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Abstract

Ethylene is an established plant growth regulator linked with programmed cell death 

(PCD). To investigate the relationship between the cell cycle and PCD, ethylene was 

used to see if it induced mortality in a cell cycle specific manner. Tobacco BY-2 

cultures synchronized with aphidicolin were treated with ethylene. Cell cycle 

progression and mortality, measured at hourly intervals, showed distinct peaks of 

mortality at the G2/M boundary and S-phase. In conjunction with this, DNA 

fragmentation increased at G2/M. Furthermore, ethylene caused a significant 

reduction in cell size of the cycling population. Simultaneous addition of silver 

nitrate with ethylene ameliorated ethylene-induced G2/M mortality, although a toxic 

effect of silver alone was evident. Due to the toxicity of silver, 1-MCP, an alternative 

chemical for blocking ethylene receptors was used. 1-MCP neither affected the BY-2 

cell cycle nor mortality levels. In addition, 1-MCP ameliorated ethylene-induced 

G2/M mortality. To balance the chemical approaches to blocking ethylene receptors, 

tobacco BY-2 cells were transformed with Atetrl that encodes a dominant insensitive 

form o f the Arabidopsis ETR1 ethylene receptor. Atetrl expression caused a massive 

perturbation to the tobacco BY-2 cell cycle, especially in S-phase, and resulted in 

high levels of mortality throughout the cell cycle. Ethylene treatment caused a 

doubling of G2 duration but did not affect temporal distribution of mortality. 

However, ethylene treatment generated a peak of mortality in S-phase. These results 

suggest that ethylene induces PCD at G2/M through the known ethylene signaling 

pathway. Furthermore, it confirms that 1-MCP and Atetrl result in ethylene 

insensitivity.

To examine the G2/M transition, Spcdc25, a positive regulator of G2/M in fission 

yeast was transformed into the tobacco BY-2 cell line. This resulted in premature 

entry into mitosis, a shortened cell cycle, and reduced cell size. This was similar to 

Spcdc25 over-expression in fission yeast and suggests the presence of a CDC25-like 

phosphatase in plants.
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1. Introduction

In this thesis the work reported is about the extent to which programmed cell death is 

cell cycle specific using the tobacco BY-2 cell line as a model system. In order to 

provide background information between cell cycle regulation and exit into 

programmed cell death (PCD) a number of subject areas are covered in this 

introduction.

In the opening section, a general model of cell cycle regulation is presented and 

emphasis placed on the genes/proteins that regulate key transitions of the cell cycle. 

This includes a closer inspection of cell cycle checkpoints -  brakes that prevent cells 

from proliferating until damage to DNA is repaired or DNA replication is normalised. 

In the next section emphasis is then given to PCD and its occurrences in development 

and pathogen attack. Apoptosis is described as well as mitochondrial involvement 

and the role of caspases in PCD is reviewed. This section ends with the role of the 

plant growth regulator ethylene in PCD. The penultimate section is an overview of 

the tobacco BY-2 cell line, the model system employed in my research. Finally, the 

aims of the research reported here, on the transition between cell proliferation and 

PCD, are stated in relation to the hypothesis that exit into PCD occurs predominantly 

in late G2.

1.1. The Eukaryotic Cell Cycle

The basic mechanisms and logic of cell cycle control are highly conserved in 

eukaryotes and therefore to a large extent so are the key genes that mediate cell cycle 

progression and control (Novak et a /., 1998; Potuschak and Doemer, 2001).

The mitotic cell cycle, the focus of this thesis, consists of alternating rounds of DNA 

replication (synthesis or S-phase) and chromosome segregation (mitosis or M-phase) 

interrupted by gaps known as G1 (the interval before S phase) and G2 (the interval
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between S-phase and M-phase) (Fig. 1.1). Each phase, and the processes therein, are 

regulated to ensure that the daughter cells are competent for the next division. The 

main focus o f regulation is at phase transitions and is achieved by cyclin-dependent 

kinases (CDKs) and their corresponding regulatory cyclin proteins. These complexes, 

originally identified in Xenopus eggs, are phospho-regulated by a series o f proteins; 

primarily senne-threonine kinases and phosphatases (Russell and Nurse, 1986; 

Russell and Nurse, 1987).

There are two major transition points in the cell cycle: Gl/S and G2/M (Van’t Hof, 

1974). Checkpoints exist at these transition points, ensuring cell viability throughout 

the cell cycle. If a problem occurs, these checkpoints ensure that cells are either 

repaired before progressing or exit into PCD if it is irresolvable (see section 1.2). The 

checkpoint at the Gl/S transition ensures that cells are able to undergo DNA 

replication, and the G2/M checks that cells are able to commit to mitotic division 

(O’Connell etal., 2000; Francis and Sorrell, 2001).

Gap2

Figure 1.1. The Cell Cycle and its Component Phases. The cycle is divided into several phases an 
initial gap (G1), synthesis of DNA (S), a second gap (G2) and the final mitotic nuclear and cellular 
division (M) to result in two identical daughter cells

> Metaphase -> Anaphase - > Tel

Synthesis Phase

Cytokinesis -
Formation of a 
daughter cell.

* G 0 -
Cells not actively 
dividing.
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1-1-1- CDKs and Cvclin Complexes

Cvclin-dependent kinases (CDKs) and cyclins that perform specific roles at 

particular phases of the cell cycle have been characterised in many model eukaryotic 

species. Numerous review papers have been written on this subject in yeast 

(Nasmyth, 1996; Stem and Nurse, 1996), animals (Morgan, 1995; Pines, 19%) and 

plants (DeVeylder et al., 1997; Burssens et al., 1998) and see table 1 and 2.

There is a single cell cycle CDK in Saccharomyces cerevisiae (CDC28) and 

Schizosaccharomyces pombe (Cdc2); whereas several (Elledge, 19%) are known to 

be involved in both plant and mammalian cell cycles (Burssens et al., 1998) that are 

specialised for different transitions. Cyclins are the activating subunit for CDKs and 

are therefore essential for both kinase activity and substrate specificity (Elledge, 

1996). The CDK-cyclin complex is negatively and positively regulated by 

phosphorylation, cyclin-dependent kinase inhibitors (CKIs) that have an inhibitory 

binding effect, and other proteins that might modify specificity or accessibility to 

regulators (Patra and Dunphy, 19%). All proteins that affect CDK/cyclin activity can 

act as interfaces for signal transduction pathways regulating cell cycle transition 

points, making them potential targets for manipulation of the checkpoints by the cell 

(Elledge, 19%).

1.1.1.1. Cvclin Dependent Kinases

In fission and budding yeast there exists only one CDK to regulate the cell cycle 

through S and M phases, Cdc2 and CDC28 respectively (Table 1). Higher eukaryotes 

have replaced a single CDK with specialised S and M phase-activating CDKs. In 

mammals, progression through G1 is controlled by Cdk4 and Cdk6 complexed to 

Cyclin D, DNA replication by Cdk2 complexed to Cyclin A/E in Gl/S, and Cdkl in 

G2/M by complexing with Cyclin A/B (Morgan, 1995; 1997). CDKs are 

characterised by distinct sequences located within their cyclin binding motif. This is 

PSTAIRE in the case of S. pombe and mammalian cdc2 (see Fig. 1.2 for the basic 

structure of plant CDKs).
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Plants contain a diverse group o f CDKs (see Table 1) including those containing the 

PSTAIRE motif, known as CDK-a, and plant specific CDKs characterised by the 

variant motifs PPTALRE or PPTTLRE (Huntley and Murray, 1999; Mironov et al., 

1999; Joubes et al., 2000; Umeda et al., 1999). Both sequences form the basis of the 

plant specific CDK-b group with the proteins falling into two sub-groups on the basis 

of the above mentioned variant motif. The CDK-bl CDKs all contain the PPTALRE 

sequence and the CDK-b2 CDKs have the sequence P(S/P)TTLRE. The exception to 

this is rice Cdc20s3, this has the CDK-bl motif but still belongs to the CDK-b2 

group (Hirt et al., 1993; Fobert et al., 1996; Umeda et al., 1999; Kidou et al., 1994; 

Magyar et al., 1997; Huntley and Murray, 1999). C-type plant CDKs are 

characterised by the presence of the PITAIRE motif but as yet their function is not 

known (Joubes et al., 2000). In tobacco BY-2 cells the expression o f C-type cyclins 

has been shown to be high in late M-phase and early S-phase, indicating a role in G1 

(Breyne et al., 2001). E-type cyclins have been identified in Alfalfa and show highest 

homology to CDK8 in humans, a regulator of RNA polymerase II activity, and can be 

identified by the SPTAIRE motif. CDK-fs, another type o f CDK unique to plants, are 

mitotic kinases with both mRNA and kinase activity reaching a peak in mitosis 

(Meszaros etal., 2000).

11___________ 3___
1! PPtALW I rTTAlRE 

PfTTLRE Catalytic Domain T-loop I

ATP-bmding
don win

Figure 1.2. Basic Structure of Plant CDKs. Phosphorylation sites are denoted by P. Phosphorylation 
sites in the ATP-binding domain are T14 and Y15, targets of WEE1 and CDC25. The phosphorylation 
site in the T-loop, T167, is the target of CAK Adapted from Sorrell et al., 2001.

Plant CDK-as fall into three subgroups, CDK-al, -a2, and -a3 with each subgroup 

showing an expression pattern involving either Gl/S or G2/M (Mironov et al., 1999). 

In tobacco BY-2 cells CDK-al s show a mitotic accumulation of transcript, CDK-a2s 

show an increase in S-phase and decreases in M-phase, and CDK-a3s are expressed 

during S-phase and decrease during G2 (Breyne et al., 2002)
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However, the expression pattern of CDK-bs at the transcriptional, translational, and 

protein level is dependent on cell cycle phase (Mironov et al., 1999). CDK-bl 

transcripts in Arabidopsis accumulate during S, G2, and M phase whereas CDK-b2 is 

specific to G2 and M (Segers et al., 1996). Due to this, CDK-b2 is commonly used as 

a marker of proliferative activity (Sorrell et al., 2002).

Cyclin- 

De pendent 

Kinase

Species Spatial Functionality/ 

Characteristics

Reference

CDC28

(PSTAIRE)

Budding yeast - S. 

cerevisiae

Involved in Gl/S and G2/M Piggott etal., 1982.

Cdc2

(PSTAIRE)

Fission yeast -

Schi zosaccharomyces

pombe

Involved in Gl/S and G2/M Nurse and Thuriaux, 

1980.

CDK-a

(PSTAIRE)

Plant -  Widely 

identified

Involved in Gl/S and G2/M Mironov et al., 1999; 

Segers et al., 1998.

CDK-bl

(PPTALRE)

Plant -A . thaliana, A. 

majus, N. tabacnm, M. 

sativa

Expressed S to M Mironov et al., 1999; 

Segers et al., 1998; 

Fobert et al., 1996; 

Magyar et al., 1997.

CDK-b2

(PPTTLRE)

Plant -A . thaliana, A. 

majus, O. sativa, M. 

sativa

Probably expressed G2 and 

M only

Mironov et al., 1999; 

Segers et al., 1998; 

Fobert et al., 19%; 

Magyar etal., 1997.

Cdkl Mammalian G2/M Lee and Nurse, 1980

Cdk2 Mammalian Gl/S Ellege and 

Spottswood, 1991.

Cdk4 Mammalian G1 Matsushime et al., 

1992.

Cdk6 Mammalian G1 Meyerson and Harlow, 

1994.

Table 1.1. Cyclin-dependent kinases and their spatial functionality in eukaryotes.
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CDK Regulation -
CDK activity is not only reliant on cyclin binding but also on a number of other 

factors as well (Fig. 1.3). CDK-activating kinases (CAKs) phosphorylate a threonine 

residue within the CDK T-loop to cause CDK activation (Fig. 1.2). In some 

organisms CAKs can also activate RNA polymerase II by phosphorylation of the 

carboxy-terminal domain (CTD) of the largest RNA polymerase sub-unit, although 

this is not the case in yeast. In plants CAKs have been found that both lack and 

contain this extra function. CaklAt, an Arabidopsis CAK homologue, lacks the 

ability to phosphorylate Arabidopsis RNA polymerase II but can phosphorylate 

human CDK2. This can be compared to the rice CAK OsR2 which is able to carry 

out the T-loop phosphorylation of Cdc20sl (CDK-a) and human CDK2, as well as 

RNA polymerase II. Another example of regulation is by the cyclin-dependent kinase 

inhibitors (CKIs). In plants these are known as ICKs and are proteins that mask the 

ATP binding domain of Cdc2 kinase (Wang et al., 1997). Both the Arabidopsis ICK1 

and ICK2 block CDK activity and cell division when Arabidopsis is treated with 

abscisic acid (Zhou etal., 2002) (Fig. 1.3).

The ‘next’ level of regulation occurs through the phosphorylation/dephosphorylation 

of conserved threonine and tyrosine residues, Thrl4 and Tyrl5 respectively. 

Inhibitory regulators (phosphorylators) of these residues are the kinases Mytl and 

Weel with Cdc25 phosphatase acting as the counterbalance (dephosphorylator) (Fig.

1.3). 'weeI has been identified in both maize (Sun et al., 1999) and Arabidopsis 

(Sorrell et al., 2002) although cdc25 has yet to be identified in plants. In cell cultures 

of Nicotiana plumbaginifolia, cells depleted of cytokinin arrested in G2 and CDK was 

phosphorylated on Thrl4 and Tyrl5. Addition of cytokinin to the medium 

accelerated these arrested cells into G2 with a concomitant dephosphorylation of 

CDK. The phosphorylated CDK could also be dephosphorylated by SpCdc25 

phosphatase (John, 1998; Zhang et al., 1996). The data were consistent with the idea 

that cytokinins regulate an extra-cellular signaling pathway that ends in the de- 

phosphorylation of CDKs by plant-like CDC25 phosphatases.
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Synthesis
DestructionPhosphatase

Kinases
CAK\

161 Cyclin

Cdk
Synthesis

Destruction
T14 Y15

CKIs
ICK1Kinases Phosphatase

We«1 Cdc25 ICK2
Mytl

Figure 1.3. Regulation of CDK-Cyclin complexes in Plants. Arrowheads represent activating events 
and square ends represent inhibitory events. Regulatory genes known to perform the indicated 
functions in plants are listed where known. Both cyclins and some CKIs are regulated by synthesis and 
ubiquitin-mediated proteolysis. Adapted from King et al, 1996. Checkpoint pathways could act to 
promote inhibitory pathways or inhibit activating pathways to cause cell cycle arrest

1.1.1.2. Cyclins

Cyclins interact with CDKs to regulate their activity, substrate specificity, and sub- 

cellular localisation. All major classes o f cyclins from mammalian studies are 

represented in plants including A-, B-, and D-type (known as CycA, CycB, and CycD 

respectively). Several sub-groups exist within these and are categorised on the basis 

o f sequence homology (see Table 2). Both CycA and CycB are expressed in a cell 

cycle dependent manner and peak around S/M and G2/M respectively (Fig. 1.4). 

Within the CycA sub-types the expression pattern is slightly different with expression 

of the sub-types shown to be sequential (Reichheld et al., 1996). CycD genes are 

expressed similarly to their mammalian counterparts, exhibiting a cell cycle 

independent pattern of transcription based on mitogen induction (Soni et al., 1995; 

Sorrell et al., 1999; Riou-Khamlichi et al., 1999). Expression levels o f D-type cyclins 

generally remain constant in actively dividing cells (Sorrell et al., 1999; Dahl et al., 

1995; Fuerst et al., 1996; Soni et al., 1995). Two exceptions to this are the tobacco 

CycD2;l and CycD3 cyclins which accumulate during mitosis in BY-2 cell cultures
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(Sorrell et a l, 1999). Both CycA and CycD can bind to CDK-a in BY-2 cells with 

CycD2 and CycD3 showing the same phase activity as each other in Arabidopsis cells 

(Healy et al., 2001).

Cyclin Spedes Cell Cycle
Functionality/

Characteristics

Reference

CycAl Zea mays, Nicotiana 

tabacum, Oryza sativa

Renaudin et al., 1996

CycA2 Arabidopsis thaliana, 

Zea mays, Nicotiana 

tabacum, Medicago 

sativa

Expressed S to M Renaudin et al., 1996

CycA3 Catheus roseus, 

Nicotiana tabacum, 

Antirrhinum majus

Renaudin et al., 1996

CycBl Arabidopsis thaliana Expressed at G2/M 

transition

Day and Reddy, 1998

CycB2 Medicago sativa Expressed at G2/M 

transition

Day and Reddy, 1998

CycDl Arabidopsis thaliana, 

Antirrhinum meg us, 

Helianthus tuberosus

Renaudin etal., 1996; 

Soni et al., 1995

CycD2 Arabidopsis thaliana, 

Nicotiana tabacum

Involved in Gl/S, 

sucrose induced

Sorrell et al., 1999; 

Soni etal., 1995

CycD3 Widely identified Involved in Gl/S. 

AtCycD3 is induced by 

cytokinin. Several sub­

groups exist dependent 

on different inducers

Riou-Khamichi et al., 

1999

CycD4 Arabidopsis thaliana Sucrose induced De Veylder et al., 1999

Table 1.2. Functionality of cyclins within the cell cycle in plants
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cycDI

cycD2

cycD3

cycB2

cycB1

cycA2

G1 G2

Figure 1.4. Plant Cyclin Expression Through the Cell Cycle. Width of red line denotes level of 

activity at the particular point in the cell cycle indicated at the bottom of the diagram. Adapted from 
Mironov et al., 1999.

Cyclin Regulation -
Regulation o f cyclins usually occurs by gene expression and protein turnover. The 

breakdown of CycA and CycB cyclins occurs at specific points during M-phase and is 

dependent on a destruction box motif that is the target for ubiquitin-dependent 

proteolysis (Renaudin et a l,  1998; Glotzer et a l, 1991). Genschik et al (1998) 

showed that in Arabidopsis CycA and CycB degradation was due to this destruction 

box by fusing the reporter gene GFP (green fluorescence protein) to the amino termini 

of these genes. A reduction in the rate o f degradation was also noted when mutations 

were introduced into the conserved residues of the destruction box. The ubiquitin 

proteolysis pathway is highly conserved in all eukaryotes and is involved in auxin 

signaling, jasmonic acid signaling, photomorphogenesis, and floral development as 

well as the cell cycle in plants (Plesse et a l., 1998). Attachment o f ubiquitin to 

proteins leads to subsequent degradation by a multi-catalytic protease complex called 

the 26S proteasome (Vierstra, 2003).
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CycD genes deviate from CycA and CycB as they contain PEST sequences rather 

than a destruction box. PEST sequences are regions rich in glutamate, proline, serine, 

and threonine and are thought to be the basis for rapid proteolysis in a variety of 

proteins (Sorrell et al, 1999; Rechateiner, 1998; Soni etal., 1995).

Cytokinins and auxins have both been implicated in plant cell cycle control (Gray et 

al, 1998; Jacqmard et al, 1994). Auxins are essential for Gl/S transition in N. 

plumbagnifoha suspension cultures and play a co-operative role with cytokinin for the 

G2/M transition (Zhang et al., 1996). In particular, inhibitor studies involving the 

cytokinin zeatin have shown that it plays an essential role in both Gl/S and G2/M 

transitions in tobacco BY-2 cultures (Laureys et al, 1998; Nagata et al, 1994). 

Arabidopsis CycD3 is induced by cytokinin in whole plants and cell cultures of 

Arabidopsis and when over-expressed in leaf ex-plants it is able to initiate and sustain 

cell division in the absence of cytokinin. This indicates that cytokinin activation of 

CycD3 is required for Gl/S transition in Arabidopsis (Riou-Khamlichi et al., 1999). 

Sucrose is also implicated in the regulation of D-type cyclins including A. thaliana 

CycD4;l, CycD2 (early G1 expression), and CycD3 (late G1 expression).

Thus far, the genes/proteins involved in phase transitions of the cell cycle have been 

reviewed. Fig. 1.5 gives an overview of the cell cycle progression discussed thus far. 

However, for cells to undergo these transitions they need to acquire competence to do 

so. Critically, brakes are applied on the cell cycle if competence is flawed due, for 

example, DNA damage. These brakes are more usually referred to as checkpoints, 

that prevent G2/M, and Gl/S until DNA damage is repaired or DNA replication is 

normalised.
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E2F Responsive Genes

Figure 1.5. Basic overview of CDK-Cyclin regulation. Effects of regulators on the different CDK- 
Cyclin complexes and subsequent progression through the cell cycle induced by them. Adapted from 
Huntley and Murray (1999).

1.1.2. G1/S Specific Controls

The Gl/S transition and the checkpoint controls that exist for progression to take 

place are not as well known in plants as those in mammalian systems but as with the 

majority o f cell cycle research, parallels can be drawn to elucidate mechanisms (Table

1.3).
In animal cells, for progression into S-phase, the activation of E2F transcription 

factors is required. To ensure this does not occur prematurely, E2F is bound to the 

retinoblastoma protein (Rb) (Harbour and Dean, 2000). Transcription of the E2F 

regulated genes is inactivated due to histone deacetylases binding to their promoters 

during E2F-Rb interaction (Magnaghi-Jaulin et a l., 1998). In mammalian cells E2F is 

re-activated by hyper-phosphorylation o f Rb by cyclinD-CDK4/6 complexes
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(Ezhevsky et al., 1997). This causes the release of E2F and thus stimulating E2F 

responsive genes (Huntley and Murray, 1999).

Plant homologues of E2F have been identified in maize and tobacco with both being 

shown to interact with D-type cyclins in vitro (Huntley et al., 1998; Nakagami et al., 

1999). E2F has been identified in wheat and alfalfa with the study on wheat E2F 

showing that binding to maize Rb (ZmRbl) was dependent on different residues to 

that present in animal E2F proteins (Ramirez-Parra et al., 1999). Interestingly 

however, ZmRbl binds human and Drosphila E2F and is able to transcriptionally 

activate E2F in humans (Huntley et al., 1998). The conserved interactions of Gl/S 

regulators between plants and animals suggests that the evolution of the Rb pathway 

may have occurred before the separation of plants and animals (Huntley and Murray, 

1999).

Regulator S pedes Spatial
Functionality/
Characteristics

References

Rb Z. mays, N. tabacum Involved in Gl/S, 
phosphorylated by 
CDK-a/CycD3 kinase 
in vitro

Ach et aL, 1997; 
Huntley et al., 1998; 
Nakagami et al., 1999

E2F A/, sativa Up-regulated in early S 
phase, expressed in 
proliferating cultured 
cells and in 
differentiated tissues. 
Binds and is probably 
activated by Rb.

Inze D, Gutierrez C, 
andChuaN-H, 1999; 
Gutierrez C, 1998; 
Ramirez-Parra et al., 
1999

CKI Arabidopsis thaliana ICK1 binds both CDK- 
a and CycD3 and is 
induced on abscisic 
acid treatment, further 
CKI genes exist

Wang et al., 1998; 
Mironov V et al., 1999

Cks Arabidopsis thaliana Role in both mitotic 
and endoreduplication 
cycles

De Veylder et al.,
1997; Jacqmard et al., 
1999

Msil Arabidopsis thaliana, 
L. esculentum

Rb binding protein, 
possibly part of histone 
deacetylase complexes, 
may be involved in 
Gl/S

Ach, Taranto, and 
Gruissem, 1997

Cak O. sativa, Arabidopsis 
thaliana

Activates CDKs by T- 
loop phosphorylation

Umeda etal., 1998; 
Yamaguchi et al., 1998

Mcm3 Nicotiana tabacum 
Arabidopsis thaliana

Involved in DNA 
synthesis although only 
A. thaliana Mcm3 
shows S-phase specific

Dambrauskas et al., 
2003; Stevens et al., 
2002

12



expression.
DP Arabidopsis thaliana, 

Triticum monococcum
Dimerises with E2F to 
activate transcription 
factors in Gl/S

Magyar et al., 2000; 
Ramirez-Parra and 
Gutierrez, 2000)

Table 1.3. Other homologues of mammalian cell cycle regulators in plants

1.1.3. Cdc25 and the G2/M DNA Damage Checkpoint

The G2/M (DNA damage) checkpoint is still poorly understood in plants but the 

knowledge is catching up fast following the completion of the Arabidopsis genome 

project. More information is now available about plant homologues to checkpoint 

genes in yeasts and animals. The checkpoint will be mainly discussed from the point 

of mammalian systems and plant homologues stated where known.

Unfortunately Cdc25, a positive regulator of the G2/M Checkpoint, has yet to be 

identified in plants although, as stated earlier, Weel has. A single cdc25 gene exists 

in S. pombe, and it is a multigene family in mammalian cells. This is composed of 

CDC25A, CDC25B, and CDC25C (Sadhu etal., 1990; Galaktionov and Beach, 1991; 

Nagata et al., 1991). The CDC25 proteins share approximately 40-50% amino acid 

identity with the highest homology in the C-terminal catalytic domaia

5/?Cdc25’s amino add sequence is closest in homology to HsCDC25C and carries 

out the same function, being important at the G2-M transition (Hoffman et al, 1993). 

Cdc25B is also functional at this transition with Cdc25A being important for 

regulation of Gl-S phase transition (Jinno et al, 1994; Lammer et al, 1998).

In the case of damage inflicted during the G2 phase of the cell cycle, arrest occurs 

before the onset of mitosis (Rhind and Russell, 1998). In fission yeast, arrest of cells 

in G2 is dependent on inhibitory tyrosine phosphorylation of Cdc2 carried out by 

Weel and Mikl kinases. When S. pombe is irradiated, the rate of tyrosine 

dephosphorylation is reduced, suggesting that the regulation of Cdc2 by Cdc25 is an 

important part of the mechanism underlying the DNA damage checkpoint by which 

Cdc2 inhibition and G2 arrest occurs (Rhind et al, 1998). Chkl (checkpoint kinase 

1) (Cdsl in fission yeast) is a kinase involved in cell cycle arrest. Cdc25 is a target 

for Chkl and is phosphorylated and thus inactivated by it when DNA damage occurs 

(Walworth et a l, 1993; Funari et a l, 1997). Furthermore, fission yeast which express 

activated Cdc2 but lack Cdc25 were shown to be responsive to Weel but insensitive
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to Chkl and irradiation, suggesting that Cdc25 and not Weel is a target of the DNA 

damage checkpoint (Funari et al., 1997). However, another study showed that Chkl 

can act as a Weel kinase in the DNA damage checkpoint, phosphorylating it at Y15 

and thus inhibiting Cdc2 activity (O’Connell et al., 1997). It is therefore likely that 

regulation of both Weel and Cdc25 by Chkl is important for the DNA damage 

checkpoint (Releigh and O’Connell, 2000).

Phosphorylation of Cdc25 by Chkl occurs on Ser-216 (fission yeast) and creates a 

binding site for 14-3-3 proteins (Peng et al., 1997) with binding being high during 

interphase and low during mitosis. The 14-3-3 protein masks this phosphorylated 

residue and prevents other phosphatases accessing this site. Destruction of the 14-3-3 

binding site leads to premature entry into mitosis and an inability to arrest in response 

to damaged or unreplicated DNA. This was found to be due to 14-3-3s playing an 

important role in controlling intracellular distribution of Cdc25. In fission yeast, the 

14-3-3 Rad24 escorts Cdc25 from the nucleus due to the nuclear export signal (NES) 

with ra d 2 f mutants preventing export of both proteins from the nucleus (Lopez- 

Girona et al., 1999). This escort however is not required for the DNA damage 

checkpoint (Lopez-Girona et al., 2001). Recently a plant 14-3-3, GF 14-3-3©, has 

been found to bind with SpCdclS and rescue checkpoint defects in yeast (Sorrell et 

al., 2003). Recently an Arabidopsis gene that encodes a cdc25A\ke phosphatase has 

been identified although it lacks the regulatory domain (D. A. Sorrell, D. Francis, H.J. 

Rogers, and J.R  Dickinson, unpublished data). Further work, however, is required to 

see if it functions properly as a plant CDC25.

Upstream from Cdc25 and Chkl are the sensor proteins for DNA damage. These are 

ATM/ATR (Ataxia-teleangniectasia mutated/related) in humans and RAD3 in fission 

yeast (Elledge, 1996; Weinert, 1998). Ataxia teleangiectasia (AT) is a rare inherited 

disorder in which ATM is non-functional. This causes chromosomal instability and 

sensitivity to ionising radiation (Savitsky et al., 1995). Cells in which ATM is non­

functional are unable to activate cell cycle checkpoints when exposed to ionising 

radiation (Meyn, 1999). ATR is similar in function to ATM but is affected by UV 

instead of ionising radiation (Hirao et al., 2000). In fission yeast, RAD3 fulfils the 

role of both ATR and ATM (Bentley et al., 1996). To support the hypothesis that this 

system exists in plants (Fig. 1.6), an Arabidopsis ATM homologue has been cloned 

(Garcia et al., 2001) and found to be essential for meiosis and somatic response to
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DNA damage in Arabidopsis (Garcia et a l., 2003). Once ATR/ATM is activated in 

response to DNA damage, the signal is passed on to Chkl, however a plant Chkl has 

yet to be identified.

The high amount of functional conservation between mammalian and yeast DNA 

damage checkpoints, and the identification o f key components from it in plants, 

indicates that this functional conservation is likely to extend to plants and that both 

Cdc25-like and Chkl-like proteins exist in plants but not necessarily with structural 

homology. A plant Chkl homologue would provide the link to the downstream 

regulators /frWEEl (Sorrell eta l., 2002) and a putative CDC25 acting on^rCDC2a/b. 

/frWEEl and CDC25 in tum may be regulated in plants by 14-3-3 proteins as they are 

in other systems, given that an Arabidopsis 14-3-3 protein interacts with SpCdc25 

(Sorrell eta l., 2003).

HU IR UV 
'  i

I  *
AtATM| ATR

Chk1/2

AtCDC2
a/b

GF 14-3-3 ©14-3-3

Figure 1.6. Putative Arabidopsis model of DNA damage checkpoint control. Filled boxes indicate 
components that are known. Shaded boxes indicate proteins not yet found but are thought to exist due 
to mammalian/yeast models. Straight lines represent known effects whereas dotted lines are 
hypothetical links. Green arrows denoted change in activity when the checkpoint is activated. 
Hydroxyurea (HU), ionising radiation (IR), and ultraviolet radiation (UV) are used as examples of 
DNA damage checkpoint elicitors. Adapted from Francis, 2003.
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Checkpoints function to protect proliferative cells under stress conditions. However, 

when DNA damage is catastrophic, checkpoint control can be overridden and a 

different set of molecular controls activated that steer the damaged cell into 

programmed cell death. Exit into PCD in late G2 and late G1 is well-characterised in 

animal systems (Hirao et al., 2000; Tanaka et al., 2000).

1.2. Programmed Cell Death In Plants

Programmed Cell Death (PCD) was first highlighted as a biological process in the 

early 20th Century following the study of a plant cell infected by a fungus (Allen, 

1923) In 1961 Carl Leopold emphasised that cell death was essential for normal 

plant development by quoting the evidence for selective ecological and evolutionary 

fitness conferred by cell death, its importance for normal physiology, and its control 

by the balance between both survival and death signals. This marked the revival of 

interest in PCD a decade before Kerr et al. (1971) coined the term ‘apoptosis’ to 

describe the first cell death morphotype in animal cells. Kerr et al. (1971) 

distinguished a type of cell death distinct from necrosis that was termed ‘shrinkage 

necrosis’ due to the decrease in cell size caused when cells were challenged with a 

toxin. Necrosis had been previously shown to cause cell inflammation and eventual 

cellular explosion. Shrinkage necrosis indicated that cells were undergoing a 

controlled death.

PCD differs from necrosis as it is a controlled and active process requiring changes 

in the genome to minimise the loss of nutrients and damage to surrounding tissue. 

This can happen in a variety of ways depending on the type of PCD occurring (Jones, 

2001). Evidence that some forms of cell death were directed by an active program
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was primarily found by Yoshio Yoshida who worked on leaf senescence. Yoshida 

(1962) showed that a nucleus was required for cellular disassembly and that inhibitors 

o f protein translation inhibited leaf senescence.

PCD in plants fulfils a number of essential functions (Fig. 1.7) and can be placed 

into two distinct groups, developmental and non-developmental. Examples of 

developmental programmed cell death are senescence, aleurone layer development, 

and xylogenesis. This is not a comprehensive list but highlights the main areas in 

which PCD affects development. Non-developmental PCD involves response to 

pathogens (biotic stress) and abiotic stress (temperature, drought, UV etc.)

Aerenchyma
formation

Endosperm:
aleurone

Senescence

Hypersensitive
Response

Trachery
element

formation

Figure 1.7. Examples of Programmed Cell Death in Plants. Adaptedfrom Biochemistry and 
Molecular Biology cf Plants (2001).

In this section examples o f developmental and non-developmental processes will be 

discussed in further detail and the evidence suggesting they involve PCD discussed. 

The role o f the plant growth regulator ethylene in PCD, a focus of this thesis, will be 

highlighted under developmental PCD. Furthermore, a description of the 

morphological features of apoptosis is discussed as a reference point against which
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plant PCD can be compared and the potential molecular mechanisms of PCD in plants 

is discussed. This section is not intended to be encyclopaedic but is designed to give 

a broad introduction to PCD from which the rest of the thesis can expand where 

necessary.

1.2.1. Developmental PCD

1.2.1.1. Senescence

Senescence is generally referred to as the process by which aging occurs in various 

tissues and organs as a plant matures (normally leaves, petals, or fruit) (Greenberg, 

1996). A process called monocarpic senescence, whole plant death after fertilisation, 

also exists but will not be discussed here. Senescence has been shown to require 

nuclear activity, suggesting that it is an active process (Yoshida, 1961; Ness and 

Woolhouse, 1980; Thomas et al., 1992), providing efficient use and redistribution of 

resources. Several genes, termed SAG (senescence-associated genes), have been 

implicated in the process with a number of those expressed early in maize, 

Arabidopsis, and Alstroemeria showing sequence similarity to cysteine proteases 

(Hensel et al., 1993; Lohman et al., 1994; Smart et al., 1995; Wagstaff et al., 2002). 

This type of protease is involved in PCD in budding yeast (Madeo et al., 2002), 

Caenorhabditis elegans (Yuan et al., 1993), and mammalian cells (Rudel and 

Bokoch, 1997) thus there is a good indication in its involvement with the senescence 

process. The majority, but not all (Gewies and Grimm, 2003) of cysteine proteases 

involved in regulating mammalian and yeast PCD belong to a sub-family known as 

caspases (see 1.2.4.2), and have yet to be identified in plants. RNase (Green, 1994; 

Blank and McKeon, 1991) and lipoxygenases (Rouet-Mayer et al., 1992) have also 

been linked to senescence as the activity/expression of these enzymes increases 

during senescence. Other SAGs include SAG12; a protease (involved in protein 

degradation), ACS6; an ACC synthase gene (involved in ethylene production), and
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SAG17; a metal-binding protein (involved in ROS scavenging) (Buchanan-Wollaston, 

1997; Weaver et al., 1997).

Plant growth regulators have also been implicated in senescence. Mutants of 

Arabidopsis that lack ethylene perception show delayed senescence (Grbic and 

Bleeker, 1995). Cytokinins may also be involved: a reduction in their levels in mature 

leaves may act as a contributing factor to the onset of senescence. This is thought to 

be due to cytokinins repressing genes involved in senescence. To support this, 

expression of a number of genes upregulated during senescence, including SAG 12, are 

known to be affected by cytokinin levels (Gan and Amasino, 1995; Teramoto et al., 

1995).

1.2.1.2. Reproduction

Cell death occurs throughout plant reproductive processes. Male sex determination 

in maize results from the selective death of female reproductive primordia so that the 

male floral structures (stamens) can develop. The TASSELSEED2 gene has been 

implicated in this and thought to be due to the production of a steroid-like molecule 

that provokes a cell suicide process (DeLong et al., 1993).

PCD also plays an important role in seed germination in plants. Following seed 

germination cereal aleurone cells produce large amounts of a - and p-amylases. These 

hydrolyse starch to supply energy for the developing embryos before the aleurone 

cells undergo PCD (Fath et al., 2000). In barley aleurone protoplasts, the PCD occurs 

in a gibberedic  acid (GA)-dependent manner due to down-regulation by GA of 

enzymes that scavenge reactive oxygen species (ROS). This results in the protoplasts 

dying from ROS-induced injury to their structural components (Fath et al., 2001). 

Evidence also exists that ethylene induces PCD in endosperm development as 

inhibition of ethylene action/synthesis inhibits aleurone cell death (Young and Gallie, 

1999;2000).
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1.2.1.3. Xvloaenesis

Classic examples of developmental PCD occur during xylogenesis and phloem 

formation (nutrient conducting tubes) that form die vascular system. Both undergo 

autolysis as they mature. In cultured parenchyma cells, cells from which xylem and 

phloem develop, differentiation can be induced by auxin (Fukuda, 1992). Induction 

of differentiation has also been shown in vivo as a result of wounding. The purpose of 

this form of PCD is to ensure that water and nutrients can be distributed throughout 

the plant and that mechanical support is provided. Xylogenesis in vitro is an active 

process, requiring RNA and protein synthesis and thus satisfying various PCD criteria 

(Fukuda and Komamine, 1983).

A number of genes have now been implicated in xylogenesis including those for 

endonucleases (Thelen and Northcote, 1989), important because developing xylem 

cells show evidence of nuclear fragmentation (Mittler et al., 1995). Because increases 

in nucleases occur during tracheary element differentiation it is unclear whether the 

DNA fragmentation is due to PCD-specific endonucleases.

Interestingly, inhibition of cysteine protease activity has been shown to suppress 

nuclear loss and therefore implies a role for cysteine proteases in the nuclear 

degradation observed in xylogenesis (Watanabe and Fukuda, 1995).

1.2.1.4. Ethvlene-fnduced PCD

Ethylene is a gas and endogenous regulator of growth and development in higher 

plants including programmed cell death (PCD) events (Young and Gaille, 1999). 

Changes in ethylene affect developmental PCD events such as abscission, organ 

senescence, xylogenesis, and aerenchyma formation (Fukuda, 1996; He et al., 19%). 

Environmentally induced PCD events affected by ethylene include wounding, 

pathogen invasion (Ohtsubo et al., 1999) and adaptation to events like water-logging 

(Drew et al., 2000).

The first Arabidopsis mutant identified with ethylene insensitivity was 

designated etr (ethylene receptor mutated) due to the lack of ethylene response 

compared to the wild type plant (Bleecker et al., 1988). These include inhibition of
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cell elongation, promotion of seed germination, enhancement of peroxidase activity, 

acceleration of leaf senescence, and suppression of the feedback mechanism of 

ethylene synthesis by ethylene. Genetic analysis of the Arabidopsis etr mutant 

confirmed that ethylene insensitivity was due to a dominant mutation at a locus 

designated ETR1 (Bleecker et al, 1988). Whilst ETR1 was the first ethylene receptor 

to be identified in plants, there have now been a number of receptor-encoding genes 

identified through additional screens for ethylene insensitive seedlings showing high 

sequence homology. These include ETR2, ERS1, EIN4, and ERS2 (Hua et al., 

1995,1998; Sakai et al., 1998) and form the basis of the ETR1 receptor family. 

Schaller and Bleecker (1995) showed that ETR1 encodes an ethylene receptor and that 

the N-terminal hydrophobic domain has high affinity to ethylene when expressed in 

yeast. Rodriguez et al (1999) showed that the ethylene binding domain of ETR1 

consists of three putative membrane spanning sub-domains modelled as alpha helices. 

The etr 1-1 mutation, a point mutation located in the second of the three sub-domains, 

abolishes ethylene binding (Schaller and Bleecker, 1995) and removes the capacity of 

the receptor to co-ordinate the copper ion located in the N-terminal hydrophobic 

domain of ETR1, a requirement for ethylene binding (Rodriguez et al., 1999).

The ETR1 receptor family acts in conjunction with CTR1, a Raf-like kinase, to 

suppress response pathways in the absence of ethylene (Clark et al., 1998). Ethylene 

binding converts receptors to a non-signaling state (Hall et al., 1999). Genetic 

analysis of other Arabidopsis ethylene insensitive mutants indicated that the genes 

responsible are integrated into a linear stress response pathway (Roman et al., 1995). 

These include the ETR1 family members as well as FAN2, EIN3, EIN5, EIN6, and 

EIN7 amongst others (Ecker JR, 1995; McGrath and Ecker, 1998; Sakai et al., 1998) 

(Fig. 1.8).

21



EIN3. EJ11, E1L2. (E1L3)

Figure 1.8. The ethylene signal transduction pathway in plants: based on currently known Arabidopsis 
genes. Ethylene perception occurs through the receptors, ETR1, ERS1, ETR2, EIN4, and ERS2. In the 
absence of ethylene, a response is repressed through activation of CTR1. In the presence of ethylene, 
CTR1 action is repressed and EIN2 is activated. This is turn activates the transcription factor EIN3. 
Subsequently EREBP transcription factors (ethylene responsive binding proteins) bind to promoters of 
ethylene regulated genes. Adapted from Chang and Shockley, 2002.

1.2.2. Non-Developmental PCD

1.2.2.1. P athogenesis

Cellular interactions with a number of pathogens cause activation of defences that 

limit pathogen spread at the site of infectioa This is described as the resistance 

response and normally results in the induction o f localised cell death known as the 

hypersensitive response (HR). This is regarded as an important defence mechanism
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whereby the nutrient supply to the pathogen becomes limited. The HR can be 

classified as a form of PCD because it shares the same core requirement with all other 

forms, cells have to be transcriptionally (He et al., 1993) and translationally (Keen et 

al., 1981) active for the HR to arise. It can also exhibit some features characteristics 

of mammalian apoptosis including the generation of 3’-OH termini, membrane 

blebbing, and cytoplasmic condensation (Levine et al., 19%; Wang et al., 1996; 

Mittler et al., 1995; Ryerson and Heath, 19%). H2O2 has been implicated in the HR, 

especially as a signal inducer, because it is produced rapidly. This process is termed 

the oxidative burst and cell death resulting from it can be dramatically increased with 

H2O2 up-regulation although it is not significantly decreased when H2O2 production is 

blocked (Levine et al., 1994). Mutants of Non-HR inducing bacteria containing a 

gene responsible for the HR can also induce an oxidative burst but fail to activate cell 

death (dazener et al., 1996). This implies that H2O2 may not be the major factor in 

inducing cell death but instead acts to amplify it after it has started.

HR mutants of Arabidopsis have been identified with accelerated cell death and 

lesions simulating disease phenotypes, acd2 and Isd, respectively. Both can exhibit 

active HR in the absence of a pathogen attack (Greenberg et al., 1994; Dietrich et al., 

1994; Jabs et al., 1996). Maize mutants have also been identified that mimic a disease 

phenotype resulting in cell death (Walbot, 1991; Johal et al., 1995).

1.2.3. Apoptosis

It is important that mammalian apoptosis is described because links are often made 

between PCD in plants and animals when symptoms of mammalian apoptosis occur 

during plant cell death. The importance of this is highlighted by a number of 

apoptosis symptoms occurring in plant PCD. As mentioned above, the first symptom 

of apoptosis observed was cell shrinkage due to a loss of water. This leads to 

compaction of the cytoplasm. Membrane blebbing occurs leading to formation of 

apoptotic bodies (apoptosis comes from the Greek for ‘falling away’ and was first 

used by Kerr et al., 1972). Chromatin condenses along the margin of the nucleus. 

DNA is fragmented into 50Kb and 300Kb stretches, representing chromatin loops 

detached from the nuclear matrix (Brown et al., 1993). This is usually followed by
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double-strand fragmentation of DNA at intemucleosomal linker regions yielding 

multiples of 180-200bp known as DNA laddering due to the pattern visible upon gel 

electrophoresis (Wyllie, 1987). This fragmentation of DNA also leads to the 

generation of 3’-OH termini. The mitochondria can also play an important role and 

this is highlighted upon in section 1.2.4.1. It is important to note that not all of the 

above mentioned symptoms always occur during apoptosis (Nagata, 2000). In 

particular different cell types may show different symptoms of apoptosis and 

symptoms shown may vary with the elicitor used (Oberhammer et al., 1993). It is 

important that mammalian PCD is understood in relation to plant PCD and is 

highlighted in both developmental and non-developmental PCD in plants. The 

previous sections on these types of PCD highlight at least one of the above mentioned 

mammalian symptoms of PCD being involved.

1.2.4. Molecular Mechanisms of PCD

1.2.4.1. The Role of Mitochondria

In mammalian systems, the importance of the mitochondria in PCD has long been 

known (Green, 2000; Ferri et al., 2001). A role for mitochondria is not always 

assured in PCD but in the majority of cases it acts to both mediate and amplify the 

cell-stress signals from throughout the cell. In mammalian cells, intracellular 

communication of the cell death signal to the mitochondria involves translocation of 

proteinaceous signals. The Bcl-2 family of proteins Bax, Bid, Bad, Bim, Bcl-2 and 

Bc1-Xl play an important role in this. Both Bcl-2 and Bc1-Xl reside in the outer 

mitochondrial membrane (OMM) and inhibit cytochrome c release. Their pro- 

apoptotic counterparts, Bax, Bid, Bam, and Bad, reside in the cytosol but are 

translocated to the OMM by cell death signaling. Bad forms a complex with Bc1-Xl 

to form a pro-apoptotic complex (Zha et al., 1996; Gross et al., 1999) (Fig. 1.9). This 

affects the voltage-dependent anion channel (VDAC) which results in cytochrome c 

release (Shimizu etal.y 1999).
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Figure 1.9. Promotion and Inhibition of Cell Death Via the Formation of Ion-Conducting Channels 
Effecting Mitochondrial Membrane Permeability In Mammalian Cells. Represented by BCL-2/Bax 
regulation in mammalian systems. Non-phosphorylated Bad heterodimerizes with membrane bound 
Bcl-XL. Phosphorylation of Bad leads to its release from Bcl-XL and allows it to complex with a 
protein 14-3-3. 14-3-3 sequesters Bad in the cytosol until it is required. This in turn allows Bcl-XL 
molecules to homodimerize or heterodimenze with Bax to promote cell survival. Adapted from Zha et 
a l (1996).

Mitochondria may initiate PCD in response to changes in cellular pH, calcium, and 

other metabolites such as those important for energy distribution; NADH, NADPH, 

ATP, ADP, and creatine phosphate (Vander Heiden et al., 2000).

When the permeability of the OMM is increased, factors effecting cell death are 

released. Good examples of these are cytochrome c, apoptosis inducing factor (AIF) 

and Smac/DIABLO. Apoptosis-associated release o f Smac/DIABLO is dependent on 

caspase activation and is blocked by Bcl-2 (Adrain et al., 2001). Cytochrome c has 

been shown to regulate the activity o f the initiator caspase, procaspase-9 by mediation 

through Apaf-1 (Green et al., 2000). Caspase-9 then goes on to activate the effector 

caspases responsible for cellular disassembly. It is therefore assumed that 

Smac/DIABLO is a caspase activated event downstream of cytochrome c release 

(Adrain et al., 2001). AIF, a large protein, acts quite differently from cytochrome c 

by entering the nucleus and activating fragmentation of chromatin DNA into 50Kb 

fragments (Susin et al., 1999). Disruption o f the OMM and cytochrome c leakage 

may also lead to inhibition o f electron flow from complex III and complex IV in the
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inner mitochondrial membrane (IMM). As a result, generation of reactive oxygen 

species (ROS) may occur, leading to amplification of more cell death signals 

(Blackstone and Green, 1999).

There is accumulating evidence indicating the importance of mitochondria in plant 

PCD. Although cytochrome c leakage has not been shown to occur in plant 

mitochondria, impairment of haeme biosynthesis results in spontaneous lesion 

formation. Because haeme biosynthesis is important for cytochrome c it is thought 

that loss of functional cytochromes occurs, leading to excess ROS generation from the 

mitochondria (Hu et al., 1998; Molina et al., 1999). The HR-inducing bacterial 

virulence factor, harpin, also disrupts mitochondrial functions in tobacco cells (Xe 

and Chen, 2000). When expressed in tobacco cells Bax activates cell death 

(Lacomme and Santa Cruz, 1999). Since this activation of cell death requires 

mitochondrial targeting of Bax, it suggests at least some level of evolutionary 

conservation between cell death mechanisms in plants and other eukaryotes. A plant 

homologue of Bax inhibitor-1 has also been identified in Arabidopsis (yfrBI-1) and 

has been shown to be up-regulated during wounding and pathogen attack. It has also 

been shown to rescue Bax-induced cell death in yeast (Sanchez et al., 2000). In 

plants, mitochondria are not the only organelles responsible for ROS production, 

plastids also participate in cell death signaling. An example of this is the plastid 

localised (chloroplast) protein DS9 which was found to be repressed with the onset of 

TMV activated cell death in tobacco leaves (Seo et al., 2000). Over-expression of 

DS9 led to a delay in cell death activation by TMV with suppression leading to acute 

HR cell death. Thus the role of mitochondria in plant PCD may be somewhat more 

complex than in animal cells.

1.2.4.2. Caspases And Cysteine Proteases

Caspases play an important role in PCD in other higher eukaryotes and are a part of 

the cysteine protease family of proteins (Green, 2000). Caspases cleave after specific 

aspartate residues and have the active site motif QACXG (where X is R, Q, or G) 

(Cohen, 1997). Although there are no direct homologues of caspases in plants, 

caspase-like pro tease activity has been associated with a number of types of plant
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PCD (de Pozo and Lam, 1998; Korthout et al., 2000). Metacaspases, caspase-related 

proteases, have been identified in Arabidopsis and can be categorised into two types 

both showing some but not all of the domains found in caspases (Uren et al., 2000). It 

is, however, normal for cysteine protease activity to be associated with plant PCD, 

especially with regards to senescence (Wagstaff et al, 2002; Buchanan-Wollaston, 

1996; Hensel et al., 1993). Interestingly, poly-(ADP-ribose) polymerase (PARP), a 

specific substrate for caspase 3 during apoptosis in mammalian cells, has been found 

to be involved in FhC^-induced PCD in plant cells (Amor eta l., 1998). PARP is 

associated with DNA repair and DNA replication in mammalian systems (de Murcia 

and Menissier-de Murcia, 1994; Griffin et al., 1995) with activation of PARP 

depleting NAD and inducing oxygen radicals (Nosseri et al., 1994; Heller et al.,

1995).

Another large group of cysteine proteases distinct from caspases have also been 

implicated in PCD in mammalian cells. These cysteine proteases are involved in the 

deubiquitination process and are thus known as deubiquitination enzymes (DUBs). 

Ubiquitin regulates the turnover of proteins in a cell. Ubiquitination, the attachment 

of ubiquitin to a protein, is an important function in eukaryotes as it sequesters 

proteins from interacting with their substrates (similar to phosphorylation) (Baek et 

al., 2001), or degradation via the 26S proteosome when four or more Ubiquitin (Ub) 

moieties are attached (Chau et al., 1989). Activation of DUBs is thought to be due to 

cytokines and this activation by cytokines has been shown for at least three examples, 

DUB1, DUB2, and DUB2A (Zhu et al., 1996; Zhu et al., 1997; Baek et al., 2001). 

Many cellular processes are controlled by Ub post-translational modification 

including cell cycle response through cyclin/CDK inhibitors (Glotzer et al., 1991), 

DNA repair, and stress response (Hershko and Ciechanover, 1998; Kim et al., 2003). 

Over-expression of DUB 1 has been shown to arrest cells in Gl/S, suggesting it has an 

effect on an important regulator of the Gl/S transition of the cell cycle. However, no 

symptoms of apoptosis were observed (Zhu et al., 1996). In contrast, UBP41 over- 

expression has been shown to elicit all features of apoptosis in human cells with an 

inability to arrest cells in G2/M (Gewies and Grimm, 2003). In Arabidopsis 27 

sequences matching DUBs have been identified through research (Yan et al., 2000). 

However their role in plant PCD remains to be established.

The existence of other cysteine proteases apart from caspases involved in 

mammalian PCD suggests that it is not necessarily important that no structural
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homologues of caspases have been found in plants, and the plant cysteine proteases 

associated with PCD may be playing other roles.

1.3. PCD And The Cell Cycle -

The overall aim of the project has been to test the general hypothesis that exit into 

PCD is cell cycle specific. Ideally, this work is best done on a cell line that is free of 

developmental constraints. Another advantage would be the ability to synchronise the 

cell line so that as many of the cells as possible can be studied in specific windows of 

the cell cycle. The tobacco TBY-2 cell line fulfils these criteria better than any other 

plant cell line. In the following section there is a brief outline of the historical 

advantages of this cell line.

1.4. The Tobacco BY-2 Cell Line

The HeLa cell line has played an important role in the understanding of molecular 

and cellular biology of mammalian cells since it was first used in the 1960s (Willmer, 

1965). The success of using this cell line led plant scientists to create various cell 

lines including soybean (Gamborg, 1970), Acer pseudoplatanus (Simpkins et al., 

1970), and Catharanthus roseus (Vinca rosea) (Misawa and Samqima, 1978). None 

of these however have shown the same level of growth rates and homogeneity that the 

tobacco Bright Yellow var. 2 (BY-2) cell line has exhibited (Nagata, 1992). In fact, 

the BY-2 cell line has a number of unique qualities that have made it highly desirable 

for investigating molecular and cellular plant biology (Nagata, 1992; Nagata and 

Kumagai, 1999). Plant cell cultures are especially important since core mechanisms 

such as PCD and the cell cycle will share fundamental similarities to those in whole 

plant development (McCabe and Leaver, 2000). Since the interaction of PCD and the 

cell cycle at the molecular level is the focus of this thesis it is important that the right 

system is used to investigate it.
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1.4.1. History of the BY-2 Cell Line -

The TBY-2 cell line was established from seedling callus of Nicotiana tabacum L. 

cv. Bright Yellow 2 in the Central Research Institute of the Japan Tobacco and Salt 

Public Corporation. It was identified as the most proliferative out of cell lines 

established from 40 species of Nicotiana and three species of Populus (Kato et al., 

1972). Due to the high growth rates and lack of nicotine production it was developed 

as raw material for cigarette production (Kato et al., 1976) but was stopped as the 

cells were found to suffer from high levels of proteination (Kato, 1982).

1.4.2. Merits of the BY-2 Cell Line -

As mentioned above the BY-2 cell line exhibits a high level of synchronisation 

especially when compared to other cell lines. The majority of plant cell lines 

synchronised have attained mitotic index peaks in the region of 10-20%. This, 

however, still leaves 80-90% of cells somewhere else in the cell cycle. Recently two 

Arabidopsis cell lines, MM1 and MM2d, have been developed which are subcultured 

at 7d intervals (Menges and Murray, 2002). Unfortunately the peak value of cells 

observable in mitosis was only 13% and is not comparable to those observed in BY-2 

cells (Menges and Murray, 2002). The only advantage of MM1 and MM2d is that 

Arabidopsis is the model genetic research tool and due to this its genome has been 

completely sequenced (The Arabidopsis Genome Initiative, 2000). This makes it 

comparatively easy to look at expression patterns and functions of putative genes.

The BY-2 cell line can be synchronised with aphidicolin, a reversible inhibitor of 

DNA polymerase a. Routinely aphidicolin induces a mitotic peak o f40-50% (Francis 

et al., 1995; Herbert et al., 2000; Sorrell et al., 2001) but it can be as high as 80% 

(Nagata et al., 1982). The growth rate of the cell line is also rapid with 2-3ml of 

stationary culture reaching another stationary phase within 7 days (at 27°C), making 

sub-culturing a consistent weekly event (Fig. 1.10). Hence, the BY-2 cell line is still 

the optimum system for investigating core cellular mechanisms with regards to the 

cell cycle since in a synchronised state it attains the highest recorded mitotic peaks.

29



Figure 1.10. Tobacco BY-2 cells after 7 days of growth in liquid modified Linsmaer and Skoog 
medium at 27°C, 130rpm

1.5. Aims of the Work Presented in this Thesis

The basis o f work in this thesis was to try and elucidate mechanisms o f cell cycle- 

linked programmed cell death in plants through the use o f the tobacco BY-2 cell line. 

Using this cell line, mechanisms of PCD were studied in a system free of 

developmental constraint. Areas of particular interest were:

•  The effect o f ethylene, a known inducer o f PCD, on the cell cycle and 

occurrence o f mortality in the cell cycle.

•  The ability of ethylene inhibitors to ameliorate effects of ethylene. This 

includes the use of 1-MCP, a relatively new development in ethylene signaling 

inhibition.

• To see if transformation with A tetrl, a gene encoding a dominant insensitive 

form of the Arabidopsis ETR1 receptor, could inhibit ethylene sensitivity in 

the same fashion as chemical inhibitors.

•  Transformation o f tobacco BY-2 cells with the mitotic inducer, Spcdc25, to 

see if it affected the G2/M transition. This transition plays an important role 

in response to DNA damage in yeast and mammalian cells, resulting in PCD if 

cells are unable to progress.
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Chapter 2 

Materials And Methods



2. Materials And Methods

2.1. Plant Material

The tobacco BY-2 cell line was cultured in modified Linsmaier and Skoog medium 

(Linsmaier and Skoog, 1965) supplemented with sucrose (3%), myoinositol, KH2PO4, 

thiamine HC1, and 2,4-D. Cells were cultured at 27°C, 130 rpm in the dark and 

subcultured at 7 day intervals. Cells were subcultured by transferring 2 ml into 95 ml 

of fresh medium in a 300 ml Duran flask.

2.2. Plasmid Transformation Of The Tobacco BY-2 Cell 
Line

Transformation of tobacco BY-2 cells was achieved using a modified version of the 

method described by An (1985). Isolated colonies of Agrobacterium tumefaciens 

strain LB4404 containing the appropriate binary vector (see Table 2.1) were picked 

from fresh 2xYT plates containing the appropriate antibiotic selection (see Table 2.1) 

and cultured overnight in 7 ml 2xYT (without antibiotic) in 50 ml conical flasks at 

30°C with shaking. Aliquots (4ml) of 6 day old stationary phase BY-2 cells 

containing 20 pM of Acetosyringon (Sigma-Aldrich) (freshly added) were co­

cultivated with 100 pi of Agrobacterium culture in 90mm Petri dishes sealed with 

Nescofilm for two days at 27°C in the dark without shaking. Cells were washed with 

1 litre of BY-2 medium using a cell dissociation sieve fitted with a 100 pm mesh 

(Sigma-Aldrich) and re-suspended in 5ml BY-2 medium containing 250 pg/ml 

Timentin (Melford laboratories). Aliquots (2.5ml) were plated onto solidified BY-2

31



medium (0.8% agar; Sigma) supplemented with 250 |ig/ml Timentin and the selective 

antibiotic (Table 2.1). Plates were sealed with micropore tape and incubated at 27°C 

in the dark. Isolated antibiotic-resistant calli (each individual callus was considered 

as an independent clone) appeared after 2-4 weeks, and were harvested and grown for 

a further two weeks on fresh plates. Calli were then transferred to 50 ml BY-2 

medium supplemented with 250 pg/ml Timentin and a selective antibiotic. These 

were incubated at 27°C and 130 rpm in the dark until the cultures reached stationary 

phase (2-4 weeks). Cultures were subsequently maintained as described for wild-type 

BY-2 cultures using medium supplemented with both 250 pg/ml Timentin and the 

selective antibiotic. Timentin was omitted after the first sub-culture. Cultures were 

subjected to at least four rounds of sub-culturing before being used experimentally.

Vector Transgene Antibiotic 

Selection: E. 
coti

Antibiotic

Selection:

Agrobacterium

Antibiotic

Selection:

Tobacco

BY-2

Notes on 

Vector

pBinHygTX :Cdc23 Cdc25sp Kanamycm Kanamycin Hygromycin Has an 

attenuated 

version of the 

CcMV35S 

promoter.

pBINHygTX None Kanamycin Kanamycin Hygromycin As above

pHKlOOl etrl-l etrl Spectinomycin Spectinomycin/

Kanamycin

Kanamycin CaMV35S 

promoter, 

supplied by 

H. Klee, 

University of 

Florida

Table 2.1. Details of transgene vectors and antibiotic selection used to transform tobacco BY-2 cells 

by Agrobacterium.
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2.3. Synchronisation And Mitotic Index Measurements

Aphidicolin, a reversible inhibitor of DNA polymerase a, was used to synchronise 

the cells using a modified version of the Nagata et al, 1992 protocol. In the presence 

of this inhibitor, any cell replicating its nuclear DNA is arrested and all other cells are 

unable to enter S-phase. Hence, a 24 h exposure to, and subsequent removal of, 

aphidicolin will cause the vast majority of cycling cells to accumulate in late G1 and 

then be released into S-phase.

At the end of stationary phase (7 days following subculture), 20 ml of culture was 

transferred to 95ml of fresh medium containing aphidicolin dissolved in 

dimethylsulphoxide (DMSO; 5 pg/ml, Sigma) and cells were incubated in the same 

conditions as above for 24 hours. Immediately following the 24 hour incubation, cells 

were washed with 1 litre of fresh BY-2 medium in 100 ml aliquots using a sintered 

glass filter funnel (Baird and Tatlock No. 1). The flow rate of the washing medium 

was regulated by a Hoffman clamp attached to silicon tubing connected to the bottom 

of the funnel. To achieve a high level of mitotic synchrony the wash procedure was 

of exactly 15 mins in duration. The cells were resuspended in 95 ml of fresh medium 

and returned to the conditions above.

Following release from aphidicolin, 100 pi of cell suspension was taken at hourly 

intervals for 24 h, and mixed immediately with 5 pi Hoechst stain (Bisbenzimide 

Sigma, 100 pg/ml in 2% (v/v) Triton X-100). The mitotic index (the sum of 

prophase, metaphase, anaphase, and telophase mitotic figures as a percentage of all 

cells) was measured for a minimum of 300 cells per slide on random transects across 

the coverslip on each of the slides per sampling time per treatment. Cells and mitotic 

figures were visualised using a fluorescence microscope (Olympus BH-2, UV, 

A.=420nm). So that further analysis of cell size could be carried out, digital images 

were taken of each slide using a Fujifilm HC-300Z digital camera attachment for the 

microscope and saved as JPEGs.
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2.4. Ceil Viability And Mortality Index

Following release from aphidicolin, mortality indices were scored every hour for the 

duration of the experiment. Cells (50 pi) were diluted 1:1 in solution containing 

fluorescein diacetate (FDA) (Sigma, 200 pg/ml) and propidium iodide (PI) (Sigma, 

120 ng/ml) in 3% (w/v) sucrose and incubated on ice (20 min) (Harris and Oparka, 

1994). A minimum of 300 cells were scored as dead (red) or alive (green) on random 

transects across the coverslip on each slide for every hour per released cell culture.

2.5. Ethvlene. Silver Nitrate. 1-MCP And Mevinolin 
Treatment Of Tobacco BY-2 Cell Lines

Ethylene (SIB Analytical, Sandwich, Kent, UK) was administered to the headspace 

of TBY-2 cultures through a layer of Nescofilm as previously described (Herbert et 

al, 2001) to achieve a final concentration of 17700 pl/1. The ethylene was injected at 

3.5 h following the release from aphidicolin, which coincides with the end of S-phase 

(Francis et a l,  1995; Herbert et al., 2001). Both the injection time and amount of 

ethylene used were based on preliminary experiments carried out (Herbert et a l, 

2001). These preliminary experiments showed that mortality for 17700pl/l of 

ethylene injected al 3.5 h after release from aphidicolin was 21.07±5.8%, significantly 

higher than that produced for 12400 pl/1 (7.20±0.96%), but not much less than the 

mortality induced by 35000 pl/1 of ethylene (24.92±5.6%). An injection point of 3.5 

h was chosen as opposed to 0 h as it was shown to have a greater effect on the rise of 

the mitotic peak. Due to die low solubility of ethylene in water, the concentration in 

the medium is calculated using Boyles law to be below 73 pmol/1 at 25°C. Therefore 

ethylene was re-administered at every sampling point to ensure it was kept present in 

the medium.

Silver is a well-established inhibitor of ethylene action and acts by inhibiting the 

binding of ethylene to its receptors (Drew et a l, 1981). Silver nitrate was added 3.5 h 

after the removal of aphidicolin and transfer of cells to fresh medium, giving a final
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concentration of 1.2 pM. (Herbert et al, 2001). This concentration was chosen as it 

had been previously used in studies on aerenchyma formation in maize (Drew et al., 

1981).

1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene action by the same 

process as silver (Serek et al., 1994). Addition of 3.2 g 1-MCP (kindly supplied by 

Rohm-Haas in 0.14% powder formulation) to cell cultures occurred 3.5 h after release 

from aphidicolin with the 1-MCP treated flask being subsequently sealed with 

Nescofilm to restrict loss of 1-MCP in its gaseous (natural) form. Due to the gaseous 

nature of 1-MCP and its low solubility in water (10 ppb in 1 ml of H2O), it was re­

administered at every sampling point to ensure its presence in the medium.

Mevinolin (Sigma) is an inhibitor of cytokinin production (Laureys et al., 1998). 

Addition of lOpM mevinolin, previously shown by Laureys et al. (1998) to reduce the 

mitotic index peak by 50% tobacco BY-2 cell cultures, occurred to Spcdc25 3* and 

EV2 cell cultures 0 h after release from aphidicolin.

2.6. Mitotic Cell Size Measurements

Mitotic cell size measurements were carried out using Sigmascan® (Sigma), an 

image analysis program. A line was traced around the contour of cells undergoing 

mitosis so that their area could be determined. To ensure measurements were 

accurate, a graticule was used as a distance reference point from which Sigmascan® 

could calculate the area of a cell. Data obtained was recorded into Microsoft® Excel.

2.7. Growth Rate Measurements

Cells were taken at stationary phase of the cultures in 2.5 ml aliquots and 

resuspended in 95 ml of fresh medium. Two ml of cells were aliquoted from the 

culture every 24 h for a period of 7 days (or until stationary phase was reached) and 

cell density measured using a spectrophotometer (X=550nm). Where absorbance 

readings were in excess of 1.0, samples were diluted to ensure an accurate 

measurement.
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2.8. Detection Of 3’-QH DNA Termini

The Apoptag® apoptosis detection kit (Intergen) utilising fluorescein-labelled 

antibodies specific to 3’-OH breaks in nuclear DNA was used. Cells from the 3.5 h 

ethylene and control treatments were sampled every 2 h. At each sampling time, 1ml 

of cells was removed, centrifuged at 1000 rpm (MSE Centaur 2) (10 min) and the 

supernatant discarded. Cells were resuspended in 1% (v/v) paraformaldehyde in 

Phosphate Buffered Saline (PBS) and stored at 4°C for a maximum of 48 h. Cells (70 

pi) were placed on alcohol-cleaned slides, a coverslip applied and the slide placed on 

dry ice until the coverslip became heavily frosted (5-10 min); it was then removed 

using a razorblade. The preparation was allowed to dry at room temperature and the 

procedure outlined in the Apoptag manual for indirect fluorescence was subsequently 

followed (Fig 2.1). The reaction buffer in the Apoptag® kit is designed to add 

digoxigenin-labelled nucleotides via the enzyme terminal deoxynucleotidyl 

transferase (TdT) to 3’-OH ends of double-stranded or single-stranded DNA. DNA 

fragments labelled with the digoxigenin nucleotide are then allowed to bind to an anti- 

digoxigenin antibody that is conjugated to a fluorescein reporter molecule. The 

counter-staining procedure outlined in the Apoptag® manual was modified in that the 

cells were mounted in PBS containing PI (120 pg/ml). Cells were visualised using a 

fluorescence microscope (Olympus BH-2, UV, X = 420 nm). At each sampling time, 

the number of green (antibody labelled) or red (Pi-stained) nuclei were scored and the 

results expressed as % labelled. Images were captured using a digital camera 

attachment (Fujitsu HC-300Z) for the microscope.
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Figure 2.1. Apoptag® fluorescence labelling for DNA 3’-OH termini detection. Adapted from The 
Complete Apoptag® Manual, Intergen.

Cells (50 ml) were harvested from tobacco BY-2 cultures and spun at 3000 rpm for 5 

mins to form a pellet. The supernatant was discarded and approximately 0.5 g o f the 

material ground to a fine pellet using liquid nitrogen and a pestle and mortar. This 

was transferred to a polypropylene tube (50 ml; Falcon) with 2x CTAB buffer (15 ml) 

preheated to 60°C and gently mixed. The tube was subsequently incubated at 60°C 

for 20 mins. SEVAG (15 ml) was added and the samples placed on a rocker for 30 

mins ensuring that the screwcap was additionally sealed with Nescofilm to prevent 

leakage. Samples were then spun at 8000 rpm for 10 mins at 4°C. The top layer was 

placed in a fresh 50 ml polypropylene tube (Falcon) and mixed with 30 ml of pre­

cooled (-20°C) Ethanol. This was placed at -20°C for at least one hour until 

precipitation was visible. The sample was then centrifuged at 3750 rpm (Beckman 

Coulter Allegra™ 21R, rotor F2402H) for 30 mins at 4°C. The supernatant was 

discarded and the pellet air dried. 500 pi o f TE was added and the sample heated to 

60°C to mix. This was transferred to a 1.5 ml microcentrifuge tube and 5 pi of RNase 

(40 mg/ml) was added and incubated at 37°C for one hour. 500 pi of 

phenol/chloroform was added and gently mixed with the sample then centrifuged at 

13000 rpm (Eppendorf® minispin; rotor F-45-12-11) for 5 mins. The top phase was

2.9. DNA Extraction
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transferred to a new microcentrifuge tube and 500|xl of SEVAG added and 

centrifuged at 13000rpm (Eppendorf® minispin; rotor F-45-12-11) for a further 5 

mins. The top phase was split into two microcentrifuge tubes and 2.5x volume of 

ethanol and O.lx volume of NaAc (pH 5.2) added. This was placed at -20°C for one 

hour and then centrifuged at 13000 rpm (Beckman Coulter Allegra™ 21R, rotor 

F2402H), 4°C for 20 mins. The supernatant was removed and the pellet formed by 

centrifugation left to air dry. The pellet was resuspended in 50 pi of TE. To ensure 

DNA had been extracted, samples were run on an agarose gel (1.0%) with ethidium 

bromide (EtBr; 10 mg/ml) and visualised under U.V. light. The amount of DNA was 

quantified using a U.V. spectrophotometer (Genequant®). Samples were stored at - 

20°C until further need.

2.10. DNA Amplification

DNA amplification was carried out via the Polymerase Chain Reaction (PCR; Fig 

2.2). For this the Reddymix™ PCR Master Mix system (ABgene) was used. This 

contains all the reagents necessary for DNA amplification including dNTPS (0.2 

mM), Thermoprime plus DNA polymerase (1.25u), MgCl (1.5 mM), and loading 

buffer for gel electrophoresis. For a total reaction volume of 50 pi, 45 pi of 

Reddymix™, 1 pi of forward primer (10 pM), 1 pi of reverse primer (10 pM), 2 pi of 

DNA, and 1 pi of sterile dH20 was used. Table 2.2 shows the primers used for each 

gene of interest and the annealing temperatures used. The PCR program followed for 

DNA amplification was 94°C for 1 min, annealing temperature for 1 min, 72°C for 1 

min (repeated for 40 cycles), and 72°C for 7 mins. PCR products were run on an 

agarose gel (1.0%) with EtBr (10 mg/ml) and visualised under U.V light.
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Figure 2.2. DNA Amplification via the Polymerase Chain Reaction. Short oligonucleotides known as 
primers with homology to the target gene are used to amplify regions.

Primer
Pair

Annealing
Temperature
(°C)

Target
Gene

Oligonucleotide Sequence Product 
size (bp)

Cdc25:P2
Cdc25:P7

60 SpCdc25 5’ -
TTCCATGCTAATGTATTCAGA
G
5’ -  ATGGTGGTGACGGGTGAC

718

CaMV35sF
ETR1R

60 Atetrl 5’ -
GACCCTTCCTCTATATAAGG 
5’ -  CGGTTCTCGAATGCGTAG

338

ETR1F
ETR1R

60 Atetrl 5’ -
GATTGCGTATTTTTCGATTCC
TC
5’ -  CGGTTCTCGAATGCGTAG

161

Table 2.2. Primers used for DNA amplification using PCR.
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2.11. RNA extraction and cDNA synthesis

2.11.1. RNA Extraction

Total RNA was extracted from tobacco TBY-2 cells using TRI-REAGENT (Sigma). 

TRI-REAGENT is a mixture of guanidine thiocyanate and phenol and is designed to 

dissolve DNA, RNA, and protein upon lysis of organic material. The method 

followed was adapted from the manufacturers technical bulletin (MB-205).

Plant cells were harvested by centrifugation (3000 rpm for 5 mins; EppendorfD 

Minispin, rotor F-45-12-11) or vacuum filtration (30 seconds). The subsequent 

material (>200 mg) was frozen and ground to a fine pellet using liquid nitrogen and a 

pestle and mortar pre-cooled to -20°C. Tri-Reagent (2 ml; Sigma) was added and 

grinding resumed until a homogenous paste was formed. Equal amounts of paste 

were transferred to two 1.5 ml microcentrifuge tubes, vortexed, and left to stand at 

room temperature for 5 mins. Samples were subsequently centrifuged at 1200 rpm 

(Beckman Coulter Allegra™ 21R, rotor F2402H) 4°C, for 10 mins and the 

supernatant transferred to fresh microcentrifuge tubes leaving the solid plant material 

behind. Chloroform (0.2ml) was added to each tube, vortexed for 15 seconds, and left 

to stand at room temperature. Samples were then centrifuged at 1200 rpm (Beckman 

Coulter Allegra™ 21R, rotor F2402H), 4°C for 15 mins. The top layer containing 

RNA was transferred to fresh microcentrifuge tubes (1.5ml) and isopropanol (0.5 ml) 

added. This was left to stand at room temperature for 10 mins and centrifuged at 

12000 rpm (Beckman Coulter Allegra™ 21R, rotor F2402H), 4°C for 10 mins. The 

supernatant was removed and ethanol (1 ml) added to wash the pellet formed by the 

previous centrifugation. The samples were vortexed for 15 seconds and centrifuged at 

12000 rpm (Beckman Coulter Allegra™ 21R, rotor F2402H), 4°C for 10 mins. The 

supernatant was carefully removed and the pellet air dried for 30 mins. The pellet 

was resuspended in dUHP H2O (50 pi) with samples initially split into two 

microcentrifuge tubes recombined into one, giving a final volume of lOOpl. Samples 

were stored at -70°C.
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2.11.2. DNase Treatment

To 100 pi of each RNA preparation 10 pi of lOx DNase buffer and 3 pi of DNase 

added. Preparations were incubated at 37°C for 1 hour. 0.2 ml of DNase activation 

reagent was added and samples incubated at room temperature for 2 mins. The 

samples were centrifuged at 13000rpm (Eppendorf® minispin; rotor F-45-12-11) for

I minute to pellet the inactivation reagent and the supernatant carefully transferred to 

a fresh microcentrifuge tube. Treated RNA was stored at -70°C.

Quantity and quality of RNA was estimated by spectrophotometry and by running on 

an agarose gel. The RNA extracts (10ml) were mixed with 2ml of loading buffer and 

run on an electrophoresis gel (1% agarose, lOmM EtBr). To minimise RNA 

degradation the gel tank, tray, and combs were treated with RNase Zap® (Albion). 

The RNA was visualised under UV light and photographed using a Gene Genius 

Bioimaging System and Gene Snap® software package (Syngene).

2.11.3. cDNA Synthesis

To ensure that direct comparison between samples could occur, equal amounts of 

RNA from each sample were reverse transcribed. cDNA synthesis was carried out in 

a PCR machine using the Gibco BRL Life Technologies reagents unless otherwise 

stated . 5 pg of DNase treated RNA was added to microcentrifuge tubes (0.5 ml) and 

made up to 20 pi with sterile dH20. 1 pi of oligo (dt)-15 (50 pg/ml; Promega) was 

added and samples incubated at 70°C for 10 mins. Samples were then cooled at 4°C 

for 10 mins. 5x 1* strand buffer (6 pi), 0.1M DTT (dithiothreitol; 2 pi), and 10 mM 

dNTPs (1 pi) were added and incubated at 42°C for 2 mins. M-MLV RNase FI- 

Reverse Transcriptase (1 pi; Promega) was added and the samples incubated for a 

further 50 mins at 42°C. This enzyme lacks RNase H activity, eliminating 

degradation of RNA templates. The samples were heated to 70°C for 15 mins to 

inactivate the reverse transcriptase and reactions stored at -20°C. Mock reactions, 

important for ensuring no genomic DNA contamination, were also carried out 

following the above procedure. For this sterile dFLO was substituted for Superscript

II reverse transcriptase.
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2.12. cDNA Amplification And Semi-Quantitative PCR

2.12.1. cDNA Amplification

cDNA was subject to PCR amplification for confirmation of transgene expression in 

transformed lines and for analysis of gene expression through the cell cycle. 

Amplification was carried out using Qiagen Hotstar® PCR reagents. For a reaction 

mix total of 25 pi the following was used. cDNA (0.5 pi), 2.5x Buffer (2.5 pi), 10 

pM forward primer (1 pi), 10 pM reverse primer (1 pi) (see Table 6 ), 10 mM dNTPs 

(0.5 pi), Hotstar® Taq (DNA polymerase; 0.125 pi (5u/pl)), and sterile dH20 (19.4 

pi). Where possible a master mix was always used to reduce pipetting error and a 

negative control (sterile dH20 substituted for cDNA) always used to ensure no water 

contamination. A positive control was used when available. Samples were placed in 

a PCR machine for amplification (Applied Biosystems Geneamp PCR system 2700). 

Each step in the PCR cycling stage was for 1 min with the annealing temperature 

varying between primer pairs (Table 2.3). Results were visualised by running 

samples on an agarose gel (1%) containing EtBr (10 mg/ml) for 20 mins at 120 

millivolts.

Primer
Pair

Reference Target
Gene

Oligonucleotide
Sequence

Product
Size
(bp)

Tm
(°C)

PUV2
PUV4

18S
riboso-
mal
RNA

5’ -  TTCCATGCTAATGTATTCAGAG 
5’ -  ATGGTGGTGACGGGTGAC

459 60

Cdc25
P2
Cdc25
P7

S.
pombe
Cdc25

5’ -  TTAGGTCCCCTTCTCCGATG 
5’ -
GCGCGTCGACCATTAACGTCTGGGGAA
GC

718 60

H4F
H4R

Dambru- 
skas et 
al., 2003

Histone
H4

5’ -
GGC AC AGG AAGGTTCTG AGGGAT AAC A 
5’ -
TAACCGCCGAAACCGTAGAGAGTCC

196 60

Table 2.3. Primer Details for Gene Expression Analysis.
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2.12.2. Semi-Quantitative PCR

Semi-quantitative PCR was carried out on tobacco BY-2 wild-type (WT) and 

5/?cdc25-expressing cell lines. Samples (4 ml) were taken during synchrony 

experiments every hour in conjunction with mitotic index and mortality readings and 

immediately frozen at -70°C. RNA was extracted and used to synthesise cDNA (see 

2.11). So that a semi-quantitative result could be obtained, samples from each hour of 

the same synchrony experiment were subjected to PCR with a range of cycle 

numbers. This was to determine a cycle number that would show an exponential 

increase or decrease in expression levels of the gene o f interest (Fig. 2.3). For this, a 

composite cDNA sample from each synchrony experiment was prepared by mixing 

together 5 pi of each o f the individual samples. Once a cycle number had been 

determined, PCR was carried out in triplicate on all cDNA samples from the same 

synchrony experiment. Samples were visualised using a 1% agarose gel with EtBr 

(10 mg/ml) and ethidium bromide fluorescence o f PCR products recorded using a 

Gene Genius Bioimaging System and Gene Tools® software package (Sygene). This 

was earned out for all genes of interest. To ensure that results were due to a change 

in expression levels rather than an error during cDNA amplification, 18S ribosomal 

cDNA was amplified as a control. To equilibrate results, the EtBr fluorescence 

obtained from the gene of interest was divided by the EtBr fluorescence obtained for 

18S amplification.
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Figure 2.3. Graphical representation of the amount of DNA amplification with regards to cycle 
number in a PCR reaction. To carry out semi-quantitative PCR a cycle number within the exponential 
curve of the reaction is chosen to ensure up- and down-regulation of the target gene can be visualised.
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2.13. Protein Extraction And Western Blotting

2.13.1. Protein Extraction

Cells, 15 ml in polypropylene tubes (Falcon), were harvested from tobacco BY-2 

cultures in stationary phase (7 days old) and spun at 3000 rpm (MSE centaur 2) for 5 

mins to form a pellet. The supernatant was discarded with the subsequent material 

frozen and ground to a fine pellet using liquid nitrogen and a pestle and mortar. 

Approximately 1 g of the ground pellet was transferred to 1.5 ml microcentrifuge tube 

and resuspended in 1 ml lysis buffer on ice. The suspension was centrifuged at 13000 

rpm (Beckman Coulter Allegra™ 21R, rotor F2402H) 4°C for 30 mins and the 

supernatant transferred to a fresh microcentrifuge tube on ice. 1 pi of extract was 

transferred to 1 ml Coomassie® Protein Assay Reagent (Bradford assay; Sigma) and 

concentration of total extracted proteins measured with a UV-spectrophotometer X = 

595nm (Smartspec™3000, Bio-Rad Laboratories Ltd) against a standard curve (Fig. 

2.4). Samples were stored at -70°C after being frozen in liquid nitrogen until further 

use.
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Figure 2.4 Standard curve for protein concentrations measured against absorbance using known 
amounts of bovine serum albumen (BSA).

2.13.2. SDS-PAGE Gel

To separate proteins into their respective molecular weights an SDS-PAGE gel was 

used. Gels consisted of a two-layered system of a stacking gel (where samples are 

loaded) and a resolving gel (where the proteins are resolved). To make the gel the 

Biorad Mini-PROTEAN 11 kit was used and the protocol described in QIAGENnews 

(Issue No. 5, 2000) adapted for use. Two glass plates separated by 1.5 mm were 

assembled according to the manufacturers instructions. The resolving gel mixture 

was made (see Appendix II) and 3 ml was poured between the glass plates leaving a

2-3 cm (a third of the height of the glass plates) gap at the top. 200 pJ o f butan-l-ol 

was applied to the surface of this layer using a syringe to exclude oxygen and to 

ensure a level transition point between the two gels. After polymerisation had 

occurred the butan-l-ol was removed by syringe and any excess with filter paper. 

The stacking gel mixture was made (see Appendix II) and poured onto the resolving 

gel until it reached the top of the glass plates. Before polymerisation could occur a 

plastic comb was inserted at the top of the gel to create wells for running the samples 

in. Once the gel had set, 25 pi o f protein samples were aliquoted into microcentrifuge 

tubes and 5 pi o f 5x loading buffer added. Samples were placed onto the SDS-PAGE
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gel with Seablue™ ladder for protein size reference (Fig. 2.5) run at 150mv until 

loading dye band reached the bottom of the gel (approximately 45 mins).

Key

— ISSkDa Myosin

Pt**r 96 Phosphorylase B

62 BSA
i 49 Glifamic Dehydrogenase

» Alcohol Dehydrogenase

a Carbonic Anhydrase

17 Myoglobin -  Red
14 Lysozyme

6 Aprobnin
mmrnk 3 Insulin, B Chain

Figure 2.5. Seablue® Hus 2 Protein standard (Invitrogen). Molecular weights of protein standards are 
shown in kilo-Daltons (kDa).

2.13.3. W estern Blotting and Detection

Five pieces o f filter paper and a piece of PVDF membrane were cut out to the size of 

the SDS-PAGE gel. The PVDF membrane was pre-wetted in methanol and then 

incubated with the filter paper in the tank-blotting transfer buffer with the filter paper. 

The SDS-PAGE gel, PVDF membrane, and filter paper were then placed in a plastic 

support and arranged as shown in Fig. 2.6. The apparatus was assembled into the 

transfer tank (Bio-Rad) containing the tank-blotting transfer buffer and lOOmV 

applied for 1 hour. After transfer had been completed the orientation of the gel was 

marked on the membrane and Ponceau S staining was carried out (see Section 2.13.4). 

This was to ensure that the transfer of protein to the membrane had been successful. 

After Ponceau S staining the membrane was placed in a small tray with 20ml of Tris 

Buffered Saline (TBS) supplemented with dry milk powder (3%) (Premier Brands UK 

Limited). This was incubated at room temperature on a rocker for 30 mins. The 

membrane was rinsed twice in TBS and then washed for 5 mins. The membrane was 

then subjected to the primary antibody (anti-5’pCdc25 antibody supplied by Dr. S.
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Moreno, 1:1000 dilution) diluted in 15 ml o f TBS (3% dry milk powder; Premier 

Brands UK Limited) for 1 hour at room temperature on a rocker. The membrane was 

rinsed twice in TBS and then left for a further 15 mins in TBS. The TBS was 

removed and the secondary antibody (HRP conjugated anti-rabbit, DACO, 1:1000 

dilution) diluted in 20ml of TBS (3% dry milk powder) was added. The membrane 

was incubated for 30 mins at room temperature on a rocker. To ensure minimal 

background contamination by the antibody, the membrane was washed in TBS 

(0.05% Tween 20) eight times for 20 mins each time.

Cathode
Plastic Support 
Fibre Pad

Filter Paper x3

SDS-page Gel

PVDF Membrane

Filter Paper x2

Fibre Pad 
Plastic Support

Anode

Figure 2.6 Arrangement of SDS-PAGE gel, PVDF membrane, and filter paper for protein transfer 
onto the membrane Cathode and anode denote direction of current once transfer is taking place.

For detection of the proteins the Amersham ECL western blotting detection protocol 

(RPN 2108) was used. This detection kit makes use of a horseradish peroxidase 

(HRP) conjugated secondary antibody that, in conjunction with a chemiluminescent 

substrate, luminol, generates a signal that can be detected on film. The PVDF 

membrane was placed on SaranWrap™ (DOW Chemical Company) and 2.5 ml of 

reagent 1 and 2 was placed on top of it. This was allowed to incubate at room
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temperature for 1 min and then removed. The membrane was then wrapped in 

SaranWrap® and exposed to chemiluminescent radiograph film (Hyperfilm ECL; 

Amersham) in the dark room The orientation of the membrane was marked by using 

a fluorescent star. The film was exposed for varying lengths of time, changing the 

film each time, to ensure that a clear result could be obtained. After exposure the 

film(s) were placed in developing solution for 1 min, dipped in acetic acid (1.5%) 

briefly, and then fixed for 5-10 mins in fixing solutioa Following the fixing of the 

film it was rinsed in water for 10 mins and then air-dried.

2.13.4. Ponceau S Staining

The PVDF membrane was immersed in Ponceau S staining solution and left to 

incubate at room temperature for 5 mins. After protein bands had been visualised the 

membrane was rinsed in distilled water and quickly immersed in 0.1 M NaOH. Once 

the protein bands had disappeared the membrane was rinsed in distilled water for 2-3 

mins and the western blotting protocol was continued.
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3. Ethylene Induces Cell Death At The G2/M
Boundary With PCD Characteristics

3.1. Introduction

In yeast and mammalian systems, some forms of PCD have been shown to exhibit a 

tight link to cell cycle checkpoints (Hirao et al., 2000; Tanaka et al., 2000). There is 

particular emphasis on the G2/M transition and this has been described as the DNA 

damage checkpoint (Rhind and Russell, 1998; Lopez-Girona eta l., 1999; Hirao etal., 

2000). As described in the thesis introduction, transitions between phases of the cell 

cycle depend upon CDK-cyclin complexes. In fission yeast, positive regulation of 

this complex at the G2/M checkpoint is carried out by Cdc25 phosphatase and 

negative regulation by Weel kinase (Russell and Nurse, 1986, 1987). Cdc25 is also 

the target of a molecular network that checks DNA integrity prior to the G2/M 

transition. If DNA damage is detected then Cdc25 is inactivated, Cdc2 cannot be 

dephosphorylated, and cells are held in G2 (Rhind and Russell, 1998; Lopez-Girona et 

al., 1999). From this point two options exist. If the cell can repair the DNA damage, 

Cdc25 is reactivated and the cells can progress into mitosis (Lopez-Girona et al.,

1999). If the damage is too extensive, cells exit into PCD (Lane, 1992; Hirao et al.,

2000).

It was therefore interesting to test the hypothesis that in plants, exit into PCD is cell 

cycle specific. For this purpose the tobacco BY-2 cell line was used. This cell line is 

highly sychronisable with aphidicolin and therefore an extremely desirable system 

due to its uniformity and lack of developmental constraints (see section 1.4).

As discussed in section 1.2. , ethylene is a plant growth regulator known to be 

involved in certain PCD events in plants including endosperm development, 

xylogenesis, and organ senescence (He et al., 1996; Young and Gallie, 1999, 2000; 

Fukada, 19%; Grbic and Bleecker, 1995). It has also been established that the 

ethylene signaling pathway is a stress response pathway involved in wounding and 

pathogen attack (Penninckx et al., 1998; Watanabe et al., 2001). In each of these
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cases the outcome is cell death. PCD in mammalian systems has been described as an 

active and controlled process requiring de novo gene transcription (Ellis et al., 1993) 

and as described in section 1.2. has certain characteristics defining it. In response to 

ethylene binding, the transcription factors known as EREBPs (ethylene responsive 

binding proteins) are known to increase and in turn have been shown to up-regulate a 

number of PR (pathogenesis related) genes (Eyal et al., 1992; Mee Park et al., 2001). 

This provides a link between ethylene causing cell death and de novo gene 

transcription, indicating plants share some PCD features of animal systems in 

response to ethylene.

In this study I report cell cycle specific death in tobacco BY-2 cell cultures and two 

associated features of PCD accompanying it, reduced cell size and generation of 3- 

‘OH termini at the G2/M checkpoint in response to ethylene treatment.

3.2. Materials And Methods

Details of materials and methods are fully described in chapter 2.

See page 33 for synchronisation and mitotic index measurements, page 34 for cell 

viability and mortality index measurements, page 34 for ethylene and silver nitrate 

treatments, and page 36 for 3’-OH termini DNA detection.
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3.3. Results

3.3.1. Ethvlene and Ethvlene+Silver Treatments Affect the
Component Phases but not the Overall Length of the Cell 
Cycle.

A number of experiments were carried out using ethylene at 3.5 h to determine the 

length of the component phases of the cell cycle. An appreciable effect of the 

ethylene treatment was to delay the initial rise of the first mitotic index peak (Fig. 

3.1a). This was due to an increase in the length of G2 to 6 h compared with 5 h in 

controls. Cell cycle duration is calculated from the distance in time between the two 

peaks o f  the mitotic index and its component from the mitotic index data generated 

using the formula described by Quastler and Sherman (1959). Using this formula, G2 

+ 'AM = the interval between the y-axis and the 50% intercept of the initial rise of the 

mitotic index; S-phase = 50% intercept of the ascending and descending limbs of the 

mitotic peak; and M-phase = from where the curve begins to rise taken as the first 

mitotic index value above zero, to where it begins to plateau. G1 is calculated by the 

difference.

Since S-phase was confirmed by northern blotting (data not shown; see Herbert et 

al., 2001) and from the mitotic index data to be approximately 3.5 h in controls, this 

meant that the addition of ethylene was given after the majority of cells had finished 

DNA replication. However, ethylene had no significant effect on cell cycle duration 

with the interval between two peaks being 14 h, identical to the WT control (Fig. 

3.1a).

In the ethylene + silver nitrate experiments the silver ions would be expected to 

block the action of ethylene. This treatment had a small effect on G2, lengthening it 

by 0.5 h compared to controls, and caused an increase in the duration of M-phase to 3 

h compared with 2 h for control (Fig 3.1b). S-phase remained unchanged at 3.5 h. As 

with the ethylene treatment, cell cycle duration remained unaltered at 14 h (Fig. 3.1b).

To examine whether the silver ions used in conjunction with the ethylene were 

having a detrimental effect of their own, further experiments were conducted. This 

involved the addition of silver nitrate (1.2 pM) at 3.5 h independent of ethylene
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treatment. The silver treatment caused an even greater delayed rise into mitosis than 

that exhibited during ethylene treatment, 6-7 h after release from aphidicolin (Fig 

3.1c). However, again overall cell cycle duration was not affected by the silver 

treatment with S-phase reduced by 0.5 h, M-phase reduced to 1 h and G1 duration 

reduced to 2 h (3.5 h in control). The most significant change was an increase in G2 

to 8h (5 h in control; Fig. 3.1c).

The proportion of cycling cells is estimated as the area beneath the mitotic index 

curves. The proportion o f cycling cells was greatest in control experiments 

(15.27cm2) followed by ethylene (7.18cm2), ethylene + silver (5.28cm2), and silver 

alone (3.72cm2) (Fig 3.1). Thus the silver treatment caused the largest reduction in 

the population of cycling cells. This was the most dramatic effect caused by the silver 

ions on the cell cycle. Cell cycle duration did not alter in any of the treatments 

relative to the control.
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Figure 3.1. The mitotic index of tobacco BY-2 cells plotted against time after the release from a 24h 
synchronization treatment with aphidicolin in controls or in (a) cells to which ethylene was added 
(arrow up) at 3.5h, (b) in cells to which ethylene + silver nitrate was added at 3.5h (c) in cells to which 
Silver nitrate was added at 3.5 h. The mitotic index data generated curves exhibiting two peaks from 
which the duration of the cell cycle and its component phases were calculated (Quastler and Sherman, 
1959). Below the x-axis are the component phases of the cell cycle in the control (c), ethylene (e), 
ethylene + silver (e+s), and silver (s) treatments. Data from representative experiments are shown.

3.3.2. Ethvlene Treatment Causes Cell Cycle Specific Rises in 
Mortality at G2/M and Early S-Phase

Once the duration of the cell cycle and its component phases was established for 

each of the treatments, the mortality exhibited was examined to see if it showed cell 

cycle specificity in response to treatments. Control mortality exhibited at a 

continuous low level throughout cell cycle duration (Fig. 3.2a-c). Adding ethylene to 

synchronized cells at 3.5 h, just after cells had completed S-phase, resulted in a rise of 

mortality above that seen in controls at 4h (Fig. 3.2a). This mortality continued to rise 

before reaching a peak at 10 h (25%) then fell before rising again at 14h and 16h. 

Aligning the cell cycle phases below the x-axis indicated that the largest incidences of 

mortality coincided with G2/M phase and rising into M-phase, a major checkpoint in 

the cell cycle (Fig. 3.2a). The second rise in mortality occurred in late G1 and peaked 

in S-phase. Due to the cell cycle phase measurements differing slightly between 

control and treatments, comparisons between the same time points was not entirely 

valid. This was because in the ethylene at 3.5 h treatment the 8 h and 10 h peak in 

mortality occurred across the G2/M boundary, in control cells at the same point the 

G2/M boundary occurred at 8 h (Fig. 3.2a). Regardless, the cell cycle specificity of 

mortality in the ethylene treatment is still striking whether a sampling time or cell 

cycle phase is used for comparison.
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Figure 3.2. The mortality index (%) following the release from aphidicolin in controls and in (a) cells 
to which ethylene was added (arrow up) at 3.5 h (b) cells to which ethylene and silver nitrate was 
added (arrow up) at 3.5 h (c) cells to which silver was added (arrow up) at 3.5 h Following dual 
staining with FDA and PI, the number of green and red cells were scored at random transects. Below 
the x-axes are the component phases of the cell cycle in the control (c), ethylene (e), ethylene + silver 
(e+s), and silver (s) treatments, measured directly from curves in Fig. l . l . The mortality index for the 
ethylene treatment was significantly greater (min. P< 0.05) than the corresponding value for controls at 
all sampling times above 4h. Significant differences in the mortality index between the control and 
ethylene+silver, and, control and silver treatments were lacking at the majority of sampling points.

Because of the known effect of silver ions in blocking ethylene action, I tested 

whether use of silver nitrate as an ethylene inhibitor should be used to ameliorate the 

ethylene-induced rises in mortality (Fig. 3.2b). The initial ethylene-induced rise in 

mortality at 4 h was partially suppressed by silver. The major rise in mortality 

induced by ethylene at the G2/M boundary (10 h) was suppressed by silver treatment. 

Whether a time point (10 h) or cell cycle phase (G2/M at 8 h) is used for comparison, 

the ameliorative effect o f silver treatment can still be seen. The ethylene induced 

peak at S-phase (16 h) was only partially suppressed by the silver treatment as 

mortality was lower than in the ethylene treatment but significantly higher than in
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control (Fig. 3.2b). The silver treatment induced a rise in mortality in M-phase in 

addition to its effect on lengthening M-phase occurred. This mortality was still 

significantly lower than in ethylene-alone treatments. To establish whether the silver 

ions were having their own toxic effect on the cell cycle it was decided to treat 

synchronized tobacco BY-2 cells with silver nitrate alone (1.2 pM) at 3.5 h (Fig. 

3.2c). The highest level of mortality observed in this treatment occurred at 6 h (G2) 

with a smaller peak in M-phase (10 h). At all other times the mortality was 

comparable to that detected in controls. Thus the major effect of the silver ions was 

to reduce the cycling population of cells.

3.3.3. Ethylene Induced Mortality in Tobacco BY-2 Cells was 
Characterized bv Significant Increases 3*-OH Termini 
Generation at the G2/M Boundary.

As explained in chapter 1, when cells undergo apoptosis, DNA strand breaks can 

occur. During this study DNA laddering, the visualization of the broken strands of 

DNA, was not detected and it was therefore thought that the maximum level of 

mortality (25%, see Fig 3.2a) may not have been enough to resolve laddering on an 

agarose gel. Thus, detection of 3’-OH termini, exposed when DNA strand breaks 

occur, was carried out using the Apoptag® 3’-OH termini detection kit to see if DNA 

fragmentation was occurring in ethylene treated cells. The indirect fluorescence 

technique utilized by the Apoptag® kit labels the 3’-OH termini with digoxygenin 

nucleotides which are then subsequently labelled with fluorescein-conjugated 

antidigoxygenin. This results in a green/blue fluorescence in the nuclei of cells 

exhibiting the feature (Fig. 3.3c).
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fa) (b) (c)

Figure 3.3. Photographs of cells which have undergone Apoptag® treatment for 3’-OH termini 
detection. Once cells had been labelled with the fluorescein probe, counterstaining occurred with PI. (a) 
cells exhibiting no 3’-OH termini (red stained) (b) cells exhibiting 3’-OH termini in a chain (blue 
stained) and background cells showing no 3’-OH termini (red stained) (c) all cells exhibiting the 
presence of 3’-OH termini (blue stained); taken from an ethylene treatment experiment.

Nuclear DNA exhibiting 3’-OH termini was detected in control and ethylene 

treatments. No difference in the percentage of nuclear fragmentation was detected 

before ethylene treatment at 3.5h in control and ethylene experiments. After ethylene 

treatment a subsequent increase in ethylene treated cells exhibiting 3’-OH termini 

occurred but was not mirrored in the control. The occurrence o f 3’-OH in ethylene 

treated cells dramatically increased between 6 and 8 h. This was a greater than 7-fold 

increase in the percentage of ethylene treated cells exhibiting the 3’-OH termini when 

the cells were undergoing mitosis (Fig. 3.4). This rise in and peak o f the occurrence 

of 3’-OH termini also corresponded with the rise and peak in mortality observed at the 

G2/M transition.
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Figure 3.4. The percentage of cells that generated 3’-OH termini (nuclear fragmentation) in tobacco 
BY-2 cells plotted against time after the release from a 24h synchronization with aphidicolin in control 
(red line) or in cells to which ethylene was added (arrow up) at 3.5h (blue line) following labelling of 
3’-OH termini with fluorescein using the Apoptag® kit.

3.3.4. Ethylene Induced Mortality in the  Tobacco BY-2 Cell 

Line C au ses  a Reduction in Mitotic Cell Size

Mitotic cell areas were measured using image analysis to determine whether ethylene, 

ethylene + silver nitrate, or silver nitrate had any effect on this parameter. Mitotic cell 

area was used to ensure that all measured cells were in the same stage of the cell cycle 

(M-phase). Using a two-sample t-test, chosen because most treatments indicated 

normal distribution, a significant reduction in mitotic cell areas o f ethylene treated 

cells cf. control was observed (Fig. 3.5). Significant differences could not be detected 

in ethylene + silver and silver cf. control (P<0.05) with both being similar to that 

observed in control (Fig. 3.5).
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Figure 3.5. The mitotic cell areas of control (WT) cells (mean = 3046pm2; n = 125), ethylene treated 
cells (mean = 2562pm2: n = 124), ethylene + silver nitrate treated cells (mean = 3472pm2; n = 94), and 
silver nitrate treated cells (mean = 3115pm2: n = 51). The vertical lines (black) represent ±SE.

3.5. Discussion

The data reported in this chapter confirm the hypothesis that ethylene treatment 

resulted in increased levels of mortality in the tobacco BY-2 cell line in a cell cycle 

specific pattern (see also, Herbert etal., 2001). When ethylene was added to cells that 

had just completed S-phase (3.5 h), a substantial peak o f mortality was detected at 

G2/M, a major checkpoint in the cell cycle, and another in the next S-phase. 

Moreover, the cell death in the tobacco BY-2 cells shows some features of apoptosis 

including DNA fragmentation and reduced cell size. These features were prominent 

in the ethylene treatment, especially at the G2/M transition, and coincides with the 

highest levels of ethylene-induced mortality observed. However, in the ethylene 

treatment, the cycling population divided at the same rate as the controls indicating 

that the level o f ethylene used did not cause massive perturbation to the cell cycle.
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Earlier studies with ethylene injected at Oh (S-phase) cf. 3.5h (S/Gl) showed that the 

induced mortality was much lower (Herbert et al., 2001).

The duration of S-phase as 3.5h in synchronized cells was confirmed through careful 

analysis of the mitotic index curves coupled with northern blotting of Histone H4 

expression (Herbert et al., 2001) and agrees with a 3.5 h S-phase obtained by flow 

cytometry (Sorrell et al., 1999). The maximum level of mortality observed was 30% 

at the G2/M transition and was induced when ethylene was applied to cells which had 

just completed S-phase and entered early G2. In mammalian and yeast systems, there 

are a number of sensors for cell viability. In plants an Arabidopsis ATM homologue 

has been identified (Garcia et al., 2000) as well as an Arabidopsis RAD3-like 

sequence (Entrez Nucleotide accession no. AB040133). In mammalian and yeast 

systems up-regulation of ATR/ATM and RAD3 activity respectively, stop G2/M 

transition by promoting WEE1 kinase and repressing CDC25 phosphatase. Cyclin 

dependent kinase inhibitors (CKIs; known as ICKs in plants) also inhibit CDK 

activity by masking the ATP binding domain of Cdc2 kinase (Wang et al., 1997). 

Both Arabidopsis ICK1 and ICK2 have been shown to stop CDK activity and cell 

division in response to the plant growth regulator, abscisic acid (Zhou et al., 2002). I 

suggest that in the tobacco BY-2 system, ethylene initiates the ethylene stress 

response pathway (see section 1.2.1.4; Fig. 1.8) and that this pathway directly or 

indirectly activates inhibition of the CDK/cyclin complex by one of the methods 

mentioned above. However, if DNA damage is catastrophic exit into cell death 

occurs. In the ethylene treatment of tobacco BY-2 cells, delayed entry of viable cells 

into mitosis by lh occurred and could be a result of a lag in which the cells recover 

from DNA damage inflicted by ethylene. Notably in fission yeast and mammalian 

systems, the DNA damage checkpoint causes cells to arrest in G2 (Rhind and Russell, 

1998). In the 3.5h ethylene treatment, one third of tobacco BY-2 cells failed to satisfy 

this hypothesized DNA checkpoint at the G2/M transition and exited the cell cycle 

into death. The increase in 3’-OH termini by ethylene is interpreted as evidence for 

damage at the level of nuclear DNA. Moreover, reduced cell size, another associated 

feature of PCD, was induced by ethylene at G2/M.

In fumonisin B1-induced cell death, ethylene signaling was found to be essential in 

plants (Asai et al., 2000). This is also the case for a number of developmental cell 

death events (see section 1.2.1). It would be interesting to identify a change in 

regulation of proteins that interact directly with the CDK/cyclin complex. This would
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help elucidate the mechanism of ethylene induced cell death and cell cycle interaction 

downstream of the ethylene responsive binding factors. So far this has not been 

achieved but it is interesting to note that a putative GCC box, a cis element present in 

many ethylene-regulated pathogen-related genes (Wang et al., 2002), exist in the 

sequence of Oryza sativa 1̂̂ ATM-like protein (Entrez Nucleotide accession no. 

NM_183488).

A second peak of ethylene-induced mortality was also observed in S-phase. In yeast 

and vertebrates, a major cell cycle checkpoint for DNA damage operates in late G1 

(Tanaka et al., 2000). This checkpoint is important because it checks the competency 

of cells to undergo DNA synthesis. Hence the observed rise in mortality in S-phase 

may be a consequence of the failure of 20% of cells to satisfy this DNA damage 

checkpoint, exiting into cell death. In support of this hypothesis, the level of 

mortality rose in late G1 until reaching the S-phase peak. Further study into 3’-OH 

termini occurrence would be required to see if this mortality bore hallmarks of a PCD 

process. The ethylene-induced peak of mortality at G2/M was suppressed by silver 

ions, which fits with their known effect of blocking ethylene action (Drew et al., 

1981). At all sampling times, the level of mortality in the ethylene+silver treatment 

was reduced compared with that in the ethylene treatment. However, the 

ethylene+silver treatment resulted in a significant increase in mortality at M- and S- 

phase compared with the controls. Silver is a toxic metal (Woolhouse, 1983) and is 

perhaps exerting a toxic effect at mitosis as was found when synchronized tobacco 

BY-2 cells were treated with zinc at 100 pM (Francis et a l,  1995). This was partly 

confirmed by the data from the silver treatment, which indicated a rise in mortality in 

M-phase, which was not detected in the ethylene treatment. Notably the 

silver+ethylene and silver treatments reduced the population of rapidly cycling cells 

to a greater extent than ethylene. Whether in response to toxic metals dying tobacco 

BY-2 also exhibit apoptotic symptoms has to be resolved.

The concentration of ethylene used in these experiments (17700 pl/1) was chosen 

because it induced measurable, but not overwhelming, levels of mortality (maximum 

30%) in this system. Clearly, cells in a plant are never exposed to such high 

concentrations of gaseous ethylene. So, what is the physiological relevance of the 

data reported here? First, as emphasized earlier, although this much ethylene was 

released into the head-space of the flask, only a very small proportion would enter the
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liquid phase given the extremely low solubility of this gas in water. Hence on this 

basis, the amount of ethylene taken up by the tobacco BY-2 cells would be much 

more similar to that in the whole plant. Second, concentrations of ethylene lower than 

17700 pl/1 had a negligible effect on mortality. Thirdly, the concentration of silver 

nitrate used (1.2 pM) is known to inhibit ethylene action in whole plant studies (Drew 

et a l, 1981). This concentration of silver ions was sufficient to ameliorate ethylene- 

induced mortality, most notably in cells sampled at G2/M of the cell cycle. Clearly, if 

unusually large amounts of ethylene had entered the tobacco BY-2 cells, then 1.2 pM 

silver nitrate would have been ineffective in ameliorating ethylene action. Fourth, in 

the ethylene treatment, a substantial population of viable cells divided at the same rate 

as controls. Again, if unusually large amounts of ethylene reached the cells then 

massive mortality or profound cell cycle perturbation, or both, would be likely. Fifth, 

a clear parallel exists with metal toxicity studies particularly regarding the 

concentration required to produce a given degree of inhibition in cultured cells 

(Davies et a l,  1991). For example, inhibitory concentrations of metals used in studies 

utilizing plant cells in the culture are much greater than those used in whole plant 

work (Steffens et al., 1986). Finally, ethylene is integral to normal plant development 

and is therefore more relevant than other compounds such as camptothecin, an anti- 

cancer drug (Hsiang et al., 1985) that plant cells would not come into contact with 

naturally.

Various groups have shown how plant growth regulators (pgrs) interface with the 

G2/M and Gl/S phase checkpoints of the plant cell cycle (Zhang et al., 1996; Wang et 

al., 1997; Riou-Khamlichi et al., 1999; Francis and Sorrell, 2000). The work reported 

here has demonstrated how another pgr, ethylene, induced cell death maximally, at 

G2/M in the tobacco BY-2 cell line. Some characteristics of apoptosis such as 

nuclear blebbing and DNA laddering were not detected. However, it should be noted 

that DNA laddering is not always a feature of plant cells undergoing PCD (Jones and 

Dangl, 1996; Buckner et al., 2000). A programmed mechanism acting through the 

ethylene receptors is favoured in order to explain the cell-cycle specific cell death 

observed here, given the generation of 3’-OH ends, nuclear shrinkage and the 

isolation of dead/dying cells adjacent to living ones.
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3.6. Summary

The data reported in this chapter are summarised as follows:

•  Ethylene induced high mortality at the G2/M boundary.

•  Ethylene treatment resulted in a mortality peak in S-phase.

•  Ethylene caused a one hour delay in the rise of the mitotic index.

•  DNA fragmentation (3’-OH termini) was detected in ethylene treated cells.

•  Simultaneous addition of silver nitrate ameliorated the effects of ethylene

•  Silver nitrate exhibited a toxic side-effect.

•  Ethylene treatment resulted in a reduced cell size phenotype.

Other ways of ameliorating ethylene-induced cell death were sought in the literature 

and 1-methylcyclopropene (1-MCP) was identified as a useful chemical inhibitor. 1- 

MCP has a similar mode of action to silver ions, blocking the ethylene binding site of 

ethylene receptors (Sisler et al., 1996a-b). Due to the inherent mortality observed 

when using silver ions, 1-MCP was obtained in die hope it would provide a greater 

insight into the effect of ethylene on the tobacco BY-2 cell cycle. The results from 

this work are reported in the next chapter.
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4 .1-Methvlcvclopropene Ameliorates Both
Ethvlene-lnduced And Wild-Type Mortality

Levels

4.1. Introduction

1 -Methylcyclopropene (1-MCP) is an ameliorator of ethylene action in the same 

fashion as silver ions. 1-MCP blocks ethylene action by attaching to the ethylene 

binding sites of ethylene receptors (Sisler et al., 1996a-b). Because 1-MCP is gaseous 

it is formulated as a 0.14% soluble powder (1-methylcyclopropene Technical Bulletin, 

Rohm Haas, 2001). Commercial use of 1-MCP was approved by the EPA 

(Environment Protection Agency) in the US in 1999 and European registration in 

2003 (Watkins and Miller, 2003). The effect of 1-MCP in ameliorating disease in 

plants has been mixed with incidences of infection found to increase in oranges and 

strawberries (Porat et al., 1999; Jiang et al., 2001) but decrease in apricots (Dong et 

al., 2002). Since the pathogens used in these studies were not identical, the results are 

probably because ethylene sensitivity can be both advantageous and deleterious, 

depending on the pathogen in question.

1-MCP has been used as a research tool to investigate the effect of ethylene in over 

fifteen fruits as well as cut flowers and flowering plants (Watkins and Miller, 2003). 

There are a number of other ethylene inhibitors apart from silver ions (either in nitrate 

thiosulphate form) and 1-MCP. These include aviglycine (AVG), cobalt chloride, and 

2,5-norbomadiene (NBD). Both AVG and cobalt chloride are inhibitors of the 

ethylene biosynthesis pathway and are toxic when used in high concentrations (Yang, 

1980; Murashige and Skoog, 1962; Lai et al., 2000). NBD is an inhibitor of ethylene 

action but is less effective than silver ions (Buse and Laties, 1993).

In the previous chapter, the effect of silver nitrate on tobacco BY-2 cells was 

described and data presented showing that it could ameliorate ethylene action. 

Unfortunately it also exerted a toxic side-effect. Given that 1-MCPs efficacy in 

ethylene inhibition is a relatively new development, its effectiveness in blocking 

ethylene action is reported in this chapter together with any toxic side-effects. 1-MCP
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was obtained from Rohm-Haas and applied to both tobacco BY-2 cultures after 

release from 24 h synchronization with aphidicolin and during normal 7 day batch 

culture growth.

4.2. Materials And Methods

Details of materials and methods are fully described in chapter 2.

See page 33 for synchronisation and mitotic index measurements, page 34 for cell 

viability and mortality index measurements, page 34 for 1-MCP and 1-MCP+ethylene 

treatments, and page 35 for growth rate measurements.

4.3. Results

4.3.1.1-MCP Treatment and 1-MCP+Ethvlene Treatment Have 
no Effect on the Cell Cycle

A number of cell cycle experiments were carried out exposing tobacco BY-2 cells to 

1-MCP 3.5 h following release from aphidicolin. In wild-type (WT) cells, this 3.5 h 

time point coincides with the end of S-phase (chapter 3). Treatment with 3.2 g 1- 

MCP resulted in a rise in the mitotic index at 4 h and peak at 7h (Fig. 4.2a). This 

pattern in the rise and peak of the mitotic index was virtually identical to the control 

(WT) data (Fig. 4.2) with the height of the mitotic peaks also being similar. This was 

unlike the silver nitrate treatment which caused a substantial reduction in the mitotic 

peak cf. WT (chapter 3). The second peak for both 1-MCP treated and control 

experiments occurred at 20 h and meant that cell cycle duration remained unaltered 

between control and 1-MCP treated cells (13 h; Fig. 4.2). Hence the data are 

consistent in demonstrating that 1-MCP had very little, if any, effect on the proportion 

of cycling cells. The cell cycle phases for control tobacco BY-2 cells as calculated 

from Fig. 4.2 were 2.5 h for S-phase, 4 h for G2, 3 h for M-phase and 3.5 h for G1. 1- 

MCP treatment 3.5 h after release from aphidicolin had little effect on the cell cycle
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phases compared with control, the only differences being a slight lengthening of G2 to

4.5 h and a slight reduction of G1 to 3 h (Fig. 4.2a). Both S-phase and M-phase 

duration remained the same between control and 1 -MCP treated cells (2.5 h and 3 h 

respectively).

S-phase Confirmed as 2.5 h in Control (WT)

Histone H4 expression is an excellent marker o f S-phase. S-phase duration in 

control (WT) tobacco BY-2 cells, observed in chapter 3, was approximately 3.5 h in 

duration and identical to published values for S-phase in this cell line (Sorrell et al., 

1999; Herbert et al., 2001). Monitoring of histone H4 in the control (WT) for this 

chapter indicated an S-phase duration of 2.5 h (Fig. 4.1) and was identical to the 

calculated value.
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Figure 4.1. Expression of histone H4 following the release of tobacco BY-2 cells from a 24 h 
synchronisation with aphidicolin in control (WT). RNA was amplified using semi-quantitative PCR 
and results obtained measuring amplified band intensity. Histone H4 expression was corrected for 
error using 18S nbosomal RNA expression as a standard.

To test whether 1-MCP was effectively blocking ethylene action, tobacco BY-2 cells 

were treated with both 1-MCP and ethylene 3.5 h after release from aphidicolin. 

Unlike 1-MCP treatment, cell cycle duration increased to 14h with mitotic peaks
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occurring at 7 and 21 h (Fig. 4.2b). The duration of S-phase was 3 h compared with

2.5 h for both control and the 1-MCP treatment (Fig. 4.2). This may indicate an effect 

of ethylene on the second S-phase following removal of aphidicolin (note that 1- 

MCP/ethylene injection occurred at 3.5 h following the completion of the first S- 

phase). In the 1-MCP+ethylene treatment, M-phase remained unaltered compared 

with control and 1-MCP treatments (3 h) with G2 being comparable to that of the 

control (4.5 h) and G1 identical to 1-MCP treated cells (3.5 h). The height of the first 

mitotic peak for 1-MCP+Ethylene treated cells (Fig. 4.2b) was also similar to that 

observed in control and 1-MCP treatment (Fig. 4.2a). As with the 1-MCP treatment, 

the second mitotic peak for 1-MCP+Ethylene showed a significant reduction (21.78% 

compared with 32.01% for control), and was comparable to the second peak in the 1- 

MCP treatment. The coincidental rise and fall of the peaks in 1-MCP cf. control 

suggests that unlike silver nitrate treatments, 1-MCP does not appear to deliver a toxic 

effect (Fig. 3.1c cf. Fig. 4.2a). The area under the mitotic index curve in control and 

1-MCP was 15.91 and 15.54cm2 respectively. Once again, the first peak of mitotic 

index in the 1-MCP+ethylene treatment was remarkably similar to the control 

treatment, although the amplitude of the second peak was ‘noisier’ cf. control. The 

area under the mitotic index curve in 1-MCP+ethylene was 15.26cm2. The 

comparable areas for silver and silvei+ethylene treatments (Fig. 3.1, page 52) were 

3.72cm2 and 5.28cm2 respectively. Hence there were substantially more cycling cells 

in the 1-MCP and 1-MCP+ethylene treatment than in the silver and silver+ethylene 

treatments.
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Figure 4.2. The mitotic index of tobacco BY-2 cells plotted against time after the release from a 24h 
synchronization treatment with aphidicolin in controls (WT) and (a) cells to which 1 -MCP was added 
at 3.5h (b) cells to which 1-MCP+ethylene (1-MCP+E) was added at 3.5 h. The mitotic index data 
generated curves exhibiting two peaks from which the duration of the cell cycle and its component 
phases were calculated (Quastler and Sherman, 1959). Cell cycle length was measured as the interval 
between the two peaks; G2+‘/2M was measured as the interval between the y-axis and the 50% 
intercept of the initial rise of the mitotic index; S-phase was measured as the 50% intercept of the 
ascending and descending limbs of the first mitotic peak; M-phase was measured from where the curve 
begins to rise taken as the first mitotic index value above zero (4h in control, 4h in 1-MCP, and 4h in 1- 
MCP+E) to where it begins to plateau (7h in control, 7h in 1-MCP, and 7h in 1-MCP+E); G1 is 
calculated by the difference. Due to the measurements of phase duration being estimates, all values 
have been rounded to the nearest 0.5h. Cell cycle phases (h) are shown below each graph. The vertical 
lines (black) represent ±SE, where error bars are absent, the ±SE was less than the diameter of the 
symbol. Consolidated data from three replicate experiments are shown. (w=3).

4.3.2.1-MCP Treatment is Non-Toxic and Able to Ameliorate 
Ethvlene-lnduced Mortality Except Purina S-Phase

Once the duration of the cell cycle and its component phases were established from 

the mitotic index data, the mortality index (FDA + PI double stain; see p34 of chapter 

2) was examined to see whether 1-MCP induced cell cycle specific mortality. By 

aligning the cell cycle phases below the x-axes, the incidences of mortality can be 

viewed in conjunction with them. In control, mortality was low throughout the cell 

cycle (Fig. 4.3). Remarkably, even at these low levels, the mortality index exhibited 

cell cycle specificity with a rise and fall occurring during mitosis. The introduction of 

1-MCP at 3.5 h, just after cells had completed S-phase, did not result in an increase of 

mortality over and above the control data (Fig. 4.3b). In fact, at the majority of time- 

points mortality in the 1-MCP treated cells was lower than that observed in the control 

(Fig. 4.3a).

To test whether 1-MCP was effective in ameliorating ethylene-induced mortality 

(chapter 3), ethylene was added in addition to 1-MCP 3.5h after release from 24 h 

synchronization with aphidicolin. At most time points the mortality was similar to 

that in control (Fig. 4.3b). However, as with the ethylene and ethylene+silver nitrate 

experiments (chapter 3), an appreciable and highly significant (P<0.05) rise in 

mortality (nearly 5-fold) occurred during early S-phase (Fig. 4.3b).
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Figure 4.3. The mortality index (%) following the release from aphidicolin in control (WT) cells and 
(a) cells to which 1-MCP was added at 3.5h (b) cells to which 1-MCP+Ethylene (1-MCP+E) was 
added at 3.5h. Following dual staining with FDA and PI, the number of green and red cells were 
scored at random transects. Below the x-axes are the component phases of the cell cycle measured 
directly from curves in fig 4.1. The mortality index for the 1-MCP+ethylene treatment was 
significantly greater (min. P< 0.05) than the corresponding value for controls at 15 h and 16 h sampling 
times. Significant differences in the mortality index between the control and 1-MCP, and, control and 
1 -MCP+ethylene treatments were lacking at the majority of sampling points. The vertical lines (black) 
represent ±SE, where error bars are absent, the ±SE was less than the diameter of the symbol. 
Consolidated data from three replicate experiments are shown. Cell cycle phases (h) calculated from 
Fig.4.1 are shown below each graph. (w=3).

4.3.4. Long-Term Exposure to 1-MCP Reduces Cell Death In 
Vivo

Because 1-MCP is used commercially to prolong the lifespan of cut flowers and 

plants, its effect was investigated in relation to the growth and survival of tobacco 

BY-2 cultures. The growth of wild-type tobacco BY-2 cells (control) and 1-MCP 

treated cells were monitored over a 7 day period with readings of optical density 

(OD), mitotic index, and mortality index taken every 24 h. The temporal changes in 

OD were virtually identical between control and 1-MCP treated cells (Fig. 4.4). 

Moreover, apart from day 3, there were no significant differences in the mitotic index 

between treatments (Fig. 4.5). This difference at day 3 occurred because the control 

data peaked 24 h before that in the 1-MCP treatment. Considering both OD and 

mitotic index data, relatively small differences in growth rates could be detected in 1- 

MCP treated cells cf. control. The mortality in the 1-MCP treated cells was 

comparable or less than that observed in the control cells over the 7 day period (Fig. 

4.6). Interestingly, control cells showed a steady increase in mortality over time 

whereas this was absent in 1-MCP treated cells. If all mortality data points are 

pooled, there is a 10% reduction in the 1-MCP treatment although could not be 

established. So, the data suggest that 1-MCP may be lowering natural levels of 

mortality.

However, the data are very similar at most time points (excluding pooled data) for 

mortality index readings cf. control. Therefore the data are consistent with 1 -MCP 

having negligible effects on the growth rate data cf. control.
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Figure 4.4. The optical density readings over a 7d growth period indicating growth of control (WT) 
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Figure 4.5. The mitotic index (%) over a 7d growth period in control (WT) cells (blue line) and 1- 
MCP treated cells (pink line). The vertical bars represent ±SE, where lines are absent the ±SE was less 
than the diameter of the symbol. («=9)

73



£

4

3.5 

3

2.5

*
|  1.5 

1

0.5

0

□ Control 
■ 1-MCP

__

Day
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MCP treated cells (red bars). The vertical lines (black) represent ±SE. (n=9).

4 .3 .5 .1-MCP Does Not Affect Mitotic Cell Area

Mitotic cell areas were measured using image analysis to determine whether 1-MCP 

or 1-MCP + ethylene treatment had any effect cf. control. Mitotic cell area was used 

to ensure that all measured cells were in the same stage of the cell cycle (M-phase).

Using a two-sample t-test, chosen because most treatments indicated normal 

distribution, no significant differences were detected in mitotic cell areas in the 1- 

MCP (P<0.05) and 1-MCP + ethylene (P<0.05) treatments cf. control (Fig. 4.7). 

Also, there was no significant difference detected in the 1-MCP treatment compared 

with 1-MCP + ethylene treatment (P<0.05: Fig. 4.7) and is consistent with 1-MCP 

blocking the effect of ethylene on cell size.
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Figure 4.7. The mitotic cell areas of control (WT) cells (mean = 3046pm2; n = 125), 1-MCP treated 
cells (mean = 3067pm2: n = 124), 1-MCP + ethylene treated cells (mean = 3020pm2; n = 94), and 
ethylene treated cells (mean = 2562pm2: n = 51). The vertical lines (black) represent ±SE.

4.4. Discussion

The data from this study confirm the hypothesis that 1-MCP treatment results in 

little or no effect on tobacco BY-2 cells in terms of the cell cycle, cell size, and cell 

growth. Following the addition of 1-MCP to cells that had just completed S-phase 

cell cycle duration, the number of cells cycling, mortality levels, and duration of cell 

cycle periods all remained similar to that observed in control. Cell cycle duration was 

unaffected, remaining at 13 h for control and 1-MCP treatment although a slight 

decrease in the number of cells attaining the second mitotic peak was observed in the 

1-MCP treated cells. 1-MCP treatment resulted in a slight lengthening of G2 (4.5 h 

cf. 4 h control) and a slight reduction o f G1 (3 h cf. 3.5 h control) with mitosis and S- 

phase remaining the same (3 h and 2.5 h respectively). Therefore, unlike silver nitrate 

treatment (chapter 3), 1-MCP has no effect on cell cycle duration or its component 

phases.
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The level of mortality after 1-MCP treatment was seen to be comparable to control. 

In fact, mortality for 1-MCP treated cells was lower for 18 out of the 23 time points 

(Fig 4.3a) when compared to control. It is interesting that control cells exhibited a 

cell cycle specific pattern of mortality (G2-M and Gl/S) after release from 

aphidicolin. This is consistent with other observations of WT tobacco BY-2 mortality 

levels (chapter 3; Herbert et al., 2001) and strongly indicates the presence of 

checkpoint control in tobacco BY-2 cells since exit into cell death is more likely to 

occur at specific time points rather than throughout the cell cycle. Furthermore, the 1- 

MCP mortality data not only indicate a lack of toxicity, but that it may also reduce 

naturally occurring mortality cf. control. This suggests that ethylene signaling is an 

important factor in controlling tobacco BY-2 cell death. This is not surprising since 

ethylene has been associated with a number of programmed cell death events in plants 

including endosperm development (Young et al., 1997), response to pathogens 

(Ohtsubo etal., 1999), and water-logging (Drew etal., 2000).

When tobacco BY-2 cells were exposed to ethylene and 1-MCP 3.5 h after release 

from aphidicolin, cell cycle duration was slightly increased to 14 h (13 h in control). 

S-phase increased to 3 h, mitosis remained the same as control and 1-MCP treated, G2 

was the same as the control (4.5h), and G1 was identical to the 1-MCP treatment (3.5 

h). There was therefore very little overall change in cell cycle duration and 

component phases because WT tobacco BY-2 cells regularly take 14 h to complete a 

cell cycle (see chapter 3; Francis et al., 1995; Herbert etal., 2001). This is consistent 

with ethylene causing very little effect on the cell cycle and its component phases 

when 1-MCP was present. Of greatest interest was the slight increase in S-phase. 

Although this was only by half an hour, no change was observed in the 1-MCP only 

treatment cf. control. This may suggest ethylene exerting an effect in S-phase 

independent of the ethylene receptors although no increase was seen in S-phase in 

ethylene and ethylene + silver nitrate treatments (see chapter 3).

Mortality levels observed in the 1-MCP + ethylene treatment were comparable to 

those observed in control and 1-MCP treated with the exception of the second Gl/S 

boundary (Fig. 4.3b). Interestingly the characteristic rise in ethylene induced 

mortality at G2/M was absent. Unlike silver nitrate, 1-MCP seems to completely 

ameliorate this mortality and therefore strongly indicates that ethylene induced cell 

death at G2/M is dependent on the ethylene signaling pathway. At the second Gl/S 

boundary, mortality rose appreciably in late G1 (14 h), attaining its peak in early S-
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phase (15 h). After the peak in early S-phase, mortality then dropped again to 

background levels. This same rise in mortality at the Gl/S boundary was observed in 

both ethylene and ethylene + silver nitrate treatments (chapter 3). However, because 

of the toxicity of silver nitrate it could not be determined whether this Gl/S peak in 

the ethylene + silver nitrate treatment was due to ethylene alone. Because 1-MCP had 

no toxic effect through the cell cycle, this indicates that the Gl/S mortality in the 1- 

MCP + ethylene treatment must be because of ethylene. Thus, blocking the ethylene 

signaling receptors ameliorates G2/M induced cell death (as seen by using both silver 

nitrate and 1-MCP) but ethylene-induced Gl/S mortality is unaffected by the presence 

of an ethylene receptor inhibitor. Furthermore, use of 1-MCP in conjunction with 

ethylene indicates that ethylene-induced G2/M mortality is activated through the 

known ethylene signaling pathway (as described in chapter 1). Programmed cell 

death has been previously defined as something that requires an active process (Jones,

2001). Since cell death induced by ethylene at G2/M is completely ameliorated by 1- 

MCP, this is evidence that ethylene (through its normal signaling pathway) is a major 

inducer of cell cycle specific PCD. To see whether the ethylene signaling pathway is 

important in controlling cell death in general, further research would have to be 

carried out using 1 -MCP with other elicitors of cell death.

The results of growth rate experiments over a 7 day period show that 1-MCP had 

little effect on the growth of the culture (measured by optical density), the mitotic 

index, or mortality index. As with the cell cycle data, this is consistent with 1-MCP 

not having a toxic effect on tobacco BY-2 cells.

In earlier work reported in this thesis, ethylene was shown to decrease mitotic cell 

size with the presence of silver nitrate ameliorating this effect. Note that mitotic cell 

areas in the 1-MCP and 1-MCP + ethylene treatments were very similar to the control. 

The mitotic cell area measurements are therefore consistent with ethylene not exerting 

an effect on cell size in the presence of ethylene and may indicate an important role 

for ethylene signaling in cell size regulation. Work in Arabidopsis on ethylene and 

cell elongation may partly explain this since ethylene has been shown to decrease 

hypocotyl length in the dark (Bleecker et al., 1988) but increase it in the light (Smalle 

etal., 1997).
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4.5. Summary

The data reported in this chapter are summarised as follows:

• 1-MCP and 1-MCP+ethylene treatments had a negligible effect on cell cycle 

duration and its component phases

• 1 -MCP and 1 -MCP+ethylene treatments resulted in substantially more cycling 

cells than silver and silver+ethylene treatments.

• 1-MCP ameliorated ethylene-induced G2/M mortality but was unable to 

ameliorate ethylene-induced S-phase mortality.

• Long-term exposure to 1-MCP reduced cell death in vivo.

• 1 -MCP and 1 -MCP+ethylene treatments did not affect tobacco BY-2 cell size.

To balance the two chemical approaches already used to investigate the effect of 

ethylene signaling inhibition on ethylene-induced mortality, a genetic approach was 

employed. The Arabidopsis etrl (ethylene receptor) mutant is the oldest established 

ethylene signaling mutant (Bleecker et al., 1988) and is ethylene insensitive. Tobacco 

BY-2 cells were therefore transformed with the gene responsible for this insensitivity 

(Atetri) to see how it would affect responses to ethylene treatment.
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Chapter 5

Expression Of The Mutated Arabidopsis 
Ethylene Receptor, etrl-1. In The 

Tobacco BY-2 Cell Line



5. Expression Of The Mutated Arabidopsis Ethylene 
Receptor, etrl-1. In The Tobacco BY-2 Cell Line

5.1. Introduction
Arabidopsis thaliana has emerged as a model in which to study growth and 

development. One major reason is that it exhibits a range of developmental and 

physiological mutants. This has offered a tremendous opportunity to clone genes that 

can complement specific mutations.

In Arabidopsis the original etr (ethylene receptor) mutant was identified by Bleecker 

et al. (1988), exhibiting dominant insensitivity to ethylene. This dominant 

insensitivity was because of an amino acid conversion of Cys-65 to Tyr in the ETR 

protein. This affects the ETR1 protein by disrupting both ethylene binding activity 

and integration of the copper co-factor essential for protein activity (Schaller and 

Bleecker, 1995; Rodrigeuz et al., 1999). Since a total of four etrl mutants are now 

known to exist, the original mutation is known as etrl-1.

Interestingly, members of the ETR 1-like subfamily (ETR1 and ERS2) contain a 

conserved histidine kinase domain. This is unlike other ethylene receptors which lack 

one or more components required for histidine kinase catalytic activity (Wang et al., 

2002). Using a yeast two-hybrid system, the histidine kinase domains of both ETR1 

and ERS2 have been shown to interact directly with CTR1, a MAPK kinase directly 

downstream of the ethylene receptors (Clark et al., 1998). The lack of other ethylene 

receptors showing this direct interaction with CTR1 suggests that the ETR1 receptor 

may be important for rapid stress response to ethylene and other factors that activate 

the ethylene stress response pathway. The presence of a receiver domain as well as 

the histidine kinase domain suggests homology of the ETR1 receptor to the bacterial 

‘two-component’ regulators (Chang et al., 1993). These regulators are sensors and 

transducers of signals in response to environmental stimuli in bacteria (Parkinson and 

Kofoid, 1992).

The original Arabidopsis etr mutant showed a similar phenotype to the wild-type 

indicating the mutation did not interfere with major developmental stresses. It did,
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however, exhibit 25% larger rosette leaf area with a 1 to 2 week delay in flowering 

and senescence of leaves in comparison to wild-type in vivo. Seeds carrying the etr 

mutation also showed very low germination rates compared to wild-type under the 

came conditions. Interestingly, gibberellic acid ameliorated this low germination rate 

(Bleecker et al., 1988). The Arabidopsis etr mutant also lacked a peroxidase response 

when treated with ethylene compared to a three- to four-fold ethylene-induced 

increase in wild-type cells. This is important with regards to cell death, as a decrease 

in peroxidase activity is directly associated with an increase in hydrogen peroxide 

(H2O2) production (Ros Barcelo, 1999), a major factor in active cell death. In wild- 

type Arabidopsis plants, ethylene treatment normally results in a significant decrease 

in endogenous levels of ethylene due to a feedback mechanism stopping its 

production (Bleecker et al., 1988). A decrease in endogenously produced ethylene 

did not occur when the mutant was treated with ethylene, indicating an inhibition of 

the feedback mechanism 

As described in chapter 3, ethylene induced a cell cycle specific increase in cell 

mortality in the tobacco BY-2 cell line. This effect was ameliorated by silver nitrate. 

Moreover, as described in chapter 4, another chemical blocker of the ethylene 

receptor (1-MCP) was also able to block ethylene induced mortality. The availability 

of Atetrl-1 enabled me to test whether this dominant negative gene could confer 

dominant insensitivity to ethylene in the tobacco BY-2 cell line. Atetrl-1 is thought 

to confer dominant insensitivity to ethylene by either competing for downstream 

effectors with wild-type (WT) receptors or by interacting with them (Hall et al., 

1999). Hence, the aim of the work reported in this chapter was to transform the 

tobacco BY-2 cell line with Atetrl and examine if it could confer dominant 

insensitivity to ethylene and ameliorate the cell cycle specific mortality exhibited 

when wild-type TBY-2 cells are exposed to ethylene (Herbert etal., 2001; see chapter 

3).
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5.2. Materials And Methods

Details of materials and methods are fully described in chapter 2.

See page 31 for tobacco BY-2 transformation protocol, page 33 for synchronisation 

and mitotic index measurements, page 34 for cell viability and mortality index 

measurements, page 34 for ethylene treatment, and page 35 for growth rate 

measurements.

5.3. Results

Two independent cell lines designated Clone (Cl) 1 and Cl 2 carrying the 

Arabidopsis etr I in the pHKlOOl vector were investigated in relation to ethylene 

treatment, the cell cycle, cell size, and mortality. In conjunction with the two Atetrl 

expressing (Atetre) cell lines the wild type tobacco BY-2 (WT) cell line was used as 

an experimental control. RT-PCR confirmed expression o f A tetrl in Cl 1 and Cl 2 

(Fig. 5.1).

Figure 5.1. RT-PCR analysis of Atetrl expression in the tobacco BY-2 cell lines used in this study 
(product size 161 bp).
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5.3.1. Atetrl Expression in T obacco BY-2 Cells C auses a

Significant Increase in Cell Cycle Duration and S-phase 

Length

In the Atetre Cl 1 and Cl 2 cell lines, the mitotic index data gave a similar major peak 

following the release from aphidicolin at 1 lh and lOh, respectively (Fig. 5.2). Hence 

the majority o f synchronised cells in the Atetre lines took 2-3 h longer to divide than 

control (normally 8 h after release from the aphidicolin block).
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Figure 5.2. The mitotic index of Atetr* tobacco BY-2 cells plotted against time after the release from 
a 24h synchronization treatment with aphidicolin in (a) Atetr Cl 1 cells or in (b) Atetr* Cl 2 cells.
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At later time points following synchronisation with and release from aphidicolin, the 

mitotic indices in Atetre Cl 1 exhibited a quartet of peaks, the final one at 33 h being 

the most substantial (Fig. 5.3a). Thus, maximum cell cycle duration was recorded as 

21 h as this was the time period that spanned the most substantial peaks. The smaller 

peaks could, possibly, represent faster cycling cells albeit smaller populations. Hence 

the maximum cell cycle length for the Atetre Cl 1 cell line was 50% longer than that 

for control (21 h cf. 14 h in the control tobacco BY-2 cells).

The calculated component phases (h) for Atetr6 Cl 1 (control in brackets) were: G2 = 

4.25(5), M = 4.5(2), G1 = 4.75 (3.5) and S-phase = 7.5 (3.5). Clearly, the most 

affected phase was S which doubled in length cf. control.

To see the effect of ethylene on Atetr6 Cl 1, 17700 pl/1 was added about half way 

through S-phase (Fig. 5.3b). The first major mitotic peak for ethylene treated cells 

occurred at 10 h (Fig. 5.3b) but thereafter exhibited multiple peaks that were 

progressively smaller with time. A second major mitotic peak could not be 

determined exactly but the last one at 34 h would give a cell cycle of 24 h (Fig. 5.3b). 

Hence the longest estimated cell cycle length was 24 h, slightly longer than that for 

this line without ethylene (Fig 5.3a). However, 23 h was used as the cell cycle 

duration because extending the rise of the mitotic index between the first two peaks 

(10 h and 13 h) gave a theoretical peak at 11 h. Thus, cell cycle duration was 

assumed to be between 11 h and 34 h. Clearly, the presence of multiple peaks 

prevented an accurate measurement of cell cycle duration. Ethylene treatment at 3.5 h 

extended S-phase by 1 h to 8.5 h whilst G2 (7.25 h) was almost double that in the 

untreated Atetre line. Mitosis and G1 were 2.5 and 4.75 h respectively. Hence there 

were clear differential effects of ethylene on this cell line with a lengthening of G2 

and S-phases and a shortening of M and G1-phases.
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Figure 5.3. The mitotic index of tobacco BY-2 cells plotted against time after the release from a 24 h 
synchronization treatment with aphidicolin in (a) Atetr' Cl 1 cell line (b) Atetr* Cl 1 cell line to which 
ethylene (arrow up) was added at 3.5 h. The mitotic index data generated curves exhibiting two peaks
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from which the duration of the cell cycle and its component phases were calculated (Quastler and 
Sherman, 1959). Cell cycle length was measured as the interval between the two peaks; G2+!4M was 
measured as the interval between the y-axis and the 50% intercept of the initial rise of the mitotic 
index; S-phase was measured as the 50% intercept of the ascending and descending limbs of the first 
mitotic peak; M-phase was measured from where the curve begins to rise taken as the first mitotic 
index value above zero to where it begins to plateau; G1 is calculated by the difference. Due to the 
measurements of phase duration being estimates, all values have been rounded to the nearest 0.25 h. 
Cell cycle phases (h) are shown below each graph.

5.3.2. Mortality in A te tri Expressing TBY-2 Cell Lines Shows 
Cell Cvcle Specificity

The phases, calculated as above, were used as bars added to the x-axis of the 

mortality indices (%) in Fig. 5.4a-b.

In control synchronies, the mortality index rarely exceeded 5% (Fig. 3.3; 4.2). In 

conjunction with the dramatic change in cell cycle duration compared to wild-type, 

significant increases in mortality were observed in the Atetr6 cell lines.

In Atetre Cl 1 the mortality index gave substantial peaks (>20%) at 7 h (late S- 

phase), 9 h (early G2) of the first cell cycle, and, at 24 h (mid S-phase) and 29 h 

(S/G2) of the second. In other words, the peaks occurred at approximately the same 

time during successive cell cycles. In Atetre Cl 1, the temporal pattern of mortality 

was remarkably similar whether or not ethylene was administered (Fig. 5.1 cf. 5.2), 

although mortality was seen to be at its highest during S-phase in the ethylene 

treatment. Hence, although Atetre Cl 1 exhibits high levels of mortality, ethylene 

treatment did not result in yet higher levels of mortality. This, coupled with the RT- 

PCR data results (Fig 5.1), show that the data are consistent with Atetr 1 expression 

resulting in a dominant insensitivity of the cell line to ethylene.
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Figure 5.4. The mortality index (%) following the release from aphidicolin in (a) Atetr l e Cl 1 cells (b) 
Atetrle Cl 1 cells to which ethylene (arrow up) was added at 3.5 h. Following dual staining with FDA 
and PI, the number of green and red cells were scored at random transects. Below the x-axes are the 
component phases of the cell cycle measured directly from curves in Fig. 5.3a and b respectively.

5.3.3. Peroxidase Activity is Unaltered with Exogenously 
Applied Ethylene

When the original etrl Arabidopsis mutant was challenged with ethylene, peroxidase 

activity was unaffected in the treated leaves. This was in direct contrast to wild-type 

Arabidopsis which normally exhibits a 3-4 fold increase in peroxidase activity 

(Bleecker et al., 1988). Peroxidase activity was monitored when ethylene was applied 

to Atetre Cll cell cultures during cell cycle experiments. Interestingly, in both 

ethylene treated and untreated Atetr6 Cll experiments, peroxidase activity decreased 

before the mortality peaks at 7 h (Fig. 5.4) and was at its lowest when these mortality 

peaks occurred (Fig. 5.5). The treatment with ethylene resulted in this decrease being 

greater but the overall pattern remained the same.
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Figure 5.5. The peroxidase activity plotted against time after the release from a 24 h synchronization 
treatment with aphidicolin in Atetr* Cl 1 cells (blue line) and Atetr* Cl 1 cells to which ethylene was 
added at 3 .5 h (red line). The vertical lines (black) represent ±SE, where lines are absent the ±SE was 
less than the diameter of the symbol. Below the x-axis are the component phases of the cell cycle in 
Atetr* Cl 1 cells (Cl 1) and Atetr* Cl 1 + ethylene cells (Cl 1+E), measured directly from the curves in 
fig. 5.3a and b respectively. Peroxidase activity was detected using TMBZ-PS, a water soluble 
analogue of TMBZ, and measured using a spectrophotometer at 655 nm. (n = 3)

5.3.4. Atetr0 Cl 1 Exhibits Increased Mortality and a Delay in 
Growth In Vivo

TBY-2A tetri expressing cells were investigated over a 7d growth period to see 

whether Atetr 1 altered cellular growth rates. Over a 7d period Atetr6 Cl 1 exhibited a 

delay in growth (using optical density as an indicator) consistent with the longer cell 

cycle observed after cells were released from aphidicolin (Fig. 5.6). The mitotic 

index indicates that the number of cells undergoing mitosis was similar to that in 

controls (Fig. 5.7). However, the mitotic index of Atetr l e Cl 1 cells did not attain its 

peak until day 4 cf. day 2 in control whilst mortality in Atetrle Cl 1 cells was 

significantly increased compared with control (Fig. 5.8). This may explain the 

observation of a plateau rather than a peak in the mitotic index in Atetre Cl 1 cells 

since a greater proportion of cells were exiting into cell death than in controls.

To test whether the use of antibiotics affected growth parameters and the observed 

mortality, cultures of Atetrle Cl 1 were grown without the selective antibiotic 

kanamycin. Results indicate that antibiotics were not responsible for the difference in 

mitotic index and mortality of Atetrle Cl 1 compared to control. Furthermore, the 

lack of antibiotics in the culture medium neither reduced mitotic index nor the 

mortality of cultures compared to those where kanamycin was present.
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Figure 5.6. The optical density readings over a 7d growth period indicating growth of control (WT) 
cells (blue line) and Atetr* Cl 1 cells (red line). The vertical lines (blade) represent ±SE, where lines 
are absent the ±SE was less than the diameter of the symbol, (n = 9)
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Figure 5.7. The mitotic index (%) over a 7d growth period in control (WT) cells (blue line) and Atetr" 
Cl 1 cells (red line). The vertical bars represent ±SE, where lines are absent the ±SE was less than the 
diameter of the symbol, (n = 9)



□  Control

Figure 5.8. The mortality index (%) over a 7d growth period in control (WT) cells (blue bars) and 
Atetr* Cl 1 cells (red bars). The vertical lines (black) represent ±SE. (n = 9)

5.3.5. AtetrjExpression in Tobacco BY-2 Cells Causes a 50%
Increase in Mitotic Cell Area

Mitotic cell areas were measured using image analysis to determine whether 

expression of Atetr 1 had any effect on this parameter. Mitotic cell area was used to 

ensure that all measured cells were in the same stage o f the cell cycle (M-phase). 

Mitotic cell area was measured in Atetr* Cl 1, Atetr* Cl 2, and Atetre Cl 1 + ethylene. 

Using a two-sample t-test, significant differences in mitotic cell areas o f Atetrle cell 

lines cf. control were observed (Fig. 5.9). Significant differences could not be 

detected in the Atetrlc lines ± ethylene (P<0.05). However, the cell areas in these 

lines were significantly larger than control (WT) or control + ethylene.

90



6000

5000 -I

oT
\  4000
cs

=  3000 
®O 
o
o 2000
is

1000 

0
Control (WT) Control (WT) + Atetr Cl 1 Atetr Cl 2 Atetr Cl 1 + 

Ethylene Ethylene

Tobacco BY-2 Treatment / Gene Expression

Figure 5.9. The mitotic cell areas of control (WT) cells (mean = 3046pm2; n = 125), ethylene treated 
control (WT) cells (mean = 2562pm2: n = 51), Atetre Cl 1 cells (mean = 4367pm2; n = 158 ), Atetr* C\ 2 
cells (mean = 4629pm2: n = 35), and Atetr* Cl 1 + ethylene cells (mean = 4523pm2: n = 155). The 
vertical lines (black) represent ±SE.

5.4. Discussion

Both^terr^ lines exhibited a delay into, and peak of, the mitotic index (10 and 11 h; 

Fig. 5.2) coupled with high levels of mortality (>10%) c f  control. Expression of 

Atetr 1 increased cell cycle duration by 50% to 21 h and caused significant changes in 

cell cycle periods cf. control (WT). In Atetre Cl 1, G2 was 4.25 h (5 h in control), 

mitosis was 4.5 h (2 h in control), G1 was 4.75 h (3.5 h in control) and S-phase 7.5 h 

(3.5 h in control). The most notable effect o f Atetr 1 expression was the doubling of 

S-phase and mitosis. When ethylene was added to Atetr* Cl 1 at 3.5 h after the release 

from aphidicolin, S-phase and G2 were found to increase cf. untreated cells (8.5 h and 

7.25 h respectively) with mitosis decreased to 2.5 h, and G1 showing no change.
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In the results reported in the previous chapter, blocking of ethylene action using 1- 

MCP had very little effect on the cell cycle, whether ethylene was present or not. In 

direct contrast, Atetr 1 expression caused dramatic changes in the cell cycle cf. control. 

This indicates that the observed lengthening of S-phase in Atetr6 Cl 1 may not be a 

result of the inhibition of ethylene signaling but the result of a side-effect disrupting 

cell homeostasis. Since the 35S promoter expresses strongest in S-phase (Nagata et 

al., 1987) and that Ate\x\ is localised to the endoplasmic reticulum (Chen et al.,

2002), an organelle vital to the life of a cell, one consequence could be the 

lengthening of S-phase.

As well as the extended S-phase, mitosis was also lengthened considerably in Atetr6 

Cl 1, unlike 1-MCP (no change in G2 or S-phase) and especially silver (Increased G2 

but decreased M-phase duration) treatments. In fact, the duration of M-phase in Atetr6 

Cl 1 was in direct contrast to silver nitrate treatment. An explanation for the increases 

in both S-phase and mitosis cf. control could be that an ethylene feedback mechanism 

is disrupted in Atetr6 Cl 1. Ethylene has been previously shown to inhibit cell division 

and DNA synthesis in Pisum sativum (Apelbaum and Burg, 1971). Furthermore, the 

original Arabidopsis etrl mutant exhibited increased hypocotyl and root length cf. 

WT Arabidopsis, whether ethylene was present or not (Bleecker et al., 1988). The 

explanation given for the Arabidopsis etrl mutant was that although ethylene 

synthesis rates were not altered by the etr mutation, feedback regulation did not occur 

in these plants (Bleecker et al., 1988). This may also be the case in Atetr* Cl 1 but 

would have to be confirmed by monitoring levels of endogenous ethylene in response 

to ethylene treatment.

When Atetr6 Cl 1 was exposed to ethylene at 3.5 h after the release from aphidicolin, 

both S-phase and G2 increased (8.5 h and 7.25 h respectively). This dramatic 

lengthening of cell cycle phases in response to ethylene has not been observed for 

other inhibitors of ethylene action (see chapters 3 and 4). Interestingly, the increase in 

S-phase duration was similar to that in the 1-MCP + ethylene experiments. This 

provides more evidence for the effect of ethylene on S-phase being independent of the 

ethylene signaling receptors, especially when combined with the change in mortality 

peaks discussed below. The increase in G2 to 7.25 h cf. 4.25 h was the greatest 

change in cell cycle periods observed as a result o f Atetr6 Cl 1 ethylene treatment. The 

original Arabidopsis etrl mutant was only 80% effective in blocking ethylene binding 

(Bleecker et al., 1988) and it is therefore possible that ethylene was still exerting an
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effect, especially since an increase in G2 occurred when WT tobacco BY-2 cells were 

challenged with ethylene. However, silver also caused an increase in G2 length. This 

means that the lengthening of G2 in Atetre Cl 1 may also be independent of the 

ethylene signaling pathway.

The background mortality observed in the Atetre lines was similar to results in the 

Arabidopsis mutant where seeds showed low germination (high mortality) rates 

(Bleecker et al., 1988). However, a direct comparison cannot be made since 

monitoring of mortality in the Arabidopsis mutant was not carried out during 

development. Notably, the highest level of mortality in Atetrle Cl 1 was detected in 

late S-phase/ early G2. However, in the ethylene treatment, this high level of 

mortality occurred in mid to late S-phase and correlated with an increase in the 

duration of both S-phase and G2. This result is surprisingly similar to the response of 

fission yeast in the DNA replication checkpoint induced by hydroxyurea where cells 

are held up in a lengthened G2 whilst DNA replication is recovering (Rhind and 

Russell, 2000).

Although the temporal pattern of mortality was remarkably similar whether or not 

ethylene was applied, it is interesting to note a peak of mortality occurring mid S- 

phase of the second cell cycle when the Atetr6 Cl 1 line was exposed to ethylene. This 

peak of mortality in mid S-phase was recorded in all ethylene treatments described in 

this thesis, whether or not an inhibitor of ethylene action has been present.

In conjunction with the 7 h peak of mortality observed when Atetre Cl 1 (±ethylene) 

was released from aphidicolin, peroxidase activity was reduced. In PCD, peroxidase 

activity is normally reduced as these enzymes are involved in oxidising H2O2 to a 

harmless alternative (Ros Barcelo, 1999). A reduction in peroxidase activity leads to 

an increase in H2O2 which in turn up-regulates genes involved in the programmed cell 

death pathway, including the stimulation of ethylene synthesis (Lamb and Dixon, 

1997; Levine etal., 1994). In wild-type Arabidopsis, exposure to ethylene results in a 

four-fold increase in peroxidase activity (Bleecker et al., 1988), indicating a dramatic 

increase in H2O2 production. In the Arabidopsis etrl mutants exposure to ethylene 

does not affect peroxidase activity. The lack of increased peroxidase activity in 

Atetrle Cl 1 in response to ethylene is consistent with the dominant insensitivity of 

this cell line to exogenously applied ethylene. Furthermore, the lower activity of 

peroxidase at 7 h detected in ethylene treated Atetrle Cl 1 cf. untreated, occurs in S- 

phase. Ethylene-induced mortality in S-phase is observed whether an inhibitor is
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present or not This is in conjunction with the reduction in peroxidase activity and the 

increase in S-phase and G2. This strongly suggests ethylene exerts an effect in S- 

phase that is independent of the ethylene signaling pathway.

In recent years strong evidence has indicated the involvement of the endoplasmic 

reticulum (ER) in mammalian programmed cell death (Brekenridge et al., 2003) with 

ER stress agents causing the release of mitochondrial cytochrome c and loss of 

mitochondrial transmembrane potential (Hacki et al., 2000; Boya et al., 2002); ER 

Ca2 release associated with activating programmed cell death pathways (Bekenridge 

et al., 2003); and BCL-2, BAX and BAK proteins, involved in the regulation of 

apoptosis in mammalian cells, have all been shown to localise to the ER as well as the 

mitochondria (Nutt et al., 2002). Furthermore, when the capacity of the ER to fold 

proteins properly is compromised or overwhelmed, a highly conserved unfolded 

protein response (UPR) pathway is activated. The UPR halts general protein 

synthesis while up-regulating ER resident chaperones and other regulatory 

components of the secretory pathway (Travers et al., 2000). This gives cells a chance 

to correct the environment within the ER (Patil and Walter, 2001). However, if 

damage is too extensive, the switch from metabolic rest to cell death occurs. This 

period of metabolic ‘rest’ has been shown to be as great as 48 h in some cell types 

(Patil and Walter, 2001). Although evidence of ER involvement in plant PCD is not 

yet known, the high background mortality in Atetrle lines may be a result of ER 

localisation of v4fETRl (Chen et al., 2002). In support of a putative role for ER in 

plant PCD, Arabidopsis ethylene-responsive binding proteins (/4fEBP) have been 

found to dominantly suppress Bax-induced cell death in yeast (Pan et al., 2001). 

Although, again, it is not known whether plants have a system fully equivalent to 

BCL-BAX (Krishnamurthy et al., 2000; Lam et al., 2001), further research into the 

relationship between ethylene and ER in plants may prove to be a useful insight into 

ethylene-induced PCD.

Mean mitotic cell area was significantly larger in the Atetr6 lines compared with 

comparable measurements in control. Note that the cell cycle was substantially 

longer in the Atetre lines and hence a positive relationship exists between mitotic cell 

area and cell cycle duration. In other words, the longer the cell cycle the larger was 

the mitotic cell area However, the mean mitotic cell area was not significantly 

different in the Atetr6 Cl 1 in the presence or absence of ethylene. Hence, the data are

94



also consistent with the dominant insensitivity of these cell lines to exogenous 

ethylene.

5.5. Summary

The data reported in this chapter are summarised as follows:

• Atetr 1 expression resulted in a 50% increase in cell cycle duration and S-phase 

length.

• Ethylene treatment resulted in an increase in S-phase length and a doubling of 

G2 duration.

• Atetr 1 expression resulted in significant increases in mortality, especially at 

the S/G2 boundary.

• Ethylene treatment resulted in no temporal change in mortality, although 

mortality was seen to be at its highest during S-phase.

• Peroxidase activity remained unaltered when Atetre Cl 1 was treated with 

ethylene.

• Atetr 1 expression increased mortality and delayed growth in vivo.

• Atetr 1 cell lines show a 50% increase in mitotic cell size.

Other cell cycle work was in progress when these data were collected. This work 

comprised of the constitutive expression of the mitotic inducer, Spcdc25 in the 

tobacco BY-2 cell line. I decided to extend my studies of the G2/M transition with 

this cell line due to a relationship between ethylene-induced cell death and G2/M 

established in the previous chapters. Work on Spcdc25 expression in tobacco BY-2 

cells is reported in the next chapter.



Chapter 6

Expression of Spcdc25 In The Tobacco 
BY-2 Cell Line Causes Premature Entry 

Into Mitosis And Nullifies The G2/M
Checkpoint



6. Expression Of Spcdc25 In The Tobacco BY-2
Cell Line Causes Premature Entry Into Mitosis 
And Nullifies The G2/M Checkpoint

6.1. Introduction

The plant cell cycle is regulated by cyclin-dependent kinases (CDKs) that are 

themselves, phosphoregulated (Zhou et al., 2002). However, little is known about the 

genes that exert control over these CDKs in plants, especially at the G2/M transition 

point of the cell cycle. In fission yeast (Schizosaccharomyces pombe), cdc25 is a 

positive regulator of the G2/M transition (Russell and Nurse, 1986). It encodes a 

tyrosine phosphatase that in late G2, dephosphorylates Cdc2 kinase on a tyrosine 

residue (Y15) near to the NH2 terminus (Russell and Nurse, 1986). Following 

binding with a B-type cyclin, dephosphorylation of Cdc2, by Cdc25, is the final all- 

or-nothing signal that triggers Cdc2 kinase activity enabling subsequent entry of a cell 

from G2 into mitosis (see O’Farrell, 2001). Cdc25 phosphatase competes with Weel 

kinase for the Y15 residue of Cdc2 kinase (Nurse, 1990). When phosphorylated by 

Weel kinase, Cdc2 is unable to exhibit catalytic activity (Russell and Nurse, 1987; 

Gould and Nurse, 1989). In mammals further negative regulation of cytoplasmic 

Cdc2 is also provided by MYT1, a membrane-bound dual threonine-tyrosine kinase 

(Mueller et al., 1995). In humans (Cdc25C) and insects (STRING), Cdc25 has a dual 

phosphatase activity on Y15 and T14 of the B-type CDC2 that functions in late G2 of 

the cell cycle (Edgar and O’Farrell, 1989; Sadhu etal., 1990).

In S. pombe, over-expression of cdc25 induced a short cell phenotype. The cells 

divided prematurely through a shortening of G2 phase but, surprisingly, there was no 

change in the overall length of the cell cycle (Russell and Nurse, 1986). This was due 

to G1 compensating for the shortening of G2. Over-expressing Weel had the 

converse effect, resulting in a long cell phenotype (Russell and Nurse, 1987). This 

suggests strongly that by competing for the same substrate, Weel and Cdc25 regulate
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cell size at division, although the former is regarded as the main genetic element in 

this control (Sveiczer et al., 1986).

In plants, a homologue to weel has been identified in Zea mays (Sun et al., 1999) 

and in Arabidopsis thaliana (Sorrell et al., 2002) although to date a functional 

homologue of cdc25 has not (see discussion). In the absence of a plant homologue, I 

examined the effects of fission yeast cdc25 on cell size and development in the 

tobacco BY-2 cell line.

One of the aims of the work reported here was to examine whether Spcdc25 results 

in a shortening of G2 in the plant cell cycle. Evidence for dephosphorylative activity 

of SpCdc25 on plant Cdc2 kinase at G2/M was found in cultures of Nicotiana 

plumbaginofolia (Zhang et a l, 1996). Also, when these cells were depleted of 

exogenous cytokinin they arrested in G2 because of inactivation of Cdc2 kinase due 

to Y15 phosphorylation. Addition of kinetin to these cultures resulted in 

dephosphorylation of Cdc2 and entry of cells into mitosis (Zhang et al., 1996). These 

data strongly suggest that there is a cytokinin-mediated signal transduction pathway 

that regulates the G2/M transition through inactivation of Cdc25-like phosphatases 

(Zhang et a l, 19%). Interestingly, TBY-2 cells exhibited a major peak of zeatin 

synthesis at the G2/M transition (Redig et al., 1996) that was suppressed by mevinolin 

treatment (Laureys et al., 1998); mevinolin inhibits the isoprenoid pathway of 

cytokinin biosynthesis (Crowell and Salaz, 1992). Another aim of the work reported 

here was to discover whether our Spcdc25 expressing lines could escape a block 

imposed by mevinolin thereby providing a further test of the cytokinin regulated 

model of the G2/M transition of the plant cell cycle.

6.2. Materials And Methods

Details of materials and methods are fully described in chapter 2.

See page 31 for tobacco BY-2 transformation protocol, page for synchronisation and 

mitotic index measurements, page 34 for cell viability and mortality index 

measurements, and page 34 for ethylene treatment.
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6.3. Results

Three independent cell lines carrying Spcdc25 under the control o f an attenuated 

version of the BIN-35S CMV promoter, BIN-HYG-TX (Gatz et al., 1992) were 

investigated in relation to the cell cycle, cell size, and mortality. In conjunction with 

the three Spcdc25 expressing lines (denoted as 1 *, 2*, and 3*), two empty vector lines 

(EV1 and EV2) were used as experimental controls. RT-PCR confirmed Spcdc25 

expression in 1 *, 2*, 3* and its absence in the empty vector lines (Fig. 6.1a). Western 

blotting was also used to confirm the presence o f SpC&c25 protein in Spcdc25 

expressing cell lines (Fig. 6.1b). Transformations were carried out on two separate 

occasions and therefore EV1 is the control for 1* and EV2 for 2* and 3* Spcdc25 

expressing cell lines.

(a)

1* EV1 2* 3* EV 2

1* EV1 2* 3* EV2

(b)

WT * * *
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Figure 6.1. (a) RT-PCR analysis of Spcdc25 expression in the tobacco BY-2 cell lines. Top panel: 
expression of Spcdc25 (product size 718 bp), bottom panel: 18S control (product size 459 bp), (b) 
Western blotting analysis of <SpCdc25 protein in three independent tobacco BY-2 cell lines expressing 
the gene (indicated with *) and WT.

6.3.1. Socdc25  Induces Premature Cell Division Through a 

Shortening of G2 Phase

Release of TBY-2 cells from an aphidicolin block will start the progression of cells 

previously held in S-phase, through the cell cycle, with the mitotic index rising as 

cells traverse G2 and enter mitosis. In 1*, 2*, and 3* cell lines the mitotic index 

began to rise early by comparison to their respective empty vector counterparts. The 

most dramatic, 1*, began to rise sharply between 2-3 h and peaked between 3-4 h 

after release from aphidicolin (Fig. 6.2). This contrasted sharply with EV1, which 

began to rise between 5-6 h following release and reached the peak of mitoses at 9 h 

(Fig. 6.2). The overall duration of the cell cycle, the interval between the two peaks, 

also contrasted with 1* duration being 12 h and EV1, 14 h (comparable to wild type 

TBY-2 cell cycle duration, see Herbert et al., 2001). For 1* G2 duration was 

estimated at 0.5 h, mitosis 1 h, G1 7 h, and S-phase at 3.5 h. EV1 ’s G2 duration was 

8.5 h, mitosis 2 h, G1 0.5 h, and S-phase 3 h. Hence the Spcdc25 expressing cell line, 

1 *, exhibits a shortened cell cycle mainly through a shorter G2 phase compared with 

EV1 (Fig 6.2).
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Figure 6.2. The mitotic index (%) of tobacco BY-2 cells plotted against time after the release from a 
24h synchronization treatment with aphidicolin in control (EV1) and tobacco BY-2 Spcdc25 1*. The 
mitotic index data generated curves exhibiting two peaks from which the duration of the cell cycle and 
its component phases were calculated (Quastler and Sherman, 1959). Cell cycle length was measured 
as the interval between the two peaks; G2+&M was measured as the interval between the v-axis and 
the 50% intercept of the initial rise of the mitotic index; S-phase was measured as the 50% intercept of 
the ascending and descending limbs of the first mitotic peak; M-phase was measured from where the 
curve begins to rise taken as the first mitotic index value above zero (1 h in Spcdc25 1* and 9 h in 
EV1) to where it begins to plateau (3 h in Spcdc25 1* and 11 h in EV1); G1 is calculated by the 
difference. Due to the measurements of phase duration being estimates, all values have been rounded 
to the nearest 0.5 h. Below the x-axes are the component phases of the cell cycle in the EV1 (EV1) and 
Spcdc25 1 * (1 *) cell lines as calculated using the method above.

The cell cycle data for 2* and 3* were consistent with a shorter G2 phase by 

comparison to EV2 (Fig. 6.3); 4 h and 3.5 h for 2* and 3* respectively cf. 5 h for 

EV2, with overall cell cycle length reduced in the expressing lines, 12.5 h and 11 h 

respectively for 2* and 3* cf. 14 h for EV2 (Fig. 6.3).
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Figure 6.3. The mitotic index (%) of tobacco BY-2 cells plotted against time after the release from a 
24 h synchronization treatment with aphidicolin in control (EV2) and (a) tobacco BY-2 Spcdc25 2* (b) 
in tobacco BY-2 Spcdc25 3*. The mitotic index data generated curves exhibiting two peaks from 
which the duration of the cell cycle and its component phases were calculated (Quastler and Sherman, 
1959). Below the x-axes are the component phases of the cell cycle in the EV2 (EV2), Spcdc25 2* 
(2*), and Spcdc25 3* (3*) cell lines.

S-Phase Confirmed as 3 h in 3*

Histone H4 expression is an excellent marker of S-phase. S-phase duration in WT 

tobacco BY-2 cells has been previously recorded as 3.5 h (chapter 3) and 2.5 h 

(chapter 4) in duration and is similar to published values for S-phase in this cell line 

(Sorrell et al., 1999; Herbert et al., 2001). Monitoring o f histone H4 in Spcdc25 3* 

indicated an S-phase duration of 3 h (Fig. 6.4). This was identical to the calculated 

value and similar to values observed for WT tobacco BY-2 cells.

|HHistone H4|

.5 0.6

0.4

0.2

0 1 2 3

Time (h) after release from aphidicolin

Figure 6.4 Expression of histone H4 following the release of tobacco BY-2 cells from a 24 h 
synchronization with aphidicolin in Spcdc25 3*. RNA was amplified using semi-quantitative PCR and 
results obtained measuring amplified band intensity. Histone H4 expression was corrected for errors 
by using 18S ribosomal RNA expression as a standard.
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Interestingly, none of the mitotic indices recorded in these experiments exceeded 

30%. Characteristically, wild type (WT) TBY-2 cells synchronised with aphidicolin 

exhibit a mitotic index peak of 45-50% at 7-8 h after aphidicolin release (Herbert et 

al., 2001; Francis et al., 1995). The lower range of mitotic indices reported here are 

consistent with a smaller cycling cell population and has been previously noted in 

TBY-2 transgenic lines (Shaul et al., 1996).

6.3.2. Cell Cvcle Specific Mortality is Exhibited bv Socdc25  

Expressing TBY-2 Ceil Lines

Remarkably, the TBY-2 cell lines transformed with Spcdc25 exhibited a cell cycle 

specific pattern of mortality similar to that exhibited previously in WT when 

challenged with exogenously applied ethylene (Chapter 3; Herbert et al., 2001). In 

the Spcdc25 expressing cell lines, the mortality index generally peaked at S/G2 and 

G2/M boundaries and indicates a greater frequency of cell dying as they attempt 

progression into mitosis (Fig. 6.5)
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(C)
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Figure 6.5. The mortality index (%) following the release from aphidicolin in controls (EV1 and EV2; 
red bars) and in (a) Spcdc25 1 * cells (blue bars) (b) Spcdc25 2* cells (blue bars) (c) Spcdc25 3* cells 
(blue bars). Following dual staining with FDA and PI, the number of green and red cells were scored 
at random transects. Below the x-axes are the component phases of the cell cycle in EV1 (EV1), EV2 
(EV2), Spcdc25 2* (2*), and Spcdc25 3* (3*) cell lines, measured directly from curves in Fig. 6.3 
respectively.

[I

6.3.3. Sp cdc25Expressing Cell Lines Exhibit a Smaller Mitotic
Cell Size

Spcdc25 over-expression in yeast and tobacco was found to give a smaller cell 

phenotype, the same characteristic exhibited in the Spcdc25 transformed TBY-2 cell 

lines. This is in correlation with the reduction in the length o f G2, suggesting that 

cells were entering premature division at a reduced size.

The reduced mitotic cell size was a phenotype exhibited by all the Spcdc25 

expressing cell lines, with mitotic cell areas two-thirds of their respective empty
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vector transformed control cell lines. The mitotic cell sizes of EV1 and EV2 were, 

however, comparable to WT indicating that the Spcdc25 expression in 1*, 2*, and 3* 

was responsible for a significant reduction in mitotic cell size cf. EV1, EV2, and WT 

(P<0.05), not the vector or transformation process (Fig. 6.6.)
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Figure 6.6. The mitotic cell areas of WT cells (mean = 3046|im2; n = 125), Spcdc25 1 * cells (mean = 
1805pm2: n = 124), Spcdc25 2* cells (mean = 2356pm2; n = 94), Spcdc25 3* cells (mean = 1848pm2: n 
= 51), EV1 (mean = 3009jim2: n = 51), and EV2 (mean = 3002 îm2: n = 51). The vertical lines (black) 
represent ±SE.

Spcdc251* EV1 Spcdc25 2* Spcdc25 3* 
Tobacco BY-2 Cell Line

EV2 WT
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6.3.4. Cvtokinin Inhibition in TBY-2 So Expressing Cell

Lines Does Not Restrict Cell Cycle Progression

It has been previously shown that cytokinins are essential for cell cycle progression 

through G2/M in TBY-2 cells and that mevinolin, a cytokinin inhibitor, will block cell 

cycle progression at this point (Laureys et al., 1998; Hemmerlin and Bach, 1998). 

The Spcdc25 expressing cell line3* was exposed to mevinolin to see if an inhibitory 

effect was exerted. Addition of mevinolin to 3* had no significant effect on the 

mitotic index data compared to the untreated 3* control that was ran alongside it (Fig. 

6.7b). This is in direct comparison to mevinolin treated EV2 which exhibited a 

reduction of -50% in cells progressing through the cell cycle into mitosis (Fig. 6.7a). 

This indicates that Spcdc25 expression in TBY-2 cells circumvents a block imposed 

by mevinolia
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(b)
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Figure 6.7. The mitotic index (%) of tobacco BY-2 cells plotted against time after the release from a 
24 h synchronization treatment with aphidicolin in (a) control (EV2) ± mevinolin at 0 h and (b) in 
Spcdc25 3* ± mevinolin at 0 h

6.3.5. Cells Expressing Spcdc25 Form Doublets of Small Cells

Cells expressing Spcdc25 exhibited a tendency to form doublets, a characteristic not 

usually observed in wild-type and empty vector TBY-2 cell lines (Fig. 6.8). This 

observation was quantified by scoring the frequency of doublets that occurred in lines 

1* and 3* during normal log-stationary phase growth. Every day for a 7-day culture 

period, filaments greater than six cells long were scored as either single or double. 

Notably, between 18 and 30% of filaments were present as doublets on days 2-3 in 

lines 1* and 3* (Fig 6.9). Hence the frequency of doublets was highest during 

exponential growth of the cell lines. Moreover, in the double filaments the ratio of 

cell length to cell width was close to unity whereas in the EV and wild type lines the 

corresponding ratio ranged from 2:1 to 6:1 (data not shown). Hence Spcdc25-induced
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changes in cell length may predispose changes in the cell division plane (see 

discussion).

(a) (b)

Figure 6.8. Spcdc25-expressing tobacco BY-2 cells form in isodiametric double filaments, (a) WT 
tobacco BY-2 cells (bar=100pm) (b) Spcdc25-expressmg tobacco BY-2 cells (bar = lOOjim).
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Figure 6.9. The frequency of doublets of tobacco BY-2 cells (double filaments >6 cells long) in the 
Spcdc25-cxpressing line 1* compared with empty vector (EV1) and 3* compared with EV2, during a 
7d batch culture of tobacco BY-2 cells at 27°C (n=300).
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6.3.6. Ethylene Treatm ent of Spcdc25 1* R esults in a

Reduction in Mortality

The effect of ethylene on WT tobacco BY-2 cells and Atetrl expressing cells in 

previous chapters indicates that ethylene exerts an effect on the G2/M transition in 

tobacco BY-2 cells. Since expression of Spcdc25 was also thought to affect the G2/M 

transition, Spcdc25 1* was challenged with exogenously applied ethylene at 0 h. 

Interestingly, results did not show an increase in mortality. Instead overall mortality, 

especially at the peak of mitosis, was reduced cf. the experimental control (untreated 

Spcdc25 1*; Fig 6.10b) and was similar to the results obtained when Atetrl- 

expressing cells were treated with ethylene. The characteristic delay in the rise of 

mitosis and reduction o f the mitotic peak observed in WT treatment were both absent 

(Fig 6.10b cf. Fig. 3.la  (Chapter 3).
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(b)
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Figure 6.10. The mitotic index (a) and mortality index (b) of Spcdc25 1 * ± ethylene at 0 h plotted 
against time after a 24 h synchronisation with aphidicolin

6.4. Discussion

Expression o f Spcdc25 in the tobacco BY-2 cell line has shown that it confers a 

smaller cell size at mitosis and that premature cell division occurs through the 

reduction in the duration o f G2. This is similar to the results obtained from the over- 

expression o f Spcdc25 in fission yeast. However, whereas fission yeast exhibited a 

compensatory increase in duration of G1 due to the reduction in G2 (Russell and 

Nurse, 1986), TBY-2 Spcdc25 expressing cell lines showed a 2-3h reduction in cell 

cycle duration with only a slight compensatory increase in G1 (!4-lh).

TBY-2 Spcdc25 expressing cell lines also exhibited unusual cell morphology, 

forming near-isodiametric double filaments both in culture and during cell cycle 

experiments. This is an unusual occurrence in wild-type TBY-2 cells. Normally 

TBY-2 cells are observed to be 2-6 times longer than wide and filaments normally 

arise by transverse divisions. In Spcdc25 expressing cells, reduction in cell size is
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mainly achieved by the reduction in cell length, resulting in isodiametric cells. 

Therefore the expression of Spcdc25 in TBY-2 cells appears to predispose cells to 

both transverse and longitudinal division, with the induction of doublet formation 

directly linked to the reduction of cell size.

The induced expression of Spcdc25 in cultured tobacco roots carried out previously 

by McKibbin et al. (1998) induced an increase in the frequency of lateral roots per 

primary root length. Lateral root primordia are initiated from the pericycle close to 

the primary apical meristem, immediately adjacent to protoxylem poles (Dubrovsky et 

al., 2001). Divisions are transverse as large ‘mother’ cells partition, forming daughter 

cells. This is followed by a change in the plane of cell division from transverse to 

longitudinal so that these cells appear as a double filament of near-isodiametric cells 

(Dubrovsky et al., 2001) and are not dissimilar to that seen in the *S/?aic25-expressing 

TBY-2 cell lines. In fact, Spcdc25-expressing tobacco roots and cell cultures directly 

correlate, with both exhibiting reduced cell size and a change in the plane of division. 

Therefore, Spcdc25 expression may well predispose cells to divide longitudinally.

The levels of mortality exhibited in the Spcdc25 expressing TBY-2 cell lines were 

higher than those in the empty vectors and showed cell cycle specificity. Mortality 

was most notable at the G2/M transition point, indicating that due to the shortened G2 

cells may be forced to enter mitosis by Spcdc25 expression whether they are 

competent or not, and therefore might exit into cell death due to the negation of a 

checkpoint that would halt cells from cycling. In fission yeast Russell and Nurse 

(1986) observed an increase in lethality presumably because of an override of a cell 

competency (DNA damage) checkpoint.

There is strong evidence that the G2/M transition in the plant cell cycle is cytokinin 

regulated. Zeatin synthesis peaks in late G2 and mevinolin inhibits this peak, 

preventing G2/M progression (Redig et al., 1996; Laureys et al., 1998). It is of note 

that mevinolin also prevents Gl/S transition and has been shown to halt cells at both 

cell cycle transition points in Tobacco BY-2 cells (Hemmerlin and Bach, 1998). It is 

also known that cytokinin treatment can activate the G2/M transition (John et al., 

1993) and both Spodc25 and cytokinin can dephosphorylate plant Cdc2 in late G2 

(Kumagai and Dunphy, 1992). Since Spcdc25 expressing TBY-2 cell lines can 

overcome the mevinolin block, it is possible that the Spcdc25 expression is 

compensating for cdc25-like or functionally equivalent phosphatases inhibited by the 

lack of cytokinin signaling in this treatment. Hence the data support the idea that
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G2/M transition mediated by cytokinin involves the induction or promotion of Cdc25 

activity. This, of course, relies on the fact that cytokinin indirectly de-phosphorylates 

Cdc2 at the G2/M transition and that a plant Cdc25-like phosphatase can be identified. 

In Arabidopsis a gene encoding a putative catalytic domain of Spcdc25 has been 

identified although it has yet been shown to complement a S. pombe cdc2S mutant 

(D. Francis, H. J. Rogers, J. R. Dickinson, D.A. Sorrell unpublished data; D. Inze, L. 

DeVeylders, J. Joubes unpublished data). Previous studies using mevinolin on the 

TBY-2 cell cycle showed increased mortality in relation to treatment (Laureys et a l,

1998), however its addition to Spcdc25-ex.pressing TBY-2 cell lines didn’t effect 

mortality rates. This supports the link between Cdc25-like phosphatase and cytokinin 

activity at the G2/M transition in the plant cell cycle and that they are likely to be 

affecting the same process.

The duration of S-phase is also affected by Spcdc25 expression in TBY-2 cells, 

being shorter in each of the expressing lines compared with the empty vectors. In 

human cells, CDC25A shows its highest expression in late G1 and S-phase (Jinno et 

al., 1994) indicating that Spcdc25 expression in tobacco may affect more than the one 

transition point and/or an increase in the rate of replication fork movement during S- 

phase (Bryant and Francis, 2000). In this study S-phase duration was calculated using 

the amplitude of the main peak of mitosis and can be justified since previous work 

gave an identical S-phase duration whether it was calculated from H4 expression data 

of the peak amplitude (Herbert e ta l,  2001)

In the Spcdc25 expressing TBY-2 cell lines, cell size is approximately two-thirds of 

that observed in WT and empty vector and is similar to results seen from Spcdc25 

over-expression in fission yeast (Russell and Nurse, 1986). This indicates that cells 

do not continue to divide at smaller sizes, resulting in mitotic catastrophe, but instead 

establish a new threshold size for cell division with Spcdc25 being down-regulated. 

In the fission yeast cell cycle Cdc25 is normally down-regulated post-translalionally 

with Cdc25 being partitioned from its substrate, Cdc2. This is essential for the 

fission yeast DNA damage checkpoint to be effective (Kumagai and Dunphy, 1999). 

During G2 DNA damage prompts the phosphorylation of Cdc25 on serine-216 by 

Chk2 kinase, causing Cdc25 to exit the nucleus and bind with 14-3-3 proteins whilst 

the DNA is repaired (Peng et al., 1997; Kumagai and Dunphy, 1999). Using yeast 

two hybrid screening, an Arabidopsis 14-3-3 protein (GF14w) has been identified 

recently that binds to Spcdc25 and complements the S. pombe DNA damage
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checkpoint mutant rad24\ a gene encoding a 14-3-3 protein (Sorrell et al., 2001; 

Sorrell et al., unpublished data). When mitotic size control is influenced in fission 

yeast by such methods as Spcdc25 over-expression, a Gl/S minimum size controller 

stabilises cell size thereby preventing an ever decreasing cell size (Sveiczer et al., 

1996). It is not known whether plants possess Gl/S minimum size controllers and 

clearly other factors may be involved in establishing and maintaining a new threshold 

size, inactivation and degradation of Spcdc25 for example (Takizawa and Morgan; 

Bulavain et al., 2002). Fascinatingly, tobacco BY-2 cultures expressing Spcdc25 

have been observed to revert back to a relatively normal cell cycle length and G2 

duration over time compared to empty vector. Therefore 5/?a/c25-expressing cell 

lines are establishing and maintaining a new cell size threshold although the reason, as 

discussed above, is as yet unclear and would need further investigation.

It was a surprise to see that treatment of Spcdc25-expressing cells with ethylene 

causing a reduction in mortality rather than increasing it as in WT. Recently, the 

amount of cytokinin in Spcdc25-espxossing cells has been monitored and found to be 

greatly reduced in comparison to WT (D Francis; personal communication) and might 

explain the reason for the reduction in mortality when cells were exposed to 

exogenously applied ethylene. This is because cytokinin levels are linked to ethylene 

biosynthesis in plants, with an increase in cytokinin causing an increase in ethylene. 

Furthermore, this relationship has been linked to cytokinin inducing ethylene via a 

post-transcriptional modification of 1-aminocyclopropane-l-carboxylic acid synthase 

(ACS) (Vogel et al., 1998). ACS activity is the rate limiting step in ethylene 

biosynthesis (Woeste et al., 1999). It could therefore be that low endogenous levels 

of cytokinin in Spcdc25-expressing cells results in lower amounts of endogenous 

ethylene and that exogenously applied ethylene may restore levels of ethylene to that 

in WT tobacco BY-2 cells.
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6.5. Summary

The data reported in this chapter are summarised as follows:

• Spcdc25 expression induced premature cell division and reduced cell cycle 

duration through a shortening of G2.

• Spcdc25 cell lines exhibited high levels of mortality, especially at the S/G2 

boundary.

• Spcdc25 expression resulted in a small cell size phenotype

• Spcdc25 expressing cells overcame a cell cycle block imposed by mevinolin.

• Cells expressing Spcdc25 formed doublets of small cells

• Ethylene treatment resulted in a reduction of mortality.
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Chapter 7 

General Discussion



7. General Discussion

The basis of this thesis was to try and elucidate mechanisms of programmed cell 

death and the cell cycle in plants through the use of the tobacco BY-2 cell line. 

Because of the merits of this cell line over whole plant studies, it was expected to 

provide greater insights into the mechanisms of programmed cell death in relation to 

the cell cycle. Of particular importance was to identify areas both homologous and 

distinct from other non-plant eukaryotic systems. Two approaches were employed to 

carry this out The use of the ethylene and its signaling pathway was chosen as a 

potential activator of programmed cell death due to its previous associations with the 

process. To complement this one of the key regulators of fission yeast CDK/cyclin 

complexes essential for cell cycle phase transitions, Cdc25, was also employed to see 

how it would affect the cell cycle.

7.1. Ethvlene As A Tool For PCD And Cell Cycle 
Research

Ethylene is an important plant growth regulator and has been known to affect plants 

since Neljubow noticed it caused leaf abscission in 1901. Furthermore, its role in 

programmed cell death has been established in a number of plant species and 

situations. This includes both developmental (endosperm development, senescence 

etc) and non-developmental (pathogen related) forms of PCD (Grbic and Bleecker, 

1995; Fukuda, 1992; ^rancis, 2003). Research into ethylene and the cell cycle is not 

as well documented and has mainly focused on the effect of ethylene on events related 

to phases of the cell cycle, such as DNA synthesis and cell division (Applebaum and 

Burg, 1972). To my knowledge, the data presented in this thesis are the first to 

establish a clear link between PCD and the cell cycle in plants. Recently, Kadota et 

al. (2004) have also examined the relationship between elicitor-induced cell death and 

the cell cycle. As with the ethylene data in this thesis, cryptogein-induced cell death
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was found to occur at specific points within the cell cycle, especially at G1 and G2. 

Furthermore, cell cycle arrest and cell death were only induced by treatment with 

cryptogein during S or G1 phase (Kadota et al., 2004). This is similar to ethylene 

treatment of tobacco BY-2 cells where cell death was found to be at its highest in G2 

when ethylene was applied at S/Gl (Herbert etal., 2001)

So, is ethylene a useful tool for PCD and cell cycle research? The use of ethylene on 

synchronized cultures of tobacco BY-2 cells has established that induced cell death 

occurs mainly at the G2/M boundary. Furthermore, the use of ethylene inhibitors has 

shown that cell death at G2/M is dependent on the ethylene signaling pathway and 

that mortality in S-phase is independent of it. Thus, not only has cell cycle specificity 

of ethylene-induced cell death been established, but also the mechanism by which 

ethylene exerts cell death at G2/M confirmed. These data lead us one step closer to 

proving the existence of a plant DNA damage checkpoint, the checkpoint in 

mammalian and yeast cells that provides the last chance for correction before mitosis 

or exit into PCD if damage is too extensive (Russell and Nurse, 1986).

7.1.1. The Genetic or Chemical Approach to Understanding 
Ethvlene-lnduced PCD?

Two different approaches to blocking ethylene action were used in this thesis, 

genetic and chemical, with both achieving an increased understanding of the 

relationship between ethylene-induced PCD and the cell cycle.

Initially silver nitrate was used as the initial ethylene inhibitor since addition of 

silver ions is an established method of blocking ethylene binding in plants (Drew et 

al., 1981). Although other ethylene inhibitors such as 2,5-norbomadiene (NBD) have 

been shown to inhibit ethylene induced PCD (Mergermann and Sauter, 2000), silver 

nitrate was chosen because it inhibits the ethylene signaling pathway, not ethylene 

biosynthesis. Silver nitrate was able to successfully ameliorate ethylene-induced 

mortality (chapter 3) but was also toxic to tobacco BY-2 cells. This meant that the 

ethylene signaling pathway could be linked to the ethylene-induced cell death, but 

could not confirm whether it was solely responsible for the cell death arising at G2/M. 

Due to the toxicity of silver ions 1-MCP, another chemical inhibitor of ethylene
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receptors was used. 1-MCP is a potent inhibitor of ethylene action (Sisler et a l,

1999) and was found to have several advantages over silver, the most important being 

a lack of toxicity to tobacco BY-2 cells (chapter 4). Use of 1-MCP confirmed that the 

ethylene-induced mortality at G2/M was completely dependent on the ethylene 

signaling pathway due to its lack of toxicity. Furthermore, an ethylene-induced 

mortality peak in S-phase, seen in both ethylene and ethylene + silver treatments, was 

not ameliorated by 1-MCP. Hence I conclude that the peak in S-phase was 

independent of the ethylene signaling pathway. Interestingly, 1-MCP has been shown 

to reduce reactive oxygen species, including H2O2 in pear, although it is unclear 

whether this is a direct result of blocking the ethylene signaling pathway 

(Larrigaudiere et al., 2003).

Finally the genetic approach to blocking ethylene signaling using AtetrJ, the gene 

responsible for the mutated form of the Arabidopsis ETR1 receptor (Bleecker et a l, 

1988), was employed. Introduction of AtetrJ into the tobacco BY-2 cells caused 

massive perturbation to the cell cycle, cell size, and high incidences of mortality 

throughout the cell cycle. This is similar, but not identical, to observations in the 

Arabidopsis mutant where rosette leaves were 25% larger, flowering and senescence 

were delayed by 2 weeks, and seeds had very low viability (Bleecker et al., 1988). 

Using ethylene on A tetri -expressing cells indicated that AtetrJ conferred ethylene 

insensitivity (apart from S-phase) but data obtained were less clear-cut than that in 

previous chapters due to the high background mortality. It was therefore not as 

successful as 1-MCP in identifying ethylene mortality dependent and independent of 

the ethylene signaling pathway. Interestingly it did highlight the fact that AtetrJ 

expression caused massive perturbation in tobacco BY-2 cells, a fact studies into the 

Arabidopsis mutant did not highlight (Bleecker et a l, 1988). Hence, the use of 1- 

MCP, a chemical approach, was the most successful in identifying and confirming the 

relationship between ethylene, PCD, and the cell cycle. Due to the effectiveness of 1- 

MCP it has already become a useful research tool into a variety of ethylene dependent 

plant processes including senescence and fruit ripening (Watkins and Miller, 2003). 

However, introduction of AtetrJ, the genetic approach, provided the most questions 

for further research into the relationship between ethylene, the cell cycle, and PCD. 

Recent work into the binding of 1-MCP in the presence of low levels of ethylene may 

have highlighted a difference between AtetrJ expression and 1-MCP treatment. Reid 

and Celikel (2003) hypothesize that 1-MCP, rather than binding directly to the
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ethylene binding site, binds to a site exposed when the receptor is free of ethylene. 

AtetrJ has a mutation in the ethylene binding site and may therefore explain the 

difference in observed results.

Thus, ethylene has proven to be a useful research tool into the interactions between 

PCD and the cell cycle. Even more interestingly though is the potential for ethylene 

signaling inhibitors, especially 1 -MCP, to provide tighter links between the cell cycle 

and PCD. Because of its ability to block ethylene signaling without detrimental side- 

effects, other cell death elicitors could be used in conjunction with it. This would 

help identify the importance of ethylene signaling in other forms of PCD and whether 

the ethylene signaling pathway plays an important role in the occurrence of mortality 

within the cell cycle. 1-MCP has already been used to investigate pathogen-induced 

disease in strawberries (Porat et al., 1999; Jiang et a l, 2001), apricots (Dong et al., 

2002) and grapefruit (Mullins et al., 2000).

7.2. The Plant Cdc25: Mvth Or Reality?

The existence of a plant Cdc25 has been a topic of hot debate in recent years, 

especially since the majority of mammalian/yeast cell cycle genes have been 

identified in plants (Francis, 2003). The roles of CDKs (cyclin dependent kinases) 

and cyclins have been established in plants for a number of years (Joubes et a l, 2000: 

Huntley and Murray, 1999) and more recently Weel (Sun et a l, 1999: Sorrell et al., 

2002), Cdc25s counterpart in the regulation of CDK/Cyclin complexes. Even ATR 

and ATM, regulators of CDK/Cyclin complexes in response to DNA damage in 

mammalian systems have had homologues identified in Arabidopsis (Garcia et al., 

2000; Culligan et al., 2004). Thus, there are two possibilities as to the existence of a 

plant Cdc25. Firstly it is present but not yet identified, secondly plants do not have a 

Cdc25-like protein.

Recently a gene sharing structural homology to the catalytic domain of *SJpCdc25 has 

been identified in Arabidopsis (D Francis, personal communication) and at first 

sounds promising. However, Cdc25 has been recently found to be structurally related 

to the rodanese superfamily of enzymes in its catalytic domain and that this
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superfamily is widely distributed among living organisms (Bordo and Bork, 2002). 

This putative plant Cdc25 could therefore have no functional homology al all to 

SpCdc25. Interestingly, expression of this putative CDC25 in yeast resulted in the 

same phenotype as Spcdc25 over-expression (D Francis, personal communication; 

Russell and Nurse, 1986). Notably, this putative CDC25 was the only one identified 

in the Arabidopsis genome and very recently, its ability to act as a dual-site T14 Y15 

phosphatase on phosphorylated CDK has been demonstrated (Landrieu etal., 2004).

Is this plant CDC25 regulated by plant growth regulators? The main contender in 

this is cytokinin. Cytokinin treatment has already been shown to dephosphorylate 

plant Cdc2 in late G2 (Zhang et al., 1996) with Cdc25 carrying out this same activity 

at the same time point in Xenopus (Kumagai and Dunphy, 1992). Furthermore, 

tobacco BY-2 cells expressing Spcdc25 can overcome cell cycle blocks imposed by 

mevinolin (an inhibitor of cytokinin; chapter 5) due to lower than normal levels of 

cytokinin in these cell lines (D Francis, personal communication). This indicates that 

the role of cytokinin in regulating G2/M transition in Spcdc25-expTessing tobacco 

BY-2 cells is replaced by SpCdc25 and provides strong evidence for the cytokinin 

signaling cascade being a key player in cell cycle regulation. Thus a model for plant 

cell cycle regulation using cytokinin to upregulate another plant phosphatase, instead 

of Cdc25 as the main positive regulator, is proposed (Fig. 7.1).
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Figure 7.1. Putative model for G2/M cell cycle regulation in tobacco BY-2 cells. Negative regulation 
is provided by Weel kinase that phosphorylates tyrosine 15 of Cdc2. In competition for the same site 
is a Cdc25-like phosphatase regulated in part by cytokinin levels. CAK kinase phosphorylates Cdc2 at 
residue threonine 161/167 facilitating binding with Cyclin B.

7.3. Is There A Link Between The Cell Cycle And Cell 
Size In Plants?

Another interesting finding o f this thesis was the positive relationship between cell 

cycle duration and cell size in tobacco By-2 cells when AtetrJ and Spcdc25 were 

expressed. AtetrJ expression resulted in a larger cell size phenotype with a longer cell 

cycle than WT. Spcdc25 expression caused a smaller cell size phenotype and shorter 

cell cycle cf. WT. In yeast cells, cell growth occurs in all phases of the cell cycle 

except M-phase (Mitchison, 1971; Conlon etal.,  2001).

To maintain a specific cell size, growth and division must be co-ordinated through 

the action of cell size checkpoints in G1 and/or G2 (Fantes and Nurse, 1978; Nurse, 

1977). This is because cells are able to reach an adequate size before entering S or M 

phase. Control in fission yeast is primarily at G2/M whereas in budding yeast it is 

primarily exerted at the Gl/S transition (Rupes, 2002). Unfortunately it is still 

uncertain how these checkpoints work although evidence suggests that it is linked to

121



threshold levels of particular cell-cycle activators (Daga and Jimenez, 1999; 

Polymenis and Schmidt, 1999).

Early work in fission yeast suggested an important role for Weel kinase in a 

checkpoint that co-ordinates cell growth and division at G2/M (Fantes and Nurse, 

1978; Nurse, 1975; Thuriaux et al., 1978) due to the ability of Weel to delay entry 

into mitosis by inhibiting the activity of Cdc2 (Russell and Nurse, 1987). Work on 

fission yeast Weel showed that loss of activity caused premature entry into mitosis, 

before sufficient growth had occurred (Nurse, 1975). Conversely, over-expressing 

weel caused delayed entry into mitosis and an increase in cell size. This indicates 

that levels of Weel activity determine the timing of entry into mitosis and exerts a 

strong effect on cell size (Russell and Nurse, 1987). Subsequent work on Cdc25 

resulted in similar results, with cdc25- mutants delaying entry into mitosis with a 

large cell size, and over-expression of cdc25 resulting in premature entry into mitosis 

and a decrease in cell size (Russell and Nurse, 1986). These observations show that at 

least in fission yeast, both Weel and Cdc25 are required for cell-size control.

The small cell size phenotype and premature entry into mitosis when Spcdc25 was 

expressed in tobacco BY-2 cells suggests strongly that, in plants, a Cdc25-like protein 

may also be required for cell size control. In plants, this may be due to the cytokinin 

transcellular signaling pathway (Fig. 7.1) since regulation of cell size in animals has 

been linked to growth factors (Conlon and Raffe, 2003). It is therefore likely that 

Spcdc25 expression in TBY-2 cells results in premature division at a reduced cell size, 

a process normally dependent on cytokinin levels (Zhang et al., 1996; Laureys et al., 
1998).

The increased cell size and cell cycle duration in Atetrl-expressing tobacco BY-2 

cells are harder to interpret than the results obtained for Spcdc25 expression. 

However, if the presence of ethylene is a requirement for G2/M transition, as is the 

case with cytokinin (Zhang et al., 1996), a larger cell size phenotype and cell cycle 

duration would result. Ethylene treatment result in a smaller cell size phenotype, 

supporting this hypothesis, but blocking of ethylene action with 1-MCP did not result 

in the same phenotype as Atetrl expression. A difference between the Atetrl 

expression and 1-MCP treatment may be elucidated by investigating the effect each 

one has on the ethylene biosynthesis pathway. In the original Arabidopsis etrl 

mutant, ethylene biosynthesis remained the same, whether exogenous ethylene was 

applied or not (Bleecker et al., 1988). Thus, it would be interesting to see whether 1-
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MCP application results in the same effect. This may help identify whether ethylene 

is a positive regulator at G2/M, as suggested by ethylene treatment and Atetrl 

expression in tobacco BY-2 cells.

Hence, a link between the cell cycle and cell size in tobacco is likely to be similar to 

that observed in yeast with the relationship between cell size and cell cycle duration 

dependent upon cell size checkpoints affected by positive and negative regulators of 

the cell cycle (Kellog, 2003). If the results of Atetrl expression in tobacco BY-2 cells 

were taken to be more indicative of complete ethylene inhibition than 1-MCP, 

evidence would strongly suggest checkpoint control at G2/M, similar to that observed 

in fission yeast (Rupes, 2002). Further research into the relationship between 1-MCP 

and Atetrl expression would have to be carried out to confirm this.

7.4. Concluding Remarks

The major discoveries reported in this thesis are focussed around three main areas. 

Firstly, ethylene induces cell cycle specific mortality at the G2/M boundary through 

the known ethylene signaling pathway and that ethylene-induced S-phase mortality 

was found to be independent of die ethylene signaling pathway. This, in conjunction 

with the detection of 3’-OH termini, indicates ethylene induced PCD at the G2/M 

boundary, a cell cycle transition point linked to DNA damage in mammalian and 

yeast systems. Secondly, the chemical (1-MCP) and genetic (Atetrl) approaches to 

inhibiting ethylene signaling resulted in two completely different cell phenotypes. 

Both can block ethylene signaling but whereas 1-MCP had no effect on tobacco BY-2 

cells, Atetrl expression caused massive perturbation to the cell cycle and mortality 

levels. Thus 1-MCP and Atetrl may have different effects downstream of the 

ethylene receptors. Finally, Spcdc25 expression in tobacco BY-2 cells resulted in 

premature entry into mitosis, a shortened cell cycle, and reduced cell size. Results 

were similar to that observed in fission yeast and indicated a conserved mechanism 

for cell cycle progression using a CDC25-like phosphatase at G2/M in plants. 

Furthermore, Spcdc25-expressing cells were able to overcome a mevinolin block, 

indicating Spcdc25 expression overrides checkpoint control.
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7.5. Future Directions

The research in this thesis has lead to a number of areas in which future work could 

be directed. These include:

• Using 1 -MCP in conjunction with other PCD elicitors to see if the induced cell 

death is dependent on the ethylene signaling pathway. A number of PCD 

elicitors have already been linked to the ethylene signaling pathway including 

Fumonisin B1 (Asai et al., 2000).

• Investigating the effects of 1-MCP treatment and Atetrl expression on 

endogenous ethylene/cytokinin levels ± exogenously applied ethylene. It is 

known that the original Arabidopsis etrl mutant showed no change in ethylene 

biosynthesis when treated with ethylene (Bleecker et al., 1988). It would be 

interesting to see if inhibition of ethylene biosynthesis occurs in both 1-MCP 

treatment and Atetrl expression in the tobacco BY-2 cell line.

• Examining endogenous levels of ethylene in Spcdc25 expressing cell lines to 

see if ethylene biosynthesis is affected by the low levels of cytokinin present. 

1-aminocyclopropane-l-carboxylic acid synthase (ACS) activity is the rate- 

limiting step of ethylene biosynthesis (Woeste et al., 1999) and cytokinin 

levels have been shown to have a positive relationship with ethylene 

biosynthesis via posttranscriptional modification of ACS5 (Vogel et al., 1998).

• Expressing both Spcdc25 and Atetrl in the same tobacco BY-2 cell line to see 

if a normal cell phenotype arises. This is because Spcdc25 and Atetrl 

expression resulted in exactly the opposite phenotypes.
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Appendix I -  Media And Solutions

A.l.i. Bacterial Growth Media

2 x YT Media -

Per litre:
To 900ml o f distilled water add:

Tryptone -  16g
Yeast extract -  lOg
Sodium chloride (NaCl) -  5g

Adjust to pH 7.0 with sodium hydroxide (NaOH), make to 1 litre, and 
autoclave.

A.I.H. Tobacco BY-2 Media and Solutions

Tobacco BY-2 Stock Solutions -

55mM Myoinositol

147mM Potassium dihydrogen orthophosphate -  
(KH2PO4)
3mM Thiamine hydrochloride (HC1) -

0.45mM 2, 4-Dichlorophenoxyacetic acid -
(2, 4-D)

Aphidicolin -

Tnh^ffn BY-2 Liquid Media -
Per litre:

To 900ml o f distilled water add
Murashige and Skoog basal salts 
Sucrose
Myoinositol stock solution 
KH2PO4 stock solution 
Thiamine HC1 stock solution 
2, 4-D stock solution 

Adjust to pH 5.8, make to 1 litre, and autoclave.

5g in 500ml distilled 
H20
lOg in 500ml distilled 
H20
lOOmg in 100ml distilled 
H20
50mg in 500ml distilled H2O 
20mM sodium hydroxide 
(NaOH)
5mg dissolved in 1ml DMSO

-3 .2 g
- 30g
- 10ml
- 10ml
- 1ml 
-2ml



Tobacco BY-2 Solid Media -

As above but with the addition o f 0.8% agar

A.l.iii. Protein Extraction

Stock Solutions -

0.5M HEPES (pH 7.5)

1M p-glycerophosphate 
(glycerol-2-phosphate)
5M NaCl

0.2M Sodium vanadate -  

0.5mM PMSF
(Phenylmethylsulfonylflouride)

39.05g dissolved in UHP water. Adjust to 
pH 7.5 and make up to 150ml. Store at 4°C. 
21.6g dissolved in 100ml of UHP water. 
Store at room temperature.
58.44g dissolved in 200ml of sterile UHP 
water.
1.839g o f sodium orthovanadate dissolved in 
50ml o f sterile UHP water.
87mg dissolved in 5ml absolute ethanol. 5x 
lml aliquots were placed into 
microcentrifuge tubes and stored at -20°C.

Lvsis Buffer -
For 10ml -

50mM HEPES (pH 7.5)
lOOmMNaCl
10% Glycerol
60mM p-glycerophosphate
(glycerol-2-phosphate)
ImM Sodium vanadate
0.5mM PMSF
Protease inhibitor tablet
(Roche)

lml o f 0.5M stock solution 
200pl of 5M NaCl stock solution 
lml o f 100% glycerol stock solution 
600pl of 1M stock solution

50jil o f 0.2M stock solution 
50|il of 0 .1M stock solution 
1

Add 7.1 ml o f sterile UHP water to make up to 10ml



A.I.iv. Western Blotting Solutions

Stock Solutions -

5x Running Buffer -
Per litre:

To 900ml o f distilled H2O add:
Tris - 1.5%

- 7.2%
- 0.5%

Glycine
SDS

Resolving Gel Buffer -
Tris -  113.55g
SDS -  1.25g

Make to 500ml in distilled H20. pH should be 8.9.

Stacking Gel Buffer -
Tris -18 .15g
SDS -  2.5g

Make to 500ml in distilled H2O. pH should be 6.7

5x Electrophoresis Buffer -
Per litre:

To 900ml o f distilled H2O add:

Make to 1 litre in distilled H2O. pH should be 8.8

5x SDS-PAGE Sample Buffer-
For 20ml:

Tris -  60.55g
-  144.1g 
- 5 g

Glycine
SDS

Bromophenol blue

Glycerol

Tris-HCl

SDS
-  10ml
-

-  lOmg
-  9ml o f 0.5M stock solution (pH6.8)

Dithiothreitol (DTT) -  0.771 g
Aliquot into microcentrifuge tubes and store at -20°C.



Tank Blotting Transfer Buffer -

Resolving Gel -
Protogel
(accrylamide/bisaccrylamide 
30% solution)
Resolving gel buffer 
UHP water
Ammonium perisulphate 
TEMED

-2.5m l

-  1.95ml
-  3 ml 
-7 5 p l
-  7.5pl

Stacking Gel -
Protogel -  0.65ml
Stacking gel buffer -  1.25ml
UHP water -  3.05ml
Ammonium perisulphate -  50pl 
TEMED -  5 pi

Destain Solution -
dffiO  
Methanol 
Acetic acid

-  500ml
-  400ml
-  100ml

Tris Buffered Saline (TBS) Solution -
Per litre:

To 900ml o f deionised water add 
Sodium chloride (NaCl) 
Potassium chloride (KC1) 
Tris

pH to 7.4 with HC1 and autoclave.

-8g
- 0.2g
-3g

A-I.v. 3’-OH Detection Solutions

Phosphate Buffered Saline (PBS) Solution -
Per litre:

To 900ml o f deionised water add 
NaCl - 8g
KC1 - 0.2g
Na2H P04 - 1.44g
KH2PO4 - 0.24g

pH to 7.4 with HC1 and autoclave.



A.I.vi. DNA Extraction Solutions

2iC TA B B uffer-

Tris (pH 8.0) - lOOmM
NaCl - 1.4M
EDTA - 20mM
CTAB - 2%

TE Buffer (pH8.0) -

Tris (pH 8.0) - lOmM
EDTA - ImM

A.II.vii. Gel Electrophoresis

Gel Electrophoresis Sample Running Buffer -
For 20ml:

Sterile dH20 -  500pl
Glycerol -  500pl
Bromophenol blue -  lOmg

Aliquot into microcentrifuge tubes and store at -20°C.

Gel Electrophoresis Tank Buffer -

For 50x Working Concentration:
Tris - 242g
Glacial Acetic Acid - 57.1ml
0.5MEDTA - 100ml

pH should be 8.0.



Appendix II -  Chapter 3 Experimental Data

This appendix gives all the experimental data for chapter 3 including statistical analysis 

o f mitotic cell sizes.

A.II.i. Cell Cycle Data For Control (WT) (Figure 3.1 And 
3.2)

The percentage values for control (WT) mitotic index (Fig. 3.1) and mortality index 

(Fig. 3.2) after a 24 h synchronization with aphidicolin. The results shown in the table 

are from consolidated data. Standard error for the control mitotic index is shown.

Time (h) After 
Release From 
Aphidicolin

Control (WT) 
Mitotic Index (%)

Control (WT) 
Mortality Index

(%)

Standard Error 
For Control 

Mitotic Index (%)
0 3
1 0 0 0
2 0 4.5 0
3 0 0 0
4 0 3 0
5 11 0 2
6 26 5.5 5
7 42 0 3
8 46 6 3
9 32 0 2
10 18 7.5 2
11 10 3.1 0.5
12 7 0 1
13 0 3.5 0
14 0 0 0
15 0 2 0



16 0 0 0
17 2 3.4 0.1
18 5 0 0.5
19 10 3.1 0.4
20 15 0 0.8
21 20 0 0.2
22 20 0 1
23 17 0 0.7
24 18 0 0.4
25 10 0 0.1

A.II.ii. Cell Cycle Data For Ethvlene Treated Cells (Figure 
3.1a And 3.2a)

The percentage values for ethylene treated mitotic index (Fig. 3.1a) and mortality index 

(Fig. 3.2a) after a 24 h synchronization with aphidicolin. The results shown in the table 

are from consolidated data. Standard error for the control mitotic index is shown.

Time (b) After 
Release From 
Aphidicolin

Ethylene Treated 
Mitotic Index (%)

Ethylene Treated 
Mortality Index

(%)

Standard Error 
For Ethylene 

Mitotic Index (%)
0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 5 0
5 0 0 0.6
6 7.7 11.3 0.1
7 14 0 0.4
8 26.5 22 3.3
9 17.4 0 1.7



10 11.5 23 0.3
11 7 5.5 1.2
12 4.7 0 0.8
13 3.2 13 2
14

2.2 0 1
15 2.2 17.4 0.2
16 0.6 0 0.5
17 1.2 6.6 0.4
18 1.1 0 0.2
19 4.3 7.5 1
20 5.4 0 0.6
21 10.4 7.9 1.3
22 17.4 0 1.3
23 6.1 5.8 0.6
24 0
25 0

A.II.iii. Cell Cycle Data For Ethvlene+Silver Nitrate 
Treated Cells (Figure 3.1b And 3.2b)

The percentage values for ethylene+silver nitrate treated mitotic index (Fig. 3.1b) and 

mortality index (Fig. 3.2b) after a 24 h synchronization with aphidicolin. The results 

shown in the table are from consolidated data. Standard error for the control mitotic 

index is shown.

Time (h) After 
Release From 
Aphidicolin

Ethylene + Silver 
Nitrate Treated 

Mitotic Index (%)

Ethylene + Silver 
Nitrate Treated 
Mortality Index

(%)

Standard Error 
For Ethylene + 
Silver Nitrate 

Mitotic Index (%)
0 0
1 0 0 0



2 0 0 0
3 0 0 0
4 0 1 0
5 1.1 0 0.6
6 4.2 0 0.5
7 7 0 0.7
8 16 0 1
9 16 0 1.2
10 10 4.5 2.7
11 5 1.9 1.2
12 3.7 0 1.3
13 6.4 2.5 1.2
14 8 0 2.3
15 4.4 8 0.9
16 3.3 0 0.5
17 1 0.6 0.4
18 1.1 0 0.6
19 0.3 0 0.1
20 2.9 0 2.2
21 7.7 3 0.6
22 11.3 0 0.9
23 11.9 4.5 0.6
24 4.6 0 0
25 7

A.II.iv. Cell Cycle Data For Silver Nitrate Treated Cells 
(Figure 3.1c And 3.2c)

The percentage values for silver nitrate treated mitotic index (Fig. 3.1b) and mortality 

index (Fig. 3 .2b) after a 24 h synchronization with aphidicolin. The results shown in the 

table are from consolidated data. Standard error for the control mitotic index is shown.



Time (h) After 
Release From 
Aphidicolin

Silver Nitrate 
Treated Mitotic 

Index (%)

Silver Nitrate 
Treated Mortality 

Index (%)

Standard Error 
For Silver Nitrate 
Mitotic Index (%)

0 0 0
1 0 0.33 0
2 0 0
3 0.167 0.17 0.167
4 0 0
5 0.67 7.49 0
6 0 7.67 0
7 0 5.83 0
8 3.67 3.67 1.33
9 15 4 0.67
10 18.91 7.17 0.63
11 12.5 5.67 1.83
12 5.33 1.5 1.33
13 3.67 2.17 0.67
14 2.5 1.17 0.83
15 0.83 1.33 0.167
16 0.83 1.33 0.167
17 0.33 0.33
18 0.167 0.167
19 0.67 0.67
20 0.5 0.167
21 2.67 1
22 5.67 2
23 8.167 2.167
24 9.67 2
25 8.83 0.167

X



A.II.v. Nuclear Fragmentation In Control (WO And
Ethylene Treated Cells

The percentage values for nuclear fragmentation (3’-OH termini generation) in control 

(WT) and ethylene treated cells.

Time (h) After Release From 

Aphidicolin

Nuclear Fragmentation In 

Control (%)

Nuclear Fragmentation In 

Ethylene Treated (%)

0 0 0

2 1 1

4 2 3

6 2 3

8 1 12

10 2 14

A.II.vi. Mitotic Cell Size Data (Figure 3.5)

The average mitotic cell areas and other details were taken from calculations resulting 

from the tables in the section below regarding statistical analysis o f mitotic cell areas.

Cell Line / Treatment Mitotic Cell Size 

(mM2)

n Standard Error

Control (WT) 3046 125 75.7
Ethylene 2562 51 122
Ethylene + Silver 

Nitrate

3310 126

88.4
Silver Nitrate 3115 57 123



A.II.vii. Statistical Analysis Of Mitotic Cell Areas

All statistical analysis was carried using Minitab 13® in conjunction with the Sigma 

Scan® measured mitotic cell areas.

A.ll.vii,i. Control Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for wild-type (control) mitotic cell 

areas using Sigma Scan ®.

2106.962 2708.576 3119.61 2616.401 2787.315 3540.777 1711.616 4856.296 2409.007
3989.942 4117.47 3915.857 2424.845 3212.535 2314.43 1298.48 3523.738 2490.674
3641.133 2044.736 3607.506 2509.214 3459.111 1773.241 1627.172 3101.445 2928.805
3901.37 1956.54 4192.531 2013.811 4041.359 3965.397 2503.134 3390.43 2701.745

3506.924 2125.502 4019.666 2407.506 3216.814 4476.787 2757.591 2174.892 3660.199
3759.505 3189.491 3831.113 1989.341 3090.936 2873.034 2687.258 2706.099 3426.759
5164.421 3291.95 3949.334 2240.195 2291.162 4574.217 4942.09 3091.912 2466.054
2284.031 3448.527 4937.211 2625.934 2746.632 2007.056 3418.202 2344.98 2860.199
2709.702 3089.81 3010.021 4477.163 1921.711 6701.595 2643.648 2445.112 2651.905

2785.438 2755.264 3514.28 4003.378 1929.518 2501.858 3186.789 2578.12 3243.986

2752.336 3034.941 3676.037 2931.056 2567.086 3290.373 1790.655 2378.232 2345.205
2914.243 3244.736 2692.588 2531.432 2051.942 3901.07 4719.084 1894.314 2862.976

3543.779 2843.31 3775.042 2766.673 3416.851 4145.693 3148.883 2256.859 2827.247

2216.176 2516.194 3009.8705 2929.18 3032.164 2641.396 3378.87 3480.503

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.



Descriptive Statistics

Variable: C1

Anderson-Darling Normality Test
A-Squared: 1.052
P-Value: 0.009

Mean 3045.94
StDev 846.70
Variance 716902
Skewness 0.964681
Kurtosis 2.03004
N 125

Minimum 1298.48
IstQuartile 2478.36
Median 2914.24
3rd Quartile 3519.01
Maximum 6701.60

95% Confidence Interval for Mu 
2896.05 3195.84

95% Confidence interval for Sigma 
753.16 966 98

95% Confidence Interval for Median 
2752.49 3100.96

The basic statistics on the control mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.009. As this is below P<0.05 the data is not 

normally distributed (it is non-parametric).

A.II.vii.ii. E th y len e  T re a te d  Mitotic Cell A reas

Below is a table o f  all mitotic cell areas measured for ethylene-treated mitotic cell areas 

using Sigma Scan ®.

2015.913 3583.261 3295.2524 3278.4387 3078.852 3832.989 2334.021 1741.715 1595.872

1635.504 3477.125 3846.4252 2357.5905 2557.328 1287.296 4828.223 1604.278 1307.788

2742.578 3270.407 1598.9491 2480.0901 4094.352 1713.567 2405.479 1823.757 2045.165

2405.78 3088.534 2912.2162 2253.9313 1469.769 4489.773 3245.862 3635.729

2953.8 2484.293 1589.4915 2780.1088 1923.513 2995.159 3188.215 2436.555

1992.569 1222.068 2459.6735 1949.484 2896.453 1899.944 3250.816 1309.589
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Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

i i i
3000 3800 4600

I I I

95% Confidence Interval for Mu

Variable: C2

Anderson-Darling Normality Test

95% Confidence Interval for Median

A-Squared: 0.465
P-Value: 0.244

Mean 2562.15
StDev 874.57
Variance 764878
Skewness 0.471835
Kurtosis -3.3E-01
N 51

Minimum 1222.07
1st Quartile 1823.76
Median 2459.67
3rd Quartile 3245.86
Maximum 4828.22

95% Confidence Interval for Mu
2316.17 2808.13

95% Confidence Interval for Sigma
731.76 1087.16

95% Confidence Interval for Median
2049.57 2912.19

The basic statistics on the ethylene-treated mitotic cell area data show the P-value for 

the Anderson-Darling normality test as 0.244. As this is above P<0.05 the data is 

normally distributed.

A.II.vii.iii. S ilver N itra te  T re a te d  M itotic Cell A re as

Below is a table o f  all mitotic cell areas measured for silver nitrate-treated mitotic cell 

areas using Sigma Scan ®.

3250.896 3016.326 3911.803 3427.135 3457.009 3388.178 1806.868 2871.458 2878.589

2967.36 3787.052 3409.12 3705.536 2889.548 2709.476 3922.612 3204.954

5201.992 2616.176 4339.951 4512.742 4903.659 3010.246 2909.439 2507.863

2111.315 2632.014 4392.644 2140.139 4735.448 1326.178 2789.567 3274.761
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3932.82 3934.172 1816.476 2116.57 2043.385 1866.992 2452.468 2509.964
2582.473 3585.288 2115.219 3224.47 1687.671 4298.893 2515.068 2991.631
3085.907 2201.389 5148.583 4467.18 3813.924 2176.018 2744.605 2252.28

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

i
3500 4500

' J.,
1500

' J____
  “ “

95% Confidence Interval for Mu

3000

Variable: C3

Anderson-Darting Normality Test 
A-Squared: 0.432
P-Value:

Mean
StDev
Variance
Skewness
Kurtoas
N

Minimum 
1st Quartile 
Median 
3rd Quartile 
Maximum

0 295

3115.29 
925.22 

856040 
0 408551 
-4.5E-01 

57

1326.18 
2480.17 
2991.63 
3800 49 
5201.99

95% Confidence Interval for Median

95% Confidence Interval for Mu 
2869.79 3360.78

95% Confidence Interval for Sigma 
781.12 1135.02

95% Confidence Interval for Median 
2732.88 3312.63

The basic statistics on the silver nitrate-treated mitotic cell area data show the P-value 

for the Anderson-Darling normality test as 0.295. As this is above P<0.05 the data is 

normally distributed.

A.II.vii.iv. E th y len e  A nd S ilv e r  N itra te  T rea ted  Mitotic Cell A reas

Below is a table o f  all mitotic cell areas measured for ethylene and silver nitrate-treated 

mitotic cell areas using Sigma Scan ®.
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2902.158 2074.01 2069.807 2122.049 1880.053 2335.598

3625.22 2712.179 1795.834 1434.04 1825.408 3161.043

2499.606 3494.84 2900.357 2895.327 1977.031 3876.675

3599.174 2209.345 1432.764 1937.774 3614.712 2906.887

2420.567 2751.06 2883.017 1785.1 3813.173

2395.722 2290.261 2805.254 1555.339 2189.004

1962.695 2649.202 2477.763 3834.791 2455.62

1977.707 3292.325 2219.854 2398.724 4112.066

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

Variable: E+S

Anderson-Darling Normality Test 
A-Squared: 0.678
P-Value: 0.072

Mean 2580.71
StDev 707.66
Variance 500789
Skewness 0.483467
Kurtosis -6.2E-01
N 44

Minimum 1432.76
1st Quartile 2000.73
Median 2438.09
3rd Quartile 2905.70
Maximum 4112.07

95% Confidence Interval for Mu 
2365.56 2795.86

95% Confidence Interval for Sigma 
584.69 896.63

95% Confidence Interval for Median 
2209.81 2802.83

The basic statistics on the ethylene + silver nitrate-treated mitotic cell area data show the 

P-value for the Anderson-Darling normality test as 0.072. As this is above P<0.05 the 

data is normally distributed.
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A.ll.vii.v. Comparison Of Control. Ethvlene. Silver Nitrate. And 
Ethvlene+Silver Nitrate Treated Mitotic Cell Areas

A.ll.vil.v.1. Logarithmic Transformation Of Mitotic Cell Area Data Sets

Since control mitotic cell areas showed non-parametric distribution whilst mitotic cells 

areas o f the treated cells were normally distributed, all mitotic cell area data sets were 

logarithmically transformed (Table 5; raw data not shown). This resulted in all data sets 

being normally distributed, enabling comparisons to be made against each other.

Mitotic Cell Area Data Set Anderson-Darling P- 
Value On Logarithmically 
Transformed Data

Normally Distributed 
Yes/No

Control (Wild-Type) 0.990 Yes

Ethylene 0.301 Yes

Silver Nitrate 0.899 Yes

Ethylene and Silver Nitrate 0.640 Yes

A.H.vii.v.11. 2 Sample t-Test Between Logarithmically Transformed Mitotic 
Cell Area Data Sets

The result o f logarithmically transforming the mitotic cell area data sets into patterns of 

normal distribution meant that the data sets could be compared with each other. There are 

a number o f parametric tests available to analysis normally distributed data sets. A two- 

sample t-test was used over ANOVA (Analysis o f  variance) as comparisons could be 

made between data sets with different /i-value. A two-sample t-test was chosen over 

other t-tests as the data sets are considered independent (separate tobacco BY-2 cultures)



and the variances were shown to be equal using the F-test (P-value was greater than 

0.05). A confidence interval o f 95.0% and two-tailed tests (this uses the hypothesis that 

samples are not equal) were used when comparing mitotic cell area data. Table 6 gives 

the results o f the two-sample two-tailed t-tests carried out to compare whether there was a 

statistical difference between the treated mitotic cell areas and control mitotic cell areas. 

Comparisons were also carried out between ethylene versus ethylene+silver nitrate, 

ethylene versus silver nitrate, and silver nitrate versus ethylene+silver nitrate.

Mitotic Ceil Areas T-value and P- Degrees of Significant
To Be Compared value Freedom Difference?
Control versus Ethylene T = 3.96 

P= 0.000
174 Yes

Control versus Silver T = -0.32 180 No
Nitrate P = 0.746
Control versus T = 3.47 167 Yes
Etbylene+Silver Nitrate P = 0.001
Ethylene versus Silver 
Nitrate

T = -3.32 
P = 0.001

106 Yes

Ethylene versus 
Ethylene+Silver Nitrate

T = -0.45 
P = 0.655

93 No

Silver Nitrate versus T = -3.08 99 Yes
Ethylene* Silver Nitrate P = 0.003
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Appendix III -  Chapter 4 Experimental Data

This appendix gives all the experimental data for chapter 4 including statistical analysis 

o f mitotic cell sizes.

AJII.i. Cell Cvcle Data For Control (WT) (Figure 4.2 And 
4.3)

The percentage values for control (WT) mitotic Index (Fig. 4.2) and mortality Index 

(Fig. 4.3) after a 24 h synchronization with aphidicolin. The results shown in the table 

are the consolidated data from three readings per time point. Standard error, as calculated 

from the three replicates per time point, is also shown.

Time (h) After 
Release From 
Aphidicolin

Control (WT) 
Mitotic Index (%)

Control (WT) 
Mortality Index

(•/.)

Standard Error 
For Control 

Mitotic Index (•/•)

Standard Error 
For Control 

Mortality Index
(%)

0 0
1 0.11 0.44 0.111 0.222
2 0.11 0.44 0.111 0.222
3 0.11 1.32 0.111 0.192
4 3.52 0.44 0.294 0.294
5 8.03 1.32 1.28 0.38
6 24.09 1.54 1.71 0.294
7 43.01 2.2 3.02 0.62
8 23.76 2.53 2.14 0.44
9 13.42 2.09 0.4 0.587
10 7.26 1.21 0.88 0.62
11 3.85 2.2 0.78 0.4
12 2.2 1.54 0.68 0.222

xix



13 1.21 0.77 0.294 0.48
14 0.88 1.21 0.111 0.56
15 1.76 1.43 0.294 0.294
16 2.86 1.65 0.68 0
17 6.93 0.67 0.77 0.192
18 11.33 0.99 3.29 0
19 19.25 0.99 4.03 0.51
20 32.01 0.88 0.77 0.56
21 11.44 1.65 0.294 0.51
22 12.65 1.43 0.62 0.111

A.III.ii. Cell Cycle Data For 1-MCP Treated Cells (Figure 
4.2a And 4.3a)

The percentage values for 1-MCP treated Mitotic Index (Fig. 4.2a) and Mortality Index 

(Fig. 4.3a) after a 24 h synchronization with aphidicolin. The results shown in the table 

are the consolidated data from three readings per time point. Standard error, as calculated 

from the three replicates per time point, is also shown.

Time (h) After 
Release From 
Aphidicolin

1-MCP Treated 
Mitotic Index (%)

1-MCP Treated 
Mortality Index

(%)

Standard Error 
For 1-MCP 

Treated Mitotic 
Index (%)

Standard Error 
For 1-MCP 

Treated Mortality 
Index (%)

0 0
1 0 0.33 0 0.111
2 0.33 0.77 0.192 0.4
3 0.33 1.21 0 0.294
4 3.33 0.67 0.84 0.19
5 13.09 1.87 0.4 0.48
6 18.7 0.22 0.4 0.111

xx



7 42.57 0.33 1.26 0.19
8 28.33 0.44 1.26 0.222
9 18.81 0.67 0.77 0.38
10 11.77 0.22 0.867 0.111
11 8.69 0.44 0.587 0.294
12 5.28 0.88 0.192 0.222
13 2.53 1.1 0.4 0.222
14 2.97 0.77 0.192 0.294
15 1.76 1.21 0.111 0.73
16 2.31 0.55 0.192 0.222
17 4.07 0.44 0.587 0.294
18 8.8 1.87 0.867 0.111
19 5.39 0.55 0.587 0.222
20 22.22 0.77 0.867 0.62
21 9.57 0.44 0.51 0.222
22 7.04 0.67 0.48 0.38

A.III.iii. Cell Cycle Data For 1-MCP + Ethvlene Treated 
Cells (Figure 4.2b And 4.3b)

The percentage values for 1-MCP + ethylene treated Mitotic Index (Fig. 4.2b) and 

Mortality Index (Fig. 4.3b) after a 24 h synchronization with aphidicolin. The results 

shown in the table are the consolidated data from three readings per time point. Standard 

error, as calculated from the three replicates per time point, is also shown.

Time (h) After 
Release From 
Aphidicolin

1-MCP + 
Ethylene Treated 
Mitotic Index (%)

1-MCP + 
Ethylene Treated 
Mortality Index

(%)

Standard Error 
For 1-MCP + 

Ethylene Treated 
Mitotic Index (%)

Standard Error 
For 1-MCP + 

Ethylene Treated 
Mortality Index

(%)
0 0
1 0 0.33 0 0.192
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2 0.2211 0.55 0.111 0.294
3 0.2211 1.33 0.222 0.333
4 1.43 1.76 0.111 0.294
5 4.73 1.87 0.222 0.4
6 21.67 1.43 0.587 0.8
7 41.14 0.55 3.53 0.222
8 34.54 0.55 0.867 0.222
9 19.8 0.67 0.693 0.383
10 12.76 0.67 0.294 0.192
11 5.17 0.44 0.294 0.222
12 2.09 0.67 0.294 0.192
13 0.55 0.67 0.222 0.192
14 0.2211 4.51 0.587 1.68
15 1.76 10.67 0.8 3.26
16 2.31 0.77 0.77 0.294
17 2.97 1.21 0.51 0.111
18 10.67 0.55 0.677 0.111
19 11 0.33 0.294 0.192
20 16.61 1.1 0.294 0.4
21 H 21.78 2.53 0.51 0.62
22 11 0.77 0.62 0.294

AJII.iii.i. Statistical Analysis of 1-MCP + Ethylene Cell Cycle 
Mortality Peak At 15 h

To see if  there was a statistical difference between the 1-MCP/control (WT) mortality at 

15 h and the 1-MCP + ethylene mortality peak at 15 h, statistical analysis was carried out. 

The data for control, 1-MCP, and 1-MCP + ethylene at 15 h after release from 

aphidicolin was all normally distributed. Therefore, a two sampled t-test was employed 

to see if  there was a statistical difference between 1-MCP+ethylene and 1-MCP/control.

Mitotic Cell Areas T-value and P- Degrees of________ Significant
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To Be Compared value Freedom Difference?
1 -MCP+Ethylene versus T = -2.85 4 Yes
Control P = 0.046
1 -MCP+Ethylene versus T = -2.86 4 Yes
1-MCP P = 0.046

A.III.iv. Histone H4 Expression Level Data For 1-MCP 
Control (WT) (Figure 4.1)

The raw volume values for histone H4, 18S ribosomal RNA, and histone H4 corrected 

against 18S Ribosomal RNA (Fig. 4.1) in control (WT) for 1-MCP.

Tine (h) after release 
froas aphidicotia

Histone H4 Expression 
la Control (WT)

18S Ribosomal RNA 
Expression In Control 

(WT)

Corrected Histone H4 
Expression In Control 

(WT)
0 65851 9168 7.18
1 68212 11248 6.06
2 63329 12678 5
3 62697 14340 4.37
4 58531 13988 4.18
5 50476 19050 2.65
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A.III.v. Optical Density Readings For 1-MCP Treated And
Control (WT) Over A 7 Dav Period (Figure 4.4)

The growth (optical density) o f  1-MCP treated and control (WT) cells over a seven day 

period. Data consolidated from 9 separate readings per time point (1-MCP) and from 3 

separate readings per time point (control) are given in the table as well as standard error.

Day Control (WT) 
Optical Density 

§  550nm

Standard Error 
For Control (WT) 
Optical Density 

@ 550nm

1-MCP Treated 
Optical Density 

@ S50nm

Standard Error 
For 1-MCP 

Treated Optical 
Density @ 550nm

0 0.045 0 0.058 0.00083
1 0.092 0.00167 0.082 0.00183
2 0.147 0 0.151 0.00309
3 0.205 0.00441 0.209 0.00182
4 0.207 0 0.209 0.00056
5 0.215 0.00167 0.217 0.0241
6 0.215 0 0.218 0.00083

A.III.vi. Mitotic Index Readings For 1-MCP Treated And 
Control (WT) Over A 7 Dav Period (Figure 4.5)

The mitotic index readings o f  1-MCP treated and control (WT) cells over a seven day 

period. Data consolidated from 9 separate readings per time point (1-MCP treated) and 

from 3 separate readings per time point (control) are given in the table as well as standard 

error.
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Day Control (WT) 
Mitotic Index (%)

r Standard Error 
For Control (WT) 

Mitotic Index

1-MCP Treated 
Mitotic Index (%)

Standard Error 
For 1-MCP 

Treated Mitotic 
Index

0
1 0.11 0.111 0.48 0.185
2 7.26 0.192 6.75 0.527
3 4.73 0.4 7.92 0.303
4 3.19 0.294 4.14 0.353
5 2.64 0.192 3.63 0.208
6 2.53 0.294 2.02 0.137

A.III.vii. Mortality Index Readings For 1-MCP Treated 
And Control (WT) Over A 7 Dav Period (Figure 4.6)

The mortality index readings o f  1-MCP treated and control (WT) cells over a seven day 

period. Data consolidated from 9 separate readings per time point (1-MCP treated) and 

from 3 separate readings per time point (control) are given in the table as well as standard 

error.

Day Control (WT) 
Mortality Index 

(•/•)

Standard Error 
For Control (WT) 
Mortality Index

A tet^C 11 
Mortality Index 

(•/.)

Standard Error 
For Atebf Cl 1 

Mortality Index
0
1 0.88 0.222 7.26 1.12
2 1.32 0.192 7.81 0.757
3 1.65 0.333 4.36 0.633
4 2.42 0.62 10.49 0.49
5 3.08 0.294 6.99 0.593
6 0.77 0.294 6.23 0.563

xxv



Statistical Analysis of Control (WT) and 1-MCP Mortality 
Over a 7 Dav Period

To sec if  there was a statistical difference between the control (WT) mortality and 1- 

MCP mortality over a 7 day period, statistical analysis was carried out. Since control and 

1-MCP mortality data were normally distributed, a two sampled t-test was employed to 

see if  there was a statistical difference.

Mitotic CeO Areas 
To Be Compared

T-value and P- 
value

Significant
Difference?

Control versus 1-MCP T * -0.30 
P = 0.768

No

A.lll.viii. Mitotic Cell Size Data (Figure 4.7)

The average mitotic cell areas and other details were taken from calculations resulting 

from the tables in the section below regarding statistical analysis o f  mitotic cell areas.

Cell Use / Treatment Mitotic CeU Size 
(mM2)

if Standard Error

Control (WT) 3046 125 75.7
1-MCP 3067 124 66.9
1-MCP + Ethylene 2991 92 86.6
Ethylene 2562 51 122
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A.III.ix. Statistical Analysis Of Mitotic Cell Areas

All statistical analysis was carried using Minitab 13® in conjunction with the Sigma 

Scan® measured mitotic cell areas.

A.lll.ix.1. Control Mitotic Cell Areas

Below is a table o f  all mitotic cell areas measured for wild-type (control) mitotic cell 

areas using Sigma Scan ®. The same data was used as that in the ethylene chapter since 

wild-type mitotic cell areas was seen to be consistent between synchrony experiments.

2106.962 2708.576 3119.61 2616.401 2787.315 3540.777 1711.616 4856.296 2409.007
3969.942 4117.47 3915.857 2424.845 3212.535 2314.43 1298.48 3523.738 2490.674
3641.133 2044.736 3607.506 2509.214 3459.111 1773.241 1627.172 3101.445 2928.805
3901.37 1956.54 4192.531 2013.811 4041.359 3965.397 2503.134 3390.43 2701.745

3506.924 2125.502 4019.666 2407.506 3216.814 4476.787 2757.591 2174.892 3660.199
3759.505 3189.491 3831.113 1989.341 3090.936 2873.034 2687.258 2706.099 3426.759
5164.421 3291.95 3949.334 2240.195 2291.162 4574.217 4942.09 3091.912 2466.054
2284.031 3448.527 4937.211 2625.934 2746.632 2007.056 3418.202 2344.98 2860.199
2709.702 3089.81 3010.021 4477.163 1921.711 6701.595 2643.648 2445.112 2651.905
2785.438 2755.264 3514.28 4003.378 1929.518 2501.858 3186.789 2578.12 3243.986
2752.336 3034.941 3676.037 2931.056 2567.086 3290.373 1790.655 2378.232 2345.205
2914.243 3244.736 2692.588 2531.432 2051.942 3901.07 4719.084 1894.314 2862.976
3543.779 2843.31 3775.042 2766.673 3416.851 4145.693 3148.883 2256.859 2827.247
2216.176 2516.194 3009.8705 2929.18 3032.164 2641.396 3378.87 3480.503

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

Variable: C1

Anderson-Darting Normality Test
A-Squared: 1 052
P-Value: 0 009

Mean 3045 94
StDev 046 70
Variance 716902
Slrewness 0964681
Kurtoas 2 03004
N 125

Minimum 1298.48
1st Quartile 2478 36
Median 2914 24
3rd Quartile 3519 01
Maximum 6701 60

95% Confidence Interval for Mu 
2696 05 3195 64

95% Confidence Interval for Sigma
753 1 6 966 98

95% Confidence Interval for Median
275249 310096

The basic statistics on the control mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.009. As this is below P<0.05 the data is not 

normally distributed (it is non-parametric).

A.III.ix.ii. 1-MCP Treated Mitotic Cell A reas

Below is a table o f  all mitotic cell areas measured for 1-MCP-treated mitotic cell areas 

using Sigma Scan ®

3009.12 2520 323 2854.494 3538.375 2791.368 2652.956 2822.969 4842.409 3127.866

2931.207 2492.7 3238.807 3065.04 2498.18 2394.671 4538.863 1719.947 2718.033

3871.345 3538.675 3702.158 2549.672 2628.936 2350.535 3223.644 1994.971 3050.779

5222.218 3705.911 2896.679 3096.266 2957.703 3001.464 4052.092 2896.904 2858.397

3996.622 4156.202 2522.349 3511.953 1823.381 2829.499 3397.485 2663.914 2618.653

3666 429 3623.794 3194 37 2907.863 1737.587 3569 2004.804 2128.955 3749.897

■ i i i i i
1500 2500 3500 4500 5500 6500

95% Confidence Interval for Mu

95% Confidence Interval for Medan
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4536.611 4395.646 3135.297 2596.059 3145.881 4159.054 1462.713 2571.965 3377.895

3218.915 3523.738 3339.313 3206.981 2037.906 1826.309 1772.941 2190.205 2692.888

4197.561 3797.936 2684.932 2750.31 3224.845 2894.877 3584.838 2540.589 2664.74

5272.584 3387.052 3286.545 2674.573 2224.582 2760.293 3693.976 4005.104 2655.958

3493 789 3903.171 3598.724 3104.673 2692.813 2147.044 2785.063 1948.733 3386.451

3170.126 3827.059 2634.866 2962.582 2352.937 2577.744 3865.115 2581.723 2961.156

3481.178 3238.882 3339.538 2337.099 2613.023 4506.737 4326.065 2518.596

3665.603 3386.752 2381.76 2652.58 4150.647 2172.941 1895.815 2690.261

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set

Descriptive Statistics

4700

95% Confdence Interval for Mu

Medar

Variable: 1-MCP

Anderson-Darling Normality Test
A-Squared 
P-Value:

Mean
StOev
Variance
Skewness
Kurtoas
N

0.586
0.124

3066 95 
744 90

554871 
0 473581 
0 247648

124

95% Confidence Inte

Minimum 146271
1st Quarble 2585 31
Median 2961.87
3rd Q uartle 3538 60
Maximum 5272.58

95% Confidence Interval for Mu 
2934 53 3199 36

95% Confidence Interval for Sigma 
662 31 651.21

95% Confidence Interval for Median 
2811.30 3179.06

The basic statistics on the 1-MCP-treated mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.124. As this is above P<0.05 the data is normally 

distributed
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A.lll.ix.iii. 1-MCP+Ethvlene Treated Mitotic Cell Areas

Below is a table o f  all mitotic cell areas measured for 1-MCP+ethylene mitotic cell 

areas using Sigma Scan ®.

4946.219 3390.505 2289.06 2522.124 3350.422 3710.265 2289.36 3815.35
4400.976 2981.422 2499.156 2534.509 3182.961 1370.464 3662 2859.749
3612.835 2227.81 2448.039 2597.41 3171.102 1685.945 2132.933 3172.077
5047.851 2911.315 2311.128 3177.782 2078.439 2558.829 2456.896 2476.562
4480.39 3617.564 2727.491 4197.335 3759.204 4298.818 2476.412 2865.753

4562.732 1775.943 2772.002 2862.376 3294.877 4448.564 2229.762 2718.709
3899.643 1985.288 3455.282 2205.442 2358.341 2403.753 1968.099 4298.818
3913.38 1163.445 3953.537 3556.615 2827.698 4735.973 2459.373 4448.564
3827.21 2603.565 3135.898 3042.222 2327.866 2828.673 2286.208 2209.57

2034.528 2595.834 3312.742 2992.606 2763.595 2397.673 2898.48 2874.46
3461.362 2251.529 2563.783 3636.104 4052.318 2181.422 2439.107
2310.677 4047.213 2349.859 3804.916 4427.322 2349.559 3299.306

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

Variable: 1-MCP+E

A nderson-O afling Norm ality T e a

A-Squarad 1.400
P-Value: 0 001

Mean 3020 10
StOev 840.10
Vanance 705787
Stewneae 0 440811
Kurtoaa -45E-01
N 94

Minimum 1163.45
1* Quamie 2356 22
Median 2861 06
3rd Quamie 3642 58
Maximum 5047 65

95% Confidence Interval for Mu
2848 13 3192 26

95% Confidence Interval for Sigma
734 78 980 94

95% Confidence Interval for Median
259580 3171.10

The basic statistics on the 1-MCP+ethylene-treated mitotic cell area data show the P- 

value for the Anderson-Darling normality test as 0.001. As this is below P<0.05 the data 

is not normally distributed (non-parametric).

A.III.ix.iv. C om parison Of Control. 1-MCP. And 1-MCP+Ethvlene 

Treated Mitotic Cell A reas

A.III.ix.iv.i.. Logarithm ic Transform ation Of Mitotic Cell Area Data Sets

Since control mitotic cell and 1-MCP+ethylene areas showed non-parametric 

distribution whilst mitotic cells areas o f  the 1-MCP-treated cells were normally 

distributed, all mitotic cell area data sets were logarithmically transformed This resulted 

in all data sets being normally distributed, enabling comparisons to be made against each 

other

I
:. .

I I I I I
1500 2250 3000 3750 4500

_________

95% Confidence Interval for Mu

95% Confbence Interval for Medan
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Mitotic Cell Area Data Set Anderson-Darling P- 
Value On Logarithmically 
Transformed Data

Normally Distributed?

Control (Wild-Type) 0.990 Yes

1-MCP 0509 Yes

I-MCP+Ethylene 0.099 Yes

AJII.ix.iv.ii. 2 Sample t-Test Between Logarithmically Transformed Mitotic 
Cell Area Data Sets

The result o f  logarithmically transforming the mitotic cell area data sets into patterns of 

normal distribution meant that the data sets could be compared with each other. There are 

a number o f parametric tests available to analysis normally distributed data sets. A two- 

sample t-test was used over ANOVA (Analysis o f variance) as comparisons could be 

made between data sets with different /7-value. A two-sample t-test was chosen over 

other t-tests as the data sets are considered independent (separate tobacco BY-2 cultures) 

and the variances were shown to be equal using the F-test (P-value was greater than 

0.05). A confidence interval o f  95.0% and two-tailed tests (this uses the hypothesis that 

samples are not equal) were used when comparing mitotic cell area data. Table 5 gives 

the results o f  the two-sample two-tailed t-tests carried out to compare whether there was a 

statistical difference between the treated mitotic cell areas and control mitotic cell areas.

A comparison was also carried out between 1-MCP and 1-MCP+ethylene.

Mitotic Cell Areas T-value and P- Degrees of Significant
To Be Compared value Freedom Difference?
Control versus 1-MCP T = -0.42 

P = 0.672
247 No

Control versus 1- T = -0.29 217 No
MCP+Ethylene P = 0.776
1-MCP versus 1- T = 0.69 216 No
MCP+Ethylene P = 0.493
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Appendix IV -  Chapter 5 Experimental Data

This appendix gives all the experimental data for chapter 5 including statistical analysis 

o f  mitotic cell sizes.

A.IV.i. Cell Cvcle Data For Atetr0 Cl 1 And Atetr* Cl 2 
(Figure 5.2)

The percentage values for Atetr* Cl 1 and Atetr* Cl 2 mitotic index (Fig. 5.2) and 

mortality index after a 24 h synchronization with aphidicolin:

Time (h) after 
release from 
aphidicolin

Atetr* Cl 1 Mitotic 
Index (•/•)

Atetr* Cl 1 
Mortality Index

(%)

Atetr* Cl 2 Mitotic 
Index (%)

Atetr* CXI 
Mortality Index

(%)
0 0 0
1 0 8.33 0 14.33
2 0 9 0.33
3 0 0 10.33
4 0 9 0
5 0 0 11.67
6 0 15.67 0.67
7 0 2 12
8 0 16.33 3
9 2.67 3.67 12.67
10 4.67 9.67 8.33
11 11 7 11.33
12 7.67 11.33 5.67
13 7 4 7.33
14 6.33 4.33
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A.IV.ii. Cell Cvcle Data For Atetr* Cl 1 And Atetr* C\ 1 +
Ethylene (Figure 5.3 And 5.4)

The percentage values for Atetr* Cl 1 and Atetr6 Cl 1 + ethylene mitotic index (Fig. 5.3) 

and mortality index (Fig. 5.4) after a 24 h synchronization with aphidicolin:

Time (h) after 
release from 
aphidicolin

Atetr* Cl 1 Mitotic 
Index (%)

Atetr* CM 
Mortality Index 

(•/.)

Atetr* Cl 1 + 
Ethylene Mitotic 

Index (•/•)

Atetr* CI1 + 
Ethylene 

Mortality Index
(%)

0 0 0
1 0 10.33 0 12
2 0 13.33 0 12.33
3 0 15 0 9.67
4 0 6.67 0 12.67
5 0 14 0.67 18.67
6 1 20.33 1 9.67
7 2.33 25.67 1.33 19.33
8 11.67 13 3 14.33
9 13 27.67 13.33 18.67
10 15.67 18.67 12.33 13.67
11 20.67 13.67 13 12
12 10 19 14.33 16
13 12 20.67 11 11.33
14 8 16.33 11.33 15.33
15 5.67 17.33 11 13.33
16 5.67 16 7 14
17 5.33 7
18 4.67 13.67 7.67 13.33
19 6 12.33 4.67 10.33
20 7 16.67 3.67 19.33
21 4.67 17.67 4.33 11
22 4.67 20 5 13
23 5 14.67 5.33 11.67
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24 4.33 21.33 5.67 15
25 3 10.67 4 22.67
26 1.67 13.67 3.33 26.33
27 4.33 25.33 3.33 18.67
28 1.67 22.33 3 23.33
29 2 34 2 16
30 4 25.33 2.67 19.33
31 7.67 3.33
32 10.67 4
33 8 13.67 4.67 11
34 6.33 17.67 3.33 11
35 4.67 4

A.IV.iii. Peroxidase Activity For Atetr0 Cl 1 And Atetr* Cl 
1 + Ethvlene (Figure 5.5)

The peroxidase activity for Atetr* Cl 1 and Atetre Cl 1 + ethylene measured using 

TMBZ-PS and a spectrophotometer at 655nm. The results shown in the table are the 

consolidated data from three readings per time point. Standard error as calculated from 

the three replicates per time point are also shown.

Time (h) after 
release from 
aphidicolin

Atetr'Cl 1 
Peroxidase 

Activity §  655nm

Atetr'Cl 1 
Peroxidase 

Activity Standard 
Error

Atehf Cl 1 + 
Ethylene 

Peroxidase 
Activity @ 655nm

Atetr' a  1 + 
Ethylene 

Peroxidase 
Activity Standard 

Error

1 0.36 0.00882 0.26 0.0115
3 0.55 0.00667 0.54 0.012
5 0.49 0.00882 0.51 0.0176
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7 0.48 0.00333 0.42 0.012
9 0.58 0.00333 0.57 0.00333
11 0.56 0 0.54 0.00289
13 0.59 0.56
15 0.6 0.6
17 0.57 0.56
19 0.55 0.52
21 0.6 0.58

A.IV.iv. Optical Density Readings For Atetr* C\ 1 And 
Control (WT) Over A 7 Day Period (Figure 5.6)

The growth (optical density) o f  Atetr* Cl 1 and control (WT) cells over a seven day 

period Data consolidated from 9 separate readings per time point (Atetr* Cl 1) and from 

3 separate readings per time point (Control) are given in the table as well as standard 

error.

Day Control (WT) 
Optical Density 

@ 550nm

Standard Error 
For Control (WT) 
Optical Density 

@ 550nm

Atetr* Cl 1 Optical 
Density @ 550nm

Standard Error 
For Atetr* Cl 1 
Optical Density 

@ 550nm
0 0.045 0 0.053 0.00083
1 0.092 0.00167 0.085 0.0057
2 0.147 0 0.107 0.00265
3 0.205 0.00441 0.173 0.00206
4 0.207 0 0.204 0.00176
5 0.215 0.00167 0.217 0.00083
6 0.215 0 0.22 0
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A.IV.v. Mitotic Index Readings For Ateti* Cl 1 And 
Control (WT) Over A 7 Dav Period (Figure 5.7)

The mitotic index readings o f Atetr* Cl 1 and control (WT) cells over a seven day 

period. Data consolidated from 9 separate readings per time point (Atetr* Cl 1) and from 

3 separate readings per time point (control) are given in the table as well as standard 

error.

Day Control (WT) 
Mitotic Index (%)

Standard Error 
For Control (WT) 

Mitotic Index

A tetf Cl 1 Mitotic 
Index (%)

Standard Error 
For Atetr* Cl 1 
Mitotic Index

0
1 0.11 0.111 1.47 0.126
2 7.26 0.192 4.67 0.44
3 4.73 0.4 3.34 0.307
4 3.19 0.294 5.13 0.255
5 2.64 0.192 4.4 0.176
6 2.53 0.294 2.31 0.124

A.IV.vi. Mortality Index Readings For Atefr*C11 And 
Control (WT) Over A 7 Dav Period (Figure 5.8)

The mortality index readings o f  Atetr* Cl 1 and control (WT) cells over a seven day 

period Data consolidated from 9 separate readings per time point (Atetr* Cl 1) and from 

3 separate readings per time point (control) are given in the table as well as standard 

error.
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Day Control (WT) 
Mortality Index 

(•/•)

Standard Error 
For Control (WT) 
Mortality Index

Atetr* Cl 1 
Mortality Index

(%)

Standard Error 
Vor Atetr* Cl 1 
Mortality Index

0
1 0.88 0.222 7.26 1.12
2 1.32 0.192 7.81 0.757
3 1.65 0.333 4.36 0.633
4 2.42 0.62 10.49 0.49
5 3.08 0.294 6.99 0.593
6 0.77 0.294 6.23 0.563

A.IV.vii. Mitotic Cell Size Data (Figure 5.9)

The average mitotic cell areas and other details were taken from calculations resulting 

from the tables in the section below regarding statistical analysis o f  mitotic cell areas.

Cell Line Mitotic Cell Size 
(mM3)

n Standard Error

Control (WT) 3046 125 75.7
Control (WT) + 
Ethylene

2562 51

122
A ten* Cl 1 4371 158 1%
Atetr* Cl 2 4629 13 258
Atetr* Cl 1 + Ethylene 4523 155 217
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A.IV.viii. Statistical Analysis Of Mitotic Cell Areas

All statistical analysis was carried using Minitab 13® in conjunction with the Sigma 

Scan® measured mitotic cell areas.

A.IV.viiLL Control Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for wild-type (control) mitotic cell 

areas using Sigma Scan ®. The same data was used as that in the ethylene chapter since 

wild-type mitotic cell areas was seen to be consistent between synchrony experiments.

2106.962 2708.576 3119.61 2616.401 2787.315 3540.777 1711.616 4856.296 2409.007
3969.942 4117.47 3915.857 2424.845 3212.535 2314.43 1298.48 3523.738 2490.674
3641.133 2044.736 3607.506 2509.214 3459.111 1773.241 1627.172 3101.445 2928.805
3901.37 1956.54 4192.531 2013.811 4041.359 3965.397 2503.134 3390.43 2701.745

3506.924 2125.502 4019.666 2407.506 3216.814 4476.787 2757.591 2174.892 3660.199
3759.505 3189.491 3831.113 1989.341 3090.936 2873.034 2687.258 2706.099 3426.759
5164.421 3291.95 3949.334 2240.195 2291.162 4574.217 4942.09 3091.912 2466.054
2284.031 3448.527 4937.211 2625.934 2746.632 2007.056 3418.202 2344.98 2860.199
2709.702 3089.81 3010.021 4477.163 1921.711 6701.595 2643.648 2445.112 2651.905
2785.438 2755.264 3514.28 4003.378 1929.518 2501.858 3186.789 2578.12 3243.986
2752.336 3034.941 3676.037 2931.056 2567.086 3290.373 1790.655 2378.232 2345.205
2914.243 3244.736 2692.588 2531.432 2051.942 3901.07 4719.084 1894.314 2862.976
3543.779 2843.31 3775.042 2766.673 3416.851 4145.693 3148.883 2256.859 2827.247
2216.176 2516.194 3009.8705 2929.18 3032.164 2641.396 3378.87 3480.503

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

1500 2500 3500 4500 5500 6500

95% Confidence Interval for Mu

95% Oonf rience Interval for Medan

Variable: C1

Anderson-Oarling Normality Tee
A-Squared 1 052
P-Value: 0 009

Mean 3045 94
StOev 846 70
Variance 716902
Staewne* 0 964681
Kutloas 203004
N 125

Minimum 1298 46
1 st Quartle 2478 36
Median 2914 24
3rd Quartle 351901
Maximum 6701 60

95% Confidence Interval for Mu 
289605 319564

95% Confidence Interval for Sigma 
753 16 966 96

95% Confidence Interval for Median 
275249 310096

The basic statistics on the control mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.009. As this is below P<0.05 the data is not 

normally distributed (it is non-parametric).

A.IV.viii.ii. AtetfCl 1 Mitotic Cell A re a s

Below is a table o f  all mitotic cell areas measured for Atetr* Cl 1 mitotic cells using 

Sigma Scan ®.

9215.388 5180.409 5752.824 4462.601 1150.985 1165.097 2112.742 3853.406

6526.328 4566 485 7858.81 6629.762 3041.546 2655.282 2043.235 2058.322

5769 413 2715.106 2992.907 4094 802 2869.356 4062.376 4106.962 6284.106

3548 959 2855.995 3830 888 3074.873 2307.825 4335.673 3861.963 2495.027

2967.386 1883.055 3859.486 3374.141 2789.491 5075.999 11690.3 1842.597

2765.322 1423.457 6066.429 1810.396 3963.37 2456.671 3110.978 3134.172

2923.926 1767.236 2412.31 6304.072 5063.239 2854.569 2902.608 3297.579
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2319.309 3926.44 6891.424 9049.127 2853.293 2722.312 2146.669 3198.949

3153.162 4208.67 5696.904 2864.027 3493.263 976.018 6335.748 2371.552

3759.955 1775.192 4182.023 2659.936 4986.226 15479.9 1852.805 2916.57

8381.835 3410.921 3833.139 2062.15 4363.145 5043.948 3165.097 3698.33

9946.256 3986.339 4150.572 3344.793 4562.432 7175.38 2263.464 2841.509

6885 87 2561.531 5013.248 3366.786 11772.49 2406.155 7110.978 3005.292

5716.57 9682.492 2437.005 3743.892 7373.766 5855.207 2597.636 4731.394

3584.763 6996.059 2559.129 3089.36 6249.953 2085.194 2507.187 5742.166

3539.951 2927.454 6769.075 3527.491 3472.171 2070.707 4054.044 4275.924

6176 543 10422.07 5455.433 2814.862 14526.63 7379.171 8316.457 2282.229

1768.887 7077.05 4453.518 6209.045 6489.548 4773.879 2737.85 3281.366

3636.48 8651.154 1975.53 8317.058 1924.414 3495.515 5452.505

2768.85 5656.971 3363.408 2305.348 4561.606 4588.553 6774.78

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

• •

•I  I
11000 14000

— ! ' .

eooo

95% Confidence Interval for Mu

( :il
3200 37001     1___

Variable: etrl cl1

Anderaon-Darling Normality Teat 
A-Squared: 5 019
P-Valua:

Mean
StDev
Variance
Skewneaa
Kurtoat
N

0 000

4370 98 
246S 24 

6092215 
1.71409 
3.92577 

158

95% Confdence Interval for Medan

Minimum 976.0
1st Q uartle 2734 0
Median 3610.6
3rd Q uartle 5701 8
Maximum 15479.9

95% Confidence Interval for Mu 
3963 1 4758 8

95% Confidence Interval for Sigma 
2222 8  2775.1

95% Confidence Interval for Median 
3307 3 4040 1
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The basic statistics on the Atetre Cl 1 mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.000. As this is below P<0.05 the data is not 

normally distributed (non-parametric).

A.IV.viii.iii. A tetr0 Cl 2 Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for Atetr* Cl 2 mitotic cell areas using 

Sigma Scan ®.

2832.051 2155.376 5374.292 2555.451 3984.462
5281.366 2166.41 7040.796 4332.07 5054.081
3799.437 4206.943 5070.97 2464.327 7040.796
2827.773 6255.282 5374.292 4765.622 5070.97
3204.654 3316.57 3192.119 2640.871 2055.32
2346.707 3215.463 2144.868 1605.555 2821.092
2686.658 3673.26 6618.728 3035.091
4086.395 3735.71 4410.659 7919.009

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

Variable: etrl cl2 

■
A n d e rs o n -D a r lin g  Norm  a lity  T e S

H  V .  A-Squared 0 766
P-Value 0 042

Mean 3956 8 8
I StOav 1590 35
I —  Vanance 2529200

Shewnea 0 751634
, | , , | Kurtoas -1.5E-01

1500 2500 3500 4500 5500 8500 7500 N 39

 ■ ■ ■   laTouarfila 2675 21
Median 3704 48
3rd Quartle 5070 97

95% Confidence Interval for Mu Maximum 7919 01
■ ■ ■ ■ ■ ■ ■ M H j l  Confidence Interval for Mu

, 3434 15 4479 62
3000 3500 4000 4500 9 5 % Confidence Interval for Sigma

55 2057 51

95% Confidence Interval for Median 
95% Confrience Interval for Medan 2Q49 71 436J 12

The basic statistics on the Atetr* Cl 2 mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.042. As this is below P<0.05 the data is not 

normally distributed (non-parametric).

A.IV.viii.iv. Atetr» Cl 1 + E thy lene  Mitotic Cell A reas

Below is a table o f  all mitotic cell areas measured for Atetr6 Cl 1 + ethylene mitotic cell 

areas using Sigma Scan ®

12218.5 3721.449 3836.592 2206.568 1698.555 8737.099 8048.564 16038.21

3438 469 3365 96 4607.694 1593.47 1884 031 2323.588 8614.674 5921.336

2851.792 5501.595 5286.17 2287.709 2499.231 3961.944 9421.655 3072.021

4019.891 7825.108 5637.53 4418.615 4056.821 4189.979 5209.983 6208.745

1944 305 8195.084 3796.96 8712.779 1504.447 4093.001 11589.79 5092.513

10185.93 3422.706 2624.658 1319.197 1584 162 3030.737 3189.116 4769.976
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4844.136 8389.041 2239.445 1808.294 6144.417 6314.13 4731.319 2986.827

3260.274 4533.609 4105.686 2884.143 12000.08 5221.317 7032.089 1028.411

2504.71 5506.324 4137.887 4656.859 4199.662 4155.601 3654.795 989.2287

2103.734 6023.419 2554.476 1856.859 3444.023 11044.02 4758.491 6780.784

2139.914 3632.652 6966.936 6429.424 6290.711 4020.116 7276.938 3924.789

4379 734 4707.975 7181.91 4365.622 3122.162 3601.201 12557.93 2114.993

4135.935 6301.52 2150.272 13712.14 2255.433 10805.7 1608.857 1269.882

1 4 7 8 4 7 6 5739.538 4176.168 4970.914 4147.57 4146.144 3108.05 4435.429

2139.463 5839.294 4547.195 1905.648 2446.238 1733.383 4575.418 4295.59

3 3 1 6 4 2 6751.586 5875.699 1805.892 2102.683 7721.674 3214.111

3623.119 3349.521 3251.041 3478.701 5580.259 2752.411 2049.24

2174.517 3381.573 3876.825 3645.112 8023.344 4109.214 3216.288

2678.101 1737.136 1469.994 2791.218 3656.896 2748.358 3400.488

6508.688 6867.18 2636.817 5488.91 2020.266 3679.264 1885.532

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

Variable: etrl ♦ E

Anderson-Darling Normality Teat
A-Squared 5.233
P-Value: 0 000

Mean 4523 60
StOev 2703.24
Vaiiance 7307462
Skewness 1.56390
Kurtoas 2.92575
N 155

Minimum 989 2
1st Quamie 2624 7
Median 3961 9
3rd Quamie 5637 5
Maximum 16036.2

95% Confidence Interval for Mu
40947 4952 5

95% Confidence Interval for Sigma 
2432 1 3042 9

95% Confidence Interval for Median 
35798 41786
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The basic statistics on the Atetre Cl 1 + ethylene mitotic cell area data show the P-value 

for the Anderson-Darling normality test as 0.000. As this is below P<0.05 the data is not 

normally distributed (non-parametric).

A.IV.viH.v. Comparison Of Control. A te tr l-Expressing. And Ateti*  

Cl 1 + Ethylene Mitotic Cell Areas

AiV.viii.v.i. Logarithmic Transformation Of Mitotic Cell Area Data Sets

Although all the mitotic cell area measurements taken for the above were non- 

parametric, data was logarithmically transformed so that comparisons could be made 

between Atetr I  mitotic cell area measurements and those carried out for previous 

chapters. This resulted in all data sets being normally distributed, enabling use of the 

same statistical test used for previous comparisons o f mitotic cell sizes.

Mitotic Cell Area Data Set Anderson-Darling P- 
Value On Logarithmically 
Transformed Data

Normally Distributed?

Control (Wild-Type) 0.990 Yes

Atetr' O  1 0.133 Yes

Atetr' Cl 2 0.717 Yes

Atetr' Cl 1 + Ethylene 0.721 Yes
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AlV.viii.v.ii. 2 Sample t-Test Between Logarithmically Transformed Mitotic 
Cell Area Data Sets

As with the analysis o f  ethylene and 1-MCP treatments, a two-sample t-test was used 

over ANOVA (Analysis o f  variance) as comparisons could be made between data sets 

with different n-walue. A two-sample t-test was chosen over other t-tests as the data sets 

are considered independent (separate tobacco BY-2 cultures) and the variances were 

shown to be equal using the F-test (P-value was greater than 0.05). A confidence interval 

o f  95.0% and two-tailed tests (this uses the hypothesis that samples are not equal) were 

used when comparing mitotic cell area data. The table below gives the results o f the two- 

sample two-tailed t-tests carried out to compare whether there was a statistical difference 

between control (WT) mitotic cell areas and the A te tri -expressing cell lines. A 

comparison was also carried out between the two A tetr 1-ex pressing cell lines and 

between A tetre Cl 1 and Atetre Cl 1 + ethylene.

Mitotic Cell Areas T-value and P- Degrees of Significant
To Be Compared value Freedom Difference?
Control versus A tetri T = -5.59 249 Yes
clone 1 P = 0.000
Control versus Atetr 1 T = -3.22 47 Yes
clone 2 P = 0.002
Control versus A tetri T = -5.40 232 Yes
clone 1 + ethylene P = 0.000
Atetr 1 clone 1 versus T = 0.48 194 No
Atetr 1 clone 2 P = 0.630
Atetr 1 clone 1 versus T =  -0.19 311 No
Atetr 1 clone 1 + P = 0.851
ethvlene
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Appendix V -  Chapter 6 Experimental Data

This appendix gives all the experimental data for chapter 6 including statistical analysis 

o f mitotic cell sizes.

A.V.8. Cell Cycle Data For Spcdc251* And EV1 (Figure 
6.2 and Figure 6.4a)

The percentage values for Spcdc25 1* and EV1 mitotic index (Fig. 6.2) and mortality 

index (Fig. 6.5a) after a 24 h synchronization with aphidicolin:

Time (h) After 
Release From 
Aphidicolin

Spcdc25 1* 
Mitotic Index (%)

Spcdc25 1* 
Mortality Index

(%)

EV1 Mitotic 
Index (%)

EV1 Mortality 
Index (%)

0 0 0 4
1 7.33 3.67 0 1.67
2 13.67 3 0.33 4.67
3 14.33 13.67 1 3.67
4 11.67 16.33 0.67 3.33
5 5.33 6 0.67 4.67
6 6.33 13.33 1 4.33
7 5.33 14.67 0.67 6
8 6 36.67 0.33 7
9 5.67 14 4.33 1.67
10 4 9.67 23.67 4.33
11 3.67 13 35.33 5
12 6 25.33 23.67 5.67
13 10.33 23.33 14.67 3.33
14 10.67 29.67 8 5.33
15 10 35.67 5.67 2
16 11.67 5.67 1.33 3
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17 5.67 12.67 1.33 5.67
18 3.33 13 2 8
19 6 14.67 1.67 7
20 5.67 13.33 3
21 4.67 4 3.67
22 7.33 5 4 2.33
23 7.67 8.67 2 3
24 7.33 9 6.33
25

12
26 6

A.V.ii. Cell Cycle Data For Spcdc25 2* And Spcdc25 3* 
(Figure 6.3 and Figure 6.5a-b)

The percentage values for the mitotic index (Fig. 6.3) and mortality index (Fig. 6.5a-b) 

o f Spcdc25 2* and Spcdc25 3* cells against time after the release from a 24 h 

synchronization with aphidicolin:

Time (h) After 
Release From 
Aphidicoliii

Spcdc25 2* 
Mitotic Index (%)

Spcdc25 2* 
Mortality Index

(%)

Spcdc2S 3* 
Mitotic Index (%)

Spcdc25 3* 
Mortality Index

(%)
0 0.67 1.33
1 1 2 1.67 0.67
2 0.67 4.67 1.33 7.67
3 0 1 2.33 2
4 7 4.33 3.67 2.67
5 13.67 4.33 12.33 9.67
6 27.33 9 22.67 6.67
7 12 3.33 13 1.33
8 10.67 1.67 11.67 2.67
9 9 2 5 3
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10 7.33 4.33 3 2
11 4.33 1 3 1.67
12 2 2 1.67 1
13 3 3 1.67 2
14 1.33 7.67 2 4
15 4 3.67 2.67 3.33
16 6 9 8.67 3.67
17 12.33 2 13.67 2.33
18 13.22 5 9.33 4.33
19 8 3 9.33 3.67
20 11 4.33 8.33 3
21 6.33 3.67 5 2
22 5 3.33 6 1
23 4.33 4 5.67 0
24 4.33 0.33 3.33 3.33

A.V.iii. Cell Cycle Data For EV2 (Figure 6.3 and Figure 
6.5c)

The percentage values for EV1 mitotic index (Fig. 6.3) and mortality index (Fig. 6.5c) 

after a 24 h synchronization with aphidicolin:

Time (h) After 
Release From 
Aphidicolin

EV1 Mitotic 
Index (•/•)

EV1 Mortality 
Index (%)

0 0.67
1 0.67 1.33
2 0 2
3 1 2
4 1 2.33
5 0 4
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6 8.67 4.33
7 14.67 2.33
8 15.67 1.33
9 9.56 2.33
10 9.67 5.67
11 7 0.33
12 4.33 1.67
13 3 1
14 1 2
15 1.67 0.67
16 1.33 0.67
17 2.33 1.33
18 2.33 1.33
19 4.33 0.67
20 6.67 1.67
21 10.67 3
22 7 3.33
23 8.33 2.67
24 4.33 4.33

A.V.iv. Histone H4 Expression Level Data For Spcdc25 
3* (Fid. 6.4)

The raw volume values for histone H4, 18S ribosomal RNA, and histone H4 corrected 

against 18S Ribosomal RNA (Fig. 6.4) in Spcdc25 3*.

Time (h) after release 
from aphidicolin

Histone H4 Expression 
In Spcdc25 3*

18S Ribosomal RNA 
Expression In Spcdc2S 

3*

Corrected Histone H4 
Expression In Spcdc25 

3*
0 5840.86 4121.22 1.417
1 11377.4 7232.24 1.573



2 11109.3 6162.46 1.803
3 2832.96 5827.91 0.486

A.V.v. Mitotic Cell Size Data (Figure 6.6)

The average mitotic cell areas and other details were taken from calculations resulting 

from the tables in the section below regarding statistical analysis o f  mitotic cell areas.

Cell Line Mitotic Cell Size 

(mM2)

n Standard Error

Wild-type 3046 125 75.7
EV1 3009 82 95.7
EV2 3002 134 108
Spcdc25 1* 1805 140 56.3
Spcdc25 2* 2356 147 86.8
Speck25 3* 1848 156 53.9

A.V.vi. Mitotic Index Cell Cycle Data For Mevinolin 
Treatment Of EV2 (Figure 6.7a)

The percentage values for EV2 mitotic index ± mevinolin (Fig. 6.7a) after a 24 h 

synchronization with aphidicolin:

Time (h) After 
Release From 
Aphidicolin

EV2 Mitotic 
Index (%)

EV2 + Mevinolin 
Mitotic Index (%)

EV2 + Mevinolin 
Mitotic Index (%)

0 0 0 0
1 0 0 0
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2 0 0 0
3 0 0 0
4 0.33 0 0
5 0 0.33 0
6 1.67 0.33 0.33
7 1.67 1.67 0.67
8 5 2 1.33
9 21 6.33 2.33
10 29 3.33 9.33
11 13.67 15.67 9.67
12 10.67 11.67 9

A.V.vii. Mitotic Index Cell Cycle Data For Mevinolin 
Treatment Of Socdc25 3* (Figure 6.7b)

The percentage values for Spcdc25 3* mitotic index ± mevinolin (Fig. 6.7b) after a 24 h 

synchronization with aphidicolin:

Time (ta) After 
Release From 
Aphidicoliii

Spcdc25 3* 
Mitotic Index (%)

Spcdc25 3* + 
Mevinolin Mitotic 

Index (%)

Spcdc25 3* + 
Mevinolin Mitotic 

Index (%)
0 0 0 0
1 0.33 0 0
2 0 0 0.33
3 0 0.33 0
4 0 0 0
5 0.33 0.67 0
6 2.33 4.33 1
7 9.67 11.67 11.67
8 21 18.33 20
9 19.67 13.33 19.67
10 12 9.67 10.67
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A.V.viii. The Frequency Of Doublets In Spcdc251*. 
Spcdc25 3*. EV1. and EV2 /Figure 6.9)

The frequency o f doublets (%) occurring in a 7 day batch culture o f Spdc25 1 *, Spcdc25 

3*, EV1, and EV2 cell lines (Fig. 6.9).

Day Spcdc25 1* 

Doublet 

Frequency (%)

Spcdc25 3* 

Doublet 

Frequency (%)

EV1 Doublet 

Frequency (%)

EV2 Doublet 

Frequency (%)

I 6.4 2.1 0 0
2 9.6 7.4 1 0

3 24.2 17.9 0 0

4 33.7 18.8 0 0

5 26.4 8.7 0 0

6 16.6 3.3 0 0

7 4.4 2.1 0 0

A.V.ix. Cell Cycle Data For Spcdc251* ± Ethvlene 
(Figure 6.10)

The percentage values for Spcdc25 1 * mitotic index and mortality index ± ethylene (Fig. 

6.10) after a 24 h synchronization with aphidicolin.

Time (h) After 
Release From 
Aphidicolin

Spcdc25 1* 
Mitotic Index (%)

Spcdc2S 1* 
Mortality Index

(•/•)

Spcdc2S 1* + 
Ethylene Mitotic 

Index (%)

Spcdc25 I* + 
Ethylene 

Mortality Index
(%)

0

1 0 1 0 2.33
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2 0 2.67 0 2.33
3 0 2.67 0 0.67
4 0.33 3.67 0.33 3.33
5 0 14.33 0.33 4.67
6 1.67 4 2.67 5
7 3.67 4 15.33 4
8 16.33 35.33 20.33 10.67
9 11.33 48.33 11 10.67
10 8.67 17.33 6.33 20.33
11 8 4.33 5.67 2.67
12

A.V.x. Statistical Analysis Of Mitotic Cell Areas

All statistical analysis was carried using Minitab 13<S) in conjunction with the Sigma 

Scan® measured mitotic cell areas.

A.V,x.i. Wild-Type Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for wild-type mitotic cell areas using 

Sigma Scan ®. The same data was used as that in the ethylene chapter since wild-type 

mitotic cell areas was seen to be consistent between synchrony experiments.

2106.962 2708.576 3119.61 2616.401 2787.315 3540.777 1711.616 4856.296 2409.007

3989.942 4117.47 3915.857 2424.845 3212.535 2314.43 1298.48 3523.738 2490.674

3641.133 2044.736 3607.506 2509.214 3459.111 1773.241 1627.172 3101.445 2928.805

3901.37 1956.54 4192.531 2013.811 4041.359 3965.397 2503.134 3390.43 2701.745
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3506.924 2125.502 4019.666 2407.506 3216.814 4476.787 2757.591 2174.892 3660.199

3759.505 3189.491 3831.113 1989.341 3090.936 2873.034 2687.258 2706.099 3426.759

5164.421 3291.95 3949.334 2240.195 2291.162 4574.217 4942.09 3091.912 2466.054

2284.031 3448.527 4937.211 2625.934 2746.632 2007.056 3418.202 2344.98 2860.199

2709.702 3089.81 3010.021 4477.163 1921.711 6701.595 2643.648 2445.112 2651.905

2785.438 2755.264 3514.28 4003.378 1929.518 2501.858 3186.789 2578.12^ 3243.986

2752.336 3034.941 3676.037 2931.056 2567.086 3290.373 1790.655 2378.232 2345.205

2914.243 3244.736 2692.588 2531.432 2051.942 3901.07 4719.084 1894.314 2862.976

3543.779 2843.31 3775.042 2766.673 3416.851 4145.693 3148.883 2256.859 2827.247

2216.176 2516.194 3009.8705 2929.18 3032.164 2641.396 3378.87 3480.503

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.

Descriptive Statistics

Variable: C1

96% Confidence Interval for Mu

95% Confidence interval for Me

Anderaon-Darling Norm ality T est
A-Squared 1 052
P-Value: 0 009

Mean 3045 94
StOev 846.70
Vanance 716902
Skewness 0 964661
Kurtoss 2 03004
N 125

Minimum 1298 48
Id  Quartile 2478 36
Median 2914.24
3rd Quartile 3519 01
Maximum 6701 60

95% Confidence Interval for Mu
2896 05 3195.64

95% Confidence Interval for Sigma
753.16 966 98

95% Confidence Interval for Median
275249 3100 96

The basic statistics on the control mitotic cell area data show the P-value for the 

Anderson-Darling normality test as 0.009. As this is below P<0.05 the data is not 

normally distributed (it is non-parametric).

1500 2500 3500 4500 5500 6500
I I I I■------------m
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A.V.x.ii. EV1 Mitotic Cell A reas

Below is a table o f  all mitotic cell areas measured for mitotic cells transformed 

with the Spcdc25 empty vector, EV1. Measurements were taken using Sigma Scan ®.

3261.55 2740.552 2584.65 2370.351 3214.562 1542.879 2363.145
3206.23 2729 893 2874.611 4627.96 4072.884 3878.551 2790.767
2332.52 2911.09 2482.567 2559.88 2473.41 2918.521 2770.201

2936.536 4273.522 1716.87 1797.035 3848.752 4205.967 2190.655
6295.59 2229.762 1928.317 4048.64 3135.748 3244.361 1745.243

3529.142 1701.257 2000.6 3285.72 1897.992 2737.624 1950.16
4030.775 2189.829 2613.323 3557.741 3386.677 4324.639 2682.379
3664 327 3115.031 4403.978 3231.15 3331.957 3559.617 2799.55
2393.019 3505.348 3141.452 3694.352 2912.291 2917.696 2295.065
3158.716 2956.802 2315.782 3030.362 3381 648 3957.666 1796.209
2044.811 3657.872 1791.706 2286.583 3974.554 2305.874
2760.743 5233.177 2734.622 4195.684 2689.735 3312.216

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set

Descriptive Statistics

Variable: EV1

Anderson-Darling Normality Test

A-Squared 052B
P-Value Q172

Mean 300604
StDev 86666
Variance 751429
Stowness 0850738
Kurtoeas 153300
N 82

Minimum 154288
1st Quart le 2355 46
Medan 291466
3rd Quartile 363626
Man mum 6296 56

8 6 % Confidence Irtervei for Mu 
2818 57 319651

95% Confidence Interval tor Sgma 
75147 102142

96% Confidence Interval tor Medan 
273888 3174.02

_____

95% Confidence interval for Mu

95% Confidence Interval for Median
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The basic statistics on the EV1 mitotic cell area data show the P-value for the Anderson- 

Darling normality test as 0.172. As this above P<0.05, the data is normally distributed.

A.V.x.Hi. S o cd c2 5  1* Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for Spcdc25 1 * mitotic cell 

areas using Sigma Scan ®.

1682.792 2219.253 1879.977 1905.273 2475.061 2258.585 1023.757 2340.852
1156.164 1527.491 2482.117 1275.136 1048.002 1507.525 1616.438 2246.575
2050.891 2478.964 2426.046 1885.532 2348.208 1366.185 1916.082 2344.605
3554.513 1733.383 1585.663 1279.64 1738.788 1512.479 1048.152 3617.789
2472.434 2780.784 1693.826 1130.118 978.5701 1194.521 2361.944 3137.774
2293.488 2760.593 1637.981 1678.739 1053.631 1581.835 1740.064 1577.857
1770.163 2674.723 903.2839 1458.36 1636.93 2000.15 1911.803 1573.278
1299.606 2667.142 1224.695 2158.604 1735.485 1689.698 2237.718 1397.26
2043.01 4297.392 1771.74 1776.619 2270.144 1637.155 1367.611 932.0323

1548.508 1773.166 1440.721 2325.615 2830.024 1069.544 1674.385 988.8534
1154.738 2239.745 1517.808 1027.135 1088.685 1263.351 1488.159 2264.965
1386.977 1656.146 1859 786 2254.607 1605.78 1120.51 2993.207 1434.415
3711.315 1177.932 1763.933 2065.904 1420.304 1086.132 3218.315 915.2937
1055.883 2810.433 1155.564 1739.088 2661.362 1135.072 2442.109 1064.365
1031.263 923.025 936.5359 2759.017 2123.625 1717.771 2427.923
1135.448 2482.792 860.1239 1495.74 1722.199 2549.597 1450.253
1937.549 1251.567 1259.373 1944.38 1968.099 1271.008 974.4417
1842.222 1245.562 1433.965 3409.495 2029.049 1994.445 1031.713

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

Variable: 1*

Anderson-Darling NcrrralityTest

A-Squared: 2018
P-Value 0.000

Mean 180485
StDev 00624
Variance 443882
S tem w s 0986174
Kurtosis 107388
N 140

Mtrarrum 88012
1st Quartile 126527
Medan 188178
3rd Quartile 2252 80
Maonum 429738

96% Confidence Interval for Mu 
168352 181618

99ft Confidence Interval for Sgma 
58628 75496

96% Confidence Interval for Medan 
158151 1773.44

The basic statistics on the mitotic cell area data show the P-value for the Anderson- 

Darling normality test as 0.000. As this is below P<0.05 the data is not normally 

distributed (non-parametric).

A.V.x.iv. EV2 Mitotic Cell Areas

Below is a table o f  all mitotic cell areas measured for EV2 mitotic cell areas using 

Sigma Scan <g>.

1614.487 1629.949 3429.236 2014.262 2234.866 3486.057 2269.394 5871.796
1454.006 3303.809 3593.019 4463.877 2180.146 6697.767 4318.033 4886.695

2092.1 1786.902 1788.628 4886.62 2367.949 1362.432 3725.277 3972.978
2043.761 1673.935 1763.408 2928.279 2113.717 4404.203 6728.017 2209.871
2545.618 4273.147 2116.645 2977.744 1921.411 4410.734 5613.136 2374.104
1825.108 1313.642 3169.375 3536.799 2031.901 1970.876 3336.686 1946.031
4015.913 1853.106 3622.518 2078.439 2619.403 2136.986 1708.088 4418.69

900 1500 2100 2700 3300 3900

  ,
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1156.615 2926.628 1561.944 2433.327 5038.469 2038.656 2313.455 1657.046
2381.085 2449.24 2063.502 3295.403 5297.129 4164.759 2696.866 2027.397
2350.985 2748.133 5279.264 2597.26 2962.507 4195.309 3168.399 1950.835
2146.519 2216.926 2240.27 1524.564 2385.663 3392.682 2376.956 2918.972
4080.616 3114.731 1575.08 1302.458 2202.89 1945.731 2576.318 2059.523
2356.915 3728.955 1772.64 2560.33 4795.121 2462.376 4710.377 5539.801

3181.31 2567.311 3460.612 1923.513 3495.815 1849.953 5607.806 3892.212
5509.927 2344.305 3143.254 6398.349 3139.801 3082.98 972.9405 3153.913
4113.267 3337.512 3546.857 2237.418 3169.825 5644.736 4630.362
2538.488 2046.988 3203.078 3373.241 3238.131 2873.935 2787.915

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set

Descriptive Statistics

Variable: EV2

Anderson-Darling Normality Test
A-Squared 3254
P-Value 0000

Mean 300237
StDev 125151
Variance 1566268
Softness 0960660
Kurtoais 0403666
N 134

Minimum 97294
1st Quartile 2066 39
M erfv 260633
3rd Quartile 3800.39
Mad mum 672602

96% Confidence Interval for Mu 
278853 321622

96% Confidence Interval for Sigma 
1117.48 142236

96% Confidence Interval tor Medan 
237789 310906

The basic statistics on the EV2 mitotic cell area data show the P-value for the Anderson- 

Darling normality test as 0.000. As this is below P<0.05 the data is not normally 

distributed (non-parametric).
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A.V.x.iii. S p cd c2 5  T  Mitotic Cell Areas

Below is a table o f all mitotic cell areas measured for Spcdc25 2* mitotic cell areas 

using Sigma Scan ®.

4344.08 2729.217 1634.603 2301.895 1371.064 2263.164 1599.55 2240.12
4654.607 1534.322 2250.328 2113.417 1495.515 2338.75 1639.632 4887.371
2071.908 2068.305 1724.451 1996.622 1608.707 1879.452 1716.87 1180.784
7423.457 2438.431 1928.992 1559.767 2331.019 2464.027 1785.025 6769.225
2238 769 2020.342 1760.856 2993.883 3475.399 1726.253 2981.723 2790.392
2736.799 2588.929 1516.907 3768.812 4256.859 2329.142 1716.044 3382.548
1202.477 2126.928 1342.841 4279.227 2031.751 2454.87 1688.872 2907.262
1890.186 1602.552 1117.058 2805.404 1477.951 2614.449 2390.542 2369.3
1948.208 2128.579 1543.404 2171.815 4190.054 3159.017 2350.535 3519.535
1527.491 1584.462 1942.578 2982.023 4037.305 2130.006 1822.556 2068.831
1802.965 1789.004 1864.29 2312.704 3618.915 2124.977 1366.185 1999.775
1505.723 1911.653 1701.633 2939.238 1853.706 1988.891 1052.88 2047.138
3155.639 2833.252 1677.613 1742.09 2736.649 1723.325 1782.774 2162.432
3550.235 2053.443 1871.421 1356.802 1375.418 2333.871 2172.64 2418.24
3876.825 2374.629 1554.813 1919.309 2184.575 1545.356 1743.216

3605.63 2121.449 3237.831 1543.029 1799.362 2400 2301.22
2002.327 4474.611 1561.193 1485.082 2023.869 2853.819 1133.421
1617.339 2143.066 1811.447 2313.905 3139.351 1899.719 1274.686
6996.134 2328.392 1765.96 3278.739 3973.278 2260.011 975.943

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set.
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Descriptive Statistics

Variable: 2*

Anderson-Darling NormaWyTest
A-Squared: 7578
P-Value 0000

Mean 235634
SOev 106233
Variance 1107408
Sternness 224871
Kurtoeis 692581
N 147

Minimum 97594
1st Quartile 171687
Medan 207191
>d Quartile 272922
M M nun 742346

96% Confidence literal for Mu 
218480 252787

96% Confidence Interval for 9gma 
944.23 118861

96% Confidence  Interval for Medan 
196372 223143

The basic statistics on the mitotic cell area data show the P-value for the Anderson- 

Darling normality test as 0.000. As this is below P<0.05 the data is not normally 

distributed (non-parametric)

A.V.x.vi. Socdc253* Mitotic Cell Areas

Below is a table o f  all mitotic cell areas measured for Spcdc25  3*mitotic cell areas using 

Sigma Scan ®.

1682 792 2219.253 1879.977 1905.273 2475.061 2258.585 1023.757 2340.852
1156.164 1527.491 2482.117 1275.136 1048.002 1507.525 1616.438 2246.575
2050.891 2478.964 2426.046 1885.532 2348.208 1366.185 1916.082 2344.605
3554.513 1733.383 1585.663 1279.64 1738.788 1512.479 1048.152 3617.789
2472.434 2780.784 1693.826 1130.118 978.5701 1194.521 2361.944 3137.774
2293.488 2760.593 1637 981 1678.739 1053.631 1581.835 1740.064 1577.857
1770.163 2674.723 903.2839 1458.36 1636.93 2000.15 1911.803 1573.278
1299.606 2667.142 1224.695 2158.604 1735.485 1689.698 2237.718 1397.26

idence Interval for Median
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2043.01 4297.392 1771.74 1776.619 2270.144 1637.155 1367.611 932.0323
1548.508 1773.166 1440.721 2325.615 2830.024 1069.544 1674.385 988.8534
1154.738 2239.745 1517.808 1027.135 1088.685 1263.351 1488.159 2264.965
1386.977 1656.146 1859.786 2254.607 1605.78 1120.51 2993.207 1434.415
3711.315 1177.932 1763.933 2065.904 1420.304 1086.132 3218.315 915.2937
1055.883 2810.433 1155.564 1739.088 2661.362 1135.072 2442.109 1064.365
1031.263 923.025 936.5359 2759.017 2123.625 1717.771 2427.923
1135.448 2482.792 860.1239 1495.74 1722.199 2549.597 1450.253
1937.549 1251.567 1259.373 1944.38 1968.099 1271.008 974.4417
1842.222 1245.562 1433.965 3409 495 2029.049 1994.445 1031.713

Using Minitab 13® the basic statistics, including the Anderson-Darling test for 

normality, were carried out on the above data set

Descriptive Statistics

Variable: 3*

Anderson-Darling Normality Test
A-Squared 2418
P-Value 0000

Mean 184787
StDev 673.70
Variance 453878
Slwwwss 101281
Kurtoeis 100122
N 156

Minimum 73132
1st Quartile 136388
Median 1721.67
i d  Quartile 2178.01
Mw mum 4238.77

96% Confidence Interval tor Mu 
1741.42 1864 52

90% Confidence Interval for S^ma 
80833 75808

96% Confidence Interval tor Median 
158664 186178

The basic statistics on the mitotic cell area data show the P-value for the Anderson- 

Darling normality test as 0.000. As this is below P<0.05 the data is not normally 

distributed (non-parametric).

A

95% Confidence Interval for Mu

Confidence Interval for Median
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A.V.x.vii. Comparison Of WT. EV. And Spcric25-Expressina 
Mitotic Cell Areas

AV.x.vii.i. Logarithmic Transformation Of Mitotic Cell Area Data Sets

Since the majority o f mitotic cell areas showed non-parametric distribution whilst EV1 

mitotic cell areas were normally distributed, all mitotic cell area data sets were 

logarithmically transformed. This resulted in all but one data sets being normally 

distributed. Although this presents a problem with carrying out a two sampled t-test, I 

decided to keep the statistical test constant with all previous tests on mitotic cell sizes.

Mitotic Cell Area Data Set Anderson-Darling P- 
Value On Logarithmically 
Transformed Data

Normally Distributed?

Wild-type 0.990 Yes

EV1 0.785 Yes

Spcdc25 1* 0.117 Yes

EV2 0.162 Yes

Spcdc25 2* 0.000 No

Spcdc25 3* 0.994 Yes

A.V.x.vii.ii. 2 Sample t-Test Between Logarithmically Transformed Mitotic 
Celi Area Data Sets

There are a number o f parametric tests available to analysis normally distributed data 

sets. A two-sample t-test was used over ANOVA (Analysis o f variance) as comparisons 

could be made between data sets with different w-value. A two-sample t-test was chosen 

over other t-tests as the data sets are considered independent (separate tobacco BY-2 

cultures). A confidence interval o f 95.0% and two-tailed tests (this uses the hypothesis
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that samples are not equal) were used when comparing mitotic cell area data. The table 

below gives the results o f the two-sample two-tailed t-tests carried out to compare 

whether there was a statistical difference between EV mitotic cell areas and Spcdc25 

mitotic cell areas. A comparison was also carried out between WT and EV lines.

Mitotic Cell Areas 
To Be Compared

T-value and P- 
value

Degrees of 
Freedom

Significant
Difference?

EVl versus Spcdc25 1* T = 10.84 
P = 0.000

137 Yes

WT versus Spcdc25 1* T = 12.31 
P = 0.000

199 Yes

EV2 versus Spcdc25 2* T = 5.13 
P = 0.000

279 Yes

WT versus Spcdc25 2* T = 5.11 
P = 0.000

270 Yes

EV2 versus Spcdc25 3* T =10.53 
P = 0.000

288 Yes

WT versus Spcdc25 3* T=14.11 
P = 0.000

278 Yes

WT versus EVl T =0.39 
P = 0.698

205 No

WT versus EV2 T =1.38 
P = 0.167

234 No

A.V.x.vii.iii. Mann-Whitnev Test Between Spcdc25 2* And EV2 
Untransformed Mitotic Cell Area Data Sets

To ensure that there was a significant difference in mitotic cell sizes between Spcdc25 

2* and its control cell line (EV2), a mann-whitney test was carried out on the 

untransformed data. Both data sets showed non-parametric distribution before 

logarithmic transformation (see above), enabling a comparison using mann-whitney to be 

carried out between them. Results indicated that there was a significant difference 

between Spcdc25 2* and EV2, the same result as the two sampled t-test.


