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Abstract

This thesis focuses on the synthesis of novel tripnictide macrocydes fadlitated by a 
relatively unexplored dehydrofluorinative synthetic methodology involving the formation of a 
P-C bond and concomitant removal of HF from precursor complexes containing 
orthofluorophenyl phosphines and adjacent primary phosphines.

The first example of a template (CpFe*/Cp*Fe*) synthesised triarsenic macrocyde 
has been isolated in excellent yields along with its’ analogous tribenzannulated triphosphorus 
counterpart. Similar dibenzannulated and monobenzannulated tripnictide macrocydes have 
also been prepared.

An expansion of this mechanism has allowed the synthesis of mixed donor 
macrocydes that previous to this research were unknown.

The same synthetic procedure has been adapted to fadlitate the synthesis of novel 
bimetallic complexes incorporating both phosphorus and arsenic donors.
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Introduction

Reducing the energy requirements of industrial processes could make a 

major contribution to the efficient use of the world’s limited petrochemical and fossil 
fuel resources. This objective is being pursued by the development of molecular 
catalysts, often involving metal-phosphine complexes, to carry out extremely 

efficacious and specific chemical transformations.
There has been considerable interest in the chemistry of metal-phosphorus 

compounds, because of their ability to stabilise unusual co-ordination environments 

and oxidation states of transition metals. The control that these abilities allow over 
the co-ordination sphere of the metal, with the consequent influences on reactivity 

that result may be of use in applications such as homogeneous catalysis.
Phosphine ligands also allow the manipulation of the electronic environment 

and reactivity patterns of metal complexes. This is especially important for the 

promised, and sometimes proven, versatile co-ordination chemistry and catalytic 

activity of these complexes. By developing synthetically more flexible strategies to 

make chelating agents bearing tertiary phosphine donors it is possible to expand 

their chemical capabilities. Phosphorus(lll) ligands are extensively used in organic 

syntheses, organometallic chemistry and catalysis.
Macrocydes with rigid, non-collapsible unsaturated carbon backbones have 

attracted great interest in the past few years due to their novel properties and 

potential applications in synthesis and catalysis (e.g. asymmetric hydrogenation).
As well as their potential as precursors to homogeneous catalysis, 

triphosphorus macrocydes can act as neutral, tridentate, six electron donor ligands. 
The phosphorus groups within the macrocyde can be easily manipulated and the 

constituents of the macrocyde can be adjusted to alter the metal ions’ reactivity.

General Phosphine Chemistry

Phosphines as Ligands

Tertiary phosphines are one of the few series of ligands in which both the 

steric and the electronic properties of the ligands can be changed in a systematic and 
predictable way by varying the nature of R. Tertiary phosphines stabilise a wide
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form a a-bond (Figure 1.1). Phosphines are also good 71-acids which means that 

they readily accept electron density into the P-C a*-orbitals via a back bonding 

interaction (Figure 1.1). The 71-acidity of phosphines increases from 

alkyl<aryl<alkoxy due to the ligands increasing electrophilicity.

a-Bonding
Donation of the phosphorus lone pair to a metal 
orbital of the same symmetry resulting in the formation 
of a a-bond

Ti-Back bonding
The donation of residual electron density from a metal 
d-orbital into a phosphorus a*-orbital.

Phosphines are one of the most widely used ligands in coordination 

chemistry. The fine tuning of the properties of transition metal complexes can be 

achieved by varying the nature of the phosphine. Introduction of functional groups 

close to the phosphorus atom change the donor properties of the phosphorus ligand, 

for both steric and electronic reasons and accordingly change their co-ordinating 

ability towards metal centres.1 Phosphines act as traditional Lewis bases (donating 

electrons to a metal) or ligands in transition metal complexes. The strongest bonds 

exist between phosphines with the highest Lewis basicity and metals with the highest 

Lewis acidity

By comparison between various complexes containing phosphines (PH2R, 

where R = H, CN, F, NH2, OH) coordinated to Pt (along with two PH3 ligands) it has 

been shown that the a-type ligand to metal donation is strong because of the large 

overlap in participating orbitals. The stabilising effect of this donation can be 

diminished by repulsive interactions between filled orbitals on the ligand and 

occupied orbitals located on the metal. Charge decomposition analysis2(CDA) allows 

a detailed study of bonding between ligands and metals within complexes. It takes 

into account information about donation, back-donation and repulsive interactions 

though parameters including the mixing of filled orbitals of the ligand with both the 

filled (repulsive) and unfilled (attractive) orbitals of the metal containing fragment and 

the mixing of the unfilled orbitals of the ligand with both the filled (attractive) and

Figure 1.1 Metal phosphine bonding
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filled (repulsive) and unfilled (attractive) orbitals of the metal containing fragment and 

the mixing of the unfilled orbitals of the ligand with both the filled (attractive) and 

unfilled (residual term) orbitals of the metal containing fragment. CDA has already 

been proven to be a valuable tool in the analysis of ligand-metal interactions3 
although it has not been extended to encompass macrocyclic ligands to date.

From the analysis provided by CDA it can be seen that the introduction of a x- 

donating substituent on to the phosphorus centre increases the interaction between 

the ligand and the metal fragment (NH2>OH>F) with respect to R = H. All substituted 

phosphines are better x-acceptors than PH3, a a*-orbital (lying in the molecular 

plane) on the phosphine accepts electron density from the metal dxy orbital to form a 

x-back bonding interaction. The study of relationships between bond lengths shows 

that an increase in length of the P-R bond gives a resulting decrease in the M-P bond 

length which indicates the involvement of a a*-orbital.4 Stronger M-P bonding implies 

more M-P x-bonding which populates the a* orbital in the P-R bond and therefore 

weakens the bond. Backbonding can be studied for individual phosphine ligands by 

synthesising complexes with carbonyl ligands trans to this phosphine ligand. The 

infra red stretching frequency of the carbonyl groups indicates the co-ordination 

environment of the phosphine ligand involved. As the phosphine ligand becomes a 

better o-donor and x-acceptor the ligands trans to them have longer (and typically 

weaker) bonds to the metal. In consideration of the suitability of a phosphine ligand, 
their Lewis basicity is a useful property to manipulate in the design of a suitable 

ligand.
The bonding in simple complexes and especially the effects of ligand 

substituents on both a-donation and x-backbonding is difficult to predict, the 

substituents on phosphines in particular have a great effect on the metal-ligand 

interactions.
The quantitative analysis of ligand effects (QALE), utilises four properties to 

determine the stereoelectronic parameters of phosphorus ligands namely, the donor 

capacity of the ligand %<i, Tolman’s cone angle 0, the aryl effect parameter Zw and the 

x-acidity parameter xp, which can be used to give a better idea as to the type of 
bonding between a phosphorus containing ligand and the metal fragment.5 The 

electronic environment around the metal atom is influenced by the a-basicity and the 

x-acidity of the phosphorus ligands. In bonding with transition metals, the back 

bonding to the P-C a*-orbitals6 produces a synergistic increase in its a-basicity. 

Forward a-donation and x-back donation both increase the s-electron density at the 

metal nucleus and as the back bonding increases, more d-electron density is driven
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from the metal to the ligand orbitals which makes oxidation more difficult. Therefore 

oxidation potentials increase with increasing x-backbonding.7 More electronegative 

and arylated R functions will lower the energy of the P-C a*-orbitals and facilitate 

back donation.
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H 0.38 0.23 1.67 -0.52 0.02
CN 0.35 0.29 1.2 -0.53 0.02
F 0.46 0.34 1.35 -0.36 -0.04
n h 2 0.49 0.27 1.78 -0.44 0.01
OH 0.47 0.3 1.53 -0.45 0

Table 1.1 The effect of the R-group functionality on metal-ligand bonding.

Bite Angle Effects

There are several factors that must be taken into account when looking at bite 

angles, the Tolman parameters (0 the cone angle, and % electronic parameter),8 
are used to assess the steric and electronic properties in monodentate phosphine 

ligands. For phosphine ligands the larger the cone angle the faster ligand 

dissociation becomes.® Figure 1.2 illustrates Tolmans cone angle for P(CH3)3.
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Figure 1.2 Illustration of Tolmans cone angle fortrimethylphosphine.

The effect of bite angles and their influence upon catalysis and the 

coordination environment within metal complexes has led to their investigation in 

catalytic reactions. The bite angles of phosphine ligands play an important role for 
diphosphines in determining the selectivity and rate of catalytic reactions. The 

regioselectivity of rhodium catalysed hydroformylation reactions are governed by 

steric factors10 and the rate is influenced by the electronic influence of the bite angle. 
Specific effects are difficult to assess unless the nature of the mechanism and 

selectivity limitations of the reactions are known.
Other parameters that can be defined for diphosphines include the solid angle 

(Q=Size of area on sphere/r2, the angle that seen from the centre of a sphere 

includes a given area on the surface of that sphere), the pocket angle, repulsive 

energy (electron repulsions) and the accessible molecular surface area (the area at 
the Van der Waals surface which can be touched by another molecule, and the 

location of the centre of the touching molecule), which give an idea about the steric 

properties of the ligands. The steric bite angle effect is related to the steric 

interaction between the diphosphine and the metal ion. This can be altered by 

changing the nature of the backbone while keeping the phosphorus substituents the 

same The steric interactions can alter the energy of both the transition states and 

the catalytic resting state, which may affect the activity or selectivity of the catalytic 

system. The electronic bite angle effect is associated with electronic changes in the 

catalytic centre that happen as a result of altering the nature of the backbone. 
Evidence of this relationship can be seen in nickel catalysed hydrocyanation where 

ligands which favour tetrahedral co-ordination are less catalytically active than those 

which favour square planar co-ordination.11
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The bite angle determines metal hybridisation (due to its’ relationship to the 

orientation of the bonding orbitals within the ligand) and as a consequence metal 
orbital energies and reactivity. This can cause a change in the stability of reaction 

intermediates.
The steric bulk of the ligand is important with respect to macrocyclic ligands. 

The same parameters as for bite angles, with the same effects, can be investigated. 
The steric bulk of the phosphorus macrocycle may affect the stability of reaction 

intermediates, by affecting the steric congestion around the metal centre. This 

favours less sterically demanding transition states possibly promoting new reactivity. 
New coordination environments can be created by varying the nature of the 

backbones within the macrocyclic ligand.

Uses of Phosphorus Ligands in Catalysis

Phosphine ligands have been shown to stabilise metals in low oxidation state 

complexes and with unusual geometries. They support reactive complexes in a 
variety of applications.

Catalysis is a kinetic phenomenon meaning that the activity of a catalytic 

system may depend on a small component of the catalyst. Determining the 

mechanistic steps in a catalytic system may lead to an ability to manipulate 

components of the catalyst in order to make it more active. Alternatively the active 

species can be adjusted to probe the effects of (for example) different R groups on a 

phosphorus ligand within a catalytic system.
In catalytic reactions the catalysis usually takes place via substrate co

ordination, rearrangement and finally product dissociation. The catalyst works by 

lowering the energy barrier for the formation of the transition state.
Some common homogeneous catalytic reactions involve alkene 

isomerization, alkene hydrogenation and alkene hydroformylation (alkene -> 

aldehyde or ketone).
Phosphorus ligands are used extensively in catalysis. Phosphines are 

commonly found as spectator ligands in many catalytic reactions; an example being 

Wilkinson’s catalyst [RhCI(PPh3)3] which is used in alkene hydrogenation (Figure 

1.3). Spectator ligands in a catalytic complex are not directly involved in any catalytic 

process, even where they remain associated with the transition metal centre. Their 
effect is electronic and steric in nature and acts mainly to affect the selectivity and 

activity of the catalytic system. The catalytic activity of the system (both metal ion 

and ligands which participate in the catalytic reaction) can therefore be altered, by
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adjusting the properties of the spectator ligands. The maximum electronic effect 
between participating ligands and spectator ligands can be seen when they are trans 
to each other (due to the trans position affording maximum ligand interaction through 

ligand orbitals,).12

H

S

+ c h 2=c h r

- CH3CH2R H
   |  H

l̂ Rh
^*PPh,Cl

CH2=CHR

Cl
Ph3P"<„ | .»> H

' .Rh
PPh, 

CH2CH2R

Cl-

H

Rh>
,**pph3

VPh,
c h 2c h 2r

Figure 1.3, Wilkinson s catalyst where S represents a solvent molecule.

The nature of the phosphine ligand in Wilkinson’s catalyst is important, some 

phosphines result in the formation of inactive dihydride complexes, however some of 
these intermediate complexes can be synthesised in-situ. The catalytic mechanism 

is more complicated than the simplified reaction scheme drawn.13 Wilkinson’s 

catalyst limits isomerisation. The hydrogenation rates depend on the ease of binding 

of the alkenes to the metal complex, more weakly bound alkenes hydrogenate more 

slowly. Iridium analogues of Wilkinson’s catalyst have been synthesised but have 

proven to be ineffectual due to the failure of their dihydrides to lose phosphine, which 

is due to the increased M-L bond strength. Wilkinson’s catalyst selectively 

hydrogenates primary alkenes over secondary alkenes, it is unable to hydrogenate 

tertiary alkenes. Phosphine ligands have also been shown to be active in alkene 

polymerisation.14
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Triphosphorus macrocydes have been shown to be alkene polymerisation 

catalysts.15 Currently triphosphorus macrocycles exhibit low activity for this 

application although there is a wide potential for the development of these systems.
Currently most ethylene polymerisation catalysts are based on 

cyclopentadienyl complexes of electropositive metals. Triphosphorus macrocycles 

could act as an alternative to these Cp ligands because they are six electron fadally 

capping tridentate donating ligands and therefore analogous to cyclopentadienyl 
ligands in this respect. They could also exhibit a greater ability to tune their steric 

and electronic nature. Triphosphorus macrocydes would also form very stable 

complexes which are a necessity in catalytic reactions to avoid catalyst degradation.

Macrocyclic Ligands

Macrocydic ligands are polydentate ligands containing donor atoms within (or 
attached to) a cydic backbone. Macrocydic ligands contain at least three donor 
atoms and the macrocydic ring (incorporating donor atoms unless they are externally 

attached to the ring) contains a minimum of nine atoms.16 This definition includes 

most cydic, polydentate ligands, which can incorporate a metal ion into a central 
binding cavity. When tridentate macrocydic ligands are of a suitable size in relation 

to the metal ion to which they are bound, they adopt a fadally capping co-ordination 
mode leaving three mutually cis coordination sites in octahedral complexes.

Bonding between the Metal ion and the Macrocyde
The bonding between the metal ion and the macrocyde depends on the 

nature of the metal and the nature of the donor. It also depends on the size of the 

macrocydic ring and the size of the metal ion in relation to the ring.

The Nature of Donors and Metal ions
A good match with metal ions and their ligands can be made by comparing 

their electron donating/accepting abilities. Another way to discuss this is through the 

terms hard and soft. Hard ligands are those which bond almost solely through their 

o-interaction between the ligand and the metal, examples indude amine ligands. 
Hard ligands prefer to bond with high oxidation state metals, which by their nature 

are short of electron density. Soft ligands such as phosphines can not only donate 

using a a-bond, but they can also accept electron density from the metal into vacant
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CT*-orbitals. Soft donor ligands are therefore more suited to low oxidation state 

metals which have superfluous electron density to back bond with the ligand.
An example of this is the lack of early transition metal complexes containing 

phosphine ligands (with respect to late transition metal complexes) because of their 
seeming incompatability in terms of the iron being a hard oxophilic metal and the 

phosphine donors being soft in nature. A solution to incompatibilities between metals 

and donors is to use chelating ligands as the chelate effect makes them more stable. 
Many bidentate phosphines bound to an early transition metal have been 
synthesised.17 The next obvious step was the use of macrocycles to further enhance 

the stability noted for bidentate phosphines.15
Macrocyclic ligands can be further divided into subclasses depending on the 

nature of the donor ligand. Firstly, cyclic compounds incorporating a number of ether 
functions as donors (commonly called crown ethers), and secondly, systems 

containing nitrogen, sulphur, phosphorus or arsenic donors. These macrocycles 

often form very stable complexes with transition metals. Macrocycles containing 

nitrogen and sulphur donors such as 1,4,7-triazacyclononane (TACN) and 1,4,7- 
trithiacyclononane18 have been studied in detail due to their ease of synthesis. In 

comparison phosphorus and arsenic containing macrocycles are rare due to 

synthetic difficulties encountered during their preparation.
Unusual properties can be associated with many cyclic ligand complexes, 

including increased stability, which can be illustrated by comparing dissociation rates 

for macrocyclic and related non-macrocydic complexes.

Non-macrocyclic Ligand 
t1/2 in 6.1M HCI, 298K 
Minutes

Cu

Macrocydic Ligand 
t1/2 in 6.1MHCI at 298K 
22 Days

Macrocydes bestow additional stability to the metal complexes that they form 

due to enhanced kinetic stability and thermodynamic inertness. Therefore metal ions 

involved in these complexes are held strongly within the macrocydic cavity formed in 

comparison to acydic systems. These ligands, as with many other systems, invoke

10



novel chemical properties on to the metal ion they are bound to, and the resulting 

complex formed resulting from the nature of the metal-ligand bonding.
The properties of macrocycles especially those involved in biological systems 

(such as in haemoglobin, vitamin B12 and chlorophyll) and in catalytic applications 

indicate the potential of macrocyclic chemistry within the future of medicine, 
biochemistry and industry. Macrocyclic ligands could prove invaluable in catalytic 

applications as they provide a framework for highly selective catalysis under mild 

conditions of temperature and pressure.19'20 This is partially due to the occupation of 
mutually cis co-ordination sites by the macrocycle, which in turn forces the remaining 

reaction sites to also be mutually cis. Another essential feature of asymmetric 

catalysis is steric rigidity in the incorporated ligand
Tridentate macrocyclic ligands are similar in their coordination to 

isoelectronic cyclopentadienyl ligands. They are facially capping ligands, occupying 
three mutually cis co-ordination sites and they donate six electrons to the metal 
centre, therefore analogies between the behaviour of cyclopentadienyl metal 
complexes, and in particular their applications in organometallic synthesis can be 

extended, theoretically to macrocyclic metal complexes.
Macrocyclic complex properties can be varied to suit a particular function. 

With more s-hybridisation within the donor atom (for example by changing a 

phosphorus donor for an arsenic donor), overlap between the metal-ligand orbitals 

increases causing a resulting decrease in the metal-donor atom bond length. 
Reduction of M-L bond lengths causes the distances between the donor atoms to be 

smaller and the macrocyclic cavity to decrease in size. However the smaller effective 

covalent radius of the donor atom (caused by the increased s-hybridisation) means 

that the reduction in hole size is minimised.
Macrocycles can promote the formation of less common co-ordination geometries, 
because there is increased macrocyclic ring strain on their co-ordination to metal 
complexes which may enhance unusual bonding modes. Co-ordination geometry 

and complex reactivity can be altered by varying the size of the ligand backbone, the 

chelate bite angle28 or the nature of the substituent groups.28
Due to their cyclic nature, macrocycles have additional stereochemical 

constraints than related open chain polydentate species. In addition, macrocycles 

are able to adapt to imperfect bonding opportunities, when a metal ion is too large to 

fit inside the macrocydic cavity formed or electronically mismatched, the metal ion 

can be displaced outside of the macrocydic plane (when the macrocycle is sterically 

rigid), or the macrocyde can become distorted in order to optimally accommodate the 

metal ion (the entatic state). Partially as a result of the adaptable nature of
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macrocyclic ligands they can adopt unexpected donor atom-metal ion bond lengths 

and unusual angular relationships between co-existing donor-metal bonds in relation 

to similar open chain systems. These can cause unusual properties, such as a 

preference for low spin Ni(ll) in the presence of three high field phosphorus ligands, 
resulting from the unique macrocyclic structure which restricts the freedom of the 

phosphorus donors in the [Ni(12[ane]P3Et3)Br]+ complex.21 There is much current 
interest in linear triphosphine complexes and acyclic systems containing hemilabile 

ligands,22-23’24 both systems show new and unusual chemical properties (including the 

stabilisation of reactive intermediates).

Types of Macrocydes
There are two main types of macrocycles, firstly crown ether based with 

oxygen donor atoms which prefer alkali/alkaline metal ions and secondly, 
macrocydes with nitrogen, sulphur, phosphorus and arsenic donors which form 

stable complexes with transition and heavy metal ions.25,26 Within this thesis 

phosphorus and arsenic macrocydes are investigated.

What Makes Macrocvctes so Robust?

The aim in synthesising novel triphosphorus and arsenic macrocycles is to 

explore their novel chemistry which is expected to be unusual as a result of their 
stability and structure.

The Chelate Effect

The stability of any complex type increases as the number of chelate rings 

(rings involving the metal ion and two donor atoms) increases due to the chelate 

effect (in effect more donor atoms give more stability). By using chelating instead of 
two monodentate ligands, the second donor atom for the chelate system will be in 

greater proximity to the metal ion resulting in a more favourable co-ordination 

environment (when one arm of the chelate is joined, the other will already be in the 

metals outer co-ordination sphere).27 By increasing the chelate effect the metal- 
ligand interaction becomes stronger which in turn makes the complex 

thermodynamically more robust.
The chelate effed is mainly entropic in origin. To make the entropy of a 

reaction more positive (and therefore the reaction more favourable in terms of AG°) 

disorder must increase in the system. Disorder in a chemical reaction is measured
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by the number of moles of reactants at the start of the reaction and the number of 
moles of products at the end. If there are more moles of products then the reaction is 
entropically favourable.

ML* + L’-L1 —..— M L^L'-L' + 2L

For example:

[M(NH3)6]2+ + 3en -  [M(en)3]2* + 6NH3

4 moles reactants 7 moles products

The complexes on each side of the equilibrium have 6 M-N bonds meaning 

that AH is not significantly altered. The chelate effect is energetically driven by the 

desire to create disorder. When the metal involved in this reaction is nickel, the 

entropy for this reaction is 86.5kJmor1. The formation constant for [Ni(NH3)6]2+ is 

log10p 8.7 and [Ni(en)3]2+ logiop 18.1.

Enthalpy has a small part to play in the chelate effect, if the chelating ligand is 

of the same type then the enthalpy differences between the bonding at the start of 
the reaction and at the end is minimal.

The chelate effect can be studied by looking at the formation constants (p), 

which show the affinity of a metal ion for a ligand.

Ligand Equilibrium Expression logioP for Co2* Complex

Ammonia [Co(NH3)]2+ / [Co2+][NH3f 4.4

Ethylene diamine [Co(C2H6NH2)]27[Co2+][NH3]3 14.1

Ethylene diamine tetra 

acetic acid
[Co(EDTA)]2* / [Co*+][EDTA] 16.3

The formation constants reflect the stability of the complexes, their relative 

stabilities are influenced by the increasing positive entropy of their formation 

reactions. The chelate effect is a result of enthalpic and entropic contributions which 

make the driving force of a reaction (AG°) more negative.

AG° = -RTIogioP

AG° = AH - TaS

13



The Macrocydic Effect

Even when the co-ordination geometry for a metal ion is ideal, the 

macrocydic complex will often have enhanced thermodynamic and kinetic stability, 
the combination of which are referred to as the macrocydic effect. The macrocydic 

effect is an extension of the chelate effect with an additional stability, which depends 

on the nature of both the macrocydic ligand and the metal with which it is bonding. 
The separate contributions to the macrocyclic effect change individually for each 
system so the macrocydic effect cannot be given a description that equally applies to 

all macrocydic systems. The change of free energy (AG°) always favours the 

formation of a macrocydic complex. The macrocydic effect may also sufficiently 

stabilise more reactive phosphines to broaden the range of ligand systems that can 

be investigated and exploited.

Thermodynamic Contribution to the Macrocyclic Effect
The thermodynamic contribution to the macrocyclic effect involves both 

enthalpic and entropic contributions. The enthalpic contributions are a result of many 

factors induding the nature of the bond between the donor atom and the metal, the 
ligands involved within the macrocydic system, changes in ligand conformation upon 

complexation and the compatibility of the metal ion and the macrocyclic cavity, all of 
which affect the stability of the metal ion-ligand interaction. Macrocydes should (in 

relation to their linear analogues) be less soluble, due to their compact nature and 

the lack of terminal groups, which often provide greater solubility to ligand systems. 
The cavity size in particular affeds the properties of any metal complexes formed 

between macrocydes and metal fragments. In uncomplexed ligands the cavity size 

may vary due to ring expansion and contraction caused by the nature of the ligand. 
Co-ordination to a metal centre may induce distortions in the macrocydic ring 

resulting in an increase in ligand strain energy, balanced by the stability provided by 

the complexation.28 Cavity size is influenced by the number of atoms within the 

macrocydic ring, the balance between the dictates of the metal ion and the 

macrocydic ligand (which may invoke unusual coordination geometries), and the 

nature of the donor atoms incorporated within the macrocyclic ligand. Macrocycles 

have steric constraints depending on ring size and the number and nature of various 

chelate rings formed on co-ordination. The chelation of the macrocyde affects the 

position of donor atoms both with respect to other donor atoms and the metal ion. It 
also affects the co-ordination modes and conformations of the co-ordinated 

macrocyde. With rigid backbones the possibilities of ring expansion and contraction
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are severely limited. In such complexes M-L distances far from normal are often 

observed. For sterically rigid rings, folding is energetically unfavourable with respect 
to the displacement of the metal fragment from the donor plane of the ring 

(necessary for dissociation reactions). Complexes formed by macrocyclic ligands 

have properties which reflect the compatibility of the macrocyclic cavity size with the 

electronic and steric requirements of the metal.
Entropic effects towards the thermodynamic contribution to the macrocyclic 

effect are similar in their nature. Changes in the number of species present (which 

affect p), the translational entropy (ligand rigidity) within the macrocycle and the 

entropic effects of solubility all contribute to the overall entropic contribution to the 
macrocyclic effect. The cyclic nature of macrocyclic ligands means that during 

complexation they undergo less conformational change leading to less loss of 
disorder and more positive configurational entropy.

Kinetic Contributions to the Macrocyclic Effect
The kinetics and mechanism of macrocyclic formation are closely associated 

with the structural features of the macrocyclic ligand and the metal ion involved in 

complex formation.
The formation of a macrocycle, especially on its templated complexes, is 

often controlled by the solvent exchange rate of the solvated metal ion used. The 

cyclisation of macrocyclic ligands may be dependant on the nature of the solvent, 
steric or electrochemical effects, which may influence the rate determining step of a 

reaction and hence whether it is feasible.
The other important kinetic aspect of macrocyclic complexes are the 

dissociation kinetics. This is especially important when it is considered that the 

template approach is the one utilised in this research. The macrocycle must 
therefore be able to be separated from the template before further chemistry can be 

investigated. Dissociation pathways can take a number of different routes. Other 
reagents may assist a second metal ion can scavenge the ligand as it dissociates or 
adding another strongly co-ordinating ligand (such as cyanide or EDTA) which will 
bind strongly to vacated co-ordination sites may make macrocyclic dissociation more 

favourable. The dissociation of a macrocyde from its metal ion can be extremely 
slow (in the order of 20 years for some complexes)28 even in the presence of strong 

add. Even complexes involving normally labile metals may become inert with 

complexation to a tightly bound cydic ligand due to the slow dissodation kinetics. If 
a macrocyde is bound too tightly to the metal ion it is co-ordinated to, it may be too 

difficult to remove it from its’ template. However if the complex is too labile then it
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may decompose before taking part in the catalytic reaction, or other reactions of 
interest.

Macrocyclic complexes are kinetically stable with respect to the loss of the 
metal ion (e.g. to remove Ni2+ from a tetraazamacrocycle involves a prolonged 

reaction with potassium cyanide).29 The kinetic stability of macrocyclic ligands is 

partially due to the snug fit of the metal ion within the macrocyclic framework, this 

provides a partial explanation as to the increasing lability of larger macrocyclic ring 

sizes. Larger, more flexible rings are easier to dissociate from their metal ions and 

result in a reduced macrocyclic effect.

Macrocyclic Catalysis

Manganese and iron complexes of N,N,,N,,-trimethyl-1,4,7-triazacyclononane 

catalyse oxidation reactions although their vacant co-ordination sites often lead to the 

formation of dimers.30 Monomeric macrocyclic complexes which are more resistant 
to oxidative hydrolysis and yet still able to participate in catalytic reactions (with an 

available site for the binding of the metal ion to an oxidant,) include cross bridged 

tetraazamacrocytes. Iron(ll) and manganese(ll) complexes are excellent to use as 
oxidation catalysts due to their stability in aqueous conditions and the easy 

accessibility to higher oxidation states.31

Why are Triphosphorus Macrocydic Ligands of Interest?

Over the last decade, triazacyclononane32 and trithiacyclononane33 have 

been used as versatile tridentate facially capping ligands in many areas of 
macrocyclic co-ordination chemistry. Interest more recently has been concentrated 

towards the development and study of triphosphorus macrocycles. The 12[ane],34 
IHane],35 lOfane)36 and 9[anef7 triphosphorus macrocycles have been 

stereoselectively prepared, to act as facially capping, neutral, k3, six electron ligands 

on [(C5R5)Fe(L)3r  templates. Further chemistry of the 12[ane] triphosphorus 
macrocyde has been investigated particularly with regard to catalytic applications 

induding alkene polymerisation and ROMP (ring opening metathesis polymerisation) 
this type of catalytic application is illustrated in Figure 1.4.
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Figure 1.4 Illustration of the uses of triphosphorus macrocydes in ROMP (ring opening 

metathesis polymerisation.

The rigidity of phosphorus and arsenic macrocyclic ligands can be varied, 
increased rigidity means that once the macrocycles have been made they are less 

flexible and they would be expected to strongly retain their facially capping 

orientation, but it also increases the steric strain within the ring making them harder 
to synthesise.
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Aim of this Research

Within this thesis the potential influences macrocyclic phosphines may have 

on the behaviour of co-ordinated metals are investigated. The macrocyclic co
ordination effect may aid the stabilisation of classes of compounds in unusual 
electronic and co-ordination states such as the stabilisation of low oxidation states for 
d- and f-block metals, these complexes will allow the study of the fundamental 
properties and reactivity of the novel complexes. Macrocyclic tripnictide ligands are 

expected to have substantially reduced lability in comparison to alternative ligands 

with three tertiary monodentate phosphine ligands. They also allow the retention of 
mutually cis reactive sites which are necessary to many types of catalytic reaction. 
The tripnictide ligands that we aim to synthesise will be analogous to related face 
capping ligands such as cyclopentadienyl (Cp) and tris-pyrazolylborate (Tp).

We aim to build on work previously established for macrocydes with larger 
ring sizes, to synthesise smaller conformationally rigid macrocydic rings in order to 

further increase the unfavourability of ligand freedom and the consequent M-L bond 

breakage which leads to macrocydic dissodation.
Macrocydes will show new chemical behaviour in comparison to 

monodentate phosphines (due to the macrocydic effed), their enhanced stability can 

lead to new dasses of metal complexes. Macrocycles should also (in the same way 

as Cp) stabilise reaction intermediates in many different catalytic processes (such as 

alkene polymerisation and ROMP).
Triphosphorus and triarsenic macrocydes are rare ligands to work with 

primarily due to a lack of suitable synthetic procedures and the sensitivity to air and 

moisture of the bidentate and monodentate phosphines required prior to cydisation. 
Very few examples have been investigated in the literature so we aim to expand this 

area of tripnictide macrocydic chemistry and investigate the new macrocyclic 

complexes formed. This thesis reports the synthesis and charaderisation of new 

macrocydic complexes incorporating phosphorus and arsenic donors and details the 

new synthetic methodologies developed in order to allow this. The novel 
macrocydes we have prepared are robust, rigid, versatile, fadally capping, six 

electron donor ligands.

18



Previously Known Tridentate Phosphorus and Arsenic Macrocvcles

The first tripnictide (grp 15) macrocycles were made by Evan P. Kyba.38 39 
Some early 14[ane] examples were synthesised using a high dilution method.46 There 
are two different methods that can be used to synthesise macrocycles: high dilution 

(as used by Kyba in the synthesis of the first 11-membered triarsenic macrocyde);40 
or template synthesis in which a metal entity (e.g. FeCp*) is used as a building block 

during the construction of the macrocydic framework. The 12[ane] triphosphorus 

macrocyde was made using the template method in which the macrocycle cydisation 
was achieved via a radical catalysed coupling of P-H groups with allylic carbons 

(hydrophosphination). Previous studies in the Edwards group have been direded 

towards developing a synthetic strategy for making the 11[ane], 10(ane] and 9[ane] 
triphosphorus macrocycles. This was based on the intramolecular cydisation of a 
co-ordinated diphosphine and monophosphine via a pseudo Michael type addition. 
We have subsequently developed an alternative cydisation pathway involving 

reactive fluorophenyt moieties.
Some examples of previously known macrocycles are the following (x[ane] 

refers to x number of atoms in the macrocydic ring including donor atoms).

Ar

At

\

COHlaneJ40 12[ane]

H

CO COISfane]41 45[aneJ42

R=(CH2)5CH=CH(CH2)5
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Fe

Figure 1.5 Previously made triphosphorus macrocycles with varying ring sizes.

Mixed Donor Macrocycles

The synthesis of mixed donor macrocycles is exciting due to their potentially 

hemilabile nature and the opportunity they offer to explore the more subtle control of 
metal properties at the metal centre.44 Examples of mixed phosphorus nitrogen 

macrocycles of varying sizes are common as are mixed nitrogen sulphur 
macrocycles. Examples of macrocycles containing both phosphorus and arsenic 

donors have been previously reported by Kyba (see reaction scheme figure 1.6).45,46

Synthesis of Triphosphorus and Triarsenic Macrocycles

As alluded to above there are currently two methods for the synthesis of 
tridentate macrocycles, high dilution methods and templated synthesis.

High Dilution Synthesis

High dilution synthesis does not use a metal ion template, it involves 

the cydisation of diphosphine and monophosphine precursors under high dilution 

conditions to limit unwanted side reactions. Unfortunately, as there is no 

stereochemical control during the synthesis of macrocycles using this methodology, a 

mixture of stereoisomers is formed. The stereoisomers can be separated using 

column chromatography, however the resulting yield of individual isomers are poor. 
High dilution methodology is not environmentally friendly and can be expensive (due 

to the large volumes of solvents required) and polymerisation of the starting materials 

cannot be fully prevented, which contributes to the low yield. This methodology can 

also lead to problems in manipulating large volumes of solvents.
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The only current example of a triarsenic macrocycle is the Ufane]46 
synthesised and stereoselectivety isolated by Kyba after a high dilution synthesis 
(Figure 1.6).

20-60% yield after anerobic chromatography 
on silica gel

Figure 1.6 An illustration of the synthesis of the first triarsenic macrocyde, synthesised by 
Kyba using high dilution methodology.

Entropy is the dominant factor in the synthesis of large ring compounds. The 

energy involved is related to the probability of the two ends of the macrocydic 
precursors coming into dose enough proximity to react with each other. Unless there 

are special secondary interactions within the chain or a highly pre-organised or rigid 

system is used, the likelihood of the two ends meeting is low. It is far more likely that 
the reactive group will meet another reactive group on a different precursor. The 

result of this entropic constraint is the formation of polymeric species, which is a 

significant alternative pathway to the formation of the desired macrocycle. By using a 

non-templated synthesis it is necessary to use high dilution conditions to prevent two 

reactive moieties from meeting. By using a template to synthesise the precursor 
complex, the reactive groups are brought into much doser proximity and therefore 

exhibit a much higher degree of pre-organisation.
High dilution synthesis becomes more difficult for smaller ring sizes as 

polymerisation is more prominent.47

nBuU

Boiling THF 
High dilution conditions

H,C
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Temptoted Synthesis

The introduction of a metal template to stereoselectively co-ordinate both the 

diphosphine and the monophosphine prior to cydisation introduces kinetic control 
and reduces the entropic barrier to macrocydic formation (it directs the steric course 

of the reaction by holding the donor atoms in position).48 The first macrocyde to be 

synthesised using a template method was (Figure 1.7) by Curtis49 in 1960.

Figure 1.7 The first template synthesised macrocyde.49

For the synthesis of the 9fane]P3 macrocyde (Figure 1.8) a [(ri5- 
C5R5 )Fe(CO)2 (CH3CN)]+ template has been found to be effective and from this 

template [(ti5-C5 H5)FePH(C2 H4 )PH(C2 H4)P(C2 H3 )(C2 H4 )]PF8 has been synthesised 

according to the methodology developed by the Edwards group. A single facially 
capping stereoisomer is formed and the metal template minimises intermolecular 
reactivity resulting in side polymerisation reactions. The template can be removed 

for the 12[ane] triphosphorus macrocyde in high yields.50 The 9[ane] triphosphorus 

macrocyde has also been removed as a trioxide although as yet, attempts to reduce 

the trioxide to the free tritertiary phosphine have failed 51

Ni
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Figure 1.8 Synthesis of triphosphorus macrocycles by template methodology.
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This reaction scheme illustrates the current template method for the synthesis 

of triphosphorus macrocycles. The monobenzamulated triphosphorus macrocyde 

has also been synthesised using the same reaction conditions with the substitution of 
1,2 bisphosphinoethane for 1,2 bisphosphinobenzene 52 Templated synthesis is an 

important method of stereochemically controlling the orientation of the lone pairs on 

the phosphorus atoms. By template synthesis, the tripnictide macrocyde would 
retain its facially capping nature. This should also be the case even when the 

macrocyde is removed from the metal template especially if a mild liberation method 

is employed.
Without a specific stereoisomer being formed the isomers have to be 

separated (through chromatography) to give a much lower yield of macrocyde. The 

inversion barriers for phosphorus are relatively high which restricts rotation upon 

complexation (AG°=124-149kJmor1).53 The restricted rotation limits the utility of the 

syn-anti stereochemistries and makes a stereospecific route desirable for the 

formation of fadally capping ligands.

Macrocvclic Constituents

The chemistry of the triphosphorus macrocydic complexes synthesised can 

be manipulated in different ways to affect their chemical properties and to make them 

more synthetically viable in terms of yield and ease of synthesis. The variability of 
macrocydic complexes can be extended from the backbone of the macrocydic 

ligand, to the metal ion, to the nature of donor atoms and the R-groups that they 

contain.

Metal Ion

A metal template must be used in the synthesis of 9[ane] macrocydic 

complexes as the non-bonding angles do not allow a non-templated cydisation.
A transition metal’s ability to accommodate different ligands within its co

ordination sphere has led to their use in catalytic systems, which often involve up to 

three different partidpating groups in addition to the spectator ligands. The ability to 

change between co-ordination numbers is important for substitution and addition 

reactions. The metal has 9 bonding orbitals which can be accessed (1xs, 3xp and 

5xd) providing accommodation for up to 18 electrons. Most metals have the ability to
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a bond and *  back bond to ligands. A range of oxidation states should be accessible 

for the transition metal ion to possibly allow the complexes formed on the template to 
be destabilised via oxidation or reduction prior to demetallation.

The metal ion has an effect on the bonding properties within the complex and 
its inherent stability. Research for 9-membered macrocydic complexes has 

concentrated on Fe2* metal ion templates, which in combination with Cp ligands 

provide a stable template on which to synthesise macrocydic phosphines. The use 

of an Fe(ll) metal ion in combination with a six electron ligand such as Cp, and the 
six electrons also donated from the precursor ligands form a very stable 18 electron 
complex.

The metal template gives the donor atoms a high degree of pre-organisation 

prior to cydisation.

Template Ligand

Ideal Requirements of a Template Ligand for Macrocydic Cydisation
For a ligand to be utilised effectively as a template it needs to have the 

following properties:

• It needs to have 6 electrons to donate.
• It needs to form octahedral complexes with a fac geometry in order to

force the other constituents to bind in a mutually fac orientation.

• It needs to be inert under macrocydic cydisation conditions.
• It needs to enable the co-ordination of a range of precursor

phosphines and arsines.

The cydopentadienyi group (Cp) is one of the most important template 

ligands because it is firmly bound to the metal centre and generally inert to 
nudeophilic and electrophilic reagents (/.e it is stable in cydisation conditions). It is a 

rigorously fac ligand co-ordinated to an iron (II) cation (CpFeU*) and allows 

sequential replacement of L by bidentate and monodentate phosphines, the iron (II) 
has a d6 electron configuration making it inert. The Cp functionality can be adjusted 
in order to provide a more sterically demanding template to aid cydisation (by 

increasing the proximity of the mono- and di-phosphines), the steric effects of adding 

groups to the Cp template also affects AG° for the rotation of other ligands about 

their bonds.
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The nature of the Cp function affects the solubility and reactivity of the 

complexes formed which is important both in relation to the ability to remove the 
template from the macrocydic ligand, and the solubility of the precursors and 

intermediates during cydisations, as well as influendng the ring dosing readion. 
The type of Cp functionality used affects the oxidation potential of the complex 

formed according to its electron donating ability and the effect this has on the metal 
ion. The steric effects that additional groups on the Cp have affect the bonding 

between the metal and the macrocyde, with the more electron donating Cp* resulting 

in more backbonding to the phosphine ligands, the deficit is made up by increased o- 
donation from the phosphine ligands.54

Many Cp derivatives have been investigated recently induding pentamethyl 
cydopentadienyl (Cp*), trimethylsilyl cydopentadienyl and bis-trimethylsilyl 
cydopentadieny! all of which have proven difficult to remove from the cydised 

macrocyde.55 The necessity of the Cp ligand has been well illustrated by attempts to 

make the 9[ane] triethyl macrocyde using a CrfCOHChhCNfe template, this proved 

unsuccessful, due to the lack of compression of the P-P non-bonded distances, 
which are forced together as a result of the more bulky Cp substituent. The shorter 
M-P bond length in the iron(ll) template in comparison to the chromium (II) template 

decreases the distance between the phosphine donors increasing the likelihood of 
cydisation.

Previous studies on 9[ane] triphosphorus macrocydic complexes of iron have 

shown that the ligand has proved to be difficult to remove even under forcing reaction 

conditions. We have expanded our area of macrocydic synthesis by induding 

alternatives to Cp ligands, induding 1,2-dicarbadovocarborane ligands and 

trisoxazoline ligands, both of which are isoelectronic with Cp ligands although the 

synthesis of tripnictide macrocycles on these templates has remained elusive. The 

different nature of the ligands may promote different stabilities for each of the 

reaction intermediates, which could in turn be utilised to invoke different reactivities 

for the alternative template ligand complexes.

Synthetic Precursors

The choice of synthetic phosphine precursors for the macrocydic ligand has 

an important effect on the chemistry involved within the cydisation and the resulting 
conditions that are most favourable to direct the formation of the macrocycle. 
Previously (as illustrated in scheme 1.6) cydisations have involved pseudo Michael 
type additions. The initial co-ordination of a bidentate diphosphine ligand, which can
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have either a 1,2-phenyl backbone, or an ethandiyl backbone is followed by co
ordination of a monodentate trivinyl phosphine or arsine and the cydisation reaction 
is base catalysed (e.g. with triethytamine). As the bidentate phosphine changes in 

nature from ethandiyl to 1,2-phenyl, the electronics and sterics of the ligand are both 
affected. The increased rigidity of the 1,2-phenyl backbone makes the macrocyde 

more stable and a more rigid, facially capping ligand, it is also less labile to 
macrocydic dissociation due to the lack of flexibility of the backbone. Both the nature 

of the diphosphine and the monophosphine affect the solubility and the stability of the 

macrocydic complex and its precursors (which is discussed in Chapter 2).

Chiral Macrocvdes

Chiral macrocycles are a valuable tool because they may ad as ligands for 
asymmetric catalysts allowing the enantiomeric configuration of products to be 

controlled by the catalyst. One important characteristic of successful asymmetric 

catalysis is that the steric rigidity of the ligand is essential. Therefore, within the 
macrocyde the choice of backbone functionality has an effed on the efficiency of 
asymmetric catalysis. The macrocyde must have the coned stereochemical 
conformation in addition to steric rigidity to be an effective catalyst To be a 

successful asymmetric catalyst in hydrogenation the chiral phosphine must be 

capable of distinguishing between the enantiotopic faces of the reactant in order to 

synthesise a homochira! product Chiral triphosphorus macrocycles (with P as the 

site of asymmetry) have been previously synthesised although the yield has been 

poor.56 By synthesising chiral macrocycles with a much greater rigidity using 

techniques described in this thesis, modified catalytic systems could be envisaged.
If macrocycles are formed non-stereospedfically their separation is lengthy 

and results in a much reduced yield. Using high dilution methodology it is impossible 

to control the stereochemistry of the resulting macrocyde. For nitrogen based 
macrocydes their stereochemistry at nitrogen is not important as the inversion 

barriers for nitrogen are low. Phosphorus ligands have much higher inversion 

barriers (AG = 124-149kJmor1) and arsenic ligands higher again (AG = 175- 
179kJmoT1)57, this means that once the ligand has been formed in one 

stereochemical configuration inversion to change it into another configuration is 
difficult requiring elevated temperatures. If a syn-and isomer is formed, it may bind 

as a bridging or bidentate ligand, but it will not bind as a tridentate ligand on to one 
metal centre. The syn-syn isomer is required to form a macrocyde that is able to 

bind in a tridentate fashion to a single metal centre.
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Size of the Macrocydic Ring

The size of the macrocydic ring has a profound effect on the chemistry it 
exhibits: larger rings are more flexible and as a result are more easily displaced from 
their metal template. Ring strain (caused by non-optimal bond distances and angles 

being forced upon the macrocyde) is non-existent in macrocycles with over twelve 
atoms in their ring structures. By synthesising smaller ring macrocydes the 

chemistry and fundamental properties of these ligands can be investigated, they 

should exhibit decreased lability due to their more constrained geometry, by 

increasing their rigidity they will become less labile and form more robust metal- 
ligand complexes.

Counter Ion

For ionic complexes such as macrocydic complexes, the counter ion may 

also be able to bind to the metal ion. BF4' is a useful anion although F' abstraction 

can occur, PF6' and SbF6' are less strongly co-ordinating but as noted in this thesis 

unwanted side reactions involving the PF6' anion can occur resulting in PR2F 
products which can be identified in 31P NMR spectra at approximately 160ppm. 
BPtV anions are non co-ordinating and being bulky they have a different influence on 

lattice energies and therefore the solubility and crystallinity of the macrocydic 
complexes formed.

Demetallation

With macrocydes demetallation is often difficult due to their unfavourable 

dissociation kinetics and the thermodynamic stability of the macrocydic complexes. 
There are several methods that can be used to demetallate macrocycles.

1. Addition of excess add to reduce the macrocyde, often used for amine based 

macrocydes.

2. Introduction of competing ligands either as solvent molecules such as THF or 
acetonitrile, or for more strongly co-ordinated ligands EDTA4* or OH\
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3. Changing the oxidation state of the metal ion. By reducing or oxidising the 

metal ion its co-ordination chemistry is changed which can make it more 
labile.

The 9[ane] ligands which have been previously synthesised on an iron(ll) 
template by Edwards at al have been difficult to demetallate resulting in only one 

success with the oxidation of the 9[ane] triethyl triphosphorus macrocycle (Figure
1.6). The resulting triphosphine trioxide macrocycle is difficult to reduce in large 

quantities preventing further study.
Another method for demetallation which has not previously been utilised is to 

use macrocydic ligands with two types of donor atom in order to create hemilability. 
If one donor atom is easily removed from the metal template it would affect the co
ordination chemistry of the remaining co-ordinated ligands making them more 
susceptible to replacement by competing ligands.

Some substitution reactions have been found to be promoted by UV light. 
The mechanism of this photon induced reaction is thought to involve the promotion of 

a dx electron into a do orbital which is M-L antibonding in character therefore 

destabilising the complex. Possibly by trying dissodation reactions under photolytic 

conditions the free macrocycles could be obtained.56 It has also been previously 

shown that ligand dissodations can be promoted by ultrasound as a result of high 

local temperatures formed by the opening and dosing of small bubbles of vapour in 

the solvent (cavitation).50 This could also be used to try to increase the dissodation 

kinetics of macrocydic complexes.
Demetallation is not promoted by using substitutionally inert d6 octahedral 

complexes. The templates we currently use are all based on forming an eighteen 

electron complex, these complexes are stable but reduction or oxidation can be used 

to reduce their stability. Attempts to reduce 9[ane] triphosphorus macrocycles have 

proved to be unsuccessful although several methods have been utilised.

• Using alkali metals in ammonia to reduce Fe(ll) to Fe(0) and resulting in the 

formation of cydopentadiene, this method caused macrocydic degradation as 

monitored by 31P NMR.00

• Ligand displacement from the Cp/Cp*Fe* template by using KCN, this 

methodology required the oxidation of the iron(ll) complex to iron(lli) using 

silver (I) tetrafluoroborate in CH2CI2 followed by work up to remove elemental
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silver. KCN was added as an aqueous solution and competing ions were 

added to try to displace the macrocyde from the iron template.60

• Oxidative cleavage has been attempted using conc. HCI and 30% H20 2.
Pellets of sodium hydroxide were added resulting in the predpitation of a red 

solid however the desired trioxide could not be isolated from the reaction 
mixture.60

Cp can be forced to ring slip from q 5 to q3 or q 1 but the tendency for this to 

happen in Fe(ll) complexes is small. An example of a successful ring slippage 

forming a stable complex is the phosphination of the following Cp rhenium complex 61

q5-CpReMe(NO)(CO) + 2PMe3 -► q1-CpReMe(NO)(CO)(PMe3)2

Existing Routes to the Liberation of Triphosphorus Macrocydes

Currently there are few successful routes to the demetallation of template 

cydised triphosphorus macrocycles. The predominant method is the digestion of the 

metal with a cyanide salt62 After synthesising 1,5,9-triphosphacydododecane on a 

molybdenum tricarbonyt template, attempts to liberate the macrocyde using cyanide 
salts, triphenylphosphine, trifluoropbosphine and trimethoxyphosphine all failed. The 

macrocyde was stereoselectively demetallated using bromine to oxidise Mo(0) to 

Mo(ll) followed by digestion of the metal complex in strong base (NaOH). This novel 
liberation technique also works for the analogous chromium complexes.43
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Benzannulated. Dibenzannulated and Tribenzannulated
Trionictidc Macrocycles

Introduction
Macrocydes having rigid unsaturated hydrocarbon backbones have attracted 

great interest recently due to their novel properties and potential applications 

particularly in catalysis. Macrocydes with arylene and ethynylene backbones have 

demonstrated synthetic versatility and the ability to form ordered frameworks. 
Macrocycles formed in this way have an internal binding cavity because of their 
toroidal shape which could potentially be used as an aid to the crystallisation of these 

complexes. The cydic backbone of the macrocycles can be modified in terms of the 

nature and function of the R-group attached to the donor atom as well as the nature 
and size of the ring.1

As described in the previous chapter, current macrocydic cydisation 

methodology has centered around pseudo-Michael type additions of co-ordinated 
primary diphosphines with co-ordinated trialkenyl phosphines. For triphosphorus 

macrocycles this type of macrocydic formation only works for a limited range of 
backbones, namely those involving alkenyl functionalities.

An alternative to this method needed to be evolved to provide access to the 
more rigid di- and tribenzannulated macrocydes. This would allow investigations to 

be made into the chemistry of macrocycles with benzannulated backbones and 

pnictide donors, providing a wider understanding into the nature of the structure and 

bonding within more rigid tripnictide macrocydic complexes. The conformation within 

the proposed macrocycles will give the complexes extra stability and should increase 

the potential for metaHigand back bonding due to the aromatic nature of the 

backbone.2 The increased inflexibility within the system will enhance the barrier to 

rotation of the lone pairs in the free macrocyde. This restriction to rotation is initially 
caused by the increased inversion barriers present in phosphorus by comparison to 

nitrogen, it also increases due to the rigidity of the benzo backbones in comparison to 
ethyl backbones.

Investigations have therefore been carried out to study the effect of varying 

the rigidity of the backbones throughout the macrocyde. In order to synthesise the 

tri-aryl backbone macrocydes a new synthetic method was developed, which utilised 

fluoro-phenyl moieties attatched to the bisphosphine /arsine fragment The activation 
of the ortho C-F bond in arytfluorophenylphosphines within the co-ordination sphere

34



of transition metals has been previously reported3,4 and was utilised here in order to 

base activate the macrocyde and promote cydisation.
The template methodology previously utilised in the synthesis of 

triphosphorus macrocydes is similar to research carried out by Gladysz5 which 
concentrated on sulphur ylides and their stable generation in cationic transition metal 
complexes containing unsaturated organic sulphides. This research provided an 

indication as to the stabilising effect of the transition metal template on co-ordinated 

reactive groups. By extending the nature of the ligands to phosphines, deprotonation 

to form a co-ordinated phosphide results in a lone pair of electrons that are able to 
attack at the Michael acceptor. By using a diphosphine ligand such as 1,2- 
bisphosphinobenzene then reacting the phosphide with a co-ordinated alkenyl group 

such as triviny! phosphine, a Michael type addition can occur by the following 

mechanism (Figure 2.1) to form a partially cydised product (which cannot be 

isolated). The reaction happens in duplicate, with the diphosphine again forming an 

ylide and reacting with one of the remaining vinyl groups to form the fully cydised 

product Post cydisation, the macrocyde can be hydrogenated to change the vinyl 
substituent into a less reactive ethyl functionality.

NCCH
Acetonitrile

NCCH.
Fe

NCCH.

Fe T riethylamine

A

Figure 2.1 Macrocydic synthesis from alkenyl and primary phosphine precursors.
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Results and Discussion

In order to make tribenzannulated macrocycles a different strategy needed to 

be adopted due to the reduced reactivity (in terms of pseudo Michael type additions) 
of phenyl R-groups. Phenyl groups are not as reactive as ethyl groups due to their 
electron delocalisation which prevents the attack of the phosphorus lone pair. To 
alter the reactivity of the phenyl groups and make them suitable to make into 9[ane] 
triphosphorus macrocycles the carbon ortho to the phosphorus donor must be 

electrophilically activated. This can be achieved by the use of an electron 
withdrawing fluorine attached to the ortho carbon which will initiate nudeophilic attack 

as for an alkyl halide. Fluorinated phosphines are often inert within the co-ordination 

sphere of a metal centre6  with the exception of ortho C-F bonds in fluoroaryl 
phosphines. There is also a stabilised P-C6 H4 F interaction7 caused by fluorination of 
the aryl group (this is diametrically different from phenyl phosphines where the P-Ph 

bond is activated) . 8  Cydisation results from the initial formation of a phosphide 

containing a lone pair of electrons (by catalytic base attack) followed by nudeophilic 
attack by the phosphorus lone pair at the ortho carbon resulting in the overall loss of 
HF. The concept of an intramolecular dehydrofkjorinative P-C coupling reaction 

involving two functionalities, with the loss of a proton (catalytically to the base used to 

activate the reaction) and nudeophilic attack by the resulting phosphide at the 
orthofluoropheny! substituent of the phosphine, provides a rational method for the 

synthesis of tripnictide macrocydes. 9

The modified method to macrocytic cydisation utilising fluorophenyl moieties 

was used to prepare novel tribenzannulated and dibenzannulated triphosphorus 

macrocydes. Two techniques both utilising the same dehydrofluorinative coupling 

were used to synthesise di- and tribenzannulated macrocydes, the disconnection of 
the resulting macrocyde into its’ constituent synthons allows a darification of these 

approaches.
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Figure 2.2 Disconnection approaches for dehydrofluorinative coupling.

Di Disconnection 1, utilising the ortftofluorophenyl aryl rings on the bidentate 

pnictide
D2 Disconnection 2, ortftofluorophenyl aryl rings located on the monodentate

pnictide
R Either Ph (Di) or CehUF (Dz)
R’ Either C6H4F (DO or H (Dz)

The new procedure involves either the initial co-ordination of a bidentate
pnictide ligand with four orthofluorophenyl aryl groups to the metal template followed 

by the addition of a primary monodentate pnictide (disconnection 1), or the addition 

of a bidentate primary pnictide followed by the addition of 
trio/thofluorophenylphosphine (disconnection 2).

In both examples cydisation involves the addition of base to encourage the 

initial proton loss from the primary pnictide (whether bidentate or monodentate) and 

attack by the resulting nucleophile at the ortho position of the fluorophenyl ring. This 

mechanism previously described by Saunders4 uses a pentafluorophenyl moiety 

attached to a co-ordinated diphosphine, which on addition of catalytic quantities of 
base attacks the moderately addic Cp* protons to induce C-C bond formation (Figure
2.3). In our similar system the base initiates P-C bond formation. Insuffident data 
has been collected to determine the nature of the base in the reaction mechanism, a 

stoichiometric amount of base would seem to be required to quench released HF 
although (as mentioned above), Saunders et al. have reported the use of merely a 

catalytic quantity.
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Figure 2.3 Saunders reaction scheme showing dehydrofluonnative coupling to form a C-C 
bond

Additional benefits of the dehydrofluonnative mechanism include the 

electrostatic attraction between the nudeophilic fluoride located on the aryl ring and 

the electrophilic proton located on the primary phosphine which allow increased pre
organisation of the macrocyde, and the possibility that macrocydic cydisation could 

be induced on non-sterically influencing ligands. Another advantage is the ability to 

vary the nature of the donor atoms to form mixed donor complexes. The nature of 
the backbones can be varied from the less constrained ethyl backbones used in 

previous template synthesised triphosphorus macrocycles (which it is also possible to 

utilise with the dehydrofluorinative P-C coupling method) to the more rigid 

benzannulated backbones. Initial experiments by Albers10 confirmed the validity of 
this synthetic methodology in the synthesis of the dibenzannulated complex 

[CpFeP(C8 H4 F)(C2 H4 )P(C6 H4 F)(C6 H4 )P(C6H5)(C6 H4 )][PF6] and its full charaderisation. 
The crystal strudure of this complex admirably illustrates the increased rigidity of this 

macrocycle in comparison to the
[(C5H5)FeP(C2 H5)(C2 H4 )P(C2 H5)(C2 H4 )P(C2 H5 )(C2H4 )][PF6 ] and shows the feasibility 
of a new cydisation template technique to prepare tripnidide macrocycles (Figure
2.4). The crystal strudure also illustrates the twisted conformation of the ethyl



backbone. By utilising the novel dehydrofluorination strategy to cyclise 

tribenzannulated macrocycles a more rigid structure should be attained.

PF,

CpFe

P2 P1P3F2

Figure 2.4 A dibenzannulated triphosphorus macrocycle synthesised by Albers by 

dehydrofluonnative cydisation.10
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Synthesis of Triphosphorus. Tribenzannulated Macrocvctes

pf.

N
THF

CpFe  »
^  huMOCW) 

O 24 hours

PF.

PPhH2 
1,2 dichloroethane F

Reflux 16 hours f)
CpFe

1b

‘BuOK 
Stir 12 hours

THF

Ar = C,H4F

PF,

CpFe

1c

Figure 2.5, Method 1, synthesis of triphosphorus tribenzannulated macrocycles from a 
bidentate ftuoroarylated phosphine and a monodentate primary phosphine.

The first example of a tribenzannulated triphosphorus macrocycle was 
synthesised according to scheme 2.5. Treatment of [CpFe(CO)2 (CH3CN)][PF6] with 

the bidentate phosphine (Cel-UF^PtCeH^PCCel̂ F  ̂9ave 1a as an air sensitive red 
powder in very good isolated yield (94%). The 31P{1H} NMR spectrum shows a triplet 
at 92.5ppm (3J p_f  36.0Hz) which is shifted downfield with respect to the free ligand (- 
32.6ppm) and indicative of co-ordination to the metal ion. The 1H NMR spectrum 
shows a broadened singlet at 3.96ppm due to the Cp fragment, in addition to the 

expected aromatic peaks (7.70-6.90ppm). The 13C{1H} NMR spectrum shows peaks 

due to the methyl protons of the acetonitrile ligand (2.8ppm), the Cp (81.5ppm) and 

aromatic carbons (123.2-133.9ppm). A doublet of doublets at 165.0ppm ( 1J c-f  

242.9Hz) can be assigned, whilst the 2Jc-p interaction is not seen due to insufficient 
resolution of the spectra. The 19F NMR spectrum shows a singlet at -98.0ppm 

representing the co-ordinated ligand. The CN stretch for the co-ordinated acetonitrile 

appears in the infrared spectrum at 2266cm*1.
On addition of phenylphosphine under reflux conditions complex 1b is formed 

as a yellow air sensitive powder in excellent yield after workup (93%). The 31P{1H} 
NMR spectrum shows an AX2 pattern at 84.6ppm (3J P-f-3 2 .6 H z )  and a further peak at
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12.1 ppm indicating co-ordination of the phenyl phosphine to the CpFe* template. 
The 1H NMR spectrum shows a doublet at 4.38ppm with 1JP̂  331.0Hz again 
indicating the co-ordination of the phenyl phosphine ligand. 19F NMR showed a 

singlet at -98.0ppm representing the co-ordinated bidentate phosphine.
Catalytic quantities of base were added to cydise the precursor complex 1b 

forming the complete macrocyde 1c as an air stable yellow powder. Cydisation was 

monitored by 31P{1H> NMR spectroscopy, resonances were seen to move from a 

singlet at 84.6ppm to two resonances representing a ABB’XX’ system at 119.6ppm 

(tt, 2Jp_p116.1Hz, ®JP̂ 32.8Hz) and 127.5ppm(multiplet), the resonances are 

complicated by the magnetic inequivalence, yet chemical equivalence of the 
phosphorus atoms with orfhofluoroaryl groups. 13C{1H} NMR data shows a doublet at
115.3 (2J c -f2 3 .1 H z ) and a doublet of doublets at 163.3 (1J c -f2 5 2 .7 H z ) again without 
the ability to observe the coupling constant between C and P due to poor spectral 
resolution, the broadened Cp resonance is observed at 82.1 ppm. At room 
temperature in the 19F NMR spectrum a singlet is seen at -98.4ppm, but at low 

temperature (83K) the peak splits into four separate peaks. The 31P{1H} NMR 
spectrum was also taken at low temperatures (83K) in an attempt to deconvolute the 

multiplet observed, unfortunately although the darity of the spectra increased no 

significant improvement in resolution was seen. In the mass spectrum a molecular 
ion peak was observed at 709.1 Da/e.
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Reflux 16 hours 
PPhHj

hv(100W) 
24 hours

•BuOK 
Reflux 16 hours

Figure 2.6, Method 1, synthesis of triphosphorus tribenzannulated macrocydes from a 
bidentate fluoroaryfated phosphine (ethyl backbone) and a monodentate primary phosphine.

Other triphosphorus macrocycles have been synthesised using method 1 
induding macrocydes utilising a precursor involving diorfftofluorophenyl 
bisphosphinoethane as the bidentate phosphine and phenyl phosphine as the 
monodentate phosphine (Figure 2.7). The Cp precursor 3b can again be 

characterised with peaks representing the co-ordinated diphosphine in the 31P{1H} 
NMR at 80.9ppm (3JP̂  51.0Hz) and the monophosphine at 8.7ppm. The completely 
cydised macrocyde 3c has a characteristic 31P{1H} NMR triplet at 127.7ppm (3JP̂  

31 OHz) and multiptet at 123.5ppm, 19F NMR shows a singlet at -103.0ppm.
The analogus Cp* tribenzannulated complex can also be synthesised (Figure

2.7). The initial precursor complex 2a [Cp*Fe(o-C6H4F)2PC6H4P(o- 
C«H4F)2MeCN][BF4] was synthesised as a red air sensitive powder, soluble in THF, in 

very good yield (94%). Characteristic peaks at 1.63ppm (Cp*) and 2.19ppm 
(CH3CN) are seen in the 1H NMR along with an aromatic multiplet 6.69-7.86ppm. In 

the 13C{1H} NMR a characteristic doublet is seen at 115.7ppm (2J c -f2 3 .5 H z ) showing 
the coupling between the meta carbon on the orfhofluorophenyl ring and the fluorine 

atom. A doublet of doublets is seen at 165.0ppm ( 1J c -f2 4 2 .9 H z ) representing the 
ortho carbon coupling to the adjacent fluorine and the phosphorus atom. Peaks for
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the acetonitrile at 3.9ppm and 118.1 ppm and for the Cp* at 9.5ppm and 87.3ppm 

were identified. A broad singlet is seen at 90.1 ppm in the 31P{1H> NMR which is 
believed to represent the expected triplet from phosphorus, poor resolution means 

that the expected P-F coupling cannot be observed. The 19F NMR shows the 
orthofluoro groups as a singlet at -99.6ppm. After the co-ordination of 
phenylphosphine to form an air sensitive yellow powder 2b in very good yield (92%) 
the 31P{1H) NMR resonance for the diphosphine moves significantly downfield to 

18.7ppm, although the resolution into a triplet is again not observed. A singlet 
representing the co-ordinated phenylphosphine appears at 10.1 ppm. The 19F NMR 
singlet observed in the initial diphosphine complex representing the orfhofkioro 

groups moves slightly downfield to -98.2ppm.
Post cydisation 2c is formed, the 31P{1H} NMR shows a triplet of triplets at

117.3 (tt, 2J p_p 102.4Hz, 6J puf 35.3Hz) due to the coupling between the unique 

phosphine (with the attached phenyl group) and initially the two chemically equivalent 
phosphines (with attached orftofluorophenyl groups) followed by coupling to the 

ortho fluorine spin active nuclei. A multiplet is observed 112.0-111.7ppm 

representing the chemically equivalent phosphines. No dear coupling is resolved in 

the 31P{1H} NMR spectrum due to the secondary interactions which occur as a result 
of the chemically equivalent phosphines being magnetically inequivalent

The Cp* dibenzannulated triphosphorus macrocyde could not be synthesised 
as the addition of base resulted in immediate decomposition possibly as a result of 
the methyl groups attached to the Cp* attacking the labile oriftofluorophenyl rings.

2c 3c

Figure 2.7 Both Cp* and ethylated triphosphorus macrocydes can be synthesised.
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Synthesis of T riphosphorus. Tribenzannulated Macrocvctes with Primary 

Diphosphines

H  |PFh^ U h r r«

N

CpF*
THF

^  ^  ht>(10CW)
24 hour#

PF.

4a

P(C6H4F)3
Acetonitrile

Reflux 18 hours

PF,

4b

TEA
Reflux 2 hours

THF

PF,

TEA
Reflux 6 hours

THF

PF,

CpFe

4c

Figure 2.8, Method 2, synthesis of triphosphoms tribenzannulated macrocycles from a 
bkJentate primary phosphine and a monodentate fluoroarylated phosphine.

In order to explore the potential of the novel dehydrofluorinative synthesis the 
diortbofluorophenyl bisphosphinobenzene ligand was replaced with the primary 

diphosphine, bisphosphinobenzene. Phenyl phosphine was replaced with 
trio/fbofluorophenyl phosphine followed by base cydisation. The advantage to this 

methodology was the ability to use a wider range of primary diphosphine (and 

diarsine) ligands (Figure 2.8, Method 2).
T riortbofluorophenyl phosphine was added to

[CpFe(H2P C ^ 4 PH2)(CH3CN)][PF6] (4a)11 and refluxed to give 4b as a yellow air 
sensitive powder in good yield (82%) as shown in Figure 2.8. The 31P{1H} NMR
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spectrum shows a singlet at 16.0ppm representing the co-ordinated 

bisphosphinobenzene. A broad singlet at 22.0ppm represents co-ordinated 
P(C6 H4F)3 , the peak moves considerably downfield after co-ordination from -
42.1 ppm (3JP4: 56.6Hz) for the free ligand. The 19F NMR spectrum shows a 

characteristic singlet at -97.9ppm. The 1H NMR shows a broad singlet at 3.61 due to 

the Cp resonance and complex multipiets from 6.94-7.39ppm which can be assigned 

to the aromatic protons. The 13C{1H} NMR spectrum shows a doublet of doublets at 
165.0ppm ( 1J c-f 285.3Hz) in addition to other aromatic resonances.

After the addition of an excess amount of triethytamine, the cydisation was 

monitored by 31P{1H} NMR spectroscopy. After refluxing the mixture for 2 hours a 
triplet at 89.1 ppm (^W  35.7Hz) was observed when the cydisation had partially 
completed (i.e. one backbone had been formed), a complex multiplet at 66.5ppm 

representing the tertiary phosphine was also observed. Further loss of a fluorine 

atom from one of the aryl groups led to the formation of a doublet at 90.7ppm (3J r_f 

35.7Hz). Cydisation was completed after 8 hours to give 4c as a yellow air stable 

powder in good yield (74%) which resulted in the formation of a complex muttiplet in 

the 31P{1H} NMR spectrum from 118.4-122.8ppm. The 19F NMR spectrum showed a 

characteristic singlet at -101.8ppm. Resonances corresponding to aromatic protons 
(6.95-7.71 ppm) and the Cp resonance (3.73ppm) were seen in the 1H NMR 

spectrum. 13C{1H> NMR shows a doublet of doublets at 165.0ppm (1Jc-f 286.0Hz), as 

observed in the previous synthesis, the 2Jc-p coupling constant is not resolved. The 

molecular ion was observed in the mass spectra at 779.6Da/e.
The Cp* tribenzannulated triphosphorus macrocyde (Figure 2.9, 5c) can also 

be synthesised by the initial preparation of the Cp* iron(ll) bisphosphinobenzene 

acetonitrile complex12 as a red air sensitive powder, followed by the addition of 
triorfhofluorophenyl phosphine which led to the synthesis of a yellow air sensitive 

powder in good yield (82%) 5b. Characteristic Cp* resonances are seen in the 1H 

NMR at 1.72ppm and in the carbon NMR spectra at 9.91 ppm and 87.24ppm. Other 
characteristic resonances in the 13C{1H} NMR are seen at 115.2ppm (doublet 2J c-f  

24.0Hz) resulting from coupling between the orthoOuoro group and the meta carbon 
in the ortbofluorophenyt ring. A doublet is seen at 164.0ppm (1J c-f  234.3Hz), the 

spectra is insufficiently resolved to observe the further splitting of this doublet into a 

doublet of doublets. In the 31P{1H} NMR spectrum a singlet is seen at 15.1 ppm 

illustrating the co-ordination of the bisphosphinobenzene to the Cp* iron template, a 
doublet at 18.00ppm (3J P-f 41.7Hz) shows the coupling between the orthofluoro atom 

and the co-ordinating tertiary phosphine. A broad singlet at -100.8ppm in the 19F 
NMR shows the orthefluorine. After cydisation with triethytamine a yellow air
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sensitive powder is formed in a very good yield (90%) 5c, characteristic Cp* 
resonances (as above) are seen in both the proton and carbon spectra.
31P{1H> NMR resonances show a muftiplet at 61.5ppm which has been assigned to 

the partially cydised macrocyde, a broad singlet is seen at 115.1 ppm and a multiplet 
from 105.2-111.3ppm is also observed with both resonances representing the fully 

cydised macrocyde. The 19F NMR singlet moves marginally upheld to -103.4ppm. 
A characteristic P-H stretch is observed in the infrared spectrum at 2310cm'1.

Other triphosphorus macrocydes have been made by method 2 including 

macrocydes made from bisphosphinoethane as a replacement bidentate phosphine 

(Figure 2.9, 6c and 7c). The precursors can again be characterised with peaks 
representing the co-ordinated diphosphine in the 31P{1H> NMR at 16.0ppm and the 
co-ordinated monophosphine at 22.8ppm. The cydised macrocyde 6c has a 

characteristic 31P{1H} NMR broad singlet at 111.5ppm and multiplet from 105.2- 
105.9ppm, 19F NMR shows a singlet at -101.8ppm.

Complex 7c (Figure 2.8) is also synthesised from the corresponding 

bisphosphinoethane Cp* complex the reaction gave a poor yield in comparison to 

similar synthetic procedures (48%), characteristic Cp* data is seen in the proton and 

carbon spectra for all of the precursor complexes. The 31P{1H} NMR for the 
macrocydic precursor 7b shows a multiplet at 19.0ppm representing the co-ordinated 

triorffrofluorophenyl phosphine and a singlet at 12.3ppm representing the co
ordinated bisphosphinoethane a characteristic peak is also seen at -100.0ppm in the 

19F NMR spectrum. After cydisation with triethytamine the macrocyde was isolated 
in poor yields (32%) as a yellow air sensitive solid 7c. A singlet in the 19F NMR 

appears at 102.4ppm. The 13C{1H} NMR spectrum shows a characteristic doublet of 
doublets at 166.2ppm ( 1J c-f  248.4Hz, 2Jc-p 9.2Hz) due to the o/fhofluorophenyl group. 
The 31P NMR spectrum shows multipiets between 112.3 and 117.4 representing the 

fully cydised macrocyde.
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Synthesis of Triarsenic. Tribenzannulated Macrocydes
The first example of a template synthesised triarsenic macrocycle has been 

made in good yield by a method analogous to method 1 (Figure 2.6). 
Diortftofluorophenyl bisphosphinobenzene and phenyl phosphine were replaced by 

the analogous arsines. Complexes are represented in Figure 2.10 with 8a 

representing the co-ordinated diarsine, 8b the co-ordinated diarsine and monoarsine 

and 8c the cydised macrocyde.

PF.

Acetonitrile

hudOOW) 
24 hours

PF,PF,

AsPhHj 
1,2 dfchloroethane

As

CpFeF
Reflux 16 hours

tb8a

•BuOK 
Reflux 16 hours

THF

Ar = C6H5F group

PF,

,A s^

CpFe

8c

Figure 2.10, synthesis of triphosphorus tribenzannulated macrocydes from a bidentate 
fluoroarylated arsine and a monodentate primary arsine.
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Diorthofluorophenyl bisarsinobenzene was added to 

[CpFe(CO)2<CH3CN)][PF6] and refluxed to form complex 8a. The 19F NMR spectrum 
showed a characteristic singlet at -99.8ppm. The 13C{1H} NMR spectrum showed a 

singlet at 2.6ppm representing the co-ordinated acetonitrile, a broad singlet for the 

Cp is seen at 76.4ppm. As for the phosphorus analogue a doublet with C-F coupling 
is seen at 115.5ppm (2Jof 24.1Hz). Another characteristic doublet for the 

orthcftuorocarbon is observed at 165.0ppm (1J c-f  241.9Hz). In the infrared spectrum 

a characteristic peak at 2262cm'1 shows the co-ordinated acetonitrile.
The addition of phenylarsine to complex 8a gave complex 8b. This complex 

was characterised by a upheld movement in the 19F NMR spectrum to -101 5ppm for 
the co-ordinated diarsine ligand on addition of phenylarsine. The 13C{1H} NMR 

spectrum showed the characteristic doublet (assigned to the carbon bearing the 

fluorine) at 164.9ppm ( 1Jc-f  239.8Hz).
Rehuxing 8b with base gave rise to the formation of 8c, the fully cydised 

macrocyde. The 19F NMR spectrum shows a singlet at -100.1 ppm. The 13C{1H} 
NMR spectrum showed similar peaks to the precursor complex.

The triarsenic macrocyde is unique. It is the first time that this novel template 

synthesised macrocyde has been prepared. The only other example of a triarsenic 

macrocyde was synthesised by Kyba under high dilution conditions where he was 

able to obtain the non-templated macrocyde.13 By synthesising the macrocycle in 
this way the yield has been improved from 30-60% isolated yield for the high dilution 

methodology to 73% isolated yield for the dehydrofluorination template methodology 
although demetallation has yet to be successfully attempted. Final structural 
characterisation was carried out by crystallography, which Kyba was unable to 

achieve.
The reaction scheme initially completed on the CpFe* template was however 

unable to be completed on an alternative Cp*Fe* template presumably due to either 
steric factors due to the larger size of Cp* in comparison to Cp or electronic factors 

resulting from the increased electron donation from Cp*.
In comparison to the equivalent triphosphorus example after co-ordination of 

the precursor dipnictide the diarsine complex was unstable in acetonitrile solution 

and decomposed to form the free diarsine ligand and products resulting from the 
decomposition of the [CpFe(CH3CN)3]+. Base cydisation proceeded marginally more 

quickly for the triarsine ligand. Overall the novel synthetic technique has proved 

versatile for a wide variety of phosphine and arsine ligands.
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Mixed Donor Macrocvctes
One of the main aims of using mixed donor ligands is their hemilability. 

Hemilabile ligands are those which are polydentate in nature and contain two (or 
more) different donor atoms.14 Another characteristic of hemilabile ligands is the 

difference in lability between the different types of bonding groups within the ligand. 
Often this difference in lability results in the replacement of one bonding group but 
not the others, because the ligand is chelating in nature the bonding group stays 

close to the metal and is able to stabilise lower co-ordination reaction intermediates.

Metal complexes with hemilabile ligands are often used in catalysis due to 

their ability to create transient vacant co-ordination sites on the metal ion. By 

creating mixed donor macrocydes we hope to create macrocydes which are stable 

to base cydisation yet with labile bonding groups which can be attacked by incoming 
ligands. This would be promoted by a strongly competing ligand and the process 

may encourage the whole macrocyde to dissociate from the metal template.
Continuing from the synthesis of triphosphorus and triarsenic macrocydes the 

expansion of the methodology to mixed donor macrocydes was the next obvious 
step. We attempted to synthesise (on Cp*Fe* and CpFe* templates) both diarsine 

monophosphine complexes and diphosphine monoarsine complexes. We were only 
able to utilise the bisarsinobenzene ligand for the CpFe* template. All of the mixed 

donor macrocydes synthesised have been illustrated (Figure 2.11), along with 
characteristic data for the complete macrocydes (Table 2.1).
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Figure 2.11 All of the mixed donor macrocydes successfully synthesised.

Table 2.1 31P{1H} and 19F NMR data for all of the macrocydes synthesised.

Complex Number "P^H} NMR Data *F  NMR Data Yield

_ 9  _ n " '

1c 119.6ppm (tt, ĴP. 
P116.1Hz, 6JP. 
f32.8Hz), 127.5ppm 
complicated multiplet

-98.1 ppm (s), 
at 83K the 
singlet became 
a doublet of 
doublets -  
99.2ppm (3JF- 
P100.6Hz, 6Jf. 
p38.2Hz).

78%

_  9  9 "'
2c 117.3ppm (tt, 2JP. 

P102.4Hz, 6JP. 
f35.3Hz), 112.0- 
111.7ppm(m)

-100.9ppm (s) 78%
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_  9  _ n " '

F ^ C p F ^ — ^  F

3c 127.7ppm (I, % . 
p31.0Hz), 122.8- 
124.1 ppm (m)

-103.0ppm (s) 62%

: - P

^  ^ C p F e ^  ^

4c 118.4-122.8ppm (m) -101.8ppm (s) 74%

- - - ?  - n "

P v

B Q H

5c 115.1 ppm (s), 105.2- 
111.3ppm (m)

-103.4ppm (s) 65%

_ " 9  _ n ” '

( CpFe y

H'P> r < P'H
h 3 T h

6c 111.5ppm (s), 105.2- 
105.9ppm (m)

-101.8ppm (s) 90%

_ r 9  _ n s F '

h 'pW p 'h
h v T T h

7c 112.3-117.4 (m) -102.4ppm (s) 32%
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_ 9

F ' ---- ( CpFe J---- '  F

8c -100.1 ppm (s, 
major peak), - 
101.5ppm (s, 
minor peak), at 
83K the singlet 
became three 
peaks at -  
101.5, -101.6 
and
102.4ppm.

73%

,c£3̂ .
9c 135.0ppm(s),

135.6ppm(s)
-102.4ppm (s) 78%

Q

F ^ ~ p  CP Fe

10c 130.38-132.09 (m) -102.68 (s) 78%

_  9  - n ” ‘

F \ CpFe / p

11c 134.6ppm (s) -100.1 ppm (s) 73%

p

F F

12c 112.0ppm (s) -102.4ppm (s) 71%
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^ C p F e ^ -^  
.As 'As

h H

\ J

13c 122.0-137.9 (m) -101.6ppm (s) 42%

H '  .*Fe

14c 106.4ppm (s) 24%

All complexes synthesised with primary arsines were much more unstable to 

heat than their phosphine alternatives which could at least partially explain the poor 
yield seen for complex 13c.

Variable Temperature NMR Spectroscopy

Variable temperature NMR spectroscopy was carried out on the 
tribenzannulated triphosphoois and triarsenic macrocydes to deconvolute the 

complicated NMR signals seen for 31P NMR in these complexes. We can also 

observe the splitting of the unexplained 19F singlet as the samples are cooled. By 

cooling down the NMR samples any kinetic factors causing complicated NMR signals 

will be reduced, this includes ring rotation about the P-R [with R representing H, Ph 
or (o-C6H4F)] bond. The 19F signal is expected to be split by P-F coupling however 
this is not observed, an explanation has yet to be found.

The 31P{1H} VT NMR for the Cp tribenzannulated triphosphorus macrocyde 
1c shows the triplet of triplets becoming less defined. The couplings are difficult to 
identify as the spectra are second order, at cooler temperatures additional 
resonances can be seen appearing within the doublet of triplets possibly as a result 
of the isolation of different rotamers which can be seen in the 19F NMR spectra.
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Figure 2.12, Variable temperature 31P{1H} NMR spectra for 

[CpFeP(C6H4F)(C6H4)P(C6H4F)(C6H4) PfQsHsXCeFUMBfCeHs)] taken at SO°C, -20°C and 

0°C.

The 31P{1H} NMR spectrum (Figure 2.12) shows a well defined triplet of 

triplets at 0°C representing the unique phosphorus coupled to the two chemically 

equivalent phosphorus atoms and then to the o/triofluorine atoms. The 19F NMR in 

comparison shows no coupling to any phosphorus atoms.



I ' 1 ' 1 I ' ' 1 i '■» -100 106

Figure 2.13, Variable temperature 19F NMR spectra for [CpFePfCe^FXC^JPtCeFUFXCeFU) 

P(C6H5)(C6H4)][B(C6H5)] taken at -90°C, -80°C, -60°C and -40°C.

The 19F NMR variable temperature spectra (Figure 2.13) shows the 

appearance of four peaks, the nature of these peaks cannot be conclusively 

determined but may be formed as a result of the isolation of different rotamers within 

the macrocyclic structure (Figure 2.14).

PF,

CpFe

1c Rotamer 1

CpFe

1c Rotamer 3

CpFe

1c Rotamer 2

Figure 2.14 Possible rotamer structures seen in the 19F NMR after cooling to - € 0°C
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At higher temperatures the rotation about the P-R [with R representing H, Ph 

or (o-C6H4F)] bond increases so that individual rotamers are unable to be detected 

on an NMR timescale.

The tribenzannulated triarsenic macrocycle shows the same type of 

behaviour in its 19F NMR data where as the sample is cooled to -60°C the singlet 

seen at higher temperatures splits into four separate resonances (Figure 2.15).

-40
-80
-90

— i—  
-110 PPM

Figure 2.15, Variable temperature 19F NMR spectra for 

(CpFeAs(C6H4F)(C6H4)As(C6H4F)(C6H4) AsfCeHsKCehUMBfCeHs)] taken at -90°C, -80°C, - 

40°C and 0°C.
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Crystal Structures

Crystal Structure of P(CfiH4F)3

White crystalline blocks were obtained from a solution of P(C6H4F)3 from 

acetonitrile at room temperature. The crystals were crystallographically analysed for 

the first time to give the following crystal structure (Figure 2.16).

Figure 2.16
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The crystals were monoclinic with a space group of P2(1)/n, the final R 

indices were R1= 0.0432 and wR2 = 0.1006. The novel crystal structure has P-C 
bond lengths of 1.837(2)A (average) and C-F bond lengths of 1.362(2)A (average) 
both within the Van der Waals radii of the constituent atoms and similar to other 

known examples. The angles around the phosphines are 302.28° indicating a 

pyramidal geometry as expected.

Crystal Structure of rCDFePfaKtFKCAKtlPfC^HtFKCftH^IPfCftHOfCftH^irBfaHOJ 1c 

Fine needle like yellow crystals suitable for X-ray diffraction were obtained by 

anion exchange with NaB(C6H5 ) 4  and recrystallisation from acetonitrile at -  37°C.
The crystal structure has a distinctive toroidal cavity possibly suitable in 

further studies as an anion binding space. To show the crystal structure with clarity 

two different views are shown, one illustrates the Cv symmetric nature of the structure 

through the P3 atom and the opposing benzene ring (Figure 2.17). The other shows 

the cavity formed by the tribenzannulated nature of the ligand (Figure 2.18).
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Figure 2.17



The crystal structure of this type of triphosphorus macrocycle is unique. 

Figure 2.18 shows the cavity formed by the benzannulated backbones. In 

comparison macrocycles with ethylated backbones are less sterically rigid (Figure 

2.4). The Fe-P bonds are almost identical to those measured for the 

dibenzannulated example [CpFeP(C6H4F)(C2H4)P(C6H4F)(C6H4)P(C6H5)(C6H4)][PF6] 

(2.151A) at 2.149(3) A. The average C-F bond length is 1.310(7) A which is 

significantly shorter than the C-F bond length of 1.362(2) A seen in P(o-C6H4F)3 

crystal structure (although the values are not directly comparable as the macrocycle 

is bound to a metal ion and the free ligand is not). The R1 values for this crystal 

structure (0.0784) indicate a degree of uncertainty possibly resulting from disorder 

within the crystal structure. This can partially be explained by the inherent disorder 

(which has been partially modelled) within the Cp ring (as it rotates the predicted 

positions of the individual atoms become more uncertain) and the rotation of the 

orfhofluorophenyl rings about the C-P bond. The crystal structure data shows three 

orthofluorophenyl rings attached to the three phosphorus atoms, this is due to the 

inability of x-ray crystallography to isolate a particular orientation of a molecule when 

the structure is solved.

The distance between the centroid of the Cp ring and the Fe is 1.535 A. The 

distance between the Fe and the centroid of the P3 ring is 1.313 A. The bond angles

Figure 2.18
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between the P-Fe-P (P1-Fe-P2 = 86.51°, P2-Fe-P3 = 86.49° and P3-Fe-P1 = 86.75°) 

are all close to 90° as expected.

Crystal Structure of rCpFeAs(CfiH4F)(CfiH4)As(CfiH4F)(CfiH4)As(CfH0(CgH4)l 

fB(C6Hs)4l 8 c
Fine needle like yellow crystals suitable for X-ray diffraction were obtained by 

anion exchange with NaB(C6H5)4 and recrystallisation from acetonitrile at -  37°C.

Two views are shown of the crystal structure to illustrate the similarity 

between the triphosphorus and triarsenic analogues of this type of macrocycle 

(Figure 2.19 and 2.20).

Figure 2.19
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Rsl

Figure 2.20

In comparison to the previously illustrated triphosphorus macrocycle (Figure 

2.17 and 2.18) the bond lengths are not significantly different. The average Fe-As 

bond length is 2.228(14) A which is within the Van der Waals radii of the two atoms. 

The average C-F bond length is 1.295(11) A that is significantly shorter than the 

average bond length seen for the triphosphorus crystal structure although values are 

not directly comparable. The R1 values for this crystal structure (0.0707) indicate a 

degree of uncertainty possibly resulting from disorder within the crystal structure. 

The cavity size is illustrated by the distances between the individual arsenic atoms 

within the structure. As(1)-As(2) are 3.063 A apart, As(1) and As(3) 3.049 A apart 

and As(2) and As(3) 3.065 A apart. These distances mean that there is a cavity 

formed which could possibly accommodate a large counter ion. There are no directly 

comparable structures although a structure synthesised by Wild et al 

[(C5H5)Fe{(C6H5)(CH3)P(C6H4)P(C6H5)(CH3)}As(C6H5)(CH3)F] has a comparable Fe- 

As bond length of 2.235 A. The average Fe-As bond length of all known 

crystallographic structures is 2.369 A.15
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Electrochemical Studies

Cyclic Voltammetry Experiments

Cyclic voltammetry experiments are a way of determining the oxidative 

potential of a system containing a redox active metal ion. Cyclic voltammetry can be 
used to evaluate the effects of ligands on the oxidation/reduction potentials of the 

central metal ion (in our case Fe2*) in its’ complexes. By determining the 
electrochemistry of a metal complex, the proper oxidising (or reducing) agent is able 

to be selected in order to obtain the metal complex in an intermediate oxidation state.
Cyclic voltammetry allows the determination of the reversibility of a chemical 

reduction/oxidation. Reversible reactions are where the diffusion coefficients for the 
oxidised and reduced species are approximately the same i.e. a reaction that is fast 
enough to maintain the concentrations of both oxidised and reduced species in 

equilibrium with each other at the electrode surface.
Many systems do in fact look fully reversible when the voltage sweep is done 

slowly but on increasing the scan rate, the peak separation increases. This indicates 

that the nature of the peak separation is dependant on the stress applied to the 

system. These reactions are classed as quasi-reversible reactions. Where the 

peaks are separated so that there are no overlap of peaks the reactions are classed 

as irreversible.
Cyclic voltammetry has been used to compare and contrast the oxidation 

potentials of the macrocydes synthesised to compare their lability. The oxidation 

potential of the macrocydic complexes measures their ease of oxidation, metal 
oxidation destabilises the complexes away from the more stable d6 electron 

configuration of Fe2* to the less stable d5 configuration for Fe3* which would lead to 

the increased lability of the attached macrocyde. In turn Kyba has investigated the 
cydic voltammetry of his complexes.16 The complexes studied involve the oxidation 

of the metal from a +1 to a +2 oxidation state with reference to ferrocene. Examples 
are shown below (Table 2.2).

Compound Oxidation potential, M(l)-M(ll), Fc-Fc* 
Reference

11 [ane]P3Cr +0.21V

11[ane]P2SCr +0.05V
11[ane]P2SMo +0.18V

63



UfaneJAszSMo -0.08V

Table 2.2 Oxidation potentials for some phosphorus and arsenic containing macrocycles 
synthesised by Kyba.

The data can be interpreted in terms of the ic-accepting ability of the ligand. 
This is due to the dependance of the energy levels of the t2g orbitals (dxy, d**, dyz) on 

the ligands x-addity. The energies of the t2g orbitals will increase as the ic-atidity of 
the ligands decreases which leads to an increasing ease of oxidation. In conclusion 

the results from Kyba’s experimentation lead us to believe that the ease of oxidation 

of macrocydic complexes is N>P>As>Sb based on the results obtained for the 

tricarbonyl complexes studied.
Electrochemical studies have also investigated the reduction potentials for 

Co(lll) complexes.17,18 It was found that increasing the ligand size made ligands 

easier to reduce, PMe2 Ph<PBu3 <PMePh2 <PPh3 . Further studies on the oxidation 

potentials of MfCOHPfhP^hkJnPPthk (where M = Cr, Mo, W) show that complexes 
with smaller chains (n=1) are more easily oxidised than complexes with larger chains 
(n=2).17 Similar triphosphorus macrocydic complexes which have been studied 

using cydic voltammetry indude the following examples in Table 2.3.

Macrocycle Electrode Potential (V) Scan 
rate 50mVs'1

[(CsMesJFePEUCeH^PEtCCeH^PEtCCeH^KPFe] 0.044(irreversible)

[(C5Me5 )FePPh(C3 H6)PPh(C3 H6)PPh(C3 H6)][PF6] 0.307(irreversible)

[(C5 H5)FeAs(C6H4 F)(C«H4)As(C6H4F)(C6H4)As(C6H5)(C6
H4)][B(C«H5)4] 0.517 (quasi reversible)
[(C5H5)FeP(C6H4F)(C6H4)P(C«H4F)(C6 H4)P(C6H5)(C«H4)]
[B(CeH5)4]

0.427 (irreversible), 
0.699(quasi reversible)

Table 2.3 Examples of oxidation potentials for phosphorus and arsenic containing 
macrocydes synthesised by the Edwards group.

The electrode potential of the increasingly stable macrocydes indicates 

oxidation becoming less favourable due to the decreased lability of the macrocydic 
fragment. The 12[ane] macrocyde in this case proves to be more stable to oxidation 

than the 9[ane]. The increasing electrode potentials indicate that the novel 
macrocydes (dibenzannulated and tribenzannulated) are more stable to oxidation
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due to the fluorinated aryl groups. These conclusions are based on the limited 

amount of data available.

Experiments for both the tribenzannulated triphosphorus macrocycle and the 

tribenzannulated triarsenic macrocycle were carried out using a silver/silver chloride 

electrode, all readings were referenced to ferrocene. Cyclic voltammetry was 

performed on a Windsor PGstat 12 potentiostat in CH2CI2 with Bu4NPF6 (0.1M) as a 

supporting electrolyte versus an Ag/Ag+ reference electrode a Ferrocene/Ferrocene* 

internal reference and a carbon working electrode.

0 .6 x 1 0  ■*

0

-0 .2 x1 0  *
- 2.000 - 1.500 - 1.000 - 0.500  0 0.500 1.000 1.500 2.000

Voltage (V)

Figure 2.21 The cydic voltammetry data for the [CpFeP(<^H4)((^H4F)P(<^H4)(C6H4F) 

P(C6H4)(C6H5)][B(C6H5)4]. 1C

The cyclic voltammetry for the triphosphorus macrocycle illustrates an 

irreversible oxidation taking place at 0.427V and a quasi reversible oxidation 

occurring at 0.699V. The irreversible oxidation taking place at 0.427V is possibly due 

to the metal oxidation and the quasi reversible oxidation at 0.699V is possibly as a 

result of ligand oxidation. The quasi reversible oxidation for the triarsenic macrocycle 

takes place at 0.517V indicating that it is harder to oxidise the metal complex than its’ 

triphosphorus analogue by comparison to the quasi reversible oxidation at 0.699V. 

This was expected due to the better a-donor ability of the arsenic ligand which 

means that the donor is more easily oxidised.

Conclusions

The results obtained illustrate the synthesis of the novel tripnictide 

tribenzannulated and dibenzannulated macrocycles via dehydrofluorinative 

cydisation.

Both CpFe* and Cp*Fe+ can be used as template ligands. When comparing CpFe* 

and Cp*Fe+ as reaction templates it is important to look at their steric and electronic
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contributions to both the cydisation and the bonding within the macrocyde. it can be 

seen from the reactions and the yields obtained that the Cp*Fe+ template forms 
complexes in slightly lower yields, although this could be due to the increased 

timescale of these reactions, which take longer than the corresponding Cp 
alternatives. In some cases the increased steric bulk on the Cp*Fe* aids cydisation 
e.g. between triorthofkjorophenyl phosphine and bisphosphinobenzene, which does 

not occur as rapidly on a Cp template.
The solvent system for the precursor and macrocydic complexes is important 

to consider. The replacement of acetonitrile as a solvent with THF prevents the 
acetonitrile from acting as a competing ligand, this was especially important for 
diarsine ligands which appear to be more labile. 
[CpFeAsfCe^F^CeH^Ce^FfeCHaCNHPFe] synthesised in acetonitrile was noted to 
decompose rapidly at room temperature in acetonitrile, and over a period of two days 

at -30°C also in acetonitrile. Decomposition products were analysed and found to 

consist of the dissociated dioririofluorophenyl(bisarsino)benzene ligand and 

unidentified products, formed as the result of decomposition of [CpFe(CH3CN)3][PF6]. 
This indicates the lability of the system and the importance of the use of THF as an 
alternative solvent to acetonitrile. Precursor complexes were prepared using a 

dicarbonyl template and THF as a solvent which resulted in a much higher yield. 
This is due to the removal of competition from the acetonitrile solvent which is 

especially useful for weaker o-donors. The use of THF to synthesise the 

diphosphine complex resulted in an increase in yield for the 
diorfhof1uorophenyl(bisphosphino)benzene from 30% to 94%.

The diorf/?ofluoropbenyl(bisphosphino)ethane ligand is much more labile 

than the benzyl equivalent which results in lower yields and the increased risk of 
decomposition, particularly during the co-ordination of phenyl phosphine.

We have made a series of novel tripnictide macrocycles which will 
help to expand the scientific knowledge about phosphorus and arsenic chemistry. 
The complexes which we have synthesised have been characterised by NMR, infra 
red spectroscopy, mass spectrometry and crystallography for both the 

tribenzannulated triphosphorus and triarsenic macrocycles. Novel crystal structures 

were obtained which show the unique conformation of these original macrocycles 
with a ‘cup shaped’ cavity formed by the benzyl backbones. The benzyl nature of the 
backbones aids retaining a facially capping orientation on demetallation due to the 
steric bulk and stability (in comparison to ethyl backbones) of the benzyl backbones.

As the ligands become better x-adds there is an easier release of electrons
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to the metal centre, more electron density on the metal centre enables the metal to 

back donate more to the ligand o* orbitals. The ligands which have been used vary 

both in their stability and x-addity. Phosphorus ligands are better 7t-acids than 

arsenic ligands. In comparison to phosphorus, arsenic ligands are weaker ligands 

due to their size and increased s-orbital bonding character.
During syntheses excess phenyl phosphine/arsine is used for convenience 

and to increase the rate of reaction.
In the future we hope to be able to obtain crystal structures for all of the 

macrocydic complexes synthesised along with some of the precursor complexes to 

monitor cydisation requirements. We also hope to be able to synthesise alternative 
ligands based on the same methodology to prepare further novel macrocydes. 
DemetaHation should be attempted in the future by adjusting the nature of the 

macrocydic complex to facilitate ligand dissociation from the template.
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Experimental

Ligand Preparation

Alt experiments were carried out using Schlenk techniques under nitrogen. 
Solvents were dried according to methods described in solvent preparation appendix 
1, 1,2-bis(bis-2-fluorophenylpbosphino)benzene, 1,2-bis(bis-2-
fluorophenylphosphino) ethane, 1,2-bis(bis-2-fluorophenylarsino)benzene and 

{Cp*Fe[H2AsC6 H4AsH2]CH3CN}BF4 were prepared using literature methods.19 This 
reference also illustrates the preparation of the [CpFefto-CeFLF^PC^FUPCo- 
Cel̂ FMCHaCNHPFe] and [C^Feflo^^FkPCe^Pto^^FMCHaCNHPFe] 
although we have used a modified synthetic procedure. Other starting materials that 
had previously been prepared which are utilised in the experimental procedure 

indude trivinyl stibine, trivinyl arsine,20,21,22 {CpFef^PC^-LPHjJCHsCfOPFs,10 
{Cp'FefHzPCe^PHzJCHaCNJPFe. {CpFe^PC^PHzJCHaCNJPFe10 and 
{Cp*FefH2PC^H4PH2]CH3CN}PF6.10

Macrocydic Precursor Preparation

1a Preparation of fCpFe((o^H4F)?PC6H4P(o<^H4n2>CH3CN1fPF6l
To a solution of [CpFefCOMCHaCNJHPFe] (0.36g, 0.001 mol) in THF (15ml) 

was added a solution of 1,2-bis(bis-2-fluorophenylphosphino)benzene (0.47g, 
0.001 mol) in THF (30ml) at room temperature. The solution was photolysed with a 
100W table top lamp for 24 hours resulting in a colour change from yellow to red. 
The reaction mixture was filtered through oelite and the solvent removed in vacuo. 
Trituration with ether gave a red powder (M r 825.38, 0.78g, 94%).

Measured Data

1H NMR (CDCI3) 2.29 (s, 3H, CH3CN), 3.96 (s, 5H, Cp), 6.9-7.7 (m, 20H, Ar- 
H).

,3C{'H} NMR(CDCb) 2.8 (CHaCN), 81.4 (Cp). 115.67 (d. *Jca=23.48Hz), 123.17- 
133.89 (m), 165.02 (dd. 1Jc* 242.89Hz)

31P NMR (CDCIa) 92.5 (s, br), -143.73 (septet, \W 714.42)
,9F NMR (CDCIa) -98.04(s), -73.46 (d. ,JP̂ 714.42, PF«).

MS (APCI) 680 (M*).
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v/cm' 1 (nujol) 3073(s, br), 2266(s, br, CH3CN), 1636 (w), 1599(w), 1568(w), 
1470(w), 1441 (s, sh), 1290(s, sh), 1260(m), 1212(w), 
1123(w), 1074(m), 840(w, sh), 762(w).

2a Preparation of [Cp*F^ (<>CgH4 F̂ 2 PC6 Ĥ P(c>̂ H4 n 2}CH3CNl[.BF4]
To a solution of [Cp*Fe<CO)2(CH3CN]BF4  (2.54g, 0.003mol) in THF (10ml) 

was added a solution of 1,2-bis(bis-2-fluorophenylphosphino)benzene (1.56g, 
0.003mol) in THF (15ml) at room temperature. The solution was photolyzed with a 
100W table top lamp for 24 hours resulting in a colour change from yellow to red. 
The reaction mixture was filtered through celite, the solvent removed in vacuo and 

the solid triturated with ether to give a red powder (M r 895.52, 2.53g, 9 4 %  yield).

Measured Data

1H-NMR (CDCIa) 1.63 (s, 15H, Cp*), 2.19 (s, CH3CN), 6.69-7.86 (m, 16H, Ar- 
H).

,3C{1H} nm r 

(CDCb)
3.92 (s, CH3CN), 9.54 (s, Cp*), 87.31 (s, Cp*), 115.67 (d, 2Jc- 
f23.48Hz), 118.10 (s, CH3 CN), 123.17-133.89 (m), 165.02 (dd, 
1 Jc-F 242.89Hz)

3 1 P-NMR (CDCI3 ) 90.13 (s, br)
1 8F-NMR (CDCI3 ) -99.61 (s)

MS (APCI) 750.6 Da/e (M+).

3a Preparation of fCpFef(o-C«H4 F)?PC?H4 P(o-C<iH4 F)?lCH3CN>PFg
To a solution of [CpFe(p-xylene)]PF6  (0.37g, 0.001 mol) in THF (15ml) was 

added a solution of 1,2-bis(bis-2-fluorophenylphosphino)ethane (0.52g, 0.001 mol) at 
room temperature. The solution was photolyzed with a 100W table top lamp for 24 
hours resulting in a colour change from yellow to red. The reaction mixture was 
filtered through celite and the solvent removed in vacuo. Trituration with ether gave a 

red powder (M r 777.34, 0.73g, 94% yield).

Measured Data
1H NMR (CDCI3) 2.30 (s, 3H, CH3CN), 2.92 (m, 4H, CH2), 3.99 (s, 5H, Cp), 7.0- 

7.7 (m, 16H, Ar-H).
13C{'H} NMR 5.5 (s, CH3 CN), 29.0 (m. CH2), 87.4 (s, Cp), 115.53 (d, 3JC-p
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(CDCI3) 23.4Hz), 118.4 (s, CH3 CN), 120.0 (s), 123.4 (s), 136-127.5 

(m), 164.65 (dd, 1Jc* 242.89Hz, 2Jc-p12.00Hz, CF),.
31P NMR (CDCfe) 85.4 (s), -143.73 (sept, \W 714.42)
19F NMR (CDCI3) -97.63(s), -73.46 (d, PF6, 1JP̂ 714.42)

MS (APCI) 632 (M*).

v/cm* 1 (KBr) 3076(s,br), 2935(s), 2262(m, CN), 1598(w), 1568(w), 
1468(w), 1437(s, sh), 1260(s, sh), 1214(w, sh), 1123(w), 
1076(w).

7a Preparation of fCp*Fe((o-(^HjFkPC^P(o-C«H*F)?>CH3CNirBF,i1
To a solution of [Cp*Fe(CO)2(CH3CN]BF4  (0.85g, 0.001 mol) in THF (20ml) 

was added a solution of 1,2-bis(bis-2-fluorophenylphosphino)benzene (0.47g, 
0.001 mol) in THF (10ml). The solution was photolyzed with a 100W table top lamp 
for 24 hours resulting in a colour change from yellow to red. The reaction mixture 
was filtered through celite, the solvent removed in vacuo and the solid triturated with 

ether to give a red powder (M r 847.48, 0.80g, 94% yield).

Measured Data

1H NMR (CDCb) 1.70 (s, 15H, Cp*), 2.22 (s, 3H, CH3CN), 6.72-7.32 (m, 16H, 
Ar-H).

’’C^H} NMR 

(CDCb)
4.20 (s, CH3CN), 9.81 (s, Cp*), 86.42 (s, Cp*), 115.32 (2Jc- 
F23 92Hz), 119.03 (s. CH3CN), 121.38-136.83 (m), 165.33 (dd, 
'Jcf238.92).

3,P NMR (CDCb) 83 2(s)

,9F NMR (CDCb) -98.70(s)
MS (APCI) 703 Da/e (M*)

8 a Preparation of fCpFef(o-C«H^R7AsCAH^As(o-CftH^F)9>CH^CNirPFf i1

To a solution of [CpFe(p-xylene)][PF6] (0.37g, 0 . 0 0 1  mol) in acetonitrile (15ml) 
was added a solution of 1 ,2 -bis(bis-2 -fluorophenylarsino)benzene (0 . 0 0 1  mol) in 

acetonitrile (15ml). This was photolyzed with a 100W table top lamp for 24hours 
resulting in a colour change from yellow to dark blue. The reaction mixture was 
filtered through celite, the solvent removed in vacuo and the solid triturated with ether 
to give a blue powder (M r 913.22, 0.87g, 95% yield).
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Measured Data
’H NMR (CD3CN) 2.29 (s. 3H, CH3CN), 3.95 (s, 5H, Cp), 6.69-7.49 (m, 20H, Ar- 

H).
l3C{1H} NMR 

(CDjCN)
2.6 (CHjCN), 76.4 (Cp), 115.52 (d, !Jof24.11Hz), 121.60 (s), 
125.49-136.41 (m), 164.99 (d, 1Jcj=241.93Hz).

«F NMR (CD3CN) -99.77 (s), -73.46 (d, \W 714.42)
MS (APCI) 768 Da/e (M*).

v/cm’ 1 (KBr) 3076, 2262 (CHjCN), 1595, 1573, 1470, 1447, 1260, 1212, 
1096, 840, 762.

12a Preparation of {Cp*FeKo-C«HdF)?AsC«HdAs(o-CfiHdF)?1CH3CN)BFd
To a solution of [CpFe(p-xylene)][BF4] (0.37g, 0.001 mol) in acetonitrile (20ml) 

was added 1 ,2 -bis(bis-2 -fluorophenylarsino)benzene (0.61 g, 0 . 0 0 1  mol) in acetonitrile 

(10ml). This was photolyzed with a 100W table top lamp for 24 hours resulting in a 

colour change from yellow to dark blue. The reaction mixture was filtered through 
celite, the solvent removed in vacuo and the solid triturated with ether to give a blue 
powder (M r 983.36, 0.93g, 95% yield).

Measured Data
1H NMR (CDCb) 2.30 (s, 3H, CHsCN), 3.92 (s, 5H, Cp), 7.26-7.65 (m, 20H, Ar- 

H).
l3C{'H) NMR 

(CDCb)

3.97 (CH3 CN), 82.03(Cp), 115.45 (d, zJ&f24.18Hz)l 120.87 (s), 
124.36-134.42 (m), 165.03 (d, 'Jc* 242.14Hz).

1!lF NMR (CDCb) -100.03 (s).
MS (APCI) 838.4 (M+).

v/cm' 1 (nujol) 2927.3(s), 2359.4(w), 2329.1(w,), 2075.7(w), 2021 8 (w), 
1642.3(m), 1462.3(s), 1376.5(m), 1298.3(s), 1257.5(w), 
1156.7(w), 1106.4(m), 1026.8(m), 831.5 (w), 721.6(w).

13a Preparation of (CpFerH7AsC$H4AsH?lCH^CN)PFfi
To a solution of [CpFe(p-xylene)]PF6  (0.37g, 0.001 mol) in acetonitrile (15ml) 

was added a solution of 1 ,2 -bis(bis-2 -fluorophenylarsino)benzene (0.61 g, 0 . 0 0 1  mol) 
in acetonitrile (15ml). The solution was photolyzed with a 200W UV lamp for 18
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hours resulting in a colour change from a yellow to dark blue. This was filtered 
through celite and the solvent removed in vacuo. Trituration with ether gave a blue 
powder (M r 536.99, 0.17g, 32% yield).

Measured Data
1H NMR (CDCb) 2.21 (CH,CN), 7.03-7.47 (m, 4H, Ar-H).

13C{'H} NMR 

(CDCb)

4.10 (CHaCN), 126.47 (s), 130.20-132.78 (m).

MS (APCI) 392.0 Da/e (M*).

Preparation of Macrocyolic Precursors and Complexes

Precursor complexes containing both the mono and bispnictides are 

numbered and given the descriptor b, macrocydic complexes are given the 
descriptor c.

1b Preparation of fCoFe{((>C6H4F)2PCsH4P(o-C6H4R2)PH2CsHs1fPF6l
[C ^ F e (o ^ 4F)2P(C6 H4 )P(o-C6 H4 F)CH3 CN][PF6l (0.75g, 0.96mmol) was 

dissolved in 1,2-dichloroethane (40ml). Phenyl phosphine (M R1 10.10, 51.001, 0.5ml) 

was added and the reaction mixture heated to 60°C for 6 hours until the colour 
changed from red to orange. The solvent was removed in vacuo and the solid 

residue triturated with ether to give a yellow powder (M r 894.42, 0.80g, 93% yield).

Measured Data

’H NMR (CDzCb) 3.81 (s, 5H, Cp), 4.38 (d, 'Jp* 331Hz, PHjPh), 7.6-6 8 (m, 
25H, aromatic protons).

^ H }  NMR

(CDCb)

82.9 (Cp), 117.6 (d, ’Jp-c 23Hz), 135-125 (m), 163.29 (dd, 1Jc-f 

252.69Hz).
3,P(1H} NMR 

(CDCb)

-143.73 (septet, ’^714.42), 12.09 (s), 66.47 (m), 84.6 (d, 
2JP.p 51 Hz).

1"F NMR (CDCb) -98.02(s), -73.46(d, ’Jp.p714.42)
MS (APCI) 749 Da/e (M*).

v/cm'1 (KBr) 3067(s, Cp), 2341(w), 1598(w), 1567(w), 1469(w), 1439(s), 
1258(s), 1210(w), 1123(w), 1071(w), 949(w), 849(w), 771(w).
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1c Preparation of fCpFe(P(CgH4F)(C6H4)P(C6H4R(C6H4)P(C6H5KC6H4)1fPFa1

Potassium terfbutoxkte (2 mole equivalents, 0.09g, 0.78mol) was added to a 
solution of [CpFe{(o-C«H4 F)2 PC6 H4 P(o-C6 H4 F)2}PH2C6 H5]PF6  (0.33g, 0.39mmol) in 

THF (40ml). The reaction was left to stir overnight and filtered. The solvent was 
removed in vacuo to give a yellow solid (M r 778.32, 78% yield).

Measured Data

1H NMR (CDCb) 3.81 (5H, Cp), 7.29-7.64 (m, 25H, aromatic protons).
l3C{1H} NMR 

(CDCb)

82.13 (s, 5C, Cp), 115.34 (d, 2J<  ̂23.08Hz), 134.74-129.89 

(m), 163.29 (dd, 1J&F252.69).
S1P(*H> NMR 

(CDCb)
Room temperature 

and -90°C

-143.73 (septet, 1JP̂ 714.42), 119.56 (triplet of triplets, 2JP. 
P116.12, 6Jp-f32.75), 127.52 (doublet of triplets, 2JP_p110.17).

19F NMR (CDCb) -98.41 (s), -73.46 (d, PF8, 'Jp^ 714.42).
Under VT conditions (183K) -99.21 (dd, 3JF-p 100.56Hz, 6JF-p 

38.15Hz).
MS (APCI) 709.1 Da/e (M+).

v/cm'1 (nujol) 3413.47(s), 2923.39 (s), 2853.47(w), 1460.71(s), 1376.90(w), 
1260.58(m), 1077.87(w), 1020.93(w), 835.80(m).

CV 0.427V (irreversible), 0.699 (quasi reversible).

X-ray quality crystals were obtained by anion exchange with NaB(C6H5)4 and 

recrystallisation in acetonitrile at -  37°C to form fine yellow, needle-like crystals.

2b Preparation of {Cp*Fef(o-C6H4F)?PC^H4 P (o ^H 4 F)2lPH?C6Hs)BF4
Phenylphosphine (0.4ml, 3.6mmol) was added to a solution of [Cp*Fe(o- 

C6H4F)2PC6H4 P(o-C6 H4 F)(CH3 CN]PF6  (0.80g, 0.96mmol) in THF (30ml). The 

reaction mixture was heated to 60°C for 24 hours until the colour changed from red to 

orange. The solvent was removed in vacuo and the residue triturated with ether to 

give a yellow powder (M r 906.39, 0.80g, 92% yield).

Measured Data

'H NMR (CDCb) 1.63 (s, 15H, Cp*), 6.91-7.50 (m, 25H, Ar-H)
^C^H} NMR 9.70 (s, Cp*), 87.70 (s, Cp*), 135.05-124.88 (m), 165.85 (d,
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(CDCb) ’Jo, 325.70Hz).
3'P{’H} NMR 

(CDCb)

10.09 (s, co-ordinated PPhH2), 18.68 (s, co-ordinated 

diphosphine).

,SF NMR (CDCb) -98.15 (s)
MS (APCI) 750.6 Da/e (M+).

2c Preparation of fCp*Fe(P(C?H4R(C?H4)P(C6H4F)(C6H4)P(C6H5)(C6H4)1fBF4l

{Cp*Fe{(o-C6H4F)2PC6H4P(CKC6H4F)2]PH2C6H5}BF4 (0.35g, 0.39mmol) was 
dissolved in THF (30ml), potassium fertbutoxide (catalytic quantity) was added to the 

solution. The reaction was heated to 60°C for 16 hours. After filtration, the solvent 
was removed in vacuo to give a yellow solid (M r 866.38, 0.23g, 78% yield).

Measured Data

’H-NMR (CDCb) 1.67 (s, Cp*), 6.90-7.34 (m, Ar-H)

,3C{1H} NMR 

(CDCb)

134.90-123.94 (m), 165.80 (d. ’Jo, 324.33Hz).

3’P-NMR (CDCb) 112.02-111.68 (m). 117.32 (tt. 2Jp, 102.38Hz, 8JP,  35.26Hz).

'"F-NMR (CDCb) -100.91 (s).
MS (APCI) 779.6 Da/e (M1).

3b Preparation of rCpFeflo-C^FkPCs^Pfo-Cfi^FklP^fCsHsllfPFBl
[CpFe{(o-C6 H4 F)2 PC2 H4P(o-C6 H4 F)2}CH3CN]PF6 (0.75g, 0.96mmol) was

dissolved in 1,2-dichloroethane (40ml). Phenyl phosphine (0.5ml, 5mmol) was added 

and the reaction mixture heated to 60°C for 6 hours. The solution changed in colour 
from red to orange. The solvent was removed in vacuo and the oily solid triturated 

with ether to yield a yellow powder (M r 846.38, 0.58g, 72% yield).

Measured Data

’H NMR (CDCb) 2.84 (m, 2H, CH,). 3.96 (s, 5H, Cp), 4.84 (d, ’JP̂  347.4Hz, 2H, 
PffePh), 6.57 (m, 1H, aromatic protons), 7.7-7.0 (m, 20H, 
aromatic protons).

’3C{'H} NMR 

(CDCb)

25.2 (CH2), 80.7 (s. 5H, Cp), 115.9 (d, 2J c  23.01Hz), 124.4 

(s), 127.4-133.12 (m), 162.25 (dd, ’Jw  242.92Hz, 2Jop
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10.92Hz).

31P NMR (CDCb) 8.70 (s, co-ordinated bisphosphine), 80.9 (s, br). 
-143.73 (septet, ’.W714.42, PF„).

l3F NMR (CDCb) -97.63(s), -73.46 (d, \W714.42).

MS (APCI) 701 Da/e (M*).

v/cm'’ (KBr) 3066 (Cp), 2955, 2327 (PH), 1597, 1566, 1471, 1438, 1258, 
1213,1123,1076, 937.

3c Preparation of rCpFe(P(C6H4F)(C2H4)P(C6H4R(CfiH4)P(C6H5)(C6H4)lfPF61
[CpFe{(a-C6H4F)2P(C2H4)P(o-C6H4F)2}PH2(C6H5)][PF6] (0.50g, 0.59mmol)

was suspended in THF (50ml), potassium tertbutoxide (0.19g, 1.68mmol) was added, 
both solids dissolve to form a dark red solution which becomes orange as the 

reaction completes. The solvent was removed in vacuo and the solid triturated in 

ether to yield a yellow powder (Mr 806.38, 0.30g, 62% yield).

Measured Data

’H-NMR (CDCb) 2.88 (m, CH,, 4H), 3.72 (s, 5H, Cp), 4.78 (d, Up* 347.4Hz), 
7.85-7.05 (m, 21H, Ar-H).

,3C{'H) NMR 

(CDCb)

26.11 (s, CH2), 81.2 (s, Cp), 115.91 (d, 3Jcj= 23.01Hz), 124.4 

(s). 127.4-133.00 (m), 165.25 (dd, 'Jof 242.92Hz).
31P-NMR (CDCb) 127.7 (t, 3Jp4 > 31 Hz), 122.84-124.05(m), -143.73 (septet, 'Jp. 

f714.42).
19F-NMR (CDCb) -103.0 (br), -73.46 (d, 1JP̂ 714.42).
MS (APCI) 661 Da/e (M*).

v/cm'1 (KBr) 3051, 1600, 1570, 1473, 1434, 1260, 1210, 1109, 1078, 828, 
758, 682.

Preparation of \Cp*Fe{(o<*H4F)2P<>>H4P(o-C*H4Fh}PH2(C*Hs)]BFA
{Cp*Fe[(o-C6H4F)2PC2H4P(o-C6H4F)2]CH3CN}BF4 (0.95g, 1.20mmol) was

dissolved in 1,2-dichloroethane (40ml). Phenyl phosphine (0.5ml, 5mmol) was added 

and the reaction mixture heated to 60°C for 18 hours. The solution changed in 

colour from red to orange. The solvent was removed in vacuo and the oily solid 

triturated with ether to yield a yellow powder (M r 858.34, 0.92g, 89% yield).
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Measured Data

1H-NMR (CDCb) 1.72(s, Cp*), 2.72(m, 2H, CH2), 4.73 (d, ’Jr-h 328.7Hz, 2H), 
6.98-7.13 (m, Ar-H).

,3C{'H} NMR 

(CDCb)

10.01 (Cp*), 26.11 (CH2), 90.13 (Cp*), 115.32-127.31 (m), 
161.78-162.03 (m).

31P-NMR (CDCb) 9.01 (s, br), 81.00(s, br).
,8F-NMR (CDCb) -100.01 (s)
MS (APCI) 771.5 Da/e (M+).

Attempted Preparation of fCp*Fe(P(CgH4F)(C2H4)P(C6H4F)(C8H4)P(C6Hs)(C6H4)1fBF4l 
[C^*Fe{(o<^4F)2PC^H4P(o<i6H4F)2}PH2(C6H5)][BF4] (0.46g, 0.54mmol) was 

suspended in THF (50ml), potassium fertbutoxide (0.19g, 1.68mmol) was added, 
both solids dissolve to form a red/orange solution which after refluxing for 65 hours 
became dark orange as the reaction completed. The solvent was removed in vacuo 

and the solid triturated in ether. 31P NMR spectra showed peaks consistent with the 

starting materials.

Attempted Preparation of rCoFef(o-C«H^F)?(PC?H4)P(o-C?H4 F)?TAsH?C<>Ĥ fPFfi1
[CpFe{(o<Vl4 F)2 PC2 H4 P(o-C6 H4 F)2}CH3CN][PF6] (0.75g, 0.96mmol) was 

dissolved in 1,2-dichloroethane (35ml). Phenyl arsine (0.8ml, 5mmol) was added 

and the reaction mixture heated to 60°C for 8 hours. The solution did not change 

colour. The mixture was refluxed for a further 12 hours and a change from red to 
dark orange/brown was observed. The solvent was removed in vacuo, 31P NMR 
studies showed no reaction had taken place.

4b Preparation of ICpFefHiPC^PH^PfC^FMPFsl
[CpFe{(H2 PC6 H4 PH2)CH3CN][PF6] (0.43g, 0.96mmol) was dissolved in 

acetonitrile (30ml). Triorfhofluorophenyl phosphine (0.32g, 1mmol) was added and 

the reaction mixture heated to 60°C for 18 hours. A change in colour from red to 

yellow was observed. The solvent was removed in vacuo and the solid triturated with 

ether to give a yellow powder (M r 724.24, 0.57g, 82% yield).
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Measured Data

*H NMR (CDCb) 3.61 (s, 5H, Cp), 6.94-7.39 (m, 16H)

^Ci’H) NMR 
(CDCb)

131.71-134.39 (m). 164.99 (dd, 'Jc* 285.33Hz)

3 1P{’H} NMR 

(CDCb)
15.99 (co-ordinated H2 PC6 H4 PH2), 22.03 [co-ordinated 
P(C,H4 F)3 l -143.61 (sept, PF«, 'Jp^714.42)

’*F NMR (CDCb) -97.89 (s), -73.52 (d, ’Jp.f714.42)

4c Preparation of [CpFePH(C*H*)PH(C«Hj)P(CqKi)(CfiH4 F)1fPFBl
Triethyl amine (0.5ml, 5mmol) was added to a solution of

[CpFe{(H2 PC6 H4 PH2)P(C6H4 F)3]PF6 (0.57g, 0.78mmol) in THF (30ml). The reaction 

mixture was heated to 60°C for 8  hours, no significant colour change was observed. 
The solvent was removed in vacuo to give a yellow powder (M r 684.23, 0.20g, 74% 

yield).

Measured Data

1H NMR (CDCb) 3.73 (s, 5H, Cp), 6.95-7.71 (m, 16H).
^Ci’H} NMR 

(CDCb)

131.71 (s), 131.81-134.39 (m), 165.03 (dd, ^  286.03Hz).

31P NMR (CDCb) -143.61 (sept, PF*. 1JP̂ 714.42), 89.10 (t, 3JP4> 35.73Hz), 
90.66 (d, \W  35.72Hz), 118.40-122.80 (m).

1#F NMR (CDCb) -101.76 (s), -73.52 (d, \W714.42).
MS (APCI) 539.0 Da/e (M*).

v/cm' 1 (nujol) 2955.9(s), 2932.4(s), 2853.6(w), 2727.13 (m), 2677.3(w), 
1461.9(s), 1377.2(w), 1309.9(w), 1260.6(s), 1082.7(w), 
1024.4(w), 873.4(w), 799.5(w), 722.1(w), 402.0(w).

5b Preparation of rCD*Fe(H7 PC«H^PH?)P(CwH^mrBFJ
[Cp*Fe{(H2 PC6 H4 PH2)CH3CN]BF4 (0.45g, 0.98mmol) was dissolved in 

acetonitrile (30ml). Triort/wfluorophenyl phosphine (1.6g, 5mmol) was added and the 

reaction mixture heated to 60°C for 10 hours and a change from red to yellow was 

observed. The solvent was removed in vacuo to give a yellow powder (M r 736.21, 
0.59g, 82% yield).
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Measured Data

'H NMR (CDCb) 1.72 (s, 15H, Cp*), 6.71-7.40 (m)
^Cf’H} NMR 

(CDCb)

9.91 (s, Cp*), 87.24 (s, Cp*), 115.24 (d, 2JP̂ 24.01 Hz), 
121.52-133.78 (m), 163.99 (dd, 1Jof234.26Hz, 2Jc*6.36Hz)

S1P{1H} NMR 

(CDCb)

15.09 (s, co-ordinated HbPCtHiPHz), 18.00 (d, 41,69Hz), 
63.24 (m).

"F NMR (CDCb) -100.82 (s)
MS (APCI) 649.4 Da/e (M*).

5c Preparation of rCp*FePH(CgH4)PH(C6H4)P(C6H4)(CfiH4F)1fBF4l
Triethyl amine (0.5ml, 5mmol) was added to a solution of 

[Cp*Fe{(H2PC8 H4 PH2 )P(C6 H4 F)3]BF4  (0.59g, 0.80mmol) in THF (30ml) and the 

reaction mixture heated to 60°C for 8 hours, no significant colour change was 

observed. The solvent was removed in vacuo to give a yellow powder (M r 696.20, 
0.50g, 90% yield).

Measured Data

'h NMR (CDCb) 1.70 (s, 5H, Cp*), 6.79-7.35 (m, 16H, aromatic)
’’C^H} NMR 

(CDCb)

115.54 (d, 2Jc*23.07Hz), 121.52-133.78 (m), 164.71 (dd, 'Jof 

234.26Hz).
31P{’H} NMR 

(CDCb)

61.46 (partially cydised macrocyde), 115.07 (s), 105.23- 
111.32 (m)

,8F NMR (CDCb) -103.42 (s)
MS (APCI) 609.4 Da/e (M+).

v/cm'1 (KBr) 2918.2, 2310.4 (P-H), 2270.3, 1928.0, 1654.3, 1596.4, 
1567.7, 1467.9, 1442.8, 1261.3, 1215.3, 1072.1, 841.8, 807.6, 
758.9

6b Preparation of fCpFefH^PC^PH^PfCfiH^irPFsl
Triorthofluorophenyl phosphine (0.32g, 1mmol) was added to a solution of 

[CpFe{(H2 PC2 H4 PH2)CH3CN][PF«] (0.40g, I.OOmmol) in acetonitrile (35ml). The 

reaction mixture was heated to 60°C for 1 0  hours, a colour change from red to yellow 

was observed. The solvent was removed in vacuo and triturated with ether to give a 

yellow powder (M r 676.20, 0.31g, 46% yield).
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Measured Data
'H-NMR (CDCb) 3.47 (d, 'JM  6.82Hz, PH2), 3.73 (s, 5H, Cp), 6.95-7.71 (m, 

12H, aromatic).
13C{’H} NMR 

(CDCb)
124.80 (s), 131.69 (s), 131.81 (s), 134.42 (s), 165.18 (dd, ’JC-f 

279.60Hz, 2Jc* 9.82Hz).

3 lP-NMR (CDCb) -143.61 (sept PFe, ’Jp-f714.42), 15.95 (s, co-ordinated 
H2 PCeH4 PH2), 22.80 [co-ordinated P(C«H.,F)3].

1 8F-NMR (CDCb) -98.03 (s), -73.52 (d, ’Jr.f714.42).

6 c Preparation of fCpFePH(C2 H4)PH(CgH4 )P(CgH4 )(C6 H4 F)irPF61

Triethytamine (0.5ml, 5mmol) was added to a solution of 
[CpFe{(H2 PC2 H4 PH2)P(C6 H4 F>3][PF6] (0.31 g, 0.46mmol) in THF (30ml) and the 

reaction mixture heated to 60°C for 8  hours. The solvent was removed in vacuo, 

washed with ether and dried to give a yellow powder (M r 636.19, 0.19g, 65% yield).

Measured Data

’H NMR (CDCb) 6.95-7.71 (m, 12H, aromatic), 3.73 (s, 5H, Cp)
’^ ’H} NMR 

(CDCb)

115.55 (d, 2Jcf 23.08Hz), 121.78 (m), 124.80 (s), 131.75 (d, 
3Jof 9.23Hz), 134.42 (s), 164.88 (dd, ’Jcf 283.88Hz, 2Jcf 
9.75Hz).

3,P NMR (CDCb) 111.52 (s), 105.89-105.23 (m), 64.38 (s, partially cyclised 
macrocycle)

,9F NMR (CDCb) -101.76 (s)
MS (APCI) 491.2 Da/e (M+).

v/cm' 1 (nujol) 2955.94(s, br), 2932.41(w, sh), 2853.55(w), 2727.13 (w, PH), 
2677.27(w), 1461.90(s, sh), 1377.16(w), 1309.84(m, br), 
1260.56(s, sh), 1082.74(w), 1024.40(w), 873.35(w, br), 
799.47(w), 722.09(w), 401.99(w, sh).

7b Preparation of fCp*Fe(H2 PC2 H4 PH2)P(C6 H4 F)3 1fBF4 l
Triorthofluorophenyl phosphine (1.5g, 5mmol) was added to a solution of 

[Cp*Fe{(H2 PC2 H4 PH2)CH3CN][BF4] (0.12g, 0.30mmol) in acetonitrile (30ml). The 

reaction mixture was heated to 60°C for 10 hours, a colour change from red to yellow
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was observed. The solvent was removed in vacuo to give a yellow powder (M r  

688.17, 0.10g, 48% yield).

Measured Data

’H NMR (CDCb) 1.72 (s, 15H, Cp*), 6.29-7.27 (m, 12H)

13C{'H} NMR 

(CDCb)

9.81 (s. Cp*). 20.31 (CH2), 86.66 (s. Cp*), 120.88 (d, 2Jc-f 
23.08Hz), 121.03 (s), 126.13 (s), 130.67 (s), 137.71 (s),
137.81 (s), 139.59 (s), 166.13 (dd, ’Jc* 253.33Hz, 2JC.P 
8.12Hz).

3,P{’H} NMR 

(CDCb)
18.98 [m, co-ordinated P(C*H4F)3], 12.32 (s, co-ordinated 

H2PC2H4PH2).

19F NMR (CDCb) -99.98 (s).
MS (APCI) 601.4 Da/e (M*).

7c Preparation of ^ F e P H C ^ P H fC s H J P fC ^ X C e ^ R l^ l
Triethylamine (0.5ml, 5mmol) was added to a solution of 

[Cp*Fe{(H2PC2 H4 PH2)P(C«H4 F)3 lBF4  (0.10g, 0.15mmol) in THF (30ml). The reaction 

mixture was heated to 40°C for 6 hours. The solvent was removed in vacuo to give a 

yellow powder (M r 648.16, 0.03g, 32% yield).

Measured Data
'H-NMR (CDCI3) 1.86 (Cp*), 6.31-7.09 (m , Ar-H)
^C^H} NMR 

(CDCI3)

10.00 (s, Cp*), 20.01 (CH2), 90.30 (Cp*), 121.31-131.82 (m ), 

166.23 (dd, 1Jc -f 248.41 Hz, 2J<>p 9.21Hz).
31P-NMR (CDCI3) 112.3-117.4 (m )

19F-NMR (CDCI3) -102.38 (s).
MS (APCI) 561.4 Da/e (M+).

v /c m *1 (nujol) 3412.1, 2962.0, 2851.2, 2362.9 (P-H), 2019.9, 1920.5, 
1797.6, 1597.0, 1568.0, 1468.4, 1443.6, 1261.3, 1215.9, 
1084.3, 1020.9, 871.8, 814.6, 770.3

8b Preparation of rCpFe((o-C.H4lr>?AsC.H<As(o-C«H4F)?>AsHgCTH5lfPF«l
Phenyl arsine (0.8ml, 0.96mmol) was added to a solution of [CpFe(o- 

C6H4F)2AsC6 H4As(o-C6 H4 F)CH3CN][PF6] (0.88g, 0.96mmol) in 1,2-dichloroethane
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(30ml) and the reaction mixture heated to 60°C for 6 hours until the colour changed 

from red to orange. The solvent was removed in vacuo and the residue triturated 
with ether to give an orange powder (M r 1026.21, 0.86g, 87% yield).

Measured Data

’H-NMR (CDCb) 4.01 (s, 5H, Cp), 7.6-6.8 (m, 30H, aromatic protons).
^CH'H} NMR 

(CDCb)

128.91-135.10 (m), 164.91 (d, ^ 239 .83H z).

” F-NMR (CDCb) -101.49 (s)
MS (APCI) 881 Da/e (M+).

v/cm’’ (KBr) 3066(s, br), 2330(w, br), 1594(w,sh), 1468(s, sh), 1438(m, 
sh), 1260(s, sh), 1210(w), 1096(w), 839(w), 770(w).

8c Preparation of fCpFe(As(C6H4F)(C6H4)As(CfiH4R(C6H4)As(CgHs)(C6H4)irPF61

[CpFe{(o-C6 H4F)2AsC6 H4As(o-C6 H4 F)2}PH2C6 H5][PF6] (0.22g, 0.22mmol) was 
dissolved in THF (40ml), potassium fertbutoxide (0.50g) was added to the solution. 
The reaction was left to stir overnight and filtered. The solvent was removed in 
vacuo to give a yellow solid (M r 986.20, 0.16g, 7 3 %  yield).

Measured Data

’H-NMR (CDCb) 7.80-6.90 (m, 25H, aromatic protons), 3.98 (s, 5H, Cp).
’3C{’H} NMR 

(CDCb)

78.07 (Cp), 132.35-130.10 (m, aromatic carbons), 164.92 (d, 
’Jo*239.99Hz).

31P-NMR (CDCb) -143.73 (sept, PFS, ’Jp.f714.42).

”)F-NMR (CDCb) -101.4906 (minor peak), -100.09 (major peak), -73.52 (d, PF6, 
’Jp.f714.42).

MS (APCI) 411 Da/e (M*- F), 821.6 (M*- F ).

v/cm'1 (nujol) 3412.86(m), 2923.55(s), 2853.62(s), 1463.31(s), 1376.97(m), 

1259.92(m), 1100.72(m), 1022.38(m), 837.91(m), 801.70(m), 
752.40(w), 722.95 (w), 557.40 (w), 538.18 (w).

CV 0.517V (quasi reversible).

X-ray quality crystals were obtained by anion exchange with NaB(C6H5)4 and 

recrystallisation in acetonitrile at -  37°C to form fine yellow, needle-like crystals.
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9b Preparation of \CoFe((o<^HAFhP<^H4P((yCfiH4Fh}AsH7CsH5\\PF6\
Phenytarsine (0.9ml, 0.004mol) was added to a solution of [CpFe(o- 

C6H4 F)2PC6 H4 P(oC6H4 F)2CH3CN][PF6] (0.79g, 0.96mmol) in 1,2-dichloroethane 

(40ml). The reaction mixture was heated to 60°C for 6 hours until the colour 
changed from red to orange. The solvent was removed in vacuo and the residue 

triturated with ether to give a yellow powder (M r  938.39, 0.78g, 87% yield).

Measured Data

’H-NMR (CDjCN) 3.82 (s, 5H, Cp), 6.98-7.58 (m, 25H)

13C{'H} NMR 
(CDaCN)

82.23 (s, 5C, Cp), 133.78-126.84 (m, 36C), 163.31 (dd, 1JCj= 
252.59).

3’P-NMR (CDjCN) -143.73 (septet, \W714.42), 80.23 (s).
’’F-NMR (CDjCN) -98.38 (s), -73.46 (d, \W 714.42)

MS (APCI) 793.4 Da/e (M*).

9c Preparation of rCpFeP(C6H4 R(C6H4 )P(C6H4 R(C6 H4 )As(C6H5)(CftH4)KPF6]

Potassium fertbutoxide (2 mole equivalents, 0.09g, 0.78mol) was added to a 

solution of [CpFe{(o-C«H4F)2PC6H4P(o-C6H4F)2}AsH2C6H5)][PF6] (0.33g, 0.39mmol) in 
THF (40ml). The reaction was left to stir overnight and filtered. The solvent was 
removed in vacuo to give a yellow solid (M r 898.37, 0.27g, 78% yield).

Measured Data

’H-NMR (CDCb) 3.80 (s, 5H, Cp), 7.18-7.74 (m, 25H, Ar-H)
,3C{’H} NMR 

(CDCb)

83.03 (s, 5C, Cp), 126.93 (d, ^  15.00Hz), 128.59-130.24 
(m), 133.78 (s), 162.25 (dd, ’Jcf241.83Hz)

3’P-NMR (CDCb) -143.39 (septet, \W720.58), 134.99 (s), 135.60 (s).

’’F-NMR (CDCb) -102.42 (s), -73.46 (d, \W 714.42)
MS (APCI) 753.4 Da/e (M*).

10b Preparation of ^FeUo-C^H^PC^H.Pio-C^H.FhVKsH^H^BF.
[Cp*Fe(o-C«H4 F)2 PC6 H4 P(o-C6 H4 F)2CH3CN)BF4  (0.40g, 0.48mmol) was

dissolved in 1,2-dichloroethane (40ml). Phenyl arsine (0.9ml, 0.004mol) was added 

and the reaction mixture heated to 60°C for 16 hours until the colour changed from
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red to orange. The solvent was removed in vacuo and the residue triturated with 

ether to give a yellow powder (M r 950.34, 0.40g, 88% yield).

Measured Data

1H-NMR (CDCb) 1.69 (s, Cp*), 6.99-7.28 (m).

’3C{1H} NMR 

(CDCb)

9.99 (s, Cp*), 87.03 (s, Cp*), 127.82-134.00(m), 164.01 (dd, 
1 Jof248.01 Hz).

3,P-NMR (CDCb) 79.48 (br, s)

'"F-NMR (CDCb) -100.02 (s)

10c Preparation of fCp*Fe(P(CfiH4R(CgH4)P(C6H4R(CfiH4)As(C6Hs)(C6H4)1fBF4l

[Cp*Fe{(o-C6 H4 F)2 PC6 H4 P(o-C6 H4 F)2}AsH2C8 H5)]BF4 (0.20g, 0.21 mmol) was 
dissolved in THF (40ml), potassium fertbutoxide (0.50g) was added to the solution. 
The reaction was left to stir overnight and filtered. The solvent was removed in- 
vacuo to give a yellow solid (M r 910.33, 0.15g, 78% yield).

Measured Data

'H-NMR (CDCb) 1.69 (s, Cp*), 6.98-7.30 (m)
13C('H} NMR 

(CDCb)

10.00 (Cp*), 87.04 (s, Cp*), 127.62-134.12 (m), 164.10 (dd, 
’Jof249.00Hz).

31P-NMR (CDCb) 130.38-132.09 (m)

'"F-NMR (CDCb) -102.68 (s)
MS (APCI) 823.53 Da/e (M*).

11 b Preparation of rCpFefto-C«HjFkAsC«H^s(o-C«H,FV>)PH?CfiHf;irPF«1
[CpFe(o-C6 H4 F)2AsC6 H4As(o-C6 H4 F)(CH3CN)][PF6] (0.88g, 0.96mol) was 

dissolved in 1,2-dichlorobenzene (30ml). Phenyl phosphine (M R1 10.10, 51.001, 

0.5ml, 5.0mmol) was added and the reaction mixture heated to 60°C for 16 hours 

until the colour changed from dark blue to orange. The solvent was removed in 

vacuo and the residue triturated with ether to give a yellow powder (M r 982.26, 
0.86g, 91% yield).

Measured Data

'H NMR (CDCb) 3.98 (s, 5H, Cp), 4.63 (d, ’JP*  338.1Hz, PH2Ph), 7.49-6.69
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(m, 30H, aromatic protons).
13C{'H} NMR 

(CDCb)

115.61 (d, 2Jc  ̂23.24Hz), 124.03-136.02 (m), 164.32 (d, 'Jc-f 
243.22Hz).

31P NMR (CDCb) -143.73 (sept, PF«, 1JP̂ 714.42), 11.83 (co-ordinated PH2Ph).

14F NMR (CDCb) -101.38 (s)

MS (APCI) 837 (M+).

v/cm'1 (KBr) 3066(s), 2330(w), 1594(w), 1468(m), 1438(w), 1260(w), 
1210(w), 1096(w), 839(w), 770(m).

11c Preparation of fCpFe(As(C^F)(C^As^ ^

[CpFe{(o<^4 F)2As(Vi^s<o-C«H4 F)2}PH2C6H5][PF6] (0.22g, 0.22mmol) was 

dissolved in THF (40ml), potassium tertbutoxide (catalytic quantities) was added to 

the solution. The reaction was left to stir overnight and filtered. The solvent was 
removed in vacuo to give a yellow solid (M r 9 4 2 .2 5 ,  0.15g, 73% yield).

Measured Data

'H NMR (CDCb) 3.98 (s, Cp, 5H), 6.90-7.74 (m, aromatic protons, 25H).
1SC{1H} NMR 

(CDCb)

82.0 (s, Cp), 128.90-135.12 (m).

31P NMR (CDCb) 134.55 (s broad, macrocycle), -143.73 (sept, PF6l 1Jp-F714.42)

,#F NMR (CDCb) -100.09 (s, macrocyde), -73.52 (d, PF«, \W 714.42).
MS (APCI) 796.8 Da/e (M+).

v/cm'1 (nujol) 2923.76(s), 1958.59(w), 1600.12(m), 1461 61(s), 1377.07(w), 
1260.53(s), 1077.59(m), 1019.29(w), 838.64(w), 801.83(w), 
722.52(m), 579.65(w), 574.37(w), 557.39(w).

1 2 b  Preparation of fCp*FeKo^H4F)2AsC8H4As(^CfiH4F)2)PH?C«Hs1fBF4l
[Cp*Fe(o-C6H4F)2AsC8H4As(o-C6H4F)(CH3CN)][BF4] (0.50g, 0.54mol) was 

dissolved in THF (30ml). Phenyl phosphine (M R1 10.10, 61.001, 0.5ml, 5.0mmol) was 

added and the reaction mixture heated to 60°C for 16 hours until the colour changed 

from dark purple to orange. The solvent was removed in vacuo and the residue 

washed with ether to give an orange powder (M r 994.29, 0.50g, 93% yield).
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Measured Data

’H NMR (CDCI3) 6.86-7.73 (m, 25H),
,3C{'H} NMR 

(CDCb)
115.38 (d, 2Jof 24.24Hz), 124.32-137.67 (m), 164.71 (d, ’Jo-f 
246.35Hz).

31P NMR (CDCb) 16.75 (t, ’Jp.h 342.0Hz)

,SF NMR (CDCb) -99.78 (s)

12c Preparation of fCp*Fe(As(CaH4F)(CgH4)As(CgH4F)(C<iH4)P(C«H5)(C6H4)1fBF4l

Potassium fertbutoxide (catalytic quantities) was added to a solution of 
[Cp*Fe{(o-C6 H4 F)2AsC6 H4As(o-C6 H4 F)2}PH2C6 H5]BF4  (0.22g, 0.22mmol) in THF 
(40ml). The reaction was left to stir overnight and filtered. The solvent was removed 
in vacuo to give a yellow solid (M r 954.28,0.15g, 71% yield).

Measured Data

1H NMR (CDCb) 3.74 (s, 5H, Cp), 6.91-7.43 (m, 25H).
,3C{'H} NMR 

(CDCb)

115.19 (d, jJof 24.58Hz), 124.88 (s), 128.47-135.05 (m), 
144.25 (s), 164.36 (d, 1Jop243.46Hz).

3,P NMR (CDCb) 112.01 (s, macrocycle)

,SF NMR (CDCb) -102.37 (s)

MS (APCI) 867.5 Da/e (M+).

Preparation of fCp*Feffo-C«H4l;)?AsC«H<As(o-<^H,R,)AsH7C«HslfBF4l
Phenyl arsine (0.8ml, 0.96mmol) was added to a solution of [Cp*Fe(o- 

C6 H4F)2AsC6 H4As(o-C«H4 F)CH3CN]BF4  (0.90g, 0.97mmol) in THF (30ml). The 

reaction mixture was heated to 60°C for 16 hours until the colour changed from red to 

orange. The solvent was removed in vacuo and the residue triturated with ether to 
give an orange powder (M r 1038.24, 0.88g, 87% yield).

Measured Data

1H NMR (CDCb) 1.72 (s. 15H, Cp*), 7.01-7.33 (m, 25H)
’^ { ’H} NMR 

(CDCb)

128.90-134.99 (m), 163.99 (d, ’Jop240.01 Hz).

’9F NMR (CDCb) -101.33 (s)
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MS (APCI) 951.44 Da/e (M*).

Attempted Preparation of rCp+FefAsfC^FKCfiHJAsfCsH^fCKHJAsfCfiH^fCfiHJI 
[BFJ

[Cp#Fe{(oC«H4F)2AsC6HlAs(o-C6H4F)2}AsH2C6H5]BF4(0.44g> 0.42mmol) was 

dissolved in THF (40ml), potassium ferfbutoxide (2 mole equivalents, 0.05g, 0.78mol) 
was added to the solution. The reaction was left to stir overnight and filtered. The 
solvent was removed in vacuo to give a yellow/brown solid (M r 998.23, 0.12g, 18% 

yield). The product from this experiment was unstable and decomposed before 

analysis could take place.

13b Preparation of fCpFefHgAsG^sH^PfCs^FklfPFa1

[CpFe{(H2AsC2 H4AsH2)CH3CN][PF6] (0.38g, 0.85mmol) was dissolved in 
acetonitrile (35ml). Triorfhofluorophenyl phosphine (0.32g, 1mmol) was added and 

the reaction mixture heated to 60°C for 10 hours, a colour change from red to yellow 

was observed. The solvent was removed in vacuo and the remaining solid triturated 

with ether. The solvent was removed to give a yellow powder (M r  764.10, 0.49g, 
76% yield).

Measured Data

'H NMR (CDCb) 3.74 (s, 5H, Cp), 7.02-7.31 (m , 16H).
"C^H} NMR 

(CDCb)
124.87-137.66 (m , 24C), 164.56 (d , 'J c -f  309.83Hz).

3<P NMR (CDCb) -1 4 3 .6 1  (sept, PF6, 1J p -f7 1 4 .4 2 ), 2 2 .1 1  [s, co-ordinated 

P(C«H4F)3].
1#F NMR (CDCb) -102.89 (s), -73.52 (d , 1JP̂ 714.42).
MS (APCI) 619.1 Da/e (M+).

13c Preparation of fCpFeAsH(C*H*)AsH(C«J-L)P(C«H4)(C«H*FyifPFfi1
Potassium fertbutoxide (catalytic quantity) was added to a solution of 

[CpFe{(H2AsC6 H4AsH2)P(C6 H4 F)3][PF6] (0.49g, 0.65mmol) in THF (30ml), and the
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reaction mixture heated to 60°C for 9 hours. The solvent was removed in vacuo to 

give a yellow powder (M r  724.09, 0.20g, 42% yield).

Measured Data

’H NMR (CDCb) 3.74 (s, 5H, Cp), 6.89-7.42 (m, 16H).
13C{1H} NMR 

(CDCb)

121.97-137.89 (m), 164.43 (d, \Jof 300.68Hz).

31P NMR (CDCb) 123.08 (s)

” F NMR (CDCb) -101.64 (s)

MS (APCI) 579.1 Da/e (M*).

Attempted Preparation of fCp*Fe(H,As(CgH,.)AsH?)P(C«H,.F)3 irBF,.l
Triorthofluorophenyf phosphine (0.32g, 1mmol) was added to a solution of 

[Cp*Fe{(H2AsC2 H4AsH2 )CH3 CN]BF4  (0.47g, 0.85mmol) in acetonitrile (35ml). The 

reaction mixture was heated to 60°C for 10 hours, a colour change from red to 

orange was observed. The solvent was removed in vacuo and the resulting solid 

triturated with ether to give a dark orange powder. 31P NMR studies indicated 
decomposition.

14b Preparation of fCp^FefHiPC^P^As^H^lfPFel
[Cp*Fe{(H2 PC2 H4 PH2)CH3CN]PF6  (0.40g, I.OOmmol) was dissolved in 

acetonitrile (30ml). Trivinyl arsine (0.78g, 5mmol) was added and the reaction 

mixture heated to 60°C for 24 hours, a colour change from red to dark orange was 

observed. Attempts to remove the solvent in vacuo at this stage were unsuccessful 
and the precursor could not be isolated, a mass spectrum was taken to confirm the 

presence of the precursor (M r 634.17, yield unknown).

Measured Data

MS (APCI) 488.93 (M+).

14c Preparation of fCp-FePH(C«H<)PH(C,H,)As(C,H,)(C?H3 )lfRFel
Triethyl amine (0.5ml, 5mmol) was added to a solution of 

[Cp*Fe(H2 PC8 H4 PH2)As(C2 H3)3j(PF6] (made in situ, 0.63g, I.OOmmol) in THF (20ml).
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The reaction mixture was heated to 70°C for 6 hours. The solvent was removed in 

vacuo to give an orange/yellow powder (M r 634.17, 0.15g, 24% yield).

Measured Data

1H-NMR (C«D,) 1.78 (s, CH2), 1.93 (s. CHi), 3.98 (s, 5H. Cp). 4.23 (d. ’JP̂  

323.8Hz, PH). 6.83-7.11 (m. 4H, Ar-H).

3,P-NMR (C,D*) 106.40 (s), -144.00 (sept, ’Jw: 720.13Hz)

MS (APCI) 488.93 (M*).

Attempted Preparation of fCpFe(H;PC«H4PH7>Sb(C7H3fa1fPFgl
[CpFe{(H2 PC2 H4 PH2)CH3CN]PF6  (0.40g, I.OOmmol) was dissolved in 

acetonitrile (30ml). Trivinyl stibine (1.02g, 5mmol) was added and the reaction 

mixture heated to 60°C for 24 hours, a colour change from red to dark orange was 

observed. Attempts to remove the solvent in vacuo at this stage resulted in 

decomposition and the precursor could not be isolated, a mass spectrum was taken 

to confirm the presence of the precursor (M r  611.12, yield unknown).

Measured Data

MS (APCI) 466.1 Da/e (M+).

Attempted Preparation of fCpFePHfC^H^PH^H^StXC^HJfC.H^irPFel
Triethytamine (0.5ml, 5mmol) was added to a solution of 

[CpFe(H2 PC6 H4PH2)Sb(C2 H3)3]PF6  (made in situ, max yield 0.61 g, I.OOmmol) in THF 

(20ml). The reaction mixture was heated to 70°C for 6 hours. The solvent was 

removed in vacuo to give an orange/yellow powder (M r 611.12, 0.15g, 24% yield). 
The solid formed in this reaction was exceedingly air sensitive, on mixing with a 

variety of deuterated solvents decomposition was observed. Mass and infrared 

spectra could not be obtained from the product due to decomposition.

Measured Data

’H-NMR (C.D,) 1.69 (s, CH2), 2.01 (s, CHj), 3.99 (s, 5H, Cp), 6.99-7.31 (m, 
Ar-H).

3,P-NMR (CeDs) -4.47 (s)
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NCCH +

Reflux 
24 hours

Reflux 
6 hours

Triethyl amine

n pF<

Attempted Preparation of rCpFe(H2PC^H4PH2)Sb(C2H3)3irPF61
[CpFe{(H2 PC2 H4 PH2)CH3CN]PF6  (0.40g, I.OOmmol) was dissolved in

acetonitrile (30ml). Trivinyl stibine (1.02g, 5mmol) was added and the reaction 

mixture heated to 60°C for 24 hours, a colour change from red to dark orange was 
observed. Attempts to remove the solvent in-vacuo at this stage were unsuccessful 
and the precursor could not be isolated.

Attempted Preparation of fCpFePH^H^PH^H^Sbf^H^fC^H^irPFel
[CpFe(H2 PC2 H4 PH2)Sb(C2 H3)3]PF6  (from previous method, max yield 0.61 g, 

I.OOmmol) was dissolved in THF (20ml). Triethylamine (0.5ml, 5mmol) was added
which resulted in immediate decomposition, the experiment was repeated with
potassium fertbutoxkJe which also resulted in decomposition.

Preparation of fCp*Fe(H2PC^H4PH2)Sb(C2H3blIBFj
[Cp*Fe{(H2 PC2 H4 PH2)CH3CN]BF4  (0.46g, I.OOmmol) was dissolved in

acetonitrile (30ml). Trivinyl stibine (1.00g, Smmol) was added and the reaction 

mixture heated to 60°C for 24 hours, a colour change from red to dark orange/brown 

was observed. Attempts to remove the solvent in-vacuo at this stage were 

unsuccessful and the precursor could not be isolated, both NMR’s and mass spectra 

were taken but were inconclusive.
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Chapter 3

Bimetallic Complexes

91



Introduction

Bimetallic Complexes

Bimetallic complexes are those which contain two metal ions held together by 

a ligand structure. Cyclic ligand species which are able to incorporate two metal ions 
offer the prospect of generating unusual electronic and chemical properties which are 

a result of the dose proximity of the metal centres. There are three main types of 
binucleating macrocydic ligands, firstly large ring macrocycles which are capable of 
incorporating two metal ions in their ring structure, secondly systems with one 
bridging unit and thirdly, those containing more than one bridging unit This Chapter 
provides examples of the second type of binucleating macrocycles with one linker 
unit. Dimetallic complexes often show characteristic properties induding magnetic 

exchange between the two metal ions and an increased tendancy to undergo multi 
electron redox reactions.

The potential applications of bimetallic dimacrocydic complexes are 

widespread. They provide an environment in which two similar metal ions with 

different alternative ligands can be brought into dose proximity. Their proximity could 
lead to new reactivity between the other ligands attached to the metal ion. The 

nature of the dimacrocyde could be adjusted to suit different co-ordination 

environments which could allow the co-ordination of two different metal ions in order 
to explore more unusual bimetallic complexes and their reactivities.

Previous research has been carried out (see Chapter 2) to synthesise 
macrocydic complexes via a novel dehydrofluorinative cydisation. In this chapter it 
is aimed to use the precursor complexes containing orthofluorophenyl rings on the 

bidentate phosphine followed by HjPCCehUXCeH^Phk as the primary phosphine. It is 
hoped that both macrocydic complexes and dimacrocydic complexes can be 
synthesised (Figure 3.1).
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PH.

p--CpFeCpFe -p

Figure 3.1 Examples of two of the complexes synthesised 15c(1:1) and 15c.

Previous research into bimetallic complexes has focussed on the binucleating 

properties towards transition metals which has attracted much interest recently, in 
particular bimetallic copper(ll) complexes. These have been widely used in 

biomimetic chemistry with regard to copper(ll) proteins and also in substrate 
activation by metal centres.1 Binudear bimetallic complexes of this type (involving 

two macrocydic ligands joined by a linker) are rare but metal co-ordination provides 

an efficient route to their formation.
Similar research carried out with nitrogen donors and 14{ane] tetra aza 

macrocydes has resulted in the production of a series of bimetallic complexes 

(Figure 3.2).2 The synthesis of dimacrocydic complexes by bridging amine groups, 
or carbon atoms of the ligand backbone is a popular method, by extending this 

chemistry to bridges between phosphine groups, dimacrocylic triphosphorus 
macrocydes can be made by incorporating a primary phosphine linker into the 

macrocydic framework.
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Figure 3.2 An example of a previously synthesised dimacrocydic complex (Singh).2

Shorter bridges between the macrocycles can also be used (Figure 3.3).34 

The length of the bridge between the macrocycles will have an effect on the 
electronic properties of the dimacrocydic complexes affecting the proximity of the 

other ligands attached to the metal ion and electronic communication between the 
metal centres. Aromatic spacer units are especially useful because they provide 

sites for % stacking and promote hydrophobic interactions within the cavity which 

increase the crystaHinity of the dimacrocytic structure (Figure 3.3).4

Ph Me
= N N—

•=N N—
Me Ph

Figure 3.3 An example of a dimacrocydic complex synthesised by Bilyk.4

The expansion of the synthesis of dimacrocydic complexes indudes the 
possibility of preparing molecular sieve type structures of defined shape and size with 

selective recognition properties.5
Dimacrocydic 1,4,7-triazacydononane (TACN) based ligands have been 

previously synthesised. Sandwich complexes of tacn are well known for their kinetic 

and thermodynamic stability. N functionalised 9fane]N3 macrocydes containing three 
pendant groups, for example amine groups6 give rise to hexadentate ligands which 

confer additional stability to their metal complexes. Ligands comprising two alkyl 
bridged 9[ane] moieties have also attracted attention as they form kinetically and 

thermodynamically stable polynudear complexes with two or three co-ordinaton sites 

on each metal centre available for additional ligands or bridges.7,8 A new synthetic 
technique has been developed by Schrdder et al.9 to synthesise dimacrocydic 

9[ane]N3 ligands. TACN is reacted with conc. H2S04 and HBr to give 

N(C2 H4)N(C2 H4 )N(C2 H4) with a central CH attached to all of the nitrogen atoms. 
Reaction with 1,2 dibromoethane leads to the production of 1 (Figure 3.7).



Complex 2 (Figure 3.7) can also be synthesised which is a close analogy to 

the P3 dimacrocydtc complexes which have been prepared in this chapter.

1
H

Figure 3.7 Examples of dimacrocydic complexes synthesised by SchrBder.9

Phosphorus bimetallic complexes have been previously prepared by the 

Edwards group to form the following complex (Figure 3.4), yields were not high and 
the complex could not be fully characterised. Addition of 
[CpFefCaHshPC^f̂ PfCaHshCHaCNHPFe]12 to phenyl phosphine and cydisation 
provided both the 11 [ane] complex predicted and a 10[ane] complex whereby one of 
the ally! groups has become an ethyl backbone with an exocydic methyl group. By 

heating this reaction mixture to 70°C the following dimacrocylic complex is proposed 

as one of the reaction products.12

CpFe

CpFe

Figure 3.4 This unusual dimacrocydic complex was synthesised by Haigh12 as a byproduct of 
a cydisation reaction.



It has been demonstrated by Malisch et al.10 that Fp+P(RH) sub units can be 

linked using dicarboxyttc acid linkers to form bimetallic species, this could be used as 
an alternative linker unit if the Fp*PH2 complex is used with the carbonyl ligands 

substituted for either P(o-C6 H4F)2 , (C6H4)P(o-C6H4F)2 or TAPE
(tetraallylbisphosphinoethane) to form a bimetallic dimacrocydic complex.

If bimetallic dimacrocydic complexes can be synthesised it may be possible 
to synthesise larger arrays, studying the chemistry within these complexes could lead 

to the binding of specific metal ions and ligands and lead to selective binding within 

the structure.
Complexes involving linear triphosphine ligands bridging between either iron 

and tungsten, or iron and molybdenum have been synthesised and characterised by 
Baker et a/.,11 in this chapter it is aimed to investigate the synthesis of bimetallic 

complexes involving triphosphorus macrocydes to study the feasibility of their 
synthesis. The complexes synthesised may show unusual properties 
electrochemically and in terms of unusual electron migrations after oxidation or 
reduction which could be studied by EPR spectroscopy.
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Results and Discussion

H
H- -H PF<

N

Qpffe

2

1a

+ h^ ~ C = ) — C 3 _ph5

1,2 Dichloroethane

A

CpFe -P— / )— <( p-CpBe

(PFe);

15b

1,2 Dichloroethane 

B^OK

p-CpFe

15c

Ar = C6H4F

Figure 3.5 The synthetic route used to prepare dimacrocydic complexes.

The first examples of the synthesis of bimetallic dimacrocydic complexes 

involving triphosphorus macrocycles are described in this Chapter. Figure 3.5 

illustrates the synthetic route used to prepare these complexes.
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Two similar methods of synthesis were used, the first (Figure 3.5) requires the 
use of diofttofluorophenyt bispnictido precursors followed by the use of 
H2P(C6 H,)2 PH2 as a linker unit between the two precursor macrocydes synthesised. 
Following cydisation with potassium ferfbutoxide the dimacrocydic complex can be 

made.
Attempts to make complexes from diorftofluorophenyl bisphosphinoethane 

failed due to decomposition during cydisation, using triethylamine as a base to 

cydise the macrocydes also failed as a result of decomposition.

The dimacrocydic complexes have been described using abbreviated 

nomenclature describing the nature of the Cp moiety, the nature of the donor atoms 
and the nature of the backbones. For example, complex 15c 

[CpFeP(C6H4F)(C6H4)P(C6H4F)(C6H4)P(C6H4)HPF6]2 »s described as 
CpP3tribenzdimac.

Treatment of [CpFe{(C6H4 F)2P(C6 H4 )P(C6 H4 F)2CH3 CN][PF6] with half a molar 
equivalent of 4,4’-bisphosphinodiphenyl resulted in the formation of complex 15b, 
[CpFeP(C«H4 FKC6 H4 )P(C6 H4 F)(C6 H4)PH2(C6 H4 KC6 H4)]2[PF6]2. Characteristic peaks 

appeared in both the 1H and 13C{1H} NMR spectra representing the Cp resonances. 
The 31P NMR spectrum shows a broad singlet representing the co-ordinated 

diphosphine at 90.04ppm, a triplet represents the co-ordinated primary phosphine at 
81.43ppm (1JP-h 347.5Hz). The 19F NMR spectrum shows a singlet at -104.23ppm 
due to the orfhofluorophenyl groups. After cydisation with base the 

CpP3tribenzdimac 15c is formed. A complex multiplet was observed in the 31P NMR 
spectrum from 121.97-126.23ppm representing the macrocydic phosphorus atoms. 
Complicated multiplets were observed as a result of the second order nature of the 
spectrum.

An analogous reaction was carried out with Cp* repladng Cp to give the 
Cp*P3tribenzdimac as the final product 17c. Characteristic peaks are seen for the 

Cp* in the 1H NMR at 1.69ppm, a multiplet representing the aromatic protons is also 

seen from 6.89-7.30ppm. The 13C{1H} NMR spectrum shows charaderistic Cp* 
peaks at 10.00ppm and 87.02ppm. The orfhofluorophenyl resonance can be seen in 

the 19F NMR spectrum as a singlet at -99.13ppm. Macrocydic peaks in the 31P NMR 
spectrum can be seen in ranges from 118.29-119.82ppm and 121.03-122.66ppm as 
complex multiplets.

In addition to analogous Cp* complexes, CpAs2Ptribenzdimac 16c and 
Cp*As2Ptribenzdimac 18c were synthesised. For the CpAs2Ptribenzdimac complex 

16c a very broad singlet in the 31P NMR is seen between 119.02 and 120.83ppm, no
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coupling can be resolved from the spectra as the resolution (due to poor solubility) is 
poor. The Cp*As2Ptribenzdimac 18c was analysed by 31P NMR showing macrocydic 
phosphorus resonances upheld from its Cp analogue but still poorly resolved as a 
very broad singlet between 115.98 and 116.04ppm.

Other synthetic strategies were attempted to synthesise single macrocydic 

complexes with the 4,4 bisphosphinodibenzene linker unit as part of the macrocydic 
structure in order to be able to link dissimilar macrocydic structures together. The 
CpPatribenz 15c(1:1) with pendant primary phosphine was synthesised in an 

identical manner to the synthesis of the dimacrocydic complexes (Figure 3.5) 
differing only in the ratio of macrocydic precursor to linker. Once synthesised both 
the CpP3tribenz with pendant primary phosphine 15c(1:1) and its Cp* analogue 
17c(1:1) are air sensitive and once exposed to air decompose into a variety of 
signals on the 31P NMR spectrum believed to represent phosphine oxides. In the 31P 
NMR spectrum complex 15c(1:1) shows additional resonances to the 

CpP3tribenzdimac at -124.92 (t, 1J p-h 210.2Hz)indicating the co-ordinated 4,4’- 
diphenylbisphosphine. Complex 17c(1:1) shows a characteristic pendant primary 

phosphine peak at -125.622ppm (t, 1JP+1202.5Hz).
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CpFe -P—(v /)—(' x)—P- CpFe

(P̂ e):

19b

THF

p-CpFeCpFe -P

19c

(PF6)6'2

Figure 3.6 Alternative synthetic methodology utilising TAPE.

Alternative phosphines were also used to attempt to synthesise dimacrocydic 
ligands. TAPE was used as an alternative to the diorffrofluoropheny! bispnctido 

ligands to synthesise [CpFeflCVIshPCs^P^HsJaJCFhCNHPFe] complexes based 
on previous research. 12 Addition of half an equivalent of 4,4 bisphosphinodibenzene 
under reflux conditions gave complex 19b
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[CpFe{(C3 H5 )2 PC6 H4 P(C3 H5)2}PH2(C6 H4)]2 [PF6 ]2  characteristic peaks were seen in the 
1H NMR spectrum at 2.91ppm for the ethyl backbone of the TAPE ligand, at 4.02ppm 
for the Cp ligand and 1.72ppm, 5.31 ppm & 5.13ppm for the ally! groups. The 31P 
NMR spectrum shows a broad singlet (not resolved due to solubility problems) at 
69.08ppm (H2P-) and a singlet at 89.34ppm representing the TAPE ligand. Addition 
of potassium torftxjtoxide results in cydisation to form complex 19c, 
CpPsdibenzTAPEdimac, as for the precursor complex characteristic peaks were 

seen in both the 1H and 13C NMR spectra for Cp and both the ethyl backbone and the 

allyl groups for the TAPE ligand. 31P NMR resonances were unresolved but 
appeared as two sets of multiplets from 109.24-109.98ppm and from 110.04- 
112.58ppm.

Yields for these reactions, especially those involving ortfTofluorophenyt groups 
in comparison to the macrocydic complexes were much lower in most cases due to 

the complexes lack of solubility, 1,2 dichloroethane solutions often had to be warmed 
to encourage complexes to fuHy dissolve.

Conclusions

The novel dimacrocydic structures which have been synthesised represent 
an exciting new class of triphosphorus macrocydic complexes. Opportunities to 
study unusual reactivities and electron movement along with the redox chemistry of 
these novel bimetallic dimacrocydic structures should lead to a better understanding 
of phosphine and arsine chemistry. Crystallisation was attempted for the complexes 
but was unsuccessful. NMR and mass spectrum studies were difficult due to the 
insolubility of the novel complexes in most organic solvents.

In the future different sizes and types of linker groups should be investigated 
as well as expanding the synthetic possibilities of making compounds containing 
more than 1 macrocydic group.

In conclusion the first triphosphorus dimacrocydic complexes have been 
synthesised. They will expand the area of phosphorus chemistry and enable new 

properties formed as a result of their dimacrocydic nature in the new complexes.
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PimacrocvcHc Preparation

Most of the macrocydic precursor complexes were prepared as in Chapter 2. 
TAPE was also used as a ligand attached to both a CpFe* and Cp*Fe+ template.12 
Only a small proportion of 1:1 (macrocyde: linker) were made, possibly as a route to 

the synthesis of dimacrocydic complexes containing two different macrocydic 

fragments.
4,4-Diphenylbisphosphine was synthesised previously by Albers as part of 

the Edwards group.13

Preparation of rCpFef(o^H4F)2PC2H4 P(o-C«H4 F)2>RH2(C6 H4)l2 fPF6T2
[CpFe{(o-C6 H4 F)2PC2 H4 P(o-C6 H4 F)2}CH3CN][PF6] (0.50g, 0.64mmol) was 

dissolved in 1,2-dichloroethane (40ml). FfePfCeFUXCeFUJPK̂  (0.07g, 0.32mmol) in 

dichloroethane (10ml) was added and the reaction mixture heated to 60°C for 6 

hours. The solution changed in colour from red to yellow. The solvent was removed 
in vacuo and the remaining oil triturated with ether to give a yellow powder (M r 

1686.69, 0.34g, 31% yield).

Measured Data
’H NMR (CDCW 2.67 (m, CH2), 3.82 (s, Cp), 6.94-7.28(m).
13C{1H} NMR 

(CDCI3)

24.81 (CH2), 82.08 (Cp), 122.96-125.11(m)

3,P NMR (CDCh) -14.98 (t, \Jp-h 321.8Hz), 80.10 (broad singlet)
19F NMR (CDCU) -103.24 (s)
MS (APCI) 698.2 Da/e (M+)

Attempted Preparation of fCpFePf&HJfo-CfiHjFIPfC^HjHo-CfiHjFIPfCfiH^fCfil-L)! 
IPFgl

[CpFe{(o-C6H4F)2PC2H4P(oC6H4F)2}PH2(C6H4)]2[PF6]2 (0.34g, 0.20mmol) was 
dissolved in 1,2-dichloroethane (35ml). Potassium terfbutoxide (0.02g, 0.20mmol) 

was added and the reaction mixture heated to 60°C for 8 hours. The solution did not 
change colour and 31P NMR showed no reaction had taken place. The mixture was 
refluxed for a further 12 hours and a change from yellow to brown was observed. 
The solvent was removed in vacuo, 31P NMR studies showed no recognisable peaks 
(including PF6) indicating product decomposition.
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15b(1:1) Preparation of [(^Fe{(o-(^H4F),PC^H4P(c>-(̂ H4F)7}PH7(CsH4)((^H4)P m  

IPEsl
H2P(C6 H4)<C6 H4)PH2  (0.13g, 0.61 mmol) in 1,2 dichloroethane (9ml) was 

added to a solution of [CpFe(o-C6 H4 F)2 PC6 H4 P(o-C6H4 F)2 CH3CN][PF6] (0.50g, 

0.61 mmol) in 1,2-dichloroethane (40ml). The reaction mixture was heated to 60°C 

for 8 hours until the colour changed from red to yellow. The solvent was removed in 
vacuo and the residue triturated with ether to give a yellow powder (M r 1002.49, 
0.46g, 76% yield).

Measured Data

’H-NMR (CDaCN) 3.79 (s, Cp), 7.01-7.42 (m).
13C{'H} NMR 
(CD3CN)

81.79 (s. Cp), 123.09-129.93 (m), 132.98 (s), 164.92 (dd, 1Jc  ̂

240.13Hz, 2Jop6.01 Hz).
3’P-NMR (CD3CN) -126.8 (t, ’Jp4< 243.2), -15.02 (t, ' j P+, 332.5), 78.29 (t, 'JP.H 

345.8), 89.99 (d, 3JPJ=).
'9F-NMR (CDjCN) -103.98 (s).

MS (APCI) 857.0 Da/e (M*).

15b Preparation of fCpFef(0 KC6H4F)2 PC6 H4 P(o-C6H4 F)2)PH2{C6H4)l2 fPF6l2
H2 P(C6 H4)(C6 H4)PH2 (0.08g, 0.37mmol) in 1,2 dichloroethane (6ml) was 

added to a solution of [CpFe(o-C6H4F)2PC6H4 P(o-C6H4F)2CH3CN][PF6] (0.62g, 
0.75mmol) in 1,2-dichloroethane (40ml). The reaction mixture was heated to 60°C 

for 6 hours until the colour changed from red to yellow. The solvent was removed in 

vacuo and the residue triturated with ether to give a yellow powder (M r 1782.77, 
0.48g, 73% yield).

Measured Data
'H-NMR (CD3CN) 3.76 (s, Cp), 6.91-7.24 (m).
,3C{'H} NMR 

(CD3CN)
82.04 (s, Cp), 123.99-129.81 (m), 158.14 (dd, ’Jc* 232.48Hz, 
2JOP5.98Hz).

31P-NMR (CD3CN) -15.41 (t ’JP+i 328.2), 81.43 (t, 347.5Hz), 90.04 (d, 3JPJ= 
88.2Hz).

19F-NMR (CD3CN) -104.23 (s)
MS (APCI) 746.4 Da/e (M*).
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15c(1:1) Preparation of fCpFePfCfiHaFHCfiH^PfCĝ FKCfihLHPfCsHUHCsHU)
PHglKPFg]

Potassium fertbutoxide (0.05g, 0.46mmol) was added to a solution of 
[CpFe{(o-C6H4F)2PC6H4P(o-C6H4F)2}PH2(C6H4)(C6H4)PH2] [PF6] (0.46g, 0.46mmol) in 
warm 1,2 dichlorobenzene (30ml). The reaction was left to stir overnight and filtered. 
The solvent was removed in vacuo and the solid washed with ether to give a yellow 

powder (M r 962.47, 0.21 g, 47% yield).

Measured Data

'H-NMR (CDCb) 3.78 (s, Cp), 6.70-7.58 (m).

13C{'H} NMR 

(CDCI3)

82.04 (s, Cp), 123.99-129.81 (m), 160.01 (dd, '.W239.79HZ, 
2Jc*5.32Hz).

3'P-NMR (CDCt) -124.92 (t, V h 210.2Hz), 86.29 (s), 91.11 (s), 116.51-117.21 

(m), 120.07-121.01 (m).
19F-NMR (CDCI3) -100.89 (s)

MS (APCI) 817.5 Da/e (M*).

15c Preparation of rCpFePfCe^FXCeH^PfC^FXCeHJPfC^HCfiH^klPFsk

Potassium tertbutoxide (0.03g, 0.27mol) was added to a solution of [CpFe{(o- 
C6H4F)2PC6H4P(o-C6H4F)2}PH2(C6H4)]2[PF6]2(0.43gI 0.47mmol) in 1,2 dichloroethane 

(40ml). The reaction was left to stir overnight and filtered. The solvent was removed 
in vacuo and the residue washed with ether to give a yellow solid (M r 1742.76, 
0.30g, 63% yield).

Measured Data
1 H-NMR (CDCI3) 3.82 (s, Cp), 6.97-7.80 (m).
13C{1H} NMR 

(CDCI3)

81.69 (s, Cp), 124.38 (s), 125.12-130.19 (m), 160.23 (dd, 1JC. 
f239.00Hz, 2J c -p 5 .5 4 H z ).

31P-NMR (CDCI3) 121.97-126.23 (m).
19F-NMR (CDCI3) -101.24 (s)
MS (APCI) 708.2 Da/e (M+).

v/cm'1 (KBr) 2955.33 (s), 2923.42 (s), 2853.38 (w), 2725.85 (m), 2673.51 
(w), 1461.6 (s), 1377.18 (s), 1299.91 (w), 1260.59 (m), 

1074.04 (w), 1031.95 (w), 800.96 (w), 721.92 (w), 521.40 (w ).
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16b Preparation of rCpFei(o-C«l-LFV>AsCfiH4As(o-CfiHaF)?)PH?(CfiH4)l?rPFsl2
H2P(C6 H4)(C6 H4)PH2 (0.03g, 0.24mmol) in 1,2 dichloroethane (3ml) was 

added to a solution of [CpFefo-CehUF^AsCeH^sfo-CehUFJChkCNJfPFe] (0.43g, 

0.47mmol) in 1,2-dichloroethane (30ml) and the reaction mixture heated to 60°C for 
10 hours until the colour changed from blue to orange. The solvent was removed in 

vacuo and the residue triturated with ether to give an orange powder (MR 1958.47, 
0.13g, 28% yield).

Measured Data
'H-NMR (CDCI3) 3.96 (s, Cp), 7.00-7.13 (m).
'3C{'H} NMR 

(CDCI3)

80.99 (s, Cp), 126.82-132.91 (m).

3'P-NMR (CDCI3) 76.18 (t, 'Jp-h 333.1 Hz)
'9F-NMR (CDCI3) -104.20 (s)
MS (APCI) 834.4 Da/e (M+).

16c Preparation of rCpFe(As(CfiH,F)(CfiH,)As(CfiH,F)(CfiHJP(Cfil-l)1?rPFfil?

[CpFe{(o-C6H4F)2AsC6H4As(o-C6H4F)2}PH2(C6H4)]2[PF6]2 (0.13g, 0.07mmol) 
was dissolved in 1,2 dichlorobenzene (40ml), potassium ferfbutoxide (0.01 g) was 

added to the solution. The reaction was left to stir overnight and filtered. The solvent 
was removed in vacuo and the residue washed to give a yellow solid ( M r 1918.46, 
0.09g, 68% yield).

Measured Data

'H-NMR (CDCI3) 3.92 (s, Cp), 7.01-7.26 (m).
’3C{'H} NMR 

(CDCI3)

81.02 (s, Cp), 125.96-132.28 (m)

3’P-NMR (CDCI3) 119.02-120.83 (m).
'9F-NMR (CDCI3) -105.32 (s).
MS (APCI) 814.3Da/e (M+).

Preparation of rCp*Fef(o-CAH4F)7PC?H^P(o-CfiH^F)?>PH?(CfiH4)(CfiH4)PH?irBF41
{Cp*Fe[(o-C6H4F)2PC2H4P(o-C6H4F)2]CH3CN}BF4 (0.41 g, 0.48mmol) was 

dissolved in 1,2-dichloroethane (35ml). FhPfCeFUXCeFMPFfe (0.03g, 0.24mmol) in
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1,2 dichloroethane was added and the reaction mixture heated to 60°C for 18 hours. 
The solution changed in colour from red to orange. The solvent was removed in 
vacuo and the oily solid triturated with ether to give an orange powder (MR 1826.99, 
0.10g, 23% yield).

Measured Data

1H-NMR (CDCI3) 1.71 (s, Cp*), 6.89-7.23 (m).

,3C{’H} NMR 

(CDCI3 )

9.79 (s, Cp*), 87.69 (s, Cp*), 123.48-130.23 (m), 163.29 (dd, 
1Jof233.98Hz , 2Jc3>7.82Hz).

3,P-NMR (CDCI3 ) 80.01 (broad singlet).
19F-NMR (CDCI3) -104.98 (s).
MS (APCI) 755.4 Da/e (M+).

Attempted Preparation of rCp*Fel(o-Ci;H^FV?PC?HaP(o-CfiH<iF)?)P(CfiHa)(CfiH^PH9l 
IBFJ

[Cp*Fe{(o-C6H4F)2PC2H4P(o-C6H4F)2}PH2(C6H4)(C6H4)PH2][BF4] (0.10g,
0.05mmol) was dissolved in 1,2 dichloroethane (30ml), potassium ferfbutoxide 

(0.01 g, 0.09mmol) was added to the solution. The reaction was heated to 60°C for 
10 hours. After filtration, the majority of the solvent was removed in vacuo to give a 

brown/yellow oily mixture 31P NMR studies (in 6CH3CN) showed decomposition had 

taken place.

17b (1:1) Preparation of fCp*Fel(o-CfiH^F^PC«HaP(o-CRHaR?)PH?(CfiH^(CfiH^ 
PM B F 4]

[Cp*Fe(o-C6H4F)2PC6H4P(o-C6H4F)2CH3CN][BF4] (0.46g, 0.51 mmol) was 
dissolved in 1,2-dichloroethane (40ml). H2P(C6 H4)(C6 H4)PH2 (0.05g, 0.51 mmol) was 

added and the reaction mixture heated to 60°C for 8 hours until the colour changed 

from red to yellow. The solvent was removed in vacuo and the residue triturated with 

ether to give a yellow powder (M r 1069.27, 0.42g, 77% yield).

Measured Data

1 H-NMR (CDCI3) 1.69 (s, Cp*), 6.97-7.13 (m).
i3C{1H} NMR 

(CDCU)
9.81 (s, Cp*). 86.98 (s, Cp*), 121.98 (s), 122.99-125.79 (m), 
163.42 (dd, 'Jof234.34Hz, 2Jc*8.13Hz).
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31P-NMR (CDCIs) -125.03 (t. 'Jp* 213.10Hz), -15.01 (t 'Jp-h 344.6Hz), 81.02- 
81.33 (m).

19F-NMR (CDCI3) -97.62 (s)

17b Preparation of fCp*Fef(o-CfiH4F)7PCfiH4P(o-Cfil-LF)7)PH?(CfiH4)l7rBF4l?
[Cp*Fe(o-C6 H4 F)2 PC6H4 P(o-C6H4 F)2CH3CN]BF4 (0.46g, 0.51 mmol) was

dissolved in 1,2-dichloroethane (40ml). hfePfCeHUXCeĤ PHb (0.03g, 0.26mmol) was 

added and the reaction mixture heated to 60°C for 8 hours until the colour changed 

from red to yellow. The solvent was removed in vacuo and the residue triturated with 

ether to give a yellow powder (MR 1922.33, 0.33g, 67% yield).

Measured Data
'H-NMR (CDCb) 1.73 (s, Cp*), 6.87-7.39 (m).
13C{'H} NMR 

(CDCIs)

9.98 (s, Cp*), 86.99 (s, Cp*), 124.38-131.88 (m), 163.84 (dd, 
1Jcp234.82Hz, 2Jcj>6.09Hz).

3 ’P-NMR (CDCIs) -14.02 (t,'Jp.H 327.8), 80.98-81.32 (m).
' 9 F-NMR (CDCIs) -98.02 (s).

17c(1: ■1) Preparation of rCp*Fe(P(CfiH<tF)(CfiHa)P(CfiH^F)(CfiH^P(CfiH^PH?
(CsH4)1fBF41

[Cp*Fe{(o-C6H4F)2PC6H4P(o-C6H4F)2}PH2(C6H4)(C6H4)PH2][BF4] (0.42g,
0.39mmol) was dissolved in THF (30ml), potassium ferfbutoxide (0.04g, 0.39mmol) 

was added to the solution. The reaction was heated to 60°C for 16 hours. After 
filtration, the solvent was removed in vacuo and the solid washed with ether to give a 

yellow solid (MR 1029.26, 0.20g, 51% yield).

Measured Data

’H-NMR (CDCIs) 1.68 (s, Cp*), 7.00-7.31 (m).
13C{'H} NMR 

(CDCIs)
9.88 (s, Cp*), 86.12 (s, Cp*), 121.67 (s), 125.55 (s), 125.77- 
132.36 (m), 136.41 (s).

3'P-NMR (CDCIs) -125.62 (t, 'J p-h 212.5), 119.47-120.40 (m), 126.28 -127.94

(m),
'9F-NMR (CDCIs) -98.02 (s)
MS (APCI) 942.4 Da/e (M*).
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17c Preparation of fCp*Fe(P(CfiH^F)(CfiH^P(CfiH^F)(CfiH^P(CfiHa)(CfiH 1̂?rBF^?

[Cp*Fe{(o-C6 H4 F)2 PC6 H4 P(o-C6 H4 F)2}PH2(C6 H4 )]2tBF4 ]2  (0.33g, 0.17mmol)
was dissolved in 1,2 dichlorobenzene (30ml), potassium fertbutoxide (0.02g, 

0.17mmol) was added to the solution. The reaction was heated to 60°C for 16 hours. 
After filtration, the solvent was removed in vacuo and washed with THF to give a 

yellow solid ( M r  1882.32, 0.20g, 62% yield).

Measured Data

'H-NMR (CDCI3) 1.69 (s, Cp*), 6.89-7.30 (m).
'SC{1 H} NMR 

(CDCU)
1 0 . 0 0  (s, Cp*), 87.02 (s, Cp*), 123.82-131.81 (m)

3 1 P-NMR (CDCI3 ) 118.29-119.82 (m), 121.03-122.66 (m).
1 9F-NMR (CDCI3) -99.13 (s).
MS (APCI) 854.2 Da/e (M+).

18b Preparation of ^Feflo-C s^FkA sC s^sfo-C ^F^P^fC sH ^yPFsk
H2 P(C6 H4)(C6 H4)PH2 (0.01g, 0.13mmol) in 1,2 dichloroethane (5ml) was 

added to a solution of ^ ‘ Fefo-Ce^FkAsCe^sfo-CeHUFJCHaCNJfPFe] (0.25g, 
0.25mmol) in 1 ,2 -dichloroethane (30ml) and the reaction mixture heated to 60°C for 
1 2 hours until the colour changed from red to orange. The solvent was removed in 

vacuo and the residue triturated with ether to give an orange powder ( M r  2028.60, 
0.08g, 32% yield).

Measured Data
’H-NMR (CDCI3 )
_ ------,---------------  - ............

1.62 (s, Cp*), 7.01-7.60 (m).
13C{'H) NMR 

(CDCI3)

9.95 (s, Cp*), 87.05 (s, Cp*), 121.98 (s), 123.68-129.82 (m), 
134.68 (s).

i9 F-NMR (CDCI3) -103.26 (s).
3 'P-NMR (CDCI3) -14.02 (unresolved)
MS (APCI) 891.2 Da/e (M+).

18c Preparation of fCp*Fe(As(CfiH,F)(CfiH JAs(CfiH4 F)(CfiHJP(CfiH,,MBFJ,

[Cp*Fe{(o-C6 H4 F)2AsC6 H4As(o-C6 H4 F)2}PH2 (C6 H4)]2[PF6 ] 2  (0.08g, 0.04mmol) 
was dissolved in 1,2 dichlorobenzene (40ml), potassium terfbutoxide (XS 0.01 g) was
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added to the solution. The reaction was left to stir overnight and filtered. The solvent 
was removed in vacuo and the solid was washed with THF to remove excess 
potassium fertbutoxide to give a yellow solid (M r 1988.59, 0.06g, 78% yield).

Measured Data
’H-NMR (CDCIs) 1.64 (s, Cp*), 6.98-7.56 (m).
13C{'H} NMR 

(CDCIs)

9.20 (s, Cp*), 87.24 (s, Cp*), 122.09 (s), 124.03-131.53 (m), 
163.58 (dd , 1J c-f2 4 3 .2 2 H z , 2Jc-p7.02Hz).

31P-NMR (CDCb) 115.98-116.04 (m).

19F-NMR (CDCIs) -103.82

MS (APCI) 907.6 Da/e (M+).

19b Preparation of fCpFeffOtH^PC^H^P^H^PH^CfiH^fPFJ?
H2 P(C6 H4)(C6 H4)PH2 (0.21g, 0.97mmol) in THF (10ml) was added to a 

solution of [CpFe(o-C6 H4 F)2 PC2 H4 P(o-C6 H4 F)2CH3CN][PF6] (1.18g, 1.94mmol) in 

THF (30ml). The reaction mixture was heated to 60°C for 8  hours resulting in a 

colour changed from red to orange. The solvent was removed in vacuo and the 

residue triturated with ether to give a brown/orange powder (MR 738.36, 0.18g, 25% 
yield).

Measured Data
’H-NMR (CDsCN) 1.72 (s, PCH2 CHCH2), 2.91 (s, PCH2 CH2 P), 4.02 (s, Cp), 5.13 

(PCH2 CHCH2), 5.31 (PCH2CHCH2 ), 6.69-6.98 (m).
13C{'H} NMR 

(CDsCN)
22.42 (s, PCHjCHjP), 30.19 (PCH2CHCH2), 33.10 

(PCH2CHCH2 ), 79.90 (s, Cp), 130.24 (PCH2CHCH2).
3'P-NMR (CDsCN) 69.08 (broad s, co-ordinated H2 P-), 89.34 (s).

19c Preparation of rCpFe(C^H0 PC?H,P(C3 H*HP(CfiH J(CfiH^PH?l(0,HR)irPFR1
Potassium fertbutoxide (2 mole equivalents, 0.03g, 0.23mol) was added to a 

solution of [CpFe{(C3 H5)2 PC2 H4 P(C3 H5)2}PH2(C6 H4 )]2 [PF6 ]2  (0.18g, 0.23mmol) in THF 
(40ml). The reaction was left to stir overnight and filtered. The solvent was removed 
in vacuo to give a brown/orange solid (MR 786.40, 0.14g, 75% yield).
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Measured Data

’H-NMR (CDCb) 1.69 (s, PCHjCHCHj), 2.92 (s, PCH2CH2P), 3.98 (s, Cp), 5.11 
(PChfeCHCHj), 5.40 (PCHjCHCHj), 6.70-7.04 (m).

,3C{’H} NMR 

(CDCb)

19.42 (s, PCH2CH2 P), 30.24 (PCH2CHCH2), 32.18 
(PCH2CHCH2), 78.98 (s, Cp), 131.00 (PCH2CHCH2).

31P-NMR (CDCb) 109.24-109.98 (m), 110.04-112.58 (m).
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General Experimental Information

All reactions were carried out in an atmosphere of dry nitrogen using standard 
Schlenk techniques or in a Vacuum Atmospheres glove box. All solvents were dried 
by refluxing over standard drying agents and distilled immediately prior to use. The 
petroleum ether (petrol) used had a boiling point of 40-60 °C. All other chemicals 
were obtained from commercial sources and where appropriate, dried over molecular 
sieves and deoxygenated by repeated freeze-thaw degassing. UV photolyses were 
carried out using a Hanovia 125 W mercury discharge lamp (254 nm). The NMR 
spectra were recorded on a Bruker DPX-400 instrument at 400 MHz (1H) and 100 

MHz (1 3C) or a Jeol Lamda Eclipse 300 at 121.65 MHz (3 1 P), 300.52 MHz (1H), 75.57 
MHz (1 3C), 96.42 MHz (1 1B) and 282.78 MHz (1 9F). All chemical shifts are quoted in 

units of 6 ppm. 1H and 13C NMR chemical shifts are relative to solvent resonance, 31P 

chemical shifts are relative to 85% external H3 P04  ( 6  = 0  ppm),11B chemical shifts 

are relative to external BF3 .OEt2 (6 = 0  ppm), 19F chemical shifts are relative to 

external CFCh (6 = 0 ppm). Mass spectra (E.l. and APCI) were recorded on a VG 

Platform II Fisons mass spectrometer. Infrared spectra were recorded on a Perkin 
Elmer 1600 or a Nicolet 510 FT-IR spectrometer as a nujol mull between Csl plates 
or in solution using KBr solution cells or as KBr disks.

Abbreviations used in this Thesis.

APCI -  atmospheric pressure chemical ionisation 
"Bu -  />butyl 
fBu -  fert-butyl 
Bz -  benzyl
Cp -  cyclopentadienyl (C5 H5)
Cp* - pentamethylcyclopentadienyl (C5 Me5)
CV -  Cyclic voltammetry
edta -  ethylenediaminetetra-acetic acid
en -  ethylenediamine
Et - ethyl
IR -  Infrared spectroscopy 

(s) -  strong 
(m) -  medium 
(w) -  weak 

Me -  methyl
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M.S. -  mass spectroscopy 
NMR -  Nuclear magnetic resonance 

(s) -  singlet 
(d) -  doublet 
(t) -  triplet 
(q) -  quartet 
(m) -  multiplet 
(dt) -  doublet of triplets 

(dd) -  doublet of doublets 
(tt) -  triplet of triplets 
(br) - broad
"Jxy -  n-bond coupling between atoms X and Y 

Ph -  phenyl 
R -  alkyl or aryl group 
TAPE - Tetraallylbisphosphinoethane 

THF - tetrahydrofuran 

Tp -  tris(hydropyrazolyl)borate 
VT NMR -  Variable temperature NMR

Crystal Structure Data

Table 1. Crystal data and structure refinement for P(CfiH4F)a

Empirical formula C18 H12 F3 P

Formula weight 316.25

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2(1)/n

Unit cell dimensions a = 8.4912(2) A alpha = 90 deg.
b = 11.2757(3) A beta = 93.0477(16) deg. 
c = 15.5481(4) A gamma = 90 deg.

Volume 1486.54(7) AA3

Z 4

Density (calculated) 1.413 Mg/mA3
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Absorption coefficient 0.210 mmA-1

F(000) 648

Crystal size 0.18 x 0.16 x 0.15 mm

Theta range for data collection 3.01 to 27.47 deg.

Index ranges -11 <=h<=11 , -14<=k<=14, -19<=l<=20

Reflections collected 19181

Independent reflections 3386 [R(int) = 0.0829]

Max. and min. transmission 0.9692 and 0.9632 

Refinement method Full-matrix least-squares on FA2

Data / restraints / parameters 3386 / 0 /199 

Goodness-of-fit on FA2 1.035 

Final R indices [l>2sigma(l)] R1 = 0.0432, wR2 = 0.1006

R indices (all data) R1 = 0.0593, wR2 = 0.1084

Diff. peak and hole 0.233 and -0.345 e.AA-3
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Table 3. Bond lengths TA1 and angles fdegl for P(CbH4F) 3

P(1)-C(13) 
P(1)-C(1)
F(2)-C(8)
C(1)-C(2) 
C(2)-C(3) 
C(4)-C(5) 
C(7)-C(8) 
C(8)-C(9) 
C(10)-C(11) 
C(13)-C(14) 
C(14)-C(15) 
C(16)-C(17)

C(13)-P(1)-C(7)
C(7)-P(1)-C(1)
C(2)-C(1)-P(1)
F(1)-C(2)-C(3)
C(3)-C(2)-C(1)
C(3)-C(4)-C(5)
C(5)-C(6)-C(1)
C(8)-C(7)-P(1)
F(2)-C(8)-C(9)
C(9)-C(8)-C(7)
C(11)-C(10)-C(9)
C(11)-C(12)-C(7)
C(14)-C(13)-P(1)
F(3)-C(14)-C(15)
C(15)-C(14)-C(13)
C(15)-C(16)-C(17)
C(17)-C(18)-C(13)

1.836(2)
1.839(2)
1.366(2)
1.389(2)
1.375(3)
1.382(3)
1.387(2)
1.375(3)
1.383(3)
1.387(2)
1.374(3)
1.385(3)

P(1)-C(7)
F(1)-C(2)
F(3)-C(14)
C(1)-C(6)
C(3)-C(4)
C(5)-C(6)
C(7)-C(12)
C(9)-C(10)
C(11)-C(12)
C(13)-C(18)
C(15)-C(16)
C(17)-C(18)

1.836(2)
1.364(2)
1.358(2)
1.395(3)
1.379(3)
1.388(3)
1.392(3)
1.387(3)
1.389(3)
1.396(2)
1.380(3)
1.390(3)

101.23(7)
101.09(8)
119.20(14)
117.92(16)
123.76(18)
120.01(18)
121.50(17)
118.30(13)
117.95(16)
124.50(17)
120.39(18)
121.34(17)
117.28(13)
118.12(17)
124.38(18)
120.38(18)
120.84(18)

C(13)-P(1)-C(1)
C(2)-C(1)-C(6)
C(6)-C(1)-P(1)
F(1)-C(2)-C(1)
C(2)-C(3)-C(4)
C(4)-C(5)-C(6)
C(8)-C(7)-C(12)
C(12)-C(7)-P(1)
F(2)-C(8)-C(7)
C(8)-C(9)-C(10)
C(10)-C(11)-C(12)
C(14)-C(13)-C(18)
C(18)-C(13)-P(1)
F(3)-C(14)-C(13)
C( 14)-C( 15)-C( 16)
C(16)-C(17)-C(18)

99.96(7)
116.01(16)
124.76(13)
118.31(16)
118.69(17)
120.04(19)
116.06(16)
125.46(14)

117.56(15)
117.67(18)
120.03(19)
116.26(16)

126.45(14)
117.48(15)
117.86(19)
120.28(18)

Table 1. Crystal data and structure refinement for 
fCpFeP(C6H4R(C6H4)P(C6H4R(C6H4)P(C6Hs)(CfiH4)irPFfi1

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

s92

C73 H62 B F2 Fe N4 P3 

1192.84 

150(2) K 

0.71073 A 

Monoclinic 

P2(1)/c

a = 15.6204(3) A alpha = 90 deg. 
b = 14.7050(3) A beta = 102.6900(10) deg.
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c = 27.0880(6) A gamma = 90 deg. 

Volume 6070.1(2) AA3

Z 4

Density (calculated) 1.305 Mg/mA3

Absorption coefficient 0.381 mmA-1

F(000) 2488

Crystal size 0.05 x 0.04 x 0.02 mm

Theta range for data collection 2.96 to 26.01 deg.

Index ranges -17<=h<=19, -15<=k<=18, -33<=l<=33

Reflections collected 37113

Independent reflections 11801 [R(int) = 0.1505]

Max. and min. transmission 0.9943 and 0.9812

Refinement method Full-matrix least-squares on FA2

Data / restraints / parameters 11801 / 60 / 791 

Goodness-of-fit on FA2 0.970 

Final R indices [l>2sigma(l)] R1 = 0.0784, wR2 = 0.1615 

R indices (all data) R1 = 0.1707, wR2 = 0.1946

Largest diff. peak and hole 1.602 and -0.709 e.AA-3

Table 2. Atomic coordinates ( x 10A4) and equivalent isotropic 
displacement parameters (AA2 x 10*3) for S92. U(eq) is defined 
as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

Fe(1) 1918(1) 3586(1) 256(1) 21(1)
P(1) 2655(1) 3514(1) -328(1) 20(1)
P(2) 2752(1) 4713(1) 557(1) 21(1)
P(3) 2908(1) 2730(1) 697(1) 20(1)
F(1) 1637(3) 4761(3) -1115(2) 56(1)
F(2) 1834(3) 6315(3) -27(2) 41(1)
F(3) 2525(4) 2648(4) 1747(2) 75(2)
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B(1) 7271(4) 1244(4) 1735(2) 24(1)
C(1) 3297(3) 4552(3) -330(2) 20(1)
C(2) 3737(3) 4794(3) -705(2) 22(1)
C(3) 4225(3) 5587(3) -655(2) 26(1)
C(4) 4284(3) 6133(3) -239(2) 26(1)
C(5) 3856(3) 5900(3) 147(2) 22(1)
C(6) 3356(3) 5110(3) 90(2) 21(1)
C(7) 3614(3) 4336(3) 1090(2) 21(1)
C(8) 4207(3) 4908(3) 1404(2) 24(1)
C(9) 4855(3) 4534(3) 1779(2) 26(1)
C(10) 4916(3) 3610(4) 1845(2) 28(1)
C(11) 4344(3) 3031(3) 1537(2) 24(1)
C(12) 3686(3) 3403(3) 1153(2) 22(1)
C(13) 3615(3) 2258(3) 301(2) 20(1)
C(14) 4271(3) 1617(3) 465(2) 23(1)
C(15) 4807(3) 1352(3) 149(2) 27(1)
C(16) 4687(3) 1718(3) -332(2) 27(1)
C(17) 4047(3) 2368(3) -498(2) 23(1)
C(18) 3508(3) 2631(3) -176(2) 21(1)
C(19) 2095(3) 3282(3) -977(2) 23(1)
C(20) 1681(3) 3949(4) -1293(2) 35(1)
C(21) 1163(4) 3766(4) -1765(2) 43(2)
C (22) 1064(4) 2881(4) -1931(2) 44(2)
C(23) 1472(4) 2188(4) -1620(2) 47(2)
C(24) 1967(4) 2389(4) -1143(2) 41(2)
C(25) 2288(3) 5718(3) 786(2) 23(1)
C(26) 1898(3) 6397(3) 460(2) 28(1)
C(27) 1460(3) 7120(3) 620(2) 36(1)
C(28) 1384(3) 7149(4) 1115(2) 38(1)
C(29) 1753(4) 6484(4) 1454(2) 43(2)
C(30) 2207(3) 5771(4) 1286(2) 32(1)
C(31) 2589(3) 1775(3) 1039(2) 23(1)
C(32) 2454(3) 1839(4) 1523(2) 30(1)
C(33) 2093(3) 1155(4) 1756(2) 36(1)
C(34) 1854(3) 360(4) 1495(2) 38(1)
C(35) 1978(4) 264(4) 1011(2) 41(1)
C(36) 2331(3) 969(4) 783(2) 39(1)
C(37) 888(5) 3856(6) 613(2) 27(3)
C(38) 773(5) 4368(4) 159(3) 31(3)
C(39) 704(6) 3748(6) -250(2) 29(3)
C(40) 775(6) 2853(4) -49(3) 26(3)
C(41) 889(6) 2919(5) 485(3) 33(4)
C(37) 817(3) 4176(4) 421(2) 27(3)
C(38’) 717(3) 4111(4) -112(2) 22(3)
C(39') 755(3) 3177(5) -238(2) 25(3)
C(40') 880(2) 2664(3) 216(2) 23(3)
C(4T) 918(2) 3282(4) 624(2) 20(3)
C(42) 6289(2) 1032(3) 1844(1) 24(1)
C(43) 6060(2) 1364(3) 2279(1) 29(1)
C(44) 5242(3) 1218(3) 2396(2) 32(1)
C(45) 4616(3) 694(3) 2068(2) 29(1)
C(46) 4824(3) 340(3) 1641(2) 31(1)
C(47) 5641(3) 499(3) 1533(2) 29(1)
C(48) 7546(3) 2275(3) 1931(2) 22(1)
C(49) 7006(3) 3026(3) 1758(2) 23(1)
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C(51) 39(3) 23(3) 27(3) -1(2) 13(2) -6(2)
C(52) 23(3) 39(3) 27(3) 1(2) 6(2) -10(2)
C(53) 19(3) 28(3) 18(3) 4(2) 8(2) 0(2)
C(54) 16(2) 21(3) 24(3) -1(2) 6(2) -1(2)
C(55) 26(3) 24(3) 30(3) -4(2) 8(2) 2(2)
C(56) 25(3) 32(3) 33(3) 5(2) 12(2) -3(2)
C(57) 25(3) 36(3) 19(3) -2(2) 6(2) 5(2)
C(58) 25(3) 27(3) 31(3) -5(2) 5(2) 2(2)
C(59) 23(3) 30(3) 29(3) 3(2) 7(2) -2(2)
C(60) 29(3) 19(3) 23(3) -7(2) 6(2) -5(2)
C(61) 28(3) 27(3) 30(3) -3(2) 7(2) -1(2)
C(62) 47(4) 30(3) 25(3) 5(2) 7(2) 3(3)
C(63) 30(3) 33(3) 35(3) -5(3) -4(2) 13(2)
C(64) 20(3) 37(3) 35(3) -3(3) 3(2) 4(2)
C(65) 28(3) 25(3) 29(3) -3(2) 9(2) -3(2)
N(1) 90(5) 51(4) 117(6) -17(4) 25(4) -10(4)
C(66) 47(4) 46(4) 60(4) -15(4) 14(3) -7(3)
C(67) 36(3) 68(5) 58(4) -9(4) 19(3) -3(3)
N(2) 52(4) 63(4) 65(4) -4(3) 18(3) 2(3)
C(68) 38(4) 49(4) 34(3) -4(3) 18(3) -17(3)
C(69) 29(3) 90(5) 43(4) 10(3) 16(3) -5(3)
N(3) 59(4) 53(4) 51(3) -1(3) 27(3) -5(3)
C(70) 40(4) 47(4) 38(4) -4(3) 18(3) -14(3)
C(71) 64(5) 54(4) 71(5) -11(4) 22(4) -11(3)
N(4) 75(4) 55(4) 68(4) -11(3) 31(3) -1(3)
C(72) 49(4) 30(3) 39(4) 1(3) 5(3) -8(3)
C(73) 51(4) 44(4) 44(4) 4(3) 15(3) 7(3)

Table 5. Hydrogen coordinates ( x 10A4) and isotropic 
displacement parameters (AA2 x 10*3) for 
rCpFeP(C6H4n(C6H4)P(C6H4F)(C6H4)P(C6Hs)(C6H4)lIPF61

X y z U(eq)

H(2) 3703 4416 -993 27
H(3) 4522 5756 -911 31
H(4) 4619 6676 -211 31
H(5) 3906 6272 439 27
H(8) 4166 5548 1360 28
H(9) 5263 4921 1993 31
H(10) 5360 3365 2108 34
H(11) 4393 2391 1583 28
H(14) 4349 1363 795 27
H(15) 5258 918 261 33
H(16) 5049 1521 -551 32
H(17) 3977 2629 -826 28
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H(21) 879 4246 -1973 51
H(22) 717 2746 -2257 53
H(23) 1411 1575 -1733 57
H(24) 2224 1908 -926 49
H(27) 1216 7589 390 43
H(28) 1072 7635 1226 46
H(29) 1699 6510 1796 51
H(30) 2466 5312 1518 38
H(33) 2010 1230 2090 43
H(34) 1605 -123 1650 45
H(35) 1821 -288 832 50
H(36) 2398 901 445 46
H(37) 952 4097 945 33
H(38) 747 5012 133 37
H(39) 623 3905 -597 35
H(40) 752 2306 -237 31
H(41) 955 2424 716 40
H(37) 817 4721 609 32
H(38') 637 4606 -343 26
H(3ff) 706 2937 -569 29
H(40') 928 2021 243 28
H(4T) 997 3124 971 24
H(43) 6483 1710 2510 35
H(44) 5113 1471 2694 38
H(45) 4057 585 2140 35
H(46) 4405 -17 1415 37
H(47) 5767 236 1237 34
H(49) 6474 2921 1517 27
H(50) 6821 4387 1779 33
H(51) 8107 4690 2393 35
H(52) 9037 3479 2713 35
H(53) 8699 2013 2431 25
H(55) 7172 2421 880 32
H(56) 7018 2146 31 35
H(57) 6971 664 -279 32
H(58) 7075 -552 290 33
H(59) 7268 -275 1148 33
H(61) 7306 -65 2518 34
H(62) 8407 -985 2968 41
H(63) 9814 -960 2792 41
H(64) 10075 -29 2143 37
H(65) 8961 868 1684 32
H(67A) 504 -1026 -332 79
H(67B) 1176 -725 -671 79
H(67C) 196 -1019 -936 79
H(69A) -1396 3457 1417 79
H(69B) -1291 3048 886 79
H(69C) -725 3914 1122 79
H(71A) 4059 1651 -1726 93
H(71B) 3873 1769 -2328 93
H(71C) 3074 1607 -2055 93
H(73A) 7179 1270 -1579 68
H(73B) 6945 2001 -2026 68
H(73C) 6303 1158 -2010 68
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Table 1. Crystal data and structure refinement for 
rCpFeAs(CfiH4F)(CfiH4)As(C6H4F)(C6H4)As(C6H5)(C6H4)1fPF61

Identification code 02SRC311

Empirical formula C73 H62 As3 B F2 Fe N4
[FefCsHsXCaeHaiFzASa)], B(C6H5)4, 4(CH3CN)

Formula weight 1324.69

Temperature 120(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 15.6500(3) A alpha = 90 deg.
b = 14.7771(4) A beta = 102.417(2) deg. 
c = 27.3245(5) A gamma = 90 deg.

Volume 6171.3(2) AA3

Z 4

Density (calculated) 1.426 Mg/mA3

Absorption coefficient 1.894 mmA-1

F(000) 2704

Crystal size 0.16 x 0.10 x 0.01 mm

Theta range for data collection 2.95 to 25.00 deg.

Index ranges -18<=h<=18, -16<=k<=17, 0<=l<=32

Reflections collected 17757

Independent reflections 10828 [R(int) = 0.0451]

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9813 and 0.7515

Refinement method Full-matrix least-squares on FA2

Data / restraints / parameters 10828 / 36 / 761
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Goodness-of-fit on FA2 0.990

Final R indices [l>2sigma(l)J R1 = 0.0707, wR2 = 0.2097 

R indices (all data) R1 = 0.1101, wR2 = 0.2360

Largest diff. peak and hole 1.864 and -1.803 e.AA-3
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Table 3. Bond lengths [A1 and angles Tdegl for

Fe(1)-C(2) 2.025(7) Fe(1)-C(3) 2.059(7)
Fe(1)-C(1) 2.068(7) Fe(1)-C(4) 2.120(8)
Fe(1)-C(5) 2.126(8) Fe(1)-As(3) 2.2095(14)
Fe(1)-As(1) 2.2251(13) Fe(1)-As(2) 2.2339(12)
As(1)-C(6) 1.902(7) As(1)-C(41) 1.911(7)
As(1)-C(12) 1.928(6) As(2)-C(18) 1.890(7)
As(2)-C(24) 1.918(7) As(2)-C(17) 1.925(7)
As(3)-C(30) 1.874(7) As(3)-C(36) 1.901(7)
As(3)-C(29) 1.910(7) F(1)-C(11) 1.300(9)
F(2)-C(19) 1.279(11) F(3)-C(35) 1.287(11)
C(1)-C(2) 1.4200 C(1)-C(5) 1.4200
C(2)-C(3) 1.4200 C(3)-C(4) 1.4200
C(4)-C(5) 1.4200 C(6)-C(11) 1.373(11)
C(6)-C(7) 1.386(10) C(7)-C(8) 1.384(11)
C(8)-C(9) 1.368(12) C(9)-C(10) 1.363(11)
C(10)-C(11) 1.372(12 C(12)-C(17) 1.383(9)
C(12)-C(13) 1.396(10 C(13)-C(14) 1.371(10)
C(14)-C(15) 1.400(10 C(15)-C(16) 1.354(10)
C(16)-C(17) 1.401(9) C(18)-C(19) 1.357(11)
C(18)-C(23) 1.407(11 C(19)-C(20) 1.411(12)
C(20)-C(21) 1.379(13 C(21)-C(22) 1.385(13)
C(22)-C(23) 1.378(11 C(24)-C(25) 1.397(9)
C(24)-C(29) 1.416(9) C(25)-C(26) 1.372(10)
C(26)-C(27) 1.397(10 C(27)-C(28) 1.395(10)
C(28)-C(29) 1.375(10 C(30)-C(35) 1.382(10)
C(30)-C(31) 1.384(11 C(31)-C(32) 1.395(11)
C(32)-C(33) 1.392(11 C(33)-C(34) 1.375(12)
C(34)-C(35) 1.380(12 C(36)-C(41) 1.391(10)
C(36)-C(37) 1.397(10 C(37)-C(38) 1.398(11)
C(38)-C(39) 1.383(11 C(39)-C(40) 1.398(10)
C(40)-C(41) 1.411(10 B(1)-C(60) 1.628(11)
B(1)-C(42) 1.644(11) B(1)-C(54) 1.650(11)
B(1)-C(48) 1.656(9) C(42)-C(47) 1.414(10)
C(42)-C(43) 1.422(10 C(43)-C(44) 1.366(11)
C(44)-C(45) 1.396(11 C(45)-C(46) 1.378(11)
C(46)-C(47) 1.396(11 C(48)-C(53) 1.385(10)
C(48)-C(49) 1.401(10 C(49)-C(50) 1.395(10)
C(50)-C(51) 1.383(11 C(51)-C(52) 1.369(11)
C(52)-C(53) 1.421(10 C(54)-C(55) 1.373(10)
C(54)-C(59) 1.412(10 C(55)-C(56) 1.399(10)
C(56)-C(57) 1.399(11 C(57)-C(58) 1.372(11)
C(58)-C(59) 1.394(11 C(60)-C(65) 1.408(10)
C(60)-C(61) 1.409(10 C(61)-C(62) 1.375(11)
C(62)-C(63) 1.409(11 C(63)-C(64) 1.383(11)
C(64)-C(65) 1.368(11 N(1)-C(67) 1.119(11)
C(66)-C(67) 1.472(12 N(2)-C(69) 1.128(12)
C(68)-C(69) 1.489(14 N(3)-C(71) 1.115(11)
C(70)-C(71) 1.445(13 N(4)-C(73) 1.138(13)
C(72)-C(73) 1.433(14

C(2)-Fe(1)-C(3) 40.69(13) C(2)-Fe(1)-C(1) 40.58(13)
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