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Summary

Diabetic patients are prone to develop cataract, compared to non-diabetic patients 

(Kyselova et al., 2004). The global prevalence of diabetes is around 150 millions in 2004 

(5% of the world population), with 1.8  million people in the United Kingdom affected 

(Diabetes UK, 2004). In western countries, diabetes accounts for around 12% of the total 

cataract population (Harding, 1999). It has been proposed that hyperglycemia is the major 

risk factor in diabetic cataract, and could be the starting point for all of the consequent 

pathological changes including, glucoxidation, glycation and activation of the polyol 

pathway, which finally result in diabetic complications (Sensi et a l , 1995; Hotta, 1997; 

Brownlee, 2001).

The present study aimed to characterise the mechanism of glucose transport into the 

aqueous humour. Using the Ussing-type chamber technique, glucose transport kinetics 

were characterised for the bovine CBE. The glucose fluxes were sensitive to a number of 

glucose transporter inhibitors including cytochalasin B (~ 80% inhibition), phloretin (~ 

59% inhibition) and phlorizin (-21%  inhibition), and it also varied with stromal glucose 

concentration.

In an investigation of mRNA expression using RT-PCR, GLUT1, GLUT3, GLUT4, 

GLUT5 and SGLT2 were found to be expressed in the bovine CBE. Due to difficulties 

encountered in the protein expression study, it was not possible to confirm that all of 

these mRNAs are translated.

Nevertheless, the major glucose transport mechanism across the bovine CBE was 

determined to be a facilitative and carrier-mediated mode, since the glucose transport was 

effectively inhibited by the addition of cytochalasin B and phloretin. The transport system 

is likely to saturate when the plasma glucose concentration reaches 10.6 mM. These 

results, together with the gene expression data, may provide a new insight into devising a 

therapeutic strategy in the control of aqueous glucose levels which may eventually 

prevent the diabetic cataract formation.
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Introduction

1.1 Anatomy and physiology of the ciliary body/ epithelium (CBE)

The ciliary body (CB), together with the iris and choroid, forms the uveal tract. It is 

triangular infection, with an outer region that attaches to the sclera. It lies in between the 

retina posteriorly and the scleral spur anteriorly. The ciliary muscle that is located below 

the sclera within the CB controls the crystalline lens accommodation, thus, governing the 

accommodative power of the eye (Glasser and Kaufman, 2003).

The CBE is a polarized epithelium that lies along the innermost layer of the CB (Caprioli,

1992). It is the forward continuation of the retina, with a double layer of cells, the outer 

pigmented epithelium (PE) and the inner non-pigmented epithelium (NPE). These two 

layers face each other, with their apical membranes adjoining. Together with gap 

junctions, they form a functional syncytium (Green et al., 1985; Edelman et al., 1994; Oh 

et al., 1994). These bilayer cells are connected electrically by gap junctions (Raviola, 

1977; Raviola and Raviola, 1978; Abdel-Latif, 1997). Functionally, the CBE is widely 

recognized as the site of aqueous humor production (To and Do, 1998d; Wetzel and 

Sweadner, 2001).

Electrophysiological studies showed a potential difference (PD) of ~lmV across the CE, 

with the aqueous side consistently negative (Coca-Prados et al., 1995; Jacob and Civan, 

1996). Bicarbonate and chloride ions were believed to be responsible for generating this 

negative potential in rabbit and in bovine respectively (Coca-Prados et al., 1995; Krupin 

and Civan, 1995; Do and To, 2000).These ions are, therefore, considered to play a crucial 

role in driving aqueous humor formation in different species.

The CBE can be divided into two regions, the pars plicata (anterior) and the pars plana 

(posterior) (Morrison and Freddo, 1996; Abdel-Latif, 1997). The two regions demonstrate 

different structural and functional features (see section 1 .1 .4 ).
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Introduction

1.1.1 Pigmented epithelium (PE)

The PE is the anterior continuation of the retinal pigment epithelium (RPE) and is the 

outer layer of the CBE (Davson, 1990). It is a 5-6 pm high cell layer with a dark brown 

appearance due to the presence of melanin granules. The dark colour is further 

contributed by the unusually compact arrangement of the cytoplasmic organelles and the 

conspicuous presence of cytoplasmic fibrils (Kozart, 1968). Such an appearance makes it 

easily distinguishable from the NPE. Compared to the NPE, the PE has a higher 

anaerobic metabolic rate (Shimizu et al., 1967) and a lesser number of mitochondria 

(Cole, 1984). It has a large surface area, built by the infoldings of its basal surface, which 

facilitates solute uptake from the blood stream (Edelman et al., 1994).

1.1.2 Non-pigmented epithelium (NPE)

The NPE is the inner layer of the CBE. It consists of a monolayer cell of 6 - 8  pm wide 

and 10-15 pm high (Kozart, 1968). It is the anterior continuation of the neurosensory 

retina (Morrison and Freddo, 1996; Glasser and Kaufman, 2003), and lies between the PE 

and the aqueous humor. It possesses numerous basal infoldings and interdigitations, and 

was originally believed to be the only site responsible for aqueous humor formation 

(Okisaka and Kuwabara, 1974). In addition, it is the sole layer in the CBE that has 

intercellular tight junctions that serve the purpose of selective solute transport at the 

blood aqueous barrier (BAB) (Raviola, 1971). Compared to the PE, the NPE has more 

mitochondria and rough endoplasmic reticulum, as well as a higher activity of Sodium- 

Potassium adenosine triphosphatase (Na+, K+-ATPase) and adenylate cyclase, enzymes 

that participate in active fluid secretion (Elena et a l, 1984; Riley and Kishida, 1986;
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Flugel et al., 1989; Eichhom et al., 1993a). The NPE expresses enzymes for aerobic 

metabolism at a very high level (Cole, 1966; Shimizu et a l , 1967). All these 

characteristics indicate its activeness in both secretion and metabolism.

1.1.3 Intercellular junctions

1.1.3.1 Tight junctions

Tight junctions, also known as zonula occludens, are located only at the apical-lateral 

side of the NPE cells (Raviola and Raviola, 1978). They form a continuous network in 

which each junction consists of two or more superimposed strands, indicating the co­

existence of relatively tight and leaky sites (Noske et al., 1994). They restrict the inter­

cellular movement of small water soluble molecules and also membrane protein 

movement (Bill, 1986). However, these junctions are still regarded as a “leaky” type of 

tight junction, due to their low fluid permeability (Cunha-Vaz, 1979) and pressure- 

dependent transport features (Pederson, 1982). Nevertheless, research has suggested that 

the bilayers’ electrical resistance could be high if one considers the total unfolded surface 

area of the CBE (Krupin et al., 1984). The “tight” epithelial nature has been corroborated 

in the rabbit iris-ciliary body, which bore the same mannitol permeability as other tight 

epithelia (Chu and Candia, 1987a). Concerning the transepithelial resistance, anterior 

ciliary processes were “less leaky” (i.e. possessed a higher resistance) than posterior 

ciliary processes or pars plana. In the rat, the number of tight junctions appeared to be 

inconsistent, since the junctional depth and number of superimposed junctional fibrils 

decreased with age (Arguillere et a l , 1986). Despite this, tight junctions of NPE are 

believed to act as the major “sieve” used for aqueous humor formation. In conjunction
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with gap junctions (Bill, 1986), the NPE tight junctions constitute the BAB, with another 

endothelial component at the level of the iris blood vessels (Cunha-Vaz, 1979) and ciliary 

muscle capillaries (Schlingemann et al., 1998). This barrier behaves as an isoporous 

membrane (Demouchamps and Heremans, 1975) to limit substrate passage (DiMattio and 

Zadunaisky, 1981; Chu and Candia, 1988) and assure transparency of ocular media by 

restricting the diffusion of macromolecules into the aqueous chamber (Vegge, 1971; 

Hirsch et al., 1980). Its barrier function is further validated by the extremely low level of 

protein in the aqueous humor (Hirsch et al., 1985; Bill, 1986).

1.1.3.2 Gap junctions

Gap junctions (2 nm gap) are highly organized structures composed of “connexon” 

plasma membrane proteins. They connect the cytoplasm of adjacent cells, as hydrophilic 

channels (Shin et a l , 1996) and act as ion-gated channels for signalling communication 

between cells (Bazzoni and Dejana, 2004). They allow the passage of small molecules up 

to molecular size of 1 kDa (Bennett et al., 1991) and 12 A in diameter (Oh et al., 1994).

In the CBE, gap junctions are found in between all cells (i.e. within each epithelial layer 

and between the bilayers) and are most abundant in between the NPE and PE cells 

(Raviola and Raviola, 1978; Coca-Prados et a l, 1992). No significant difference was 

found in both the intracellular ion contents (Bowler et al., 1996) and membrane potential 

(Carre et al., 1992) between these cell bilayers, indicating the presence of free solute or 

ion exchange. Further evidence of cell-to-cell communication was demonstrated using a 

micro-iontophoretic dye, which revealed the presence of cell-to-cell substrate coupling. 

However, such coupling was found to be pH sensitive, and sensitive to high calcium
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concentration, as dye coupling ceased under extracellular acidosis or high calcium 

concentration (Oh et al., 1994). Despite this, gap junctions are an important route of 

intercellular communication, which ultimately help to build a functional syncytium from 

the CBE bilayer (Edelman et al., 1994; Oh et al., 1994).

1.1.4 Regional differences in the CBE

The pars plicata is the anterior part of the CBE, which can be further divided into the 

iridial processes, the ciliary muscle and the ciliary processes (Hara et al., 1977). Its 

innermost layer folds into finger-like projections, which are believed to be the major site 

for aqueous humor formation. The pars plana is a smooth, membranous layer of posterior 

CBE, which has significantly less rough endoplasmic reticulum and mitochondria than 

pars plicata. It is the region which provides mechanical zonular support to the crystalline 

lens (Noske et al., 1994), but not a site regarded for active secretion, since Na+, K+- 

ATPase was scarcely observed in it (Flugel et al., 1989). In contrast, different isoforms 

(alpha 1, alpha 2, alpha 3, beta 1 and beta 2) of Na+, K+-ATPase were intensely stained at 

the pars plicata (Ghosh et al., 1991). In addition, endothelin-1 (ET-1), a chemical 

messenger which constricts blood vessels to instantly lower intraocular pressure, was 

mostly observed at the crests of the pars plicata, but not the pars plana (Eichhom and 

Lutjen-Drecoll, 1993b). The same was found for carbonic anhydrous staining (Muther 

and Friedland, 1980). These findings indicate again the active involvement of the pars 

plicata in aqueous formation.
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1.2 Glucose

1.2.1 Structure and function

Glucose is a common form of hexose, which is one of the most important nutrients for 

mammalian cells (Takata et al., 1993). Living cells require glucose as a starting material 

for energy production (Mueckler, 1994a). The ability of a plasma membrane to transport 

glucose is, therefore, a common cellular feature, to maintain this major source of 

metabolic energy supply (Bell et a l , 1990). In general, D-glucose, is the principle 

isoform of glucose utilized by higher organisms, that exists in three different forms: two 

hemiacetal structures and one linear structure (Lodish et al., 2003). Under different 

environment conditions, D-glucose can change its structure to achieve various biological 

purposes. Figure 1.1 shows the three different structures of D-glucose.

CH2OH c h 2o h

HCOH O
H C OH

HO C H

H C OH

H OH H C OH H OH

D-Glucofuranose
CH2OH

D-glucose D-Glucopyranose

Fig. 1.1 Chemical structures of glucose.
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1.2.1.1 Glycolysis

Glucose is a crucial substrate for cell nourishment. It is used to generate adenosine 

triphosphate (ATP) through glycolysis. Glycolysis is a series of reactions that takes place 

in the cell cytoplasm, to break down glucose to produce ATP. In each glycolytic cycle, 

two net ATPs are generated from every glucose molecule. Glycolytic intermediates can 

further be utilized as substrates to generate more ATP, e.g. pyruvate is consumed in the 

citric acid cycle of mitochondria, or used for biosynthetic pathways. In the presence of 

oxygen (i.e. aerobic conditions), nicotinamide adenine dinucleotide (NADH) and 

pyruvate, two of the glycolytic intermediates, can undergo oxidative phosphorylation for 

efficient ATP production (~ 30 ATPs per glucose molecule). In anaerobic condition, 

pyruvate is converted to lactic acid, while NADH is oxidized to NAD+ that can be reused 

in glycolysis. The anaerobic metabolism can still generate ATP yet the efficiency is much 

reduced (i.e. two ATPs per cycle). In the eye, glycolysis is important as it provides the 

necessary energy to support phototransduction and nicotinamide adenine dinucleotide 

phosphate (NADPH) for other NADPH-requiring processes such as rhodopsin 

regeneration in the retina (Hsu and Molday, 1994). In other words, the presence of 

glucose is vital for the normal functioning of the eyes.

1.2.2 Transepithelial pathways

The plasma membrane consists of a phospholipid bilayer and acts as a selectively 

permeable barrier. Some molecules such as water and urea can pass through it unaided, 

while others like amino acids, ions and sugars require integral membrane transporter 

proteins for their passage. Since glucose is a polar and hydrophilic molecule, an integral
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transporter protein is required if it needs to pass across the plasma membrane (Bell et al., 

1990). However, glucose can also traverse cells, across tight junctions and along the 

lateral intercellular spaces without passing through the cells. The former pathway is 

called the transcellular pathway, whilst the latter is called the paracellular pathway.

Figure 1.2 illustrates these two pathways, based on the structure of the CBE. In the 

transcellular pathway, glucose is taken up by glucose transporters along the basolateral 

side from the extracellular spaces, into intracellular compartments. From here, they pass 

through gap junctions and reach the second epithelial layer and are transported out of the 

cell layer by other transporter proteins along the basolateral membrane.

PE NPE 0  Glucose transporter 
=  Gap junction 

Tight junction

mo.m oPlasma Aqueous humor

Fig. 1.2 Schematic diagram showing the transepithelial pathways for glucose in 

the CBE. The solid and dotted arrows indicate the paracellular and 

transcellular pathways respectively.
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1.2.3 Glucose transporter families

The plasma membrane, which isolates the cell body from the extracellular environment, 

is composed of a phospholipid bilayer that is impermeable to hydrophilic substances such 

as glucose. Therefore, glucose needs a special transport mechanism in order to diffuse 

into cells in a rapid and efficient manner. As integral membrane proteins, glucose 

transporters help to mediate the transport of glucose (or similar substances like fructose) 

across the cellular membrane (Baly and Horuk, 1988; Carruthers, 1990; Baldwin, 1993) 

via one of the two different mechanisms. The first mechanism involves passive 

facilitative transport, and is mediated by members of the facilitative glucose transporter 

(GLUT) family (gene symbol SLC2). The second mechanism involves active transport by 

sodium-dependent glucose cotransporters (SGLTs) (Silverman, 1991; Baldwin, 1993; 

Wright and Turk, 2004).

1.2.3.1 The GLUT family

Classification, Currently, 14 isoforms of the SLC2 family have been identified. This 

glucose and polyol transporter family comprises members including GLUT1-12,

GLUT14 (Wu and Freeze, 2002) and the proton-dependent- /wyo-inositol cotransporter 

(HMIT) (Uldry and Thorens, 2004) (Table 1.1). GLUTs have been named and 

distinguished according to their amino sequence, major tissue expression sites, specificity 

and, affinity and expression response to insulin (Kayano et al., 1990; Gould and Holman, 

1993; Mahraoui et al., 1994; Wu and Freeze, 2002; Wood and Trayhum, 2003). They are 

responsible for passive hexose transport driven by a glucose concentration gradient, 

without the consumption of energy (i.e. ATP) (Mueckler, 1994a). They exist in almost all
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mammalian cells and are believed to be crucial for basal glucose uptake (Bell et al.,

1993). The most common GLUTs in mammals are GLUT1-5, with GLUT1, GLUT2, 

GLUT3, GLUT4 classified as Class I GLUTs and GLUT5, GLUT7, GLUT9 and 

GLUT11 as Class II. The remainder are categorized as Class III. This classification 

system is based on their multiple sequence alignments (Wood and Trayhum, 2003). At 

present, no classification has been done for GLUT 14, yet there is a high possibility for it 

to be classified into Class I, as it was found as a duplicon (i.e. an alternate splice form) of 

GLUT3 specifically present in the testis (Wu and Freeze, 2002).

Structure. In 1985, the 12-helix model for the structure of GLUTs was suggested on the 

basis of a hydropathy plot (Mueckler et al., 1985), which was later supported by a 

glycosylation scanning study (Hresko et al., 1994) and by sequence analysis (Sato and 

Mueckler, 1999). Today, the presence of 12-transmembrane helical domains in GLUT 

proteins is considered their structural hallmark (Joost and Thorens, 2001). All GLUT 

proteins have both their amino and carboxy-termini located on the cytoplasmic side of the 

plasma membrane, together with a N-linked oligosaccharide side-chain located either on 

the first or fifth extracellular loop (Uldry and Thorens, 2004). The 12-helices, together 

with intracellularly located carboxyl- and amino-termini, provide the necessary 

orientation in the plasma membrane and participate in the conformational changes during 

transport process (Schurmann et al., 1997; Joost and Thorens, 2001). Several charged 

residues in the cytoplasmic surface were also suggested to mediate the conformational 

alteration of the protein during translocation process as revealed in mutational analysis 

(Tamori et al., 1994; Doege et al., 1998). For example, the tryptophan in helix 11, and the
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glutamine 161 residue at the amino-terminus of GLUT1, are crucial in mediating the 

transport activity and substrate binding capacity (Inukai et al., 1994; Mueckler et al., 

1994b; Wandel et a l , 1996), while serine-294 and threonine-295 are important for 

normal GLUT4 transport activity (Doege et al., 1998).

GLUT1 or erythrocyte/brain/HepG2-glucose transporter: GLUT1 is a hydrophobic 

glycoprotein expressed at highest level in the plasma membrane of erythrocytes and in 

brain tissues (Bell et al., 1993; Wagstaff et al., 1995; Zhang and Ismail-Beigi, 1998). 

Moderate levels were observed in adipose tissue, muscle and liver (Zeller et al., 1994; 

Rudich et al., 2003). The differential N-linked glycosylation (Asano et al., 1993) resulted 

in different GLUT1 glycoforms (with the 45 kDa form the most common) with a core 

protein of approximately 40 kDa (Morgello et al., 1995; Takahashi et al., 1996; Yu and 

Ding, 1998). The real function of the glycosylation is unknown, yet it has been suggested 

to play a role in governing the glucose transport activity that could affect the overall 

transport capacity (Feugeas et al., 1990) or affinity (Asano et al., 1993).

GLUT1 is considered as the house-keeping transporter responsible for glucose entry into 

most animal cells (Takata et al., 1990; Takata, 1996) with a relatively high transport 

capacity (Brown, 2000). Glucose transport by GLUT1 occurs in a bi-directional manner, 

depending on the concentration gradient across the membrane (Carruthers, 1990).

GLUT 1-mediated transport can be specifically inhibited by phloretin and cytochalasin B 

(Bloch, 1973; Drewes et al., 1977; Seyfang and Duszenko, 1991; Fuhrmann et al., 1992). 

GLUT1 was the first glucose transport protein to be purified, having been confirmed 

from human erythrocyte ghosts as a zone 4.5 protein (Kasahara and Hinkle, 1977). It is
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recognized as the most widely distributed protein among the GLUT family in mammalian 

cells, being especially concentrated in areas with occluding or barrier functions that 

constitute the blood-tissue barriers (Harik et al., 1990; Takata et al., 1990; Takata et al.,

1992). GLUT1, on the other hand, is also believed to function as a water-channel that 

facilitates the passage of water across the plasma membrane (Fischbarg et al., 1990). 

Deficiency of GLUT1 has been widely reported (De Vivo et a/., 1991; Klepper et al.,

1999). Seizures, acquired microcephaly and developmental delay are found at infancy 

(Klepper et al., 1998) with GLUT1 deficiency. Other manifestation such as 

neurobehavioural disturbance has also been noted (Klepper et al., 1999). In patients with 

Alzheimer disease, a glycoform of GLUT1 was significantly reduced compared to 

controls, although the underlying mechanisms are not known (Simpson et a l, 1994).

GLUT2 or liver glucose transporter. GLUT2 is a low affinity, high capacity glucose 

transporter (Thorens, 1992), most abundantly expressed in liver, intestine, kidney and 

pancreatic beta-cells (Ohneda et al., 1993; Zhao et a l, 1993; Mahraoui et al., 1994). It is 

a crucial transporter in cells which play an important role in systemic glucose regulation 

(Thorens et al., 1988) and is known to have a significant regulatory function in systemic 

glucose homeostasis (Thorens, 1992). It is recognized as part of the sensing system for 

blood glucose coupling with secretion of insulin in the pancreatic beta-cells under 

hormonal control (Unger, 1991). Further evidences of GLUT2 being involved actively in 

glucose homeostasis has been found in intestinal glucose uptake (Shepherd et al., 2004), 

glucose reabsorption in the kidney (Cramer et al., 1992), and glucose uptake and release 

by the liver (Postic et al., 1993). Apart from glucose, GLUT2 is known as a galactose

13



Introduction

(Tsang et a l , 1994) and fructose transporter (Wright et al., 2003). GLUT2 has been 

suggested to be an important isoform as regards impaired insulin secretory responses and 

it showed a reduced expression level in both ageing and diabetic tissues (Novelli et al.,

2000). In a study of transgenic mice, the expression of a GLUT2 antisense gene in 

pancreatic cells led to an 80% reduction in GLUT2 expression and consequently, diabetes 

(Valera et al., 1994).

The first report of the presence of GLUT2 in the central nervous system (CNS) was the 

observation of GLUT2 mRNA and protein in retinal Muller cells at the apical membrane 

(Watanabe et al., 1994). This finding is in line with findings in other tissues such as 

pancreatic cells, where GLUT2 has been found to be located preferentially on microvilli 

facing adjacent beta-cells (Orci et al., 1989). As with the apical surface of the Muller 

cells, this site is very active with respect to nutrient transport (Reichenbach, 1989). The 

presence of GLUT2 in Muller cells suggests a role in ocular nutrient transport, 

distributing glucose within the retina (Watanabe et al., 1994). During hyperglycemia, 

GLUT2 expression is increased, whilst in hyperinsulinaemia the reverse effect is found 

(Postic et al., 1993). Furthermore, genetic defects of GLUT2 can cause Fanconi-Nickle 

syndrome, a rare autosomal recessive disorder, which happens at infancy, causing rickets, 

retarded growth and enlargement of liver and kidney resulting from glycogen 

accumulation (Santer et al., 1997; Matsuura et al., 2002).

GLUT3 or brain glucose transporter, GLUT3 is a high affinity glucose transporter, 

which works efficiently at a lower substrate concentration than the other isoforms 

(Mueckler, 1994a). It exists mainly in high glucose demanding tissues, such as brain
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(Kayano et al., 1990; Nagamatsu et al., 1992; Brown, 2000). However, GLUT3 mRNA 

and protein have been observed in other human tissues such as placenta, liver, fat and 

muscles (Bell et al., 1990; Gould et al., 1992). GLUT3 and GLUT1 work together to 

deliver glucose to the brain, with GLUT1 mediating the transport through endothelial 

cells, whilst GLUT3 completes the glucose transport to the neurons to support sufficient 

energy metabolism (Brown, 2000). After hypoxic injury, GLUT3 content decreases in 

the brain, due to death of neural cells (Vannucci et al., 1998a). Similar to GLUT1, the 

concentration of GLUT3 is reduced in Alzheimer disease, presumably due to neuronal 

damage (Simpson et al., 1994).

A recent study has revealed the conformational transitions of GLUTs by examining 

GLUT3 (Dwyer, 2001). It was suggested that GLUT3 mediates glucose transport through 

an accordion-like movement of the helices with respect to the membrane. This movement 

modulates the opening of the protein pore and makes the transmembrane segment more 

flexible for glucose carriage.

GLUT4 or muscle-fat glucose transporter. GLUT4 is an insulin-responsive GLUT 

isoform, which is found mainly in insulin-sensitive tissues like muscles, fat/adipose tissue 

and cardiac tissue (James et al., 1989; Bimbaum, 1992). Insulin stimulates glucose 

uptake in these tissues by upregulating the rate of GLUT4 exocytosis, coupled with a 

slower rate in endocytosis (Liu et al., 2004). When GLUT4 was released from 

intracellular GLUT4-containing vesicles onto the plasma membrane surface, it resulted in 

10 to 20 fold higher glucose transport rate (Shepherd and Kahn, 1999; Bryant et al.,

2002). This insulin-stimulated process is rapid, yet reversible (Mueckler, 1994a). It has
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also been suggested that the transport activity of GLUT4 is increased in response to 

insulin stimulation, independently of its increased translocation to the plasma membrane 

(Michelle Furtado et a l , 2003). This change in transport activity might be related to the 

degree of phosphorylation (Reusch et al., 1993), yet a solid conclusion has yet to be 

made.

In fasting conditions, rats show a decrease in GLUT4 expression in adipose tissues, but 

an increase in muscle cells (Charron and Kahn, 1990). Likewise, during sustained 

exercise, an increase of GLUT4 expression was observed in muscles (Ebeling et al.,

1993). A high-fat diet, however, resulted in a reduction of GLUT4 transcriptional level in 

both skeletal muscles and adipose tissues, which was associated with decreased glucose 

utilization (Pedersen et a l , 1991; Kim et a l , 1994). When comparing the response rate, 

changes in GLUT4 translocation happened in a much faster manner in response to insulin 

stimulation, than in response to altered metabolic conditions (Brown, 2000).

Studies have been carried out in a wide range diabetic and non-diabetic model systems, 

with the aim of drawing a link between GLUT4 expression and insulin resistance. 

However, the results have not been conclusive. In different GLUT4 knock-out mouse 

models, various degrees of diabetic complications were exhibited (Zisman et a l , 2000; 

Abel et a l , 2001). Therefore, downregulation of GLUT4 protein in diabetic model has 

been proposed as one of the causes of elevated extracellular glycemic level (Berger et al., 

1989; Garvey et a l , 1989; Sivitz et a l , 1989). However, these diabetic animal models 

demonstrated a reduction of GLUT4 expression only in adipose tissues, not in muscles 

(Shepherd and Kahn, 1999; Astrup and Finer, 2000), which argues against the idea that 

GLUT4 is the main causative factor in insulin resistance (Shepherd and Kahn, 1999).
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Researchers currently think that the reduction of GLUT4 expression might more likely be 

one of the outcomes of diabetes (Brown, 2000).

GLUTS or intestine glucose transporter. GLUT5 is the GLUT isoform heading the Class 

II category of the family: it possesses weak homology when compared to the Class I 

isoforms (Kayano et a l , 1990). It is more of a fructose transporter than a glucose 

transporter, and transports fructose preferentially in the furanose ring form (Kane et al., 

1997). It expressed at highest level in the small intestine, where it is generally believed to 

be crucial for nutritional daily fructose uptake (Davidson et al., 1992; Kane et al., 1997). 

In the intestine, it is expressed predominantly at the luminal surface of the absorptive 

epithelial cells, where together with GLUT2 it mediates glucose transport across the 

intestinal linings (Davidson et al., 1992). It was also reported to exist at a high level in 

human spermatozoa, and mediates the consumption of fructose by sperm cells from 

seminal fluid (Burant et al., 1992). Furthermore, it can be found in brain endothelium, 

kidney, muscle and fat cells, yet at a comparatively lower level (Hundal et al., 1992; 

Shepherd et al., 1992; Wood and Trayhum, 2003). It is a high affinity hexose transporter 

(Miyamoto et al., 1994) and possesses consistent fructose transport across a wide range 

of pH (i.e. pH 4.5-7.5) (Kane et al., 1997). However, the role of GLUT5 in the brain 

endothelial cells is unclear, since fructose is not the prime metabolic substrate in the brain 

(Mantych et al., 1993a).

Examination of GLUT5 transport activity in intestine and spermatozoa has shown that 

GLUT5 is insensitive to insulin and cytochalasin B, a competitive GLUT inhibitor 

(Burant et al., 1992; Shepherd et al., 1992). This contradicts a previous study, in which
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GLUT5 was observed as a cytochalasin B sensitive transporter in Xenopus laevis oocytes 

(Kayano et al., 1990). In addition, a recent study showed that chronic insulin incubation 

with a muscle cell line, caused a dose-dependent increase in GLUT5 expression and 

transport activity. This increase in abundance and functional activity of GLUT5 in 

skeletal muscle cells was suggested to be mediated via activation of the GLUT5 promoter 

(Hajduch et al., 2003). The discrepancy in results might be due to different tissues used in 

the experiment, yet little has been done to clarify the inconsistency.

GLUT6. The name GLUT6 was originally assigned to a pseudogene derived from the 

GLUT3 gene (Kayano et al., 1990). However, the GLUT6 designation has now been 

transferred to a gene originally designated GLUT9 (Joost et al., 2002). Human GLUT6 

mRNA is expressed predominantly in spleen, peripheral leucocytes and brain, but protein 

expression has never been observed (Doege et al., 2000b). When constituted in primary 

adipocytes, GLUT6 was retained in the intracellular compartment, and no stimulus has 

been shown to cause its translocation (Lisinski et al., 2001).

GLUT7. GLUT7 was recently characterised as a transporter possessing 68% similarity 

and 53% identity to GLUT5 (Li et al., 2004). It was identified in a genome homology 

search (Joost and Thorens, 2001) and is known to be expressed in small intestine, colon, 

testis and prostate as a high affinity glucose and fructose transporter (Li et al., 2004). It 

contains a six-amino acid chain at its carboxyl terminus, which is similar to a consensus 

motif in GLUT2 for retention of the protein in the endoplasmic reticulum (Mueckler, 

1994a; Joost and Thorens, 2001).
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GLUT8. Similar to GLUT6, GLUT8 (formerly GLUT11) was found to be entirely 

retained intracellularly. It is believed to be involved in mediating glucose homeostasis 

(Piroli et al., 2002). In addition, GLUT8 revealed a relatively high affinity for glucose 

transport (Ibberson et al., 2000), with the transport process being both fructose and 

galactose competitive (Wright and Turk, 2004). Insulin successfully induced 

translocation of GLUT8 to the plasma membrane in blastocytes (Carayannopoulos et al.,

2000), but failed in fat cells (Lisinski et al., 2001). Its mRNA was abundantly found in 

testis and brain, and at lower level in adipose tissues, heart and skeletal muscles (Ibberson 

et al., 2000; Sankar et al., 2002). Recently, it has been observed in liver, and suggested to 

be related to diabetic pathogenesis, as a reduction of GLUT8 mRNA level was found in 

mouse diabetic models (Doege et al., 2000a). It was suggested that, like GLUT2 and 

GLUT4, GLUT8 is another GLUT isoform closely involved in glucose homeostasis 

(Gorovits et al., 2003)

GLUT9. The GLUT9 isoform has the highest degree of similarity with GLUT5 (Joost 

and Thorens, 2001), which suggested a fructose transport property might exist. A recent 

study in which GLUT9 was expressed in Xenopus laevis oocytes, found that GLUT9 

transport activity was cytochalasin B-insensitive and had low transport affinity (Augustin 

et al, 2004). GLUT9 is mostly found in kidney and liver (Phay et al., 2000; Joost and 

Thorens, 2001). Low mRNA levels were detected in lung, small intestine, leukocytes, 

placenta (Phay et al., 2000) and human chondrocytes (Mobasheri et al., 2002).
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GLUT10. GLUT10 is a Class III GLUT with highest similarity to GLUT8 (Wood and 

Trayhum, 2003). It is expressed in liver and pancreas, with lower mRNA levels found in 

heart, kidney, placenta and skeletal muscles (McVie-Wylie et al., 2001). The 

chromosome localization of GLUT 10 lies in the same region as a type-2 diabetes 

susceptibility locus. Therefore, GLUT 10 has been suggested as a candidate gene involved 

in this metabolic disorder (Dawson et al., 2001).

GLUT11. Currently, three different alternative splice isoforms have been derived for 

GLUT11, due to the presence of three different first exons, that code for three 

corresponding N-termini (Sasaki et al., 2001). It presents as a functional isoform with 

low transport affinity, and cytochalasin B-sensitivity (Doege et al., 2001). It is expressed 

in different tissues, including heart and skeletal muscles (Wu et al., 2002), and at 

intermediates level in tissues such as brain and small intestine (Wu et al., 2002). A 

crucial role of GLUT11 has been suggested in muscle glucose homeostasis, due to its 

specific expression pattern in this tissue (Uldry and Thorens, 2004).

GLUT12. GLUT12 cDNA was cloned from a human embryonic cDNA library and found 

to be mainly expressed in heart, prostate and moderate levels at skeletal muscles, brown 

adipose tissues, muscle, small intestine and mammary gland (Rogers et al., 2002; 

Macheda et al., 2003). Strong expression has been found in breast tumours, which 

indicates a possible role of GLUT 12 in hexose supply under oncogenic conditions 

(Rogers et al., 2003b). In addition, GLUT 12 has shown selective affinity to D-glucose, 

followed by D-deoxyglucose, D-galactose and D-fructose (Rogers et al., 2003a).
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HMIT. No hexose transport activity has been found for HMIT, but it was determined as a 

specific transporter for /wyo-inositol (Joost and Thorens, 2001). Its transport activity is 

high and could be activated by lowering the pH, with a maximal transport capacity at pH 

5.0 (Uldry et al., 2001; Eladari et al., 2002). The transport affinity of HMIT is sensitive 

to several inhibitors such as phloretin, phlorizin and cytochalasin B (Hager et al, 1995). 

In the rat brain, it exists as a 75-90 kDa glycoprotein, but can be converted to a 67 kDa 

form upon enzymatic deglycosylation . HMIT is expressed in neurons and glial cells, 

located both intracellularly and on the membrane surface. It is the transporter isoform 

which is believed to be responsible for /wyo-inositol metabolism and signal transmission 

process in the brain (Uldry et al., 2001).

GLUT14, The most recently cloned GLUT isoform that was reported two years ago. 

GLUT 14 has remarkable identity to GLUT3, and is assumed to be a pseudogene that 

arose through duplication of GLUT3. It exists exclusively in the testis, and is present in 

two different splice forms. The long form (GLUT14-L) differs from the short form 

(GLUT14-S) by an additional exon coding for a novel N-terminus. In the testis, its 

mRNA level is three times higher than that of GLUT3 (Wu and Freeze, 2002). However, 

further details on its functional role have not been investigated.
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1.2.3.2 Sodium glucose cotransporters (SGLTs)/symporters

The sodium cotransporters belong to the SLC5 superfamily, which consists of 220 or 

more members in animal and bacterial cells (Wright and Turk, 2004). Among all, seven 

SGLT isoforms have been suggested to mediate glucose transport, but only four of them 

are functionally characterised (Wright, 2001; Wright and Turk, 2004). In the SGLT 

system, glucose is transported against its own concentration gradient, but down the 

sodium gradient across the plasma membrane (Wood and Trayhum, 2003) (Table 1.2). 

Since sodium in cells is constantly being pumped out by the Na+, K+-ATPase, glucose 

transport via the SGLTs is recognised as an active transport process (Wright, 2001; Wood 

and Trayhum, 2003). Thus, SGLTs are secondary active transporters, driven by a pre- 

established sodium gradient. Glucose transport is coupled such that a single glucose 

molecule is translocated across the plasma membrane with one or more sodium at one 

time (Horibe et al., 1997). The SGLTs are believed to play a major role in dietary glucose 

uptake, particularly at the small intestine (Ferraris, 2001; Stumpel et al., 2001).

Structure. Similar to GLUTs, all cotransporter family members have a 12 transmembrane 

alpha helical structure, accompanied by clear helical packing in the carboxy-terminus. 

Their secondary structure suggests the presence of 14 helices, with both the amino- and 

carboxy-termini on the extracellular side of the membrane (Turk and Wright, 1997; Jung,

2002). Only four amino acids are known to be essential for functional activity, since 

researchers are encountering difficulties in studying expression constructs (Lostao et al., 

1995; Martin et al., 1996). In general, all the transporters in this group seem to work by 

the same mechanism, in which the rate or direction of transport depends purely on the
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number of ligands on each side of the plasma membrane and the membrane potential 

(Parent et al., 1992; Hirayama et al., 1997; Meinild et al., 2002). They transport substrate 

in an “alternative access” manner (Loo et al., 1998), with a maximal turnover rate of 1- 

100 per second at room temperature (Wright and Turk, 2004).

SGLT1. Rabbit SGLT1 was the first isoform to be cloned. It is responsible for high 

affinity, low capacity glucose cotransport in the rabbit intestine (Hediger et al., 1987). Its 

human homologue was cloned two years later (Hediger et al., 1989), and found to possess 

a nucleotide similarity of 71% (Wood and Trayhum, 2003). It expressed predominantly 

in the absorptive epithelial cells of the small intestine, where it mediates D-glucose and 

D-galactose absorption from the gut lumen (Takata, 1996; Ferraris, 2001; Wright et al., 

2003). In addition, it also performs glucose reabsorption in the late proximal tubules to 

prevent glucose loss (Cramer et al., 1992; Lee et al., 1994; Takata, 1996) and is known to 

bear a 2:1 stoichiometry between sodium and glucose (Panayotova-Heiermann et al., 

1995; Mackenzie et al., 1998). Although no obvious selectivity has been revealed for 

SGLT1 in transporting different hexoses, differences in selectivity do exist between 

species (Hirayama et al., 1996). In the absence of glucose, SGLT1 also acts as a uniporter 

of sodium ions, water pump (Loo et al., 1996; Meinild et al, 1998), urea channel or 

cotransporter for both water and urea (Leung et al., 2000b).

Freeze-fracture electron microscopy has confirmed that SGLT1 functions as a 14-helical 

monomer in the plasma membrane (Turk et al., 2000). Further studies also suggest that 

helices 10-13 of GLUT1 form the sugar permeation pathway (Panayotova-Heiermann et 

al., 1997), while channels for small molecules such as urea have also been observed for

23



Introduction

rabbit SGLT1 when expressed in oocytes (Panayotova-Heiermann and Wright, 2001). 

Malabsorption of glucose and galactose was reported to be related to mutations of human 

SGLT1 (Turk et al.f 1991). The disease was caused by improper trafficking of the 

mutated SGLT1 to the plasma membrane, which impaired transport activity and 

decreased transport affinity (Martin et al., 1996). Fortunately, the disorder could be 

corrected by substituting dietary glucose with fructose (Wood and Trayhum, 2003).

SGLT2, SGLT2 is a low-affinity glucose cotransporter predominantly expressed in the 

kidney (Oulianova and Berteloot, 1996). Controversy has surrounded whether SGLT2 is 

the major SGLT isoform in the kidney, rather than SGLT1 (Wright, 2001; van den 

Heuvel et al., 2002). SGLT2 is expressed in the convoluted proximal tubules (Kanai et 

al., 1994) where it is believed to play an important role in bulk glucose transport from the 

glomerular filtrate back to the blood stream (Oulianova and Berteloot, 1996). It is a low 

affinity, but high capacity transporter with a stoichiometry between sodium and glucose 

of 1:1 (Diez-Sampedro et al., 2001). However, unlike SGLT1, it functions as a more 

selective transporter that prefers D-glucose to D-galactose as a substrate (Mackenzie et 

al, 1994). In addition, its transport affinity is much lower (-10 fold) than that of SGLT1 

(Wright, 2001).

SGLT3. SGLT3, formerly named as pig-SGLT2, is a SGLT isoform that demonstrates 

the same stoichiometry and affinity as SGLT1 (2:1), but has a specificity similar to that 

of SGLT2 (Mackenzie et al., 1996). It shares 70% amino acid identity with human 

SGLT1, and is expressed in small intestine and skeletal muscles (Diez-Sampedro et al.,
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2003). Its transport process is phlorizin-sensitive, which is a common feature 

demonstrated in SGLT1 and SGLT2 (Oulianova and Berteloot, 1996; Loo et al., 1998; 

Diez-Sampedro et al., 2003). However, the functional role of SGLT3 is suggested to be 

one of glucose sensing, rather than glucose transport (Diez-Sampedro et al., 2003).

SGLT4, SGLTS and SGLT6. SGLT4 is widely expressed in the body, while SGLT5 is 

expressed exclusively in the kidney. Further functional characteristics are not yet 

available for these two isoforms (Wright and Turk, 2004). SGLT6 is a high affinity 

cotransporter for myo-inositol, but with a lower affinity for D-glucose, as demonstrated in 

the rabbit (Nagata et al, 1999; Coady et al, 2002). SGLT6 is widely expressed in human 

tissues (Roll et al, 2002; Wright and Turk, 2004).

Sodium-dependent myo-inositol transport (SMIT). This is the last member in the 

superfamily thought to possess glucose transport function. It is widely expressed (Kwon 

et al, 1992) and suggested to play a crucial role in the pathogenesis of Down syndrome 

(Berry et a l, 1995). It demonstrated a relatively high affinity in transporting /wyo-inositol, 

but also different sugars, including D-glucose at a lower affinity (Hager et al., 1995).
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Isoform Geae
name

Amino
acid

residues
Class M ain tissue expression M ajor biological roles

Transport
Properties*

Primary
references

GLUT1 SLC2A1 492 I
Erythrocytes, brain, 

ubiquitous in different 
tissues

General basal glucose transport, 
blood-tissue barriers glucose 

transport

Km glucose ~ 20mM 
IQ ~ 0.08-0.19mM

(Mueckler et a l,  1985; 
Harik et al., 1990; Takata 
et al., 1990; Gould et al., 
1991; Hellwig and Joost, 

1991)

GLUT2 SLC2A2 523 I Pancreas, liver, 
small intestine, kidney

Pancreatic and hepatic glucose 
homeostasis, intestinal hexose 

(including glucose, fructose and 
galactose) transport and renal 

reabsorption

Km glucose ~ 40mM 
IQ ~l.7-l.8m M

(Thorens etal., 1988; 
Fukumoto et al., 1988b; 

Gould etal., 1991; 
Wandel etal., 1996)

GLUT3 SLC2A3 496 I Brain (neurons) Glucose transport in the brain 
neurons Km glucose ~ lOmM

(Kayano eta l., 1988; 
Gould etal., 1991; 

Nagamatsu etal., 1992)

GLUT4 SLC2A4 510 I Adipose tissue, cardiac 
muscle, skeletal muscle,

Insulin-dependant glucose 
transport

Km glucose ~ 3mM 
IQ ~ 210±60nM

(Bimbaum, 1989; 
Fukumoto et al., 1989; 

James et al., 1989; 
Wandel etal., 1996)

GLUT5 SLC2A5 501 n Intestine, kidney, testis
Fructose absorption, 

low affinity hexose transport IQ, fructose ~ 11.6mM

(Kayano etal., 1990; 
Burant e tal., 1992; 

Davidson eta l., 1992; 
Shepherd etal., 1992)

GLUT6 SLC2A6 507 m Brain, leukocytes, spleen Low affinity glucose transport IQ~ 210±30nM (Doege et al., 2000b; 
Lisinski et al.. 2001)

GLUT7 SLC2A7 524 ii Small intestine, colon, 
testis, and prostate

Glucose and fructose transport IQ, glucose ~ 0.3mM 
Km fructose ~ 0.06mM

(Li eta l., 2004)

GLUT8 SLC2A8 477 hi Testes, brain, 
insulin-sensitive cells

Glucose homeostasis, 
insulin-stimulated glucose 

transport

Km 2-deoxy-D-glucose 
~2.4mM 

IQ~56.6±18nM

(Ibberson et al., 2000; 
Doege et al., 2000a)

GLUT9 SLC2A9 540 n Kidney, liver
Low affinity deoxy-D-glucose 

transport IQ~ 105.2±16nM (Phay et al., 2000; 
Augustin et al., 2004)

GLUT 10 SLC2A10 541 hi Liver, pancreas
2-deoxy-D-glucose, D-glucose, 

D-galactose transport
IQ, 2-deoxy-D-glucose 

~0.3mM

(Dawson et al., 2001; 
Me Vie-Wylie etal., 

2001)

GLUT 11 SLC2A11 503/
499/496 ii Cardiac muscle, 

Skeletal muscle
Fructose transport, 

low affinity to glucose IQ~ 196.6±29.7nM
(Doege et al.. 2001; 

Sasaki e tal., 2001; Wu et 
al., 2002)

GLUT 12 SLC2A12 617 m Heart, prostate D-glucose transport —
(Rogers et al.. 2002; 
Rogers et al., 2003b)

HMIT SLC2A13 629 m Brain myo-inositol transport
Km myo-inositol 

~ O.lmM (Joost and Thorens, 
2001; Uldry eta l., 2001)

GLUT 14 SLC2A14 497/520 — Testis — — (Wu and Freeze, 2002)

Table 1.1 Characteristics of the SLC2 family. Please see remarks on the following page.
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acid

residues
Main tissue expression Major biological roles Transport
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SGLT1 SLC5A1 664 Small intestine, 
kidney, heart

Sodium-dependant intestinal glucose 
and galactose uptake, 

renal reabsorption

Km D-glucose ~ 0.2-0.4mM 
Km sodium ions ~ 3mM

(Lee etal., 1994; 
Hirayama et al., 1996; 

Oulianova and 
Berteloot, 1996)

SGLT2 SLC5A2 672 Kidney
Sodium-dependant renal glucose 

reabsorption
Kra D-glucose ~ 2mM 

Km sodium ions ~ lOOmM

(Kanai et a l, 1994;
Oulianova and 

Berteloot, 1996)}

SMIT SLC5A3 718 Brain, heart, 
kidney, lung

Sodium-dependant myo-inositol and 
glucose transport Km myoinositol ~ 0.05mM (Hager et al., 1995)

SGLT3 SLC5A4 660 Small intestine, 
skeletal muscle

Glucose activated sodium channels Km D-glucose ~ 6mM 
Km sodium ions ~ 1.5mM

(Mackenzie et al., 1996; 
Diez-Sampedro et al., 

2001)

SGLT4 SLC5A8 659 Brain, liver, lung, kidney, 
small intestine

— —
(Li et al., 2003; Wright 

and Turk, 2004)
SGLT5 SLC5A9 681 Kidney — — (Wright and Turk, 2004)

SGLT6 SGL5A10 673 Brain, heart, liver, lung, small 
intestine

myoinositol, glucose transport myoinositol ~ 0.25mM 
Km sodium ions ~ 12.5mM

(Nagata et al., 1999; 
Wright and Turk, 2004)

Table 1.2 Characteristics of the SLC5 family members. *Km is the Michaelis-Menten constant, which indicates the substrate transport

affinity of the transporter; The dissociation constant (Kd) indicates the binding affinity of the transporters to cytochalasin-B. A 

high K<j indicates high substrate transport capacity, but low substrate affinity.
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1.2.4 Glucose transport in blood-tissue barriers

In the body, most substrates can exchange freely between blood vessels and tissue cells. 

However, specific organs and tissues have developed a barrier which is selectively 

impermeable to certain substrates. For example, the BAB in the eye is impermeable to 

proteins, so as to maintain ocular transparency (Bill, 1986). In this section, some tissue 

barriers which possess a similar functional structure to the BAB are introduced.

1.2.4.1 Blood-brain barrier (BBB)

The brain comprises ~ 2% of body weight but accounts for ~ 20% of total glucose 

consumption in humans. It has one of the highest metabolic rates of any organ (Sokoloff, 

1973). In the BBB, tight junctions are present between endothelial cells, to hinder free 

substrate exchange (Stewart et al., 1994). Intravenous injection experiments have 

demonstrated these barrier properties; thus tracers (such as horseradish peroxidase) 

remain in the lumen of blood vessels, unable to diffuse beyond the vascular endothelium 

(Reese and Kamovsky, 1967). Since glucose is the primary energy source for the brain, a 

specific mechanism to ensure continuous glucose supply is clearly necessary.

Glucose transport into brain cells occurs through a series of steps, with a decrease in 

concentration gradient, but an increase in transporter affinity at each step. From the blood 

plasma to the extracellular cerebral fluids, the glucose gradient decreased from 6 mM to 4 

mM. Further to cerebral cells, the glucose concentration reduced to 0.5 mM. This 

reduction in glucose concentration was compensated by a general increase in transport 

affinity against the concentration gradient e.g. the kinetic constant (Km) of blood 

capillaries is 8 mM, while at the cellular cells is 5 mM. This increase in transporter
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affinity compensates for the falling glucose concentration and helps to maintain an 

adequate glucose level for cerebral metabolism (Crone, 1965; Bachelard, 1971; 

Pappenheimer and Setchell, 1973). Currently, GLUT1 is believed to be the predominant 

form of glucose transporter in the brain. This has been confirmed by immunoblotting 

(Takata et al., 1990; Pardridge et al., 1990b), northern blotting (Boado and Pardridge, 

1990; Kamei et al., 1999) and cytochalasin B-binding assay (Kalaria et al., 1988; Dwyer 

and Pardridge, 1993). In addition, GLUT3 is also abundantly expressed in brain neurons 

(Nagamatsu et al., 1992; Nagamatsu et al., 1993; Vannucci et al., 1998a) and GLUT5 in 

microglia (Maher et al., 1994; Horikoshi et al., 2003). In addition to the facilitated 

diffusion system, immunohistochemical, immunoblotting (Nishizaki et al., 1995) and 

tracer studies (Lee et al., 1997; Nishizaki and Matsuoka, 1998) have suggested the 

presence of SGLT in bovine cortical vessels and BBB respectively. Since the glucose 

concentration in the brain is only -20% to that of plasma (Raichle et a l, 1975; Gruetter et 

al., 1992), the presence of SGLTs would seems unnecessary, yet its functional role in the 

brain has not been investigated.

1.2.4.2 Blood-placental barrier (BPB)

The placenta is an important organ for the exchange of gases, nutrients and metabolites 

between maternal and fetal blood. Fetal blood is bounded inside a continuous endothelial 

layer with tight junctions (Heinrich et al., 1976). However, these tight junctions are of the 

discontinuous type, which indicates the possibility of paracellular transport (Leach and 

Firth, 1992). The syncytiotrophoblast layer, a continuous single cell layer, is the main 

BPB component which separates the maternal and fetal circulation (Johnson and Smith,
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1985). In order for glucose to reach the fetal circulation, it must pass this syncytial layer. 

Currently, it is widely accepted that glucose transport across the placenta is by the action 

of facilitated diffusion transport machinery. Kinetic studies (using the GLUT inhibitors 

phloretin and cytochalasin B) (Johnson and Smith, 1985), as well as northern blotting, in 

situ hybridization (Kamei et al., 1999; Illsley, 2000), and immunoblotting (Takata et al., 

1992; Hahn et al., 1995) studies all suggest the existence of GLUTs, especially GLUT1 

and GLUT3 in the placenta. The highest level of GLUT1 expression was found along the 

syncytiotrophoblast and localized heavily at its microvillous apical membrane (Jansson et 

al., 1993). In addition, the gap junction protein connexin 26 was found between the 

double-layered syncytiotrophoblast in rats (Metz et al., 1978; Risek and Gilula, 1991). 

The protein may act as an intercellular hydrophilic channel for small molecules including 

glucose (Spray and Bennett, 1985). Similar to CBE, it has been suggested that 

transplacental glucose transfer begins with glucose entering the cytoplasm of the 

syncytial layer at the apical side via GLUT1. After passing through the gap junctions and 

reaching the basal side of the membrane, it also leaves by export through GLUT1 

transporters (Takata, 1996). Similar to CBE, GLUT transporters together with gap 

junctions have been proposed as the major route of BPB glucose transport in human and 

rat (Takata et al., 1994; Takata, 1996).

1.2.4.3 Ocular barriers

The eyes can be regarded as an extension of the central nervous system (CNS) for they 

are developed from the neural tube. The blood ocular barrier, including the blood-retinal 

barrier (BRB) and BAB, is suggested to be comparable to the BBB. The BRB comprises
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the retinal microvasculature and the RPE. The former component has the property of the 

brain barrier (Bill et al., 1980), since tracers such as horseradish peroxidase (Raviola, 

1977), or endogenous serum proteins like albumin and immunoglobulin (Pino and 

Thouron, 1983), fail to cross it. The RPE constitutes the outermost layer of the retina and 

possesses both tight junctions and gap junctions (Hudspeth and Yee, 1973; Raviola,

1977). This barrier contributes significantly to the provision of nutrition to the outer 

retina (Ames, 1992), and separates the retina from the choroidal capillaries. Tight 

junctions in the RPE, make paracellular diffusion of glucose impossible (Ban and 

Rizzolo, 1997; Rizzolo, 1997). Since retina is one of the highest metabolically active 

tissues (Sharma and Ehinger, 2002), and derives most of its energy from glycolysis 

(Krebs, 1972), mechanisms must be present to allow glucose to diffuse across the RPE to 

the retina.

Transport of glucose in the RPE was found to occur by passive facilitated diffusion, since 

it was sensitive to inhibitors of facilitative glucose transport (DiMattio and Zadunaisky, 

1981; Stramm and Pautler, 1982; To and Hodson, 1998b) and provided rich 

immunohistochemical staining for GLUT1 (Harik et al., 1990; Mantych et al., 1993b). In 

the retinal capillaries, GLUT1 was expressed at the barrier site (i.e. the endothelial cells) 

and also intracellularly and on the cellular membranes (Takata et al., 1990; Kumagai et 

al., 1996). In general, GLUT1 is believed to be the major barrier glucose transporter 

present in the retina, whilst intra-retinal glucose distribution is carried out by GLUT 2 

(Watanabe et al., 1994) and GLUT3 (Mantych et al., 1993b).

The BAB is the barrier separating the blood plasma and aqueous humor at the anterior 

part of the eye. The aqueous humor is the major nutrient source (including glucose) for
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many avascular ocular tissues such as the cornea and crystalline lens (Chylack and 

Cheng, 1978; DiMattio, 1984a; Thies and Mandel, 1985). The aqueous glucose 

concentration is comparable to that of blood (Cole, 1984): approximately 81% of that of 

plasma (Abdel-Latif, 1997). As illustrated in figure 1.2, glucose transport in the 

mammalian CE is accomplished by firstly transport from the blood plasma to the stromal 

layer, then into the PE cells via GLUTs. Then, it diffuses through the gap junctions, 

which connect the PE and NPE. Finally, it is transported into the aqueous humor by 

GLUTs (Takata et al., 1997). In this case, GLUT1 acts as a selective gate, whilst the gap 

junctions act as non-selective channels (Shin et al., 1996). Immunocytochemical studies 

have revealed heavy staining for GLUT1 in both the PE and NPE cells (Takata et al., 

1990; Takata et al., 1991), especially along the basal infoldings in these layers (Takata et 

al, 1997). These observations support the previous model described for the glucose 

transport across this part of the BAB.

Endothelial cells of the blood vessels in the iris stroma constitute the other part of the 

BAB. As the continuation of the CBE (Raviola, 1977), the iridial epithelium shows 

similar structures or features, such as tight junctions and inter-cellular gap junctions 

(Freddo, 1984). Heavy labeling was observed for GLUT1 in both the luminal and 

contraluminal plasma membranes (Takata et al., 1991) and it is possible that glucose uses 

a similar pathway to enter and leave the iridial layers as it does in the CBE (Takata et al., 

1997).
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1.3 Diabetes Mellitus (DM)

1.3.1 Prevalence

In the past 20 years, the increasing prevalence of DM and its related systemic 

complications have drawn the attention of researchers worldwide (Leung and Lam, 

2000a). In 1997, an estimated 124 millions people were suffering from DM worldwide, 

with 97% of them having non-insulin dependent DM (NIDDM). Among all, 46% of 

diabetes are from the Asia-Pacific region. By the year 2010, this figure is expected to 

climb to 221 millions (Amos et al., 1997). Since diabetic patients are at risk of various 

acute (e.g. diabetic ketoacidosis) and chronic complications (e.g. nephropathy), it is 

regarded, therefore, as a major source of mortality (Gu et al., 1998; Tseng, 2004) and 

economic burden to the society (American Diabetes Association, 1998; Clarke et al., 

2003).

1.3.2 Cause of DM

DM is a disorder of carbohydrate metabolism, which also affects protein and lipid 

metabolism. It is characterized by excess urine excretion, hyperglycemia and a set of 

systemic complications that primarily affect the blood vessels of the brain, kidney, eyes 

and limbs. Two main theories have been proposed to explain the cause of DM. They are 

the “idiopathic” theory and the “secondary” theory. Idiopathic DM can be further 

categorized into two types: type 1, also known as insulin dependent DM (IDDM) and 

type 2, also named NIDDM. Type 1 DM is caused by an autoimmune destruction of the 

beta-cells in the pancreas, and is manifested at the age of 20 or earlier, so it is also named 

juvenile onset diabetes. It is a rarer type of DM compared to type 2, yet it more often
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develops into ketoacidosis. Type 2 DM is the more common type, which presents with 

milder hyperglycemia and seldom leads to ketoacidosis. It is mostly in adult onset (thus it 

is sometimes called adult-onset diabetes). It usually manifests after the age of 40 and has 

been suggested to be a result of a genetic defect, which causes both insulin resistance and 

insulin deficiency (Galuk, 1991; Avery, 1998). It can be caused by insufficient number of 

functional insulin receptors on the surface of plasma membrane, which thus fail to 

provide adequate glucose uptake under normal conditions (Lonnroth, 1991; Lebovitz, 

2001). Hales and co-workers proposed the ‘Thrifty Phenotype Hypothesis’ for NIDDM in 

1992. This is based on the conflict between malnutrition at a certain stage of fetal 

development and over-nutrition in adulthood (Hales and Barker, 1992). The postnatal 

over-nutrition conflicts with the early metabolic programming, which finally leads to 

consequences like NIDDM, ischaemic heart disease and hypertension. This hypothesis 

has been tested and supported with studies in both humans (e.g. twin studies) (Poulsen et 

al., 1997; Ravelli et al, 1998) and rats (Snoeck et al., 1990; Hales et al., 1996), both of 

which indicate the importance of in utero conditioning in determining susceptibility to 

type 2 DM.

There are many disorders that could manifest DM as a secondary illness. These 

conditions include pancreatic disease, endocrine disease (Yajnik et al., 1990; Watson, 

2003), mutations in the insulin or insulin receptor genes (Vaxillaire et al., 1999) and 

pregnancy (Homnes, 1985; Godwin et al., 1999). Other genetic syndromes such as 

Down’s syndrome or Walffam syndrome (Robinson and Kessling, 1992; Ristow, 2004) 

also appear to increase the risk of diabetes or impaired glucose tolerance.
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1.3.3 Mechanisms of DM pathogenicity

Various mechanisms have been proposed to explain the pathogenesis of diabetic 

complications. In general, five major theories have been suggested: the increased rate of 

polyol metabolism (Gillis and Chylack, 1982; Gaynes and Watkins, 1989), increased 

protein glycation (Forbes et al., 2004; Zieman and Kass, 2004), activation of protein 

kinase C (PKC) (Inoguchi et al., 2003; Setter et al., 2003), increased flux in hexosamine 

metabolism (Kaneto et al., 2001; Bosch et al., 2003) and increased oxidative stress 

(Dominguez et al., 1998; Ha and Kim, 1999).

1.3.3.1 Polyol pathway

The polyol pathway is a two-step pathway involving the conversion of glucose and 

galactose into sorbitol and galactitol, respectively, as the first step, and from sorbitol to 

fructose as the second step. For the first reaction to occur, aldose reductase (AR) must 

catalyse the NADPH-dependent reduction of the carbonyl compounds (i.e. glucose). In 

hyperglycemic conditions, AR is activated rapidly, so that glucose is oxidized into 

sorbitol, which is in turn oxidized to fructose by sorbitol dehydrogenase (Brownlee, 2001; 

Setter et al., 2003). An excess of glucose increases the rate of the polyol pathway, and 

accounts for almost one-third of total glucose turnover. Indeed the rate of fructose 

metabolism is too slow to keep pace, which results in the build-up of sorbitol (Gonzalez 

et al., 1984). The induced osmotic stress leads to cell swelling and cell disruption (Hotta, 

1997; Oates, 2002). The polyol pathway also generates intracellular conditions (high 

NADH/NAD+ and low NADPH levels) which lead to further hyperglycemic damage to 

the cells via protein glycation and oxidation (Brownlee, 2001).
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1.3.3.2 Protein glycation

Glycation is the process by which non-enzymatic reactions occur between reducing 

sugars and proteins, leading to the formation of advanced glycation end-products (AGEs) 

(Stitt, 2001). High concentrations of NADH/NAD+resulting from the polyol pathway 

increase the amount of triose phosphate through inhibition of the glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH) enzyme (Brownlee, 2001). The elevated triose 

phosphate stimulates the production of methylglyoxal, a precursor of AGEs (Ahmed et 

al., 2003). This not only assists the formation of AGEs, but also generates diacylglycerol 

(DAG), which activates PKC (Xia et al., 1994; Koya and King, 1998). Other potential 

promoters of AGE formation are glyoxal from glucose degradation (Welten et al., 2003) 

and 3-deoxyglucosone from the decomposition of the Amadori product (Schalkwijk et al.,

1999). These reducing sugars bind to proteins, causing functional alterations and 

irreversible damage. Studies using inhibitors of AGEs in animal models have shown their 

preventative role against diabetic complications in kidney (Nakamura et al., 1997) and 

retina (Hammes et al., 1991). This confirms the critical role of AGEs in hyperglycemic 

conditions. In general, AGEs interfere with matrix-to-matrix or matrix-to-cell interactions 

(Haitoglou et al., 1992), which finally lead to altered functions e.g. loss of elasticity in 

blood vessels due to impairment of Type 1 collagen function (Tanaka et al., 1988; 

Huijberts et al., 1993). In addition, AGEs can further stimulate cytokine and reactive 

oxygen species (ROS) production through AGE-specific receptors, and intracellular 

proteins modifications (Brownlee, 1995), which cause marked diabetic damage.
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1.3.3.3 Activation of PKC

Hyperglycemia can increase the level of DAG as it has been revealed in cultured 

microvascular cells (Xia et al., 1994; Koya and King, 1998). Besides, DAG can also be 

generated from indirect polyol pathway in hyperglycemic conditions. As a lipid second 

messenger, DAG can activate nine out of the eleven isoforms of PKC (Brownlee, 2001). 

Abnormal activation of PKC is known to cause blood-flow abnormalities in kidney 

(Koya et al., 1997) and decreased production of nitric oxide (Craven et al., 1994). It also 

inhibits transcription of endothelial nitric oxide synthase (Kuboki et al., 2000) but 

increases the transcription of vascular endothelial growth factor (VEGF) (Williams et al.,

1997), which results in elevated permeability of endothelial cells. Moreover, activated 

PKC increases microvascular matrix protein accumulation, due to the increased 

expression of transforming growth factor-beta (TGF-P), fibronectin and type IV collagen 

(Studer et a l, 1993; Phillips et al., 1999). Treatment of diabetic animals using inhibitors 

for PKC-beta (PKC- p) has greatly reduced the PKC activity and diabetic damage in 

retina (Nonaka et al., 2000) and renal glomeruli (Koya et al., 2000; Kelly et al., 2003). 

This shows that activation of the PKC pathway has a crucial role in the pathogenesis of 

diabetes.

1.3.3.4 Hexosamine pathway

During hyperglycemia, the excess intracellular glucose is shunted to the hexosamine 

pathway, which causes measurable insulin resistance in diabetic rats (Robinson et al., 

1995). It has been suggested that the hexosamine pathway is one of the major 

mechanisms responsible for insulin resistance in NIDDM (Zraika et al., 2002). However,

37



Introduction

it has also been proposed that the activated hexosamine pathway actually causes adverse 

pancreatic beta-cell function via oxidation (i.e. over-production of hydrogen peroxide) 

and a reduction in the expression of several beta-cell specific genes (Kaneto et al., 2001). 

Also, an increase in glutamine:fructose-6-phospate amidotransferase (GFAT), the 

enzyme that regulates the conversion of glucose to glucosamine in this pathway, has been 

found to attenuate cellular glucose uptake via activation of the PKC pathway (Bosch et 

al., 2003). Despite the controversy in the exact underlying mechanism, it is generally 

believed that activation of the hexosamine pathway could cause various changes in gene 

expression and protein function, leading to the observed diabetic manifestations, such as 

diabetic nephropathy (Schleicher and Weigert, 2000; Brownlee, 2001).

1.3.3.5 Oxidative stress

Chronic hyperglycemia induces oxidative stress, which is characterized by an increased 

level of reactive oxygen species (ROS) and a deficiency in antioxidative defence 

(Bonnefont-Rousselot et al., 2000). In diabetes, hyperglycemia causes increased ROS 

levels at the mitochondrial complex II (Nishikawa et al., 2000), where they modulate and 

affect various biological signal pathways (Suzuki et al., 1997). Excess superoxide 

production via oxidative phosphorylation in hyperglycemic conditions induces 

endothelial dysfunction that results in cardiovascular complications (Doi et al., 2001), 

which is now a leading cause of morbidity and mortality in diabetic patients (Bonnefont- 

Rousselot et al., 2000). Furthermore, ROS contribute in the formation of atherosclerosis 

in diabetic patients by activating extracellular matrix metalloproteinases (Uemura et al.,

2001). Consumption of NADPH in the polyol pathway causes NADPH depletion and
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leads to poor regeneration of glutathione (Brownlee, 2001) which weakens the 

antioxidative system. Excessive production of AGEs, on the other hand, produces ROS 

via several complex biochemical mechanisms (Mullarkey et a l , 1990) such as reduced 

signalling through the endothelial receptor of AGE (RAGE) (Heidland et al., 2001). This 

in turn causes reduced production or activation of transcription factors such as nuclear 

factor kappa B (Nishio et al., 1998), resulting in vascular abnormalities e.g. inflammatory 

reactions, smooth muscle cell proliferation, and angiogenesis (De Martin et al., 2000; 

Collins and Cybulsky, 2001) due to release of pro-inflammatory cytokines or adhesion 

molecules (Heidland et al., 2001).

Apparently, all of these mechanisms interact with one another. However, recent reports 

have suggested that the overproduction of superoxide by the mitochondrial electron- 

transport chain is the common process shared by these pathogenic mechanisms 

(Nishikawa et al., 2000; Brownlee, 2001; Du et al, 2003). Interruption of the intracellular 

overproduction of superoxide suppressed cellular damages induced by the activation of 

polyol pathway, increased AGEs formation, activation of the PKC pathway and 

hexosamine pathway (Nishikawa et al, 2000; Brownlee, 2001; Hammes, 2003). This 

demonstrated the crucial role of oxidative stress in diabetic complications and provides a 

new insight in the treatment of hyperglycaemic-related disorders.
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1.3.4 DM induced ocular manifestations

DM can lead to different ocular complications such as diabetic keratopathy (Schultz et 

al., 1983), iris neovascularization (Femandez-Vigo et al, 1997; Tolentino and Adamis,

1998), diabetic cataract (Altomare et a l, 1995; Duhaiman, 1995; Lee and Chung, 1999; 

Kyselova et al, 2004), diabetic vitreopathy (Sebag, 1996; Stitt et al, 1998), diabetic 

retinopathy (DR) (Ciulla et al, 2003; Khan and Chakrabarti, 2003; Rotimi et al, 2003; 

Turczynski et al, 2003; Frank, 2004) and diabetic maculopathy (Giovannini et al, 1999; 

Ikeda, 2000; Misra et al, 2004). Among all, DR and diabetic cataract are the most 

common visual disabilities and cause the highest visual impairment rates (Seyoum et al, 

2001; Rotimi et al, 2003).

1.3.4.1 Diabetic retinopathy (DR)

The deterioration in the retinal blood vessels due to diabetes is known as DR. It is the 

most common ocular manifestation in diabetic patients (Ciulla et a l, 2002; Ciulla et al,

2003) and is the leading cause of blindness in the working age population in the 

industrialized world (Stanga et al, 1999; Ciulla et al, 2002). DR is characterized by loss 

of retinal pericytes, retinal capillary closure, ischaemia (Archer, 1999), and 

neovascularization (Aiello, 1997). Recently, loss of neurons by apoptosis and activation 

of glial cells were also observed in human DR and in animal models (Barber et a l, 1998; 

Zeng et al, 2000). The prevalence of DR was investigated in diabetic patients, with no 

significant difference found between type 1 DM and type 2 DM subjects (Seyoum et al, 

2001; Hammes et al, 2004). Similar to other diabetic complications, DR is caused by 

more than single pathogenic mechanism. Increased oxidative stress, promotion of PKC
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pathway, increased formation of AGE and more contribute in causing retinal blood 

vessels abnormalities e.g. blockage, leakage or dilation (Van den Enden et al., 1995; Ono 

et al., 1998; Chakrabarti et al., 2000; Stitt, 2001). Besides, VEGF is thought to promote 

retinal leukostasis via induction of intercellular adhesion molecule-1 (ICAM-1) (Lu et al.,

1999). This is a process in which leukocytes tend to stick to the vascular endothelium and 

results in vascular blockage and free radical (i.e. superoxide) generation (Miyamoto et

al., 1999).

The loss in vascular permeability has been suggested to be complicated by the down- 

regulation of membrane barrier transporter GLUT1 (Kumagai et al., 1994; Badr et al.,

2000). However, other researchers have found no such changes (Fernandes et al., 2003) 

or even an increase (Kumagai et a l , 1996) in inner GLUT1 level in hyperglycemia. 

Recent research also suggested another hypothesis, in which the insulin-like growth 

factor-1 (IGF-1) plays a pathological role. By inhibiting IGF-1, vascular damage and 

proliferation were diminished (Kuang et al., 2003; Poulaki et al., 2004).

1.3.4.2 Diabetic cataract

Cataractogenesis is one of the most common secondary DM complications (Nielsen and 

Vinding, 1984; Leske et a l , 1991). The explanation for diabetic cataract formation can be 

traced back as early as in 1959, when the osmotic hypothesis was proposed (van 

Heyningen, 1959). As mentioned in section 1.3.3.1, a high glucose concentration 

stimulates AR and promotes an osmotic challenge. Hyperglycemia in the lens causes 

excess glucose to pass through the polyol pathway, which leads to sorbitol accumulation 

(Kinoshita et a l , 1963). Sorbitol, as an osmotically active substance, causes excessive
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water uptake into the lens and results in cell turgidity and fiber cell disruption, thus loss 

of transparency (Kador et al., 1985; Swamy-Mruthinti et al., 1999). Although this 

hypothesis has been successfully demonstrated in several animal models (Kuriyama et 

al., 1983; Richter et al., 2002), researchers who used animal models with a greater 

similarity to human (i.e. low AR level in the lens) failed to demonstrate a significant level 

of sorbitol-induced osmotic damage (Varma and Kinoshita, 1974; Garadi and Lou, 1989; 

Hegde et al., 2003). In mouse lenses, inappropriate addition of GLUT1 in fiber cells was 

also suggested as the major cause in cataract formation (Gong et al., 2001). Nevertheless, 

it is still believed that by acting synergistically with other mechanisms, the activation of 

AR through the polyol pathway could still cause severe damage in DM (Hegde et al.,

2003). Other hypotheses, such as those relating to oxidative stress and glycation (Sensi et 

al., 1995), have also been suggested to be responsible for diabetic cataract formation 

(Obrosova et al., 1998; Donma et al., 2002; Franke et al., 2003; Pokupec et al., 2003). It 

is believed that AR can indirectly generate ROS (as revealed by AR inhibition study 

(Suzen and Buyukbingol, 2003)) and also diminish the antioxidative defence capability 

by lowering the amount of glutathione (Donma et al., 2002). With high exposure to ultra­

violet light, oxidative stress in the crystalline lens may be an important issue, especially 

in pathological conditions such as DM (Gamer et al., 2000). Furthermore, AGEs can 

induce oxidative stress through chemical and cellular mechanisms e.g. the Fenton 

reaction (Lin, 1997), which has been found to contribute to cataract formation in both 

ageing and diabetic lenses (Pokupec et al., 2003). These AGEs can cross-link alpha- 

crystallins, the basic structural protein in the lens, resulting in loss of chaperone activity 

and dense protein aggregation (Chellan and Nagaraj, 1999; Derham and Harding, 1999).
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A newer proposal has also been suggested by Kistler and others in 1999 for diabetic 

cataract formation. They believed that the increase in intracellular glucose level induced 

an elevated anaerobic metabolism, thus leading to an increase in lactate production and 

reduction in pH. This reduction of pH closed the pH-sensitive gap junctions between 

cortical cells and hindered cell-to-cell communication. Consequently, normal circulation 

within lens was blocked and resulted in fluid accumulation and loss of transparency 

(Kistler etal., 1999).

1.3.5 Glycemic control

Glycemic control is always a major concern in DM patients, as it is regarded to be 

important in delaying or preventing secondary diabetic complications. Currently, the 

most effective treatment is subcutaneous insulin delivery, together with a real-time blood 

glucose measurement using an implanted glucose-oxidase sensor (Renard, 2002). Studies 

on glycemic control have shown the regain of a good glycemic control, after a period of 

poor control might not always be helpful in preventing the progress of hyperglycemia- 

induced complications (The Diabetes Control and Complications Trial Research Group, 

1993; Kowluru, 2003a). Earlier diagnosis and treatment is therefore necessary in order to 

promote a successful healing rate (Stanga et al., 1999). Since good glycemic control is 

not always easily established, pharmacological studies have been carried out to 

specifically target certain diabetic complications (Harding, 2001; Kowluru and Koppolu, 

2002; Kowluru et al., 2003b). For diabetic cataract, various preventive approaches have 

been tested and these include glycation inhibitors (Lewis and Harding, 1990; Swamy- 

Mruthinti et al., 1996), antioxidants (Cao and Phillis, 1995; Evans and Goldfme, 2000)
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and AR inhibitors (Beyer-Mears et al., 1996; Suryanarayana et al., 2004). However, they 

are still at an experimental state, with further development necessary in order for a safe 

treatment with minimal adverse effects to be found.
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1.4 Proj ect obj ectives and significance

Diabetic patients are more susceptible to cataract development than non-diabetic patients 

(Kuriyama et al,, 1983; Nielsen and Vinding, 1984; Di Benedetto et al., 1999; Kyselova 

et al., 2004). Therefore, good aqueous glycemic control should help in the prevention of 

diabetic cataract formation. Since the CBE is responsible for transporting glucose into the 

aqueous chamber, studies on the glucose transport mechanism across the CBE might help 

in deriving a strategy to maintain a healthy aqueous glycemic level in DM patients. 

Furthermore, it might directly contribute to a decreased risk of diabetic cataract formation. 

Physiologically, it would provide the basic understanding on how glucose transport into 

the aqueous is achieved and how such transport can be regulated at the transcriptional or 

translational level.

In this study, an investigation of glucose transport, and its regulation, across the bovine 

CBE was carried out. This knowledge provides insight into the control of aqueous 

glycemic level, which may help eventually in the prevention of diabetic cataract 

formation.
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2.1 Introduction

In the present study, glucose transport across the bovine CBE was characterised using a 

modified Ussing-type chamber. Glucose fluxes across the tissue were measured under 

control and inhibited conditions, in both cases with equal glucose concentrations bathing 

the NPE and PE sides of the preparation. Four inhibitors were used, in order to evaluate 

the glucose transport mechanism across the bovine CBE, since the inhibitors inhibit 

different types or aspects of glucose transport. Thus, the aim of this investigation was to 

reveal the presence of different glucose transport mechanisms in the bovine CBE.

In this study, the use of the modified Ussing chamber eliminates the influence of systemic 

circulation, hydrostatic pressure and hormonal changes on glucose flux measurements. 

Therefore, any change in the rate of glucose transport under inhibited condition could be 

assumed to relate purely to the interaction between the drug and the CBE preparation.
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2.1.1 Overview of experimental design

2.1.1.1 Ussing-type chamber

An “Ussing-type chamber” is a simplified term of “Ussing-Zerahn-type chamber”, a 

chamber named after its designers, Ussing and Zerahn (1951), who firstly applied this 

technique in the measurement of sodium ions across frog skin (Ussing and Zerahn, 1951). 

All the later modified version of the Ussing-type chambers are named “Modified Ussing- 

type chamber”. Nowadays, this technique has been widely adopted in different ion (e.g. 

chloride and potassium ions) and solute transport studies (e.g. glucose and ascorbate)

(Chu and Candia, 1988; To and Hodson, 1998b; To et al., 2001; Candia et al., 2002).

Electrical
param eter

m easurem ents

CBE

Ringer
solution

Fig. 2.1 Simplified diagram of an Ussing-Zerahn type chamber.

A simplified diagram is shown to illustrate the schematic configuration of an Ussing-type 

chamber with a CBE tissue preparation. As seen in figure 2.1, tissue is mounted in- 

between the chambers, so as to separate the chamber into two halves. The partition allows
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the change of solution on one side without affecting the solution on the other side. By 

changing the chemical content in the Ringer solution, different ionic conditions can easily 

be established and corresponding effects can be examined. In addition, two sets of 

electrodes are introduced into the chambers, thus allowing measurements of the electrical 

parameters across the tissue. The first pair of electrodes ( W ’), situated closer to the 

tissues, measures the transepithelial potential difference (PDt). The second set of 

electrodes (II’) is for measuring the resistance to current passage. Both electrode sets are 

connected to voltage monitoring devices for consistent measurement of electrical 

parameters. Details of the measurement of the electrical parameters will be given in the 

following sections:

2.1.1.2 Transepithelial electrical parameters

In the present study, three electrical parameters were analyzed. Descriptions of each of 

these electrical parameters are given below:

PDt, The PDt is an indicator of the difference in electrical charge across a cellular 

membrane. Its polarity is determined by the direction and valence of ions being 

transported, and is the result of a slight excess of cation or anion at one side compared to 

the other. In CBE, an aqueous-side negative potential is widely accepted, and is believed 

to relate to a predominance of active anion transport towards the aqueous (Matsui et al., 

1996; Crook et al., 2000; To et al., 2001; Wu et al., 2003). In bovine CBE, the negative 

ion gradient is believed to be generated mainly by active chloride ion transport from
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stromal to aqueous (To et al., 1998a; Do and To, 2000). Such a net ion transport has also 

been observed in rabbit (Crook et al., 2000).

As illustrated in figure 2.1, PDt can be measured via electrode set W ’, which are placed 

closely aside the tissue to minimise any blank resistance generated by the Ringer 

solution. In voltage clamp mode, the voltage across the tissue is set to zero. At this point, 

one can read the current which is necessary to pass through the tissue in order to short- 

circuit it (Lewis, 1996) (see below).

Transepithelial resistance (RJ. The Rt is a measurement of the resistance across the 

tissue of interest, and is composed of two major components. These comprise the 

paracellular resistance (Rp) and the transcellular resistance (Rtc). The former indicates the 

resistance generated by the tight junctions and intercellular spaces, for a solute to pass via 

the paracellular route. The latter describes the resistance contributed by the cell 

membranes.

By the use of the Ohm’s law, one can easily calculate the Rt across a tissue. It is achieved 

by passing a known current across the tissue and observing the voltage change. 

Alternatively, the tissue can be “clamped” to a new voltage and the observed current 

change can be used to calculate Rt, again using Ohm’s law. The first method was used in 

the present study (a detailed description can be found in section 2.2.7). In general, Rt is 

directly and inversely related to ionic permeability. Researchers have realised that Rt is 

useful in categorizing whether an epithelium is of the “tight” or “leaky” types (Diamond, 

1974). Epithelia are termed as “leaky”, if their Rt is lower than 100 Qcm2, while they are 

termed as “tight” for a Rt higher than 500 Qcm2 (Fromter and Diamond, 1972; Diamond,
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1974). A stable Rt is regarded as a viability check in the present study, since only a 

physiologically intact preparation can generate a stable resistance (Hodson and Wigham, 

1987).

Short-circuit current (Isc). The I,* is an external current that is passed across the 

epithelium, so as to reduce the voltage to zero. It is applied to remove any external 

driving force that is facilitating active transport across a membrane. Any net movement 

of solute under the short-circuit conditions reveals the active transport activity (Ussing 

and Zerahn, 1951). Isc is determined by the sum of all the ions that are actively 

transported across the membrane. It is possible to calculate the Isc if one knows the net 

ion flux of all ions across the membrane under short-circuit conditions (Koefoed-Johnsen 

and Ussing, 1958). Isc can then be deduced by the following equation:

1*= Y V z-F
1

Where Ji is the net flux of ion i, z  is the valence of ion i (i.e. the number and polarity of 

an ion), while F is Faraday’s constant. Alternatively, Isc can be determined by the use of 

Ohm’s law, since the PDt and Rt are continuously measured throughout the experiment. 

Therefore, short-circuit conditions can be used to determine whether there is any active 

ion or solute transport across the tissue. The 1  ̂is regarded as an index of the net 

electrogenic ion transfer across the epithelium (Krupin and Civan, 1996). In CBE, a 

negative L* was observed along with a consistently negative PDt across the CBE (To et 

al., 1998a; Do and To, 2000; To et al., 2001).
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2.1.2 Inhibitors

Four inhibitors were chosen for use in this study. They are inhibitors which have been 

widely accepted to cause inhibition of particular transporter proteins. Phloretin and 

cytochalasin B are specific inhibitors of the GLUT family, while phlorizin and ouabain 

target the SGLTs, directly and indirectly, respectively.

2.1.2.1 Phloretin

Phloretin, is a competitive inhibitor of glucose transport via facilitated-diffusion. Its 

inhibitory effect on glucose transport has been shown in a number of tissues, including 

red blood cells (Jennings and Solomon, 1976; Krupka, 1985), smooth muscle (Dresel and 

Knickle, 1987), brain (Halton et al., 1980; Roeder et al., 1985) and small intestine 

(Alcalde et al., 1986). It is a non-penetrating molecule, which suggests that it exerts its 

inhibitory effect by binding onto the extracellular side of the transporter proteins 

(Masterson and Chader, 1981). It was found to exert its action on GLUTs by binding to 

the phenol site of the transporter and thus the binding of phloretin would be expect to 

hinder (Alvarado and Crane, 1964; Alvarado, 1978). The phenol site is situated next to 

the glucose receptor site in the transporter, and thus the binding of phloretin would be 

expect to hinder glucose binding (Alvarado, 1978). In other words, phloretin lowers 

glucose transport capacity by slightly altering the transporter configuration (Betz et a l ,

1975). In the intestinal system, phloretin was not a potent inhibitor (Alvarado and Crane, 

1964), since SGLTs but not GLUTs, are the predominant type of glucose transporters for 

the daily glucose uptake in this organ (Lee et al., 1994; Nagata et al., 1999; Ferraris,

2001; Wright et al., 2003). In other words, phloretin is a potent inhibitor specifically for
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GLUTs, as demonstrated in rat lens (Elbrink and Bihler, 1972) and bovine RPE (To and 

Hodson, 1998b). However, counter-arguments have been made, as an increase of 

conductance resulted after the addition of phloretin in frog lens (Lucas and Duncan,

1983) and in lipid bilayer membranes (Melnik et al., 1977). It has been also suggested 

that the inhibitory effect exerted by phloretin might be a secondary effect following the 

altered intracellular sodium level (Lucas and Duncan, 1983).

2.1.2.2 Cytochalasin B

Cytochalasin B is a potent inhibitor for monosaccharide transport, as demonstrated in 

tissues such as smooth muscles (Dresel and Knickle, 1987), red blood cells (Lin and 

Spudich, 1974a), heart (Clow et al., 2004) and brain (Nishizaki and Matsuoka, 1998). It 

is a fungal metabolite (Bloch, 1973), that is regarded as a highly competitive inhibitor 

(Lin and Spudich, 1974a), and binds directly to the glucose binding site of the transporter 

(Lin et al., 1974b; Silverman, 1991). It has emerged as the more potent and specific 

inhibitor in lowering bi-directional glucose transport across the frog lens, when compared 

with phloretin (Lucas and Duncan, 1983). However, again, counter arguments have been 

raised, since cytochalasin B also inhibits various cellular movements by interacting with 

microfilaments (Wessells et al., 1971), which result in alterations to cell locomotion and 

cytokinesis (Krishan, 1972). However, even this notion has been challenged by other 

studies (Bluemink, 1971; Goldman, 1972), which has left the argument unsettled. 

“Cytochalasin B-binding” activity has been widely used to assess the transport capacity 

or affinity of a glucose transport system (Wheeler and Hauck, 1985; Hellwig and Joost, 

1991; Wandel et al., 1996). Cytochalasin B is a photolabile molecule and can form a
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covalent bond with the transporter, and according to the extent of binding, the transport 

kinetics can be deduced (table 1.1, p.26). In human red blood cells, high and low-affinity 

binding sites have been revealed for cytochalasin B (Lin and Spudich, 1974a; Lin et a l , 

1974b). Their binding with cytochalasin B could be inhibited up to 80 to 90 % in the 

presence of D-glucose, especially at the high-affinity site. This indicates a clear 

competitiveness of this inhibitor. Furthermore, the inhibitory effect of cytochalasin B in 

these samples was not affected by pH, in the range 5.0 to 9.0, which agreed with a 

previous study using D-glucose in the red blood cell membranes (Kahlenberg et al.,

1971). However, cytochalasin B binding activity decreases with increasing ionic strength 

(Brekkan et al., 1996). In addition, the binding of cytochalasin B to GLUT1 was found to 

occur in two different states, which might exist at equilibrium under normal conditions, 

but interchange according to surrounding environmental conditions (Gottschalk et al., 

2000).

2.1.2.3 Phlorizin

Phlorizin is a natural plant glucoside (Malathi and Crane, 1969). It has long been used as 

a potent and specific inhibitor for the SGLTs, mainly SGLT1, in kidney (Silverman,

1976; Turner and Moran, 1982a; Miller et al., 1992; Oku et al., 2000) and small intestine 

(Jervis et al., 1956; Despopoulos, 1966; Tsujihara et al., 1996; Hirsh et al, 1997) to 

reduce active glucose transport. It is regarded as a competitive inhibitor, as it has been 

found to directly compete for the glucose binding site with D-glucose (Betz et al., 1975) 

and even to be transported by the SGLT (Walle and Walle, 2003). More recently, 

researchers have revealed the mechanism of phlorizin binding (Koepsell et al., 1990;
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Veyhl et a l , 1993; Oulianova et al., 2001). They suggest that there are two phases in 

phlorizin binding, composed of a first “fast-binding phase” and a “slower equilibration 

phase”. The heterogeneity observed in previous studies (Turner and Moran, 1982a;

Turner and Moran, 1982b), in which high and low-affinity transport pathways were 

observed in the brush border membrane vesicle, was argued to have been purely due to 

the presence of these complex transport properties of SGLT1 (Oulianova and Berteloot,

1996). However, whether this is valid argument in other species has yet to be elucidated, 

since SGLT2 was found widely expressed in kidney in many later studies (Mackenzie et 

al, 1996; Wright, 2001).

Although generally believed to be an inhibitor of SGLTs, phlorizin also exerts an 

inhibitory effect on the facilitated-carrier system, as seen in tumour cells (Nelson and 

Falk, 1993) and cardiac tissues (Clow et al., 2004). This might be explained by the 

formation of phloretin due to phlorizin hydrolysis (Malathi and Crane, 1969) (Fig. 2.2). 

Phlorizin also inhibits ascorbate transport across the rabbit CBE, as well as glucose (Chu 

and Candia, 1988). In recent years, a number of different sodium-dependent vitamin C 

transporters have been identified (Tsukaguchi et al., 1999; Castro et al., 2001), yet 

whether phlorizin has direct interaction with all of these transporters remains to be 

elucidated.

S p x  Hydrolysis
0 o *
1

P-»«glMOTe

Phlorizin

Fig. 2.2 Chemical transition between phloretin and phlorizin in hydrolysis.

o h  o  

Phloretin
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In the lens, phlorizin demonstrated a reversible but non-specific glucose transport 

inhibition, with a concurrent influence on the sodium ionic level (Lucas and Duncan, 

1983). In addition, it caused a significant reduction in glucose transport of the 

conjunctiva, when it was added to the mucosal side (Hosoya et al., 1996; Horibe et al.,

1997). Although there are many unsettled arguments about the specificity of phlorizin 

towards SGLTs, it is still a commonly used inhibitor in this type of study.

2.1.2.4 Ouabain

The Na+, K+-ATPase, also named the Na+/K+-pump, is an integral membrane protein, 

ubiquitously distributed in cellular epithelia (Lingrel and Kuntzweiler, 1994). It 

transports two potassium ions from the interstitial fluid into the cytoplasm and three 

sodium ions in the opposite direction, in every cycle. It, therefore, generates chemical and 

electrical gradients across cell membranes (Pedemonte and Kaplan, 1990). The driving 

force for each of the cationic exchange cycles requires the hydrolysis of ATP (i.e. energy 

consumption) (Ohtsubo et a l , 1990). Any transport processes dependent upon the 

chemical and electrical gradients set up by the Na+, K+-ATPase are named energy-driven 

or simply “active”. These include the transport of glucose against a concentration 

gradient, which make use of the sodium gradient firstly built up by the Na+, K+-ATPase 

(Hirayama et al., 1996; Turk and Wright, 1997).

Ouabain is a cardiac glycoside, which is a specific inhibitor of the Na+, K+-ATPase 

(Lingrel and Kuntzweiler, 1994). It exerts its inhibitory effect by binding to the 

extracellular surface of the Na+, K+-ATPase. The binding strategy was found to be very 

complex, involving the alpha-subunit as the primary binding site, but the beta-subunit
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was reported to be involved too (Hansen, 1984). In addition, different extracellular and 

transmembrane amino acids, were also found to be important in determining the affinity 

of the drug towards the sodium-pump (Bums and Price, 1993; Schultheis and Lingrel, 

1993). Therefore, ouabain can be used to inhibit active glucose transport indirectly, by 

dissipating the sodium gradient across a membrane, via the functional abolition of Na+/K+ 

exchange. Without the sodium concentration gradient (Diez-Sampedro et al., 2001), 

glucose cannot be transported across the membrane against its own concentration 

gradient. In the eye, ouabain has been used in several studies to help elucidate the 

corresponding glucose transport mechanism, e.g. in the RPE and lens (Stramm and 

Pautler, 1982; Lucas and Duncan, 1983; Roeder et a/., 1985; To and Hodson, 1998b).

2.1.3 Glucose transport in the eyes

Various ocular tissues have been investigated to find out their mode of glucose transport. 

The Ussing chamber technique has been a commonly employed method (Hosoya et al., 

1996; Horibe et al., 1997; To and Hodson, 1998b; To et al., 1998c), while bolus injection 

(DiMattio and Zadunaisky, 1981; DiMattio et al., 1984b), and glucose or cytochalasin B- 

binding assay techniques have also been tested (Stramm and Pautler, 1982; Lucas and 

Duncan, 1983; Vilchis and Salceda, 1996).

In general, the facilitated-carrier or passive transport mechanism has been found to be the 

predominant mode of glucose transport in ocular tissues. The tissues which possess a 

facilitated glucose transport system include bovine RPE (Crosson and Pautler, 1982; To 

and Hodson, 1998b; To et al., 1998c), rat retina and RPE (Dollery et al., 1971; Stramm 

and Pautler, 1982; Vilchis and Salceda, 1996), frog RPE (Miller and Steinberg, 1976;
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DiMattio and Streitman, 1986), chick RPE (Masterson and Chader, 1981), rat blood- 

ocular barriers including BAB (DiMattio and Zadunaisky, 1981), rabbit corneal 

endothelium (Hale and Maurice, 1969) and rat lens (DiMattio, 1984a). Active or sodium- 

dependent glucose transport has been reported in rabbit conjunctiva (from mucosal side) 

(Hosoya et al., 1996; Horibe et al., 1997), and sheep RPE, from the retinal to choroidal 

direction (Pascuzzo et al., 1980). It is interesting to note that the sheep RPE operated 

using a different mechanism to the other species investigated, since facilitated-carrier 

transport has been found in all other mammals. This finding might have resulted from a 

technical difference in experimental design specifically, the mounting of the choroidal 

layer, which was not done in other studies of RPE.

Studies into the glucose transport of the retina and RPE have been popular (Vinores et al., 

1988; Stitt et al., 1994; Badr et al., 2000), possibly since DR is such a common cause of 

blindness (please refer to section 1.3.4). In contrast, studies on more anterior ocular 

tissues are scarce. Since, glucose transport across the CBE would directly affect the 

extent of glucose reaching the aqueous humor, a thorough study of this issue would be 

meaningful, for some new insights into how best to achieve good ocular glycemic 

control.
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2.2 Methodology

2.2.1 Materials and bathing solution

The composition of the HEPES-bufFered Ringer solution was (in mM) 113.0 NaCl, 4.6 

KC1, 21.0 NaHCC>3, 0.6 MgSCU, 7.5 D-glucose, 1.0 glutathione (reduced form), 1.0 

Na2HP0 4 , 10.0 HEPES, and 1.4 CaCL. The pH of the solution was adjusted to 7.4.

The 3-0-[Methyl-14C]-D-glucose (MDG) was purchased from NEN Life Science 

Products, Inc. (Boston, MA), while the L-[3H]-glucose (LG), phloretin, phlorizin, 

cytochalasin B, ouabain, dimethyl sulfoxide (DMSO) and all other chemicals were 

purchased from Sigma-Aldrich Company (St. Louis, MO).

2.2.2 Tissue preparation and selection

Fresh bovine eyes were taken from a local abattoir, having been enucleated immediately 

post mortem. They were transported to the laboratory, within an hour, in ice box and kept 

at 4°C. Eyes were chosen for an experiment if they were externally intact without leakage 

of aqueous or vitreous caused by external damage and possessed a smooth and clear 

cornea and lens. They exhibited a regular iridial shape, and the texture of the vitreous was 

rigid, not dissolved.

2.2.3 Tissue dissection

The bovine CBE was isolated according to the method devised by To and colleagues (To 

et al., 2001). Connective and extraocular muscles around the globe were removed with a 

razor blade. Two radial incisions (Fig. 2.3a) were made through the limbus to the equator. 

The cornea was cut from the incision points to the center and a flap lifted (Fig.
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a)
Limbus

Radial incisions

b) (side view) (top view)

Lens capsule
Iris

Cornea

Choroid
Sclera

Retina

Ora serrata

Crystalline
lens

Vitreous

Iris 

Lens capsule

Fig. 2.3
The dissection procedures 
used in the isolation of a 
CBE preparation, a) 
Incisions were made 
through limbus to 
equator, b) Part of the 
cornea was cut and 
flipped over, c), d) tissues 
were carefully trimmed 
off from sclera and 
vitreous, e) A sector of 
CBE ready to mount on 
the Ussing chamber.
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2.3b). Caution was taken not to apply excess pressure to the globe since this could 

damage the ciliary body, especially near the incision breaks. Under a dissecting 

microscope (EMZ-5 with MA502 SWF 10X eyepieces; Meiji Techno Co. Ltd., Japan), 

the CBE was carefully isolated anteriorly from the sclera (Fig. 2.3c) and posteriorly from 

the vitreous (Fig. 2.3d). During this process, the anterior aspect of the crystalline lens 

capsule was used as a “handle” for holding the ciliary body since it is firmly attached to 

the CBE. Finally, the sector of CBE was isolated at a point around 0.5 cm behind the pars 

plana (Fig. 2.3e). The preparation was then soaked in Ringer solution for 10 minutes 

before mounting. Throughout the dissection process, Ringer solution was applied 

constantly to the exposed surface to prevent the tissue from desiccation.

2.2.4 Ussing-type chamber configuration

The Ussing chambers used in this study were a continuous-perfusion type that was 

specifically designed for bovine CBE preparations. Configurations are shown in figure 

2.4. Each of the chambers consisted of two Perspex rectangular half chambers that fitted 

perfectly together with the assistance of the sliding base unit, flat-screws and wing nuts. 

The chamber cavities were of 0.30 cm2 in cross-sectional area and had a depth of 0.60 

cm, on top of which lay an 0.1 cm thick layer of silicone plate. The silicone plate acted as 

a cushion support in clamping tissues, in order to reduce solution leakage due to edge 

damage.
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Inlet for 
PD-sensing tube

Silicone plate

Flat-screw

Flat-screw slot

Ag/AgCI
electrode

Perfusion inlet

a) Front view of the Ussing-type half-chambers.

Perfusion outlets

Wire for. 
current passage

Chamber cavity

Sliding platform

Wing nut

Flat screw

Flat-screw slot

Sliding base

b) Side view of the Ussing chambers. The sliding base and platform, 
together with the flat-screws are crucial in holding the preparation in place.

Fig. 2.4 Configurations of the continuous-perfusing type Ussing chamber. 

Please refer to figure 2.5 for the final setup.
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2.2.5 Chamber preparation

Before mounting, silicone lubricant (Dow Coming Corporation, USA) was applied on the 

silicon plates to enhance sealing and prevent slippage of the tissue in the chamber during 

the experiment. In addition, Ringer solution was continuously perfused through the 

chambers before mounting the tissues, to ensure that all bubbles were completely 

removed, and thus would not interfere with the electrical parameter measurements. The 

solution pumped into the chambers was collected into a glass container. Throughout the 

experiment, Ringer solution was pumped into the chambers (via the perfusate inlets) at a 

rate of 10 ml per hour, under the control of a microprocessor-controlled syringe infusion 

pump (Cole-Parmer Instrument Ltd., USA). Since the volume of the chamber cavity was 

210 pi, the turnover time of the solution in the chamber would be 75.6 seconds, assuming 

perfect mixing.

2.2.6 Tissue mounting

After 10 minutes immersion in Ringer, the CBE preparation was sandwiched into the 

modified Ussing chamber. Briefly, one of the half chambers was laid flat and tissue was 

placed with only the CBE, not the iris, exposed to the chamber cavity. Great care was 

taken in the mounting process to achieve “minimal pressure without leak” clamping, 

since excess pressure would cause mechanical damage to the preparation. It was achieved 

by slowly tightening the chamber screws and nuts until the first point where there was no 

solution dripping out of the chamber-tissues sandwiches. The temperature of the 

preparation was maintained at 35-37°C by wrapping pre-calibrated heating cloths around 

the chambers. Since two CBE tissues were isolated from the same bovine eye in every
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experiment, these tissues were mounted into two different chambers to allow 

measurement of glucose flux in both directions simultaneously.

2.2.7 Electrical parameters measurement

Electrical parameters, the PDt and R*, were monitored using the Dual Voltage Clamp- 

1000 unit (World Precision Instruments, Sarasota, FL, USA). Concurrently, a dual­

channel flatbed chart recorder (BD-12E; Kipp & Aonen Inc., Saskatoon, SK, Canada) 

was used to record the voltage and current output of the preparation (Fig. 2.5).

Just before the experiment, the PD-sensing tubes and by-pass arms were filled with 

Ringer solution. They were made with polyethylene tubes (PE90; CLAY ADAMS®, 

Becton, Dickinson, and Company, USA) and were inserted into the PD-sensing inlets of 

the chambers. Caution was again taken to expel all bubbles trapped inside chamber 

cavities, PD-sensing tubes and by-pass arms, as this would have resulted in a short circuit, 

which would generate electrical noise or mask the true potentials. By changing the three- 

way stopcocks’ position, the Ag/AgCI electrodes could either connect to the by-pass arm 

or the PD-sensing tubes independently. Therefore, the unit allowed a “zero-check” and a 

voltage measurement of the preparation, respectively. “Zero-check” was done at regular 

intervals throughout the experiment to correct any drifting of the zero reference and 

assure that the correct PD was recorded.

During the experiment, a known current was passed across the tissue through the 

Ag/AgCI electrodes every 5 minutes. This was done by setting the dual-voltage clamp 

into “timer” mode, at which it was cycled between zero current clamp and current clamp 

for 5 minutes and 3 seconds respectively. The changes in potential difference were
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recorded on the chart recorder and the total resistance (R) was calculated by using Ohm’s 

law:

Where AV is the change of potential when a known current passed across the preparation; 

AI is the known current used, which was 10 pA in this study and A is the cross sectional 

area of the exposed tissue, which was 0.30 cm2.

Since R is composed of both the fluid resistance (Rf) and the Rt, the exact value of Rt can 

be deduced by the subtraction of Rf from R:

Rt = R - R f

Rf could be obtained by measuring the resistance across the chamber with only the fluid 

perfused through the cavity, without tissue in place.

Probe
unit

Salt-bridges^ 
containing 0.9% 
sodium-chloride 

solution By-pass
arm

PD-sensing
tubes

CBE
tissue

- 3-way 
stopcock

C hart
recorder

Dual-Voltage 
Clamp-1000 unit

Fig. 2.5 Schematic diagram showing the experimental setup for the

electrophysiological study of Ussing chamber. “I” and “V” indicate the 

unit for applying current clamp and voltage clamp respectively.
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2.2.8 Test of viability

The preparations were considered to be viable by three criteria. These include 1) constant 

PDt and Rt greater than -0.2 mV and 70 Qcm2, respectively before addition of any drug, 2) 

low diffusional LG flux (i.e. lower than 70 nmolhr'cm2), and 3) biphasic response to 

ouabain when it is added to the aqueous side of the preparation as suggested by To et al. 

(1998a). Preparations were rejected if they failed in one of these criteria.

2.2.9 Glucose flux measurement

2.2.9.1 Basal flux measurement

After being sandwiched into the chamber, the tissue was left for 60 minutes for 

stabilization. The tightness of the chamber clamp sometimes needed adjustment during 

this period. This was because the thin layer of vitreous on the tissue surface could loosen 

the clamping, which would then affect the standing potential and result in a leak. When 

the electrical parameters were stable (i.e. a similar PDt and Rt were generated for more 

than 15 minutes), background radioactivity was measured by collecting perfusates for 2 

intervals of 12 minutes. These counts were averaged to give the control activity. The 

experiment was only included in the analysis if this value was below 100 counts per 

minute. Then, Ringer solution containing 0.5 pM 3H-LG (4 pCi) and 0.5 pM 14C-MDG (5 

pCi) were loaded to either the stromal or aqueous side (referred to as the “hot” side). 

Concurrently, normal Ringer solution was perfused to the opposite side (i.e. the “cold” 

side). After a 90 minute stabilization period, sample collection was begun, under short- 

circuited conditions. Perfusates (2 ml) were collected from both sides in clear glass 

scintillation vials (Wheaton, USA) at a 12-minutes interval, four times. They were mixed
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with 15 ml of biodegradable scintillation cocktail (NBCS104; Amersham Radiochemicals,

England). Radioactivity of samples was measured with a liquid scintillation counter

(Wallac 1414 Winspectral DSA; Wallace, Helsinki, Finland). The counting windows

allowed the discrimination of 3H and 14C decays, and the values were determined by

averaging consecutive counts for correspondent side samples. The final count data

allowed the calculation of bi-directional glucose fluxes from paired preparations, thereby

indicating the existence of any active glucose transport in the CBE preparations. The

unidirectional flux (J) was calculated using the following equation:

r _ C I V  
~ H A T

Where C is cold side radioactivity (cpm); I is concentration of the solute-of-interest in the 

Ringer solution (mM); V is the volume of perfusate collected in each interval (ml); H is 

the hot side radioactivity (cpm); A is the cross-sectional area of the chamber cavity (cm2) 

and T is the collection time for each sample (hour).

The unidirectional fluxes were calculated from the specific activity of the “hot side’ and 

the rate of radioactive tracer appearance on the “cold side” as the experiment progressed. 

The flux value was expressed in nmolh^cm'2.

2.2.9.2 Effects of inhibitors

Phloretin, cytochalasin B, phlorizin and ouabain are organic chemicals that have poor 

solubility in water. Hence, they were dissolved in DMSO before use, to give a final 

concentration of 0.1% in Ringer solution. After the first stabilization period of 60 minutes 

with normal Ringer solution, Ringer solution with inhibitor (0.1 mM phloretin, 0.01 mM 

cytochalasin B, 0.1 mM phlorizin or 0.1 mM ouabain) was perfused to both sides of the
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preparation for another 60 minutes. Again, background radioactivity counts were done as 

described earlier. After the completion of background perfusate collection, solution with 

both radioactive tracers and an inhibitor was perfused to one side of the preparation (i.e. 

the hot side) and Ringer solution containing only the inhibitor, but not radioisotopes, was 

perfused to the opposite side (i.e. the cold side). Ninety minutes was allowed for final 

equilibration before sample collection. Perfusates were collected under short-circuited 

conditions and then analyzed as described in section 2.2.9.1.

2.2.10 Statistical analysis

All the statistical calculations were performed by using Excel (Miscrosoft) or GraphPad 

Prism (version 3.02). All data were expressed as mean ± S.E.M. and p < 0.05 was 

considered as statistically significance. The paired Student’s t-test was used to analyze 

the basal flux measurements and the effect of inhibitors, whilst the impaired Student’s t- 

test and one-way ANOVA with Dunnett’s post-hoc test were used to compare the results 

from different studies and to evaluate variations within a set of tissue samples, 

respectively.
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2.3 Results

2.3.1 Baseline measurement

2.3.1.1 Electrical parameters

Preliminary experiments showed that the preparations were viable for at least five hours 

with consistent PDt, Isc and Rt. All of the preparations tested responded to 1 mM ouabain 

added to aqueous side of the chamber at the end of the experiment (Fig. 2.6). The average 

PDt , Isc and Rt of the bovine CBE was -0.47 ± 0.09 mV (with the aqueous side 

consistently negative), -4.94 ± 0.54 pAcm2 and 98.50 ± 7.20 Hem'2 (mean ± S.E.M., n = 

9), respectively. After the addition of ouabain, PDt and Isc increased transiently for a 

period o f25-30 minutes. This was followed by a depolarization which abolished them to 

nearly zero after another 120 minutes (Fig. 2.6). The maximum PDt and Isc attained 

during ouabain’s transient stimulatory phase was 157 ± 12% of the baseline (p < 0.05, n = 

9) while Rt eventually decreased by 10.8 ± 5.8% after the addition of ouabain (p > 0.05, n 

= 9) for 30 minutes.
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Fig. 2.6 Changes of PDt over time and in response to the addition of ouabain 

at the aqueous side (indicated by the arrow) in an control experiment.
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For the inhibition study, electrical parameters were significantly affected by the addition 

of ouabain (Dunnett’s post-hoc test, p < 0.05), while phloretin, cytochalasin B and 

phlorizin (Dunnett's post-hoc test, p > 0.05) showed no significant influences (Table 2.1). 

The electrical parameters presented in table 2.1 are the data taken around 150 minutes 

from the time at which the preparations were mounted. Significant changes were 

observed in PDt (ANOVA, F = 4.55, p < 0.05) and I* (ANOVA, F = 11.1, p < 0.001) 

with bilateral ouabain addition (Figs. 2.7 and 2.8). The maximum stimulation was 140 ±

11 % (p < 0.05, n = 16) and the reduction of Rt was 7.5 ± 6.2 % (p > 0.05, n = 16).

Condition PDt (mV) R, (Hem2) Isc (pAcm2) n

Baseline -0.52 ±0.08 95.14 ± 6.17 -5.73 ±1.07 20

Phloretin -0.42 ± 0.05 91.95 ±5.77 -4.64 ± 0.48 22

Cytochalasin B -0.43 ±0.18 99.70 ±11.86 -4.37 ±1.72 18

Phlorizin -0.46 ± 0.03 104.40 ±8.45 -4.44 ± 0.27 16

Ouabain -0.14 ± 0.03* 88.99 ±6.13 -1.63 ±0.35* 16

Table 2.1 Electrical parameters of baseline measurement and inhibition studies.

Data were taken around 150 minutes from the time at which the 

preparations were mounted, n represents the sample size. * indicates 

statistical significance level of p < 0.05 when compared to the baseline 

readings. Data are presented as mean ± S.E.M..
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Fig. 2.7 The effect of bilateral ouabain addition (indicated by the arrow) on PDt 

values of a CBE preparations.
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Fig. 2.8 Changes of IK before and after the bilateral addition of ouabain 

(indicated by the arrow) in both sides of the chambers.
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2.3.1.2 Glucose flux measurement

The glucose flux measurements, under normal and inhibited conditions, are summarised 

in table 2.2. Bovine CBE demonstrated stereospecificity for MDG, with a D-glucose to 

L-glucose transport ratio of 6.3-6.5 under an equal concentration gradient. No significant 

net flux was observed for either MDG or LG across the CBE under basal conditions (p > 

0.05, n = 10), or after the addition of phloretin (p > 0.05, n = 11), cytochalasin B (p >

0.05, n = 9), phlorizin (p > 0.05, n = 8) or ouabain (p > 0.05, n = 8). The corrected MDG 

(CMDG) flux was deduced by subtraction of the LG flux from the MDG flux to 

determine the transcellular rate of MDG movement across the bovine CBE. The CMDG 

flux was drastically decreased with the bilateral addition of cytochalasin B.

Comparatively more modest reductions were observed after the addition of phloretin or 

phlorizin. Ouabain did not cause a significant reduction in the glucose flux. Moreover,

LG fluxes were not significantly affected by any of the drugs used (Table 2.2), but 

decreased steadily as Rt increased, with a correlation factor of 0.71 (Fig. 2.9).
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Fig. 2.9 The plot of LG flux against Rt.
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Condition Flux
direction

LG MDG CMDG
CMGD flux 

inhibition (%)

Baseline
measurement

Jsa (10) 25.8+2.0 189.5115.1 163.8114.2 —

Jas (10) 26.3+2.3 196.1 + 14.7 169.8113.2 —

Phloretin
Jsa (11) 24.711.9 91.2 + 3.5* 66.513.2* 59.4

Jas (11) 24.612.1 93.8 1 53* 69.213.7* 59.3

Cytochalasin B
Jsa (9) 27.414.5 60.919.0* 33.519.2* 79.6

Jas (9) 26.014.6 58.2 1 11.8* 32.11 10.2* 81.1

Phlorizin
Jsa (8) 22.011.9 149.419.4* 127.417.6* 22.2

Jas (8) 21.312.7 155.719.6* 134.418.3* 20.8

Ouabain
Jsa (8) 28.412.5 169.5118.5 141.1 + 16.4 13.9

Jas (8) 27.5 + 2.7 173.3110.6 145.819.5 14.1

Table 2.2 Glucose flux measurements under basal and inhibited conditions.

* indicates statistical significance with p < 0.05. Fluxes are presented in 

nmolhr^cm'2 (mean ± S.E.M). Jsa is the influx, which is the glucose flux 

measured from stroma to aqueous and vice versa for Jas (i.e. the efflux). 

Sample size is indicated in parenthesis.
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2.4 Discussion

2.4.1 Bovine CBE in Ussing chamber

Bovine eyes were used in this study for they have much larger CBE area when compared 

to other animal models such as rabbit (Kishida et al., 1982; Krupin et al., 1984) which 

facilitates their manipulation. Also, they are readily available in local abattoirs. One could 

easily distinguish the CBE sector from other ocular tissues in the bovine eye, which made 

tissue mounting in the Ussing chamber (without iris) highly reliable. This issue is 

important, as it assures that any electrical parameter and transport rate measurements or 

changes were purely demonstrated by the CBE, and not adjacent tissue(s). Such 

assurance is not possible when smaller-sized models are used in this type of study (Iizuka 

et al., 1984; Krupin et al., 1984; Wiederholt and Zadunaisky, 1987), in which the iris is 

often exposed to the tissue cavity.

2.4.2 Baseline and control electrical parameters

The consistently negative PDt across the CBE observed in the present study is consistent 

with findings from previous studies (To et al., 1998a; Do and To, 2000). A negative PD 

has been found commonly in iris-ciliary body preparations from a range of different 

mammalian species, such as monkey (Chu et al., 1987b), cat (Holland and Gipson, 1970), 

dog (Iizuka et al., 1984) and rabbit (Kishida et al., 1982; Krupin et al., 1984). Such a 

constant negative potential indicates a predominance of anion transport in the direction 

from stroma to aqueous, .and has been suggested to be the result of the relative transport 

activities of sodium and chloride ions across the tissue (Wiederholt and Zadunaisky, 

1987). Recently, a net chloride flux was revealed in bovine CBE, but not a net sodium
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flux (To et al., 1998a). This demonstrates the crucial role of chloride ions in the 

maintenance of the negative PD across the CBE, and suggests that it might be an 

important component in driving fluid transport (i.e. aqueous humor production) (Do and 

To, 2000).

The magnitude of Rt found in the present study is difficult to compare with that in other 

mammalian species, since Rt varies widely (Holland and Gipson, 1970; Kishida et al., 

1982; Iizuka et al., 1984). For example, a study on monkey reported a Rt of 185 Gem 

(Chu et al., 1987b), while 31 Gem was reported for shark (Wiederholt and Zadunaisky, 

1987). When considering only the bovine studies, a range from 61 to 124 Gem has been 

reported (To et al., 1998a; Do and To, 2000; To et al., 2001). Reassuringly, this included 

the range we found in the present study.

2.4.3 The biphasic response to ouabain addition

As described in Chapter 1 (section 1.1.2), the NPE and PE possess different densities of 

Na+, K+ -ATPase (Riley and Kishida, 1986), with the NPE possessing approximately eight 

times more Na+, K+-ATPase catalytic alpha subunit protein than the PE (Dunn et al., 

2001). Since Na+, K+-ATPase is located in abundance on the basolateral side of both 

layers, but working in opposite directions, sodium ions are constantly being pumped out 

of the CBE in exchange for potassium.

When ouabain was added to the aqueous side, it would inhibit the Na+, K+-ATPase 

located on the basolateral side of the NPE cell layer. The exchange (3 Na+ for 2 K+) 

across the NPE basolateral side would thus be reduced or arrested, leading to a reduction 

in sodium ions in the aqueous side and producing a hyperpolarization of the PDt. In
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theory, the active chloride ion transport across the CBE would play a role in the change in 

PDt after ouabain. The active chloride flow is dependent on the sodium-potassium- 

chloride cotransporter (Na+/K+/2C1* cotransporter) located on the basolateral side of PE 

which moves the chloride into the PE. This uptake process is driven by sodium gradient 

generated by the Na+, K+-ATPase. The subsequent efflux of chloride ions from the 

bilayers to the aqueous humor is via the chloride channels down its electrochemical 

gradient (Do and To, 2000). Initially, as the Na+, K+-ATPase was inhibited by ouabain, 

the chloride ion movement into the CBE was not immediately affected as the sodium 

gradient still remained intact but started to dissipate. Therefore, the chloride transport 

may not have been contributing to the PDt changes immediately after ouabain addition. 

Afterwards, the ouabain either reached the PE from the stromal application or diffused 

across the bilayer to the stromal side so that the Na+, K+-ATPase in the basolateral 

membrane of PE was subsequently inhibited. This produced the observed depolarization 

of the PDt. Finally, all active transport functions were abolished, sodium gradient 

dissipated and the PDt decreased slowly towards zero with time. This phenomenon has 

been widely reported and established in other CBE transport models (Wiederholt and 

Zadunaisky, 1987; Chu et al., 1987b ). The biphasic response observed in the present 

study is consistent with other studies (Krupin et al., 1984; Wiederholt and Zadunaisky, 

1987; Chu et al., 1987b) and has also been used to test tissue viability involving Ussing 

chamber experiments of the bovine CBE (To et al., 1998a).

In the inhibition study, when ouabain was added bilaterally, the maximal stimulation of 

PDt (and Isc) was slightly lower than that when ouabain was added only on the aqueous 

side. It might be because that in the bilateral application, ouabain reached the PE
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basolateral membrane from the bathing solution shortly after it acted on the NPE. The 

inhibition of the Na+, K+-ATPase at the PE side produced depolarization which may have 

depressed the hyperpolarization peak as observed when ouabain was applied at the 

aqueous side alone. In both cases, the PD and Isc eventually decreased towards zero and 

became stable. Measurement of ouabain’s effect on glucose transport was started from 

this point onwards.

2.4.4 L-glucose (LG)

In the present study, LG was used as a difftisional control. This substrate is biologically 

inactive, and its movement into a tissue is purely dependent on passive paracellular 

diffusion (DiMattio and Streitman, 1986; To and Hodson, 1998b). This finding has been 

confirmed by other studies, in which LG was observed to enter into ocular compartments 

using the same mechanism as urea and sucrose, which also move via passive diffusion 

(DiMattio and Zadunaisky, 1981). The rate of LG diffusion is a good indicator with 

which to quantify physical damage of the tissue upon mounting, and to evaluate the 

physical integrity of the bovine CBE as a measure of its “tightness” as an aqueous barrier. 

Thus, a low permeability of LG indicates the barrier is tight with low leakiness.

Moreover, a low permeability of LG also meant the absence of severe edge damage to 

tissues, caused by chamber mounting. Since LG passes through cell layers in a 

paracellular manner or via edge damage during tissue mounting, the subtraction of the 

LG flux from the MDG flux gives the transcellular glucose flux that is the rate of glucose 

transport across the membrane by glucose transporters. Figure 2.9 revealed the 

relationship between LG and Rt: they correlated linearly and inversely.
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In the present study, no significant net LG flux was found in any of the experiments. The 

measured LG fluxes were slightly lower than those reported by others (To et al., 1998a), 

which indicates that the selected tissue preparations had good integrity and that edge 

damage was minimal. This discrepancy with previous findings might be due to the 

modifications that had been made to the chambers, which made the tissue preparation 

more stable and edge damage less severe. In addition, the lower permeability of CBE 

towards LG implies that the bovine CBE is generally tight, not leaky.

For the calculation of the glucose flux, the area of the tissue cavity (i.e. 0.30 cm2) was 

used as if the tissue surface was flat. However, this would be the maximum estimation of 

LG flux for the bovine CBE, since the CBE surface is far from flat in reality. The CBE is 

in fact highly convoluted, yet the actual surface area is hard to estimate. Therefore, the 

actual LG flux per cm must be smaller than that estimated in the present study, for the 

convoluted surface area will possess a larger surface area. This issue also applies to the 

MDG flux calculation.

2.4.5 Passive versus active transport

In this study, MDG was used in an attempt to eliminate the influence of metabolism.

MDG is a non-metabolizable sugar, but which is otherwise very similar to D-glucose 

(DiMattio and Zadunaisky, 1981; DiMattio and Zadunaisky, 1982). MDG would pass 

through the cell membrane in both a paracellular and a transcellular manner. Thus, the 

subtraction of the LG flux from the MDG flux gives the transcellular glucose flux. In the 

present study, no significant net flux (i.e the difference between Jsa and Jas for each eye) 

was observed for MDG. Therefore, the chance of having active glucose transport in the
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bovine CBE seems unlikely. This agrees with previous assumption based on the fact that 

the concentration of glucose in the aqueous humor is lower than that of the blood stream 

(DiMattio et al., 1984b; Abdel-Latif, 1997). Hence active transport of glucose across the 

CBE would be unnecessary, since it could simply move down its concentration gradient.

2.4.6 Stereospecificity

The present study demonstrated that MDG was transported into the aqueous humor more 

readily than its stereoisomer, LG. This finding is consistent with other studies in which D- 

glucose also crossed cells more readily (DiMattio and Zadunaisky, 1982; Stramm and 

Pautler, 1982; DiMattio and Streitman, 1986). This clearly shows that the glucose 

transport mechanism across the bovine CBE exhibits stereospecificity. However, the D- to 

L-glucose transport ratio of 6.3-6.5 in the bovine CBE might somewhat underestimate the 

true value. Although MDG has been widely used to evaluate D-glucose transport in 

different tissues (Stramm and Pautler, 1982; DiMattio, 1984a), it does possess an 

additional methyl group not present in D-glucose itself. This modification has been 

suggested to hinder the transport efficiency of MDG as compared to D-glucose (DiMattio 

and Zadunaisky, 1981). It has been shown that the transport rate of MDG is slower than 

that of D-glucose, but faster than urea in ocular epithelia (DiMattio and Zadunaisky,

1981). This result contradicted an early finding in frog RPE, in which MDG was 

transported at a faster rate than D-glucose (Zadunaisky and Degnan, 1976). Therefore, 

there may be a slight difference in the transport rate between D-glucose and MDG across 

the bovine CBE in vivo. However, MGD was used in this study because the metabolism
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of D-glucose can be variable, relatively complex (DiMattio and Zadunaisky, 1981) and 

would have been a difficult factor to control in experiments.

The stereospecificity of glucose transport has been demonstrated in aqueous and vitreous 

barriers of Sprague-Dawley rats (DiMattio and Zadunaisky, 1981). D-glucose was found 

to transport into the aqueous and vitreous at a higher rate than LG. However, exact 

stereospecificity between D-glucose and LG was difficult to determine because of the 

metabolism of D-glucose. Glucose transport stereospecificity has also been investigated 

for bovine, bullfrog and rat RPE, using D-glucose and also for rat lens by using MDG. 

The bovine RPE possessed a D- to LG transport ratio of 2.2 (To and Hodson, 1998b) 

while a ratio of 13.0 was observed in bullfrog RPE (DiMattio and Streitman, 1986). A 

ratio of 4.6 was found for rat RPE (DiMattio and Zadunaisky, 1983) and of 3.0 in the rat 

lens (DiMattio, 1984a). Apparently, species and cellular differences are present in 

glucose transport stereospecificity, and the stereospecificity in bovine CBE is somewhat 

higher that that measured in bovine RPE (with a ratio of 2.2) (To and Hodson, 1998b). 

Surprisingly, no stereospecificity of glucose transport was found in the rat cornea 

(DiMattio, 1984a).

2.4.7 Glucose transport mechanism in the bovine CBE

This study demonstrated that the transport mechanism of glucose across the bovine CBE 

is primarily via facilitated passive transport. The application of phloretin exhibited a 60% 

inhibition of the MDG flux and cytochalasin B caused an ~ 80% reduction. These 

inhibitors are highly specific for GLUTs, which suggested the presence of passive 

facilitated transport as the major route for glucose transport in the bovine CBE. The
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greater potency of cytochalasin B, compared to phloretin, agrees with previous studies in 

bovine RPE (To and Hodson, 1998b) and frog lens (Lucas and Duncan, 1983). Both 

phloretin and cytochalasin B did not cause any significant change in LG flux. This 

suggests that LG diffuses across cell membrane in a paracellular manner, and thus is not 

affected by these inhibitors.

The significant inhibition by phlorizin (~ 20%) and the mild inhibition by ouabain were 

unexpected, since facilitative type glucose transport has been presumed to be the only 

glucose transport mechanism in the CBE, as it is constantly under a stable glucose 

gradient (Cole, 1984; Abdel-Latif, 1997). Since passive facilitative glucose transport 

does not require a transmembrane sodium gradient (To and Hodson, 1998b), the 

dissipation of the sodium gradient with ouabain should not have direct effect on the 

glucose transport across the bovine CBE.

The binding conditions and inhibitory effects of glucose transport with phlorizin have 

been widely investigated (Stramm and Pautler, 1982; Lucas and Duncan, 1983; Hosoya et 

al., 1996; Oulianova and Berteloot, 1996). The significant reduction of glucose flux 

across CBE by phlorizin might be explained by two possibilities. Firstly, phlorizin could 

have inhibited a SGLT present in the bovine CBE membrane by binding directly to its 

glucose binding site. Secondly, phlorizin could have inhibited the GLUTs present in the 

CBE by transforming (via hydrolysis) into phloretin (Malathi and Crane, 1969). For 

example, phlorizin caused significant reduction of glucose transport in human tumour 

cells (Nelson and Falk, 1993), when GLUTs are widely known to be the commonest 

glucose transporter isoform in the tumour cells (Das, 1999; Kato et al., 2002). In brain 

tissues, phlorizin’s inhibitory effect was significant too (Betz et al., 1975), even though it
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is known that GLUT1 and GLUT3 are the predominant isoforms that exist in the brain 

(Simpson et al., 1994; Vannucci et al., 1997). This evidence of non-specificity of 

phlorizin towards different glucose transporter families therefore complicates our 

interpretation in the present study, since it is not possible to determine the extent to which 

phlorizin was hydrolyzed into phloretin. There were no significant changes in electrical 

parameters during the bilateral phlorizin addition, which argues against a major 

contribution by the SGLTs. This is because the inhibition of SGLTs by phlorizin should 

result in a change in the sodium gradient and potential across the membrane (Hosoya et 

al., 1996; Horibe et al., 1997). However, we could not rule out the presence of a minor 

contribution by SGLTs which may produce very small changes in the PDt or Isc during 

phlorizin addition. To investigate this issue further, expression studies on transporter 

genes and proteins were carried out in Chapters 4 and 5.
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2.5 Conclusion

This study suggested that the glucose transport across the bovine CBE was via a bi­

directional carrier-facilitated transport mechanism. A similar mechanism has been 

reported in the BRB (Takata et al., 1997; Busik et al., 2002) which shares the same 

embryological origin as the BAB during development. Active glucose transport, if 

present, is unlikely to play a major role in the physiological glucose transport across the 

bovine CBE.
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3.1 Introduction

3.1.1 Overview of experiments

In this chapter, the glucose flux (i.e. Jsa) under various glucose concentration gradients 

was investigated. Five different glucose concentration gradients were established across 

the bovine CBE, with the stromal side having the higher concentration, and the 

osmolarity balanced by the addition of sorbitol on the aqueous side. Modifications were 

made to the modified Ussing-type chambers to reduce tissue damage and improve 

functional stability.

If glucose transport across the bovine CBE occurs by a carrier-mediated system, it should 

be saturable -  given a sufficiently high plasma glucose concentration. Therefore, there 

should be a point at which further increases above this saturating plasma glucose 

concentration would cause no further increase in the glucose flux. To examine this issue, 

a series of experiments were performed in which the stromal glucose concentration was 

varied. The change of the glucose transport rate was observed, and the transport kinetic 

parameters, the Michaelis constant (K„,) and maximum velocity (Vmax), were estimated 

by the use of an Eadie-Hofstee plot.
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3.1.2 The Michaelis-Menten equation

The enzyme kinetic model is a biochemical scheme, which describes the enzyme- 

substrate catalytic reaction. It represents an overall reaction composed of two sub­

reactions in which enzyme (E) and substrate (S) bind to each other to form an enzyme- 

substrate complex (ES) and at the same time, the complex is decomposing into product 

(P) and E:

ki k2
E + S r  - ES-----------► P + E

k.,

Where kjt k.j and k2 are the rate constants of corresponding reactions. According to this 

model, the second reaction would become the limiting step of the overall reaction when 

the substrate concentration ([S]) was high enough to bind all enzymes into ES complex.

A further increase in the substrate concentration would have no effect on the overall 

reaction rate. In other words, it is a model used to explain why, when at low [S], the 

initial reaction velocity (V 0) is directly proportional to [S], while reaction velocity tends 

to reach a maximum (V max) that is independent of [S] at high [S]. It is a common concept 

applied to describe the substrate affinity or transport velocity of a biological system, such 

as ascorbate transport in the isolated rabbit CE (Chu and Candia, 1988), sugar transport in 

the dog kidney (Turner and Silverman, 1978) and bovine BBB (Lee et al., 1997). In order 

to make it useful to use in experimental quantitation, the enzyme-kinetic model can be 

formulated using the Michaelis-Menten equation:

y  _  V m ax • [ S ]

° "  K m + [ S ]
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which is a description of the hyperbolic curve of V0 against [S]. The Michaelis constant 

(Km) is defined as:

_ k - \  + ki
/Cm — ----------------

k\

and is the sum of the rates of binding and dissociation of substrate and enzyme, compared 

to the rate of complex formation. Experimentally, it can be determined as the 

concentration at which a transport system is half-saturated (i.e. Vmax/2). It is also a 

measure of the affinity of a transporter or enzyme for its substrate. A high Km indicates 

weak binding and thus, low affinity of the system. A low Km indicates strong binding and 

therefore, high affinity of the system.

In general, two transformations of the Michaelis-Menten equation are commonly used in 

describing transport kinetics, these include the Lineweaver-Burk plot and the Eadie- 

Hofstee plot.

3.1.2.1 The Lineweaver-Burke plot

The Lineweaver-Burke plot, also called the “double reciprocal plot” is a graphical

representation of enzyme kinetics. It is one of the transformations of the Michaelis-

Menten equation, which is commonly used in the analysis of transport kinetics, e.g. in

frog RPE (DiMattio and Streitman, 1986), rat retina and RPE (Vilchis and Salceda,

1996), where it was adapted for characterizing the tissues’ carrier-mediated glucose

transport. The Lineweaver-Burk equation is:

1 K m  1 1+
V o  V m ax [ S ]  V m ax

Figure 3.1 illustrates an example double reciprocal plot. The y-intercept represents 1/Vr 

and the x-intercept represents -1/Km.
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1

Km

1/[S]

Figure 3.1 An illustration of a Lineweaver-Burk plot.

Despite its useful attributes, the Lineweaver Burk plot is regarded as an inferior method 

to Eadie-Hofstee plot, since it tends to overweight the contribution of data taken at low 

substrate concentrations.

3.1.2.2 Eadie-Hofstee plot

The Eadie-Hofstee diagram, also called Woolf-Eadie-Augustinsson-Hofstee or Eadie- 

Augustinsson plot, is another commonly used linear presentation of the Michaelis- 

Menten Equation. Similar to the Lineweaver-Burk plot, it is a graphical presentation of 

enzyme-substrate kinetics, which allows rapid determination of the Km and Vmax. The 

kinetic terms can be deduced by plotting the reaction velocity, which is the transport rate 

(Jsa) in this study, as a function of the velocity-per-unit-substrate concentration. The 

Eadie-Hofstee equation is:
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This transformation has been used in a variety of kinetic analysis studies, such as the 

glucose transport in chick RPE (Masterson and Chader, 1981) and bovine RPE (To et al., 

1998c). It is considered to be superior to the Lineweaver-Burk plot because it gives equal 

weight to every data point. An illustration of an Eadie-Hofstee plot is given in figure 3.2. 

Transport kinetics can simply be deduced according to the slope (-Km) and y-intercept

<y*md-

V

max

V/fSl

Figure 3.2 An illustration of an Eadie-Hofstee plot.

3.1.3 Saturation studies

Table 3.1 summarises the glucose transport kinetic studies that have been carried out for 

ocular tissues. Inter-species differences clearly exist. It is noted that only a single study 

has been carried out in characterizing the glucose transport across the CBE (DiMattio and 

Zadunaisky, 1981).
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Ocular
tissues Species Substrate Km (mM) v max Reference

BAB Rat D-glucose 6.1 22.5 nmol/min
(DiMattio and 
Zadunaisky, 

1981)

BRB Rat D-glucose 0.2 & 7.8 —
(Ennis et al., 

1982)

BVB Rat D-glucose 4.6 23.8 nmol/min
(DiMattio and 
Zadunaisky, 

1981)

Retina

Rat 2-deoxy-D-
glucose 2.0 750 nmol/g/min

(Vilchis and 
Salceda, 1996)

Rat
(diabetic)

2-deoxy-D-
glucose 5.0 1500 nmol/g/min

(Vilchis and 
Salceda, 1996)

Frog 2-deoxy-D-
glucose 5.1 699 nmol/mg/min

(Witkovsky and 
Yang, 1982)

RCP Bovine
culture MDG 1.53 0.50 mmol /

(pg DNA)/ min at 37°C
(Li et al., 1985)

RPE

Bovine D-glucose
27 (C-»R) 

9.5 (R->C)

2100 nmo/cm2/hr 
(C->R)

710 nmol/cm2/hr 
(R-*C )

(Crosson and 
Pautler, 1982)

Bovine MDG 30.8 (C->R) 2452nm ol/cm 2/h r (C ^ R ) (T o e / al., 1998c)

Chick
culture

2-deoxy-D-
glucose 2.7 22 nmol/min/mg 

protein
(Masterson and 
Chader, 1981)

MDG 4.5 27.7 nmol/min/ 
mg protein

(Masterson and 
Chader, 1981)

Frog MDG
19.3 (C-»R) 

16.2 (R-»C)

1050 nmol/cm2/hr 
(C -»R )

952 nmol/cm2/hr 
(R ^ C )

(DiMattio and 
Streitman, 1986)

Human
culture MDG 5.6 0.45 nmol/ 

mg protein/min
(Busik et al., 

2002)

Rat (Diabetic) 2-deoxy-D-
glucose 20.0 750 nmol/g/min (Vilchis and 

Salceda, 1996)

Rat MDG

1.9

&

640

12.0 nmol/ 
mg protein/min 

&
12.2 

nmol/ 
mg protein/min

(Stramm and 
Pautler, 1982)

RVE

Human
culture MDG 6.3 1.4 nmol/ 

mg protein/min
(Busik et al., 

2002)

Rat culture MDG 5.56 ±0.51
45.3 ±  2.6 

nmol/ 
mg protein/ min

(Hosoya et al., 
2001)

Table 3.1 Transport kinetic studies in different ocular tissues. BVB: blood vitreous 

barrier, RCP: retinal capillary pericytes, RVE: retinal vascular 

endothelium, (C->R): from choroid to retina direction, (R->C): from 

retina to choroid direction.
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As well as difference between species, e.g. frog retina (Witkovsky and Yang, 1982) was 

of lower affinity to 2-deoxy-D-glucose than that of rat (Vilchis and Salceda, 1996), 

studies in the same species also show high variability. These differences vary with the 

ocular tissues being investigated and the substrates being used. Therefore, a general 

conclusion cannot be drawn unequivocally due to this variability.

In rat RPE, high- and low-affinity transport systems were found to co-exist (Stramm and 

Pautler, 1982), and similar transport mechanisms were also observed in the rat BRB 

(Ennis et al.t 1982). This type of high and low-affinity mechanism is not uncommon: 

different transport affinities have been demonstrated in kidney (Mackenzie et al., 1996; 

Oulianova and Berteloot, 1996). This was recognised as being the result of the presence 

of different glucose transporters, which possess their maximum transport capacity at 

differing glucose concentrations.

In two studies of the bovine RPE, the glucose transport kinetics in the direction choroid- 

to-retina were comparable, as were the transport capacities (Crosson and Pautler, 1982;

To et al., 1998c). MDG was said to be a good substitute for D-glucose in transport kinetic 

studies, since the results based on MDG alone did not deviate greatly from that of the D- 

glucose. The bovine RPE revealed a low affinity but high capacity, suggesting that the 

retina is a highly metabolic tissue (Miceli et al., 1990). Because of its requirements in this 

regard, a system that does not saturate under physiological conditions is beneficial.

In diabetic models, tissues typically demonstrate a significant decrease in glucose 

transport affinity (Vilchis and Salceda, 1996). In the rat retina, an increase of 2.5-fold of 

Km resulted after exposure to simulated diabetic conditions, and double the amount of 

glucose could be transported across the cell membrane. This finding agreed with previous
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work based on comparisons between normal and diabetic rats (Ennis et al., 1982), and 

clearly showed that exposure to diabetic conditions can change the normal glucose 

transport properties of an organ (Ennis et al., 1982; Mandarino et al., 1994).

As shown in table 3.1, previous studies have focused mostly on the retina and RPE, hence 

little information is available regarding the saturation characteristic in BAB, or the CBE. 

The present study aimed to investigate these characteristics, and therefore, lead to a better 

understanding of the mode of glucose transport across the CBE.
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3.2 Methodology

3.2.1 Materials and bathing solution

All the materials and the Ringer solution used in this part of the project were the same as 

in the previous chapter (section 2.2.1), with an additional chemical, sorbitol, which was 

purchased from Sigma-Aldrich Company (St. Louis, MO). The D-glucose concentration 

in the Ringer solution was varied, as described below.

3.2.2 Tissue preparation, selection and dissection

Please refer to sections 2.2.2 and 2.2.3 for details.

3.2.3 Ussing-type chamber configuration and modification

Continuous-perfusion-type Ussing chambers, similar to those described in the previous

chapter were used, with minor modifications. Figure 3.3 highlights these changes, 

including newly inserted O-rings surrounding the tissue cavity and also pins introduced 

between the silicone plates. The modifications provided the advantage of decreased edge 

damage of tissues upon mounting and therefore decreased leakage. Furthermore, the pins 

on the silicone plates held the tissues in place in a tighter manner which increased the 

stability of tissue mounting.

3.2.4 Chamber preparation and tissue mounting

The chamber preparation was similar to that described in section 2.2.5, except that an O- 

Ring was placed on top of the O-Ring groove after application of silicone lubricant on the 

silicone plate. After the O-Rings were in place, silicone grease was applied again to seal
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a) Front view of the modified Ussing-type half-chambers.

Pins

b) Side view of the modified Ussing-type half-chambers.

Fig. 3.3 Configurations of the modified Ussing-type chambers.

Pin slots

.m.Jm.A
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the gap between the chambers and the rings. This was to ensure good sealing and a good 

cushioning effect for the CBE preparations.

The tissue mounting procedure used was also altered slightly. Since pins were included as 

one of the modifications to the chambers, CBE tissues could only be placed on the side of 

chambers without pins. In this case, the CBE tissues could lie flat and carefully exposed 

to the cavity. The other half chamber was then slid gently into place and the tissue was 

clamped tightly by adjusting the screws and nuts. Extra care was taken when tightening 

the chamber halves since the pins from the top chamber would go through the tissues 

which lay outside the tissue cavity area, and then fitted into the pin slots of the lower 

chamber. The final tightness was adjusted slowly by turning the wing nuts as described in 

2.2.6.

3.2.5 Glucose flux measurement

Electrical parameters were measured as described in details in section 2.2.7. For glucose 

flux measurement, the radioactive tracer method used in the previous section was again 

employed. Varying concentration gradients were set up by elevating the glucose 

concentration on the stromal side. Studies were performed for different stromal glucose 

concentrations of 7.5, 15, 30,45, 60 mM, while the aqueous glucose level was 

maintained at 7.5 mM. The Jsa at these five gradients was studied. Osmolarity at the 

aqueous side was balanced by the addition of sorbitol, a chemical that possesses similar 

molecular weight to glucose (MW 181.6 versus 181.0), but which is not transported by 

any of the known glucose transporters. For example, in the experiment involving a 7.5 

mM concentration gradient, 15 mM D-glucose Ringer solution was perfused to the 

stromal side, and 7.5 mM of D-glucose plus 7.5 mM sorbitol Ringer solution to the
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aqueous side. Initial stabilization was allowed for 60 minutes and background 

radioactivity and further radioactive measurement were performed as described in section 

2.2.9.1. However, for concentration gradients higher than 15 mM, it was necessary to 

increase the concentration in a stepwise manner, using 15.0 or 7.5 mM steps, until the 

desired concentration was reached (Table 3.1). For example, a concentration gradient of 

45 mM was started at 15 mM at the stromal side and 7.5 mM D-glucose at the aqueous 

side. After 30 minutes stabilization, Ringer solution containing 22.5 mM glucose was 

perfused to the stromal side of the preparation and allowed to equilibrate for another 30 

minutes. This resulted in a concentration gradient of 15 mM across the CBE preparation. 

Then, two more 15 mM changes were performed, with 52.5 mM Ringer perfusing into 

the stromal side eventually, which produced a 45 mM glucose concentration gradient. 

After the desired gradient was reached, the preparation was left to stabilise for another 60

minutes and control perfusates were collected. A change of solution to those containing 

radioactive isotopes was then carried out, and preparations were stabilised for another 

hour. Finally, radioactive perfusates were collected and analyzed as described earlier.

Change of 
solutions

D-glucose concentration ( mM )

S A S A S A S A S A
Initial 15 7.5 15 7.5 15 7.5 15 7.5 15 7.5

1st — — 22.5 7.5 22.5 7.5 22.5 7.5 22.5 7.5
2nd

— — — — 37.5 7.5 37.5 7.5 37.5 7.5
3rd

— — — — — — 52.5 7.5 52.5 7.5
4th — — — — — — — — 67.5 7.5

Final
concentration

gradient
7.5 15 30 45 60

Table 3.2 Stepwise build-up of the glucose concentration gradient across the bovine
CBE. S is the stromal side, A is the aqueous side.
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Glucose flux results were calculated and plotted in an Eadie-Hofstee relationship, to 

allow the deduction of transport kinetics for CMDG to be determined. The properties, Km 

and Vmax, of the bovine CBE were deduced as described in section 3.1.2.2.

3.2.6 Test of viability

In this part of the study, preparations were considered to be viable if they fulfilled the 

same criteria as described in Chapter 2 (section 2.2.8): 1) a stable PDt and Rt greater than 

-0.2 mV and 70 Gem2 respectively, before the first change of Ringer solution to higher

1 *7concentration, 2) a low diffusional LG flux (i.e. lower than 70 nmolhr cm ), and 3) a 

biphasic response to ouabain, when added to the aqueous side. Again, preparations were 

rejected if they failed in any one of these criteria.

3.2.7 Statistical analysis

Statistical calculations were performed by using Excel (Microsoft) or GraphPad Prism 

(version 3.02). All data were expressed as mean ± S.E.M. and p < 0.05 was considered as 

statistically significance. The unpaired Student’s t-test was used to compare the results 

between different tissue samples. One-way ANOVA with Tukeys multiple comparison 

test or Dunnett’s post-hoc test was performed to evaluate variations within a set of tissue 

samples.
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3.3 Results

3.3.1 Glucose influx across the bovine CBE

Glucose fluxes from stromal to aqueous side were measured and analyzed for five 

different concentration gradients (Table 3.2). The stereospecificity of CBE in transporting 

glucose was maintained across a wide range of concentration gradients, with the highest 

recorded at 30 mM. When compared to 7.5 mM, 30 mM or higher gradients caused a 

significant increase in both MDG influx and CMDG fluxes (Dunnett’s post-hoc test, p < 

0.01, n = 6-8). The LG influx, on the other hand, increased steadily but slowly with the 

increase of concentration gradient. When compared to 7.5 mM, 45 mM or higher 

gradients caused a drastic increase in LG flux (Dunnett’s post-hoc test, p < 0.05, fig. 3.4).

Concentration
gradient

(mM)

Jsa (nmolhr' cm' ) D- to L-
glucose

ratioLG MDG CMDG

7.5(10) 36.2 ± 8.6 236.6 ± 24.0 200.4 ±23.6 5.5

15(6) 39.6 ±6.1 306.0 ±28.0 266.4 ±27.3 6.7

30 (6) 44.2 ± 7.6 353.6 ±31.2 309.4 ± 27.9 7.0

45 (6) 49.1 ±3.7 347.1 ±40.3 298.1 ±36.4 6.0

60 (8) 62.4 ±10.1 383.9 ±40.6 321.4 ±34.6 5.2

Table 3.3 Glucose fluxes under different concentration gradients. Numbers

of completed experiments are in parenthesis. Flux data are all 

expressed as mean ± S.E.M..

3.3.1.1 Saturation characteristics

An Eadie-Hofstee plot of the CMDG was used to analyze the transport kinetics of 

glucose across the CBE. The Eadie-Hofstee plot of CMDG showed high linearity, with 

Km and Vmax equal to 5.3 mM and 349.5 nmolh'1 cm'2 respectively (Fig. 3.5).
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Fig. 3.4 Influx measurements in five glucose concentration gradients.
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Fig. 3.5 Eadie-Hofstee plot of CMDG (r2 = 0.93, mean ± S.E.M.).
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3.3.2 Electrical param eter measurements

In this study, electrical parameters including PDt, Rt and Isc were monitored as in the last 

chapter (Table 3.3). Only a borderline statistically significant influence was observed 

with different glucose concentration gradients on Rt (Dunnett’s post-hoc test, p > 0.05, n 

= 6-8). However, significant influences were noted on PDt and Isc with concentration 

gradients of 30 mM (Dunnett’s post-hoc, p < 0.001, n = 8), 45 mM (Dunnett’s post-hoc 

test, p < 0.001, n = 8) and 60 mM (Tukey’s post-hoc, p < 0.001, n = 8), when compared 

to the 7.5 mM concentration gradient. Representative plots of the changes in PDt and Isc 

with concentration gradients and addition of ouabain are given in figures 3.6 and 3.7. A 

summary of the changes measured at gradients of 30, 45 and 60 (in mM) are shown in 

figures 3.8-3.10.

Concentration 
gradient ( mM) PDt (mV) Rt (Hem2) Isc (pAcm2) n

7.5 -0.39 ± 0.08 107.7 ±4.8 -3.54 ±0.58 10

15 -0.20 ± 0.03 93.8 ±5.1 -2.12 ±0.29 6

30 -0.12 ±0.03 112.0 ±4.4 -1.01 ±0.22 6

45 0.16 ±0.04 102.3 ±4.3 1.50 ±0.36 6

60 0.34 ±0.06 104.6 ±4.8 3.30 ±0.63 8

Table 3.3 Electrical parameters of the CBE preparations under different

concentration gradients. All the data stated above are data calculated at 

60 minutes after the desired concentration gradients were reached. 

Results are presented as mean ± S.E.M..
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Fig. 3.6 Changes of PDt with a final glucose concentration of 60 mM. The 

data indicated the PDt of the aqueous side with respect to that of 

stroma across the bovine CBE. Each change in concentration is 

indicated with an arrow. The broken arrow indicates the addition of 

ouabain. Please refer to table 3.1 for details.
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Fig. 3.7 Changes of Isc across CBE with a final glucose concentration

gradient of 60 mM. The data indicated the resultant ion transport 

into the aqueous with reference to the stromal side. Each change is 

indicated with an arrow. The broken arrow indicates the addition of 

ouabain.
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Fig. 3.8 PDt changes in experiments up to 30 mM concentration gradients (r2= 0. 78).
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Fig. 3.9 PDt changes in experiments up to 45 mM concentration gradients (r2 = 0. 77).
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Fig. 3.10 PDt changes in experiments up to 60 mM concentration gradients (r2 = 0. 74).
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3.4 Discussion

3.4.1 Glucose saturation characteristics of bovine CBE

The glucose transport kinetics across the bovine CBE were determined by using an 

Eadie-Hofstee plot. The Km and Vmax were 5.3 mM and 349.5 nmolh'1 cm'2 respectively, 

and indicated that the glucose transport across the bovine CBE would be likely to saturate 

at a stromal glucose concentration of » 10.6 mM (i.e. double the Km value) with a 

maximum glucose transport rate of 349.5 nmolh'1 cm'2. Previous studies on bovine RPE 

demonstrated a lower affinity, but much higher capacity in transporting glucose into the 

retina (Crosson and Pautler, 1982; To et al., 1998c) than across the CBE. These studies 

revealed that glucose transport across the RPE is not limiting at normal plasma glucose 

concentrations. This would be beneficial, since the RPE is crucial in transporting glucose 

into the retina, in order to ensure an adequate glucose supply to meet the needs of the 

highly metabolically-active retinal tissues, including the photoreceptors (Adler and 

Southwick, 1992; To et al., 1998c).

As mentioned above, the experimental work carried out in this chapter suggests that 

glucose transport across the bovine CBE will saturate at a stromal glucose concentration 

of » 10.6mM. It should be noted that this finding may not necessarily reflect the diabetic 

condition, since it was an acute rather than a chronic alteration of glucose levels. It is 

known that tissues which have been exposed to elevated glucose concentrations can 

become leaky (through an increase in paracellular glucose movement) and that 

hyperglycemia can affect the glucose transport rate. Similar changes in the transport 

characteristics of “diabetic exposed” tissues have been reported in rat retina and RPE 

(Vilchis and Salceda, 1996). These alterations in glucose transport might result from
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glucose toxicity (Gaynes and Watkins, 1989; Unger, 1991) and other hyperglycemic 

complications.

3.4.2 Viability of preparations

3.4.2.1 L-glucose (LG)

LG was again used as the diffusional control. The general LG influx in the present study 

was low and indicated the new Ussing-type chamber was not leaky. Similar to the last 

study (Chapter 2), the subtraction of the LG flux from the MDG flux enabled the 

transcellular glucose flux to be calculated. This (indirectly) caused a reduction of the 

MDG flux increase at higher glucose concentration gradients. The fact that the LG fluxes 

were lower than the preset criteria and also smaller than those measured in a previous 

study (To et al., 1998a), indicated that the preparations were not leaky, and therefore that 

passive diffusion was not the dominant mode of glucose transport.

3.4.2.2 Ouabain response

At the end of each experiment, ouabain was added to the aqueous side as a final check of 

viability. Only those preparations (~ 80%) that gave a biphasic response to ouabain were 

included in the final analysis. Preparations might also be rejected when no stable 

electrical parameters could be obtained after the first stabilization period (Please refer to 

Chapter 2 (section 2.4.3) for details).
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3.4.2.3 Electrical parameters

All of the results included in the present study were collected from preparations, showing 

a consistently negative PDt before the first change of solution. Other electrical parameter 

changes with the increase of glucose concentration are discussed below.

3.4.3 Electrical parameter changes with glucose concentration

Figures 3.6 and 3.7 illustrate the electrical parameter changes upon increments of plasma-

side glucose level. It was noted that a plasma glucose concentration higher than 30 mM 

caused a polarity change, with the aqueous side becoming positive. In a previous study, 

significant changes of PD and 1  ̂were also reported at very high glucose concentrations 

(i.e. 205 mM) in frog RPE and glucose fluxes were affected too with a concentration of 

100 mM (DiMattio and Streitman, 1986). However, a glucose concentration as high as 

100 mM has been suggested to be detrimental to the RPE (DiMattio and Streitman, 1986; 

To et a l , 1998c). Yet, these concentrations are far higher than those used in the present 

study, and the preparations studied here were still responsive to ouabain. One could 

postulate that the tissues were alive, but their electrical characteristics were somehow 

altered in response to the increase in extracellular osmolarity.

3.4.3.1 Cell volume regulation

Most living cells have the ability to self-regulate their volume, in order to counter balance 

alterations in extra- or intra-cellular solute content ratio (Rink, 1984). In general, an 

increase in extracellular osmolarity induces cell volume increase through water 

absorption, and vice versa. Such compensatory mechanisms, which act to restore proper
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cell size and functions, are called regulatory volume increases (RVI) or decreases (RVD) 

(Civan et a l, 1996).

In the bovine CBE, constant ionic and electrochemical gradients are maintained by the 

actions of various ion transporters and channels (Do and To, 2000). In the present study, 

the increase in the extracellular solute concentration led to a change in transmembrane 

polarity. It indicated that there was a net increase either in cation movement in the 

aqueous direction or anion movement in the stroma direction. Although, the exact ion 

mechanism for the observed changes in PDt is unknown, hyperosmotic stress and volume 

regulation can lead to changes in the potential difference via activations of various ion 

transporters or channels. Hyperosmotic shrinking has been demonstrated to activate the 

Na+/K+/2C1' cotransporter and sodium-proton exchanger (Na+/H+ exchanger) to restore 

the cell volume by water absorption as a secondary effect (Burg, 1995; Lang et al., 1998; 

Wehner and Tinel, 1998). Activation of chloride and other channels has also been shown 

in kidney tissues and several cell lines, due to intracellular hypertonicity (Kawahara and 

Matsuzaki, 1993; Hardy et al., 1995; Kanzaki et al., 1999). In rat muscles, an increase of 

20 mM glucose or mannitol activated Na+/K+/2C1' cotransporter activity, which 

subsequently induced water absorption into the cells (Gosmanov et al., 2003).

In the ciliary body, potassium channels and chloride channels were found to be activated 

separately in RVD in human, with or without the help of ion transporters (Yantomo et al., 

1989). A study of the NPE demonstrated its ability to induce RVI by activation of four 

different mechanisms, which mainly stimulated the uptake of sodium and chloride ions 

from the aqueous humor (Civan et al., 1996).
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In the present study, it is possible that the hyperosmolarity altered the transmembrane 

polarity through complex activation of the Na+/K+/2C1‘ cotransporter, sodium-proton and 

chloride-bicarbonate antiporter (Na+/H+ and CITHCCV antiporter) activities. These may 

have promoted the accumulation of sodium and chloride ions into NPE and PE cells, 

whilst effecting volume changes (Strange, 1992; Hardy et al., 1995; Civan et al., 1996).

A study into the mechanism of self-regulatory volume in NPE cells also showed that the 

process of RVD was mediated by separate K+ and Cl' conductances. Moreover, the 

change in the NPE cell volume also induced a change in intracellular calcium (Ca*) 

concentration, which facilitated the modulation of cell regulation during RVD (Adorante 

and Cala, 1995). In cardiac myocytes, high glucose induced a rise in the intracellular Ca+ 

concentration (Smogorzewski et al., 1998), which also could be one possible change 

responsible for the polarity alteration of CBE.

In addition, an increase in the active transport of osmolytes into the epithelial bilayer 

would be another explanation, since many Na+-solute transporters including the 

Na+/myo-inositol cotransporter (Morimura et al., 1997), Na+-ascorbate cotransporter 

(Helbig et al., 1989) and SGLT (details are discussed in Chapter 4) have been found in 

the CBE. These mechanisms are used in the brain to counter balance any extracellular 

deviations by actively transporting osmolytes including taurine, glutamate, or myo­

inositol (Strange, 1992). Therefore, the changes in the rate of ion, and/or solute transport 

could have induced an accumulation of sodium in the epithelial bilayers. At higher 

intracellular sodium ions concentration, the transport rate of the Na+, K+-ATPase of the 

CBE may be increased (such an effect has been demonstrated in Ehrlich ascites tumour 

cells, in which the sodium efflux increased 2.5 to 3 times in glucose-treated cells (Laris
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and Henius, 1982)). This could increase the vectorial transport of sodium into the 

aqueous and therefore induce a depolarization across the CBE. However, exactly how 

different ions contributed to the change is yet to be elucidated. In any case, apparently, 

the Na+, K+-ATPases remained unchanged in high-glucose condition, since the biphasic 

response was still present after the addition of ouabain (Fig. 3.6).

3.5 Conclusion

The present study has demonstrated the glucose transport kinetics across the bovine CBE 

using a wide range of glucose gradients. The results indicate that glucose transport across 

the bovine CBE is saturable and it is also consistent with a facilitated and carrier- 

mediated model of glucose transport mechanism.
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Chapter 4

(jCucose transporter gene 
expression in the C®E
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4.1 Introduction

In this study, RT-PCR was used to screen the mRNA expression of seven glucose 

transporters (GLUT1-5 and SGLT1-2) in the bovine CBE. Possible expression 

differences between the pars plana and pars plicata regions of the CBE were also 

investigated.

Firstly, bovine glucose transporter mRNA sequences were retrieved from GenBank for 

primer design. Bovine CBE tissues were isolated and RNA extraction was performed. 

The RNA samples were reverse-transcripted into cDNA templates and PCR was carried 

out with the isoform-specific primers. Amplified DNA samples were analyzed by gel 

electrophoresis and sequencing, for molecular weight determination and identity 

confirmation, respectively.

The kinetic study (Chapter 2) showed that glucose transport across the bovine CBE is 

driven mainly by a facilitative mechanism. The present set of experiments was designed 

to investigate the mRNA expression of the two major transporter families (GLUTs and 

SGLTs) to elucidate the molecular basis of glucose transport in this tissue.

A previous study suggested that glucose transport across the bovine CBE is likely to be 

facilitative/passive, as active glucose transport seems unnecessary under the natural 

glucose concentration gradient (Takata et al., 1991). However, the kinetic study of this 

project suggested a slightly different point of view, since phlorizin, a specific SGLT 

inhibitor, reduced the trans-CBE glucose flux significantly. With this molecular study, a 

clearer picture on the glucose transport across bovine CBE could be drawn.
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4.1.1 G ene expression  o f g lucose transporters in the eye

Numerous studies have demonstrated GLUT and SGLT mRNA expression in ocular

tissues including the cornea, lens, RPE and retina. Details o f gene expression findings on

ocular tissues are summarised in table 4.1. However, detailed investigation on their

expression in CBE has not been reported previously.

Gene Ocular tissues M ethods
Gene size 

(kbp)
Species Reference

Conjunctiva Northern blotting . . . Human
culture

(Gherzi et al., 
1991)

Corneal epithelium

RT-PCR 
Northern blotting

2.8 Rat
(Takahashi et 

al., 1996)

RT-PCR _ Rat
(Takahashi et 

al., 2000)
Corneal epithelium and 

endothelium
Nuclease protection 

assay
. . . Bovine

(Bildin et al., 
2001)

Comeal endothelial cells Northern blotting 2.8
Bovine
culture

(Ishida et al., 
1995)

Lens epithelium

RT-PCR 
Northern blotting 

In situ hybridization
2.9 Rat

(Merriman- 
Smith et a l., 

1999)

GLUT1
Northern blotting 

Quantitative RT-PCR
2.2 Rat

(Merriman- 
Smith et a l., 

2003)
Retinal capillary 

endothelial cells and 
pericytes

Northern blotting 2.8
Bovine
culture

(Mandarino et 
al., 1994)

Retinal endothelial cells Northern blotting 2.8
Human
culture

(Knott et al., 
1996)

Retinal
microvasculature

Northern blotting 
Quantitative RE-PCR

2.8
Human
culture

(Badr et al., 
1999)

BRB,
RVE cells and RPE

Northern blotting 2.8
Human
culture

(Busik et al., 
2002)

RPE

PCR 
Southern blotting 
Northern blotting

2.8
Human
culture

(Takagi et al., 
1994)

RT-PCR 
Northern blotting

3.2
Chick
culture

(Ban and 
Rizzolo, 2000)

GLUT2 Retinal Muller cells
RT-PCR 

Southern blotting — Rat
(Watanabe et al., 

1994)

Lens - cortical fiber cells
RT-PCR 

Northern blotting 
In situ  hybridization

4.0 Rat
(Merriman- 
Smith et al., 

1999)

Lens - epithelial cells
Northern blotting 

Quantitative RT-PCR 4.0 Rat
(Merriman- 
Smith et al., 

2003)

GLUT3 Retinal endothelial cells Northern blotting 4 .1 ,3 .2
Human
culture

(Knott e ta l.,  
1996)

Retinal microvasculature
Northern blotting 

Quantitative RT-PCR — Rat
(Badr et al., 

1999)

RPE
PCR 

Southern blotting
. . . Human

culture
(Takagi et al., 

1994)

RT-PCR . . . Chick
culture

(Ban and 
Rizzolo, 2000)

GLUT5 RPE PCR 
Southern blotting

. . . Human
culture

(Takagi et al., 
1994)

Table 4.1 G ene expression  o f  glucose transporters in ocu lar tissues.
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4.1.2 Regulation of glucose transporter gene expression 

Growth factors. Several growth factors have been found to be effective in regulating 

certain glucose transporter gene expression, including platelet-derived growth factor 

(PDGF), endothelial growth factor (EGF), and IGF-1. PDGF can stabilise GLUT1 

mRNA by increasing its half-life by four-fold (Rollins et al., 1988), while EGF 

upregulated GLUT1 expression by activating the PKC pathway. However, the effect of 

certain growth factors has been more controversial. Isliida et al. (1995) found that 

GLUT1 mRNA expression was not affected by IGF-1 in bovine cornea, while Masters et 

al. (1991) found the cells were IGF-1 responsive in their study. Other growth factors such 

as transforming growth factor-/?l (TGF- p \)  have been found to work synergistically with 

others (e.g. serum, fibroblast growth factor (FGF), PDGF) to increase glucose uptake and 

GLUT1 gene expression by increasing the level of transcription (Kitagawa et al., 1991). 

For human RPE cells, EGF caused a significant increase of GLUT1 mRNA expression, 

but PDGF, IGF-1, and FGF were ineffective (Takagi et al., 1994). However, FGF was 

effective in upregulating GLUT1 mRNA in rat fibroblasts (Hiraki et al., 1988), while 

IGF-1 stimulated GLUT1 expression in brain astrocytes (Masters et al., 1991). Further 

evidence of species variations have also been demonstrated in a carcinoma study, in 

which the same signaling pathway that upregulates GLUT1 in rodents (Flier et al., 1987) 

could only upregulate GLUT3 in chick (Wagstaff et al., 1995; Steane et al., 1998). These 

studies clearly demonstrated inter-species and tissue differences in gene regulation 

mechanisms, which might be highly dependent on the relevant intracellular signal 

transduction pathways or cell surface receptor expression.
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Transcriptional factors. Nuclear factors Spl and Sp3 were found to be important in 

GLUT3 mRNA regulation, since the former mediated suppression, while the latter 

resulted in activation of GLUT3 mRNA transcription in mouse neuroblasts and 

trophoblasts (Rajakumar et al., 1998). In addition, the transcription factor KLF15 was 

found to mediate regulation of GLUT4 in cardiac muscle tissues by binding to specific 

DNA response elements (Gray et al., 2002).

Insulin, Short-term insulin therapy in diabetic rats normalises the GLUT1 mRNA level, 

yet cannot normalise the GLUT1 protein level (Lutz and Pardridge, 1993). In vivo, 

hyperinsulinaemia caused an inhibitory effect on GLUT2 mRNA expression in rat 

hepatocytes, but it was partially prevented or dominated by the presence of 

hyperglycemia (Postic et al., 1993). Furthermore, studies of human subjects suggested 

that insulin was only useful in upregulating the GLUT4 mRNA level in normal subjects 

and acute stimulation of GLUT4 mRNA seemed to be altered in diabetic patients 

(Schalin-Jantti et al., 1994). However, it was found useful to regain the normal level of 

GLUT4 mRNA in insulin-deficient rats in the adipose tissues (Sivitz et al., 1989). 

Therefore, effect of insulin on GLUT4 mRNA level remains controversial.

Hypoxia or ischemia. Apart from being regulated by growth factors, certain conditional 

changes can also change the expression pattern of glucose transporter genes. In a rat liver 

cell line, GLUT1 mRNA expression was found to be upregulated during inhibition of 

oxidative phosphorylation, which resulted from an increase in gene transcription and a 

decrease in mRNA degradation (Shetty et al., 1993). Chronic hypoxic exposure 

stimulated both GLUT1 and GLUT3 gene expression in both gerbil and rat brain (Lee
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and Bondy, 1993; Gerhart et al., 1994) such as in microvessels, which resulted in a 60% 

increase in capillary density of the cerebrum together with an increase in glucose 

transport capacity of the brain (Shetty et al., 1993). For GLUT3 and GLUT4, hypoxia 

also induced an increase of mRNA transcriptional levels in fetal rat brain (Royer et al., 

2000), which further indicates responsiveness to hypoxia.

Glucose deprivation. Glucose deprivation was found to increase GLUT1 gene expression 

in brain capillary endothelial cells, via stabilization of its mRNA (Boado and Pardridge, 

1993). Such a mechanism, which was previously postulated to be mediated by PKC, was 

also found to be related to the participation of a cis-acting regulatory element (CAE). The 

CAE served to increase the GLUT1 mRNA expression during glucose deprivation, as 

judged by elevation of a GLUTl-luciferase reporter gene and a decrease in the rate of 

mRNA decay (Boado and Pardridge, 2002). For GLUT4, glucose deprivation caused a 

decrease in its mRNA in rat adipose and muscle tissues, while the condition was 

reversible by glucose intake (Sivitz et al., 1989).

Hyperglycemia or glucose toxicity. Elevated glucose levels or simulated diabetic 

conditions can alter GLUT2 mRNA expression both in vitro and in vivo. In an in vivo 

diabetic model, a decrease in GLUT2 expression was seen in pancreatic P-cells, but not in 

cells of the liver, intestine or kidney (Orci et al., 1990; Ohneda et al., 1993). In in vitro 

cell culture, on the other hand, an increase in GLUT2 mRNA expression was seen in 

response to high glucose exposure (Waeber et al., 1994). In skeletal muscles, GLUT4 

mRNA expression was downregulated in hyperglycemia, and only partly reversible with 

glycemic correction. In the same study, GLUT1 was upregulated directly with glucose
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concentration. This revealed incomplete restoration ability of the insulin responsive 

system, but not in the basal uptake system (Dimitrakoudis et al., 1992).

Toxic agents. Glucose transporter gene expression changes were found after exposure to 

agents such as cobalt chloride (II) [Co(II)] and cadmium. After 10-12 days exposed to 

Co(II), an agent that stimulates hypoxia-responsive genes (Watanabe et al., 1996),

GLUT1 and GLUT3 mRNA expression in rat retina were increased by 2.48 fold and 1.5 

fold, respectively (Badr et al., 1999). This is consistent with previous studies on GLUT 

mRNA expression in response to hypoxia. Cadmium, a toxic agent that can cause renal 

glycosuria, induced different or opposite effects on SGLT expression, with both SGLT1 

and SGLT2, expression being reduced. The response, however, was dose-dependent for 

SGLT1, but not for SGLT2. For SGLT3, expression was increased by five-fold in the 

kidney as a result of cadmium toxicity (Tabatabai et al., 2001). Not only does this imply 

that SGLT3 is a stress-response gene, it also indicates response variation within the same 

transporter family.

4.1.3 RT-PCR and related concepts

GenBank Database. The GenBank database is a repository for known nucleotide and 

protein sequences, and is hosted by the National Center for Biotechnology Information 

(NCBI). Newly discovered gene sequence must be submitted to Genbank (or its European 

or Japanese equivalents) as a normal prerequisite to journal publication. GenBank also 

contains expressed sequence tag (EST) sequences contributed by numerous authors and 

sequencing centers (Benson et al., 1999; Stoesser et al., 1999).
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Polymerase chain reaction (PCR). PCR was invented by Kary Mullis in 1984 with the 

first description of this method published in 1985, for its use in amplifying Beta-globin 

sequences in sickle cell anemia (Saiki et al., 1985). This technique allows in vitro 

amplification of a specific region of DNA, which generates numerous copies of DNA that 

could be used for further purposes e.g. cloning and sequencing.

In general, a basic PCR reaction involves two oligonucleotide primers that flank the 

template sequence that is to be amplified. After denaturation of the DNA, the primers 

hybridise to opposite single-strand DNA. The Taq Polymerase then proceeds through the 

region in between the primers, in the presence of deoxynucleotide triphosphates (dNTPs: 

dATP, dCTP, dGTP and dTTP), for DNA synthesis. The resulting double-stranded DNA 

acts as new templates for the next thermal cycle. Amplification of the DNA sequence is 

achieved by repeat cycles of heat denaturation, primer hybridization and sequence 

extension. This reaction can generate up to 105-106 fold amplification of the original 

target DNA after 20-30 successive cycles (Mueller and Young, 2001).

Primer design. A primer is a short oligonucleotide, which is designed to recognise its 

complementary sequence on a cDNA template. Two PCR primers are used in a molar 

excess for each PCR reaction, to provide the specificity of the reaction. After the primers 

anneal to the heat-denatured DNA template strands, two complete complementary 

sequences (the region to be amplified) are synthesized. The pair of primers for a target 

sequence should have: similar GC content, such that they possess a similar melting 

temperature; minimal secondary structure, to prevent self-complementarity, and low 

complementarity to each other at their 3’ends. In this study, all primers were designed 

based on the bovine glucose transporter mRNA sequences present in GenBank. Before
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primer design, sequences were aligned with all other mammalian glucose transporter 

sequences retrieved from GenBank to limit the chances of including sequence errors. 

After a short oligonucleotide was chosen as primer, it was checked against other glucose 

transport sequences to avoid non-specific hybridization (cross-reactivity) with non­

targeted transporters. In this study, the program Clustal W provided by the EMBL-EBI 

(European Bioinformatic Institute) was used for sequence alignment, since it allows 

multiple-sequence alignment so that identities, similarities and differences can be seen.

Melting and annealing temperature. The melting temperature (Tm) of a primer is 

dependent on its constitution of different bases. The Tm can be determined by using the 

following equation for 20 or less base pairs primer:

[(number of base (A + T) x 2°C) + (number of base (G + C) x 4°C)] 

or by using the nearest-neighbour method (Breslauer et al., 1986). The annealing 

temperature of the PCR reaction is usually chosen to be 3-5°C lower than the Tm.

RNA extraction. Extraction of RNA involves the removal of protein and DNA from 

samples using organic solvents (e.g. phenol or chloroform containing 4% isoamyl 

alcohol) and alcohol. Phenol is an oily chemical that is partly miscible with water. In the 

presence of 20% water, it forms an aqueous solution that contains phenol micelles 

surrounded by water molecules. Proteins, which are mainly hydrophobic molecules, can 

partly dissolve in this organic solvent. When mixing equal volumes of phenol and 

aqueous protein samples, most of the phenol molecules tend to dissolve in the 

hydrophobic core of protein. The protein then swells and denatures. Denatured proteins 

gather more micelles of phenol and dissolve more readily in the phenol phase as a result
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of their stronger hydrophobic bonding. The use of both chloroform and phenol helps to 

unfold proteins and to expose the hydrophobic regions so they can bind more readily to 

phenol micelles. Thus, proteins can be completely denatured and removed by repeated 

phenol-chloroform extraction. Since nucleic acids are hydrophilic and highly soluble in 

water, they stay in the aqueous phase. They can be precipitated with high-salt in the 

presence of alcohol (i.e. ethanol or isopropanol). In this study, TRI reagent (Sigma- 

Aldrich Co. Ltd., Dorset) was used for the RNA extraction. It is a mono-phase solution of 

phenol, guanidine thiocyanate, buffer and solubilizing agents. Guanidine thiocyanate is 

an effective reagent that inhibits ribonuclease (RNase) activity (Chomczynski and Sacchi, 

1987) by denaturing all cellular proteins, including RNase (Chan, 1992).

RNA or DNA quantification. The nucleic acid concentration of a sample can be 

determined by using spectrophotometry. One unit absorbance at 260 nm corresponds to 

approximately 50 pg/ml and 44 pg/ml of double-strand DNA and single stranded RNA, 

respectively. Resonance structures of pyrimidine and purines bases are responsible for the 

absorbance, while it is also affected by the amount of base ionization and the sample pH 

(Wilfinger et al., 1997). The absorbance at 260 nm (A260) and 280 nm (A280) can be used 

as a ratio (A260/A280 ratio) for sample purity estimation. In general, pure preparation of 

DNA and RNA have ratios of 1.8 or 2.0, respectively (Chan, 1992). If ratio is less than 

the suggested values, it indicates that the samples are contaminated with protein or 

phenol, which would affect the concentration calculation. Under these circumstances, 

RNA extraction should be repeated.
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RNA integrity. Cellular RNA is mainly comprised of ribosomal (rRNA). Messenger 

RNA (mRNA) constitutes only a small portion of the total RNA (2-5% of RNA).

Through electrophoresis in a 1% formaldehyde agarose gel, good quality RNA should 

reveal 2 major bands, corresponding to ribosomal units 28S and 18S, or sometimes 3 

bands (including the minor 5.8S unit), with the intensity of 28S band double that of 18S. 

In other words, good quality RNA would show 2 or 3 bright bands against a faint smear 

of mRNA.

Agarose gel electrophoresis can be used to separate RNA and double-stranded DNA 

fragments according to their molecular weight. The agarose gel is a complex network of 

pores, which allows RNA or DNA molecules to travel according to their molecular sizes. 

Gels can be stained with ethidium bromide after electrophoresis, allowing bands to be 

visualised. Molecular weight estimation can be done by comparison of a band in a sample 

lane with a series of molecular weight marker bands.

Reverse Transcription (RT), PCR requires a DNA template for amplification (RNA is a 

poor substrate). Thus, to facilitate PCR, RNA is reverse-transcribed into complementary- 

DNA (cDNA), using the enzyme reverse transciptase. This enzyme syntheses a cDNA 

template by polymerization of dNTPs using the RNA as template. Reverse transcriptase 

adds nucleotides starting from the 3’end, by making use of a pre-existing primer base 

paired to the template. As almost all eukaryotic mRNAs possess a string of 50-250 

adenine residues at their 3’ end, a short string of thymidine (oligo-dT) bases targeted to 

this poly(A) tail makes a good primer for RT.
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HotStar Taq Polymerase. The Taq DNA polymerase from the thermophilic bacterium 

Thermus aquaticus was first introduced in 1988 (Saiki et al., 1988). HotStar Taq 

Polymerase, a modified form of the recombinant 94 kDa Taq DNA Polymerase, is 

inactive at ambient temperature, which prevents mis-priming during the initial 

denaturation step of PCR (Chou et al., 1992). It is activated at 95°C, by means of an 

extended incubation during this initial denaturation phase.

DNA Sequencing. In general, DNA sequencing employs a “chain termination method”, 

which involves the synthesis of a single-stranded DNA template in the presence of 

limiting amounts of 2’,3’-dideoxynucleotides (ddNTPs). In practice, a primer which is 

annealed close to the sequence is used to initiate the synthesis in the presence of Klenow 

fragment of DNA polymerase and the four deoxy-nucleoside 5’-triphosphates (dNTPs). 

Fluorescent tags are attached to the chain-terminating nucleotides, with each of the four 

ddNTPs carrying a different fluorophore. When the ddNTP attaches to the chain, the 

chain can no longer be extended. The resulting DNA fragments can be run on a high- 

resolution gel, at the bottom of which is a detector, which scans for the fluorescent tags.

4.1.4 Available methods for gene expression study

In situ hybridization, northern blotting and RNase-protection assays are common methods 

used in RNA expression studies. This section will briefly describe each method and 

compare their strengths and weaknesses to each other, and to RT-PCR.

In situ hybridization (ISH). It is a technique developed to localise nucleic acid in cells or 

tissues and was firstly introduced by Paradue and Gall in 1969 (Gall and Pardue, 1969).
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A nucleic acid probe is used in the same way as labeled antibodies, to hybridise with the 

in situ nucleic acid of interest and generate a signal. It provides additional information 

compared to samples extracted using homogenization. The use of ISH in RNA expression 

studies was firstly introduced by Harrison et al. in 1974, who used a DNA probe for RNA 

detection in liver (Harrison et al., 1974). Later in 1984, Cox et al. (Cox et al., 1984) 

designed an RNA probe for embryonic RNA detection. In general, tissues are gently 

fixed with the RNA exposed at its original position. The probe and target hybridise and 

generate a pattern of gene expression in the tissue. This allows insights on differential 

gene expression in cell compartments that help in explaining functional differences 

between cells (Alberts et al., 2002).

Northern blotting. A  technique named with regard to Southern blotting (which itself was 

named after its inventor, Edwin Southern), Northern blotting is used to detect and 

quantify a particular RNA sequence in a complex RNA mixture. Total cellular RNAs are 

denatured by reagents such as formaldehyde to assure a linear conformation of the RNA 

molecules by breaking hydrogen bonds between base pairs. The individual RNA 

molecules are then separated by gel electrophoresis according to their size, and 

transferred onto nitrocellulose or nylon membranes and exposed to a labeled single 

stranded-nucleic acid probe. The labeled probe used can be purified RNA, cDNA or a 

cloned fragment of genomic DNA and acts similarly to antibodies at this point (Darbre, 

1999). The size of the targeted RNA molecule can be determined by reference to known 

RNA standards. With this method, one can get an estimation on the molecular weight as 

well as comparing the amount (quantity) of the RNA of interest in different samples.
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RNase protection Assay, In this method, hybridization is carried out directly in cell 

lysates, which precludes the need for membrane transfer from gels (Bildin et al., 2001).

In general, it involves the hybridization of mRNA with a single stranded RNA or DNA 

probe in solution. Excess probe and imperfect duplexes are digested by single-strand 

specific nucleases. The RNA-DNA or RNA-RNA hybrids are finally analyzed by gel 

electrophoresis (Raval, 1994).

4.1.4.1 Comparison of RT-PCR with other methods

The major advantage of PCR is its sensitivity. In particular, a sample size as small as one 

single cell can be used as the starting template. It has much higher in sensitivity than 

Northern blotting and RNase protection assays and can detect copy number in the 

attomolar (10'2IM) range (Miller et al., 1997). In addition, RT of mRNA for RT-PCR can 

be used to stabilise sample material for long periods. Therefore, RT-PCR is the optimal 

method in most screening applications, especially in the situation when sample supply is 

limited.

For questions concerning the level or regulation of mRNA expression, standard RT-PCR 

alone is inadequate to provide the necessary answers. Quantification of expression can be 

done by Northern blotting, RNase protection assay or quantitative RT-PCR (Ji et al.,

1990; Jindal et al., 1995). Although northern blotting is labour intensive and requires 

significant amount of starting RNA, it has the advantage that once produced, membrane 

can be stripped and reprobed many times. The RNase protection assay technique allows 

multiple transcripts to be screened simultaneously, but the use of high doses of 

radioactivity is a disadvantage. Among all, only ISH provides resolution at the cellular 

level, regarding the site of gene expression.
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Since information about glucose transporter gene expression in CBE is not yet available, 

a method that can be used for quick screening was desirable. Thus, RT-PCR is very 

suitable to be used in this study for it provides a rapid way to determine the presence of 

certain genes, especially in the case of limited sample quantity.
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4.2 Methodology

4.2.1 Basic principles

In this study, RNA samples were taken from bovine CBE, and kidney, which were then 

reverse transcribed into cDNA templates. For each gene whose expression was 

investigated, a pair of gene-specific primers was designed and tested to ensure successful 

amplification of mRNA from the “positive control tissue” (kidney). RT-PCR was then 

carried out on RNA from bovine CBE. PCR products were purified and sent for 

sequencing for confirmation of amplification specificity.

4.2.2 Tissue preparation

Dissection instruments were baked at 200°C overnight to destroy any contaminating 

RNase activity. Fresh tissues were obtained from the abattoir and immediately dissected 

as described in the following sections:

4.2.2.1 Ciliary processes/ pars plicata

Eyes were positioned with the cornea facing upwards (Fig. 4.1a). One comer of the 

cornea (adjacent to the limbal region) was cut with an RNase-free razor blade. The whole 

cornea was carefully trimmed off (Fig. 4.1b) with RNase-free scissors started at the cut 

comer, leaving the underlying structures including the lens (Fig. 4.1c) and ciliary 

processes exposed (Fig. 4. Id). The ciliary processes’ tissues were carefully tom off with 

RNase-free forceps and submerged in RNAlater (Ambion European Ltd.,

Cambridgeshire, UK). This agent is used to preserve RNA quality (Gong et al., 2001). 

Upon arrival in the laboratory, tissues were immediately frozen in liquid nitrogen and 

stored at -80°C.
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Corner

Sclera-

a) Eyes were positioned upwards.

b) The whole cornea was trimmed off.

Iris

Iris

Crystalline 
lens

c) The iris was exposed after the 
removal of cornea (top view).

d) The ciliary processes were exposed after the 
removal of iris (top view). Forceps can be used 
to tear off the tissues at this stage.

Ciliary
process

Iris

Retina

Ora serrata
e) An area of pars plana was cut from 

the whole CBE (back view).

Anterior lens capsule

Pars plicata 
(ciliary process)

Pars plana

Fig 4.1 Dissection of tissues from bovine eyes.
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4.2.2.2 CBE pars plana

The CBE was isolated as described in section 2.2.3. A 0.5cm x 0.5cm area of pars plana 

tissue was cut from the whole CBE pars plana (Fig. 4.1e) with a sterile scalpel. The tissue 

was submerged in RNA/ater, frozen immediately in liquid nitrogen and stored at -80°C.

4.2.2.3 Bovine kidney

Two methods were used for the isolation of bovine kidney samples. In the first approach, 

tissues were dissected in the laboratory, frozen in liquid nitrogen and stored at -80°C. 

Briefly, a sterile scalpel was used to remove the outer cortex. A new scalpel was then 

used to cut 0.5cm x 0.5cm pieces of tissue from the inner cortex of kidney. Tissues were 

frozen in liquid nitrogen and stored at -80°C for later use. For the second method, small 

pieces of kidney tissues were transferred to RNAJater at the abattoir, similar to the 

protocol for ciliary body tissue as described in sections 4.2.2.1 and 4.2.2.2. They were 

frozen in liquid nitrogen and stored at -80°C on arrival at the laboratory.

4.2.3 RNA extraction

Frozen tissues were powdered at liquid nitrogen temperature using a dismembrator 

(Mikro-Dismembrator U, B. Braun Biotech International) at 1600 rpm for 2 mins. The 

isolation of RNA was performed using TRI reagent (Sigma-Aldrich Co. Ltd., Dorset). 

Dismembrated samples were mixed with 100 pi TRI reagent at 1600 rpm for 2 mins. An 

800 pi aliquot of TRI reagent was further mixed with samples at 1600 rpm for 5 mins. 

Solubilised samples were transferred into a sterile Eppendorf tube. The dismembrator 

tissue container was finally washed with 100 pi TRI reagent at 1600 rpm for 30 seconds 

with the washed sample also transferred into the same Eppendorf tube. Lysed samples

126



Glucose transporter gene expression in the CBE

were centrifuged at 13,500 x g for 5 mins at room temperature to pellet any insoluble 

material. Supernatants were transferred to fresh Eppendorf tubes containing an aliquot of 

silicon grease, and mixed with 200 pi chloroform by vortexing for 1 min. They were left 

to stand for 10 mins at room temperature before centrifugation at 13,500 x g for 10 mins. 

After centrifugation, an interface was formed by the silicon grease with a clear upper 

aqueous phase containing RNA, and a lower phase containing the phenol-chloroform and 

proteins. The upper aqueous phase was carefully transferred to a fresh Eppendorf tube. It 

was mixed with 500 pi isopropanol by vortexing and was allowed to stand at -20°C for 

15 mins. Centrifugation at 13,500 x g at room temperature was performed again for 10 

mins. The supernatant was discarded and the RNA pellet was washed with 1 ml ice-cold 

70% ethanol. The mixture was centrifuged at 13,500 x g again for 2 mins and the ethanol 

was removed. The pellet was partially air-dry by standing at room temperature for 5 

mins. To dissolve the pellet, 51 pi sterilised water was added and incubated for 10 mins 

at 37°C with periodical mixing. DNase treatment was carried out by adding 6 pi 1 OX 

DNase reaction buffer, 1 pi RNase OUT, 2 pi DNase I, which was thoroughly mixed with 

the samples. The DNase reaction mix was incubated at 37°C for one hour. This step was 

designed to degrade residual DNA that had co-purified with the RNA.

4.2.3.1 Pigment removal from RNA preparations

CBE is enriched with melanin, a pigment which gives the tissues a distinct brownish 

colour. Melanin, which co-purifies with RNA, is known to inhibit RT as well as PCR 

reactions (Giambemardi et al., 1998). In this study, the RNAeasy mini kit (Qiagen Ltd., 

West Sussex, UK) was employed to remove the pigment from the samples (following the 

manufacturer’s instructions). It is kit consisted of filtered-type column which samples can
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pass through the sieve-like membrane easily but not the pigment molecules. Kidney 

samples, as the positive control, were also treated using the same method to ensure 

experimental consistency. The final RNA sample was eluted in 100 pi RNase-free water. 

Samples were quantified with a GeneQuant instrument for absorbance at 260 nm, 280 nm 

and 320 nm. The typical yield of total RNA was ~30 pg for CBE and ~60 pg for kidney 

tissues.

4.2.3.2 RNA integrity

After extraction, 2 pg of each RNA sample was analyzed by agarose gel electrophoresis. 

The gel mixture was made by dissolving 1 g agarose in 100 ml lx MOPS buffer (20 mM 

MOPS, 8 mM sodium acetate, 2 mM EDTA, pH 7.0). After complete dissolution and de­

gasing of the gel mixture, it was allowed to cool to 55°C at room temperature. 

Formaldehyde was added to a final concentration of 0.7M shortly before the pouring of 

the mixture into the gel tray.

Before sample loading, 6 pi volume RNA samples were mixed with 14 pi loading buffer 

(10 pi 20X MOPS; 70 pi 37% Formaldehyde; 200 pi 100% Formamide; 10 pi Ficoll- 

EDTA). Samples were denatured by heat at 55°C for 15 mins before loading onto the gel. 

Electrophoresis was carried out at 80 V for 80 mins and the gel was stained with IX 

SYBR-GOLD (Molecular Probes, Inc., Eugene, USA) for 20 mins. The gel was 

examined using a dual-intensity transilluminator (UVP, USA) and photo-documented 

with a DS34 Direct screen instant camera (Polaroid, UK). Only samples showing high 

quality rRNA bands were used in the subsequent experiments.
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4.2.4 Reverse transcription (RT)

RNA samples were transcribed into cDNA as follows. Initially, samples (5 pg) were 

mixed with 0.5 pg Oligo (dT)i2-i8, 0.7 mM dNTP mix in water in a final volume of 13 pi, 

and overlaid with 20 pi of RNase-free mineral oil to prevent evaporation. Samples were 

then heated at 65°C for 5 mins and cooled to 4°C for 5 mins. Then, 7 pi master mix was 

added to each sample to give a final concentration of IX First Strand Buffer; 5 mM DTT; 

2U RNase OUT; 10U Superscript III RT (Invitrogen life technologies, USA). Mixtures 

were heated at 50°C for another 60 mins. After incubation, mineral oil was removed from 

all samples and QIAQuick Purification (Qiagen Ltd., West Sussex, UK) was performed. 

Samples were eluted in 100 pi 10 mM Tris-HCl buffer (pH 8.0). The efficiency of RT is 

around 30%, which meant the total yield of cDNA samples was expected to be ~1.5pg.

4.2.5 Polymerase chain reaction (PCR)

4.2.5.1 Primer design

In the design of primers, an mRNA sequence search was performed in the GenBank 

database (http://www.ncbi.nlm.nih.gov). Bovine sequences were the prioritised choices to 

retrieve (Table 4.2), while other mammalian glucose transporters sequences were also 

retrieved to ensure the identity of bovine sequences in Clustal alignments. Primers were 

designed from the bovine mRNA sequences according to the following criteria: i) length 

of 18-25 base pairs (bp); ii) percentage of GC composition ranged from 50% to 60%; iii) 

Tm range of 60°C to 75°C, calculated according to Breslauer et al. (1986); iv) beginning 

with one to two G or C nucleotides and ending with one to three A or T nucleotides; v) 

avoid stretches of four or more identical bases; vi) prevent self-complementarity, since 

formation of secondary structure would hinder normal PCR reaction.
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GLUT1

UCaIl£li

NM 174602 F 2533
GLUT2 AF308828 P 427
GLUT3 NM 174603 P 1793
GLUT4 D63150 F 2642
GLUTS AF308830 P 617
SGLT1 AF508807 F 2248
SGLT2 AY208941 F 2275

SGLT2-like 
bovine EST* AV605490 — 553

Table 4.2 Bovine mRNA sequences used for primer design.

Clustal alignments (http://www.ebi.ac.uk/clustalw/) were performed for all mammalian 

glucose transporter mRNA sequences retrieved in order to check for mis-specification. 

Some sequences for SGLT2 were found to be mis-specified (Appendix I).

* Before the bovine SGLT2 sequence was published in early 2004, a bovine EST 

sequence was found in GenBank, which aligned well at certain regions with other 

mammalian SGLT sequences (Appendix II). A pair of primers was designed based on 

this sequence.

130

http://www.ebi.ac.uk/clustalw/


Glucose transporter gene expression in the CBE

In general, 2 sets of primers were designed for each glucose transporter member with the 

better performing set chosen depending on the PCR results. The optimised primers used 

in this study are summarised in Table 4.3.

* will
’5^3^ | l §

*

58$ ft®wm Product 
s ize (bp)

GLUT1-UP CACCAGCTAGGCATCGTCGT 60.0 68.7 64 548
GLUT1-DN GATGGTCATGAGCACTGCACA 52.4 68.8
GLUT2-UP CAGCTCTTCACCAATGCCA 52.6 66.4 62 296GLUT2-DN CTCAGGAGCACAAGTCCCA 57.9 65.4
GLUT3-UP CCAGTTTGGCTACAACACTGGA 50.0 67.1 63 532GLUT3-DN GCACTGGATGATGGCTGGT 57.9 67.6
GLUT4-UP CCATCTTGATGACTGTGGCT 50.0 63.9 63 621GLUT4-DN CCACTGCTAACCACAACACA 50.0 63.4
GLUT5-UP GCTTCATCTCCGTGCTGA 55.6 64.1 59 495GLUT5-DN CAGTGAAGTTGGAGAGCCAGT 52.4 64.5
SGLT1-UP GGTATGGTGCCTTCGTGA 55.6 63.4 59 678SGLT1-DN GGTGGTCCCAAGTAACTGGT 55.0 63.7
SGLT2-UP CCATCCTGCTCTTCGTCTGCT 57.1 69.1 64 460SGLT2-DN ACTGCATTGGACACCCTGAGC 57.1 69.9
SGLT2-like-UP GCACTGATGTACACGGACA 52.6 62.0 58 151SGLT2-Iike-DN TGACGGTATCCGAGGATC 55.6 62.2

Table 4.3 Primers used for PCR in this study. *TA is the annealing temperature.

4.2.S.2 Positive and negative controls

Bovine kidney was used as the positive control in this study as the literature suggested 

that kidney expressed all of the GLUT and SGLT transporters examined.

“Mock” RT reactions were performed as negative controls. In mock RT, the enzyme 

(i.e.Super Script III RT) was substituted by water, while other reagents and experimental 

procedures remained the same. Under such conditions, cDNA template from the desired 

mRNA would not be formed. Thus, any positive PCR results from these mock samples 

would reveal the presence of genomic DNA contamination. This enabled the
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identification of false positive PCR reactions by comparison of the PCR results between 

the normal and mock samples.

Positive controls (i.e. kidney cDNA template) and negative controls (i.e. mock kidney,

CE samples) were used along with the CBE cDNA templates in every PCR experiment.

4.2.5.3 Experimental optimization

Optimization of RT-PCR was carried out by using the bovine kidney samples. 

Unsatisfactory PCR results e.g. faint or no bands, heavy primer dimers or positive results 

on mock samples were optimised by testing different annealing temperatures, use of Q- 

solution (HotStar Taq DNA Polymerase Kit, QIAGEN Ltd.) and trials of different sample 

concentrations. Continual failure in optimization necessitated the redesign of primer sets. 

In this study, the problems encountered were solved by varying the annealing temperature 

(i.e. GLUT4) or re-design of primers (i.e. GLUT2, GLUT3 and SGLT2).

4.2.5.4 PCR protocol

Two microlitres (~ 0.03 pg) of cDNA templates was mixed with an 18 pi PCR reaction 

master mix (IX PCR Buffer (QIAGEN Ltd., West Sussex, UK), 0.2 mM dNTPs, 1 pM 

upstream-primer, 1 pM downstream-primer and 1U of Hotstar Tag DNA Polymerase 

(QIAGEN Ltd., West Sussex, UK)). The mixtures were overlaid with 20 pi mineral oil to 

prevent evaporation. PCR was performed in a Techne Progene PCR machine. Initially, 

mixtures were heated at 95°C for 15 mins to activate the polymerase. A profile of 35 

cycles, comprising heating at 94°C for 1 min for cDNA denaturation, an annealing phase 

at a temperature set according to the primer’s Tm for 1 min and finally an extension phase
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of 72°C heating for 1 min. An additional heating phase (72°C for 5 mins) was performed 

after the 35 cycles to allow any remaining sequence polymerization to complete.

4.2.6 Gel electrophoresis

PCR products were separated on 2% agarose gels for product size determination. In 

general, 5 pi of loading buffer (15% Ficoll 400,10 mM EDTA, 0.13% xylene cyanol FF) 

was added to 20 pi of PCR product and mixed. Ten microlitres of each sample were 

loaded onto the gel for electrophoresis (80 V for 80 mins). Gels were stained with 

ethidium bromide (0.5 mM) for 30 mins and de-stained in distilled water. Some gels were 

stained with SYBR gold dye (0.1 mM), a more sensitive gel stain to ensure negative 

findings (see section 4.3.1.). Gels were examined by the transilluminator and photo­

documented by using the Polaroid DS34 camera.

4.2.7 Sequencing

4.2.7.1 PCR products preparation

Samples were amplified by PCR as described in the previous section. Five replicate PCR 

samples were pooled together to give a total volume of 100 pi and purified using the 

QIAquick kit (Qiagen Ltd.) to remove residual primers and dNTPs. The PCR products 

were eluted in a volume of 180 pi of 2 mM Tris-HCL (pH 8.0). Two microlitres of 

glycogen (2 pg /pi) and 20 pi of 3M sodium acetate solution were added to the 180 pi 

eluant. After mixing and centrifugation, 200 pi of phenol-chloroform was added. The 

samples were mixed thoroughly for 1 min and centrifuged at 13,000 rpm for 2 mins. The 

supernatant was transferred into new tube and 400 pi of ethanol was added. The mixture 

was thoroughly mixed again before it was left to stand at -20°C for 20 mins.

133



Glucose transporter gene expression in the CBE

Centrifugation was carried out at 14,000 rpm for 10 mins and the supernatant was 

discarded. One milliliter of ice-cold 70% ethanol was added to the pellet and the sample 

was centrifuged again at 14,000 rpm for 2 mins. The supernatant was discarded again and 

the pellet left to air-dry for 5 mins. The pellet was re-dissolved in 20 pi water. The 

GeneQuant instrument was used to measure the absorbance at 260 nm (see section 

4.2.3.2) and samples were diluted to a final concentration of 25 ng/pl. Ten microliters of 

each sample was sent to the Cardiff University Sequencing Facility using the ABI Prism 

3100 genetic analyzer (Applied Biosystems).

4.2.7.2 Sequencing results verification

All sequences were viewed using the CHROMAS program (Technelysium Pty Ltd, 

Australia) and exported as a text file. The identity of DNA sequences was examined by 

BLAST searches against the GenBank non-redundant database 

(http://www.ncbi.nlm.nih.gov/BLAST/).
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4.3 Results

4.3.1 RT-PCR

Polymerase chain reaction products were run on a 2% agarose gel and stained with 

ethidium bromide (0.5mM). (For GLUT2 and SGLT2, gels were stained with SYBR gold 

dye in one of the repeated experiment to confirm the presence o f positive finding in the 

positive control only, and rule out the possibility that a very faint band was missed when 

only using the ethidium bromide). Experimental optimization was done when non­

specific bands were visible. Table 4.4 summarises the results using RT-PCR.

Glucose
transporter Kidney Pars Plicata Pars Plana

GLUT1 V V V

GLUT2 S X X

GLUT3 S V V
GLUT4 V V V
GLUT5 S s V
SGLT1 ✓ X X

SGLT2 V V V

SGLT2-like V X s

Table 4.4 The RT-PCR results for bovine kidney, pars plicata and pars plana of 

CBE. S : positive RT-PCR result; *: negative RT-PCR result

4.3.1.1 GLUTs

As seen in fig 4.2a, positive results were found for GLUT1 in both pars plana and pars 

plicata with an expected size of 548 base pair (bp) (n = 3). For GLUT2, only kidney 

samples gave a positive control result o f 296bp but not pars plicata and pars plana (Fig. 

4.2b; n = 4). Figs. 4.2c, 4.2d and 4.2e show the RT-PCR results for GLUT3, GLUT4 and 

GLUT5, respectively. Their mRNAs were found to be expressed in both pars plicata and 

pars plana with expected sizes o f 532bp (n = 3), 621 bp (n = 3) and 495bp (n = 3) 

respectively.
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DL 1 2 3 4 5 6 DL 1 2 3 4 5 6

(d) (e)

Fig. 4.2 Representative gel electrophoresis results of RT-PCR for (a) GLUT1; (b) 

GLUT2; (c) GLUT3; (d) GLUT4; (e) GLUT5. DL: DNA ladder; lane 1: 

bovine kidney; lane 2: mock kidney; lane3: CBE pars plicata; lane 4: mock 

pars plicata; lane 5: pars plana; lane 6: mock pars plana.
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4.3.1.2 SGLTs

There was no SGLT1 mRNA expressed in either pars plicata or pars plana (Fig. 4.3a; n = 

3). However, SGLT2 gene expression was found in both pars plicata and pars plana (Fig. 

4.3b; n = 4).

DL 1 2 3 4 5 6  DL 1 2 3 4 5 6

(a) (b)

Fig. 4.3 Gel electrophoresis result of RT-PCR for (a) SGLT1 and (b) SGLT2.

DL: DNA ladder; lane 1: bovine kidney; lane 2: mock kidney; lane3: CBE 

pars plicata; lane 4: mock pars plicata; lane 5: pars plana; lane 6: mock 

pars plana.
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4.3.1.3 Presence of SGLT2-like mRNA in the pars plicata

The investigation o f glucose transporter mRNA expression was started before the 

publication o f the bovine SGLT2 mRNA sequence in GenBank. A bovine EST sequence 

was found at this time, which aligned well with other SGLT2 mRNA sequences and RT- 

PCR was carried out with primers based on this short EST sequence. Positive signals 

were detected in both kidney and pars plana (Fig 4.4). Its sequencing result produced the 

highest hit against human SGLT2 sequences (prior to the appearance o f the bovine 

SGLT2 sequence in GenBank-the highest score was against the bovine SGLT2 mRNA 

sequence once this was available).

DL 1 2 3 4 5 6

Fig. 4.4 Gel electrophoresis result of the RT-PCR based on the bovine SGLT2-like 

EST. DL: DNA ladder, lane 1: bovine kidney; lane 2: mock kidney; lane 3: 

CBE pars plicata; lane 4: mock pars plicata; lane 5: pars plana; lane 6: 

mock pars plana.

138



Glucose transporter gene expression in the CBE

4.3.2 Sequencing

The PCR products for GLUT 1-5 and SGLT1-2 were sent for automated sequencing. 

Sequenced details are attached in Appendix III. Their identities were confirmed by 

BLAST searches against the GenBank database. Table 4.5 summarises the BLAST search 

results, with the alignment scores.

PCR
sequence

BLAST search alignment results
Accession
number Identification Score* Nucleotide 

Identity (%)

GLUT1 NM_174602
Bos taurus solute carrier family 2 
(facilitated glucose transporter), 
member 1 (SLC2A1), mRNA

1019 100

GLUT2 AF308828 Bos taurus glucose transporter 2 
mRNA 333 98

GLUT3 NM_174603
Bos taurus solute carrier family 2 
(facilitated glucose transporter), 
member 3 (SLC2A3), mRNA

779 99

GLUT4 D63150 Bos taurus mRNA for glucose 
transporter type4 872 98

GLUT5 AF308830 Bos taurus fructose transporter 
Glut5 mRNA 898 99

SGLT1 AF508807 Bos taurus Na+/glucose 
cotransporter (SGLT1) mRNA 1225 99

SGLT2 AY208941 Bos taurus Na+/glucose 
cotransporter (SGLT2) mRNA 783 100

SGLT2-like AY208941 Bos taurus Na+/glucose 
cotransporter (SGLT2) mRNA 210 100

Table 4.5 BLAST search results for RT-PCR sequences. * The score is calculated by 

adding all similarities (+1) and differences (-3) between each nucleotide in 

an alignment.

All BLAST search results demonstrated the best alignment with the respective target 

mRNA sequence. All the RT-PCR sequences shared 98 to 100% identity to their target 

sequences. This revealed a highly confident conclusion that all PCR products were 

derived from the desired mRNA sequences.
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4.4 Discussion

4.4.1 Sequence similarity

As mentioned before, all bovine sequences retrieved from GenBank were aligned with all 

other mammalian glucose transporter mRNA sequences to assess their similarity. In this 

study, all bovine sequences aligned well with their orthologues in other mammalian 

groups, which facilitated primer design. However, some sequences previously labeled as 

SGLT2 or low affinity sodium glucose transporter were found to align better with SGLT3 

instead (Appendix I). This might have been due to the period these sequences were 

submitted (around year 2000), when only the SGLT1 mRNA sequence was well- 

established for different species. Therefore, all other similar sequences submitted to 

GenBank were probably named SGLT2.

For the bovine SGLT2-like EST sequence, it was interesting to see how alike it was when 

clustered against other mammalian SGLT2 sequences (Appendix II). However, when 

compared with the true bovine SGLT2 mRNA, the similarity score was only 40. These 2 

sequences aligned very well at the 3’ end of the EST sequence, but poorly at the 5’ end 

(Appendix IV). As shown in appendix IV, the primers designed according to the bovine 

SGLT2-like EST sequence lay at the 5’end of the true bovine SGLT2 mRNA sequence, 

where they showed complete identity. This might explain why positive results were only 

seen on kidney and pars plana samples with the SGLT2-like EST primers. In this study, 

Oligo (dT) primer was used to synthesize cDNA strands. This method tends to over­

represent the 3’end of transcripts, therefore, maximum sensitivity of the cDNA pool will 

lie with the 3’ ends. In this study, primers for the SGLT2-like EST were designed at the 

5’ end region of the true SGLT2 mRNA sequence. With these primers, gene expression 

appeared most abundant in kidney, then pars plana and least in the pars plicata. It is
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possible that there was incomplete copying of the 5’ end of the SGLT2 mRNA in the pars 

plicata samples, for effective PCR amplification. Later, with primers designed at the 

3’end of the complete bovine SGLT2 sequence, the complementary sequences would be 

much better amplified, since the RT method provides the highest sensitivity at the 3’end. 

The observation of a stronger intensity band (with SGLT2 primers) for both kidney and 

pars plana samples might therefore be due to a combination of amplification from both 

the complete bovine SGLT2 and the SGLT2-like EST mRNA in the samples. 

Nevertheless, the presence of SGLT2 in all samples is distinctive. Sadly, there was 

insufficient time to study the SGLT2-like mRNA in further detail.

4.4.1.1 Alternative splicing

In the RT-PCR reaction for SGLT2, a consistent pattern of double bands was seen with 

the expected band showing the higher intensity. Such a pattern was conserved across a 

wide range of PCR annealing temperature (63-68°C), which meant the chance of non­

specific binding resulting in the formation of the minor band was low. This additional 

band might be explained by alternative splicing, a process in which different mRNAs are 

generated by varying the pattern of pre-mRNA splicing. Thus, various mRNAs are 

produced from the same gene and then the mRNAs are templates for different protein 

isoforms. Alternative splicing of GLUT14 has been reported in testis (Wu and Freeze,

2002), but other transporter isoforms have no similar report at the present stage. Alternate 

splicing has been reported to happen in different cell types (Larkin and Park, 1999; Nixon 

et al.y 1999; Omer et al., 2002), yet no direct relationship has been established for 

particular abnormalities or disease.
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To further characterise the splicing pattern for SGLT2 in this study, exon-specific primers 

could be used to identify the extra amplification products, or direct sequencing for the 

RT-PCR product (band) purified out from the gel would be another option.

4.4.2 mRNA expression of glucose transporters in the CBE

As revealed in this study, more than one glucose transporter transcript was present in the 

bovine CBE. The pars plicata and pars plana showed no particular difference in their gene 

expression profile, but the pars plana seemed to have a higher mRNA expression level 

overall. This was especially obvious for GLUT3 (Fig 4.2c) and SGLT2 (fig 4.3b). 

However, as discussed in section 4.1.4.1, RT-PCR is not the best method in assessing 

gene expression level, since there is a need for stringent standardization (Muller and 

Kennedy, 1996) throughout the whole procedure (i.e. proper control for RT, amplification 

and normalization). Thus, simply assessing the staining intensity visually is not sufficient 

to infer accurate quantitative differences. In the past, researchers have combined RT-PCR 

with different methods to make quantitative conclusion. These include the use of enzyme- 

linked immunosorbent assay (ELISA) (Alard et al., 1993; Sabbatini et al., 1993) or 

Southern blotting (Thompson et al., 1992; Doi et al., 1994). Nowadays, real-time 

quantitative RT-PCR, Northern blotting and RNase protection assay would be a better 

choice for accurate mRNA expression quantification. Since the aim of this study was 

simply to screen for the presence of the different glucose transporters in the bovine CBE, 

the use of RT-PCR was appropriate to fulfil this goal.
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4.4.3 Role of glucose transporters in the CBE

Glucose is crucial for every single cell for metabolism and energy supply. Glucose 

transporters in the CBE, therefore, are essential for local and also anterior avascular tissue 

glucose supply. As revealed in this study, the bovine CBE possessed GLUT1, GLUT3, 

GLUT4, GLUT5 and SGLT2 mRNA. It again shows that one kind of tissue carries more 

than one glucose transporter isoform. Other examples can be found in bovine skeletal 

muscle that it has both GLUT3 and GLUT4 mRNA (Zhao et al., 1993); rat placenta, 

which possessed GLUT1 and GLUT3 mRNA (Boileau et a l , 1995); or rat alveolar cells 

have GLUT1, GLUT4, GLUT5 and SGLT1 mRNA (Mamchaoui et al., 2002).

For GLUT1 and GLUT3 mRNAs, their presence were not surprising since they are 

present in many blood-tissue barriers, such as the BBB (Boado and Pardridge, 1990; 

Nagamatsu et al., 1992; Gerhart et al., 1994), BPB (Zhou and Bondy, 1993; Takata et al., 

1994) and BRB (Knott et al., 1996). However, GLUT1 is the glucose transporter isoform 

that is generally recognised to be abundantly expressed in cells with occluding junctions. 

This protein has been found colocalised with occludin and ZO-1 (i.e. a 210-225 kDa 

cytoplasmic protein), which are tight junction constituents and absent in non-barrier cells 

(Tserentsoodol et al., 1998). With its colocalisation with connexin 43, a gap junction 

protein (Shin et al., 1996), the role of GLUT1 was confirmed as one of the biochemical 

signatures of “barrier” tissues (Gherzi et al., 1991) as shown in high metabolic-rated 

tissues like the microvascular endothelium of retina, RPE and CBE (Harik et al., 1990; 

Mantych et al., 1993b). The presence of GLUT1 mRNA in the CBE is very reasonable, 

as the CBE is the blood-aqueous barrier, which is responsible for selective substrate 

transport into the aqueous humor.

143



Glucose transporter gene expression in the CBE

GLUT3 is believed to work with GLUT1 for basal cellular glucose uptake, with the 2 

proteins expressed ubiquitously in mammalian tissues (Mantych et al., 1993b). However, 

in rat lens, GLUT1 was found to be expressed mainly in the epithelium, while GLUT3 

was expressed in cortical fiber cells. It was suggested that GLUT1 was crucial for 

external glucose uptake while GLUT3 was crucial for internal glucose exchange 

(Merriman-Smith et al., 1999; Merriman-Smith et al., 2003). In human retina, GLUT3 

was found localised in the plexiform layers and served to take up glucose into neural cells 

once it had passed the BRB via GLUT1 (Watanabe et al., 1996; Tserentsoodol et al., 

1998). Such an expression pattern was also found in the brain (Nagamatsu et al., 1992) 

and it is therefore not unexpected for the eye to show a similar pattern of expression, 

since it has the same origin as the brain during development (Sharma and Ehinger, 2002). 

Furthermore, the CBE is an extension of the neural retina and is regarded as part of the 

CNS. Thus, the possession of similar glucose transporters as the brain and retina seems 

logical. Similar to the condition in retina, GLUT1 in CBE might be localised at the tight 

junctions (to enable barrier glucose transport), while GLUT3 may have some other 

function. However, such a conclusion cannot be made without further investigation. 

Studies of GLUT4 in ocular tissues are scarce. Researchers could not find any GLUT4 

protein in rabbit iris-ciliary body (Tsukamoto et al., 1995) and retina (Mantych et al., 

1993b). GLUT4 is an insulin responsive glucose transporter, which is widely expressed 

in heart (Abel, 2004), kidney (Marcus et al., 1994), mammary gland (Zhao et al., 1993), 

skeletal muscle (Hocquette et al., 1995) and adipose tissues (Miura et al., 2003). In the 

brain, GLUT4 mRNA was found specifically in the cerebellum, while GLUT1 and 

GLUT3 were found in each brain region including the medulla, midbrain and 

hypothalamus (Rayner et al., 1994). The presence of GLUT4 was suggested to allow for
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insulin-responsive glucose uptake in cerebellum, and suggests that a similar process 

might operate in the bovine CBE. The presence of GLUT4 mRNA in bovine CBE clearly 

reveals the presence of an insulin-response glucose transport system, yet how dominant 

this mechanism is in this tissue has yet to be determined.

GLUT5 is expressed predominantly in small intestine (Burant et al., 1991) and kidney 

(Davidson et al., 1992), for dietary glucose uptake and glucose reabsorption, respectively. 

Northern blotting showed its presence in the small intestine and kidney, yet it is also 

expressed at a very low level in human muscle, adipose tissue (Bell et al., 1990), RPE 

(Takagi et al., 1994) and brain (Mantych et al., 1993b; Payne et al., 1997). It is known 

that GLUT5 has a higher transport capacity for fructose than glucose (Shepherd et al.,

1992), thus the presence of this transporter in the CBE might indicate the existence of 

fructose transport along with glucose transport.

The presence of SGLT2 in the bovine CBE was a surprise in this study, since it was 

assumed that passive transport would be enough to maintain the required glucose flux 

across CBE. However, the existence SGLT2 is consistent with the energy-dependent 

glucose transport that was clearly present in this tissue in the electrophysiological study 

carried out in Chapter 2. Interestingly, similar results have been found in bovine cortical 

arteries, where GLUT1 is responsible for normal glucose transport, while SGLT1 is used 

for dealing with stress conditions like hypoglycemia (Nishizaki and Matsuoka, 1998). 

Therefore, the function of SGLT2 in the CBE might be similar, namely to protect the 

tissues in conditions of stress by ensuring adequate glucose transport.

In this study, neither GLUT2 nor SGLT1 mRNA was found in the bovine CBE. GLUT2 

was not detected in either human (Takagi et al., 1994) or chicken RPE cultures (Ban and 

Rizzolo, 2000) and rat brain (Rayner et al., 1994). However, it was observed in rat retinal
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Muller cells, and is thought to be responsible for intra-retinal glucose homeostasis 

(Watanabe et al., 1994). GLUT2 mRNA was found to be intensely expressed in bovine 

liver, but at a lower abundance in kidney and duodenum (Zhao et al., 1993). GLUT2 is 

not a common GLUT isoform in the CMS, therefore, it is not a surprising result that it is 

absent from the BAB of the CB.

SGLT1 is the high affinity SGLT, which is largely responsible for galactose and glucose 

transport in intestine (Wright, 2001). Absence of SGLT1 mRNA in the bovine CBE 

might indicate that a high affinity glucose transport system is not necessary in the bovine 

CBE.

4.4.4 Implications of mRNA expression of glucose transporters in the CBE

Different species and different tissues respond to glucose insult in distinct ways. Rat lens 

cells respond to hyperglycemia by upregulating the transcription of GLUT3, but not 

GLUT1, by 3.5 fold (Merriman-Smith et al., 2003). Chick RPE increases GLUT1 

expression instead of GLUT3 mRNA, under similar circumstances (Ban and Rizzolo,

2000). In bovine retinal endothelial cells, the amount of GLUT3 mRNA increases 

significantly with increases in glucose levels to physiological concentrations, yet declines 

in response to adverse glucose insult (i.e. hyperglycemia) (Knott et al., 1993). Such a 

pattern of regulation is not seen in bovine cultured cells when exposed to various 

concentrations of galactose, which suggests that GLUT3 mRNA expression is 

specifically regulated by ambient glucose, yet not galactose. However, such an effect was 

absent in the same tissue in the study of Rajah et al (2001), in which GLUT1 and 

GLUT3 expression were stable across a range of glucose concentrations (Rajah et al.,

2001). Only brain-derived endothelial cells showed a decrease in GLUT1 expression in
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response to hyperglycemic. Again, this result conflicts with another study in rat, in which 

GLUT1 expression decreased in retinal microvessels, but not brain microvessels (Badr et 

al., 2000). These differences between studies could be due to species difference, different 

in vivo and in vitro experimental conditions, or disparate duration and/or level of glucose 

exposure. Clearly, dissimilar mechanisms are operating for gene regulation among the 

various species or tissues.

Even with the findings from the present study, it is difficult to deduce a mechanism for 

lowering glucose transport across the CBE under elevated glucose conditions. Previous 

studies have shown that GLUT1 mRNA expression increases under long-standing 

diabetic conditions in both mouse (Vannucci et al., 1997) and rat (Lutz and Pardridge,

1993) brain, while it decreases in human placental cultures (Hahn et al., 1998).

Similarly, overexpression of GLUT3 has been found in vivo in pregnant rat placental 

cells under hyperglycemic conditions (Boileau et a l , 1995) while underexpression or 

unchanged levels have been observed during hyperglycemia in retina (Knott et al., 1996) 

and human or rat testis. With these contradictory results, it would be difficult to conclude 

the role of GLUT1 and GLUT3 in CBE under diabetic conditions and thus further in vivo 

studies would be necessary.

The presence of GLUT4, an isoform which is insulin-regulated, in CBE suggests its 

glucose transport is insulin-sensitive. GLUT4 has mostly been found to decrease in 

expression (both mRNA and protein) in response to hyperglycaemia, as well as diminish 

in translocation to the cell surface (Garvey et a l , 1991). Furthermore, its reduction in 

expression has been found in skeletal muscle, a result that was suggested not to be related 

to either obesity or type 1 or 2 DM (Pedersen et al., 1990; Garvey et al., 1992; Kahn et 

al., 1992). However, in diabetic rat kidney, both GLUT1 and GLUT4 expression were
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significantly increased in acute diabetes, while GLUT2 and GLUT5 expression increased 

under chronic hyperglycemic condition in rat kidney (Chin et al., 1997). An increased 

level of GLUT2 and GLUT5 mRNA were also noted in another study, in the intestine of 

human diabetic subjects. It has been suggested that different GLUTs might respond to 

various durations or levels of glucose differently, and that even the same GLUT (e.g. 

GLUT4 mRNA in the brain) could respond differently to similar insults in different 

tissues (Kobayashi et al., 1996).

There are scarcely any studies on how SGLT2 responds to diabetic conditions. As a low 

affinity, high capacity, sodium-glucose co-transporter, its presence would seem to be 

reasonable as a backup or reserve to maintain acceptable glucose transport across CBE 

under adverse condition e.g. hypoglycemia.
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4.5 Conclusion

The published glucose transporter mRNA sequences were used to enable a RT-PCR 

investigation to determine which glucose transporter isoforms are expressed by CBE. 

GLUT1, GLUT3-5 and SGLT2 mRNA were present in this tissue. However, which 

among these transporters is the major candidate responsible for abnormal glucose 

transport under hyperglycemic condition is yet to be elucidated. Further in vivo studies, 

both electrophysiological and biochemical, in which the effects of hyperglycemia can be 

monitored, are required, to provide a better understanding of how different transporters 

respond to hyperglycemia. However, armed with this information, therapeutic 

intervention aimed at either the transcriptional level or translational level could be 

attempted.
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Chapter 5
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5.1 Introduction

5.1.1 Overview of the experiment

In this part of the study, western blotting was used to examine the expression of glucose 

transporter proteins in the bovine CBE. Any difference in protein expression between 

pars plicata and pars plana was also assessed.

Protein samples from the bovine CBE were extracted and separated by gel 

electrophoresis according to their molecular size. Proteins were then transferred onto a 

membrane support. Antibodies targeted against different glucose transporters were used 

to identify protein of interest, and visualised by the use of an enhanced 

chemiluminescense (ECL) detection system. Light emitted from the membrane was 

captured on photographic film, thereby providing information as to the molecular weight 

of the glucose transporter detected.

Western blotting was used in order to confirm the results in the previous chapter. 

Unfortunately, various difficulties were encountered in optimizing the immunoblotting 

system, therefore, few conclusive results could be made from these experiments.
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5.1.2 Western blotting

5.1.2.1 Basic principle

Western blotting, also named immunoblotting, is used for identifying a particular protein 

of interest in a complex mixture. It is one of the most powerful methods in detecting 

specific proteins (Towbin et al., 1979). In general, tissue samples are solubilised with 

detergent e.g. SDS, and the mixture of proteins is separated by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) according to molecular weight (Laemmli, 1970). The 

separated proteins are then transferred onto a supporting membrane e.g. polyvinylidene 

fluoride (PVDF) or nitrocellulose membrane. Antibodies specific for the protein of 

interest are used to react with the protein on the membrane and then the antibody-antigen 

complexes are revealed using anti-immunoglobulin “secondary” antibodies. Depending 

on which system is used, the anti-immunoglobulin might be labeled with a radioisotope, a 

fluorescent dye or an enzyme. Generally speaking, the sensitivity of western blotting 

depends on the specificity of the antibodies used and also the sensitivity of the detection 

system.

5.1.2.2 Antibody-antigen interactions

The vertebrate immune system produces antibodies as a defence response to a foreign 

substance, or “antigen”. The antigen can be a protein, polysaccharide or a nucleic acid. 

Different antibodies are unique in structure, with different binding sites that recognise 

their specific antigen. For large, protein antigens, the antibody targets a specific cluster of 

amino acids called the epitope. Due to their specificity, antibodies are widely used to 

reveal target protein molecules in cells or tissues in biological studies.
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The antibodies that are commonly used in immunological studies can generally be 

categorised into two types: monoclonal and polyclonal antibodies. The former type of 

antibody was firstly exploited by Kohler and Milstein (1975), who elegantly showed that 

monoclonal antibodies can possess exquisite specificity for a single epitope. Polyclonal 

antibodies are a heterogenous mixture of antibodies, that can recognise many epitopes of 

a single antigen. They therefore provide a higher chance of target protein detection, yet 

the reaction might not be as specific as that of monoclonal antibodies (Rosenberg, 1996).

5.1.2.3 Protein detection system

In the present study, a biotin-avidin or a biotin-streptavidin system was chosen because of 

their high sensitivity (Kurien and Scofield, 2003). In general, membrane-bound proteins 

were incubated with primary antibodies, and then with secondary antibodies conjugated 

with biotin. Biotin, also known as vitamin H, has an extraordinary high affinity for avidin, 

which has led to their application in immunological work. Four molecules of biotin can 

bind to one avidin molecule, and with more than one biotin molecule conjugated to each 

antibody molecule, this gives the ability of the target protein to bind more than one avidin 

molecule, thus providing signal amplification. Avidin, which can be conjugated with an 

enzyme, or fluorochrome, can then be used for signal detection. However, since avidin is 

a glycoprotein (Bruch and White, 1982), it tends to give rise to background staining by 

interacting with other glycoproteins (Bayer et a l , 1987). Streptavidin isolated from 

Streptomyces acidinii, therefore, was developed as a substitute for avidin, in order to 

reduce background by decreasing the non-specific binding, yet retaining the same high 

sensitivity (Green, 1990; Dunn, 1994).

153



Glucose transporter: Protein expression in the CBE

5.1.2.4 Signal detection schemes

Chemical methods are commonly used to enhance the signal detection from antibodies. 

Several methods can be adapted to produce the final visual image, the most common of 

which are described below:

Enzyme-linked antibodies. Enzyme-coupled secondary antibodies are one of the most 

commonly adapted methods in signal detection. Alkaline phosphate- or horseradish 

peroxidase (HRP)-coupled antibodies are well-known examples (Knecht and Dimond, 

1984). The antibody-enzyme conjugated antibodies, when reacted with substrate, give 

rise to a coloured reaction product, e.g. an HRP reaction with diaminobenzidine (DAB) 

yields a brown coloured product (Knecht and Dimond, 1984), while reaction with 

aminoethylcarbazole (AEC) results in a red product (Imam et al., 1986). However, this 

method of detection can not account for accurate quantitation, and has limited sensitivity 

(Rosenberg, 1996).

Chemiluminescent detection. This system makes use of the chemiluminescence of 

luminol, a substrate that can be oxidised to produce an excited state product that emits 

light (Leong et al., 1986; Vachereau, 1989). Signal detection is then achieved by the use 

of X-Ray film. During immunoblotting, enzyme-conjugated antibodies are used (as 

above). The enzyme then catalyzes the dephosphlorylation of the substrate, e.g. HRP 

catalyses the oxidation of luminol in the presence of hydrogen peroxide, to result in an 

excited stated luminol, which emits light as it returns to its ground state. This system is 

the most sensitive detection method available, and can detect as little as 1 pg of antigen in 

a sample (Vachereau, 1989). It has the advantages of allowing re-probing of the

154



Glucose transporter: Protein expression in the CBE 

membrane with different antibodies. Furthermore, the exposure and reaction times are 

generally short and the film records can be stored permanently (Leong et al., 1986;

Kurien and Scofield, 2003).

Radioactive, In this system, radioactive labels such as iodinated (125I) staphylococcal 

protein A or streptococcal protein G can be conjugated to secondary antibodies (Dimond 

and Loomis, 1976; Harper et al., 1990). Subsequent autoradiography can then be 

performed to enable detection of antigen. These methods allow quantitation of target 

protein or antigen in the sample and provide good imaging quality (Kurien and Scofield,

2003).

5.1.3 Dot blotting

Dot blotting is a useful technique to screen for optimised concentration of samples, 

antibodies or other reagents e.g. blocking solutions. It is performed by dotting samples of 

interest or controls, directly onto a membrane support and then carrying out the 

immunological procedures. However, dot blotting can only act as a quick reference or 

starting point since its result might differ from that after proteins have gone through 

electrophoresis and electrotransfer, before being probed with the antibodies.

5.1.4 Regulation of glucose transporter proteins

Wound healing, GLUT1 protein was upregulated in the comeal wound healing process 

(Takahashi et al., 1996). This increase was related to an elevated transcriptional level and 

was believed to be essential for glucose supply during epithelial migration following 

wound closure. The increased level of GLUT1 was sustained well after two weeks of
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wound closure (Takahashi et al., 1996). However, an alternative hypothesis has been 

proposed to explain the increase of GLUT1 expression after wounding, based on the 

transporters’ role as a water channel (Fischbarg et al., 1990). This activity was thought to 

be crucial in regulating corneal homeostatic volume following wound healing 

(McCartney and Cantu-Crouch, 1992). Interestingly, a change in the localization of 

GLUT1 was also observed during wound healing, and was suggested to be a sign of 

redistribution of energy demand (Takahashi et al., 1996).

Hyperglycemia. GLUT1 protein expression was down-regulated in the cerebral 

microvessels of diabetic rats (Harik et al., 1988; Mooradian and Morin, 1991) and BBB 

of diabetic mice (Comford et a l, 1995). Yet in diabetic human cornea, its expression 

remained unchanged (Kumagai et al., 1994). In rat lens, an increased level of GLUT3 

was found in the major damaged zone induced by hyperglycemia, and this increase 

occurred before any change in mRNA level. This suggested that GLUT3 protein might 

insert into the membrane from the cytoplasmic pool, rather than due to the change in 

mRNA level (Merriman-Smith et al., 2003). However, GLUT3 expression did not show 

differential expression in rat testis when diabetic and normal groups were compared 

(Burant and Davidson, 1994).

Moreover, glucose transport function was found to be retarded, due to the downregulation 

of GLUT4 expression, in the adipose tissues and muscles of diabetic rats (Berger et al., 

1989; Garvey et al., 1989). Yet no significant change was observed in the protein 

expression level of GLUT1 and GLUT4 with various hyperglycemic levels in skeletal 

muscles (Pedersen et al., 1990). In contrast, GLUT1 protein expression was enhanced in 

murine fibroblast cells starved of glucose (Haspel et al., 1986).
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Growth and transcriptional factors, PDGF and serum induced an increase of GLUT1 

protein in the membrane preparation of human RPE cells. This elevation of protein level 

was not related to a change in mRNA, and therefore, the change might be post- 

translational (Takagi et al., 1994). Similar changes of GLUT3 protein expression have 

also been observed in the mouse brain (Choeiri et al., 2002). In rodents, GLUT3 provides 

a basal level of glucose transport, but GLUT1 is upregulated in response to mitogens or 

oncogens, which have an instant effect, to increase, mRNA levels (Wagstaff et al., 1995). 

Chickens, however, differed from rodents by upregulating GLUT3 in response to v-src 

(Wagstaff et al., 1995; Steane et al., 1998). These results highlight a species difference in 

the basal mechanism of glucose transporter protein expression, and in the response to 

different stimulants. Also, it is clear that mRNA and protein levels can be regulated 

independently, e.g. GLUT3 in rat lens (Merriman-Smith et al., 2003). This agrees with a 

previous study, which also showed an increase in protein level without an increase in 

mRNA expression (Khayat et al., 1998). This could be due to the regulation occurring at 

the translational or post-translational level, as demonstrated in the muscle cell study for 

GLUT3 (Khayat et al., 1998).

Others, Insulin is known to cause an increase in the translocation of GLUT4 from the 

intracellular cytoplasmic pool to the cellular membranes (Marcus et al., 1994; Kobayashi 

et al., 1996). However, the process was found to be retarded during both diabetic and 

fasting stages (Berger et al., 1989). On the other hand, glucose transporter expression also 

changes with developmental stage, and only the GLUT1, GLUT3, GLUT8 and SGLT1 

isoforms were found to be present constantly during bovine embryo growth (Augustin et 

al., 2001). Moreover, GLUT4 expression decreases with growth in ruminant species,

157



Glucose transporter: Protein expression in the CBE 

such as bovine (Abe et al., 2001), but increases in non-raminant species, such as rodents 

(Castello et al., 1994).

5.1.5 Previous studies on glucose transporters

There have been many studies on glucose transporter protein expression or localization in 

different ocular tissues. GLUT1 has been the most commonly studied isoform in ocular 

tissues including retina and RPE (table 5.1). GLUT2 was found as a 60 kDa band in rat 

retina and was believed to be used in local glucose homeostatic functions as well as 

systemic glucose regulation (Watanabe et al., 1994). On the other hand, GLUT3 was 

noted in the fibers of the inner synaptic layer, which is rich in neuronal connections and 

plays an important role in meeting the metabolic requirement of synapses (Mantych et al., 

1993b). GLUT4, being one of the two isoforms in the GLUT family that are responsive to 

insulin (Wood and Trayhum, 2003), has only been found in bovine lens (Jacobs, 1993). 

There has not been any study to date on the SGLTs protein expression in ocular tissues.
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Transporter
protein Ocular Tissues Method Protein 

size (kDa) Species Reference

GLUT1

Conjunctival
epithelium

FC
IHC — Human

culture (Gherzi et al., 1991)

Comeal
endothelium IHC — Human (Kumagai et al., 1994)

Comeal
epithelium

FC — Human
culture (Gherzi et al., 1991)

IHC — Human (Kumagai et al., 1994)

WB
IHC

55 & 60, 
40 after 

glycosidase 
F digestion

Rat (Takahashi et al., 1996)

WB -5 0 Rat (Takahashi et al., 2000)
Canal of Schleme IHC — Human (Kumagai et al., 1994)

Ciliary body

WB — Rat (Takata et al., 1990)

CB-
binding
assay

. . .

Rabbit
Rat

Marmoset
Baboon
Human

(Kaulen et al., 1991)

IHC — Human (Mantych et al., 1993b)
CBE - Pars plana IHC — Human (Mantych et a l, 1993b)

CBE

IFEM — Mice (Tserentsoodol et al., 1998)

IHC . . .
Rat

Human (Harik et al., 1990)

IHC — Human (Kumagai et al., 1994)
IFEM
WB 44 Rat (Shin etal., 1996)

IHC — Rat (Takata et a l, 1991)
Ciliary muscle 

capillary
EM
IHC

. . .
Rabbit
Human (Schlingemann et a l, 1998)

Iris-ciliary body WB 45-50 Rat (Tsukamoto et al., 1995)
Iris WB — Rat (Takata et a l, 1990)

Iris epithelium

Cyto-
chalasin

B-
binding
assay

—

Rabbit
Rat

Marmoset
Baboon
Human

(Kaulen etal., 1991)

m e — Rat (Takata et al., 1991)
IHC — Human (Mantych et a l, 1993b)

Iridial stroma IFEM — Mouse (Tserentsoodol e ta l,  1998)
Iridial capillaries IHC — Human (Kumagai et a l, 1994)

Iridial
microvessels IHC . . .

Rat
Human (Harik et a l, 1990)

Iridal vasculature IHC — Human (Mantych et a l, 1993b)

Trabecular
meshwork

Cyto-
chalasin

B-
binding
assay

—

Rabbit
Rat

Marmoset
Baboon
Human

(Kaulen et a l, 1991)

Lens fiber cells WB — Bovine (Jacobs, 1993)
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Transporter
protein Ocular Tissues Method Protein 

size (kDa) Species Reference

Lens epithelial
IHC
WB 45 Rat (Merriman-Smith et al., 

1999)
cells

IHC . . . Rat (Merriman-Smith et al., 
2003)

Lens cortex and 
nucleus

Cyto-
chalasin

B-
binding
assay

. . .

Rabbit
Rat

Marmoset
Baboon
Human

(Kaulen et al., 1991)

WB — Mouse (Gong et al., 2001)

Optic nerve IHC — Rat
Human (Harik et al., 1990)

IHC — Rat
Human (Harik et al., 1990)

IHC — Human (Mantych et al., 1993b)
' IHC — Human (Kumagai et al., 1994)

RPE WB 40-43 Human
culture (Takagi etal., 1994)

IFEM
IGEM

. . . Mouse (Tserentsoodol etal., 1998)

IF
IG — Rat (Bergersen et al., 1999)

RPE WB — Chick
Culture (Ban and Rizzolo, 2000)

WB 45 Rat (Badr et al., 2000)

GLUT1
Vitreous hyaloid 

vessels IHC —
8 week 

gestation 
human eye

(Mantych et al., 1993b)

Choroidal plexus WB — Rat (Takata et al., 1990)
Retinal capillary 

pericytes WB 45-50 Bovine
culture (Mandarino et al., 1994)

WB 45-50 Bovine
culture (Mandarino et al., 1994)

IHC — Human
culture (Knott et al., 1996)

WB — Rat culture (Antonetti etal., 1998)

Retinal capillary
IFEM
IGEM — Mouse (Tserentsoodol etal., 1998)

endothelial cells
WB 54 Bovine

culture (Sone et al., 2000)

WB 55 and 60 Bovine
culture (Rajah et al., 2001)

WB — Bovine
Culture (Zhang et al., 2003)

WB 55 Rat culture (Hosoyae/ al., 2001)
Retinal IHC — Human (Kumagai et al., 1994)

capillaries WB — Human (Tang et a l,  2003)
Retinal

microvessels WB 45 Rat (Badr et al., 2000)

IGEM — Human (Kumagai et a l, 1996)
Retinal IGEM — Rat (Femandes et al., 2003)

microvasculature IHC
WB 45-55 Rat (Badr et al., 1999)

Retina WB — Rat (Zhang et al., 2003)
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Transporter
protein’ - - ' i a f r '

Retina IHC — Rat (Takata et al., 1990)
Retina -  Rod 

outer receptors me 45
Bovine

(Hsu and Molday, 1991)
Retina -  Cone 
outer segments

WB Chick

Retina -  
Photoreceptor 

cells and Muller 
cells

WB
me 50 Human (Mantych et al,  1993b)

GLUT1 Retina -  
Photoreceptors 
Inner and outer 

plexiform layers 
Nucleus layers

Cyto-
chalasin

B-
binding

assay

. . .

Rabbit
Rat

Marmoset
Baboon
Human

(Kaulen et al., 1991)

Retina -  
Nerve fiber layer 

Ganglion cells 
Photoreceptor 

cells 
Muller cells

me . . . Human (Kumagai et a l,  1994)

GLUT2 Retina -  
Muller cells

EM
me
WB

60 Rat (Watanabe et a l,  1994)

Iris-ciliary body WB 55 Rat (Tsukamoto et a l,  1995)

Lens epithelial
me
WB 45 Rat (Merriman-Smith et al., 

1999)
cells me

WB 47 Rat (Merriman-Smith et al., 
2003)

WB — Bovine (Jacobs, 1993)

Lens fiber cells
me
WB 45 Rat (Merriman-Smith et al,  

1999)
me
WB 47 Rat (Merriman-Smith et al,  

2003)

GLUT3

Lens cortex and 
nucleus WB . . . Mouse (Gong et al,  2001)

Retinal me . . . Human
culture (Knott et al,  1996)

endothelial cells WB 47 Bovine
culture (Rajah et al., 2001)

Retinal
vasculature

me
WB 45 Rat (Badr et a l,  1999)

Retina -  inner 
synaptic layer

me
WB 50 Human (Mantych et a l,  1993b)

Retina -  
Inner and outer 

plexiform layers 
Inner nuclear 

layer

me
WB 44 Rat (Watanabe et al,  1996)

GLUT4 Lens fiber cells WB . . . Bovine (Jacobs, 1993)

Table 5.1 Summary of glucose transporter protein studies for the ocular tissues. FC: flow 
cytometry, IHC: Immunohistochemistry, WB: Western blotting, IFEM: 
Immunoflourescent electron microscopy, IGEM: Immunogold electron 
microscopy.
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5.2 Methodology: Western Blotting

5.2.1 Materials

All of the primary antibodies were purchased from Santa Cruz biotechnology, Inc. (UK). 

The biotin conjugated affinity purified secondary antibody was purchased from 

Chemicon international, Inc. (Hampshire, UK). The avidin-HRP and streptavidin-HRP 

conjugates were purchased from Bio-Rad Laboratories, Inc. (Hertfordshire, UK) and 

Amersham Biosciences (Bucks, UK) respectively. Kaleidoscope prestained standard and 

biotinylated SDS-PAGE standard (low range) were purchased from Bio-Rad Laboratories, 

Inc. (Hertfordshire, UK), while the SuperSignal® West Pico Chemilluminescent 

Substrate was purchased from Pierce Biotechnology, Inc. (Rockford, IL). Other reagents 

such as glacial acetic acid were purchased from Fisons Scientific Equipment 

(Loughborough, UK), acrylamide/Bis-acrylamide stock solution (30%) from Severn 

Biotech Ltd. (Worcestershire, UK), Ponceau S from Kodak (Eastman Fine Chemicals, 

New York, US), glycine, methanol and Tris-Base were from Fisher Scientific 

(Leicestershire, UK) and the rest including bromophenol blue, coomassie blue G-250, 

DAB, 1,3, Dithio-DL-threitol (DTT), gelatin, glycerol anhydrous, SDS, sodium chloride, 

temed, polyoxyethylenesorbitan monolaurate (Tween-20) were purchased from Sigma- 

Aldrich Co. Ltd. (Dorset, UK)

5.2.2 Sample preparation

Bovine kidney and CBE were isolated and stored as described in section 4.2.2, except 

that the tissues were not immersed in RNAlater, but directly in liquid nitrogen. For the 

isolation of retina, the bovine globe was cut open around the equator, and the anterior part
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of the eyes (including the vitreous) was carefully removed. The retina could then be 

peeled off directly from the RPE and choroid, and was immediately immersed in liquid 

nitrogen. Tissues frozen in liquid nitrogen were homogenised using a dismembrator 

(Mikro-Dismembrator U, B. Braun Biotech International) at 1600 rpm for 2 mins. They 

were solubilised in 1 ml of lx SDS sample buffer (50mM TrisCl (pH6.8), 5mM DTT, 1% 

SDS, 0.1% bromophenol blue and 7.5% glycerol). The mixture was centrifuged at 12,600 

x g for 10 mins and the supernatant transferred to a new Eppendorf tube. Protein 

concentrations were measured using a BCA protein assay kit (Pierce Biotechnology, Inc., 

Rockford, IL) according to manufacturer’s instructions.

5.2.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Gel plates were cleaned and assembled in the Protean II cell cassette (Bio-Rad 

Laboratories, Inc., Hertfordshire, UK). Resolving gel mixtures were prepared in an 

universal container with a final acrylamide percentage of 10%. Gels were poured in 

between the glass plates and allowed to stand for 40 mins for polymerization. Butanol 

(Sigma-Aldrich Co. Ltd., Dorset) was used to overlay the gel surface during 

polymerization. With the presence of a sharp interface between the polymerised gel and 

the overlay, the butanol was poured off and gel surface was washed twice with Milli-Q 

water. A small volume of 5% stacking gel was poured on top of the resolving gel in 

which a comb was inserted to form the sample wells. The stacking gel was left to stand 

for another 40 mins for polymerization. After the stacking gel was set, the comb was 

carefully removed and the sample wells were rinsed with Milli-Q water. Every well was 

washed twice to ensure removal of the residual stacking gel fragments. For each sample,
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40 ug of total protein was loaded. The samples were separated in the SDS-PAGE by 

applying 100 V for 135 mins. Coomassie blue G-250 solution (2.5 mM, 50% methanol, 

10% glacial acetic acid and filtered with Whatman no.l filters) was used to stain the 

separated proteins on gels. Any degraded samples (which showed up as smears of 

proteins without sharp bands) were discarded.

5.2.4 Protein transfer

Preliminary experiments revealed better and more consistent transfer efficiency using a 

wet blotting rather a semi-dry blotting system. Therefore, protein samples run on gels 

were transferred to PVDF membrane (Bio-Rad Laboratories, Inc., Hertfordshire, UK) by 

using the wet blotting method using a Protean II cell blotting kit (Bio-Rad Laboratories, 

Inc., Hertfordshire, UK) under a voltage of 50 V for 3 hours. The PVDF membranes were 

stained with 1% Ponceau S solution to ensure good protein transfer efficiency. The 

membrane was then washed in Tris-buffered saline (TBS) for 15 mins to destain the 

membrane.

5.2.5 Blocking, antibodies incubation and detection

The PVDF membranes were blocked with a blocking solution of 3% non-fat dry milk 

(Marvel dried skimmed milk, Lincolnshire, UK) in 0.01% Tween-20 TBS (TTBS) for 

one hour. Then, they were incubated in primary antibody solution for an hour or more. 

After two changes of TTBS for 10 mins each, the PVDF membranes were incubated in 

biotinylated secondary antibodies for a further hour. They were washed again in TTBS 

for 30 mins with three consecutive changes of solution of 10 mins each. Lastly, they were
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incubated with avidin-HRP or strepavidin-HRP, which was diluted in 3 % blocking milk 

(0.01 % Tween-20) with 1 % gelatin for one hour, and then washed with TBS three times, 

for five mins each, before signal detection. Chemilumiescent signals were visualised 

using the SuperSignal® West Pico Chemilluminescent Substrate kit (Pierce 

Biotechnology, Inc., Rockford, IL) according to the manufacturer’s instructions.

5.2.6 Control experiments

Kidney or retina samples were used as the positive controls, and were loaded alongside 

the CBE samples in every experiment. Negative controls were done by omitting the 

primary antibody.

5.2.7 Dot blotting protocol

Different concentrations of positive control sample (kidney), negative control samples 

(bovine serum albumin) and standard (molecular weight marker proteins) were dotted 

onto PVDF membrane and allowed to dry. Membranes were incubated in different 

concentrations of primary antibodies and secondary antibodies. Initially, 1:100 or 1:1000 

primary antibody dilutions were tested, along with 1:20000 secondary antibody solutions. 

The optimal concentrations observed in dot blotting experiments were used as a starting 

point for later western blotting experiments.

5.2.8 ECL versus DAB

Serial dilutions ofbiotinylated standard protein (1:10, 1:50, 1:100,1:200,1:400 and 

1:800) were loaded and separated by SDS-PAGE. Proteins were transferred onto PVDF
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membrane, and blocked with 3% non-fat dry milk in 0.1% TTBS. Membranes were 

incubated with avadin-HRP for one hour, before being developed using DAB or ECL 

reagents.
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5.3 Results

5.3.1 SDS-PAGE results

Three sets o f kidney and of bovine CBE protein samples were analysed by SDS-PAGE, 

for any signs of degradation (Fig. 5.1). Samples which showed smears of proteins without 

sharp bands were not used for further experiments.

97 kDa 

66 kDa

45 kDa

Fig. 5.1 Representative result of bovine samples separated by SDS-PAGE.

K: kidney; CP: ciliary processes; PP: pars plana samples.

K CP PP
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5.3.2 ECL versus DAB

Serial dilutions of biotinylated standards were transferred onto PVDF membrane, and 

detected with either ECL or DAB. As shown in figure 5.2, ECL was clearly much more 

sensitive, and therefore was used for all subsequent experiments.

A B C D E F

A B C D E F

Fig. 5.2 Signal detection using DAB (top) or ECL (below) kit. A: 1:10; B: 1:50; 

C: 1:100; D: 1:200; E: 1:400; F: 1:800 dilutions of biotinylated- 

standards.
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5.3.3 Strategies to minimise background staining of Western blots

As shown in figure 5.3, preliminary experiments showed a high level of non-specific 

background staining. Such staining persisted when primary and secondary antibodies 

were omitted, which indicated that the non-specific binding might be due to particular 

protein bands (especially in kidney samples) binding to the avidin-HRP conjugates.

M RKCP PP

Fig. 5.3 Background staining in preliminary experiment. MR: Biotinylated 

standard marker; K: kidney; CP: ciliary processes; PP: pars plana 

samples.

Several strategies were tried to reduce the background problem:

Reduction o f the avidin-HRP concentration. This was partially successful, but also 

resulted in a loss o f sensitivity. At a concentration at which the avidin-HRP did not give 

any background staining, specific staining was also abolished e.g. the biotinylated- 

molecular weight standard markers were barely detectable. Therefore an increased 

concentration o f the biotinylated marker had to be loaded onto the gel to compensate for 

the loss in sensitivity.
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Alternative blocking agents. The use of teleost gelatin, and alterations in the Tween-20 

concentration (0.01-0.05%) provided little or no improvement.

The use ofStreptavidin-HRP to substitute for avidin-HRP conjugates. This caused 

lesser background staining, but at the expense of sensitivity. The concentration which 

gave no background staining, also abolished staining of the biotinylated-standard markers.

The use o f non-avidin biotin detection system. All the primary antibodies were raised 

from goat. Without commercial anti-goat HRP-conjugated secondary antibodies being 

available at the time the experiments were carried out, a direct detection system could not 

be utilised. Recently, a “CruzMarker” system (Santa Cruz Biotechnology Inc, UK) was 

launched, and this was tested in the present study. Unfortunately, the kit exhibited even 

lower sensitivity and specificity in comparison to the avidin-biotin system.

Due to the difficulties discussed above, no Western blotting protocol could be devised 

that was completely free from background staining when using primary antibodies raised 

in goat.
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5.3.4 Western blotting of GLUT and SGLT proteins

Only two glucose transporter proteins were detected using Western blotting, and even for 

these, the evidence was extremely weak.

Firstly, a band of molecular weight 41 kDa corresponding to GLUT1 was detected in a 

single experiment (fig. 5.4). An antibody against the human C-terminal (antibody sc-1605) 

was used. However, this result could not be repeated in three other experiments. Also, no 

41 kDa band was present in the kidney sample, which is known to express GLUT1.

In addition, due to the high background staining on kidney samples, retina samples were 

also adapted to use as positive controls in this experiment, but no positive results could be 

obtained after optimization o f the detection system.

97 kDa 

66 kDa

45 kDa

Figure 5.4 GLUT1 protein expressed on the first set of bovine CBE samples.

(a) control experiment without prim ary antibody incubation; (b) control 

experiment without prim ary and secondary antibodies incubation; (c) 

GLUT1 expressed on both the CP and PP samples. Note the non-specific 

binding background on higher molecular weighted range of kidney 

samples.
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Secondly, SGLT1 was detected as a 75 kDa protein band in kidney samples (n = 4) and 

also in pars plana in 2 out of these 4 replicate experiments, using tissues from different 

eyes in each case (Fig. 5.5). This was done by using a primary antibody against the 

mouse C-terminus of SGLT1 (antibody sc-20582).

MR K CP PP MR K CP PP

(a) (b)

Fig. 5.5 SGLT1 protein expression in different samples, (a) Positive staining was 

found in kidney (n = 4) and also in (b) pars plana (n = 2).

Table 5.2 shows the antibodies which did not provide signals above background when 

tested on positive control (bovine kidney) samples and on samples o f bovine CBE:

Target Product code Epitope Cross-reactivity
GLUT2 sc-7580 Human C-terminus Human, mouse, rat
GLUT3 sc-7582 Mouse C-terminus Mouse, rat
GLUT4 sc-1608 Human C-terminus Human, mouse, rat
GLUT5 sc-14844 Rat N-terminus Mouse, rat

Table 5.2 Antibodies providing no signals during Western blotting experiments. 

Goat anti-SGLT2 antibodies were not available, they were not 

tested in this study.
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5.4 Discussion

5.4.1 Specificity of antibodies

As there were no commercially available anti-bovine glucose transporter protein 

antibodies, all of the primary antibodies used in the present study were targeted against 

human, mouse or rat glucose transporter proteins. When the respective epitopes were 

checked with the manufacturer, only GLUT1, GLUT4, SGLT1 might have had a 

reasonable chance in detecting the corresponding bovine glucose transporters. Therefore, 

experiments were done concentrating on these 3 antibodies, yet no satisfactory results 

were obtained. The goat anti-GLUT4 primary antibody gave very high and non-specific 

binding on the membrane, and no conclusive results could be drawn.

5.4.2 Glucose transporter proteins in the bovine CBE

According to the results obtained in chapter four, one would expect the expression of 

several glucose transporter proteins in the bovine CBE. Unfortunately, due to the 

technical problems encountered in this study, no conclusive results could be drawn. 

However, it would not be a surprise to find the presence of GLUT1, since it is the most 

common form of GLUT transporter, and exists in all mammalian cells studied to date 

(Gherzi et al., 1991; Takata et al., 1991). However, the presence of SGLT1 in both 

kidney and pars plana in 50% of the experiments raised the concern whether this antibody 

was actually working non-specifically. (Unfortunately, the manufacturer could not give 

any related information to confirm the likelihood of cross-reactivity). No conclusion can 

be deduced at the present stage. In the RT-PCR experiment, no SGLT1 mRNA was found 

in the bovine CBE, therefore, the possibility of the anti-SGLTl antibody binding to 

SGLT2 or other SGLTl-like proteins in the bovine CBE could not be eliminated. Still, a
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more complete story would only be possible if there were more bovine-specific 

antibodies for glucose transporters available. At present, no concrete evidence can be 

given for the protein expression profile of different glucose transporters in the bovine 

CBE.
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Chapter 6

QeneraC discussion
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6.1 Implications of glucose transporters in the CBE

Glucose transporters are important for mammalian cells, as they are crucial to ensure the 

flow of glucose in living tissues for normal metabolic functions (Kayano et al., 1990; 

Gould and Holman, 1993). In the CBE, glucose transporters might have other functions 

than just transporting glucose or other substrates and glucose transporters have been 

thought to transport water across cell membranes (Fischbarg et al., 1990; Loike et al., 

1993; Zampighi et a l , 1995; Loo et al., 1996). Since the CBE is known as the primary 

site for aqueous humour secretion, it is intriguing to suggest that glucose transporters may 

somehow facilitate aqueous humour formation. However, the exact mechanism by which 

these transporters might contribute to the aqueous humor formation remains to be 

elucidated.

In this study, SGLT2 mRNA was expressed in the bovine CBE. The presence of the 

SGLT isoform was interesting, since a facilitative transport mechanism might have been 

expected to ensure an adequate glucose flow from blood to aqueous, in order to meet the 

metabolic needs of the avascular ocular tissues. One possibility, as has been discussed 

earlier (section 4.4.4), is that the presence of the SGLT isoform is a supplementary 

mechanism for the glucose transport system, in case adverse conditions occur. Another 

possibility, derived from recently published study, is that the SGLT2 transporter might 

act as a “nutrient-sensing device”: it was noted that SGLT3, expressed in Xenopus laevis 

oocytes, could mediate glucose-induced depolarization of the membrane potential, and 

yet the transport itself did not show any glucose transport activity. SGLT3 has also been 

suggested as a glucose sensor in cholinergic neurons, thereby regulating muscle activity 

(Diez-Sampedro et al., 2003). In addition, GLUT1 has been thought to act as a glucose­

sensor, for glucose activation by mitogen-activated protein kinase (MAPK)
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(Bandyopadhyay et al., 2000), while GLUT2 has been suggested to play a similar role in 

hepatocytes (Guillemain et al., 2000). Furthermore, sugar entry via SGLT1 and SGLT3 

was proposed to act as a glucose sensor in the GLUTag cell, a model of intestinal L-cells 

(Gribble et al., 2003). Therefore, it is possible that the SGLT2 expressed in the bovine 

CBE is functioning as a glucose-sensing device. However, this idea remains speculative 

at this stage and awaits further experimentations.

6.2 Glucose transport across the CBE

According to the present study, the major glucose transport mechanism in the bovine 

CBE is carrier-mediated facilitative transport. The system demonstrates a 

stereospecificity for MDG over LG, and is likely to saturate when the plasma glucose 

concentration reaches approximately 10.6 mM. One might expect that, even under poor 

glycemic control, there would be a limit at which the glucose transport across the CBE 

would be stabilised, and that further increases in plasma glucose concentration would not 

potentially cause damage. However, it was found that glucose transporter mRNA level 

could alter shortly after an hour of hyperglycemic exposure (Knott et al., 1996), and 

remarkably, the Km value was increased two-fold after two months of exposure to 

diabetic conditions (Ennis et al., 1982). Thus, the present study will not be directly 

comparable to the in vivo condition in diabetic patients, since the true increase in plasma 

glucose concentration would be more subtle and much more sustained. One study has 

suggested that glucose is more detrimental than sucrose in causing barrier leakage 

(DiMattio and Streitman, 1986). In addition, the decrease in facilitated glucose transport 

is accompanied by an increase in passive glucose transport, due to the loss of barrier 

function under hyperglycemic condition in rats (DiMattio and Zadunaisky, 1983). This
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caused an overall change in glucose transporter regulation, damage to barrier function 

and an increase or decrease in the glucose flux. These alterations could cause anomalous 

fluctuations of glucose concentrations e.g. varied glucose level across the CBE, as occur 

in the eyes of diabetic patients. This has been suggested to increase the glucose influx 

across the CBE, which might accelerate cataract formation (Swamy-Mruthinti et al.,

1999). According to an earlier study, it was proposed that there existed a glycemic 

threshold, beyond which the rate of diabetic cataract formation would increase 

exponentially (Nagaraj et al., 1996). Beyond this threshold, formation of pentosidine, a 

product formed through glycoxidation, accelerated, as did the glycation rate. Therefore, 

one can postulate that if the glycemic threshold is lower than that of the saturation 

concentration, a cataract would inevitably form, despite the saturation kinetics. Therefore, 

it would be beneficial if one could downregulate the glucose influx across the CBE and 

prevent the aqueous humour from reaching abnormal glucose concentration which can 

precipitate the cataract formation process.

With the presence of GLUT1, GLUT3, GLUT4, GLUT5 and SGLT2 mRNA, one would 

also expect the presence of corresponding proteins in the tissues. Unfortunately, the 

protein study in this project could not be completed. Therefore, it is impossible to tell 

how the mRNA and protein levels are inter-related. Nevertheless, it is reasonable to 

postulate that the glucose transport across the CBE is insulin-responsive and mainly 

depends on concentration gradients across the CBE, since the presence of different GLUT 

isoforms confirmed our electrophysiological results that the transport mechanism was 

mainly facilitative and passive.
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6.3 Aqueous glycemic control and diabetic cataract

The different glucose transporters perform differently under hyperglycemic conditions. 

Even the same isoform can give varied responses when expressed in different tissues (or 

in different species). For example, expression of GLUT3, but not GLUT1, increased after 

hyperglycemic insult, in rats (Merriman-Smith et al., 2003). In addition, diabetes down- 

regulated GLUT1 expression in the rat retina and retinal microvessels, but not in the 

cerebral cortex (Badr et al., 2000).

With the present data, it is difficult to conclude which of the glucose transporters present 

in the CBE is the best candidate to target in order to lower the glucose influx in diabetic 

patients. However, a member of the GLUT family would probably make a better choice, 

since there are likely to be at least four of the family members expressed in the CBE. 

Also, it may be better to target a transporter involved in basal conditions (e.g. SGLT2 

may not be functional under normal conditions, or may not be responsible for the bulk of 

glucose transport). From the electrophysiological study, it was clear that the glucose flux 

was sensitive to certain drugs. Treatment with such glucose transporter inhibitors might 

be one possible way to lower the aqueous glucose level, yet how these drugs could be 

used to specifically target the CBE would require further investigation. Another approach 

would be gene therapy, in which the selected (targeted) isoform could be down-regulated. 

Firstly, however, it will be important to determine which glucose transporter isoform(s) 

are specifically upregulated under diabetic conditions. At this moment, the present study 

provides information of how glucose is transported across the CBE, and gives some ideas 

as to how the system could be regulated. It therefore represents a useful starting point 

from which further therapeutic approaches may be devised in order to lower the glucose 

concentration in the aqueous humour of diabetic patients.
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7.1 Future perspectives

Two directions have been proposed to prevent cataract formation (Harding, 1999). The 

first one is to eliminate the risk factor while the other is to use anti-cataract drugs. The 

present study aimed to characterise the glucose transport into the eye which defines the 

glycemic level of the aqueous humour. By keeping the aqueous glycemic level normal, 

the crystalline lens will no longer be at risk of diabetic cataract and no cataractous and 

pathological pathways will be triggered. However, the ways by which glucose 

transporters are targeted so as to reduce the glucose flux across the CBE in vivo by drug 

or gene-therapy will require further investigation. Future experiments are needed to test 

the tissue specificity of potential pharmaceutical agents that are lower in toxicity, before 

clinical trials can be considered.

In addition, a more complete picture of the glucose transporter expression profile in the 

CBE is needed. With appropriate and specific antibodies against the glucose transporters, 

the protein expression profile will hopefully be characterised in the near future. The 

relationship between mRNA and protein expression can be deduced and a clearer picture 

regarding how different glucose transporters contribute to the glucose transport across the 

CBE will emerge. This basic information will help in extending important in vivo studies 

in which the expression profile of glucose transporters can be investigated under 

hyperglycemic conditions. With this knowledge, candidate genes or proteins which are 

differentially expressed in hyperglycemic conditions can be targeted and altered by drugs 

or even gene therapy. For gene therapy to be successful, a number of technical aspects 

will have to be addressed. These include a thorough knowledge about the target gene, the 

accessibility of the target cells or tissues and a suitable vector system with which to
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introduce the gene into the target organ. Viral and non-viral methods are used to transport 

foreign genetic material into cells. In diabetes, studies have suggested that gene therapy 

may be a highly effective therapeutic treatment. In general, gene therapy has been widely 

investigated in different diabetic complications such as diabetic nephropathy (Zem and 

Kresina, 1997; Kitamura, 1999) and diabetic retinopathy (Igarashi et al., 2003). At late- 

stage neuropathy, hepatocyte growth factor (HGF) gene-therapy has showed promising 

results in improving the functional abnormalities (Cruzado et a l , 2004). Lentivirus- 

mediated HIV-angiostatin expression reduced the severity in mouse diabetic retinopathy 

model (Igarashi et a l , 2003), while ciliary neurotrophic factor administered by eye drops 

inhibited retinal degeneration in diabetic rats (Aizu et al., 2003). A recent study has also 

demonstrated the possibility of using an ex vivo HGF gene in facilitating islet 

transplantation (Rao et al., 2004). Although these studies are at an experimental stage in 

animal models, the same scheme of treatment may possibly be applicable to the CBE. 

With careful gene therapy design, for example, a candidate gene responsible for the 

abnormal upregulation of glucose transport in the CBE could be modulated (i.e. 

downregulated) at the transcriptional level and consequently the aqueous glucose 

concentration might remain normal. To date, there have been few studies exploring the 

possibility of targeting glucose transporters directly, in order to lower their level of 

expression, to combat diabetic complications. Therefore, to tackle hyperglycemia via 

such an approach is a new direction for treating diabetic patients. In fact, it can even be 

used as a preventive measure to delay or prevent any consequent hyperglycemia-induced 

complications.
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7.2 Conclusion

The present study is important in demonstrating that the application of a number of drugs 

can regulate the glucose transport in the bovine CBE and thereby control the aqueous 

glycemic level. By characterising the transport kinetics and genetic expression of various 

glucose transporters, it is now possible to envisage new ways to lower the risk of diabetic 

cataract.
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CLUSTAL cladograms for GLUT1-5 and SGLT1-3 mammalian mRNA sequences

B C 0 6 1873RatGLU T1 
M M _011400M ou»G L U T l 
MM 006516H n m anG L P T l 

IHM 1746Q 2Bovim »Q LPn1  
B C 0 6 0 0 4 1 HuanmGLU T2

______________ i - --------------------------------------------------------- M M _012879RatGLUT2
------------------------------------------------------- M M _031197M oxu#GLDT2

—  ----------------- — — ----------------------------------------------------------  M M _012751RatGLUT4
---------------------------------- ---------------------------------------------------------  A B 008453M ouseG L U T 4
I---------------- ---------------------------------------------------------------------------  MM _Q01042HanianQLPT4
I-------------------------— ----- — ----------------------------------------------------ID 631SO B ovim G L P T 41
--------------------------- ----------------------------------------------------------------- B C 0 3 9 196HumanGLU T3
---------------------------------------------------------------------------------------------IMM 17 4 6 0 3 B o vim»QLP T3l
_________|------------------------------------------------------------------------------  M M _011401M ou»G L U T 3

'-------------- — — ------------------------------------------------------ M 75135M on*eG LUT3
------------------------------------------ -------------------------------------------------  U 17978R atG LU T 3

|--------   — --------------------------------------------  BC001820HunwmGLDT5
- I |   — -------  A J315928ShecpG LU  T5

----------------------------------— ------------------------------------------1 A F 308830B ovm e0L U  T5l
|---------------------------------------------------------------------------------- B C 023500M ouw G L O T 5
--------------------------- — — --------------------------------------  M M _031741RatGLUT5

--------------------------------------— ----------------------------------------------  D 26482R abbitG L U T5



HM _000343HnmanSGLTl 
M 24847HmnanSGLTl 
M 34044PigSG LTl 
Z 8 2 4 1 OSheepSGL T1 
MM 174606B ovineSG L  T1 

I AF5088Q7Bo viaeSQL T11 
M M _019810M oiueSG LTl 
BC 083845M onseSG L T1 
A F 208031M o use SG L T1 
MM_013033RatSGL T1 
D 16101R atSG LTl 
MM 003041  Hmn&nSOL 12

M M _133254M ou»SG LT2  
B C 022226M oa»SG L T 2  
A T 033886Mo v m SGLT2 
MM_022590RatSGL 12  
U29881RatSGLT2

F1331:
AF251268M om aSO L T2l 
A F 4119 6 0 Moqm SGL T 3  
XM _228086RatSGL 13

r t

The sequences in blue brackets are the bovine sequences used for prim er design in this study. 
Red bracketed sequences are sequences with likely mis-assigned labels.
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Appendix II

CLUSTAL analysis of mammalian SGLT2 mRNA and the bovine SGLT2-like

EST sequences

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U2 9881RatSGLT2
NM_0 0304lHumanSGLT2
AV6054 90BovineSGLT2-likeEST

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_02 2 5 90RatSGLT2
U29881RatSGLT2
NM_0 0304lHumanSGLT 2
AV6054 90BovineSGLT2-likeEST

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY 03388 6MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_00304lHumanSGLT2
AV6054 90BovineSGLT2-likeEST

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U2 9881RatSGLT2
NM_003041HumanSGLT2
AV 605490BovineSGLT2-likeEST

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_003041HumanSGLT2
AV6054 90BovineSGLT2-likeEST

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U2988lRatSGLT2

AGCATGGTGTGGTGGCCGGTTGGAGCCTCTCTGTTCGCCA-GCAACATCG 2 2 3  
AGCATGGTGTGGTGGCCGGTTGGAGCCTCTCTGTTCGCCA-GCAACATCG 2 2 3  
AGCATGGTGTGGTGGCCGGTTGGAGCCTCTCTGTTCGCCA-GCAACATCG 2 3 3  
AGCATGGTGTGGTGGCCGGTTGGAGCCTCTCTGTTCGCCA-GCAACATCG 2 2 8  
AGCATGGTGTGGTGGCCGGTTGGAGCCTCTCTGTTCGCCA-GCAACATCG 228 
AGCATGGTGTGGTGGCCGGTTGGGGCCTCTCTCTTCGCCA-GCAACATCG 24 9 
---------------------------------------------------------------------------------CCACGCGTCCGCC 13

GCAGCGGTCATTTTGTGGGCCTGGCAGGGACTGGCGCAGCAAGTGGCTTG 27 3 
GCAGCGGTCATTTTGTGGGCCTGGCAGGGACTGGCGCAGCAAGTGGCTTG 27 3 
GCAGCGGTCATTTTGTGGGCCTGGCAGGGACTGGCGCAGCAAGTGGCTTG 283 
GCAGCGGTCATTTTGTGGGCCTGGCGGGGACTGGTGCAGCAAGTGGCTTG 278 
GCAGCGGTCATTTTGTGGGCCTGGCGGGGACTGGTGCAGCAAGTGGCTTG 278 
GCAGTGGCCACTTTGTGGGCCTGGCAGGGACTGGCGCTGCAAGTGGCTTG 299 
CACGCGTCCGCCTTACAGGATCACCTCCTTCTGTTACA-CACACGAGAAA 62 

* * ★ * * ★★★ *

GCGGTGGCTGGATTTGAGTGGAATGCGCTCTTCGTGGTGCTGCTCC-TCG 322 
GCGGTGGCTGGATTTGAGTGGAATGCGCTCTTCGTGGTGCTGCTCC-TCG 322 
GCGGTGGCTGGATTTGAGTGGAATGCGCTCTTCGTGGTGCTGCTCC-TCG 332 
GCCGTGGCTGGATTTGAGTGGAATGCGCTCTTTGTGGTGTTGCTCC-TCG 327 
GCCGTGGCTGGATTTGAGTGGAATGCGCTCTTTGTGGTGTTGCTCC-TCG 327 
GCTGTTGCTGGATTCGAGTGGAATGCGCTCTTCGTGGTGCTGCTAC-TGG 34 8 
AC CTGGACTT-AGAGGA— GGGCCTGTAGTGGAGGTCCTACACTG 104

★ ★ ★ ★ ★ ★ ★  ★ ★ ★  ' k ' k ' k ' k - k ' k - k ' k ' k ' k  ★

GATGGCTTTTTGTGCCAGTGTATCTGACCGCTGGTGTGATCACAATGCCT 372 
GATGGCTTTTTGTGCCAGTGTATCTGACCGCTGGTGTGATCACAATGCCT 372 
GATGGCTTTTTGTGCCAGTGTATCTGACCGCTGGTGTGATCACAATGCCT 382 
GCTGGCTCTTCGTGCCTGTGTATCTGACCGCCGGAGTGATTACCATGCCT 377 
GCTGGCTCTTCGTGCCTGTGTATCTGACCGCCGGAGTGATTACCATGCCT 377 
GCTGGCTGTTTGCACCCGTGTACCTGACAGCGGGGGTCATCACGATGCCA 398
GGGGGCACCTGGCATCCGTGAAGCCC-----------CAAACTCAGCCCCA 144★ * ★ * * ★ ★★★★★★ ★ *

CAGTACCTCCGCAAGCGCTTTGGTGGGCACCGTATTCGCCTCTACCTGTC 422 
CAGTACCTCCGCAAGCGCTTTGGTGGGCACCGTATTCGCCTCTACCTGTC 422 
CAGTACCTCCGCAAGCGCTTTGGTGGGCACCGTATTCGCCTCTACCTGTC 4 32 
CAGTACCTCCGCAAGCGCTTTGGTGGGCGCCGTATTCGCCTCTACCTGTC 427 
CAGTACCTCCGCAAGCGCTTTGGTGGGCGCCGTATTCGCCTCTACCTGTC 427 
CAGTACCTGCGCAAGCGCTTCGGCGGCCGCCGCATCCGCCTCTACCTGTC 4 4 8 
CTGTGCTCACCCAGACCTGCCTCCTGACGCCGGAGT-GCAGGAGCTCG-- 191 
★ ★ ★ ★  ★★★ ★ ★★★★★★ ★★ ★ ★

CGTGCTCTCGCTTTTTTTGTACATTTTCACCAAGATCTCGGTGGATATGT 472 
CGTGCTCTCGCTTTTTTTGTACATTTTCACCAAGATCTCGGTGGATATGT 472 
CGTGCTCTCGCTTTTTTTGTACATTTTCACCAAGATCTCGGTGGATATGT 4 82 
CGTGCTCTCGCTTTTTTTGTACATTTTCACCAAGATCTCGGTGGATATGT 477 
CGTGCTCTCGCTTTTTTTGTACATTTTCACCAAGATCTCGGTGGATATGT 477
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NM_0 0304lHumanSGLT2 
AV6054 90BovineSGLT2-likeEST

TGTGCTCTCCCTTTTCCTGTACATCTTCACCAAGATCTCAGTGGACATGT 4 98 
-GAGAATGGGCCATCATTTTGAAATCT------ GCCCTCCAGGAAAATTA 234

*  *  * *

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_00304lHumanSGLT2
AV6054 90BovineSGLT2-likeEST

TCTCTGGGGCAGTATTCATTCAACAGGCCCTGGGCTGGAACATTTACGCT 522 
TCTCTGGGGCAGTATTCATTCAACAGGCCCTGGGCTGGAACATTTACGCT 522 
TCTCTGGGGCAGTATTCATTCAACAGGCCCTGGGCTGGAACATTTACGCT 532 
TCTCCGGAGCAGTATTCATTCAACAGGCCCTGGGCTGGAACATTTACGCT 527 
TCTCCGGAGCAGTATTCATTCAACAGGCCCTGGGCTGGAACATTTACGCT 527 
TCTCCGGAGCTGTATTCATCCAGCAGGCTCTGGGCTGGAACATCTATGCC 548 
ATTGGAAAGGGGGAATCCTTTTCCAGTTCCCCGCAAAGACAGTCTATGTA 284 

*  * * * * * *  * * *  *  *  * *  *  * *  *

NM_133254MouseSGLT2
BC022226MouseSGLT2
AYO 3 38 8 6MouseSGLT2
NM_022590RatSGLT2
U2988lRatSGLT2
NM_003041HumanSGLT2
AV605490BovineSGLT2-likeEST

TCGGTCATCGCTCTCTTGGGCATCACCA— TGATTTATACTG-TGACAGG 569 
TCGGTCATCGCTCTCTTGGGCATCACCA— TGATTTATACTG-TGACAGG 569 
TCGGTCATCGCTCTCTTGGGCATCACCA— TGATTTATACTG-TGACAGG 57 9 
TCTGTCATCGCACTCTTGGGCATCACCA— TGATTTATACTG-TGACAGG 574 
TCTGTCATCGCACTCTTGGGCATCACCA— TGATTTATACTG-TGACAGG 57 4 
TCCGTCATCGCGCTTCTGGGCATCACCA— TGATTTACACGG-TGACAGG 595 
CTAGAGGCAGCCTGTCTGGGCTGTGCCCCCTGACCCAGGCCGGTTGCAGG 334 ★ ★★ ★★★★★ ★★ ★★★ ★ ★ ★ ★ ★★★★

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_00304lHumanSGLT2
AV605490BovineSGLT2-likeEST

AGGGCTGGCGGCACTGATGTACACAGACACTGTGCAGACCTTCGTCATTC 619 
AGGGCTGGCGGCACTGATGTACACAGACACTGTGCAGACCTTCGTCATTC 619 
AGGGCTGGCGGCACTGATGTACACAGACACTGTGCAGACCTTCGTCATTC 62 9 
AGGGCTGGCGGCACTGATGTACACAGACACTGTGCAGACCTTCGTCATTC 62 4 
AGGGCTGGCGGCACTGATGTACACAGACACTGTGCAGACCTTCGTCATTC 62 4 
AGGGCTGGCCGCGCTGATGTACACGGACACGGTACAGACCTTCGTCATTC 645 
A G G G C T G G C G ^H H H H ^^H G G T G C A G A C C T T C G T C A T T C  384 
* * * * * * * * *  * *  * * * * * * * * * * *  * * * * *  * *  * * * * * * * * * * * * * * * *

NM_133254MouseSGLT2
BC0 2 2 2 2 6Mous e SGLT2
AY033886MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_0 0304lHumanSGLT2
AV605490BovineSGLT2-likeEST

TTGCCGGGGCCTTCATCCTCACTGGTTATGCTTTCCATGAAGTGGGCGGG 669 
TTGCCGGGGCCTTCATCCTCACTGGTTATGCTTTCCATGAAGTGGGCGGG 669 
TTGCCGGGGCCTTCATCCTCACTGGTTATGCTTTCCATGAAGTGGGCGGG 67 9 
TTGCCGGGGCCTTCATCCTCACTGGTTATGCTTTCCATGAAGTGGGCGGG 67 4 
TTGCCGGGGCCTTCATCCTCACTGGTTATGCTTTCCATGAAGTGGGCGGG 674 
TGGGGGGCGCCTGCATCCTCATGGGTTACGCCTTCCACGAGGTGGGCGGG 695 
TCGCCGGGGCCTTCGTCCTCATGGGTTACGCCTTCCACGAGGTGGGCGGG 434 
*  *  * *  *  *  *  *  *  * * * * * *  * * * * *  *  *  * * * * *  * *  * * * * * * * * *

NM_133254MouseSGLT2
BC022226MouseSGLT2
AY03388 6Mous e SGLT 2
NM_0 225 9 ORatSGLT2
U29881RatSGLT2
NM_0 0304 lHumanSGLT2
AV605490BovineSGLT2-likeEST

TACTCGGGTCTCTTCGACAAATACCTGGGAGCAATGACTTCACTGACGGT 719 
TACTCGGGTCTCTTCGACAAATACCTGGGAGCAATGACTTCACTGACGGT 719 
TACTCGGGTCTCTTCGACAAATACCTGGGAGCAATGACTTCACTGACGGT 729 
TACTCAGGTCTCTTCGACAAATACCTGGGAGCAGTGACTTCACTGACGGT 724 
TACTCAGGTCTCTTCGACAAATACCTGGGAGCAGTGACTTCACTGACGGT 724 
TATTCGGGTCTCTTCGACAAATACCTGGGAGCAGCGACTTCGCTGACGGT 745 
TATTCGGGGCTTTTCGACAAATACTTGCGGGCAGTGACGTCCC^HHI 4 84 
* *  * *  * *  * *  * * * * * * * * * * * *  * *  *  * * *  * * *  * *  * * * * * * * *

NM_133254MouseSGLT2
BC022226MouseSGLT2
AYO 3388 6MouseSGLT2
NM_022590RatSGLT2
U29881RatSGLT2
NM_003041HumanSGLT2
AV6054 90BovineSGLT2-likeEST

GTCCAAGGATCCATCTGTTGGCAACATCTCCAGCACCTGCTAC-CAGCCG 7 68 
GTCCAAGGATCCATCTGTTGGCAACATCTCCAGCACCTGCTAC-CAGCCG 7 68 
GTCCAAGGATCCATCTGTTGGCAACATCTCCAGCACCTGCTAC-CAGCCG 778 
GTCCAAGGATCCAGCTGTTGGCAACATCTCCAGCACCTGCTAT-CAGCCG 773 
GTCCAAGGATCCAGCTGTTGGCAACATCTCCAGCACCTGCTAT-CAGCCG 773 
GTCCGAGGATCCAGCCGTGGGAAACATCTCCAGCTTCTGCTAT-CGACCC 794 
^^^^^^GGCCGTGGGCAACATCTCCAGCTCCTGCTATTCGACCC 534 

* * *  * * * * * * *  *  * *  * *  * * * * * * * * * * * *  * * * * * *  *  * *

NM_133254MouseSGLT2
BC022226MouseSGLT2

AGGCCTGACTCCTATCACCTGCTGCGTGACCCTGTGACAGGAGACCTGCC 818 
AGGCCTGACTCCTATCACCTGCTGCGTGACCCTGTGACAGGAGACCTGCC 818
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AY033886MouseSGLT2 AGGCCTGACTCCTATCACCTGCTGCGTGACCCTGTGACAGGAGACCTGCC 828
NM_022590RatSGLT2 AGGCCCGACTCCTATCACCTGCTGCGTGACCCTGTGACAGGAGGGCTGCC 823
U2 9881RatSGLT2 AGGCCCGACTCCTATCACCTGCTGCGTGACCCTGTGACAGGAGGGCTGCC 823
NM_00304lHumanSGLT2 CGGCCCGACTCCTACCACCTGCTCCGGCACCCCGTGACCGGGGATCTGCC 84 4
AV6054 90BovineSGLT2-likeEST CGGCCGGACTCCTACCACT-------------------------------------553

★★★★ ★★★★★★★★ ★★★

Short sequences highlighted in red were the primers designed based on the bovine SGLT2-like EST.
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A p p e n d i x  III

Sequencing results for GLUT1-5, SGLT1-2 and SGLT-2like EST

GLUT1
CTCCATCATGGGCAACCAGGAACTGTGGCCCCTGCTGCTGAGCGTCATCTTCATCCCAG
CCCTGTTGCAGTGCATCCTGCTGCCCTTCTGCCCCGAGAGCCCCCGCTTCCTGCTCATT
AACCGCAACGAGGAGAACCGGGCCAAGAGCGTGCTGAAGAAGCTGCGTGGGACCGCGGA
CGTGACCCGCGACCTGCAGGAGATGAAGGAGGAGAGCCGGCAGATGATGCGGGAGAAGA
AGGTCACCATCCTGGAGCTGTTCCGCTCAGCCGCCTACCGCCAGCCCATCCTCATTGCC
GTGGTGCTGCAGCTGTCCCAGCAGCTGTCCGGCATCAACGCTGTTTTCTATTACTCCAC
AAGCATCTTCGAGAAGGCGGGGGTGCAGCAGCCCGTGTATGCCACCATCGGCTCTGGCA
TCGTCAACACAGCCTTCACTGTCGTGTCGCTATTTGTGGTGGAACGAGCCGGCCGGCGG
ACCCTGCACCTCATAGGCCTGGCCGGCATGGCAGGCTGTGCA

GLUT2
ACAGCTGGAATCAGCCAACCTGTTTATGCAACCATTGGAGTTGGTGCTGTCAACACAGT
TTTCACTGCTGTCTCTGTGTTCCTTGTGGAGAAGGCAGGGCGACGCTCTCTGTTCCTAA
TTGGAATGAGTGGGATGTTTGTTTGTGCCATCTTCATGTCGGTGGGACTGGTNGCTCCT
GAGA

GLUT3
CCTTGTCTGTGGCCATCTTCTCCGTGGGTGGTATGATTGGCTCCTTCTCCGTCGGACTC
TTTGTCAACCGATTTGGCAGGCGCAATTCAATGCTTATTGTCAACCTGTTGGANATAGC
TGGCGGCTGCCTTATGGGATTCTGCAAAATAGCAGAGTCGGTTGAAATGCTGATCTTGG
GCCGACTGATTATCGGCCTCNTCTGCGGACTCTGCACAGGATTCGTGCCCATGTACATT
GGAGAGATCTCCCCTACTGCCCTGCGGGGCGCCTTTGGCACTCTCAACCAGCTGGGCAT
CGTTATCGGAATTCTGGTGGCCCAGATCTTTGGTCTAAAAGTCATCTTGGGGACTGAAG
ATCTCTGGCCTCTGCTCCTGGGCTTCACCATCTTACCAGCCATCATCCAGTGCAAA

GLUT4
GTGGCTGGGTACGTCCAACTGGACATGCAACTTCATCATCGGCATGGGTTTCCAGTATG
TGGCGGATGCTATGGGTCCCTACGTCTTTCTTCTATTCGCGGTCCTCCTGCTTGGCTTC
TTCATCTTCACCTTCTTAAAAGTGCCTGAAACCCGTGGCAGGACGTTTGACCAGATCTC
AGCCGTTTTCCACCGGACACCTTCTCTTCTGGAGCAGGAAGTGAAACCCAGCACAGAAC
TGGAGTACTTAGGGCCAGATGAGCATGACTGAGGGCCACAGAGGGGTGGGAGAGCCAGT
TCTCTCCACTTGCCCAGAGACCCCCCTCCTTTTCTCTGCAGCACTTTAACCCTCTCTTC
CCCATTACTTCCAGGGCAGAGAANACCCCTGCAGCCTGGTGGGATTGGGAAGCTGGAGG
GAACGGTGGTCTGAGCACCCCCTCATTCCCCTCGTGTGACCTCTTGGATTATTTGTGTT
GTGGGTTAGCAGTGG

GLUT5
CTCCATCATCGTCCTCATGGCGGGCCAGCAGCTCTCCGGAGTGAATGCGATCTACTACT
ACGCAGACCAGATTTACCTGAGTGCTGGAGTGAATGAGGACGATGTCCAATATGTGACG

SGLT1
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AAGGCAGAGTGCTACACCCCGAGGGCTGACTCCTTCCACATCTTCCGCGATCCTCTCAA
GGGAGACCTGCCCTGGCCTGGGCTCATCTTTGGGCTGACCATCATCTCCCTGTGGTACT
GGTGCACAGACCAGGTCATTGTGCAGCGCTGCCTCTCNGCCAAAAACATGTCCCACGTG
AAGGCCGGCTGCATCATGTGTGGGTACCTGAAGCTGCTGCCCATGTTCCTCATGGTGAT
GCCAGGGATGATCAGCCGCATCCTGTTCACAGAGAAAGTTGCCTGCACGGTCCCCTCAG
AGTGTGAGAAATACTGCGGCACCAAGGTTGGCTGTACCAACATCGCCTACCCGACCTTG
GTGGTGGAGCTCATGCCCAATGGACTGCGAGGCCTGATGCTGTCGGTCATGCTGGCCTC
GCTCATGAGCTCGCTGACCTCCATCTTCAACAGTGCCAGCACCCTCTTCACCATGGACA
TCTACACCAAGATCCGGAAGAAAGCCTCTGAGAAAGAGCTCATGATCGCAGGACGGTTG
TTCATGCTGGTGCTGATCGGTGTCAGCATCGCCTGGGTGCCCATCGTGCAGTCAGCACA
GAGTGGACAGCTCTTCGACTACATCCAGTCCATCA

SGLT2
CAACCGCCCATTCCGCGCAAGCACCTCTACCGCCTGGTTTTCAGTCTCCGGCACAGCAA
GGAAGAGAGGGAGGACCTGGATGCTGAGGAGCTAGAAGGTCCAACCGCAGCCCCCGTGC
AGAACGGGCGCCCTGAGCACGCAGTGGAGATGGAGGCGCCCCCGCCCCCAAGGCCAGGC
CTGTTGCGGCAGTGCCTGCTCTGGTTCTGTGGCGTGAGCAGGGGTGGGGTGGGCAGCCC
CCAACGCCCTACCCAGGAGGAGACGACTGCTGCAGCCAGGCGGCTGGAGGACATCAGTG
AGGACCCACGCTGGGCCCGCGTGGTCAACCTCAACGCCCTGCTCATGATGGCCGTGGCC
ACATTCCTCTGGGGCTTTTATGCCTGAGGCCCANTGCATTGGAACACCCTGAGCAA

SGLT2-like EST
GGGGCCTTCGTCCTCATGGGTTACGCCTTCCACGAGGTGGGCGGGTATTCGGGGCTTTT
CGACAAATACTTGCGGGCAGTGACGTCCCTGACGGTATCCGAGGATCACNTANGCGGGG
TGGTCCGAGGGAGGGCCTTGTCGCGGGTGCCGGGTCCCCTGACGGCCGTGCCCTCACAG
CCTTCCACGAGGTGGGCGGGTATTCGGGGCTTTTCGACAAATACTTGCGGGCAGTGACG
TCCCTGACGGTATCCGAGGATCA

The next two pages are examples of the sequencing output in ABI format.
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Appendix III

G G  G G

0 3 0  2 4 0
'  G G G 3 G G G  G G G  G G

G G G

400 410 420 430 440  4S0
> G G G  G G GG G G G G G ’ ‘ * G f C  : t « I C  T C  T C C

4 6 0  470
-  "G ’ G G  G '  7  7 G G T

4 6 0  4 9 0
r r c  T C  G G G G ‘ :

Sequencing output in ABI format of GLUT5 mRNA expressed in kidney sample.
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Appendix III

1 8 0
G G G S  S

2 5 0  2 6 0  2 ' 0  2 8 0
' G  S  G T G  ' G  G G G  S ' G G  G G G  G G

G G G

0
N t f N S S S M N S S S i l ' I ' I ' I M S f l N S l J H S H H S l H S i H J I N N t f S I S S i N U S H N N U . S N N S S S H M J I N S . M N H l l S f l S S I N ' t N S H S M t f S I K N S . ' J . N . S M t J N ' I N S N I r H - I N H S . ' J N J I S N N y S ' I M S

: T r » ? *o l t r * g t  : »t T t t t 6 C S 6 r s * t  g n n n Nl s t. n ■; a n n s v n n s * s n >« n N n v * N s 'i s s :i s n * x ■< m n n n n n ; :

Sequencing output in ABI format of GLUT5 mRNA expressed in the ciliary process.
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Appendix IV

Appendix  IV

CLUSTAL analysis of bovine SGLT2-like EST and SGLT2 sequences

CLUSTAL W (1.82) Multiple Sequence Alignments 

Sequence format is Pearson
Sequence 1: AV208941BovineSGLT2 2275 bp
Sequence 2: AV6054 90BovineEST 553 bp

Sequences (1:2) Aligned. Score: 40

AV2 0894 lBovineSGLT2 AGATCGTGGGCAGAATGGAGGAGCACACAGAGGCAGGCTCAGCACCAGTGCTGGGGGAAC 60
AV605490BovineEST----- ------------------------------------------------------------------

AV208 94lBovineSGLT2 AGAAGGCTCTAATTGACAATCCTGCTGACATCCTAGTCATCGCTGCTTATTTCCTGCTGG 120 
AV6054 90BovineEST ------------------------------------------------------------------

AV20894lBovineSGLT2 TCATTGGTGTCGGCTTGTGGTCCATGTGCAGAACCAACAGAGGCACCGTCGGCGGCTACT 180
AV605490BovineEST ------------------------------------------------------------------

AV20894lBovineSGLT2 TCCTGGCGGGACGGAACATGGTGTGGTGGCCGGTCGGGGCCTCTCTCTTTGCCAGCAACA 240
AV6054 90BovineEST  C 1

AV20894lBovineSGLT2 TCGGCAGTGGCCACTTCGTGGGCCTGGCAGGGAC CGGTGCGGCGAGCGGCCTGGCGG 297
AV605490BovineEST CACGCGTCCGCCCACGCGTCCGCCTTACAGGATCACCTCCTTCTGTTACACACACGAGAA 61

** ★ **** * * * * * * ★

AV20894lBovineSGLT2 TGGCTGGATTTGAGTGGAATGCACTGTTCGTGGTCCTGCTACTTGGGTGGCTCTTCGTGC 357
AV605490BovineEST AACCTGGACTTAGAGGAGGGCCTGTAGTGGAGGTCCTACA— CTGGGGGGCACCTGGCAT 119

* * * * *  * *  *  *  *  *  *  * * * * * *  *  * * * *  * * *  *  *  *

AV20894lBovineSGLT2 CAGTGTA-CCTGACTGCCGGCGTCATCACCATGCCGCAGTACCTGCGAAAGCGCTTCGGC 416
AV605490BovineEST CCGTGAAGCCCCAAACTCAGCCCCACTGTGCTCACCCAG-ACCTGC CTCCTGA 171

*  * * *  *  * *  *  *  * *  * *  *  *  * * *  * * * * * *  * *  *  *

AV20894lBovineSGLT2 GGCCATCGTATCCGCCTCTACTTGTCCGTGCTCTCGCTTTTTCTGTACATCTTCACCAAG 47 6
AV605490BovineEST CGCCGGAGTG-CAGGAGCTCGGAGAATGGGCCATCA-TTTTGAAATCTGCCCTCCAGGAA 229

* * *  * *  *  *  * *  *  *  * *  * *  * * * *  *  *  * *  *

AV20894lBovineSGLT2 ATTTCGGTGGACATGTTCTCCGGGGCAGTATTCATTCAACAGGCTCTGGGCTGGAACA-T 535
AV605490BovineEST AATTAATTGGAAA-------- GGGGGAATCCTTTTCCA--- GTTCCCCGCAAAGACAGT 277

*  *  *  * * * * *  * * * * * *  *  * * *  * * *  * *  * * * *

AV20894 lBovineSGLT2 CTATGCCTCCGTCATCGCGCTCCTGGGCATCACCA— TGATCTACACTG-TGACAGGAGG 592
AV605490BovineEST CTATGTACTAGAGGCAGCCTGTCTGGGCTGTGCCCCCTGACCCAGGCCGGTTGCAGGAGG 337

* * * * *  *  * *  * * * * * *  * *  * * *  *  *  *  *  *  * * * * * * *

AV208941BovineSGLT2 GCTGGCGGCACTGATGTACACGGACACGGTGCAGACCTTCGTCATTCTCGCCGGGGCCTT 652
AV605490BovineEST G C T G G C G | | ^ ^ ^ H H U ^ ^ ^ B CGGTGCAGACCTTCGTCATTCTCGCCGGGGCCTT 397

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

AV20894lBovineSGLT2 CGTCCTCATGGGTTACGCCTTCCACGAGGTGGGCGGGTATTCGGGGCTTTTCGACAAATA 712
AV605490BovineEST CGTCCTCATGGGTTACGCCTTCCACGAGGTGGGCGGGTATTCGGGGCTTTTCGACAAATA 457

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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AV2 0894lBovineSGLT2 
AV6054 90BovineEST

AV2 0 8 9 4lBovineSGLT2 
AV6054 90BovineEST

AV208941BovineSGLT2
AV605490BovineEST

AV208941BovineSGLT2 
AV6054 90BovineEST

AV208 94lBovineSGLT2 
AV6054 90BovineEST

AV208941BovineSGLT2 
AV6054 90BovineEST

AV208941BovineSGLT2 
AV605490BovineEST

AV2 08941BovineSGLT2 
AV6054 90BovineEST

AV20894lBovineSGLT2 
AV605490BovineEST

AV208941BovineSGLT2 
AV6054 90BovineEST

AV208 94lBovineSGLT2 
AV605490BovineEST

AV2 0894lBovineSGLT2 
AV605490BovineEST

AV208941BovineSGLT2 
AV6054 90BovineEST

AV208 94lBovineSGLT2 
AV6054 90BovineEST

AV208 94lBovineSGLT2 
AV6054 90BovineEST

AV20894lBovineSGLT2
AV605490BovineEST

Appendix IV

CTTGCGGGCAGTGACGTCCCTGACGGTATCCGAGGATCCGGCCGTGGGCAACATCTCCAG 772
c t t g c g g g c a g t g a c g t c c c H ^ H H H B I ^ B H I c g g c c g t g g g c a a c : a t c t c c a g  5 1 7  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CTCCTGCTAT-CGACCCCGGCCGGACTCCTACCACCTGCTCCGGGACCCTGTGACGGGGG 831
CTCCTGCTATTCGACCCCGGCCGGACTCCTACCACT----------------------------553
* * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * *

ACCTGCCATGGCCCGCGCTGCTTCTGGGGCTTACTATCGTGTCCAGCTGGTACTGGTGCA 891 

GCGACCAGGTTATAGTGCAGCGCTGCCTGGCTGGGAAAAACCTCACCCACATCAAGGCGG 951 

GCTGCATCCTGTGCGGCTACTTGAAGCTGATGCCCATGTTCCTCATGGTCATGCCTGGAA 1011 

TGATCAGCCGCGTTCTTTACCCGGACGAAGTGGCGTGCGTGGTGCCCGAGGTGTGTAAGC 1071 

GCGTGTGCGGCACCGAGGTGGGCTGCTCCAATATCGCCTACCCGCGGCTCGTCGTGAAGC 1131 

TCATGCCCAATGGTCTGCGCGGACTCATGCTGGCGGTCATGCTGGCGGCGCTCATGTCCT 1191 

CGCTGGCCTCCATCTTCAACAGCAGCAGCACACTCTTCACCATGGACATCTACACGCGCC 1251 

TGCGGCCCCGCGCGGGCGACCGCGAGCTGCTGCTAGTAGGACGGCTCTGGGTGGTGTTCA 1311 

TCGTGGCCGTGTCGGTGGCCTGGCTGCCCGTGGTGCAGGCGGCGCAGGGCGGGCAGCTCT 1371 

TCGATTACATCCAGTCGGTCTCCAGCTACCTGGCGCCGCCGGTGTCGGCCGTCTTCGTGT 1431 

TGGCGCTCTTCGTGCCCCGCGTCAACGAGAAGGGCGCCTTCTGGGGACTGATCGGGGGCC 1491

TGCTGATGGGCCTGGCACGCCTGGTTCCCGAGTTCTCCTTCGGCTCCGGCAGCTGCGTGC 1551

GCCCCTCCGGGTGCCCGGCTCTCCTCTGCCGCGTCCACTACCTCTACTTCGCCATCCTGC 1611

TCTTCGTCTGCTCCGGCCTCCTCACCCTCGTGGTCTCACTGTGCACACCGCCCATTCCGC 1671
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AV2 0894 lBovineSGLT2 GCAAGCACCTCTACCGCCTGGTTTTCAGTCTCCGGCACAGCAAGGAAGAGAGGGAGGACC 1731
AV6054 90BovineEST ------------------------------------------------------------------

AV2 0894 lBovineSGLT2 TGGATGCTGAGGAGCTAGAAGGTCCAACCGCAGCCCCCGTGCAGAACGGGCGCCCTGAGC 1791
AV605490BovineEST ------------------------------------------------------------------

AV208 94 lBovineSGLT2 ACGCAGTGGAGATGGAGGCGCCCCCGCCCCCAAGGCCAGGCCTGTTGCGGCAGTGCCTGC 1851
AV605490BovineEST ------------------------------------------------------------------

AV2 0894 lBovirieSGLT2 TCTGGTTCTGTGGCGTGAGCAGGGGTGGGGTGGGCAGCCCCCAACGCCCTACCCAGGAGG 1911
AV605490BovineEST ------------------------------------------------------------------

AV2 0894 lBovineSGLT2 AGACGACTGCTGCAGCCAGGCGGCTGGAGGACATCAGTGAGGACCCACGCTGGGCCCGCG 1971 
AV605490BovineEST ------------------------------------------------------------------

AV2 0894 lBovineSGLT2 TGGTCAACCTCAACGCCCTGCTCATGATGGCCGTGGCCACATTCCTCTGGGGCTTTTATG 2031
AV6054 90BovineEST ------------------------------------------------------------------

AV20894lBovineSGLT2 CCTGAGGCCCACTGCATTGGACACCCTGAGCCACAGCCTTAGATGAGTGGGGGTGGGGAG 2091
AV605490BovineEST ------------------------------------------------------------------

AV20894lBovineSGLT2 CCAGCGGCGGTGAGAAGGGCCTGGGGCCAGAGAGTAGAGGGGAGGCCCCGGGACCCCTAC 2151 
AV6054 90BovineEST ------------------------------------------------------------------

AV2 0894 lBovineSGLT2 TCTCTGCCTTGTTTCTGCCTGGGACCCAGTCCATAGCCACACCCTGTGAGGCCTTGGCCA 2211
AV6054 90BovineEST ------------------------------------------------------------------

AV20894lBovineSGLT2 GCTGGCCACTGTAGTTCCCCTAAGAACAAATAAAGCTGCCTTGCCTAGTCAAAAAAAAAA 2271
AV6054 90BovineEST ------------------------------------------------------------------

AV208941BovineSGLT2 AAAA 2275 
AV605490BovineEST ----

The sequences highlighted in red were primers designed according to the bovine EST sequence, while 
those highlighted in yellow are primers for the real SGLT2 gene.
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Appendix V 

List of publications

Paper

To, C.H., Kong, C.W., Chan, C.Y., Shahidullah, M. and Do, C.W. (2002). The

mechanism of aqueous humour formation. Clin Exp Optom; 85(6): 335-49.

Conference abstracts
1. Law C.S., Chan C.Y., Candia O.A., To C.H. (2005). Fluid Transport Across Porcine 

Ciliary Body Epithelium. ARVO, Florida.

2. Chan, C.Y., Guggenheim, J.A. and To, C.H. (2004). mRNA expression of glucose 

transporters in the bovine ciliary body/ epithelium (CBE). ARVO, Florida.

3. Chan, C.Y., Guggenheim, J.A. and To, C.H. (2004). Glucose transport kinetics in the 

bovine ciliary epithelium. Ophthal Physiol Opt, 24 (2); p. 3. (British Congress of 

Optometry and Vision Science (BCOVS) 2003, Birmingham).

4. Chan, C.Y., To, C.Y., Zamudio, A.C. and Candia, O.A. (2003). Measurement of 

aqueous humor formation rate using a modified Ussing-type chamber by capillary 

method. ARVO, Florida.

5. Chan, C.Y. and To, C.H. (2003). Glucose transport kinetics in the bovine ciliary 

epithelium. SERI-ARVO, Singapore.

6. Chan, C.Y. and To, C.H. (2002). Glucose Transport in the Bovine Ciliary Body 

Epithelium (CBE). ARVO, Florida.
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