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Abstract

ABSTRACT

Advances in our understanding of human locomotion can be futile if no practical use 
is made of them. For the long-term benefit of patients in a clinical setting, scientists 
and engineers need to forge stronger links with orthopaedic surgeons to make the 
most use of the recent developments in motion analysis technology. With this 
requirement as a driving-force, an objective classification tool was developed that 
uses motion analysis for an application to clinical diagnostics and monitoring, namely 
knee osteoarthritis (OA) progression and total knee replacement (TKR) recovery.

The classification tool is based around the Dempster-Shafer (DS) theory, and as such 
is built upon the sound foundations of Bayesian statistics. The tool expands on the 
work of Safranek et al. (1990) and Gerig et al. (2000) who developed and used parts 
of the classification method in the areas of vision and medical image analysis 
respectively. Using the data collected during a clinical knee trial, this novel approach 
enables the objective classification of subjects into an OA or normal group. Each 
piece of data is transformed into a set of belief values: a level of belief that a subject 
has OA knee function, a level of belief that a subject has NL knee function and an 
associated level of uncertainty. The belief values are then represented on a simplex 
plot, which enables the final classification of a subject, and the level of benefit 
achieved by TKR surgery to be visualised. The DS method can be used as a fully or 
partially automated tool. The input variables and control parameters, which are an 
intrinsic part of the tool, can be chosen by an expert or an optimisation approach.

Using a leave-one-out (LOO) approach, the tool was able to classify new subjects 
with an accuracy of 97.62%. This compares with the 63.89% and 95.24% LOO 
accuracies of two well-established methods -  the Artificial Neural Network and the 
Linear Discriminant Analysis classifiers respectively. The tool also provides an 
objective indication of the variables that are the most influential in distinguishing OA 
and NL knee function. In this case, the variables identified by the tool as important are 
often cited as clinically relevant variables, which enhances the appeal of the tool to 
the clinical community and allows for more effective comparison with clinical 
approaches to diagnosis. Using Simulated Annealing to select the control parameters 
reduced the LOO accuracy to 95.24%. Automated feature selection using a Genetic 
Algorithm and Sequential Forward Selection increased the LOO accuracy to 100%. 
However, further work is required to improve the effect of this process on the overall 
level of uncertainty in the classification.

Initial studies have demonstrated a practical and visual approach that can discriminate 
between the characteristics of NL and OA knee function with a high level of accuracy. 
Further development will enable the tool to assist orthopaedic surgeons and therapists 
in making clinical decisions, and thus promote increased confidence in a patient’s 
medical care.
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NOTATION

CHAPTER 1

a Discriminant function constant

Oji PC loading

ao Constant Fourier coefficient

ak Constant Fourier coefficient

b, Discriminant function coefficient

bk Constant Fourier coefficient

A(co) Fourier coefficient

B(co) Fourier coefficient

D Discriminant score

8(0 Periodic function

P Number of input variables

x(t) Non-periodic function

X(co) Fourier transform of x(t)

V / Input variable

CO Fundamental frequency

CHAPTER 2

A Singular value decomposition vector

B Singular value decomposition vector

Ckl Correlation coefficient between variables z* and z/

C Correlation matrix

d Translation vector

D Singular value decomposition matrix

[Df] Force calibration matrix
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F ap

Fv

Fx

Fy

Fz

gi

g

h

k

L

m

Mx

My

Mz

Mi

n

n,

N i

origina,m 

originm,g 

originp,g

Eigenvector 

Matrix of eigenvectors

Vector o f coordinates of a body in the CS, CS1 

Mean of the coordinates of a body in the CS, CS1

Medial-lateral GRF 

Anterior-posterior GRP 

Vertical GRF

Force component in the force platform CS 

Force component in the force platform CS 

Force component in the force platform CS 

Vector of coordinates of a body in the CS, CS2 

Mean of the coordinates of a body in the CS, CS2 

Height

Correlation coefficient between variable i and PC j  

Component loadings matrix 

Number of PCs retained 

Moment component in the force platform CS 

Moment component in the force platform CS 

Moment component in the force platform CS 

Marker cluster marker 

Number of subjects

Unit vector used to establish femoral ALCS 

Vector used to establish the femoral ALCS 

MLCS coordinates of the ALCS origin 

GCS coordinates of the PLCS origin 

GCS coordinates of the MLCS origin
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p  Number of input variables

P Singular value decomposition matrix
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Pm The MLCS coordinates of the pointer’s point

Pp The PLCS coordinates of the pointer’s point
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Tgm Inverse of the matrix Tmg
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Tam Inverse of the matrix Tma

u, Unit vector used to establish the PLCS

U, Vector used to establish the PLCS

vi Unit vector used to establish the MLCS

Vi Vector used to establish the MLCS
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W/ Vector used to establish the tibial ALCS

Zy Standardised variables

Z Matrix of standardised variables

T Matrix of singular values

cp, Singular values
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A Diagonal matrix of eigenvalues

Sample standard deviation for

n Matrix of PC scores

CHAPTER 3

A DS control parameter

B DS control parameter

bpa Basic probability assignment

cfiv) Confidence factor

it SA control parameter, iterations per temperature

k DS control parameter

kc DS control parameter k

ks DS control parameter k

m(.) Probability mass function (bpa)

mc(.) Combined probability mass function (bpa)

nt Number of input variables

{NL} The hypothesis “the subject has NL knee function”

{OA} The hypothesis “the subject has OA knee function”

p(vj\Wj) Conditional probability

p ( \V j )  Prior probability

p(Wj\Vj) Posterior probability

rt SA control parameter, temperature reduction factor

tf SA control parameter, final temperature

ts SA control parameter, starting temperature

t Temperature
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V Input variable

W the hypothesis “the object is at its predicted position”

{-x} the hypothesis “the object is not at its predicted position”

A/ Difference between current OB and new OB

6 DS control parameter

0 Frame of discernment

©L Lower uncertainty boundary

©u Upper uncertainty boundary

K Normalisation factor

{<P/} Hypothesis

(W Elementary hypothesis

0 The null hypothesis or empty set

CHAPTER 4

A DS control parameter

B DS control parameter

cfly) Confidence factor

it S A control parameter -  iterations per temperature

k DS control parameter

kc DS control parameter k, calculated using correlation coefficient method

ks DS control parameter k, calculated using standard deviation method

mc{•) Combined probability mass function (bpa)

{NL} The hypothesis “the subject has NL knee function”

{OA} The hypothesis “the subject has OA knee function”

rt S A control parameter -temperature reduction factor

h SA control parameter -  starting temperature
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/f S A control parameter -  final temperature

v, Input variable

A/ Difference between current OB and new OB

6 DS control parameter

0  Frame of discernment

@l Lower uncertainty limit

@u Upper uncertainty limit

CHAPTER 5

A DS control parameter

B DS control parameter

do Discriminant function constant term

di Discriminant function coefficient
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Chapter 1 Introduction and Literature Review

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Surgeons and physiotherapists use a range of simple observations and physical 

examinations to decide on the extent of a patient’s illness and to proceed with a 

diagnosis and plan of surgery or therapeutic treatment. Their decisions are based on 

experience of patients with similar symptoms and their expertise and training.

However, following the emergence and development of new Clinical Motion Analysis 

(CMA) techniques over the last 15 years, the global scientific community has begun 

to realise that the field of biomechanics and human motion analysis has much to 

contribute to the development of new and emerging medical diagnostic techniques.

The development of CMA techniques as a non-invasive aid to medical assessment has 

important implications in the area of patient diagnosis. With close partnership 

between orthopaedic surgeons, scientists and engineers, the tools available for patient 

assessment and diagnosis are set to improve and patients will benefit from improved 

accuracy and efficiency of their diagnosis, promoting increased confidence in their 

medical care.

This thesis stems from such a desire to help with and improve the process of patient 

diagnosis that will be beneficial to the health of the general population in the long­

term. As such the purpose of this thesis is to provide the foundations for developing a 

sophisticated diagnostic tool to aid orthopaedic surgeons and therapists when making 

clinical decisions based upon CMA techniques.

Patients with movement disorders are regularly referred to CMA laboratories. During 

these brief assessments, a wealth of biomechanical data relating to the functional 

abnormality is collected, e.g., range of movement etc. However, it is the experience of 

the author and other colleagues that it is extremely difficult to objectively analyse and
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gain conclusions from such a wealth of data. This is reinforced by the work of 

Benedetti et al. (1998) who commented that “it is often not easy for the clinician to 

examine so much data without a systematic and rigorous approach” (pp.204).

As a result, the aim of this research is to develop an objective diagnostic tool that 

would be capable of producing an automated diagnosis from the CMA data. The 

objective diagnostic tool would be developed in conjunction with orthopaedic 

surgeons and thus make a decision which is in-line with clinical opinion. Such an 

objective tool would have significant clinical value as it could provide useful 

information on the effectiveness of pre-operative disease progression, surgery and 

post-operative therapy and recovery assessment. With an improvement to the clinical 

assessment process for common diseases, surgery to relieve the painful and 

functionally disabling symptoms could be more effectively tailored to suit patients. 

The clinical tool could provide a powerful prediction of the extent to which a patient 

presenting a distinct set of pre-operative symptoms would respond to various 

treatment options.

The remainder of this thesis is concerned with the development of an objective 

classification tool using motion analysis for a proposed application to clinical 

diagnostics and monitoring. A brief introduction is provided to the historical 

development of motion analysis in general, followed by a description of the proposed 

application of the objective tool. A detailed review of the previous techniques and 

research carried out in the area of objective gait analysis is given and the new 

objective tool is then introduced with a number of key objectives.

1.1.1 A brief history of gait data analysis

The analysis of human movement dates back many centuries. Indeed, even as early as 

the 4th century BC philosophers such as Aristotle were providing qualitative 

descriptions of human locomotion. However, it was many centuries later until 

scientists began to quantitatively measure human movement.

In the 17th century, scientists including Galileo, Newton and Borelli began to apply 

the principles of motion to human locomotion (Whittle, 1996). In the early 19
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century, the Weber brothers produced quantitative measurements of temporal-distance 

parameters (Whittle, 1996; Andriacchi and Alexander, 2000). Towards the end of the 

19th century and the beginning of the 20th century, Marey, Muybridge and Braune and 

Fischer developed pioneering techniques to quantitatively measure human motion 

(Whittle, 1996; Andriacchi and Alexander, 2000). Marey developed a number of 

devices to record movement including the photographic rifle and an early version of a 

force plate. Muybridge produced sequences of photographic images of animals and 

humans in motion (Whittle, 1996; Andriacchi and Alexander, 2000). Braune and 

Fischer developed a photographic technique that could track movement in 3-D and 

measurements to describe movement in terms of kinematics and kinetics (Andriacchi 

and Alexander, 2000; Whittle, 1996). However, the calculations that they made were 

extremely complicated and time consuming.

Since these early pioneering works the science of gait analysis has progressed 

considerably. With the introduction and advancement of computer technology the use 

of instrumented gait analysis in a research setting has become widespread. The 

modem gait analysis laboratory typically houses a set of digital and video cameras to 

capture dynamic movement; digital force platforms to measure kinetic data; and EMG 

equipment to record muscle activity. It is now possible to obtain and process highly 

accurate measurements of sophisticated movement in the space of a few hours. In 

contrast to the pioneers of motion analysis, although there are questions that relate to 

the degree of accuracy of the motion analysis methods, the main challenge facing the 

biomechanical community today is no longer how to produce data that quantifies 

human movement; this is now commonplace. Rather, one of the greatest challenges is 

how to use this information so that it can be of clinical benefit (Whittle, 1996).

1.1.2 Context and aims of work

This work stems from an on-going clinical trial conducted in the Cardiff University 

motion analysis laboratory. The trial was established to examine the knee function of 

patients before and after surgery to treat their osteoarthritis (OA).

Knee OA is a common degenerative disease that affects the cartilaginous surfaces of 

the joint. The cartilage roughens and becomes thinner and, as a result, the surrounding
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bone thickens, osteophytes form and the synovium swells (Arthritis Research 

Campaign, 1998). Additionally, the surrounding soft tissues contract and the muscles 

atrophy. This deformity limits the movement of the joint and often causes a patient 

severe pain. In cases of severe knee OA, total knee replacement (TKR) surgery is 

performed to remove the diseased surfaces of the joint and replace them with 

prosthetic components. In most cases, TKR surgery reduces knee pain and restores a 

degree of normal (NL) knee function (Andriacchi, 1993; Myles et al., 2002).

The knee clinical trial in Cardiff was specifically put in place to characterise the 

differences between two different Depuy TKR designs: the P.F.C. Sigma (fixed- 

bearing knee, (FTKR)) and the DePuy P.F.C. Sigma R.P. (rotating platform knee, 

(RTKR)) based on the measurements taken during the laboratory sessions. To date, 

comparison of the two TKR designs at different stages of post-operative recovery has 

been achieved by examining the transverse plane range of motion of the tibiofemoral 

joint and subsequently comparing them to the mean of a group of NL knees (Holt et 

al., 2002, Roy et al., 2002), as shown in Figure 1.1. However, there are problems 

associated with this simplistic approach. These main concerns are now discussed.

During a session in the Cardiff motion analysis laboratory, anthropometrical 

measurements, kinetic and kinematic waveforms, temporal-distance parameters and 

patient related information are collected. A summary of the variables recorded is 

given in Figure 1.2. The vast amount of data obtained from such an analysis is 

common practice as highlighted by the work of Benedetti et al. (1998) who collected 

124 parameters to describe each subject’s gait.

Despite collecting such a mass of data during these sessions, analysis so far has been 

restricted to one single variable: range of motion in the transverse plane. However, 

among all the variables collected during a typical gait analysis, no individual variable 

is capable of providing a complete description of a subject’s gait (Jacobs et al., 1972). 

Furthermore, use of one variable in isolation to the rest has meant that a vast amount 

of potentially important information lies redundant. Rather than identify the changes 

in individual variables, it would be of value to see how the alteration of multiple 

variables has combined to produce an overall transformation in a subject’s gait 

pattern.
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Figure 1.1 Mean external-internal tibial range of motion (± 1 standard deviation) for 

pre-op, FTKR and RTKR post-op and normal subjects. M = Number o f months post­

op, RTKR = Rotating platform TKR, FTKR = Fixed bearing TKR, N = sample size

(Reproduced from Holt et al., 2002).

A high proportion of the data recorded during the gait analysis sessions exists in the 

form of temporal waveforms. As mentioned above, these temporal waveforms are 

currently parameterised (Holt et al., 2002; Roy et al., 2002); a practice that is 

prevalent in many other gait analysis studies (as an example see Chao et al., 1980 and 

Benedetti et al., 1998). A danger associated with this practice is highlighted in Figure 

1.3, which depicts the internal-external rotation waveforms of two NL subjects. 

Although the ranges of motion of the two subjects are very similar (9.9° and 9.8° 

respectively) the shape of the waveforms is very different. Consequently, there is a 

danger that valuable temporal information is discarded. Furthermore, gait parameters 

defined using NL temporal waveforms are not always easily identifiable in 

pathological waveforms (Chau, 2001a; Deluzio et al., 1997; Chao et al., 1983).
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Patient relatedKinetic T emporal-distanceKinematic Anthropometric

Age
Sex
Knee Outcome 
Survey Score

Cadence
Speed
Stride length 
Stance phase 
Swing phase

Height
Weight
BMI
Medial-lateral 
knee width 
Anterior-posterior 
knee width 
Knee girth

Medial-lateral 
force curve 
Anterior-posterior 
force curve 
Vertical force 
curve 
Various
parameters taken 
from force curves

Flexion-extension 
rotation curve 
Abduction- 
adduction rotation 
curve
External-internal 
rotation curve 
Various
parameters taken 
from rotation 
curves

Figure 1.2 Variables collected during gait analysis session
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Figure 1.3 Internal-external rotation waveforms for two different subjects. The range 

of values for the two waveforms is the same but the overall shape is different.

In response to the inadequacies of the present analysis technique, a need has been 

identified to develop a new analysis method to characterise the differences between 

NL, OA (pre-operative TKR) and post-operative TKR subjects.

Such a characterisation or classification method would be useful in the determination 

of pathology and improvement due to surgical and therapeutic intervention. Practical 

applications of a simple characterisation method would include monitoring of joint 

degeneration and diagnostics; prediction of outcome for surgical intervention; post­

operative monitoring and functional analysis of joint prosthesis design.

The next section of this chapter seeks to present a comprehensive description of the 

current methods used to analyse gait data and in so doing identify their capabilities, 

limitations and assess their applicability to the classification of OA, NL and TKR 

knee function.

1.2 LITERATURE REVIEW

Chau (2001a; 2001b) presents an extensive review of the emergent techniques applied 

to the task of gait data analysis, namely Multivariate Statistics, Fuzzy methods,
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Wavelet Analysis, Fractal Analysis and Artificial Neural Networks (ANN). Other 

methods reported in the literature include Fourier Analysis (FA), Linear Discriminant 

Analysis (LDA) and Cluster Analysis (CA). Each method that is relevant to the 

current problem is now considered in turn. In each case, a brief summary of the 

method is followed by a review of the applications of the method. Finally, in section 

1.2.5 a discussion is given on the capabilities and limitations of each method within 

the context of the current problem.

1.2.1 Fourier Analysis (FA)

The Fourier transform is a frequency-domain representation of a function. The 

representation in the frequency domain contains exactly the same information as that 

of the original function; they differ only in the matter of presentation. Periodic 

functions, g(t), can be expressed as an infinite sum of sines and cosines at discrete 

harmonic frequencies of the fundamental period of the signal:

oo
g(/) = a0 + ^  (ak cos(kcot)+ bk sin(&6rf)) ( 1 .1)

* = i

where ao is a constant, and bk are Fourier coefficients, and co the fundamental 

frequency (Stroud, 1984).

Non-periodic functions cannot be broken down into discrete frequency components. 

However, such functions can still be represented in the frequency domain. In this 

case, the Fourier series becomes a Fourier integral and the Fourier coefficients are 

continuous functions of frequency, called Fourier transforms:

oo

x(t)= \x { a )e - ,Mdt ( 1 .2 )
— 00

where X(co)= A(co)-iB(co) is the Fourier transform of x(/) (Brigham, 1988). Thus, 

waveform data can be expressed in terms of discrete parameters.
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Jacobs et al. (1972) first considered the value of FA in the analysis of gait data. 

Choosing the ground reaction force (GRP) as their working parameter, a FA 

representation of the vertical GRF waveform was obtained for 25 NL subjects and 239 

pathological hip patients. The GRP waveforms and the condensed harmonic 

representations were examined visually and an attempt was then made to relate these 

to the diagnosis of the patient. The harmonic spectra of the NL waves were similar 

over the first six harmonics but varied considerably beyond this. The harmonic spectra 

and GRF waveforms themselves varied largely for the patients within the pathological 

sample; hence generalising about pathological gait was more complex a task. Eight 

different waveform types were identified by visual examination of the GRF 

waveforms. Although this was based on subjective opinion, some correlation was 

found between their features, the harmonic spectra and the diagnostic state of the hip. 

This use of FA highlights its potential in providing succinct representations of 

continuous waveform data to enable easier comparison of waveform data.

Chao et al. (1983) established a database of temporal-distance parameters, knee joint 

motion and GRP waveforms for 148 normal adults during level walking. FA was also 

applied to the knee joint motion and GRP waveforms and its use again highlights its 

potential in providing representations of the entire gait cycle data.

Following on from the work of Chao et al. (1983), Schneider and Chao (1983) 

performed a study to examine the potential of FA in distinguishing NL and 

pathological gait. FA was performed on the GRP waveforms of 26 NL subjects and 10 

TKR patients. A method was developed to determine the essential number of 

harmonics required to reconstruct the original GRF waveforms. It was found that the 

first two to four harmonics were the dominating coefficients in describing each of the 

GRP patterns. Statistical analysis revealed a difference in the corresponding harmonic 

coefficients of the NL and OA patterns. These findings led Schneider and Chao 

(1983) to suggest that Fourier coefficients could be used as key parameters to 

differentiate the two groups. Indeed, in later classification studies many researchers 

used Fourier transformed variables as inputs to ANN (Holzreiter and Kohle, 1993; 

Kohle and Merkl, 1996; Barton and Lees, 1997) and to Principal Component models 

(Borzelli et al., 1999).
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FA can produce discrete representations of continuous gait waveforms whilst 

retaining temporal information (Jacobs et al., 1972; Chao et al., 1983; Schneider and 

Chao, 1983). The most successful application of FA has been as a pre-processing 

method to other analysis techniques (Holzreiter and Kohle, 1993; Kohle and Merkl, 

1996; Barton and Lees, 1997; Borzelli et al., 1999).

1.2.2 Multivariate Statistics

Principal Component Analysis (PCA), Factor Analysis, Linear Discriminant Analysis 

(LDA) and Cluster Analysis (CA) are all well-established, Multivariate Statistical 

methods. Together, they are the most widely understood and applied in the analysis of 

gait data (Chau, 2001a; 2001b). All of the reviewed studies utilising Factor Analysis 

are concerned with the identification of EMG patterns and consequently are not 

considered here (see Davis and Vaughan, 1993; Olree and Vaughan, 1995; Merkle et 

al., 1998)

1.2.2.1 Principal Component Analysis {PCA)

PCA is a Multivariate Statistical method that aims to obtain a succinct representation 

of a high dimensional data set of interrelated variables. PCA transforms the data set 

into a new set of uncorrelated variables, or components, retaining the variation present 

in the original data set. A more comprehensive description of PCA is given in Chapter 

2 (section 2.5.1), but a concise summary is given here.

The Principal Components (PCs) are linear combinations of the original variables v, (i 

= 1:/?). Theyth PC, P j  is given by,

^  0-3)
»=i

where ajt are the component loadings, which are indicative of the amount of variation 

in variable v, described by the PC, Pj. Although PCA produces the same number of 

PCs as there are original variables it is anticipated that the variances of the majority of
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PCs will be negligible and that the original variables can be described by a smaller 

number of PCs.

The first application of PCA in the analysis of gait data was by Shiavi and Griffin 

(1981) whilst investigating the EMG and foot-contact patterns of NL subjects. The 

gait cycle was divided into 16 time segments and a 16-element vector was constructed 

for both the EMG and foot-contact patterns. Each element value depicts the 

proportion of time that either a muscle is active or a foot makes contact. Shiavi and 

Griffin (1981) used PCA to reduce the dimensionality of the data, thus enabling the 

clustering of similar patterns. This early work revealed the potential of PCA for gait 

data reduction and for use as a pre-processing step to CA.

Yamamoto et al. (1983) used PCA to quantitatively evaluate the recovery of patients 

with hip disease. Joint angular displacement (sagittal plane only), GRFs, point of 

force application and temporal-distance factors were measured for 115 NL subjects 

and 211 patients undergoing varied surgical procedures for hip disease. Using four of 

these measured variables and six derived representations of them, ten items were 

chosen as inputs to the PC model. Three out of the ten PCs were retained, although no 

comment is made as to how much of the total variation these three components 

account for. Yamamoto et al. (1983) went further than Shiavi and Griffin (1981) and 

interpreted their PCs, thus maintaining the clinical relevance of their method. Through 

examination of the component loadings, the first two PCs were labelled ‘total gait 

ability’ and ‘activity and symmetry’ respectively. The third PC was discarded as 

irrelevant because only three out of the ten components loaded highly against it. PCA 

was able to sufficiently reduce the data to enable a visual representation of results. 

The first two PCs were plotted against each other to form a ‘gait evaluation plane’ as 

shown in Figure 1.4. In projecting the data for each NL and patient (pre and post 

operative) subject onto this component plane, Yamamoto et al. (1983) were able to 

represent visually the variation in gait due to age and pathology, and improvements in 

gait due to surgical intervention (see Figure 1.5). All patients and NL subjects could 

be evaluated on the same scale.
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Figure 1.4 Gait evaluation plane formed by two PCs, Z\ and Zj (Taken from

Yamamoto et al., 1983).
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Figure 1.5 Recovery of the factor score by operation in the ‘gait evaluation plane’. 

Numerals indicate months after operation (Taken from Yamamoto et al., 1983).
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Unlike previous studies, Deluzio et al. (1997, 1999) did not use temporal-distance 

parameters extracted from the gait waveforms as inputs to their PC models, but the 

entire gait waveform themselves; a time normalised curve sampled at each 1% from 0  

to 100% of the gait cycle). Consequently, temporal information was retained. PC 

models were built from a dataset comprising elderly NL volunteers. PC models were 

developed for the three components of the knee bone on bone forces, the three net 

reaction moments and the two components of the relative knee angles. The number of 

PCs used in each model was determined using cross validation. Once the PC models 

had been established using the NL cohort, the gait data from patients were introduced 

to the PC models, converted into a set of PC scores and compared to 95% confidence 

limits of the NL group. Using this procedure, Deluzio et al. (1997, 1999) were able to 

detect deviations from NL and identify the portion of the gait cycle responsible for 

such differences.

Sadeghi et al. (1997) used PCA to identify the peak muscle power and energies 

developed by the lower limbs and to determine the relationship between these 

parameters and the functions of support and propulsion during NL gait. The temporal 

gait parameters, peak powers and mechanical energies of nineteen, right-leg 

dominant, NL males were analysed using PCA. PCs with eigenvalues less than one 

were discarded, and of the remaining PCs, those containing at least sixty percent of 

the information were retained. This resulted in four PCs being kept for the right limb, 

and four for the left. Sadeghi et al. (1997) did not attempt to interpret or label the PCs. 

Alternatively the PC loadings were studied to determine the most important gait 

parameters, i.e. those parameters contributing most significance to the overall 

variance of the data; in this instance PC loadings greater than 0.6. Ten important gait 

parameters were identified for the right leg relating to propulsive functions, and 

fifteen for the left relating to supportive functions.

Borzelli et al. (1999) applied PCA as a data reduction technique to a set of GRFs 

recorded during a number of sit-to-stand trials. Five trials were performed for 24 

young and 58 elderly healthy subjects. During each trial, three force and three 

moment waveforms were recorded. Each signal was filtered, Fast-Fourier transformed 

and normalised before performing PCA. Generally, the first two PCs described over 

80% of the total variation present in the original data, which emphasizes the ability of
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PCA to deal with the dimensionality problem evident in gait analysis. Borzelli et al. 

(1999) examined the nature of the correlation coefficient between inter and intra­

subject PCs. A high correlation for the first PC (PCI) values obtained from different 

trials and different subjects suggest that the whole population accomplish the motor 

task by adjusting the GRP in such a way to produce the same PCI. As a result, the 

group related PC 1 to intrinsic aspects of the motor task. Low levels of correlation for 

the second PC (PC2) suggest that it is related to inter-subject features used to achieve 

the motor task. Borzelli et al. (1999) did not attempt any pattern classification, but 

suggest that the individual features highlighted by PC2 could be used in such a task.

Sadeghi et al. (2000) used PCA to characterise the main functional actions of the 

muscles at the hip during able-bodied gait and to identify any non-symmetrical 

behaviour between the right and left lower limbs. Twenty young, healthy males 

participated in the study. Following the work of Deluzio et al. (1997, 1999), Sadeghi 

et al. (2000) used the entire gait waveform as input to their PC model; the muscle 

powers at the hip (sagittal plane) at 1% increments of the gait cycle (1 0 1  data 

samples). PCs with eigenvalues less than one were discarded and finally the first four 

PCs, accounting for over 70% of the variation in the original data set, were retained. 

When interpreting the PCs, the parameters that had the highest correlation with each 

PC were used; in this instance those with component loadings greater than 0.6. The 

PCs represented different actions taken by the muscles during the gait cycle namely 

control balance, propulsion, between limb coordination and limb preparation.

Schutte et al. (2000) highlighted a further potential of PCA, using it to derive a gait 

index to quantify deviations from NL gait. The use of such a multivariate technique 

enabled them to examine the collective effect of surgical intervention on all gait 

features, instead of simply the change in individual features themselves. The sixteen 

parameters included in the PCA analysis were subjectively chosen based on expert 

clinical opinion. PC expressions were derived using a set of NL subjects. 

Subsequently the data belonging to the pathological sample was transformed into PC 

values using the PC expressions derived from the NL group. The sum of the square of 

the distance of the 16 PC values was interpreted as the deviation of the subject’s gait 

from NL, known as the normalcy index. The normalcy index was used to distinguish 

between NL subjects and patients, and between patients with different severities of
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gait abnormalities. Schutte et al. (2000) found that the mean index values were found 

to increase as gait abnormality increased. This study further highlights the potential of 

PCA to classify gait differences and to identify changes due to surgical intervention.

Building on the work of Deluzio et al. (1997, 1999), Astephen et al. (2002a, 2000b) 

developed a PC method that concurrently considered constant gait parameters and 

time-varying gait waveforms. The full gait cycle data of nine waveforms (three 

components of knee joint angles, moments and forces) and five constants (static hip 

knee ankle angle, standing knee flexion angle, medial and lateral condyle joint spaces 

and BMI) were simultaneously included in a PCA. The technique was able to 

discriminate between OA and NL gait patterns. Using a stepwise linear discrimination 

procedure, the features most able to discriminate between the two groups were 

identified. These features were interpreted through examination of the contribution of 

each of the input variables to each feature. This study revealed that the loading 

response phase of the gait cycle is an important factor in isolating OA.

In all the reported studies, PCA was able to significantly reduce the dimensionality of 

the data set. However, it must be noted that the number of PCs needed to adequately 

explain original data varied a great deal and often appeared to be based on subjective 

expert opinion. PCA is able to contend with the large data sets that are customary in 

the field of gait analysis (Astephen et al., 2002a; Astephen et al., 2002b). 

Consequently, PCA is suitable as a pre-processing step subsequent to the application 

of other methods as seen in the study of Shiavi and Griffin (1981). Like FA, PCA has 

the ability to represent gait waveforms in a discrete form whilst retaining temporal 

information (Deluzio et al., 1997; Deluzio et al., 1999; Sadeghi et al., 2000; Astephen 

et al., 2002a; Astephen et al., 2002b). Additionally, it is able to deal simultaneously 

with continuous and discrete variables (Astephen et al., 2002a; Astephen et al., 

2002b). The transformed variables can have a physical meaning that is clinically 

relevant although this requires manual intervention and is dependent on the ability of 

the researcher to interpret the PCs. This interpretation stage is therefore a subjective 

and often time-consuming process and it is not always possible to assign a physical 

meaning to the PCs. If the PCs have a physical meaning, they can be used to detect 

changes in gait due to surgical or therapeutic intervention. This can be achieved in one 

of two ways. Firstly, if two PCs can adequately represent the original data, the
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transformed data can be displayed in bivariate plots. This can enable changes to be 

represented visually (Yamamoto et al., 1983). Secondly, the PCs can be utilised to 

form a gait index again capable of highlighting gait changes or differentiating distinct 

subject populations (Schutte et al., 2000).

1.2.2.2 Linear Discriminant Analysis (LDA)

A fuller description of LDA is given in Chapters 5 and 7; consequently, a concise 

summary is given here. The objective of LDA is to obtain a weighted, linear 

combination of as set of variables such that the different groups of subjects are as 

distinct as possible. LDA yields a discriminant function of the form:

D = a + b,v, + b2v2 + ... + bpvp (1.4)

where D is the discriminant score, p  the number of variables, a a scaling factor, bt the 

discriminant function coefficient and v, the discriminator variable.

Chao et al. (1980) employed LDA to compare the knee function of pre and post­

operative TKR patients with NL subjects. Through examination of the weighting 

coefficients of the linear discriminant function, eight out of forty three parameterised 

gait variables were found to be most significant in providing discriminative power in 

separating the two subject groups. Using these eight variables, a performance index 

was developed to assess the overall functional status of a patient. From the functional 

indices, the group were able to identify differences between the NL and pathological 

subjects and changes due to surgical intervention. This study highlights the ability of 

LDA to identify the most important gait parameters when differentiating two subject 

groups and to reduce the number of gait variables used in subsequent analyses. 

Furthermore, the discriminant function can be evaluated for each subject to give a 

single value corresponding to knee function.

Subsequent to performing PCA on a combined data set of constant gait parameters 

and time-varying gait waveforms, Astephen et al. (2002a; 2002b) employed a 

stepwise linear discrimination procedure to identify the PCs most able to discriminate 

between OA and NL gait patterns. These features were interpreted through
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examination of the contribution of each of the input variables to each feature. This 

study revealed that the loading response phase of the gait cycle is an important factor 

in isolating OA.

LDA is able to indicate the gait parameters most able to discriminate different subject 

groups (Chao et al., 1980; Astephen et al., 2002a; Astephen et al., 2002b). This 

inherently enables a reduction in the number of gait variables used in subsequent 

analyses. Furthermore, evaluating the discriminant function for each subject gives a 

single value corresponding to knee function (Chao et al., 1980).

1.2.2.3 Cluster A nalysis (CA)

“CA is the art of finding groups in data.” (Kaufman and Rousseeuw, 1990) The aim of 

CA is to automatically group objects in a way that those in the same group are as 

similar as possible and those in different groups are as distinct as possible. Unlike 

LDA, CA establishes the groups itself and does not define them a priori. A number of 

different clustering algorithms exist and their use will depend on the type of data 

being used and the type of clusters required.

Subsequent to performing PCA on their data set to reduce its dimensionality, Shiavi 

and Griffin (1981) implemented a CA in order to detect groupings in their data. Using 

three PCs, the patterns were split into five clusters, which were found to be 

statistically different. With three PCs, CA identified prevalent muscle patterns 

although little interpretation was given of these patterns. This early work revealed the 

potential of CA for pattern detection.

1.2.3 The Artificial Neural Network (ANN)

The interest in, and use of, ANNs has grown rapidly over recent years primarily due 

to their inherent non-linear modelling ability. This is reflected in the vast amount of 

research that has been executed in the area of gait analysis since its first application in 

this field in 1993. Indeed, ANN dominate the types of analysis techniques used in gait 

analysis over the last decade. The types of ANN employed within these studies are 

shown in Figure 1.6
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Figure 1.6 ANN employed within gait analysis studies.

An in-depth description of the ANN is given in Chapter 7 (section 7.1); consequently, 

only a brief summary is given here.

The ANN consists of non-linear processing elements, neurons, which are grouped 

together in layers. Generally, the ANN comprises an input layer in which neurons are 

connected to the input data; one or more hidden layers, which are the processing 

layers; and an output layer in which neurons transmit the final output to the user.

Each neuron receives a set of inputs via weighted connections, weights. The neuron is 

activated if the sum of the weighted inputs exceeds the threshold value of the neuron. 

The signal is subsequently passed through an activation function, which produces the 

neuron output.

The way in which neurons are connected depends on the type of ANN being used. In 

a feed-forward ANN, neurons on one layer pass their output to the neurons on the 

subsequent layers but not to preceding layers. Thus, information passes through the 

network in a forward-direction only. In a recurrent ANN, each individual neuron 

passes its outputs to all the other neurons within that layer. This is performed several 

times until some condition is met. Only then does each neuron send its output to the 

subsequent layer.

The relationship between the input neurons and the output neurons is not intrinsic to 

the ANN but must be learnt through a process called training. Once the ANN has been 

trained, it can accept previously unseen data and attempt to predict an associated
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output, simply by evaluating the internal functions. During supervised training, 

examples of inputs and their corresponding outputs are presented to the ANN. By 

iteratively self-adjusting the connection weights, the ANN learns to infer the 

relationship between the inputs and outputs. Training is achieved using a supervised 

learning algorithm e.g. the back propagation algorithm (see Bishop, 1995). In 

contrast, during unsupervised training only examples of inputs are presented to the 

network. The ANN attempts to learn the structure of the data and as a result can start 

to recognise clusters of data and relate similar classes to each other.

In this section, a review of the development of ANN for gait data analysis has been 

limited to studies concerned with the classification of human movement. For a review 

of studies concerned with modelling and prediction the reader is directed to Chau 

(2 0 0 1 b).

Holzreiter and Kohle (1993) trained a three-layer feed-forward, back propagation 

ANN to distinguish between pathological and NL gait. The training set comprised 

pre-processed vertical GRFs taken from 94 NLs and 131 patients (calcaneus fracture, 

prosthesis users). A total of 8173 input patterns were available, given that multiple 

trials were recorded for each subject. By means of randomly presenting these patterns 

of the training set, the ANN was trained using 200,000 iterations and then a test set 

was applied to evaluate the ability of the ANN to correctly classify previously unseen 

samples. The rate of success using the test set was between 75 and 95%. In addition to 

classifying input patterns, the ANN output included an estimate of how well a pattern 

fitted into its assigned class. This enabled a more subtle classification of input 

patterns.

Barton and Lees (1995) developed an ANN to classify patients with foot 

abnormalities. Dynamic pressure patterns, comprising 1316 pressure values, were 

recorded for 18 subjects. A four-layer feed-forward, back-propagation ANN was 

constructed. Despite use of a relatively small training set, Barton and Lees (1995) 

reported accuracies in the range of 77-92% in classifying new data. However, testing 

was performed with a very small number of patterns, and the relatively high 

classification accuracies must be viewed cautiously. Furthermore, the ANN achieved 

higher accuracy at the expense of a simple structure.
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Gioftsos and Grieve (1995) constructed three-layer recurrent ANN to discriminate 

patterns of human gait. Their performance was compared with that of LDA. Temporal 

parameters of twenty NL subjects were recorded whilst walking at different speeds 

and under different conditions (NL walking, walking with a mass attached to the 

ankle and walking with the right knee fixed in a brace). ANNs were used for three 

different applications:

1. Recognition of walking speed in a given walking condition

2. Recognition of walking condition at a given speed

3. Recognition of walking condition.

The training set lacked sufficient samples, which resulted in over-training; only ten 

patterns were used for the training of each ANN. Up to 73% accuracy was achieved in 

correctly recognizing unknown patterns, compared to 6 8 % when using LDA. On this 

basis, Gioftsos and Grieve could not conclude that using ANN was significantly better 

than LDA. This study highlights the necessity of using sufficiently large training set 

consisting of a wide range of possible categories.

Kohle and Merkl (1996) employed self-organising maps (SOM) to identify various 

pathological gait patterns based on GRFs. The pathologies were associated with the 

right pelvis; right and left pelvis (pelvis both sides); artificial left ankle; artificial right 

ankle; left knee and right foot; right knee; left foot and additional injuries; left foot 

and left ankle; and the left ankle. The SOM comprises a grid of artificial neurons each 

having a physical location on an output map. During unsupervised training, the 

weights of these neurons are adapted to match the input vectors in the training set. 

This results in similar input vectors being clustered together on the output map. New 

subjects are then assigned to a location on the output map that is most representative 

of their input pattern. The clustering of similar input vectors is evident in the work of 

Kohle and Merkl since patients with similar pathologies are assigned to neighbouring 

areas of the output map as shown in Figure 1.7. The classification of subjects was 

performed automatically i.e. it was not necessary to assign a label to each gait pattern 

before training the SOM. Thus, the gait patterns of patients were classified solely 

using GRFs.
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Figure 1.7 Map of gait patterns from 100 patients. The different shading of output 

units identifies the varying gait pathologies. The arrows connect areas of similar 

pathologies that are located in separate parts of the map. (Taken from Kohle and

Merkl, 1996, Figure 4).

Barton and Lees (1997) utilised ANN for distinguishing gait patterns based on hip- 

knee joint angle diagrams. The motion of eight subjects was recorded whilst walking 

under three different conditions, namely NL walking, a simulation of leg length 

difference and a simulation of leg weight asymmetry. Pre-processing of data involved 

time normalisation, fast Fourier transformation and linear transformation. A four- 

layer, feed-forward, back-propagation ANN was constructed, although no justification 

was given for the choice of two hidden layers. Outputs of the ANN were the three 

different gait conditions. Training was performed with the use of 18 patterns (eight 

people), and testing with the use of six patterns (two people). Subsequent to training, 

the ANN was able to correctly identify new patterns with an average accuracy of 

75%. Once more, only a small testing and training set was utilised.
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Lafiiente et al. (1998) investigated the application of ANN to a classification problem. 

The authors used a three-layer, feed-forward ANN with back-propagation, to 

distinguish four different groups of subjects: NL, ankle arthrosis, knee arthrosis and 

hip arthrosis. Kinetic, kinematic and temporal-distance parameters were measured for 

148 pathological subjects and 8 8  NL subjects whilst walking at different speeds. LDA 

was utilised to identify a set of discriminatory features. The ANN was able to classify 

subjects with an accuracy of 87% and 73% for NL subjects and pathological subjects 

respectively. The performance of the ANN was compared with that of a statistical 

Bayesian classifier, and was found to be superior at the 5% significance level. 

However, the authors comment that despite satisfactory results, the ANN is not ready 

for practical, clinical use. Again, this study highlights the need for a sufficient training 

sample size.

Su and Wu (2000) introduced the genetic algorithm (GA) ANN (GAANN) approach 

to the problem of gait classification. The performance of the back-propagation based 

GAANN and a traditional three-layered back-propagation ANN were compared. Input 

to the ANN consisted of 99 pairs of foot strikes of 10 healthy subjects and 10 ankle 

arthrodesis patients. Subsequent to training, the GAANN was able to correctly 

classify subjects to an accuracy of 98.7% whilst the ANN had an accuracy of 89.7%. 

The study suggests that ANN using GA are able to classify subjects with a higher 

accuracy rate. Furthermore, Su and Wu (2000) used the value of the neuron output as 

an index of the difference from NL and thus represented pathological gait patterns 

quantitatively. This study demonstrates that GAANN are a powerful tool for 

discriminating between NL and pathological subjects.

Wu and Su (2000) developed a three-layered back-propagation ANN to distinguish 

between gait patterns of NL subjects and ankle arthrodesis patients based on a set of 

force parameters. A stepwise discriminant procedure was used to reduce the number 

of parameters that were used as inputs to the ANN. The ANN, with a simple structure 

(5 hidden neurons) was able to classify subjects with accuracies of up to 95.8%. The 

performance of the ANN was compared with that of LDA, which was able to classify 

subjects with an accuracy of 91.5%.
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ANN have been applied extensively to studies of NL and pathological gait. From the 

work of Barton and Lees (1995), it is evident that ANN have the ability to deal with 

the huge amount of data intrinsic to most gait studies. In many studies, ANN have 

been developed as classification tools, although their success in such a task has varied 

greatly. It is evident from the reviewed studies that the success of ANN is highly 

susceptible to the size of the training set. The inadequacy of training data is a common 

problem as shown in the studies of Gioftsos and Grieve (1995) and Lafuente et al. 

(1998). This has led to over-training and poor generalisation ability. The studies with 

high reported classification accuracies required vast training sets as seen in the study 

of Holzreiter and Kohle (1993) or used very small testing sets (Barton and Lees, 1995, 

1997). Furthermore, a successful performance of ANN is dependent on the 

appropriate selection and pre-processing of input variables: a choice that is not 

straightforward and is dependent on experience and expert opinion. Studies in the 

literature used a variety of pre-processing techniques including scaling, normalisation 

and Fast-Fourier transformation. The inclusion of GA can greatly enhance the 

accuracy of ANN as seen in the work of Su and Wu (2000).

1.2.4 Fuzzy methods

A small number of studies have used Fuzzy methods to analyse gait data. The main 

thrust of their work has been to detect natural groupings among subjects and then to 

use these groupings to classify new patients and identify changes due to surgical 

intervention.

In classic set theory, objects either completely belong to a set or they are completely 

excluded from it; it is not possible for an object to partially belong to a set. For 

example, considering a set of people with OA knee function, in classic set theory the 

boundary between OA and NL has to be set. If the boundary were set at osteoarthritis 

present in 75% of the knee, a person with 76% presence would belong to the “OA 

knee function” set whereas a person with 74% would not, as highlighted in Figure 1.8. 

This system does not describe realistically the transition from NL to OA knee 

function.
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Figure 1.8 Classic set theory.

Fuzzy set theory, first introduced by Zadeh (1965) is an extension of classic set 

theory, in which an object is allowed to belong partially to two mutually exclusive 

sets. For example, as shown in Figure 1.9 a person with 75% presence of OA can have 

full membership of the OA set, whereas the one with 74% can have 95% membership 

of the OA set and 5% membership of the NL set, say. In this way, the question “to 

what extent does a person have OA knee function?” can be answered and categories 

such as “severely OA”, “mildly OA” can be defined.
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Figure 1.9 Fuzzy set theory.
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Classic clustering algorithms generate clusters in such a way that any single object 

belongs to one and only one cluster, as shown in the work of Shiavi and Griffin 

(1981). In contrast, fuzzy clustering algorithms generate fuzzy clusters in which 

objects are allowed to belong to multiple clusters at any one time.

O'Malley et al. (1997) used the fuzzy k-means clustering technique to group children 

with cerebral palsy and neurologically intact children based on temporal-distance 

parameters. The use of fuzzy-clustering enabled multiple memberships of groups. 

They recorded the cadence and stride length of 88 pathological subjects and 68 NL 

subjects and subsequently normalised the parameters to age and height respectively. 

Clustering revealed four clusters relating to compensatory walking strategies 

associated with cerebral palsy, and one cluster representing neurologically intact gait. 

Subsequently, pre and post-operative test data, not part of the original data set was 

introduced. Membership values for the five clusters were calculated for each 

individual belonging to the test set. Improvement due to surgical intervention was 

objectively identifiable in terms of changes in the cluster membership values.

Su et al. (2001) investigated the use of the k-means fuzzy clustering algorithm as a 

means of classifying pathological and NL gait patterns. Sagittal plane Euler angles for 

the hindfoot, forefoot and combined hindfoot and forefoot joints were recorded for 10 

NL subjects and 10 patients with ankle arthrodesis. Su et al. (2001) used cluster 

validity techniques to determine the optimum number of clusters. Fuzzy clustering 

revealed three, three and two clusters for the hindfoot, forefoot and combined forefoot 

and hindfoot respectively. The cluster centres represented distinct walking strategies 

adopted by NL subjects and patients after ankle arthrodesis. Fuzzy clustering yields as 

an output a set of membership values for each subject. Hence, changes in membership 

can be used as an objective technique for measuring improvement due to surgical 

intervention and recovery.

Fuzzy methods allow vague descriptions of gait such as ‘mildly OA’, ‘severely 

impaired’ to be described quantitatively. Fuzzy clustering can automatically group 

data based on similarities and differences. The set of membership values assigned to 

each subject can be used to objectively measure changes in gait function (Su et al., 

2001; O’Malley et al., 1997). Fuzzy methods cannot deal directly with time-varying
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data; it can only deal with data that has been parameterised into an appropriate set of 

features. Finally, certain parameters have to be chosen a priori, which means that the 

method relies heavily on expertise.

1.2.5 Discussion

Past research has shown that FA, PC A, LDA, CA, fuzzy methods and ANN have 

much to offer to the analysis of gait data. The main issues regarding their application 

are now discussed.

The success of many of the methods to analyse gait data is highly dependent on the 

appropriate selection, pre-processing and reduction of input variables. The selection 

process, in the main, has depended highly on expert opinion. Although feature 

selection methods exist (see Dash and Lui, 1997; Siedlecki and Sklansky, 1988), only 

one of the above studies took advantage of them. The work of Su and Wu (2000) 

highlighted the benefits of employing such feature selection techniques: their use of a 

GA improved the accuracy of the ANN by 9%. The majority of studies necessitated 

pre-processing of input variables. Both FA and PCA have proved to be effective pre­

processing methods. Each technique is capable of providing reduced representations 

of continuous data whilst retaining temporal information. However, of the two 

techniques, PCA can produce representations that have a physical and clinically 

relevant meaning. Additionally, the success of powerful techniques such as ANN is 

further dependent on the size of the training set used. The most successful 

applications used training sets comprising 100 to 8000 input patterns, which is often 

not practically attainable in the clinical setting.

When using PCA, LDA and ANN it is possible to identify the individual contribution 

each variable makes to the overall output. In the cases of PCA and LDA this 

contribution is evident in the weighting factors. For ANN, the weights and biases of 

the ANN capture the structure of the relationship between the input variables and the 

outcome. However, these are difficult to interpret and none of the above studies has 

attempted this.
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The PC loadings, linear discriminant functions, ANN neuron output and fuzzy 

membership values, can be utilised to give a single value or set of values 

corresponding to knee function. As a result, a gait index can be established and used 

to compare NL and pathological gait and to detect and quantify changes due to 

surgical intervention. The visualisation of results can aid in the clinical interpretation 

of results and compliment the use of a gait index in the comparison of knee function 

and identification of changes due to surgical intervention. This is particularly evident 

from the binary plot used by Yamamoto et al. (1983) and the SOM utilised by Kohle 

and Merkle (1996). However, the use of binary plots limits comparison to two 

variables, and the SOM only shows the final classification of a subject and not the 

contribution the input variables make to this classification. The visualisation of results 

continues to be a challenge.

In different ways and to varying degrees, each method is capable of distinguishing 

different gait patterns. However, it is evident that no one technique can independently 

meet all the necessary requirements discussed in section 1.1.2. It has become apparent 

that a combinatorial approach will be essential to solve this problem (Chau, 2001b).

1.3 INTRODUCTION OF NEW METHOD

This work introduces a new classification method that incorporates the Dempster- 

Shafer theory of evidence (DST). Founded on the work of Dempster (1968) and 

Shafer (1976), the DST is a method that enables decision-making in the presence of 

uncertain, inadequate and conflicting evidence, a common problem in the CMA 

laboratory.

Safranek et al. (1990) and Gerig et al. (2000) utilised aspects of the DST in studies in 

the areas of vision and medical image analysis respectively and their works highlight 

the potential of the DST as a classification tool. In response to these findings, a 

preliminary study was conducted to investigate the efficacy of the DST in classifying 

gait data (Beynon et al., 2002). An introduction to a novel method (the DS method or 

DS classifier) that incorporated the DST, an optimisation technique and simplex plots 

was introduced to classify NL and OA knee function. Exploiting the DST, the 

approach allowed for a degree of ignorance in the subject’s classification, i.e., a level
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of uncertainty as to whether or not a gait variable indicates normality. The control 

variables governing the transformation from input variables (ranges of motion in the 

three planes, cadence and peak vertical force) to final classification were indicative of 

the variables most influencing the final classification. These control variables were 

optimised using a simulated annealing algorithm, and their magnitude may provide 

useful information as to which are the most significant variables involved in the 

analysis of knee function. The inclusion of simplex plots allowed the classification of 

the subject and each associated characteristic to be represented visually. The DS 

method was used initially as a classification tool for two subjects and both were 

classified correctly.

Building on the work of Beynon et al. (2002) the remainder of this thesis investigates 

the use of the DS method in the classification of subjects with OA and NL knee 

function. The following chapters are based upon a number of key objectives:

1. Develop a method that is able to distinguish OA and NL knee function based

on the measurements taken during knee clinical trial

2. Describe kinematic and kinetic waveforms in a discrete form without

discarding temporal information

3. Ensure that the method is valid, accurate, comparable with other classification 

methods and clinically relevant.

4. Incorporate visualisation and highlight the contribution that each variable 

makes to the overall classification to enhance clinical interpretation

5. Decide which are the most important variables to input to the method and 

investigate whether an automated or expert approach should be used

6. Quantify changes following surgical intervention
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1.4 THESIS SUMMARY

Chapter 2 introduces the motion analysis methods that were used to measure the knee 

function of OA, NL and TKR subjects, in terms of kinematic and kinetic waveforms, 

temporal-distance parameters, anthropometrical parameters and other patient related 

information. The method used to deal with the temporal waveforms is subsequently 

described. Chapter 3 provides a detailed description of the DS method. The chapter 

places the DS method in its context and then explains, in detail, its application to the 

classification of OA and NL knee function. Chapter 4 reports the results obtained 

from a series of tests that were conducted to investigate the validity of the DS 

classifier. Chapter 5 presents a study which examines the use of feature selection. 

The study builds on a paper that was presented at the 1st International Congress in 

Computational Bioengineering (Jones et al., 2003b). Chapter 6 explores the potential 

of the DS classifier as a tool for assessing the outcome of TKR surgery. Chapter 7 

compares the performance of the DS classifier with two other, well-established 

classifiers. The chapter builds on work that was presented in two conference papers. 

The first paper was given as a podium presentation at the 3rd Lower Limb Conference 

and was awarded the “Best Abstract Award” (Jones et al., 2003a). The second paper 

was presented at the 6th International Conference in Biomechanics and Biomedical 

Engineering (Jones et al., 2004). Chapter 8 provides a set of conclusions which can 

be drawn from this work and provides directions for future work.
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CHAPTER 2 

EXPERIMENTAL PROCEDURE

This chapter describes in detail the methods used to assess the knee function of 

normal (NL), osteoarthritic (OA) and total knee replacement (TKR) subjects. The raw 

data used in this work was collated as part of an on-going clinical trial conducted in 

the motion analysis laboratory in the School of Engineering, Cardiff University. The 

protocol for data collection is described in section 2.1. Subsequent to motion capture, 

the raw data was processed to produce a dataset of information relating to a subject’s 

knee function as described in sections 2.2 to 2.4. The kinematic and kinetic 

waveforms produced in sections 2.2 and 2.3 respectively were further processed using 

Principal Component Analysis as described in section 2.5. Finally, a database was 

created for ease of data storage as shown in section 2.6.

2.1 DATA COLLECTION

The raw data was collected as part of a clinical trial established to assess the knee 

function of NL, OA and TKR subjects. For the work contained in this thesis, the raw 

data of a sample of 22 OA subjects (the OA sample), 20 NL subjects (the NL sample) 

and 9 TKR subjects (the TKR sample) was considered. The clinical trial was 

conducted in the motion analysis laboratory in the School of Engineering, Cardiff 

University. The laboratory is equipped with an opto-electronic measurement system 

(MacReflex system, Qualisys Inc.) comprising five digital infrared cameras (Figure 

2.1a), two force platforms (Bertec Corporation, Number N60202, Type 4060H) 

embedded in a raised walkway (Figure 2.1b), a computer and two video cameras.

The clinical trial protocol for data collection was established by Holt et al. (2000). 

The set-up of the motion analysis laboratory during the clinical trial is shown in 

Figure 2.2. The infra-red cameras placed on one side of a walkway are positioned as 

to enable the detection of the movement of markers attached to the lower limbs on one 

side of the body. One video camera is located at the end of the walkway giving a 

front-on view of a subject’s gait, and the other at the side of the walkway giving a
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side-on view. Prior to a clinical trial subject visit, a calibration procedure is performed 

to establish the global coordinate system (GCS) within the laboratory. A calibration 

frame (Figure 2.3a) is placed on the floor of the laboratory and a marked wand 

(Figure 2.3b) is moved over the frame to calibrate a bounding volume large enough to 

capture the movement of a subject’s legs during one complete gait cycle.

A clinical trial subject visit then progresses in a number of stages:

1. Collection of subject details

2. Anthropometrical measurements

3. Placement of marker clusters on shank and thigh

4. Identification of bony landmarks by palpation

5. Neutral position measurement

6. Walking trials

7. Knee outcome survey

These stages, which are completed in turn for each leg, will now be described in more 

detail.
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(a) (b)

Figure 2.1 (a) The infra-red camera and (b) the force platforms (FP) (highlighted by 

dotted lines) embedded in the raised walkway.

(a) (b)

Figure 2.2 The set up of the motion analysis laboratory during the clinical trial, (a) 

The opto-electronic measurement system comprising five infra-red cameras (Cl to 

C5) are (b) positioned along one side of the raised walkway (RW) along with a video

camera (VC).

(a) (b)

Figure 2.3 a) Calibration frame and b) calibration wand.
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2.1.1 Collection of Subject Details

At the start of the clinical trial visit, a set of subject specific details is collected as 

listed in Table 2.1.

Table 2.1 Subject details recorded during the clinical trial visit.

Name

Address

Telephone Number 

Age

Date of Birth

Sex

Leg

Date of first assessment by doctor (if applicable)

Operation date (if applicable)

Surgeon (if applicable)

Knee type (OA/NL/TKR)

Date of trial

Visit type (pre-op/3 months post-op/6 months 

post-op/12 months post-op/normal cohort)

Subject history -  injuries/disabilities

Subject comments

2.1.2 Anthropometrical Measurements

Subsequently, a number of anthropometrical measurements are taken: height, h (m), 

weight, w (kg), anterior-posterior knee width (cm), medial-lateral knee width (cm), 

and thigh girth (cm). A subject’s height and thigh girth are measured using a tape 

measure, their weight with weighing scales and their knee widths with measuring
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callipers. The thigh girth measurements are repeated three times and an average value 

is recorded.

2.1.3 Placement of Marker Clusters on Shank and Thigh

Passive four-marker clusters were previously made using copolymer polypropylene 

and covered with retro-reflective markers as shown in Figure 2.4. These marker 

clusters are positioned laterally on the shank and thigh and held in position using self- 

adhesive Coban© tape or tubigrip as shown in Figure 2.5. The marker clusters remain 

in position throughout the remainder of the trial. The use of marker clusters rather 

than single markers and their placement at sites known to experience minimal 

overlying skin movement, minimises skin movement artefacts associated with 

standard motion analysis techniques (Cappello et al., 1997).

2.1.4 Identification of Bony Landmarks by Palpation

During an initial calibration with the subject standing in a neutral position, the point 

of a marked pointer is used to identify the 3-D coordinates of three bony landmarks 

per segment (shank and thigh) as shown in Figure 2.6. Using manual palpation, each 

bony landmark is identified in turn for the shank (medial condyle, lateral condyle and 

medial malleolus) and thigh (medial condyle, lateral condyle, upper border of the 

trochanter) with the marker clusters attached to the upper and lower limb segments. 

The location of the bony landmarks is shown in Figure 2.7. During these initial 

calibrations, the opto-electronic measurement system locates the positions of the 

marker clusters and pointer in terms of the GCS of the laboratory. Sixty frames of 

coordinate data are measured during a one second data collection period.

2.1.5 Neutral Position Measurement

With the subject standing in a neutral position as shown in Figure 2.5, the opto­

electronic measurement system measures the positions of the marker clusters attached 

to the upper and lower limb segments in terms of the GCS of the laboratory, for a one 

second data collection period.
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% •
j y v .

F igure 2.4 A rigid marker cluster covered with four retro-reflective markers.

F igu re 2.5 The marker clusters are positioned laterally on the shank and thigh and are 

held in position using self-adhesive tape or tubigrip.

F igure 2.6 Identification of bony landmarks using the point of a marked pointer, 

covered in retro-reflective markers.
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2.1.6 Walking Trial

The opto-electronic measurement system records the movement of the retro-reflective 

marker clusters attached to the shank and thigh and the force platform records the 

ground reaction forces (GRF) as the subject walks along a raised walkway, as shown 

in Figure 2.8. During each trial, the motion data and force plate readings are acquired 

for a single complete gait cycle with sampling frequencies of 60Flz and between 960 

and 1080 FIz respectively. The length of the walkway allows the subject to take four 

or five strides before any measurements are taken. The subject is lined up before 

walking to maximise their potential of hitting the force-plate (although they are 

unaware of the force plate as a target). The subject is allowed to rest between each 

recording if they become tired. Six successful walking trials are recorded for each 

subject as they walk at their usual walking pace. A trial is deemed successful if the 

subject cleanly contacts the force plate. The two video cameras provide a 

synchronized visual record of the subject walking.

2.1.7 Knee Outcome Survey

A subject independently completes The Activities of Daily Living Scale of the Knee 

Outcome Survey (KOS) (Irrgang et al., 1998). The KOS is a subjective measure of the 

symptoms and functional limitations, experienced by a subject during daily activities, 

resulting from their knee pathology. KOS consists of seventeen questions with seven 

relating to symptoms and ten to functional disability. Each question is followed by a 

number of associated statements and the subject must tick the statement which best 

describes their recent experience. A scoring system is used to assign values to each 

question. The final score is subsequently displayed as a percentage, with a high final 

score being associated with a high level of function and vice-versa. The KOS may be 

used to assess a subject’s function at a particular instance in time or to assess changes 

in their function over a longer period (Irrgang et al., 1998). A copy of the 

questionnaire is given in Appendix A.
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F igure 2.7 Location of bony landmarks for the femur: a) upper border of the 

trochanter, b) medial condyle, c) lateral condyle; and the tibia: d) lateral condyle, e) 
medial condyle, f) medial malleolus. (Adapted from Whittle, 1996, pp.6 )

Figure 2.8 A walking trial showing the subject walking along the raised walkway and 

cleanly contacting the force platform (highlighted by the dotted white line) in the

stance phase.
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2.2 DATA PROCESSING - KINEMATICS

QTrac software (Qualysis Inc.) was used to track the movement of the marker cluster 

and pointer markers into 3-D GCS coordinates for the anatomical calibrations, neutral 

position and walking trials of the OA sample, the NL sample and the TKR sample. 

Data corresponding to one gait cycle was tracked for the walking trials. Previously 

developed Matlab (version 11.1, The MathWorks Inc.) software (Holt et al., 2000) 

was applied to the coordinate data of all three samples to produce the knee joint 

rotations and translations for one gait cycle. The methods used in this software are 

summarised in the following steps:

For the anatomical calibration, for each bony landmark:

1. Establish a pointer local coordinate system (PLCS) using the GCS coordinates of 

the pointer markers as shown in section 2 .2 .1 .1 .

2. Calculate the transformation matrix Tpg relating the orientation of the PLCS in the 

GCS as shown in section 2.2.2.

3. Establish a marker cluster local coordinate system (MLCS) using the GCS 

coordinates of the marker cluster markers as shown in section 2 .2 .1 .2 .

4. Calculate the transformation matrix Tmg relating the orientation of the MLCS in 

the GCS as shown in section 2.2.2.

5. Calculate the MLCS coordinates of the pointer’s point (Pm) using (2.1). This 

establishes the location of the bony landmark in the MLCS:

Pm=tT ^ ][T pJ [P p] (2.1)

where Pp are the PLCS coordinates of the pointer’s point and Tgm is the inverse of 

Tmg.

For the anatomical calibration, for each segment:
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6 . Establish an anatomical local coordinate system (ALCS) as a fixed body axis on 

the bone, using the MLCS coordinates of the three bony landmarks (Pm) on that 

segment as shown in section 2.2.1.3 for the tibia and 2.2.1.4 for the femur.

7. Calculate the transformation matrix Tma relating the orientation of the MLCS in 

the ALCS as shown in section 2.2.2.

For the neutral position or walking trial:

8 . Recalculate Tmg for the shank and thigh (see point 4 above)

9. Calculate the transformation matrix Ttf relating the orientation of the tibial ALCS 

to the femoral ALCS using (2.2)

T,f = [Tma T ] [T^ T ] [Tme s ] [Tam s ] (2.2)

where the subscripts T and S refer to the thigh and shank segments 

respectively, and Tgm and Tam are the inverses of Tmg and Tma respectively.

10. Apply the Joint Coordinate System (JCS) approach (Grood and Suntay, 1983) to 

Ttf to obtain the flexion-extension, abduction-adduction and internal-external 

rotation angles of the tibio-femoral joint as shown in section 2.2.3.

11. Repeat steps 8 to 10 for each frame of the gait cycle

12. The three resulting rotation waveforms are re-sampled over 100 points and an 

average of the six walking trials for each waveform is computed.

2.2.1 Establishing a local coordinate system on a rigid body

To establish a local coordinate system (LCS) on a rigid body, the coordinates of at 

least three non-collinear positions on that body must be known (Zatsiorsky, 1998). 

The coordinates of these three (or more) positions are utilised to establish three 

mutually orthogonal vectors, which form the LCS (Zatsiorsky, 1998). The procedure
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used to establish the PLCS, MLCS, tibial ALCS and femoral ALCS are now 

discussed.

2.2.1.1 Establishing the PLCS

To define three mutually orthogonal vectors and establish the PLCS the following 

protocol is followed in the software developed by Holt et al. (2000):

1. The origin of the PLCS is located in marker P2 as shown in Figure 2.9.

2. A vector Uj is defined from P2 to Pi

3. A vector U2 is defined from P3 to P4

4. The cross product of Uj and U2 gives the vector U3

5. The cross product of Ui and U3 gives the vector U4

6 . Vectors U4, Ui, U3 divided by their own lengths give the unit vectors 114, uj 

and 113 which produce the x, y, z axes respectively, attached to the origin at P2.

2.2.1.2 Establishing the MLCS

To define three mutually orthogonal vectors and establish the MLCS the following 

protocol is followed in the software developed by Holt et al. (2000):

1. The origin of the MLCS is located in marker M2 as shown in Figure 2.10.

2. A vector Vi is defined from M2 to Mi

3. A vector V2 is defined from M3 to M4

4. The cross product of Vi and V2 gives the vector V3

5. The cross product of Vi and V3 gives the vector V4

6 . Vectors V4, Vi, V3 divided by their own lengths give the unit vectors V4, vi 

and V3 which produce the x , y, z axes respectively, attached to the origin at M2.
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F igu re 2.9 The PLCS is established using the four pointer markers Pi (right), P2 (left), 

P3 (top) and P4 (bottom). P denotes the point of the pointer. The unit vectors U4, Ui 

and U3 produce the x, y, z axes respectively attached to the origin at P2.

(into the
page) v3 (z

F igu re 2.10 The MLCS is established using the four markers Mj (top), M2 (bottom), 

M3 (left) and M4 (right). The unit vectors V4, Vi and V3 produce the x,y, z axes 

respectively attached to the origin at M2.

2 -1 2



Chapter 2 Experimental Procedure

2.2.1.3 Establishing the tibial ALCS

To define three mutually orthogonal vectors to establish the tibial ALCS the following 

protocol is followed in the software developed by Holt et al. (2000):

1. The origin of the tibial ALCS is located at a point that lies half-way between 

the medial and lateral condyles

2. A vector Wi is defined from the medial condyle to the lateral condyle

3. A vector W 2 is defined from the medial malleolus to the medial condyle

4. The cross product of Wj and W2 gives the vector W3

5. The cross product of Wj and W3 gives the vector W4

6. Vectors Wj, W 3, W 4 divided by their own lengths give the unit vectors W |, W3 

and W4 which produce the x , y, z axes respectively, attached to the origin as 

shown in Figure 2.1 la.

2.2.1.4 Establishing the femoral ALCS

To define three mutually orthogonal vectors to establish the femoral ALCS the 

following protocol is followed in the software developed by Holt et al. (2000):

1. The origin of the femoral ALCS is located at a point that lies half-way 

between the medial and lateral condyles

2. A vector Ni is defined from the medial condyle to the lateral condyle

3. A vector N2 is defined from the medial condyle to the upper border of the 

trochanter

4. The cross product of Ni and N2 gives the vector N3

5. The cross product of Ni and N3 gives the vector N4

6. Vectors Ni, N3, N4 divided by their own lengths give the unit vectors nj, n3 

and 114 which produce the X, Y, Z  axes respectively, attached to the origin as 

shown in Figure 2.1 lb.
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w 4 (2 )

Wi (x)

w3 0 )  
(out of page)

(a)

Mechanical n4 (Z)

n3 W  
(out of page) ^

Figure 2.11 The coordinate systems defined in (a) the tibia and (b) the femur (adapted 

from Grood and Suntay, 1983, pp. 138). Red circles identify bony landmarks. Blue 

circles denote origins of coordinate systems.
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2.2.2 Defining the relative position of two coordinate systems

The software developed by Holt et al. (2000) uses the method of Soderkvist and 

Wedin (1993) to calculate the transformation matrices that define the relative position 

of two coordinate systems, namely Tpg, Tmg, and Tam- This method will now be 

described.

Let the position of a rigid body in one coordinate system, CSi, be defined by the CSj 

3D coordinates of three points on that body Let the position of the same

rigid body in a second coordinate system, CS2, be defined by the CS2 3D coordinates 

of three points on that body {gi, gj, ..., £9}. The position of the rigid body in CSi 

relative to its position in CS2 is defined by the mapping

g = Rf + d (2.3)

where R and d are a rotation matrix and translation vector respectively,

~f\ A A "<£1 S 4 s A
A A A and g = Si S 5 S  8
A A A S 3 S  6 S  9

1 1 1 1 1 1

or

where

g = Tf (2.4a)

T =
R ! d

■1--
0 0 0 ! 1

(2.4b)

However, this mapping is not exact because the reconstruction of the marker 

coordinates in the GCS is affected by measurement errors associated with skin 

movement, muscle contraction and stereophotogrammetric noise (Cappello et al.,
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1997). The measurement errors can be minimised and an optimal solution for R and d 

can be determined by using the least-squares problem:

9 2
m in £ ||R / ,+ d - g , | |  (2.5)

/  =  1

Using the singular value decomposition (SVD) method, a solution can be found to 

(2.5) using the following steps:

1. Calculate /  and g  as shown in (2.6a) and (2.6b)

f  = H f ,  (2-6a)
^ ;=1

g = (2.6b)
*  / = !

2. Calculate the vectors A and B using (2.7a) and (2.7b)

A = (2.7a)

B = U > - g ]  (2-7b)

3. Calculate the matrix D using (2.8)

D = BAt (2.8)

where A is the transpose of A

4. Compute the SVD of D:

P rQ T = D (2.9a)
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where P and Q are 3 x3 orthogonal matrices and

( <px 0  0 N
0  ( p 2 0

0 0 <Pi

(2.9b)

where q>\, q>2, and ( fa  are the singular values of the matrix D.

5. Calculate the rotation matrix R using (2.10)

R = PSQ (2 .10a)

where Q is the transpose of Q, and

S =
r l  0  

0 1

v 0 0 det(PQT)
(2 .10b)

6 . Calculate the translation vector d using (2.11)

d = g - R / (2 .11)

The transformation matrix T is then defined using (2.4b).

Tpg, Tmg and Tma are all defined using this procedure with f and g defined as follows:

1. When calculating the transformation matrix Tpg that maps the PLCS 

coordinates of the three positions on the pointer, defined by f, to their GCS 

coordinates, defined by g, then f = {l 0 0 0 1 0 0 0 1 } and

g =  [ o r i g i n + u 4, o r i g i n pi, +u, ,  o r i g i n + u 3|, where o r i g i n p g  are the

GCS coordinates of the PLCS origin and 114, ui and 113 are defined in section

2 .2 . 1. 1.
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2. When calculating the transformation matrix Tmg that maps the MLCS

coordinates of the three positions on the marker cluster defined by f, to their 

GCS coordinates defined by g, then f = {l 00010001} and 

g = {originmK + v 4, origin mf, + v, , originmK + v 3}, where originm,g are the

GCS coordinates of the MLCS origin and V4, vj and V3 are defined in section

2 .2 . 1.2 .

3. When calculating the transformation matrix Tma that maps the MLCS

coordinates of the three positions on the tibia defined by f, to their tibial ALCS

coordinates defined by g, then

f = {originam + w „  origintltn + w3, originam + w 4} and g = {l0 0 0 1 0 0 0 l},

where origina m are the MLCS coordinates of the tibial ALCS origin and wi, 

W3 and W4 are defined in section 2.2.1.3.

4. When calculating the transformation matrix Tma that maps the MLCS

coordinates of the three positions on the femur defined by f, to their femoral 

ALCS coordinates defined by g, then

f = {originam + n,, origin am + n3, origin am + n 4} and g = {l 0 0 0 1 0 0 0 1},

where origina m are the MLCS coordinates of the femoral ALCS origin and n\, 

113 and 114 are defined in section 2.2.1.4.

2.2.3 The Joint Coordinate System (JCS) Approach

The JCS approach (Grood and Suntay, 1983) gives a simple geometric description of 

the 6 -degree of freedom movement of the tibia relative to the femur in terms of 

clinical reference planes.

A JCS, composed of three axes, is established for the knee as shown in Figure 2.12. 

Two of the axes are embedded in the femur and tibia and as such are called fixed body 

axes. The tibial fixed body axis is its mechanical axis (the z-axis) as shown in Figure

2.1 la. The fixed body axis in the femur corresponds to the X-axis as shown in Figure

2.1 lb. The third axis is perpendicular to both fixed body axes. Since this third axis is 

not fixed to either body, it is known as the floating axis.
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The joint rotations and translations occur about these three joint coordinate axes as 

shown in Figure 2.12. Flexion-extension occurs about the femoral fixed body axis, 

external-internal rotation about the tibial fixed axis and abduction-adduction about the 

floating axis. Medial-lateral tibial shift occurs along the femoral axis, anterior- 

posterior tibial drawer along the floating axis and joint compression-distraction along 

the tibial fixed axis.

The knee joint rotations and translations can be determined from the 4 x 4  

transformation matrix T tf. In this study, the joint translations were calculated, but only 

the knee joint rotations were considered since these constitute kinematic variables 

required for the present study and there are problems associated with the exact 

meaning of the translations in terms of their relationship to the flexion-extension of 

the knee. For the calculation of the joint translations, the reader is directed to Grood 

and Suntay (1983), and Lafortune et al., (1992). If Ttf is defined according to the 

convention of (2.3), and if Tr c represents the element of Ttf in row r and column c 

then the rotations are calculated using equations (2.12) to (2.14) (Grood and Suntay,

Figure 2.12) An example of the flexion-extension waveform is given in Figure 2.13.

1983):

0 FE = tan 1
( T ^3.2 (2.12)

where Gfe is the flexion-extension angle and flexion is defined as a positive angle (see

(2.13a)

for the right knee where 0 aa is the adduction-abduction angle and abduction is defined 

as a positive angle (see Figure 2.12), or
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for the left knee. An example of the abduction-adduction waveform is given in Figure 

2.14.

0 IE = -tan 2 , 1

TV Au  J (2.14)

where 0iE is the internal-external rotation angle and external rotation is defined as a 

positive angle (see Figure 2.12). An example of the internal-external rotation 

waveform is given in Figure 2.15.

Femur

FE
AA

-  +

Tibia

Figure 2.12 The joint coordinate system for the knee consists of two fixed body axes 

and a floating axis. The joint rotations (0fe, 0aa and 0iE) occur about these three axes.

2 - 2 0



Chapter 2 Experimental Procedure

-10

-20 % Gait Cycle

Figure 2.13 Mean flexion-extension waveform for a group of NL subjects (solid line). 

The dashed line indicates ± one standard deviation.

o

co

o
&
GO

-10 % Gait Cycle

Figure 2.14 Mean abduction-adduction waveform for a group of NL subjects (solid 

line). The dashed line indicates ± one standard deviation.
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Figure 2.15 Mean internal external rotation waveform for a group of NL subjects 

(solid line). The dashed line indicates ± one standard deviation.

2.3 DATA PROCESSING - KINETICS

Previously developed Matlab (The MathWorks Inc.) software (Holt et al., 2000) was 

applied to the raw signals produced by the force platform to calculate the three- 

dimensional ground reaction forces (GRFs) for the OA, NL and TKR samples.

Three force and three moment components are calculated using

' F /

Fy
F,
M x

= [Df ]

M y S 5

.■ V

where Fx, Fz, MX) My and Mz are the force and moment components in the force 

platform coordinate system as shown in Figure 2.16; S) to Se are the output signals 

divided by the amplifier gain; and [Dp] is the calibration matrix:
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[Dp1 =

1740.4 - 5 . 0 -1 0 .8 18.3 7.6 0

19.1 1737.3 - 9 .8 - 9 .7 - 1 2 .6 - 1 0 .5

40.4 - 4 0 .9 3675.3 35.9 - 3 3 .8 - 3 .4

- 2 . 4 - 1 0 6 .0 - 2 .8 1143.7 5.1 2.6

112.2 - 0 . 8 2.1 2.4 804.1 2.8

1.5 - 2 . 4 - 7 .0 1.7 1.9 401.5

(2.15b)

The medial-lateral (M L) GRF (Fm l), the anterior-posterior (AP) GRF (Fap) and the 

vertical (V ) GRP (F y) are calculated from Fx, Fy and Fz as shown in (2.16) to (2.18)

^ML = -F , (2.16)

where an anterior GRF is defined as a positive force.

Figure 2.16 The force platform coordinate system  (Taken from the U ser’s Manual,

Bertec Corporation).

For the right leg

^ap ~ Fy (2.17a)
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and for the left leg

F „ = - F ,  (2.17b)

where a lateral GRF is defined as a positive force.

FV =FZ (2.18)

The three GRF waveforms calculated using (2.16) to (2.18) were re-sampled at 60Hz 

(to match the sample rate of the kinematic waveforms) and subsequently re-sampled 

over 100% stance phase. The three GRF waveforms were normalised to body weight 

and an average of the six trials was computed. For some subjects, the ML GRF data 

was incomplete. Consequently, only the AP and V GRF waveforms are considered in 

this study. Examples of the AP GRF and the V GRF waveforms are given in Figures 

2.17 and 2.18 respectively.

0.3
<L>O

0.2

!*•«
100

- 0.1

- 0.2

% Stance Phase

Figure 2.17 Mean AP GRF waveform normalised to body weight for a group of NL 

subjects (solid line). The dashed line indicates ± one standard deviation.
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<DOl-iotu 1
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1  0.8
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0.4

0.2

100
% Stance Phase

Figure 2.18 Mean V GRF waveform normalised to body weight for a group of NL 

subjects (solid line). The dashed line indicates ± one standard deviation.

2.4 DATA PROCESSING - ANTHROPOMETRICAL AND 
TEMPORAL DISTANCE PARAMETERS

Matlab (The MathWorks Inc.) software was developed to calculate a subject’s body 

mass index (BMI), cadence and percentage stance phase for the OA, NL and TKR 

samples. BMI is defined as

BMI = (2.19)
h 2

where w and h were defined in section 2.1.2.

Although cadence is usually defined as the number of steps per minute (Whittle, 

1996) it is here defined as the number of strides per minute, where a stride length is 

measured between successive placements of the same foot (Whittle, 1996).
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2.5 DATA PROCESSING - REPRESENTATION OF TEMPORAL 
WAVEFORMS USING PRINCIPAL COMPONENT ANALYSIS

The kinematic and kinetic variables exist in the form of temporal waveforms as shown 

in Figures 2.13, 2.14, 2.15 2.17 and 2.18. As mentioned in Chapter 1, 

parameterisation of these waveforms is a common practice in gait analysis studies. 

However, a danger of this practice is that valuable temporal information is readily 

discarded. Following the work of Deluzio et al. (1997, 1999) as described in Chapter 

1, Principal Component Analysis (PCA) was utilised to represent the gait waveforms 

in a discrete form whilst retaining temporal information. The general procedure for 

obtaining a PCA when using temporal waveforms is described and then applied 

specifically to the kinematic and kinetic waveforms.

2.5.1 PCA

A PCA is performed in a number of stages (Chau, 2001a; Tabachnick and Fidell, 

1989; Daultrey, 1976):

1. Standardisation of data

2. Calculation of the correlation matrix

3. Eigendecomposition of the correlation matrix

4. Retention of principal components (PCs)

5. Calculation of the component loadings matrix

6. Calculation of the PC scores

These individual stages will now be discussed in turn.

2.5.1.1 Standardisation o f data

The dataset consists of a time-normalised waveform sampled at each 1% from 0 to 

100% of the gait cycle for a set of n subjects. Here each 1% of the waveform is
iL

referred to as a variable. Let the values of these variables for the i subject in the 

sample be y ijt (J = 1: 100) respectively.
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The first stage of a PCA is to standardise the entire dataset so that each variable has 

zero mean and unit standard deviation (Chau, 2001a). The standardised variables, zy 

are given as:

y*-yj (2 .20)

where zy is the standardised variable and y } and <jj are the sample mean and standard 

deviation for variable yj respectively.

2.5.1.2 Calculation o f  the correlation matrix

The next stage of a PCA is to calculate the correlation matrix, C, for the entire set of 

standardised variables using (2.21) (Chau, 2001a):

C =
Z TZ

(p-1)

'12

' 2 1

' 1,100

' 2,100

C 100,l C \00,2

(2 .21)

where p  is the number of input variables, Z is the n x 100 matrix containing the 

standardised variables zy (/ = 1:100), Z is its transpose and cu = c/* is the correlation 

coefficient between variables z* and z/ respectively.

2.5.1.2 Eigendecomposition o f  the correlation matrix

The subsequent step is to find the eigendecomposition of C using (2.21) (Daultrey, 

1976; Tabachnick and Fidell, 1989; Chau, 2001a):

C = EAEt (2.22)

where A is the diagonal matrix of eigenvalues of C, Xj ( j= 1: 100), and the columns of 

the matrix E are the corresponding eigenvectors, (j = 1: 100). The variance of th e /h
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PC is given by Xj. The first PC has the largest associated variance whilst the last PC 

has the smallest variance, i.e. Xj  >X2  >...>/lioo.

2.5.1.4 Retention o f PCs

Although PCA produces the same number of PCs as there are original variables, it is 

hoped that the variances of the majority of PCs will be negligible and that the original 

variables can be described by a smaller number of PCs, m. Jolliffe (1986) reports 

numerous possible methods for determining the number of PCs needed to adequately 

explain the original data. Among these methods are two that are reported most often 

in the literature in the context of gait analysis (Yamamoto et al., 1983; Sadeghi et al., 

1997; Sadeghi et al., 2000).

The first method, Kaiser’s rule, selects the m PCs by examining the size of their 

individual variances. The method is based on the premise that any PC with a variance 

less than one contains less information than the original variables (which have unit 

variance) and is therefore not worth retaining. The second method selects the m PCs 

by examining the cumulative percentage of total variation that they explain. The total 

variance, tm, accounted for by the first m PCs is given by Joliffe (1986) as

± * j  (2-23)
P /-I

where p  is the number of input variables. The number of PCs required to explain q% 

of the variation of the original data, is the smallest value of m for which Xm> q.

2.5.1.5 Calculation o f the component loadings matrix

The penultimate stage of the PCA is to assign meaningful labels to each PC. This is 

accomplished through examination of the matrix of component loadings, L, which 

gives the weighted relationship between the PCs and the original variables. L is 

calculated using (2.24a) (Tabachnick and Fidell, 1989; Daultrey, 1976):

2-28



Chapter 2 Experimental Procedure

L = E A 2 (2.24a)

where Uj are the correlation coefficients between the zth variable and the j th PC and

(2.24b)

To interpret and thus assign a label to a PC, a threshold value is selected (Comrey, 

1973; Sadeghi et al., 1997; Sadeghi et al., 2000; Tabachnick and Fidell, 1989). The 

variables with loadings above this threshold are collated and “the researcher searches 

for a concept that unifies them” (Tabachnick and Fidell, pp.639). Comrey (1973) 

suggests using a threshold value of 0.71. If a variable, say zi, has a component loading 

of 0.71 on one PC, say l\t\, then from (2.24b)

Consequently, from (2.25) the maximum value that /ij (j = 2:100) can take is 0.7042. 

Therefore, using a threshold value of 0.71 implies that a variable can only load against 

one component and subsequently each PC will have a different interpretation. As a 

result a threshold value of 0.71 is used in this study.

2.5.J.6 Calculation o f  the PC scores

The final stage of the PCA is to calculate PC scores, f t for each individual in the 

sample using (2.26) (Daultrey, 1976; Tabachnick and Fidell, 1989):

(2.25)

100
= 0.4959 = Vo.7042

f t  = ZE (2.26)
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where Z is the matrix containing the standardised variables Zj (j =  1:100) and the 

columns o f  the matrix E are eigenvectors, ej (j = 1:100). Thus, the PC scores are linear 

combinations o f  the original variables.

2.5.2 PCA Results

Follow ing the procedure described in sections 2.2.4.1 to 2 .2 .4 .6 , custom Matlab 

software was written to obtain PC representations o f  the anterior-posterior GRF 

(APF), vertical GRF (V F), flexion-extension rotation (FER), abduction-adduction 

rotation (A A R ) and internal-external rotation (IER) waveform s. The PCA procedure 

was applied to the O A  and N L samples. The application o f  PCA to the TKR sample is 

described in section 2 .5 .3 . To aid in interpretation o f  the PCs a tim ing o f  gait events is 

depicted in Figure 2 .19  and recorded in Table 2.2.

Initial contact

Loading
response

Terminal
swing Opposite 

. t o e  of f .
Tibia vertical

Mid-
stance

Mid- /  ^
swing /  swing Stance 

phase J phase

Terminal 
stance ,

Initial
swing

Pre­
swing

Feet adjacent Heel rise

Opposite initial 
\ J c o n t a c t x ' //’

Toe off

Figure 2.19 Phases and events o f  a single gait cycle o f  the right leg (Taken from

W hittle, 1996,/?/?. 5 9).
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Table 2.2 Tim ing o f  gait events (adapted from Rose and Gamble, 1994, pp. 143).

Gait cycle event Timing of event 

(% gait cycle)

Timing of event 

(% stance phase)

Initial contact Instantaneous Instantaneous

Loading response 0 - 1 2 0 - 1 6

M id-stance 1 2 - 3 0 1 6 - 4 8

Terminal stance 3 0 - 5 0 4 8 - 8 1

Pre-sw ing 5 0 - 6 2 81 -  100

Initial sw ing 6 2 - 7 5 —

M id-sw ing 7 5 - 8 5 —

Terminal sw ing 8 5 - 1 0 0 —

2.5.2.1 Anterior-posterior GRF (APF) results

One hundred PCs were produced relating to the APF waveform . The PCs and their 

associated eigenvalues are depicted in Figure 2.20.

60i

50

<u 40-
2
>

I  3 0 | 
w

20 

10 

0

Principal Component 

Figure 2.20 The eigenvalues o f  the 100 PCs for the APF waveform.

50 TOO
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The first few PCs explain most of the variation in the original data. After the first few 

PCs, the values of the associated eigenvalues rapidly approach zero. Using Kaiser’s 

rule, seven PCs were retained. The eigenvalues of these seven PCs are recorded in 

Table 2.3.

Table 2.3 Eigenvalues of the seven APFPCs retained using Kaiser’s rule.

Principal Component Eigenvalue

APFPC1 53.921

APFPC2 23.762

APFPC3 8.156

APFPC4 4.993

APFPC5 2.811

APFPC6 2.150

APFPC7 1.450

These seven PCs account for a combined variance of 97.24%. Following Comrey 

(1973), the seven PCs were interpreted by identifying the portions of the gait cycle 

with component loadings of 0.71 and above. The component loadings of the first three 

PCs are depicted in Figures 2.21 to 2.23. The remaining four PCs were discarded as 

non-interpretable since no individual portion of the gait cycle had loadings equal to or 

above the required threshold (see Figure 2.24 for an example of this). The first three 

PCs account for a combined variance of 85.84%.
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40 50 60 70
% Stance phase

Figure 2.21 The com ponent loadings o f  the first PC for the APF waveform  

(APFPC1). The grey shaded areas indicate the portions o f  the gait cycle with  

com ponent loadings o f  0.71 or greater.

% Stance phase

Figure 2.22 The com ponent loadings o f  second PC for the APF waveform  (APFPC2). 

The grey shaded area indicates the portions o f  the gait cycle with com ponent loadings

o f  0.71 or greater.
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Figure 2.23 The com ponent loadings o f  the third PC (APFPC3) for the APF 

waveform. The grey shaded area indicates the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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Figure 2.24 The com ponent loadings o f  the fourth PC for the APF waveform  

(APFPC4). None o f  the portions o f  the gait cycle have component loadings o f  0.71 or

greater.
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The first PC is depicted in Figure 2.21. The grey shaded areas indicate the portion of 

the gait cycle with component loadings greater or equal to 0.71. There are two periods 

within the gait cycle in which this is so: the first period occurs from 5% to 37% of the 

stance phase and the second from 6 6 % to 90% of the stance phase. Table 2.2 and 

Figure 2.19 show that APFPC1 represents the APF from early loading response until 

mid mid-stance and from mid-terminal stance to mid-pre-swing.

The second PC is depicted in Figure 2.22. A single period is highlighted from 42% to 

63% of the stance phase (late mid stance to terminal stance). This corresponds to a 

period from late mid-stance to mid-terminal stance.

The third PC is depicted in Figure 2.23. A single period is highlighted from 93% to 

95% of the stance phase, a period during late pre-swing. It can be seen that each of the 

PCs has a different interpretation, each accounting for different portions of the stance 

phase. PC scores were calculated for the OA and NL samples for APFPC1, APFPC2 

and APFPC3.

2.5.2.2 Vertical GRF {VF) results

Using Kaiser’s rule, seven of the one hundred PCs relating to the VF waveform were 

retained (VFPC1 to VFPC7) accounting for a combined variance of 97.24%. The 

eigenvalues of these seven PCs are recorded in Table 2.4. Only the first three PCs 

(VFPC1 to VFPC3) were retained at the interpretation stage since the remaining four 

PCs (VFPC4 to VFPC7) did not have any component loadings above the required 

threshold. The remaining three PCs account for a combined variance of 90.78%.
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Table 2.4 Eigenvalues of the seven VFPCs retained using Kaiser’s rule.

Principal Component Eigenvalue

VFPC1 43.508

VFPC2 34.271

VFPC3 12.996

VFPC4 3.315

VFPC5 2.135

VFPC6 1.473

VFPC7 1 .0 2 0

The component loadings of VFPC1 are depicted in Figure 2.25. The grey shaded areas 

indicate the portion of the gait cycle with component loadings greater or equal to 0.71. 

Two periods are highlighted 28% to 42% (mid stance) and 49% to 81% (terminal 

stance). Table 2.2 and Figure 2.19 show that VFPC1 represents a portion of mid- 

stance and the portion from heel-rise to opposite initial contact.

The component loadings of VFPC2 are highlighted in Figure 2.26. This component is 

related to the ground reaction force in the period of 2 to 27% stance phase i.e. from 

loading response to mid-stance.

The component loadings of VFPC3 are shown in Figure 2.27 and a period from 8 6 % 

to 100% stance phase is highlighted. VFPC3 represents the VF waveform during pre­

swing. PC scores were subsequently calculated for the OA and NL samples for 

VFPC1, VFPC2 and VFPC3.
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Figure 2.25 The com ponent loadings o f  the first PC for the VF waveform  (VFPC1). 

The grey shaded areas indicate the portions o f  the gait cycle with com ponent loadings

o f  0.71 or greater.
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Figure 2.26 The com ponent loadings o f  the second PC for the VF waveform  

(VFPC2). The grey shaded area indicates the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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% Stance phase

Figure 2.27 The component loadings of the third PC for the VF waveform (VFPC3). 

The grey shaded areas indicate the portions of the gait cycle with component loadings

of 0.71 or greater.
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2.5.2.3 Flexion-Extension (FER) results

Six of the one hundred PCs relating to the FER waveform were retained after 

applying Kaiser’s rule as shown in Table 2.5. These six PCs have a combined 

variance of 98.85%. Four of the FERPCs were discarded because they did not have 

any component loadings above the required threshold of 0.71. The remaining two 

FERPCs account for 80.52%.

Table 2.5 Eigenvalues of the six FERPCs retained using Kaiser’s rule.

Principal Component Eigenvalue

FERPC1 57.039

FERPC2 23.484

FERPC3 9.830

FERPC4 5.313

FERPC5 1.634

FERPC6 1.551

The component loadings of these two FERPCs are shown in Figures 2.28 and 2.29 

respectively. FERPC1 has component loadings above the threshold from 1 to 54% of 

the gait cycle as shown in Figure 2.28. Table 2.2 and Figure 2.19 show that FEPC1 

represents the FER over a period from initial contact to opposite initial contact.

The component loadings of FEPC2 are depicted in Figure 2.29 where a period from 

58 to 76% gait cycle is highlighted. PC scores were calculated for the OA and NL 

samples for FERPC1 and FERPC2.
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Figure 2.28  The com ponent loadings o f  the first PC for the FER waveform  

(FERPC1). The grey shaded area indicates the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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Figure 2.29 The com ponent loadings o f  the second PC for the FER waveform  

(FERPC2). The grey shaded areas indicate the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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2.5.2.4 Abduction-Adduction (AAR) results

The eigenvalues of the six AARPCs retained using Kaiser’s rule are recorded in Table 

2.6. These six PCs account for a combined variance of 96.86%. Three AARPCs were 

discarded at the interpretation stage. The remaining three AARPCs have a combined 

variance of 88.89%.

Table 2.6 Eigenvalues of the six AARPCs retained using Kaiser’s rule.

Principal Component Eigenvalue

AARPC1 60.019

AARPC2 18.397

AARPC3 10.473

AARPC4 5.193

AARPC5 1.675

AARPC6 1.104

The component loadings of AARPC1 are depicted in Figure 2.30. The component 

loadings pass the threshold of 0.71 between 3 to 60% of the gait cycle i.e. the majority 

of the stance phase as shown in Table 2.2 and Figure 2.19.

The component loadings of AARPC2 lie above the threshold between 63% and 75% 

of the gait cycle as illustrated in Figure 2.31. Table 2.2 and Figure 2.19 show that this 

is the period from toe-off to feet adjacent i.e. initial swing.

The component loadings of AARPC3 are shown in Figure 2.32. Here the component 

loadings lie above the threshold between a period during terminal swing: from 92 to 

95% gait cycle. PC scores were calculated for the OA and NL samples for AARPC1, 

AARPC2 and AARPC3.
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Figure 2.30 The com ponent loadings o f  the first PC for the A A R  waveform  

(AARPC1). The grey shaded area indicates the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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Figure 2.31 The com ponent loadings o f  the second PC for the A A R  waveform  

(AARPC2). The grey shaded areas indicate the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.
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Figure 2.32 The com ponent loadings o f  the third PC for the A A R  waveform  

(AARPC3). The grey shaded areas indicate the portions o f  the gait cycle with 

com ponent loadings o f  0.71 or greater.

2.5.2.5 Internal-External Rotation (.IER) results

Although six o f  the one hundred IERPCs were retained using K aiser’s rule (Table 

2.7), accounting for 95.72%  o f  the information in the original variables only one o f  

these PCs was deem ed interpretable. IERPC1 has an eigenvalue o f  60.447.

Table 2.7 E igenvalues o f  the six IERPCs retained using K aiser’s rule.

Principal Component Eigenvalue

IERPC 1 60.447

IERPC2 12.515

IERPC3 9.021

IERPC4 6.577

IERPC5 5.388

IERPC6 1.768
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The component loadings o f  IERPC 1 are given in Figure 2.33 and highlight that 

IERPC 1 represents the IER waveform  from 4 to 82% o f  the gait cycle. This 

corresponds to a period from loading response to mid swing. PC scores were 

subsequently calculated for the O A and NL samples for IERPC 1.
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Figure 2.33 The com ponent loadings o f  the first PC for the IER waveform  (IERPC 1). 

The grey shaded areas indicate the portions o f  the gait cycle with com ponent loadings

o f  0.71 or greater.

The interpretation stage o f  this PC A  is highly subjective. H owever, the pre-processing 

o f  the kinetic and kinem atic waveform s using PCA means that important temporal 

information is retained, because the parametric representations relate to specific and 

unique portions o f  the gait cycle.

2.5.3 Application of PCA to TKR sample

The variables in the TKR sample were normalised follow ing the procedure in 2.5.11 

using the mean and standard deviation o f  the combined OA and N L sample. The PC 

scores for the tw elve PCs produced in section 2.5.2 were then calculated for the TKR 

sample using (2 .26)
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2.6 DATA STORAGE

A database was created in Access 2000 (Microsoft) as shown in Figure 2.34 to store 

the patient details recorded in Table 2.1 and the set of variables listed in Table 2.8 that 

were produced during the data processing stage.

Table 2.8 Variables produced during data processing.

Variable Variable Description

Vl BMI

V2 Cadence

V3 Stance

V4 APFPC1 Score

V5 APFPC2 Score

V6 APFPC3 Score

V? VFPC1 Score

Vg VFPC2 Score

v9 VFPC3 Score

VlO FERPC1 Score

Vll FERPC2 Score

V12 AARPC1 Score

Vl3 AARPC2 Score

V14 AARPC3 Score

vis IERPC 1 Score

V16 ML Width

V17 AP Width

Vlg Thigh Girth
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Figure 2.34 A ccess database: (a) patient details and (b) final dataset.
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This chapter has provided an in-depth description of the methods used to measure and 

process the knee function data. Conclusions from and further work based on the 

motion analysis technique and the PCA work are given in Chapter 8 .
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CHAPTER 3 

THE CLASSIFICATION METHOD

This chapter describes in detail the new classification method that was introduced in 

Chapter 1. The classification method is based around the Dempster-Shafer theory of 

evidence (DST) and builds on the work of Safranek et al. (1990) and Gerig et al. 

(2 0 0 0 ) who developed and utilised parts of the classification method in the areas of 

vision and medical image analysis respectively. Founded on the work of Dempster 

(1968) and Shafer (1976), the DST is a method that enables decision-making in the 

presence of ignorance (Safranek et al., 1990). The chapter begins with an introduction 

to the notion of ignorance and to the DST and its associated terminology before 

moving on to describe the classification method in detail.

3.1 THE MEANING OF IGNORANCE

A measure of ignorance is present in many decision-making processes (Shafer and 

Pearl, 1990; Lipschitz and Strauss, 1997), presenting itself in several different forms 

(Smets, 1991; Lipschitz and Strauss, 1997). Smets (1991) defines three sources of 

ignorance as incompleteness, imprecision and uncertainty whilst Lipschitz and Strauss 

(1997) cite three sources of uncertainty as inadequate understanding, incompleteness 

and undifferentiated alternatives. Smets asserts that different sources of ignorance can 

be present simultaneously which is particularly evident in the decision making process 

associated with gait classification. Definitions of ignorance that arise in the context of 

gait classification will now be explained.

Occasionally, the information collated during a session in the motion analysis 

laboratory is incomplete. For example, in order to measure the three-dimensional 

ground reaction forces a subject must plant their foot within the boundaries of the 

force plate whilst walking along a walkway i.e. strike the force plate “cleanly”. If the 

force plate is not struck cleanly during a walk then a repeat reading must be taken. 

Suppose then that a subject with osteoarthritis experiences extreme pain in their knee 

when walking and as a result tires very quickly. In this instance the subject’s
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condition prevents repeat readings from being taken. Whilst all other information is 

collated during the session, the ground-reaction force data is missing, and as such the 

data is incomplete.

Some of the information gathered during a session in the motion analysis laboratory is 

imprecise. As an example, let us consider the kinematic measurements. A well- 

documented subject within the motion analysis community is the quantification of 

errors associated with skin movement artefacts and the reconstruction of marker 

coordinates (Cappello et al., 1997; Cappozzo et al., 1996). The skin movement 

artefacts can result in errors in the flexion-extension, abduction-adduction and 

internal-external rotation knee angle measurements of the magnitude of 8 °, 4° and 12° 

respectively (Cappozzo et al., 1996). As such the information collected is complete 

(because the value is not missing) but imprecise because the value of the variable, v, 

lies somewhere in the interval [v -  error, v + error].

A third source of ignorance encountered in gait classification is uncertainty due to 

inadequate understanding. This form of uncertainty is helpfully defined by 

Lipschitz and Strauss (1997, pp. 151): “Decision makers are sometimes unable to act 

not because they lack information but because they are overwhelmed by the 

abundance of conflicting meanings that it conveys”. This source of ignorance is 

perhaps the most prevalent source in the decision-making associated with gait 

classification. During a session in the motion analysis laboratory a vast amount of 

data that relates to a subject’s knee function is collected (see Chapters 1 and 2). The 

relevance of each variable in discriminating normal and osteoarthritic knee function is 

often unknown a priori. Of these variables, some may support, not support or offer no 

evidence to a specific subject’s correct classification.

Different methods exist for coping with the various forms of ignorance in decision­

making processes. A summary of these methods, cited by Smets (1991), is given in 

Figure 3.1. This chapter introduces a new classification method that exploits one of 

these methods, namely the DST for its ability to deal with uncertainty.
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Ignorance

UncertaintyIncompleteness Imprecision

Combinatory
model

Combinatory
model
Interval theory 
Fuzzy sets 
Possibility theory

Probability
theory
Upper-lower
probabilities
Possibility theory
Subjective
probabilities
Dempster-Shafer
theory

Figure 3.1 Methods that deal with the different forms of ignorance (Smets, 1991). 

3.2 THE DEMPSTER-SHAFER THEORY (DST)

Decision-making processes under uncertainty are built upon the foundations of 

probability theory, and in general upon the Bayesian decision theory (Ng and 

Abramson, 1990; Beynon et al., 2000). Indeed, Shafer (Shafer and Pearl, 1990, pp.61) 

comments that “...Bayesian decision theory has come to define what is meant by a 

general theory of decision making under uncertainty....its familiarity makes it a 

reference point to which other theories must relate. Any general account of decision 

making must define itself relative to Bayesian decision theory. Any such account must 

explain why it does not do things that Bayesian decision theory does or why it does 

some things differently.”

Briefly, Bayesian decision theory is based around Bayes’ theorem:
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where p(yvj\vt) is the posterior probability, which is the probability of the outcome 

being wj given that v, has been measured; p(vjw/) is the conditional probability of 

obtaining the measurement v, given that the outcome is w7; p(wj) is the prior
n

probability of the outcome being wj and p(vt) = ^ p ( v i\wj )p(wJ) (Duda, Hart and
7 = 1

Stork, 2001). In most practical situations the prior and conditional probabilities are 

not known and must be estimated from training data. In cases where the sample size is 

small this can lead to poor estimates of the prior and conditional probabilities 

(Denoeux, 1997).

A further problem with the Bayesian approach occurs when there is a lack of 

knowledge relating to the exact number of outcomes (Denoeux, 1997; Beynon et al., 

2000). Let us consider an example which explores the hypothesis “Lianne lives in 

Donald Street, Cardiff’ = w\ (adapted from Beynon et al., 2000). The finite set of 

possible outcomes is dependent upon the number of streets that are known to exist in 

Cardiff. If only 10 streets are identifiable then the finite set of possible outcomes is 

{w\, w2,...,wio} where Wj (j ± 1) represent other roads in Cardiff. Using a Bayesian 

approach the probabilities are evenly distributed over this set, which implies that 

p(w\) = 0.1. However, if  1000 streets are identifiable then the finite set of possible 

outcomes is {h>i, W2,...,wiooo} and p(w\) = 0.001. The example shows that the prior 

probability is also highly dependent on the finite set of possible outcomes (Beynon et 

al., 2 0 0 0 ).

The DST is founded on the work of Dempster (1968) and Shafer (1976). Shafer 

(Shafer and Pearl, 1990, pp.473) comments that DST “provides a non-Bayesian way 

of using mathematical probability to quantify subjective judgements. Whereas a 

Bayesian assesses probabilities directly for the answer to a question of interest, a 

belief function user assesses probabilities for related questions and then considers the 

implications of these probabilities for the question of interest.”

The DST comprises two main elements: the assignment of belief values to different 

hypotheses and the combination of belief values (Shafer and Pearl, 1990). These two 

elements are now expounded in sections 3.2.1 and 3.2.2 respectively. In both sections

3-4



Chapter 3 The Classification Method

the differences between the DST and the Bayesian approach are discussed. This 

introduction to the basic concepts in DST is based on Safranek et al. (1990)

3.2.1 Assignment of belief values

A frame of discernment (FOD) is defined as a finite set of mutually exclusive and 

exhaustive elementary hypotheses or elementary propositions {<|>/}, and is denoted by

0. The number of elementary hypotheses in 0  is symbolized by |0|. There 

are 2^  possible subsets of © and these are defined as hypotheses or propositions, {(p,}, 

(z = 1,... 2 ^ ). The set of hypotheses is denoted by the power set 2® and contains the 

FOD 0 , and the null hypothesis or empty set, 0 . A binary frame of discernment 

(BFOD) is a FOD that contains only two elementary hypotheses, {<|)i} and {<(>2}, i.e. 0

= {<|>i, <J>2}- There are 2 ^  = 2 2 =4subsets of 0  - the hypotheses {<|>i}, { < (> 2 }, {<|>i, <|>2} =  

0  and 0  respectively.

In DST, each hypothesis (subset of 0 ) is assigned a degree of belief based upon the 

available evidence. This degree of belief is called the basic probability assignment 

(bpa) or probability mass function, m{.). The bpa “expresses the degree to which the 

evidence confirms a hypothesis” (Ji and Marefat, 2003, pp. 1362). A bpa is defined as 

follows (Safranek et al., 1990):

0 <  m ( . )  <  1

zw(0) = 0 (3.2)

;=1

Each hypothesis {(p,}, (z = 1,..., n) that has m{(p,) > 0 is defined as a focal element. 

The focal elements and their associated bpa define a body of evidence (BOE).

To further understanding of the DST and to identify differences between DST and the 

Bayesian approach an example, which considers the question “Who killed top secret 

agent Parkes in Cardiff last week?”, is expounded (adapted from Beynon et al.,
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2000)). It is known that the assassin is one of the three villainous gangsters Jones, 

Cruise and Bennett. Thus, the FOD contains the elementary hypotheses “the assassin 

is Jones”, {Jones}; “the assassin is Cruise”, {Cruise}; and “the assassin is Bennett”, 

{Bennett}; i.e. ® = {Jones, Cruise, Bennett}. The number of elementary hypotheses, 

|©| = 3 and the number of hypotheses = 23 = 8 . The hypotheses are recorded in Table 

3.1.

Table 3.1 All possible hypotheses for assassin example.

Hypothesis

{Jones}

{Cruise}

{Bennett}

{Jones, Cruise}

{Jones, Bennett}

{Cruise, Bennett}

{Jones, Cruise, Bennett} = ®

0

Witnesses at the crime scene believe with 80% certainty that the assassin was male. 

This gives a bpa, say m\ of 0.8 to the focal element {Cruise, Bennett} i.e. wj({Cruise, 

Bennett}) = 0.8. Using DST no presumptions are made about the remaining 

probability mass and so it is assigned to the entire FOD, ® = {Jones, Cruise, Bennett}

i.e. wi({Jones, Cruise, Bennett}) = m{&) = 0.2.

It is in this assignment of beliefs that DST allows for uncertainty. In DST, probability 

masses are not only assigned to elementary hypotheses, but to each hypothesis or 

subset of ® (Safranek et al., 1990). The probability mass is free to move to any 

element of the subset. Consequently the probability mass assigned to ®, m(@), 

represents uncertainty, because the mass is free to move to any elementary hypothesis 

in the FOD (Safranek et al. 1990).
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It is also at this point that the greatest conflict between Bayesian probability and DST 

lies. In contrast to DST, in Bayesian probability, probability masses are only assigned 

to elementary hypotheses and not to subsets of 0 , implying that Bayesian probability 

cannot represent uncertainty (Safranek et al., 1990). In the Bayesian approach, the 

probability that is not committed to a hypothesis, say a, must be given to its negation, 

^a  i.e. p{a) + pipa) = 1 (Ng and Abramson, 1990). For example, using the above 

assassin example, if p(man) = 0.8, then it is required that p(woman) = 0.2. In contrast, 

using DST, since belief values can be assigned to any subset of ©, the belief values 

assigned to an elementary hypotheses, {a) does not require that the remaining belief 

value be assigned to its negation {-■#} (Beynon et al., 2000; Ng and Abramson, 1990). 

For example, using the assassin example, in the absence of any other information, 

wi({man}) = 0 .8  does not imply that wi({female}) = 0 .2 , but that wi({male, female}) 

= 0.2. If /w(0) = 0 the resulting bpa is Bayesian since in this instance probability 

masses are only assigned to elementary hypotheses. As such, DST is said to be a 

generalisation of Bayesian probability theory (Shafer and Pearl, 1990).

3.2.2 Combination of belief values

The second element of DST is the combination of individual independent BOE. This 

is achieved using Dempster’s rule of combination. The combination of two 

independent BOE m\ and mj  is defined {m\ ©  mi). If mc = (m\ ©  mi)  then

where k  is a normalisation factor, s, and Sj are focal elements from the BOE m,{.) and 

mj(.), and mc(cp) is a bpa if k a * 0 (Safranek et al., 1990). When k a = 0, mc(cp) does 

not exist and w, and mj are wholly conflicting pieces of evidence. When k a = 1, w, 

and mj are fully concordant. (Mellouli and Elouedi, 1997) As such, k  can be 

understood as a measure of conflict that exists between the sources of evidence 

(Beynon et al. 2000). Dempster’s rule is commutative and associative and hence

(3.3)

s, n>Sj = 0
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wc(cp) does not depend on the order in which the evidence is combined (Gerig et al. 

2 0 0 0 ).

This combination of beliefs is explained further using the above assassin example 

(adapted from Beynon et a l., 2000). Two further pieces of evidence have been 

uncovered relating to the murder of agent Parkes:

1. Samples of dark brown hair were found at the crime scene

2. The murder weapon was found in Donald Street

The bpa  relating to these two pieces of evidence are given in Table 3.2 as m2 and m3

respectively (values taken from Beynon et al., 2000). Using equation (3.3) and the

bpa  recorded in Table 3.2, an example of combining the evidence m2 © m3 = m4, is 

given:

m4({Jones,Cruise}) = (m2 © m3)({Jones,Cruise}) = —  —

s2 = 0

(3.4)

Calculating the numerator from equation (3.4):

m2 (s 2 )m3 ( ^ 3 )  =  \m2 ({Jones, Cruise}) x m3 ({Jones, Cruise})] + ...
,y2 r u 3={Jones,Cruise}

+ [m2 ({Jones, Cruise} ) x m3 ({Jones, Cruise, Bennett})] + ...
+ [m3( {Jones, Cruise}) x m2 ({Jones, Cruise, Bennett})]

= [0.1 x 0. l] + [0 .1  x 0. l] + [0 .1  x 0.2] = 0.04 (3.5)

Calculating part of the denominator from equation (3.4):
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2  m2 (5 2 )mi (s3) = \mi ({Jones}) x m3 ({Cruise})]+ ...
•v 2

+ [m2 ({Jones}) x m3( {Bennett})] + ...
+ [m3 ({Jones}) x m2 ( {Cruise})]+ ...
+ [m3 ({Jones}) x m2 ({Bennett})] + ...
+ \m2 ({Cruise}) x m3 ({Bennett})]+ ...
+ [m3 ({Cruise}) x m2 ( {Bennett})]+ ...
+ [w2({ Jones, Cruise}) x m3{ {Bennett})] + ...
+ \m3 ( {Jones, Cruise} ) x m2 ( {Bennett})]+...
+ \m2 ({Jones, Bennett}) x w3( {Cruise})]+...
+ [m3 ({Jones, Bennett}) x m2( {Cruise} )]+...
+ [m2 ({Cruise, Bennett}) x m3 ({Jones})] + ...
+ [m3 ({Cruise, Bennett} ) x m2 ({Jones})]

= [0.1 x 0. l] + [0.1 x 0. l] + [0.2 x 0. l] + [0.2 x 0.2] + [0.1 x 0. l] + [0.1 x 0.2] +. . .

+ [0.1 x 0.1 j + [0.1 x 0.2] + [0.2 x 0. l] + [0.3 x 0. l] + [0.1 x 0.2] + [0.1 x 0. l]

=  0.22

(3.6)

Substituting equations (3.5) and (3.6) into (3.4) gives

m( {Jones, Cruise}) = = 0.051 (3.7)

Using equation (3.3) the allocation of the combined evidence m* = m2 © m3 for the 

remainder of the hypotheses is given in Table 3.2.
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Table 3.2 Combination of belief values for assassin example

0 {Jones} {Cruise} {Bennett} {Jones, Cruise} {Jones, Bennett} {Cruise, Bennett} {Jones, Cruise, Bennett}

m2 0 0 .1 0 .1 0 .2 0 .1 0 .2 0 .1 0 .2

/w3 0 0 .2 0 .1 0 .1 0 .1 0.3 0 .1 0 .1

77*4 0 0.282 0.128 0.282 0.051 0.180 0.32 0.026
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3.3 PREVIOUS WORK

Safranek et al. (1990) and Gerig et al. (2000) utilised aspects of DST in studies in the 

areas of vision and medical image analysis respectively and their works highlight the 

potential of DST as a classification tool. Their contributions are now discussed in 

detail.

3.3.1 Safranek et al. (1990)

Safranek et al. (1990) developed a method using DST for object detection and 

verification tasks in robot vision. Their task of verifying the position of objects based 

on camera images of these objects can be summarised as following:

i. Collect measurements of the object from the camera image

ii. Determine the extent to which each measurement supports the existence of the 

object

iii. Combine the evidence from all the measurements to make a final decision as to 

whether or not the object is at its predicted position

Because of the uncertain nature of their measurements, Safranek et al. (1990) used 

DST to assign levels of support to each measurement and subsequently to combine 

these individual pieces of evidence (steps ii and iii above). They used BFOD and 

defined the elementary hypotheses as “the object is at its predicted position”, {*}, and 

“the object is not at its predicted position”, {_,x}, i.e. 0  = {x , ~ac}.

The first stage of their method is to standardise each input variable (v). Each input 

variable is mapped to a value on a scale of 0 to 1. The transformed input variable is 

defined the confidence factor, cfiy). Safranek et al. (1990) state that cfiy), must satisfy 

the following criteria:

i. cfiy) is an increasing function

ii. cfiv) = 1 if the measurement implies certainty in {x}

iii. cfiy) -  0  if the measurement implies certainty in

iv. cfiy) = 0.5 if the measurement favours neither {*} nor ( -,x}
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The confidence factor representing each input variable is subsequently transformed 

into a BOE. Given that the subsets of 0  are the hypotheses {x}, {"x}, {x, -x} and 0 , 

then the associated bpa are:

i. w({x}) -  the degree of belief in {x}

ii. m({-^x}) -  the degree of belief in {~x}

iii. m({x, ~x}) = m(0 ) -  the degree of belief in {x, -x}

iv. m(0) = 0  -  the degree of belief in neither x  nor -x

Safranek et al. (1990) define these bpa as:

m(W) = 7-^7c/ ( v) - 7 ^  (3.4)I — A 1 — A

™({-'*})=7-^7c/ ( v) + B (3-5)
1 -  A

and

m ( 0 )  =  1 -  ™ ({x}) -  w ({ - .x } )  =  1 A B ( 3 .6 )
1 -  A

where A depicts the dependence of m({x}) on the confidence factor and B the 

maximal support assigned to m({x}) or w({_,x}). Subsequently, the bpa corresponding 

to each individual measurement are combined using Dempster’s rule (see equation 

3.3) to produce a combined BOE (BOEc) defined by the bpa mc({x}), wc({_ix}) and

«c(0).

Finally, a decision is made based on the BOEc:

i. If mc({x}) > mc({~^x}) then the outcome is considered to be x

ii. If Wc({“x}) > mc{{x}) then the outcome is considered to be “x
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3.3.2 Gerig et al. (2000)

Due to the uncertainty associated with the measurements used to discriminate between 

lesions and static tissue, Gerig et al. (2000) applied DST to the detection of brain 

lesions in subjects with multiple sclerosis. Following Safranek et al. (1990), Gerig et 

al. (2000) limited their study to a BFOD, which they defined as © = {lesions, - 1 

lesions}.

3.4 NEW CLASSIFICATION METHOD FOR OSTEOARTHRITIC 
(OA) AND NORMAL (NL) KNEE FUNCTION

Building on the work of Safranek et al. (1990) and Gerig et al. (2000), this section 

introduces a new classification method for OA and NL knee function. Following the 

work of Safranek et al. (1990), the classification method is restricted to BFOD. The 

BFOD, ©, contains two antagonistic elementary hypotheses “a subject has OA knee 

function” denoted {OA} and a “subject has NL knee function” denoted {NL}, i.e. 0  = 

{OA, NL}. There are 2 ^  = 2 2 = 4 subsets of © - the hypotheses {OA}, {NL}, {OA, 

NL} = 0  and 0 .

The new classification method comprises a number of stages:

i. Conversion of input variables into confidence factors

ii. Conversion of confidence factors to BOE

iii. Combination of individual BOE

iv. Visualisation of BOE using simplex plots

v. Classification based on the final combined BOE, BOEc

These individual stages are now discussed in the following subsections, throughout 

which the reader is directed to Figure 3.2, which illustrates the interconnection of the 

individual stages.
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m{{ OA})

0.5-

0 v

(OA){NL}
(c)

Figure 3.2 The classification method showing the interaction of its three main stages.

(a) Conversion of input variable, v, into confidence factor cfiy) using the sigmoid 

function. 6 is the value of v for which cfiv) = 0.5. (b) Conversion of confidence factor 

into body of evidence (BOE) comprising the bpa w({OA}) = w({NL}) = and

m(0) = A* .A  and B are the DS control parameters, (c) Conversion of the BOE into its 

simplex coordinate, denoted by the point p  (adapted from Beynon et al., 2002). The 

simplex plot is divided into four regions: 1 denotes the dominant NL classification 

region; 2 denotes the dominant OA classification region; 3 denotes the non-dominant 

NL classification region and 4 denotes the non-dominant OA classification regions.

The dotted vertical line is the decision boundary.
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3.4.1 Conversion of input variables into confidence factors

The first stage of the classification method is to standardise each input variable, v. 

This standardisation process ensures that the input variables are in an appropriate 

form for the bpa (Gerig et al. 2000). Following the work of Safranek et al. (1990), 

each input variable is mapped to a value on a scale of 0 to 1. The transformed input 

variable is defined the confidence factor, cfiy), and represents a level of confidence in 

(or not in) the variable’s support to a subject’s knee function being OA. The greater 

the value of the confidence factor the greater the support for a subject’s knee function 

being OA and vice versa. The confidence factor cfiv), must satisfy the following 

criteria (adapted from Safranek et al., 1990):

i. cfiy) is a monotonic function

ii. cfiy) = 1 if the measurement implies certainty in {OA}

iii. cfiy) = 0 if the measurement implies certainty in {NL}

iv. cfiy) = 0.5 if the measurement favours neither {OA} nor {NL}

Safranek et al. (1990) comment that the choice of such a function is application 

specific. Gerig et al. (2000) suggest that one possible function to transform the input 

variables into confidence factors is the sigmoid function

c/(v) = T 77^ F (3.7)

where k describes the gradient of the confidence function, cfiy), and 0 is the value of v 

which produces a confidence value, cfiy) = 0.5 as shown in Figure 3.2a. The sigmoid 

function is commonly used as an activation function within Artificial Neural 

Networks including applications to gait analysis studies (e.g. Holzreiter and Kohle, 

1993).

A sigmoid confidence function with a positive gradient (positive association) implies 

that a large v measurement offers more support to {OA} (cfiy) -» 1), whilst a small v 

measurement offers more support to {NL} (cfiy) -> 0) (Figure 3.3a). Conversely, a 

negative gradient (negative association) implies that a large v measurement offers
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more support to {NL} whilst a small v measurement offers more support to {OA} 

(Figure 3.3b).The nature of association of each k can be deduced from knowledge of 

its associated input variable.

The absolute value of k indicates the range of the measurement of the input variable 

that lies around the middle confidence value cfly) = 0.5. Smaller absolute values of k 

increase the range of v for which cfiy) is near 0.5, thus restricting the majority of v 

measurements to be assigned a cfiy) value of near 0.5 (Figure 3.3c). Conversely, a 

greater absolute value of k, decreases the range of v for which cfiy) is near 0.5, which 

implies that the majority of v measurements transform towards the extreme cfiy) 

values of 0 or 1 (Figure 3.3d)

The # variable is the value of v for which the evidence supporting {OA} is equal to 

the evidence supporting {NL} when cfiv) = 0.5 as shown in Figure 3.4. Movement to 

either side of this value leads to an increase in the level of support to either {OA} or 

{NL}.

cfiv) 0.5cfiy) 0.5

50v v
( a )  ( b )

cfiv) 0*5 cfiv) 0.5

50
v V

(C) (d)

Figure 3.3 Influence of k on confidence factor (a) positive association (k = 0.25) (b) 

negative association (k = -0.25) (c) small absolute value of k (k = 0.2) (d) large

absolute value of k (k = 2 )
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cfiv) 0.5

°0 10 20

cfiv) 0.5

°0 10 2030 40 50 30 40 50
v V

(a) (b)

Figure 3.4 Dependence of confidence factor on 6 (a) 6 = 15 (b) 0 = 35

3.4.2 Conversion of confidence factors to BOE using DST

The confidence factor representing each input variable is subsequently transformed 

into a BOE; a set of belief measures established within the context of DST (see Figure 

3.2b). Given that the subsets of 0  are the hypotheses {OA}, {NL}, {OA, NL} = 0  

and 0 , then the associated bpa are:

i. w({OA}) -th e  degree of belief in {OA}

ii. aw({NL}) -  the degree of belief in {NL}

iii. m({OA, NL}) = w (0) -  the degree of belief in {OA, NL}

iv. m(0) = 0 -  the degree of belief in neither {OA} nor {NL}

The value m({OA, NL}) = m(0) is the associated ignorance because it represents the 

value that cannot be given to {OA} or {NL} explicitly. From Safranek et al. (1990) 

these bpa are defined as:

(3.8)

m({NL})=— - c f { v ) + B  
1 -  A

(3.9)

and
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m(&) = 1 -  m({OA}) -  m({NL}) = -———— (3.10)
1 -  A

where A depicts the dependence of w({OA}) on the confidence factor and B the 

maximal support assigned to w({OA}) or /w({NL}). Imperatively, if either m({OA}) 

or w({NL}) are less than zero their values are set to zero. The m(0) is then calculated 

subsequent to making these changes.

3.4.3 Combination of individual BOE

If there is more than one input variable characterising a subject, a respective number 

of number of BOE will be constructed. Each BOE offers positive or negative evidence 

to support the classification of a subject to a hypothesis. The Dempster’s rule of 

combination, which assumes that the input variables are independent, is used to 

combine the individual BOE into a final combined BOE (BOEc). In the case of 

BFOD, where 0  = {OA, NL} this rule is given by the three following formulaic 

expressions (based on two independent BOE W/(.) and wy(.)) (Gerig et al., 2000):

( m V h . n  m, ({° A })m({0 A}) + m ({0  A })m, (©) + m, ({O A })m(©)
( „ ,  *  X(OA}) -  . .( (O A ) ,--------- 1. ( . i ( ) N L K M t . i((0A)>,  (tNl)))

(3.11)

I ^  Y K t t W  m ' ( { N L / K  ( t N L ) ) +  m j  ( ® H  ( f N L } ) +  m , ( ( N L ) ) m , ( © )

k ® . , » N L } ) . . . ( ( N L ) ) .  ! -  (™, ({NL},., ((OA), + m ,  ((OA))., ((NL,),

(3.12)

[mi <$ml X®) = mc( ® ) = \ - m c({OA} ) -mc({NL}) (3.13)

The combination of individual BOE to form the BOEc is illustrated in Figure 3.5. The 

BOEc comprises the same three focal elements as present in the individual BOE 

namely {OA}, {NL} and 0 .
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Dempster’s rule

Confidence factor

Body of evidence

Variable

Body of evidence

Variable

Confidence factorConfidence factor

Variable

Body of evidence

Dempster’s rule

Combined body of 
evidence

Combined body of 
evidence

Figure 3.5 Evidence accumulation. Combination of individual bodies of evidence 

using Dempster’s rule (adapted from Gerig et al., 2000, pp.36).

3.4.4 Visualisation of BOE using simplex plots

Following the work of Beynon et al. (2002), a simplex coordinate is used to represent 

the BOE as a single point in a simplex plot (see Figure 3.2c). A mathematical 

derivation is now given to explain this conversion of the BOE into its simplex 

coordinate (see Silvester and Ferrari, 1996; Coxeter, 1969).

Figure 3.6 shows an equilateral triangle A A 1A 2A 3 with area denoted by S. A  point p  

lies somewhere within this triangle and divides it into three sub-triangles AA1A3/7, 

A A 2 A 3 and A A 1A 2/? which have a common vertex p  and areas S*, k = 1 ,2 , 3, 

respectively as shown in Figure 3.7. It follows that
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A,

A, a 2

Figure 3.6 Equilateral triangle AAj A2A3 with area denoted by S.

A3

A,

Figure 3.7 Equilateral triangle AAj A 2A 3 divided into three sub-triangles AAj A 3/ 7, 

A  A 2A 3/? and A  Ai A 2p  which have a common vertex p  and areas S*, k = 1, 2, 3,

respectively.

A3

Figure 3.8 h is the shortest distance from each vertex to its respective opposite edge.
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A3

A,

Figure 3.9 The shortest distance from p  to the three edges.

0

(w({OA}),aw({NL}),aw(0))

{NL} {OA}

Figure 3.10 The simplex coordinate ofp  is (m({OA}), m({NL}), w(0)).

A3

jpixP>y„)

Figure 3.11 Angle coi is defined as the angle between the lines A1A2 and A\p. Li is

the length of the line Aip.
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S = ± S k (3.14)
k=1

Dividing through by S gives

I %  = 1 (3-15)k=1 ^

The shortest distance from each vertex to its respective opposite edge is given by h as 

shown in Figure 3.8. The shortest distance from p  to the edge A 1A2, is the length of 

the perpendicular bisector of A 1A2 passing through p , the line pe 3 . The length of pe 3 is 

a fraction, X3 (0 < X3 < 1), of the length h, as shown in Figure 3.9.

Since triangles A A 1A2A3 and A A 1A2p have a common base (Figure 3.7), it follows 

that the ratio of the area of triangle A A 1A 2A 3 to the area of triangle A A i A 2p is equal 

to the ratio of the height of triangle A A 1A2A3 to the height of triangle AAi A2p, i.e.,

X,h S.
= (3.16a)

h S

Similarly,

M  =  ( 3 1 6 b )
h S

and

X,h S,
= (3.16c)

h S V y

Substituting these three results into equation (3.15) gives

Xj +X2 +13 =1 (3.17)
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The three numbers, A.i, X2 and X̂ , specify the point p  uniquely within the equilateral 

triangle AAi A2A3, and (A,i, X2, X3) are known as the simplex coordinate of p.

Comparing equation (3.10) with equation (3.17) indicates that the three belief 

measures can be represented using a simplex coordinate if we define

w({OA}) = A.i (3.18a)

/w({NL}) = X,2 (3.18b)

m(®) = X 3 (3.18c)

Therefore, in the simplex plot a point p  exists within an equilateral triangle such that 

the least distance from p  to each side of the equilateral triangle are in the same 

proportion to the values m({OA}), w({NL}) and m(0). Briefly, the nearer a simplex 

coordinate is to a specific vertex the more association the BOE has to that subset of

the frame of discernment. Thus, within the simplex plot the three belief measures can

be represented using the simplex coordinate (m({OA}), w({NL}), /w(0)) provided that 

the vertices Aj, A2 and A3 correspond to {NL},{OA} and 0  respectively, as shown in 

Figure 3.10.

The vertices Ai, A2 and A3 have the simplex coordinates (0,1,0), (1,0,0) and (0,0,1) 

respectively. In the limits therefore, if the point p  lies at the bottom right vertex of the 

triangle, w({OA}) = 1 and w({NL}) = w(0) = 0; if the point p  lies at the bottom left 

vertex of the triangle, /w({NL}) = 1 and m({OA}) = m(0) = 0; if the point p  lies at the 

top vertex of the triangle, m(0) = 1 and m({OA}) = m({NL}) = 0.

Let the angle between the edge A 1A2 and the line A1/7 be ce>i and let the length of the 

line Ai/? be Li, as shown in Figure 3.11

It follows that
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sinco, = X3h
(3.19)

L, A,3

h sin co,
(3.20)

sinf—-co,
\ h  

J L,
(3.21)

Using the rule sin (a + p )  = sin a  cos fi + sin ft cos a  to expand equation (3.21)

V3 1 .—  cos co, — sin co, -  
2 1 2 1 L

\ xh (3.22)

h V3 1 .—  cos co, — sin co, 
2 1 2 1

(3.23)

Equating (3.26) and (3.27) gives

X,
sin co V3 1 .

—  cosrn, — sinco,

(3.24)

V 5 1 .— cos co, — sinco, 
2 ' 2 1

A,3 = A., sinco, (3.25)

Collecting terms gives

V3A,3 co s  co, = (2A,, + A,3 )s in  co, (3.26)
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tan co, =
(2 A, | + A,3)

(3.27)

The Cartesian coordinates of point p  which lie on the line A\p  are given by

XP = XA< +

X3h
tan co

(3.28)

and

y P =y*,  + M (3.29)

Substituting (3.22) into (3.23) gives

XP = X Ax +

(2 X| +X3)

(3.30)

XP = x a, +
(2Xl + A.3

V3
(3.31)

Let the Cartesian coordinates of the vertices Ai, A2 and A3 be (0,0), (1,0) and

V3( ]/ 2,^ A )  respectively. This implies that h = — . Substituting for h ,xAi andy Aj in 

equations (3.29) and (3.31) gives

(2 A, | + A,3) (3.32)

3-25



Chapter 3 The Classification Method

Since wc({OA}), wc({NL}) and wc(0) constitute a bpa, then the BOEc can also be 

represented using simplex coordinates. As a result, both the final combined BOEc and 

the individual BOE contributing to it can be shown on the same simplex plot. Two 

examples of this are given in Figure 3.12.

(OA, NL} {OA, NL}
-FP
*TP
■CA
•VF

.SPVF
CA
TP'
FP'

SP,

Final
Fina]

{NL} {OA} {NL} {OA}

Figure 3.12 The simplex coordinate of the final combined BOEc (Final) and the 

simplex coordinates of the individual BOE (SP (sagittal plane rotation), FP (frontal 

plane rotation), TP (transverse plane rotation), CA (cadence) and VF (vertical ground 

reaction force)) contributing to it can be shown on the same simplex plot (Taken from

Jones et al., 2003c).

The simplex plot can be divided into regions as shown in Figure 3.2c. Ignoring the 

m(0 ) value the simplex plot can be divided into two regions, as shown by the vertical 

dotted line, known here as the decision boundary. To the left of the decision 

boundary, m({NL}) > w({OA}) and to the right, m({OA}) > /w({NL}). Therefore, it is 

expected that the simplex coordinates representing the final BOE of a subject 

classified as NL would lie to the left of the decision boundary and a subject classified 

as OA to the right. Further subdivision of these two regions can provide a sub 

classification of subjects as shown in Figure 3.2c. In region 1 of the simplex plot 

/w({NL}) is the dominant belief value i.e. w({NL}) > w({OA}) + m(0). This can be 

contrasted with region 3 in the simplex plot in which w({NL}) > w({OA}) but
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< /w({OA}) + w(@). In a similar way, in region 2 of the simplex plot 

m({OA}) is the dominant factor i.e. w({OA}) > /w({NL}) + /w(@) whereas in region 4; 

m({OA}) > w({NL}) but m({OA}) < w({NL}) + w(@). Thus, a subject lying in 

region 2 of the simplex plot has a stronger OA classification than one lying in region 

4.

3.4.5 Classification using BOE

Following the work of Safranek et al. (1990) the following decision rule is adopted:

i. If mc({OA}) > wc({NL}) then a subject is considered to have OA knee 

function.

ii. If mc({NL}) > mc({OA}) then a subject is considered to have NL knee 

function.

3.5 ASSIGNMENT OF VALUES TO CONTROL VARIABLES

The conversion of each input variable into a confidence factor and the subsequent 

construction of each BOE are dependent on a set of control variables, namely k,6, A 

and B (see equations (3.1), (3.2) and (3.3), and Figure 3.2). For a set of input 

variables, x 4 control variables must be evaluated. Values can be assigned to these 

control variables using expert knowledge or optimisation methods.

3.5.1 Assignment of values to control variables using expert knowledge

Here, assignment of values to these control variables is based on knowledge of the 

nature and behaviour of the input variables. The four control variables will now be 

discussed in turn.

Beynon (2004) suggests that an expression for k should be somehow related to the 

spread of the data, namely the standard deviation, cr. It is suggested that

k = + — (3.34)
cr
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where the sign depends on the association (see Figure 3.3). If there is a large spread 

present in the measurements of v, i.e. a large cr, then equation (3.34) will produce a 

small value for the confidence value increasing the range of v around cflv) = 0.5, and 

vice-versa. Alternatively Beynon et al. (2002) take the k control variable as Pearson’s 

correlation coefficient for that characteristic with the subjects’ category labels ( 0  => 

NL and 1 => OA). The rational behind this is that the sign of the correlation 

coefficient gives the sign of the k value and hence the direction of the association of 

the characteristic with the hypothesis. The value of the correlation coefficient 

indicates the degree to which the characteristic can differentiate between OA and NL.

Beynon (2004) suggests that 0 should not be biased towards {OA} or {NL} and thus 

uses the mean value, v~.

The A and B variables relate directly to the range of values of exact belief in {OA} 

and {NL}, including the level of associated uncertainty. The process of assigning 

values to the A and B control variables depends on knowledge of the general limits of 

uncertainty, [ © l ,  © u ] ,  allowed for the individual variables. Different limits can be 

assigned to each of the individual variables; however, in this study the same limits are 

assigned to each variable (following Beynon et al., 2002). To use these limits to 

calculate A and B, reference is made back to the expressions for the belief values 

m({OA}), w({NL}) and w(©) (equations 3.8, 3.9 and 3.10). It can be seen from 

Figure 3.2b that the greatest values of uncertainty, w(©) are found around cflv) = 0.5 

and the least around cflv) = 0 and 1 respectively. In the case of least uncertainty, © l , 

using cflv) = 0 in equation (3.8), then

(3.35)

This is always negative because A and B are positive and therefore w({OA}) is set to 

zero. From equation (3.9)

w({NL})=£ (3.36)
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By substituting these results into (3.10) it follows that

m ( © ) = l - B  (3.37)

Substituting 0 l for w(0), gives

R = 1 -  ©L (3.38)

In the case of highest uncertainty, @u, using cflv) = 0.5, then from equation (3.8)

m({OA}) = m({NL}) = ~ ~ ~ ~  (3.39)
I - A

Subsequently, from equation (3.10) gives

m
1 - A

Substituting for w(0) = ©u and B from equation (3.38) gives

u I - A

Rearranging gives

(w)__(h)
Uu U^ ~ (3.42)

l +  0 u -2 0

3.5.2 Assignment of values to control variables using optimisation methods

In the absence of, or to eliminate the need for expert opinion and to automate the 

process of selecting control variables, optimisation methods can be utilised. Global
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optimisation techniques such as hill climbing or simulated annealing can aid in the 

selection of such variables with the use of an objective function (OB) -  a function that 

quantitatively represents a measure of a system’s performance (Kirkpatrick et al., 

1983). In the context of this application, the OB is a measure of the level of 

classification of the subjects to the hypothesis {OA} or the hypothesis {NL}. The OB 

is dependent on the nt x 4 control variables (k, 6, A and B) and the optimisation 

technique seeks to minimise this OB by optimising the values of the control variables.

In reference to the simplex plot, the OB is the difference between the actual position 

of the subjects and the desired optimal position - that all subjects are classified 

correctly either as {OA} or {NL}. This implies that all subjects are positioned as 

close as possible to either of the base vertices in the simplex plot, ({OA} or {NL}), 

depending on their actual category. It follows that a suitable OB is the Euclidean 

distance of the mean coordinates of the two groups of subjects to their correct vertex 

(Beynon et al., 2002)

Given that (x°A,y ° A) i = 1, . . . , « o a  and (x,NL,y **L) i = 1, . . . , « n L are the Cartesian

coordinates of the « o a  and wnl  objects in the simplex plot which are classified to the 

hypotheses {OA} and {NL} respectively, then OB is given as

OB = N J  + ( y -  *«. f  + f  + (?,“  -  ) <3'43)

where (xOA, y OA ) and , y ^  ) are the simplex coordinates of the two base vertices, 

{OA} and {NL}, respectively.

Allowing the sides of the equilateral triangle domain of the simplex plot to be of unit 

length, 0 < OB < 1. In the limit, the nearer the value is to zero the better the 

classification of the subjects. A value of OB near 1 infers that the mean points are 

near the 0  vertex or the other incorrect vertex.

Hill climbing algorithms may not be suitable for use in cases where the global 

minimum exists among several local minima because of the problem of local
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entrapment. To illustrate the problem of local entrapment reference is made to Figure 

3.13, which depicts two peaks in the Brecon Beacons national park, Pen-y-fan (point 

C) and Com-Ddu (point B), the horse shoe pass (point D) and the car park in the 

lower valley (point A). Starting out his descent from the peak of Pen-y-fan, a hiker 

intent on eating his packed lunch in the car park, unexpectedly finds that he is 

surrounded by hill fog. Continuing downhill on his walk, he eventually reaches a 

point (point B) where he cannot go downwards any further. Thus, he concludes that 

he has reached the car park in the lower valley and sits down to eat. However, this is 

not the case. He has reached the horse shoe pass in between the two mountains and 

cannot see the lower valley because of the fog. In order to reach his true destination he 

must allow himself to climb upwards as well as downwards in favour of reaching the 

lower valley.

Figure 3.13 The problem of local minimum entrapment. The Brecon Beacons 

national park: A -  car park in the lower valley, B -  peak of Com-Ddu, C -  peak of

Pen-y-fan and D -  horse shoe pass.

This is the problem associated with the hill-climbing algorithm. Starting from an 

initial solution the algorithm adjusts the parameters slightly and recalculates the OB. 

The adjustment is accepted if, and only if, there is an improvement in the OB. As a 

result, the algorithm converges to the nearest local minimum at the expense of 

superior solutions.
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Simulated annealing (SA) was introduced as an optimisation method by Kirkpatrick et 

al. (1983), based on the work of Metropolis et al (1953). SA, a global optimisation 

technique, is able to distinguish between many local minima. Unlike the hill-climbing 

algorithm, it probabilistically accepts “worse” solutions and consequently escapes 

local minima, whilst moving towards the global minimum.

SA is analogous to the annealing process in metallurgy. This is a heating process 

whereby a metal is raised to an elevated temperature for an extended period and then 

cooled slowly, in order to relieve stresses, increase ductility and to alter the 

microstructure (Callister Jr., 1999). Initial temperature, time held at this temperature 

(soaking time), cooling rate and final temperature are crucial parameters in the 

annealing process:

i. If the rate of cooling is too great, internal stresses may result in warping or 

cracking in the material

ii. If the annealing time is too short, transformation in the microstructure may not 

occur

iii. If the annealing temperature is increased, the annealing process may be 

accelerated.

In a similar way, the performance of the SA algorithm is dependent on a number of 

control parameters:

i. Starting temperature

ii. Number of iterations per temperature (analogous to soaking time)

iii. Cooling rate

iv. Final temperature

The SA algorithm and these associated control parameters will now be described in 

more detail.

3.5.2.1 The SA algorithm

A summary of the SA algorithm is given in Figure 3.14.
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Start temperature re­
iterations per temperature, i, 

Temperature reduction factor, r, 
Final temperature, tf 

Boundaries for the control variables

Calculate initial value o f  objective function (O B)

Temperature, t = ts

h = 1 <■

Randomly select one o f  the control 
variables and increase/decrease its value 

by a random amount
Return the control 

variable to its 
original value I

NO !
Is the new adjusted control variable 

within the selected boundaries?

T YES
Replace original value o f  control 
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Is 1 < rand
f  f OB-new OB ̂  ^
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Recalculate OB

 JL_ _ _ _
-j Is new  OB< original OB? J

NO
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Figure 3.14 Flowchart of the simulated annealing method
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i. Set the initial temperature ts, temperature reduction factor rt, iterations per 

temperature it and final temperature tf (these will be discussed later in more 

detail).

ii. Start with an initial solution nt x (k, 6, A and B). Calculate the OB as shown in 

Figure 3.15.

iii. Randomly choose one of the x 4 control variables. Adjust its value by a 

small amount and recalculate the OB. If the OB has decreased in value, 

unconditionally accept the change made to the randomly selected variable. If 

the change results in an increase in the OB, accept the change in the randomly 

selected variable according to some probability. The probability of acceptance 

is dependent on the current temperature t and the difference between the 

previous and current objective function A/, and is given by the Metropolis 

criterion (Metropolis et al., 1953):

p(‘) = j — < rand (3.44)
1 + e 1

V )

where rand is a random number between 0 and 1. Note that t is simply a 

control parameter and has no physical equivalence. Figure 3.16 shows that at 

higher temperatures, the probability of acceptance is around 0.5 and as a 

result, OB is equally likely to increase as decrease. Therefore, at high 

temperatures the SA performs a random walk as shown in Figure 3.17a. At 

lower temperatures the probability of acceptance decreases since p{t) increases 

(Figure 3.16b). As the temperature reaches zero only better moves will be 

accepted. Thus, the SA algorithm behaves at low temperatures like a hill 

climbing algorithm (Figure 3.17b).

iv. The algorithm performs a set number of iterations (/t) at the current 

temperature before the temperature is reduced according to the reduction 

factor rx. This procedure continues until the stopping criterion is met.
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Calculate OB

Combine BOE using 
Dempster’s rule to give 
combined BOE (BOEc)

Convert input variables 
into confidence factors 

(<cj{v)) using k and 0

Convert cj(v) into bodies 
of evidence (BOE) using 

A and B

Convert BOEc into 
simplex coordinate and 
its equivalent Cartesian 

coordinates

Figure 3.15 Calculation of objective function (OB)

3.5.2.2 The SA control parameters

As previously stated the performance of the SA algorithm is dependent on a number 

of control parameters. The significance of these parameters will now be discussed.

The temperature controls the acceptance of worse solutions (equation (3.44)) and 

hence allows the solution to escape local minima. If the starting temperature, ts is not 

sufficiently large enough, the system will not allow for an increase in the OB. Hence, 

the algorithm will behave as a hill-climbing algorithm. The final solution will be near 

to the initial solution and the algorithm is more likely to ‘get stuck’ in a local 

minimum. Conversely, if the starting temperature is too large, the algorithm will 

perform a random walk and will not converge to an optimal solution.

3-35



Chapter 3 The Classification Method
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Figure 3.16 Probability distribution based on temperature for A/= -0.1. (a) At high 

temperatures the p(t) « 0.5, therefore a “worse” solution is equally likely to be 

accepted or rejected, (b) At lower temperatures p{t) approaches 1 which means that 

“worse” solutions are more likely to be rejected than accepted.

0.0150.75

0.5 0.01
OBOB

0.0050.25

/  —^ 0t —>0
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Figure 3.17 (a) At high initial temperatures, the SA performs a random walk. 

Therefore, the OB is allowed to increase as well as decrease, (b) As the temperature t 

decreases, the SA performs like a hill-climbing algorithm, and the OB is only allowed

to decrease.
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Duda et al. (2001) comment that the initial temperature must be sufficiently large so 

that all configurations have equal probability of acceptance. Nolle et al. (2002) use an 

initial starting temperature based on knowledge of OB.

In the same way as Duda et al. (2001), Nolle et al. (2002) suggest a value of 0.5 for 

the initial transition probability if the difference in fitness, A/, is small. Using this 

criterion of p{ts) « 0.5 , gives:

a?7 =  ° '49 
l + e /'■

(3.45)

=> ts « 25 x Af

The time spent at each temperature is usually related to the size of the neighbourhood 

or possibly the size of the solution space (Dowsland, 1995).

Two different types of temperature reduction are most commonly used (Dowsland, 

1995). The first method invokes a geometric reduction function

a(t)= at  (3.46)

where a< 1.

The second method performs one iteration at each temperature but reduces the 

temperature very slowly using the formula

a(t) = 7 r (3.47)
( i+/*)

where p  is a small value. Other methods of temperature cooling are summarised by 

Dowsland (1995).

Theoretically, the temperature should be allowed to reach zero before the algorithm is 

stopped. However, this results in unfeasibly large computational times. Furthermore,
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before reaching a temperature of zero, at relatively small temperatures, the probability 

of acceptance of uphill moves will be indistinguishable from zero. Thus, it is not 

necessary to run the algorithm until a temperature of zero is reached. To reduce the 

strictness of the final temperature equalling zero, one or more stopping constraints 

may be employed. Dowsland (1995) suggests that the simplest method is to pre­

specify the number of iterations and stop when this number has been completed. 

However, this final number of iterations must correspond to a sufficiently low 

temperature to ensure convergence. A second stopping constraint is to run the 

algorithm until a final temperature is reached (Dowsland, 1995).

The application of SA to the classification of OA and NL subjects is given in Chapter 

4, section 4.2.

3.6 EVALUATION

The final stage of classifier design is performance evaluation (Duda et al., 2001). 

Siedlecki and Sklansky (1989) comment that the only legitimate way of evaluating the 

performance of a classifier is through examination of its error or misclassification 

rate:

error rate = number of misclassifications
number of cases (3.48)

This evaluation method is also the most commonly used (Weiss and Kulikowski, 

1991). For a discussion of other evaluation methods the reader is directed to Dash and 

Liu (1997). The true error rate of a classifier is defined as the error rate on an infinite 

number of new cases (Weiss and Kulikowski, 1991). However, in reality the number 

of cases is finite and the true error rate must be approximated.

The most obvious way of approximating the true error rate is to use the resubstitution 

(or apparent or reclassification) error rate. In this instance the classifier is trained 

using a set of cases and the error rate is calculated using the same cases that were used 

to design the classifier (Weiss and Kulikowski, 1991). However, the resubstitution 

error is known to be an optimistically biased estimate of the true error rate (Raudys
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and Jain, 1991; Toussaint, 1974) and consequently should only be used when the 

number of training cases is large.

Different methods exist for obtaining less biased estimates of the true error rate. These 

methods involve partitioning the cases into a training group and a testing group. The 

simplest of these methods is known as the hold-out method (see Toussaint, 1974). 

Here a set number of cases are assigned to the training group and the remainder to the 

testing group. The classifier is trained on the training group and then the hold-out 

error is calculated using the testing group. For large testing group sizes the hold-out 

error approaches the true error. However, for smaller sample sizes the hold-out 

method is a pessimistically biased estimate of the true error rate (Toussaint, 1974) and 

is highly dependent on the way in which the samples are partitioned into a training 

and testing group (Toussaint, 1974). Furthermore, the hold-out method makes 

inefficient use of the data (Toussaint, 1974; Raudys and Jain, 1991) especially when 

there are limited number of training and testing cases.

Instead of estimating the error rate using a single testing and training group (the hold­

out method), cross-validation or resampling methods that use multiple testing and 

training groups can be used (Weiss and Kulikowski, 1991). Using these methods a 

number of classifiers are created. The data (N samples) is partitioned into a training 

group {n samples) and a testing group (N-n samples) and the classifier is trained on 

the training data and tested on the testing data as before. This process is repeated 

using different training groups of size n. The cross-validation error rate is then defined 

as the average testing group error rate for all of the classifiers.

A special case of cross-validation is the leave-one-out method. Here, the classifier is 

trained on the (N -l) training cases and tested on the remaining one test case. This 

process is repeated N  times. The leave-one-out error rate is then defined as the 

average test case error rate. This method overcomes the issue of inefficient use of the 

data since every case is used in testing and each time every case save one is employed 

as a training case (Weiss and Kulikowski, 1991). Additionally, and perhaps more 

importantly the leave-one-out error rate is nearly an unbiased estimate of the true error 

rate even for small sample sizes (Raudys and Jain, 1991; Weiss and Kulikowski,
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1990). However, there are disadvantages to the leave-one-out method. Firstly the 

leave-one-out error rate has a large associated variance, especially for small sample 

sizes (Toussaint, 1974; Weiss and Kulikowski, 1991). Secondly it can be 

computationally intensive to calculate the leave-one-out error rate for large sample 

sizes. Following the recommendation of Weiss and Kulikowski (1991) the leave-one- 

out method is used to estimate the true error rate of the classifier in the studies carried 

out as part of this thesis. Using a sample of 42 subjects, the DS classifier is trained on 

41 of the training cases and tested on the remaining one test case. The process is 

repeated 42 times and the leave-one-out error is calculated as the average of the 

average error rate for all of the left-out samples. The out-of-sample accuracy is 

defined as 100 minus the leave-one-out error.

This chapter has introduced and described the new classification method in detail. 

Conclusions based on this chapter are given in Chapter 8.
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CHAPTER 4

DEMPSTER-SHAFER CONTROL PARAMETERS

This chapter reports the results obtained from a series of tests that were conducted to 

investigate the influence of the Dempster-Shafer (DS) control parameters on the 

accuracy and stability of the DS classifier. This study was necessary to investigate the 

validity of the DS classifier. Values can be assigned to the DS control parameters 

using one of two methods as outlined in section 3.5. The first method, a non­

optimisation approach uses expert opinion and knowledge of the input variables to 

assign values to the DS control parameters. The second method, an optimisation 

approach, uses simulated annealing to assign values to the DS control parameters. The 

influence of the DS control parameters using both methods is investigated in sections

4.1 and 4.2 respectively. A summary based on the work is given in section 4.3.

4.1 NON-OPTIMISATION METHOD

4.1.1 Sensitivity of the DS control parameters to changes in the subject 

population and in the uncertainty limits

Using the non-optimisation method values are assigned to the DS control parameters, 

k, 6, A and B, using a set of equations developed in section 3.5.1. Two different 

definitions of k (kc and ks) were established. For a given input variable vh kc is given 

as the Pearson’s correlation coefficient for v, with the subjects’ category label (0 => 

NL and 1 => OA), and ks is given as

k , = ± -  (4.1)
cr

where cr is the standard deviation about the mean of v, and the sign of ks is determined 

from the sign of Pearson’s correlation coefficient. The absolute value of k dictates the 

range of measurement values for which the confidence function for cflv) is near 0.5. A 

positive value of k implies that a large v, measurement offers more support to {OA}
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(cfiv) -» 1), whilst a small v, measurement offers more support to {NL} (cflv) -» 0). 

Conversely, a negative k implies that a large v, measurement offers more support to 

{NL} whilst a small v, measurement offers more support to {OA}.

For v„ 6 is defined as the population mean, v( . 6 determines the value of v, for which

The DS control parameters A and B are dependent on the limits of uncertainty [ © l ,  © u ]  

and are defined as

The DS control parameters k and 0 are dependent on the subject population (the OA 

and NL combined sample of 42 subjects). An investigation was conducted to

leave-one-out (LOO) approach, the values of k and 6 for each input variable were 

calculated 42 times, using the 42 combinations of 41 subjects. This was performed for 

both definitions of k, namely kc and ks.

The mean values of kc and ks for v7 (/ = 1:18) are given in Appendix B (Table B. 1) and 

depicted in Figure 4.1.

cfiy) = 0.5.

L (4.2)
l +  © u - 2©l

2? = 1 - 0 L (4.3)

determine the sensitivity of k and 6 to changes in the subject population. Using a
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For some variables, e.g. vi, V(, and vig there are only small differences between the 

values of kc and ks. In contrast, for other variables e.g. V2, V4, vg, vn and vn there are 

large differences in the values of kc and ks. The effect of these differences on the in- 

sample and out-of-sample accuracy and OB are investigated in section 4.1.2.

The effect of changes in the subject population is seen to vary from variable to 

variable and from kc to ks. The effect of changes in the subject population is greatest 

for variables V7 , V9 and vio. It is interesting to note that in Chapter 7, these three 

variables are identified as the least important in the classification of OA and NL knee 

function. It is suggested that in future work these variables should be assigned a high 

level of uncertainty when transformed into a body of evidence so that the effect of 

changes in the population is minimised.

The mean values of 6 for v, (/ = 1:18) are given in Table 4.1. Change in the population 

has the greatest effect on variables V4 to V15 in terms of the standard deviation. All of 

these variables are the Principal Component (PC) scores. The mean values assigned to 

0 for these variables are near zero, because the PC scores, by definition, have zero 

mean and unit standard deviation. The PC scores range from positive to negative 

values and consequently the variation in G has no significant effect on the 

transformation of these variables into confidence values.

The DS control parameters A and B are dependent on the limits of uncertainty [ @ l , 

©u]. Using equation (4.2), the values of A were determined for different limits of 

uncertainty. Figure 4.2 shows that as the upper limit, ©u is increased, the value of A 

also increases. In contrast as the lower limit, ©l is increased, the value of A decreases. 

From equation (4.3), it can be seen that B is inversely related to © l . Hence, as © l  is 

increased, the value of B decreases. Changing ©u has no effect on the value of B.
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Table 4.1 The sensitivity of 0 to changes in population for each input variable, v,

Variable Mean Standard Deviation

V l 27.2788 0.1872

V 2 49.0004 0.1712

V 3 60.8986 0.0466

V 4 -1.90E-08 0.1791

V 5 9.07E-09 0.1189

V 6 2.05E-09 0.0697

V ? -5.10E-09 0.1609

V g -9.70E-09 0.1428

v9 -1.00E-08 0.0879

V lO -4.50E-09 0.1842

V l l -9.50E-09 0.1182

V l 2 1.26E-08 0.1890

V 1 3 -1.30E-08 0.1046

V l 4 -3.40E-09 0.0789

V l 5 3.21E-08 0.1896

V l 6 10.4500 0.0353

V n 12.0595 0.0267

V l 8 42.2691 0.1218
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Figure 4.2 The effect of changing ©l and ©u on the DS control parameter^.

4.1.2 The effect of changing the DS control parameters on DS classifier 

performance

A series of tests were conducted to examine the effect of using the two different 

definitions of the DS control parameter k, namely kc and ks, and of changing the 

uncertainty limits [ © l , © u ] >  on the performance of the DS classifier. Using a LOO 

approach the DS classifier accuracy and objective function (OB) were calculated. As 

stated in Chapter 3 (section 3.5.2), the OB is a measure of the level of certainty in the 

classification of subjects to their assigned class, where a value of OB close to zero 

implies a more robust classification than a value near to one. This was carried out for 

both definitions of k and for the different uncertainty limits. A description of the tests 

is given in Table 4.2. The test number (1 to 10) identifies the value of ©u; the subtest 

(I or II) specifies the definition of k\ the part (a to j) indicates the value of © l . The 

number of parts is dependent on the value of © u ,  since © l  must be less than © u -  As an 

example, Table 4.2 shows that in test 3IIf the DS classifier is trained with ks and 

uncertainty boundaries [0.5, 0.8].
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Table 4.2 Description of tests to determine the effect of changing the definition of k 

and the uncertainty boundaries [@l, 0 u ]  on the DS classifier accuracy and OB.

Test ©u

1 1

2 0.9

3 0 .8

4 0.7

5 0 .6

6 0.5

7 0.4

8 0.3

9 0 .2

1 0 0 .1

Subtest k definition

I kc

II ks

Part 0 L

a 0

b 0 .1

c 0 .2

d 0.3

e 0.4

f 0.5

g 0 .6

h 0.7

i 0 .8

j 0.9

4.1.2.1 Test 1

Test 1 investigates the effect of changing the definition of k and the value of 0 l  on the 

accuracy and OB of the DS classifier when 0u  = 1. The average values of the in- and 

out-of-sample accuracy and the in- and out-of-sample OB are tabulated in Appendix 

B (Table B.2) and depicted in Figures 4.3 and 4.4.

The positioning of the simplex coordinates of the 42 out-of-samples subjects in the 

simplex plot is given in Figure 4.5 for the DS classifiers with the highest in-sample 

accuracies i.e. the DS classifiers from tests lib  to llj respectively. These figures were 

chosen to illustrate the effect of increasing 0 l  on the positioning of the out-of-sample 

subjects in the simplex plot domain. Furthermore, although obtaining high 

classification accuracy is of first importance, these figures highlight that the simplex 

plot helps to identify the practical and clinical relevance of the DS classifier. The 

simplex plots for test 11a and tests Ilia to lllj are given in Appendix B (Figures B.l to 

B .ll respectively).
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For the DS classifiers trained with kc (subtest I) the in-sample accuracy increases from 

97.56% to a maximum value of 97.62% as 0 l  is increased from 0 to 0.1. For all other 

values of @ l , the in-sample accuracy remains constant at this maximum value. For the 

DS classifiers trained with ks (subtest II) there is no set pattern in the behaviour of the 

in-sample accuracy as ©l is increased from 0 to 0.9.

For kc, there is no change in the value of the out-of-sample accuracy as ©l is 

increased from 0 to 0.9. At all values of © l  the DS classifier has an out-of-sample 

accuracy of 97.62%. For ks the out-of-sample accuracy increases from 83.33% to 

88.10% as © l  is increased from 0 to 0.1. The out-of-sample accuracy remains at this 

value as ©l is increased to 0.4. As ©l is increased from 0.4 to 0.5, the out-of-sample 

accuracy falls to a value of 85.71%. Finally, the out-of-sample accuracy returns to a 

value of 8 8 .1 0 % and remains at this value as © l  is increased further.

For both kc and kSy the in-sample OB shows an increasing trend as © l  is increased 

from 0 to 0.9. As for the in-sample accuracy, the out-of-sample OB shows an 

increasing trend as © l  is increased from 0 to 0.9 for both kc and ks.

The DS classifier trained with kc has higher in- and out-of-sample accuracies and 

lower in- and out-of-sample OB than that trained with ks.

In each of the simplex plots in Figure 4.5 (Figures 4.5a to 4.5i), 41 of the 42 out-of- 

sample subjects have been correctly classified. The simplex coordinates of all 20 OA 

subjects lie nearer to the {OA} vertex than the {NL} vertex (on the right hand side of 

the decision boundary), since for these subjects, wc({OA}) > mc({NL}). 21 of the 22 

NL subjects lie nearer to the {NL} vertex than to the {OA} vertex (on the left hand 

side of the decision boundary). The misclassified NL subject lies on the incorrect side 

of the decision boundary. For this subject, /wc({OA}) > wc({NL}). It is significant that 

on review of the NL cohort, it has been noted that the misclassified subject has 

subsequently been diagnosed with knee problems (osteoporosis), which were not 

noted at the time of measurement.

In Figure 4.5a the simplex coordinates of all subjects are positioned along the base 

opposite the © vertex. This implies that the level of uncertainty associated with the
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combined body of evidence is near zero i.e. wc(0) ~ 0. Consequently, there is a very 

high level of certainty in the final classification of all subjects, including the 

misclassified NL subject. All of the simplex coordinates of the correctly classified NL 

subjects lie very near to the NL vertex of the simplex plot. This implies that for each 

of these subjects wc({OA}) ~ 0 and wc({NL}) ~ 1. This positioning of the simplex 

coordinates of the 21 correctly classified NL subjects implies that each of these 

subjects has an almost identical level of NL classification, suggesting a limited 

amount of variation in the NL population. This does not correspond to clinical 

findings, which suggest that there is a high level of variability in the NL subject 

population. The author notes form experience of working on the knee clinical trial, 

that there was a great deal of variability in the gait patterns of subjects with NL knee 

function.

As 0 l is increased, the distance of the simplex coordinates of all subjects from the 0  

vertex decreases. This is a result of the increase in wc(0), i.e., the increase in the level 

of uncertainty in the final classification of all subjects. For example, as 0 l is 

increased from 0.1 to 0.6 (comparing Figures 4.5a and 4.5f), the simplex coordinates 

of all 42 subjects no longer lie on the base opposite the 0  vertex. Comparison of 

Figures 4.5a and 4.5f also shows that the distance of the simplex coordinate of the 

misclassified NL subject from the edge opposite the NL vertex has increased as 0 l is 

increased from 0 to 0.6. This suggests that wc({NL}) has increased and that the 

subject now has an increased level of NL classification but is still closer to the OA 

vertex. In Figure 4.5f, the correctly classified subjects all lie within the dominant 

classification regions of the simplex plot as in Figure 4.5a. However, in Figure 4.5f, 

the simplex coordinates of these subjects do not lie on their respective vertices as in 

Figure 4.5a, but the simplex coordinates are spread out within the dominant regions. 

This suggests a greater variability of NL subjects within the NL sample and of the OA 

subjects within the OA sample as would be expected clinically.

In Figures 4.5a to 4.5f (i.e. when 0 l < 0.6), the simplex coordinates of the 42 out-of- 

sample subjects lie within the dominant areas of the simplex plot. However, 

increasing 0 l to 0.7 results in the movement of the simplex coordinates of four OA 

subjects from the dominant OA classification region to the non-dominant OA 

classification region of the simplex plot as shown in Figure 4.5g. Increasing 0 l from
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0.7 to 0.8, results five more subjects moving from dominant to non-dominant regions 

of the simplex plot. Figure 4.5h shows that this includes the misclassified NL subject, 

which has moved from the dominant OA to the non-dominant OA region of the 

simplex plot. As 0 l is increased further to 0.9, the simplex coordinates of the majority 

of subjects move to within the non-dominant regions of the simplex plot. Despite 

having a high level of classification accuracy, the lack of dominant OA and NL 

classifications signify that the classifier is becoming clinically impractical.
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Figure 4.3 Test 1 in-sample (in) and out-of-sample (out) accuracy results showing the 

effect of changing ©l when ©u = 1. The results for the two different definitions of k,

kc and ks, are presented.
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Figure 4.4 Test 1 in-sample (in) and out-of-sample (out) OB results showing the 

effect of changing © l  when © u  = 1. The results for the two different definitions of k,

kc and ks, are presented.
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Figure 4.5 Simplex plot showing simplex coordinates of out-of-sample subjects from 

(a) test 1 lb ([0 L, 0 u] = [0 .1, 1 ] and k  = kc); (b) test 1 Ic ( [ 0 l ,  0 u ]  = [0 .2 , 1] and k = kc);

(c) test 1 Id ([0L, 0u] = [0.3, 1 ] and k = kc); (d) test 1 Ie ([0L, 0u] = [0.4, 1] and k = kc);

(e) test Ilf  ([0L, 0u] = [0.5, 1] and k = kc), (f) test llg  ([0 L, 0u] = [0 .6 , 1] and k = kc); 

(g) test llh ([0L, 0u] = [0.7, 1] and k = kc); (h) test IB ([0L, 0u] = [0 .8 , 1] and k = kc),

(i) test llj ([0 l, 0u] = [0.9, 1] and k =  kc).

{NL} {OA}

o NL subject 
+ OA subject

(b)

©

o NL subject 
♦ OA subject
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4.1.2.2 Test 2

A description of test 2 is given in Table 4.2. Test 2 investigates the effect of changing 

the definition of k and the value of 0 l  on the accuracy and OB of the DS classifier 

when ®u = 0.9. The average values of the in- and out-of-sample accuracy and the in- 

and out-of-sample OB are tabulated in Appendix B (Table B.3) and depicted in 

Figures 4.6 and 4.7.

The positioning of the simplex coordinates of the 42 out-of-samples subjects in the 

simplex plot is given in Figure 4.8 for DS classifiers with the highest in-sample 

accuracies i.e. the DS classifiers from tests 21a to 2Ie respectively. The simplex plots 

for tests 2If to 2Ii and tests 2IIa to 2IIi are given in Appendix B (Figures B.12 to B.24 

respectively).

For the DS classifier trained with kc (subtest I), the in-sample accuracy remains 

constant at a value of 97.62% as ® l  is increased from 0 to 0.5. As ® l  is increased 

further, the in-sample accuracy shows a decreasing trend. For ks (subtest II) the in- 

sample accuracy increases in a stepwise manner and reaches a maximum value of 

95.12% at 0 L = 0.6.

For kc, the out-of-sample accuracy remains constant at a maximum value of 97.62% 

as © l  is increased from 0 to 0.4. As © l  is increased further, the out-of-sample 

accuracy falls to below this maximum value. For ks the out-of-sample accuracy 

increases in a stepwise manner as © l  is increased and reaches a maximum value of 

90.48% at ©L = 0.5.

For both kc and ks, the in-sample OB shows an increasing trend as ©l is increased in 

increments of 0 .1  from 0  to 0 .8 .

For kc> the out-of-sample OB shows an increasing trend as © l  is increased from 0 to 

0.8. For ks, as © l  is increased from 0 to 0.1, the out-of-sample OB decreases. As © l  is 

increased further, the out-of-sample OB increases.
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The DS classifier trained with kc produces a higher in- and out-of-sample accuracy 

and a lower in- and out-of-sample OB than that trained with ks.

41 of the 42 out-of-sample subjects have been correctly classified. The misclassified 

NL subject lies on the incorrect side of the decision boundary. For this subject 

mc({OA}) > mc({NL}). The simplex coordinates of all out-of-sample subjects lie 

within dominant regions of the simplex plot.

The simplex coordinates of all subjects are positioned along or very near to the base 

opposite the 0  vertex. This implies that the level of uncertainty associated with the 

combined body of evidence is near zero i.e. wc(0) ~ 0. Consequently, there is a very 

high level of certainty in the final classification of all subjects, including the 

misclassified NL subject. The positioning of the simplex coordinates of the 21 

correctly classified NL subjects suggests that each of these subjects has an almost 

identical level of NL classification, implying a limited amount of variation in the NL 

population in terms of knee function. This does not correspond to clinical findings, 

which suggest that there is a high level of variability in the NL subject population.
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Figure 4.6 Test 2 in-sam ple (in) and out-of-sam ple (out) accuracy results showing the 

effect o f  changing 0 l  when 0 u  =  0.9. The results for the two different definitions o f  k,

kc and ks are presented.
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Figure 4.7 Test 2 in-sam ple (in) and out-of-sam ple (out) OB results showing the 

effect o f  changing 0 l  w hen 0 u  = 0.9. The results for the two different definitions o f  k,

kc and ks are presented.
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{OA){NL} {OA}

o NL subject 
+ OA subject

(a)

o NL subject 
♦ OA subject

o NL subject 
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{NL}

{OA}{NL}
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♦ OA subject
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+ OA subject

(C)

{NL} {OA}
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Figure 4.8 Simplex plot showing simplex coordinates of out-of-sample subjects from 

(a) test 21a ( [ 0 l ,  0 u ]  = [0, 0.9] and A = Ac); (b) test 21b ([0L, 0u] = [0.1, 0.9] and k = 

Ac); (c) test 21c ([0L, 0u] = [0.2, 0.9] and k = Ac); (d) test 2Id ( [ 0 l ,  © u ]  = [0.3, 0.9] and 

k = Ac); (e) test 2Ie ([0L, 0u] = [0.4, 0.9] and A = Ac)

4.1.2.3 Test 3

A description o f test 3 is given in Table 4.2. Test 3 investigates the effect of changing 

the definition o f A and the value o f 0 l on the accuracy and OB of the DS classifier 

when 0u = 0.8. The average values of the in-sample and out-of-sample accuracy and 

the in- and out-of-sample OB are tabulated in Appendix B (Table B.4) and depicted in 

Figures 4.9 to 4.10. The positioning of the simplex coordinates of the 42 out-of- 

samples subjects in the simplex plot is given in Appendix B (Figures B.25 to B.40 

respectively). Briefly, for the DS classifiers with the maximum out-of-sample 

accuracy of 97.62%, all subjects lie within the dominant regions of the simplex plot, 

positioned along or very near to the base opposite the 0  vertex. This implies a high 

level o f certainty in the classification of each subject to their respective class,
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including that of the misclassified NL subject. Additionally, there is limited spread of 

the simplex coordinates throughout the simplex plot, suggesting limited variability in 

the NL and OA populations in terms of knee function.

For kc, the in-sample accuracy remains constant at its maximum value of 97.62% as 

0 l  is increased from 0 to 0.4. Thereafter the in-sample accuracy is below this 

maximum value. For ks the in-sample accuracy shows an increasing trend as 0 l  is 

increased from 0 to 0.4, and reaches a maximum value of 95.06% at 0 l  = 0.4.

For kc, the out-of-sample accuracy remains at its maximum value 0 l  is increased from 

0 to 0.3. For ks the out-of-sample accuracy increases in a stepwise manner as 0 l  is 

increased and reaches its maximum value of 90.48% at 0 l  = 0.5.

For kc, the in-sample OB initially decreases as ©l is increased from 0 to 0.1. 

Thereafter, the in-sample OB increases as 0 l  is increased in increments of 0.1 from 

0.1 to 0.7. For ks, the in-sample OB shows an increasing trend as 0 l  is increased from 

0 to 0.7.

For kc, the out-of-sample OB shows an increasing trend as 0 l  is increased from 0 to 

0.8. For ks, as 0 l  is increased from 0 to 0.1, the out-of-sample OB decreases. As 0 l  is 

increased further, the out-of-sample OB increases.

The DS classifier that is trained with kc consistently produces a higher in- and out-of- 

sample accuracy and a lower in- and out-of-sample OB than that trained with ks.
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Figure 4.9 Test 3 in-sam ple (in) and out-of-sam ple (out) accuracy results showing the 

effect o f  changing © l when ©u = 0.8. The results for the two different definitions o f  k,

kc and ks, are presented.
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Figure 4.10 Test 3 in-sam ple (in) and out-of-sam ple (out) OB results showing the 

effect o f  changing © l when ©u =  0.8. The results for the two different definitions o f  k,

kc and ks, are presented.
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A description of tests 4 to 10 is given in Table 4.2. The in- and out-of-sample 

accuracy results, the in- and out-of-sample OB results and the simplex plots from 

these tests are given in Appendix B (Tables B.5 to B .ll and Figures B.41 to B.96). 

The results show similar trends to those in tests 2 and 3. In tests 4 to 10, the DS 

classifier trained with kc produced a higher in- and out-of-sample accuracy, and a 

lower in- and out-of-sample OB than the DS classifier trained with ks. For the DS 

classifiers with the maximum out-of-sample accuracy of 97.62%, all subjects lie 

within the dominant regions of the simplex plot, positioned along or very near to the 

base opposite the 0  vertex. There is limited spread of the simplex coordinates 

throughout the simplex plot.

4.1.3 Summary of results from non-optimisation method

The results from tests 1 to 10 (section 4.1.2) show that the DS classifier that uses kc 

produces a higher in- and out-of-sample accuracy, and a lower in- and out-of-sample 

OB than the DS classifier trained with ks. The results also show that the DS classifier 

is very sensitive to the choice of the uncertainty limits, [ 0 l ,  © u ] -  Using kc, the effect 

of increasing 0 l  on the positioning of the simplex coordinates of the 42 out-of-sample 

subjects was also shown. As 0 l  is increased, the distance of the simplex coordinates 

of all subjects from the © vertex decreases. This implies that mc(0) increases as ©l is 

increased, i.e., the level of uncertainty in the final classification of all subjects 

increases. Furthermore, as © l  is increased, the simplex coordinates of some subjects 

move from dominant regions of the simplex plot to non-dominant regions. This 

includes the misclassified NL subject. At low levels of uncertainty, e.g., a ©l of 0, 0.1,

0.2, 0.3, and 0.4, there is small variation in the NL and OA population in terms of 

knee function. In these cases, this conflicts with clinical findings and personal 

experience, which suggest that there is a high level of variability in both populations 

in terms of knee function. In these cases, the simplex plot shows that although the DS 

classifier is highly accurate, it is not of practical and clinical use. At high levels of 

uncertainty [ © l ,  © u ]  = [0.9, 1], the simplex coordinates of the majority of subjects lie 

within the non-dominant regions. Despite having a high level of classification 

accuracy, the lack of dominant OA and NL classifications signify that this classifier 

too (the classifier with [ © l ,  © u ]  = [0-9, 1]) has limited clinical use.

4-19



Chapter 4 Dempster-Shafer Control Parameters

The simplex plot for the most practical DS classifier (test lli) is given in Figure 4.5h. 

This classifier was able to classify both in- and out-of-sample subjects with an 

average accuracy of 97.6190%. Figure 4.5h shows that the simplex coordinates of the 

out-of-sample subjects are spread out within the dominant regions. This suggests a 

greater variability of NL subjects within the NL sample and of the OA subjects within 

the OA sample. The simplex coordinates of the majority of subjects lie within the 

dominant regions. The simplex coordinate of the misclassified NL subject lies within 

the non-dominant OA region of the simplex plot.

4.2 OPTIMISATION METHOD

With the optimisation method a simulated annealing (SA) algorithm is used to assign 

values to the DS control parameters as described in section 3.5.2. The convergence of 

the SA algorithm is dependent on a set of SA control parameters:

1. Starting temperature (ts)

2 . Final temperature (tf)

3. Number of iterations per temperature (it)

4. Temperature reduction factor (rt).

The significance of these SA control parameters is discussed in section 3.5.2.2. Since 

the way in which the SA algorithm assigns values to the DS control parameters is 

inherently random, the values of the DS control parameters may not always converge 

to the same solution. Consequently, a series of tests was conducted to investigate the 

influence of the SA control parameters on the values given to the DS parameters. A 

further series of tests was then performed to examine the effect of the SA control 

parameters on the performance of the DS classifier.

4.2.1 The SA control param eters

Following the work of Nolle et al. (2002) equation (4.4) is used to determine the 

starting temperature tSi as described in section 3.5.2.2.

ts = 2 5 x A f  (4.4)

4-20



Chapter 4 Dempster-Shafer Control Parameters

where A/is the difference between the current OB and the new OB.

A series of tests were conducted to determine the maximum Af  so that ts could be 

established. The SA algorithm was run at three different values of ts. The temperatures 

of 5, 50000 and 50000000 are values that are recorded in the literature (Sexton et al., 

1999). Each value of the in-sample OB calculated during the run of the SA algorithm 

was recorded. A/was calculated for each step and the maximum absolute value noted. 

Five runs of the SA algorithm were recorded at each ts. The results of these tests are 

given in Table 4.3. It can be seen that the maximum change in OB is equal to 0.0166 

~ 0.02 and using equation (4.4) ts is calculated to be 0.5.

Table 4.3 Results of tests to determine the maximum A/

Test Starting Temperature Run Max Af

1 0.0074

2 0.0041

11 5 3 0.0051

4 0.0080

5 0.0047

1 0.0126

2 0.0091

12 50000 3 0.0123

4 0 .0 1 2 2

5 0 .0 1 1 0

1 0.0134

2 0.0153

13 50000000 3 0.0134

4 0.0153

5 0.0166
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No set method was found in the literature for determining appropriate values for the 

remaining three SA control parameters. As such, a range of values, based around 

those found in the literature (Sexton et al., 1999; Nolle et al., 2000), was assigned to 

these parameters as shown in Table 4.4.

Table 4.4 Range of values used for the SA control parameters

SA control parameter Values of parameter

Final Temperature, tf lxlO '5, lxlO"10, lxlO ' 20

Iterations Per Temperature, it 20, 50, 100

Temperature Reduction Factor, rx 0.5, 0.8, 0.9

4.2.2 The effect of changing the SA parameters on the values assigned to the DS 

control parameters

A series of tests was conducted to establish the influence of three other SA control 

parameters on the values of the DS control parameters. A description of the tests is 

given in Table 4.5. Ten runs were performed for each part of the test. The values of k, 

0, A and B were recorded for each variable. An average of these values from the 10 

runs is given in Appendix B (Tables B.12 to B.23).

Following Beynon et al., (2002) initial values were given to 6 using the population 

mean, and for k using the Pearson correlation coefficient (see section 4.1.1). Initial 

values of 0.5 and 0.8 were assigned to A and B respectively. During optimisation, the 

value of B was restricted to the interval [0.8, 1], thus limiting the maximum value that 

can be assigned to m({OA}) or w({NL}) to 0.2. No restrictions were placed on the 

values of k, 6 and A.

The effect of changing the SA control parameters on the DS control parameters is 

presented in sections 4.2.2.1 to 4.2.2.3. Because of the wealth of results that were 

recorded in tests 14 to 16, the following sections concentrate on the consequence of 

changing the SA parameters on the DS control parameters of four variables (V2, v-j, v§ 

and V9) only.
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Table 4.5 Description of tests carried out to determine the effect of changing the SA 

control parameters on the values assigned to the DS control parameters.

Part SA control parameter value

a lxlO ' 5

b
00X*

c

0<NOX

a 2 0

b 50

c 1 0 0

a 0.5

b 0 .8

c 0.9

Test SA control parameter changed

14 tf

15 h

16 n

These four variables were chosen because of the work conducted in Chapter 7 (section 

7.5). For the DS classifier, the ranking of variables study identified V2 and vg as the 

two most important variables, and V7 and V9 as the least important variables. In 

Chapter 2 (section 2.6), V2 is defined as the cadence. V7 is defined as the VFPC1 Score, 

which is related to the vertical ground reaction force during 28% to 42% stance phase 

(mid stance) and 49% to 81% stance phase (terminal stance), namely a portion of mid- 

stance and the portion from heel-rise to opposite initial contact, vg is defined as the 

VFPC2 Score, which is related to the vertical ground reaction force from 2 to 27% 

stance phase, which is the period from loading response to mid-stance. V9 is defined as 

the VFPC3 Score, which is related to the vertical ground reaction force during pre­

swing. For completeness, the results for the remaining 14 variables are given in 

Appendix B.

4.2.2.1 Test 14 -F inal temperature, tf

The results of tests 14a, 14b and 14c to establish the effect of tf on the values assigned 

to the DS control parameters are recorded in Appendix B. The average values of k, 0,
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A and B for all variables are given in Tables B.12 to B.15 respectively and 

summarised for V 2 ,  V 7 ,  v g  and V 9  in Table 4 . 6 .

Table 4.6 The effect of changing the number of iterations per temperature, ix on the 

values assigned to the DS control parameters, k, 0, A and B, for V2, V7, vg and V9.

Variable DS control parameter

Number of iterations per temperature, it

Test 15a Test 15b Test 15c

2 0 50 1 0 0

V2

k -0.7879 -0.9018 -1.1127

e 49.5857 49.1393 49.4028

A 0.4181 0.3631 0.2788

B 0.1987 0.1986 0.1984

V7

k -0.0240 -0.0235 -0.0192

e -4.8E-09 -4.7E-09 -3.9E-09

A 0.4129 0.3794 0.2061

B 0.1926 0.1964 0.1993

Vg

k 0.9526 0.9970 1.1713

e -9.8E-09 -1.0E-08 -1.2E-08

A 0.4458 0.3898 0.2851

B 0.1967 0.1984 0.1994

v9

k -0.0045 -0.0046 -0.0045

e -9.4E-09 -9.5E-09 -8.8E-09

A 0.4281 0.3594 0.2498

B 0.1911 0.1973 0.1986
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The consequence of the collective changes in the values assigned to k, 6, A and B for 

V2 (cadence) on the confidence values and belief values (i.e. the BOE) is given in 

Figure 4.11.

The mean value of k is negative for all values of tf. The negative value of k implies 

that small values of V2 offer more support to {OA} (cflv) —> 1) whilst large values 

offer more support to {NL} (cflv) —► 0). As tf is decreased, the absolute mean value of 

k increases. Such an increase in the absolute mean value of k has the effect of 

decreasing the range of V2 for which the confidence function, cflv) is near 0.5. This 

implies that more of the V2 measurements will transform to the extreme cflv) values of 

zero or one. Consequently, more cflv) values will be transformed into a BOE in which 

maximum values are assigned to either w({OA}) or w({NL}).

The mean value of 6 decreases as tf is decreased from lxlO-5 to lxlO-10 and then 

increases as tf is decreased further to 1 x 1 0  . 6  determines the value of V2 for which

cflv) = 0.5. The effect of these changes in 0 on the confidence values is minimal.

The mean value of A decreases as tf is decreased. The change in the value of A has a 

significant effect on the BOE values. The decrease in the value of A results in a 

decrease in the maximum value assigned to m(0 ) and a decrease in the variation of 

m(0) with cflv). The change in the value of A has no effect on the extreme cflv) 

values of zero and one. However, the change is more significant for the cases where 

the values of cflv) are near to 0.5. In these cases, the values assigned to m({OA}) and 

w({NL}) are increased and the value of m(&) decreased. This implies that values of vi 

which are transformed to cflv) of near 0.5 offer more certainty to the final 

classification of subjects.

The mean value of B decreases slightly as tf is decreased. However, the small change 

in B has minimal effect on the BOE values, because for each final temperature, tf the 

maximum value assigned to m({OA}) and m({NL}) ~ 0.2.
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Figure 4.11 The effect of decreasing the final temperature, tf on the confidence factor 

and BOE for v2. (a)/f = 1*10'5; (b) 1 x 1 O'10; (c)/f = 1*1 O'20.
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The consequence of these collective changes in k, 6, A and B on the confidence values 

and belief values for V7 (VFPC1 Score) is given in Figure 4.12.

The mean value of k is negative for all values of tf. This implies that small values of V7 

offer more support to {OA} (cfiy)—>>1) whilst large values offer more support to {NL} 

(cflv) —* 0). The values assigned to k for v7 imply that none of the V7 measurements 

are transformed into extreme confidence values of zero or one. As tf is decreased, the 

absolute mean value of k decreases. This decrease in the absolute value of k results in 

a small increase in the range of V7 for which the confidence function for V7, cfiy) is 

near 0.5. This implies that more of the V7 measurements will be transformed to cfiy) 

values of ~ 0.5. As a result, when cfiy) is transformed into a BOE, the maximum 

possible value is assigned to m(0 ) and small values of belief are assigned to both 

w({OA}) and m({NL}). Therefore, V7 offers a high level of uncertainty to the final 

classification of a subject.

The value of 6 determines the value of V2 for which cfiy) = 0.5. The mean value of 6 

increases as tf is decreased but this has a minimal effect on the cfiy) values.

The mean value of A decreases as tf is decreased. Thus, the maximum value that can 

be assigned to m(0) is decreased. In addition, as A is decreased, m(0) becomes less 

dependent on the value of cfiv). All values of v-j are transformed into cfiy) values of 

around 0.4 to 0.7. Consequently, the change in A has significant implications for the 

transformation of all V7 measurements into a BOE, in that the level of certainty in the 

support that each V7 measurement offers to the final classification of subjects increases.

The mean values of B increase and approach 0.2 as tf is decreased. As a result, the 

maximum value that can be assigned to w({OA}) or m({NL}) approaches 0.2. 

However, this change is minimal.
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Figure 4.12 The effect of decreasing the final temperature, tf on the confidence factor 

and BOE for V7. (a) tf = lx l 0'5; (b) tf = 1 x 10'10; (c) tf = 1 x l O' 20
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The consequence of these collective changes in k, 6, A and B on the confidence values 

and belief values for vg (VFPC2 Score) is given in Figure 4.13.

The mean value of k is shown to be positive for all values of tf. This means that small 

values of vg offer more support to {NL} {cfiy) —> 0) and large values to {OA} {cfiy) 

—> 1). The magnitude of the k values implies that the vg measurements are transformed 

into a wide range of cfiy) values including the extreme values of zero and one. As tf is 

decreased, the absolute mean value of k increases. This increase in the absolute mean 

value of k has the effect of decreasing the range of vg for which the confidence 

function for vg, cfiv), is near 0.5. Consequently, more of the vg measurements will 

transform to the extreme cfiy) values of zero or one.

The mean value of 6 decreases as tf is decreased. This decreases the value for cfiy) = 

0.5. However, this change is negligible and has a minimal effect on the transformation 

of vg measurements into a confidence factor cfiy).

The mean value of A decreases as tf is decreased. This decreases the maximum values 

that can be assigned to w(@). Furthermore, the decrease in A means that the value 

assigned to m{&) becomes less dependent on the value cfiy). The change in A has 

significant implications for the transformation of the vg measurements that are 

assigned a cfiy) of near 0.5. The level of certainty in the support that these vg 

measurements offer to the final classification of subjects is increased.

The mean value of B increases and approaches 0.2 as tf is decreased. However, overall 

the changes in the values of B are minimal and have an insignificant effect on the 

BOE values.
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Figure 4.13 The effect of decreasing the final temperature, tf on the confidence factor 

and BOE for v8. (a) tf = lxlO'5; (b) tf= lxlO '10; (c) tf= lxlO' 20
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The consequence of these collective changes to k, 6, A and B on the confidence values 

and belief values for V9 (VFPC3 Score) is given in Figure 4.14.

The mean value of k is always negative. This implies that small values of V9 offer 

more support to {OA} {cfiy) —> 1) whilst large values offer more support to {NL} 

(cf i v) ~^ 0)- The value assigned to k means that the majority of V9 measurements are 

transformed to cfiy) values of near 0.5. As tf is decreased, there is a small 

corresponding change in the absolute mean value of k. The effect of this change on 

the cfiy) values is negligible.

The mean value of 6 decreases slightly as tf is decreased from l><10_5to lxlO-10 and 

then increases as tf is decreased further to 1 x 10 . However, the effect of this change

on the cfiy) values is also negligible.

The mean value of A decreases as tf is decreased. This decrease in A decreases the 

maximum value that can be assigned to w(@). This has significant implications for all 

of the V9 measurements, because the level of certainty in the support that these 

measurements offer to the final classification of subjects is increased.

The mean values of B increase and approach 0.2 as tf is decreased. As a result, the 

maximum value that can be assigned to m({OA}) or m({NL}) approaches 0.2. 

However, the effect of these changes on the BOE values is minimal.
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Figure 4.14 The effect of decreasing the final temperature, tf on the confidence factor 

and BOE for v9. (a) lt = lxlO'5; (b) /f = l x i o 10; (c) /f = 1*10‘2°
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4.2.2.2 Test 15 -  Iterations per temperature, zt

The results of tests 15a, 15b and 15c to establish the effect of it on the values assigned 

to the DS control parameters are recorded in Appendix B. The mean values of k, 6, A 

and B for all variables are given in Tables B.16 to B.19 respectively, and summarised 

for V2, V7, vg and V9 in Table 4.7.

Table 4.7 The effect of changing the number of iterations per temperature, ix on the 

mean values assigned to the DS control parameters, k, Q, A and B, for V2, V7, vg and V9.

Variable DS control parameter

Number of iterations per temperature, it

Test 15a Test 15b Test 15c

2 0 50 1 0 0

V2

k -0.7879 -0.8704 -0.9912

e 49.5857 49.2757 48.3011

A 0.4181 0.3908 0.2840

B 0.1987 0.1949 0.1971

v7

k -0.0240 -0.0226 -0.0180

6 -4.8E-09 -4.5E-09 -4.5E-09

A 0.4129 0.3587 0.3086

B 0.1926 0.1911 0.1910

V8

k 0.9526 0.9511 1.0665

e -9.8E-09 -1.0E-08 -1.3E-08

A 0.4458 0.3855 0.2827

B 0.1967 0.1973 0.1967

V9

k -0.0045 -0.0044 -0.0049

6 -9.4E-09 -9.9E-09 -9.3E-09

A 0.4281 0.3609 0.2499

B 0.1911 0.1905 0.1859
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For V2 (cadence), the mean value of k is negative for all values of jt. As zt is increased, 

the absolute mean value of k increases. The mean value of 9 decreases as it is 

increased. The mean value of A decreases as it is increased. As zt is increased from 20 

to 50 and subsequently from 50 to 100, the mean value of B decreases and then 

increases.

For V7 (VFPC1 Score), the mean value of k is negative for all values of it. As it is 

increased, the absolute mean value of k decreases. The mean value of 6 increases as zt 

is increased from 20 to 50 and then remains constant as it is increased further to 100. 

The mean value of A decreases as zt is increased. The mean value of B decreases as zt 

is increased.

For vg (VFPC2 Score), the mean value of k is positive for all values of z't. The absolute 

mean value of k for vg decreases slightly and subsequently increases as zt is increased 

from 20 to 50 and then from 50 to 100. The mean value of 9 decreases as it is 

increased. The mean value of A decreases as it is increased. As zt is increased from 20 

to 50 the mean value of B increases. Increasing /t to 100 results in a decrease in the 

mean value of B.

For vg (VFPC3 Score), the mean value of k is negative for all values of z't. The mean 

value of 9 for V9 decreases as it is increased from 20 to 50 and then increases as it is 

increased further to 100. The mean value of A decreases as zt is increased. The mean 

value of B decreases as it is increased.

The effect of the combined changes in the DS control parameters on the confidence 

factor and the body of evidence for variables V2, V7, v8 and V9 are shown in Appendix 

B. The consequences of these changes are similar to those described in test 15.

4.2.2.3 Test 1 6 -  Temperature reduction factor, rt

The results of tests 16a, 16b and 16c to establish the effect of rt on the values assigned 

to the DS control parameters are recorded in Appendix B. The average values of k, 9, 

A and B are given in Tables B.20 to B.23 respectively and are summarised for the 

variables V2, V7, v8 and V9 in Table 4.8.
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Table 4.8 The effect of changing the number of iterations per temperature, rt on the 

mean values assigned to the DS control parameters, k, 0, A and B, for V2, V7, vg and V9.

Variable DS control parameter

Number of iterations per temperature, it

Test 15a Test 15b Test 15c

2 0 50 1 0 0

V2

k -0.7879 -0.9713 -0.9512

6 49.5857 49.1174 48.9006

A 0.4181 0.3505 0.2573

B 0.1987 0.1949 0.1988

v7

k -0.0240 -0 .0 2 0 2 -0.0177

e -4.8E-09 -4.8E-09 -3.9E-09

A 0.4129 0.3484 0.2232

B 0.1926 0.1892 0.1932

Vg

k 0.9526 0.9687 1.2214

6 -9.8E-09 -1.0E-08 -1.3E-08

A 0.4458 0.3893 0.2724

B 0.1967 0.1929 0.1982

v9

k -0.0045 -0.00424 -0.00431

6 -9.4E-09 -8.5E-09 -8.5E-09

A 0.4281 0.3265 0.1715

B 0.1911 0.1935 0.1961

For V2, the mean value of k is negative, for all values of rx. As rt is increased from 0.5 

to 0.8 and then from 0.8 to 0.9, the absolute mean value of k increases from 0.7879 to 

0.9713 and then decreases slightly to 0.9512. The mean value of 6 for V2 decreases as 

rt is increased. For V2, the mean value of A decreases as rt is increased. The mean
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values of B decrease as rt is increased from 0.5 to 0.8 and then increase as rt is 

increased from 0.8 to 0.9.

For Vj, the mean value of k is negative for all values of rx. As rx is increased the 

absolute mean value of k decreases. The mean value of 6 remains constant as rx is 

increased from 0.5 to 0.8 and then increases as rx is increased to 0.9. The mean value 

of A decreases as rx is increased. The mean values of B decrease as rx is increased from

0.5 to 0.8 and then increase as rx is increased from 0.8 to 0.9.

For vg, the mean value of k is always positive, despite the change in rx. As rx is 

increased so also the absolute mean value of k increases. The mean of 0 increases as rx 

is increased. The mean value of A decreases as rt is increased. The mean values of B 

decrease as rx is increased from 0.5 to 0.8 and then increase as rx is increased from 0.8 

to 0.9.

For V9, the mean value of k is always negative. As rx is increased, the absolute mean 

value of k decreases slightly and then increases slightly as rx is increased. The mean of 

6 increases as rx is increased from 0.5 to 0.8. As rx is increased further to 0.9, the mean 

value of 6 remains constant. The mean value of A decreases as rx is increased. The 

mean value of B increases as rx is increased.

The effect of the combined changes in the DS control parameters on the confidence 

factor and the body of evidence for variables V2, vj, vg and V9 are shown in Appendix 

. B. The consequences of these changes are similar to those described in tests 15 and 16.

4.2.3 Effect of changing the SA parameters on the performance of the DS 

classifier

A series of tests was conducted to determine the effect of changing the SA parameters 

on the performance of the DS classifier. A description of these tests is given in Table 

4.9. Each part of the test was repeated ten times. For each run the average in- and out- 

of sample accuracy and average in- and out-of-sample OB were calculated using a 

LOO approach.
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Table 4.9 Description of tests carried out to determine best training strategy.

Test SA control parameter changed

17 tf

18 h

19 n

Part SA control parameter value

a lxlO ' 5

b lxlO ' 10

c lxlO ' 20

a 2 0

b 50

c 1 0 0

a 0.5

b 0 .8

c 0.9

4.2.3.1 Test 17 -  Final temperature, U

The results of tests 17a to 17c to establish the effect of changing tf on the in- and out- 

of-sample accuracy and OB are recorded in Appendix B (Tables B.24 to B.26). The 

average and standard deviation of the ten training runs are summarised for the in- and 

out-of-sample accuracies in Table 4.10 and for the OB in Table 4.11.

Table 4.10 Test 17 results. Summary of the average in-sample and out-of-sample 

accuracy, % for three different final temperatures, tf.

Part tf

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a lxlO-5 96.86 0 .2 2 95.24 1 .1 1

b lxlO' 10 96.28 0.23 94.52 1.61

c lxlO' 20 95.36 0.06 93.34 1 .0 0
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Table 4.11 Test 17 results. Summary of the average in-sample and out-of-sample OB

for three different final temperatures, tf.

Part U

In-sample OB Out-of-sample OB

Mean
Standard

Deviation
Mean

Standard

Deviation

a X H
-* © 0.3363 0 .0 0 0 1 0.3313 0.0035

b lxlO' 10 0.3363 0 0.3070 0.0035

c lxlO' 20 0.3363 0 0.2857 0.0014

As tf is decreased, that is the SA algorithm runs for a longer period, the average in- 

and out-of-sample accuracy of the DS method decreases. The in-sample accuracy of 

the DS method is always greater than the out-of-sample accuracy. The standard 

deviation values indicate that the variability of both the in- and out-of-sample 

accuracies is seen to increase and then decrease as tf is decreased, with substantially 

more variability in the out-of-sample results.

For each value of tf} the in-sample OB converged to a value of 0.3363. However, as 

the tf is decreased the value of the out-of-sample OB decreased. Decreasing tf from 

lxl0'5to 1x10"10 did not change the standard deviation of the out-of-sample OB. A 

further decrease in tf to 1 x 1 0 ’ had the result of decreasing the standard deviation.

4.2.3.2 Test 18 -Num ber o f  iterations per temperature, it

The results of tests 18a, 18b and 18c to establish the effect of /t on the in- and out-of- 

sample accuracy and in- and out-of-sample OB are recorded in Appendix B (Tables 

B.27 to B.29 respectively). The average and standard deviation of the ten training runs 

for the in- and out-of-sample accuracy are summarised in Table 4.12 and for the in- 

sample and out-of-sample OB in Table 4.13.
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Table 4.12 Test 18 results. Summary of average in-sample and out-of-sample 

accuracy, % for three different numbers of iterations per temperature, z't.

In-sample accuracy % Out-of-sample accuracy, %

Part
Mean

Standard

Deviation
Mean

Standard

Deviation

a 2 0 96.86 0 .2 2 95.24 1.11

b 50 96.40 0.13 95.48 0.75

c 1 0 0 95.75 0.14 93.81 2 .0 1

Table 4.13 Test 18 results. Summary of average in-sample and out-of-sample OB for 

three different numbers of iterations per temperature, z't.

In-sample OB Out-of-sample OB

Part it
Mean

Standard

Deviation
Mean

Standard

Deviation

a 2 0 0.3363 0 .0 0 0 1 0.3313 0.0035

b 50 0.3363 0 0.3128 0.0024

c 1 0 0 0.3363 0 0.2942 0.0032

As it is increased, the average in-sample accuracy decreases. The out-of-sample 

accuracy increases slightly as the number of iterations is increased from 20 to 50, and 

then decreases as the number of iterations is increased further to 100. The in-sample 

accuracy of the DS method is always greater than the out-of-sample accuracy. The 

variability of both the in- and out-of-sample accuracies is seen to decrease and then 

increase as it is increased, which is reflected in the values of the standard deviation 

with the out-of-sample results showing more variability.

For each value of zt) the in-sample OB converges to a value of 0.3363. However as zt is 

decreased the value of the out-of-sample OB decreases. The standard deviation of the
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out-of-sample OB decreases as it is increased from 20 to 50 and then increases as it is 

increased to 1 0 0 .

4.2.3.3 Test 19 -  Temperature reduction factor, rt

The results of tests 19a, 19b and 19c to establish the effect of rx on the in- and out-of- 

sample accuracy and in- and out-of-sample OB are recorded in Appendix B (Tables 

B.30 to B.32 respectively). The average and standard deviation of the ten training runs 

for the in-sample and out-of-sample accuracy are summarised in Table 4.14 and for 

the in-sample and out-of-sample OB in Table 4.15.

Table 4.14 Test 19 results. Summary of average in-sample and out-of-sample 

accuracy, % for three different temperature reduction factors, rt.

In-sample accuracy, % Out-of-sample accuracy, %

Part rt
Mean

Standard

Deviation
Mean

Standard

Deviation

a 0.5 96.86 0 .2 2 95.24 1 .1 1

b 0 .8 96.27 0 .2 0 94.52 1.15

c 0.9 95.49 0.15 94.29 1.23

Table 4.15 Test 19 results. Summary of average in-sample and out-of-sample OB for 

three different temperature reduction factors, rt.

In-sample OB Out-of-sample OB

Part rt
Mean

Standard

Deviation
Mean

Standard

Deviation

a 0.5 0.3363 0 .0 0 0 1 0.3313 0.0035

b 0 .8 0.3363 0 0.3082 0.0051

c 0.9 0.3363 0 0.2871 0.0019
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As the rt is increased both the in- and out-of-sample accuracy decrease. The in-sample 

accuracy of the DS method is always greater them the out-of-sample accuracy. The 

variability in the in-sample accuracy is seen to decrease as r{ is increased, which is 

reflected in the values of the standard deviation. In contrast, the standard deviation of 

the out-of-sample accuracy increases as rt is increased. Comparing the standard 

deviation of the in-sample accuracy with the out-of-sample accuracy shows that the 

out-of-sample results are more variable.

For each value of rt, the in-sample OB converges to a value of 0.3363. However as zt 

is decreased the value of the out-of-sample OB decreases. The standard deviation of 

the out-of-sample OB decreases as it is increased from 20 to 50 and then increases as h 

is increased to 100. The standard deviation of the out-of-sample OB increases as rt is 

increased from 0.5 to 0.8 and then decreases as rt is increased further to 0.9.

4.2.4 Summary of results using the optimisation method

Tests 14, 15 and 16 showed the effect of changing the SA parameters on the values 

assigned to the DS control parameters, k, 6, A and B. In limiting the maximum value 

that could be assigned to w({OA}) or m({NL}) to 0.2, changing the SA parameters 

had the greatest effect on the value assigned to A. Running the SA algorithm for a 

longer period always resulted in a decrease in the value of A. Consequently, the 

maximum value that could be assigned to m{&) was decreased. This has a significant 

effect on the measurements that are transformed into cfiy) values of near 0.5, because 

the level of certainty in the support that these measurements offer to the final 

classification of subjects is increased.

The results of tests 17,18 and 19 show that the S A algorithm always converged to an 

in-sample OB value of 0.3363 regardless of the SA control parameters used. Running 

the SA algorithm for a longer period -  i.e. reducing the final temperature, increasing 

the number of iterations per temperature or increasing the temperature reduction 

factor -  reduced the value of the out-of-sample OB. This implies that the level of 

uncertainty associated with the final classification of subjects decreases. However, 

running the SA algorithm for a longer period resulted in a decrease in the in- and out-
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of-sample accuracy. The results of tests 14 to 16 suggest that this is a direct 

consequence of the decrease in the values assigned to A.

Together, the results of tests 14 to 19 suggest that in the case where the limits of A -  

[0, 0.5] and B = [0, 0.2], the SA algorithm should be run for a short period. The results 

also suggest that the lower limit placed on A should be increased to restrict the level 

of belief that is assigned to measurements that are transformed into cfiy) values of 0.5.

A summary of the best DS classifiers for the non-optimisation method (tests 1 to 10) 

and the optimisation method (tests 17 to 19) is given in Table 4.16. For the boundary 

conditions used in this study, the non-optimisation method produced a superior 

classifier to the optimisation method in terms of in- and out-of-sample accuracy. 

However, using different boundary conditions on A and B may result in an improved 

classifier when using the optimisation technique. Such an investigation was beyond 

the scope of this thesis but should be investigated in further studies.

In this study, assigning values to the DS control parameters using the non­

optimisation method produces a superior classifier in terms of in-sample and out-of- 

sample accuracy, than using the optimisation method. Consequently, the non­

optimisation DS classifier was used in the following studies in Chapters 5 to 7.

Table 4.16 A comparison of the best classifiers from the non-optimisation and 

optimisation methods in terms of in-sample and out-of-sample accuracy, %.

Method
Accuracy, %

In-sample Out-of-sample

Non-optimisation 97.62 97.62

Optimisation 96.86 95.24

In this chapter, a necessary study has been undertaken to investigate the validity of the 

DS classifier. Extensive results have been presented and have provided a valuable 

insight into the sensitivity of the method to the various control parameters and their
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effect on the performance of the DS classifier. Conclusions based on this chapter and 

suggestions for further work are given in Chapter 8 .
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CHAPTER 5 

FEATURE SELECTION

This chapter investigates the feasibility of using automatic feature selection in 

conjunction with the Dempster-Shafer (DS) classifier. The chapter begins in sections

5.1 and 5.2 with an introduction to the subject of feature selection. Subsequently, 

three feature selection methods are described in detail and their suitability for use with 

the DS classifier is investigated in sections 5.3 to 5.5. The three chosen methods, 

Stepwise Linear Discriminant Analysis (SLDA), Sequential Selection Methods (SSM) 

and Genetic Algorithms (GA), have been used in previous gait classification studies. 

In section 5.6 a comparison is made between the three DS classifiers using feature 

selection with the DS classifier that does not use feature selection (see Chapter 4, 

section 4.1.2.1, test lli). This comparison is made in order to address the question of 

whether it is best to use an automated approach or to rely on expert clinical opinion 

when choosing the input variables that should be used in the classification of 

osteoarthritic (OA) and normal (NL) knee function.

5.1 INTRODUCTION

It is widely appreciated within the fields of artificial intelligence and pattern 

recognition that the appropriate selection of input variables (or features; these terms 

are used interchangeably) is an integral part of classifier design (Duda et al., 2001; 

Siedlecki and Sklansky, 1988; Raymer et al., 2000). This selection process, 

commonly known as feature selection, can have a significant influence on the 

performance of a classifier in terms of both cost and accuracy (Raymer et al., 2000). 

Reducing the number of inputs to a classifier inherently reduces the computational 

time needed to train and evaluate it (Dash and Liu, 1997) and limits the number of 

features that need to be measured at the outset (Raymer et al., 2000; Jain and 

Zongker, 1997). Furthermore, for a given amount of training examples, reducing the 

number of features can improve the estimate of the classifier’s performance (Siedlecki 

and Sklansky, 1988; Raymer et al., 2000). The use of feature selection can enhance 

the classifier’s performance (Su and Wu, 2000). Finally, automatic feature selection is

5-1



Chapter 5 Feature Selection

a very useful tool given that it is not always obvious a priori, as to which variables are 

most useful in determining an object’s class (Raymer et al., 2000).

Given a set of p  input variables, V = {vi, V2, vp}, it would be ideal to conduct an 

exhaustive search through the entire set of subsets of V, to establish the best subset 

according to some evaluation function. However, in practice, this is computationally 

infeasible since there are 2P possible subsets of V. For example, for p  — 18 there are 

2 18 « 3 x l0 5 subsets of V. Consequently, sub-optimal feature selection methods have 

become commonplace in classifier design

Despite the rewards of feature selection and its success in other fields, only a handful 

of gait classification studies have taken advantage of it (Chao et al., 1980; Lafuente et 

al., 1998; Astephen et al., 2002a; Astephen et al., 2002b; Su and Wu, 2000). These 

studies are now discussed in brief.

Chao et al. (1980) employed a Stepwise Regression method (Kendall and Stuart, 

1973) to identify a subset of gait variables that were most significant in providing 

discriminative power in separating post-operative total-knee replacement and NL 

subjects. Using this feature selection technique the number of features to be used in 

their analysis was reduced from forty-three to eight.

Subsequent to performing Principal Component Analysis on a combined data set of 

constant gait parameters and time-varying gait waveforms, Astephen et al. (2002a, 

2002b) employed a SLDA to identify a subset of Principal Components most able to 

discriminate between OA and NL subjects. The discriminatory power of these 

Principal Components was then established through examination of the weighting 

coefficients of the linear discriminant function.

Prior to designing an Artificial Neural Network (ANN) classifier, Lafuente et al. 

(1998) utilised SLDA to reduce the size of their input features vector. The features 

were ranked according to the order in which they were entered into the stepwise 

analysis. The most discriminatory features were then used as inputs to the classifier. 

This selection process reduced the number of input features from forty-one to thirty.
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Su and Wu (2000) used a GA to eliminate features that did not add discriminatory 

power to their ANN classifier. Using the GA improved the performance of the ANN 

in classifying NL and ankle arthrodesis subjects. Using feature selection increased the 

classification accuracy from 89.7 to 98.7%.

This introduction has highlighted the value of automatic feature selection when 

designing a classification method. The benefits of using feature selection in 

conjunction with the DS classifier will now be investigated. Sections 5.3 to 5.5 give a 

description of three different feature selection methods that were chosen for use with 

the DS classifier:

1. Stepwise Linear Discriminant Analysis (SLDA) (Lafuente et al., 1998; 

Astephen et al., 2002a, 2002b) (see section 5.3)

2. Sequential Selection Methods (SSM) (see section 5.4)

3. Genetic Algorithms (GA) (Su and Wu, 2000) (see section 5.5)

Firstly, the concept of an objective function is introduced in section 5.2.

5.2 OBJECTIVE FUNCTION

An evaluation or objective function is utilised to determine the performance of the 

feature selection algorithm. Dash and Liu (1997) give a description of the different 

types of evaluation function used in classification problems. Briefly, these evaluation 

functions are grouped into five categories, namely, distance measures, information 

measures, dependence measures, consistency measures and classifier error rate 

measures. The type of evaluation function used will depend on the goal of feature 

selection, which is often application specific.

For the present study, the aim of feature selection is to select a subset of input 

variables (from the entire set of input variables listed in Table 5.1) that primarily 

improves the classification accuracy of the classifier and secondarily reduces the 

amount of uncertainty associated with the final classification of a subject (Jones et al. 

2003b). In Chapter 3, the classification accuracy is calculated from the leave-one-out 

classifier error rate and the level of uncertainty using a Euclidean distance measure,
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defined OB. Thus, in this study, it follows that a suitable evaluation function for 

feature selection, OBfs should consist of a combination of the classifier error rate and 

the OB distance measure. As such, OBFs is defined as:

OBfs = ot + OB in (5-1)

where a is defined as the average in-sample classification error (equal to 1 0 0  minus 

the average in-sample classification accuracy) and OBin is the average in-sample OB. 

The aim of feature selection is to minimise this function. Thus, a DS classifier with a 

high classification accuracy will have a lower associated OBfs than a DS classifier 

with a low classification accuracy. Furthermore, for two DS classifiers with the same 

classification accuracies but with different levels of uncertainty, the OBfs will be less 

for the classifier with a lower level of associated uncertainty.
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Table 5.1 Variables used in the analysis.

Variable, v/ Variable Description

Vl BMI

V2 Cadence

V3 Stance

V4 APFPC1 Score

V5 APFPC2 Score

V6 APFPC3 Score

V7 VFPC1 Score

Vg VFPC2 Score

v9 VFPC3 Score

VlO FERPC1 Score

vi i FERPC2 Score

Vl2 AARPC1 Score

Vl3 AARPC2 Score

Vl4 AARPC3 Score

V15 IERPC1 Score

Vl6 ML Width

V17 AP Width

Vlg Thigh Girth
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5.3 STEPWISE LINEAR DISCRIMINANT ANALYSIS (SLDA)

5.3.1 SLDA Theory

Using Linear Discriminant Analysis (LDA) a set of variables are weighted and 

linearly combined in such a way that forces two or more groups to be as distinct as 

possible. In application to the current study in classifying NL and OA knee function, 

let us consider the two-group classification problem. For this case, LDA yields a 

single discriminant function of the form

D = d0 + d}vx + d2v2 +. . .  + d pvp (5.2)

where D is the discriminant score, p  the number of variables, do a constant factor, dt (i 

= 1: p) the discriminant function coefficient and v, (/ = 1: p) the input variable. For an 

explanation of how the discriminant function coefficients are calculated, the reader is 

directed to Green (1978). Using SLDA this discriminant function is built iteratively. 

At each stage, the variable that maximises the difference between the two groups (OA 

and NL) is added. This difference is measured in terms of the Wilks’ lambda statistic. 

For the first stage when only one variable is entered into the analysis, Wilks’ lambda, 

A, is defined as the ratio

A =  7 ~ T  ( 5 '3 )

where SSW is the within-group sum of squares matrix and SSt the total sum of squares 

matrix. SSW = SS0A + SSUL, where SSoa and SSnl are the total sum of squares

matrices for the OA and NL groups respectively. For the second stage onwards, when 

there is more than one variable in the analysis, lambda is defined as:
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where SSCPW is the within-group sums of squares and cross products matrix and 

SSCPt is the total sums of squares and cross products matrix (Green, 1978). Lambda 

has a value in the range [0, 1]; a value close to zero indicates that the OA and NL 

group means are different whilst values close to one indicate that the group means are 

not different. Thus, at each step the variable that minimises the overall Wilks’ lambda 

is entered. Using this stepwise procedure, the input variables can be ranked in order of 

importance by noting the sequence in which they were included in the SLDA 

(Lafuente et al., 1998), with the variable entered first considered more important than 

that entered second etc.

5.3.2 SLDA Results

An SLDA procedure was implemented in SPSS 11 (SPSS Inc.). At each step, the 

variable that minimised the overall Wilks’ lambda was entered into the analysis. For 

the first step (one variable in the analysis), Wilks’ lambda was calculated using (5.3). 

For the rest of the analysis (two or more variables in the analysis) Wilks’ lambda was 

calculated using (5.4). The order in which variables were entered into the analysis and 

the value of Wilks’ lambda at each step are recorded in Table 5.2. By noting the 

sequence in which the variables were entered into the SLDA, the input variables were 

ranked in order of importance, with the variable entered first considered more 

important than that entered last. Based on this ranking, variable subsets of increasing 

size were then created as shown in Table 5.3. Each of these subsets of variables was 

applied to the DS classifier and its performance was evaluated using OBfs (5.1). The 

results relating to the performance of each subset are recorded in Table 5.4.
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Table 5.2 Order in which the input variables are entered into the SLDA analysis and 

the associated value of Wilks’ lambda, A.

Step Variable entered Wilks’ lambda, A

1 V g 0.282

2 V n 0.199

3 V 2 0.170

4 V l 5 0.137

5 V 1 4 0.123

6 V 3 0 .1 2 0

7 V ? 0.114

8 V l 6 0 .1 1 1

9 V l 0.093

10 V l l 0.087

11 v4 0.082

1 2 V l 8 0.079

13 V 9 0.078

14 V 5 0.077

15 V6 0.075

16 V i 3 0.074

17 vio 0.074

18 V l 2 0.073
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Table 5.3 Subsets of variables created using the SLDA procedure.

Subset Variable subset

1 {vg}

2 {Vg, Vi7}

3 {Vg, Vn, V2}

4 {Vg, Vn, V2, V15}

5 {Vg, Vn, V2, Vi5, V14}

6 {Vg, Vn, V2, V15, V14, V3}

7 { v 8 ,  V i 7 ,  V2 ,  V i 5 ,  V 1 4 ,  V 3 ,  V 7 }

8 {Vg, Vn, V2, VI5, V14, V3, V7, Vj6}

9 {Vg, Vn, V2, V15, Vi4, V3, V7, Vi6, Vi}

10 {Vg, V17, V2, Vis, V14, V3, V7, Vi6, Vb Vn}

11 {Vg, Vn, V2, Vis, Vn, V3, V7, Vi6, Vi, Vn, V4}

12 {Vg, Vn, V2, V15, V14, V3, V7, Vi6, Vi, Vn, V4, Vi8}

13 {V8, Vi7, V2, V15, V14, V3, V7, Vi6, Vi, Vn, V4, Vi8, V9}

14 {V8, Vn, V2, V15, V14, V3, V7, Vi6, Vi, Vn, V4, VJ8, V9, V5}

15 {V8, Vi7, V2, V15, V14, V3, V7, Vi6, V], Vn, V4, Vi8, V9, V5, V6}

16 {V8, Vi7, V2, Vis, V14, V3, V7, Vi6, Vj, Vn, V4, V18, V9, V5, V6, Vi3}

17 {V8, Vj7, V2, V15, Vj4, V3, V7, V]6, V], Vn, V4, Vi8, V9, V5, V6, Vi3, V10}

18 { v 8 ,  V17, V2, V15, V14, v 3 ,  V7, Vi6, Vi, Vn, V4, Vis, V9, V5, V6, Vj3, V10, Vi2}
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Table 5.4 Performance of the subsets of variables selected using the SLDA

procedure.

Subset OBfs
In-sample Out-of-sample

Accuracy,% OB Accuracy,% OB

1 4.3185 96.52 0.8342 97.62 0.8335

2 3.1870 97.62 0.8060 97.62 0.8054

3 4.4023 96.28 0.6857 97.62 0.6843

4 1.6114 99.01 0.6242 1 0 0 .0 0 0.6237

5 2.9715 97.62 0.5905 97.62 0.5904

6 2.9379 97.62 0.5569 97.62 0.5567

7 2.9355 97.62 0.5545 97.62 0.5569

8 2.9126 97.62 0.5316 97.62 0.5342

9 3.0052 97.50 0.5081 95.24 0.5125

10 2.8286 97.62 0.4476 97.62 0.4517

11 5.1529 95.24 0.3910 95.24 0.3929

12 3.8622 96.52 0.3779 95.24 0.3832

13 3.9197 96.46 0.3773 92.86 0.3840

14 3.2173 97.15 0.3718 95.24 0.3818

15 2.7401 97.62 0.3591 97.62 0.3697

16 2.7367 97.62 0.3557 97.62 0.3685

17 2.7349 97.62 0.3539 97.62 0.3708

18 2.7173 97.62 0.3363 97.62 0.3541

There is no emerging trend in the behaviour of OBfs as the number of variables in the 

input set is increased. OBfs reaches a minimum value of 1.6114 when there are four 

variables in the input set, namely the set {vs, vn, V2, V15}. This is mirrored in the
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behaviour of the in-sample accuracy, which shows no particular trend as the number 

of variables in the input set is increased. The in-sample accuracy reaches a maximum 

of 99.01% at the same point that OBfs reaches a minimum. In contrast, the in-sample 

OB shows a decreasing trend as the number of variables in the subset is increased.

The best subset selected by the SLDA procedure - i.e. the subset with the lowest 

associated OBfs - the subset {v8, vn, v2, vi5}, is also the subset with the highest out- 

of-sample accuracy ( 1 0 0 %). As for OBfs and the in-sample accuracy, there is no 

evident trend in the behaviour of the out-of-sample accuracy as the number of 

variables in the input set is increased. Similar to the in-sample OB, the out-of-sample 

OB shows a generally decreasing trend as the number of input variables in the input 

set is increased.

Finally, for the best subset, a simplex plot showing the simplex coordinates of the 

final combined BOE (BOEc) for the out-of-sample subjects is shown in Figure 5.1.

0

+f

{NL} {OA}

o NL subject 
+ OA subject

Figure 5.1 Simplex plot showing simplex coordinates of the combined BOE (BOEc) 

for the out-of-sample subjects using subset 4, {vg, vn, v2, vj5}.
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The simplex coordinates of all subjects lie on the correct sides of the decision 

boundary. However, the simplex coordinates of all the subjects lie within the non­

dominant areas of the simplex plot. This implies that the level of uncertainty 

associated with each combined body of evidence, mc(0) is high. Indeed for each 

subject mc(0) > mc({OA}) + mc({NL}). This suggests that there is a low level of 

certainty in the correct classification of the subjects to their respective groups.

5.4 SEQUENTIAL SELECTION METHODS (SSM)

5.4.1 SSM Theory

There are two types of SSM: sequential forward selection (SFS) and sequential 

backward selection (SBS). SFS begins with the empty set and iteratively adds features 

until some stopping criterion is met. Conversely, SBS starts with the full set of 

features and iteratively removes features until some stopping criterion is met (Jain and 

Zongker, 1997). The SFS is preferential to the SBS since it is more costly to evaluate 

an objective function for large sets than for small ones (Jain and Zongker, 1997). 

Consequently, SFS is used in this study. Given that the aim of feature selection here is 

to minimise OBfs, the SFS begins by evaluating OBfs for each of the variables in the 

set V= {vi, V2, ...Vp} and selects the variable that has the smallest OBfs, say V3. Then, 

the OBfs of each two variable subset containing V3, i.e. {V3, v,}, i = 1: p  (p * 3) is 

evaluated. The variable that gives the lowest OBfs together with V3 is retained. This 

procedure continues until all features are included in the input set or some stopping 

criterion has been met. Once a variable has been added to the input set, it cannot be 

removed.

5.4.2 SFS Results

A SFS procedure was implemented using customised software in Matlab 5.3 (Matlab 

Inc.). The order in which the variables were included in the input set is shown in 

Table 5.5. The performance of each of these subsets is recorded in Table 5.6.
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Table 5.5 Subsets of variables created using the SFS method.

Subset Variable subset

1 {vg}

2 {vg, Vi6}

3 {V8, Vi6, V2 }

4 {V8, Vi6, V2, V17}

5 {v8, Vj6, V2, V17, V5}

6 {V8, Vi6, V2, V17, V5, V14}

7 {V8, V ie, V2, V17, V5, V14, V6 }

8 {V8, V i6, V2, V17, V5, V14, V6, V n }

9 {V8, Vi6, V2, V17, V5, V14, V6, V n ,  V13}

1 0 {v8, V16, V2, V17, V5, V14, V6, V n , V13, V10}

11 { v 8 ,  V16, v 2 ,  V17, v 5 ,  V14, v 6 ,  V n , V13, V i0 , V7 }

1 2 {V8, V i6, V2, V17, V5, V14, V6, V n , V13, V10, V7, V9}

13 {Vg, V i6 , V2, V17, V5, V14, V6, V n , V13, V10, V7, V9, V i}

14 { v 8 ,  V16, v 2 ,  V17, V5, V14, v 6 ,  V n ,  V13, V10, V7, V9, V i, v 3 }

15 {v8, V16, V2, V17, V5, V14, V6, V n ,  V l3, V10, V7, V9, V i, V3, V i8}

16 {vg, V16, v2, V17, v5, V14, v6, V n , V13, V jo, V7, V9, V i, V3, V i8, V15}

17 { v 8 ,  V16, v 2 ,  V17, v 5 ,  V14, V6, V n , V13, V i0, V7, V9, V i, V3, V jjj, V15, V4}

18 {v8, V16, v2, V17, v5, V14, v6, V n , V13, ViQ, V7, V9, V j, V3, VJ8, V15, V4, V j2 }
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Table 5.6 Performance of the subsets of variables created using the SFS method.

Subset OBfs
In-sample Out-of-sample

Accuracy,% OB Accuracy,% OB

1 4.3185 96.52 0.8342 97.62 0.8335

2 3.1756 97.62 0.7946 97.62 0.7937

3 2.3018 98.67 0.6758 1 0 0 .0 0 0.6744

4 0.6547 1 0 0 .0 0 0.6547 1 0 0 .0 0 0.6535

5 0.6411 1 0 0 .0 0 0.6411 1 0 0 .0 0 0.6441

6 0.6051 1 0 0 .0 0 0.6051 1 0 0 .0 0 0.6086

7 0.5793 1 0 0 .0 0 0.5793 1 0 0 .0 0 0.5832

8 0.5076 1 0 0 .0 0 0.5076 1 0 0 .0 0 0.5112

9 0.5008 1 0 0 .0 0 0.5008 1 0 0 .0 0 0.5066

1 0 0.4971 1 0 0 .0 0 0.4971 1 0 0 .0 0 0.5070

11 0.4952 1 0 0 .0 0 0.4952 1 0 0 .0 0 0.5077

1 2 0.5523 99.94 0.4942 1 0 0 .0 0 0.5081

13 0.8216 99.65 0.4732 1 0 0 .0 0 0.4888

14 2.0749 98.37 0.4489 95.24 0.4641

15 2.7578 97.68 0.4349 95.24 0.4516

16 2.786 97.62 0.4050 95.24 0.4227

17 2.7349 97.62 0.3539 97.62 0.3708

18 2.7173 97.62 0.3363 97.62 0.3541

The value of OBfs decreases as the number of variables in the input set is increased, 

reaches a minimum, increases again and finally decreases slightly. OBfs reaches a 

minimum value of 0.4952 when there are 11 variables in the input set, namely the 

subset {vg, vi6, V2, Vj7, V5, V14, V6, vn, V13, vio, V7}. As the number of variables in the
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input set is increased, the in-sample accuracy increases until it reaches a maximum of 

1 0 0 %, remains at this maximum and then begins to decrease until it reaches a plateau 

of 97.62%. The in-sample OB shows a decreasing trend as the number of variables in 

the subset is increased.

The best subset selected by the SFS procedure, the subset {v8, vi6, V2, vn, V5, V14, v6, 

vn, V13, vio, V7}, is one of the subsets with the highest out-of-sample accuracy (100%). 

Similar to the in-sample OB, the out-of-sample OB shows a decreasing trend as the 

number of input variables in the input set is increased.

Finally, for the best subset, a simplex plot showing the simplex coordinates of the 

BOEc for the out-of-sample subjects is shown in Figure 5.2.

©

++y

{NL}

o NL subject 
+ OA subject

Figure 5.2 Simplex plot showing simplex coordinates of the combined BOE (BOEc) 

for the out-of-sample subjects using variable subset 1 1 , {v8, vi6, v2, V17, V5, V14, V6, vn,

V l3, V io, V7 } .
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The simplex coordinates of all out-of-sample subjects lie on the correct sides of the 

decision boundary. The simplex coordinates of thirteen NL and seven OA subjects lie 

within the dominant regions of the simplex-plot. The simplex coordinates of the 

remainder of subjects lie within the non-dominant regions. For those that lie within 

the non-dominant regions of the simplex plot, the level of certainty in their correct 

classification is lower than for those that lie within the dominant regions.

5.5 GENETIC ALGORITHMS (GA)

5.5.1 GA Theory

Like the Simulated Annealing algorithm (as described in Chapter 3, section 3.5.2), the 

GA is a search technique that mimics a naturally occurring process - the biological 

process of natural selection (Brill et al., 1992). Natural selection, or survival of the 

fittest, implies that individuals that are more suited to their environment are more 

likely to survive, produce offspring and thus pass on their genes to the next 

generation, whilst less fit individuals will die off. Therefore, over subsequent 

generations, the genes that enabled individuals to survive are likely to become 

widespread in the population. As a result, the new individuals will be more suited to 

their environment than the previous generation (Renner and Ekart, 2003).

The GA applies this idea of natural selection to a set of potential solutions to a 

problem. During an iteration of the GA, a new set of solutions is created by breeding 

existing solutions using a set of operators taken from the field of genetics 

(Chipperfield et al., 1995). Consequently, the average performance of the new 

solutions is expected to be greater than that of the previous generation, as good 

solutions are more likely to be chosen for breeding than the poorer solutions, which 

are more likely to die out (Renner and Ekart, 2003; Chipperfield et al., 1995). Unlike 

most other feature selection methods that search for a single solution, the GA is a 

parallel search technique and thus maintains a collection of potential solutions 

(Renner and Ekart, 2003; Chipperfield et al., 1994). Siedlecki and Sklansky (1989) 

were the first to introduce the GA as a feature selection method. The application of 

the GA to feature selection is summarised in Figure 5.3 and is now discussed in more 

detail.
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Is generation = generationmax ?
No

Yes

generation = 1

generation = generation + 1

Crossover

Select best individual

Mutation

Randomly create an initial 
population of chromosomes

Convert chromosomes into 
individuals

Assign fitness values to each 
chromosome

Select parents for breeding based on 
fitness values

Calculate objective function (OBFS) 
for each individual

Select chromosomes for replacement 
and update population

Figure 5.3 Feature selection using a GA.
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Let the set of features (input variables) be V= {vj, V2, vp). A potential solution to 

the problem of feature selection, an individual, is any subset of V. In the GA, an 

individual is represented by a finite sequence of zeros or ones. This representation is 

called a chromosome. Although other coding techniques are available, binary coding 

is the most commonly used (Chipperfield et al., 1994) and is the representation 

employed by Siedlecki and Sklansky (1989). In the case of feature selection, the zero 

or one in a binary coded chromosome implies the respective absence or presence of a 

variable in the subset (Siedlecki and Sklansky, 1989). The variables that constitute the 

chromosome are defined as genes. An example of a chromosome is given in Figure

The GA begins by randomly creating a finite number of chromosomes, m. 

Collectively these chromosomes are defined as a population. The size of the 

population, m remains constant throughout the optimisation process. In this study, an

length p. Subsequently the chromosomes are decoded into individuals. An example of 

this decoding process is given in Figure 5.5.

Following this transformation process, the OBfs of each individual (and its associated 

chromosome) is calculated (see section 5.2). Subsequently the performance, or 

fitness, of each chromosome can be assessed. The GA ranks the chromosomes in 

descending order according to their OBfs; the least fit chromosome, with a large 

associated OBfs, is given a ranking of one whilst the fittest chromosome is given a 

ranking of m. Each chromosome, w,, is subsequently assigned a fitness value, /  (wj), 

according to its ranking:

where s is the selected pressure (the probability of the best chromosome being 

selected compared to the average probability of selection of all chromosomes), is 

the ranking of the chromosome wj and m the size of the population (Chipperfield et 

al., 1994). Fors = 2, equation (5.5) reduces to

5.4.

initial population is created by assigning random binary values to m chromosomes of

(5.5)
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1 0 0 1 0

M-j—
i

i•ll
p  genes — M

iii
l

-Variable 2 (V2) is not included in the subset
i
L . -Variable 1 (vi) is included in the subset

Figure 5.4 A binary coded chromosome. The gene values of zero or one imply the 

respective absence or presence of a variable in an individual. (Taken from Raymer et

al., 2 0 0 0 , pp. 166).

1 1 1 1 0 {vi, v2, v3, v4}
| \

1 0 0 0 1 Decoding >  {v" Vs)

0 1 0 1 1
^  {v2, v4, V5}

Population of three chromosomes 
containing five genes Individuals

Figure 5.5 Decoding population of chromosomes into individuals (subsets of

variables).
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/ \ 2 x ( r  - 1 )

/ W — < s - 6 )

An example of ranking is given in Table 5.7. Six chromosomes, wj, (/' = 1:6) are 

ranked according to their OB in descending order. Subsequently the fitness values, 

flyvj) (j=  1:6) are calculated using equation (5.6).

Table 5.7 An example of ranking of chromosomes and assignment of fitness values.

Chromosome, Wj OB Ranking, rj Fitness, flwj)

W\ 0.234 4 =  2 x ( 4 - 1 ) / ( 6 - 1 ) =  1.2

H>2 0.451 2 = 2 x (2 - 1 ) / (6 -1 )  = 0.4

W>3 0.632 1 = 2  x ( 1  - 1 ) / ( 6  - 1 ) = 0

W4 0.133 6 = 2  x ( 6  - 1 ) / ( 6  - 1 ) = 2

w5 0.178 5 = 2 x (4 - 1) / ( 6  -1) =1.6

W6 0.369 3 = 2 x (4 - 1) / ( 6  -1 ) = 0.8

Subsequently a number of new chromosomes are produced according to three genetic 

operators: selection, crossover and mutation. These operators enable genetic 

information to be exchanged between chromosomes. The ratio of the number of new 

chromosomes produced to the size of the original population is termed the generation 

gap

Based on the computed fitness values, a predetermined number of chromosomes, nsc\, 

are selected from the population for breeding using stochastic universal sampling 

(Baker, 1987). The manner in which the chromosomes are selected is now explained 

using the example where four individuals are selected for breeding from the 

population of six individuals given in Table 5.7.

The chromosomes are arranged in a random order as shown in Table 5.8 and a 

random number, p st\, is generated in the range [0 , qj\ where
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4j (5.7)

Table 5.8 Calculation of fitness interval.

Chromosome, Wj Fitness J{wj) Cumulative Fitness Fitness interval

Wj 0.4 0.4 [0, 0.4]

W\ 1 .2 1 .6 [0.4,1.6]

we 0 . 8 2.4 [1.6,2.4]

W3 0 2.4 -

W5 1 .6 4 [2.4,4]

W4 2 6 [4,6]

Chromosomes are subsequently chosen for breeding by generating nse\ equally spaced 

pointers, [psel, (pse\ + qj),...,(pSd + qjiPsd- I))]-

In the previous example, «sei = 4 and J ] / ( w / ) = 6  (see Table 5.8). From equation
y=i

(5.7) this gives qj = 1.5. Letp se\ be a random number selected in the range [0, 1.5], say

0.15. Then the four pointers are [0.15, (0.15 + 1.5), (0.15 + (1.5 x 2)), (0.15 + (1.5 x 

3))] i.e. [0.15, 1.65, 3.15, 4.65]. These pointers are to be found within the fitness 

intervals of chromosomes W2, we, W5 and W4 respectively as shown in Table 5.8. Thus, 

chromosomes W2, W6, W5 and W4 are chosen for breeding.

The probability o f a chromosome Wj being selected, F(wj) is related to its fitness 

relative to the whole population, and is given by:

^ y ) = ^ 7 ~  (5-8)

j - 1
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where flwj) is the fitness of the chromosome wj (Chipperfield et al., 1994). This shows 

that selection is biased towards more fit chromosomes (Chipperfield et al., 1994), i.e. 

that chromosomes with a high level of fitness relative to the whole population are 

more likely to be selected for breeding and vice versa.

The selected chromosomes are subsequently paired up for crossover. The individuals 

selected for breeding are called parents and the new individuals produced during 

breeding, offspring. Crossover produces offspring that contain some part of both their 

parents’ genetic information. The simplest crossover operator is single-point 

crossover as illustrated in Figure 5.6. Each chromosome pair is crossed over at a 

randomly selected crossover point according to some probability /?c, defined the 

crossover probability. For a chromosome of length p, the crossover point is selected 

randomly from the genes 1 to p  -  1.

Following crossover, the mutation operator is applied to the offspring as shown in 

Figure 5.7. Mutation changes the value of each gene from a zero to a one (or a one to 

a zero) according to the probability p m, defined the mutation probability. The 

mutation probability increases the variation in the population and reduces the risk of 

the GA converging to a poor solution (i.e. to a local rather than the global minimum) 

(Renner and Ekart, 2003; Siedlecki and Sklansky, 1989; Chipperfield et al., 1994).

Subsequent to the production of offspring, the current population is updated. When 

using a generation gap of less than one the offspring must be inserted into the current 

population to maintain its size. Following the work of Su and Wu (2000), fitness- 

based reinsertion is utilised to select which members of the current population should 

be replaced.

An illustration of this fitness-based reinsertion is given using the earlier example, 

where the parents W2, W4, ws and we were selected for breeding. Let the offspring 

produced during crossover and mutation be wj and w%. Using fitness-based 

reinsertion, these two offspring will be reinserted into the current population to 

replace the two least fit chromosomes. Table 5.7 shows that the two least fit 

chromosomes are W2 and w$. Thus, the new updated population becomes {w\, W4, ws, 

we, w7, w 8}.
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Crossover point

Parent 1 

Parent 2

>o
C /5
C /5o

Offspring 1 

Offspring 2

Figure 5.6 The single point crossover operator is applied to two parent chromosomes, 

Parent 1 and Parent 2, to produce two offspring, Offspring 1 and Offspring 2, which 

contain a mixture of their parents’ genetic information.

3 .

1 1 0 : i 1 l 0 0 l

1 0 1 ; 1 0 0 l 0 0

i ~
l l 0 ! l 0 0 i 0 0

l 0 l ; l l i 0 0 i

Mutation Point

Offspring 2 i i 0
i

0 0 1 0 0

Offspring 2 0 ! 0 0

Figure 5.7 The mutation operator is applied to Offspring 2. A randomly selected 

gene, as shown by the dotted line, is changed from a one to a zero.
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The cycle of selection, crossover, mutation and reinsertion is implemented repeatedly 

until a predetermined number of iterations (generations) is reached. Finally, the best 

individual, i.e. the individual with the lowest associated OBfs, is selected from the 

final population.

5.5.2 GA Results

A customised GA was programmed using Matlab 5.3 (Matlab Inc.). On examination 

of the work of Su and Wu (2000) the following parameters were utilised: a population 

size of 200, a generation gap of 0.8, a crossover probability of 0.8, a mutation 

probability of 0.001 and a maximum number of generations set at 15. Ten runs of the 

algorithm were performed because of its random nature. The best individual selected 

from the final population for each of the ten runs is recorded in Table 5.9. An example 

of the way in which the GA converges is given in Figure 5.8 for runs 1 and 2. 

Although both of these runs converged to the same final solution (Table 5.9), the way 

in the algorithm converges is different for each run.

Table 5.9 Best individual selected from the final population.

Run Best Individual

1 {V2, V5, V6, V7, Vg, V n ,  V13, V15, V j6, V17}

2 {V2, V5, V6, V7, Vg, V n ,  V13, V15, V i6, V17}

3 {V2, V5, V6, V7, Vg, V n ,  V13, V15, V i6, V17}

4 {V2, V5, V6, V7, Vg, V io, V n ,  V13, V14, V i6, Vn }

5 {V2, V5, V6, V7, Vg, V io, V n ,  V13, V j4 , VJ6, VJ7}

6 {V2, v 5, v 6 , V7, Vg, V io, V n ,  V13, V14, V16, V17}

7 { v 2 , v 5, V6, V7, Vg, V n ,  V j3, V15, V16, V17}

8 {V2, V5, V6, V7, Vg, V n ,  V13, V15, V j6, V17}

9 {V2, V5, V6, V7, Vg, V n ,  V l3, V15, Vi6, V17}

1 0 { v 2 , v 5, V6, v 7, Vg, V n ,  V l3, V j5, V16, V17}
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Figure 5.8 Typical runs of the GA algorithm: (a) run 1 (b) run 2. The random nature 

of the algorithm means that each run may converge differently.
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In each run the algorithm converged to one of two similar solutions, {V2, V5, V6, V7, v8, 

vn, vi3, Vj5, vi6, V17} (subset 1) and {v2, v5, v6, v7, v8, vi0, vn, V13, vH, vi6, vn } (subset 

2). The performance of these two subsets is shown in Table 5.10. Both of these 

subsets produced an in-sample and out-of-sample accuracy of 100%. However, subset 

1 has a slightly lower associated OBfs than subset 2 due to a lower in-sample OB and 

thus is chosen as the best subset.

Table 5.10 Performance of subset 1 (runs 1, 2, 3, 7, 8 , 9 and 10) and subset 2 (runs 4,

5 and 6 ).

Subset OBfs
In-sample Out-of-sample

Accuracy OB Accuracy OB

1 0.4855 100.00 0.4855 100.00 0.4940

2 0.4952 100.00 0.4952 100.00 0.5077

For subset 1, a simplex plot showing the simplex coordinates of the BOEc for the out- 

of-sample subjects is shown in Figure 5.9.

The simplex coordinates of all the subjects lie on the correct sides of the decision 

boundary. The simplex coordinates of ten NL subjects and nine OA subjects lie within 

the dominant regions of the simplex plot. For the ten NL subjects this implies that 

/wc({NL}) > mc({OA}) + wc(@). Similarly for the nine OA subjects /wc({OA}) > 

mc({NL}) + mc(®). However, for the remainder of the subjects, their simplex 

coordinates lie within the non-dominant regions of the simplex plot.
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure 5.9 Simplex plot showing simplex coordinates of the combined BOE (BOEc) 

for the out-of-sample subjects using subset 1, {V2, V5, vi, vg, vn, V13, vb, vj6, V17}.

5.6 DISCUSSION OF RESULTS

This study was conducted to examine the effect of using a feature selection algorithm 

on the performance of the DS classifier. Three feature selection methods, namely 

SLDA, SFS and GA, have been described in detail and used in conjunction with the 

DS classifier outlined in Chapter 3. The results from this study have been presented 

and will now be discussed.

The in-sample and out-of-sample accuracy and OB results are summarised in Table 

5.11 . The results in terms of the positioning of the simplex coordinates of the out-of- 

sample subjects are depicted in Figure 5.10.
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Table 5.11 Comparison of the performance of three DS classifiers using feature 

selection methods with the DS classifier using no feature selection.

Feature

Selection

Method

Accuracy, % OB

In-sample Out-of-sample In-sample Out-of-sample

SLDA 99.01 100.00 0.6242 0.6237

SFS 100.00 100.00 0.4952 0.5077

GA 100.00 100.00 0.4855 0.4940

None 97.62 97.62 0.3363 0.3541

The in-sample and out-of-sample classification accuracy and in-sample and out-of- 

sample OB results of the three DS classifiers using feature selection are compared to 

the DS classifier that does not use feature selection (see Chapter 4, section 4.1.2.1 test 

lli). Using feature selection produces a superior classifier in terms of the in-sample 

and out-of-sample classification accuracy. The DS classifiers that used feature 

selection produced out-of-sample accuracies of 100% compared to the 97.62% of the 

DS classifier with no feature selection. All of the classifiers with feature selection 

produced higher in-sample accuracies than the DS classifier with no feature selection. 

The DS classifiers with SFS and GA produced in-sample accuracies of 100%, whilst 

the DS classifier with SLDA produced a slightly lower in-sample accuracy of 99.01%.

However, the use o f feature selection also results in an increase in the in-sample and 

out-of-sample OB. This indicates that there is an increase in the level of associated 

uncertainty in the classification. This is particularly evident in Figure 5.10, which 

shows a comparison of the simplex coordinates of the out-of-sample subjects for the 

DS classifier with no feature selection (Figure 5.10a) with the three DS classifiers 

using feature selection (Figures 5.10b, 5.10c and 5.10d). In general, in Figures 5.10b, 

5.10c and 5.10d the distance of the simplex coordinates from the uncertainty vertex is 

much less than in Figure 5.10a.
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+
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Figure 5.10 Simplex plots showing the simplex coordinates of the BOEcs for the out- 

of-sample subjects for (a) DS classifier with no feature selection, (b) DS classifier 

with SLDA, (c) DS classifier with SFS and (d) DS classifier with GA.
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The use of the simplex plot highlights that although obtaining a high classification 

accuracy is of first importance, it is necessary to ensure that the method is still 

relevant and of practical use. In this study, the use of feature selection has meant that 

despite obtaining a highly accurate classifier, the lack of dominant OA and NL 

classifications signify that the simplex plot method is redundant and clinically 

irrelevant. The level of uncertainty in the classification is a direct consequence of the 

uncertainty limits [ © l , © u ]  =  [ 0 - 8 ,  1 ]  used in this study to calculate the DS control 

parameters A and B. Changing these limits may indeed produce a classifier of high 

accuracy with a high level of certainty in the classification. Together these findings 

have raised an interesting question: “Does a DS classifier exist that produces an 

optimum classification accuracy with a minimal OB whilst retaining clinical 

relevance, and if so what is the most efficient way of finding it?”

The subsets of variables selected by the feature selection algorithms are summarised 

in Table 5.12. In each case, the use of feature selection reduced the number of input 

variables that were used as inputs to the DS classifier. However, this decrease in the 

number of variables is also responsible for the increase in the level of uncertainty 

associated with the classification of subjects (see Safranek et al., 1990). The use of 

different feature selection methods can lead to different sets of “best” input variables. 

All of the feature selection methods identified common input variables as being 

important: V2, v8 and vi7, (cadence, VFPC2 Score (related to the vertical force during 

loading response) and the anterior-posterior knee width). These variables have been 

reported to be clinically relevant (see Chapter 7 for further discussion of the clinical 

relevance of variables).

Table 5.12 Subsets o f variables selected by the different feature selection methods.

Method Subset of variables

SLDA {V2, V8, Vi5, V17}

SFS {V2, V5, V6, V7, V8, Vio, V n , Vi3, V14, VJ6, V i 7 }

GA {v2, V5, v6, V7, V8, Vn, Vl3, V15, V16, Vn}
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Of the three feature selection methods, the DS classifier with GA produced the 

highest classification accuracy along with the lowest OB. However, this method is 

much more computationally intensive than the SFS method, which produces the same 

accuracy and only a slightly larger OB.

This chapter has investigated the effect of using automatic feature selection on the 

performance of the DS classifier. The results for three different feature selection 

methods have been presented and discussed. Conclusions based on this study and 

suggestions for further work are given in Chapter 8.

5-31



Chapter 6 Total Knee Replacement Study

CHAPTER 6 

TOTAL KNEE REPLACEMENT STUDY

This chapter investigates the novel application of the Dempster-Shafer (DS) classifier 

as a tool for assessing the outcome of total knee replacement (TKR) surgery. The 

chapter begins by providing a brief background to the study. The results of the study 

are presented and discussed for a set of nine patients followed by a discussion of the 

overall results.

6.1 INTRODUCTION

TKR surgery is used to treat approximately 35,000 patients with knee osteoarthritis 

(OA) in the United Kingdom each year (Moran and Horton, 2000). During surgery, 

the degenerative cartilaginous surfaces of the joint are replaced with the articulating 

surfaces of prosthetic components. The procedure is performed primarily to reduce 

the pain associated with the degenerative disease and to restore a degree of normal 

(NL) knee function (Andriacchi, 1993; Myles et al., 2002). The beneficial 

implications of a return towards NL function include better mobility and an improved 

functional effect on other lower limb joints by removing the need for compensatory 

gait mechanisms. Additionally, for congruent mobile bearing knees, a return to NL 

function can result in a decrease in the contact and shear stresses on the articulating 

surfaces of the replacement joint, thus reducing polyethylene wear and subsequent 

implant failure.

The need for a universal tool to assess the outcome of TKR surgery is widely 

recognised. Such a tool should fulfil the following main requirements: (Davies, 2002)

1. Enable direct comparison between subjects

2. Establish the level o f benefit achieved by surgery

3. Enable direct comparison between different surgical techniques or implants

4. Use important measurable characteristics of the knee that are clinical variables 

and are easily quantified

6-1



Chapter 6 Total Knee Replacement Study

5. Relate the outcome to the clinical results

6. Simplicity

In response to this need, there has been an emergence of two types of systems to 

assess knee function before and after TKR surgery: the patient-reported scoring 

systems and gait analysis studies. In general, patient-reported scoring systems attempt 

to measure patient wellbeing in terms of pain and daily life activities. Examples of 

such systems are The Knee Outcome Survey (Irrgang et al., 1998); WOMAC (see 

Davies, 2002); Oxford Knee (see Davies, 2002). However, they do not offer an 

objective assessment of the function of the knee. In contrast, gait analysis studies can 

provide an objective measure of knee function (e.g. Catani et al., 2003; Benedetti et 

al., 2003; Myles et al., 2002; Fuchs et al., 2002; Whittle and Jefferson, 1989; Chao et 

al., 1980; Andriacchi, 1993).

This chapter investigates the potential of the DS classifier as an objective tool for 

assessing the outcome of TKR surgery. Nine patients with knee OA (the TKR sample) 

were followed before and at three stages after TKR surgery. The study was limited to 

this size sample because only nine patients had completed a full set of four visits (one 

pre-operative and three post-operative visits). During each visit, 18 variables relating 

to their knee function were collated using the methods described in Chapter 2. A DS 

classifier was trained using the variables of the combined OA and NL sample. The DS 

control variables k, 6, A and B, were calculated from the variables of the combined 

OA and NL sample group using the non-optimisation method described in Section 

3 .5 . 1. k was calculated using the correlation coefficient method and A and B from the 

limits [0 l ,  ®u] =  [ 0 .8 , 1] .  These control variables were then used to transform the 

input variables of the TKR sample into a combined body of evidence (BOEc) for each 

patient.

For comparison purposes, at each visit patients completed the Knee Outcome Survey 

(KOS) as described in Section 2.1.7 and Appendix A and an orthopaedic surgeon 

conducted a Blinded Observational Analysis (BOA). The results of this study are now 

presented and discussed for each patient in turn.

6-2



Chapter 6 Total Knee Replacement Study

6.2 PATIENT 1 (PI)

PI was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.1.

Table 6.1 PI visit summary.

Visit Visit type

1 Preoperative

2 3 months postoperative

3 6 months postoperative

4 12 months postoperative

6.2.1 PI DS classifier results

The BOEc values for the four visits of PI are recorded in Table 6.2. The simplex 

representations of the BOEcs are depicted in Figure 6.1.

Table 6.2 BOEc values for the four visits of PI.

BOEc
Visit

1 2 3 4

mc({OA}) 0.5469 0.4011 0.5955 0.5489

W c( { N L } ) 0.1366 0.3163 0.0690 0.1718

mc(0 ) 0.3164 0.2827 0.3354 0.2793

At visit 1 PI has a dominant OA classification since mc({OA})> [wc({NL}) + wc(0)]. 

This is reflected in the positioning of its simplex coordinate within the dominant OA 

classification region of the simplex plot.

At visit 2 wc({OA}) is still the greatest of the three belief values. However, from visit 

1 to visit 2 mc({OA}) has decreased to the extent that mc({OA}) < [wc({NL}) + 

« c(®)]. Additionally, there has been an increase in wc({NL}). This change is evident
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in Figure 6.1. From visit 1 to visit 2 the simplex coordinate has moved from the 

dominant OA region to the non-dominant OA region of the simplex plot.

0

{NL} {OA}

Figure 6.1 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P I .

The value of wc({OA}) at visit 3 has increased from visit 2. Indeed the value of 

mc({OA}) at visit 3 is greater than at visit 1. In the same way the value of mc({NL}) 

has decreased to a lower value than at visit 1. The simplex coordinate of visit 3 is 

situated within the dominant OA region of the simplex plot.

Finally at visit 4 the value of mc({OA}) has decreased and the value of wc({NL}) 

increased since visit 3. The simplex coordinate for visit 4 still lies within the dominant 

OA region of the simplex plot.

6.2.2 PI BOA results

The observational gait analysis highlighted that at visit 1 PI had a fixed flexion 

deformity of approximately 5°. PI used a cane, and favoured the healthy knee when 

walking. Their walk was tentative with a very short stride length. PI was unsteady 

when rising from a chair and their leg was stiff during passive flexion.

At visit 2 PI still had a slight fixed flexion deformity but was able to walk much more 

confidently, evident by the increased speed of walking and the absence of a cane. It
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was apparent that they were now putting more of their weight through the damaged 

knee. PI was undergoing daily physiotherapy.

There were no significant changes in the observational gait analysis from visit 2 to 

visits 3 and 4.

6.2.3 PI KOS results

The KOS scores for the four visits of PI are recorded in Table 6.3. From visit 1 to 

visit 2 PI recorded a great improvement in knee function as shown in the change in 

the KOS score from 25 to 63.75. A further improvement was recorded from visit 2 to 

visit 3 but this was less than that of the previous visit. At visit 4 PI reported that their 

knee function was slightly worse than it was at visit 3.

Table 6.3 KOS scores, % for the four visits of PI.

Visit KOS score, %

1 25

2 63.75

3 75

4 73.75

6.2.4 Discussion of results for PI

The increase in ;wc({NL}) and simultaneous decrease in mc({OA}) from visit 1 to visit 

2 suggests that PI experienced some relief from the symptoms associated with OA 

knee function and recovered some degree of NL knee function. This is in agreement 

with the BOA and the increase in the KOS scores, which correspond to an 

improvement in function.

From visit 2 to visit 3 the increase in wc({OA}) and decrease in wc({NL}) suggests 

that there was a “set-back” in recovery. Comparison with the BOEc values at visit 3 

with those at visit 1 suggests that the knee function was less NL at visit 3 than it was
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at visit 1. This result does not correspond with the BOA, which suggests that there 

was no improvement in knee function, or the increase in the KOS scores, which 

suggest an improvement in knee function.

The increase in mc({NL}) and decrease in mc({OA}) from visit 3 to 4 imply that PI 

experience some relief from the symptoms associated with OA knee function and 

recovered some level of NL knee function. As for the previous visit, these results 

contradict the conflicting findings of the KOS and BOA.

The DST results suggest that from preoperative to one year postoperative there has 

been a limited change in P i ’s knee function and recovery of NL knee function, and 

that in this case the prosthetic knee does not function in the same way as the NL knee. 

A Pearson’s correlation test (SPSS 11, SPSS Inc.) revealed no significant correlation 

between the BOEc values and the KOS score for PI (correlation between wc({NL}) 

and KOS score, r ~ 0.032; correlation between mc({OA}) and KOS score , r -  0.025).

6.3 PATIENT 2 (P2)

P2 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.4.

Table 6.4 P2 visit summary.

Visit Visit type

1 Preoperative

2 3 months postoperative

3 6 months postoperative

4 12 months postoperative

6.3.1 P2 DS classifier results

The BOEc values for the four visits of P2 are recorded in Table 6.5. The simplex 

representations of the BOEcs are depicted in Figure 6.2.
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Table 6.5 BOEc values for the four visits of P2.

BOEc
Visit

1 2 3 4

mc({OA}) 0.7383 0.6314 0.5502 0.4997

mc({NL}) 0.0111 0.0964 0.1799 0.1582

mc(0) 0.2505 0.2721 0.2699 0.3421

0

{OA}{NL}

Figure 6.2 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P2.

At visit 1 P2 has a dominant OA classification since mc({OA}) > [mc({NL}) + mc(©)]. 

P2 has a very low wc({NL}) value. This is reflected in the positioning of the simplex 

coordinate in the simplex plot where it lies very near to the edge opposite the {NL} 

vertex.

At visit 2 the mc({OA}) value has decreased and the wc({NL}) value has increased. 

Despite this P2 continues to have a dominant OA classification as shown in the 

simplex plot.
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At visit 3 there is a further decrease in wc({OA}) and an increase in wc({NL}). 

However, the simplex plot highlights that P2 still has a dominant OA classification.

Finally at visit 4 there is a decrease in both /wc({OA}) and wc({NL}) from visit 3. 

However, the simplex coordinate associated with this visit has moved from the 

dominant to just inside the non-dominant OA region of the simplex plot.

6.3.2 P2 BOA results

At visit 1 P2 had a fixed flexion and varus deformity. Their gait was antalgic, stiff and 

jerky. These symptoms prevented them from walking more than a street length. They 

walked with a cane and placed less weight through the affected leg.

At visit 2 their leg was straighter in the frontal plane but they still had a fixed flexion 

deformity. P2 continued to favour the non-affected knee when walking as evident by 

the shorter stance phase on the side of the affected knee. However, it was evident that 

P2 was able to walk at a faster pace.

At visit 3 P2 was able to walk without a cane and at an increased pace. However, P2 

still had a fixed flexion deformity. P2 continued to walk with a limp and place more 

weight through the un-affected knee.

There was no dramatic improvement from the observational gait analysis of visit 3 to 

visit 4.

6.3.3 P2 KOS results

The KOS scores for the four visits of P2 are recorded in Table 6.6. From visit 1 to 

visit 2 P2 reported a slight improvement in knee function. At visit 3 they reported a 

further improvement that was greater than that of the previous visit. At visit 4 P2 

reported a worsening of knee function compared to visit 3.
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Table 6.6 KOS scores for the four visits of P2.

Visit KOS score, %

1 50

2 55

3 70

4 66.25

6.3.4 Discussion of results for P2

The increase in wc({NL}) and decrease in mc({OA}) from visit 1 to 2 suggests that P2 

experienced some relief from the symptoms associated with OA knee function and 

recovered a level of NL knee function. This corresponds to the KOS and BOA results.

An increase in wc({NL}) and decrease in wc({OA}) again seen from visit 2 to visit 3 

suggesting that P2 has experienced a further recovery of NL knee function and relief 

from the symptoms associated with OA knee function. This result is in agreement 

with both the BOA and KOS results.

The decrease in both mc({OA}) and mc({NL}) from visit 3 to visit 4 suggests that 

although there has been some loss of the characteristics associated with OA knee 

function this has not coincided with a recovery of NL knee function.

The overall change in the BOEc values indicates that there has been some degree of 

recovery of NL knee function following TKR surgery. However, the non-dominant 

OA classification of P2 at visit 4 suggests that the prosthetic knee does not function in 

the same way as the NL knee. A Pearson correlation test revealed a significant 

correlation (r = 0.966, p  = 0.05) between mc({NL}) and the KOS score.
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6.4 PATIENT 3 (P3)

P3 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.7.

Table 6.7 P3 visit summary.

Visit Visit type

1 Preoperative

2 2 months postoperative

3 6 months postoperative

4 15 months postoperative

6.4.1 P3 DS classifier results

The BOEc values for the four visits of P3 are recorded in Table 6.8. The simplex 

representations of the BOEcs are depicted in Figure 6.3.

Table 6 . 8  BOEc values for the four visits of P3.

BOEc
Visit

1 2 3 4

mc({OA}) 0.8163 0.8323 0.7649 0.8213

wc({N L» 0.0067 0.0191 0.0486 0.0264

mc(@) 0.1770 0.1486 0.1865 0.1523
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0

Figure 6.3 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P3.

At visit 1 P3 has a dominant OA classification since /wc({OA}) > [wc({NL}) + wc(0)]. 

The /wc({NL}) value is near zero which is reflected by the positioning of the simplex 

coordinate near to the edge opposite the {NL} vertex.

At visit 2 both the values of mc({OA}) and wc({NL}) have increased from visit 1. The 

simplex plot that the wc({OA}) value is still dominant.

At visit 3 there is an increase in the value of wc({NL}) and a decrease in wc({OA}).

At visit 4 mc({OA}) and mc({NL}) return to similar values as at visit 2. The simplex 

plot highlights that there has been little change in P3’s knee function from their first 

visit.

6.4.2 P3 BOA results

At visit 1 P3 had a fixed flexion deformity of approximately 15° and was only able to 

achieve 90° in passive flexion. Additionally, P2 had a slight varus deformity. Their 

gait was antalgic and very slow. P2 was overweight and appeared to be very inactive 

which led the surgeon conducting the BOA to predict that the patient would be slow 

to recover from TKR surgery. P2 used their hands to aid in rising from a chair.
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At visit 2 P3’s leg was straighter in both the sagittal and frontal planes. P2 was now 

able to reach 110° in passive flexion. A greater range of motion was evident and their 

gait appeared to be less antalgic. P2 was now able to rise from a chair without using 

their hands.

At visit 3, P3 displayed a more cautious gait pattern than at visit 2.

There was no specific difference observed at visit 4 from visit 3.

6.4.3 P3 KOS results

The KOS scores for the four visits of P3 are recorded in Table 6.9. From visit 1 to 

visit 2 P3 reported a vast improvement in knee function as seen in the increase of over 

50 points in the KOS results. This is followed by a setback in recovery as the KOS 

score decreases from visit 2 to visit 3. Finally, P3 reports an improvement in knee 

function from visit 3 to visit 4.

Table 6.9 KOS scores for the four visits of P3.

Visit KOS score, %

1 31.25

2 82.5

3 58.75

4 68.75

6.4.4 Discussion of results for P3

The increase in wc({NL}) from visit 1 to visit 2 suggests that P4 has recovered some 

level of NL knee function. However, this increase in mc({NL}) coincided with a slight 

increase in wc({OA}), which suggests that P4 is displaying more signs of OA knee 

function than at visit 1. This increase in mc({NL}) corresponds to the BOA and KOS 

results which suggest an improvement in knee function.
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From visit 2 to visit 3 the increase in wc({NL}) and decrease in wc({OA}) suggests 

that P3 experienced some relief from the symptoms associated with OA knee function 

and recovered a degree of NL knee function. However this does not correspond to the 

BOA or KOS results which both suggest that there was a setback in recovery.

The increase in mc({OA}) and decrease in mc({NL}) from visit 3 to visit 4 suggest 

that there was a setback in recovery. This result is not in agreement with the BOA 

result, which suggests that there was no change from visit 3 to 4, nor the KOS result, 

which suggests an improvement in knee function.

The DST results suggest that P3 experienced a limited recovery of NL knee function 

and thus the prosthetic knee does not function in the same way as a NL knee.

A Pearson’s correlation test (SPSS 11, SPSS Inc.) revealed no significant correlation 

between the BOEc values and the KOS score for P3 (correlation between wc({NL}) 

and KOS score, r = 0.315; correlation between /wc({OA}) and KOS score , r = 0.257).

6.5 PATIENT 4 (P4)

P4 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.10.

Table 6.10 P4 visit summary.

Visit Visit type

1 Preoperative

2 3 months postoperative

3 6 months postoperative

4 12 months postoperative
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6.5.1 P4 DS classifier results

The BOEc values for the four visits of P4 are recorded in Table 6.11. The simplex 

representations of the BOEcs are depicted in Figure 6.4.

Table 6.11 BOEc values for the four visits of P4.

BOEc
Visit

1 2 3 4

wc({OA}) 0.6938 0.6337 0.5721 0.5289

mc({NL}) 0.0712 0.0955 0.1236 0.1732

wc(0) 0.2350 0.2708 0.3043 0.2979

0

{OA}

Figure 6.4 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P4.

At visit 1 P4 has a dominant OA classification since /wc({OA})> [mc({NL}) + wc(0)].

At visit 2 P4 continues to have a dominant OA classification. However mc({OA}) has 

decreased and wc({NL}) increased since visit 1 suggesting that there has been a 

restoration of some NL function.

6-14



Chapter 6 Total Knee Replacement Study

This pattern continues through to visits 3 and 4. This steady improvement in knee 

function is evident in the simplex plot where the simplex coordinate moves towards 

the edge opposite the {OA} vertex (associated with a decrease in mc({OA})) and 

away from the edge opposite the {NL} vertex (associated with an increase in 

mc({NL})).

6.5.2 P4 BOA results

At visit 1 P4 displayed an antalgic gait pattern. P4 had a fixed flexion deformity and 

walked with a stiff-leg gait. P4 was able to achieve 100° in passive flexion. P4 had a 

varus left knee and produced a varus thrust when walking. The patient was able to rise 

up out a chair easily.

At visit 2 P4 still displayed an antalgic stiff-leg gait. It was apparent that the patient 

was not putting full weight through their leg and the patient walked with a limp. Their 

knee was straighter in the frontal plane and their varus thrust had disappeared. P4 

maintained their passive range of motion.

At visit 3 P4 continued to walk with a limp but took more weight through their leg 

than at visit 2. P4 walked at a faster pace than during their previous visits. The patient 

displayed signs of a painful right hip and back and the surgeon could not ascertain 

whether this affected P4’s gait. There was no significant difference in their gait at visit 

4 from visit 3.

6.5.3 P4 KOS results

The KOS scores for the four visits of P4 are recorded in Table 6.12. At each stage of 

recovery, P4 reported an improvement in knee function.
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Table 6.12 KOS scores for the four visits of P4.

Visit KOS score, %

1 28.75

2 40

3 46.25

4 56.25

6.5.4 Discussion of results for P4

At all stages of recovery there is an increase in mc({NL}) and a decrease in mc({OA}) 

suggesting that P4 experienced some relief from the symptoms associated with OA 

knee function and some recovery of NL knee function. These results are in agreement 

with the KOS results, which also suggest an increasing recovery of NL knee function. 

Pearson correlation tests identified strong correlations between mc({OA}) and the 

KOS score (r = — 0.990, p  = 0.01) and between mc({NL}) and the KOS score (r = 

0.979, p  = 0.05). Both the DST and KOS results are in agreement with the BOA 

results for visits 1 to 3 but differ for visit 4. Despite the increase in wc({NL}) through 

all stages of recovery P4 still had a dominant OA classification at visit 4 suggesting 

that the prosthetic knee does not function in the same way as the NL knee.

6.6 PATIENT 5 (P5)

P5 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.13.
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Table 6.13 P5 visit summary.

Visit Visit type

1 Preoperative

2 7 weeks postoperative

3 7 months postoperative

4 15 months postoperative

6.6.1 P5 DS classifier results

The BOEc for the four visits of P5 are recorded in Table 6.14. The corresponding 

simplex coordinates are depicted in Figure 6.5.

Table 6.14 BOEc values for the four visits of P5.

BOEc
Visit

1 2 3 4

mc({OA}) 0.4980 0.3241 0.2369 0.2206

mc({ NL}) 0.2200 0.2767 0.3538 0.3554

wc(0) 0.2820 0.3992 0.4093 0.4240
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0

{NL} {OA}

Figure 6.5 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P5.

At visit 1 P5 has a non-dominant OA classification. Although mc({OA}) > mc({NL}) 

and wc({OA}) > wc(0), wc({OA}) < [wc({NL}) + wc(0)]. This is reflected in the 

positioning of the simplex coordinate for visit 1 within the non-dominant region of the 

simplex plot.

At visit 2 there has been an increase in mc({NL}) and a decrease in wc({OA}).

At visit 3 there has been a further increase in mc({NL}) and a decrease in wc({OA}) 

such that P5 now has a non-dominant NL classification. This change is evident from 

the simplex plot where the simplex coordinate lies in the non-dominant NL region.

Finally at visit 4 the values of wc({OA}) and wc({NL}) are very similar to those at 

visit 3 suggesting that there has been little change in knee function between the two 

visits.

6.6.2 P5 BOA results

P5 walked with an antalgic gait during visit 1. P2 was able to achieve 95° in passive 

flexion. The patient was confident when rising from a chair.
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At visit 2 P5 walked with a slightly flexed knee during stance phase. P5’s leg was stiff 

and favoured the unaffected knee during gait. P5 was able to achieve 105° in passive 

flexion.

At visit 3 P5 walked with a slight limp.

Finally, at visit 4 P5’s leg appeared to be less stiff and the patient had an increased 

range of movement.

6.6.3 P5 KOS results

The KOS scores for the four visits of P5 are recorded in Table 6.15. P5 did not 

complete a KOS at visit 1. From visit 2 to visit 3 P5 reported no change in knee 

function, but reported an improvement from visit 3 to visit 4.

Table 6.15 KOS scores for the four visits of P5.

Visit KOS score, %

1 -

2 56.25

3 56.25

4 73.75

6.6.4 Discussion of results for P5

At all stages of recovery there is an increase in /wc({NL}) and decrease in wc({OA}) 

which suggests that P5 increasingly recovered some level of NL knee function. These 

findings are in agreement with the BOA results, which suggest a steady improvement 

in knee function. However, from the DS results, the level of uncertainty in the 

classification increased at each visit. A Pearson’s correlation test (SPSS 11, SPSS 

Inc.) revealed no significant correlation between mc({OA}) and the KOS score (r = 

-0.621) or mc({NL}) and the KOS score (r = -0.817). The non-dominant NL 

classification at visit 4 suggests that P5 has recovered a greater degree of NL knee

6-19



Chapter 6 Total Knee Replacement Study

function than any of the other patients. However, even in this case the prosthetic knee 

does not function in the same way as a NL knee.

6.7 PATIENT 6 (P6)

P6 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.16.

Table 6.16 P6 visit summary.

Visit Visit type

1 Preoperative

2 3 months postoperative

3 6 months postoperative

4 12 months postoperative

6.7.1 P6 DS classifier results

The BOEc values for the four visits of P6 are recorded in Table 6.17 and represented 

by their simplex coordinates in Figure 6.6.

Table 6.17 BOEc values for the four visits of P6.

BOEc
Visit

1 2 3 4

mc({OA}) 0.7514 0.6753 0.4393 0.5920

wc({NL}) 0.0561 0.0140 0.2906 0.1014

wc(0) 0.1925 0.3107 0.2701 0.3067
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0

{NL} {OA}

Figure 6.6 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P6.

At visit 1 P6 has a dominant O.̂ .̂ classification ^vith 7Wc({0^ }̂) ^  [mc({NL})+mc(0)]. 

The simplex coordinate for visit 1 lies within the dominant OA classification region of 

the simplex plot.

At visit 2 there has been a decrease in mc({OA}) from visit 1; however wc({NL}) has 

also decreased. The level of uncertainty associated with this visit, mc(@), has 

simultaneously increased.

At visit 3 wc({OA}) has decreased such that wc({OA}) < [mc({NL}) + /wc(0)]- The 

value of zwc({NL}) has also increased. This change is evident in the simplex plot 

where the simplex coordinate has moved to the non-dominant OA region.

Finally at visit 4 wc({OA}) has increased and wc({NL}) decreased.

6.7.2 P6 BOA results

At visit 1 P6 favoured the un-affected knee whilst walking evident in the shortened 

stance phase of the affected side. The patient appeared to walk with a stiff leg. 

However, it must be noted that the patient did not require the use of a cane.
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At visit 2 the patient displayed a more stable and confident gait pattern. This was 

evident in an increased stride length. Despite the presence of swelling in the knee the 

patient was able to flex the knee more easily and the leg was less stiff than at visit 1.

At visit 3 and visit 4 P6 continued to show further signs of recovery compared to visit 

2, particularly in the sagittal plane range of motion and the pace of walking.

6.7.3 P6 KOS results

The KOS scores for the four visits of P6 are recorded in Table 6.18. At each stage of 

recovery, P6 reported an improvement in knee function.

Table 6.18 KOS scores for the four visits of P6.

Visit KOS score, %

1 36.25

2 55

3 71.25

4 60

6.7.4 Discussion of results for P6

From visit 1 to visit 2 the decrease in mc({OA}) and increase in wc({NL}) suggest 

that although P6 experienced some relief from the characteristics of OA knee 

function, this was not accompanied by a recovery of NL knee function. This result is 

not in agreement with the BOA and KOS results, which suggest an improvement in 

function.

From visit 2 to visit 3, the increase in /wc({NL}) and decrease in wc({OA}) suggest 

that P6 experienced some relief from the symptoms associated with OA knee function 

and some recovery of NL knee function. This corresponds to the KOS and BOA 

results.
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The increase in mc({OA}) and decrease in mc({NL}) from visit 3 to visit 4 suggests 

that there has been a setback in recovery. This is in agreement with the improvement 

in the KOS score reported by the patient but in contradiction to the BOA results, 

which suggest an improvement in knee function. At visit 4 P6 still had a dominant OA 

classification suggesting that after a year’s recovery the prosthetic knee did not 

function in the same way as the NL knee.

A Pearson’s correlation test (SPSS 11, SPSS Inc.) revealed no significant correlation 

between /wc({NL}) and the KOS score (r = 0.728) nor between mc({OA}) and the 

KOS score (r = -0.944).

6.8 PATIENT 7 (P7)

P7 was followed before and at four stages after TKR surgery. The timing of these 

visits is given in Table 6.19.

Table 6.19 P7 visit summary.

Visit Visit type

1 Preoperative

2 4 months postoperative

3 8 months postoperative

4 12 months postoperative

6.8.1 P7 DS classifier results

The BOEc values for the four visits of P7 are recorded in Table 6.20. The simplex 

representations of the BOEcs are depicted in Figure 6.7.
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Table 6.20 BOEc values for the four visits of P7.

BOEc
Visit

1 2 3 4

mc({OA}) 0.7847 0.6658 0.6452 0.6715

mc({ NL}) 0.0046 0.0621 0.0971 0.0619

wc(0) 0.2107 0.2721 0.2577 0.2667

0

{OA}{NL}

Figure 6.7 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P7.

At all stages of recovery P7 has a dominant OA classification since wc({OA}) > 

[wc({NL}) + #wc(®)]. This is reflected in the positioning of the simplex coordinates 

within the dominant OA classification region.

At visit 1 mc({NL}) is near zero which is reflected in the positioning of the simplex 

coordinate near to the edge opposite the {NL} vertex.

From visit 1 to visit 2 there is an increase in wc({NL}) and a decrease in wc({OA}). 

This is again evident from visit 2 to visit 3.
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Finally from visit 3 to visit 4 there is an increase in mc({OA}) and a decrease in 

/wc({NL}) such that the BOEc values are very close to those at visit 2.

6.8.2 P7 BOA results

At visit 1 P7 walked with a stiff-leg gait. P7 was able to achieve 95° in passive 

flexion. P7 relied on using their hands to rise up out of a chair. At each postoperative 

visit there was no overall change from visit 1.

6.8.3 P7 KOS results

The KOS scores for the four visits of P7 are recorded in Table 6.21. P7 did not 

complete a KOS at visit 1. From visit 2 to visit 3, and from visit 3 to visit 4, P7 

reported an improvement in knee function.

Table 6.21 KOS scores for the four visits of P7.

Visit KOS score, %

1 -

2 67.5

3 72.5

4 83.75

6.8.4 Discussion of results for P7

The increase in mc({NL}) and decrease in wc({OA}) from visit 1 to visit 2 suggests 

that P7 experienced a degree of improvement of NL knee function.

The increase in wc({NL}) and decrease in wc({OA}) from visit 2 to visit 3 suggests 

that P7 experienced further recovery of NL knee function. This result is in agreement 

with the KOS results.
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The decrease in wc({NL}) and increase in mc({OA}) from visit 3 to 4 suggests that 

there has been setback in recovery. This is contrary to the KOS results, which suggest 

an improvement in function.

The overall change in the BOEc values from visit 1 to visit 4 suggests that there has 

been a limited recovery of NL knee function. This is in agreement with the BOA 

results, which suggest limited improvement following TKR surgery.

A Pearson’s correlation test (SPSS 11, SPSS Inc.) revealed no significant correlation 

between wc({NL}) and the KOS score (r = -0.848) nor between mc({OA}) and the 

KOS score (r = -0.174).

6.9 PATIENT 8 (P8)

P8 was followed before and at four stages after TKR surgery. The timing of these 

visits is given in Table 6.22.

Table 6.22 P8 visit summary.

Visit Visit type

1 Preoperative

2 6 months postoperative

3 9 months postoperative

4 12 months postoperative

6.9.1 P8 DS classifier results

The BOEc values for the four visits of P8 are recorded in Table 6.23. The simplex 

representations of the BOEcs are depicted in Figure 6.8.
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Table 6.23 BOEc values for the four visits of P8.

BOEc
Visit

1 2 3 4

mc({OA}) 0.6947 0.7108 0.6987 0.6528

Wc({NL}) 0.0709 0.0215 0.0338 0.0112

wc(0) 0.2344 0.2678 0.2675 0.3360

0

{OA}{NL}

Figure 6.8 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P8.

At visit 1 P8 has a dominant OA classification since mc({OA})> [mc({NL}) + wc(0)]. 

From visit 1 to visit 2 there is an increase in wc({OA}) and a decrease in mc({NL}). 

From visit 2 to visit 3 there is an increase in wc({NL}) and a decrease in wc({OA}). 

However mc({NL}) is lower than it was at visit 1. Finally from visit 3 to 4 there is a 

decrease in both mc({OA}) and mc({NL}). At each visit there is an increase in wc(0).
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6.9.2 P8 BOA results

At visit 1 P8 had a fixed flexion deformity of 10° and a slight varus deformity. P8 was 

able to achieve 90° in passive flexion. P8 walked with a stiff-leg gait and used their 

hands when rising from a chair. At visit 2 P8 had no fixed flexion deformity. Despite 

this, there was no real improvement from visit 1. Furthermore, there was no overall 

improvement from visit 2 to visit 3 or from visit 3 to visit 4.

6.9.3 P8 KOS results

The KOS scores for the four visits of P8 are recorded in Table 6.24. P8 did not 

complete a KOS for visit 2. From visit 1 to visit 3 and from visit 3 to visit 4, P8 

reported an improvement in knee function.

Table 6.24 KOS scores for the four visits of P8.

Visit KOS score, %

1 28.75

2 -

3 67.5

4 73.75

6.9.4 Discussion of results for P8

The increase in wc({OA}) and decrease in wc({NL}) from visit 1 to visit 2 suggests 

that there has been a reduction in NL knee function. This did not correspond to the 

BOA results, which suggested no change in knee function.

The increase in wc({NL}) from visit 2 to visit 3 suggests that P8 has experienced 

some relief from the symptoms associated with OA knee function and some recovery 

of NL knee function. However, comparison with the BOEc values at visit 3 with those 

at visit 1 shows that there has been no improvement from their preoperative state.
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The decrease in mc({OA}) and decrease in mc({NL}) from visit 3 to visit 4 suggest 

that although P8 experienced some relief from the symptoms associated with OA knee 

function there was no corresponding recovery of NL knee function.

The overall decrease in mc({OA}) and decrease in mc({NL}) from visit 1 to visit 4 

suggests that P8 experienced some relief from the symptoms associated with OA knee 

function but also a loss of NL knee function. This suggests that the TKR surgery 

provides relief from the symptoms associated with OA knee function but that the 

prosthetic knee does not function in the same way as the NL knee.

A Pearson’s correlation test (SPSS 11, SPSS Inc.) revealed no significant correlation 

between wc({NL}) and the KOS score (r = -0.223) nor between wc({OA}) and the 

KOS score (r = 0.414).

6.10 PATIENT 9 (P9)

P9 was followed before and at three stages after TKR surgery. The timing of these 

visits is given in Table 6.25.

Table 6.25 P9 visit summary.

Visit Visit type

1 Preoperative

2 3 months postoperative

3 7.5 months postoperative

4 12 months postoperative

6.10.1 P9 DS classifier results

The BOEc values for the four visits of P9 are recorded in Table 6.26. The simplex 

representations of the BOEc are depicted in Figure 6.9.
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Table 6.26 BOEc values for the four visits of P9.

BOEc
Visit

1 2 3 4

mc({OA}) 0.3821 0.5820 0.1735 0.3450

wc({NL}) 0.2086 0.1752 0.3933 0.2248

wc(0) 0.4093 0.2428 0.4332 0.4302

0

{NL} {OA}

Figure 6.9 Simplex plot showing the simplex coordinate representations of the BOEc

for the four visits of P9.

At visit 1 wc({OA}) > wc({NL}) but wc({OA}) < [wc({NL}) + wc(©)] and thus the 

simplex coordinate for visit 1 lies within the non-dominant region of the simplex plot.

At visit 2 mc({OA}) has increased and mc({NL}) decreased since visit 2. P2 now has a 

dominant OA classification as indicated by the positioning of the simplex coordinate 

within the dominant OA region of the simplex plot.
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At visit 3 wc({OA}) has decreased to below its value at visit 1 and mc({NL}) has 

increased to above its value at visit 1. At this visit mc({NL}) > wc({OA}) and the 

simplex coordinate has moved to the non-dominant NL region of the simplex plot.

Finally, at visit 4 mc({OA}) has increased and wc({NL}) has decreased such that the 

simplex coordinate has moved back to the non-dominant NL region of the simplex 

plot. The simplex coordinate of visit 4 lies near to the simplex coordinate of visit 1.

6.10.2 P9 BOA results

At visit 1 P9 had a slight varus knee and produced a varus thrust at heel strike. The 

patient did not exhibit signs of pain during walking or rising from a chair. The patient 

appeared to be fit and healthy and the surgeon expected that P9 would cope well with 

the TKR.

At visit 2 P9 had a fixed flexion deformity of approximately 5°. P9 displayed an 

antalgic and cautious gait pattern. This was particularly evident in the shortened 

stance phase on the affected side. P9 had a greater range of motion and was able to 

achieve 120° in passive flexion. P9 used their hands to balance when rising from the 

chair and favoured their unaffected knee when standing.

At visit 3 P9 walked with a more confident gait pattern, returning back to the pattern 

evident during visit 1. P9’s leg was straighter in the sagittal plane although they were 

still not able to achieve full range of motion.

At visit 4 there was a slight regression from visit 3. P9’s leg was stiffer than at visit 3 

and P9 still had a fixed flexion deformity and was not able to achieve full range of 

motion.

6.10.3 P9 KOS results

The KOS scores for the four visits of P9 are recorded in Table 6.27. From visit 1 to 

visit 3 P9 reported a worsening of knee function. From visit 2 to visit 3 P9 reported an
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improvement in knee function. This was followed by a “set-back” in recovery from 

visit 3 to visit 4.

Table 6.27 KOS scores for the four visits of P9.

Visit KOS score, %

1 68.75

2 66.25

3 80

4 70

6.10.4 Discussion of results for P9

The increase in wc({OA}) and decrease in mc({NL}) from visit 1 to visit 2 suggest 

that P9 experienced an increased function associated with OA. This corresponds to a 

decrease in the KOS results and the findings of the BOA.

The increase in wc({NL}) and decrease in wc({OA}) from visit 2 to visit 3 suggests 

that P9 experienced a degree of recovery of NL knee function. This result is in 

agreement with the KOS and BOA results.

Finally, from visit 3 to visit 4 the increase in mc({OA}) and decrease in wc({NL}) 

suggests that there has been a “set-back” in recovery. Comparison of the BOEc values 

at visit 4 with those at visit 1 suggests that between visit 3 and 4 there has been a 

regression towards the preoperative state. This result is in agreement with the BOA 

and KOS results. A Pearson correlation test revealed a very strong relationship 

between wc({NL}) and the KOS score (r = 0.999, p  = 0.01).

6.11 DISCUSSION OF OVERALL RESULTS

This study was conducted to examine the ability of the DS classifier to identify 

changes in knee function following TKR surgery. The results for nine patients have 

been presented and discussed. A set of requirements that a tool for the assessment of
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the outcome of TKR surgery should fulfil, was given by Davies (2002) (see section 

6.1). A discussion of the overall results from this study is now given in reference to 

these requirements.

6.11.1 Establishing the level of benefit achieved by surgery

Results showed that the BOEc values enable the level of benefit achieved by surgery 

to be established as discussed in sections 6.2 to 6.10. Although the DS results suggest 

that most of the patients showed some degree of recovery of NL knee function, none 

of the patients at any stage of recovery gained a dominant NL classification. This 

suggests that none of the patients recovered complete NL knee function during level 

walking following TKR surgery. This is in agreement with the work of Benedetti et 

al. (2003), Andriacchi (1993), Myles et al. (2002), Fuchs et al. (2002) and Whittle 

and Jefferson (1989) who reported that TKR patients do not achieve NL knee function 

over time. Since working with numerous TKR patients during the knee clinical trial 

(see Chapter 2), this lack of restoration of NL function hardly seems surprising 

considering the alteration in joint structure, the deterioration of muscles and soft tissue 

and the overall condition of the patients.

During TKR surgery, the articulating surfaces of the tibia, femur and sometimes the 

patella are replaced with prosthetic components. Additionally, the anterior cruciate 

ligament (ACL) and in some cases the posterior cruciate ligament (PCL) are 

sacrificed. Consequently, the NL biomechanics of the knee are altered.

In constrained TKR designs, there is an increased congruity of the prosthetic surfaces, 

which increases the stability of the knee joint and restrains motion. Additionally, in all 

TKR designs the friction between the metal and plastic surfaces has an effect on the 

kinematics of the knee (Walker and Sathasivam, 2000) again resulting in increased 

knee stability.

The PCL restrains the anterior movement of the femur on the tibia. During flexion, 

the PCL displaces the femur in a posterior direction, which increases the lever arm of 

the quadriceps muscle. Removal of the PCL restrains the tibio-femoral rollback 

during flexion and consequently reduces the lever arm of the quadriceps. This
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increases the demand of the quadriceps muscle. However, in patients who suffer from 

muscle atrophy, the quadriceps muscle may not be able to provide the additional force 

needed to extend the knee. Andriacchi (1993) reported that patients compensate for 

this deficiency by leaning the body forwards. This reduces the knee flexion moment 

and consequently reduces the demand on the quadriceps. Additionally the PCL takes 

one third of the shear force transmitted through the knee (Walker and Sathasivam, 

2000). Removal of the PCL means that the shear forces on the surfaces of the 

prosthetic joint are increased.

During mid stance, when the knee is near full extension, the contraction of the 

quadriceps muscle produces an anterior pull of the patella ligament on the tibia. This 

is stabilised by the ACL. In ACL deficient knees, patients compensate for no ACL by 

reducing the demand on the quadriceps, which is seen in a reduction in the flexion- 

extension moment (Andriacchi, 1993). It has been reported that patients with uni­

compartmental knees, which allow for the retention of the ACL, obtain a function that 

closely resembles that of a NL knee (Andriacchi, 1993).

Many patients with knee OA adopt compensatory gait mechanisms to reduce the pain 

experienced during walking. It seems apparent that, over time, these adaptations 

become habitual. This became particularly evident whilst working on the knee clinical 

trial when patients continued to walk with compensatory gait mechanisms after TKR 

surgery.

Several of the TKR patients that participated in the clinical trial suffered from co­

morbidities namely angina, shortness of breath, and hip, spine and ankle pathologies. 

It is inevitable that these additional problems would affect the patient’s ability to walk 

with a NL gait pattern.

The lack of restoration of NL function following TKR surgery has two main 

implications. Firstly there will be a resultant effect on other joints, e.g., the other knee, 

hip, back and ankle because these joints have to compensate for the limitations of the 

replaced knee joint. Secondly, the abnormal kinematics and consequent increase in the 

shear forces on the surfaces of the prosthetic joint leads to excessive wear of the 

prosthetic components and subsequent loosening of the prosthesis.
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6.11.2 Comparison of subjects

Additionally, the BOEc values make comparison of different subjects possible. The 

preoperative and final postoperative BOEc values for the 9 TKR patients are recorded 

in Table 6.28 in which the subjects have been ranked in descending order of 

wc({NL}). Both preoperative and postoperative the patients have varying levels of NL 

knee function. Preoperative, P5 shows the greatest level of NL knee function and P7 

the least. Postoperative, P5 shows the greatest level of NL knee function and P8 the 

least. In general, the patients with the greatest levels of NL knee function before TKR 

surgery exhibit the greatest levels of NL knee function after surgery as is expected.

Table 6.28 Pre and post-operative BOEc values for the 9 patients (P1-P9). Patients 

ranked in descending order of pre-operative wc({NL}).

Patient
mc({NL}) mc({OA}) WC(0)

Pre-op Post-op Pre-op Post-op Pre-op Post-op

P5 0.2200 0.3554 0.4980 0.2206 0.2820 0.4240

P9 0.2086 0.2248 0.3821 0.3450 0.4093 0.4302

PI 0.1366 0.1718 0.5469 0.5489 0.3164 0.2793

P4 0.0712 0.1732 0.6938 0.5289 0.2350 0.2979

P8 0.0709 0.0112 0.6947 0.6528 0.2344 0.3360

P6 0.0561 0.1014 0.7514 0.5920 0.1925 0.3067

P2 0.0111 0.1582 0.7383 0.4997 0.2506 0.3421

P3 0.0067 0.0264 0.8163 0.8213 0.1770 0.1523

P7 0.0046 0.0619 0.7847 0.6715 0.2107 0.2667

6.11.3 Relating the outcome to clinical results

The results of the DS classifier were compared to the results of a KOS as discussed in 

sections 6.2 to 6.10. Overall, there was no significant correlation between the BOEc 

values and the KOS scores. In the only other study that attempted to relate gait
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analysis parameters to patient-related scoring systems, Fuchs et al. (2002) found no 

correlation between the two measures of outcome. None of the three methods (DST, 

KOS and BOA) were consistent with each other in providing similar outcomes. 

Several reasons may exist for this disparity. Firstly, the DST results may be affected 

by co-morbidity since some of the input variables used are not specifically knee 

function measures, e.g., BMI and cadence. In contrast, the BOA and KOS concentrate 

specifically on the knee function. Secondly, each of the three methods provides a 

different perspective on the assessment of knee function. The DST method assesses 

knee function during level walking. In contrast, the KOS score measures the function 

of the knee during different daily activities and considers a set of clinical parameters 

e.g. buckling, instability, pain etc. In addition to assessing knee function during level 

walking the BOA analysis took into account the static alignment of the knee, passive 

range of motion and the knee function whilst rising from a chair. It is also worth 

noting that the surgeon appeared to consider what was achievable by the individual 

patient and measured improvement on these terms rather than by comparison with the 

NL population. The results raise the question whether the outcome of TKR surgery 

should be measured in terms of patient wellbeing or technical success?

6.11.4 Using important measurable characteristics of the knee

The variables used as inputs to the DS classifier were measured during the knee 

function clinical trial as described in Chapter 2. These variables include 

anthropometrical measurements, temporal-distance parameters and kinetic and 

kinematic temporal waveforms. These variables are ones that have been cited in the 

literature as clinically relevant as discussed in Chapter 7 (section 7.6). However, when 

comparing the classifier outcomes with the subjective clinical opinions and KOS 

scores there are differences in the input variables used. Further work is required to 

study this aspect if the DS classifier is to be used in comparison with clinical and 

quality-of-life scores.

6.11.5 Simplicity

The DS method is simple and logical and the progression from taking clinically 

relevant measurements to making a decision using the simplex plot can be clearly
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followed. This has become evident when communicating the method and results 

across a wide spectrum of disciplines (Beynon et al., 2002; Jones et al., 2003a, Jones 

et al., 2003b, Jones et al., 2004). The method has been well received by engineers, 

mathematicians, physiotherapists and orthopaedic surgeons alike. However, the 

method requires further thought, development and validation before it can be 

implemented.

6.11.6 Comparison between different surgical techniques or implants

It is anticipated that the tool can be used to compare outcomes from different surgical 

techniques or implants, although this prospect is beyond the scope of the current 

study. It is proposed to use the method to study the differences between rotating 

platform and fixed bearing knee implants taking into account the comments from this 

chapter.

This chapter has investigated the use of the DS classifier as a tool for assessing the 

outcome of TKR surgery. The results for a set of nine patients have been presented 

and discussed. Conclusions taken from and further work based on this study are 

presented in Chapter 8.
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CHAPTER 7 

OTHER CLASSIFICATION METHODS

In Chapter 1 an introduction to the different methods used in gait classification studies 

was given. This chapter presents a comparison of the Dempster-Shafer (DS) classifier 

with two of these classification methods: the Artificial Neural Network (ANN) and 

Linear Discriminant Analysis (LDA). The first classifier, the ANN is chosen as a 

basis for comparison since, like the DS classifier, it is a non-linear method. 

Additionally the ANN has been used extensively in classification studies in recent 

years (see section 1.2.3). In contrast to the first classifier, the second classifier, LDA 

is a linear method. It is a method that is well established and has been used as a 

benchmark in other comparative studies (Gioftsos and Grieve, 1995; Wu and Su, 

2000). The comparison is centred on two main aspects: prediction and 

interpretability (Breiman, 2001). In this context, prediction relates to the ability of 

the classifier to assign new subjects to the correct class and is vital to ensure 

confidence in its use. This can be measured in terms of the out-of-sample 

classification accuracy. Interpretability relates to the ease with which the user can 

extract meaningful information as to the relationship between the output of the 

classifier and the input data. Following Jones et al. (2004) this is measured using a 

ranking of variables.

The chapter begins with an introduction to the ANN and its application to the 

classification of osteoarthritic (OA) and normal (NL) knee function in section 7.1. 

Subsequently, the classification results are presented in terms of accuracy and 

interpretability in section 7.2. The same pattern is followed in sections 7.3 and 7.4 for 

the LDA classifier. Section 7.5 provides a summary of the DS classifier accuracy and 

interpretability results. Finally, a discussion based on a comparison of the results from 

the three classifiers is given in section 7.6.
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7.1 THE ARTIFICIAL NEURAL NETWORK (ANN)

An overview of the application of ANNs to gait classification was given in Chapter 1. 

A summary of the ANNs used in these studies is given in Table 7.1.

Although many types of ANNs exist, it can be seen from this summary that the most 

commonly used ANN in gait classification is the feed-forward ANN trained with the 

back-propagation algorithm. Consequently, this type of ANN is used as the basis for 

this comparative study. Any particular ANN is specified by its net topology and 

training rules. These will now be described for the feed-forward ANN trained with the 

back-propagation algorithm.

7.1.1 Network topology

The ANN comprises processing elements, neurons, which mimic the function of the 

biological neurons in the brain. Within the ANN, these neurons are grouped together 

in layers. Generally, the ANN comprises an input layer, in which input neurons are 

connected to the input data; one or more hidden layers, which are the processing 

layers; and an output layer in which output neurons transmit the final output to the 

user. Although Barton and Lees (1995, 1997) utilised ANNs with two hidden layers, it 

has been reported in the literature that one hidden layer is sufficient for an ANN to 

learn any continuous relationship between the inputs and outputs (Bishop, 1995; 

Cybenko, 1989; Chau, 2000b). Consequently, this comparative study is restricted to 

one hidden layer.

The ANN with one hidden layer is depicted in Figure 7.1. The input layer consisting 

of input neurons, /, (/ = 1: n,) is connected to the input data, vt (i = 1: «,) and has the 

same number of input neurons as there are input variables. The hidden layer 

consisting of hidden neurons, Hj (j = 1: nj) is connected to the input layer by a set of 

connecting weights, W T h e  output layer consists of output neurons, Ok (k = 1: «*) 

and is connected to the hidden layer via connecting weights, Ukj. For a given layer 

each neuron is connected to all neurons in the preceding and subsequent layers. In the 

feed-forward ANN, neurons in one layer pass their output to the neurons in the 

subsequent layer but not to the preceding layer. Thus, information passes through the 

network in a forward-direction only.
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Table 7.1 Summary of ANN studies used by other researchers in application to gait classification

Study Network
Number 
of hidden 

layers

Number of neurons 
in hidden layer

Learning
rate

Momentum
term

Stopping
criterion

Number 
of runs

Barton and 
Lees, 1995 Feedforward 2 10 (1st), 5 (2nd) 0.6 0.8 MSE = 0.07 1

Barton and 
Lees, 1997 Feedforward 2 5 (1st) ,4 (2nd) - - - 4

Gioftsos and 
Grieve, 1995 Recurrent 1 9 0.02 0.9 Root mean 

square error 2

Holzreiter 
and Kohle, 

1993
Feedforward 1 - 0.2 -

200,000
iterations 20

Lafuente et 
al., 1998 Feedforward 1 3,6, 9,12,15, 20,25 0 .4-0 .6 - 75 epochs 6

Su and Wu, 
2000 Feedforward 1 5, 10,15,20,25 - - MSE = 0.01 10

Wu and Su, 
2000 Feedforward 1 5, 10,15,20,25 - - - several
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v,i

|  Input/output Neuron

Output layer

Hidden layer

Input layer

Connection
weight

Figure 7.1 The ANN is arranged in layers: an input layer consisting of input neurons 

/,; the hidden layer consisting of hidden neurons Hj\ and the output layer consisting of 

output neurons Ok- The layers are connected by connecting weights: the weights 

connecting input neurons to hidden neurons are labelled Wjj and the weights 

connecting hidden neurons to the output neurons are labelled £/#. The input neurons 

are connected to the input data v, and the output neurons transmit the network outputs

y*
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Neurons in the input layer pass the input data to the hidden layer without performing 

any transformations (Figure 7.2a). A single neuron in the hidden layer receives a set 

of inputs v, (/ = 1: n,) via the weighted connections, Wp as shown in Figure 7.2b. The 

hidden neuron computes a weighted sum of all the inputs, ay:

The weighted sum is subsequently passed through an activation function, J(.) which 

produces the neuron output, zj. Following previous studies (Holzreiter and Kohle, 

1993; Barton and Lees, 1995; Su and Wu, 2000; Wu and Su, 2000) a log-sigmoid 

activation function was utilised. This activation function transforms q, into a value in 

the interval [0, 1 ]:

In a similar way (Figure 7.2c), a single output neuron transforms its inputs Zj (j = 1: nj) 

into an output yu using

a j  =2>V\ (7.1)

i
(7.3a)

where

bk= £ u kjZj (7.3b)
j
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(a)

(b)

(c)

Figure 7.2 a) The input neuron passes an input variable v, to the hidden layer; b) The 

hidden neuron receives a set of inputs, v, (i = 1: n,) via weighted connections, Wj,-. The 

sum of the weighted inputs, aj is subsequently passed through an activation function, 

f(a j)  which produces the neuron output z/, c) A similar process is undertaken by the 

output neuron on the inputs Zj (j = 1: nj) to produce a sum of weighted inputs bk and

finally a neuron output^.
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The output neurons, yk(k = 1: «*) are used in the classification of subjects. The way in 

which subjects are assigned to their respective classes is dependent on the number of 

output neurons. For an ANN with a single output neuron, subjects are assigned to a 

specific class based on the value of the output from that single neuron (see Holzreiter 

and Kohle, 1993). A consequence of using a sigmoid transfer function is that the 

output value is in the range [0,1]. In application to the current work of classifying NL 

and OA knee function, output values in the upper half of this range correspond to a 

subject with OA knee function, whilst those nearer to 0 correspond to a subject with 

NL knee function. For an ANN with more than one output neuron, subjects are 

assigned to a specific class based on the values of all the outputs (for an example of 

three outputs the reader is directed to Barton and Lees, 1995). For two-group 

classification of OA and NL knee function a maximum of two output neurons are 

used. The first output neuron corresponds to OA knee function whilst the second 

output neuron corresponds to NL knee function. If the value of the first output neuron 

is greater than that of the second output neuron, a subject is assigned to the OA class 

and vice-versa.

Since random values are initially assigned to the connecting weights, it is unlikely that 

the network will produce a desired output for the given inputs and so the values of the 

connection weights must be adjusted. This is achieved through a process called 

training. This process will now be described in detail.

7.1.2 Training Rules

There are two different ways in which the ANN can be trained: using supervised or 

unsupervised training. In this comparative study supervised training is used (see all 

studies in Table 7.1). During supervised training, examples of inputs and their 

corresponding outputs (target outputs) are presented to the ANN. By iteratively 

adjusting the connection weights, the ANN learns to infer the relationship between the 

inputs and outputs. Once the network has been trained, it can accept previously 

unseen data and attempt to predict an associated output, simply by evaluating the 

internal functions. The weights can be adjusted after a single pattern has been 

presented to the network (incremental training) or after the entire training set has been
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presented (batch training). In this study, supervised batch training is achieved with the 

backpropagation algorithm.

Using the backpropagation algorithm the weights are adjusted according to the 

derivative of some error function, E. Following the work of Barton and Lees (1995) 

and Su and Wu (2000) the mean squared error (MSE) function was utilised:

This error is a measure of the difference between the target output, and the actual 

neuron output, yk for the output neuron, O*.

For a full exposition of the backpropagation algorithm the reader is directed to Bishop 

(1995). A brief summary is now given (Bishop, 1995).

1. Calculate the errors 8k for each output unit using:

2. Backpropagate these errors through the network to evaluate the errors 8j for each 

hidden neuron using:

(7.4)

s k = (i -  y k t h - y t ) (7.5)

(7.6)

3. Evaluate the derivatives using:

dE
(7.7a)
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(7.7b)

4. Update the weights after all the patterns in the training set have been presented to 

the network, according to the following:

where np is the number of patterns in the training set, tj the learning rate and // the 

momentum constant. The learning rate controls the amount by which the weights are 

updated. If the learning rate is too small then the algorithm will take a long time to 

converge to the global minimum, whilst if the value is too large the algorithm may not 

converge at all and get stuck in local minima. Introducing a momentum term can 

speed up convergence to the global minimum and avoid the pitfalls of convergence to 

local minima.

The neural network is trained until some stopping criterion is met (Bishop, 1995). 

Following the work of Barton and Lees (1995), this comparative study uses a pre-set 

MSE value combined with a limit on CPU time of 1 hour. Once the network has been 

trained it must be evaluated. This is achieved using a leave-one-out cross validation 

(LOOCV) approach as described in Chapter 3 (section 3.6).

7.1.3 Contribution of input variables

The ANN is generally perceived to be a “black box” approach to classification, that is 

to say, its “unimaginably complex inner workings somehow magically transform 

inputs into predicted outputs” (Garson, 1991, pp.47). For ANN with hidden layers the 

relationship between the inputs and the predicted outputs is difficult to realise 

mathematically because of their internal structure. As a result, it is difficult to 

understand the contribution that each input variable makes to the final classification of

(7.8a)

(7.8b)
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subjects. Different interpretation methods have been suggested to capture the 

relationship between the input variables and the output units. One of these methods, 

suggested by Yoon et al. (1993) is used here to assess the contribution that each 

variable makes to the overall classification. This contribution is measured through 

examination of the internal weights of the ANN. The relative strength, RSm of the 

relationship between an input variable v, and an output unit O*, is given by

To determine the most appropriate network topology and training strategy a series of 

tests were carried out to evaluate the discrimination and prediction capabilities of a 

number of different ANN. A summary of these tests is given in Table 7.2. In each set 

of tests one parameter was altered whilst the rest were kept constant in order to 

determine the effect of the given parameter on performance. The majority of the 

parameters used are to be found in the literature (see Table 7.1 and Duda et al., 2001). 

The default parameters used were 5 hidden neurons, a learning rate of 0.1, a 

momentum constant of 0.9, a training goal (MSE) of 0.01 and a single output neuron. 

Since the connection weights are initially randomised, ten training runs were 

performed for each network configuration. For each run of the algorithm 42 ANN 

were created (one for each left out person). The results corresponding to a single run 

of the algorithm are therefore an average of these 42 ANN. The ANNs were 

programmed using Matlab 5.3 software (The Mathworks Inc.) and run on a desktop 

computer.

(7.9)

7.2 RESULTS OF THE ANN CLASSIFER

7.2.1 ANN Accuracy Results
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Table 7.2 Description of tests carried out to determine best network topology and

training strategy

Test Parameter varied Part Value of parameter

1 Training goal

a 0.07

b 0.05

c 0.01

d 0.005

e 0.001

2 Learning Rate

a 0.02

b 0.1

c 0.6

3 Momentum Constant
a 0.9

b 0.8

4 Number of hidden neurons

a 5

b 10

c 15

d 20

5 Number o f output neurons
a 1

b 2

7.2.1.1 Test 1 results -  Effect o f  changing the training goal on classification accuracy

The results of test 1 to establish the effect of the training goal parameter on the in- and 

out-of-sample accuracy are recorded in Appendix C (Tables C.l to C.5 respectively). 

The average and standard deviation of the ten training runs for the in- and out-of- 

sample accuracies are summarised in Table 7.3. A measure of the discrepancy
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between the in- and out-of-sample performance, named the prediction bias (Lafuente 

et al., 1998), is given in Figure 7.3.

Table 7.3 Summary of the average in-sample and out-of-sample accuracy results from

test 1.

Part Training goal

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a 0.07 74.00 0.46 54.05 7.70

b 0.05 75.45 0.42 55.95 4.09

c 0.01 77.82 0.12 63.89 6.79

d 0.005 77.93 0 58.33 4.80

e 0.001 77.93 0 59.52 4.49

ox
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0.05 0.01 0.0010.0050.07

Figure 7.3 Prediction bias, % for different training goals, E.
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As the training goal is decreased, that is the ANN is trained for a longer period, the 

average in-sample accuracy of the ANNs increases. However, this trend is not 

reflected in the out-of-sample results. Initially, as the training goal decreases the out- 

of-sample accuracy increases. At a training goal of 0.01 the out-of-sample accuracy 

reaches its maximum value. Beyond this point, although the in-sample accuracy 

increases, the out-of-sample accuracy decreases, that is, the ANNs begin to over­

generalise. This is reflected in Figure 7.3 in which the prediction bias reaches its 

minimum value at a training goal of 0.01 and thereafter increases. The variability of 

the in-sample accuracy is seen to increase as the training goal is decreased, reflected 

in the decreasing value of the standard deviation. Conversely, the variability of the 

out-of-sample accuracy shows no particular trend. Comparing the standard deviation 

of the in-sample accuracy with the out-of-sample accuracy shows that the out-of- 

sample results are substantially more variable.

7.2.1.2 Test 2 results -  Effect o f  changing the learning rate on classification accuracy

The results of test 2 to establish the effect of the learning rate on the in- and out-of- 

sample performance of the ANN classifiers are recorded in Appendix C (Tables C.6 

to C.8 respectively). The average and standard deviation for the in- and out-of-sample 

accuracies are summarised in Table 7.4. The prediction bias for increased learning 

rate is depicted in Figure 7.4.

Table 7.4 Summary of the average in- and out-of-sample accuracy results from test 2.

Part
Learning

Rate

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a 0.02 77.75 0.13 60.24 4.05

b 0.1 77.82 0.12 63.89 6.79

c 0.6 77.78 0.14 56.90 6.39
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5

0.02 0.1 0.6
'n

Figure 7.4 Prediction bias, % for different ANN learning rates, rj.

Altering the value of the learning rate has a greater effect on the out-of-sample 

accuracy than on the in-sample accuracy. This can be seen in the larger range of 

average values reported for the out-of-sample than the in-sample accuracies. As the 

learning rate of the ANNs was increased the average in- and out-of-sample accuracy 

results showed similar trends. In increasing the learning rate from 0.02 to 0.1, both the 

average in- and out-of-sample accuracies increased. A further increase in the learning 

rate from 0.1 to 0.6 resulted in a decrease in both the average in- and out-of sample 

accuracies. As the learning rate is increased, the standard deviations of the in-sample 

and out-of-sample accuracies show opposing trends. The magnitudes of the standard 

deviations for the out-of-sample accuracies are an order greater than for the in-sample 

accuracies. The smallest prediction bias is obtained with a learning rate of 0.1.

7.2.1.3 Test 3 results -  Effect o f  changing the momentum constant on classification 

accuracy

The results of test 3 to establish the effect of the momentum constant on performance 

are recorded in Appendix C (Tables C.9 and C.10 respectively). The average and 

standard deviation for the in- and out-of-sample accuracies are summarised in Table 

7.5. The prediction bias is shown in Figure 7.5.
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Table 7.5 Summary of the average in- and out-of-sample accuracy results from test 3.

Part
Momentum

Constant

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a 0.9 77.82 0.12 63.89 6.79

b 0.8 77.80 0.11 56.90 7.73

25

20

15

10

5

0
0.9 0.8

P

Figure 7.5 Prediction bias, % for different ANN momentum constants, //.

As in the case of the learning rate, changing the value of the momentum constant has 

a greater effect on the out-of-sample accuracy than on the in-sample accuracy. This is 

reflected in the greater range of mean values reported for the out-of-sample than for 

the in-sample accuracies. As the momentum constant is decreased from 0.9 to 0.8 

both the in-sample and out-of-sample accuracies decrease. The difference between the 

in-sample and out-of-sample accuracies increases. This difference is smallest for a 

momentum constant of 0.9. The standard deviation values are greater for the out-of- 

sample accuracies than the in-sample accuracies.
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7.2.1.4 Test 4 results -  Effect o f  changing the number o f hidden neurons on 

classification accuracy

The results of test 4 to establish the effect of the number of hidden neurons on 

performance are recorded in Appendix C (Tables C .ll to C.14 respectively). The 

average and standard deviation for the in- and out-of-sample accuracies are 

summarised in Table 7.6. The prediction bias when the number of hidden neurons is 

increased is given in Figure 7.6.

Table 7.6 Summary of the average in- and out-of-sample accuracy results from test 4.

Part
Number of 

Hidden Neurons

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a 5 77.82 0.12 63.89 6.79

b 10 77.82 0.11 57.38 5.20

c 15 77.90 0.04 56.67 4.99

d 20 77.91 0.03 55.24 6.02

25

£  20

I£
I  15
’•£ 3O
-a 
£ 10

5

0  ,    ------------------
5 10 15 20

nj

Figure 7.6 Prediction bias, % for different number of hidden neurons, nj.
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Increasing the number of hidden neurons had a greater effect on the mean out-of- 

sample accuracy than on the in-sample accuracy. Whilst the in-sample accuracy 

increased slightly with the increasing number of hidden neurons the out-of-sample 

accuracy decreased considerably. The prediction bias was at its minimum when 5 

hidden neurons were utilised. As for the previous tests the standard deviation values 

are an order of magnitude greater for the out-of-sample accuracies than the in-sample 

accuracies.

7.2.1.5 Test 5 results — Effect o f changing the number o f output neurons on 

classification accuracy

The results of test 5 to establish the effect of changing the number of output neurons 

from 1 to 2 on performance are recorded in Appendix C (Tables C.15 and C.16 

respectively). The average and standard deviation for the in- and out-of-sample 

accuracies are summarised in Table 7.7. The prediction bias is depicted in Figure 7.7.

Table 7.7 Summary of the average in-sample and out-of-sample accuracy results from

test 5.

Part
Number of 

Output Neurons

In-sample accuracy, % Out-of-sample accuracy, %

Mean
Standard

Deviation
Mean

Standard

Deviation

a 1 77.82 0.12 63.89 6.79

b 2 77.41 0.28 60.48 7.71
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Figure 7.7 Prediction bias, % for different number of output neurons,

The addition of a second output neuron decreased both the average in- and out-of- 

sample accuracies, but, as noted in previous tests, had a greater effect on the out-of- 

sample accuracy than the in-sample accuracy. For both in- and out-of-sample cases, 

the variability in the accuracies is greater for the ANNs with two output neurons than 

the ANNs with a single output neuron. As before, the variability associated with the 

out-of-sample accuracy is greater than that with the in-sample accuracy. The 

prediction bias was smallest for the ANNs with one output neuron.

7.2.1.6 Summary o f  ANN accuracy results

The results of these five tests indicate that the best ANN configuration is an ANN 

with 5 hidden neurons and one output neuron trained using the following parameters: 

a learning rate o f 0.1, a momentum rate of 0.9 and a MSE training goal of 0.01. This 

configuration produced the highest out-of-sample accuracy and the lowest prediction 

bias of all the ANNs. Using this configuration, the ANNs were able to classify 

subjects with an average in-sample accuracy of 77.82% and an average out-of-sample 

accuracy of 63.89%. The out-of-sample accuracy of the best ANN in this study is 

lower than the values reported in the literature, which lie in the range of 73-92% 

(Holzreiter and Kohle; Barton and Lees, 1995; Gioftsos and Grieve, 1995; Barton and
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Lees, 1997; Lafuente et al., 1997; Su and Wu, 2000; Wu and Su, 2000). Lafuente et 

al. (1997) and Wu and Su (2000) performed pre-selection of input variables using 

feature selection algorithms and thus tailored the use of the ANN more specifically to 

their applications. Lafuente et al. (1997) reported that the accuracy of the ANNs in 

their study varied greatly depending on the number of input variables used. The high 

higher accuracies reported by Barton and Lees (1995; 1997) were achieved using a 

small testing test; and those by Holzreiter and Kohle (1993) using a very large 

training set.

7.2.2 ANN Interpretability Results

The relative contribution of each variable (Table 7.8) to the final classification of 

subjects was examined for the optimum ANN configuration. The relative weights 

were calculated 42 times (for every left-out-person). The variables were ranked 

according to the absolute relative strength (equation (7.9)) where a variable with a 

ranking of 1 is deemed more important than a variable with a ranking of 2 etc. This 

process was repeated for each of the 10 runs. The rank of the variables based on the 

420 iterations is recorded in Table 7.9. These results will be discussed in section 7.5.

7-19



Chapter 7 Other Classification Methods

Table 7.8 List of the variables, v, (/ = 1:18) used in the classification process

Variable, v,- Variable Description

Vl BMI

v2 Cadence

v3 Stance

v4 APFPC1 Score

V5 APFPC2 Score

V6 APFPC3 Score

V7 VFPC1 Score

Vg VFPC2 Score

v9 VFPC3 Score

VlO FERPC1 Score

Vll FERPC2 Score

Vl2 AARPC1 Score

Vi3 AARPC2 Score

V14 AARPC3 Score

Vl5 IERPC1 Score

Vl6 ML Width

V17 AP Width

Vlg Thigh Girth
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Table 7.9 Ranking of input variables v, (/ = 1:18) from 10 training repetitions

Rank Variable, v,-

1 Vg

2 V 2

3 V 4

4 V l l

5 V 17

6 V l 6

7 V 1 5

8 V 14

9 V3

1 0 V6

11 V5

1 2 V l

1 3 V 7

1 4 V l 8

1 5 V 9

1 6 V l 3

1 7 Vl O

1 8 V 12
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7.3 LINEAR DISCRIMINANT ANALYSIS (LDA)

LDA was introduced in Chapter 5 in the context of feature selection. Here its 

application to classification is discussed.

Using LDA, classification functions are created for each group of the form

Sj =CJ0 +^|V , +cj2v2 +... + cipvp (7.10)

where j  is the group, Sj the classification score for group j ,  v, the input variable (i = 1: 

p), Cjo a constant term for group j  and cji the classification function coefficient for 

group j. In matrix form, the classification function coefficients for group j  are 

calculated using the formula

Cy = V C / !M , (7.11)

and the constant term as

cjo = (“ iX-yMy (7.12)

where VCW is the within-groups variance-covariance matrix, My the matrix of means 

of the p  variables for group j  and Cy the matrix of classification coefficients c,, 

(Tabachnick and Fidell, 1989).

In this classification study of NL and OA knee function, subjects are assigned to a 

particular group (J = OA, NL) based on their classification scores, S o a  and S n l - If S oa  

>  S n l  then a subject is assigned to the OA group and vice-versa.

In addition to the classification functions LDA yields a discriminant function of the 

form

D = d0 + d xvx + d2v2 +... + dpvp (7.13)
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where D is the discriminant score, do a constant term and dt the discriminant function 

coefficient. Once standardised, these coefficients can be examined to see the relative 

contribution that each variable makes to the discriminant function.

7.4 RESULTS OF THE LDA CLASSIFIER

A LDA procedure was implemented in SPSS 11.0 (SPSS Inc.). All variables (Table 

7.8) were entered into the analysis simultaneously. Using all of the subjects, the LDA 

analysis yielded two classification functions and a discriminant function. The 

coefficients of these functions are recorded in Table 7.10 and 7.11 respectively.

7.4(.l LDA Accuracy Results

Using the classification coefficients recorded in Table 7.10, SPSS 10.0 automatically 

produced two classification scores for each subject and used these coefficients to 

assign the subjects to one of the two classes. The LDA procedure was able to classify 

subjects with an accuracy of 100%. Following this SPSS 10.0 used a LOOCV 

approach to classify each case using classification functions derived from all cases 

other than that case. The LDA procedure was able to classify these cross-validated 

cases with an accuracy of 95.20%. The out-of-sample accuracy is slightly greater than 

the values reported in the literature which are in the range 68-92% (Gioftsos and 

Grieve, 1995; Wu and Su, 2000).

7.4.2 LDA Interpretability Results

Standardising the coefficients of the discriminant function can show the relative 

importance of the input variables. This was determined using the standardised 

discriminant function derived from all cases as recorded in Table 7.12. These results 

will be discussed in section 7.5.
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Table 7.10 Classification function coefficients Cp for the input variables v, (/ = 1:18) 

and the constant terms Cjo, for the two groups (j = NL, OA)

Variable, v,-
Coefficient, cp

j  = NL j  -  OA

V l 0.154 -0.971

v 2 15.453 14.007

v 3 112.045 108.927

v 4 10.356 10.513

V 5 -1.121 -0.563

V 6 -7.860 -6.950

V 7 12.938 12.817

V g 1.066 2.315

v 9 21.385 20.278

V l O -10.566 -10.416

V l l -7.154 -6.249

V 12 3.238 3.149

V l 3 0.229 0.468

V 14 9.406 8.368

V l 5 0.324 0.731

V l 6 -50.486 -38.736

V 17 -14.657 -11.212

V l 8 9.471 8.676

Constant term, Cjo -3684.812 -3525.264
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Table 7.11 Discriminant function coefficients di for the input variables v, (/' = 1:18)

and the constant term do

Variable, v/ Coefficient, dj

Vl -0.162

V2 -0.208

V3 -0.449

V4 0.023

V5 0.080

V6 0.131

V7 -0.017

V8 0.180

V9 -0.160

VlO 0.022

Vll 0.130

Vl2 -0.013

Vl3 0.034

Vl4 -0.149

V15 0.059

Vl6 1.693

V]7 0.496

Vl8 -0.115

Constant term, do 23.156
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Table 7.12 Standardised discriminant function coefficients ranked in descending

order of absolute size of coefficient

Variable, v,- Coefficient, </,•

V l 6 2 . 1 5 9

V l - 1 . 2 4 3

V 2 - 0 . 9 8 5

V 3 - 0 . 7 2 3

V 9 - 0 . 5 8 2

V l 8 - 0 . 5 7

V g 0 . 5 6 7

V 17 0 . 4 9 0

V 1 4 - 0 . 4 5 2

V l 5 0 . 4 4 0

V l l 0 . 4 0 6

V5 0 . 3 9 5

V 6 0 . 3 5 7

V l O 0 . 1 6 5

V l 3 0 . 1 4 9

V ? - 0 . 1 1 6

v 4 0 . 1 0 8

V l 2 - 0 . 0 9 8
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7.5 DEMPSTER-SHAFER (DS) CLASSIFIER

The accuracy of the DS classifier is investigated in Chapter 4. In summary, the best 

DS classifier was able to classify subjects with an in-sample and out-of-sample 

accuracy of 97.62%.

Following Jones et al. (2004) a ranking of the variables was undertaken by means of 

an objective function (OBrank)- For a given input variable, the OBrank is defined as the 

Euclidean distance of the mean coordinates of the two groups of subjects to their 

correct vertex in the simplex plot. As such it is a measure of the level of certainty that 

the input variable offers to the classification of subjects to their assigned class. Since 

in this thesis the sides of the simplex plot are of unit length (0 < OB < 1) (see section 

3.4.4), a value of OB closer to zero implies a more robust classification. Conversely, a 

value of OB close to unity infers that the mean points are nearer to the 0  vertex or the 

other incorrect vertex. Consequently the input variable with the lowest associated OB 

was given a ranking of 1, the next lowest a ranking of 2 etc. For each variable the OB 

was calculated from the in-sample population. Using a LOOCV approach this was 

repeated 42 times. The final ranking of the input variables was then based on the 

average ranking from these 42 runs. The results of this ranking are given in Table 

7.13.

The ranking of variables can also be visualised using the simplex plot as shown in 

Figure 7.8. The mean simplex coordinate of the in-sample subjects for each input 

variable lies near to the vertex associated with 0 . This is a direct consequence of the 

values assigned to the uncertainty limits ( [ 0 l , 0 u ] = [0.8,1]). The horizontal line at 

the top of the simplex plot represents the limit at which w(0) = 0.8. All of the 

individual variables have an associated level of uncertainty that is greater than 0 .8 . 

The section of the simplex plot highlighted in Figure 7.8a has been magnified in 

Figure 7.8b. As a consequence of using the above definition of OBrank, the input 

variables that are given a high ranking by the DS classifier (e.g. V2, vg, V4) are those 

whose simplex coordinates are situated at the furthest distance away from the 

uncertainty vertex. These variables, therefore, offer more weight to the final 

classification of subjects to their assigned group. In contrast, the simplex coordinates 

of the variables identified as least important (e.g., vg, V7, vio) are positioned very near
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to the uncertainty vertex and as such have less influence on the final classification of 

the subjects to their assigned group.

Table 7.13 Ranking of variables based on in-sample OBrank of variables from 42

training repetitions, v, (/ =1:18)

Rank Variable, v*

1 vg

2 V2

3 V4

4 Vll

5 V15

6 V12

7 Vi4

8 V3

9 Vl

10 V6

11 V18

12 V16

13 V17

14 V5

15 V13

16 VlO

17 v7

18 V9
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(b)

Figure 7.8 An example of the ranking of variables for one training repetition is given 

in terms of the positioning of the average simplex coordinate (from 41 subjects) for 

each variable, v, (/ = 1:18) in the (a) simplex plot and (b) an enlarged portion of the 

simplex plot highlighted by the dashed line in (a).
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7.6 DISCUSSION OF RESULTS

This study was conducted in order to compare the performance of the DS classifier 

with two other classifiers namely an ANN classifier and an LDA classifier. Following 

Breiman (2001) the comparison of performance is based around two main areas: 

prediction and interpretability. In this study, prediction was measured in terms of 

the out-of-sample classification accuracy and interpretability was quantified using a 

ranking of variables. The results of this study have been presented in sections 7.2, 7.4 

and 7.5 and shall now be discussed.

The in-sample and out-of-sample accuracy results for each classifier are summarised 

in Table 7.14. Comparing the DS classifier and the ANN classifier, the results show
i

that the DS classifier has a higher in-sample and out-of-sample accuracy than the 

ANN classifier. The DS classifier has a lower in-sample classification accuracy than 

the LDA classifier but a higher out-of-sample accuracy. These results suggest that the 

DS classifier is superior to both the linear LDA classifier and the non-linear ANN 

classifier in terms of out-of-sample classification accuracy (prediction).

Table 7.14 Comparison of the in-sample and out-of-sample accuracy, %, of the DS,

ANN and LDA classifiers

Classifier In-sample accuracy, % Out-of-sample accuracy, %

DS 97.62 97.62

ANN 77.82 63.89

LDA 100 95.24

The ten most important variables (in terms of ranking) identified by the three 

classifiers are given in Table 7.15. Here a ranking of 1 is given to the most important 

variable. The DS and ANN classifier identified similar variables as being important. 

Eight of the ten most important variables [v2, v3, v4, v6, v8, vn, vj4, vi5] were the same 

for these two classifiers. The DS and LDA identified the common variables [vi, v2, v3, 

v8, vi4, V15] as important. All of these variables are often cited as being clinically
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relevant. In terms of the nine variables identified as important by two or more of the 

classifiers a number of clinical observations will be discussed.

Table 7.15 Comparison of the ten most important variables, v, identified by the DS,

ANN and LDA classifiers

Classifier
Rank

1 2 3 4 5 6 7 8 9 10

DS vg V2 v 4 V ll V l5 Vl2 V3 V l4 Vl V6

ANN Vg V2 v 4 V ll V l7 Vl6 V l5 Vl4 V3 V6

LDA Vl6 , Vl V2 V3 V9 Vlg Vg V l7 Vl4 V15

The variable vg was ranked first by both the DS classifier and the ANN classifier and 

ranked 8 by the LDA classifier. Table 7.8 shows that vg is the VFPC2 Score. From 

section 2.5.2.2 this is related to the vertical ground reaction force (GRF) (normalised 

to body weight) during the phase from loading response to mid-stance, namely the 

period from heel strike transient to the first peak vertical GRF (see Figure 2.18, 

Chapter 2, section 2.3). This period has been reported in the literature to be an 

important factor in discriminating OA and NL knee function. Gok et al. (2002) found 

that the first peak vertical GRF relative to body weight was significantly lower for 

subjects with OA knee function than for those with NL knee function. Childs et al. 

(2004) also reported that the maximum vertical GRF relative to body weight during 

loading was significantly lower in OA subjects than in NL subjects. Astephen et al. 

(2002a, 2002b) identified the loading response phase of the gait cycle to be an 

important factor in knee OA. Using the kinetic data collected during the clinical trial 

(see Chapter 2, section 2.3) an independent samples t-test (SPSS 11, SPPS Inc.) 

revealed that the peak vertical GRF was significantly lower (p = 0.05) in the OA 

population of subjects than in the NL population as shown in Table 7.16. Many OA 

subjects walk with an antalgic gait pattern since it is a natural response to reduce the 

loading through the painful knee.
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Table 7.16 Independent t- test to identify significant differences between the OA and 

NL group means of the kinetic, kinematic, temporal-distance and anthropometrical

parameters

Variable
Mean

Significance
OA Sample NL Sample

Peak vertical GRF 1.0688 1.2076 0.006

Cadence (min'1) 43.5688 53.9382 0.000

Peak anterior GRF 0.1141 0.2321 0.000

Peak posterior GRF -0.0918 -0.1936 0.000

Peak flexion (°) 48.2163 56.4752 0.000

Peak internal rotation (°) -5.1296 -10.780 0.002

Stance Phase (% gait cycle) 62.0007 59.8966 0.000

Peak adduction (°) -4.8123 -2.8383 0.134

Peak abduction (°) 6.4785 7.1739 0.673

BMI (kgm'2) 28.5509 26.1222 0.311

The variable V2 was ranked second by both the DS classifier and the ANN classifier 

and third by the LDA classifier. From Table 7.8 V2 is the variable cadence, which has 

been reported in the literature to be a parameter that differs for the OA population 

compared to the NL population. Gok et al. (2002) reported the cadence of OA 

subjects to be significantly less than in NL subjects. From the temporal-distance data 

collated as part of the clinical knee trial (see Chapter 2, section 2.4) an independent 

samples t-test (SPSS 11, SPPS Inc.) found a significant difference in the mean values 

of the cadence for the OA and NL group (p < 0.001). The lower cadence is attributed 

to an increase in the time taken for one gait cycle which results in a lengthening of the 

time spent in double support rather than single support (Whittle, 1996). This is a 

compensatory mechanism to reduce pain as it reduces the time that the subject spends 

on the affected leg in single support. However, it must be recognised that a difference 

in cadence between the two groups of subjects may not be uniquely attributable to a
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presence of knee OA. The presence of co-morbidities such as angina and shortness of 

breath may also be contributing factors, especially in the more elderly subjects.

The variable V4 was ranked third by the DS and ANN classifiers. This variable is the 

APFPC1 Score (Table 7.8). From section 2.5.2.1 this variable is related to the peak 

anterior force and the peak posterior GRF’ (normalised to body weight). The tenth 

ranked variable by the DS and ANN classifiers is V6, the APFPC3 Score. From section

2.5.2.1 this variable is related to the anterior-posterior GRF (normalised to body 

weight) during late pre-swing. Schneider and Chao (1983) reported that the magnitude 

of the anterior-posterior GRF was less in subjects with knee joint disease than in 

normal subjects. Using the kinetic data collated as part of the clinical knee trial (see 

Chapter 2, section 2.3) an independent samples t-test (SPSS 11, SPPS Inc.) found that 

both the peak anterior GRF and the peak posterior GRF were significantly lower (p < 

0.001) in the OA population of subjects than in the NL population. The behaviour of 

the anterior-posterior GRF during level walking is related to the movement of the 

centre of mass (Meglan and Todd, 1994). During loading response the body’s centre 

of mass in the sagittal plane lies at a point behind the centre of pressure and is 

accelerating in an anterior direction. This requires that the anterior-posterior GRF act 

in a posterior direction to oppose the force. As the body passes over the supporting 

foot in late stance, the centre of mass moves ahead of the centre of pressure and 

accelerates in a posterior direction. Consequently, the anterior-posterior GRF acts in 

an anterior direction to oppose this force. As a subject’s walking speed is reduced, as 

evident in subjects with OA knee function, the acceleration of the centre of mass in 

both anterior and posterior directions decrease. Consequently the peaks of the 

anterior-posterior GRF are reduced. In addition to this is seems obvious, as with the 

vertical GRF, that as a protective mechanism and with associated compromised 

muscle and soft-tissue function, the subject with knee OA would place less force 

through the painful knee.

Table 7.8 shows that the variable ranked fourth by the DS classifier and the ANN 

classifier, vn is the FERPC2 Score. From section 2.5.2.3 the FERPC2 Score is related 

to the knee flexion during the phase from 58% to 76% of the gait cycle. Figure 2.13 

(Chapter 2, section 2.2.3) shows that during this period of the swing phase the normal 

knee obtains peak flexion. Kaufman et al. (2001) reported a significant difference of 6
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degrees in the peak knee flexion of subjects with OA function and subjects with NL 

function. Al-Zahrani and Bakheit (2002) found that the peak knee flexion during 

swing phase was significantly less for OA subjects than for NL subjects. Gok et al. 

(2002) found a significant difference of 9 degrees in the maximum knee flexion 

during swing between OA and NL subjects and attributed this reduction in the range 

of motion to a decrease in joint flexibility. Using the kinematic data collected during 

the clinical trial (see Chapter 2, section 2.2) an independent samples t-test (SPSS 11, 

SPPS Inc.) revealed that the peak flexion was significantly lower ip < 0.001) in the 

OA population of subjects than in the NL population. In the OA knee the level of 

deformity dictates the movement of the joint. The combination of muscle atrophy, soft 

tissue contracture and an increased congruency of the joint surfaces results in a 

reduction in the range of motion of the knee joint. Additionally, it has been reported 

that the range of knee flexion is highly dependent on walking speed. During swing 

phase, the leg acts as a double-jointed swinging pendulum (Whittle, 1996). It follows 

then that at slower speeds the momentum of the leg would decrease resulting in a 

reduction in the knee range of motion.

The fifth ranked variable by the DS classifier is V15, the IERPC1 Score as shown in 

Table 7.8. This variable was ranked seventh and tenth by the ANN and LDA 

classifiers respectively. From section 2.5.2.5 the IERPC1 Score is related to the 

internal-external rotation waveform from loading response to mid swing. Holt et al. 

(2 0 0 2 ) reported a difference between the internal-external rotational range of motion 

of subjects with NL and OA knee function. Using the kinematic data collected during 

the knee clinical trial (see Chapter 2, section 2.2) an independent samples t-test (SPSS 

11, SPPS Inc.) showed that that the peak internal rotation was significantly lower ip < 

0.05) in the OA population of subjects than in the NL population. As for the flexion- 

extension movement the reduction in internal rotation may be attributed to a stiffening 

of the joint. In addition the internal-external range of motion is affected by the 

flexion-extension movement of the knee joint.

The seventh ranked variable by the DS classifier is V3, the percentage stance phase. 

This variable was also identified as important by the ANN and LDA classifiers. Al- 

Zahrani and Bakheit (2002) found that the stance phase of the gait cycle was more 

prolonged in subjects with OA knee function compared to those with NL function.
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Similarly Gok et al. (2002) reported as overall stance time that was longer in the OA 

group. From the temporal-distance data collected during the clinical trial (see Chapter 

2, section 2.4) an independent samples t-test (SPSS 11, SPPS Inc.) showed that the 

stance phase (as a percentage of the gait cycle) was significantly longer (p < 0.001) in 

the OA population of subjects than in the NL population. Lengthening the stance 

phase increases the period of double support (Whittle, 1996). This is another 

compensatory mechanism to help pain reduction since it limits the time that the 

subject spends on the affected limb in single support. This length of stance phase is 

also affected by the speed of walking

The variable ranked eighth by the DS and ANN classifiers and ninth by the LDA 

classifier is v u ,  the AARPC3 Score. From section 2.5.2.4 this variable is related to the 

Abduction-Adduction rotation during terminal swing. Gok et al. (2002) found a 

significant difference in the maximum knee abduction angle in swing between the 

group of OA subjects and the group of NL subjects. However, using the kinematic 

data collected during the clinical trial (see Chapter 2, section 2.2) an independent 

samples t-test (SPSS 11, SPPS Inc.) found that although a difference was observed in 

the mean abduction angle between the OA and NL subjects, this difference was not 

found to be significant (p > 0.05). Additionally the peak adduction angle was less in 

the NL population than in the OA. However, this difference was not significant (p > 

0.05). The difference in the abduction-adduction angle may be attributed to deformity 

of the joint.

The variable ranked in ninth position by the DS classifier and second by the LDA 

classifier, vj is the BMI. Obesity or an increased BMI are seen as a risk factor for knee 

OA (Foye et al., 2000; Nevitt and Lane, 1999; Creamer and Hochberg, 1997; Gelber 

et al., 1999). Additionally, Kaufman et al. (2001) reported that the gait patterns of 

subjects with OA knee function that also had an increased BMI, deviated further from 

normal than those with a low BMI. Using the anthropometric data collected during the 

knee clinical trial (see Chapter 2, section 2.4) an independent samples t-test (SPSS 11, 

SPPS Inc.) revealed that although the mean BMI was greater in the OA population of 

subjects compared to the NL population, this difference was not found to be 

significant (p > 0.05). A question exists in the literature as to whether an increased 

BMI is a precursor to knee OA or whether knee OA leads to an increased BMI
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(Gelber et al., 1999). Both Gelber et al. (1999) and Nevitt and Lane (1999) comment 

that an increase in BMI leads to an increase in knee joint loading which can result in 

knee OA. Conversely, Gelber et al. (1999) also suggest that subjects with knee OA 

may adopt a more sedentary lifestyle due to pain and limited mobility and as a result 

gain weight.

Although it is evident that the variables discussed above are independently clinical 

indicators of OA knee function the variables must be looked at collectively, as would 

be the practice in a clinical setting, in order to obtain a definitive OA diagnosis.

This chapter has compared the performance of the DS classifier with an ANN 

classifier and an LDA classifier. The results have been presented and a discussion 

based on these results given. Conclusions from this study and suggested further work 

are given in Chapter 8.
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CHAPTER 8 

CONCLUSIONS AND FURTHER WORK

8.1. CONCLUSIONS

Developments in gait analysis technology over the last two decades have enhanced 

our understanding of human locomotion. However, such advances in knowledge are 

futile if no practical use is made of them. Scientists and engineers need to make the 

most of these developments by forging stronger links with orthopaedic surgeons and 

applying further advances in their knowledge to clinical problems for the long-term 

benefit of patients.

Over the last few decades, this need has been identified by many in the field of 

biomechanics and biomedical engineering and a “serious attempt [has been made] to 

take gait analysis out of the research laboratory and into the clinic” (Whittle, 1996 

pp.58). With this need as the driving-force, the aim of this research has been to 

develop an objective classification tool using motion analysis for a proposed 

application to clinical diagnostics and monitoring. The purpose of the tool is to aid 

orthopaedic surgeons and therapists in making clinical decisions and so to promote 

increased confidence in a patient’s medical care.

An extensive database of normal (NL), osteoarthritic (OA) and total knee replacement 

(TKR) knee function data -  i.e. kinematic, kinetic, temporal-distance and 

anthropometrical parameters -  has been established during a clinical trial in Cardiff 

University. With a view to developing a diagnostic tool for OA progression and TKR 

recovery, initial studies found that the extensive range of data acquired was extremely 

difficult to analyse objectively and that an automated approach had to be found.

Emerging objective classification techniques, e.g. Artificial Neural Networks were 

found to be potentially useful tools for such a task. However, these techniques are of 

the “black box” approach and as such are often perceived as unappealing to the 

clinical community since they are difficult to realize mathematically and provide little
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indication of the important factors used for classification. Furthermore, the most 

successful applications have necessitated a large set of training patterns, which is 

often not practically attainable in the clinical setting and not available in this study.

Faced with this problem, a diagnostic tool has been developed that is based around the 

Dempster-Shafer (DS) theory, and as such is built on the sound foundations of 

Bayesian statistics. Using the data collected during the clinical knee trial, this novel 

approach enables automated, objective classification of subjects into an OA or NL 

group. The kinematic and kinetic waveforms are pre-processed using Principal 

Component Analysis. Each piece of data is then transformed into a set of belief values: 

a level of belief that a subject has OA knee function, a level of belief that a subject has 

NL knee function and an associated level of uncertainty. These three belief values are 

subsequently represented on a simplex plot, which enables the final classification of a 

subject and the variables contributing to that classification to be represented visually, 

and the level of benefit achieved by TKR surgery to be quantified.

If this new tool is to provide an enhancement to diagnosis, orthopaedic intervention 

and rehabilitation, it will require confident use by orthopaedic surgeons, therapists and 

biomechanical engineers collectively. Consequently, the tool must be accurate and 

clinically relevant.

The results reveal that the DS method is a highly accurate classification tool. It was 

able to classify new subjects with an accuracy of 97.62%, compared to two well- 

established methods -  the Artificial Neural Network and Linear Discriminant 

Analysis -  which were able to classify subjects with accuracies of 63.89% and 

95.24% respectively.

The clinical relevance and appeal of the tool is enhanced in two main ways: 

visualisation and the transparency of the contribution that the variables make to the 

overall classification.

The simple visual output shows the extent of a patient’s pathology and recovery and 

gives an indication of those variables that are most influential in producing the 

classification. Results showed that the variables identified by the tool as the most
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influential parameters in distinguishing OA and NL knee function are those that are 

often cited to be clinically relevant. This is a significant finding and is one aspect that 

has enhanced its appeal to the clinical community.

Finally, the DS classifier has been developed in such a way that it can be used as a 

fully or partially automated tool. For those with a clinical background the input 

variables can be chosen manually. With those who are not familiar with the clinical 

problem or in cases where it is not obvious as to which variables are most useful in 

determining a subject’s class, the input variables can be selected using a feature 

selection algorithm. Additionally the DS control parameters, which are an intrinsic 

part of the tool, can be chosen by an expert or by an optimisation approach.

The initial results of this application have demonstrated a logical, practical and visual 

approach that can be used to differentiate between the characteristics of NL and OA 

knee function and to diagnose the extent to which a patient has developed OA and 

recovered after subsequent TKR surgery. Initial studies using this technique have 

provided encouraging results in terms of accuracy, validity and clinical relevance.

8.2 FURTHER WORK

In order to meet the overall aims of this project the novel diagnostic tool needs further 

development in a number of ways.

The mathematical foundation of the classification system is based on the DS theory 

and consequently allows a level of ignorance to exist throughout the analysis. The 

specific aspects of ignorance intrinsic to the new classification method in the context 

of motion analysis were defined in Chapter 3 as uncertainty, imprecision and 

incompleteness. In terms of imprecision, errors due to skin movement artefacts can 

result in inaccuracies in the rotational measurements of the knee joint in the order of 

10 to 100% (Cappozzo et al., 1996). Therefore, the specific errors associated with 

skin movement artifacts and the reconstruction of marker coordinates must be 

quantified and subsequently integrated into the classifier. In terms of incompleteness, 

methods for dealing with missing data, such as the medial-lateral ground reaction 

force data, must be investigated, e.g., the combinatorial model (see Smets, 1991).
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Alternatively, in the case of missing variable, a body of evidence with w(@) = 1 and 

w({OA}) = m({NL}) = 0 could be assigned.

The stability and accuracy, and hence the validity, of the classification method depend 

on a set of control parameters, k, 0, A and B, whose values are assumed by an expert 

or by use of an optimisation approach. Using the simulated annealing optimisation 

technique to assign values to the DS control parameters resulted in a decrease in the 

in-sample and out-of-sample accuracy. This was a direct consequence of the limits 

placed on the DS control parameters A and B. It would be desirable to use the 

optimisation technique because it removes the need for expert opinion, therefore, 

further investigation of the use o f optimisation methods in the assignment of values to 

these DS control parameters is needed in particular the effect of the DS control 

parameters A and B on the accuracy of the classification method. This could be 

undertaken by repeating the optimisation tests using different limits on A and B, and 

by assigning different limits to each input variable (see Beynon, 2004). With the aim 

of developing a fully automated tool with high classification accuracy and a low 

associated level of uncertainty, it would be worthwhile to investigate the effect of 

changing the control parameters A and B on the performance of the feature selection 

algorithm by repeating the feature selection tests with different limits.

Differences were identified between the DS classifier outcomes, the subjective 

clinical opinions and the quality-of-life scores. The main reason for this inconsistency 

is that each of the three methods provides a different perspective on the assessment of 

knee function. The DST method assesses knee function during level walking. The 

quality-of-life scores measure knee function during different daily activities and 

consider clinical parameters such as buckling, instability and pain. The orthopaedic 

surgeon considered the static alignment of the knee, passive range of motion and the 

knee function whilst rising from a chair in addition to the knee function during level 

walking. The surgeon also considered what was achievable by the individual patient 

and measured improvement on these terms rather than by comparison with the NL 

population. Further work is required to study this aspect if a fair comparison between 

the DS classifier and the clinical and quality-of-life scores is to be obtained and to 

ensure that the objective DS classifier and subjective clinical opinions are consistent. 

This may be achieved by tailoring the input variables to suit the clinical question.
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At various stages of the research, time was spent talking to orthopaedic surgeons in 

order to understand more about the clinical diagnosis of knee OA and to identify 

whether the objective tool makes decisions in line with subjective clinical opinion. 

This partnership has provided an invaluable insight in understanding the clinical 

application of the DS method. It is suggested that more time be spent in conjunction 

with orthopaedic surgeons and patients in clinics to investigate the feasibility of the 

use of the proposed diagnostic tool in a clinical setting.

The DS classifier is a generic method and, as such, it is applicable to a wide range of 

classification and predictive problems. The application of the DS classifier to other 

biomechanical and clinical problems should be investigated, e.g., identification of 

ankle, spine and hip pathology. Additionally, it is suggested that the method be used 

for the assessment of the relative merits of different treatment options, devices and 

surgery, e.g., identification of the differences between rotating platform and fixed 

bearing knee implants.
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APPENDIX A

KNEE OUTCOME SURVEY (Irrgang et al., 1998)

SYMPTOMS:

1. To what degree does pain in vour knee affect your daily activity level?

□ I never have pain in my knee.
□ I have pain in my knee, but it does not affect my daily activity.
□ Pain affects my activity slightly.
□ Pain affects my activity moderately.
□ Pain affects my activity severely.
□ Pain in my knee prevents me from performing all daily activities.

2. To what degree does grinding or grating of vour knee affect vour daily 
activity level?

□ I never have grinding or grating in my knee.
□ I have grinding or grating in my knee, but it does not affect my daily activity.
□ Grinding or grating affects my activity slightly.
□ Grinding or grating affects my activity moderately.
□ Grinding or grating affects my activity severely.
□ Grinding or grating in my knee prevents me from performing all daily 

activities.

3. To what degree does stiffness in vour knee affect vour daily activity level?

□ I never have stiffness in my knee.
□ I have stiffness in my knee, but it does not affect my daily activity.
□ Stiffness affects my activity slightly.
□ Stiffness affects my activity moderately.
□ Stiffness affects my activity severely.
□ Stiffness in my knee prevents me from performing all daily activities.

4. To what degree does swelling in vour knee affect vour daily activity level?

□ I never have swelling in my knee.
□ I have swelling in my knee, but it does not affect my daily activity.
□ Swelling affects my activity slightly.
□ Swelling affects my activity moderately.
□ Swelling affects my activity severely.
□ Swelling in my knee prevents me from performing all daily activities.

5. To what degree does slipping of vour knee affect vour daily activity level?

□ I never have slipping of my knee.
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□ I have slipping in my knee, but it does not affect my daily activity.
□ Slipping affects my activity slightly.
□ Slipping affects my activity moderately.
□ Slipping affects my activity severely.
□ Slipping of my knee prevents me from performing all daily activities.

6. To what degree does buckling of vour knee affect vour daily activity level?

□ I never have buckling of my knee.
□ I have buckling o f my knee, but it does not affect my daily activity.
□ Buckling affects my activity slightly.
□ Buckling affects my activity moderately.
□ Buckling affects my activity severely.
□ Buckling of my knee prevents me from performing all daily activities.

7. To what degree does weakness or lack of strength of vour leg affect vour 
daily activity level?

□ My leg never feels weak.
□ My leg feels weak, but it does not affect my daily activity.
□ Weakness affects my activity slightly.
□ Weakness affects my activity moderately.
□ Weakness affects my activity severely.
□ Weakness of my leg prevents me from performing all daily activities.

FUNCTIONAL DISABILITY WITH ACTIVITIES OF DAILY LIVING:

8. How does your knee affect your ability to walk?

□ My knee does not affect my ability to walk.
□ I have pain in my knee when walking, but it does not affect my ability to walk.
□ My knee prevents me from walking more than 1 mile.
□ My knee prevents me from walking more than 1/2 mile.
□ My knee prevents me from walking more than 1 block.
□ My knee prevents me from walking.

9. Because of vour knee, do you walk with crutches or a cane?

□ I can walk without crutches or a cane.
□ My knee causes me to walk with 1 crutch or a cane.
□ My knee causes me to walk with 2 crutches.
□ Because of my knee, I cannot walk even with crutches.

10. Does vour knee cause you to limp when you walk?

□ I can walk without a limp.
□ Sometimes my knee causes me to walk with a limp.
□ Because of my knee, I cannot walk without a limp.
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11. How does vour knee affect vour ability to go up stairs?

□ My knee does not affect my ability to go up stairs.
□ I have pain in my knee when going up stairs, but it does not limit my ability to 

go up stairs.
□ I am able to go up stairs normally, but I need to rely on use of a railing.
□ I am able to go up stairs one step at a time with use of a railing.
□ I have to use crutches or a cane to go up stairs.
□ I cannot go up stairs.

12. How does vour knee affect vour ability to go down stairs?

□ My knee does not affect my ability to go down stairs.
□ I have pain in my knee when going down stairs, but it does not limit my ability 

to go down stairs.
□ I am able to go down stairs normally, but I need to rely on use of a railing.
□ I am able to go down stairs one step at a time with use of a railing.
□ I have to use crutches or a cane to go down stairs.
□ I cannot go down stairs.

13. How does vour knee affect vour ability to stand?

□ My knee does not affect my ability to stand, I can stand for unlimited amounts 
of time.

□ I have pain in my knee when standing, but it does not limit my ability to 
stand.

□ Because of my knee I cannot stand for more than 1 hour.
□ Because of my knee I cannot stand for more than 1/2 hour.
□ Because of my knee I cannot stand for more than 10 minutes.
□ I cannot stand because of my knee.

14. How does vour knee affect vour ability to kneel on the front of vour knee?

□ My knee does not affect my ability to kneel on the front of my knee. I can kneel 
for unlimited amounts of time.

□ I have pain when kneeling on the front of my knee, but it does not limit my 
ability to kneel.

□ I cannot kneel on the front of your knee for more than 1 hour.
□ I cannot kneel on the front o f your knee for more than 1/2 hour.
□ I cannot kneel on the front of your knee for more than 10 minutes.
□ I cannot kneel on the front o f your knee.

15. How does vour knee affect vour ability to squat?

□ My knee does not affect my ability to squat, I can squat all the way down.
□ I have pain in my knee when squatting, but I can still squat all the way down.
□ I cannot squat more than3/4 of the way down.
□ I cannot squat more than 1/2 o f the way down.
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□ I cannot squat more than 1/4 of the way down.
□ I cannot squat because of my knee.

16. How does vour knee affect vour ability to sit with vour knee bent?

□ My knee does not affect my ability to sit with my knee bent, I can sit for 
unlimited amounts of time.

□ I have pain in my knee when sitting with my knee bent, but it does not limit my 
ability to sit.

□ I cannot sit with my knee bent for more than 1 hour.
□ I cannot sit with my knee bent for more than 1/2 hour.
□ I cannot sit with my knee bent for more than 10 minutes.
□ I cannot sit with my knee bent.

17. How does vour knee affect vour ability to rise from a chair?

□ My knee does not affect my ability to rise from a chair.
□ I have pain when rising from a seated position, but it does not affect my 

ability to rise from a seated position.
□ Because of my knee I can only rise from a chair if I use my hands and arms to 

assist.
□ Because of my knee I cannot rise from a chair.
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APPENDIX B

Table B.l The sensitivity of k (kc and ks) to changes in population for each input

variable, v, (/ = 1:18)

Input
Variable

kc

Mean Standard
Deviation Mean Standard

Deviation
1 0.1612 0.0328 0.1307 0.0054
2 -0.7468 0.0087 -0.1425 0.0024
3 0.5561 0.0161 0.5231 0.0109
4 -0.7636 0.0081 -0.1362 0.0018
5 0.1000 0.0259 0.2055 0.0077
6 0.3349 0.0197 0.3504 0.0080
7 -0.0222 0.0407 -0.1250 0.0927
8 0.8473 0.0060 0.1709 0.0019
9 -0.0052 0.0304 -0.0409 0.2789
10 0.0234 0.0265 0.1001 0.0878
11 0.7734 0.0079 0.2064 0.0034
12 0.2538 0.0248 0.1292 0.0030
13 0.0864 0.0258 0.2333 0.0050
14 -0.3820 0.0251 -0.3093 0.0074
15 0.3048 0.0216 0.1287 0.0024
16 0.4934 0.0246 0.6909 0.0127
17 0.4547 0.0205 0.9145 0.0151
18 0.1812 0.0281 0.2004 0.0049
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Table B.2 Test 1 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.56 97.62 0.0368 0.0432
b 97.62 97.62 0.0370 0.0455
c 97.62 97.62 0.0424 0.0556
d 97.62 97.62 0.0529 0.0707
e 97.62 97.62 0.0698 0.0914
f 97.62 97.62 0.0965 0.1207
g 97.62 97.62 0.1398 0.1647
h 97.62 97.62 0.2119 0.2350
i 97.62 97.62 0.3363 0.3541
j 97.62 97.62 0.5605 0.5692

II

a 92.80 83.33 0.0963 0.1760
b 94.25 88.10 0.0995 0.1623
c 94.25 88.10 0.1116 0.1713
d 94.14 88.10 0.1296 0.1861
e 94.37 88.10 0.1546 0.2077
f 94.48 85.71 0.1895 0.2384
g 94.72 88.10 0.2397 0.2827
h 94.60 88.10 0.3147 0.3497
i 94.60 88.10 0.4328 0.4568
j 94.60 88.10 0.6308 0.6414
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.l Simplex plot showing simplex coordinates of out-of-sample subjects from

test 1 la ( [ 0 l ,  © u ]  = [0, 1 ] and k = kc)

©

o NL subject 
+ OA subject

Figure B.2 Simplex plot showing simplex coordinates of out-of-sample subjects from

test 1 Ha ( [ © l ,  ©u] = [0,1] and k  = ks)
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.3 Simplex plot showing simplex coordinates of out-of-sample subjects from

test 1 lib ([0L, 0u] = [0.1, 1] and k = k,)

0

{NL}

o NL subject 
+ OA subject

Figure B.4 Simplex plot showing simplex coordinates of out-of-sample subjects from

test m e ( [ © l ,  ©u] = [0.2, 1] and k = ks )
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°  o

{OA}

o NL subject 
+ OA subject

Figure B.5 Simplex plot showing simplex coordinates of out-of-sample subjects from

test m d ( [ © l ,  © u ]  = [0.3, 1] and k = *s)

©

oo
« 0

{NL}

o NL subject 
+ OA subject

Figure B.6 Simplex plot showing simplex coordinates of out-of-sample subjects from

test m e  ( [ © l ,  © u ]  = [0.4, 1] and k  = k*)
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0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.7 Simplex plot showing simplex coordinates of out-of-sample subjects from

test in f  ([0L, 0u] = [0.5, 1] and k = **)

0

oo

{NL}

o NL subject 
+ OA subject

Figure B.8 Simplex plot showing simplex coordinates of out-of-sample subjects from

test lllg ([0L, 0u] = [0.6, 1] and k = K )
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{NL} {OA}

o  NL subject 
+ OA subject

Figure B.9 Simplex plot showing simplex coordinates of out-of-sample subjects from

test 1 Ilh ( [ © l ,  © u ]  = [0.7, 1] and k = ks)

©

o o

o  NL subject 
+ OA subject

Figure B.10 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test llli ( [ © l ,  © u ]  = [0.8, 1] and k = ks)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B .ll  Simplex plot showing simplex coordinates of out-of-sample subjects 

ffom test lllj ( [ © l ,  © u ]  = [0.9, 1] and k = ks)

Table B.3 Test 2 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.62 97.62 0.0332 0.0400
b 97.62 97.62 0.0344 0.0432
c 97.62 97.62 0.0402 0.0546
d 97.62 97.62 0.0508 0.0702
e 97.62 97.62 0.0672 0.0904
f 97.62 95.24 0.0916 0.1177

97.50 95.24 0.1288 0.1564
h 96.86 95.24 0.1859 0.2129
i 95.88 92.86 0.2746 0.2977

II

a 94.08 85.71 0.0885 0.1689
b 94.72 85.71 0.0914 0.1551
c 94.89 85.71 0.1023 0.1626
d 94.89 85.71 0.1181 0.1755
e 95.06 88.10 0.1394 0.1942
f 95.06 88.10 0.1679 0.2197

95.12 88.10 0.2064 0.2542
h 94.89 90.48 0.2594 0.3012
i 94.72 88.10 0.3336 0.3662
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©

+o£ 0 0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.12 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2If ([0L, ©u] = [0.5, 0.9] and k = kc)

©

+  +

{O A }

o NL subject 
+ OA subject

Figure B.13 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2Ig ([0L, ©u] = [0 6, 0.9] and k = kc)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B.14 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2Ih ([0L, ©u] = [0.7, 0.9] and k = kc)

©

{OA}{NL}

o NL subject 
+ OA subject

Figure B.15 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2Ii ([©l, ©u] = [0.8, 0.9] and k = kc)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B .16 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIa ( [ © l ,  © u ]  = [0, 0.9] and k = ks)

©

{NL}

o  NL subject 
+ OA subject

Figure B .17 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIb ( [ © l ,  © u ]  = [0.1, 0.9] and k = k8)
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©

o NL subject 
+ OA subject

Figure B.18 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIc ( [ © l ,  © u ]  = [0.2, 0.9] and k = L)

©

o +

{OA}{NL}

o NL subject 
+ OA subject

Figure B.19 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IId ( [ © l ,  © u ]  = [0.3, 0.9] and k = ks)
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©

{NL} {OA}

o  NL subject 
+ OA subject

Figure B .20 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIe ( [ © l ,  © u ]  = [0.4, 0.9] and k = k*)

0

oo

o  NL subject 
+ OA subject

Figure B .21 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIf ( [ © u  © u ]  = [0.5, 0.9] and k = k*)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B .22 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIg ( [ © l ,  © u ]  = [0.6, 0.9] and k = ks)

©

{OA}{NL}

o NL subject 
+ OA subject

Figure B .23 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIh ( [ © l ,  © u ]  = [0.7, 0.9] and k = ks)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B.24 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 2IIi ( [ © l ,  © u ]  = [0.8, 0.9] and k = ks)

Table B.4 Test 3 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.62 97.62 0.0353 0.0374
b 97.62 97.62 0.0327 0.0419
c 97.62 97.62 0.0392 0.0550
d 97.62 97.62 0.0504 0.0714
e 97.62 95.24 0.0668 0.0914
f 97.39 95.24 0.0903 0.1176
g 96.92 95.24 0.1258 0.1546
h 96.98 95.24 0.1823 0.2104

II

a 94.66 85.71 0.0832 0.1637
b 94.77 85.71 0.0860 0.1497
c 94.89 85.71 0.0961 0.1559
d 95.01 88.10 0.1105 0.1675
e 95.06 88.10 0.1297 0.1843
f 94.83 90.48 0.1549 0.2067
g 94.83 88.10 0.1890 0.2371
h 94.60 88.10 0.2419 0.2839
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.25 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 31a ([©u ©u] = [0, 0.8] and k = kc)

0

{OA}{NL}

o NL subject 
+ OA subject

Figure B.26 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 31b ([©i„ ©u] = [0.1 0.8] and k = kc)
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0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.27 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 31c ([©l, ©u] = [0.2, 0.8] and k = kc)

0

{OA}{NL}

o NL subject 
+ OA subject

Figure B.28 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3Id ( [ © l ,  © u ]  = [0.3, 0.8] and k  = kc).
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B .29 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3Ie ( [ © l ,  © u ]  = [0.4, 0.8] and k = kc)

©

{OA}

o NL subject 
+ OA subject

Figure B .30 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3If ( [ © l ,  © u ]  = [0.5, 0.8] and k = kc)

B-18



Appendix B

©

{NL} {OA}

o NL subject 
+ OA subject

Figure B .31 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3Ig ( [ © l ,  © u ]  = [0.6, 0.8] and k = kc)

©

oo
{OA}{NL}

o NL subject 
+ OA subject

Figure B .32 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3Ih ( [ © l ,  © u ]  = [0.7, 0.8] and k = kc)
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0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.33 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIa ( [ © l ,  0 u ] = [0, 0.8] and k = k%)

0

■OCX

{NL}

o NL subject 
+ OA subject

Figure B.34 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIb ( [ O l , 0 u ]  =  [ 0 . 1 ,  0 . 8 ]  and k = ks )
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.35 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIc ( [ © l ,  © u ]  = [0.2, 0.8] and k = ks)

©

{OA}{NL}

o NL subject 
+ OA subject

Figure B.36 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IId ( [ © l , © u ]  = [0.3, 0.8] and k = ks)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B.37 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIe ( [ © l ,  © u ]  = [0.4, 0.8] and k = As)

©

{OA}

o NL subject 
+ OA subject

Figure B.38 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIf ( [ © l ,  © u ]  = [0.5, 0.8] and k = ks)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B.39 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIg ( [ © l ,  © u ]  = [0.6, 0.8] and k= ks)

©

{NL}

o NL subject 
+ OA subject

Figure B.40 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 3IIh ( [ © l ,  © u ]  = [0/7, 0.8] and k = ks)
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Table B.5 Test 4 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.62 97.62 0.0343 0.0351
b 97.62 97.62 0.0316 0.0417
c 97.62 97.62 0.0389 0.0566
d 97.62 95.24 0.0503 0.0727
e 97.50 95.24 0.0663 0.0917
f 97.21 95.24 0.0905 0.1184

L ” __ 97.27 95.24 0.1290 0.1576

II

a 94.66 85.71 0.0794 0.1591
b 94.89 85.71 0.0823 0.1447
c 94.95 88.10 0.0916 0.1497
d 94.89 88.10 0.1046 0.1600
e 94.89 88.10 0.1223 0.1757
f 94.66 88.10 0.1480 0.1991
* 94.60 88.10 0.1920 0.2392

0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.41 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 41a ( [ 0 l , 0 u ]  = [0, 0.7] and k = kc).
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0

{NL} {OA}

o NL subject 
+ OA subject

Figure B.42 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 41b ([0L, 0u] = [0.1, 0.7] and k = kc).

0

----
{OA}

o NL subject 
+ OA subject

Figure B.43 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 41c ( [ 0 l ,  0 u ]  *  [0.2, 0.7] and k = kc).
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©

{ N L } {OA}

o NL subject 
+ OA subject

Figure B.44 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4Id ([©l, ©n] = [0.3, 0.7] and k = kc)

©

o NL subject 
+ OA subject

Figure B.45 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4Ie ( [ © l ,  © u ]  = [0.4, 0.7] and k  = kc)
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o NL subject 
+ OA subject

Figure B.46 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4If ( [ © l ,  © u ]  = [0.5, 0.7] and k = kc)

©

{OA}{NL}

o NL subject 
+ OA subject

Figure B.47 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4Ig ( [ © l ,  © u ]  = [0.6, 0.7] and k = kc)
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©

o NL subject 
+ OA subject

Figure B.48 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIa ( [ © l ,  © u ]  = [0, 0.7] and k = k&)

©

o NL subject 
+ OA subject

Figure B.49 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIb ( [ © l ,  © u ]  = [0.1, 0.7] and k = ks)
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©

{NL} {OA}

o NL subject 
+ OA subject

Figure B.50 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIc ( [ © l ,  © u ]  = [0.2, 0.7] and k = K)

©

{OA}

o NL subject 
+ OA subject

Figure B.51 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IId ( [ © l ,  © u ]  = [0.3, 0.7] and k  = £s)
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o NL subject 
+ OA subject

Figure B.52 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIe ( [ 0 l , Ou] = [0.4, 0 7] and k = ks)

0

- t - Q t - t - f r  +

{OA}
ota £xL

{NL}

o NL subject 
+ OA subject

Figure B.53 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIf ([0L, 0u] = [0.5, 0.7] and k = ks)
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 i f l - t t  t t t

{NL} {OA}

o NL subject 
+ OA subject

Figure B.54 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 4IIg ( [0 L, 0u] = [0.6, 0.7] and k  = ks)

Table B.6 Test 5 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.62 97.62 0.0336 0.0332
b 97.62 97.62 0.0307 0.0415
c 97.62 97.62 0.0385 0.0570
d 97.62 95.24 0.0501 0.0731
e 97.56 95.24 0.0664 0.0920
f 97.50 95.24 0.0917 0.1190

II

a 94.60 85.71 0.0762 0.1545
b 94.77 85.71 0.0789 0.1397
c 94.83 88.10 0.0873 0.1441
d 94.66 88.10 0.0997 0.1544
e 94.60 88.10 0.1182 0.1711
f 94.60 88.10 0.1529 0.2040
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{NL}

o NL subject 
+ OA subject

Figure B.55 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 51a ( [ 0 l , 0 u ]  = [0, 0.6] and k = kc).

0

{OA}

o NL subject 
+ OA subject

Figure B.56 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 51b ( [ 0 l ,  0 u ]  = [0.1, 0.6] and k = kc).
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.57 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 51c ( [ 0 l , 0 u ]  =  [ 0 . 2 ,  0 . 6 ]  and k = kc).

0

I----- l€Ht

{OA}

o NL subject 
+ OA subject

Figure B.58 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5Id ( [ 0 l , Ou] = [0.3, 0 . 6 ]  and k -  kc)
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{NL}

o NL subject 
+ OA subject

Figure B.59 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5Ie ( [ © l ,  © u ]  = [0.4, 0.6] and k  = kc)

0

o NL subject 
+ OA subject

Figure B.60 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5If ( [ © l ,  © u ]  = [0.5, 0.6] and k = kc).
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o NL subject 
+ OA subject

Figure B.61 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IIa ( [ @ l ,  0 u ]  = [0, 0.6] and k = ks)

0

-6B-

o NL subject 
+ OA subject

Figure B.62 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IIb ( [ 0 l ,  0 u ]  = [0.1, 0.6] and k = ks)
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{NL}

o NL subject 
+ OA subject

Figure B.63 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IIc ( [ 0 l ,  0 u ]  =  [ 0 . 2 ,  0 . 6 ]  and k = ks)

0

o NL subject 
+ OA subject

Figure B.64 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IId ( [ 0 l ,  0 u ]  = [0.3, 0.6] and k = fa)
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.65 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IIe ( [ © l ,  © u ]  = [0.4, 0.6] and k  = ks)

©

o NL subject 
+ OA subject

Figure B.66 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 5IIf ( [ © l ,  © u ]  = [0.5, 0.6] and k  = k s )
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Table B.7 Test 6 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 97.62 97.62 0.0277 0.0318
b 97.62 97.62 0.0304 0.0417
c 97.62 97.62 0.0385 0.0577
d 97.62 95.24 0.0499 0.0725
e 97.62 95.24 0.0666 0.0914

II

a 94.48 85.71 0.0731 0.1501
b 94.54 85.71 0.0758 0.1358
c 94.60 88.10 0.0837 0.1400
d 94.60 88.10 0.0968 0.1512
e 94.60 88.10 0.1225 0.1760

0

{OA}{NL}

o NL subject 
+ OA subject

Figure B.67 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 61a ( [ 0 l ,  0 u ]  = [0, 0.5] and k = kc).
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0

{N L } {OA}

o NL subject 
+ O A subject

Figure B.68 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 61b ( [ 0 L, 0 u ]  =  [0.1, 0.5] and k = kc).

0

{NL}

o NL subject 
+ O A subject

Figure B.69 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from  test 61c ( [ 0 l ,  0 u ]  =  [0.2, 0.5] and k = kc).
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0

{N L } {OA}

o NL subject 
+ O A  subject

Figure B .70 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 6Id ([©u ©u] = [0.3, 0.5] and k = kc)

©

{N L }

o  NL subject 
+ O A subject

Figure B.71 S im plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from  test 6Ie ( [ © l ,  © u ]  = [0.4, 0.5] and k = kc)
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{N L } {OA}

o NL subject 
+ O A  subject

Figure B.72 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 6IIa ( [ © l ,  0 u ]  =  [0, 0.5] and k = k̂ )

©

{OA}{N L }

o  NL subject 
+ O A subject

Figure B .73 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from  test 6IIb ( [ © l ,  © u ]  =  [0.1, 0.5] and k = ks)
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-e-o-

o N L subject 
+ O A  subject

Figure B.74 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 6IIc ( [ © l , © u ]  — [0.2, 0.5] and k = h*)

©

{OA}{N L }

o  N L subject 
+ O A  subject

Figure B.75 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 6IId ( [ © l ,  © u ]  = [0.3, 0.5] and k = ks)
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{N L } {O A }

o  N L  subject 

+ O A  subject

Figure B.76 S im plex  plot show ing  sim plex  coordinates o f  out-of-sam ple subjects 

from  test 6IIe ( [ 0 l ,  © u ]  =  [0.4, 0 .5] and k = ks)

Table B.8 T est 7 accuracy, %  and O B results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I

a 9 7 .6 2 97 .6 2 0 .0274 0.0314
b 9 7 .6 2 97 .62 0 .0302 0 .0417
c 9 7 .6 2 9 7 .6 2 0 .0382 0 .0568
d 9 7 .6 2 9 5 .2 4 0 .0499 0 .0717

II

a 9 4 .43 85.71 0 .0707 0 .1469
b 9 4 .4 8 85.71 0 .0729 0 .1324
c 9 4 .6 0 88.10 0 .0819 0 .1380
d 9 4 .6 0 88.10 0.0998 0.1552
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o  NL subject 
+ O A  subject

Figure B.77 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from test 71a ( [ © l ,  © u ]  = [0, 0.4] and k = kc).

©

{N L}

o NL subject 
+ O A subject

Figure 4.78 Sim plex plot show ing sim plex coordinates o f  out-of-sam ple subjects 

from  test 71b ( [ © l ,  © u ]  =  [0.1, 0.4] and k = kc).
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{NL} {OA}

o NL subject 
+ OA subject

Figure 4.79 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 71c ([0 L, 0u] = [0.2, 0.4] and k = kc).

©

o NL subject 
+ OA subject

Figure B.80 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 7Id ( [ 0 l ,  ® u ]  = [0.3, 0.4] and k = kc)
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{NL} {OA}

o NL subject 
+ OA subject

F ig u re  B .81  Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 7IIa ( [ 0 l ,  0 u ]  = [0, 0.4] and k = k̂ )

©

-€B-

o NL subject 
+ OA subject

F ig u re  B .8 2  Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 7IIb ( [ © l ,  © u ]  = [0.1, 0.4] and k = ks)
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o NL subject 
+ OA subject

F igu re  B.83 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 7IIc ( [ © l ,  © u ]  = [0.2, 0.4] and k = ks)

©

■ee-
{OA}

o NL subject 
+ OA subject

F ig u re  B.84 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 7IId ( [ © l ,  © u ]  = [0.3, 0.4] and k = ks)
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Table B.9 Test 8 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I
a 97.62 97.62 0.0271 0.0309
b 97.62 97.62 0.0300 0.0412
c 97.62 97.62 0.0384 0.0564

II
a 94.48 85.71 0.0685 0.1440
b 94.54 85.71 0.0719 0.1313
c 94.60 88.10 0.0836 0.1409

©

{OA}{NL}

o NL subject 
+ OA subject

Figure 4.85 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 81a ( [ © l ,  © u ]  = [0, 0.3] and k = kc).
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{NL} {OA}

o NL subject 
+ OA subject

Figure 4.86 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 81b ( [ 0 l ,  0 u ]  =  [ 0  1, 0.3] and k = kc).

©

{OA}{NL}

o NL subject 
+ OA subject

Figure 4.87 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 81c ( [ 0 l ,  © u ]  = [0.2, 0.3] and k = kc).
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c NL subject 
+ OA subject

Figure B.88 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 8IIa ( [ © l , ® u ]  = [0, 0.3] and k = k̂ )

©

{OA}

o NL subject 
+ OA subject

Figure B.89 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 8IIb ( [ © l , O u ]  = [0.1, 0.3] and k = ks)
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.90 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 8IIc ( [ © l ,  © u ]  = [0.2, 0.3] and k = ks)

Table B. 10 Test 9 accuracy, % and OB results

Subtest Part Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

I a 97.62 97.62 0.0270 0.0306
b 97.62 97.62 0.0304 0.0414

II a 94.43 85.71 0.0680 0.1428
b 94.60 85.71 0.0727 0.1330
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.91 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 91a ( [ © l ,  © u ]  = [0, 0.2] and k  = kc).

©

o NL subject 
+ OA subject

Figure B.92 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 91b ([© l, ©u] “  [0.1, 0.2] and k = kc).
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{NL} {OA}

o NL subject 
+ OA subject

Figure B.93 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 9IIa ( [ @ l ,  0 u ]  = [ 0 ,  0 . 2 ]  and k = ks)

0

{NL}

o NL subject 
+ OA subject

Figure B.94 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 9IIb ( [ 0 l ,  ® u ]  = [0.1, 0.2] and k  = ks)
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Table B. 11 Test 10 accuracy, % and OB results

Subtest Part Accuracy, % OB
ln-sample Out-of-sample ln-sample Out-of sample

I a 97.62 97.62 0.0274 0.0312
II 94.43 85.71 0.0686 0.1426

0

o NL subject 
+ OA subject

Figure B.95 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 101a ( [ ® l ,  ® u ]  = [0, 0.1] and k  = kc )
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o NL subject 
+ OA subject

Figure B.96 Simplex plot showing simplex coordinates of out-of-sample subjects 

from test 1011a ( [ © l ,  © u ]  =  [ 0 ,  0.1 ] and k = ks)
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Table B.12 Summary of average k values for the 10 runs of test 14.

Test
14a 14b 14c

Input t{= lxlO'5 tf= lx lO 10 tf= 1x10
Variable

Mean
Standard
Deviation

Mean Standard
Deviation Mean

Standard
Deviation

vi 0.1761 0 .0 1 0 0 0.1891 0.0282 0.2449 0.0504

v2 -0.7879 0.0511 -0.9018 0.0748 -1.1127 0.1403
v3 0.6299 0.0425 0.6649 0.0930 0.7710 0.0557

v4 -0.8318 0.0557 -0.8759 0.0800 -1.0403 0.1026

V5 0.1076 0.0117 0.1280 0.0108 0.1396 0.0188

V6 0.3676 0.0250 0.4128 0.0707 0.4907 0.0349
V? -0.0240 0.0018 -0.0235 0.0051 -0.0192 0.0025

V8 0.9526 0.0760 0.9970 0.0830 1.1713 0.1415

v9 -0.0045 0.0006 -0.0046 0.0007 -0.0045 0.0016

VlO 0.0244 0 .0 0 2 1 0.0285 0.0027 0.0330 0.0058

Vll 0.7545 0.0695 0.9332 0.1130 1.0811 0.1382

V12 0.2648 0.0228 0.3059 0.0400 0.3511 0.0420
V13 0.0934 0.0080 0.1048 0.0131 0.1244 0.0162
V14 -0.4329 0.0343 -0.4402 0.0458 -0.5253 0.0630

Vl5 0.3311 0.0271 0.3547 0.0366 0.4353 0.0558

Vl6 0.5445 0.0488 0.5671 0.0547 0.7074 0.0558
V17 0.5140 0.0531 0.5166 0.0544 0.6327 0.0490

Vl8 0.1988 0.0104 0.2050 0.0154 0.2488 0.0279
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Table B.13 Summary of average 6 values for the 10 runs of test 14.

Input
Variable

Test
14a 14b 14c

t,=  lxlO'5 t,= lx lO 1* -5* II H* X 1—k o hJ e

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

V l 26.1937 2.2401 24.8051 1.0237 25.6411 0.7016
v 2 49.5857 1.0105 49.1393 0.7083 49.4028 0.7036
v 3 61.0633 2.2543 60.9426 1.3084 60.8182 0.3325
v 4 -1.8E-08 1.08E-09 -1.5E-08 2.51E-09 -1.1E-08 5.51E-09
V 5 9.4E-09 1.31E-09 9.14E-09 1.88E-09 9.21E-09 1.95E-09
V6 1.77E-09 1.68E-10 1.81E-09 2.64E-10 1.33E-09 3.15E-10
V 7 -4.8E-09 5.59E-10 -4.7E-09 IE-09 -3.9E-09 1.26E-09
V g -9.8E-09 9.71E-10 -IE-08 1.55E-09 -1.2E-08 1.14E-09
V9 -9.4E-09 8.13E-10 -9.5E-09 1.3E-09 -8.8E-09 3.41E-09

V lO -3.9E-09 6.57E-10 -4.2E-09 1.17E-09 -4E-09 9.24E-10
V l l -IE-08 1.47E-09 -IE-08 1.7E-09 -1.3E-08 1.3E-09
V 12 1.24E-08 1.79E-09 1.2E-08 9.7E-10 7.85E-09 3.84E-09
V13 -1.3E-08 8.18E-10 -1.3E-08 3.13E-09 -1.5E-08 2.1E-09
V14 -3E-09 5.37E-10 -3E-09 5.72E-10 -2.9E-09 IE-09
V l 5 2.96E-08 3.21E-09 3.26E-08 5.99E-09 3.72E-08 6.99E-09
V l 6 10.3790 0.4862 10.2336 0.2733 10.2399 0.1671
V 17 12.9324 0.8689 12.7987 0.4738 12.2834 0.9426
V l 8 43.0981 4.2001 41.0380 4.8602 42.3438 0.6670
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Table B.14 Summary of average A values for the 10 runs of test 14.

Input
Variable

Test
14a 14b 14c

tf= 1*10‘5 /,= lxlO'18

f?ox 
1 

II

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.4118 0.0489 0.3642 0.0607 0.2888 0.0762
V2 0.4181 0.0541 0.3631 0.0575 0.2788 0.0789
V3 0.4392 0.0467 0.3903 0.0369 0.2942 0.0597
V4 0.4349 0.0327 0.3557 0.0421 0.2314 0.0799
vs 0.4315 0.0571 0.3622 0.0589 0.2230 0.1091
V6 0.4450 0.0383 0.3725 0.0626 0.2312 0.0906
V? 0.4129 0.0366 0.3794 0.0260 0.2061 0.0976
Vg 0.4458 0.0356 0.3898 0.0457 0.2851 0.0689
V9 0.4281 0.0417 0.3594 0.0700 0.2498 0.0791
Vio 0.4295 0.0498 0.3598 0.0673 0.2411 0.1058
V ll 0.4198 0.0436 0.3775 0.0705 0.2614 0.0899
V]2 0.4365 0.0444 0.3390 0.0666 0.2976 0.0689
V13 0.4143 0.0264 0.3701 0.0442 0.2678 0.0751
V l4 0.4200 0.0362 0.3616 0.0513 0.2666 0.0800
v is 0.4354 0.0554 0.3838 0.0688 0.3094 0.0720
Vl6 0.4167 0.0535 0.3384 0.0508 0.2820 0.0194
V17 0.4292 0.0331 0.3672 0.0614 0.3148 0.0673
Vl8 0.4381 0.0328 0.3662 0.0539 0.2815 0.0615



Table B.15 Summary of average B values for the 10 runs of test 14.

Input
Variable

Test
14a 14b 14c

/f= lxlO'5 ff= lx l0 io t,= lx lO 20

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.1953 0.0033 0.1969 0.0024 0.1985 0 :0 0 2 0

V2 0.1987 0.0018 0.1986 0.0027 0.1984 0.0021
V3 0.1953 0.0054 0.1944 0.0081 0.1991 0.0009
V4 0.1959 0.0048 0.1965 0.0063 0.1989 0.0011
V5 0.1927 0.0075 0.1955 0.0052 0.1990 0.0009
V6 0.1960 0.0041 0.1966 0.0036 0.1994 0.0011
V7 0.1926 0.0069 0.1964 0.0035 0.1993 0.0010
V8 0.1967 0.0058 0.1984 0.0032 0.1994 0.0012
V9 0.1911 0.0095 0.1973 0.0018 0.1986 0.0010
VlO 0.1915 0.0128 0.1976 0.0033 0.1985 0.0023
Vll 0.1966 0.0041 0.1978 0.0036 0.1988 0.0023
Vl2 0.1934 0.0073 0.1963 0.0042 0.1986 0.0021
Vl3 0.1888 0.0098 0.1962 0.0030 0.1988 0.0010
Vl4 0.1919 0.0100 0.1977 0.0039 0.1990 0.0010
Vl5 0.1919 0.0085 0.1953 0.0088 0.1998 0.0004
V16 0.1934 0.0064 0.1988 0.0018 0.1986 0.0012
V17 0.1957 0.0045 0.1967 0.0026 0.1988 0.0015
Vl8 0.1955 0.0053 0.1968 0.0054 0.1986 0.0022



Table B.16 Summary of average k values for the 10 runs of test 15.

Input
Variable

Test
15a 15b 15c

it = 2 0 ii in o it = 1 0 0

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.1761 0 . 0 1 0 0 0.1797 0.0266 0 . 2 1 0 2 0.0283
V2 -0.7879 0.0511 -0.8704 0.1285 -0.9912 0.1715
V3 0.6299 0.0425 0.5986 0.1117 0.6185 0.0986
V4 -0.8318 0.0557 -0.8983 0.1173 -1.0247 0.1169
V5 0.1076 0.0117 0.1297 0.0192 0.1474 0.0260
V6 0.3676 0.0250 0.3995 0.0604 0.4410 0.0861
V7 -0.0240 0.0018 -0.0226 0.0044 -0.0180 0.0048
Vg 0.9526 0.0760 0.9511 0.0821 1.0665 0.1666
V9 -0.0045 0.0006 -0.0044 0.0007 -0.0049 0.0007
VlO 0.0244 0 . 0 0 2 1 0.0264 0.0045 0.0279 0.0080
Vll 0.7545 0.0695 0.8553 0.0983 0.9272 0.1215
Vl2 0.2648 0.0228 0.3125 0.0417 0.3556 0.0626
V13 0.0934 0.0080 0.0948 0 . 0 1 2 0.1166 0.0162
Vl4 -0.4329 0.0343 -0.4543 0.0490 -0.5146 0.0779
Vl5 0.3311 0.0271 0.3913 0.0499 0.4322 0.0459
Vl6 0.5445 0.0488 0.5531 0.0492 0.7126 0.1160
V17 0.5140 0.0531 0.5475 0.0981 0.5869 0 . 1 0 0 2

Vl8 0.1988 0.0104 0.2141 0.0249 0.2266 0.0395



Table B.17 Summary of average 6 values for the 10 runs of test 15.

Input
Variable

Test
ISa 15b 15c

/,= 20 it =50 it= 100

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

V l 26.1937 2.2401 24.6377 2.1464 25.7843 3:0122
v 2 49.5857 1.0105 49.2757 1.4844 48.3011 1.7096
v 3 61.0633 2.2543 61.4230 1.1221 57.8878 10.2592
v 4 -1.8E-08 1.08E-09 -1.6E-08 2.29E-09 -1.4E-08 4.08E-09
V5 9.4E-09 1.31E-09 8.57E-09 1.35E-09 8.22E-09 2.25E-09
V6 1.77E-09 1.68E-10 1.89E-09 4.42E-10 1.53E-09 3.92E-10
V 7 -4.8E-09 5.59E-10 -4.5E-09 1.4E-09 -4.5E-09 1.96E-09
V 8 -9.8E-09 9.71E-10 -IE-08 1.83E-09 -1.3E-08 3.13E-09
V9 -9.4E-09 8.13E-10 -9.9E-09 2.15E-09 -9.3E-09 2.22E-09

V lO -3.9E-09 6.57E-10 -3.7E-09 5.98E-10 -4E-09 1.02E-09
V l l -IE-08 1.47E-09 -1.1E-08 1.91E-09 -1.2E-08 2.49E-09
V l 2 1.24E-08 1.79E-09 1.17E-08 1.95E-09 1.03E-08 2.69E-09
V 13 -1.3E-08 8.18E-10 -1.3E-08 2.4E-09 -1.5E-08 2.95E-09
V U -3E-09 5.37E-10 -2.6E-09 5.55E-10 -2.9E-09 8.27E-10
v i s 2.96E-08 3.21E-09 3.3E-08 5.53E-09 3.41E-08 1.17E-08
V 1 6 10.3790 0.4862 10.5987 0.5918 10.0726 0.6545
Vn 12.9324 0.8689 12.1744 1.2624 12.3357 0.4793
VJ8 43.0981 4.2001 41.6448 3.2594 42.4410 1.1083



Table B.18 Summary of averaged values for the 10 runs of test 15.

Input
Variable

Test
15a 15b 15c

it =20 it =50 it= 100

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.4118 0.0489 0.3415 0.0701 0.3062 0.1072
v2 0.4181 0.0541 0.3908 0.0405 0.2840 0.0993
v3 0.4392 0.0467 0.3972 0.0442 0.3467 0.0877
v4 0.4349 0.0327 0.3471 0.0579 0.2681 0.1209
V5 0.4315 0.0571 0.3592 0.0536 0.2662 0.0858
V6 0.4450 0.0383 0.3616 0.0869 0.2853 0.1058
v7 0.4129 0.0366 0.3587 0.0676 0.3086 0.0980
Vg 0.4458 0.0356 0.3855 0.0807 0.2827 0.0803
V9 0.4281 0.0417 0.3609 0.0852 0.2499 0.1399
VlO 0.4295 0.0498 0.3470 0.0764 0.2627 0.0670
Vll 0.4198 0.0436 0.4024 0.0428 0.2779 0.0992
Vl2 0.4365 0.0444 0.3689 0.0482 0.2638 0.0702
Vl3 0.4143 0.0264 0.3434 0.0796 0.2036 0.0962
Vl4 0.4200 0.0362 0.3556 0.0564 0.2939 0.0778
Vl5 0.4354 0.0554 0.3455 0.0789 0.2644 0.1136
V16 0.4167 0.0535 0.3780 0.0709 0.2631 0.0799
Vi? 0.4292 0.0331 0.3469 0.1025 0.2819 0.0862
Vlg 0.4381 0.0328 0.3613 0.0799 0.3070 0.0877



B-63

Table B.19 Summary of average B values for the 10 runs of test 15.

Input
Variable

Test
15a 15b 15c

it =20 i t -  50 ii o ®

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.1953 0.0033 0.1944 0.0056 0.1971 0 :0 0 2 2
v 2 0.1987 0.0018 0.1949 0.0049 0.1971 0.0032
v 3 0.1953 0.0054 0.1928 0.0063 0.1938 0.0132
v 4 0.1959 0.0048 0.1959 0.0042 0.1962 0.0034
V5 0.1927 0.0075 0.1901 0.0100 0.1893 0.0167
V6 0.1960 0.0041 0.1896 0.0129 0.1833 0.0222
V? 0.1926 0.0069 0.1911 0.0047 0.1910 0.0080
Vg 0.1967 0.0058 0.1973 0.0038 0.1967 0.0032
V9 0.1911 0.0095 0.1905 0.0113 0.1859 0.0108
VlO 0.1915 0.0128 0.1885 0.0136 0.1900 0.0106
V ll 0.1966 0.0041 0.1931 0.0114 0.1975 0.0030
Vl2 0.1934 0.0073 0.1926 0.0067 0.1929 0.0060
V l3 0.1888 0.0098 0.1883 0.0182 0.1891 0.0141
Vl4 0.1919 0.0100 0.1931 0.0084 0.1906 0.0089
V l5 0.1919 0.0085 0.1950 0.0044 0.1960 0.0036
Vl6 0.1934 0.0064 0.1943 0.0070 0.1924 0.0073
Vl7 0.1957 0.0045 0.1919 0.0113 0.1973 0.0028
Vlg 0.1955 0.0053 0.1950 0.0041 0.1913 0.0088

A
ppendix 

B



Appendix B

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

30 40  50 60 0 0.2 0.4 0.6 0.8 1
(a) "*(•)

1

0.8 0.8

0.6 0.6

0.4 0.4

0.20.2

0
60 0.240 50 0 0.4 0.6 0.830 1

1

0.8

0.6

0.4

0.2

0
0.2 0.60 0.4 0.8 1

(c) »*(•)

0.8

0.6

0.4

0.2

50 604030

—  m({OA} ) —  m ( { N L » —  /w(0)

Figure B.97 The effect of decreasing the number of iterations per temperature, /t on 

the confidence factor and BOE for v2. (a) /t = 20; (b) /t = 50; (c) it = 100.
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Figure B.98 The effect of decreasing the number of iterations per temperature, it on 

the confidence factor and BOE for v7. (a) /t = 20; (b) it = 50; (c) ix = 100.

B-65



Appendix B

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

-10 ■5 0 5 10 0 0.2 0.4 0.6 0.8
(a) >»(.)

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

5 10 0 0.2 0.4-10 ■5 0 0.6 0.8 1
(b) M )

0.80.8

0.60.6

0.40.4

0.20.2

05 10 0.2 0.4 0.6 0.80-10 ■5
v* (c) ™ O

—  m({ O A } )—  tw ({N L })—  m(&)
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the confidence factor and BOE for v8. (a) it = 20; (b) /t = 50; (c) ix = 100.
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Figure B.100 The effect of decreasing the number of iterations per temperature, /t on 

the confidence factor and BOE for v9. (a) ix = 20; (b) /t = 50; (c) /t = 100.
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Table B.20 Summary of average k values for the 10 runs of test 16.

Input
Variable

Test
16a 16b 16c

rt=0.5 rt= 0.8 rt= 0.9

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Vl 0.1761 0.0100 0.1833 0.0156 0.2191 0.0246
V2 -0.7879 0.0511 -0.9713 0.0986 -0.9512 0.1369
V3 0.6299 0.0425 0.6321 0.1273 0.7754 0.1134
V4 -0.8318 0.0557 -0.9025 0.1357 -1.0225 0.2014
V5 0.1076 0.0117 0.1285 0.0214 0.1565 0.0208
V6 0.3676 0.0250 0.3767 0.0329 0.4540 0.0882
V7 -0.0240 0.0018 -0.0202 0.0027 -0.0177 0.0046
Vg 0.9526 0.0760 0.9687 0.1494 1.2214 0.1325
V9 -0.0045 0.0006 -0.0042 0.0007 1 -0.0043 0.0009

VlO 0.0244 0.0021 0.0243 0.0051 0.0287 0.0080
Vll 0.7545 0.0695 0.9277 0.1365 1.1571 0.2696
Vl2 0.2648 0.0228 0.3062 0.0484 0.3796 0.0606
Vl3 0.0934 0.0080 0.0989 0.0130 0.1175 0.0176
V14 -0.4329 0.0343 -0.4707 0.0368 -0.5626 0.0694
Vl5 0.3311 0.0271 0.3891 0.0432 0.4144 0.0952
V16 0.5445 0.0488 0.5958 0.0945 0.7203 0.1472
Vl7 0.5140 0.0531 0.5475 0.0718 0.6835 0.0961
Vlg 0.1988 0.0104 0.2115 0.0282 0.2556 0.0527



Table B.21 Summary of average 0 values for the 10 runs of test 16.

Test
16a 16b 16c

Input
rr= 0.5 r%-= 0.8 rt= 0.9

v aname
Mean

Standard
Deviation

Mean Standard
Deviation Mean Standard

Deviation

Vl 26.1937 2.2401 24.0912 2.8946 24.5994 1.7289

V2 49.5857 1.0105 49.1173 0.5245 48.9006 0.4420
V3 61.0633 2.2543 61.6312 1.6518 60.7485 0.2998
V4 -1.8E-08 1.08E-09 -1.6E-08 3.86E-09 -1.3E-08 4.49E-09

V5 9.4E-09 1.31E-09 8.97E-09 2.1E-09 1.01E-08 1.25E-09
V6 1.77E-09 1.68E-10 1.9E-09 4.42E-10 1.48E-09 5.46E-10
V7 -4.8E-09 5.59E-10 -4.8E-09 1.07E-09 -3.9E-09 2.04E-09
Vg -9.8E-09 ' 9.71E-10 -IE-08 1.88E-09 -1.3E-08 2.6E-09
V9 -9.4E-09 8.13E-10 -8.5E-09 1.53E-09 -8.5E-09 2.24E-09
VlO -3.9E-09 6.57E-10 -4.1E-09 6.82E-10 -3.9E-09 1.02E-09
Vll -IE-08 1.47E-09 -1.1E-08 1.89E-09 -1.1E-08 2.55E-09
Vl2 1.24E-08 1.79E-09 1.09E-08 2.28E-09 8.15E-09 4.11E-09
Vl3 -1.3E-08 8.18E-10 -1.3E-08 2.33E-09 -1.6E-08 4.37E-09

Vl4 -3E-09 5.37E-10 -2.8E-09 9.31E-10 -2.3E-09 6.54E-10

Vl5 2.96E-08 3.21E-09 3.05E-08 8.44E-09 3.19E-08 9.54E-09

V16 10.3790 0.4862 10.0085 0.8433 10.3653 0.4234

Vl7 12.9324 0.8689 12.9133 0.7915 12.4773 0.1727
Vl8 43.0981 4.2001 43.8823 6.4661 42.5013 0.6247
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Table B.22 Summary of average A values for the 10 runs of test 16.

Input
Variable

Test
16a 16b 16c

rt= 0.5 II o o
c rt= 0.9

Mean Standard
Deviation

Mean Standard
Deviation Mean Standard

Deviation
V l 0 . 4 1 1 8 0 . 0 4 8 9 0 . 3 3 4 7 0 . 0 8 2 6 0 . 2 9 4 5 0 . 0 8 6 6

V2 0 . 4 1 8 1 0 . 0 5 4 1 0 . 3 5 0 5 0 . 0 6 6 0 0 . 2 5 7 3 0 . 1 2 5 8

V 3 0 . 4 3 9 2 0 . 0 4 6 7 0 . 3 8 7 4 0 . 0 7 7 8 0 . 2 9 9 0 0 . 0 7 0 7

V4 0 . 4 3 4 9 0 . 0 3 2 7 0 . 3 2 9 1 0 . 0 9 0 5 0 . 2 4 9 4 0 . 1 0 4 0

V 5 0 . 4 3 1 5 0 . 0 5 7 1 0 . 3 2 2 0 0 . 0 8 5 0 0 . 2 5 2 3 0 . 0 8 0 5

V6 0 . 4 4 5 0 0 . 0 3 8 3 0 . 3 0 1 6 0 . 0 7 5 6 0 . 2 6 1 7 0 . 1 2 4 5

Vi 0 . 4 1 2 9 0 . 0 3 6 6 0 . 3 4 8 4 0 . 0 7 2 6 0 . 2 2 3 2 0 . 1 2 5 6

n 0 . 4 4 5 8 0 . 0 3 5 6 0 . 3 8 9 3 0 . 0 5 5 0 0 . 2 7 2 4 0 . 0 7 4 2

v 9 0 . 4 2 8 1 0 . 0 4 1 7 0 . 3 2 6 5 0 . 0 6 0 1 0 . 1 7 1 5 0 . 0 9 6 2

V lO 0 . 4 2 9 5 0 . 0 4 9 8 0 . 3 5 4 7 0 . 0 6 6 7 0 . 2 0 9 3 0 . 1 2 6 9

V l l 0 . 4 1 9 8 0 . 0 4 3 6 0 . 3 6 7 0 0 . 0 5 2 3 0 . 2 5 3 9 0 . 1 1 1 3

V l 2 0 . 4 3 6 5 0 . 0 4 4 4 0 . 3 2 1 2 0 . 0 6 1 6 0 . 2 6 8 3 0 . 0 4 7 2

V 13 0 . 4 1 4 3 0 . 0 2 6 4 0 . 3 3 3 0 0 . 0 9 3 3 0 . 1 6 2 5 0 . 0 9 3 1

V l4 0 . 4 2 0 0 0 . 0 3 6 2 0 . 3 5 6 8 0 . 0 5 4 8 0 . 2 5 4 1 0 . 0 7 8 6

V l5 0 . 4 3 5 4 0 . 0 5 5 4 0 . 3 3 2 7 0 . 0 6 6 8 0 . 2 6 4 3 0 . 1 0 7 3

V 16 0 . 4 1 6 7 0 . 0 5 3 5 0 . 3 3 3 0 0 . 0 7 2 9 0 . 2 5 7 0 0 . 0 3 4 6

V l7 0 . 4 2 9 2 0 . 0 3 3 1 0 . 3 2 3 5 0 . 0 7 3 3 0 . 3 0 0 5 0 . 0 4 4 5

V lg 0 . 4 3 8 1 0 . 0 3 2 8 0 . 3 4 2 5 0 . 0 7 1 2 0 . 2 6 1 0 0 . 0 6 2 4
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Table B.23 Summary of average B values for the 10 runs of test 16.

Test
16a 16b 16c

Input
rt== 0.5 rt-= 0.8 rt= 0.9

v anaDte
Mean

Standard
Deviation

Mean Standard
Deviation Mean Standard

Deviation

Vl 0.1953 0.0033 0.1961 0.0021 0.1956 0.0045
v2 0.1987 0.0018 0.1949 0.0040 0.1988 0.0012

V3 0.1953 0.0054 0.1882 0.0144 0.1973 0.0019
v4 0.1959 0.0048 0.1950 0.0048 0.1980 0.0018

V5 0.1927 0.0075 0.1862 0.0136 0.1867 0.0138

V6 0.1960 0.0041 0.1944 0.0063 0.1941 0.0116
V7 0.1926 0.0069 0.1892 0.0107 0.1932 0.0076
V8 0.1967 0.0058 0.1929 0.0076 0.1982 0.0020
V9 0.1911 0.0095 0.1935 0.0041 0.1961 0.0034

VlO 0.1915 0.0128 0.1892 0.0089 0.1934 ' 0.0076
Vll 0.1966 0.0041 0.1974 0.0029 0.1964 0.0064

V12 0.1934 0.0073 0.1923 0.0087 0.1931 0.0126

Vl3 0.1888 0.0098 0.1922 0.0067 0.1944 0.0057

V14 0.1919 0.0100 0.1965 0.0029 0.1967 0.0030

V15 0.1919 0.0085 0.1932 0.0109 0.1964 0.0057

V16 0.1934 0.0064 0.1924 0.0112 0.1955 0.0070

Vl7 0.1957 0.0045 0.1937 0.0060 0.1911 0.0137
V18 0.1955 0.0053 0.1940 0.0073 0.1927 0.0065



Appendix B

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

30 40 50 60 0 0.2 0.4 0.6 0.8
(a) ”*(■)

0.8 0.8

0.6 0.6

0.4 0.4

0.20.2

50 60 0 0.2 0.630 40 0.4 0.8
(b) M )

0.80.8

0.60.6

0.40.4

0.20.2

50 60 0 0.2 0.4 0.6 0.840 130
Vj (c) m ( )

—  mC{OA}) —  /w({NL» — w(0)

Figure B.101 The effect o f  decreasing the temperature reduction factor, rt on the 

confidence factor and BOE for v2. (a) rt = 0.5; (b) rt = 0.8; (c) rt = 0.9.
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Figure B.102 The effect of decreasing the temperature reduction factor, rt on the 
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Appendix B

Table B.24 In-sample and out-of-sample accuracy, % and OB results from test 17a.

Run Accuracy, % OB
In-sample Out-of-sample In-sample Out-of-sample

1 96.57 95.24 0.3363 0.3360
2 96.81 95.24 0.3360 0.3340
3 96.50 95.20 0.3363 0.3289
4 97.04 95.24 0.3360 0.3299
5 96.86 92.90 0.3363 0.3272
6 96.69 95.24 0.3363 0.3307
7 97.15 95.24 0.3363 0.3304
8 97.10 95.24 0.3363 0.3379
9 97.04 97.62 0.3363 0.3292
10 96.81 95.24 0.3363 0.3285

Table B.25 In-sample and out-of-sample accuracy, % and OB results from test 17b.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 95.99 95.24 0.3363 0.3091
2 96.11 95.24 0.3363 0.3062
3 96.40 95.24 0.3363 0.3023
4 96.57 95.24 0.3363 0.3101
5 96.05 95.24 0.3363 0.3048
6 96.17 92.86 0.3363 0.3100
7 96.28 95.24 0.3363 0.3115
8 96.34 95.24 0.3363 0.3007
9 96.17 90.48 0.3363 0.3076
10 96.69 95.24 0.3363 0.3085

Table B.26 In-sample and out-of-sample accuracy, % and OB results from test 17c.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 95.35 95.24 0.3363 0.2856
2 95.35 92.86 0.3363 0.2872
3 95.35 92.86 0.3363 0.2855
4 95.41 92.86 0.3363 0.2848
5 95.35 92.90 0.3363 0.2853
6 95.41 95.24 0.3363 0.2875
7 95.47 92.86 0.3363 0.2876
8 95.35 92.86 0.3363 0.2831
9 95.30 92.86 0.3363 0.2846
10 95.24 92.86 0.3363 0.2863
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Table B.27 In-sample and out-of-sample accuracy, % and OB results from test 18a.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 96.57 95.24 0.3363 0.3360
2 96.81 95.24 0.3360 0.3340
3 96.50 95.20 0.3363 0.3289
4 97.04 95.24 0.3360 0.3299
5 96.86 92.90 0.3363 0.3272
6 96.69 95.24 0.3363 0.3307
7 97.15 95.24 0.3363 0.3304
8 97.10 95.24 0.3363 0.3379
9 97.04 97.62 0.3363 0.3292
10 96.81 95.24 0.3363 0.3285

Table B.28 In-sample and out-of-sample accuracy, % and OB results from test 18b.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 96.40 95.24 0.3363 0.3086
2 96.52 95.24 0.3363 0.3123
3 96.17 95.24 0.3363 0.3163
4 96.28 97.62 0.3363 0.3147
5 96.52 95.24 0.3363 0.3107
6 96.46 95.24 0.3363 0.3127
7 96.57 95.24 0.3363 0.3115
8 96.40 95.24 0.3363 0.3128
9 96.28 95.24 0.3363 0.3161
10 96.40 95.24 0.3363 0.3126

Table B.29 In-sample and out-of-sample accuracy, % and OB results from test 18c.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 95.76 92.86 0.3363 0.2884
2 95.82 92.86 0.3363 0.2936
3 95.53 92.86 0.3363 0.2985
4 95.76 92.86 0.3363 0.2932
5 95.76 95.24 0.3363 0.2925
6 95.88 90.48 0.3363 0.2947
7 95.99 97.62 0.3363 0.2960
8 95.70 92.86 0.3363 0.2966
9 95.82 95.24 0.3363 0.2977
10 95.53 95.24 0.3363 0.2906
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Table B.30 In-sample and out-of-sample accuracy, % and OB results from test 19a.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 96.57 95.24 0.3363 0.3360
2 96.81 95.24 0.3360 0.3340
3 96.50 95.20 0.3363 0.3289
4 97.04 95.24 0.3360 0.3299
5 96.86 92.90 0.3363 0.3272
6 96.69 95.24 0.3363 0.3307
7 97.15 95.24 0.3363 0.3304
8 97.10 95.24 0.3363 0.3379
9 97.04 97.62 0.3363 0.3292
10 96.81 95.24 0.3363 0.3285

Table B.31 In-sample and out-of-sample accuracy, % and OB results from test 19b.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 96.23 95.24 0.3363 0.3035
2 96.46 95.24 0.3363 0.3101
3 96.57 95.24 0.3363 0.3087
4 96.57 92.86 0.3363 0.3134
5 96.05 92.86 0.3363 0.3131
6 96.11 95.24 0.3363 0.3029
7 96.05 95.24 0.3363 0.3065
8 96.11 95.24 0.3363 0.2994
9 96.28 95.24 0.3363 0.3094
10 96.23 92.86 0.3363 0.3147

Table B.32 In-sample and out-of-sample accuracy, % and OB results from test 19c.

Run Accuracy OB
In-sample Out-of-sample In-sample Out-of-sample

1 95.59 95.24 0.3363 0.2860
2 95.24 92.86 0.3363 0.2885
3 95.35 95.24 0.3363 0.2873
4 95.41 95.24 0.3363 0.2830
5 95.47 95.24 0.3363 0.2877
6 95.47 92.86 0.3363 0.2882
7 95.53 92.86 0.3363 0.2881
8 95.64 95.24 0.3363 0.2882
9 95.76 95.24 0.3363 0.2893
10 95.47 92.86 0.3363 0.2850

B-78



Appendix C

APPENDIX C

Table C .l In-sample and out-of-sample accuracy (%) results from test la (Training

goal, MSE = 0.07)

Run Accuracy, %
In-sample Out-of-sample

1 74.10 54.76
2 74.22 50.00
3 73.11 47.62
4 74.39 54.76
5 74.62 45.24
6 73.69 54.76
7 73.40 54.76
8 74.27 52.38
9 74.10 73.81
10 74.04 52.38

Table C.2 In-sample and out-of-sample accuracy (%) results from test lb (Training

goal, MSE = 0.05)

Run Accuracy, %
In-sample Out-of-sample

1 76.07 61.90
2 75.67 52.38
3 75.38 54.76
4 75.20 54.76
5 75.20 54.76
6 74.85 64.29
7 75.32 54.76
8 75.03 52.38
9 76.13 57.14
10 75.61 52.38
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Table C.3 In-sample and out-of-sample accuracy (%) results from test lc (Training

goal, MSE = 0.01)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 73.81
2 77.64 61.90
3 77.93 54.76
4 77.82 73.81
5 77.93 61.90
6 77.82 69.05
7 77.70 55.52
8 77.64 61.90
9 77.87 66.67
10 77.87 59.52

Table C.4 In-sample and out-of-sample accuracy (%) results from test Id (Training

goal, MSE = 0.005)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 61.90
2 77.93 59.53
3 77.93 52.38
4 77.93 61.90
5 77.93 50.00
6 77.93 61.90
7 77.93 61.90
8 77.93 59.52
9 77.93 52.38
10 77.93 61.90
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Table C.5 In-sample and out-of-sample accuracy (%) results from test le (Training

goal, MSE = 0.001)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 61.90
2 77.93 57.14
3 77.93 57.14
4 77.93 64.29
5 77.93 59.52
6 77.93 64.29
7 77.93 59.52
8 77.93 50.00
9 77.93 64.29
10 77.93 57.14

Table C.6 In-sample and out-of-sample accuracy (%) results from test 2a (Learning

rate, rj = 0.02)

Run Accuracy, %
In-sample Out-of-sample

1 77.87 59.52
2 77.93 66.67
3 77.64 59.52
4 77.64 61.90
5 77.64 59.52
6 77.76 66.67
7 77.82 54.76
8 77.64 59.52
9 77.64 59.52
10 77.93 54.76
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Table C.7 In-sample and out-of-sample accuracy (%) results from test 2b (Learning

rate, ^ = 0.1)

Run Accuracy
In-sample Out-of-sample

1 77.93 73.81
2 77.64 61.90
3 77.93 54.76
4 77.82 73.81
5 77.93 61.90
6 77.82 69.05
7 77.70 55.52
8 77.64 61.90
9 77.87 66.67
10 77.87 59.52

Table C.8 In-sample and out-of-sample accuracy (%) results from test 2c (Learning

rate, rj = 0.6)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 50.00
2 77.64 66.67
3 77.70 57.14
4 77.58 57.14
5 77.82 57.14
6 77.93 64.29
7 77.93 52.38
8 77.64 59.52
9 77.70 45.24
10 77.87 59.52
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Table C.9 In-sample and out-of-sample accuracy (%) results from test 3a

(Momentum constant, n = 0.9)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 73.81
2 77.64 61.90
3 77.93 54.76
4 77.82 73.81
5 77.93 61.90
6 77.82 69.05
7 77.70 55.52
8 77.64 61.90
9 77.87 66.67
10 77.87 59.52

Table C.10 In-sample and out-of-sample accuracy (%) results from test 3b

(Momentum constant, // = 0.8)

Run Accuracy, %
In-sample Out-of-sample

1 77.82 54.76
2 77.93 42.86
3 77.76 47.62
4 77.64 61.90
5 77.64 61.90
6 77.87 57.14
7 77.87 59.52
8 77.93 69.05
9 77.76 52.38
10 77.76 61.90
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Table C .ll  In-sample and out-of-sample accuracy (%) results from test 4a (Number

of hidden neurons, rij = 5)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 73.81
2 77.64 61.90
3 77.93 54.76
4 77.82 73.81
5 77.93 61.90
6 77.82 69.05
7 77.70 55.52
8 77.64 61.90
9 77.87 66.67
10 77.87 59.52

Table C.12 In-sample and out-of-sample accuracy (%) results from test 4b (Number

of hidden neurons, rij =10)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 57.14
2 77.76 61.90
3 77.82 52.38
4 77.87 52.38
5 77.87 54.76
6 77.87 52.38
7 77.64 66.67
8 77.93 54.76
9 77.87 64.29
10 77.64 57.14
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Table C.13 In-sample and out-of-sample accuracy (%) results from test 4c (Number

of hidden neurons, rij =15)

Run Accuracy, %
In-sample Out-of-sample

1 77.87 64.29
2 77.82 54.76
3 77.87 52.38
4 77.87 52.38
5 77.87 52.38
6 77.93 54.76
7 77.93 64.29
8 77.93 57.14
9 77.93 61.90
10 77.93 52.38

Table C.14 In-sample and out-of-sample accuracy (%) results from test 4d (Number

of hidden neurons, rij = 20)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 59.52
2 77.93 61.90
3 77.87 57.14
4 77.87 52.38
5 77.87 52.38
6 77.93 54.76
7 77.93 64.29
8 77.93 57.14
9 77.93 61.90
10 77.93 52.38
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Table C.15 In-sample and out-of-sample accuracy (%) results from test 5a (Number

of output neurons, = 1)

Run Accuracy, %
In-sample Out-of-sample

1 77.93 73.81
2 77.64 61.90
3 77.93 54.76
4 77.82 73.81
5 77.93 61.90
6 77.82 69.05
7 77.70 55.52
8 77.64 61.90
9 77.87 66.67
10 77.87 59.52

Table C.16 In-sample and out-of-sample accuracy (%) results from test 5b (Number

of output neurons, = 2)

Run Accuracy, %
In-sample Out-of-sample

1 77.64 59.52
2 77.41 61.90
3 76.77 71.43
4 77.35 47.62
5 77.64 54.76
6 77.24 64.29
7 77.64 54.76
8 77.24 64.29
9 77.53 71.43
10 77.64 54.76


