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SYNOPSIS

Advances in computing have resulted in many engineering processes being 

automated. Electrocardiogram (ECG) classification is one such process. The analysis 

of ECGs can benefit from the wide availability and power of modem computers.

This study presents the usage of computer technology in the field of computerised 

ECG classification. Computerised electrocardiogram classification can help to reduce 

healthcare costs by enabling suitably equipped general practitioners to refer to 

hospital only those people with serious heart problems. Computerised ECG 

classification can also be very useful in shortening hospital waiting lists and saving 

life by discovering heart diseases early.

The thesis investigates the automatic classification of ECGs into different disease 

categories using Artificial Intelligence (AI) techniques. A comparison of the use of 

different feature sets and AI classifiers is presented. The feature sets include 

conventional cardiological features, as well as features taken directly from time 

domain samples of an ECG. The benchmark AI classifiers tested include those based 

on neural network, k-Nearest Neighbour and inductive learning techniques.

The research proposes two modifications to the learning vector quantisation (LVQ) 

neural network, namely the All Weights Updating-LVQ (AWU-LVQ) algorithm and



the Neighbouring Weights Updating-LVQ (NWU-LVQ) algorithm, yielding an 

“intelligent” diagnostic heart system with higher accuracy and reduced training time 

compared to existing AI techniques.
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Chapter 1

Introduction

1.1 Computerised Electrocardiogram Classification

Since the advent of computerised ECG classification systems in 1957 [Titomir, 2000], 

research in the field has proliferated. Each year, increasing numbers of ECGs are 

recorded using ECG recording systems of on-board ECG diagnosis facilities, for 

example to detect significant changes in the patients’ physiological state. The aim of 

ECG classification is to determine if the patient is ill and requires treatment or if the 

patient has no cardiac abnormalities and requires no treatment. In general, 

computerised ECG systems can assist the non-specialist with patient diagnosis, 

offering greater consistency through avoidance of observer variability. A 

computerised system normally consists of three processing modules: beat detection, 

feature extraction and classification, as shown in Figure 1.1. Beat detection concerns 

the identification and location of each cardiac cycle. The reference markers generated 

by the beat detection module are processed by the feature extraction module to 

produce a feature vector describing the morphology of the recorded ECG. The feature 

vector is then examined by the classification module, giving a hypothesis based on the 

available evidence.

1
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During the last two decades, research into beat detection and feature extraction has to 

some extent reached a plateau with regard to achieved performance levels. In order to 

enhance the overall performance of the system so that it could be used reliably, the 

classification stage is therefore now being targeted

1.2 Research Topic

This research concerns the automatic classification of ECGs for arrhythmia analysis. 

A comparison was carried out of different classification techniques drawn mainly 

from the field of Artificial Intelligence (AI). AI classification techniques were 

considered as they can learn the classification task automatically. They do not require 

a priori modelling and are simpler to apply, yet promise to yield good performance.

The work focused on developing improved AI classification tools for distinguishing 

between abnormal ECGs (indicating the presence of arrhythmias) and normal ECGs 

(showing no signs of arrhythmias).

The AI techniques investigated in this research were neural networks and inductive 

learning. Neural networks were focused upon due to their superior abilities in 

handling continuous inputs such as those derived from an ECG. Different neural 

networks were studied and improvements were made to the Learning Vector 

Quantisation (LVQ) network, a well-known classification tool.

3



1.3 Objectives

The main objectives of this research were:

• To compare the performance of AI techniques such as neural networks and 

inductive learning for computerised ECG classification. The k-Nearest Neighbour 

method was also considered in the comparison.

• To compare the classification performance using different features extracted from 

ECG signals and different signal sampling rates. The aim was to determine the 

features and sampling rates that characterise ECG signals well and can be used 

successfully for classification purposes.

• To develop improved Learning Vector Quantisation (LVQ) algorithms in order to 

achieve better classification accuracy with a short training time. Two 

modifications were made to the standard LVQ algorithm to yield new LVQ 

algorithms. The first modification to the LVQ algorithm is called the All Weights 

Updating LVQ (AWU-LVQ). This gave better classification accuracy with a short 

training time compared to the standard LVQ algorithm. The second modification 

is called the Neighbouring Weights Updating LVQ (NWU-LVQ). This has a 

higher classification accuracy and required a shorter training time compared to 

other LVQ Algorithms.

4



1.4 Outline of the Thesis

This thesis comprises six chapters and two appendix.

Chapter 2 reviews the background literature relevant to the work presented in the 

thesis.

Chapter 3 presents a comparison of different classification techniques including 

decision tree inductive learner, k-Nearest Neighbour classifier, multilayer perceptrons 

and radial basis function neural networks.

Chapter 4 describes an enhancement of the Learning Vector Quantisation technique 

called All Weights Updating.

Chapter 5 describes another enhancement of the Learning Vector Quantisation 

technique called Neighbouring Weights Updating.

Chapter 6 presents the conclusions of the research and recommendations for further 

study.

5



Appendix A details the examples data extracted from the Massachusetts Institute of 

Technology-Beth Israel Hospital (MIT-BIH) database as used in this study.

Appendix B Statistical Formulae used in Feature Selection.
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Chapter 2

Review of Automated ECG Classification

2.1 Preliminaries

An electrocardiogram (ECG) is an important tool in clinical diagnosis relating to 

disorders of the human heart. It records the electrical activity of the heart in terms of 

voltage changes transmitted to the body surface by electrical events in the heart.

Automatic ECG beat detection and classification is an essential tool for clinical 

settings, such as an intensive care unit. Such systems, however, must be able 

accurately to detect and classify problems on a real time basis. It is known that several 

arrhythmias are potentially dangerous and even life threatening if not detected within 

a few seconds of their onset.

One major problem facing today’s automatic ECG analysis equipment is the wide 

variation in the morphologies of ECG waveforms of different patients and patient 

groups.

This chapter gives a review of the physiology and functionality of the human heart 

and how ECG signals are measured including the placement of the leads, and the 

nature and characteristics of ECG signals. The Chapter also provides a description of



the database used in this work and a literature review on ECG arrhythmia 

classification.

2.2 The Heart

The heart is a muscle weighing approximately 300 grams. It consists mainly of two 

types of cells, those which form the working muscle, and those which control 

electrical signals. Its main function is to maintain the supply of blood in the body and 

to deliver it to all parts of the body via the arteries. In order to achieve this, the heart 

muscle must pump approximately 7200 litres of blood per day. At rest, the normal 

heart beats around 72 times and pumps around 5 litres of blood per minute. According 

to the demands of the body, it is capable of rapidly increasing this to 15 litres per 

minute with a heart rate of up to 2 0 0  beats per minute or more.

Figure 2.1 shows the physical structure of the heart. The heart consists of two 

chambers [McCulloch and Bastion, 1999], which act as two synchronised pump 

stages. The first chamber comprises the atria, which consist of the left and right atria. 

The second chamber is made up of the ventricles, which consist of the left and right 

ventricles. The right atrium and right ventricle supply blood to the lungs for 

oxygenation (pulmonary circulation), whereas the left atrium and left ventricle supply 

blood to the rest of the body (systemic circulation).

Excitation of the heart does not come directly from the central nervous system but is 

initiated in the SinoAtrial (SA) node (see Figure 2.2), or pacemaker, which are a 

special group of excitable cells.
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Figure 2.1: Cutaway drawing of the human heart showing the chambers, valves and connecting 

blood vessels (adapted from [Texas Heart Institute, 2001])
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The pacemaker spontaneously generates action potentials at a regular rate, although 

the rate is influenced by nerves that accelerate or inhibit its value.

To initiate the heartbeat, the action potential generated by the pacemaker propagates 

(from the SA node) in all directions along the surface of both atria towards the 

junction of the atria and ventricles (the AV node - see Figure 2.2). At this point, 

special nerve fibres act to delay the propagation to provide proper timing between the 

pumping action of the atria and the ventricles. During this delay time, the atria 

complete their contraction, forcing blood into the ventricles in order to complete their 

filling. Afterwards the AV node initiates an impulse into the ventricles and then into 

the bundle branches that connect to special cardiac muscle fibres (the Purkinje fibres) 

in the myocardium The latter is the muscular middle layer of the wall of the heart. It 

is composed of spontaneously contracting cardiac muscle fibres which allow the heart 

to contract.

The front wave in the ventricles, however, does not follow along the surface but is 

perpendicular to it and moves from the inside to the outside of the ventricular wall, 

until the entire ventricle becomes depolarised. Then the ventricles contract, forcing 

blood into the pulmonary and systemic circulatory systems. A wave of depolarisation 

follows the repolarisation wave by about 0.2 to 0.4 second. This depolarisation, 

however, is not initiated from neighbouring muscle cells but occurs as each cell 

returns to its resting potential independently.

11



2.2.1 Electricity in the Heart

The cardiac muscle contracts when it is stimulated by tiny electrical impulses carried 

in conductive fibres within the muscle. Unlike other muscles, the heart is unique. It 

generates its own electricity rather than receiving signals initiating in the brain and 

central nervous system This allows the most important muscle in the body to 

function independently. In a normal healthy heart, these electrical impulses, of the 

order of 1 mV, originate in the SA node and follow a pathway around the heart in the 

conductive fibres. Conduction occurs due to potassium and sodium ions passing 

through cell walls [McCulloch and Bastion, 1999]. Figure 2.2 shows the electrical 

pathways within the heart.

To measure the heart’s electrical activity, small metal leads are used. When a lead 

makes contact with the surface of the skin, which acts as an electrolyte, a difference 

of potential between the lead and the skin is produced.

The top layer of skin consists largely of dead cells along with a certain amount of oil 

and grime. Therefore, the skin’s natural electrical resistance is high compared to the 

resistance of the body’s fluids. An electrolytic jelly or paste is usually applied 

between the lead and the skin to ensure a low value of lead-skin interface resistance 

and minimise the drop in potential across the interface. Larger surface leads tend to 

have lower resistance compared to small needle leads.

12



2.2.2 Electrocardiogram

An ECG records the electrical activity of the heart, in particular the propagation of the 

electric potential through the cardiac muscles, as monitored by sensors at the limb 

extremities. It is considered a representative signal of the cardiac physiology, useful in 

diagnosing cardiac disorder. The state of cardiac health is generally reflected in the 

shape of the ECG waveform and heart rate. It may contain important pointers to the 

nature of diseases afflicting the heart [Acharya et al., 2003]. The biopotentials 

generated by the muscles of the heart result in the ECG.

2.2.3 Recording ECGs

The first accurate recording of an ECG was made by Einthoven in 1895 using a string 

galvanometer [Jenkins, 2001]. In order to record the ECG from electrodes placed 

vertically as well as horizontally on the human body, he had the electrodes placed not 

only on the chest but also in both arms and one leg. The leg selected was the left one, 

probably because it terminates vertically below the heart. Nowadays, an ECG is 

recorded by affixing up to five electrodes to the body [DeMarre and Michaels, 1983]. 

Usually two electrodes, or one electrode plus a group of up to three others, are 

connected to an amplifier. The electronic amplifier requires an additional connection 

to the body as a ground reference. The free right leg is used for this purpose. The lead 

placements are the right arm wrist (RA), left arm wrist (LA), left leg ankle (LL), right 

leg ankle (RL) and chest. As for the chest leads, different positions have been used.

13



Figure 2.3 shows the twelve standard lead positions over the body, and Table 2.1 lists 

the connections between the leads and their types (bipolar, and unipolar limb leads, 

unipolar chest leads).

2.2.4 ECG Wave-Form

The ECG wave-form for one cardiac cycle is shown in Figure 2.4. The letter 

designations given to each of the prominent features are those conventionally adapted.

The waveform is interpreted as follows [Hampton, 1998]:

The P-wave indicates the SA node function, which is produced by atrial 

depolarisation. During atrial depolarisation, the potential’s action travels from the SA 

node towards the atrioventricular (AV) node.

The R-wave represents the depolarisation of most (but not quite all) of the remaining 

ventricular musculature. Because the ventricular muscle is massive compared to the 

atrial muscle, the R-wave amplitude is much higher than the P-wave amplitude. The 

R-wave, like the P-wave, appears above the baseline and is usually the most 

prominent feature in the ECG. The normal peak value of the R-wave is approximately 

1 mV when measured at the surface of the body and about 40 mV when measured 

inside the heart.

14
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Bipolar Limb Leads

Lead I LA (+input) & RA (- input)

Lead II LL (+input) & RA (- input)

Lead III LL (+input) & LA (- input)

Unipolar Limb Leads

Lead aVR RA (+input) & LA+LL (-input)

Lead aVL LA (+input) & RA+LL (-input)

Lead aVF LL (+input) & RA+LA (-input)

Unipolar Chest Leads

VI Chest (+input) & RA+LA+LL (-input)

V2 Chest (+input) & RA+LA+LL (-input)

V3 Chest (+input) & RA+LA+LL (-input)

V4 Chest (+input) & RA+LA+LL (-input)

V5 Chest (+input) & RA+LA+LL (-input)

V6 Chest (+input) & RA+LA+LL (-input)

RA = right arm wrist, LA = left arm wrist, LL = left leg ankle 

+ input refers to the positive terminal of the ECG recorder 

- input refers to the negative terminal of the ECG recorder

Table 2.1: The twelve standard lead positions used in ECG
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Figure 2.4: Idealised representation of an ECG trace (lead II) for one normal heartbeat
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The PR interval indicates AV conduction time. The interval is measured from the 

onset of the P-wave to the beginning of the QRS complex. A normal PR interval is 

0.18 to 0.20 seconds. A short PR interval indicates that the impulse originates in an 

area other than the SA node, and a long PR interval indicates that the impulse is 

delayed as it passes through the AV node. Whereas atrial depolarisation occurs in one 

direction, the ventricles depolarise in three directions. Immediately after the impulse 

delay period, initial depolarisation of the ventricles begins in the septal area just 

below the AV node. Because the walls of the left ventricle are thicker than the walls 

of the right ventricle, the depolarising wave travels from left to right, causing the left 

side of the body to become negative while the right side becomes positive. This is 

recorded on the Q-wave, which appears below the baseline. Normally the amplitude 

of the Q-wave is less than the amplitude of the P-wave and in some tracings the Q- 

wave is not seen.

The S-wave represents the depolarisation of the remaining portion of the ventricles. 

Since for this wave, the apex (see Figure 2.1) becomes negative while the AV node 

area becomes positive, the recorded S-wave appears below the baseline. In general, 

the amplitude of the S-wave is greater than that of the Q-wave.

However, for some patients, the S-wave amplitude is so small that it is not observable. 

The QRS complex is the combined result of the repolarisation of the ventricles. Prior 

to this time interval, the atria are depolarising. However, because of its small 

amplitude, the depolarising wave pattern of the atria is not measurable at the body’s 

surface. Thus the baseline normally remains flat between the end of the P-wave and 

the start of the QRS complex.
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As the ventricles begin to depolarise, they contract. Later they depolarise. Ventricular 

depolarisation is represented by the T-wave.

Occasionally, another wave will appear after the T-wave. This is called the U-wave, 

and is generally believed to be the result of after potentials in the ventricular muscle.

The U-wave is more frequently seen in tracings from infants and patients who have 

low serum potassium levels or an enlarged heart. Following depolarisation, the 

ventricles relax.

Table 2.2 summarises the values of different intervals and segments of a normal ECG 

signal with different heart rates. This table shows that the heart rate affects the ECG 

signals even if the person is healthy.

2.3 Cardiac Arrhythmia

Arrhythmias, also known as dysrhythmias, refer to any disorder of heart rate or 

rhythm In a normal heart, the atria and ventricles contract in a co-ordinated manner. 

The depolarisation wave spreads from the SA node, through the atria, to the AV node 

and through the bundle of His (see Figure 2.2) and bundle branches into the 

ventricles. A conduction abnormality can occur at any of these points.

2.3.1 MIT-BIH Arrhythmia Database

The Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) 

arrhythmia database [Moody and Darker, 1989] is a well-established source of
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P-R Interval QRS interval Rate Q-T Interval S-T Segment
0.18 to 0.20 Second 0.07 to 0.01 Second 60

70
80
90
1 0 0

1 2 0

0.33 to 0.43 Second 
0.31 to 0.41 Second 
0.29 to 0.38 Second 
0.28 to 0.36 Second 
0.27 to 0.35 Second 
0.25 to 0.32 Second

0.14 to 0.16 Second 
0.13 to 0.15 Second 
0.12 to 0.14 Second 
0.11 to 0.13 Second 
0.10 to 0.11 Second 
0.06 to 0.07 Second

Table 2.2: Summarised values of different intervals and segments 

of the normal ECG signal with different heart rates
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ECG data for researchers studying ECG classification techniques. It contains digitised 

ECG signals, which have been transferred from Holter tape recordings taken from 

various in-patients at the Arrhythmia hospital laboratory at the Beth Israel Hospital 

between 1975 and 1979. From 4000 Holter tape records, 48 annotated records divided 

into two groups were kept. Group one consists of 23 records (the lxx series) and 

contains examples that an arrhythmia detector might encounter in routine clinical use. 

The second group consists of 25 records (the 2xx series) and contains examples of 

complex arrhythmias that could pose difficulties to arrhythmia detectors or of rare 

clinical cases. The subjects were 25 men aged 32 to 89 years, and 22 women aged 22 

to 89 years. About 60% of the records were obtained from in-patients. Each record is 

slightly over 30 minutes in length. The signals were sampled at the same frequency, 

360 Hertz, but not necessarily at the same gain because during collection different 

equipment was used with different electrical gains for digitisation of the various 

records. Moreover, the digital amplitude values range between [0, 2047], where 1024 

represents 0 volts. Therefore, the signals require normalisation before use.

The variety of the patients and variation in their ages and physical conditions makes 

the MIT-BIH database suitable for investigations into ECG classification techniques.

Lead II was the lead type used to record most of the ECG signals in the MIT-BIH 

database.

The MIT-BIH Arrhythmia database contains software to enable extraction of the 

digitised records. For the purpose of this study the following ECG types were selected 

from the MIT-BIH database:
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1- Normal Sinus Rhythm (N): this is the term for the normal condition (see Figure 

2.5).

2- Left Bundle Branch Block Beat (L): this arrhythmia is caused by a problem in 

conduction in the His bundle in the left side ventricle. This is seen as a widening of 

the QRS complex. This ECG type is invariably an indication of heart disease 

[Hampton, 1998]. Figure 2.6 indicates that the QRS complex is notably wider than 

that shown in Figure 2.5. This is due to the extra time taken for depolarisation caused 

by poor electrical conduction (block).

3- Right Bundle Branch Block Beat (R): the cause of this arrhythmia is similar to 

(L). However, the conduction problem now occurs on the right side of the His bundle 

branch and the ECG indicates a problem in the heart but also can be seen in a healthy 

heart. This type of arrhythmia is identified by a wide bimodal QRS complex (see 

Figure 2.7).

4- Paced Beat (P): this problem arises in patients that have been fitted with an 

artificial pacemaker. Pacemakers are used when a person has bradycardia (a very slow 

heart rhythm), which causes poor circulation and cannot be corrected by treatment 

with drugs. Pacemakers stimulate the heart muscle. This type of arrhythmia is 

indicated by the occasional missing of the P-wave and the presence of a spike
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Figure 2.5: Normal sinus rhythm (N) Type 

(MIT-BIH database, record 100)
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Figure 2.6: Left bundle branch block (L) type 

(MIT-BIH database, record 109)
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Figure 2.7: Right bundle branch block (R) type

(MIT-BIH database, record 118)



representing the stimulus from the pacemaker, followed by a wide QRS complex (see 

Figure 2.8).

5- Premature Ventricular Contraction (V): this arrhythmia occurs when the heart 

beats earlier than it should. This is because of the abnormal electrical activity of the 

ventricles which causes premature contraction of the lower chambers of heart, the 

ventricles. The premature contraction is followed by a pause as the heart’s electrical 

system “resets” itself. The contraction following the pause is usually more forceful 

than normal. With this type, the QRS complex is misshapen and prolonged 

representing ventricular contraction without earlier atrial stimulation (see Figure 2.9).

6- Atrial Premature Beat (A): this arrhythmia is associated with early depolarisation 

of atrium This type can be identified by a premature, small and distorted P-wave (see 

Figure 2.10).

7- Aberrated Atrial Premature Beat (a): early depolarisation of atria. This 

manifests itself as an abnormal P-wave (wide prolonged), narrow R-wave, and 

distorted QRS complex (see Figure 2.11).

8- Nodal (junctional) Escape Beat (j): the cause of this arrhythmia is that the region 

around the AV node takes over as the focus of the depolarisation; the rhythm is called 

“nodal” or ‘junctional’ escape. Figure 2.12 shows one beat cycle of this arrhythmia 

which has no Q- and S-waves. Also, the P-wave has an inverse polarity compared to 

that of the normal sinus rhythm

26



Electrical 
potential /mV

0 .75

0 .5 0

0 .25

0

-025

-0 .5 0

-0 .75

0.60.2 0 .40

Time/seconds

Figure 2.8: Beat stimulated by an artificial pacemaker ( ‘Pace’) type 

(MIT-BEH database, record 104)
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Figure 2.9: Premature ventricular contraction (V) type

(MIT-BEH database, Record 105)
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Figure2.10: Atrial premature beat (A) type

(MIT-BIH database, Record 100)
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Figure 2.11: Aberrated atrial premature beat (a) type

(MIT-BIH database, Record 105)
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Figure 2.12: Nodal (junctional) escape beat (j) type

(MIT-BIH database, Record 201)
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9- Ventricular Escape Beat (E): this most commonly occurs when the ventricle 

contracts without nodal stimulation. This is classically associated with complete heart 

blockage. The QRS complexes are wide whereas the P-waves are occasionally absent 

as demonstrated in Figure 2.13.

10- Fusion of paced and normal beats (f): this type of arrhythmia is a mixture of 

paced and normal beats. The P-waves have large amplitudes and are wide, and the 

QRS complexes are distorted, especially in the S-waves portion (see Figure 2.14).

Examples of the above arrhythmias and normal ECGs were extracted from records 

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 

118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 212, 213, 

214, 215, 217, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233, 234.

There are two points to be taken into account concerning the above examples: intra

patient and inter-patient variability. Intra-patient variability occurs due to changes in 

the patient’s emotional and physical states and inter-patient variability is due to 

different physical conditions between the different patients. As a result of intra- and 

inter-patient variability, different beat waveforms and different lengths of a beat cycle 

are observed.
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Figure 2.13: Ventricular escape beat (E) type 

(MIT-BIH database, Record 207)
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Figure 2.14: Fusion of paced and normal beats (f) 

(MIT-BIH database, record 113)



2.4 Data Preparation

The application of a pattern classifier first requires the selection of features that must 

be tailored separately for each problem domain. Features should contain the 

information required to distinguish between classes, be insensitive to irrelevant 

variability in the input, and also limit the amount of training data required. Good 

classification performance requires selection of effective features and also selection of 

a classifier that can make good use of those features without demanding large 

amounts of training data, memory, and computing power [Lippmann, 1989].

Raw ECG data cannot be directly used for classification; it needs to undergo pre

processing operations such as filtering, digitisation, feature extraction and 

normalisation. The MIT-BIH Institute, which produced the ECG database used in this 

study, had carried out the filtering and digitisation.

The next section explains the preparation of ECG data in terms of feature extraction 

and normalisation.

2.4.1 Feature Extraction

Feature extraction techniques try to reduce the amount of data to be processed by a 

pattern classifier by extracting important features that can be used to represent the 

whole data set. Primary features are directly extracted from a data set. Additional 

features can be obtained by combining primary features by means of mathematical 

operations, for example taking the difference or the ratio of two feature values.
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The MIT-BIH database consists of records, each pertaining to several ECG beats, 

with each digitised beat comprising hundreds of points representing one cycle of the 

ECG. It is very important to reduce these large data files to small files that retain 

sufficient information to enable differentiating between the different types of 

arrhythmia. The main problem when classifying an ECG is to determine which 

portion of the signal to use for diagnosis. Different portions and various numbers of 

features can be adopted. Many researchers use the QRS-complex as it represents 

ventricular depolarisation, and because it contains most of the information about the 

nature of disease [Conde, 1994; Suzuki, 1995; Hosseini and Nazeran, 1999; Biel, 

2001]. However, the ST segment should also be taken into account as well as beat 

rhythm information [Weisner et al, 1982].

It has been noted by Suzuki [Suzuki, 1995] that since the QRS complex is a reference 

used to detect other waves, the first step in an automatic ECG interpretation system is 

recognition of this QRS complex. It is also true that the QRS complex contains a 

significant amount of information about the state of the heart, as it represents 

ventricular depolarisation [Biel, 2001].

Various sets of features were extracted for this study. In the work reported in chapter 

3, two sets of extracted features (one with 18 and the other with 11 features) were 

used. Another set of 15 features was employed in the experiments reported in chapters 

4 and 5. Figure 2.15 shows some of the features extracted from one ECG signal.
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Figure 2.15: Some features extracted from an ECG
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These features include some of the important information about the ECG signal such 

as the height and duration of different parts of the waveform Table 2.3 and Table 2.4 

respectively, show the 18 and 11 features used in the work described in chapter 3. The 

second set of features was obtained by removing seven less important features from 

the first set.

The process of physiological feature extraction starts with the identification of the R- 

wave, as the QRS complex is the most prominent part of the ECG as mentioned 

before. The R-wave is normally positive and generally shows a significantly greater 

peak than the other waves and the R peak can be detected as the highest value in the 

cycle.

However, the R-wave can sometimes be negative if the electrodes are attached with 

reversed polarity, and an inverted waveform is seen; in this case the Q- and S-waves 

are shown as positive.

On some occasions, the T-wave can have a greater magnitude than the R-wave. In this 

case, distinction is still possible because the R-wave has a pointed peak whereas T- 

waves are wider and more rounded.

As for the Q-wave and R-wave peaks, they may then be found by searching for a local 

maximum or minimum In the case of the Q-wave, the search proceeds from the peak 

of the R-wave towards the left (i.e. the search is made backwards in time). For the S- 

wave, the search proceeds forward in time from the location of the R-wave peak.
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Feature Description

1- P peak height The amplitude of the P-wave.

2- Q peak height The amplitude of the Q-wave.

3- R peak height The amplitude of the R-wave.

4- S peak height The amplitude of the S-wave.

5- T peak height The amplitude of the T-wave.

6- PT wave duration Overall duration of the P & T-wave.

7- PR wave duration Overall duration of the P & R-wave.

8- RT interval Overall duration of the R & T-wave.

9- QRS interval Overall duration of the QRS complex: from the 

onset of the Q-wave to the end of the S-wave. 

(Time taken for complete ventricular pumping 

action.)

10- QT interval Overall duration of the Q & T-wave.

11- QR interval Overall duration of the Q & R-wave.

12- Minimum The minimum value of the ECG signal

13- Maximum The maximum value of the ECG signal

14- RS interval Overall duration of the R & S-wave.

15- PQ interval Overall duration of the P & Q-wave.

16- ST interval Overall duration of the S & T-wave.

17- Standard deviation Standard deviation of the electrical signal from the 

Baseline

18- Mean Mean of the electrical signal

Table 2.3: 18 Features of the ECG signal selected for classification
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Feature Description
1- PT wave duration Overall duration of the P & T-wave.

2- PR wave duration Overall duration of the P & R-wave.

3- RT interval Overall duration of the R & T-wave.

4- QRS interval Overall duration of the QRS complex: from the 

onset of the Q-wave to the end of the S-wave. 

(Time taken for complete ventricular pumping 

action.)

5- QT interval Overall duration of the Q & T-wave.

6- QR interval Overall duration of the Q & R-wave.

7- Minimum The minimum value of the ECG signal

8- Maximum The maximum value of the ECG signal

9- RS interval Overall duration of the R & S-wave.

10- PQ interval Overall duration of the P & Q-wave.

11- ST interval Overall duration of the S & T-wave.

Table 2.4: 11 Features of the ECG signal selected for classification
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Several variations from the ideal shape were found in the real examples from the 

MIT-BIH database even for the normal type. Some variations in the QRS complex 

were taken into account during the feature selection process see Figures (2.16(a), (b) 

and (c)), (2.17(a), (b) and (c)) and (2.18(a), (b), and (c)).

As shown in Table 2.3 and Table 2.4, a number of statistical features was also used.

Another method of reducing the data set used to describe the ECG was to re-sample at 

a reduced sampling frequency. This method is simpler and faster than the feature 

extracting methods.

For the experiments reported in chapter 3, two sets of re-sampled data were used. The 

re-sampling frequencies were 100 Hz and 50 Hz for the two sets respectively, giving 

64 points or 33 points for one cycle of the ECG signal.

2.4.2 Normalisation

As mentioned previously, during collection different equipment was employed with 

different electrical gains for digitisation of the various records. Consequently, the 

signals required normalisation before use, and for convenience in neural network 

training, the data was normalised before being presented to the neural network.

Usually, the data would be normalised between 0 and 1 or between -1 and 1. The 

main advantage of normalisation is to eliminate the effects of different scales and 

ranges. In this study, the data was normalised in the range [-1, 1]:
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Figure 2.16 (a): Variations in the R-wave part of QRS complex showing

inverted R-wave
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Figure 2.16 (b): Variations in the R-wave part of QRS complex showing 

S-wave has greater magnitude than R-wave
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Figure 2.16 (c): Variations in the R-wave part of QRS complex showing

apparent double R peak
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Figure 2.17 (a): Variations in the Q-wave part of QRS complex showing

depressed PR segment
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Figure 2.17 (b): Variations in the Q-wave part of QRS complex showing

no Q-wave present
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Figure 2.17 (c): Variations in the Q-wave part of QRS complex showing 

indeterminate onset to Q-wave
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Figure 2.18 (a): Variations in the S-wave part of QRS complex showing

indeterminate end to S-wave
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Figure 2.18 (b): Variations in the S-wave part of QRS complex showing

depressed ST segment
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Figure 2.18 (c) Variations in the S-wave part of QRS complex showing 

apparent separation of S-wave from QR part of complex
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(2.1)

where Fu is the unsealed value, Fmin the minimum value in the data set, and Fmax the 

maximum value in the data set.

Another effective normalisation method is to calculate the mean and the standard 

deviation of the attributes first, and then divide the difference between each attribute 

value and the mean by the standard deviation:

where X is the mean and <j) the standard deviation of the data s e t , Fu is the unsealed 

value of the feature and Fs is the new scaled value of the feature.

2.5 Previous Work on ECG/Arrhythmia Classification

Several authors have looked at ECG arrhythmia classification using different means 

such as statistical methods, expert systems, and supervised neural networks.

Automated interpretation of ECGs began more than 35 years ago [Pibperger and 

Stallman 1962; Pordy et al., 1968]. Since that time there has been continuous 

development of expert systems for automated interpretation of ECGs. Automated 

interpretation of ECGs includes three basic approaches. The first is based on decision 

logic where a rule-based expert system is used to mimic the decision processes of a 

cardiologist. The second approach utilises multivariate statistical pattern recognition

F. = (2.2)
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to solve a pattern recognition problem [Klingeman and Pipberger, 1967]. The third 

approaches employing neural networks [Rasiah and Attikiouzel, 1994] and machine 

learning [Oates et al., 1988] have also been developed.

Over the last few years automated interpretation of ECGs has been widely used as 

decision support for physicians, with the best interpretation programs performing 

almost as well as humans. Recent papers have shown that neural networks may be 

used to improve automated ECG interpretation for myocardial infarction.

Neural networks have been utilised with positive results in various medical diagnoses 

[Gallant, 1988; Frenster, 1990; Peng and Reggia, 1989]. In computerised ECG, the 

developed applications have concentrated mainly on beat and diagnostic classification 

[Gallant, 1988; Degani and Bortolan, 1990; Yeap et al, 1990]. According to 

Lippmann [Lippmann, 1989], recent interest in neural networks is directed towards 

practical research. This includes areas of study encompassing pattern recognition and 

artificial intelligence applications where real-time response is required. Both areas 

are relevant to ECG classification.

Pedrycz et al. [Pedrycz et al., 1991] used a combination of two pattern recognition 

techniques, cluster analysis and feed-forward back propagation neural networks, for 

the diagnostic classification of a 12-lead ECG. The principle of cluster analysis based 

on the Euclidean distance in parameter space was also applied to the original learning 

set. The classification accuracy results varied between 51.9% and 84.0% for 

classifying 7 classes of ECG abnormality.
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Silipo and Bortolan [Silipo and Bortolan, 1997] compared statistical methods and 

neural network architectures with supervised and unsupervised learning approaches in 

performing the automatic analysis of the diagnostic ECG, where seven beat types and 

39 features were used. The classification results varied between 91.0% and 94.0% 

correct classification for all seven types, showing that a classifier based on neural 

networks can produce a performance at least comparable with those of traditional 

classifiers. As for the neural network architectures trained with unsupervised 

techniques, they produced a reasonable classification performance. Interestingly, two 

additional features used were the age and sex of the subjects. This information is not 

given in the MIT-BIH database.

A neural network based system, the GNet 2000 ambulatory ECG monitor, was 

developed by Gamlyn et al. [Gamlyn et al., 1999]. This is a portable, battery-powered 

unit capable of analysing an ECG in real time. A panel of Kohonen networks is 

embedded in a 32-bit micro-controller. The system is able to detect variations in the 

heart rate and P-R interval, changes to the ST segment, ‘ectopic’ beats and certain 

arrhythmias. Features include 24-hour monitoring and printout of detailed reports. 

The product is now commercially available.

Hu et al. [Hu et al., 1997] used a patient-adaptable approach to classify ECG beats in 

the MIT-BIH arrhythmia database. They concentrated on four categories of ECG 

beats, namely, normal, ventricular premature beat, fusion of normal and ventricular 

beat and unclassifiable beat. They used a mixture of the Self Organising Feature Map 

(SOFM) and Learning Vector Quantisation (LVQ) algorithms to develop two expert 

programs, the global expert program capable of classifying ECG beats from the whole
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database and the local expert program, which is a patient-specific expert system The 

classification accuracy varied between 62.2%-95.9% for different records. The main 

drawback of the method is the need to create a local expert program for each 

individual patient.

Edenbrandt et al. [Edenbrandt et al., 1992] used single output MLPs to classify seven 

different classes of ST-T segments found in the ECG. They used the ST slope and the 

positive and negative amplitudes of the T-wave as inputs to the MLP. They trained 

and tested ten MLPs with different configurations of hidden layers and neurons in the 

hidden layers. The average classification accuracy was between 90.0% and 94.4%.

Izeboudjen and Farah [Izeboudjen and Farah, 1998] proposed an arrhythmia classifier 

using two neural network classifiers based on the MLP model. The morphological 

classifier groups the P-waves and QRS complexes into normal or abnormal beats. The 

timing classifier takes as the input the output of the morphological classifier and the 

duration of the PP, PR and RR intervals (see Figure 2.19). An accuracy of 93.0% was 

reported in classifying 13 arrhythmia classes from 48 examples scanned from 

different ECG signals using a PC.

Dorffher et al. [Dorffner et al., 1994] compared the performance of neural networks 

with the performance of skilled cardiologists in classifying coronary artery disease 

during stress and exercise testing. He performed three experiments, two of which used 

recurrent networks, while the third one employed an MLP. This neural network 

approach produced results comparable to the diagnosis of experts. Only in some cases 

did the neural networks outperform the experts.
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Figure 2.19: RR intervals from an ECG



Nugent et al. [Nugent at al., 1998] used single-output bi-group MLPs to detect the 

presence or absence of a specific ECG class. Three different feature selection 

techniques were adopted, namely, rule based, manual and statistical. The results of the 

bi-group neural networks were combined using orthogonal summation. The 

methodology was applied to recognise three classes, namely, normal, left ventricular 

hypertrophy and inferior myocardial infarction. On average, the classification 

accuracy was only 78.0%.

Biel et al. [Biel et al., 2001] suggested that the distinction between ECG signals of 

different people is sufficiently great to identify individuals using just one lead of an 

ECG.

Bortolan et al. [Bortolan et al., 1991] used a feed forward network with 

backpropagation to classify seven beat types using 39 features. Results of over 90.0% 

correct classification for all seven types were achieved. Interestingly, two features 

used were the age and sex of the subjects. Such information is not given in the MIT- 

BIH database. The same seven beat classes were investigated by Silipo et al. [Silipo et 

al., 1999] using a neural classifier with Radial Basis Function (RBF) pre-processing. 

Here again, correct beat type designation was consistently made for over 90.0 % for 

all classes.

The influence of various network parameters on multilayer neural network 

performance were researched by Edenbrandt et al. [Edenbrandt et al., 1992]. ECG ST- 

T segments were the basis of the study which found that increasing the number of 

input features did not necessarily improve classification. Similarly, increasing the
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number of neurons in the hidden layer beyond five gave no benefit. It was also 

reported that networks with two hidden layers showed only a very slight improvement 

over those with one hidden layer. Problems were encountered with training networks 

to recognise uncommon patterns, the best results being obtained, as expected, for 

those beats with the most examples in the training set.

Magleveras et al. [Magleveras et al., 1998] advised against using digital filtering of 

signals at the pre-processing stage to avoid corrupting the components of the ECG. 

However, others have done so in their work [Hamilton et al., 1986; Suzuki, 1995; 

Dokur et al., 1997].

Modular neural networks were applied to ECG classification [Kidwai, 2001]. These 

employed a more logical step-by-step approach by breaking the problem of 

classification down into stages rather than using a one-hit approach.

Suzuki [Suzuki, 1995] and Hamilton and Tompkins [Hamilton and Tompkins, 1986] 

researched methods of QRS complex detection. Their aim was reliably to break down 

a continuous ECG signal into individual beats. This is in contrast to supplying 

information from a database where signals have already been pre-divided into beats, 

such as the MIT-BIH database. Recognition of the QRS complex was proposed by 

Suzuki as the first step in the development of a real-time ECG analysis system His 

self-organising neural network was capable of detecting R-waves in real time, in order 

to divide the ECG into cardiac cycles. An Adaptive Resonance Theory (ART) 

network then performed classification according to QRS complex features. Hamilton 

and Tompkins [Hamilton and Tompkins, 1986] claimed that their system carried out
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QRS detection at 100 times the rate of the cardiac cycle, and gave a 99.8 % success 

rate for QRS identification.

Dokur et al. [Dokur et al., 1997] used a Kohonen neural network to detect four ECG 

waveforms: Normal beat (N), Premature ventricular contraction (V), Paced beat (P) 

and Left bundle branch block (L). The network was trained with data from the MIT- 

BIH arrhythmia database and gave a 90.0% classification accuracy.

2.6 Summary

This chapter has reviewed background material relevant to the work presented in this 

thesis. An overview of the functionality of the heart has been given. Special attention 

was paid to feature extraction, which constitutes the most important phase in ECG 

classification. An introduction to ECG pattern recognition has been given and a 

review of research on ECG classification carried out.
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Chapter 3

Comparison of Different ECG Classification 

Techniques

3.1 Pattern Classification

Pattern classification encompasses a wide spectrum of significant information 

processing problems. Important technological applications range from speech 

recognition and hand-written character recognition, to fault detection in machinery 

and medical diagnosis.

The basic assumption in this field is that ‘objects’ can be characterised by a set of 

relevant measurements, called features. After measuring those particular features, an 

object can be classified from the measured feature values.

Pattern recognition techniques are used to classify input patterns into classes. Input 

patterns can be viewed as points in the multidimensional space defined by the input 

feature measurements. The purpose of a pattern classifier is to partition this 

multidimensional space into decision regions that indicate to which class any object 

belongs. As mentioned previously, the first step in pattern classification is the
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selection of features. These must be chosen carefully for each problem domain, and 

should contain the information required to distinguish between classes.

Good classification performance requires a recogniser that can make good use of 

those features with limited training data, memory, and computing power [Lippmann, 

1989].

There are two phases to pattern classification, the training phase, where a recogniser 

is constructed, and the application or test phase. In the training phase, the training set 

is used to decide how the parameters ought to be weighted and combined in order to 

separate the various classes. In the application phase, the weights determined in the 

training set are applied to a set of unknown objects in order to determine what their 

classes are likely to be.

Classification is usually an easy problem when there are only two or three features. 

For example, with two features one can often simply construct a scatter-plot of the 

feature values and determine graphically how to divide those values into various 

regions where objects of the same class are grouped together. The classification 

problem becomes very hard when there are many features to consider.

Pattern classification can be in two ways, according to the data provided to the 

recogniser during the training phase. With the first method, known as unsupervised 

classification or clustering, the recogniser is required to cluster the data, by 

uncovering similarities between the data in order to group them With the second 

method, known as supervised classification, the data comprise both input patterns and 

corresponding classes, and the recogniser is required to uncover a mapping between
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the two. In both cases, an unknown input pattern is subsequently assigned to one of 

the possible classes.

The automatic interpretation and classification of ECG signals begins with the 

collection of the ECG data from patients with various types of normal and abnormal 

heart beats. This data is then pre-processed by filtering to remove noise and by 

digitisation. The next step is feature extraction, where measurements are made of key 

parameters of the ECG, such as the height and duration of the P-waves, T-waves and 

QRS complexes. Finally, the training set is normalised, and then input to the 

classifier, as shown in Figure 3.1.

A number of machine learning techniques have been employed for pattern 

recognition. These enable computer programs automatically to improve their 

performance of some tasks through experience.

Machine learning algorithms have been classified according to Pham et al. [Pham et 

al., 2 0 0 2 ] into inductive learning algorithms, artificial neural networks, genetic 

algorithms, and instance-based learning algorithms, as illustrated in Figure 3.2.

This chapter gives a comparison between three different types of machine learning: 

instance-based learning, neural network learning, and inductive learning. Genetic 

algorithms were not considered as this form of learning is generally too slow for real 

time applications.
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3.2 Instance-based Learning Classifiers

Instance-based learning consists of two stages. The first stage computes matching 

scores for each class according to how closely the input matches the exemplar pattern 

that best represents that class. The second stage selects the class with the maximum 

score.

A popular instance-based classifier is the k-Nearest Neighbour classifier (k-NN). This 

is a conventional nonparametric estimation classifier [Therrien, 1989], which leads 

directly to an approximation of class likelihood, minimises the probability of error, 

and provides good performance for optimal values of k. k-NN is a spontaneous 

method requiring no training, which classifies unlabeled examples based on their 

similarity to the examples in the training set.

The k-NN classifier, for a given unlabeled sample XMeRn , operates by finding the k 

“closest” labelled examples in the training data set and assigning Xu to the class that 

appears most frequently within the k-subset. In this case, the entire training set is 

stored in memory. A Euclidean distance metric is commonly employed [Mitchell, 

1997]. If two or more ‘nearest’ classes exist, then the test sample is assigned to the 

class with the minimum average distance to it.

Figure 3.3 shows a simple example for classifying an unknown example Xu into one 

of three classes. In this case, a Euclidean distance metric is employed and k = 5. Of 

the five closest neighbours, four belong to wj and one belongs to wj, so Xu is assigned 

to wi, the predominant class.



Figure 3.3: An example of k-NN classification

65



Let n training pattern vectors be denoted as: x{l) (/), i = 1,............. , I = 1,...... ,C, where

c
nt is the number of training patterns from class = n , and C is the total number

/= i

of categories. Let Kl (k, n) be the number of patterns from class I among the k-NN of 

pattern x.

The nearest neighbours are computed from the n training patterns. According to the k- 

NN decision rule, class(x) is defined as:

Class (x) = j  i f  Kj (k , n) > Kf k ,  n) for all j  * i (3.1)

Let D(x,x{,)) denote the Euclidean distance between two pattern vectors, x and x{l), 

then:

D(x,x{i)) = ^ ( X j  - x ij )1= - 2 M ( ^ , / }) + 2 4  (3.2)
M  j =1

M (x,xw) = f ix / j -  ± 2 > ' ) 2 (3.3)
j= l  ^  j =1

where d is the number of features. M (x,x (t}) is defined as the matching score 

between the test pattern x and the training pattern x\ Finding the minimum Euclidean 

distance is therefore equivalent to finding the maximum matching score [Jain and 

Mao, 2000].
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There are several advantages to the k-NN classifier: it is analytically traceable, new 

training examples can be easily added, it is simple to implement, and it utilises 

training data directly without the need to learn weights as parameters.

A severe drawback of the k-NN classifier, however, is that it can require a large 

amount of computation time to classify new examples because all computation takes 

place at the classification time rather than the training time as there is no training. The 

k-NN classifier is considered a ‘lazy’ learning algorithm [Aha, 1989], because it 

defers data processing until it receives a request to classify an unlabeled example. The 

k-NN classifier also needs large amounts of memory because all examples have to be 

stored.

3.3 Artificial Neural Networks

Neural networks (NNs) differ from conventional pattern recognition techniques in 

their ability to generalise from a limited number of samples to new situations which 

have not been encountered during the learning phase [Rumelhart et al., 1987]. In this 

way, they are able to solve problems that do not have an algorithmic solution, or 

where the available solution is too complex to be found. They have been successfully 

applied to many pattern classification problems [Lippman, 1989; Duda et al., 2001].

Computational models for neural networks are based on the human brain in consisting 

of inter-connected processing elements called ‘neurons’ [Lippmann, 1987; Hush and 

Home, 1993; Haykin, 1994]. They may be classified [Pham and Liu, 1995] according
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to the nature of the connections between the neurons, i.e. their structure, and 

according to the means of adjusting the connections, i.e. their learning algorithm

3.3.1 Neural Network Structure

Neural networks may be categorised according to their structure as either feedforward 

networks or recurrent networks.

i) Feedforward Networks

In feedforward networks, the neurons are grouped into layers. The neurons are 

connected between the layers with data flowing only in one direction, from the input 

layer to the output layer. The neurons in feedforward networks have a static memory, 

remembering only the current input at any given time. Some examples of feedforward 

networks are the Multilayer Perceptron (MLP) [Pandya and Macy, 1996], the 

Learning Vector Quantisation (LVQ) [Abramson and Wechsler, 2001; Engelbrecht, 

2002] and the Radial Basis Function (RBF) network [Webb, 1999].

ii) Recurrent networks

In recurrent networks, the flow of signals can be both forwards and backwards. This is 

made possible by allowing the output of the neurons to be fed back, either to 

themselves or to neurons in preceding layers. In other words, a recurrent network has 

at least one feedback loop, i.e. cyclic connection, so that at least one of its neurons 

feeds its output back to the input of one or more preceding neurons. The behaviour of 

such networks may be extremely complex. The neurons may then have a dynamic 

memory, i.e. they not only remember the current inputs but also previous inputs and
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outputs. Examples of recurrent networks include the Hopfield Network [Negnevitsky, 

2002], the Elman Network and the Jordan Network [Pham and Liu, 1995].

3.3.2 Learning in Neural Networks

NNs can be classified according to their mode of learning, namely supervised learning 

and unsupervised learning.

i) Supervised Learning

In supervised learning, as shown in Figure 3.4, the set of training inputs and their 

corresponding outputs must be presented to the network. The data set consisting of 

training input vectors and targets (desired outputs) is called the training set. The aim 

of training is to adjust the weight values in order that the difference between the real 

output and the target output is minimised. In this scheme, the system should be 

directed by an external signal (teacher) to achieve the desired performance.

The connections between the neurons are adjusted according to a supervised learning 

algorithm such as the Delta Rule, the Back Propagation (BP) algorithm and the 

Learning Vector Quantisation (LVQ) algorithm The aim of these algorithms is to 

train the NN to achieve the desired outputs for the given inputs.

ii) Unsupervised Learning

Unsupervised learning does not require the desired output patterns to be presented to
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Figure 3.4: Simplified representation of supervised learning for NNs
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the network, and the aim is to discover pattern features in the input with no external 

assistance.

A simplified representation of unsupervised learning is shown in Figure 3.5. No a 

priori knowledge is assumed to be available regarding an input’s membership of a 

particular class. Rather, gradually detected characteristics together with the training 

history are used to assist the network in defining classes and possible boundaries 

between them

The NN automatically clusters the input data into groups or classes. Such 

unsupervised learning systems are normally employed for pattern clustering. Well- 

known unsupervised learning systems include the Self Organising Feature Map 

(SOFM) [Kohonen, 1982] and the Adaptive Resonance Theory (ART) network 

[Carpenter et al., 1991].

For ECG classification, this research focused on the MLP, LVQ and RBF supervised 

learning networks, which had been found to have reliably strong performances 

[Lippmann, 1989; Kulkami et al., 1998; Engelbrecht, 2002].

3.4 Multilayer Perceptron

The Multilayer perceptron is the most widely used architecture for feedforward NNs. 

Rosenblatt [Rosenblatt, 1958] first used the term perceptron for a single-layer 

network. In the late 1960s, Single-layered Perceptrons (SLPs) were proven 

mathematically inadequate for nonlinearly separable classification problems [Minsky
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and Papert, 1969]. However, in the mid 1980s, this problem was solved when the 

back propagation training algorithm was applied to a multilayer network.

This algorithm was first devised by Werbos (1974), but was popularised by 

Rumelhart et al. [Rumelhart et al., 1986].

A basic form of artificial neuron architecture is depicted in Figure 3.6. MLP 

feedforward networks consist of at least three layers of neurons: input, output and 

hidden layers, which are connected (an SLP has two layers counting the input layer). 

The layer which receives the input from the user is called the “Input Layer”. The layer 

which provides information from the NN to the user is called the “Output Layer”. 

Between the input and output layers he one or more hidden layers. These hidden 

layers allow for the complex transformation of inputs to outputs. A fully connected 

MLP is shown in Figure 3.7.

The strengths of the connections between the neurons are referred to as “weights”. 

Each neuron will produce an output after summing its weighted inputs. The output is 

then some function of the sum For the neuron illustrated in Figure 3.6 the output yj is 

calculated using Equation 3.4.

The activation function f(.) can take different forms. Some common forms of 

activation functions [Pham and Liu, 1995] are listed in Table 3.1.

(3.4)
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Function Name Function Definition

Linear / ( s) = s

Sigmoid / ( s) = 1 / ( 1 + exp (-s))

Hyperbolic Tangent / ( s) = ( 1 -  exp (-2 s) ) / ( 1 + exp (2 s ))

Radial Basis Function / ( s) = exp ( -s2 / 2 *a2)

Table 3.1: Activation functions [Pham and Liu, 1995]
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The most popular choices for f(.) are the hyperbolic tangent and sigmoid functions 

[Zurada, 1992].

The Back Propagation (BP) algorithm (Figure 3.8) is the most popular algorithm for 

training the MLP, and is a type of gradient descent algorithm The BP algorithm 

compares the actual network outputs with the desired outputs corresponding to the 

presented input vectors. The differences between the two errors are then propagated 

back from the output layer to the preceding layers, and synaptic weights are modified 

to reduce these differences in the course of training. This process continues until the 

output error has met some predefined criterion. Learning iterations consist of two 

phases: the feedforward phase, which simply calculates the output value (s) of the 

NN, and the backward propagation phase, which propagates an error signal back from 

the output toward the input layer. Weights are adjusted as functions of the back 

propagated error signal.

The aim of the algorithm is to adjust the weights between the layers to make the 

output reach the desired value, i.e. reduce the error between the desired and actual 

output values. The adjustment in the weights is done using Equation 3.5:

Awj l =rjSjXl (3.5)

where Wji represents a weight connection between neuron i and neuron j  in the 

forward direction, jt; represents the output of neuron i, 77 is a gain factor called the 

‘learning rate’ and Sj is the error factor of neuron j  that depends on whether neuron j  

is an output neuron or a hidden neuron.
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For an output neuron:

8j = ( J L '
dmtj ^

( d j - y j )  (3.6)

where netj is the total of all the weighted inputs to neuron j , dj is the desired output of 

neuron j  and yj is the actual output.

For hidden neurons, there is no desired output. Therefore, the error factors of the 

neurons connected to the output of neuron j  are utilised. If there are q neurons 

connected to neuron j  then:

6j =
(  d f ^
^dnefj j (3-7)

After the weight change Awp is calculated using Equations 3.5 - 3.7, it is added to the 

existing weight Wjt (k) to give the new adjusted weight wy (k+l)= Wji(k)+ AwjL

Back propagation works by first initialising the weights to random values. The output 

of the neurons is calculated using Equation 3.6. If it is not the desired output, then the 

weights are changed as described in Equations 3.6 -  3.7. If after the weight change the 

output still has not reached the desired value, further weight adjustments are made. 

This process continues until the output becomes close to the desired value for each 

corresponding training input. One cycle of applying all the trainng data and changing 

the corresponding weights is refered to as an ‘iteration’ or ‘epoch’.
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The process of making the output closer to the desired value is called ‘convergence’. 

The back propagation algorithm continues until a fixed number of epochs are reached 

or the difference between the desired and actual ouputs falls below a prescribed level. 

To speed up convergence, usually a momentum term “ r ” is added:

Aw ji (k +1) = ri5j x t + r Awj{ (k) (3.8)

where A Wji (k+1) and A w# (k) are the weight changes in the (k+1 )th and (k)th epoch. 

Increasing t increases convergence but this must be done with care as it may lead to 

instability.

The training parameters determine the weight changes. These include the initial 

weights, the learning rate and the momentum The initial weights are usually 

randomised to small values in order to prevent premature convergence due to 

saturation of the activation functions. Small learning rates could not be set to ensure 

stable learning. However, weight changes from one epoch to the next will be smaller 

and consequently the rate of convergence will be smaller. A higher learning rate will 

increase the rate of convergence, but this may lead to oscillations in the weight values. 

The momentum term is designed to reduce the effect of these oscillations.

A selection of pattern recognition applications that utilise MLPs with the BP 

algorithm is given below:

• NETtalk: neural networks are shown to be capable of learning to pronounce 

English text [Sejnowski and Rosenberg, 1987].
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• Hand written character recognition [Guyon, 1991].

• Detection of radar targets [Haykin and Deng, 1991].

• Diagnosis of electronic circuits broads used in digital telephone exchanges [Totton 

and Limb, 1991].

• Diagnosis of heart attacks [Harrison et al., 1991].

• Speech recognition [Renals et al., 1992].

• Control chart pattern recognition [Pham and Oztemel, 1993, 1994].

• Detection of high impedance arcing faults [Sultan et al., 1992].

• Identification of starches in manufacturing food products [Huang et al., 1993].

• Automatic classification of metaphase chromosomes [Errington and Graham, 

1993].

• Classification of sonar targets [Svardstrom, 1993].

• Fingerprint classification [Pal and Mitra, 1996].

• Neural networks for classifying surface defects on automotive valve stem seals 

[Pham and Bayro-Coirochano, 1995].



• Identification of text independent Speaker using multiple classifiers [Chen et al., 

1997].

• Classification of wood veneer defects [Pham and Sagiroglu, 2001].

• Airplanes shape recognition [Osowski and Nghia, 2002].

• Off-line handwritten word recognition [Liu and Gader, 2002].

• Classification of multispectral satellite images [Venkatesh and Raja, 2003].

• Text detection and recognition in images and video frames [Chen et al., 2004].

The design parameters determine the structure of the network. In an MLP, the design 

parameters are the number of hidden layers and the number of neurons in these layers. 

There is no ‘fixed’ rule to determine the number of hidden layers and the number of 

neurons that are needed to solve a particular problem Usually one hidden layer will 

suffice. If the accuracy of the network is not satisfactory then the number of neurons 

in the hidden layer can be increased. If this does not improve the accuracy then a 

second hidden layer can be introduced. MLPs with three or more hidden layers are 

rare.

3.5 Radial Basis Function Neural Network

A radial basis function (RBF) neural network is a special kind of feedforward neural 

network. RBFs, however, store local information whereas conventional MLPs store 

global information. RBF networks belong to the group of kernel function networks
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that utilise simple kernel functions distributed in different neighbourhoods of the 

input space, whose responses are essentially local in nature. A RBF network is also 

capable of learning on-line, i.e. while it is still being employed for classification, 

unlike most other neural networks.

The architecture of a RBF network consists of three layers: an input layer, a hidden 

layer composed of J  basis functions and an output layer composed of K  neurons with 

linear activation functions as shown in Figure 3.9. A single-hidden-layer network has 

an advantage in terms of computing speed compared to multiple hidden layer 

networks. Each hidden node in an RBF network represents one of the kernel functions 

and corresponds to an individual point in the input space (called a centre), denoted as

(p . (for node j). The hidden nodes first calculate the Euclidean distances be -  (p 
J i

between the input vector Xp  for pattern p  and the centres of the nodes. They then 

calculate an output signal from the node using the appropriate kernel functions and 

distance values. The output nodes simply compute a weighted summation of the 

hidden node outputs.

A kernel function is a local function whose range of effect is determined by its width. 

Its output is high when the input is close to the centre and decreases rapidly to near 

zero as the distance from the input to the centre increases. One of the most common 

functions used for Ojp is the Gaussian function and was the function adopted in this

work. [Moody and Darken, 1989] have reported that Gaussian type functions have the 

desirable feature of allowing the hidden units to be locally tuned. Gaussian type
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functions can be expressed as:

o ip = exp
X -  (D .

P J
2 a 2

(3.9)

This function has a maximum value of 1 if x -  (p} is 0, and falls to 0 as x -  (p3 

approaches infinity, where xp -  (p3 is a distance measure, usually taken to be the 

Euclidean norm Each basis function, oJp , is centred at some point, (p ̂  in the input

space.

Mathematically, the overall response function of such a network is given by:

ykP( x ) = i wkj * ° jp
(3.10)

where y^p is the output of the network, J  is the number of hidden units, xp e Rn is

an input vector, Ojp is the j th radial basis function whose output is maximum at the 

centre and decreases rapidly to zero as the input’s distance from the centre increases, 

and Wkj is the weight from the j th hidden unit to the tfh output.

Training of a RBF network is achieved in two steps. In the first step, there is

unsupervised learning of the weights (p .. between the input and hidden layers using
Ji

the equation developed by Kohonen [Kohonen, 1989]:
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a _  i ViOlXip -w fa- (f-i)I if ykp =tkp 
W ki ( -rj(t)[xip-w ki(t-i)] if ykp*tkp (3.11)

where Aw^-is the weight updates for the winning output unit yk , rjft) is a decaying 

learning rate and tkp is the target for output unit for pattern p.

In the next step there is supervised training of the wkj  weights between the hidden and 

output layers using Gaussian density function (Equation 3.9).

The RBF algorithm works as follows [Engelbrecht, 2002]:

1. (a) Initialise all (p .. weights to the average value of all the inputs in the training 
Ji

set.

'y
(b) Initialise all variances <jj to the variance of all the values over the training set.

(c) Initialise all w^. weights to small random values.

2. Learn the centroids (p̂  using Equation 3.10.

After each epoch, set the variance for all the winning o f  s mean weight vector (pj to 

the input patterns for which Oj was selected as the winner.

3. Learn the hidden-to-output weights w, .using the adjustment Equation:
kj
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Awkj (0  = / / £  (tkp -  y kp) oJp (3. i2)
k= l

where t is the time step.

4. Stop training when the Gaussian density converges.

The activation function of values of the hidden and output units can be used to 

compute the degree Pkp to which a pattern p  belongs to each class k:

p  _ ykp
kP (3.13)

£ j j = i u jp

Research has been conducted using RBF networks in many areas such as:

• Pattern recognition [Moody and Darken, 1989].

• System identification [Nie and Linkens, 1995].

• Control and signal processing [McLoone and Irwin, 1998].

• Classification of microcalcifications in digital mammograms [Tsujii et al., 1999].

• Learning of view-invariant pattern recogniser with temporal context [Inoue and

Urahama, 2000].

• Off-line handwritten word recognition [Liu and Gader, 2002].
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• Supervised image classification [Foody, 2004].

• Fault diagnosis of rotating machinery [Yang et al., 2004].

• Classification of gear faults [Wuxing et al., 2004].

3.6 Inductive Learning

The inductive learning process involves the operation of generalisation, correcting 

and refining knowledge representation [Michalski, 1990]. Induction is a method of 

moving from the particular to the general, from specific examples to general rules 

[Quinlan, 1989]. The general task of induction is to develop classification decision

trees or rules that can determine the class of any object from the values of its

attributes [Quinlan, 1986].

Inductive learning techniques can be divided into two main categories, namely, 

decision tree induction and rule induction.

A decision tree consists of internal nodes and leaf nodes. Each internal node 

represents a test. For a discrete attribute A with n possible values ,vAz ,...v^, there

are normally n different branches from an internal node. For a continuous attribute A, 

a binary test is often carried out, and a branch A < v is created, with a second branch 

corresponding to A> v, where v is a threshold in the domain of A. Each leaf node has 

an associated class to which an instance can be assigned if it satisfies the conjunction
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of all tests along the path starting from the root and ending with this leaf node. When 

classifying a new instance, a path is identified based on values of the attributes of the 

instance until a leaf node is reached. The label of this leaf node is taken to be the 

predicted class of this new instance.

A simple example of how to decide whether to buy a second hand car is shown in 

Figure 3.10. Decision trees such as the one in Figure 3.10 can be converted into a 

collection of “IF-THEN” rules (a “rule set”), which may show the information in a 

more modular form The rule set representation is useful in order to show particular 

groups of items related to one conclusion. For example, the following rules give a 

“profile” for a group of cars worth buying:

First Rule:

If mot = ‘yes’ and mileage = ‘low’ THEN ‘BUY’.

Second Rule:

IF mot = ‘yes’ and mileage = ‘high’ and age = ‘recent’ THEN ‘BUY’.

Third Rule:

IF mot = ‘yes’ and mileage = ‘high’ and age = ‘old’ THEN ‘Do NOT BUY’.

Fourth Rule:

IF mot = ‘no’ THEN ‘Do NOT BUY’.
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In contrast with decision tree learning, rule induction directly generates IF-THEN 

rules. Each rule can be represented in the following form: A1 a A 2 a . . .a  \ - > C it 

where the antecedent consists of a conjunction of predicates A,-. Each predicate takes 

the form [A, = v( ] or [Vj < A, < Vj ] depending on the property of the attribute A,-. If A;

is a discrete attribute, v,- is a valid discrete value that A; can take. If A,- is a continuous 

attribute, v;- and vj2 are two thresholds in the domain of attribute A,-. The consequent

is the class to which instances satisfying the antecedent can be labelled. Since it is 

possible for some instances to be covered by more than one rule after the rule set is 

generated, when classifying a new instance, some conflict resolution approach must 

be employed.

Several algorithms for learning decision trees have been proposed. Among them, ID3 

and its descendants C4.5, C5.0 [Quinlan, 1986; ISL, 1998] have achieved notable 

successes. This learning system is categorised as “divide-and-conquer” inductive 

system [Quinlan, 1986]. Here, the inductive process of C4.5, a top-down decision tree 

learning algorithm, is described. The tree is constructed in a recursive fashion.

First, the root node test is decided by considering all possible tests. The one that 

maximises the “information gain ratio” [Quinlan, 1993] is selected. Second, the whole 

data set is split into several subsets, each one corresponding to a test outcome. This 

tree building strategy is applied recursively to each subset until subsets obtained 

consist only of instances belonging to the same class. The gain ratio used in C4.5 

requires definition of the entropy of a labelled data set S with k classes. Let k classes
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be Ci, C2~.Ck and let P(Ci,S) be the proportion of instances in S which are in class C,. 

Then the entropy of S is defined as:

Ent(S) = P(C,, S) log2 P(C,, S ) (3.14)
i=1

Let a test T  with n outcomes partition the data set S into Sj, S2,.-.Sn. The total entropy 

of the partitioned data set is defined as the weighted sum of the entropies of the 

subset.

n 1̂  I
£nf(S,r> = 2 Jra!£ « ( s <) (3.15)

;=i P|

To reduce the bias of the gain criterion introduced in ED3 towards attributes with 

many values, the split entropy as defined below is employed:

« r , = - ! & ! . « , ( j | )

The gain ratio is then given by:

GainRatio(T) = Ent(S) Ent(S'T) (3 .1 7 )
Ent(T)

In Equation 3.17, the numerator is the “gain” in entropy as a result of partitioning the 

data set into mutually exclusive subsets based on test T. The denominator can be 

regarded as the cost of selecting a given attribute as a test. The gain ratio computation 

for a discrete attribute test is relatively straightforward. For continuous attributes, the
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n values appearing in the subset associated with an internal node are sorted. Then, all 

n-1 possible splits on this continuous attribute are examined. The one that maximises 

the gain ratio criterion is selected as a threshold. After the decision tree is constructed, 

error-based post-pruning [Utgoff et al., 1997] is applied to prevent it from over-fitting 

the data. Pruning is done by examining each subtree and replacing it with one of its 

branches or leaf nodes if such a replacement does not degrade the accuracy of the 

subtree.

C5.0 is an improved version of C4.5 [Quinlan, 1993]. Like C4.5, C5.0 also allows 

automated extraction of production rules from the decision trees that it generates.

Improvements in C5.0 include the possibility of discrete and ordered attributes and 

the speed and quality of rule generation.

Figure 3.11 gives an example of a decision tree extracted by C5.0 [ISL., 1998].

The decision tree can be converted into the following seven rules:

First Rule:

IF P39 =< -51.2 and P17 =< 27.6 and P9 =< 7.6 and P16 =< -13.5 THEN the class 

type is L (Left bundle branch block beat).

Second Rule:

IF P39 =< -51.2 and P17 =< 27.6 and P9 =< 7.6 and P16 > -13.5 THEN the class type 

is f (Fusion of paced and normal beat).
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Figure 3.11 Example o f  a decision tree extracted by C5.0
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Third Rule:

IF P39 =< -51.2 and P17 =< 27.6 and P9 > 7.6 THEN the class type is L (Left bundle 

branch block beat).

Fourth Rule:

If P39 =< -51.2 and P17 > 27.6 and P25 =< 280.4 and P10 =< 51.4 THEN the class 

type is f (Fusion of paced and normal beat).

Fifth Rule:

If P39 = < -51.2 and P17 > 27.6 and P25 =< 280.4 and P10> 51.4 and PI =< 182.4 

THEN the class type is L (Left bundle branch block beat).

Sixth Rule:

If P39 =< -51.2 and P17 > 27.6 and P25 = <280.4 and P10 > 51.4 and PI >182.4 

THEN the class type is f (Fusion of paced and normal beat).

Seventh Rule:

If P39 =< -51.2 and P17 > 27.6 and P25 >280.4 THEN the class type is V (premature 

ventricular contraction).



3.7 Simulation Results and Comparisons

This section compares the performances of four classification techniques (C5.0, MLP, 

RBF and k-NN) applied to four different ECG data sets.

The first and the second data sets utilise 18 and 11 features respectively. The details 

of these features were explained in chapter 2. The third and the fourth data sets reduce 

the dimension of an ECG beat to 33 and 64 respectively without any feature 

extraction.

The C5.0 and MLP implementations in the Clementine data mining software [ISL., 

1998] were employed in this work. The reason for using a commercially available 

program was that both techniques were known techniques and it would not have been 

useful expending efforts on developing software implementing them specially for this 

research.

Similarly, commercially available hardware implementations of the RBF network and 

the k-NN algorithm were adopted. The system employed was a Zero Instruction Set 

Computer (ZISC) board developed by IBM [Costa et al., 1996]. This is a CMOS PC- 

compatible card that can be plugged into an ISA or a PCI bus slot. The card can 

accept up to 64 8 -bits input and can classify vectors belonging to up to 16382 

categories. RBF networks with up to 576 neurons in the hidden layer can be realised.
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Ten ECG classes were used. Table 3.2 shows the numbers of examples in each class 

in the training and test sets. Appendix A lists the examples taken from each record in 

the MIT database. The learning rate for both MLP and RBF neural network was 0.1.

The classification accuracy was calculated using the following equation:

x Nunmers of test patterns correctly classified . .Accuracy (%) = --------------------- ------------------- --------------- * 100 (3.18)
Total numbers of pattern tested

Table 3.3 gives a summary of the results obtained with the different techniques. For 

ease of visualisation, the results are also plotted in Figure 3.12. It was found that:

• C5.0 gave the best classification accuracy when compared to the MLP, RBF and

the k-NN classifiers.

• The results for the MLP classifier were better than those for the RBF network.

• The k-NN classifier was the poorest classifier of all.

• Using the 18 features provided the highest classification accuracy.

• The 33 re-sampled data set gave better classification accuracy when compared

with the 64 re-sampled data set.

• Feature extraction gave better classification accuracies when compared with 

simple re-sampling.
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Class Training Set Test Set
N 600 200
V 600 200
P 600 200
L 600 200
R 600 200
A 31 16
f 14 6
a 75 38
E 68 35

j 64 32
Total 3252 1127

Table 3.2: Numbers of training and test examples taken from the MIT database
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Classifier

Features Extracted Re-sampling only

Data set 1 Data set 2 Data set 3 Data set 4

11 18 33 64

C5.0 85.96% 88.36% 84.98% 84.92%

MLP 82.07% 85.86% 81.25% 80.50%

RBF 75.65% 79.15% 78.69% 77.90%

k-NN 72.52% 74.25% 73.19% 73.00%

Table 3.3 Summary of the classification accuracies obtained with different

classification techniques
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Figure 3.12: Graphical representation o f the data in table 3.4
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As C5.0 gave the best classifier, it was decided to employ it in further 

experimentation with the data. An experiment using C5.0 was carried out using 18 

features data set by removing one feature at a time to study the effect on the 

classification accuracy. Table 3.4 and Figure 3.13 showed the classification results 

obtained.

It was found that removing feature five (F5) caused the largest drop in classification 

accuracy from 88.36% to 82.91%. This feature represents the amplitude of the T- 

wave. F3 is the next most significant feature the removal of which caused the 

classification accuracy to drop from 88.36% to 85.64%. This feature represents the 

amplitude of the R-wave.

It was found that removing F14 caused the least drop in classification accuracy, of 

only 0.05%. The removal of the remainder of the features had effects intermediate 

between the FI4 and F5 effects.
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Removed
feature

Classification
accuracy

FI 86.64%
F2 87.64%
F3 88.64%
F4 87.36%
F5 82.91%
F6 86.69%
F7 87.70%
F8 87.47%
F9 87.97%

F10 87.42%
F ll 86.42%
F12 85.97%
F13 86.08%
F14 88.31%
F15 87.42%
F16 87.31%
F17 86.30%
F18 86.47%

Table 3.4: Effect of removing features on the classification results using C5.0
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Figure 3.13: Effect o f removing different features o f  the C5.0 on the classification

accuracy
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3.8 Summary

The chapter has described four different pattern classification techniques, the k-NN 

instance-based learning algorithm, the MLP neural network, the RBF neural network 

and the C5.0 inductive learning algorithm. The chapter has provided the results of 

tests carried out to compare the performances of those classification techniques when 

applied to four types of ECG data sets.
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Chapter 4

Enhanced Learning Vector Quantisation Network 

using All Weights Updating

4.1 Preliminaries

Despite the good classification performance of C5.0, the best accuracy achieved was 

still below 90%. In ECG classification, a higher accuracy is desired in order not to 

cause false alarms or miss dangerous situations. This chapter presents an improved 

Learning Vector Quantisation (LVQ) neural network. The reason for the focus on 

LVQ network is their proven strong classification abilities [Baig et al., 2001].

The chapter describes a new modification to the LVQ neural network to yield the all 

weights updating LVQ (AWU-LVQ). AWU-LVQ employs a new method for 

updating weights that uses the Gaussian function in order to determine the amount of 

update for each weight in the network. This algorithm improves the classification 

accuracy of the standard LVQ and shortens the learning time.

This chapter gives details of the LVQ and the new AWU-LVQ algorithms, and their 

application to the recognition of ECG patterns from 5 different classes.
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4.2 Learning Vector Quantisation (LVQ)

The LVQ neural network was developed by Kohonen [Kohonen, 1989], and has been 

successfully used for many classification problems. The learning method is 

supervised and based on “competitive” learning, in which neurons compete to have 

their weights updated. Figure 4.1 shows the LVQ network architecture, which consists 

of three layers of neurons: an input buffer layer, a hidden layer and an output layer. 

The network is fully connected between the input and hidden layers and partially 

connected between the hidden and output layers, with each output neuron linked to a 

different cluster of hidden neurons.

The weights of the connections between the hidden and output neurons are fixed at 1. 

The weights of the input to hidden neuron connections form the components of 

“reference” vectors, with one reference vector assigned to each hidden neuron. When 

an input vector is supplied to the network for recognition, the hidden neuron whose 

reference vector is closest in terms of Euclidean distance to the input vector is said to 

win the competition against all the other hidden neurons to have its output set to “1”. 

All other hidden neurons are forced to produce a “0”. The output neuron connected to 

the cluster of hidden neurons that contains the winning neuron also emits a “1” and all 

other output neurons, a “0”. The output neuron that produces a “1” gives the class of 

the input vector, each output neuron being dedicated to a different class.

In the learning stage, the neurons in the hidden layer again compete amongst 

themselves in order to find the winning neuron whose weight vector is most similar to
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Figure 4.1: Learning vector quantisation network
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the input vector, the winning neuron being that one with weight vector closest to the 

input vector [Kohonen, 1990]. The winning neuron gives the class of the input vector 

as in the recognition phase. Only the winning neuron will modify its weights using a 

positive or negative reinforcement learning formula, depending on whether the class 

indicated by the winning neuron is correct or not. If the winning neuron belongs to the 

same class as the input vector (the classification is not correct), it will be allowed to 

increase its weights, moving slightly closer to the input vector (positive 

reinforcement). On the contrary, if the class of the winning neuron is different from 

the input vector class (the classification is not correct), it will be made to decrease its 

weights, moving slightly further from the input vector (negative reinforcement).

Weights are modified during the training of the network. Both the hidden neurons 

(also known as Kohonen neurons) and the output neurons have binary outputs.

The competition between the Kohonen neurons is based on the Euclidean distance 

between the weight vectors wt (/) and the input vector x (t). The calculation of the 

Euclidean distance dj between x (t) and wt (t) is as follows:

neuron that has the minimum distance wins the competition and is allowed to change 

its connection weights, while the rest of the weights remain unchanged. The new 

weights are given by:

(4.1)

where wtJ and Xj are the j th components of wt and x. As mentioned before, the
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w, ( / + !) = wt (0  +  a (x, (0  -  w, (0 ) (4.2)

if the winning neuron is in the same category as the output, which means the weights 

will move closer to the input vector, and by:

wt (t +1) = W(. (?) -  a  (x, (t ) -  w, (t)) (4.3)

if the winning neuron is in the wrong category, which means the weights will move

further away from the input vector. In Equations 4.2 and 4.3, a  is the learning rate,

which decreases monotonically with the number of iterations. Usually, 0 < a  < 1.

A selection of pattern recognition applications that unitise LVQ algorithm is given 

below:

• Object orientation detection [Morris et al., 1990].

• Protein classification [Merelo et al., 1991].

• Classification of liver tissues [Pan and Chen, 1992].

• Classification of seismic events [Jang et al., 1993].

• Classification of electroencephalographic EEG power spectra [Veselis et al.,

1993].

• Inspection of coated steel samples using scattering angles as inputs [Olsson and 

Gruber, 1993].
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• Analysis of multivariate biological data [Wilkins et al, 1994].

• Discrimination between various partial discharge pulse shapes [Mazroua et al.,

1994].

• Combined image compression and classification [Oehler and Gray, 1995].

• Detection and location of gross errors in plant performance data [Aldrich and 

Vandeventer, 1995].

• Control chart pattern recognition [Pham and Oztemel, 1994].

• Defect detection in concrete [Shoukry et al., 1996].

• Automatic speech recognition [Cosi et al., 2000].

• Performance analysis and optimisation of shape recognition and classification 

[Nabhani and Shaw, 2002].

• Classification of heart sounds [Olmez and Dokur, 2003].

• Real-time fault detection and isolation in industrial machines [Marzi, 2004].

4.3 All Weights Updating-LVQ Technique

As describe above, in the original LVQ neural network, only one weight will be 

modified in each training phase. In later versions, such as LVQ2 [Kohonen, 1989] and
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LVQ-X [Pham and Oztemel, 1994], two weights (that of the winning neuron “global 

winner”, and the next weight which is in the correct category and nearest to the input 

vector in that category “local winner”) will be modified.

The AWU-LVQ algorithm is based on updating all the weights at the same time in 

each iteration during the training stage. However, the amount of updating will vary 

according to how far a neuron is from the winner in the hidden layer. The weight of 

the winning neuron will receive the maximum amount of updating, while the other 

neurons will be updated to reducing degrees as their distances from the winner 

increase. Figure 4.2 shows the Gaussian function used to determine the amount of 

updating. The Gaussian function was adopted because it enables a smooth asymptotic 

reduction in the amount of weight update. If a neuron is in the same class as the input 

vector, this neuron will move toward the input vector and if it is not, it will move 

away from the input vector.

Let the input vectors be represented by x, (t) and the weights of the network by wt (/). 

If the neuron weight vector closest to the input vector is given the index c, the 

Gaussian function h{ (t) is then used to adjust the amount of updating according to the 

following equation:

_ \ \ d t - d k \\

h i ( t )  = e 2 2 (4.4)

where the parameter c  defines the width of the Gaussian function which determines 

the degree of neuron excitation.
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dk is Euclidean distance between the next closest neuron of the winning neuron and 

the input vector, dt the Euclidean distance between the input vector x and the weight 

vector wi

The weight update Equation for neurons in the same class as the input vector is:

For neurons in different classes from the input vector, the weight update Equation is:

a(t) is the learning rate, which monotonically decreases with time t. Different 

functions could be adopted to implement a(t),  including the exponential decay 

function (Figure 4.3 (a)) and the linear decay function (Figure 4.3 (b)). In this work, 

an exponential function has been used to provide a smooth asymptotic decay. ht (t) is

the neighbourhood function. The /? parameter is used to avoid negative corrections in 

supervised learning [Yang and Yang, 2002].

The AWU-LVQ algorithm works as follows:

1- Decide the network architecture (number of inputs, number of hidden neurons, 

and number of outputs). Randomly initialise the values of all the reference weight

W,(0  = w,(t) + a{t) h:(t) [x ,(t) -  W,(t + 1)] (4.5)

W/(0 = w, ( 0 -  P a( t)  ht(t) [ x , ( 0 -  W,(t + 1)] (4.6)

vectors.

2- Initialise the learning rate a  and the width of the Gaussian function a.
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3- Present the input (training) vector to the network.

4- Find the winning neuron i by calculating the Euclidean distance between the 

input vector and all the network weights using Equation 4.1.

5- Calculate the distance function h( for all the reference vectors using Equation 4.4.

6 - Update all the weights of the neurons in the hidden layer. If a neuron is in the 

same class as the input, its weight vector will move toward the input vector 

according to the Equation 4.5, and if not, the weight vector will move away using 

the Equation 4.6.

7- Reduce the learning rate a(t) and go to step 3 with a new input vector. Repeat the 

procedure until all input vectors are correctly classified or a stopping criterion is 

met.

4.4 Experimental Results

The experimental work described in this chapter was performed using two neural

networks, LVQ and AWU-LVQ, in order to compare these networks from the point

view of classification accuracy and training time.
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4.4.1 Network Configuration

The AWU-LVQ and LVQ neural networks were given the same architecture to 

facilitate their comparison. Data consisting of input vectors with 15 features as shown 

in Table (4.1) and from 5 classes were utilised. The networks had 15 neurons in the 

input layer, 25 neurons in the hidden layer and 5 neurons in the output layer. The 15 

inputs represent the 15 features extracted from one cycle of the ECG signal. The 

output layer has 5 neurons, representing the five types of ECG arrhythmia classes (V, 

L, P, R, and N ECG class) chosen for this experimental work. The hidden layer 

consisted of 25 neurons, allowing five reference vectors per class. The weights were 

initialised randomly to values between -1  and 1 .

The learning rate was set to 0.1 and was made to decrease exponentially with iteration 

time as already mentioned. The exponentially decay coefficient was 0.01. The 

standard deviation of the Gaussian distance function for the AWU-LVQ algorithm 

was 3. All the values used were empirically chosen.

4.4.2 Training and T est Sets

The training and test data sets employed consisted respectively of 400 and 150 

patterns for each of the 5 classes.
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Feature Significance Description

Signal period Physiological Time between successive R-waves.

Q peak height Physiological Amplitude of the Q-wave.

R peak height Physiological Amplitude of the R-wave.

S peak height Physiological Amplitude deflection of the Q-wave.

Q-wave duration Physiological Overall duration of the Q-wave.

R-wave duration Physiological Overall duration of the R-wave.

S-wave duration Physiological Overall duration of the S-wave.

QRS interval Physiological Overall duration of the QRS complex -  from the 

onset of the Q-wave to the end of the S-wave. (Time 

taken for complete ventricular pumping action).

RS height Physiological Distance between the peak of the R-wave and depth 

of the S-wave.

R to S height ratio Clinical Ratio of R-wave height to S-wave depth (This 

indicates the orientation of the electrodes relative to 

the axis of the heart).

Q to QRS duration 

ratio

Physiological Ratio of the durations of the Q-wave and QRS 

complex.

Mean Statistical Mean value of the electrical signal.

Standard deviation Statistical Standard deviation of the electrical signal from the 

baseline.

Skewness Statistical Statistical skewness of electrical signal.

Excess Statistical Statistical excess of electrical signal.

Table *.1: Features of ECG signal selected for classification
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The classification accuracy was again calculated using the following equation:

/n/. Nunmers of test patterns correctly classified . . . .  „Accuracy (%) = ---------------------- ----------------------------------- * 100 (4.7)
Total numbers of pattern tested

4.4.3 AWU-LVQ and LVQ Results

Several experiments were carried out in order to select two AWU-LVQ algorithm 

parameters, namely, the number of training epochs and the width a  of the kernel of 

the Gaussian distance function.

Table 4.2 shows the influence of a  on the classification accuracy. It can be noted that 

the accuracy improves with increasing a, up to a value of 3.5.

When a  is small only a few neurons near to the winning neuron will be updated by a 

significant amount, and the rest of the neurons will receive only small amounts of 

updating or even no updating, which explains why the classification accuracy is poor 

and highly variable. When c  increases, more neurons will be updated to different 

degrees, which yields improvement in the classification results (higher accuracy and 

lower variance).

The effect of epoch number on classification accuracy is presented in Table 4.3. This 

shows an increase in accuracy up to 2000 epochs and a decrease thereafter. This 

happened because of overtraining of the neural network which makes it lose its ability
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Run 1 1.5 2 2.5 3 3.5 4
1 85.60% 89.60% 85.60% 85.20% 85.20% 85.60% 85.20%
2 2 0 .0 0 % 2 0 .0 0 % 89.60% 85.20% 85.60% 85.60% 85.60%
3 85.60% 85.60% 85.60% 85.20% 85.60% 85.20% 85.20%
4 90.80% 85.60% 89.60% 85.20% 85.20% 85.60% 85.60%
5 85.60% 2 0 .0 0 % 85.60% 85.20% 85.60% 85.60% 85.60%
6 2 0 .0 0 % 90.00% 58.00% 85.20% 85.60% 85.60% 85.20%
7 85.60% 89.60% 85.60% 85.20% 85.20% 85.60% 85.20%
8 90.00% 90.00% 85.60% 85.20% 85.20% 85.20% 85.20%
9 85.60% 85.60% 85.60% 85.60% 85.20% 85.20% 85.60%

1 0 89.60% 89.60% 85.60% 85.20% 85.20% 85.20% 85.60%
Average 73.84% 74.56% 83.64% 85.28% 85.36% 85.44% 85.40%
Variance 809.572 830.514 83.9271 0.028 0.0427 0.0427 0.0444

Table 4.2: Effect of kernel width on the classification accuracy

(learning rate a = 0 .1  and epoch number = 2 0 0 )
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Epoch number Classification accuracy
5 54.16%
10 73.60%
20 74.48%
50 79.84%
100 80.24%
200 83.64%
500 87.24%
1000 87.56%
2000 88.32%
2500 86.76%

Table 4.3: Effect of epoch number on the classification accuracy 

(learning rate a = 0 .1  and kernel width a  = 2 )



to generalise. In other words, the network simply memorises the training patterns and 

cannot recognise new test patterns. This phenomenon is similar to overtraining in 

MLP neural networks [Pham and Liu, 1995]. Table 4.4 presents more results 

concerning the effect of the number of epochs on the classification accuracy of the 

AWU-LVQ network. It can be seen that beyond 50 epochs there was a small drop in 

the classification accuracy and beyond 2 0 0  epochs there was no noticeable 

improvement in the stability of the classification results.

Table 4.5 shows the results for the LVQ algorithm with a = 0.1 and different numbers 

of epochs.

Table 4.6 compares AWU-LVQ and LVQ. From this table the improvement of AWU- 

LVQ over the standard LVQ in both classification accuracy and training time is 

evident. The best classification accuracy using LVQ was 64.48% after 1000 epochs, 

while using AWU-LVQ the best classification accuracy was 85.44% after only 10 

epochs.
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Run
" T "

2
3
4
5
6
7
8
9
10

veraj

Epoch number

38.00%
20.00%

38.00%
20.00%

20.00%

32.80%
38.00%
38.00%
38.00%
20.00%

47.20%
38.00%
71.20%
38.00%
38.00%
38.00%
53.60%
38.00%
38.00%
49.60%

82.00%
85.20%
85.20%
85.20%
85.20%
85.20%
85.20%
85.20%
77.20%
85.20%

10
85.60%
85.20%
85.20%
85.20%
85.60%
85.20%
85.60%
85.60%
85.60%
85.60%

20
85.60%
85.60%
85.20%
85.20%
85.20%
85.60%
85.60%
85.20%
85.60%
85.60%

50
85.60%
85.20%
85.60%
85.60%
85.20%
85.20%
85.60%
85.60%
85.20%
85.60%

100
85.60%
85.60%
85.60%
85.20%
85.60%
85.20%
85.20%
85.20%
85.20%
85.60%

200
85.60%
85.20%
85.20%
85.20%
85.20%
85.20%
85.60%
85.20%
85.20%
85.60%

500
85.60%
85.20%
85.20%
85.20%
85.20%
85.20%
85.60%
85.20%
85.20%
85.60%

1000
85.20%
85.60%
85.20%
85.20%
85.20%
85.60%
85.20%
85.20%
85.60%
85.20%

30.80% 44.96% 84.08% 85.44% 85.44% 85.44% 85.40% 85.32% 85.32% 85.32%
80.784 120.0427 6.8551 0.0427 0.0427 0.0427 0.0444 0.0373 0.0373 0.0373

Table 4.4: Effect of number of epochs on AWU-LVQ classification accuracy 

(learning rate a = 0.1, kernel width o = 3)
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Run 1 2 5 10 2 0 50 1 0 0 2 0 0 500 1 0 0 0

1 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 54.00% 64.00% 65.20% 64.00% 66.40% 66.40%
2 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 63.20% 64.00% 65.20% 67.60% 64.00% 64.00%
3 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 56.00% 64.00% 64.00% 65.20% 65.20% 65.20%
4 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 52.80% 64.40% 64.00% 64.00% 65.60% 65.60%
5 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 63.20% 64.00% 64.00% 64.00% 65.20% 65.20%
6 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 55.20% 64.00% 64.00% 64.00% 64.00% 64.00%
7 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 57.20% 64.80% 64.00% 64.00% 64.80% 64.80%
8 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.40% 55.20% 65.20% 64.00% 67.60% 64.40% 66.40%
9 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.80% 52.80% 65.20% 64.40% 64.00% 64.40% 66.40%
1 0 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.80% 55.60% 64.00% 65.60% 64.00% 6 6 .0 0 % 66.80%

Average 2 0 .0 0 % 2 0 .0 0 % 2 0 .0 0 % 36.48% 56.52% 64.36% 64.44% 64.84% 65.00% 65.48%

Table 4.5: LVQ classification results (learning rate a  = 0.1)
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E pochs LVQ AWU-LVQ
1 20.00% 30.80%
2 20.00% 44.96%
5 20.00% 84.08%
10 36.48% 85.44%
20 56.52% 85.44%
50 64.36% 85.44%
100 64.44% 85.40%
200 64.84% 85.32%
500 65.00% 85.32%
1000 65.48% 85.32%

Table 4.6: Comparison between AWU-LVQ and LVQ
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4.5 Summary

This chapter has introduced a modification to the standard LVQ algorithm, the All 

Weights Updating LVQ (AWU-LVQ), which operates by simultaneously updating all 

network weights during training. Results of applying both AWU-LVQ and LVQ 

algorithms for ECG classification have been presented. These show marked 

improvements of AWU-LVQ over the standard LVQ although the classification 

accuracy of AWU-LVQ is still lower than those of C5.0 and other known classifiers.
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Chapter 4

Enhanced Learning Vector Quantisation Network 

using All Weights Updating

4.1 Preliminaries

Despite the good classification performance of C5.0, the best accuracy achieved was 

still below 90%. In ECG classification, a higher accuracy is desired in order not to 

cause false alarms or miss dangerous situations. This chapter presents an improved 

Learning Vector Quantisation (LVQ) neural network. The reason for the focus on 

LVQ network is their proven strong classification abilities [Baig et al., 2001].

The chapter describes a new modification to the LVQ neural network to yield the all 

weights updating LVQ (AWU-LVQ). AWU-LVQ employs a new method for 

updating weights that uses the Gaussian function in order to determine the amount of 

update for each weight in the network. This algorithm improves the classification 

accuracy of the standard LVQ and shortens the learning time.

This chapter gives details of the LVQ and the new AWU-LVQ algorithms, and their 

application to the recognition of ECG patterns from 5 different classes.
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4.2 Learning Vector Quantisation (LVQ)

The LVQ neural network was developed by Kohonen [Kohonen, 1989], and has been 

successfully used for many classification problems. The learning method is 

supervised and based on “competitive” learning, in which neurons compete to have 

their weights updated. Figure 4.1 shows the LVQ network architecture, which consists 

of three layers of neurons: an input buffer layer, a hidden layer and an output layer. 

The network is fully connected between the input and hidden layers and partially 

connected between the hidden and output layers, with each output neuron linked to a 

different cluster of hidden neurons.

The weights of the connections between the hidden and output neurons are fixed at 1. 

The weights of the input to hidden neuron connections form the components of 

“reference” vectors, with one reference vector assigned to each hidden neuron. When 

an input vector is supplied to the network for recognition, the hidden neuron whose 

reference vector is closest in terms of Euclidean distance to the input vector is said to 

win the competition against all the other hidden neurons to have its output set to “1 ”. 

All other hidden neurons are forced to produce a “0”. The output neuron connected to 

the cluster of hidden neurons that contains the winning neuron also emits a “1 ” and all 

other output neurons, a “0”. The output neuron that produces a “1” gives the class of 

the input vector, each output neuron being dedicated to a different class.

In the learning stage, the neurons in the hidden layer again compete amongst 

themselves in order to find the winning neuron whose weight vector is most similar to
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Figure 4.1: Learning vector quantisation network
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the input vector, the winning neuron being that one with weight vector closest to the 

input vector [Kohonen, 1990]. The winning neuron gives the class of the input vector 

as in the recognition phase. Only the winning neuron will modify its weights using a 

positive or negative reinforcement learning formula, depending on whether the class 

indicated by the winning neuron is correct or not. If the winning neuron belongs to the 

same class as the input vector (the classification is not correct), it will be allowed to 

increase its weights, moving slightly closer to the input vector (positive 

reinforcement). On the contrary, if the class of the winning neuron is different from 

the input vector class (the classification is not correct), it will be made to decrease its 

weights, moving slightly further from the input vector (negative reinforcement).

Weights are modified during the training of the network. Both the hidden neurons 

(also known as Kohonen neurons) and the output neurons have binary outputs.

The competition between the Kohonen neurons is based on the Euclidean distance 

between the weight vectors wt (t) and the input vector x (t). The calculation of the

Euclidean distance dt between x (t) and wt (t) is as follows:

its connection weights, while the rest of the weights remain unchanged. The new 

weights are given by:

(4.1)

where wy and Xj are the j th components of w. and x. As mentioned before, the

neuron that has the minimum distance wins the competition and is allowed to change
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W, (f + l) = W, (/) + a  (x, (t) -  w, (0 ) (4.2)

if the winning neuron is in the same category as the output, which means the weights 

will move closer to the input vector, and by:

W, ( /  +  1) =  W, ( t) -  a  (x, (t)  -  w, (t))  (4.3)

if the winning neuron is in the wrong category, which means the weights will move 

further away from the input vector. In Equations 4.2 and 4.3, a  is the learning rate, 

which decreases monotonically with the number of iterations. Usually, 0 < a  < 1.

A selection of pattern recognition applications that unitise LVQ algorithm is given 

below:

• Object orientation detection [Morris et al., 1990].

• Protein classification [Merelo et al., 1991].

• Classification of liver tissues [Pan and Chen, 1992].

• Classification of seismic events [Jang et al., 1993].

• Classification of electroencephalographic EEG power spectra [Veselis et al.,

1993].

• Inspection of coated steel samples using scattering angles as inputs [Olsson and 

Gruber, 1993].
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• Analysis of multivariate biological data [Wilkins et al., 1994].

• Discrimination between various partial discharge pulse shapes [Mazroua et al.,

1994].

• Combined image compression and classification [Oehler and Gray, 1995].

• Detection and location of gross errors in plant performance data [Aldrich and 

Vandeventer, 1995].

• Control chart pattern recognition [Pham and Oztemel, 1994].

• Defect detection in concrete [Shoukry et al., 1996].

• Automatic speech recognition [Cosi et al., 2000].

• Performance analysis and optimisation of shape recognition and classification 

[Nabhani and Shaw, 2002].

• Classification of heart sounds [Olmez and Dokur, 2003].

• Real-time fault detection and isolation in industrial machines [Marzi, 2004].

4.3 All Weights Updating-LVQ Technique

As describe above, in the original LVQ neural network, only one weight will be 

modified in each training phase. In later versions, such as LVQ2 [Kohonen, 1989] and
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LVQ-X [Pham and Oztemel, 1994], two weights (that of the winning neuron “global 

winner”, and the next weight which is in the correct category and nearest to the input 

vector in that category “local winner”) will be modified.

The AWU-LVQ algorithm is based on updating all the weights at the same time in 

each iteration during the training stage. However, the amount of updating will vary 

according to how far a neuron is from the winner in the hidden layer. The weight of 

the winning neuron will receive the maximum amount of updating, while the other 

neurons will be updated to reducing degrees as their distances from the winner 

increase. Figure 4.2 shows the Gaussian function used to determine the amount of 

updating. The Gaussian function was adopted because it enables a smooth asymptotic 

reduction in the amount of weight update. If a neuron is in the same class as the input 

vector, this neuron will move toward the input vector and if it is not, it will move 

away from the input vector.

Let the input vectors be represented by xt (t) and the weights of the network by wt (t) . 

If the neuron weight vector closest to the input vector is given the index c, the 

Gaussian function hl (t) is then used to adjust the amount of updating according to the 

following equation:

_ \\d , -  d e 11
h i ( t )  = e 2 a 2 (4.4)

where the parameter a  defines the width of the Gaussian function which determines 

the degree of neuron excitation.
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Figure 4.2: Gaussian weight updating function

112



dc is Euclidean distance between the next closest neuron of the winning neuron and 

the input vector

The weight update Equation for neurons in the same class as the input vector is: 

w,{t) = w, ( t )  + a(t) hl{t)[xl{ t ) - w i{t + \)] (4.5)

For neurons in different classes from the input vector, the weight update Equation is:

w,{t) = w ,(0 -  p  a(t) ht(t) 0 , ( 0  -  W,(t + 1)] (4.6)

a(t) is the learning rate, which monotonically decreases with time t. Different 

functions could be adopted to implement a(t),  including the exponential decay 

function (Figure 4.3 (a)) and the linear decay function (Figure 4.3 (b)). In this work, 

an exponential function has been used to provide a smooth asymptotic decay. ht (t) is

the neighbourhood function. The p  parameter is used to avoid negative corrections in 

supervised learning [Yang and Yang, 2002].

The AWU-LVQ algorithm works as follows:

1- Decide the network architecture (number of inputs, number of hidden neurons, 

and number of outputs). Randomly initialise the values of all the reference weight 

vectors.

2- Initialise the learning rate a  and the width of the Gaussian function a.
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3- Present the input (training) vector to the network.

4- Find the winning neuron / by calculating the Euclidean distance between the 

input vector and all the network weights using Equation 4.1

5- Calculate the distance function ht for all the reference vectors using Equation 4.4.

6 - Update all the weights of the neurons in the hidden layer. If a neuron is in the 

same class as the input, its weight vector will move toward the input vector 

according to the Equation 4.5, and if not, the weight vector will move away using 

the Equation 4.6.

7- Reduce the learning rate a(t) and go to step 3 with a new input vector. Repeat the 

procedure until all input vectors are correctly classified or a stopping criterion is 

met.

4.4 Experimental Results

The experimental work described in this chapter was performed using two neural

networks, LVQ and AWU-LVQ, in order to compare these networks from the point

view of classification accuracy and training time.
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4.4.1 Network Configuration

The AWU-LVQ and LVQ neural networks were given the same architecture to 

facilitate their comparison. Data consisting of input vectors with 15 features as shown 

in Table (4.1) and from 5 classes were utilised. The networks had 15 neurons in the 

input layer, 25 neurons in the hidden layer and 5 neurons in the output layer. The 15 

inputs represent the 15 features extracted from one cycle of the ECG signal. The 

output layer has 5 neurons, representing the five types of ECG arrhythmia classes (V, 

L, P, R, and N ECG class) chosen for this experimental work. The hidden layer 

consisted of 25 neurons, allowing five reference vectors per class. The weights were 

initialised randomly to values between -1  and 1 .

The learning rate was set to 0.1 and was made to decrease exponentially with iteration 

time as already mentioned. The exponentially decay coefficient was 0.01. The 

standard deviation of the Gaussian distance function for the AWU-LVQ algorithm 

was 3. All the values used were empirically chosen.

4.4.2 Training and Test Sets

The training and test data sets employed consisted respectively of 400 and 150 

patterns for each of the 5 classes.
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Feature Significance Description

Signal period Physiological Time between successive R-waves.

Q peak height Physiological Amplitude of the Q-wave.

R peak height Physiological Amplitude of the R-wave.

S peak height Physiological Amplitude deflection of the Q-wave.

Q-wave duration Physiological Overall duration of the Q-wave.

R-wave duration Physiological Overall duration of the R-wave.

S-wave duration Physiological Overall duration of the S-wave.

QRS interval Physiological Overall duration of the QRS complex -  from the 

onset of the Q-wave to the end of the S-wave. (Time 

taken for complete ventricular pumping action).

RS height Physiological Distance between the peak of the R-wave and depth 

of the S-wave.

R to S height ratio Clinical Ratio of R-wave height to S-wave depth (This 

indicates the orientation of the electrodes relative to 

the axis of the heart).

Q to QRS duration 

ratio

Physiological Ratio of the durations of the Q-wave and QRS 

complex.

Mean Statistical Mean value of the electrical signal.

Standard deviation Statistical Standard deviation of the electrical signal from the 

baseline.

Skewness Statistical Statistical skewness of electrical signal.

Excess Statistical Statistical excess of electrical signal.

Table *.1: Features of ECG signal selected for classification
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The classification accuracy was again calculated using the following equation:

.... Nunmers of test patterns correctly classified .
Accuracy (%) = ----------------------      * 100 (4.7)

Total numbers of pattern tested

4.4.3 AWU-LVQ and LVQ Results

Several experiments were carried out in order to select two AWU-LVQ algorithm 

parameters, namely, the number of training epochs and the width a  of the kernel of 

the Gaussian distance function.

Table 4.2 shows the influence of c  on the classification accuracy. It can be noted that 

the accuracy improves with increasing a, up to a value of 3.5.

When a  is small only a few neurons near to the winning neuron will be updated by a 

significant amount, and the rest of the neurons will receive only small amounts of 

updating or even no updating, which explains why the classification accuracy is poor 

and highly variable. When a  increases, more neurons will be updated to different 

degrees, which yields improvement in the classification results (higher accuracy and 

lower variance).

The effect of epoch number on classification accuracy is presented in Table 4.3. This 

shows an increase in accuracy up to 2000 epochs and a decrease thereafter. This 

happened because of overtraining of the neural network which makes it lose its ability
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G assian function kernel width
Run 1 1.5 2 2.5 3 3.5 4

1 85.60% 89.60% 85.60% 85.20% 85.20% 85.60% 85.20%
2 20.00% 20.00% 89.60% 85.20% 85.60% 85.60% 85.60%
3 85.60% 85.60% 85.60% 85.20% 85.60% 85.20% 85.20%
4 90.80% 85.60% 89.60% 85.20% 85.20% 85.60% 85.60%
5 85.60% 20.00% 85.60% 85.20% 85.60% 85.60% 85.60%
6 20.00% 90.00% 58.00% 85.20% 85.60% 85.60% 85.20%
7 85.60% 89.60% 85.60% 85.20% 85.20% 85.60% 85.20%
8 90.00% 90.00% 85.60% 85.20% 85.20% 85.20% 85.20%
9 85.60% 85.60% 85.60% 85.60% 85.20% 85.20% 85.60%
10 89.60% 89.60% 85.60% 85.20% 85.20% 85.20% 85.60%

Average 73.84% 74.56% 83.64% 85.28% 85.36% 85.44% 85.40%
Variance 809.572 830.514 83.9271 0.028 0.0427 0.0427 0.0444

Table 4.2: Effect o f  kernel width on the classification accuracy

(learning rate a  =  0.1 and epoch number = 200)
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Epoch number Classification accuracy
5 54.16%
10 73.60%
20 74.48%
50 79.84%
100 80.24%
200 83.64%
500 87.24%
1000 87.56%
2000 88.32%
2500 86.76%

Table 4.3: Effect of epoch number on the classification accuracy 

(learning rate a = 0 .1  and kernel width a  = 2 )



to generalise. In other words, the network simply memorises the training patterns and 

cannot recognise new test patterns. This phenomenon is similar to overtraining in 

MLP neural networks [Pham and Liu, 1995] Table 4.4 presents more results 

concerning the effect of the number of epochs on the classification accuracy of the 

AWU-LVQ network. It can be seen that beyond 50 epochs there was a small drop in 

the classification accuracy and beyond 2 0 0  epochs there was no noticeable 

improvement in the stability of the classification results.

Table 4.5 shows the results for the LVQ algorithm with a = 0.1 and different numbers 

of epochs.

Table 4.6 compares AWU-LVQ and LVQ. From this table the improvement of AWU- 

LVQ over the standard LVQ in both classification accuracy and training time is 

evident. The best classification accuracy using LVQ was 64.48% after 1000 epochs, 

while using AWU-LVQ the best classification accuracy was 85.44% after only 10 

epochs.
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Run
1

2
3
4
5
6
7
8
9
10

veraj

E poch num ber

38.00%
20.00%

38.00%
20.00%
20.00%

32.80%
38.00%
38.00%
38.00%
20.00%
30.80%
80.784

47.20%
38.00%
71.20%
38.00%
38.00%
38.00%
53.60%
38.00%
38.00%
49.60%
44.96%
120.0427

82.00%
85.20%
85.20%
85.20%
85.20%
85.20%
85.20%
85.20%
77.20%
85.20%

84.08%
6.8551

10
85.60%
85.20%
85.20%
85.20%
85.60%
85.20%
85.60%
85.60%
85.60%
85.60%
85.44%
0.0427

20
85.60%
85.60%
85.20%
85.20%
85.20%
85.60%
85.60%
85.20%
85.60%
85.60%
85.44%
0.0427

50
85.60%
85.20%
85.60%
85.60%
85.20%
85.20%
85.60%
85.60%
85.20%
85.60%
85.44%
0.0427

100
85.60%
85.60%
85.60%
85.20%
85.60%
85.20%
85.20%
85.20%
85.20%
85.60%
85.40%
0.0444

200
85.60%
85.20%
85.20%
85.20%
85.20%
85.20%
85.60%
85.20%
85.20%
85.60%
85.32%
0.0373

500
85.60%
85.20%
85.20%
85.20%
85.20%
85.20%
85.60%
85.20%
85.20%
85.60%
85.32%
0.0373

Table 4.4: Effect o f number o f epochs on AW U-LVQ classification accuracy 

(learning rate a = 0.1, kernel width a  = 3)
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Run 1 2 5 10 20 50 100 200 500 1000
1 20.00% 20.00% 20.00% 36.40% 54.00% 64.00% 65.20% 64.00% 66.40% 66.40%
2 20.00% 20.00% 20.00% 36.40% 63.20% 64.00% 65.20% 67.60% 64.00% 64.00%
3 20.00% 20.00% 20.00% 36.40% 56.00% 64.00% 64.00% 65.20% 65.20% 65.20%
4 20.00% 20.00% 20.00% 36.40% 52.80% 64.40% 64.00% 64.00% 65.60% 65.60%
5 20.00% 20.00% 20.00% 36.40% 63.20% 64.00% 64.00% 64.00% 65.20% 65.20%
6 20.00% 20.00% 20.00% 36.40% 55.20% 64.00% 64.00% 64.00% 64.00% 64.00%
7 20.00% 20.00% 20.00% 36.40% 57.20% 64.80% 64.00% 64.00% 64.80% 64.80%
8 20.00% 20.00% 20.00% 36.40% 55.20% 65.20% 64.00% 67.60% 64.40% 66.40%
9 20.00% 20.00% 20.00% 36.80% 52.80% 65.20% 64.40% 64.00% 64.40% 66.40%
10 20.00% 20.00% 20.00% 36.80% 55.60% 64.00% 65.60% 64.00% 66.00% 66.80%

Average 20.00% 20.00% 20.00% 36.48% 56.52% 64.36% 64.44% 64.84% 65.00% 65.48%

Table 4.5: LVQ classification results (learning rate a  = 0.1)
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E pochs LVQ AWU-LVQ
1 20.00% 30.80%
2 20.00% 44.96%
5 20.00% 84.08%
10 36.48% 85.44%
20 56.52% 85.44%
50 64.36% 85.44%
100 64.44% 85.40%
200 64.84% 85.32%
500 65.00% 85.32%
1000 65.48% 85.32%

Table 4.6: Comparison between AWU-LVQ and LVQ
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4.5 Summary

This chapter has introduced a modification to the standard LVQ algorithm, the All 

Weights Updating LVQ (AWU-LVQ), which operates by simultaneously updating all 

network weights during training. Results of applying both AWU-LVQ and LVQ 

algorithms for ECG classification have been presented. These show marked 

improvements of AWU-LVQ over the standard LVQ although the classification 

accuracy of AWU-LVQ is still lower than those of C5.0 and other known classifiers.
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Chapter 5

Enhanced Learning Vector Quantisation Network 

using Neighbouring Weights Updating

5.1 Preliminaries

This chapter presents another modification to the LVQ neural network, the 

Neighbouring Weights Updating LVQ (NWU-LVQ) algorithm This employs a new 

method of weights updating that modifies the weights of the winning neuron and its 

neighbours but in a supervised way. The aim was to reduce training time and increase 

classification accuracy.

The performance of the NWU-LVQ algorithm has been compared with that of the 

recent Fuzzy Soft Learning Vector Quantisation FS-LVQ algorithm by Yang and 

Yang [Yang and Yang, 2002] which also adapts the weights of the neighbours of the 

winning neuron.

This chapter first reviews the Self Organising Map (SOM) on which the FS-LVQ is 

based. The FS-LVQ algorithm is then detailed, followed by the NWU-LVQ 

algorithm A comparison of the results obtained by FS-LVQ and NWU-LVQ in
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classifying ECG patterns belonging to five different types is given at the end of the 

chapter.

5.2 Self Organising Map

The Self Organising Map (SOM) was introduced by Kohonen in 1981 [Kohonen, 

1982]. The SOM (also known as the Kohonen feature map or Self Organising Feature 

Map (SOFM)) algorithm is one of the best-known artificial neural network 

algorithms. The SOM is an unsupervised feed forward neural network. It does not 

require an external teacher, but is a competitive topology-preserving map which can 

be adjusted to reflect the probability of distribution of the inputs [Kohonen, 1984]. In 

this topology, neurons located next to one another on the map correspond to inputs 

that are close to one another. By using this map, a high-dimensional input vector can 

project onto a low-dimensional map, in a way that maintains the natural order of the 

input vectors. Thus, the map is able to convert complex non-linear statistical 

relationships between high-dimensional data items into simple geometric relationships 

on a low-dimensional display.

A SOM consists of two-layers, an input and an output layer (the Kohonen layer) 

trained using competitive learning. Figure 5.1 shows the architecture of a SOM with a 

two-dimensional rectangular array of output nodes. In some cases, the output neurons 

could form a one-dimensional array rather than a rectangular grid as illustrated in 

Figure 5.1.
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Figure 5.1: A typical two-dimensional Kohonen self organising map

(a) (Adaptedfrom http://www.ai-junkie.com)
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In a SOM, each node in the output layer has a weight vector with dimensions that are 

the same as the input vector dimension. The weight vectors are initialised randomly, 

so that the outputs of all nodes will be different and so only one will respond 

maximally to a particular input vector. This “winning” node and its neighbours will be 

trained so that they can respond to that particular input vector even more strongly.

After a period of time, different areas of the SOM will respond more strongly to a

particular input vector than other areas.

By identifying the most strongly-responding areas of the SOM, different input vectors 

can be recognised.

Suppose Wk (t) in Rn is the weight of node k and the feature vector Xj (t) in Rn is 

presented at time t, then the winning neuron k among all competitors (neurons) is 

produced by the nearest neighbour condition:

II Xj (0 -  w* ( 0 1|= min || x . (t) -  w,. (0 || (5.1)
j  j  j

This means that the weight of node k matches Xj best. Self-organisation is then 

implemented using the following learning rule:

(t +1) = wf (f) + (t) h{ [Xj -  wt (f)] / = 1,...,c (5.2)

where a t it) is the learning rate factor of node i and is confined to decrease

monotonically with time t. The neighbourhood function hi denotes the lateral neural 

interaction phenomenon and the degree of excitation of the neuron. A simpler 

definition of hi is:
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[l if  the node i belongs to N k (t) j 
h:=\o  otherwise J (5'3)

Nk (t) is called the neighbourhood set of the winner k and is made to decrease with 

time to accomplish the “winner-take-aH” principle:

hi is a unimodal function with lateral distance d, such that it satisfies two distinct 

requirements:

• The topology of hi is symmetric about the maximum point defined by d = 0; in 

other words, it attains its maximum value at the winning neuron k for which the 

distance d is zero.

• The amplitude of the topological neighbourhood about the maximum value 

decreases monotonically with increasing lateral distance d, decaying to zero for

0 ); this is a necessary condition for convergence.

After a feature vector input jc. (t) is presented to the SOM, the weight of the winning

node and the weights of the neighbours will be updated towards the input vector with 

a step size a(t)*hi (t) with corresponding definitions of hi(t) in Equation (5.4).

A typical choice of hi that satisfies these requirements is the Gaussian function 

[Haykin, 1999]:

(5.4)

130



where rj and r* in R2 are the vectorial locations of the display (output) grid in Figure 

(5.1). a(t) is the effective width of the function, corresponding to the kernel width of 

the nodes, which determines the degree of neuron excitation. <J (t) also decreases 

monotonically as time t increases. In a qualitative sense, the Gaussian topological 

neighbourhood is more appropriate than a rectangular one. Its use also makes the 

SOM converge more quickly than a rectangular topological neighbourhood would [Lo 

et al., 1991; 1993; Erwin et al., 1992].

5.3 Fuzzy Soft Learning Vector Quantisation (FS-LVQ)

Wu and Yang [Wu and Yang, 2002] applied fuzzy soft techniques to SOM and 

proposed an unsupervised competitive learning network called fuzzy-so ft 

unsupervised learning vector quantisation (FS-U-LVQ) network.

This algorithm uses a fuzzy relaxation technique to update simultaneously all neurons 

according to the difference between the reference vector of each neuron and the input 

vector during the learning phase.

The FS-U-LVQ network is created by setting the learning rate a t (t) to decrease 

according to the degree of excitation for individual neurons as described in the 

following equation:



a i(t) =
C C r

a
nr + E ^ O ')

(5.6)

a t {0) jrf

where ar0 (0 ) controls the starting value of the learning rate for separated neurons and 

a 0 will adjust the rate of decrease, and the neighbourhood function hi (t) to

h,(t) = (5.7)

with

Cs (5.8)

Note that (/ui(x(t)),i = l,...,c) are the Fuzzy C-Mean (FCM) membership functions. 

In general, m = 2 is chosen. The function f(t) is a monotonically increasing function of 

t that controls the excitation of neurons. In general, f(t) can be chosen as 4t , t or t2 

etc.

Using their FS-U-LVQ, Yang and Yang [Yang and Yang, 2002] recently proposed a 

supervised version called fuzzy-soft LVQ (FS-LVQ). They employed the following 

weight update equation:

w. (t + 1) = w. ( 0  + (t) h{ ( 0  (Xj ( 0  -  wf (0 ) (5.9)
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If neuron i is in the correct category, 

and

W, (t +1) = W, (0  -  p  a, (/) h, (/) (xy (0  -  w, (t)) (5.10)

If neuron i is in the wrong category.

Parameter J3= 0.05 is used to suppress negative corrections.

5.4 Neighbouring Weights Updating LVQ (NWU-LVQ)

There are, at most, two weights to be modified with the existing LVQ and LVQ-X 

[Pham and Oztemel, 1993] methods. Like the FS-LVQ technique, the proposed 

Neighbouring Weights Updating LVQ (NWU-LVQ) technique modifies the weight of 

the winning neuron and all neighbouring weights simultaneously according to the 

differences between the input vector and the reference vectors of individual neurons.

NWU-LVQ follows the same updating criteria as the basic LVQ algorithm. If a 

reference vector is in the same class as the input vector, it will move closer to the 

input vector, and if it is not, it will move away.

The steps in the NWU-LVQ algorithm are as follows:

1- Decide the network architecture, such as the numbers of inputs, hidden neurons, 

and outputs.



2- Initialise the learning rate «/ (t), the width a  (t) of the Gaussian function. The

latter defines the radius of the neighbourhood of the winning neurons. Only the 

weights of neurons in that neighbourhood will be updated in each epoch.

3- Present an input vector to the network.

4- Find the winning neuron k by calculating the Euclidean distance between the input 

vector and all the reference vectors and selects the neuron with the shortest 

distance using Equation (5.1).

5- Evaluate the Gaussian function for the neighbours at the winning neuron using 

Equation (5.5).

6 - Examine each neighbour. If it is in the same class as the input vector, its weight 

will move toward the input vector according to Equation (5.9), and if it is not, it 

will move away according to Equation (5.10).

7- Go to 3 with a new input vector and repeat the procedure until all input vectors are 

correctly classified or a stopping criterion is met.

5.5 Experimental Results

The FS-LVQ and NWU-LVQ networks were compared from the point of view of

accuracy and training time.
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5.5.1 Network Configuration

The same 15 features as used in the work repeated in Chapter 4 (see Table (4.1)) were 

employed. The features combined statistical (standard deviation, mean), clinical (R to 

S height ratio), and physiological measures (QRS interval, Q-wave duration). The 

input layer therefore had 15 input neurons. These 15 inputs were used to represent 

each cycle of an ECG. As for the hidden layer there were 25 neurons, 5 neurons 

representing each class. This means there were five reference vectors per category. 

The output layer consists of 5 neurons for the five types of ECG arrhythmia, namely 

N, V, L, P, and R.

5.5.2 Training and Test Sets

The total number of examples in the training set is 2000, 400 for each class, and the 

total number of examples in the test set are 750, 150 for each class.
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R u n 1 2 5 10 2 0 5 0 1 0 0 2 0 0 5 0 0 1 0 0 0 2 0 0 0
1 2 0 4 0 40 8 5 . 6 89 .6 8 5 . 6 9 0 . 8 90 .8 8 5 .6 85 .6 8 5 .6
2 2 0 2 0 74 5 8 . 8 85 .6 9 0 . 8 9 0 . 8 90 .8 8 5 .6 85 .6 90 . 8
3 3 8 . 8 20 40 78 . 4 8 5 . 6 9 0 . 8 90 . 8 85 .6 8 5 . 6 85 .6 90 . 8
4 2 0 3 8 . 8 40 79 . 2 8 5 . 6 9 0 . 8 90 . 8 85 .6 8 5 . 6 85 .6 85 . 6
5 2 6 . 8 38 20 4 0 9 0 . 8 85 . 6 90 . 8 90 .8 8 5 . 6 85 .6 90 . 8
6 34 40 20 74 9 0 .8 9 0 . 8 8 5 .6 85 .6 9 0 . 8 90 .8 85 . 6
7 34 38 60 8 5 .6 90 .8 8 5 .6 85 . 6 85 .6 9 0 . 8 90 .8 85 . 6

8 2 0 38 54 5 4 8 5 . 6 8 5 . 6 8 5 .6 85 .6 8 5 . 6 85 .6 8 5 .6

9 36 .8 40 40 9 1 .6 8 5 . 6 9 0 .8 9 0 .8 90 .8 9 0 . 8 90 .8 85 . 6

10 2 0 20 38 . 8 8 5 . 6 9 0 . 8 90 . 8 90 . 8 85 . 6 8 5 . 6 85 .6 85 . 6

Average 27.04% 33.28% 42.68% 73.28% 88.08% 88.72% 89.24% 87.68% 87.16% 87.16% 87.16%

Table 5.1: NWU-LVQ classification accuracy with different numbers of training epochs

(learning rate a = 0.1, Kernel width a  = 3)



5.5.3 NWU-LVQ and FS-LVQ Results

Several experiments were conducted with the NWU-LVQ algorithm in order to study 

the effect of the number of training epochs and the kernel width of the Gaussian 

function.

Table 5.1 shows how classification accuracy varies with the number of training 

epochs. As mentioned in the pervious chapter exponential function was adopted to the 

learning rate. The initial learning rate (a) was 0.1, and the kernel width (a) 3. It can be 

noted that the classification accuracy increased with the number of training epochs, up 

to 1 0 0  epochs, after which the classification accuracy reduced.

Table 5.2 shows the effect of the kernel width on classification accuracy. The epoch 

number was fixed at 100 and the initial learning rate at 0.1. Note that the classification 

accuracy was poor at small kernel widths, improving as the kernel width increased, 

and then reducing again slightly with kernel widths over 3 .

This could be explained as follows. When the kernel width is small, in the range [1- 

1.5], the shape of the Gaussian function is very narrow and the difference in the 

weight changes between the winner and the remainder of the neurons is very large. As 

the kernel width increases, the weight update difference between the winner and the 

remainder of the neurons reduces. This means that, in addition to more neurons being 

updated, they are also updated in a more uniform way, improving the classification 

accuracy and the stability of the results.
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Run 1 1.5 2 2.5 3 3.5 4 4.5
1 85.6 85.6 90.8 85.6 90.8 85.6 85.6 89.6
2 72.4 85.6 85.6 90.8 90.8 89.6 85.6 85.6
3 85.6 90 85.6 85.6 90.8 85.6 89.6 85.6
4 58.8 58.4 90.8 85.6 90.8 85.6 85.6 85.6
5 90.8 85.6 85.6 85.6 90.8 89.6 85.6 85.6
6 90.8 90 90.8 90.8 85.6 89.6 85.6 89.6
7 72.4 85.6 90.8 90.8 85.6 85.6 89.6 89.6
8 54 90.8 90.8 90.8 85.6 89.6 89.6 85.6
9 2 0 90 90.8 90.8 85.6 89.6 89.6 89.6

1 0 90.8 85.6 90.8 90.8 90.8 89.6 85.6 85.6
Average 72.12% 84.72% 89.24% 88.72% 88.72% 8 8 .0 0 % 87.20% 87.20%

Table 5.2: NWU-LVQ classification accuracy with different kernel values 

(learning rate a  = 0 .1  and epoch number = 1 0 0 )
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However, when too wide a kernel is employed, the possibility of interference between 

the different clusters increases and this causes a deterioration on the classification 

accuracy.

Table 5.3 shows the results of applying the NWU-LVQ algorithm with a  = 3 and a  = 

0 .1  for different epoch numbers.

Table 5.4 summarises the results for the FS-LVQ algorithm.

Table 5.5 summarises the results for the FS-LVQ algorithm and the NWU-LVQ 

algorithm with a  -  0 .1 .

NWU-LVQ clearly gives a better classification accuracy in a shorter training time 

compared to FS-LVQ. For ease of comparison, the results for the original LVQ and 

the AWU-LVQ networks presented previously are also shown in Table 5.5. It can be 

seen that NWU-LVQ is the best performing neural network and the original LVQ 

network is the poorest classifier.

The NWU-LVQ network learned faster than the FS-LVQ network although the 

classification accuracy of the latter is marginally higher. The performance of the FS- 

LVQ network was also more stable in that there were no noticeable variations 

between the different runs.
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Run 1 2 5 1 0 2 0 50 1 0 0

1 2 0 40 40 85.6 89.6 85.6 90.8
2 2 0 2 0 74 58.8 85.6 90.8 90.8
3 38.8 2 0 40 78.4 85.6 90.8 90.8
4 2 0 38.8 40 79.2 85.6 90.8 90.8
5 26.8 38 2 0 40 90.8 85.6 90.8
6 34 40 2 0 74 90.8 90.8 85.6
7 34 38 60 85.6 90.8 85.6 85.6
8 2 0 38 54 54 85.6 85.6 85.6
9 36.8 40 40 91.6 85.6 90.8 90.8

10 2 0 2 0 38.8 85.6 90.8 90.8 90.8
Average 27.04% 33.28% 42.68% 73.28% 88.08% 88.72% 89.24%

Table 5.3: Classification accuracy of NWU-LVQ for different epoch numbers for 

(learning rate a  = 0.1 and kernel width a  = 3)

140



Run 1 2 5 1 0 2 0 50 1 0 0

1 23.6 17.2 26 62 85.6 85.6 85.6
2 7.6 30.8 2 0 82 85.6 85.6 85.6
3 2 0 14.4 2 0 72.8 85.6 85.6 85.6
4 2 0 15.6 2 0 74 85.6 85.6 85.6
5 32.4 2 0 19.2 41.2 85.6 85.6 85.6
6 10.4 2 0 2 0 51.2 85.6 85.6 85.6
7 18 10.4 23.2 89.6 85.6 85.6 85.6
8 2 0 2 0 2 0 41.2 85.6 85.6 85.6
9 7.6 2 0 38.8 79.6 85.6 85.6 85.6
1 0 2 2 .8 2 0 33.2 51.6 85.6 85.6 85.6

Average 18.24% 18.84% 24.04% 64.52% 85.60% 85.60% 85.60%

Table 5.4: Classification accuracy of FS-LVQ for different epoch numbers 

(learning rate a  = 0.1 and kernel width a  = 3)
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Epochs LVQ FS-LVQ AWU-LVQ NWU-LVQ
1 20.00% 18.24% 30.80% 27.04%
2 20.00% 18.84% 44.96% 33.28%
5 20.00% 24.04% 84.08% 42.68%
10 36.48% 64.52% 85.44% 73.28%
20 56.52% 85.60% 85.44% 88.08%
50 64.36% 85.60% 85.44% 88.72%

100 64.44% 85.60% 85.40% 89.24%

Table 5.5: Summary of classification results
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5.4 Summary

After reviewing two neural network algorithms, SOM and FS-LVQ, this chapter has 

introduced a new modification to the standard LVQ algorithm called NWU-LVQ. 

Both the FS-LVQ algorithm and the NUW-LVQ algorithm involve updating the 

weights of the neurons in the neighbourhood of the winning neuron.

The results of applying this technique and the FS-LVQ technique to ECG 

classification have been presented. These show the superior classification accuracy 

and learning speed of the proposed algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Preliminaries

This chapter presents the conclusions of this work, outlines the main contributions of 

the research and makes recommendations for further studies.

6.2 Conclusions

The aim of the research reported in this thesis was to investigate the use of intelligent 

techniques for automated ECG classification.

One of the objectives of the work was to design new features which effectively and 

concisely describe ECG signals. Several features were defined and compared using 

different classifiers to obtain an optimum set of derived features. It was found that the 

set of 18 features including physiological, clinical and statistical descriptors yielded 

the best accuracy, although a reduced set with 11  features could also be adopted for 

ECG classification purposes.
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An attempt was made to reduce the amount of ECG data to be handled without 

having to extract features by re-sampling the exiting data. Sets of re-sampled ECG 

signals with 33 and 64 data points were compared. It was found that the former gave 

higher classification accuracies although they were not as good as the results obtained 

with the extracted features.

Another objective was to analyse and compare different types of classifiers including 

the k-NN classifier, the MLP and RBF neural networks and the C5.0 inductive 

learning algorithm. C5.0 gave the best classification results, although, rather 

surprisingly, the MLP proved a better classifier than the RBF neural network.

The final objective was to develop neural classifiers with shorter training times and 

higher accuracies than the MLP. Although classifiers obtained using C5.0 were the 

most accurate, it was decided to focus on neural classifiers because they would be 

more easily implemented in hardware to yield compact real-time arrhythmia 

diagnosis systems. The new classifiers were based on the LVQ NN which is well 

known for being a fast learning neural network.

Two new learning algorithms were developed to improve the performance of the 

standard LVQ NN in terms of classification accuracy and length of training time. 

These were called the All Weights Updating LVQ (AWU-LVQ) and Neighbouring 

Weights Updating LVQ (NWU-LVQ).
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NWU-LVQ gave the best ECG classification accuracy, as well as the shortest training 

time, compared to standard LVQ, AWU-LVQ and FS-LVQ. The latter is an existing 

LVQ network employing fuzzy logic techniques for adapting the weights of neurons 

in the neighbourhood of the winning neuron.

6.3 Contributions

In summary, this research has contributed to the area of ECG classification and 

artificial neural networks.

The first contribution was in identifying the best set of features to be extracted from 

an ECG to facilitate the classification process.

The second contribution was in highlighting the most accurate classifier for the ECG 

classification problem from a range of possible classification techniques.

The third contribution was in proposing two improvements to the LVQ neural 

network to increase its classification accuracy and reduce its training time.

6.4 Future work

The following are possible topics for further study:
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New ECG feature extraction techniques could be developed. It is uncertain, for 

example, whether the selection of ECG features within the physiological QRS 

complex, P- and T-waves, PR and ST segments actually helps or confuses the 

classifier. Also new, more statistically effective features like kurtosis, dispersion and 

entropy might be employed.

The effect of increasing the number of training examples on classifier performance, 

potentially enabling it to recognise and differentiate various classes more accurately, 

could be investigated.

Newly developed classification methods such as Support Vector Machines (SVMs) 

[Schlkopf et al., 2002] which are based on recent advances in statistical learning 

theory could be employed.

Further development of the LVQ network employing spiking neuron techniques 

[Maass and Bishop, 2001] could be explored to improve the classification accuracy.

147



Chapter 6

Conclusions and Future Work

6.1 Preliminaries

This chapter presents the conclusions of this work, outlines the main contributions of 

the research and makes recommendations for further studies.

6.2 Conclusions

The aim of the research reported in this thesis was to investigate the use of intelligent 

techniques for automated ECG classification.

One of the objectives of the work was to design new features which effectively and 

concisely describe ECG signals. Several features were defined and compared using 

different classifiers to obtain an optimum set of derived features. It was found that the 

set of 18 features including physiological, clinical and statistical descriptors yielded 

the best accuracy, although a reduced set with 1 1  features could also be adopted for 

ECG classification purposes.

144



An attempt was made to reduce the amount of ECG data to be handled without 

having to extract features by re-sampling the exiting data. Sets of re-sampled ECG 

signals with 33 and 64 data points were compared. It was found that the former gave 

higher classification accuracies although they were not as good as the results obtained 

with the extracted features.

Another objective was to analyse and compare different types of classifiers including 

the k-NN classifier, the MLP and RBF neural networks and the C5.0 inductive 

learning algorithm. C5.0 gave the best classification results, although, rather 

surprisingly, the MLP proved a better classifier than the RBF neural network.

The final objective was to develop neural classifiers with shorter training times and 

higher accuracies than the MLP. Although classifiers obtained using C5.0 were the 

most accurate, it was decided to focus on neural classifiers because they would be 

more easily implemented in hardware to yield compact real-time arrhythmia 

diagnosis systems. The new classifiers were based on the LVQ NN which is well 

known for being a fast learning neural network.

Two new learning algorithms were developed to improve the performance of the 

standard LVQ NN in terms of classification accuracy and length of training time. 

These were called the All Weights Updating LVQ (AWU-LVQ) and Neighbouring 

Weights Updating LVQ (NWU-LVQ).

145



NWU-LVQ gave the best ECG classification accuracy, as well as the shortest training 

time, compared to standard LVQ, AWU-LVQ and FS-LVQ. The latter is an existing 

LVQ network employing fuzzy logic techniques for adapting the weights of neurons 

in the neighbourhood of the winning neuron.

6.3 Contributions

In summary, this research has contributed to the area of ECG classification and 

artificial neural networks.

The first contribution was in identifying the best set of features to be extracted from 

an ECG to facilitate the classification process.

The second contribution was in highlighting the most accurate classifier for the ECG 

classification problem from a range of possible classification techniques.

The third contribution was in proposing two improvements to the LVQ neural 

network to increase its classification accuracy and reduce its training time.

6.4 Future work

The following are possible topics for further study:

146



New ECG feature extraction techniques could be developed. It is uncertain, for 

example, whether the selection of ECG features within the physiological QRS 

complex, P- and T-waves, PR and ST segments actually helps or confuses the 

classifier. Also new, more statistically effective features like kurtosis, dispersion and 

entropy might be employed.

The effect of increasing the number of training examples on classifier performance, 

potentially enabling it to recognise and differentiate various classes more accurately, 

could be investigated.

Newly developed classification methods such as Support Vector Machines (SVMs) 

[Schlkopf et al., 2002] which are based on recent advances in statistical learning 

theory could be employed.

Further development of the LVQ network employing spiking neuron techniques 

[Maass and Bishop, 2001] could be explored to improve the classification accuracy.

147



Appendix A Training and Test Data Extracted from the MIT-BIH 

Database

The training and test examples were chosen to include data from different records in the 

MIT-BIH database. A breakdown of the number of examples of each class taken from the 

different records in the database is given in Tables A and B.

Where the letters N, L, R, P, V, A, a, j, V and f  stands for:

N : Normal Sinus Rhythm.

L : Left Bundle Branch Block Beat.

R : Right Bundle Branch Block Beat.

P : Paced Beat.

V : Premature Ventricular Contraction.

A : Atrial Premature Beat.

a : Aberrated Atrial Premature Beat, 

j : Nodal (junctional) Escape Beat.

V : Ventricular Escape Beat.

f : Fusion of paced and normal beats.
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Table A-Training Data

R
ec

or
d

N V P L R A f a E j

100 16 1 1

101 16 1

102 16 600 13

103 16 68

104 16 1

105 16 27

106 54

108 16 18 1

109 25 150

111 150

112

113 16 4

114 16

115 16

116 16

117 16

118 1 193

119 17

121 17

122 17
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123 17 2

124 1 193 14

200 17 54

201 17 42

202 17 12 4

203 17 54 1

205 17 15

207 150

208 17 55

209 17 1

210 17 55 10

212 17 194

213 17 14

214 150

215 17 55

217 17

219 17

220 17

222 17 49

223 17 55 29

228 17 55

230 17 1

150



231 1

332 20

233 17 55

234 17 2

Total 600 600 600 600 600 31 14 75 68 64
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Table B- Test data

R
ec

or
d

N V P L R A f a E j

100 5

101 5 1

102 5 200 6

103 5 35

104 5

105 5 14

106 15

108 5 10

109 13 50

111 50

112

113 5 2

114 5

115 5

116 5

117 5

118 1 63

119 5

121 5
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122 5

123 5 1

124 1 63 7

200 5 15

201 5 21

202 5 6 2

203 5 15 1

205 5 8

207 50

208 5 15

209 5

210 5 15 5

212 5 63

213 5 14 7

214 50

215 5 14

217

219 5

220 5

222 5 25

223 5 14 15

228 5 14
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230 5

231

332 11

233 5 14

234 5 1

Total 200 200 200 200 200 16 6 38 35 32
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Appendix B Statistical Formulae used in Feature Selection

1 nMean, x =
n i=i

where n = number of elements

Xi = value of element i

Standard deviation, s =

where

2 \ 1/ 2  1 n z

n  1  / = !

n = number of elements 

Xi = value of element i 

x = mean value

Skewness, y =
:(*, - x f

where Xi = value of element i 

x = mean value 

s = standard deviation

Excess,

where

x(x, - T ) 4e = -------- ---------------
54 - 3

Xi = value of element i

x = mean value

s = standard deviation
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