied in previous stages can also affect the results of DM algorithms in a

subsequent stage of the process.

17

2.2. Inductive Learning

Induction is “reasoning from specific cases to general principles” [Forsyth, 1989].

Instead of remembering all experiences, which are increasing rapidly in the

information age, human intelligence uses inductive learning to explore historical

observations and extract a limited number of general principles. Based on these

learned principles, the user can predict what will happen in the future and adopt an

appropriate behaviour.

Rule Induction is the branch of inductive learning in which the induced principles are

in the form of rules such as “IF condition THEN action”. Given data comprising

examples (or “objects”) pre-assigned to desired classes, rule induction algorithms can

learn rule sets, which can be used to classify previously unseen data. The data used to

construct the learning system is often called the training set. A part of the data used to

test the system is often called the test set.

Knowledge in the form of rules is easy for users to understand and verify, and can be

utilised as classification or prediction models. Furthermore, the rules generated

through the learning process can be employed directly in knowledge-based systems to

automate the knowledge acquisition process.

Two main approaches exist to extract rules from data. The first approach, known as

decision trees induction, creates classified trees that are then transformed into rule

sets. The second approach, known as the covering method, creates rules directly from

18

the data in a way that is more natural. Many algorithms have been developed for both

approaches, showing both their efficiency and popularity.

2.2.1. Decision Trees

Decision Trees is one of the most popular methods used to accomplish classification

tasks, and are available in almost all DM commercial software. Decision Trees

organise consequent decisions in a single-parent tree. Although binary decision trees

are often used, decision trees can also be in the form of multi-branch trees.

The most common family of decision trees is ID3 [Quinlan, 1986]. ID3 has been

improved several times by a number of researchers, the most recent descendants being

C4.5 [Quinlan, 1993] and C5 [Rulequest Research, 2001].

The general decision tree forming procedure [Hunt et al., 1966] for a training data set

T starts from a single root node and operates recursively as follows:

• If T satisfies a particular stopping criterion, the node is a leaf labelled with

the most frequent class in the set.

• If the stopping criterion is not satisfied, a decision is made on an attribute,

selected by a specific heuristic measure, to partition T into subsets Ti of

objects. The procedure is repeated on these new subsets.

If it is assumed that there is no noise in the training set, the procedure stops when T

contains objects of a single class. To avoid over-fitting in the presence of noise, the

19

procedure can be stopped earlier by applying pruning techniques. The heuristic

measure plays a major role in deciding the quality of the formed decision tree. It helps

the forming procedure to select the attribute upon which to divide a node, the divided

values of the selected attribute and the number of divided branches.

The decision tree forming procedure utilises the divide-and-conquer approach. After

each decision, the training set is divided into subsets. Each subset is “conquered”

separately from other subsets in any level. With this strategy, the complexity of the

procedure is rapidly reduced. Another advantage of the method is easy understanding

and explanation by visualisation for users.

The divide-and-conquer approach has a number of deficiencies. A similar sub-tree

may exist many times, in particular in problems that are terminated by a fixed-size

tuple of conditions (see section 4.6). The attribute-approach of a decision tree is also

unsuitable for data with a large number of missing values, such as medical data sets.

For such data sets, the incorrect evaluation made on an attribute can mislead the

learning process.

2.2.2. Covering Methods

A proposed classification of current covering methods is shown in Figure 2.3. The

first division is made on the strategy employed to induce rules. The “separate-and-

conquer” approach induces one rule at a time and sequentially forms rules on the

objects not covered by the rule set formed so far. The “conquer-without-separation”

approach forms all rules at once.

20

Covering Method

Rule Level

“Separate-and-
Conquer”

Induce rules sequentially

Data Set Level

‘Conquer-Without-
Separation
c w s , RISE

Induce the rule set as a
whole

“Separate-Conquer-
and-Reduce”

AQ, CN2,...
Induce and evaluate a rule
based on the remaining data

set after the last induction step

“Separate- Conquer-Without-
Reduction”

RULES family
Induce a rule from the remaining data

set after the last induction step but
evaluate on the whole data set.

Figure 2.3 - Proposed classification of covering methods.

21

The second division in Figure 2.3 further specialises methods in the “separate-and-

conquer” approach according to their treatment of data. The first branch, called

“separate-conquer-and-reduce”, induces and evaluates a new rule based on the

remaining data after the last induction step. After each induction step, objects covered

by the rule set formed so far are omitted from the data set. With the other method,

called “separate-conquer-without-reduction”, a new rule is induced from the

remaining data after the last induction step but is evaluated on the entire data set.

After each induction step, objects covered by the new rule are marked “covered”

instead of being omitted.

2.2.2.1. Separate-Conquer-and-Reduce Algorithms

The separate-conquer-and-reduce approach is the most popular branch containing

several algorithms. The general induction procedure for a training set is a recursive

process:

• Form a rule with the highest evaluation measure.

• Omit objects covered by the formed rule.

• Repeat the above two steps until the training set is empty.

The rule forming procedure is different for different covering algorithms. The method

used in the AQ family [Michalski, 1977, Michalski et al., 1986, Michalski et al., 1998,

and Kaufman and Michalski, 1999] is data-driven. Starting with uncovered examples

as seed examples, a sophisticated process is used to produce rule candidates. The

candidate with the best evaluation measure on the training set is selected as the new

rule.

22

Another method to form rules is attribute-value pair oriented. CN2 [Clark and Niblett,

1989, and Clark and Boswell, 1991] uses beam search to find the complex of

attribute-value pairs with the highest evaluation measure. RND [Liu, 1996, and Liu,

1998] uses the discretisation technique Chi2 to find the most frequent attribute-value

pair to initialise the new rule. The ILA family [Tolun and Abu-Soud, 1998 and Tolun

et al., 1999] uses the same strategy as CN2 to form rule candidates but only evaluates

complexes of the same size.

The main advantages of the separate-conquer-and-reduce approach are that the

computations required decrease during the learning process and that it does not need

to take into account the relationship between the rules in the rule set. After each rule

induction step, the size of the training set is reduced. Thus, the complexity of rule

forming and evaluation decreases during the learning process. Later rules are induced

by only considering the current training set without correlation with previously

induced rules. Therefore, the learning process is straightforward.

The separate-conquer-and-reduce approach also has drawbacks. In particular, the

relationship between the rules is not explicitly defined and this could have a negative

effect on both the rule set induction and application phases. During the induction

phase, although a new rule is generated considering only objects not covered by the

rule set formed so far, it may also classify other objects in the training set. This focus

only on objects not covered so far could lead to a rule set with a poor evaluation

measure. At the end of the rule induction phase, the coverage of each rule should be

recalculated on the whole training set. If this is not done, the rule set will not contain

sufficient information to classify objects covered by more than one rule and its

23

performance on the training data will be different from that achieved during the

learning phase.

The rule searching process in the existing implementations of the separate-and-

conquer approach is data-driven and relatively simple. Each object defines a set of

possible hypotheses that will be considered to form a new rule. Because the search

space is limited by the selected object, the rule forming process could lead to a local

maximum (the best rule within the considered set of hypotheses). A backtracking or

pre-initialization strategy has not been investigated empirically in existing separate-

and-conquer methods. To address this problem in RND [Liu, 1996, and Liu, 1998], it

is proposed that the object representing the most frequent pattern be used to initialise

the search. To find this object, a metric is utilised to measure the occurrence

frequency of different patterns [Liu and Setiono, 1995]. However, this metric has a

high complexity that is a function of the number of possible values for each attribute.

There are also non data-driven algorithms. For example, ILA [Tolun and Abu-Soud,

1998] and ILA2 [Tolun et al., 1999] induce rules by grouping them in layers

depending on the number of conditions included in them. There is an unsolved

problem concerning areas covered simultaneously by rules in the same layer in these

algorithms.

Another problem with covering methods employing the separate-and-conquer

approach is the fragmentation of the example space into small areas covered by

different rules [Domingos, 1996a]. For example, if noise exists in the training data, an

early-induced very general rule for one class may break the object space of different

classes into many small sub-areas. This could lead to the creation of a large number of

24

more specific rules. By applying pre-pruning techniques, this problem could be

avoided.

2.2.2.2. Separate-Conquer-Without-Reduction Algorithms

The separate-conquer-without-reduction approach was first established at Cardiff

University with the RULES family of algorithms [Pham and Aksoy, 1995a; Pham and

Aksoy, 1995b; Pham and Dimov, 1996; Pham and Dimov, 1997]. The general

induction procedure for a training set is a recursive process as follows:

• Form a rule to classify a number of uncovered (unmarked) objects which

has the highest evaluation measure on the entire training set.

• Mark objects covered by the formed rule.

• Repeat the above two steps until all objects of the training set are marked.

Rules formed using this approach are better evaluated because of their use of the

available information. Although the rule forming procedure can select from a

decreased set of candidates during the learning process, the rule evaluation has a

constant complexity. The relationship between rules is implicitly represented in the

ratio between marked and unmarked objects covered by a new rule.

The evaluation of rules on the entire data set, including marked and unmarked objects,

can lead to overlapping rules due to a partial correlation between object attributes.

The performance of the rule set is not affected, but it may contain more rules than

required to cover the training data. The ratio between marked and unmarked objects

covered by a new rule should be taken into account when assessing its performance.

25

2.2.2.3. Conquer-Wtihout-Separation Algorithms

Algorithms employing the conquer-without-separation approach induce rules in

parallel instead of sequentially as is the case in separate-and-conquer methods.

Obviously, this approach has a higher complexity due to the simultaneous induction

of a combination of rules. The conquer-without-separation approach forms the whole

rule set simultaneously. Algorithms that apply this approach must not only form rules

covering objects from the same class but also maintain the relationship between rules

of different classes. In addition, the balance between the quality of the rules generated

and the compactness of the rule sets is maintained.

In the CWS algorithm [Domingos, 1996a], a general-to-specific search strategy is

carried out by starting with the empty rule set and then adding a condition to a rule or

by adding a new rule to the rule set in order to increase the rule set accuracy. Each

new rule is formed either by specialising further an existing rule or by creating a

completely new rule. The learning process is stopped if the accuracy of the rule set

does not increase. However, in practical problems, during the specialising process, the

rule set accuracy may temporarily decrease. The requirement of a monotonic increase

in accuracy after each specialising step limits the search capabilities of the algorithm

Another algorithm, RISE [Domingos, 1994], employs a specific-to-general search by

considering the training set as an initial rule set that is then generalised by removing

conditions from the existing rules or removing identical rules from the rule set. The

learning process is stopped if the accuracy of the rule set does not increase. This

26

method is complex because of the initial size of the rule set. It expands the nearest

rule to cover an object instead of considering of the most general rule for the class of

the object. During this process, the consistency of the newly formed rule is not

maintained. Thus, the relationship between rules in the rule set is not maintained

efficiently with this method.

2.2.3. Pre-processing techniques for covering methods

2.2.3.1. Discretisation methods

Existing covering algorithms can process only symbolic or discrete attributes directly.

To process continuous attributes, their values must be discretised first. Those

attributes are then treated as discrete attributes.

Some problems are associated with this discretisation step. The conversion of

continuous attributes into discrete attributes restricts the number of value-ranges

which can be used and, as a result, limits the flexibility of the induction process. The

discretisation technique, if applied as a preprocessing step, may unwittingly remove

some valuable information from the training data [Ventura and Martinez, 1995a; and

Ventura, 1995b]. In addition, by discretising each attribute independently, any

existing high-order correlation between attributes may be reduced [Ventura and

Martinez, 1995a; Ventura, 1995b].

27

If supervised discretisation is applied, to avoid creating a large number of intervals,

current algorithms accept some loss of data by setting high thresholds [Dougherty et

al, 1995]. The loss of data during the discretisation process may affect the quality of

the generated rule set.

If unsupervised discretisation is performed and some objects belonging to different

classes are close to one another in Euclidean space, this could have a detrimental

effect on the induction capability of the algorithm The reason for this is that the class

of the objects is not taken into account during the discretisation process.

For example, all discretisation algorithms degrade significantly the performance of C4

[Quinlan, 1993] when compared with the results obtained when techniques for direct

processing of continuous attributes are applied [Ventura and Martinez, 1995a]. In

contrast to decision-tree techniques, at the time this work was carried out, there was

no covering algorithm that could process continuous attributes directly. If such

capabilities are embedded in these algorithms, this will improve the quality of the

generated rule sets.

2.23.2. Scaling-down techniques

Scaling-down techniques, such as data clustering or sampling, can be used before the

application of induction algorithms to reduce the number of objects considered by the

learning process [Pham et al., 2000], thus reducing the complexity of the induction

process.

28

The use of data clustering algorithms that are not appropriate, however, could

significantly reduce the efficiency of the inductive learning algorithms. In particular,

there is a difference between the Euclidean surface defining a sub-space when data

clustering and when covering methods are applied. For example, hyper-polygons or

hyper-ellipses are respectively created by these two techniques. Questions also arise

regarding the selection of appropriate parameters when clustering is applied to real

problems. The difference between the optimisation criteria that drive data clustering

methods in minimising the distortion, and those employed by covering methods in

maximising the generality and accuracy of rule sets, must be considered.

Data clustering is also an unsupervised technique, so that, in certain cases, objects

belonging to different classes can be grouped together. This may decrease the

efficiency of the subsequent induction process.

2.23.3. Rule Representation

The sub-space defined by each rule is a hyper-rectangle, in which, for discrete

attributes, each dimension in Euclidean space is either one unit or an entire axis (when

the attribute is not present in the antecedent of the rule). To cover all objects in the

training data, it may be necessary to form rules that cover a small number of objects.

In many cases, such rules could be considered as accounting for noise, by not paying

proper attention to the rules covering objects close to them

The antecedent part of each rule that is formed by applying the separate-and-conquer

approach contains a conjunction of conditions, called attribute-value pairs. This rule

29

representation technique, however, does not utilise the specific characteristics of

continuous attributes. By defining appropriate value ranges for continuous attributes,

it is possible to reduce the number of rules created. Unfortunately, the use of uniform

intervals to discretise continuous attributes often limits the induction capabilities of

covering algorithms.

A different rule representation format is proposed by Domingos [Domingos, 1996b,

and Domingos, 1996c]. In this format, there are conditions for each attribute in the

antecedent part of the rules. In particular, these conditions could be an attribute-value

pair, a range of values for continuous attributes or a condition that is always satisfied.

This rule representation technique is more flexible and allows more generic rules to

be formed.

2.2.3.4. Rule Pruning

Two types of rule pruning techniques exist [Fumkranz, 1997]. The first technique is

called pre-pruning. It is applied to limit the search space of separate-and-conquer

methods. This technique uses a threshold to stop the rule forming process when a

particular measure for rule evaluation is not met. A prerequisite for applying this

technique is for the evaluation measure to have a monotonically decreasing value

during the learning process. As mentioned previously, the rule evaluation in the

separate-and-conquer approach is limited to only a sub-set of objects in the training

set. Therefore, it does not assess correctly the classification capabilities of the formed

rules. Current evaluation measures [Fumkranz, 1999] do not take these factors into

account.

30

The second technique is known as post-pruning. It is applied to the induced rule set to

make it simpler and more general. This pruning is carried out on the whole rule set

instead of on each rule individually, in a similar way to the rule evaluations performed

in the conquer-without-separation approach. This technique may be considered a

simplified conquer-without-separation method that starts from a given rule set, which

is then simplified by either removing conditions or complete rules from it. These two

removal operations simplify the rules and make them more general. From a geometric

viewpoint, the two operators have a completely different effect on the rule set. The

first operator removes conditions from rules, enlarges the covering area of the rules,

so that it increases the coverage of the rule set and hence decreases the percentage of

unclassified objects. However, it also increases the percentage of misclassified

objects. The second operator removes complete rules from the rule set, so that it

decreases the coverage of the rule set and as a consequence of this, increases the

percentage of unclassified objects. Thus, the effect on the accuracy of the rule set of

these two removal operators is different.

Two existing post-pruning algorithms, REP [Brunk and Pazzani, 1991] and GROW

[Pagallo and Haussler, 1990], perform exhaustive search and do not take into account

the rule characteristics. This increases significantly the computational complexity of

these algorithms [Cohen, 1995; Furnkranz, 1997]. The other existing post-pruning

algorithm, IREP [Fumkranz and Widmer, 1994; Cohen, 1995], is built into the rule

forming process of the separate-and-conquer approach, and therefore cannot be used

as a stand-alone post-pruning technique.

31

2.2.4. The covering methods developed in this research

Of the three main types of covering methods, the separate-conquer-and-reduce

approach is the most restricted. The number of rules in the rule set monotonically

increases during the induction phase without any reconsideration strategy. The

relationship between rules is not explicitly defined in this approach.

Formed rules from the separate-conquer-without-reduction approach are better

evaluated in terms of the available information. However, the relationship between

rules is not appropriately processed.

The conquer-without-separation approach is the most flexible. There is no limit on the

size of the rule set. Rules can be added to or omitted from the rule set during the

induction phase. Relationships between rules are maintained in terms of the accuracy

of the entire rule set. However, the size of the rule set for current algorithms adopting

this approach only increases or decreases monotonically.

The use of separate and inappropriate methods of pre- or post-processing techniques

can affect the overall performance of the induction method. These techniques should

be related to the approach of the main learning algorithm

Chapter 3 introduces a new conquer-without-separation algorithm, Rule Extraction

System with Adaptivity (RULES-A). The size of the rule set is flexibly managed.

Rules can be added to or omitted from the rule set during the induction phase. A

32

pruning technique is embedded in this method. Another distinguishing feature of

RULES-A is that this algorithm processes continuous attributes directly, so that a

discretisation step is not required.

Chapter 4 describes how RULES-A is improved by adding the ability directly to

process discrete attributes and automatically to prune rules. The continuation of

learning after pruning and an early stopping strategy are added to the method to

improve its learning speed and accuracy.

2.3. Data Clustering

As previously stated, data clustering (DC) is an important data exploration technique

for grouping similar physical or abstract objects. The technique allows objects with

common characteristics to be lumped together in order to facilitate their further

processing. DC is an unsupervised technique that generates hypotheses based on the

provided unlabelled objects. This makes this method a very attractive data processing

technique for a wide range of applications [Romesburg, 1990].

2.3.1. Overview of DC approaches

A definition of DC terms is needed before applying the technique to practical

problems. The following aspects have to be considered based on the nature of the

problem

33

(a) Object representation. An object’s meaningful characteristics are extracted by

using a Feature Extraction technique. Selected attributes are then considered by Data

Preparation techniques such as Feature Selection, Data Cleansing, Missing Values

Processing, etc.

(b) Similarity measurement. Based on selected attributes representing an object, a

distance metric is selected to measure the similarity between two objects. The

Euclidean distance is the most common distance metric utilised.

(c) Cluster definition. A cluster’s characteristics, for example its shape

(convex/arbitrary) and cluster’s border (line/curve, clear/fuzzy), should be specified.

The relationship between clusters (overlapping/disjoint) and the similarity

measurement of clusters also have to be specified.

(d) Clustering criterion. The clustering criterion can be single/multi-criteria

optimisation or the building of a clustering structure (tree, graph or list).

(e) Number of clusters. The way this parameter is determined depends on the method

and the characteristics of the data.

(f) Clustering validity and cluster validity. The method of validating a cluster set

and a cluster has to be determined. The test strategy is also selected correspondingly.

(g) Methods to understand, explain and apply the clustering results.

34

These seven aspects have to be considered closely. There are many solutions. This has

led to more than 10 different approaches in DC [Han, 2000; Berkhin, 2001; Duda et

al., 2001; Grabmeier and Rudolph, 2002]. In this thesis, three main types, Hierarchical

Clustering, Partitioning Clustering and Probabilistic Clustering, are reviewed.

The first aspect, object representation, is common to most of the methods and is not

analysed in this section.

2.3.1.1. Hierarchical Clustering

Cluster representation: A cluster is a sub-tree of sub-clusters and has only one

“father”. A leaf node is a data object. The cluster’s shape is not pre-specified. Clusters

are disjoint. A cluster relates to its siblings by a linkage metric [Kaufman and

Rousseeuw, 1990].

Clustering criterion: Building of a dendrogram (a cluster hierarchy or a tree of

clusters) is achieved by minimising the similarity between sibling nodes. An example

dendrogram is shown in Figure 2.4.

Number of clusters: This can be a predefined parameter or a user’s decision based on

an inspection of the dendrogram.

Clustering validity and cluster validity: The determination of validity is achieved

by visual examination of the results.

Main approaches: Agglomerative (bottom-up) and divisive (top-down) [Jain and

Dubes, 1988; Kaufman and Rousseeuw, 1990]. An agglomerative clustering

algorithm starts with all leaf clusters (one-object clusters) and recursively merges two

or more most similar clusters. A divisive clustering algorithm starts with one cluster

including all objects and recursively splits the most appropriate leaf cluster to two or

more sub-clusters.

Advantages:

• Easy understanding and application for users.

• Flexibility regarding the level of granularity.

Disadvantages:

• Vagueness of termination criteria.

• High complexity, 0(n2) with n being the number of examples.

• Greedy forward or backward computation.

36

Cluster2
C l u s t e r l

DE

Similarity level

A I) G

Figure 2 .4 - A data set and the dendrogram obtained using a hierarchical clustering

algorithm [Jain et al., 1999].

37

2.3.1.2. Partitioning Clustering

Cluster representation: A cluster is a partition of data and represented by its centre.

An object belongs to the nearest cluster measured by the distance between the object

and the cluster centre. The cluster’s shape is a convex polygon. Clusters are disjoint.

Clustering criterion: The minimising of the inter-cluster similarity measurement

(distortion) and/or the intra-cluster similarity measurement.

Number of clusters: This can be a predefined parameter or indirectly specified by

other parameters.

Clustering validity and cluster validity: There are many methods of determining

validity.

Main methods: The main partitioning clustering methods are K-means, PAM,

CLARA and CLARANS.

K-means [MacQueen, 1967] is the proto-typical partitioning clustering algorithm

Each cluster is only represented by its centre, which is the mean of objects belonging

to the cluster. The number of clusters is the only predefined parameter of the method.

The criterion for K-means is the minimising of the distortion between objects and

cluster centres. K-means is relatively efficient with its complexity varying linearly

with the number of objects.

38

PAM (Partitioning Around Medoids) [Kaufman and Rouseeuw, 1990] uses an object

as the centre of a cluster. The algorithm attempts to swap a centre object with a non

centre object to improve the cost measure. This recursive swapping causes PAM to

have a high complexity.

CLARA (Clustering LARge Applications) [Kaufman and Rouseeuw, 1990] extends

PAM with a statistical measure to deal with larger data sets. However, the algorithm

still has high complexity and local solutions.

CLARANS (CLustering Algorithm based on RANdomised Search) [Ng and Han,

1994] improves CLARA with random search strategies. The algorithm is more

efficient and scalable than PAM and CLARA but depends on random factors.

2.3.1.3. Probabilistic Clustering

Cluster representation: A cluster is a probability distribution, often a multi-variable

normal distribution. Clusters have unclear borders and can overlap. An object belongs

partially to a cluster related to the probability that the cluster can generate the object.

An object belongs only to the cluster with the largest probability when applying the

clustering result.

Clustering criterion: Clusters are formed by maximising the overall likelihood,

which is the probability that the data can be drawn by the set of generators having a

normal distribution.

39

Number of clusters: This is predefined before applying the algorithm and then

determined by probabilistic measures, such as MDL (Minimum Description Length)

or BIC (Bayesian Information Criterion), based on the clustering result.

Clustering validity and cluster validity: Using artificial data generated by a number

of probabilistic generators and setting the number of clusters equal to the number of

generators, the cluster validity is determined based on the difference between a cluster

and a generator. The clustering validity obtained is the summation of each cluster’s

validity.

Main methods: The most general method is EM (Expectation-Maximisation). EM is

a two-step iterative optimisation. Step (E) estimates a predefined number of

probabilistic expectations for the data. Step (M) approximates a mixture model for the

estimated expectations. The model is refined by iterations over the data. Because of

the high complexity of EM, there are variations such as SNOB [Wallace and Dowe,

1994] using the MML principle, AUTOCLASS [Cheeseman and Stutz, 1996] relying

on Bayesian methodology and MCLUST [Fraley and Raftery, 1999] using a

hierarchical mixture model.

The above overview of the three main approaches shows that DC methods are based

on different hypotheses, models and objectives. With the same data, a cluster

according to one method may not be regarded as a cluster by other methods and vice

versa. Finding a common clustering validation strategy for DC methods becomes an

impossible task. Thus, each method needs an appropriate clustering validation

strategy suitable for its approach.

40

The selection of a suitable DC method for a practical problem is a difficult process.

Based on the characteristics and the expectations of the problem, the aforementioned

seven aspects need to be studied carefully step by step to find the most suitable

method. Any incorrect step in this investigation can cause ineffective or unexpected

DC results.

2.3.2. K-means

K-means clustering (Vector Quantisation) is one of the most popular data clustering

methods because of its simplicity and computational efficiency. The computational

effort required to form the clusters grows linearly with the data set size. When applied

to small or medium size data sets, K-means clustering gives better results than other

methods in terms of clustering performance and computational time [Bilmes et al.,

1997].

The K-means method is applicable only to data sets with numerical attributes. The

Euclidean distance is employed to measure the distance between objects. The main

steps in the algorithm are shown in Figure 2.5.

There are a number of different implementations of the K-means method. For

example, Linde-Buze-Gray (LBG) is one version of this method in which a batch

update mode is applied [Fritzke, 1997]. Other implementations of the method,

ISODATA {Kaufman and Rousseeuw, 1990] and MAXNET [Pao, 1989], restrict the

Step 1: Choose K arbitrary objects for K cluster centres.

Step 2: Assign each object in the training set to the closest cluster and update the

centres of the clusters.

Step 3: If the clustering criterion is satisfied (the cluster centres do not move), the

algorithm stops.

Otherwise, go to Step 2.

Figure 2.5 - The original K-means algorithm

42

clusters diameters and introduce flexibility in specifying the number of clusters.

Another version of the K-means method [Theiler and Gisler, 1997] employs a

contiguity characteristic to improve the algorithm performance in some specific

applications.

K-means clustering has been used as a clustering method in many application areas.

For example, this method could be employed for:

• Image segmentation and compression [Theiler and Gisler, 1997; Chinrungrueng

and Sequin, 1995].

• Grouping image voxels [Gee et al., 1999].

• Initial clustering before applying more sophisticated iterative methods [Hansen

and Larsen, 1996].

• Analysing a robot’s trajectory [McGovern, 1998].

• Analysing speech and handwriting feature vectors [Cook and Robinson, 1995;

Kosmala et al., 1997].

• Grouping machined parts into families in cellular manufacturing system design

[Josien and Liao, 2002; Lozano et al., 2002].

2.3.2.1 Improving K-means Performance

Although the K-means method has demonstrated a number of advantages over other

DC techniques, it also has drawbacks. In particular, it often converges at a local

optimum and, therefore, acceptable results can be found only after several iterations.

The local optimum problem has been studied extensively by a number of researchers

[MacQueen, 1967; Bottou and Bengio, 1995; Bilmes et al., 1997; Pena et al., 1999].

43

Another problem with this method is that it requires the number of clusters to be

predefined. This especially becomes a very important issue when DC is used as a data

exploration technique. In such applications, it is very beneficial for the algorithm to

be capable of automatically identifying the number of clusters depending on the

distribution of objects in a particular problem space. There have been some attempts

to apply the Bayesian Information Criterion (BIC) or Information Gain measure as a

pre-defined parameter to help decide the number of clusters but this may lead to

incompatibility with the clustering criterion of K-means.

In recent years, many improvements have been proposed and implemented in the K-

means method. A number of researchers have proposed different techniques to

improve its convergence speed [Al-Daoud, et al., 1995; Bottou and Bengio, 1995;

Alsabti, et al., 1998; Pelleg and Moore, 1999; Castro and Yang, 2000 and Kanungo, et

al., 2002]. The effect of finite sample size on the K-means method was studied

[Bermejo and Cabestany, 2002]. To obtain better results, other researchers [Al-Daoud,

et al., 1995; Epter, et al., 1999 and Bradley and Fayyad, 1998] modified the

initialisation procedure by presenting the algorithm with data collected using a

density-based approach. Again, to improve performance, Fritzke [Fritzke, 1997]

suggested a new jumping operation to facilitate the algorithm’s convergence and

assist it in escaping from local minima. In the same direction with the Fritzke’s work,

the utility index is used in Patane’s and Russo’s work [Patane and Russo, 2001].

Chinrungrueng and Sequin [Chinrungrueng and Sequin, 1995] proposed a new

updating method introducing a restriction hypothesis about the problem’s underlying

distribution. The stochastic relaxation scheme was applied to K-means to improve its

performance [Kovesi et al., 2001].

The flexibility of K-means is limited by its use of a fixed number of clusters

throughout the learning process without considering the characteristics of the data.

From the beginning, the number of clusters is selected arbitrarily and clusters are also

initialised randomly. These factors may cause inappropriate positioning during the

learning process.

2.3.2.2. Scaling up K-means for large data sets

Although the complexity of the K-means algorithm increases linearly with the size of

the data, it requires a number of iterations to refine the clustering results. To speed up

the access to data, the data is stored in computer memory before applying the

algorithm to it. However, the complexity of the problems to be tackled increases with

the size of data sets. Therefore, it becomes infeasible to load the complete data set

into the memory. This necessitates the data to be stored on media with relatively slow

read access, such as disks or tapes. Taking into account the iterative nature of K-

means, the processing of large data sets requires new solutions.

One possible solution to this problem is an incremental accumulative strategy for

carrying out the clustering task. Such solutions have already been investigated by

some researchers. For example, Bradley [Bradley et al., 1998] suggested a scalable

framework for clustering. In particular, the clustering model is modified as shown in

Figure 2.6. The “scaled” version of the algorithm uses a buffer to load only part of the

data into memory and then after each iteration to refine the accumulated knowledge

so far. In the proposed strategy, the accumulated knowledge, in the form of statistical

45

Learning
Model

'ermination
CriterionBufferDB

Accumulated Knowlege
(Statistical Information,

Models)

Final
Solution

Generalise
Stored Models

Figure 2.6 - Bradley’s scalable framework for clustering [Bradley et al., 1998].

46

information or models, is used simultaneously to initialise the new learning model and

the buffer. The Termination Criterion is satisfied when the algorithm processes the

whole data set or the user terminates the execution. When the algorithm stops, the

accumulated knowledge is generalised to create final solutions. This strategy has

already been applied successfully to the K-means algorithm [Bradley et al., 1998;

Famstrom et al., 2000].

To cope with large data sets, K-means should process them in increments and carry

out refinements of the formed partitions in a cumulative mode. The algorithm stores

the new information in a temporary buffer and then validates and refines the obtained

learned knowledge so far. The balance between already learned and new knowledge is

a key factor in determining the performance of the scaled version of K-means when

comparing it with the original algorithm This balance depends on the similarity

between the distributions of objects in the buffer and the data set. In general, by

improving the representation of a data set in the buffer, the performance of the scaled

version of the algorithm is also improved and becomes comparable with that of the

original algorithm

The distortion of a cluster is measured by the sum of the squared Euclidean distances

between its centre and the objects belonging to it. At the same time, the distortion of a

cluster set is the sum of the distortions of its clusters. When very large data sets are

processed, each cluster will contain a large number of objects. The analysis of data

starts with their normalisation and then the Euclidean distance between a cluster’s

centre , and its objects is limited to a predefined range. Because of this limitation, in

case of very large data sets, the distortion of a cluster is more dependent on the

47

number of objects. Therefore, in such cases, the number of objects belonging to any

particular cluster has a higher impact on the distortion of a cluster set and hence on

the clustering result.

To achieve a good representation of a data set in the buffer, random sampling is

applied. However, there are cases when this technique cannot be applied or is

computationally expensive to implement [Bradley et al., 1998]. Thus, in such cases,

the buffer will contain only a continuous data section and the distribution of objects in

it cannot be considered a true image of the data set. In addition, when large data sets

are processed, the distribution of objects in the buffer does not reflect their true

distribution in the problem domain, which has an impact on the performance of the

algorithm In the worst case, the buffer may consist of objects belonging to only one

expected cluster. The scaled version of K-means should address these balancing

problems.

Bradley’s scaled version of K-means [Bradley et al., 1998] uses several complex

compression schemes to represent the knowledge in the buffer. Three sets of

information are employed. The first set called the discard set is used to store objects

that are unlikely to move to a different cluster and are created by the primary data

compression scheme. The second set is called the compression set that contains

objects created from the accumulated knowledge in the buffer using a secondary

clustering scheme. The third set called the retained set consists of objects to be kept in

the buffer as regular objects. From the objects stored in these three sets, sufficient

statistical information could be derived that is representative of the entire data set.

48

The initialisation of the buffer is very important for Bradley’s scaled version of K-

means. In the proposed approach, when random sampling is not available to seed the

compression schemes in the initial stages of the clustering process, it is suggested that

“true random samples” be obtained by some other means. However, finding a true

random sample in a very large data set is also a high complexity task. In general, the

initialisation of a new model for the K-means algorithm and the balancing issues

concerning the selection of objects to be stored in the buffer are not addressed

adequately by Bradley and are still open problems.

Because of the dependence on the initialisation of the K-means algorithm, Bradley’s

scaled version produces multi-solutions instead of generalising the accumulated

knowledge to produce a single solution. By considering a cluster as an object

weighted by its number of objects, Famstrom et al. [2000] proposed to generalise the

accumulated knowledge into the final cluster set.

At the same time, it should be remembered that the application of compression

schemes increases the algorithm’s complexity. Famstrom et al. [2000] showed that

Bradley’s scaled version is slower and performs worse than the original K-means

algorithm on the data sets used for benchmarking. However, there are other factors

such as the selection of parameters for the compression schemes, the buffer size and

the data accessing speed that could affect the algorithm performance.

Famstrom et al. [2000] suggested a simple scaled version of K-means based only on

the retained set of objects called the discard set. Each object in the retained set is a

cluster created in one of the previous iterations and treated as a regular object

49

weighted by the number of objects belonging to it. Thus, the K-means algorithm is

applied to the buffer, which consists of the retained set and new objects, and the result

is used to update the retained set for the next iteration. For the first iteration, the K-

means algorithm is initialised randomly. Then, in subsequent iterations, the cluster

centres from the last iteration are used to initialise the K-means algorithm The weight

of regular objects in the buffer is used to represent the accumulated knowledge.

Managing the relationship between the accumulated and new knowledge is an open

issue for this scheme, especially when the set of objects stored in the buffer are not

representative for the data set as a whole.

2.3.2.3. Research on the K-means method in this study

Chapter 5 introduces two new versions of K-means to address its deficiencies. The

Incremental K-means algorithm can induce the optimal clustering result with flexible

management of the number of clusters during the learning process. The Two-Phase K-

means algorithm uses a buffer to scale K-means up to very large data sets. The

flexible management of the number of clusters during each phase is also used in this

algorithm

Chapter 6 reviews current selection methods for the number of clusters for K-means

in several research papers. Then, factors which affect this selection are studied. A new

method for choosing the number of clusters for K-means is introduced. The

evaluation of the proposed method is based on the comparison between the data

distribution and the standard uniform distribution. Users can flexibly select a suitable

50

number according to the result of the comparison. The new method is analysed on

several data sets by inspection.

2.4. Summary

This chapter reviews the main aspects of ML and DM. The DM process is described

and its stages are discussed briefly. Two principal branches of ML and DM, Induction

Learning and Data Clustering, are reviewed along with a number of algorithms for

each branch. Research directions for these two branches are also described.

51

Chapter 3

Rule Extraction System with Adaptivity

(RULES-A)

3.1. Preliminaries

This chapter introduces a new covering algorithm, Rule Extraction System with

Adaptivity (RULES-A). RULES-A follows the conquer-without-separation approach.

The algorithm forms the whole rule set simultaneously instead of a single rule at a

time. RULES-A has the ability to process continuous attributes directly so that the

data does not need to be pre-processed.

The size of the rule set in RULES-A is flexibly managed. Rules can be added to or

omitted from the rule set during the induction phase. The learning strategy of the

algorithm is object-oriented. When a new object is presented, depending on the

classified state of the object, rules in the rule set can be updated. Rules are checked

for their consistency based on their overlapping covering area instead of an evaluation

on the training set.

Pruning in RULES-A is split into two phases. First, small rules that cover few objects

are pruned from the rule set to improve its quality. Then, rules are simplified to make

them more general.

52

3.2. Algorithm Description

RULES-A is a conquer-without-separation algorithm and, like all algorithms

implementing this inductive learning strategy, it forms the whole rule set

simultaneously, rather than each rule separately. The evaluation measure used to

guide the rule formation is based on an assessment carried out on the whole rule set.

Another distinguishing feature of RULES-A is that this algorithm processes

continuous attributes directly, so that a discretisation step is not required.

r

The rule format in RULES-A is similar to that proposed by Domingos [Domingos,

1996c]. In particular, in the antecedent part of the rules, there are conditions for each

attribute. These conditions could be attribute-value pairs, ranges of values for

continuous attributes or conditions that are always satisfied. These always-satisfied

conditions are used during the rule forming process and then deleted before the rule

set is ready for use.

The RULES-A algorithm is described in Figures 3.1 to 3.4. The rule set forming

process is carried out in three phases (Figure 3.1). In the first phase (Figure 3.2),

RULES-A forms a rule set that covers the training data with a minimum number of

rules. Each rule formed at this stage contains all attributes in its conditional part. In

phase 2 (Figure 3.3), the rule set formed so far is pruned to remove very specific rules

(rules with minimum coverage). Then, in phase 3 (Figure 3.4), the rule set is

simplified to create the final set of rules.

53

Phase 1 - Induction: Formation of a rule set that covers all training examples
with minimum number of rules.

Phase 2 - Pruning: Removal of the most specific rules from the rule set.
Phase 3 - Rule simplification.

Figure 3.1 - The three phases of Rule Extraction System with Adaptivity

(RULES-A).

Step 0. Initialisation of the rule set (Empty rule set).
Step 1. Initialisation of the training set.
Step 2. One epoch:

2.1. If the training set is empty, go to step 3.
f 2.2. Remove randomly one object X from the training set.

2.3. If X is misclassified by the rule set,
divide the misclassifying rule into 2 new rules and compute their
estimated capacities and coverage.
Add a new rule which can cover X, go to step 2.1.

2.4. Find a rule R for the same class as X that covers or can be expanded
to cover X. If there is more than one rule, the rule with the highest
evaluation measure is selected.
If X is covered by an existing rule R, update its capacity and

coverage.
If R can be expanded in order to cover X, R is modified and its

capacity updated.
Go to step 2.1.

2.5. If X cannot be covered by an existing or expanded rule, create a new
rule and add it to the rule set. Go to step 2.1.

Step 3. Rule set compacting:
3.1. Update the coverage and capacity of all rules not modified in this

epoch.
3.2. Remove rules in the rule set that have a capacity equal to 0.
3.3. If the rule set has undergone any changes in this epoch, go to step 1.

Epoch: one iteration over the training set.
Rule capacity, the number of objects in the training set covered by a rule.
Rule coverage: the area in the object space covered by the rule.

Figure 3.2 - Phase 1 - Induction.

54

Input: The resultant rule set from phase 1, the minimum and the maximum values
of the pruning threshold and the pruning set.

Step 1: Initialise the pruning process with a threshold equal to the specified
minimum value.

Check the initial rule set on the pruning set. This initial rule set and its
accuracy are stored.

Step 2: Create a new rule set from the initial rule set that contains only rules with a
capacity above the current pruning threshold.

Check the new rule set on the pruning set; if the new rule set has a higher
accuracy than the accuracy of the stored rule set, replace that with
the new rule set.

Step 3: Increase the threshold.
If the new threshold is smaller than the specified maximum value
Then Go to Step 2
Else output the stored rule set and stop the pruning process.

Figure 3.3 - Phase 2 - Pruning.

f

Input: the rule set created after phase 2.
Create a new rule set that is the same as the input rule set.
For each rule in the new rule set:

For each rule condition:
Check that omitting this condition from the rule does not cause

overlapping rules for different classes in the input rule set.
If the rule is satisfied then remove this condition.

Output: The simplified rule set.

Figure 3.4 - Phase 3 - Rule simplification.

55

The algorithm starts with an empty rule set. When a new object is presented to the

algorithm, if it is the first object, a new rule is created with all of the attribute-value

pairs of the object as conditions. The rule is added to the rule set. Otherwise, the

following procedure is carried out. First, the new object is checked to see if it is inside

the hyper-rectangle of a rule for a class different from that of the object (Figure 3.5.a).

If this is the case, that rule will be split into two new rules in order to avoid

misclassifying the object. In this chapter, only the splitting of rules with continuous

attributes is discussed. Handling discrete attributes will be the subject of chapter 4.

To split a rule, a condition is selected corresponding to a continuous attribute with the

widest value range (Figure 3.5.b). This was found empirically to give the best result

for the data sets tested. The distance 8 is a predefined constant. Initially, the number

of objects covered by each of these two newly created rules is only an estimate. In

particular, the total number of objects covered by the initial rule is divided between

the two new rules proportionally to their covering areas. At the end of each epoch

(one iteration over the training set), this estimate is replaced by the real number of

objects covered by each rule in the rule set. Also, to cover the new object, a rule is

created and added to the rule set.

If the new object is not misclassified by the current rule set, all rules for the same

class as that of the new object are checked to see whether they cover the object or can

be expanded to cover it. A rule is considered expandable if its consistency can be

maintained during the expansion operation. If there is more than one rule that can

cover the new object, the rule with the highest evaluation measure will be expanded.

56

(a) (b)

Figure 3.5 - The splitting operation.

X, O: objects of classes X and O, respectively

e: a predefined parameter

□ : hyper-rectangle of a rule

57

If no rule can be expanded, a new rule will be created to cover the object and added to

the rule set.

The consistency of the rule set is verified constantly during the rule forming process.

In particular, the rules in the rule set are continuously checked for overlapping

regions. During phase 1, the rule set contains only consistent rules. The computational

complexity of this process based on the size of the rule set is lower than if it is carried

out over the whole training set.

The number of rules covering objects belonging to the same class is minimised

through a Rule Compacting operation. This operation improves the evaluation

measure of the rules. This measure evaluates the number of objects that each rule

covers. When an object is covered by more than one rule, the rule with the highest

evaluation measure is selected to classify it. Throughout the iterative rule forming

process, the objects covered by rules with a lower evaluation measure are attracted by

other rules with a higher evaluation measure. During each epoch, the area of the

object space covered by each rule is made more compact. In this way, some rules

could become fully covered by other rules in the rule set and thus become redundant.

RULES-A refines the rule set over a number of iterations over the training set. At the

end of each epoch, each rule in the rule set will be resized to the smallest hyper

rectangle that covers all of its objects. Rules that do not cover any object will be

removed. If the rule set is not modified after an epoch, phase 1 of RULES-A is

considered complete.

58

The resultant rule set from phase 1 is further processed in phase 2 to make it more

accurate and general. Before starting the rule forming process, the initial training set

is split into a training set and a pruning set with a ratio of 70 to 30. In phase 2 of

RULES-A, rules that cover a smaller number of objects than a specified pruning

threshold will be removed form the rule set if the accuracy of the resultant rule set is

higher. During the pruning process, the initial threshold increases until the specified

maximum value is reached.

The rules formed after phases 1 and 2 contain conditions for all attributes. In phase 3,

these rules are further processed to make them simpler. This is carried out by reducing

the nur^ber of conditions while maintaining the consistency of the rule set. The

number of rules in the rule set remains unchanged during this operation.

Figure 3.6 illustrates the step by step execution of RULES-A. The distribution of

objects in the training set is shown in Figure 3.6.a. Because the objects are selected

randomly for processing, Figure 3.6.b shows one of the possible intermediate states.

The new object to be processed belongs to class X and there is only one rule formed

so far for this class. This existing rule can be expanded to cover this new object while

its consistency is maintained. The next object, which belongs to class O, is inside the

rule for class X, and hence it is misclassified. Therefore, this inconsistent rule is split

as shown in Figure 3.6.c. The rule forming operation continues until all objects are

processed. The rule set generated after phase 1 of RULES-A is shown in Figure 3.6.d.

Figure 3.6.e depicts the result of rule set pruning after phase 2. Finally, the resulting

rule set after phase 3 of RULES-A is given in Figure 3.6.f.

59

(a) Object distribution

s; in

(c) Splitting of an
inconsistent rule

(e) Pruned rule set
resulting from Phase 2

(b) An intermediate state

(d) Rule set at the end
of Phase 1

I111

o

o'
o

(f) Simplified rules
after Phase 3

Figure 3.6 - Illustrative example of the execution of ARI.

For objects that are not covered by a rule set, a measure is used to identify the rules

closest to these objects in order to classify them. The measure used in this thesis is a

modification of the HOEM distance [Wilson and Martinez, 1997]. In this measure, the

distance d(X, R) between object X and rule R is assessed using equations (3.1) to

(3.4). In equation (3.4), the continuous attributes are normalised before they are

processed by the algorithm.

(3.1)

where Na is the number of attributes,
Xf is the value of ith attribute of object X
Ai is the condition for ith attribute in rule R

0 i f the antecedent Ai has value TR UE
dx (X i, A.) =« d1(Xi , A.) if ith attribute is symbolic

d3(Xi, A.) if ith attribute is continuous
(3.2)

(3-3)

0 i f A ^ n< X i < a ;
d, (X„A,) = - {x, - A r) if X, < A r

if X, > A"'"

nun

max

max

(3.4)

where Af™1 and Ai™8* are the lower and upper limits of a condition for the ith

attribute in rule R.

61

If a is the number of attributes, k is the number of rules, e is the number of objects in

the training set, p is the number of objects in the pruning set, r is the number of

iterations over the training set and t is the pruning threshold, the complexities of

phases 1, 2 and 3 are O(aek*r), O(apkt) and O(a2̂ 2) respectively (see Appendix A).

The three phases are run consecutively, so that the complexity of the RULES-A

algorithm is considered to be the largest of these three, 0(aeh?r). The number of

iterations over any particular training set required to form a rule set depends on the

specific characteristics of the data set and could be obtained by carrying out tests.

3.3. Performance

RULES-A was tested on 9 data sets from the UCI repository [Blake et al., 1998].

Brief descriptions of the selected data sets are given in the Appendix B. All selected

data sets have continuous attributes. Ten-fold cross-validation checking [Michie et al.,

1994] was employed to test the algorithm on each data set. The obtained results are

compared with the result of the C5 algorithm [ISL, 1998]. C5 was chosen to

benchmark the new algorithm as C5 is the best rule induction algorithm available to

the author.

The performance of each phase of RULES-A is discussed separately. The results

obtained after phase 1 are compared with C5 to assess the predictive capabilities of

RULES-A. The results after phases 1 and 2 are then compared to show the effect of

62

the pruning process. The effectiveness of the simplification procedure of phase 3 is

introduced and the overall performance of RULES-A and C5 is compared.

3.3.1. Phase 1 Performance

It can be seen from Table 3.1 that the rule sets created using the RULES-A algorithm

have a higher average accuracy when compared with the C5 results. In 7 of the

selected 9 data sets, the accuracy of the rule sets generated using RULES-A is higher.

However, it should be noted that RULES-A is less stable than C5 due to a higher

standard deviation in the classification performance between different executions. In
t

addition, the number of rules generated after Phase 1 is about 2.5 times higher than

those produced by C5.

Table 3.1 - Result of cross-validation 10-fold testing of RULES-A compared with C5.

Data Set C5 RULES-A (Phase 1 only)
Accuracy Standard

Deviation
Number of

Rules
Accuracy Standard

Deviation
Number of

Rules
Australian 83.50 1.30 22 86.23 3.32 50
Balance Scale 77.90 1.50 29 73.41 3.50 91
Glass 2 78.60 2.70 8 82.99 7.04 18
Heart 78.10 2.70 9 81.11 8.19 26
Ionosphere 88.30 1.60 10 91.72 5.50 15
Iris 94.00 2.10 5 96.00 2.00 8
Pima Indian 76.30 1.80 16 74.17 4.67 93
Wine 93.20 1.70 6 96.66 3.83 8
Zoo 93.10 2.60 14 94.00 8.00 9
Average Accuracy 84.77 86.25
Total Number of
Rules

119 318

63

3.3.2. Results after Phases 1 and 2

Phase 2 of the RULES-A algorithm was applied to the results obtained after Phase 1.

In Table 3.2, the performances of the rule sets before and after Phase 2 for 5 data sets

are compared.

The number of objects in the pruning set is an important factor that influences the

efficiency of Phase 2. The more objects the pruning set contains, the more accurate

the evaluation is. Taking into account the size of the data sets and the accuracy

achieved after Phase 1 of RULES-A, it was decided to set the minimum size of the

pruning set to be 50. Table 3.2 only includes data sets that satisfy this condition.

As expected, after the pruning, the performance of the rule set on the training sets is

worse. The accuracy of the rule sets decreases monotonically as the pruning threshold

increases. This is important in order to identify the upper limit of the accuracy on the

test sets when pruning is applied. On most data sets, apart from Balance-Scale,

changes in rule sets accuracy on the test sets are not significant. The main effect of the

pruning is the reduction in the number of rules in the rule sets.

On the Balance-Scale data set, the pruning process leads to a significant reduction in

the number of rules, from 91 to 22, and at the same time, the rule accuracy increases

from 73.41% to 82.56%. This could be explained partially by the decrease in the

number of misclassifed objects and the simultaneous increase in the number of

unclassified objects. Such changes in the rule set performance indicate that the data

set contains noise. The small difference between the accuracy on the training set and

the test set shows that the applied pruning technique has reached its limits.

64

Table 3 .2 - The performance of the rule sets before and after Phase 2.

Data Set RULES-A
(Phase 1 only)

RULES-A
(Phase 1+2)

Australian Accuracy On Training Set 100.00 96.85
Accuracy On Test Set 86.23 86.09

Standard Deviation 3.32 3.19
Percentage of Misclassified Objects 5.22 5.22
Percentage of Unclassified Objects 34.20 34.20

Number Of Rules 50 37
Balance Scale Accuracy On Training Set 100.00 87.38

Accuracy On Test Set 73.41 82.56
Standard Deviation 3.50 4.38

Percentage of Misclassified Objects 12.81 8.77
Percentage of Unclassified Objects 18.25 25.84

< Number Of Rules 91 22
Heart Accuracy On Training Set 100.00 98.54

Accuracy On Test Set 81.11 81.48
Standard Deviation 8.19 8.45

Percentage of Misclassified Objects 7.04 7.04
Percentage of Unclassified Objects 53.70 53.70

Number Of Rules 26 24
Ionosphere Accuracy On Training Set 100.00 100.00

Accuracy On Test Set 91.72 91.72
Standard Deviation 5.50 5.50

Percentage of Misclassified Objects 1.43 1.43
Percentage of Unclassified Objects 35.35 35.35

Number Of Rules 15 15
Pima Indian Accuracy On Training Set 100.00 91.34

Accuracy On Test Set 74.17 74.57
Standard Deviation 4.67 5.41

Percentage of Misclassified Objects 9.10 8.97
Percentage of Unclassified Objects 48.95 49.08

Number Of Rules 93 53
Average Accuracy On Test Set 81.32 83.28

Total Number of Rules 275 151

65

In addition, it was found that the pruning process could slightly affect the stability of

the rule set. This is indicated by an increase in the standard deviation in accuracy.

This is more than compensated, though, by a significant decrease in the number of

rules in the rule sets, by 45.10%.

3.3.3. Results after Rule Simplification (Phase 3)

The efficiency of Phase 3 is assessed by comparing the performance of the rules

before and aftef the rule simplification process (Table 3.3).

This simplification operation enlarges the coverage area of the rules, which increases

the probability for classifying or misclassifying previously unseen objects. The results

from the tests carried out on the selected data sets are given in Table 3.3. They show

that the percentage of misclassified objects increases and the percentage of

unclassified objects decreases while the accuracy and deviation only change slightly.

This means that the resulting rule sets are simpler but not more general [Domingos,

1998].

Examples of rule sets generated using RULES-A are given in Figure 3.7. Each

illustrative rule set is formed by a training set having 90% of the objects in the data

set. Because of the random selection of objects from the data set to form the training

set, the size of the induced rule set may be different from that stated in Table 3.1. The

rules are relatively simple and comprehensible to the user and employ different ranges

for conditions.

66

Table 3.3 - Comparison of performance of rule set before and after Phase 3.

Data Set RULES-A
(Phases 1+2)

RULES-A
(Phases 1,2 + 3)

Australian Accuracy On Training Set 96.85 96.97
Accuracy On Test Set 86.09 86.67

Standard Deviation 3.19 2.96

Percentage of Misclassified Objects 5.22 6.52
Percentage of Unclassified Objects 34.20 24.64

Number Of Rules 37 37

Balance Scale Accuracy On Training Set 87.38 87.41
Accuracy On Test Set 82.56 82.40

Standard Deviation 4.38 4.42
Percentage of Misclassified Objects 8.77 8.94
Percentage of Unclassified Objects 25.84 24.88

Number Of Rules 22 22
Glass2 Accuracy On Training Set 100.00 100.00

Accuracy On Test Set 82.99 81.55
Standard Deviation 7.04 8.43

Percentage of Misclassified Objects 4.38 6.25
Percentage of Unclassified Objects 51.22 33.19

Number Of Rules 18 18
Heart Accuracy On Training Set 98.54 98.54

Accuracy On Test Set 81.48 80.74
Standard Deviation 8.45 7.73

Percentage of Misclassified Objects 7.04 11.48
Percentage of Unclassified Objects 53.70 31.48

Number Of Rules 24 24
Ionosphere Accuracy On Training Set 100.00 100.00

Accuracy On Test Set 91.72 90.58
Standard Deviation 5.50 4.63

Percentage of Misclassified Objects 1.43 4.57
Percentage of Unclassified Objects 35.35 15.68

Number Of Rules 15 15

67

Table 3.3 (continuation)

RULES-A
(Phases 1+2)

RULES-A
(Phases 1,2 + 3)

Iris Accuracy On Training Set 100.00 100.00
Accuracy On Test Set 96.00 96.00

Standard Deviation 2.00 2.67
Percentage of Misclassified Objects 5.33 5.33
Percentage of Unclassified Objects 15.33 5.33

Number Of Rules 8 8
Pima Indian Accuracy On Training Set 91.34 91.36

Accuracy On Test Set 74.57 74.17
Standard Deviation 5.41 5.52

Percentage of Misclassified Objects 8.97 10.66
Percentage of Unclassified Objects 49.08 42.04

Number Of Rules 53 53
Wine Accuracy On Training Set 100.00 100.00

Accuracy On Test Set 96.66 96.07
Standard Deviation 3.83 5.26

Percentage of Misclassified Objects 0.40 2.16
Percentage of Unclassified Objects 49.13 21.84

Number Of Rules 8 8
Zoo Accuracy On Training Set 100.00 100.00

Accuracy On Test Set 94.00 94.00
Standard Deviation 8.00 6.63

Percentage of Misclassified Objects 1.00 4.00
Percentage of Unclassified Objects 17.00 2.00

Number Of Rules 9 9
Average Accuracy On Test Set 87.34 86.90

Total Number of Rules 194 194

68

One of the induced rule sets for the Ionosphere data set:
(0.31 < Att2) & (0.16 < Att4) & (-0.18 < Att7) & (-0.11 < A ttll) & (-0.27 < Attl3) &

(-0.89 < Att22) & (-0.87 < Att29) => g
(AttO = 1) & (0.48 < Att2) & (0.43 < Att4) & (0.65 < Att6) & (Att21 < 0) & (-0.92 <

Att31) => g
(0.50 < Att2) & (-0.03 < Att3) & (0.39 < Att4) =» g
(0.65 < Att2) & (0.58 < Att4) => g
(Att2 < 0) => b
(Att4 < 0) =» b
(AttO = 0) => b
(Att7 = -1) & (0.63 < Att21) => b
(-0.94 < Att3 < 0) & (-0.04 < Att6) & (Attl 1 < -0) => b
(Att26 = 1) & (0.87 < Att31) => b
(-0.1 < A ttl3< 0.82) =>b
(Att28 = -1) & (Att29 = -1) => b
(0.57 < Att6) & (Att22 = 1) => b

One of the induced rule sets for the Iris data set:
(Att3 < 0.50) => Iris-setosa
(5.00 < AttO < 7.00) & (1.00 < Att3 < 1.70) => Iris-versicolor
(Attl = 3.20) & (Att2 = 4.80) => Iris-versicolor
(4.90 < Att2) & (1.80 < Att3) =» Iris-virginica
(AttO = 4.90) & (Att3 = 1.70) => Iris-virginica
(Att2 = 5.80) => Iris-virginica
(Attl = 3.00) & (Att3 = 1.80) => Iris-virginica

One of the induced rule sets for the Wine data set:
(3.52 < Att9 < 9) & (2.51 < Attl 1) & (795.00 < Attl2) =» 1
(1.25 < Att6 < 5) & (2.01 < Attl 1) & (345.00 < Attl2 < 718) => 2
(1.95 < Att9 < 3) =>2
(0.47 < Att6 < 1) & (3.85 < Att9 < 11) => 3
(1.27 < A ttll < 1.33) =>3

One of the induced rule sets for the Zoo data set:
(Att3 = 1) =* 1
(Att9 = 0) & (Attl3 = 1) => 4
(Att3 = 0) & (Attl2 = 2) & (Attl3 = 1) => 2
(Att9 = 0) & (Attl3 = 0) => 7
(Att8 = 0) & (Attl2 = 0) => 7
(Att9= 1) &{Attl2 = 6) =>6
(Att3 = 0) & (Attl2 = 4) & (Attl3 = 1) => 5
(Att3 = 0) & (Attl 1 = 0) & (Attl2 = 0) & (Attl3 = 1) => 3

Figure 3.7 - Illustrative induced rule sets.

69

3.3.4. Comparison of the Overall Performance of RULES-A with C5

and RULES 3+

The overall performance of the RULES-A algorithm is compared with the results of

C5 (Table 3.4) and RULES 3+, an earlier member in the RULES family (Table 3.5).

The rule sets obtained after the three phases of the RULES-A algorithm perform

better than C5 on eight of the nine tested data sets and their average accuracy is

higher. The total number of rules generated by RULES-A, however, is significantly

(about 1.63 times) higher than the number generated by C5.

In comparison with the results obtained using RULES 3+ (Table 3.5), the accuracy of

RULES-A is higher on five of the nine tested data sets. The average accuracy of

RULES-A is also higher than that of RULES 3+. For the remaining 4 data sets, apart

from the Heart data set, the accuracy of RULES 3+ is slightly better but the rule sets

are less stable than for RULES-A, as can be seen in their high standard deviations.

The total number of rules generated by RULES 3+ is almost five times higher than the

number generated by RULES-A.

70

Table 3 .4 - Comparison of C5 and RULES-A results.

Data Set C5 RULES-A

Accuracy Standard
Deviation

Num. Of
Rules

Accuracy Deviation Num. Of
Rules

Australian 83.50 1.30 22 86.67 2.96 37
Balance Scale 77.90 1.50 29 82.40 4.42 22
Glass 2 78.60 2.70 8 81.55 8.43 18
Heart 78.10 2.70 9 80.74 7.73 24
Ionosphere 88.30 1.60 10 90.58 4.63 15
Iris 94.00 2.10 5 96.00 2.67 8
Pima Indian 76.30 1.80 16 74.17 5.52 53
Wine 93.20 1.70 6 96.07 5.26 8
Zoo 93.10 2.60 14 94.00 6.63 9
Average /
Sum of Rules

84.77 2.00 119 86.90 5.36 194

Table 3.5 - Comparison of RULES 3+ and RULES-A results.

Data Set RULE 3+ RULES-A
Accuracy Standard

Deviation
Num. Of

Rules
Accuracy Deviation Num. Of

Rules
Australian 82.93 2.78 181 86.67 2.96 37
Balance Scale 80.03 3.39 271 82.40 4.42 22
Glass 2 71.19 10.68 51 81.55 8.43 18
Heart 83.33 6.87 78 80.74 7.73 24
Ionosphere 90.03 6.07 54 90.58 4.63 15
Iris 96.67 4.85 14 96.00 2.67 8
Pima Indian 66.96 7.07 259 74.17 5.52 53
Wine 96.66 5.84 29 96.07 5.26 8
Zoo 94.09 7.02 12 94.00 6.63 9
Average Accuracy /
Sum of Rules

84.65 6.06 949 86.90 5.36 194

71

3.3.5. Algorithm Complexity

The number of iterations required over the training sets during phase 1 of the RULES-

A algorithm is given in Table 3.6.

C5 has a complexity similar to that of C4.5. The latter has been estimated as 0(ae log

e) [Paliouras and Bree, 1995]. The complexities of C5 and RULES-A are compared in

Figure 3.8. On the smaller data sets such as Iris, Wine or Zoo, the complexities of the

two algorithms are approximately the same but on large data sets, RULES-A is less

efficient.

72

Table 3.6 - The number of iterations over the training sets during Phase 1 of RULES-

A.

Data set The average number
of data set iterations

Australian 37.5
Balance-Scale 19.2
Glass 2 19.0
Heart 24.1
Ionosphere 18.2
Iris 8.2
Pima 50.4
Wine 6.8
Zoo 5.0

2 5 -i

* 2 0 -

_0>

cl5 -

.10 -

E3C5 EH RULES-A

Figure 3.8 - Comparison between the complexities of C5 and RULES-A.

73

3.4. Summary

The RULES-A algorithm generates rules from observations by applying the conquer-

without-separation approach. The adaptive capability of RULES-A allows the

relationships between the rules in the rule set to be taken into account during the

induction process. This permits the overlapping areas between rules of the same class

to be avoided, leading to the generation of more compact rule sets. The relationship

between rules of different classes is maintained more efficiently, benefiting from

internal information during induction.

In addition, RULES-A processes continuous attributes directly without applying any

discretisation techniques. This improves the inductive learning capabilities of

RULES-A compared to RULES 3+.

The pruning operation implemented in RULES-A allows more robust rule sets to be

created that are capable of handling noisy data. Also, the process of removing rules

covering only a small number of objects does not have any detrimental effect on the

remaining rules in the rule set (the fragmentation problem discussed in Section 2.1.1).

The performance of the rule sets generated using RULES-A proves the potential of

this new algorithm Compared with C5, considered to be the best decision tree

induction algorithm, the rule sets obtained using RULES-A outperform those

generated by C5. In comparison with RULES 3+, the RULES-A rule sets are

significantly smaller and more accurate on five of the nine benchmark data sets.

74

Further work is required in order to make possible the simultaneous processing of

continuous and discrete attributes. Indexing techniques should also be introduced to

reduce the complexity of the algorithm

75

Chapter 4

Improvements to RULES-A

4.1. Preliminaries

Chapter 3 introduced RULES-A, a covering algorithm that applies the conquer-

without-separation approach. In this chapter, improvements to RULES-A are

discussed and their implementation in a new version of the RULES-A algorithm,

RULES-Al, are described. This new algorithm can process discrete attributes directly

and the pruning is carried out automatically. To facilitate the processing of discrete

attributes by RULES-Al, modifications are introduced to the representation scheme

of the rules. For problems with both continuous and discrete attributes, a heuristic

procedure is proposed for selecting attributes that could be used to split rules. Rule

pruning and continuous learning after pruning are embedded in the learning process.

To verify the processing capabilities of RULES-A1, its performance is compared with

that of C5 and RULES 3+ on several benchmark data sets.

The chapter also discusses further improvements of RULES-A1 that were

implemented in RULES-A2. An early stopping strategy is suggested to halt learning

after pruning. Also, learning from data sets with varying object orders is applied to

find potentially better rule sets. The performance of RULES-A2 is compared with that

of RULES-Al, C5 and RULES 3+ on several benchmark data sets.

76

Finally, the dependencies between the characteristics of the test data sets and the

different learning methods are studied using the Tic-Tac-Toe data set. Such an

analysis would help to improve a learning algorithm and apply it more effectively.

4.2. Improvements

4.2.1. Discrete Attributes

Compared with continuous attributes, discrete attributes have fewer characteristics.

Their values are often limited to a specific set. Discrete attributes with many values,

for examples names or transaction identifiers, are often eliminated during the pre

processing stage and are not utilised by learning algorithms. When two discrete values

are compared, there are only two possible outcomes, “1” or “0” for identical or

different values, respectively. To process discrete attributes, a number of changes are

introduced to RULES-A.

Discrete attributes are unordered. Thus ranges cannot be used in the antecedent part of

conditions formed for these attributes. A rule which covers 2 objects with different

values for a particular discrete attribute will not include a condition for such an

attribute. In this case, in phase 1 of RULES-A, the generated rule will include an

“always-satisfied” condition for this attribute that will be omitted automatically in

phase.3.

77

When a discrete attribute is used to split a rule, the attribute values for the objects

processed up to that point should be known in order to initialise the rules that will

replace it. In particular, the occurrence frequency of different values of each discrete

attribute has to be stored and used later on during the splitting operation for rules

initialisation.

Another issue during this operation is how to select a discrete attribute used to split a

rule. If for the selected discrete attribute, the objects covered by the rule have more

than 2 values, the splitting will lead to the creation of more than 2 rules. To minimise

the negative effect of this operation on the generality and the efficiency of the

generated rule set, a heuristic is used to select a discrete attribute of which the 2 most

frequent values cover the largest percentage of objects.

The complexity of this task increases when the data set contains both continuous and

discrete attributes. When splitting a continuous attribute, only two rules are always

created. If a discrete attribute is split, more than 2 rules may be created. Therefore, the

selection of a continuous attribute is highly preferred by the algorithm. To avoid

continuous attributes always being selected to carry out the splitting operation, the

following heuristics will be applied in RULES-A in the order of priority shown:

(1) Select a discrete attribute, of which the corresponding condition in the rule is

“always satisfied” and of which the value for the misclassified object is different

from the two values seen up to that point for this attribute. The two rules formed

in this way will cover all objects of the split rule.

(2) Select a continuous attribute with the widest value range (as mentioned in chapter

3).

78

(3) Select a discrete attribute, of which the corresponding condition in the rule is

“always satisfied” and for which the ratio between the occurrences of the two

most frequent values and the total number of objects covered is the highest among

all attributes. This will lead to the creation of two replacement rules that will not

cover all objects of the original rule. Uncovered objects will be processed by other

rules in later epochs. This heuristic prevents the creation of rules covering few

objects.

One more modification to RULES-A is required because, as previously mentioned,

ranges cannot be used in the antecedent part of conditions formed with discrete

attributes. At the end of each epoch, the coverage of all rules is updated. If a condition

of a rule for a discrete attribute is “always satisfied” and all objects processed so far

have the same value for this attribute, this condition will be replaced by the

appropriate “attribute-value pair”.

To illustrate the operation of the new version of RULES-A, RULES-Al, the

algorithm is applied to the simple data set shown in Figure 4.1 (without the attribute

Tolerance). A step by step execution of RULES-A1 using this data set is provided in

Figure 4.2. For this simple data set, 2 epochs are required to complete Phase 1 and

only one division of a rule is carried out. The resultant rule set after this phase

consists of 5 rules and all 3 discrete attributes are present in their conditional part. The

data set is too small to form a pruning set, so that Phase 2 is not applied. Phase 3

simplifies the rules obtained and then produces the final rule set. The corresponding

decision tree for this data set is shown in Figure 4.3. The resultant rule set is the most

general rule set for this data set.

79

Id Heat
Treatment
(H)

Material
(M)

Tolerance Finish (F) Route (R)

1 Yes Steel_3135 10 Medium R2
2 No Aluminium 12 Medium R3
3 Yes Steel_3135 8 Medium R2
4 No Steel_1045 14 Low R3
5 No Aluminium 7 High R4
6 Yes Steel_1045 9 Medium R1
7 No Aluminium 9 Medium R3
8 No Aluminium 10 High R4
9 No Aluminium 10 Low R3
10 Yes Steel_1045 7 Medium R1
11 No Steel_1045 7 Low R3

Figure 4.1 - Training set [Pham and Dimov, 1996].

80

Phase 1: Initialise the rule set, RS.

Epoch 1:
Processing of object 1:

RS = {}
There is no rule yet to classify object 1.
Create Rulel: H = Yes n M = Steel_3135 n F = Medium =» R = R2

Processing of object 2:
RS = {Rulel}
No rule can classify object 2.
Create Rule2: H = No n M = Aluminium n F = Medium => R = R3

Processing of object 3:
RS = {Rulel, Rule2}
Rulel can classify object 3.

Processing of object 4:
RS = {Rulel, Rule2}
No rule can classify object 4.
Rule2 can expand to classify object 4. Modify Rule2 to:
Rule2’: H = No n true n true => R = R3
Note: “true” is an always-satisfied condition

Processing of object 5:
RS = {Rulel, Rule2’}
Rule2’ misclassifies object 5.
Conditions for attributes M and F being always-satisfied can be split.
The occurrence frequency of attribute values: (value (count))

Attribute M: Aluminium (1), Steel_1045 (1)
Attribute F: Medium (1), Low (1)

For object 5, the value of attribute M is Aluminium, so that attribute F is
selected to split Rule 2’.
Create Rule3: H = No n M = Aluminium n F = High =» R = R4
Create Rule4: H = No n true n F = Medium => R = R3
Create Rule5: H = No n true n F = Low =» R = R3.
Remove Rule2’ fromRS.

Processing of object 6:
RS = {Rulel, Rule3, Rule4, Rule5}
No rule can classify object 6.
Create Rule6: H = Yes n M = Steel_1045 n F = Medium => R = R1

Processing of object 7:
RS = {Rulel, Rule3, Rule4, Rule5, Rule6}
Rule4 can classify object 7.

Processing of object 8:
RS = {Rulel, Rule3, Rule4, Rule5, Rule6)
Rule3 can classify object 8.

Figure 4 .2 - A step by step execution of RULES-Al for the training set in Figure 4.1.

Note: “true” is an always-satisfied condition

81

Processing of object 9:
RS = {Rulel, Rule3, Rule4, Rule5, Rule6}
Rule5 can classify object 9.

Processing of object 10:
RS = {Rulel, Rule3, Rule4, Rule5, Rule6}
Rule6 can classify object 10.

Processing of object 11:
RS = {Rulel, Rule3, Rule4, Rule5, Rule6}
Rule5 can classify object 11.

End of the data set.
By using the occurrence frequency of attribute values, all conditions of the rules are
updated. Only Rule4 is changed to:

Rule4’: H = No n M = Aluminium n F = Medium => R = R3
End of Epoch 1.

Epoch 2\
RS = {Rulel, Rule3, Rule4’, Rule5, Rule6}
All objects of the data set are classified by RS.
The rule set is unchanged.

Phase 1 stops.
The resultant rule set of Phase 1:

Rulel: H = Yes n M = Steel_3135 n F = Medium => R = R2
Rule3: H = No n M = Aluminium n F = High =» R = R4
Rule4’: H = No n M = Aluminium n F = Medium => R = R3
Rule5: H = No n true n F = Low =» R = R3
Rule6: H = Yes n M = Steel_1045 n F = Medium => R = R1

Phase 2: No changes to the rule set.

Phase 3: By simplifying the rule set from Phase 2, the final rule set is created:
Rulel’: M = Steel_3135 n F = Medium => R = R2
Rule3’: F = High => R = R4
Rule4” : M = Aluminium n F = Medium => R = R3
Rule5 ’: F = Low => R = R3
Rule6’: M = Steel_1045 n F = Medium => R = R1

Figure 4.2 (continued)

82

F

HighMediumLow

R = R4R = R3 M

Aluminium, Steel 1045 Steel_3135

R = R2R = R3 R = R1

Figure 4.3 - The resultant rule set in Figure 4.2 represented as a decision tree.

83

4.2.2. Continuous Learning

After removing some very specific rules during the learning phase (Phase 2 of

RULES-A), the coverage of the rule sets is reduced. The remaining rules could be

expanded to cover more objects. Thus, by omitting the objects covered by the

removed rules from the training set, the algorithm could continue to create new rules

or expand existing rules. In this way, the generality of the rule set is improved. The

algorithm could go through a sequence of learning and pruning iterations before

converging on the final rule set.

At the end of each learning iteration and before the pruning process starts with an

increased pruning threshold, the algorithm creates one candidate rule set. These

candidate rule sets are stored in order to select the best of them at the end. This rule

set is considered the final outcome of the algorithm. This evaluation is carried out on

a validation set to measure the accuracy of the candidate rule sets. In this research,

validation sets include 30% of the objects in the data set. The remaining 70% are used

to form the initial training set. If two or more candidate rule sets have the same

accuracy on the validation set, the rule set with the smallest number of rules is

selected.

84

4.3. RULES-A1 Algorithm

The proposed new version of RULES-A, RULES-A1, is described in Figures 4.4 -

4.6. Compared with the original algorithm (see Figures 3.1 - 3.4), RULES-A1 has

only two phases, Induction and Rule Simplification. Phases 1 and 2 of RULES-A are

combined into Phase 1 of RULES-Al. The pruning of small rules is embedded in the

learning phase. Phase 2 of RULES-A 1 is identical to Phase 3 of RULES-A.

85

Phase 1 - Induction: Formation of a rule set that covers all training examples

with a minimum number of rules.

Phase 2 - Rule simplification.

Figure 4.4 - The improved Rules Extraction System with Adaptivity (RULES-A1).

86

Step 1. Initialise the rule set (Empty rule set), Accyai = 0, Pruning Threshold = 0.
Step 2. Initialisation of the training set.
Step 3. One epoch:

3.1. If the training set is empty, go to step 4.
3.2. Remove randomly one object, X, from the training set.
3.3. If X is misclassified by the rule set,

divide the misclassifying rule into 2 new rules and compute their estimated
capacities and coverage.

Add a new rule which can cover X, go to step 3.1.
3.4. Find a rule, R, that covers or can be expanded to cover X. If there is more

than one rule, the rule with the highest evaluation measure is selected.
If X is covered by an existing rule R, update its capacity and coverage.
If R can be expanded to cover X, R is modified and its capacity updated.
Go to step 3.1.

3.5. If X cannot be covered by an existing or expanded rule, create a new rule
and add it to the rule set. Go to step 3.1.

Step 4. Removal of redundant rules:
4.1. Update the coverage and capacity of all rules that are not modified in this

epoch
4.2. Remove rules in the rule set that have a capacity equal to 0.
4.3. If the rule set has undergone any changes in this epoch, go to step 2.

Step 5. Pruning:
5.1. Test the rule set on the validation set.

If its accuracy > Accvai, set Accyai to equal the accuracy of this rule set,
store the rule set as the final rule set.

5.2. Increase the pruning threshold by 1.
Prune rules with capacity < the pruning threshold, remove from the

training set the objects covered by the pruned rules.
Go.to step 2.

Accvai: the accuracy of the rule set on the validation set.

Epoch: one iteration over the training set.

Rule capacity: the number of objects in the training set covered by the rule.

Rule coverage: the area in the object space covered by the rule.

Figure 4.5 - Phase 1 - Induction.

87

Input: the rule set created after phase 1.

Create a new rule set that is the same as the input rule set.

For each rule in the new rule set:

For each rule condition:

Check that omitting this condition from the rule does not cause

overlapping of rules for different classes in the input rule set.

If there is no overlapping then remove this condition.

Output: Simplified rule set.

Figure 4.6 - Phase 2 - Rule simplification.

88

4.4. RULES-A1 Performance

The RULES-A 1 algorithm was tested on data sets that contain both continuous and

discrete attributes. Only data sets with a sufficient number of objects to form validation

sets (containing more than 50 objects) were selected for testing. In total, twelve data sets

from the UCI Machine Learning repository [Blake et al., 1998] were used to verify the

algorithm performance. The number of attributes and objects of these data sets are given

in Table 4.1. A more detailed description of these data sets is given in the Appendix B.

The ten-fold cross-validation test was carried out on all selected data sets. The results

obtained using RULES-A1 were compared with those of C5 and RULES 3+ (Table 4.2).

The rule sets generated by RULES-A 1 have a higher accuracy than both C5 and RULES

3+ on 6 of the data sets and their average accuracy is also higher.

Comparing the results of RULES-A1 and C5, the rule sets obtained by applying

RULES-A 1 performed better than C5 on 8 of the data sets. In particular, the

performance of RULES-A 1 was much better than that of C5 on 3 data sets (Abalone,

Balance-Scale and Ionosphere) and only significantly worse on 1 data set (Car

Evaluation).

Comparing the results of RULES-A1 and RULES 3+, the rule sets obtained by using

RULES-A1 performed better than those produced by RULES 3+ on 10 of the data sets.

In particular, the performance of RULES-Al was much better than that of RULES 3+ on

6 data sets (Abalone, Australian, Cmc, Pima, Pageblocks and Yeast) and only

significantly worse than that of RULES 3+ on 1 data set (Tic-Tac-Toe).

89

Table 4.1 - Parameters of the selected data sets.

Data se t Number of Attributes Number of objects
Continuous Discrete

Abalone 7 1 4177
Australian 14 0 690
Balance-Scale 4 0 635
Car Evaluation 6 0 1728
Cmc 9 0 1473
Credit Approval 6 9 690
Ionosphere 34 0 351
Pageblocks 10 0 5473
Pima 8 0 768
Tic-Tac-Toe 0 9 958
Yeast 8 0 1484
Wdbc 30 0 569

Table 4.2 - Results of the ten-fold cross-validation testing of RULES-A1 against C5

and RULES 3+.

Data se t RULES-A1 C5 RULES 3+

Abalone 24.58 20.00 18.00
Australian 85.36 83.50 82.93
Balance-scale 81.12 77.90 80.03
Car Evaluation 88.71 92.70 86.43
Cmc 55.86 54.20 48.63
Credit Approval 86.73 85.80 87.07
Ionosphere 90.59 88.30 90.03
Pageblocks 96.80 97.40 92.12
Pima 74.58 76.30 66.96
Tic-Tac-Toe 85.97 86.50 95.53
Yeast 56.11 55.20 47.32
Wdbc 93.49 94.20 94.69

Average accuracy 76.66 76.00 74.15
Number of top performances 6 3 3

90

4.5. Performance Improving Techniques

In this section, techniques are proposed to speed up the learning process by applying

an “early stopping” strategy and improve the performance of the generated rule set by

changing the order of objects in the training set.

4.5.1. Early Stopping

The learning process, Phase 1 of the improved RULES-A algorithm, takes several

epochs to converge on a rule set that satisfies the user requirements (the specified

pruning threshold). Figure 4.7 shows how the numbers of rules that were split and the

size and accuracy of the rule set change during the learning process, from one epoch

to another, on seven data sets. For these data sets, 90% of their objects were used to

form the training set and the remainder for validation. Starting from an empty set, the

algorithm iteratively improves the rule sets formed. Initially, the algorithm generates a

relatively large number of rules and then this number is reduced significantly in the

following epochs through pruning and expanding some existing rules. As a result, the

performance of the generated rule set improves.

It is observed that some specific characteristics of the data sets affect the convergence

speed of the algorithm In particular, they could have an effect on the number of

epochs required to converge on a particular rule set. The larger the data set size is, the

longer the learning process takes. Some data sets (Balance-Scale, Car Evaluation,

91

Ionosphere, Tic-Tac-Toe) require a relatively small number of epochs to converge on

a rule set but for others (Australian, Pima, Yeast) this takes much longer. It can be

seen from Figure 4.7 that within the first 3 epochs after pruning, the size of the rule

sets changes significantly and the process of rule set refinement has a major impact.

In addition, the number of epochs in learning sections decreases with an increase in

the pruning threshold. Thus, to reduce the overall learning time, the learning process

after pruning could be stopped early. Therefore, it is proposed to limit the maximum

number of epochs to a predefined parameter. In particular, in this research, this

parameter is set to 6. It was found empirically that this value was sufficient to enable

the rule sets to converge.

4.5.2. Changing the Order of Training Objects

The learning strategy of RULES-A 1 is object-driven. The generated rule set is

dependent on the order in which training objects are processed. In particular, by

changing the order of objects in the training set, the rule forming process could lead to

a different set of rules.

To optimise a rule set, the RULES-A 1 algorithm attempts to expand some rules to

cover more objects without creating overlapping areas between rules for different

classes. An early-formed rule covering a relatively large area but classifying few

objects in the training set may resist such an expansion. One of the solutions to avoid

such “local” optima is to apply RULES-A1 on a number of training sets that contain

the same objects but arranged in different orders. Then, the resultant rule sets are

tested on a validation set to find the rule set with the highest accuracy.

92

Aus t ra l i an

I 20

Epochs

14

£

Epochs

87
86

^ 85
? 84
1 83u
< 82

81
80

00.55914

XX x x x x
-x *x -

XX

I I I I I I I I I I I I I I I I 'I I l~l I I T'1 11 1 1 1 I I I I I r'TT T

0 3 6 9 12 15 18 21 24 27 30 33 36 39
Epochs

Size of the rule set Number of split rules

Pruning threshold x Accuracy on the validation set

c- Highest accuracy on the validation set

Figure 4.7 - Refinement of rule sets during the learning process.

93

B a l a n c e - S c a l e

120

100
(0e
2 80

I 40

Epochs

Epochs

O 84.52381

Epochs

Figure 4.7 (continued)

94

C a r E v a l u a t i on
250

200

* 150
0
1 100

Epochs

i 15

13
5 12

o>

Epochs

90.55794

X X

65

Epochs

Figure 4.7 (continued)

DC

O
o

XI
E3z

I o n o s p h e r e

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Epochs

£

O)

Epochs

94.8
94.6
94.4
94.2

94
93.8
93.6
93.4
93.2

93

O 94.680851

-X X-

1------ 1------ 1------ 1------ 1------1------ r n i i i r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Epochs

Figure 4.7 (continued)

96

P ima

200

150

100

50

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

-•v-a-

0 "i— i— i— r n—i—n r i —i—n —i—m —i—r i—i—rn—n r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

O 77.294686
77

2 75 ■3O
3 74

73

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Epochs

Figure 4.7 (continued)

Tic-T a c - T o e

250

200

= 150

5 100

50

0

0 2 4 6 8 10 12 14 16 18 20 22
Epochs

£

Epochs

86
84

^ 820s*
80
78
76
74
72

- O 8 4 .108 627

- X -

-|— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i i i r

0 2 4 6 8 10 12 14 16 18 20 22
Epochs

Figure 4.7 (continued)

98

Y e a s t

500

400

2 3000
1 200

100

0 4 8 12 16 20 24 28 32 36 4044 48 52 566064 6 8 72
Epochs

Ot

0 4 8 1 2 16 20 24 28 32 364044 4852 56 6064 6 8 72
Epochs

58.25

0 4 8 1 2 16 2 0 24 28 32 36 40 44 48 52 56 60 64 6 8 72
Epochs

Figure 4.7 (continued)

99

4.5.3. Performance Analysis

Both the “early stopping” and “changing the order of training objects” strategies were

implemented in the RULES-A 1 algorithm The performance of two versions of

RULES-A 1 is analysed. In the first version, RULES-A2, only the early stopping

strategy is implemented and in the second version, RULES-A3, both strategies are

applied.

Tables 4.3 and 4.4 show the required number of iterations for RULES-A1 and

RULES-A2 to converge on a rule set. The early stopping strategy reduces the number

of learning iterations significantly from 599 in total to 331 when the performance on

all benchmark data sets is considered. In particular, on 5 data sets (Abalone,

Australian, Cmc, Pima and Yeast) the number of iterations is reduced by almost 65%,

from 382 to 136. Although the number of learning iterations is reduced significantly,

the accuracy of the generated rule sets varies only slightly (Table 4.4). Thus, the

implementation of the early stopping strategy has a direct impact on the learning

process and reduces the execution time of the RULES-A 1 algorithm

The performances of RULES-A1 and RULES-A3 are compared in Table 4.5. The

accuracy of the generated rule sets increases for 10 of the 12 benchmark data sets. The

performance of RULES-A3 on the other 2 data sets is only marginally worse. It is

worth pointing out that the performance of RULES-A3 on the Tic-Tac-Toe data set is

100

significantly improved. The reason for this is discussed in the following section. In

general, compared with RULES-Al, RULES-A3 produces more accurate rule sets.

The results of cross-validation testing of RULES-A3 against C5 and RULES 3+ are

shown in Table 4.6. Similar observations concerning the relative performances of

RULES-A3, C5 and RULES 3+ can be made as in section 4.4.

101

Table 4.3 - Number of iterations required for RULES-A1 and RULES-A2 to

converge on a rule set.

Data set
Number of iterations

RULES-A1 RULES-A2
Abalone 169 20
Australian 34 24
Balance-Scale 22 18
Car Evaluation 26 25
Cmc 55 29
Credit Approval 18 16
Ionosphere 14 13
Page Blocks 95 86
Pima 47 28
Tic-Tac-Toe 25 21
Yeast 77 35
Wdbc 17 15

Total number of iterations 599 331

Table 4.4 — Results of the cross-validation 10-fold testing of RULES-A2 against

RULES-Al.

Data set
Accuracy

RULES-A1 RULES-A2

Abalone 24.58 24.76
Australian 85.36 84.67
Balance-Scale 81.12 80.97
Car Evaluation 88.71 90.47
Cmc 55.86 55.70
Credit Approval . 86.73 87.00
Ionosphere 90.59 90.84
Page Blocks 96.80 96.75
Pima 74.58 74.05
Tic-Tac-Toe 85.97 86.70
Yeast 56.11 57.36
Wdbc 93.49 93.24

Average accuracy 76.66 76.88

102

Table 4.5 - Results of the cross-validation 10-fold testing of RULES-A3 against those

of RULES-Al.

Data set RULES-A1 RULES-A3
Abalone 24.58 24.86
Australian 85.36 85.07
Balance-Scale 81.12 82.38
Car Evaluation 88.71 90.55
Cmc 55.86 56.41
Credit Approval 86.73 87.03
Ionosphere 90.59 90.29
Page Blocks 96.80 96.84
Pima 74.58 74.76
Tic-Tac-Toe 85.97 89.87
Yeast 56.11 56.92
Wdbc 93.49 93.62
Average accuracy 76.66 77.38
Better rule sets 2 10

Table 4.6 - Results of the cross-validation 10-fold testing of RULES-A3 against those

ofC5 and RULES 3+.

Data set RULES-A3 C5 RULES 3+

Abalone 24.86 20.00 18.00
Australian 85.07 83.50 82.93
Balance-Scale 82.38 77.90 80.03
Car Evaluation 90.55 92.70 86.43
Cmc 56.41 54.20 48.63
Credit Approval 87.03 85.80 87.07
Ionosphere 90.29 88.30 90.03

Page Blocks 96.84 97.40 92.12

Pima 74.76 76.30 66.96
Tic-Tac-Toe 89.87 86.50 95.53

Yeast 56.92 55.20 47.32

Wdbc 93.62 94.20 94.69

Average accuracy 77.38 76.00 74.15

Top performing rule sets 6 3 3

103

4.6. Tic-Tac-Toe Problem

Tic-Tac-Toe is one of the games that are terminated by a fixed-size tuple of

conditions. Every ending situation of the game consists of only one tuple of 3 suitable

plays. Thus, any induced rule has to have at least 3 conditions. All 16 ending

principles of the game are described in Figure 4.8.

An additional problem in the Tic-Tac-Toe game is the fact that the ending principles

for different classes are disjoint for the training set but highly overlapping in the

domain space. Also, the ending principles (rules) for the same class may overlap

when the training set is considered and at the same time overlap highly in the domain

space. Figure 4.9 illustrates such cases.

Decision trees are attribute-driven and usually the divide-and-conquer method is

applied to construct them Such trees are formed by processing one attribute at a time

to divide objects in the training set into sub-groups belonging to the same class.

Unfortunately, in the Tic-Tac-Toe game, the objects representing the ending

principles are divided into small groups. Figure 4.10 illustrates this fragmentation.

The first node of the decision tree divides PI, P3, P4, P6 , P9, P l l , P12 and P14 into

two separate groups (those with X5 = ‘X’ or X5 = ‘O’)- These two groups are divided

further until the decision tree contains objects belonging to the same class in each of

its leaf nodes. The objects representing several ending principles, after being divided

into smaller groups, can be wrongly regarded as noise and therefore to be pruned. It is

obvious that there is no noise in this particular data set, so that pruning will degrade

the performance of the resultant decision tree. This is the main reason for the lowest

104

XiG {‘X’, ‘O’, ‘b’}

‘b’: blank

(a) Conventions

PI: Xi = ‘X’ n X 2 = ‘X’ n X3 = ‘X’ => Winner = ‘X’

P2: X4 = T n X 5= T n X 6 = ‘X’ => Winner = ‘X’

P3: X7 = ‘X’ n X8 = ‘X’ n X9 = ‘X’ => Winner = ‘X’

P4: Xi = ‘X ’ n X4 = ‘X’ n X7 = ‘X’ => Winner = ‘X’

P5: X2 = ‘X’ n X 5 = ‘X ’ n X 8 = ‘X’ => Winner = ‘X’

P6 : X3 = T n X 6 = ‘X’ n X9 = ‘X’ => Winner = ‘X’

P7: Xi = ‘X ’ n X5 = ‘X’ n X9 = ‘X’ => Winner = ‘X’

P8 : X3 = ‘X ’ n X 5= ‘X’ n X 7= ‘X’ => Winner = ‘X’

P9: Xi = ‘O’ n X 2= ‘O’ n X3 = ‘O’ => Winner = ‘O’

P10: X4 = ‘0 ’ n X 5 = ‘0 ’ n X 6 = ‘O’ => Winner = ‘O’

PI 1: X7 = ‘O’ n X8 = ‘O’ n X9 = ‘O’ =» Winner = ‘O’

P12: Xi = ‘O’ n X 4 = ‘O’ n X7 = ‘O’ => Winner = ‘O’

P13: X2 = ‘O’ n X 5 = ‘0 ’ n X 8= ‘O’ => Winner = ‘O’

P14: X3 = lO’ n X 6 = ‘O’ n X9 = ‘O’ => Winner = ‘O’

P15: Xi = ‘O’ n X5 = ‘O’ n X9 = ‘O’ => Winner = ‘O’

P16: X3 = ‘O’ n X5 = ‘O’ n X 7 = ‘O’ => Winner = ‘O’

(b) 16 ending principles

Figure 4.8 - Conventions and 16 ending principles of the Tic-Tac-Toe game.

The 16 ending principles form the perfect set of rules for this problem.

X! x2 x3

X 4 x5 X6

x7 x8 x9

105

PI and P10, for two different classes, are disjoint in the training set (each training

object is covered only by one principle) but share objects in the domain

space. In fact, all objects (Xi = ‘X’ n X2 = ‘X’ n X3 = ‘X’ n X4 = ‘O’ n X5

= ‘O’ n Xfi = ‘O’ n X7 = * n Xs = * n X9 = *) are shared by PI and P10.

PI and P2, for the same class, are disjoint in the training set but share objects in the

domain space. Ah objects (Xi = ‘X’ n X2 = ‘X’ n X3 = ‘X’ n X4 = ‘X’ n X5

= ‘X’ n X6 = ‘X’ n X 7= * n X 8 = * n X 9 =*) are shared by PI and P2.

PI and P4, for the same class, share objects both in the training set and the domain

space. All objects (Xi = ‘X’ n X2 = ‘X’ n X3 = ‘X’ n X4 = ‘X’ n X5 = * n

X6 = * n X7 = ‘X’ n Xs = * n X9 = *) are shared by PI and P4.

Note\ * could be any of the following symbols ‘X’, ‘O’, ‘b ’

Figure 4.9 - Examples of overlapping end principles of the Tic-Tac-Toe data set.

Xi X i

X ' /

Figure 4.10 - A decision tree for the Tic-Tac-Toe data set.

106

classification accuracy of the decision tree formed by C5 compared with the other two

methods. Such fragmentation is unavoidable when decision trees are constructed by

applying divide-and-conquer strategies.

Algorithms of the original RULES family follow the separate-and-conquer-without-

reduction approach (See section 2.2.2). They form rules from tuples of attribute-value

pairs. The search starts by initially considering candidate rules with only one

attribute-value pair, then increasing the attribute-value pairs until a rule is formed.

After inducing one rule, objects covered by the formed rule are only marked instead

of being removed. The evaluation of formed rules is carried out on the entire training

set that includes all marked and unmarked objects, so that it is unchanged. Thus, the

existing overlapping of objects in the domain space does not affect the evaluation and

hence this rule forming strategy is more suitable for problems such as Tic-Tac-Toe.

To illustrate this, the RULES 3+ algorithm is applied on the Tic-Tac-Toe data set with

the parameter PRSET size set to 2 and 10 respectively. This parameter specifies the

size of the buffer that stores candidate rules. The algorithm is run on the training set

which contains 90% of the total number of objects. With PRSET size set to 2, the

algorithm has a small buffer and selects rules from a small set of candidates. As a

result, it induces more than 1 0 0 rules with several rules having only one condition.

With PRSET size set to 10, the algorithm has a larger buffer and can search a larger

set of candidate rules. The result is a set containing 26 rules that are listed in Figure

4.11. The first 16 rules of this rule set represent the 16 ending principles and

guarantee an accuracy of 100% in testing. The remaining 10 rules are fully covered by

the first 16 rules. A suitable post-pruning technique can remove these redundant rules.

107

Rl: IF { |X1 = X ’ AND |X5 = 'X’ AND |X9 = X ’|
R2: IF { |X3 = 'O’ AND |X5 = 'O’ AND |X7 = '0 ’|
R3: IF { |X2 = 'O’ AND X II o AND |X8 = '0 ’|
R4: IF { |X2 = 'X’ AND

Xnin AND |X8 = X ’|
R5: IF { |X7 = ’X’ AND

Xii00x_ AND |X9 = X ’|
R6 : IF { |X3 = ’X’ AND |X6 = ’X ’ AND |X9 = 'X’l
R7: IF { |X3 = ’X’ AND

XIIinX_ AND |X7 = X ’|
R8 : IF { |X1 = 'O’ AND X II o AND |X7 = '0 ’|
R9: IF { |X1 = ’X’ AND

Xiix_ AND |X7 = 'X’|
RIO: IF |X4 = X ’| AND |X5 == 'X’ AND |X6 =:'X ’
Rl 1: IF |X3 = '0 ’| AND |X6 == '0 ’ AND |X9 =: 'O’
R12: IF |X7 = '0 ’| AND |X8 == '0 ’ AND |X9 == ’0 ’
R13: IF |x i = X ’| AND |X2 == 'X’ AND |X3 == 'X’
R14: IF |x i = ’0 ’| AND |X2 == '0 ’ AND |X3 = 'O’
R15: IF |x i = 'O’l AND |X5 == ’0 ’ AND |X9 = 'O’
R16: EF |X4 = '0 ’| AND |X5 == ’0 ’ AND |X6 = 'O’
R17: IF |x i = 0 ’| AND |X3 == '0 ’ AND |X7 == 'X’

}THEN Winner = ‘O’
R18: IF |X1 = X ’| AND |X4 == ’X ’ AND |X5 == '0 ’

} THEN Winner = ‘O’
R19: IF |x i = X ’| AND |X2 == '0 ’ AND |X3 == 'X’

}THEN Winner = ‘O’
R20: IF |X4 = '0 ’| AND |X5 == '0 ’ AND |X7 == 'X’

} THEN Winner = ‘O’
R21: IF |x i = 'X’l AND |X3 == ’0 ’ AND |X4 == '0 ’

}THEN Winner = ‘O’
R22: IF |x i = 'X’l AND |X2 == '0 ’ AND |X4 == 'X’

}THEN Winner = ‘O’
R23: IF |x i = '0 ’| AND |X4 == X’ AND |X5 == '0 ’

}THEN Winner = ‘O’
R24: IF |X2 = X ’| AND |X5 =: 'O’ AND |X7 =: 'O’

}THEN Winner = ‘O’
R25: IF |X3 = '0 ’| AND |X5 =: 'O’ AND |X6 = 'X’

}THEN Winner = ‘O’
R26: IF |x i = '0 ’| AND |X3 == 'X’ AND |X6 = 'O’

}THEN Winner = ‘O’

THEN Winner = ‘X’

THEN Winner = ‘O’

THEN Winner = ‘O’

THEN Winner = ‘X’

THEN Winner = ‘X’

THEN Winner = ‘X’

THEN Winner = ‘X’

THEN Winner = ‘O’

THEN Winner = ‘X’

} THEN Winner = ‘X’

} THEN Winner = ‘O’

} THEN Winner = ‘O’
} THEN Winner = ‘X’

} THEN Winner = ‘O’

} THEN Winner = ‘O’

} THEN Winner = ‘O’J * ***
AND |X8 = 'O ’ AND |X9 == 'X’l

AND |X6 = 'X’ AND |X7 == ' 0 ’ |

AND |X7 = 'O ’ AND |X9 == ’O ’)

AND |X8 = 'X’ AND |X9 == 'O ’l

AND ii
r->

1 ’X’ AND |X9 == 'O ’l

AND |X5 = 'O ’ AND |X7 == 'O ’l

AND |X7 = X ’ AND |X8 = ' 0 ’ |

AND |X8 = ’X’ AND |X9 = 'X’|

AND IIooX
. ’O ’ AND |X9 = 'X’|

AND II

X
- 'O ’ AND |X9 = 'X’l

Figure 4.11 - The resultant rule set from RULES 3+ with PRSET =10.

108

The rule forming strategy of RULES 3+ is very appropriate for the Tic-Tac-Toe data

set and therefore the generated rule set has the highest accuracy of the 3 tested

algorithms.

The RULES-A algorithm checks rule consistency within the domain space. Due to the

overlapping of the ending principles in the domain space, if their corresponding rules

are in the rule set, they are inconsistent. Thus, each ending principle is represented by

more specific rules containing more than 3 conditions. This increases the complexity

of the induced rule set. Therefore, the consistency checking strategy of the RULES-A

family is unsuitable for the Tic-Tac-Toe data set. Further research is required to

improve this strategy, especially to handle tasks similar to the Tic-Tac-Toe game.

The order of the training objects in the data set has an effect on the performance of the

algorithm Due to the existing overlapping of the ending principles in the domain

space, this prevents an algorithm in the RULES-A family from expanding rules in the

search for more general rules. This problem could be partially resolved by varying the

order of the objects in the data set. The results obtained when RULES-A3 is applied

on the Tic-Tac-Toe data set (Table 4.5) demonstrate the efficiency of this technique.

The accuracy of the rule sets generated by RULES-A3 is higher when compared with

RULES-Al.

In conclusion, the specific characteristics of the data sets could influence the overall

performance of the generated rule sets. By introducing new techniques addressing this

problem, the performance on specific types of data sets could be improved. The

existing dependencies between the performance of an algorithm and the specific

109

characteristics of the data sets should be studied in order to determine the most

suitable technique for a particular application.

4.7. Summary

This chapter discusses improvements to RULES-A. The proposed new version

RULES-A1 can process data sets with both continuous and discrete attributes. It is

also simpler and more convenient to apply. RULES-A1 forms the final rule sets in 2

phases compared with the 3 phases of RULES-A. The pruning is carried out

automatically without requiring any interventions by users. RULES-A1 outperforms

C5 and RULES 3+ on most of the 12 benchmark data sets.

Also, this chapter discusses further enhancements to RULES-A 1 that increase the data

processing speed of the algorithm and the accuracy of the generated rule sets. The

early stopping strategy limits the maximum number of epochs. In addition, by varying

the order of objects in the training set, it is possible to search for more general rule

sets (containing fewer rules). As a result, the improved version of RULES-A1,

RULES-A3, generates rule sets that outperform those created by the original

algorithm, C5 and RULES 3+.

110

Chapter 5

Improvements to the K-means Algorithm

5.1. Preliminaries

Data clustering is an important data exploration technique with many applications in

engineering including parts family formation in group technology and segmentation in

image processing. One of the most popular data clustering methods is K-means

clustering because of its simplicity and computational efficiency.

The main problem with this clustering method is its tendency to converge at a local

minimum In the first part of this chapter, the cause of this problem is explained and

an existing solution involving a cluster centre jumping operation is examined. The

jumping technique alleviates the problem with local minima by enabling cluster

centres to move in such a radical way as to reduce the overall cluster distortion.

However, the method is very sensitive to errors in estimating distortion. A clustering

scheme that is also based on distortion reduction through cluster centre movement but

not so sensitive to inaccuracies in distortion estimation is proposed in this chapter.

The scheme, which is an incremental version of the K-means algorithm, involves

adding cluster centres one by one as clusters are being formed. The chapter presents

test results to demonstrate the efficacy of the proposed algorithm

111

Another drawback of the popular K-means algorithm is the need for several iterations

over data sets before it converges on a solution. Therefore, its application is limited to

relatively small data sets. The second part of the chapter presents a scaled version of

K-means that employs a buffering technique. The new algorithm, Two-Phase K-

means, can robustly find a good solution in only one iteration.

5.2. Incremental K-means Algorithm

5.2.1. Conventions

For convenience, in this chapter, the information in a cluster is represented by a triple

<w, N, S> where w is the centre of a cluster, N is the number of objects belonging to

the cluster (cluster’s capacity) and S is the sum of the squared distances between the

objects in the cluster and the centre of the Euclidean space. The distortion error / of a

cluster is calculated using the following equation.

/ = S-N(d(w, x0))2 (5.1)

where d(w, X o) is the distance between the cluster’s centre w and the centre of the

Euclidean space jto.

5.2.2. Motivation

The performance of the K-means algorithm can be measured by considering the

movements of the centres of the clusters. When a centre is initiated in an

112

inappropriate position, it cannot move to an optimum location. For example, in Figure

5.1.a, the data set is split into two disjoint regions Rl and R2 with the same uniform

distribution. Suppose that the number of clusters is chosen to be 4. In this example,

the hypothesis about the smooth underlying distribution [Chinrungrueng and Sequin,

1995] is not satisfied. Because of the random initialisation, after step 1 of the K-

means algorithm, the centres might be located as shown in Figure 5.1.b. There is not

any object in region R2 which can belong to any cluster in region Rl due to the

distance between the two regions. Thus, no cluster centre in region Rl can move to

region R2. Therefore, the clustering obtained by K-means (Figure 5.1.c) differs from

the optimal results for this data set (Figure 5. l.d).

To overcome the problem of cluster centres being trapped in inappropriate locations,

Fritzke [Fritzke, 1997] suggested a jumping operation to move the cluster centre with

the least distortion error to the cluster with the most distortion error (Figure 5.2).

When the centre of a cluster is taken away from an inappropriate position, the sum of

distortion errors of all clusters increases by a value equal to the sum of the squared

distances between objects of the removed cluster and the second nearest cluster

centre. However, this calculation does not take into account the fact that the centre of

the second nearest cluster centre will be moved when the objects of the removed

cluster are added to it. Thus, the increase of this sum will be smaller than otherwise it

might be. Moreover, in the proposed operation, the removed cluster centre will be

inserted at a random position into the cluster with the largest distortion. There is no

estimation of the effect of this operation on the sum of distortion errors of all clusters.

113

Region Rl Region R2

■

■ Cluster centre

Figure 5.1 - The results of applying K-means (K= 4) on two split regions,

(a) Data distribution, (b) Initialisation of clusters’ centres,

(c) The result obtained by K-means, (d) The expected clustering.

114

Step 1: Choose arbitrary K objects for K cluster centres.

Step 2: Assign each object in the training set to the closest cluster and update the

centres of the clusters.

Step 3: If the clustering criterion is satisfied (the cluster centres do not move), go

to Step 4.

Else, go to Step 2.

Step 4: If there is a cluster which can be moved to a better position to reduce the

total sum of the distortion errors, move it to the new position and then go

to Step 2.

Else, stop.

Figure 5 .2 - The modified K-means algorithm incorporating the jumping operation

proposed by Fritzke [Fritzke, 1997].

115

Pelleg and Moore [Pelleg and Moore, 2000] proposed to start the algorithm with a

small number of clusters, K, then doubled it by inserting new cluster centres in

suitable positions. There are two problems with the criterion used to evaluate the

performance of this operation. First, each cluster is divided independently into two

without taking into account the influence of neighbouring clusters. Second, the BIC

scoring, that Pelleg and Moore adopted, does not guarantee that the distortion errors

of all clusters will be minimised.

In this chapter, a new criterion is proposed to assess the performance of the jumping

operation suggested by Fritzke [Fritzke, 1997]. During the learning process, as

mentioned already, the operation deals with the local minimum problem by removing

a cluster centre from an inappropriate position and inserting it into a more promising

position. The increase in the sum of distortion errors of all clusters when one cluster

centre is removed and the decrease in the same sum when a new cluster centre is

inserted into a new position are two parameters used to evaluate performance.

Because it is infeasible to calculate the values of these parameters precisely in the

general case, two procedures are described in the following section to estimate them

5.2.3. Evaluation of Distortion of Clusters

Suppose that the centre of cluster C, is taken out. In the worst case, all objects

belonging to C, will be allocated to the second nearest cluster Q without affecting any

other neighbouring clusters. The triples (wu Niy Si) and (Wj, Nj, Sj) characterise C, and

Cj. The triple (Wk, Nk, Sk) of the new cluster C* is calculated from equations (5.2), (5.3)

116

and (5.4) and the increase in distortion AI in the worst case is calculated using

equation (5.5).

Nk = Ni + Nj (5.2)

(5.3)

Sk - Si + Sj

A/ = /*

= St -N„(d(wk,x0))2 -[s , - -NjidHwj.x,,))1]
= N {(d(\Vj,x0))2 + N j (d(Wj,x0))2 - N k(d(wk,x0)) 2 (5.5)

(5.4)

where: /*, /, and Ij, are the distortion of Ck, Ci and Q, respectively,

and Xj is an object belonging to cluster C*.

When the centre of a cluster is moved to a new position, it will cause a decrease in the

sum of cluster distortion errors. This decrease cannot be calculated in the general

case. In this thesis, it is assumed that a cluster Cz is a hyper-cube with a uniform

distribution density p of objects belonging to it (Figure 5.3). When a new cluster

centre is inserted, Cz will be split into two clusters Czi and CZ2. The triples, (w7j Nz,

Sz), (wzi, Nzj, Szl) and (w^, N7j , 5^), represent these clusters. All objects of Cz are

assumed to belong to Czi or CZ2- After training, the centres of the two new clusters

will be positioned as shown in Figure 5.3. Without loss of generality, the centre of Cz

is considered the origin of the co-ordinate system

117

/
d/4

d/4

*— H
cmt

f
i

_ — \--------
' cxlti

(0,0) f

>

tWz2ft
f

- ::i:: i
lllllllllli \

d .. >

f1

Figure 5.3 - The splitting of Cz into Czi and CZ2 after training.

118

The distortion error L of cluster Cz is calculated as follows:

d / 2 d ! 2 d / 2

Iz = J J ... j (d (x ,x 0))2.p.dxmdxw ...dx(Nd)
- d / 2 - d / 2 - d / 2

d / 2 d / 2 d / 2 f N

p.dxwdxm ...dxiN<)
- d / 2 - d / 2 - d / 2 y f = l

N d f d / 2 d / 2 d / 2

= P L J J - j{ (x ,n)2}dxmdxm ...dx(N‘
f = l \ y - d / 2 - d / 2 - d / 2

- A

V
n k

U) i d / 2

j = 1
j * f

- d / 2

V V

_ p.Nd.dNd+2
12

_ Nz.Nd.d2

k l
d / 2 \

- d / 2

12

where Nd is the dimension of the Euclidean space.

(5.6)

Because C7 is a cube with a uniform distribution, the two new clusters Czi and C&

contain the same number of objects N 7j = N& = N/2. Using equation 5.6, the decrease

in distortion errors is calculated as follows:

AD=̂ J^-(d(Wzl’Wz2)Y

_ N j d
4 2

_ 3/z
4AT,

(5.7)

By applying the jumping operation, the sum of the distortion errors will be changed

by a value AM = AI - AD. If AM is smaller than 0, the operation could lead to better

clustering.

119

As the performance of the jumping operation is evaluated based on two estimated

parameters in the cluster centre removal and insertion operators, this may introduce

additional errors. An incremental strategy can be used to eliminate the removal of a

cluster centre and the dependence on the initial positions of cluster centres. An

incremental algorithm starts with the number of clusters K being set equal to 1 and

increasing by 1 in each step. With each increase of K, a new cluster centre is inserted

into the cluster with the most distortion and then objects are re-assigned to clusters

until the centres do not move. The process is repeated until K reaches the specified

number of clusters. A new improved K-means algorithm with this incremental

strategy will be described in the next section. The proposed algorithm has the

advantage of determining near optimal cluster centre positions.

To the author’s knowledge, there is another K-means clustering algorithm [Likas et

al., 2003] with a similar incremental strategy. In each step of the incremental process,

that algorithm uses a local search procedure to calculate the position of the new

cluster centre assuming the positions of the current cluster centres are optimal and can

remain fixed. Because of the dynamic nature of clusters in a K-means operation, this

calculation will not yield the optimal position for the new cluster centre for each step.

The position error accumulated over the clustering process can affect the final

performance of the algorithm.

120

5.2.4. Algorithm Description

The Incremental K-means algorithm is summarised in Figure 5.4. Phase 1 includes

steps that are similar to the steps of the conventional K-means algorithm, except in its

restriction on where the new cluster centre can be placed. The centres of all existing

clusters do not change their positions, which makes the algorithm less dependent on

the random placement of the new centres.

The complexity of the new algorithm can be assessed using the formula:

0(K *n *num_ofiterations)

where n is the number of objects and num_ofiterations is the largest possible number

of iterations in Phase 1.

Compared with the complexity O(K*n*num_ofiterations) of the K-means algorithm,

the Incremental K-means algorithm requires K times more iterations.

When there are K clusters, the new algorithm needs to run Phase 1 K times, each

iteration being equivalent to one execution of the traditional K-means algorithm. Of

those K times, (AT-1) are considered intermediate steps that prepare the data for the

next iteration. Therefore, only the last iteration of Phase 1 has to satisfy the strict end

condition defined in Step 3. In this thesis, the end condition for each intermediate

iteration is relaxed and tested separately.

121

Assign K= 1.

Phase 1: Normal training

Step 1: If K - 1, choose an arbitrary point for a cluster centre.

If K > 1, insert the centre of the new cluster in the cluster with the

greatest distortion.

Step 2: Assign each object in the training set to the closest cluster and update

its centre.

Step 3: If the cluster centre does not move, go to Phase 2.

Else, go to Phase 1, Step 2.

Phase 2: Increasing the number of clusters

If K is smaller than a specified value, increase A' by 1 and go to Phase 1 -

Step 1.

Else, stop.

Figure 5.4 - The Incremental K-means algorithm

122

In the initial step of each run of Phase 1 of the Incremental K-means algorithm, a new

cluster centre is inserted in the cluster with the largest distortion error. The insertion

of the new centre affects mostly the objects belonging to this cluster.

5.2.5. Performance

Six artificial data sets and six real data sets from the UCI Repository [Blake, et al.,

1998] were used to test the proposed new algorithm. The main parameters of these

data sets are provided in Table 5.1. The description of these data sets is presented in

the Appendix B. The object distribution of the six artificial data sets is shown in

Figure 5.5.

The research carried out by Bottou and Bengio [Bottou and Bengio, 1995] and Bilmes

et al. [Bilmes et al., 1997] showed that it takes on average 15 iterations for the K-

means algorithm to reach a local minimum. The clustering process could be stopped

by specifying termination conditions such as a predefined number of iterations and the

reduction of the distortion errors in one iteration being less than a given value 8. In

this work, these two termination criteria are used. In particular, the maximum number

of iterations is set to 20 and 8 is specified to be 10'7. The algorithm stops when one of

these conditions is satisfied.

123

Table 5.1 - Characteristics of test data sets,

(a) Real data sets.

Balance-Scale Ionosphere Iris Pima Wine Zoo

Number of attributes 4 34 4 8 13 17

Number of objects 635 351 150 768 178 101

(b) Artificial data sets

Uniforml Uniform2 Uniform3 Gaussl Gauss2 Gauss3

Number of attributes 2 2 2 2 2 2

Number of objects 421 1084 800 848 1220 800

124

• " V* . ’ ■ ,

Unifbrml
[J*'-- ' ^

Unifi>nn3

Gauss1

'< 0\

s-.'v*

* '?<&$/

Gauss2

; V: ~;\v

Gauss3

Figure 5.5 - Distribution of objects in the artificial data sets.

125

Due to the random nature of the K-means algorithm, it is important to conduct a large

number of tests to demonstrate its performance in a statistically significant way.

When the problem has R disjoint and distant regions and K clusters should be formed,

an extremely large number of possibilities exist to allocate the K cluster centres to the

different regions. Each particular allocation will lead to different distortion errors.

Unfortunately, R is not known in real problems. Many researchers select a large K and

a small number of tests, which may not lead to optimal clustering results. In this work,

K was selected in the range 1 to 15 and the number of tests for each data set was taken

as 500.

Figure 5.6 shows the results obtained by applying four different versions of the K-

means algorithm, original K-means, K-means with the jumping operation,

Incremental K-means and Incremental K-means with predefined termination

conditions, to the 12 data sets. On all data sets, except the Balance-Scale data set, the

K-means algorithm with the jumping operation outperforms the original K-means

algorithm in spite of the fact that the results obtained are far from the optimal

solution. Also, on all data sets, the Incremental K-means algorithm groups objects in

clusters whose average distortion error is very close to the smallest distortion error of

any of those clusters. This means that the Incremental K-means algorithm does not

depend on the specific characteristics of the data sets and the value of K, and produces

reliable and optimal clustering of objects.

Figure 5.7 gives the running times of the K-means algorithm, Incremental K-means

algorithm and Incremental K-means algorithm with predefined termination condition.

All algorithms were implemented in C++ and executed on a Pentium II 300MHz PC.

126

Although the theoretical complexity of Incremental K-means is a function of K2, the

experiments carried out show that the running time depends linearly on K. By

specifying termination conditions, the running time is reduced without sacrificing the

quality of the clustering results (Figure 5.6).

127

r/f Balance-Scale f r f Ionosphere

♦ K-means

—$£— K-means with Jumping Operation

—& — Incremental K-means

Incremental K-means with termination conditions

Figure 5.6 - Clustering results of K-means, K-means with jumping
operation, Incremental K-means and Incremental K-means with
termination conditions.

Note: Ia and I™1" are the average and the minimum values of clusters’
distortion errors.

128

jâ jimn

1.6

1.5

1.4

1.3

1.2

1.1

Uhiforml

/ \ ̂ , +

7 ^ J & .

lr

• & v i ' ^ r > & f • y - S V & t '■ & -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K

m
1.8 •

1.7
1.6

1.5
1.4
1.3

1.2
1.1

Uhiform2

1 , ■&

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 K

r/r
5

4.5
4

3.5
3

2.5
2

1.5

Uhiform3

N

____________________________ j * ' * ' * ' .
V

,■ s&i >1' •c.vi- i> vU i '&. v v, V lv f" i • -<ar

Ia/I
1.6

G aussl

1.5

1.4

1.3

1.2

1.1

SB A A

F - s r '

| t

- -gr rjsS-i• # v •& v ■ & y • jffin— r ^ F S ^ r r iS • v M t W r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K K

jâ jiuin G auss2 ia/r G auss3

2.2

1.8

1.6

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 •+-?•>

2.4

2.2

1.8

1.6

1.4

1.2

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K K

Figure 5.6 (continued)

t[s] Etelance-Scale

2

1.5

1

0.5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

t[s] Iris

0.5

Q4

0.3

02

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K

t[s] Ionosphere

35

25

0.5

3 4 5 6 7 8 9 10 11 12 13 14 15
K

t[s] Rma

3.5

25

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K

t[s] Wne t[s] Zoo

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.6

0.5

0.4

0.3

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K K

♦ K-means

— — Incremental K-means

—A— Incremental K-means with termination conditions

Figure 5.7 - Comparison of the running times of K-means,
Incremental K-means and Incremental K-means with termination
conditions.

130

t[s] Ihiforml

1.2

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

t[s] lhrform2

35

3

25

2

1.5

1

0.5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

t[s] Lhiform3 t[s] Gauss1

25

1.5

Q5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25

2

1.5

1

 1 -0.5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K K

t[s] Gauss2 t[s] Ghuss3

4 r
35

25

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25

1.5

0.5

3 4 5 6 7 8 9 10 11 12 13 14 151
K K

Figure 5.7 (continued)

131

5.2.6. Further Improvements

With some values of K, the results of the Incremental K-means algorithm on real data

sets are not close to the optimal solution for the algorithm, for example the Balance-

Scale data set with K = 11 or 12 and the Ionosphere data set with K = 5 or 6. The

reason for this problem is the heuristical insertion of a new centre into the cluster with

the largest distortion when increasing K by 1. After insertion, the total distortion is

decreased by a value smaller than or equal to the distortion of the split cluster. If a

different cluster has its distortion larger than this amount of decrease, it may be a

better choice for splitting up. Thus, the algorithm has to investigate all possibilities to

find the most beneficial place to insert the new cluster. However, this searching slows

down the algorithm for large values of K, so that for any given insertion, the search

only tries clusters with distortion at least 1.5 times larger than the amount of decrease

achieved until that point.

Figure 5.8 shows the results obtained by applying 3 different versions of the K-means

algorithm, original K-means, Incremental K-means and Incremental K-means with

cluster search to the 6 real data sets. The third version has all its results close to 1 for

all values of K, demonstrating that the search strategy helped it to handle cases that

the plain incremental version had difficulties with.

132

I /I
2.2

W ine

Balance-Scale jasmin Ionosphere

f r r
1.3

1.25

1.2

1.15

1.1

1.05

1

Zoojayjiran
1 a s

1.045
1.04

1.035
1.03

1.025
1.02

1.015
1.01

1.005
1

|a

1.35

1.3

1.25

12
1.15

1.1

1.05

1

Pim a

— ♦ — K-Means

—A — Incremental K-Means

— Incremental K-means with cluster search

Figure 5.8 - Clustering results of K-means, Incremental K-means and
Incremental K-means with cluster search.

Note: Ia and I™11 are the average and the minimum values of the
distortion errors of the clusters.

133

5.3. Two-Phase K-means Algorithm

In this section, a scaled version of the K-means algorithm, Two-Phase K-means, is

proposed to process large data sets.

5.3.1. Algorithm Description

The Two-Phase K-means algorithm is based mainly on the compression scheme

proposed by Bradley (Section 2.3.2.2). It is summarised in Figure 5.9. In phase 1 of

the proposed new algorithm, the data in the buffer are compressed by the K-means

algorithm with K = K] (a predefined parameter) and the resultant cluster set is stored

in the “compression set” (see Section 2.3.2.2). Because of the dependence on random

initialisation of the original K-means algorithm, in the first iteration, the objects in the

buffer are clustered by the Incremental K-means algorithm (Section 5.2) and the

resultant cluster centres are used to initialise the K-means algorithm in future

iterations. The Incremental K-means algorithm is a slower version of K-means but, at

the same time, it can produce a near optimal solution and does not depend on a

random initialisation. When phase 1 is completed, the K-means algorithm is applied

to the stored sub-clusters of the compression set to form the final solution in phase 2.

Each sub-cluster is treated as a regular object weighted by its number of objects.

134

Phase 1:

Repeat:

Fill the buffer with new objects from the data set.

If this is the first iteration

Then Apply the Incremental K-Means algorithm to the buffer

Else Apply the original K-Means algorithm to the buffer using the

clusters’ positions from the previous iteration as its initialisation.

Add the cluster set to the compression set.

Until the data set is empty.

Phase 2:

Apply the Incremental K-Means algorithm to the compression set with

each object weighted by the number of objects belonging to it from

Phase 1.

Figure 5.9 - The Two-Phase K-Means algorithm.

135

The new scheme can reduce the negative effect on the performance of the algorithm

caused by the use of a buffer that is not representative of the data set as a whole.

Phase 1 finds Kj representatives of the objects in the buffer without considering the

accumulated knowledge. In the best case, when the buffer is a true image of the data,

each cluster will be represented by m * Kj / K sub-clusters in the compression set

where m is the number of iterations or the number of times the buffer is filled and K is

the expected number of clusters. If sufficient information is stored in the compression

set, Phase 2 can induce an optimal final solution. When the balancing problem occurs

in the buffer, depending on the cluster’s contribution to the distortion, it may contain

approximately Kj / K objects and their corresponding weights stored in the

compression set. If, for a cluster, there is less stored information in any particular

iteration, this may affect the follow up iterations. Thus, the problem of having a set of

objects that is not representative of the data set as a whole could be resolved by

forming a compression set in the context of the entire problem domain.

Phase 1 has a negative effect on the quality of the final clustering result because a

large number of objects have to be represented in a buffer with a limited size (Kj sub

clusters in the compression set). If a larger Kj is selected, the computational time

increases and more memory is required to execute the algorithm. However, at the

same time, the quality of the final clustering result will improve. In practice, Ki is

selected by the user depending on the characteristics of the data.

136

5.3.2. Performance

Two data sets KDD98 and CoverType from the UCI KDD repository [Hettich and

Bay, 1999] and the UCI Machine Learning repository [Blake et al., 1998]

respectively, were used in testing. These data sets were selected for their large size.

The pre-processing of these data sets is described in the following sections.

The KDD98 data set was converted into the required data format using the same

software for data pre-processing as that used by Famstrom [Famstrom et al., 2000].

The termination condition for the original K-means algorithm depends on the average

squared distance of the formed clusters and the algorithm stops before it converges to

a local minimum This condition was modified in order to terminate the algorithm

when the percentage of the total distortion change was equal to a predefined threshold

and the number of iterations reached a predefined limit. These two quantities were

selected to be 0.001 and 50, respectively. The K-means algorithm was run with this

modified termination condition 100 times. The clustering result had a standard

deviation of 26975.62 from the average distortion, 3869551. This represents a

standard deviation of only 0.7%. It means that the data set has no well-separated

regions. Therefore, experiments on this data set would not show clearly the

differences between the tested algorithms.

The Clementine software package [ISL, 1998] was used to analyse further the KDD98

data set. Most of the attributes are very sparse. 80-90% of the values are 0 and the

remaining have few values. Only 7 attributes (1, 11, 13, 37, 38, 40 and 46) have

137

reasonable distributions. However, three pairs of attributes (11 & 13, 37 & 38 and 1 &

40) have a high positive correlation. Therefore, a new data set was formed from

attributes 11, 37, 40 and 46 of the original KDD98 data set and used in the tests.

The CoverType data set has 581012 objects with 54 attributes. The last 44 attributes

are binary and very sparse, so they were removed from the data set and a new set

formed for the tests.

Hereafter, when KDD98 and CoverType are mentioned, this will refer to the

preprocessed data sets.

Five permutations of each data set were produced. Each permutation was tested 10

times. The number of clusters K was set to 10 and 50 for the KDD98 and CoverType

data sets, respectively. The parameter Ki in the Two-Phase K-means (2PK) algorithm

was set equal to K for both data sets. Parameters for Bradley’s algorithm had the same

values as in Famstrom’s paper [Famstrom et al., 2000].

In addition, to analyse the performance of the algorithms when they were applied on a

collection of objects in a buffer that was not representative of the entire data set, the

objects in the original set were rearranged. This was done by applying the original K-

means algorithm on the data in order to find a relatively good clustering of the

objects. Then, the clustering result was used to reorder the objects in the data set in

such a way that objects belonging to the same cluster were stored close together. This

could be regarded as one of the poorest cases of object groupings in the data sets. The

138

algorithms were tested on these reordered data sets under the same conditions as the

five permutations.

The average cluster distortion and the average running time of all versions of the K-

means algorithm when applied to the 5 permutations and the worst case of object

groupings in the KDD98 and CoverType data sets are shown in Figures 5.10 to 5.13,

respectively.

The average cluster distortions of the tested versions of K-means when applied to 5

permutations of the KDD98 data set are shown in Figure 5. lO.a. The results of N1 and

N10 (algorithms as defined in Figure 5.10 (a)) are clearly better than the results of SI

and S10, and 2PK is the most robust algorithm 2PK consistently generates optimal

solutions when applied to these permutations.

In the worst case, when objects belonging to different clusters are grouped together in

the data set (Figure 5.10 (b)), the performance of R1 and RIO is affected the most.

The cluster distortions for these two algorithms are much higher than those of the

others. If the performances of N1 and N10 are compared against those of SI and S10,

the former are affected more. However, in general, all four versions cannot cluster the

data reliably. 2PK is the most robust algorithm and the clustering results are

comparable with those obtained by applying KM.

All five scaled versions of K-means show a reduction in the computational time

required when compared with KM (Figure 5.11). SI and S10 are slower than N1 and

N10. 2PK is slightly slower than N1 and N10 but 12 times faster than KM.

139

Distortion (x10000)
9.00 t ~ ---- •

8.00 -

7.00 --

6.00 -

5.00 --

4.00
S10 KM 2PKS1 R10N10 R1

(a) 5 permutations

Distortion (x10000)
8.00 t ------------------

7.00 -

6.00 - -

5.00 -

4.00
KMR10 2PKS10 N10 R1

(b) the worst case
S1

Figure 5.10 - Average cluster distortions for eight versions of K-means when applied to
the KDD98 data set, (a) 5 permutations and (b) the worst case.

SI: Bradley’s version of K-means with a buffer storing 1% of the data set.
S10: Bradley’s version of K-means with a buffer storing 10% of the data set.
Nl: Famstrom’s version of K-means with a buffer storing 1% of the data set.
N10: Famstrom’s version of K-means with a buffer storing 10% of the data set.
Rl: The original K-means algorithm applied on 1% of the data set.
RIO: The original K-means algorithm applied on 10% of the data set.
KM: The original K-means algorithm applied on the whole data set.
2PK: The Two-Phase K-means algorithm with a buffer storing 10% of the data

set.

Note: The worst case average cluster distortions for Rl and RIO are not shown in graph
(b) because they are significantly higher than those for other versions of K-means,
being 53.58x10s and 20.45 x 10s, respectively.

140

Execution time (s)

200.00 i

150.00 -

100.00 -

- - F50.00 - -

0.00
R10 KM 2PKS10 N10

The Worst Case5 Permutations

Figure 5.11 - Average execution times of tested algorithms on the KDD98 data set.

141

In comparing the performance of all algorithms when applied to CoverType which is

a more complex data set than KDD98 and has a larger number of clusters K, the

clustering results of SI and S10 are clearly the worst (Figure 5.12.a). Surprisingly, the

performance of N1 and N10 is almost the same as that of Rl and RIO. At the same

time, the performance of 2PK is almost the same as for KM.

In the case of the worst grouping of objects in the CoverType data set (Figure 5.12.b),

the conclusions that could be made are similar to those made for the KDD data set

(Figure 5.10.b). KM outperforms all other algorithms but the performance of 2PK is

very close to that of KM.

SI and S10 are the most computationally expensive algorithms as can be seen in

Figure 5.13. Figure 5.13 shows that N1 and N10 are the most computationally

efficient algorithms. Regarding 2PK, it is only 5 times faster than the original version

KM, but generally slower when applied to the KDD98 data set. However, it is worth

mentioning that the time required to execute the Incremental K-means algorithm, in

the first iteration of 2PK, constitutes more than 60% of the total time. The reason for

this is that K increases in steps of 1, so that the algorithm is executed approximately K

times.

142

Distortion (x10000)
200 .00 T —

190.00 --

180.00 -

170.00 --

160.00 -

150.00 -

140.00
S10S1 N1 R10 KM 2PKN10 R1

(a) 5 permutations

Distortion (x10000)
210.00 T-------------------

200.00 - -

190.00 -

180.00 -

170.00 --

160.00 --

150.00 -

140.00
2PKR10 KMN10 R1

(b) the worst case
S10S1

Figure 5.12 - The average cluster distortions for eight versions of K-means when applied
to the CoverType data set, (a) 5 permutations and (b) the worst case.

S1: Bradley’s version of K-means with a buffer storing 1 % of the data set.
S10: Bradley’s version of K-means with a buffer storing 10% of the data set.
Nl: Famstrom’s version of K-means with a buffer storing 1% of the data set.
N10: Famstrom’s version of K-means with a buffer storing 10% of the data set.
Rl: The original K-means algorithm applied on 1% of the data set.
RIO: The original K-means algorithm applied on 10% of the data set.
KM: The original K-means algorithm applied on the whole data set.
2PK: The Two-Phase K-means algorithm with a buffer storing 10% of the data

set.
Note: The worst case average cluster distortions for Rl and RIO are not shown in graph

(b) because they are significantly higher than those for other versions of K-means,
707.37xl05 and 314.14 x 105, respectively.

143

Execution time (s)
5000 -r ----------

4000 -

3000 - r\

2000 -

1000 -

2PKR10 KMS10 N10

5 Permutions The Worst Case

Figure 5.13 - Average execution times of tested algorithms on the CoverType data set.

144

5.4. Summary

This chapter has described a new clustering algorithm, Incremental K-means. The

algorithm has been tested on a number of artificial and real data sets. The algorithm

consistently outperforms the original K-means algorithm. The proposed search

strategy decreases the dependence of the algorithm on the initialisation of cluster

centres. In addition, the new algorithm only needs to be applied once to achieve

almost optimal results. Further experiments will be carried out to test the new

algorithm on both nominal and mixed data.

The proposed new algorithm, Two-Phase K-means, overcomes the problems

associated with the application of the scaled versions of K-means on data subsets that

contain collections of objects not representative of the entire data set. The algorithm

consistently generates good solutions with one iteration over the data sets. It employs

a simple compression strategy that is computationally more efficient than those

applied in existing scaled versions of K-means.

The stepping strategy of the Incremental K-means algorithm in phase 1 of the Two-

Phase K-means algorithm requires further investigation to reduce the execution time

without affecting the overall performance of the algorithm.

145

Chapter 6

Selection of the Number of Clusters for K-means

6.1. Preliminaries

One of the deficiencies of the K-means method is the need for users to specify the

number of clusters as one of the input parameters based on their domain knowledge

and experience. As an exploration and analysis technique, K-means should use its

clustering result regarding the data distribution to assist users in selecting the most

appropriate value for this parameter. One common method for identifying this value is

the use of an evaluation function based on the clustering validity.

This chapter studies existing methods for selecting the number of clusters, K, for the

K-means method. Then, factors affecting the selection are analysed and an evaluation

function to determine K for the K-means method is proposed.

6.2. Number of Clusters

This section reviews existing methods for selecting K for K-means and the

corresponding clustering validation techniques.

146

6.2.1. Values of K Specified within a Range or Set

In general, to limit the effect of predefining K on the performance evaluation, a range

or a set of values could be used. The values of K should vary within particular limits

depending on the characteristics of the data sets. When comparing the performance of

two algorithms on a given data set, the dependence between K and the data

distribution may lead to results that are unfairly biased towards one method. Thus, it

is important for the number of values considered to be reasonably large, to reflect the

specific characteristics of the data sets and reduce this problem At the same time, the

selected values have to be significantly smaller than the number of objects in the data

sets, which is the main motivation for performing data clustering.

Reported studies on K-means and its applications usually do not contain any

explanation or justification for selecting particular values for K. Table 6.1 lists the

numbers of clusters and objects and the corresponding data sets used in these studies.

Two observations could be made when analysing the data in the table. First, a number

of researchers [Bottou and Bengio, 1995; Bilmes et al., 1997; Bradley and Fayyad,

1998; Estivill-Castro and Yang, 2000] used only 1 or 2 values for K. Second, several

other researchers [Al-Daoud et al., 1995; Al-Daoud et al., 1996; Hansen and Larsen,

1996; Fritzke, 1997; Pelleg and Moore, 1999] utilised relatively large K values

compared with the number of objects. These two actions contravene the above-

mentioned guidelines for selecting K. Therefore, the clustering results do not always

correctly represent the clustering performance of the tested algorithms.

147

Table 6.1 - The number of clusters used in different studies of the K-means method.

Studies Numbers of clusters K Number of
objects n

Max ratio
KJn (%)

[Al-Daoud, et al, 1995] 32,64, 128, 256,512, 1024 8192 12.50

32, 64,128, 256,512, 1024 29000

256 2048

[Al-Daoud, et al, 1996] 600, 700, 800, 900, 1000 10000 10.00

600, 700, 800, 900, 1000 50000

[Alsabti, et al, 1998] 4, 16, 64, 100, 128 100000 0.13

4, 16, 64, 100, 128 120000

4, 16, 64, 100, 128 256000

[Bilmes et al., 1997] 4 564 0.70

4 720

4 1000

4 1008

4 1010

4 1202

4 2000

4 2324

4 3005

4 4000

4 6272

4 7561

148

Table 6.1 (continued)

Studies Numbers of clusters K Number of
objects n

Max ratio
KJn (%)

[Bottou and Bengio, 1995] 6 150 4.00

[Bradley and Fayyad,
1998]

10 2310 0.43

25 12902

[Du and Wong, 2002] 2, 4,8 Not reported Not reported

[Estivill-Castro and Yang,
1996]

2,4 500 3.33

2,4 50000

2,4 100000

10 300

[Estivill-Castro, 2002] 1,2, 3,4 10000 0.04

[Fritzke, 1997] 10, 20, 30, 40, 50, 60, 70, 80,
90, 100

500 20.00

[Hamerly and Elkan, 2002] 100 10000 2.00

50 2500

[Hansen and Larsen, 1996] 7 42 16.66

1,2, 3, 4, 5, 6,7 120

[Ishioka, 2000] 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14

250 5.60

[Kanungo, et al, 1999] 8, 20, 50, 64, 256 10000 2.56

149

Table 6.1 (continued)

Studies Numbers of clusters K Number of
objects n

Max ratio
K/n (%)

[Pelleg and Moore, 1999] 5000 50000 50.00

5000 100000

5000 200000

5000 300000

5000 433208

100 100000

250 200000

1000 100000

1000 200000

1000 300000

1000 433208

40 20000

10, 20, 30, 40, 50, 60, 70, 80 30000

50, 500, 5000 10000

50, 500, 5000 50000

50, 500, 5000 100000

50, 500, 5000 200000

50, 500, 5000 300000

50, 500, 5000 433208

150

Table 6.1 (continued)

Studies Numbers of clusters K Number of
objects n

Max ratio
KJn (%)

[Pelleg and Moore, 2000] 250 80000 10.00

250 90000

250 100000

250 110000

250 120000

50, 100, 400 4000

50, 100, 400 36000

250 80000

250 90000

250 100000

250 110000

250 120000

50, 100, 150 4000

50, 100, 150 36000

50 800000

500 800000

[Pena et al., 1999] 3,4 150 6.67

4,5 75

2, 7, 10 214

151

In general, the performance of any new version of the K-means algorithm could be

verified by comparing it with its predecessors on the same criteria. In particular, the

sum of cluster distortions is usually employed as such a performance indicator

[Bottou and Bengio, 1995; Al-Daoud and Roberts, 1996; Hansen and Larsen, 1996;

Pelleg and Moore, 1999; Pena et al., 1999]. Thus, the comparison is considered fair

because the same model and criterion are used for the performance analysis.

6.2.2. Values of K Specified by the User

The K-means implementation in Data Mining or Data Analysis software packages,

such as Clementine [ISL, 1998], Data Engine [MIT, 1998], SPSS [Kerr et al., 2002],

S-PLUS [Insightful Corporation, 2001], requires the number of clusters to be specified

by the user. To find a satisfactory clustering result, usually, a number of iterations are

needed where the user executes the algorithm with different values of K. The validity

of the clustering result is assessed only visually without applying any formal

performance measures. With this approach, it is difficult for users to evaluate the

clustering result for multi-dimensional data sets.

6.2.3. Values of K Determined in a Later Processing Step

When K-means is used as a pre-processing tool as shown in Figure 6.1, the number of

clusters is determined by the specific requirements of the main processing algorithm

[Hansen and Larsen, 1996]. No attention is paid to the effect of the clustering results

152

Data
Main processing

operation
Data clustering

Figure 6.1 - Data clustering as a pre-processing tool.

153

on the performance of this algorithm In such applications, K-means is used just as a

“black box” without validation of the clustering result.

6.2.4. Values of K Equated to Number of Generators

Synthetic data sets, which are used in testing algorithms, are often created by a set of

normal or uniform distribution generators. Then, clustering algorithms are applied to

those data sets with the number of clusters equated to the number of generators. It is

assumed that any resultant cluster will cover all objects created by a particular

generator. Thus, the clustering performance is judged based on the difference between

objects covered by a cluster and those created by the corresponding generator. Such a

difference can be measured by simply counting objects or calculating the Information

Gain [Bradley and Fayyad, 1998].

There are a few deficiencies with this method. The first deficiency concerns the

stability of the clustering results when there are areas in the object space that contain

objects created by different generators. Figure 6.2.a illustrates such a case. The data

set shown in this figure has two clusters, A and B, which cover objects generated by

generators Ga and Gb respectively. Object X is in an overlapping area between

clusters A and B. X has probabilities P g_a and P q_b of being created by G a and G b ,

respectively, and probabilities P c_a and P c_b of being included into clusters A and B,

respectively. All four probabilities are larger than 0. Thus, there is a chance for X to

be created by generator Ga but covered by cluster B , and vice versa. In such cases,

154

Generator Ga / Cluster A Generator G# / Cluster B
(a)

□□
□

Generator G a / Cluster A Generator / Cluster B
(b)

Figure 6.2 - The relationship between clusters can have an effect °n the clustering.

Two object spaces: (a) an area exists that contains objects cfeated by two different

generators (b) no overlapping areas.

Note: □ - objects generated by Ga and A - objects generated by

155

the clustering results will not be perfect. The stability of the clustering results depends

on these four probabilities. With an increase in the overlapping areas in the object

space, the stability of the clustering results decreases.

The difference between the characteristics of the generators also has an effect on the

clustering results. In Figure 6.2 (b) where the number of objects of cluster A is five

times larger than that of cluster B, the smaller cluster B might be regarded as noise

and all objects might be grouped into one cluster. Such a clustering outcome would

disagree with that obtained by visual inspection.

Unfortunately, this method of selecting K cannot be applied to practical problems.

The data distribution in practical problems is unknown and also the number of

generators cannot be specified.

6.2.5. Values of K Determined by Statistical Measures

There are several statistical measures available for selecting K. These measures are

often applied in combination with probabilistic clustering approaches. They are

calculated with certain assumptions about the underlying distribution of the data The

Bayesian Information Criterion (BIC) or Akeike’s Information Criterion (AIC)

[Pelleg and Moore, 2000; Ishioka, 2000] are calculated on data sets which are

constructed by a set of Gaussian distributions. The measures applied by Hardy

[Hardy, 1996] are based on the assumption that the data set fits the Poisson

distribution. Monte-Carlo techniques, which are associated with the Null Hypothesis,

156

are used for assessing the clustering results and also for determining the number of

clusters [Theodoridis and Koutroubas, 1999; Halkidi et al., 2002].

There have been comparisons between probabilistic and partitioning clustering

[Bradley and Fayyad, 1998]. Expectation-Maximisation (EM) is often recognised as a

typical method for probabilistic clustering. Similarly, K-means is considered a typical

method for partitioning clustering. Although, EM and K-means share some common

ideas, they are based on different hypotheses, models and criteria. Probabilistic

clustering methods do not take into account the distortion inside a cluster, so that a

cluster created by applying such methods may not correspond to a cluster in

partitioning clustering, and vice versa. Therefore, statistical measures used in

probabilistic methods are not applicable in the K-means method. In addition, the

assumptions about the underlying distribution cannot be verified on real data sets and

therefore cannot be used to obtain statistical measures.

6.2.6. Values of K Equated to the Number of Classes

With this method, the number of clusters is equated to the number of classes in the

data sets. A data clustering algorithm can be used as a classifier by applying it to data

sets from which the class attribute is omitted and then the clustering results are

assessed using the omitted class information [Kotari and Pitts, 1999; Cai, 2001]. The

outcome of the assessment is fedback to the clustering algorithm to improve its

performance. In this way, the clustering can be considered supervised.

157

With this method of determining the number of clusters, the assumption is made that

the data clustering method could form clusters, each of which would consist of only

objects belonging to one class. Unfortunately, most real problems do not satisfy this

assumption.

6.2.7. Values of K Determined through Visualisation

Visual verification is applied widely because of its simplicity and explanation

capabilities. Visual examples are often used to illustrate the drawbacks of an

algorithm or present the expected clustering results [Bilmes et al., 1997; Cai, 2001].

The assessment of a clustering result using visualisation techniques depends heavily

on their implicit nature. The clustering models utilised by some clustering methods

may not be appropriate for particular data sets. The data sets in Figure 6.3 are

illustrations of such cases. The application of visualisation techniques implies a data

distribution continuity in the expected clusters. If K-means is applied to such data

sets, there is not any cluster that could satisfy the clustering model of K-means and at

the same time corresponds to a particular object grouping in the illustrated data sets.

Therefore, K-means cannot produce the expected clustering results. This suggests that

the K-means approach is unsuitable for such data sets.

The characteristics of the data sets in Figure 6.3 (position, shape, size and object

distribution) are implicitly defined. This makes the validation of the clustering results

difficult. Any slight changes in the data characteristics may lead to different

158

outcomes. The data set in Figure 6.3 (b) is an illustration of such a case. Another

example is the series of data sets in Figure 6.4. Although two clusters are easily

identifiable in the data set in Figure 6.4 (a), the numbers of clusters in the data sets in

Figures 6.4 (b) and 6.4 (c) depend on the distance between the rings and the object

density of each ring. Usually such parameters are not explicitly defined when a visual

test is carried out.

In spite of the above-mentioned deficiencies, visualisation of the results is still a

useful method of selecting K and validating the clustering results when the data sets

do not violate the assumptions of the clustering model. In addition, this method is

recommended in cases where the expected results could be identified explicitly.

6.2.8. Values of K Determined Using a Neighbourhood Measure

A neighbourhood measure could be added to the cost function of K-means to

determine K [Kothari and Pitts, 1999]. Although this technique has showed promising

results for a few data sets, it needs to prove its potential in practical applications.

Because the cost function has to be modified, this technique cannot be applied to the

original K-means method.

159

(a)

4 4

4 4 .4 4 .4T . a

4 4

(b)

-X.W

_ .+:
t ?

<m K. - -++**

(c)

Figure 6.3 - Inappropriate data sets for the K-means approach.

Data sets with: (a) 4 clusters [Bilmes et al., 1997]; (b) 3 clusters [Hardy, 1996];

(c) 8 clusters [Cai, 2001]

Note: The number of clusters in each data set was specified by the respective authors.

O) <t>) CO

Figure 6 .4 - Variations of the two-ring data set.

160

6.3. Factors Affecting the Selection of K

A function f(K) for evaluating the clustering result could be used to select the number

of clusters. Factors that such a function should take into account are discussed in this

section.

6.3.1. Approach Bias

The evaluation function should be related closely to the clustering criteria. As

mentioned previously, such a relation could prevent adverse effects on the validation

process. In particular, in the K-means method, the criterion is the minimisation of the

distortion of clusters, so that the evaluation function should take this parameter into

account.

6.3.2. Level of Detail

From the scale-space theory in vision research [Lindberg, 1994], observers that could

see relatively low levels of detail would get only a general view of an object. By

increasing the level of detail, they could obtain more knowledge about the observed

object but at the same time, the amount of information that they have to process

increases significantly. Because of resource limitations, a high level of detail is used

only to examine parts of the object.

161

Such an approach could be applied in clustering. A data set with n objects could be

grouped into any number of clusters between 1 and n, which would correspond to the

lowest and the highest level of detail, respectively. By specifying different K values, it

is possible to assess the results of grouping objects into various numbers of clusters.

From this evaluation, more than one K value could be recommended to users, but the

final selection is made by them.

6.3.3. Internal Distribution versus Global Impact

Clustering is used to find irregularities in the data distribution and identify regions in

which objects are concentrated. However, not every region with a high concentration

of objects is considered a cluster. For a region to be identified as a cluster, it is

important to analyse not only its internal distribution, but also its interdependency

with other object groupings in the data set.

In K-means, the distortion of a cluster is a function of the data population and the

distance between objects and the cluster centre. Each cluster is represented by its

distortion and its impact on the entire data set is assessed by its contribution to the

sum of all distortions. Thus, such information is important in assessing whether a

particular region in the object space could be considered a cluster.

162

6.3.4. Constraints for f(K)

The robustness of f(K) is very important. Because the performance of this function is

judged based on the result of the clustering algorithm, it is important for this result to

vary as little as possible when K remains unchanged. One of the main deficiencies of

K-means is its dependence on randomness. Thus, the algorithm should yield

consistent results so that its performance can be used as a variable in the evaluation

function. One of the versions of K-means, the Incremental K-means method, which

was presented in chapter 5, satisfies this requirement so that a measure for assessing

its performance can be used as a variable in f(K).

The role of f(K) is to identify trends in the data distribution and therefore it is

important to keep it independent of the number of objects. The number of clusters K is

assumed to be much smaller than the number of objects N. When K increases, the

robustness of j\K) should increase also. If a minimum or maximum value of f(K) is

used to select K, such a value of K could be considered optimum due to the function

robustness at stationary points.

6.4. Number of Clusters for K-means

As mentioned previously, cluster analysis is used to find irregularities in the data

distribution. When the data distribution is uniform, there is not any irregularity.

Therefore, data sets with uniform distribution could be used to calibrate and verify the

clustering performance. This approach was applied by Tibshirani [Tibshirani et al.,

163

2000]. A data set of the same dimension as the actual data set and with a uniform

distribution was generated. The clustering performance on this artificial data set was

then compared with the result obtained for the actual data set. A measure known as

the “Gap” statistic [Tibshirani et al., 2000] was employed to assess performance. In

this work, instead of generating an artificial data set, the clustering performance for

the artificial data set was estimated. Also, instead of the Gap statistic, a new and more

discriminatory measure was employed for evaluating the clustering result in this

chapter.

When the K-means algorithm is applied to data with a uniform distribution and K is

increased by 1, the clusters are likely to change and in the new positions, the

partitions will be again approximately equal in size and their distortions similar to one

another. The evaluations carried out in chapter 5 showed that when a new cluster is

inserted into a cluster (K=l) with a hyper-cuboid shape and a uniform distribution, the

decrease in the sum of distortions is proportional to the original sum of distortions.

This conclusion was found to be correct for clustering results obtained with relatively

small values of K. In such a case, the sum of distortions after the increase in the

number of clusters could be estimated from the current value.

The evaluation function f(K) is defined using Equations 6.1 and 6.2, where Sx is the

sum of the cluster distortions when the number of clusters is K, Nd is the number of

data set attributes and ax is a weight factor. The term cfc Sx-i in Equation 6.1 is an

estimation of Sx based on Sx-i made with the assumption that the data has a uniform

distribution. The value of f(K) is the ratio of the real and estimated distortions and is

close to 1 when the data distribution is uniform When there are areas of concentration

164

in the data distribution, Sk will be less than the estimated value, so that f(K) decreases.

The smaller f(K) is, the more concentrated the data distribution. Thus, values of K that

yield small f(K) can be regarded as giving well-defined clusters.

The weight factor (Xk, given in Equation 6.2, is a positive number less than or equal to

1, and is applied to reduce the effect of dimensions. With K= 2, ock is computed using

Equation 6.2 (a). This equation is derived from Equation 5.7 which shows that the

decrease in distortion is inversely proportional to the number of dimensions Nj (see

Section 5.2.3).

As K increases above 2, the decrease in the sum of distortions reduces (the ratio S k/ S k -

i approaches 1) as can be seen in Figure 6.5. This figure shows the values of S k/ S k -i

computed for different K when the clustering algorithm is applied to data sets of

different dimensions and with uniform distributions. With such data sets, f(K) is

expected to be equal to 1 and 0(k should be chosen to equate j\K) to 1. From Equation

6.1, aK should therefore be S k/ S k -i and thus obtainable from Figure 6.5. However, for

computational simplicity, the recursion Equation 6.2 (b) has been derived from the

data represented in Figure 6.5 to calculate Ofr- Figure 6.6 shows that the values of aK

obtained from Equation 6.2 (b) fit the plots in Figure 6.5 closely.

1 i f K = 1

i f S K_, *0 ,V K > 1 (6.1)
K u K-\

1 i f S K_, = 0 ,V * > 1

i f K > 2 and N d > 1

i f K - 2 and N d > 1 (a)

(b)
(6.2)

165

S k/ S k

1.2 -

-| -

.-1

... I

n ft -

« * * * * • • * * * » I
♦ » * * * i

0 6 -

& \
8* £ ♦ S

n a -

j
SJ
i

n o -

|
|

n -I
c 5 10 15 20

K♦ 2-dimensional ’uniform square’ data set $ 2-dimensional ’uniform circle’ data s e t

(a)

Sk'Sk-

♦ 4-dimensional ’uniform cube’ data se t 8 4-dimensional ’uniformsphere’ data s e t

(b)

Figure 6.5 - The ratio Sk/Sk-i for data sets having uniform distributions

(a) 2-dimensional ‘square’ and ‘circle’, and

(b) 4-dimensional ‘cube’ and ‘sphere’.

166

S k^S k-

0.8

0.6

0.4

0.2

0 5 10 15 20

♦ 2-dimensional ’uniform square’ data se t « 2-dimensional ’uniform circle’ data se t CCk

(a)

Sk̂Sk-1

0.8

0.6

0.4

0.2

15 201050
K

♦ 4-dimensional 'uniform cube’ data set ® 4-dimensional 'uniform sphere’ data s e t —A— OCk

(b)

Figure 6 .6 - Comparison of the values of aK calculated using Equation 6.2 (b)

and the ratio Sk/Sk-j-

167

The proposed function f(K) satisfies the constraints mentioned in the previous section.

The robustness of f(K) will be verified experimentally in the next section. When the

number of objects is doubled or tripled but their distributions are unchanged, the

resultant clusters remain in the same position, Sk and Sk-i are doubled or tripled

correspondingly, so that f(K) stays constant. Generally, f(K) is independent of the

number of objects of the data.

To reduce the effect of the differences in the ranges of the attributes, data is

standardised or normalised before the clustering starts. However, it should be noted

that, when the data has well-separated groups of objects, the shape of such regions in

the problem space has an effect on the evaluation function. In such cases, the scaling

techniques do not influence the local object distribution, because scaling applies to the

whole data set.

6.5. Performance

The evaluation function f(K) is tested by a series of experiments on the artificially

generated data sets shown in Figure 6.7. All data is standardised before the

Incremental K-means method is applied with K ranging from 1 to 19. f(K) is

calculated based on the total distortion of the clusters.

In Figures 6.7 (a), 6.7 (b) and 6.7 (c), all objects belong to a single region with a

uniform distribution. The graph in Figure 6.7 (a) shows that f(K) reflects well the

clustering result on this data set with a uniform distribution because f(K) is

168

approximately constant and equal to 1 for all K. When K= 4 and K= 3 in Figures 6.7 (a)

and 6.7 (b), respectively,/^) reaches minimum values. This could be attributed to the

shape of the areas defined by the objects belonging to these data sets. However, the

minimum values of j\K) do not differ significantly from the average value for any

strong recommendations to be made to the user. By comparing the values of f(K) in

Figures 6.7 (a) and 6.7 (c), it can be seen that reduces the effect of the data set

dimensions on the evaluation function.

For the data set in Figure 6.7 (d), again, all objects are concentrated in a single region

with a normal distribution. The f(K) plot for this data set suggests correctly that when

K - 1, the clustering result is the most suitable for this data set.

The data sets in Figures 6.7 (e) and 6.7 (f) are created by 2 generators having normal

distributions. In Figure 6.7 (e), the two generators have an overlapping region but in

Figure 6.7 (f), they are well separated. Note that the value for/f2) in the latter figure is

much smaller than that in the former.

The data sets in Figures 6.7 (g) and 6.7 (h) have three recognisable regions. From the

corresponding graphs, j\K) suggests correct values of K for clustering these data sets.

Three different generators that create object groupings with a normal distribution are

used to form the data set in Figure 6.7 (i). In this cas&,f(K) suggests the values 2 or 3,

for K. Because two of these three generators create object groupings that overlap, f(2)

is smaller than/f 3). This means that the data has only two clearly defined regions, but

K- 3 could also be used to cluster the objects.

169

Figures 6.7 (j) and 6.7 (k) illustrate how the level of detail could affect the selection of

K.f(K) reaches minimum values at K= 2 and 4 respectively. In such cases, users could

select the most appropriate value of K based on their specific requirements. A more

complex case is shown in Figure 6.7 (1) where there are possible K values of 4 or 8.

The selection of a particular K will depend on the requirements of the specific

application for which the clustering is carried out.

The data sets in Figures 6.7 (m), 6.7 (n) and 6.7 (o) have well-defined regions in the

object space, each of which has a different distribution, location and number of

objects. If the minimum value of f(K) is used to cluster the objects, K will be different

from the number of generators utilised to create them or the number of object

groupings that could be identified visually. Therefore, from analysing f(K), only

recommendations could be made and the decision as to which particular value should

be adopted has to be taken by the user.

From the graphs in Figures 6.7, a conclusion could be made that any K with

corresponding f(K) < 0.85 could be recommended for clustering. If there is not a value

with corresponding f(K) <0.85, K= 1 is selected.

170

f(K)
1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K

(a)

, As feiutf lShn;c1r<*le
v: - j: -A,-;V>V AA:A •"

’ a' A'- ”!. A-* >
•• • ■ \ • • ••• .. ••..'. ■• T • .- ■•••
v » ■ ••

; •.. ; v • s;.; ^ ' ..V'4

f (K)

1 .4 0

1.20

1.00

0.88
0 . 8 0

0 . 6 0

0 . 4 0

0.20

0.00
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 K

(b)

f(K)
1 .4 0

1.20
1.00 §4
0 . 8 0

0 . 6 0

0 . 4 0

0.20

0.00
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

Figure 6.7 - Data sets and their corresponding f(K).

171

* * gkV<',/ •*

4 ?

f (K)

1 .4

1.2

0.8
0.6
0 .4

0.2

(d)

. .. :<> Z: •■*' V* '̂ «■̂ V̂I■̂»̂̂•,,| ̂ '’*11 •*. * -
-. ••■ ' ' \

■ •. ;; 5-;>. : . •.

• ' .'!'. hi ".: ■

f(K)
1 .4 0

1.20

1.00

0 . 8 0
0 .7 2

0 . 6 0

0 . 4 0

0.20

0.00
1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(e)

f (K)

1.40

1.20

1.00

0.80

0.60

0.40

i L 2 20.20

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(f)

Figure 6.7 (continued)

172

1 .4 0

1.20
1.00
0 . 8 0

0 . 6 0

0 . 4 0

0.20
0.00

1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(g)

1 .4 0

1.20

1.00

0 . 8 0

0 . 6 0

0 . 4 0

0.20

0 . 0 5
0.00

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(h)

f(K)
1.20

1.00

0.80

0.60
0.53

0.40

0.20

0.00
10 11 12 13 14 15 16 17 18 19

Figure 6.7 (continued)

173

f(K)

1 .4 0

1.20
1.00
0 . 8 0

0 . 6 0

0 .4 0
0 . 3 4

0 . 3 6

0.20
0.00

1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(j)

m

•-.-TO,

f (K)

1 .4 0

1.20

1.00

0 . 8 0

0 . 6 0

0 . 4 0
0 . 4 2

0 . 1 9
0.20

0.00
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(k)

1.20 T

1.00

0 . 8 0
0 . 8 2 0 .7 ;

0 . 6 0

0 . 4 6

0 . 4 0

0.20

0.00
1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(1)

Figure 6.7 (continued)

174

f(K)
1.20

1.00

0.86
0 . 8 0

0 .6!
0.680 . 7 5

0 .4 0

0.20

0.00
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(m)

f(K)
1.20

1.00
0 . 9 5

0 .8 1
0 . 8 0 XT78"

0 . 7 20 . 7 8

0 . 6 3
0 . 6 0

0 . 4 0

0.20

0.00
6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 91

(n)

1.20 ->

1.00

0 . 8 0
0 . 8 2 0 .7 :

0 . 6 0

0 . 4 6
0 . 4 0

0.20

0.00
6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 91

(O)

Figure 6.7 (continued)

175

The proposed function yjX) is also applied to 12 benchmarking data sets from the UCI

Machine Learning Repository [Blake et al., 1998]. Figure 6.8 shows how the value of

j\K) varies with K. If a threshold of 0.85 is selected for f(K) (from the study on the

artificial data sets), the numbers of clusters that will be recommended for each of

these data sets are given as in Table 6.2. K = 1 means that the data distribution is very

close to the standard uniform distribution. The values recommended using f(K) are

very small because of the high correlation between the attributes of these data sets,

very similar to that shown in Figure 6.7 (e). This can be verified by examining two

attributes at a time and plotting the data sets in 2-D.

The above experimental study on 15 artificial and 12 benchmark data sets has proved

the robustness of f(K). The evaluation function converges to 1 when K increases

above 9.

176

f(K) A u stra lian f(K) Balance-Scale
1.05

1.10

1.00 1.05

1.000.95

0.95
0.90

0.900.87
0.85

0.85

08 0 0.80

0.75 0.75

0.700.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K

f(K) Car Evaluation Cmc

1.05 1.05

1.00 1.00

0.95 0.95
0.93 0.94

0.90 0.90

0.850.85
0.83

0.800.80

0.750.75

0.700.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f(K)

1 05 n

Irisf(K)

1.05

Io nosph ere

1.001.00
0.95

0.95
0.90

0.860.90 0.85

0.80 ■org-0.85
0.83

0.75
0.80

0.70
0.75 0.65

0.62
0.600.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K

Figure 6.8 - f(K) for the 12 benchmark data sets.

177

f(K) Page Blocks 1(K) Pima
1 05 1.05 ----

1 00 1.00

0.95 0.95

0.920.90 0.900.88

0.85 0.85
0.83

0.80 0.80

0.750.75

0.700.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K

f(K) Winef(K)Wdbc

1.05 1.05

1.00 1.00

0.95 0.95
0.92

0.90 0900.89

0.850.85
0.82

0.800.80

0.750.75

0.700.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K

f(K)

1 05 r

ZooYeast

1.05

1.00 1 00

0.95 0.95

0.90 0.90
0.88

■0.86
0.85085

0.800.80 0.79

0.750.75

0.700.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 K9 10 11 12 13 14 15 16 17 18 19 K

Figure 6.8 (continued)

178

Table 6.2 — The recommended number of clusters based on f(K).

Data sets Proposed number of clusters

Australian 1

Balance-Scale 1

Car Evaluation 2, 3 ,4

Cme 1

Ionosphere 2

Iris 2,3

Page Blocks 2

Pima 1

Wdbc 2

Wine 3

Yeast 1

Zoo 2

179

6 . 6 . Summary

Existing methods of selecting the number of clusters for K-means have a number of

deficiencies. Also, methods for assessing the clustering results do not provide

sufficient information on the performance of the clustering algorithm.

The main factors affecting the selection of K have been studied. By taking into

account these factors in defining the selection method, the selection of K will be tied

to the K-means clustering model. Multiple values of K could be recommended to

users for cases when different clustering results could be obtained with various

required levels of detail. The constraints applied to such a selection method have also

been discussed.

A new method to select the number of clusters for the K-means algorithm has been

proposed in the chapter. The new method closely relates to the approach of K-means.

The performance of the method has been investigated experimentally on 15 artificial

and 12 benchmark data sets. Further research is required to verify the capability of

this method when applied to data sets with complex object distributions.

180

Chapter 7

Conclusions and Future Work

This chapter concludes the thesis. The chapter focuses on the main contributions of

the research and provides suggestions for future work.

7.1. Conclusions

In chapter 2, constraints and limits on the learning approaches of existing rule

induction and data clustering algorithms are studied. The flexibility of these

approaches is also discussed.

The first part of this thesis concentrates on contributions to rule induction research.

Chapter 3 introduces a new covering method, called RULES-A, which forms the

whole rule set simultaneously instead of one rule at a time. RULES-A has the ability

to process continuous attributes directly. The adaptive capability of RULES-A

enables efficient management of the relationships between the rules in the rule set

during the induction process.

In chapter 4, an improved version of RULES-A, called RULES-A1, is introduced.

RULES-A 1 forms the final rule sets in 2 phases compared with the 3 phases of

181

RULES-A. The proposed new version can process data sets with both continuous and

discrete attributes. Rule pruning is carried out automatically without requiring

intervention by users. The strategies of stopping early and varying the order of objects

in the training set are applied in enhanced versions of RULES-A 1 to increase the data

processing speed of the algorithm and the accuracy of the generated rule sets.

The final outcome of this investigation into new rule induction techniques is a family

of powerful covering algorithms that outperform C5 and RULES 3+ in classification

tasks on benchmark data sets.

The second part of the thesis concentrates on improvement of the K-means algorithm

In chapter 5, the Incremental K-means algorithm is introduced. The algorithm has a

flexible strategy for managing the number of clusters. The proposed search strategy

decreases the dependence of the algorithm on the initialisation of cluster centres. In

addition, the new algorithm only needs to be applied once to achieve almost optimal

results. The algorithm consistently outperforms the original K-means algorithm

A second new K-means algorithm, called Two-Phase K-means, is proposed in chapter

5. Using a buffer, the algorithm consistently generates near optimal solutions with one

iteration over large data sets. It employs a simple compression strategy that is

computationally more efficient than those applied in other scaled versions of K-

means.

Chapter 6 shows that existing methods of selecting the number of clusters are

unsuitable for the K-means clustering approach. Current clustering validation methods

182

cannot show the potential of K-means and limit its capabilities. Factors affecting the

selection of the number of clusters are studied thoroughly. A new method to select the

number of clusters for the K-means algorithm is proposed. The new proposed method

has demonstrated its effectiveness in a series of visual examples and for real data sets.

As a result of the investigation into new clustering methods, new K-means algorithms

have been devised that overcome all recognised deficiencies of the K-means

algorithm.

7.2. Future Research Directions

A number of aspects of the algorithms developed in this thesis could be improved.

Indexing techniques, such as those based on k-d trees, can be introduced to RULES-A

to reduce the complexity of the algorithm in finding classification rules for an object

or check the consistency for rules in the rule set.

Although the technique of varying the order of objects in the training set can reduce

the dependency of RULES-A on randomness, using a buffer with a suitable strategy

to seed candidate rules may improve the quality of formed rule sets.

Indexing techniques can also be applied to reduce the complexity of the Incremental

K-means algorithm. The stepping strategy of this algorithm requires further research

183

to reduce the execution time without affecting the overall performance of the

Incremental K-means algorithm and the Two-Phase K-means algorithm.

Because of the different characteristics of discrete and continuous attributes, the

flexible management strategy of the Incremental K-means algorithm needs further

study using data sets with both types of attributes.

The selection method in chapter 6 needs further investigation with practical data sets

having more complicated distributions.

184

Appendix A

Complexity Estimation of RULES-A

Given

a is the number of attributes

k is the number of rules

e is the number of objects in the training set

p is the number of objects in the pruning set

r is the number of iterations over the training set and specified experimentally

t is the pruning threshold and a predefined parameter

The complexity of RULES-A (Figures 3.1 - 3.4) is estimated in the following

sections.

Phases 1:

Step 0

Step 1

Step 2

2.1

2.2. e times steps 2.3, 2.4 or 2.5

2.3. Check k rules, each rule has a attributes

2.4. Check k rules; each rule (having a attributes) is checked for its

consistency with k-1 rules

2.5.

185

Step 3

3.1. Update k rules, each rule has a attributes

3.2. Check k rules

3.3. Execute r times steps 3.1 and 3.2

The combined complexity of Phase 1 is 0(aetfr).

Phase 2:

Step 1. Calculate accuracy by checking p objects on k rules; each object or

rule has a attributes.

Step 2. Check the capacity of k rules.

Calculate accuracy by checking p objects on k rules; each object or rule

has a attributes.

Step 3. Execute t times steps 1 and 2.

The combined complexity of Phase 2 is O(akpt).

Phase 3:

Check k rules

For each rule, check its a attributes

For each attribute, check the overlapping of the rule with the

other k-1 rules

The combined complexity of Phase 3 is O(a2tf).

The following observations can be seen experimentally:

a « e

e ~ p

186

k « e

t « e

t < k

Therefore,

a2}'t2 < akpt < aek?r

The three phases are run consecutively, so that the complexity of the RULES-A

algorithm is considered to be the largest of these three, O(aek2r).

Appendix B

Data Sets

Many of the data sets used in this thesis are from the UCI repository of machine

learning databases [Blake et al., 1998] and KDD databases [Hettich and Bay, 1999].

These databases were contributed by many researchers, mostly from the field of

machine learning and data mining, and collected by the machine learning group at the

University of California, Irvine. These data sets are described briefly below.

Balance-Scale data set: This data set was generated to model experimental

psychological results. It contains 3 classes (balance scale tips to the right, tips to the

left, or is central), 4 numerical attributes and 625 examples.

Abalone data set: The data is used to predict the age of abalone from physical

measurements. There are a total of 4177 instances in the data, and each is described

by 7 continuous and 1 discrete attributes.

Australian data set: This data set is the modified version of the Credit Approval data

set. Attribute 4 is removed. All discrete values were mapped to numerical values.

Car Evaluation data set: This data set was used to evaluate cars according to the

features that describe their price, technical characteristics and safety. It contains

examples in 4 classes (unacceptable, acceptable, good and very good), 6 continuous

attributes and 1728 examples.

188

Cmc (Contraceptive Method Choice) data set: This data set was used to predict the

current contraceptive method choice of a woman based on her demographic and

socio-economic characteristics. It contains examples in 3 classes (no use, long-term

methods, or short-term methods), 9 numerical attributes and 1473 examples.

Credit Approval data set: This data set concerns credit card applications. It contains

examples in 2 classes (-, +), 6 numerical attributes, 9 discrete attributes and 690

examples.

Ionosphere data set: This data set was used to classify radar returns from the

ionosphere. It contains examples of 2 classes (g, b), 34 numerical attributes and 351

examples.

Pageblocks data set: This data set was used to classify all the blocks of the page

layout of a document that has been detected by a segmentation process. It contains

examples in classes (text, horizontal line, vertical line, graphic, picture), 10 numerical

and 5473 examples.

Pima Indian Diabetes data set: This data set consists of records on diabetes patients. It

contains examples in 2 classes (+, -), 8 numerical attributes and 768 examples.

Tic-tac-toe data set: This data encodes the complete set of possible board

configurations at the end of tic-tac-toe games with a 3x3 board, where the player “X”

189

is assumed to have played first. It contains examples in 2 classes (positive, negative),

9 discrete attributes and 958 examples.

Yeast data set: This data set was used to predict the cellular localisation sites of

proteins. It contains examples in 9 classes (CYT, NUC, MIT, ME3, ME2, ME1, EXC,

VAC, POX, ERL), 8 numerical attributes and 1484 examples.

Wisconsin Breast Cancer database: Each data point represents data for one breast

cancer case. There are three different data sets in this database. The Wdbc data set

(New diagnostic) is used in this thesis. This data set contains examples in 2 classes

(benign or malignant), 31 continuous attributes and 569 examples.

Glass2 data set: This data set was used in a study of glass for a criminological

investigation. It contains examples in 2 classes (float_processed, non_float_

processed), 10 numerical attributes and 214 examples.

Iris data set: This is the most widely used data set in the literature. The data set

contains 3 classes of 50 instances each, where each class refers to a type of iris flower.

Each instance is described by four continuous attributes, namely, sepal length, sepal

width, petal length and petal width.

Heart data set: This data set was used in a study of heart disease. It contains examples

in 2 classes (absent, present), 13 numerical attributes and 270 examples.

190

Wine data set: This data set was used in a chemical analysis to determine the origin of

wines. It contains examples in 3 classes (1, 2, 3), 13 numerical attributes and 178

examples.

Zoo data set: This data set was used to classify the group of animals. It contains

examples in 7 classes (1, 2, 3, 4, 5, 6, 7), 17 numerical attributes and 101 examples.

Diabetes is identical with Pima.

191

References

Al-Daoud, M. B., Venkateswarlu, N. B. and Roberts, S. A., 1995. Fast K-MEANS

Clustering Algorithms. University of Leeds, School of Computer Studies, Report

95.18, June 1995.

Al-Daoud, M. B., Venkateswarlu, N. B. and Roberts, S. A., 1996. New methods for

the initialisation of clusters. Pattern Recognition Letters 17, pp. 451-455.

Alsabti, K., Ranka, S. and Singh, V., 1998. An Efficient K-means Clustering

Algorithm Proceedings of the First Workshop on High-Performance Data Mining,

Orlando, Florida. ftp://ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings.

Berkhin, P., 2001. Survey of Clustering Data Mining Techniques. Research paper.

Accrue Software, Inc. http://www.accrue.com

Bermejo, S. and Cabestany, J., 2002. The effect of finite sample size on on-line K-

means. Neurocomputing 48 (2002), pp. 511-539.

Bilmes, J., Vahdat, A., Hsu, W. and Im, E. J., 1997. Empirical Observations of

Probabilistic Heuristics for the Clustering Problem. Technical Report TR-97-018,

International Computer Science Institute, Berkeley, CA

Bisbal, J. and Grimson, J., 2001. Database sampling with functional dependencies.

Information and Software Technology, Vol. 43, Issue 10, pp. 607-615.

192

ftp://ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings
http://www.accrue.com

Blake, C., Keogh, E. and Merz, C. J., 1998. UCI Repository of Machine Learning

Databases, Irvine, CA. Department of Information and Computer Science, University

of California Irvine, CA, USA.

Bose, I. and Mahapatra, R. K., 2001. Business data mining - a machine learning

perspective. Information & Management 39, pp. 211-225.

Bottou, L. and Bengio, Y., 1995. Convergence properties of the K-means algorithm

Advances in Neural Information Processing Systems, Vol. 7, MIT Press, Cambridge,

MA, pp. 585-592.

Bradley, S. and Fayyad, U. M., 1998. Refining initial points for K-means clustering. J.

Shavlik, editor, Proceedings of the Fifteenth International Conference on Machine

Learning (ICML ’98), Morgan Kaufmann, San Francisco, CA, pp. 91-99.

Bradley, P., Fayyad, U. M., and Reina, C., 1998a. Scaling clustering algorithms to

large databases. Proceedings of the Fourth International Conference on Knowledge

Discovery and Data Mining, NY, pp. 9-15.

Bradley, P., Mangasarian, O. And Street, W., 1998b. Feature selection via

mathematical programming. Journal of Computing, 10, pp. 209-217.

Brunk, C. A. and Pazzani, M. J., 1991. An investigation of noise-tolerant relational

concept learning algorithms. Proceedings of the 8th International Workshop on

Machine Learning, Illinois, pp. 389-393.

Cai, Z., 2001. Technical aspects of data mining. PhD Thesis. Cardiff University,

Cardiff, UK.

193

Castro, V. E. and Yang, J., 2000. A Fast and Robust General Purpose Clustering

Algorithm. Fourth European Workshop on Principles of Knowledge Discovery in

Databases and Data Mining 2000 (PKDD00), Lyon, France, pp. 208-218.

Cerquides J. and Lopez de M. R., 1997. Proposal and Empirical Comparison of a

Parallelizable Distance Based Discretisation Method, Proceedings of the 3rd

International Conference on Knowledge Discovery and Data Mining, Newport Beach,

CA., pp. 139-142.

Chapman P., Clinton J., Kerber R., Khabaza T., Reinartz T., Shearer C. and Wirth R.,

2000. CRISP-DM 1.0 Process and User Guide, http://www.crisp-dmorg.

Cheeseman, P. and Stutz, J. 1996. Bayesian Classification (AutoClass): Theory and

Results. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy , R.

(Eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press,

pp. 61-83.

Chinrungrueng, C. and Sequin, C. H., 1995. Optimal Adaptive K-means Algorithm

with Dynamic Adjustment of Learning Rate. IEEE Transactions of Neural Networks,

Vol. 6, No. 1, January 1995, pp. 157-169.

Clark, P. and Boswell, R., 1991. Rule induction with CN2: some recent

improvements. Machine Learning - EWSL-91. Proceedings of the European Working

Session on Learning, Porto, Portugal, pp. 151-163.

Clark, P. and Niblett, T., 1989. The CN2 Induction Algorithm Machine Learning,

Vol. 3, part 4, pp. 261-283.

194

http://www.crisp-dmorg

Cohen, W. W., 1995. Fast effective rule induction. Proceedings of the 12th

International Conference on Machine Learning, Tahoe City, CA, USA, pp. 115-123.

Cook, G. D. and Robinson, A. J., 1995. Utterance clustering for large vocabulary

continuous speech recognition. Proceedings of the European Conference on Speech

Communication and Technology, Madrid, Spain, Vol. 1, pp. 219-22.

Domingos, P., 1994. The RISE System: Conquering Without Separating. Proceedings

of the Sixth IEEE International Conference on Tools with Artificial Intelligence, New

Orleans, LA, IEEE Computer Society Press, pp. 704-707.

Domingos, P., 1996a. Linear-Time Rule Induction. Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, Portland, Ohio,

pp. 96-101.

Domingos, P., 1996b. From Instances to Rules: A Comparison of Biases. Proceedings

of the Third International Workshop on Multistrategy Learning, Harpers Ferry, WV,

AAAI Press, pp. 147-154.

Domingos, P., 1996c. Unifying Instance-Based and Rule-Based Induction. Machine

Learning, 24, pp. 141-168.

Domingos, P., 1998. Occam’s Two Razors: The Sharp and the Blunt. Proceedings of

the Fourth International Conference on Knowledge Discovery and Data Mining, New

York City, NJ, pp. 37-43.

Dougherty, J., Kohavi, R., and Sahami, M., 1995. Supervised and Unsupervised

Discretization of Continuous Features. Proceedings of the Twelfth International

195

Conference on Machine Learning, San Francisco, CA, Morgan Kaufmann, pp. 194-

202.

Du, Q. and Wong, T.-W., 2002. Numerical studies of MacQueen’s k-means algorithm

for computing the centroidal voronoi tessellations. An International Journal of

Computers & Mathematics with Applications 44 (2002), pp. 511-523.

Duda, R. O., Hart P. E. and Stork, D. G., 2001. Pattern Classification. Second Edition,

John Wiley & Sons, Inc, pp. 517-599.

Epter, S., Krishnamoorthy, M. and Zaki, M., 1999. Clusterability Detection and Initial

Seed Selection in Large Data Sets. Technical Report 99-6. Department of Computer

Science, Rensselaer Polytechnic Institute, Troy, NY.

Estivill-Castro, V., 2002. Why so many clustering algorithms. SIGKDD Explorations,

ACM SIGKDD, Vol. 4, Issue 1, pp. 65-75.

Famstrom, F., Lewis, J. and Elkan, C., 2000. Scalability for Clustering Algorithms

Revisited, SIGKDD Explorations, ACM SIGKDD, Vol. 2, Issue 1, pages 51-57.

Fayyad U. M. and Irani K. B., 1993. Multi-interval Discretisation of Continuous

valued Attributes for Classification Learning. Proceedings of the 13th International

Joint Conference on Artificial Intelligence, Chambery, France, pp. 1022-1027.

Fayyad U. M., Piatetsky-Shapiro G., Smyth P. and Uthurusamy, R., (1996), Advances

in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA.

196

Fedorov, V. V., Herzberg, A. M. and Leonov, S. L., 2003. Component-wise

dimension reduction. Journal of Statistical Planning and Inference, In Press, Corrected

Proof.

Forsyth, R., 1989. Machine learning: principles and techniques. Chapman and Hall,

London.

Fraley, C. and Raftery, A. 1999. MCLUST: Software for model-based cluster and

discriminant analysis. Technical Report 342, Department of Statistics, University of

Washington.

Fritzke, B., 1997. The LBG-U method for vector quantization - an improvement over

LBG inspired from neural networks. Neural Processing Letters 5, No. 1, pp. 35-45.

Fiimkranz, J. and Widmer, G., 1994. Incremental Reduced Error Pruning. In W.

Cohen and H. Hirsh (eds.), Proceedings of the 11th International Conference on

Machine Learning (ML-94), New Brunswick, NJ, Morgan Kaufmann, pp. 70-77.

Fumkranz, J., 1997. Pruning Algorithms for Rule Learning. Machine Learning, Vol.

27(2), pp. 139-171.

Fumkranz, J., 1999. Separate-and-Conquer Rule Learning. Artificial Intelligence

Review, Vol. 13(1), pp.3-54.

Gee, C. J., Fabella, A. B., Fernandes, I. B., Turetsky, I. B., Gur, C. R., and Gur, E.,

1999. New experimental results in atlas-based brain morphometry. Proceedings of

SPIE Medical Imaging 1999: Image Processing, K. M. Hanson, ed., Bellingham, WA,

pp. 604-611.

197

Grabmeier, J. and Rudolph, A., 2002. Techniques of Clustering Algorithms in Data

Mining. Data Mining and Knowledge Discovery, 6, Kluwer Academic Publishers,

Netherlands, pp. 303-360.

Grossman, R. L., Kamath, C., Kegelmeyer, P., Kumar, V. and Namburu, R. R., 2001.

Data mining for scientific and engineering applications, Kluwer Academic, London.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M., 2002. Cluster Validity Methods: Part

I. SIGMOD Record, Vol. 31, Number 2.

Hamerly, G. and Elkan, C., 2002. Alternatives to the k-means algorithm that find

better clusterings. Proceedings of the Eleventh International Conference on

Information and Knowledge Management (CIKM 02), McLean, VA, pp. 600-607.

Han, J. and Kamber, M., 2000. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers, NJ.

Hansen, L. K. and Larsen, J., 1996. Unsupervised Learning and Generalisation.

Proceedings of the IEEE International Conference on Neural Network, Washington

DC, June 1996, pp. 25-30.

Hardy, A., 1996. On the number of clusters. Computational Statistics & Data Analysis

23 (1996), pp. 83-96.

Hettich, S. and Bay, S. D., 1999. The UCI KDD Archive [http://kdd.ics.uci.edu].

Irvine, CA. University of California, Department of Information and Computer

Science.

198

http://kdd.ics.uci.edu

Horch, A. and Isaksson, A. J., 2001. Assessment of the sampling rate in control

systems. Control Engineering Practice, Vol. 9, Issue 5, pp. 533-544.

Hunt, E. B., Marin, J., and Stone, P. J., 1966. Experiments in induction. Academic

Press, New York, NY, USA.

Insightful Corporation, 2001. S-PLUS 6 for Windows Guide to Statistics, Vol. 2,

Insightful Corporation, Seattle, WA.

http://www.insightful.com/DocumentsLive/23/44/statman2.pdf

Ishioka, T., Extended K-means with an Efficient Estimation of the number of

Clusters, 2000. Proceedings of Second International Conference of Intelligent Data

Engineering and Automated Learning (IDEAL 2000), Hong Kong, China, December

2000, pp. 17-22.

ISL: Integral Solutions Ltd., 1998. SPSS Clementine Data Mining System User

Guide Version 5, Basingstoke, Hampshire, UK

Jain A. K. and Dubes R. C., 1988. Algorithms for Clustering Data, Prentice Hall.

Englewood.Cliffs, New Jersey.

Jain, A.K., Murty M.N., and Flynn P.J., 1999. Data Clustering: A Review. ACM

Computing Surveys, Vol 31, No. 3, pp. 264-323.

Josien, K. and Liao T. W., 2002. Simultaneous grouping of parts and machines with

an integrated fuzzy clustering method. Fuzzy Sets and Systems, Vol. 126, Issue 1, pp.

1- 21 .

199

http://www.insightful.com/DocumentsLive/23/44/statman2.pdf

Kanungo, T., Mount, D. M., Netanyahu, N., Piatko, C , Silverman, R., and Wu, A.,

2002. The Efficient k-Means Clustering Algorithm: Analysis and Implementation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp.

881-892.

Kaufman, K.A. and Michalski, R. S., 1999. Learning in an Inconsistent World: Rule

Selection in AQ18. Reports of the Machine learning and Inference Laboratory, MLI

99-2, George Mason University, Fairfax, VA, May, 1999.

Kaufman, L. and Rousseeuw P. J., 1990. Finding groups in data: an introduction to

cluster analysis, Wiley, New York.

Kerr, A., Hall, H. K. and Kozub, S., 2002. Doing statistics with SPSS. SAGE,

London.

Kohavi, R. and John, G., 1998. The wrapper approach. In: Liu, H. And Motoda, H.

(Eds.), Feature Extraction, Construction and Selection: A Data Mining Perspective.

Springer, Berlin.

Kosmala, A., Rottland, J., and Rigoll., G., 1997. Improved Online Handwriting

Recognition Using Context Dependent Hidden Markov Models. Proceeding of the

International Conference on Document Analysis and Recognition, Ulm, pp. 641-644.

Kothari, R. and Pitts, D., 1999. On finding the number of clusters. Pattern

Recognition Letters 20, pp. 405-416.

Kovesi, B., Boucher, J.-M. and Saoudi, S., 2001. Stochastic K-means algorithm for

vector quantisation. Pattern Recognition Letters 22, pp. 603-610.

200

Langley, P., 1996. Elements of machine learning. Morgan Kaufmann, San Francisco,

CA.

Lee, M. D. and Corlett, E. Y., 2003. Sequential sampling models of human text

classification, Cognitive Science, In Press, Corrected Proofs.

Likas, A., Vlassis, N. And Verbeek, J. J., 2003. The global k-means clustering

algorithm Pattern Recognition 36 (2003), pp. 451-461.

Lindeberg, T., 1994. Scale-space theory in computer vision. Kluwer Academic,

Boston.

Liu, H. and Setiono, R., 1995. Chi2: Feature selection and discretization of numeric

attributes. Proceedings of 7th IEEE International Conference on Tools with Artificial

Intelligence, Washington D.C., November 1995, pp. 388-391.

Liu, H., 1996. Efficient Rule Induction from Noisy Data. Expert Systems with

Applications: An International Journal, Pergamon, Vol. 10, No. 2, pp. 275-280, 1996.

Liu, H., 1998. A Family of Efficient Rule Generators. Encyclopaedia of Computer

Science and Technology, Marcel Dekker, New York, Allen Kent and James G.

Williams (eds.), Vol. 39, pp. 15 - 28.

Lozano, S., Dobado, D., Larraneta, J. and Onieva, L., 2002. Modified fuzzy C-means

algorithm for cellular manufacturing. Fuzzy Sets and Systems, Vol. 126, Issue 1, pp.

23,32.

201

MacQueen, J. B., 1967. Some methods for classification and analysis of multivariate

observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

and Probability, Vol. I: Statistics, University of California Press, Berkeley and Los

Angeles, CA, pp. 281-297.

McGovern, 1998. acQuire-macros: An Algorithm for Automatically Learning Macro

actions. Neural Information Processing System Conference 11 (NIPS98), Workshop

on Abstraction and Hierarchy in Reinforcement Learning, http://www-

anw. cs. umass. edu/~ amy/pubs. html.

Michalski, R. S., 1977. Variable-valued logic and its applications to pattern

recognition and machine learning. Computer Science and Multiple-Value Logic.

Theory and Application. David C. Rine Editor, pp. 506-534.

Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N., 1986. The multipurpose

incremental learning systems AQ15 and its testing application to three medical

domains. Proceedings of the 5th National Conference on Artificial Intelligence, AAAI,

Philadelphia. Morgan Kaufmann, PA, pp. 1041-1045.

Michalski, R. S., Bratko, I. and Kubat, M., 1998. Machine Learning and Data Mining:

Methods and Applications, Wiley, Chichester, West Sussex, UK.

Michie, D., Spiegelhalter, D.J. and Taylor, C.C., 1994. Machine learning, neural and

statistical classification, Prentice Hall, Englewood Cliffs, NJ.

MIT, 1998. DataEngine 3.0 - Intelligent data analysis - an easy job. MIT- -

Management Intelligenter Technologien GmbH, Germany, http.7/www.mitgmbhde.

202

http://www-
http://www.mitgmbhde

Mitchell, T., Machine Learning and Data Mining, 1999. Communications of the

ACM, Vol. 42, No. 11, November 1999, pp. 30—36.

Ng, R. and Han, J., 1994. Efficient and Effective Clustering Method for Spatial Data

Mining, Proceedings of 1994 International Conference on Very Large Data Bases

(VLDB94), Santiago, Chile, September 1994, pp. 144-155.

Pagallo, G. & Haussler, D., 1990. Boolean feature discovery in empirical learning.

Machine Learning, Vol. 5, pp. 71-99.

Paliouras, G. and Bree, D. S., 1995. The effect of numeric features on the scalability

of inductive learning programs. Proceedings of the European Conference in Machine

Learning. Springer-Verlag, Berlin, pp. 218-231.

Pao, Y.-H., 1989. Adaptive Pattern Recognition and Neural Networks. Addison-

Wesley, New York, NY.

Patane, G. and Russo, M., 2001. The enhanced LBG algorithm. Neural Networks 14

(2001), pp. 1219-1237.

Pelleg, D. and Moore, A., 1999. Accelerating Exact K-means Algorithms with

Geometric Reasoning. Proceedings of the Conference on Knowledge Discovery in

Databases 1999 (KDD99), San Diego, CA, pp. 277-281.

Pelleg, D. and Moore, A., 2000. X-means: Extending K-means with Efficient

Estimation of the Number of Clusters. Proceedings of the Seventeenth International

Conference on Machine Learning (ICML2000), Stanford, CA, pp. 727-734.

203

Pena, J. M., Lazano, J. A. and Larranaga, P., 1999. An empirical comparison of four

initialisation methods for the K-means algorithm. Pattern Recognition Letters, Vol.

20, pp. 1027-1040.

Pham, D. T., and Aksoy, M. S., 1995a. RULES: a simple rule extraction system

Expert Systems with Applications, Vol. 8, no. 1, pp. 59-65.

Pham, D. T., and Aksoy, M. S., 1995b. A New Algorithm for Inductive Learning.

Journal of Systems Engineering, Vol. 5, no. 2, pp. 115-112.

Pham, D. T., and Dimov, S. S., 1996. The RULES-3 Plus inductive learning

algorithm Proceeding of the 3rd World Congress on Expert Systems, Seoul, Korea,

Vol. 2, pp. 917-924.

Pham, D. T., and Dimov, S. S., 1997. An Algorithm for Incremental Inductive

Learning. Proceeding of the Institution of Mechanical Engineers, Vol. 211, part B, pp.

239-249.

Pham, D. T., and Dimov, S. S., and Salem, Z., 2000. Technique for selecting

examples in inductive learning. Proceeding of the European Symposium on Intelligent

Techniques (ESIT 2000), Aachen, Germany, pp. 119-127.

Quinlan J. R., 1986. Induction of Decision Trees, Machine Learning 1, pp. 81-106.

Quinlan, J. R., 1993. C4.5: Programs for Machine Learning. Morgan Kauffman, San

Mateo, California.

204

Romesburg, H. C., 1990. Cluster Analysis for Researchers, Krieger Publishing,

Malabar, Florida.

RuleQuest, 2000. RuleQuest Research Pty Ltd, 30 Athena Avenue, St Ives NSW

2075, Australia, www. rulequest. com.

Schafer, J.B., Konstan, J. and Riedl, J., 2001. E-Commerce Recommendation

Applications, Data Mining and Knowledge Discovery, 5, pp. 115-153, Kluwer

Academic Publisher, Netherlands.

Theiler, J. and Gisler, G., 1997. A contiguity-enhanced K-means clustering algorithm

for unsupervised multispectral image segmentation. Proceedings of Algorithms,

Devices, and Systems for Optical Information Processing, San Diego, CA, Vol. 3159,

pp. 108-118.

Theodoridis, S. and Koutroubas, K., 1998. Pattern Recognition. Academic Press,

London.

Tibshirani, R., Walther, G. and Hastie, T., 2000. Estimating the number of clusters in

a dataset via the Gap statistic. Technical Report 208, Dept, of Statistics, Stanford

University.

Tolun, M. R. and Abu-Soud, S. M., 1998. ELA: An Inductive Learning Algorithm for

Rule Extraction. Expert Systems with Applications, Vol. 14(3), 361-370, April 1998.

Tolun, M. R., Sever, H., Uludag, M., and Abu-Soud, S. M., 1999. ILA-2: An

Inductive Learning Algorithm for Knowledge Discovery. Cybernetics and Systems,

Vol. 30, part. 7, pp.609-628.

205

Ventura, D. and Martinez, T., 1995a. An Empirical Comparison of Discretization

Methods. Proceedings of the Tenth International Symposium on Computer and

Information Sciences, Kusadasi, Turkey, pp. 443-450, 1995.

Ventura, D., 1995b. On Discretisation as a Preprocessing Step for Supervised

Learning Models. Master’s Thesis, Computer Science Department, Brigham Young

University, 1995.

Wallace, C. and Dowe, D. 1994. Intrinsic classification by MML n the Snob program

Proceedings of the 7th Australian Joint Conference on Artificial Intelligence, UNE,

World Scientific Publishing Co., Armidale, Australia, pp. 37-44.

Wilson, D. R. and Martinez, T. R., 1997. Improved Heterogeneous Distance

Functions. Journal of Artificial Intelligence Research, Vol. 6, pp. 1-34.

Winters, N. and Victor, J. S., 2002. Information Sampling for vision-based robot

navigation. Robotics and Autonomous Systems, Vol. 41, Issues 2-3, pp. 145-159.

206

