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Abstract

The modular finite-difference groundwater flow model MODFLOW is one of the most 

widely used groundwater modelling programs, and is applicable to most types of flow 

problems in its field. However, its finite difference formulation decreases its ability to 

simulate accurately natural aquifer geometries. To enhance its capability in simulating 

such boundaries, a finite volume scheme has been developed for inclusion in 

MODFLOW.

In this study, the two-dimensional formulation has been considered. Three discretisations 

of the two-dimensional diffusion equation, governing groundwater flow and for use with 

structured quadrilateral meshes, have been developed. The three methods rely on a cell- 

centred finite volume approach, but show distinct differences in the choice of: gradient 

approximation, head interpolations and control volume. A time implicit formulation has 

been used in each model. The sparse system of linear equations that result from the 

implicit formulation has been solved by using an iterative solver, based on the strongly 

implicit procedure. Five test examples have been undertaken to compare the performance 

of the newly developed methods against MODFLOW predictions and analytical results. 

The accuracy of the results obtained was found to depend on the spatial and temporal 

discretisations. One of the three developed methods proved its robustness, with regard to 

mesh non-orthogonality and skewness, and was called the GWFV method. In a second 

step of studies, a field case study was used to test the preferred model. A mesh generator 

using a structured quadrilateral grid was used to produce the finite volume mesh of the 

simulated area. The results of MODFLOW and the GWFV model simulations were 

compared against field observations. A discussion about the performance of the new 

developed model has been included and the model has been shown to perform well in 

comparison with MODFLOW.

Keywords: numerical models, finite volume discretisations, groundwater flow models, 

MODFLOW, non-orthogonal grid.
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Chapter 1

Introduction

1.1 Background

The amount of water available on earth is as important as its quality. In recent years, both 

the quantity and quality of water have been known to change dramatically. Increasing 

water demand and intensification of industry, agriculture and urban activities are the 

main anthropogenic factors of this degradation. Statistics show that groundwater, in 

particular, is the main source of drinking water in poor countries and the most at risk 

resource in industrialised countries. A necessary step into the management of this 

precious resource is an understanding of the behaviour of groundwater systems. 

Therefore, hydrologists are often called upon to predict groundwater flow in a range of 

scenarios related to this resource. So far, this task has essentially been fulfilled by using a 

groundwater model. Researchers have developed basically two kinds of models: physical 

and mathematical models. Among the later, numerical models have become the most 

widely used due to the increasing development and availability of high-performance 

computers. These models solve the governing equations of the groundwater processes, as 

a special case of the mass conservation law systems, and as solved using Computational 

Fluid Dynamics (CFD) numerical methods. The complexity of practical flow situations 

has emerged alongside the development of numerous numerical techniques. At an early 

stage in the history of CFD, the finite difference method dominated the solution 

procedures, and applications of this method to various types of flow problems were 

widely developed. In the 80s, the U.S. Geological Survey developed a three-dimensional
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(3D), finite-difference groundwater flow model, commonly referred to as MODFLOW. 

Later, this programme became one of the most popular models used by government 

agencies and consulting firms for groundwater flow applications worldwide. One of the
f

reasons for its success was the use of the relatively straightforward finite difference 

method to solve the groundwater flow equation. As a matter of fact, this technique 

presented user-wise advantages of ease of meshing the domain and solving in a 

straightforward manner the resulting system of discretised equations. This numerical 

method is known to have many strengths, but has the shortcoming of its rigidity in 

conforming to boundary geometries, doubled by a loss of accuracy in predicting 

hydraulic heads along and near these boundaries (USEPA, 1994, Anderson and 

Woessner, 1992, p. 21).

1.2 Aims of the Study

The main aim of this study has therefore been to include the finite volume method in 

MODFLOW using a boundary-fitted computational grid that will enhance the model 

flexibility in representing complex boundary geometries and improve the accuracy of 

results based on the premise that the finite volume method has the inherent advantage of 

being unconditionally mass conservative. However, it was also desirable to introduce the 

minimum number of changes that would affect users familiarity with this widely used 

model. The principal changes were relevant to recent versions of MODFLOW and recent 

design changes. The new MODFLOW-2000 structure was oriented towards 

accommodating the solutions of the new equations, such as transport or parameter 

estimation. This new design concept provides another valuable basis to modify 

MODFLOW with the aim being to implement the changes as additional options for 

solving the flow equation by the finite volume technique.

Numerous solutions have been obtained for CFD equations using a variety of finite 

volume methods. However, a judicious choice of the appropriate finite volume 

discretisation approach for the groundwater flow equation used in MODFLOW has been 

considered where the main aim has been to minimise the changes required to the code.
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The merits of the selected finite volume model have been assessed with respect to its 

potential impact on the accuracy and code additional change requirements. Thus, another 

goal of the present work has been to test and evaluate the new developed code by running 

a suite of test cases, including results generated by analytical solutions and/or by 

MODFLOW. The main feature of the new programme is its use of an irregular mesh, 

with this study giving an insight into the strengths and weaknesses of this particular 

feature. A field case study was also desirable as an efficient opportunity to assess the 

performance of MODFLOW and the newly developed model. Therefore, a suitable field 

case study for validating the new finite volume approach has also been sought and used.

1.3 Outline of the Thesis

This research study employs one of the recently developed numerical methods, namely 

the finite volume method, for modelling a specific case of groundwater problems. 

Therefore in Chapter 2 groundwater model concepts and development procedures are 

summarised, along with the mathematical description of groundwater problems, 

including the flow, solute transport, temperature and Darcy equations. A review of 

existing mathematical models for groundwater flow was then undertaken, particularly 

with regard to analytical solutions and numerical techniques, wherein a comparison of the 

strengths and the shortcomings of each approach was undertaken.

As one of the aims of this study was to improve the modelling performance of 

MODFLOW, Chapter 3 gives a thorough description of this very widely used code, along 

with a discussion of its shortcomings and potential for improvement. Particular focus was 

made on the mathematical model of MODFLOW based on the popular finite difference 

numerical technique.

Within the framework of MODFLOW, the groundwater flow equation has been 

discretised using the finite volume method in different ways and arising from various 

options for approximating the hydraulic gradient for a control volume face and 

manipulating the resulting linear equations. In Chapter 4, these options have been
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reviewed, and their merits are assessed with respect to the resulting matrix properties, 

accuracy and impact on the MODFLOW code.

In Chapter 5, the proposed solution procedures are applied for five selected test cases. 

The accuracy of the methods has been examined for transient-state two-dimensional (2D) 

flow to a discharging well using the Theis analytical solution for this problem. The 

sensitivity of the procedures to the mesh size was also examined. A 2D Kershaw mesh 

has been selected to examine the effects of the grid non-orthogonality and skewness on 

the overall performance of these procedures. The accuracy at irregular boundaries has 

also been examined. Finally, a heterogeneity test has been carried out to check the 

effectiveness of the selected equivalent permeability formulation. A comparison of the 

test results for the different selected schemes is provided, with one procedure proving to 

perform better than the others. A brief description about the implementation of this 

procedure within MODFLOW is also presented.

The new code has been applied to a field case model for validation purposes in Chapter 6. 

The observation results have been compared with the new model results and details are 

provided in this chapter.

Finally, a review of the results obtained from the tests carried out in Chapters 5 and 6 has 

been outlined in Chapter 7, along with future recommendations for research.



Chapter 2

Review of Groundwater Modelling 
Methods

2.1 Groundwater Models

A model is a tool designed to represent a simplified version of a complex physical 

process. A groundwater model, if properly constructed, can be a valuable predictive tool 

for the management of groundwater resources (Anderson and Woessner, 1992). The 

modelling effort in this sense can have three important objectives: 

predicting the effect of certain actions given the field conditions,

- interpreting system dynamics by gaining insight into controlling parameters and, if 

data are insufficient, guiding data collection activities,

generating geological conditions to analyse flow in hypothetical hydrological systems 

and to formulate regulatory guidelines for a specific region.

Several types of models have been developed to meet these objectives. They can 

generally be classified into two categories namely physical and mathematical models.

2.1.1 Physical Models

Physical models are used to understand the flow and transport processes in groundwater 

by means of experiments. They are more likely to be used to meet the second modelling 

objective and they include such models as the sand box and analog models.
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The Sand box model is a reduced scale representation of the natural porous medium 

domain. The water is induced to flow through a tank filled with an unconsolidated porous 

medium. This type of model has many applications in groundwater, varying from 

studying transport phenomena to validating other model results. Oswald and Kinzelbach 

(2000) used a series of laboratory experiments to study variable-density flow in a 

saturated porous medium and used their results to verify the reliability of some existing 

numerical codes. In this sense, laboratory experiments can be performed to obtain data 

required for the elaboration of benchmarking examples. Sand box models can also be 

used to study some groundwater phenomena such us the movement of a plume under 

different field conditions (Hoopes and Harleman, 1967, and Ishaq and Ajward, 1993). 

They offer a three dimensional representation of groundwater processes, particularly 

when a two-dimensional flow assumption may induce simulation errors (Turner et al., 

1994) or where the assumptions of homogeneity and isotropy rarely, if ever, apply 

(Simmons et al., 2001). In fact, a sand model is a true model as it involves the real porous 

medium. However, considerable differences between phenomena measured at the scale of 

a sand tank model and conditions observed in the field may occur due to the scaling down 

of a field situation to the dimensions of a laboratory model. Therefore, conclusions drawn 

from such models should be re-examined when translated to a field situation.

Analog models are used to replicate an aquifer system and its behaviour by using a set of 

partial differential equations. Similarities between these equations and those governing 

other processes, such as: (i) the flow of an electrical current through a resistive medium, 

(ii) the flow of a viscous liquid in the narrow space between two parallel planes, or (iii) 

the flow of heat through a solid, have given rise to analog models. Some of these 

techniques have been in use since the late 1800s. The physical analogy between these 

processes is given in Table 2.1 (Spitz and Moreno, 1996, p. 17). Among these types of 

models the most renown are: the electrical analog model, the Hele-Shaw analog or 

parallel-plate model (synonyms to a viscous fluid model), and the membrane analog 

(Bear, 1972). Applicability of these analogs and other models is shown in Table 2.2. It 

should be noted that analog models have very restricted applicability regarding the model 

tasks. These types of physical model are regarded as a simulator of the flow regime in the



CHAPTER 2. REVIEW OF GROUNDWA TER MODELLING METHODS___________________7

Physical Process Law
Conservation

Law Quantity Potential
Proportionality

Factor

Groundwater Flow Darcy q = -K V h V-/z=0 Darcy flux q
Potentiometric head 
h

Hydraulic conductivity K

Viscous fluid flow Poiseuille v = - / rVfr V Jfr=0 Velocity V
Potentiometric head 
h Conductivity o f fracture f r

Electricity flow Ohm I  = —c £ V 3£ = 0 Current I Voltage E Electrical conductivity a

Heat flow Fourier Q * = -X V d V J0=O Heat flow Q„ Temperature 6 Thermal conductivity X

Force field Newton f - m V U V Jt /= 0 Force / Potential U Mass m

Diffusion Fick q ,= - D f 7 c V Jc=0 Diffusive flux q0 Concentration c Diffusion coefficient A
Incompressible flow 
o f a frictionless fluid v --V < p V 30=0 Velocity V Velocity potential </) 1

Table 2.1 Analogy between groundwater processes and other 
processes (Spitz and Moreno, 1996, p. 17).

Model
Model
Task ^ < 5 ^

Sand B ox H ele-Shaw Electric analogs Membrane
m odel analog ..........1................................................ analogs

Electrolitic RC-Network

DIM ENSIONALITY
tw o-d im ensonal • • • • •
three-dim ensional • o • • 0

FLOW PROBLEM
steady  

- *
un steady

•
• : •

0
•
• 0

phreatic• ...................................................................................•••■.........

Leaky formation
•..................

•

©

•

© 0

•
0
0

anisotropy • • • • •
h eterogeneity • • • • 0
variably saturated • © 0 0 0
im m iscible fluids • 0 0 0 0

TRANSPORT PROBLEM  
stream /pathlines <§

. • • ... 

• 0 0 0
advection
dispersion

•
• 0

0
0

0
0

0
0

sorption
*

decay/reactions
•
•

0.• ■AVAy/.*.V • • 

0

0
0

0
0

0
0

%  Yes 0  Wit h certain constraints 0  No

Table 2.2 Applicability of models and analogs (after Bear 1972).
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aquifer. Each laboratory model or analog is designed to solve a specific problem (Alley 

and Emery, 1986). It is based on the analogy between a set of mathematical equations 

that describe the behaviour of the real aquifer system and those describing the behaviour 

of the physical model. Another approach to model an aquifer system is to solve directly 

or approach the solution of the mathematical equations that have been stated using a 

mathematical model (see section 2.1.2).

Other laboratory experiments have been developed for specific applications, such as 

seepage face and water infiltration (Hall, 1955, and Haverkamp et al., 1977). They are 

generally used to develop the mathematical formulation to obtain an accurate model 

representation and to analyse model sensitivity for physical parameters and numerical 

formulations (Bums, 1983).

Field experiments are used for measuring head and/or concentration values through field 

sampling or monitoring, or for the acquisition of groundwater flow and transport 

parameters. The most classical investigation methods are pumping tests and borehole 

geophysics. Other methods, such as cone penetrometers, surface geophysics, and isotopic 

analysis, are less used due to their relatively high cost. Monitoring wells are used to 

provide an access point for measuring groundwater levels and access to accurate 

groundwater point samples. Geologic logging gives valuable information about 

underlying formations. Transmissivity, hydraulic conductivity, storage coefficients and 

specific yield are typically obtained using traditional pumping tests (Walton, 1987, 

Boonstra and Kselik, 2001). Slug tests are used to determine point values for hydraulic 

conductivity (Bouwer, 1989). Physical parameters of the rock and the fluids contained in 

that rock can be obtained by mean of geophysical logging techniques (Keys and 

MacCary, 1971). Effective porosity may be estimated by tracer experiments (De Marsily, 

1986). Measuring local groundwater flow or studying the mechanism of a solute transport 

under natural conditions can also be performed by introducing tracers into the ground 

(Courtois et al., 2000). It should be noted that the results of many of these tests are 

obtained by use of mathematical codes (e.g. aquifer test analysis, tracer test analysis). 

They are often used in analytical or numerical model development processes (e.g. model 

calibration, validation or benchmarking). Groundwater techniques, such as artificial
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recharge, air sparging, are not considered as field experiments and thus will not be 

addressed in this chapter.

f

2.1.2 Mathematical Models

These models are based on the fact that the aquifer system and its behaviour are 

represented in the form of a set of mathematical expressions, such as partial differential 

equations or linear algebraic equations. Mathematical models of groundwater flow have 

been in use since the late 1800s. They can broadly be classified as either deterministic or 

stochastic.

Deterministic methods assume that a system operates such that the occurrence of a given 

set of events leads to a unique definable outcome, while stochastic methods presuppose 

that the outcome is uncertain and are designated to account for this uncertainty. 

Deterministic methods are used more widely than stochastic methods even though there 

is a growing trend in research towards the development of stochastic methods, as will be 

discussed later in this section. Using a deterministic approach, the governing equations 

can be solved either analytically or numerically, depending upon the assumptions made 

when stating the flow problem in terms of partial differential equations, boundary 

conditions and initial conditions. These assumptions will subsequently be addressed in 

more detail.

2.1.2.1 Analytical Models

When the field situation can be described by a mathematical model under simplified 

assumptions, the flow equation can be solved analytically. In fact, fairly restrictive 

simplifications of the real world are required to use classical analytical solutions. 

However, these types of solutions are generally more efficient than other model types 

whenever analytical solutions for the investigated groundwater problem exist. A more 

detailed description of cases when analytical solutions exist is given in the next section.
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2.1.2.2 Numerical Models

To deal with more realistic field situations, the solution of the constructed mathematical 

model for a regional flow is usually approximated by the use of numerical techniques. 

This kind of model has been in continuous development since about the 1960s. They 

have become the preferred type of model to approach complex groundwater problems, 

especially with the wide availability of high-speed digital computers. Depending on the 

numerical techniques employed in solving the governing equations, there exist several 

types of numerical models, among them: finite-differences, finite elements, boundary 

elements, analytic elements, integrated finite differences and finite volume models. These 

schemes approach the solution of partial differential equations by giving values of state 

variables only at specified points in the space and time domains investigated, rather than 

provide a continuous function in these domains as is the case for analytical solutions. The 

partial differential equations representing water balances are replaced by a set of 

algebraic equations involving discrete values of the state variables at discrete points in 

space and time. These equations must be solved simultaneously and a computer program 

is often required. The solution is obtained for a specified set of numerical values of the 

various model coefficients. Section 2.5 gives more details of the different numerical 

techniques and their limitations in modelling practice.

2.1.2.3 Stochastic Models

In the first two approaches, expected values of hydraulic head or concentrations are 

considered as deterministic values. However, natural flow and transport systems are 

rarely described with certainty and predictions always account for risk. Much of the 

uncertainty associated with modelling is owed to the incomplete knowledge about the 

values of model coefficients and their spatial (and sometimes temporal) variation, 

hydrologic stresses, and head and concentration distributions. The stochastic modelling 

approach is often used to address uncertainty directly by assuming that the flow and 

transport parameters are random variables (Satish and Zhu, 1992 and 1994, Castelli, 

1996, Harter and Yeh, 1998, and Li and Graham, 1998). The mean, variance, and 

correlation length are used to generate quantitative descriptions of the considered variable
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field and results are given in the form of a probability density function (Figueiredo, 

2000). Many techniques are used to perform such calculations. Monte Carlo simulation, 

Gaussian quadrature numerical integration, generalised likelihood uncertainty estimation 

method, and first-order second-moment analysis are the most widely used techniques in 

uncertainty analysis in groundwater problems. Recent advances in these models include 

the use of fuzzy mathematical methods to address the vague nature of uncertainties 

associated with hydrogeologic parameters (LaRue and Tyagi, 1998, Chen et al., 2003, 

Guan and Aral, 2004). Another new application in this field is the use of genetic 

algorithms for estimating groundwater parameters and how to extract information 

regarding the sensitivity of the model to these parameters (El Harrouni et al., 1996 and 

Giacobbo et al., 2002). Further research in this field are focusing on how to incorporate 

these techniques in a numerical model for self calibration (Capilla et al., 1998 and 

Katsifarakis et al., 1999), or to determine the relationship between random variables and 

deterministic parameters via a sensitivity analysis (Gau and Liu, 2000). Its feasibility 

could also be investigated in the framework of an expert system for groundwater model 

development, or selection, as the applicability of a numerical model is most commonly 

limited by uncertainty in both conceptual and mathematical models (Freeze and Reeves, 

1996).

In the following sections, emphasis will be primarily on numerical and analytical models 

for their widespread use in groundwater applications and their particular use in this field. 

These types of models are based on sets of simplifying assumptions to different extents. 

Special attention needs to be paid to these assumptions as they form a decisive element in 

a model conception and an important criterion in model selection (see section 2.5).

2.1.2.4 Assumptions

Most aquifer systems are complicated beyond our capability to describe them and treat 

them exactly as is the case in reality. Therefore, the construction of a groundwater model 

is always made on the basis of a set of simplifying specific assumptions that should not 

be forgotten in the course of investigation whenever the model is being deployed. In fact,
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three fundamental and common assumptions are typically used whenever we deal with 

groundwater flow and transport. They are:

- the continuum approach: the porous medium is considered as a continuum, thus the 

flow through the medium is treated at the macroscopic level, rather that the 

microscopic level. This assumption arises from the difficulty of taking measurements 

at this level in order to validate a model. The passage from the microscopic 

description to the macroscopic one is translated by introducing the concept of a 

representative elementary volume (REV) of the porous medium domain. A value at a 

point within this domain is interpreted as the average of the variable taken over the 

REV centred at that point. However, this phenomena at the microscopic level should 

first be examined to justify the validity of this assumption especially when dealing 

with variably saturated flow, multiple phase flow or contaminant transport. This 

assumption could be no more valid if changes in the flow or transport parameters are 

induced by external reactions and therefore may compromise the flow direction or 

cause a breakthrough of contaminants (Fryar and Schwartz, 1998). Special 

experiments should be undertaken to check the possibility of up scaling microscopic 

phenomena and representing them within an equivalent macroscale medium (Braun et 

al., 1998, and Ahmadi et al., 2001).

- the hydraulic approach: at regional scales, flow is considered to be essentially

horizontal. This assumption is made on the basis that when the ratio of the aquifer

saturated thickness to horizontal length is important, then the flow is particularly

horizontal. The Dupuit assumption for a phreatic aquifer is based essentially on this 

approximation. The approach allows transforming a three-dimensional problem into a 

two-dimensional one. Model variables are averaged over the vertical thickness of the 

aquifer. The assumption fails in regions where the flow has a large vertical 

component, in leaky aquifers if the hydraulic conductivity of the semi-permeable 

layer is significant or when considering contaminant transport.

- Flow velocities in the continuum are considered low enough to justify the reduction 

of the momentum balance equation to the linear motion equation of Darcy (see 

section 2.3). This assumption should be verified in cases where the flow regime is not 

uniform or occurs at large Reynolds (Re) numbers (e.g. fractured or karstic aquifers 

and multiphase flow or in the immediate vicinity of outlets).
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Depending on the case study, many others assumptions could be adopted to simplify the 

real field conditions to produce a reliable representation and reduce the computational 

effort for simulation. Assumptions on the distribution of parameters (classical, 

deterministic and bayesian approaches, see Loaiciga and Marino, 1987), model 

dimensionality (ID, 2D or 3D, one or multi-layers, aquifer thickness, etc.), aquifer areal 

extent, boundary conditions and various stresses are necessary to build the conceptual 

model of an aquifer. These assumptions are usually made in order to overcome the lack 

of information and uncertainties we regarding the aquifer system features. However, 

much research has been undertaken to quantify and reduce uncertainties in the 

conceptual, mathematical and parameter uncertainties using the sensitivity analysis 

method.

Therefore, one of the most important steps in the modelling process is the selection of a 

set of appropriate assumptions that simplify the aquifer and flow conditions with regard 

to the level of accuracy and objectives required.

2.2 Model Development Procedures

In groundwater modelling, the term ‘model’ may refer to the generalised computer code 

designed for application to many different sites, or to the use of such codes at a particular 

site as an ‘operational model’ (Van der Heijde and Kanzer, 1997). This is why model 

development may refer to code development resulting in a software product (i.e. code 

development) or model development resulting in the application of such a product for a 

specific purpose (i.e. model application).

2.2.1 Code Development Procedure:

A standard code development process involves the following main steps (Figure 2.1):
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Code objectives

Mathematical Model |(

Solution Technique

Code Testing

Verification 
(functionality 
and performance)

’/WW.WW/iWrt’.

Code reporting |

Figure 2.1 Model code development process.

2.2.1.1 Code Objectives

The first step in a groundwater modelling code development is the definition of its 

functionality. The code objectives are formulated in terms of a set of functions and 

features. This conceptual formulation includes: model framework geometry, simulated 

processes, boundary conditions, and analytical and operational capabilities.

2.2.1.2 Mathematical Model

The next step in the modelling process is to describe the groundwater system, specified in 

code objectives by a mathematical model. This consists of defining the geometry of the 

considered domain, specifying equations that describe the behaviour of the fluids 

involved, specifying equations that express the initial conditions and providing equations 

that define the boundary conditions. The mathematical model contains the same 

information as in the code’s conceptual formulation, but expressed as a set of equations 

that are amenable to analytical or numerical solution. The complete mathematical 

statement of groundwater problems is detailed below.
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2.2.13 Solution Technique

The Partial Differential Equations (PDEs) formulated in the mathematical model must be 

solved or approximated using an analytical or numerical method. The selection of an 

appropriate solution technique for the class of problems treated depends on several 

factors including accuracy, efficiency and usability of a particular method (i.e. 

assumptions which may include simplifications, truncation, and round-off errors and 

modeller mathematical background). A more detailed comparison between the 

performance of analytical and numerical methods is given later in section 2.5.

2.2.1.4 Code Testing

Code testing or code verification in groundwater modelling is defined as the process of 

demonstrating the consistency, completeness, correctness and accuracy of a groundwater 

modelling code with respect to its design criteria (ASTM, 1984). This evaluation is 

performed by mean of code tests. The three main objectives of these tests are:

• functionality analysis: which involves the verification of code functions with regard to 

predefined code objectives,

• performance evaluation: which involves checking the operational characteristics of the 

code in terms of its computational accuracy, limitations with respect to numerical 

convergence and stability, sensitivity for grid design and model parameters, algorithm 

efficiency and resources required for model setup,

• applicability assessment focuses on determining for which types of problems the code 

is particularly suited to.

2.2.1.5 Code Reporting

Once the code has been developed and tested, a comprehensive documentation about its 

capabilities and limitations must be prepared. According to Van der Heijde and 

Elnawawy (1992) the code documentation should include a description of the theoretical 

framework of the model (i.e. assumptions, mathematical equations and treatment and 

limiting conditions), code structure and language (i.e. programmer’s manual), and code
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use instructions regarding model setup and code execution parameters (i.e. user’s 

manual). Detailed guidelines for the preparation of comprehensive code documentation 

are given by the American Society fpr Testing and Materials (ASTM, 1997).

2.2.2 Model Application Procedure

A model application requires appropriate site characterisation. Figure 2.2 illustrates a 

simple diagram of a model application process.

Model objectives

Data Analysis

Conceptual Model

Code Selection

Calibration and Sensitivity Analysis

Model Validation

Predictive Runs

Conceptual
Model
Improvement

Uncertainty Analysis I
* -MMWWMWMM«M4MWflWWWWWWSW-W5WWWWHWWW®

Figure 2.2 Model application process.

2.2.2.1 Model Objectives

As stated above, modelling application objectives range from prediction (e.g. flow and 

transport models) to system interpretation (e.g. test analysis, parameter identification) and 

generic modelling (e.g. water budget, chemical mass balance). The purpose will



CHAPTER 2. REVIEW OF GROUNDWATER MODELLING METHODS 17

determine what governing equation will be solved (e.g. flow, transport), the size of the 

domain to be investigated (i.e. local or regional) and areas of particular interest (i.e. finer 

resolution for higher accuracy).

2.2.2.2 Data Analysis

Data analysis includes the collection of available site-specific data, and analysis and 

interpretation of the data. The data are usually acquired from public bodies, site 

investigations (previous studies or/and study-specific), and the literature. The quality of 

site-specific data should be analysed (e.g. sampling techniques and testing methods) and 

the source of all model input parameter values should be given and justified. Specific-site 

data interpretation gives information about spatial distribution of the model parameters 

(e.g. permeability, storativity), boundary and initial conditions and stresses on the system. 

Each data as outlined above are a determining factor in the formulation of a good 

representative conceptual model and the effort that will be spent in the model calibration 

and verification. Uncertainties associated with groundwater mechanisms and 

hydrogeological features are associated with the quantity and quality of these data.

2.2.2.3 Conceptual Model

The construction of a conceptual model consists of identifying a set of assumptions 

describing the system composition, the relevant medium properties and the flow process 

mechanism. To do so, extensive information on the natural system, compilation and 

interpretation of field data are essential to understand the natural system and have a 

clearer definition of the flow problems. The selection of an appropriate conceptual model 

and the level of simplification included in the model also rely on the objective of the 

management problem, in the sense that it dictates which features of the investigated 

problem should be represented in the model and to what level of accuracy. Figure 2.3 

gives a schematic approach to the construction of a conceptual model. As can be noted, 

the assumptions made at this stage are generally related to the geometry of the 

boundaries, the kind of solid matrix, the flow mode and regime, the properties of the 

fluid, sources and sinks, and finally initial and boundary conditions.
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Figure 2.3 Schematic approach to the construction of a conceptual groundwater model.
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More detailed models are more costly and require more sophisticated codes and larger 

computers. The model should be simple enough to facilitate model efforts, but not too 

simple so as to exclude features dominant to the groundwater problem being investigated. 

In summary, a good conceptual model is one that is suited to the need, cost and 

availability of data to develop and calibrate the model. At this stage, the conceptual 

model is not definitive as it can always be adjusted using the calibration results, as shall 

be highlighted later.

2.2.2.4 Code Selection

Once a decision to develop a model for a specific site has been made, a code must be 

selected that is appropriate for the given problem. The user checks the capabilities of 

existing codes and other code information of particular interest to the model objectives. 

In 1994 the USEPA has established a general classification of selection criteria for 

special cases of site contamination. A more general summary of selection criteria is given 

in Table 2.3. The selection of the appropriate code and appropriate level of complexity 

remains subjective and dependent upon the judgement and experience of the analysts, the 

objectives of the study, and the level of prior information on the system of interest.

2.2.2.5 Calibration and Sensitivity Analysis

A sensitivity analysis of a model application aims to quantify the effects of uncertainty in 

the estimates of model coefficients such as aquifer parameters, stresses, and boundary 

conditions on the calibrated model. Evaluating the importance of each factor helps 

determine which data must be defined more accurately and which data are already 

adequate.

2.2.2.6 Model Validation

The purpose of model validation is to demonstrate the credibility of code-based 

predictions by using the set of calibrated parameter values and stresses to reproduce well- 

monitored new set of field data (Van der Heijde and Kanzer, 1997).
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Administrative Data
Objective o f  the model (simulation, parameter indentification, aquifer test analysis) 
Available resources 
Available field data ,

 legal and regulatory framework applying to the situation
Site-Related Criteria

Aquifer system characteristics 
Confined aquifers 
unconfined aquifers (water-table) 
aquitards 
multiple aquifers 
convertible 

Soil/Rock characteristics
heterogeneity in properties 
anisotropy in properties 
fractured 
macropores 
layered soils 

Flow conditions
fully saturated 
variably saturated 
laminar flow

linear/Darcien 
nonlinear/non-Darcian 

turbulent flow  
variable viscosity  
variable density 
steady-state flow  
transient flow  

Multiphase fluid conditions
two-phase water/NAPL 
two-phase water/air 
three-phase water/NAPL/air 

Boundary conditions
type I: (Dirichlet) prescribed head 
type II: (Neuman) prescribed flux 
type III: (Cauchy) head dependent flux 
Inflow/Outflow

geometry (line, point, area) 
type (contant/variablel

Code-related criteria
Development objectives (research, general use, education) 
source code availability 
history o f  use
code usability (pre-processing, post-processing, mathematical background required) 
quality assurance

code documentation 
code testing 

hardware requirements 
solution methodology 
code output 
code dimensionality 
cost

_______code language_______________________________________________________________

Table 2.3 Code selection criteria for groundwater flow modelling.
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2.2.2.7 Predictive Runs

The code is run with the calibrated values for model parameters to simulate the response
f

of the system to future events (i.e. predictive simulations). The justification and reasoning 

for these various runs is related to the model application objectives.

2.2.2.8 Uncertainty Analysis

In a final model report, prediction results are presented. Ranges and uncertainties in these 

model results need to be indicated. An uncertainty analysis provides a means of taking 

account of the effects of uncertainty in input parameter values on the model results. A 

detailed description of uncertainty analysis is provided by the McMahon et al. (2001). 

When the predictions are related to a problem or system of continuing interest to society, 

uncertainty analysis roles include the improvement of the design of the observation 

network and prediction of the trends and direction of changes in the aquifer system. The 

model should then be periodically post-audited, or re-calibrated, to incorporate new 

information necessary for model validation, such as changes in imposed stresses or 

revisions in the assumed conceptual model. New field data are collected to determine 

whether the prediction was correct. If the accuracy of the predictions was sufficiently 

close in matching the field data, then the model was regarded as being satisfactorily 

validated for the studied area, otherwise changes in the conceptual model or in model 

parameters need to be made. The model final report should follow the Quality Assurance 

(QA) criteria associated with the documentation and organisation of records and 

computer files. Any decision made during the study (e.g. assumptions, data sources, 

calculations, simplifications, etc.) or changes made to the model during its development 

should be justified and recorded. These elements assure technically and scientifically 

adequate execution of all project tasks included in the study, and ensure that all 

modelling-based analyses are verifiable and defensible (Taylor, 1985).
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2.3 Mathematical Statement of Groundwater Flow

A mathematical statement is an important step in the model development process. It is the 

translation of the conceptual model into a completed, well-posed mathematical one, 

which can be solved using a computer algorithm. A complete mathematical description of 

a model consists of a statement of the governing equations, the boundary conditions and 

the initial conditions if the problem is time dependent. Each of these elements is 

discussed in the following sections.

23.1 Governing Equations

In groundwater flow models, the environmental water manager is primarily concerned 

with fluids contained in the aquifer system. This supposes a good understanding of both 

the fluid and aquifer properties.

2.3.1.1 The Fluid

The fluid is generally described by stating (Bredehoeft at al., 1982, p. 7):

1/ the pressure o f the fluid : described by a partial differential equation for pressure which 

in certain simplifying instances can be reduced to an equation for the hydraulic head; this 

is commonly referred to as the flow equation:

V . - ^ V / ? + p g V z ) - t f = ^ - ( / » 2 )  ( 2 .1 )

2/ the composition o f  the fluid: a partial differential equation for composition is set for 

each chemical constituent of interest within the fluid column; this is used for studying the 

solute transport distribution in groundwater:

V(  pci(V p+pgV z)|fV .(pD ) S C -qC = ^ (pn C ) (2.2)

3/ the energy contained in the fluid : generally either in the form of temperature or 

enthalpy of the fluid and described by a partial differential equation of the form:
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V ^ H { V p + p g V z ) \v .K T.V T -qL-qC PT = fy> n U + (l-n ip C r\T ]  (2.3)

where: f

C : concentration, mass fraction, ML'3, (Kg/m3);

Cp : specific heat of fluid at constant pressure, EM'1T 1, (J/Kg-°C);

D : hydrodynamic dispersion coefficient, L2f 1, (m2/s);

g : acceleration due to gravity, Lt'2, (m/s2);

H : enthalpy, EM '1, (J/Kg); (H=U+p/ p )

k : permeability, L2;

K t : thermal conductivity of the aquifer, E L '^ T 1 or F t^T 1, (W/m-°C);

p  : pressure, ML_1f 2; F/L2; Pascal (Pa)

q : mass rate of production or injection of liquid per unit volume, ML'V1, (Kg/mP-s);

qL: rate of the heat loss per unit volume, EL 3t \  (J/mP-s);

R : refers to rock phase;

t : time, t, (s);

T : temperature, T, deg. Celsius (°C);

U : internal energy, EM '1, (J/Kg); (Joule (J) or Watt-second (W-s));

z : elevation above a reference plane, L; (m)

n : porosity, dimensionless;

p  : density, ML'3; (Kg/m3)

p  : viscosity, ML'11'1; (Pa-s)

V: gradient vector (= grad);

V.Q : divergence (=div).

For the most general case and for a more complete and realistic representation of the flow 

mechanism in the aquifer, these three equations (or set of equations) are coupled and 

must be solved simultaneously. However, when the conceptual model is developed, the 

analysis of the fluid properties shows the terms and mechanisms that have a non

dominant effect and thus, should be deleted. Therefore, in many cases, the coupling of the 

equations may be negligible and the equations can be treated separately. For instance, in
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many problems, the change in temperature is unimportant and the system is regarded as 

isothermal, dropping consideration of equations for the internal energy of the fluid. If no 

chemical constituent movement is of interest and has no effect on the fluid properties, 

then the only equation considered is the flow equation. In the following analysis the fluid 

composition and temperature will be neglected, as focus will be concentrated only on 

water flow problems and the assumptions that may simplify the corresponding equations.

2.3.1.2 The Aquifer

As mentioned above, the flow equation that describes a porous media groundwater 

system involves parameters that describe certain properties of aquifers. A good 

understanding of the aquifer properties may enable considerable simplifications to be 

made to the mathematical flow model, with the aquifer properties depending on the type 

of aquifer. Therefore, a description of the existing classification of aquifers regarding 

their hydraulic behaviour is provided. The classic three types of aquifers are (Bear, 1972, 

p. 5):

Confined aquifer, the aquifer is bounded above and below by impervious formations. The 

saturated thickness is independent upon the flux or boundary conditions unless special 

stresses cause the aquifer to become unconfmed. A special case of this category is an 

artesian aquifer where the elevations of the piezometric surface are above the ground 

surface.

Leaky or semi-confined aquifer, the aquifer can lose or receive water through adjacent 

semipervious formations laying above or below the aquifer. The aquifer can be fully or 

partially saturated (e.g. leaky confined aquifer, leaky phreatic aquifer).

Unconfined or phreatic aquifer: the aquifer has a free surface water table that serves as 

its upper boundary. For this case the saturated thickness is variable.

Aquifer parameters that affect the flow are porosity, permeability and storativity. They 

are usually combined with the fluid properties into new coefficients including: hydraulic
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conductivity or transmissivity and specific yield or specific storage. Depending on the 

aquifer type, the flow equation can be written in terms of the hydraulic conductivity and 

specific yield (unconfmed aquifers}, or transmissivity and specific storage (confined 

aquifers) as it will be detailed in the next paragraph. The general flow Equation 2.1 is 

derived by mathematically combining a water balance equation with Darcy’s law.

2.3.13 Mass Conservation Equation

Using the assumption of a continuum, the law of mass conservation is applied over a 

control volume of an aquifer situated in the flow field using an Eulerian approach. The 

net inflow into the volume must equal the rate at which water accumulates within the 

control volume (Bear, 1979, p. 90, Wang and Anderson, 1982, p. 12). Traditionally, the 

control volume used is a fixed in shape and position rectangular parallel-piped box of 

dimensions Ax, Ay, Az, centred at some point P (x,y, z) inside the flow domain, as shown 

in Figure 2.4. The volume of the control volume is A V .

densityp at point/3 (x,y, z). The mass balance is computed by summing the results from 

each component direction. For instance, the component Jx represents the mass flux 

through the left face of the control volume. The change in mass flux in the x direction is

x

Figure 2.4 Mass conservation for a control volume.

The vector J  denotes the mass flux (mass per unit area per unit time, ML'2f  *) of water of
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the excess of inflow at the left face over outflow of mass during a short time At, which is

equal to -{$JJdx)AVAt. Similar expressions can be written for the change in mass flux

along the y  and z axes. The total change in mass flux during At is expressed as: 

f Til dJ ?i T >
-  AVAt =-divJAVAt where J=pq  and AV=AxAyAz (2.4)

< j
where q is the specific discharge, L T 1. By the principal of mass conservation, in the 

absence of sources and/or sinks of mass, the excess of mass expressed by Equation 2.4 

must be equal to the change of mass m, during At within the control volume. Since 

m=pnAV , this mass accumulation in the box during At can be expressed as:

mu r mi,=lMLa,-(p")|>*' (2.5)
where n is the porosity of the porous medium. Stating the equality between Equations 2.4 

and 2.5 the mass balance at P  (x, y, z) can now be written as:

- d i^ p q ) = ^ ^  (2.6)

2.3.1.4 Darcy’s Law

According to Darcy’s experiment in 1856, the groundwater motion with respect to the 

solid matrix can be described by:

q=-K  i=-Kgradfp ; V=^ (2.7)

where V is the velocity vector [LT1], q is the specific discharge vector [LT1], i is the 

hydraulic gradient [1], K  is the hydraulic conductivity tensor of the porous medium [LT1] 

and (f> is the piezometric head [L]. Equation 2.7 is valid for a three-dimensional flow

through an inhomogeneous anisotropic medium, with K  representing the second rank 

tensor of hydraulic conductivity of an anisotropic medium (Bear, 1972, p. 137) and 

consisting of nine components that may vary in space in case of inhomogeneous medium. 

Symbolically, K  is written as:

K rr K„

(2 .8)[* H  Kyx
K„

K,v

K,,

Ky

K,

where K ^ K ^ ix ^ z )
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The hydraulic conductivity tensor is symmetric, thus in three-dimensional flow only six 

distinct components are needed to fully define the hydraulic conductivity. It is shown that 

it is always possible to find three iputually orthogonal directions, called the principal 

directions of the anisotropic medium, such that when these directions are used as the 

coordinate system, then the components KitJ =0 for all i * j  and Kt y * 0 for i = j , and 

Equation 2.8 becomes (Bear, 1979, p. 72):

X  o o'
[*]= 0 K„  0 (2.9)

0 0 Kzz

Darcy’s law is valid only for small velocities through porous media. The linear 

relationship expressed in 2.7 between the specific discharge q and the hydraulic gradient 

J  is applicable as long as the Reynolds number Re is within the range 1 and 10. A 

Reynolds number for flow through porous media is defined by Re = qd/v  where d  is a 

representative length of the porous matrix, traditionally taken as the main grain diameter 

and v is the kinematic viscosity of the fluid (= p  / p , L2T !). In an isotropic medium, K  is

reduced to a scalar (L T 1) which may be expressed as (Bear, 1972, p. 133): K = kg/v  (k

is the intrinsic permeability L of the porous matrix).

2.3.1.5 Groundwater Flow Equation

Substituting equation 2.7 into Equation 2.6 yields:

div{pKgrad(p)=^^- (2.10)

To write this equation in terms of one variable, one should choose the right variable that 

describes the flow problem. This is usually performed once the conceptual model is 

formulated (assumptions related to the dominating phenomena).

- When the flow is density-dependent and involves miscible fluids the flow equation must 

be written in terms of pressure p  and permeability kt as the piezometric head <J> and the 

hydraulic conductivity K  are both functions of the density p (Anderson and Woessner, 

1992, p. 334):
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(2 . 11)

where p  is the dynamic viscosity. In this case, Darcy’s law takes the form:

4=“ (V/>+0gVz) (2 .12)

which, when substituted into Equation 2.6 and considering the external fluid sources 

yields the flow equation as given in 2.1.

- When the flow occurs in unsaturated zones, also referred to as the ‘”vadose zone”, 

the flow equation may be written in terms of a piezometric head <f>, moisture content 

e [i], or pressure head p i  p g . The hydraulic conductivity K  is a function of the 

moisture content 0 which is a function of the pressure head p i  p g .

- If the flow is immiscible then the governing equations that describe multiphase flow 

are formulated in terms of the pressure of each of the phases.

In general, when describing a groundwater system using a mathematical statement, two 

points are considered: the hydrogeological features and the processes to be modelled. 

According to the USEPA (1993) these two elements form the basis of groundwater model 

classifications. Table 2.4 summarises the different processes that are generally modelled 

in groundwater studies. Flow models simulate the movement of one or more fluids in 

porous or fractured rock. Classically, one such fluid is water, the others, if present, can be 

air, methane, or other vapours (in soil) or immiscible nonaqueous phase liquids (NAPLs), 

sometimes having a density distinct from water (LNAPLs, DNAPLs). A special case of 

multi-fluid flow occurs when layers of water of distinct density are separated by a 

relatively small transition zone, a situation often encountered when seawater intrusion 

occurs (although other conceptual approaches to this problem are used). For further 

details, see Bear and Verruijt (1987), National Research Council (1990), De Marsily 

(1986), Huyakom and Pinder (1983), Javandel et al. (1984), and Wang and Anderson

(1982).
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Flow Fate
* single fluid flow * hydrolysis/substitution
* multifluid flow , * dissolution/precipitation

* multicomponent * reduction/oxidation
* multiphase * complexation

* laminar flow * radioactive decay
* linear/Darcian * microbial decay/biotransformation
* nonlinear/non-Darcian

* turbulent Phase Transfers
* solid - gas * (vapor) sorption

Transport * solid - liquid * sorption
* advection/convection * ion exchange
* conduction (heat) * liquid - gas * volatization
* mechanical dispersion * condensation
* molecular diffusion * sublimation
* radiation (heat)

Phase Changes
* freezing/thawing
* evaporation/condensation

Table 2.4 Main processes in groundwater modelling (USEPA, 1993).

In the following discussion, we shall restrict our interest to standard flow mathematical 

models, which assume that the flowing fluid is water, with a constant density (=lg/c7w3), 

with no considerable changes in temperature or concentrations of other dissolved solids 

or solutes, and that the porous medium is saturated.

By definition, the specific storativity of the porous medium is the volume of water 

released from storage in a unit volume per unit change in the piezometric head (Bear, 

1979, p. 86), thus:

<2-13>

Using these assumptions, and substituting equation 2.13 into 2.10 yields:

di\{Kgrad(p)=S0̂ -  (2.14)
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23.1.6 External Sources

External sources refer to the amount pf water that may enter or leave the aquifer through 

sources or sinks other than the inflow through aquifer boundaries. They account for 

leakage from overlying or underlying aquifers, recharge or discharge through wells, 

infiltration from precipitation or irrigation and sewage, artificial recharge, 

evapotranspiration, streams and lakes - aquifer interactions including seepage or 

alimentation and springs. Their spatial distribution can be accommodated in the form of:

• Point sources, such as springs or recharge or discharge from wells,

• Line sources, such us stream or sewage inputs, and

• Area sources, such as lakes, recharge or precipitation.

The time variation of the source term needs special attention, since it is necessary to

determine whether the source is continuously and steadily releasing into (or discharging

from) the aquifer, or instantaneously stressing the system. This information is important 

in determining the way in which any sources are modelled with regard to the modelling 

objectives.

A general form of the governing flow equation, with respect to the inclusion of external 

sources is given as:

where Kx, K v and K z are components of the hydraulic conductivity tensor, So is the 

specific storage and Q is a general sink/source term, which is positive for an inflow into 

the system per unit volume of aquifer per unit of time and negative for an outflow.

Under steady state conditions, if the hydraulic conductivity is constant (i.e. the aquifer is 

isotropic, homogeneous and incompressible) and no external sources affect the aquifer 

system, Equation 2.15 may be reduced to the well-known Laplace equation or elliptic 

equation:

(2.15)

a*2 dy2 dz
(2.16)
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Another useful form of Equation 2.15 is given by
v2 . -\2 . -\2

K_
•So

d  <f> (j) (j)
?  or a V 2<M f ?  (2A7)d x 2 d y 2 $ z ‘

This equation is the well-known diffusion (or parabolic) equation that generally describes 

groundwater flow in a homogenous and isotropic confined aquifers with no external 

sources.

2.3.2 Boundary and Initial Conditions

One of the key steps required in completing the mathematical statement of a 

groundwater flow problem is that of identifying the model area and its boundaries. The 

model boundary is identified by the interface between the investigated area and the 

adjacent groundwater system. Conditions at these boundaries have to be specified, and 

are generally classified into three mathematical conditions:

- Specified Head boundary, or Dirichlet condition for which the head is given as:

<j)(x,y,zj)=constant

- Specified flow boundary, or Neumann condition, for which the groundwater flux 

across the boundary is given. A typical example for this category is a no-flow 

boundary condition given as:

d(fixty ,ztt)——j------ =constantan

where n is the directional coordinate normal to the boundary

Head-dependent flow boundary, or Cauchy condition for which the flux across the 

boundary is calculated for a given boundary head value as:

dd>—\-cd) =constant dn

where c is also a constant.

These classifications account for natural boundaries, such as streams, lakes and 

reservoirs, wetlands, springs, recharge at the water table, adjacent materials of low 

hydraulic permeability, inter-basin flow, evapotranspiration, spatial change in density of 

water and divides or for artificial boundaries. The mathematical designation of boundary 

conditions, established for modelling purposes, should be carefully formulated so that the
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proposed model boundaries will have the same effect as the natural ‘physical’ system 

boundaries. This should be achieved through the model calibration.

f

When modelling flow problems, specification of initial conditions is sometimes required 

for the entire area. In transient simulations, they are a physical requirement and should be 

estimated if a measured head distribution at the simulation initial time is not available or 

not generated from a previous steady state run. For steady state simulations, they are a 

numerical requirement as their set is used to start the numerical calculations whenever 

iterative solvers are used.

2.4 Review of Analytical Solutions and Limits

2.4.1 Existing Analytical Solutions

When the partial differential equations describing groundwater flow or transport can be 

solved directly or by means of simplified solutions to the governing equations the 

solution is said to be analytical. Basically, these equations are second-order differential 

equations that can be classified as parabolic (i.e. transient flow and dispersion), elliptic 

(i.e. steady flow) or hyperbolic (i.e. advective transport), based on the nature and 

magnitude of the coefficients of the equation (Peaceman, 1977). They can be linear or 

nonlinear. For flow problems, the equations are generally nonlinear when the 

transmissivity is a function of the saturated thickness (e.g. water table aquifers) or 

hydraulic conductivity is a function of the moisture content (e.g. unsaturated zone). 

Nonlinear transport problems involve those where changes in concentration, pressure or 

temperature cause changes in the viscosity, effective porosity or density (e.g., multiphase 

fluid conditions). Similarities between the governing equations of groundwater flow and 

those governing other engineering disciplines, such as heat transfer and wave 

propagation, have proven useful in finding analytical solutions for groundwater flow and 

transport problems (Carslaw and Jaeger, 1959). Many analytical solutions in the 

groundwater field are duly studied and addressed in numerous references, such as 

Polubarinova-Kochina (1952), Bear (1979), Hunt (1983), and Walton (1989). There are 

generally three types of analytical methods:
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Approximate analytical: typical analytical solutions are in the form of infinite series of 

algebraic terms or definite integrals. Because an infinite series cannot be solved for exact 

solutions, these expressions are approximated by truncating the series. Convergence of 

these equations should be examined carefully.

Exact analytical: if the analytical solutions can be expressed by equations that take a 

closed form (i.e. a finite number of terms), then the solution is exact. In general, exact 

analytical equations tend to require infinite domains and boundaries, which limit their 

applicability.

Semi-analytical: these techniques use concepts from fluid mechanics, with velocity 

potentials being extended using numerical tools to construct flow patterns. They may be 

used where complex boundaries do not allow analytical solutions to be formulated.

In general, obtaining an exact or approximate analytical solution requires that the 

properties and boundaries of the flow/transport system be highly simplified. In fact, most 

of these solutions are restricted to problems with homogeneous properties, simple 

geometries, and simple boundary conditions, limiting their application to field situations. 

However, more complicated problems can be described and solved analytically if 

reducing them to simpler flow problems can be conceptually justified or by applying the 

principle of superposition if these solutions are linear, or could be linearised (Bear, 1972 

and Hunt, 1983). This technique allows the superimposition of a number of equations and 

enables their different analytical solutions to be combined by adding them together. This 

type of solution is also called semi-analytical.

Many authors have presented examples of classic analytical solutions. For example, the 

nonlinear Boussinesq equation describing unsteady free surface groundwater flow has 

been approximated by Polubarinova-Kochina (1962), Babu (1976) and Basak (1981). 

Exact analytical solutions to this equation are not known, except for some special cases 

(Remson et al., 1971). An approximate solution in one dimension was presented by 

Tolikas et al. (1984) and then by Sewa and Chauhan (1987). Moltyaner (1988) described 

in his report an approximate analytical method that combined analytical and numerical
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methods for obtaining an approximate solution to the equations governing two- 

dimensional steady state groundwater flow. Zimmerman and Bodvarsson (1989) 

presented an approximate analyticaj solution for the problem of a Newtonian fluid 

infiltrating into a porous spherical block, which could be incorporated into double

porosity models for fractured reservoirs and aquifers. Exact solutions are known only for 

few cases such as uniform unconfined two-dimensional groundwater flow over a stepped 

base (Fitts and Strack, 1996), two-dimensional groundwater flow involving a semi- 

pervious boundary in a semiconfmed aquifer (Van der Veer, 1994). Recent advances in 

research are targeting more complex problems such as flow in the unsaturated zone 

(including seepage through dams), solute and heat transport in the saturated and 

unsaturated zone, flow and transport in fractured rocks, and saltwater intrusion. The 

growth of such research fields is due to the advantages that analytical solutions present in 

terms of accuracy and cost, and also as a result of the parallel growth in numerical model 

development and the use of such cases benchmarks for testing these models. Many of the 

test problems based on analytical solutions developed in the 1970s and early 1980s have 

become ‘classical’ problems, used by other researchers to demonstrate the correctness of 

their modelling codes. Segol (1994) describes many of these tests, as well as sample 

applications of these problems in the testing of computer codes. In the following section 

emphasis will be focused on analytical solutions to the groundwater flow equation, with 

particular relevance to the present work in testing the new code described herein.

Many analytical solutions have been developed for saturated flow problems, specifically 

with respect to well and drain hydraulics (Bear, 1979, De Wiest, 1965, Edelman, 1972, 

Huisman, 1972, Marino and Luthin, 1982). A compilation of analytical drain solutions 

has been prepared by Beljin and Murdoch (1994). Many of these analytical solutions 

pertain to one dimensional or radial-symmetric flow problems with different flow 

conditions, including steady-state and transient flow, single and multiple aquifers, 

confined, leaky-confined, and unconfined aquifers, anisotropy, partial penetration of 

production and observation wells and drains, and time-varying boundary conditions or 

aquifer stresses. In well hydraulics, analytical models are used for the analysis of 

pumping test data or preliminary estimates of complicated well and contaminant source 

impacts. Appropriate use of the superposition principle enhances the utility of these 

analytical solutions, especially for two and three-dimensional numerical models testing.



CHAPTER 2. REVIEW OF GROUNDWATER MODELLING METHODS 35

Their independent results offer a valuable tool to check the correctness and accuracy of 

numerical solutions and insight into the sensitivity of the results to key parameters (Bums 

1983). Examples of some classical analytical solutions are presented in the following.

(i) One -dimensional plane symmetric flow

In practice, many cases involving two-dimensional flow in the vertical plane can be 

reduced to a one-dimensional flow when the assumptions of essentially horizontal flow in 

an aquifer are justified. Considering the cross section shown in Figure 2.5, it can be 

assumed that the geometry is such that the flow is essentially horizontal and is in the x 

direction. The solutions of the three different regimes that can occur are as follows (Spitz 

and Morenao, 1996, p. 89):

- Steady state:

Confined flow: <j>=Ax+B (2.18)

Leaky flow: <̂ =Aexlx̂ Be~xl1 (2.19)

Unconfined flow: <j>=~jtx2+Ax+B (2.20)K.

where 0 is head at distance x [L], x is distance [L], K  is hydraulic conductivity [L/T], A 

is leakage factor [L], N  is natural groundwater recharge [L/T], and A and B are constants 

to be determined from boundary conditions.

Unsteady state:

One-dimensional unsteady flows are governed by the continuity equation such as 

for a confined aquifer, or a phreatic surface given T=Kh=const., and
dx ot

T——rr—% = S ^ - for a leaky aquifer. With respect to initial and boundary conditions, 
dx A ot

solutions of similar equations in other areas of physics can be found in the literature 

(Carslaw and Jaeger, 1959).



CHAPTER2. REVIEW OF GROUNDWATER MODELLING METHODS 36

C onfined  aquifer Sem icon fin ed  aquifer U nconfined  aquifer

Figure 2.5 A one-dimensional hypothetical flow problem.

(ii) Two-dimensional flows in vertical plane

Toth (1962) derived an analytical solution to for two-dimensional steady regional 

groundwater flow system where the aquifer is assumed to be homogenous and isotropic. 

The aquifer domain is represented by a rectangle where the vertical sides and the lower 

boundary satisfy the Neumann conditions (i.e. no-flow) and the upper boundary is of 

Cauchy type, with a linear variation of heads as shown in Figure 2.6.

cs

y = y o h = cx + yo

4 ^ = 0
dx dy

y  = 0
x = sx = 0

Figure 2.6 Mathematical model of the regional flow system described by Toth (1962).
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The solution for these conditions is:

.cs Acsv*cos[(2iw+1)dc/s]cosh[(2m+l)ry>/$]
'2 (2m+l )2 coshl(2m+l)ry0/s] (2'21)

As can be noted, this problem is governed by Laplace’s equation. This equation has been

largely treated in mathematics (Crank, 1956). A wide range of boundary-value problems

has also benefited from the analogy of flow and diffusion to other phenomena in physics,

such as heat flow. Carslaw and Jaeger (1959) gave a complete range of solutions to

boundary-value problems for heat conduction, with many of these solutions being applied

to groundwater flow applications.

To a large extent 2D transient flow methods have been utilised to determine the hydraulic 

properties of aquifers using the permeability and specific storage pumping test methods. 

Walton (1970) compiled many illustrative case studies of pumping test analysis, with the 

practical aspects of pumping tests and well hydraulics also being summarized by Driscoll 

(1986).

(iii) Radially converging flow

For an infinite homogenous isotropic aquifer, transient solutions for flow to a single 

perfect well with Dupuit assumption are given for:

Confined flow:

s ^ =S f i e- y dy=^ f w{u)M *

Semi-confined flow:

^ ^ =4 & ftexpU +
r H 'U )

(2.22)

(2.23)

Unconfined flow:
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where s is the drawdown [L], defined as the difference between a constant initial 

piezometric head <j>0 and the piezometric head 0 at a radial distance r and time /. Q is a 

constant well discharge or recharge, T is transmissivity [L2/T], and A is a leakage factor 

[L]. W (u) is the well function of u=r2S/(4Tt) for a confined aquifer. W(u,r/X) is the 

Hantush well function for a leaky aquifer. Tables of both mathematical functions can be 

found in the literature related to well hydraulics (Bear, 1979). Equation 2.22 is the well- 

known formula of Theis (1935).

Due to the linearity of the flow equation in the confined and semiconfined aquifer cases, 

further solutions can be constructed from the single well solutions by superposition, 

provided that boundary conditions can also be superimposed. This principle allows 

numerous solutions to be obtained for multiple-well flows in confined aquifers. A 

linearised approximation can be used for the equation for the phreatic aquifer in s ’, if we 

substitute (f) with 0O -  s and S with S ’ allowing the superimposition of drawdown with 

respect to (f>2. Examples of the analytical solutions for flow to wells for different 

hydrogeologic conditions can be found in Hantush (1960), Walton (1962), Papadopulos 

(1965), Lohman (1972), Reed (1980), and Benett et al. (1982). Analytical solutions for 

well flow are used mostly in analysing pumping test analyses. The aquifer response in 

terms of drawdown is used to calculate the missing aquifer parameters, most often 

storativity and transmissivity. This technique is used basically to solve so-called inverse 

problems aiming to identify missing aquifer parameters. Ready-made computer programs 

that analyse pumping tests can be obtained from several sources such as Boonstra and 

Keselik (2001). More generally, models based on analytical solutions are listed in Table 

A. 1 in Appendix A. They simulate the flow process for different hydrological conditions, 

with the list not being exhaustive and not describing all of the model capabilities (e.g. 

transport process, heat, graphical capacities, etc.). These features and other details such 

as: availability, cost, proprietary, user, hardware requirements, etc., can be found in the 

relevant references.
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2.4.2 Limits

Where possible, preference should aly/ays be given to analytical solutions over numerical 

modelling. This will rely on the simplifications that can be made to approach the 

groundwater problem without substantial loss of accuracy. If a chosen analytical method 

is consistent with the hydrogeological controls, then analytical solutions can be more 

beneficial. They are numerically stable, readily obtained and are cheaply applied. This 

type of solution is generally also more efficient and accurate than other model types, if 

analytical solutions for the investigated groundwater problem exist. They usually involve 

approximate or exact solutions to simplified forms of the differential equations for water 

movement and their results are often used as a reference in simple test cases for the 

verification of newly developed numerical models. However, the number of simplifying 

assumptions regarding the flow system that are necessary to obtain analytical solutions 

represents a serious restriction to the real world representation by these models type and 

therefore limit their use. Hence, in certain complex modelling exercises, analytical 

models can only be used as a screening tool to conduct a rapid preliminary analysis of the 

behaviour of an aquifer system, to perform sensitivity analyses or to scope the problem to 

determine data needs. For example, one advantage of this practice is that the solution can 

be applied to different values of the parameters S) and inputs (i.e. geometrical 

dimensions) involved and that it clearly shows the influence of each parameter. 

Analytical solutions are also judged more appropriate in field situations were few data are 

available, as use of complex numerical models would be very limited. To overcome some 

of the limitations of analytical solutions, a relatively new and useful extension of 

analytical models is the ‘analytical element models’. Unlike the first type, these models 

can incorporate moderate levels of layering, inhomogeneity, and boundary conditions. 

They are more complex to use than analytical models, but are simpler than numerical 

models.

2.4.3 Analytic Element Methods

Analytic element models were first introduced by Strack and Haitjema (1981a, 1981b). 

The theoretical basis for the method is presented in Strack (1989). Application of the
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method to groundwater flow problems is discussed in detail by Haitjema (1995). The 

method is based on the superposition of closed-form analytical solutions, referred to as 

analytic elements, to the governing ^differential equation to create an approximate but 

analytical solution to both local and regional flow. Hence, analytic element models do not 

require grid discretisation or specification of boundary conditions on the grid perimeter. 

There are specialised analytic elements that represent aquifer inhomogeneities, lakes, 

streams, wells, and spatially varying leakage and infiltration. The flow solution is written 

as the summation over harmonic functions and particular solutions to the Poisson

equation. Analytic elements are not obtained by integration but instead by conformal

mapping (Strack, 1989). Once the solution is calculated then the hydrogeological

parameters can be obtained for any location in the aquifer. This method differs from

classical analytical solutions in that the analytic elements are not restricted to a single 

boundary value problem, but possess degrees of freedom that allow the solutions to be 

combined.

The analytic element method is extensively applied for water management purposes (De 

Lange, 1991). A widely known application of this modelling technique is the delineation 

of wellhead protection areas (WHPAs) in a single layer or multi-layer setting (Wuolo et 

al., 1995). So far, the analytic element method has also been applied in groundwater flow 

to model special cases such as: steady flow in aquifers with properties that are piecewise 

constant and large aquifer system. In fact, one of the advantages of this method is that the 

model domain can be infinite, thus the user is not constrained by aquifer boundaries or by 

a grid mesh as for numerical methods. Moreover, regional scale as well as small-scale 

groundwater flow could be examined without changing parameters, boundary conditions, 

grid, or resolving the system of equations common to the implementation of numerical 

methods in groundwater models. This approach therefore saves time during model 

development and mass is always conserved (unlike finite methods). However, analytic 

element methods have shown limited capabilities for simulating transient flow conditions 

and restricted validity conditions for the case of unconfined aquifers. More complex local 

flow features are not easily handled. The latest advances in the application of the analytic 

element method to groundwater flow can be found in Bakker et al. (2000, 2003), 

Haitjema et al. (2000), Fredrick et al. (2004). Further developments of this method to 

large-scale applications, rotational flow and transient flow are still ongoing.
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In conclusion, the complexity of real problems often involves conditions that are beyond 

the scope of analytical solutions. In fact, in most regional studies an analytical solution is 

not possible, mainly because of:

- irregularity of the shape of the aquifer boundaries (i.e. analytical solutions are 

available only for simple geometries such as rectangular or circular, or infinite 

dimensions,

variations in the type of boundary conditions,

- nonhomogeneity in the transmissivity and storativity properties, and their distribution 

cannot be generated within analytical expression, and

- variations in the initial conditions and for the various inputs and outputs (natural 

recharge, artificial recharge and pumping).

Therefore, problems related to boundary conditions and inhomogeneities make analytical 

models seldom applied to the solution of regional flow studies. Phreatic aquifers, 

multilayer systems and anisotropy are subject to complex patterns of development 

because of the nature of the PDEs that describe these processes. Numerical methods are 

more widely used to tackle these kinds of problems when sufficient data have been 

collected. Analytical models should be viewed as a useful complement to numerical 

models. In the present work, specific analytical solutions will be invoked as benchmark 

examples for code testing and verification.

2.5 Review of Numerical Models and Limits:

Compared to analytical models, numerical models offer many advantages, which include 

the ability to:

simulate more complex physical systems (including non-linear problems);

- simulate multidimensional systems;

- incorporate complex boundary conditions; 

accommodate spatial variability of input parameters; 

accommodate both steady-state and transient conditions; and

- simulate both spatial and temporal distributions of model output.
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Therefore, numerical models are better suited to simulating real flow field problems. In 

fact, once the conceptual model has been translated into a mathematical model in the 

form of governing equations, with, associated boundary and initial conditions, the 

formulation could be more complex than that for an analytical solution. A solution can 

only be obtained by transforming the mathematical model into a numerical model and 

then writing a computer code to solve the numerical model. Different existing numerical 

techniques and codes are discussed in this chapter.

2.5.1 Existing Numerical Techniques

Many numerical methods have been developed for general CFD applications. They are 

used to solve the different combinations of diffusion -  advection problems. Groundwater 

problems can generally be described by the pure diffusion equation (i.e. flow problems), 

or by the diffusion-advection equation (solute transport, variable density flow). In this 

study, emphasis has been focused on flow problems that are generally dominated by 

diffusion and hence research has been restricted to an investigation of techniques used for 

this type of mechanism. The principal methods currently in use for similar equations in 

CFD applications are as follows (Abott, 1989):

- Finite difference method

- Finite element method

- Integrated finite difference method

- Boundary element method 

Finite volume method

All of these methods have already been discussed in groundwater applications, and some 

of the corresponding codes have been developed and used successfully. The first two 

methods are the most extensively reported for groundwater flow problems. The 

widespread use of classic codes based on these techniques has proven their strength for 

certain applications, but also their weaknesses for others. The three latter methods are 

newer and the extent of their application to groundwater flow problems is still being 

investigated. Recent advances of these techniques in the solution of special case problems
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have contributed to the understanding of how these methods can be expanded to other 

groundwater flow applications. A description of each method and a comparison between 

their performances are provided.

Unlike analytical methods, numerical models are used as an approximate method of 

solving the partial differential equations stated in the flow mathematical model. The 

resulting hydraulic head is no more given as a continuous function of space, but as a set 

of numerical values of the variables at specified points in the space and time domains 

defined for the problem. The partial differential equations are replaced by a set of 

algebraic equations in terms of discrete values of the piezometric head at discrete points. 

Therefore, the first step in the solution process using a numerical method is the 

discretisation of the spatial and temporal terms within the model domain. The numerical 

methods mentioned above are used as discretisation methods for the spatial terms, 

whereas time-stepping methods are used to discretise the temporal term.

2.5.1.1 Finite Difference Method

Finite-difference approximations were first introduced in the classic paper of Richardson 

(1910). Applications of the method for solving partial differential equations have since 

been the subject of many books (Forsythe and Wasow, 1960, Smith, 1965, and 

Richtmeyer and Morton, 1967). The basic idea of the finite difference method is to 

replace the derivatives at a point by the ratio of changes in the appropriate variables over 

a small but finite interval using the Taylor series expansion. The problem domain is 

divided into a rectangular grid in which solutions are calculated in discrete points called 

nodes. In the finite difference method, nodes may be located at cell centre (i.e. the block 

centred formulation) or at the intersection of grid lines (i.e. the mesh centred 

formulation). Figure 2.7 illustrates, in two dimensions, these two cell conventions. The 

system parameters, such as permeability, natural groundwater recharge and length, are 

assumed to be constant within each cell. Water heads are calculated as discrete values at 

the grid nodes, or at the centre points of the cells, depending on the grid convention. The 

continuity equation is then written in terms of each nodal point, regardless of the 

representation. Time step sizes are specified over the simulated time of interest, and the 

mathematical expressions are solved successively for each individual time step. The
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mathematical problem is then reduced to a linear system of equations that could be solved 

using matrix algebra. Comprehensive treatments of the application of this numerical 

method to groundwater problems caq be found in Remson et al. (1971), and Wang and 

Anderson (1982).
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Figure 2.7 Finite difference grid conventions in two dimensions.

2.5.1.2 Finite Element Method

Zienkiewicz (1977) gave a detailed mathematical description of the Finite Element 

Method (FEM). Particular applications of this technique to fluid mechanics are available 

in numerous books, such as Fletcher (1984), Chung (1978), Connor and Brebbia (1976). 

While approximations to a continuous solution are defined at isolated points by finite 

differences, the approximate solution in FEM is defined over the entire domain by 

interpolation functions, although solutions to the functions are calculated only at the 

element nodes. In this sense the finite element approach differs from the finite difference 

method by approximating the flow equation by integration rather than differentiation. The 

model domain is subdivided into elements that could have any shape (e.g. triangular, 

quadrilateral; etc., see Figure 2.8). Hence the head distribution for each element is 

approximated by a linear interpolating function, such as piecewise linear functions or 

other higher-order interpolation functions (Pinder and Gray, 1977). When this 

approximate solution is substituted into the governing differential equation, an error or
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residual occurs at each node. The weighted residual method of Galerkin is the commonly 

used approach to minimize the error between the approximate and actual solution for 

each node, by forcing the weighted average of the residuals for each node to equate to 

zero. A set of algebraic equations is formed for the unknown groundwater heads. The 

solution of the system will depend on the chosen time discretisation with treatment of a 

range of water resource problems by FEM being presented in numerous references (e.g. 

Remson et al., 1971, Wang et al., 1980, Wang and Anderson, 1982).

2.5.1.3 Integrated Finite Difference Method

The integrated finite difference method (IFD) has been used for investigation of water 

flow in soils, inter alia by Todd (1959), Cooley (1971) and Narasimhan and 

Whitherspoon, (1976). The method was first devised by Mac Neal (1953), who 

implemented the finite-difference method with an asymmetric grid. In this method, the 

domain is subdivided into elements of an arbitrary shape, implying that a quadratic or 

rectangular grid in the FD context can be substituted by a more complex system of 

triangles, trapezoids, polygons, etc. However, to secure the maximum accuracy, then 

each segment of the sub-area should be perpendicular to lines joining the adjacent nodes 

(Figure 2.9). The basic set of algebraic equations is obtained by considering the mass 

balance of each element by integration of the governing equation over their volume. The 

unknown variable is most conveniently defined at the centroid of each element with the

• Node

Cell with associated 
nodes in FE erid

Figure 2.8 Example of finite element grid in two dimensions.
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fluxes through to each elements interface being computed by a FD approximation. 

Application of IFD method in groundwater flow can be found in many references (e.g. 

Voss, 1984, Pruess, 1987, Ferraresi apd Marinelli, 1996).

Figure 2.9 Example of integrated finite difference element grid in two dimensions. 

2.5.1.4 Boundary Element Method

The boundary element method (BEM) is also known as the boundary integral equation 

method (BIEM), with Brebbia and Walker (1980) first giving a general introduction to 

this method. The approach consists of dividing the external surface of the boundary into a 

series of elements, over which the functions under consideration are assumed to vary in 

much the same way as for the finite element method (Figure 2.10). This approach 

produces a series of nodal unknowns on the surface of the domain, rather than for the 

whole domain as for the finite element discretisation. The nodal unknowns are then 

related through the influence functions requiring boundary conditions to be satisfied at 

nodes along boundaries. This leads to a system of N  equations with N  unknowns and with 

these equations being usually linear. The number N  relates to the number of points or 

nodes along the boundary and not, as in FD and FE methods, the number of points in the 

interior of the domain and along its boundary. If the solution is also explicitly required 

inside an element, then its value is calculated by numerical integration within the 

element. Illustrative applications of the BEM to groundwater flow problems have been 

given by Isaacs and Hunt (1981), Liggett and Liu (1983), Cheng and Ouazar (1993) and 

Archer (2000).
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No*
Element in BE grid

Figure 2.10 Example of a boundary element discretisation.

2.2.1.5 Finite Volume Method

In the Finite volume method (FV), or control-volume method, the problem domain is 

divided into discrete control volumes of any shape (e.g. triangles, polygons) with 

associated grid points. The conservation statement is applied in an integral form of the 

PDE across the control volume. The resulting discretised equation at a nodal point 

accounts for the cross-sectional fluxes and the properties that may be approximated by 

linear interpolations or other forms of the approximations. The finite volume procedure 

can in fact, be considered as a variant of the finite-element method (Hirsch, 1988, p. 223), 

although, from another point of view, it is just a particular type of finite difference 

scheme (Tannehill et al., 1997, p. 72). A detailed description of this method is provided 

in chapter four.

2.2.1.6 Time Stepping

Once the spatial domain is discretised with one of these methods, and when the 

governing equation is time dependent, then the temporal term is usually approximated by 

a time- stepping technique. This approximation is generally carried out in some finite 

difference way and is similarly employed in finite difference, finite element, boundary 

element or finite volume transient models. Four of the most commonly used time- 

stepping schemes include: Explicit, Implicit, Mixed Explicit-Implicit, and Alternating 

Direction Implicit (ADI) procedures. The application of any one of these schemes
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dictates how the nodal variables in the system of space-discretised equations are plotted 

against time (i.e. both for backward or forward time levels). The end result is a system of 

multiple equations with multiple unknowns for each node. The number of unknowns in 

each equation depends upon the time-stepping scheme, which defines the type of matrix 

describing the resulting equations system. As a consequence, the choice of a time- 

stepping method influences the model run-times as well as the results. Explicit methods 

are simple but conditionally stable (i.e. in terms of time steps size), and they often require 

an excessive number of time steps. Implicit scheme produces unconditionally stable 

numerical solution and is much more flexible and robust than the explicit scheme 

(Kinzelbach, 1986, p. 36). However, the matrix formulation and solution procedure 

require substantial additional computational effort. Mixed Explicit-Implicit methods can 

be weighted in favour of either method, using a factor that ranges from 0 to 1. This 

usually produces an unconditionally stable solution which is more robust than explicit 

schemes, and generally more efficient. The ADI procedure also produces unconditionally 

stable numerical solutions for flow and transport, but is limited to rectangular finite- 

difference grids. Some of these schemes will be used and tested in this work during the 

treatment of the groundwater flow equation.

2.2.1.7 Matrix Solvers

The partial differential equations outlined above may be replaced by a set of algebraic 

equations in terms of discrete values of the unknowns (i.e. piezometric head or solute 

concentration) at discrete points. The resulting set of equations can be expressed as a 

matrix equation that can be solved using direct or iterative techniques, developed in 

matrix algebra.

In direct methods, a sequence of operations is performed only once to solve the matrix 

equation, thereby providing a solution that is exact, except for machine round-off error. 

These methods include three types of solutions, namely:

- solution by determinants,

- solution by successive elimination of the unknowns, and

- solution by matrix inversion.
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These methods, however, have two key disadvantages: computer resource requirements 

(i.e. large storage and long computational times for large problems) and round-off error 

due to the large number of arithmetic operations performed.

Iterative methods avoid the need for storing large matrices. They arrive at a solution by a 

process of successive approximations. They involve making an initial guess at the 

solution, then improving this guess by some iterative process until an error criterion is 

satisfied. Therefore, in these techniques, convergence and efficiency are of concern. They 

may be less efficient than direct methods in terms of CPU time if a large core is available, 

but they are less sensitive to round-off errors (De Marsily, 1986). They are therefore very 

much still in use, especially with micro- or minicomputers. The most common iterative 

schemes used in groundwater numerical models include the following:

- Iterative Alternating Direction Implicit Procedure (IADIP)

- Successive Over-Relaxation Techniques (SOR)

- Strongly Implicit Procedure

- Preconditioned Conjugate Gradient techniques (PCG)

Each method presents qualities and limitations inherent to accuracy, convergence and the 

number of unknowns for each type of numerical model. Likewise, familiarity with the 

capabilities of these solvers provides a general recognition of the technical terms and also 

gives some indication as to the potential hardware requirements. These requirements are 

rarely part of the deciding factor in the code selection process but are very important in 

the code development process as the code numerical capabilities, and therefore 

limitations, will strongly depend upon the robustness of the solver. A description of these 

techniques along with their performances can be found in Varga (1962). Their 

implementation for solving linear systems in groundwater flow modelling is described by 

Remson et al. (1971) with the choice of the appropriate matrix solver for this work and its 

performances being addressed in Chapter 4.
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2.5.2 Comparison and Discussion

Many numerical groundwater models Jiave been developed over the past thirty years or 

so to simulate flow and contaminant transport. These models vary in terms of the 

assumptions, governing equations, numerical techniques, data requirements and outputs. 

In this section emphasis will be focused on the importance of the numerical method used 

to approximate groundwater flow equations. The choice between the different numerical 

models in this type of application depends upon the equations to be solved and on the 

preference of the user. The five numerical techniques outlined in the previous differ in 

their capabilities and in the way they handle special features, such as boundary 

conditions, flow regime, heterogeneities, anisotropy, sources, time- or potential- 

dependent changes in parameters etc.

The finite difference method has been extensively used in a range of engineering 

problems related to groundwater flow, especially with saturated zone (e.g. MODFLOW). 

Its relatively simple formulation and accuracy in tackling diffusion-dominated problems 

are its major assets. However, the use of a rectangular grid to discretise the problem 

domain necessitates a stepwise approximation of irregular boundary and aquifer zoning. 

Therefore, the mesh has to be refined along boundaries of interest to obtain the satisfying 

accuracy, which unnecessarily increases the computational effort in other areas of the 

domain. The IFD method offers more flexible approximations to the model domain and a 

balance is always conserved. However, for accuracy reasons, surface of elements should 

remain perpendicular to the lines joining adjacent nodes. From this viewpoint, the 

relevant characteristics of the finite element method, in comparison with the finite 

difference method, is its capability of designing an arbitrary grid. This allows a much 

greater flexibility in handling irregular domain geometries, material heterogeneities, 

anisotropy, meandering stream channels and wells, etc. However, boundary conditions 

are frequently imperfectly known in standard modelling approaches using the finite 

difference or finite element method, especially when simulating local flow conditions. In 

this sense, analytic element models are ideally suited for use in solving the regional flow 

problems as screening models and thereby developing boundary conditions for the local 

flow problem. Thus, inaccuracies related to the location of boundaries and their
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conditions can be sensitively reduced and flux calibration of finite difference and finite 

element models simply improved. An example of improved fmite-difference groundwater 

flow model using the results from an analytic element model can be found in Hunt et al. 

(1998). This example can be verified for a finite-element groundwater flow model. The 

incorporation of the analytic element method in finite difference or finite element models 

may be a potential field of research for improving calibration procedures for regional 

groundwater flow applications.

Finite element results are usually accurate for the original variable (i.e. hydraulic head) 

but when this variable is differentiated to obtain fluxes then the results are much less 

accurate and are usually discontinuous between elements. The problem is aggravated 

further if regions of high fluxes occur in the continuum. In this case, the boundary 

element method offers more accurate solutions with relatively simpler input data, 

especially for three-dimensional problems (Brebbia, 1980). Another important advantage 

of the boundary element method, which is of particular importance in water resources, is 

its ability to model domains extending to infinity without defining arbitrarily truncated 

boundaries where specific conditions are applicable. Because of this advantage, the BEM 

is increasingly being used to model problems with infinite or semi-infmite domains such 

as those occurring in geomechanics, ocean engineering, aerodynamics, and many other 

related problems (Brebbia and Wrobel, 1991).

2.53 Limits

Common limitations of numerical models include:

- the requirement of more development time compared to an analytical model of the 

same process;

- the requirement of greater amounts of input information where, for many field 

situations, limited data are available which often narrow the use of complex 

numerical models; and

- the possibility of numerical instability, which may cause the numerical model to 

become difficult to implement without major modifications to the geometric layout of 

the model domain.
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A major asset of the finite difference method is its relatively simple formulation as 

compared to other numerical methods. The method also has a big advantage in computer 

storage in that the method generally lpads to a banded and symmetric system. However, 

the method includes many limitations, such as:

- the use of a rectangular grid system necessitates a staircase (or stepwise) 

approximation of irregular and/or aquifer material zoning (e.g. heterogeneity, 

anisotropy, aquifer layers);

- the sensitive predictions to grid orientation effects in solving 2D and 3D flow and 

transport problems; and

- the vulnerability of the method to numerical dispersion or oscillations in solving 

transport problems.

From the first limitation viewpoint, the IFD method offers a more flexible grid 

discretisation with a mass balance that is always conserved. However, the orthogonality 

condition still presents a considerable difficulty in the representation of the problem 

domain with well-fitted grid and grid generation techniques becoming a more complex 

task. The variant of this method is the finite volume approach where any grid shape may 

be used, and the simplicity of the mathematical formulation is still conserved.

The finite element method also allows great flexibility in handling irregularities. It is less 

sensitive to grid orientation and less prone to dispersion but needs more care to limit 

potential oscillation in solving transport problems. The limitations of the finite element 

method include:

- complex data requirements to run a FE programs;

- long computer coding; and

- greater computational effort and computer storage capability for the solution of the 

generated matrix.

The boundary element method has a key advantage over all the numerical models, in that 

the precision of its calculations is not a function of the size of the elements used. Thus, 

few element need to be used, which considerably reduces the size of the resulting matrix
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and, therefore, the memory and computational time requirements. The main restrictions 

of the method are:

its limitation to linear problems (P^cher and Stanislav, 1997)

- the need for a large number of elements to describe heterogeneity of the medium, and 

thus lose its superiority over FD and FE methods.

None of these methods is known to be ideal for a range of groundwater problems. The 

numerical methods that work best for parabolic PDEs (i.e. governing the flow and 

dispersion-dominated transport equations) are not best for solving hyperbolic equations 

(i.e. governing advective transport), and vice versa. The choice of whether to use one 

method or another will generally be a matter of personal preference. There is currently 

still much research on developing better mixed or adaptative methods that aim to 

minimize numerical errors and combine the best features of alternative standard 

numerical approaches (Carrera and Melloni, 1987, Neuman, 1984, Celia et al., 1990, 

Gottardi and Venutelli, 1994, Osnes and Langtangen, 1998, Meerschaert and Tadjeran, 

2004). The present work is one such example.

2.6 Existing Codes and Limitations:

2.6.1 Existing Codes

In recent years, codes have been developed for almost all classes of problems 

encountered in the management of groundwater. Some codes are very comprehensive and 

can handle a variety of specific problems as special cases, whilst others are tailor-made 

for particular problems. Many of these codes have been developed or adapted for 

microcomputers and have benefited from the increasing development of computer speed, 

memory storage and graphical capacities. In groundwater flow applications codes are 

structured around the numerical algorithms that can tackle fluid flow problems, and these 

algorithms are called solvers. In addition, many codes offer considerable easy access to 

the code solving power. In fact, nowadays, all commercial CFD packages include 

sophisticated user interfaces to input parameters and to examine results. Hence, most 

codes contain three main elements:
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1/ a pre-processor: pre-processing consists of the input of the flow problem and the 

transformation of this input into a form suitable for use by the solver. A pre-processor is a 

computer program that assists the modeller in:

* Defining the geometry of the region of interest namely the computational domain.

* Generating the grid.

* Selecting the physical and chemical phenomena that need to be modelled.

* Defining the fluid properties.

* Specifying the appropriate boundary conditions.

Certain pre-processors also offer some data import facilities, linked to external databases 

or other codes.

2 /a solver : a computer code that performs the following steps:

* Approximates the unknown flow variables by means of simple functions.

* Discretises by substituting approximations into the governing flow equations 

and subsequent mathematical manipulations.

* Solving the algebraic equations.

3/ a post-processor: a computer program that offers graphic capabilities for data 

visualisation. These typically include:

* Domain geometry and grid display.

* Vector plots.

* Line and shaded contour plots.

* 2D and 3D surface plots.

* Particle tracking plots.

* View manipulation (i.e. translation, rotation, scaling etc.).

* Animation displaying results dynamically.

* Colour postscript output.

* Data export facilities for further manipulation external to the code.

Public domain programs have generally less user-friendly facilities and concentrate more 

on the solver performances. Such capabilities are part of the code-related selection 

criteria that users consider in groundwater flow applications.
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A summary of some of the existing numerical codes for groundwater flow simulations in 

saturated zones is given in Table A.2 in Appendix A. The list is not exhaustive and does 

not describe the entire model capabilities, as in this study interest is restricted to flow 

modelling and the method used. Additional information about the performance of each 

code, and its functionality or applicability, can be found in the corresponding references. 

Specific technical characteristics concerning accuracy, stability, data preparation or 

execution can be analysed by using test problems (included in the programme 

documentation or elsewhere) or collecting previous user comments and criticisms.

It has been noticed that over 500 computer programs for analysing ground-water 

problems exist (Van der Heijde, 1996) and the number is increasing as many codes that 

have been developed primarily for research purposes are being further developed into 

readily useable computer programs. One problem, however, is that there is no commonly 

agreed methodology to evaluate ground water model applications. Faced with decision

making based on model applications in numerous water quality issues, regulatory 

personnel need guidance for objective model evaluation. An expert system for selecting 

appropriate computer programs for analysing groundwater problems could be a very 

helpful tool to promote their use among local communities. Some authors have already 

proposed such systems for specific objectives, such as pumping-test expert system 

(Ouazar et al., 1996), groundwater protection programs, wellhead protection program 

(Wang, 1997), or ground water management focused on hazardous waste site risk 

assessment and cleanup activities (Chowdhury and Canter, 1998). Some governmental 

bodies have published their guide to the selection and application of mathematical models 

of contaminant transport processes (NGWCL, 2001, USEPA, 1994). More generally, The 

selection of the appropriate model for a particular field problem depends upon the 

modelling objectives, the criteria that are site specific and other data that are code related, 

as presented in Table 2.3. Among the latter, model accuracy will be more detailed for its 

relevant importance to the present work.
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2.6.2 Accuracy of Numerical Models

The accuracy and reliability of numeripal models relies on the minimisation of errors and 

uncertainties. In groundwater model applications, there are three sources of errors 

(Konikow and Bredehoeft, 1992):

- conceptual errors: they are theoretical misconceptions about the basic processes that 

are incorporated in the model

- numerical errors: they arise in the equation-solving algorithm and include truncation 

errors, round-off errors, and numerical dispersion (in transport models);

- errors arising from uncertainties and inadequacies in the input data, which reflect our 

inability to describe comprehensively and uniquely the aquifer properties, stresses, 

and boundaries.

In most model applications conceptualisation problems and uncertainty are the most 

common sources of error. Recent research emphasises how to incorporate uncertainties 

into modelling studies. Yangxiao and Van Geer (1992) presented a stochastic program to 

quantify and reduce the uncertainty of the groundwater flow input data processed by the 

numerical model MODFLOW. Linking stochastic and numerical models has been 

suggested by many authors (Anderson and Woessner, 1992, Krakostas et al., 1998). 

Moreover, for complex flow process simulation, stochastic models are often more 

efficient alternatives for prediction than numerical models. Flows in unsaturated porous 

media (Harter and Yeh, 1998), fractured media (Selroos et al., 2002) and multiphase flow 

(Ghanem and Dham, 1998) are examples of such cases.

In model development, errors occur at the level of the mathematical treatment of the 

governing equations, generating accuracy, consistency, stability or convergence 

problems. In the present work, a new numerical model will be developed. Therefore it is 

of interest to improve the accuracy of modelling through the minimisation of these error 

types. As numerical models are about approximations, these errors are generated while 

approaching the domain by a set grid, while integrating or differentiating the governing 

equations (i.e. the mass balance), while interpolating the different model parameters and 

while solving the resulting system of equations. Many research papers have used 

different combinations of existing techniques of spatial and temporal discretisation,
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interpolation and solvers to improve the accuracy and performance of the numerical 

models in different CFD applications.

f
Model accuracy can be measured by comparing the results of the model code with an 

independently derived value for the calculated entity, assuming that this latter code gives 

the correct result for the calculations (i.e., the benchmark). One other measure of model 

accuracy is how accurately the model conserves mass. This can be measured by 

comparing the net fluxes calculated or specified in the model (e.g. inflow and sources, 

minus outflow and sinks) with changes in storage (i.e. accumulation or depletion).

2.6.2 Codes Limitations

Codes are the result of the implementation of a numerical technique on a computer by 

means of a programming language. Thus, technical code capabilities and, therefore, 

limitations depend upon the performance of the numerical method as well as the 

performance of the computer platform. Evaluation of these limitations is important for 

code selection or improvement, with code limitations being broadly classified as:

- conceptual model-related: hydrogeological features and process that can be simulated. 

This process relies on the assumptions made when developing the model 

(conflned/unconfmed, dimensions, boundary conditions, steady/transient, 

isotropy/anisotropy, transport considerations, heat considerations, etc.);

- mathematical solution-related: these limitations have been discussed in the previous 

paragraphs. If a numerical technique is used in the code, then the limitations will 

depend upon whether a FD, FE, FV, or BE scheme has been chosen. Therefore this 

type of limitation will affect the level of accuracy and efficiency of the code, along 

with the stability and affect conditions (i.e. grid and time spacing, size, shape, 

orientation);

- hardware (portability)-related: storage capacity (memory), the numerical precision of 

calculations and speed will limit the number of cells, time steps, model size and the 

amount o f data that can be handled (i.e. programming language).
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In this work, we will be primarily interested in the limitations related to numerical 

techniques.

f

2.7 Conclusions and Relevance to Present Research

Groundwater flow models have been widely investigated by engineers, hydrogeologists 

and mathematicians. For higher accuracy considerations, more complex features have to 

be considered. Different deterministic, stochastic or heuristic techniques have been 

deployed, but not proven as the ultimate appropriate approach for a given class of 

problems. In this chapter existing techniques for groundwater flow modelling have been 

presented, along with their applicability and limitations. Numerical models have been the 

most intensively investigated techniques. The growth of this particular field of research is 

essentially due to the continuous development of more accurate solutions or 

approximations to the PDEs governing CFD applications and the more easy-to-use pre 

and post-processors, in parallel with the development and widespread availability of 

faster, larger memory, and less expensive computer systems. In the next chapter, one of 

the most popular groundwater flow models, namely MODFLOW, based on finite 

difference method, will be presented. Chapter four will discuss in detail one of the latest 

numerical techniques in CFD applications, namely the finite volume method and how this 

method can enlarge the capabilities of MODFLOW and eliminate one of the model’s key 

limitations. Its implementation in MODFLOW is subject to accuracy, consistency, 

stability and convergence analysis. A discussion about the new discretisation method and 

its combination with different interpolation techniques and solvers is provided in chapter 

four. Various tests are carried out in chapter five, ranging from known analytical 

solutions, mentioned above, to hypothetical problems treated with selected codes that 

were designed to handle similar types of problems, and for which the numerical-based 

techniques have been treated in this chapter.



Chapter 3

Review of MODFLOW

3.1 Introduction

Of all o f the groundwater flow models widely available, the U.S. Geological Survey 

three-dimensional modular finite-difference, groundwater flow model, commonly 

referred to as MODFLOW, is regarded by many as the most widely used by government 

agencies and consultant firms. The main reasons for this popularity, a detailed description 

of the code, and a discussion of its features, weaknesses and refinements are given in this 

chapter.

3.2 MODFLOW Description

3.2.1 Development History

McDonald and Harbaugh from the United States Geological Survey (USGS) first 

developed MODFLOW in 1984. The program was originally written using FORTRAN 

66 and then modified in 1988 to use FORTRAN 77. Since then, many changes, updates 

and corrections were introduced to the program simultaneously with its growing use. A 

summary of the development of the different versions of MODFLOW, and their specific 

features and references, is given in Table 3.1.



Version Name
Date of 
release Added features/changes

USGS 
report references

MODFLOW Version 83/12/28 1984 Code written in FORTRAN 66. OFR 83-875
MODFLOW-88 Version 87/07/24 1988 FORTRAN 77 version. TWRI6-A1

MODFLOW-88 Version 93/08/30 30/8/1993 PCG2, BCF3, STR1,
HFB1, IBS1, CHD1, andGFDl packages.

WRIR 90-4048, OFR 91-536, WRI 92-4124, OFR 88-729, 
OFR 92-477, TWRI 6-A2, TWR1 6-A2, OFR 91-494.

MODFLOW-88 Version 2.4 15/6/1995 TLK1 package. OFR 94-59

MODFLOW-88 Version 2.5 23/6/1995 DE45 package. OFR 95-288

MODFLOW-88 Version 2.6 20/9/1996 RES1, IBS improvement. OFR 96-364
MODFLOW-96 Version 3.0 3/12/1996 Overall model update. OFR 96-485, OFR 96-486

MODFLOW-96 Version 3.1 11/3/1997 Correction o f calls to the HFB package.
MODFLOW-96 Version 3.2 9/1/1998 FHB1 package. OFR 97-571
MODFLOW-96 Version 3.3 2/5/2000 Error fixed in IBS code.
MODFLOW-96 Version 3.3h 7/3/2000 HYDM package. OFR 98-564
MODFLOW-2000 Version 1.0 20/7/2000 Enhanced modular structure, new data input methods, 

LPF and ADV packages added,

IBS, TLK, and GFD packages are not included.
OFR 00-92, OFR 97-14

MODFLOW-2000 Version 1.1 17/1/2001 IBS, HUF, LAK, ETS and DRT packages added, 

HYDMOD option, EVT package modification.
OFR 00-342, WRIR 00-4167, OFR 00-466

MODFLOW-2000 Version 1.2 12/4/2001 Added support for use o f binary files, bug fixes, and 
clarification of output.

MODFLOW-2000 Version 1.3 11/6/2001 Error fixed in LPF package.
MODFLOW-2000 Version 1.4 10/7/2001 LMG package. OFR 01-177
MODFLOW-2000 Version 1.5 16/8/2001 LMT package. OFR 01-82
MODFLOW-2000 Version 1.6 19/10/2001 Problems related to sensivities fixed, support for new 

options for the name file.
MODFLOW-2000 Version 1.7 4/12/2001 Added support for use of time-varying parameters. Time-varying-parameters.pdf, str6.pdf

MODFLOW-2000 Version 1.8 1/5/2002 Added support related to printing o f cell lists, problems 
fixed in ADV, LPF, HUF, LMT and RES packages, and 
a bug relate to the OBS and PES processes use.

OFR 01-54

MODFLOW-2000 Version 1.9 15/7/2002 Updates o f  LAK, GAGE, and HUF packages.
M ODFLOW -2000 Version 1 .10 26/7/2002 Bugs related to the compilation o f the source code and 

a problem in the LMG package fixed.



MODFLOW-2000 Version 1.11 10/4/2003 DAF and MNW packages. Modifying the PCG2 package 

and bugs fixed.

OFR 99-217, OFR 02-293

MODFLOW-2000 Version 1.12 8/9/2003 SUB package. Upgrading the HUF and ADV packages. OFR 03-233, OFR 02-409
MODFLOW-2000 Version 1.12.01 3/10/2003 Bug-fix release.
MODFLOW-2000 Version 1.13.00 22/1/2004 Revision o f  the LAK3 package and bugs fixes for the DRT, 

SUB, HUF2, and PCG2 packages.

OFR 03-347

MODFLOW-2000 Version 1.14.00 1/7/2004 SFR package. OFR 2004-1042
MODFLOW-2000 Version 1.15.00 6/8/2004 GMG pakage, and modification to the SFR package. OFR 2004-1261

MODFLOW-2000 Version 1.15.01 5/4/2005 Bug-fix release.

Table 3.1 A summary of MODFLOW versions history from 12/1983 to 04/2005.
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Broadly speaking, it can be said that, so far, MODFLOW is most likely known under 

three version names: MODFLOW-88, documented by McDonald and Harbaugh (1988), 

MODFLOW-96, documented by Hajbaugh and McDonald (1996a and 1996b), and 

finally MODFLOW-2000, documented by Harbaugh et al. (2000).

3.2.2 MODFLOW Mathematical Model

3.2.2.1 Assumptions, Governing Equation and Boundary Conditions

MODFLOW solves the partial differential equation that describes three-dimensional 

groundwater flow in a saturated porous media. The model assumes a flow process 

involving a single fluid, basically water, with constant parameters (density, viscosity and 

temperature), in a single phase (liquid). The phase flow is assumed to be laminar and 

linear, and Darcy’s conditions are assumed to be applicable (see paragraph 2.3.1.4). The 

principal directions of the hydraulic conductivity are assumed to be parallel to the 

Cartesian co-ordinate axes and do not vary within the system. Using standard 

MODFLOW notation, the equation solved is given as (McDonald and Haibaugh, 1988):

i { K ^ y i [ K ^ y u K ^ y w = s ^  a , )

where

, K vy and Kzz are values of the hydraulic conductivity in the x ,y  and z co-ordinate 

axes, [L T 1]; 

h is the potentiometric head [L];

IF is a volumetric flux per unit volume and includes sources and/or sinks [T 1];

Ss is the specific storage of the porous material [L 1]; and 

t is time [T].

MODFLOW allows three types of boundary conditions to be simulated (see section 

2.3.2). Equation 3.1, together with specification of flow and/or head conditions at the 

boundaries of an aquifer system and specification of initial-head conditions, forms the 

mathematical representation of a groundwater flow system solved by MODFLOW.
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3.2.2.2 Spatial and Temporal Discretisation

MODFLOW uses the finite difference numerical method to solve the groundwater flow 

mathematical model stated above. The spatial domain of the aquifer system is discretised 

using a block-centred grid. Each cell of the mesh is located by its row, column, and 

layer. Therefore, an i,j, k indexing system is used to reference rows, columns, and layers 

respectively. Figure 3.1 shows the discretisation convention used in MODFLOW. An 

implicit formulation of the equation time-variables is used. The time derivative of the 

head is approximated using a backward-difference approach.

Following these discretisation conventions, Equation 3.1 yields a system of equations, 

which includes one equation for each variable-head cell in the mesh, and can be written 

in matrix form.

Cells outside 
the aquifer 
system

Figure 3.1 Discretisation convention in MODFLOW.

3.2.3 MODFLOW Solution Technique

The resulting matrix equation is solved by an iterative method. The MODFLOW-88 

version incorporates the strongly implicit procedure (SIP) and the slice-successive over

relaxation (SOR) methods only (McDonald and Harbaugh, 1988). In MODFLOW-96, 

the preconditioned conjugate gradient (PCG) method was added as an alternative solver 

package (Hill, 1990). This version accounts also for a new direct solver (D4), based on

Cells inside the 
aquifer system
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Gaussian elimination with the addition of Picard iterations when the flow equation is 

non-linear (Harbaugh, 1995). In the recent versions of MODFLOW-2000, another solver 

(AMG) was included using a linking jpackage to MODFLOW, called LMG. AMG is an 

algebraic multigrid iterative solver for matrix equations that was developed by GMD 

(German National Research Center for Information Technology). The technique is fully 

described by Stiiben (1999, 2001). Its implementation in MODFLOW-2000 by the LMG 

package is detailed in Mehl and Hill (2001). So far, the latest new technique for solving 

the finite difference matrix that has been added to MODFLOW-2000 is the GMG 

geometric multigrid solver, based in the preconditioned conjugate gradient algorithm and 

described in Wilson and Naff (2004).

The reason behind the incorporation of multiple solvers in MODFLOW is to give the 

user the chance of choosing the appropriate solution technique for a particular problem, 

as no single solver is well suited to all types of problems. It can also give an insight on 

the performances of each solver for the same application (accuracy, number of iterations, 

execution time, memory, convergence, and stability). A comparative discussion about 

the performance of MODFLOW iterative solvers SOR, SIP, PCG, and AMG, for two 

test problems, is provided by Mehl and Hill (2001). The AMG and GMG solvers were 

compared in Wilson and Naff (2004).

3.2.4 Code Design

MODFLOW has been designed to have a modular structure that facilitates three primary 

objectives:

• ease of understanding;

• ease of enhancement; and

• minimisation of change that would impact existing MODFLOW users.

To meet these criteria, the program has been arranged according to a modularisation 

approach, consisting of the following basic entities: packages, procedures, modules and, 

in the latest MODFLOW version, processes.
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Packages are entities that describe a hydrologic capability (either a flow component or a 

stress), or a solution method. The control of operations with these different packages is 

also included in a separate one, caljed Basic Package (BAS). Existing packages in 

MODFLOW-2000 are given in Table 3.2.

Procedures are pieces of the program that structure its logic in a simple way. Thus, the 

program flowchart is designed as a sequence of these procedures (see Figure 3.3). Each 

procedure is defined by the task that is achieved.

Modules or subroutines are smaller pieces of the programme that are combined within a 

single procedure for a single package. Calls of different modules, which belong to 

different packages, in the proper procedural sequence, are operated by the MAIN 

program.

Processes are more general entities as they define part of the code that solves a 

fundamental equation by a specified numerical method. This new modularisation 

concept has given a new dimension to the expansion of MODFLOW as it allows 

additional groundwater mechanisms to be modelled. In MODFLOW-2000, four 

processes are included:

• groundwater flow process (GWF): the original MODFLOW solves the groundwater 

flow equation using the finite difference method,

• observation process (OBS): which quantify statistically the difference between 

observed and simulated equivalent values and provides files to support graphical 

comparisons,

• sensitivity process (SEN): which calculates the sensitivity of hydraulic heads with 

respect to parameters of interest using the sensitivity equation method,

• parameter-estimation process (PES): which estimates selected parameters using non

linear regression.
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Package* ftKK&LOW** MGDFLQW*206d
Vftrttoft 3 .3  H Version 1,15.01

Advective-Transport Observation Package (ADV) - - ADV2
Basic Package (BAS) BAS2 BAS5 BAS6
Block-Centered Flow Package (BCF) ' BCF3 BCF5 BCF6
Time-Variant Specified-Head Package (CHD) CHD1 CHD1 CHD6
Coupling DAFLOW Model to MODFLOW (DAF) - - DAF1
Direct Solver (DE4) DE45 DE45 DE45
Drain Package (DRN) DRN1 DRN5 DRN6
Drains with Return Flow Package (DRT) - - DRT1
Evapotranspiration with a Segmented Function Package (ETS) - ETS1
Evapotranspiration Package (EVT) EVT 1 EVT 5 EVT6
Flow and Head Boundary Package (FHB) - FHB1 FHB1
Gaging Stations Package (GAGE) - - GAGE5
General Finite Difference Flow Package (GFD) GFD1 GFD1 -
General Head Boundary Package (GHB) GHB1 GHB5 GHB6
Geometric Multigrid Solver (GMG) - - GMG1
Horizontal Flow Barrier Package (HFB) HFB1 HFB1 HFB6
Hydrogeologic-Unit Flow Package (HUF) - - HUF1
Hydrograph Package (HYD) - HYD1 HYD1
Interbed Storage (subsidence) Package (IBS) IBS1 IBS1 IBS6
Lake Package (LAK) - - LAK3
Algebraic Multigrid Solver (LMG) - - LMG1
Link to MT3DMS Contaminant-Transport Model (LMT) - - LMT6
Layer-Property Flow Package (LPF) - - LPF1
Drawdown-Limited Multi-Node Well Package (MNW) - - MNW1

Preconditioned Conjugate Gradient (PCG) PCG2 PCG2 PCG2
Recharge Package (RCH) RCH1 RCH5 RCH6

Reservoir Package (RES) RES1 RES1 RES1
River Package (RIV) RIV1 RIV5 RIV6
Stream - Flow Routing Package (SFR) - - SFR1
Strongly Implicit Procedure Package (SIP) SIP1 SIP5 SIP5
Slice Successive Over-Relaxation Package (SOR) SOR1 SOR5 SOR5
Streamflow-Routing Package (STR) STR1 STR1 STR6
Subsidence and Aquifer System Compaction Package (SUB) - SUB1
Transient Leakage Package (TLK) TLK1 TLK1 -
Utility Package (UTL) UTL1 UTL5 UTL6
Well Package (WEL) WEL1 WEL5 WEL6

Table 3.2 MOFLOW packages versus versions.

The overall program operation and data structure set-up used by these processes are 

controlled by a separate general process called the Global Process (GLO). Figure 3.3 

shows a simplified flowchart of the GLO, GWF, OBS, SEN, and PES process 

combinations.
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Another process for groundwater transport (GWT) modelling has also been constructed 

for MODFLOW-2000 as an optional package. The GWT process is activated by using 

an enhanced version of MODFLOW called MF2K_GWT, that merges the MOC3D 

transport model and MODFLOW-2000, and adds solute calculations compatible with 

Lake and Gage packages. The program and its full description are available through the 

World Wide Web page at address:

http://water.usgs.gov/nrp/gwsoftware/mf2k_gwt/mf2k_gwt.html

Table 3.3 gives the relationship between the different procedures, packages and 

processes in MODFLOW-2000. The GWT process is not included as it integrates the 

code package M0C3D and its procedures with MODFLOW in a separate adapted 

version, namely MF2K_GW. Note that solver packages and other packages are 

independent from processes and thus their related subroutines are organised only by 

procedures and/or packages as illustrated in Table 3.4.

If the finite volume method is to be used for solving the flow equation, a new separate 

process will have to be defined. This process will be called GWFV. Subsequent changes 

and additions, when necessary, have to be made to ensure compatibility with other 

MODFLOW-2000 packages. Consequently, modifications of the MAIN program to 

invoke the new modules of the new process are required.

3.2.5 Code Usability

3.2.5.1 Data Requirement -  Input

In order to run a MODFLOW application, the user must first specify grid dimensions; 

boundary and initial conditions, hydraulic properties, and stress parameters for every 

model cell in the finite-difference grid; and solver and output controls.

When processes other than GWF are used (OBS, SEN, PER or GWT), more input data 

are required. For instance, if the parameter estimation package (PES) is used, then an 

additional input file has to be prepared to define the estimated parameters and the 

observations used in the regression (existing independent estimates of parameter values,

http://water.usgs.gov/nrp/gwsoftware/mf2k_gwt/mf2k_gwt.html
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Parameter estimation loop

Stress loop

Time step loop

Iteration loop

Parameter- 
sensitivity loop

Iteration loop

GWFAL

SENOT

PES AP

SEN AP

GWFFM

GWFAP

OBSFM

SEN FM

PESOT

GWFAD

PES RW

GWFRP

GWF ALandRP

GWF ST and RP

GWF PC, BD, and OT

OBS, SEN, and PES RP

GLO DF, AL, and RP

OBS, SEN, and PES AL

Procedures:

AD-- Advance 

A L- Allocate 

A P- Approximate 
BD— Budget 

D F- Define 
FM - Formulate 

O C - Output Control 
OT- Output
R P- Read data& Preapare 

RW— Rewind 
ST -  Stress

Figure 3.3 Flowchart of MODFLOW-2000 four processes: Global (GLO), Ground-
Water Flow (GWF), Observation (OBS), Sensitivity (SEN), and Parameter 
Estimation (PES).
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Table 3.3 Organisation of modules by processes, packages and procedures.
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Supported MODFLOW-2000 packages in the LMT6 package

Table 3.4 Packages interconnection and process-independent packages 
(MODFLOW-2000 1.15.01).
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observed hydraulic heads or temporal changes in hydraulic heads, and observed gains 

and losses along head-dependent boundaries).

0
3.2.5.2 Code Output

The primary output is the head (or groundwater level) at every cell (except for those 

where head was specified as known in the input data sets) at specified time steps. Heads 

can be written to the listing file or into a separate file. Other output includes the 

complete listing of all input data, drawdown, and budget data. These latter output data 

are printed as a summary in the listing file, and detailed budget data for all model cells 

can be written into a separate file.

When other processes are invoked, more output files are generated. For instance, if the 

parameter estimation process (PES) is used, then the output includes tabular summaries 

of descriptive statistics and data for analysing the parameter estimates and the model 

reliability.

3.2.5.3 Pre-Processing and Post-Processing Facilities

(i) Pre-Processors

MODFLOW software, as it is distributed by the USGS, does not have any pre

processing facility. Yet, the USGS has separately developed two basic pre-processors to 

the MODFLOW program namely RADMOD, for the particular case of axisymmetric 

problems, and MFI2K, which assists in preparing input data for MODFLOW-2000. The 

two programmes can be downloaded for free from the USGS software home page. 

However, due to its growing use and development since its release, and the type of input 

files required for running a MODFLOW application, many pre-processors have been 

developed by other organisations and private companies to facilitate the use of the 

programme. These facilities include a mesh generator, CAD/GIS style tools and 

functionality, a graphical user interface, and importing and exporting data facilities. 

Commercial versions of the MODFLOW software allow most of these options. Table
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B.l in Appendix B gives a review of up-to-date available products pre-processing 

MODFLOW.

f

(ii) Post-Processors

The only post-processors distributed with the MODFLOW-2000 code by the USGS are:

• BEALE-2000 which calculates beale's measure of non-linearity,

• RESAN-2000 which performs residuals analysis,

• YCINT-2000 which calculates linear confidence intervals on simulated hydraulic

heads and flows along head-dependent boundaries, and

• HYDFMT and HYDPOST which are post-processor packages that read a file 

containing unformatted output and write simulation times and head values (or other 

values) to a file that can be read into a graphing program.

The USGS has developed separately other programs, which perform other post

processing tasks (see Table B.l). More sophisticated post-processing capabilities for 3D 

views, animation, contour plots, colour postscript output, and vector plots are available 

within commercial software which process MODFLOW. Table B.l summarises some of 

these post-processors. Most of these commercial software tools have their own in-built 

pre-and post-processors, as they bring other process simulation codes together (e.g. 

contaminant transport codes, surface water codes, particle tracking codes). Such 

functions are increasingly being improved as they represent a highly important criterion 

in software selection by modellers.

3.2.6 Related Programmes

Since its establishment as a worldwide standard for groundwater flow modelling, many 

programs have been developed to link MODFLOW to other codes that use groundwater 

flow information in porous saturated media (e.g. heads, velocities, flow budget and 

fluxes). Processes such as solute transport, variable density flow, multiphase and 

unsaturated flow, integrated surface water and groundwater flow, parameter estimation, 

groundwater management and optimisation may be modelled using programs that solve 

a system combining the process governing equations with the groundwater flow equation



CHAPTER 3. REVIEW OF MODFLOW 72

solved by MODFLOW. Table B.2 in Appendix B gives examples of MODFLOW 

related programmes.

f

3.2.7 Source Code Availability and Cost

MODFLOW is a public domain model. The source code for all MODFLOW versions 

(MAIN program as well as its subroutines) are distributed freely by the USGS. Self- 

extracting distribution files are available for electronic retrieval via he World Wide Web 

(WWW) at: http://water.usgs.gov/software/. The extracted files mostly contain compiled 

executables, the program packages source code, data sets for verification tests and their 

batch files, and information files (release notes or version history, files contained, user 

rights, the readme text, etc.).

3.2.8 Hardware and Software Requirements

MODFLOW (all versions) can be installed on three computer systems: Data General 

UNIX workstations, Sun SPARCstation and IBM compatibles personal computers. It 

can be used with UNIX, DOS or Windows operating systems. For MODFLOW-2000, 

the random-access memory (RAM) required is not less than 4 MB. This version can be 

run on an Intel 80386 based computer or higher with a math coprocessor or compatible. 

The program has been written in Fortran 77 with few extensions (e.g. use of variable 

names longer than 6 characters and use of Fortran 90 statements in some parts of the 

code). The program compilation is made with the Lahey Fortran 95 extended memory, 

compiler version 5.60h. Thus a FORTRAN compiler is required for any modification 

and compilation of the code. The distributed source code of MODFLOW-2000 is 

compatible with standard Fortran 90 and FORTRAN 95 but can also be converted to 

standard Fortran 77 by modifying some aspects in the main program (Hill et al., 2000, p. 

206).

The source code of the latest version offers a serial or parallel processing option for the 

sensitivity process. Parallel sensitivity distributes parameter related runs simultaneously 

across computer processors, i.e. network computing, thereby achieving enormous 

optimisation-time savings.

http://water.usgs.gov/software/
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3.2.9 MODFLOW Capabilities and Maintenance

The code was originally developed to simulate three dimensional groundwater flow in 

saturated porous medium. This flow process involves a single fluid, basically water, with 

constant parameters (density, viscosity and temperature), in a single phase (liquid). The 

flow is assumed to be laminar and linear and Darcy’s conditions are applicable (section 

2.3.1.4). MODFLOW’s recent modular design has provided a good foundation upon 

which substantial additions have occurred. Thus, in its latest versions, MODFLOW-2000 

accommodates the simulation of new classes of problems in addition to saturated 

groundwater flow. This was achieved by incorporating other process codes into the 

MODFLOW code (e.g. PES, OBS processes), or linking the original programme to other 

simulators using linking packages (e.g. LMT package), or adding subroutines for 

coupling MODFLOW with other programs (e.g. DAF package). The two major recent 

extensions to MODFLOW have been calibration (i.e. the PES, SEN, OBS processes, and 

ADV package) and solute-transport modelling (i.e. the GWT process and the MT3DMS 

linking package LMT6). Other enhancements of the model incorporated in its latest 

versions include:

- new solver packages to improve accuracy and computational work (LMG and GMG 

packages),

- flexibility in simulating evapotranspiration and drains (ETS and DRT packages),

- interaction between lakes, and aquifers (LAK package),

- interaction between stream and aquifers (SFR)

- more flexibility in simulating boundary conditions (FHB and CHD packages) and 

aquifer heterogeneity and stratigraphy (LPF and HUF packages).

Each package of MODFLOW is prone to continuous maintenance to enhance its 

applicability. Thus, each package has an associated number that indicates its latest 

improved version, as shown in Table 3.3.

Using the USEPA method for evaluating a code (Van der Heijde and Kanzer, 1997), 

functionality checklists for MODFLOW-2000 version 1.15.01 are given in Appendix C. 

Other commercial MODFLOW products can offer additional capabilities, such as 

telescopic mesh refinement (Groundwater vistas), non-ponding or prescribed ponding



CHAPTER 3. REVIEW OF MODFLOW 74

conditions for recharge/seepage face, simulation of a well that is screened across 

multiple model layers, and adaptive time-stepping and output control (MODFLOW- 

SURFACT). The SFWMD have developed several packages to integrate surface and 

ground water using MODFLOW (Restrepo et al., 1998), for example wetland (WTL1) 

and evapotranspiration-recharge (ET/RCH). Kiwa, a research and consultancy 

organisation in the Netherlands has developed the Density Package for simulating 

density driven flow in MODFLOW. Also, a package for simulating water movement in 

the unsaturated zone, called the Vadose module, was developed for MODFLOW by S.S 

Papadopulos and Associates, Inc. (Blum et al., 2001).

3.2.10 MODFLOW Applications

MODFLOW has been extensively applied for different field situations, especially those 

where a relatively precise understanding of the flow system is needed to make a 

decision. Moreover, it is commonplace to see MODFLOW deployed in conjunction with 

one or more other models to simulate different hydraulic processes (e.g. surface water, 

recharge, etc). The class of problems where MODFLOW has been used and well-tested 

can be summarised as follows:

• Regional groundwater management which addresses planning for water demands and 

supply, the effects of natural or manmade stresses (e.g. drainage, withdrawal, 

artificial recharge) on groundwater system (Stamos et al., 2002, Hutson et al., 2002,) 

and more generally the impacts of urbanisation and land-use (Hunt and Steuer, 2001, 

Batelaan et al., 2003),

• groundwater contamination and remediation (e.g. pump and treat, soil vapor 

extraction, air sparging, bioremediation, and natural attenuation) in porous media 

(Wang and Zheng, 1997, Bumb et al., 1997, Bedard et al., 1997, Geistlinger et al., 

2003),

• evaluation of pumping and tracer test data to determine hydraulic and transport 

properties of formations (Samani et al., 2004, Lemke et al., 2004),

• simulation of surface/groundwater interactions, such as river basins, wetlands and 

lakes (Grannemann et al., 2000, Krohelski et al, 2002), runoff, and 

evapotranspiration,
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• Flow and transport optimisation of pumping by wells for dewatering, remediation or 

supply use (Manglik et al., 2004, Neville and Tonkin, 2004),

• uncertainty analysis and risk assessment (e.g. parameter estimation, delineation of 

well capture zones, contaminants fate and exposure pathways) as can be found in

Heebner and Toran, 2000, and Jones et al., 2003.

3.2.11 MODFLOW Testing and Reporting: Quality Assurance

Each simulation feature of MODFLOW has been extensively tested either through 

comparisons with analytical examples, benchmarks, field or laboratory test results or 

other similar program results. All initial packages are well documented, but no detailed 

report on their successive upgrades is available (just release notes to mention introduced 

changes). User and programmer’s documentation exists for MODFLOW-88 and 

MODFLOW-96. User guides for the new MODFLOW-2000 are available whereas, at 

the time of this study, no programmer’s documentation has yet been published. All of 

these documents contain a detailed description of the development history, theory, code 

structure, input instructions, and example simulations. A manual of instructional 

problems (Andersen, P.F., 1993) was developed by the United States Environmental 

Protection Agency to illustrate in a comprehensive way the model principles and 

options.

3.2.12 History of Use and References

MODFLOW has been extensively used by different governmental bodies, companies 

(i.e. developers and user consultants) and public organisations such as universities and 

regulatory agencies. As of late 1992, the U.S. Geological Survey reported that 

MODFLOW had been used for 165 projects, significantly more than all of the other 

USGS models for simulating groundwater flow and water quality (Appel and Reilly, 

1994). Many of these reports are published on the web for free consultation. One survey 

found that 73% of practicing hydrogeologists had used MODFLOW (Fetter, 1994). 

References and resources on the internet of MODFLOW-related freeware and shareware 

can be found in Winston (1999). In many court cases in the United States, the
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programme has been accepted as a legitimate approach to analyse groundwater systems 

(see MODFLOW fact sheet FS-121-97). Examples of other MODFLOW official users 

include the U.S. Army Corps of Engineers (USACE), the U.S. Environment Protection 

Agency (USEPA), South Florida Water Management District (SFWMD) and the U.S 

Department of Energy (DOE). As commercial effort was concentrated on making 

MODFLOW more user-friendly, the use of the model outside of the U.S. started develop 

worldwide. Private companies hold records of these international users.

33 MODFLOW Limitations

If no other model is used in conjunction with MODFLOW-2000, then three types of 

limitations can be identified:

(i) Conceptual model-related limitations:

As stated before, MODFLOW is formulated to simulate saturated groundwater flow in 

porous media. Accordingly its applicability is restricted to the simulation of this 

hydrogeological process. Thus, MODFLOW cannot be applied alone in several 

commonly occurring situations that involve other physical processes such as flow in the 

unsaturated and vadose zones, e.g. cfensity dependent saltwater intrusions, multiphase 

flow and surface processes (e.g. overland runoff, surface water in hydraulic control 

structures, etc.).

MODFLOW also includes other limitations related to the representation of certain 

mechanisms within packages. Thus, the recharge package (RCH) provides unphysical 

predictions for unconfined systems, if the water table reaches, or is above land surface. 

Downward seepage from rivers (RIV), reservoirs (RES), streams (STR) and lakes (LAK) 

is limited to situations where the head is the underlying aquifer is always above the 

bottom elevation of the surface water feature and the bottom elevation of the layer 

containing the feature. The simulation of wells with the well package (WEL) is limited 

to withdrawal at a specified rate from individual cells, and short term transient effects 

between cells and wells, important in aquifer test analysis, are not simulated. The
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calibration processes (PES, OBS and SEN) may not be compatible with TLK, IBS, and

RES packages, and where transport processes are evolved (GWT).

r

(ii) Mathematical solution-related limitations:

Limitations related to finite difference formulations include the following:

• Rectilinear grids do not conform the model to geometric, topographic or 

lithologic features,

• Steep and rapid changes in the vicinity of hydraulic features, such as 

pumping/injection wells, lakes, rivers, drains, etc, cannot be captured accurately 

due to the relatively large distances between adjacent nodes,

• The geometry of hydraulic controls such as wells and canals, can be difficult to

model with a rectilinear grid (Barrash et al., 1997).

Limitations related to the solution methods include the following:

• MODFLOW sometimes encounters difficulties, or fails to converge in drying/re- 

wetting situations,

• Solvers available in MODFLOW are efficient for small or straight forward

problems, but become inefficient, or fail altogether, for large and complex

problems, continuous effort is made to improve the code computational 

performance by integrating new solvers, but none of them has proved to be 

unconditionally efficient for applications with MODFLOW,

• MODFLOW's time stepping increases the step size in geometric progression 

indefinitely, thereby sacrificing robustness, efficiency, and efficient control of 

simulation output,

• Stability issues are limited when using packages such as the LAK package 

(Merritt and Konikow, 2000).

(iii) Hardware and software-related limitations:

The main hardware and software related limitations can be summarised as follows:

• pre and post-processing facilities are unavailable within MODFLOW-2000. In 

fact, data input/output, grid considerations, and simulation control have complex
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data structures, particularly when several simulations are involved for calibration, 

and sensitivity analysis,

•  for large, complex problems, simulation problem dimensions are limited by 

available computer memory or prohibitively long simulation times,

Some of these limitations have been overcome by the development of new packages and 

techniques that have not yet been included in the present version of MODFLOW-2000. 

The telescopic mesh refinement (TMR) procedures (Leake and Claar, 1999) and the 

drawdown-limited multi-node well (MNW) packages (Halford and Hanson, 2002) are 

examples of programs that have been developed by the USGS to improve on the model 

accuracy and applicability. The MNW has already been included in latest version of 

MODFLOW-2000, as other utility packages. Doherty (2001) proposed a number of 

adjustments to the BCF package to improve MODFLOW convergence when dewatered 

cells are included in the calculations. Osman and Bruen (2002) presented an improved 

technique to simulate stream-aquifer seepage in MODFLOW. The use of boundary 

representation method for solid models to generate an accurate grid-independent 

representation of complex hydrostartigraphy has been suggested by Jones et al., (2002). 

Modifications of the BCF package, in order to have additional flexibility in modelling 

spatially variable anisotropy in MODFLOW, were described in Kladias and Ruskauff 

(1997).

3.4 MODFLOW Critics and Improvements

3.4.1 MODFLOW Popularity

In a comparative survey in 1992, MODFLOW was, by far, the most popular 

groundwater modelling programme (Geragthy and Miller Software Newsletter, 1992). In 

1999-2000, 23000 copies of MODFLOW had been downloaded free from the USGS or 

purchased from others (Hill, 2002). With the additional functionality in MODFLOW- 

2000, the programme will by now be even more widely used. The programme’s popular 

attributes account for its modular code design; including the good documentation of the 

programme theory and data input, and the free access and availability of these
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documents as well as the source code. Moreover, the simple concept of finite 

differences, and the subsequent simplicity of the treatment of flow features, is one of the 

most attractive reasons why MOpFLOW has become a very popular groundwater 

modelling tool around the world. Yet, the main simplifications lead to major limitations 

especially when complex modelling situations are involved. It is true that field situations 

are never simple enough to be simulated by simple models, however, the complexity 

level should be measured with the accuracy at which the model results are expected to 

be. The accuracy of MODFLOW has been subject to many research studies. The results 

have led to modifications or to the addition of new packages that tackle each complexity 

separately, whereas the data input structure has remained the same to keep users 

familiarity with new versions of MODFLOW. Thus, MODFLOW remains flexible in 

balancing between complexity and simplicity.

3.4.2 MODFLOW Accuracy

As stated in section 3.6.1, when developing a numerical model code, accuracy partly 

relies on the minimisation of errors generated by number of approximations. In 

MODFLOW, the approximations made at many levels include, in particular:

- the parabolic partial differential flow equation being discretised using a finite 

difference method. First order and second order spatial derivatives are approximated 

accordingly,

- the temporal derivative being approximated using a backward difference scheme and 

the flow equation being solved implicitly,

- the solution of the resulting set of equations system being approximated by different 

iterative matrix solver techniques,

- the hydraulic conductivity (or permeability) being approximated at cell surfaces 

using interpolations.

The accuracy of MODFLOW with regard to spatial discretisation was investigated by 

Haitjema et al. (2001). He found that an accurate flow field was obtained if the boundary 

conditions in the groundwater flow regime were represented accurately in MODFLOW 

with the appropriate cell sizes. In regions with singular velocities (e.g. near comers),
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strongly converging or diverging flow or zones with a contrasting transmissivity level, 

then a large amount of cells are required. It should be noted that, given the nature of a 

finite difference grid, the cell sizes are restrictively dependent upon the number of cells 

(i.e. rectilinear rows and columns).

Barrash et al. (1997) found that the finite difference formulation used in MODFLOW 

underestimate large head gradients that can occur in the vicinity of pumping (or 

injection) wells. Generally, a detailed representation of the flow field in the vicinity of 

hydrologic features and through irregular hydrogeologic units (e.g. discontinuities, or 

very thin units) requires a relatively small grid spacing. Moreover, an accurate velocity 

field is critical to the accuracy of contaminant transport models, particularly for 

advection dominated transport, and model accuracy and stability are often conditional 

upon the use of small cell sizes. These limitations can be reduced or eliminated by 

refining the grid representing the system and by using a more flexible grid structure. 

Mehl and Hill (2002, 2004)) presented a local grid refinement method for two- 

dimensional and then three-dimensional block-centred finite difference meshes using 

shared nodes. Leake and Claar (1999) developed three programmes (MODTMR, 

TMRDIFF and RIVGRID) that use telescopic mesh refinement method within 

MODFLOW. Another method for refining a model grid was presented by Spitz et al. 

(2001). The nested re-discretisation method is used to improve pathline resolution by 

eliminating weak sinks, representing wells in MODFLOW and MODPATH. However, 

fine grids can result in long execution times that prohibit the many model runs often 

needed to understand the system dynamics and calibrate the model. As an alternative to 

grid refinement for more accurate local modelling, Kelson (2002) suggested die use of 

an analytical element model where the boundary conditions, aquifer properties, and 

parameter values for the analytical element subregions were extracted from the 

MODFLOW regional model.

Jones (1997) presented a finite element package (NCF), analogous to the BCF package, 

as an alternative to solve the groundwater flow equation, using the finite element method 

within a model layer, while the vertical flow is simulated using the finite difference 

method. The input data input structure was kept consistent with other MODFLOW



CHAPTER 3. REVIEW OF MODFLOW 81

modules, in addition to the capability for designing a non-rectangular grid. No other 

work on the flexibility of the grid structure in MODFLOW has been investigated so far 

as can be established from the mpin literature. Hill (2002) suggested that one of the 

future MODFLOW development axes would be to improve the local grid refinement and 

make grids less structured. Zheng (1990) developed a higher-order finite-volume TVD 

method, within the code MT3D, for transport simulation. Heberton et al. (2000) also 

have developed a finite volume Eulerian-Lagrangian method to solve the transport 

equation used in MOC3D. Both methods, however, are based on finite-difference cell 

and use MODFLOW to drive their interstitial fluid velocity components.

In the present work, emphasis has been focused on developing a non-orthogonal grid 

model version of MODFLOW. This has been achieved using the finite volume 

technique, and the accuracy gained using this scheme along with its performances and 

limitations, has been considered.

Performance and errors that can be generated by the different interpolation techniques 

used to approximate hydraulic parameters and gradient terms on cell surfaces in 

MODFLOW have not been investigated so far. Potential inaccuracies involving the 

matrix solvers SIP, SSOR and PCG2 were fully addressed by Osiensky and Williams

(1997). A comparison with the recent added solver, AMG, was provided by Mehl and 

Hill (2001) for two simple tests. A comparison between the AMG solver and the latest 

integrated solver GMG, was also made by Wilson and Naff (2004). No detailed 

comparisons between all the MODFLOW solvers, namely SIP, SSOR, PCG2, DE4, 

AMG and GMG, have been undertaken to-date. An enhanced version of the 

preconditioned conjugate gradient solver, called PCG4, was developed by 

HydroGeologic.Inc within its product MODFLOW-SURFACT. It also offers a Newton- 

Raphson Linearisation and Backtracking package (NRB1) to stabilise the solution for 

highly non-linear conditions.
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3.4.3 Finite Volume and MODFLOW

The accuracy of the results from splute-transport models relies heavily on the ground

water velocities calculated from flow models, such as MODFLOW. For advection 

dominated transport the accuracy of the velocity field is critical to the accuracy of the 

contaminant transport solution. Variable-density, ground-water models are even more 

dependent upon velocities because the groundwater velocities are, in turn affected by the 

solute concentrations. On the other hand, it is recognised that no single numerical 

technique has been shown to be effective for all transport conditions, each having its 

own strengths and limitations. However, it has been reported in many research 

publications that the finite volume method fits better with the transport problems than 

the finite difference method, which suffers, moreover, from the difficulty in reproducing 

boundary effects (Archer, 2000).

From these perspectives, and because MODFLOW is one of the most widely used 

groundwater models, the improvement in its accuracy will be investigated by 

implementing a finite volume discretisation method using a non-orthogonal grid. This 

will be achieved with respect to MODFLOW’s popularity oriented objectives, by 

ensuring minimal changes that would impact existing code users and ease of 

understanding. The method can be subsequently used to discretise the transport equation 

used by MOC in conjunction with MODFLOW. The new formulation adds more 

features to the flow model, in particular a greater flexibility in the grid structure enabling 

irregular boundary geometries to be represented more accurately. Also, steep changes in 

the flow gradients can be represented more precisely, together with the benefits of 

unconditional mass conservation. The necessary tests and analyses will be conducted to 

check the method’s performance relating to accuracy, stability, consistency and 

convergence issues, and comparisons with the finite difference method as used in 

MODFLOW.



Chapter 4

Finite Volume Discretisation

4.1 Introduction

In this chapter, the finite difference method used in MODFLOW will be replaced with 

the finite volume method. The major objective of this change is to enhance grid 

flexibility within MODFLOW and with minimal changes that could affect user 

familiarity with this popular model. Details of this technique are presented together with 

its implementation into the groundwater flow equation.

4.2 Finite Volume Method

The Finite volume method (FVM), also referred to as control volume method, was first 

introduced by MacDonald (1971) and MacCormack and Paullay (1972) as a special 

finite difference formulation for the solution of the Euler equations in fluid dynamics. 

From the viewpoint of other authors, the method is considered as a variant of the 

weighted residuals finite element method (Patankar, 1980, p. 30). The numerical 

technique is based on the integration of governing equations of fluid flow over a control 

volume. The continuous problem is discretised over a domain with a number of grid 

points associated with a number of non-overlapping control volumes (CVs) covering the 

whole domain. The mesh elements (or CVs) can have any shape with rectilinear sides, 

structured or unstructured and with flow variables associated with a point inside the cell
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(i.e. the cell-centred finite volume) or attached to cell vertices (i.e. the cell-vertex finite 

volume). Figure 4.1 shows these different mesh concepts. A detailed description of the 

different discretisation options usingrthe FVM can be found in many references, such as 

Hirsch (1988), Versteeg and Malalasekera (1995), and Tannehill et al. (1997).

(a)

(c)

(b)

Figure 4.1 Different two-dimensional finite volume mesh concepts 
(a) cell-structured FV; (b) cell-unstructured FV mesh; 
(c) cell-centred FV mesh; (d) cell- vertex FV mesh.

Integration of the partial differential equations over all of the CVs of the solution domain 

involves substitution of a variety of finite-difference-type approximations (e.g. central, 

upwind) for the terms in the integrated equation representing the flow processes of 

convection, diffusion, source, etc. Fluxes through cell surfaces are evaluated in terms of 

the variables in adjacent cells. The integral equation is then converted into a system of 

algebraic equations. The nature of this system depends on the character of the problem 

posed by the PDE and the solution method is therefore carefully chosen. Consideration 

of truncation errors, consistency and stability, among other properties, determines the 

accuracy of the solution obtained.

The most attractive features of the FVM are that:

• The resulting solution implies the integral conservation of quantities such as mass, 

momentum, and energy over CVs. Therefore these quantities are conserved over the 

whole calculation domain, for any number of grid points, whereas in the finite
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difference method the conservation principle is expressed only for infinitesimal CVs. 

The finite element method (FEM) does not conserve mass at the local level for 

certain schemes (Di Gimmarco e^al., 1996).

• The mesh offers greater geometrical flexibility vis-a-vis the finite difference method 

and the integrated finite difference method, in the sense that the line joining two grid 

points does not necessarily have to be perpendicular to a given CV surface.

This chapter will focus on the two-dimensional formulation of the groundwater flow 

equation used in MODFLOW, as a preliminary step for the model expansion to three- 

dimensional problems. Three discretisations are derived for the two-dimensional 

diffusion equation and for use with structured quadrilateral meshes. The three methods 

rely on the cell-centred finite volume approach, but show distinct differences in the 

gradient approximation, head interpolation and matrix properties.

43 Finite Volume Discretisations of Groundwater Flow Equation

As described previously, and with reference to the 2D Cartesian co-ordinate system (x 

,y), transient two-dimensional groundwater flow through porous material is governed by 

the elliptic partial differential equation:

(41)

where Ky is the hydraulic conductivity of the porous media (a second order tensor), L T 1; 

h is the potentiometric head, L; Ss is the specific storage coefficient, L 1 ; / is time, T; W 

is the volumetric flux per unit volume (positive for outflow and negative for inflow )^1; 

and Xi are the Cartesian co-ordinates, L. The summation convention of Cartesian tensor 

analysis is implied in Equation 4.1.

In MODFLOW, a number of assumptions have been made in the development of the 

governing equation (McDonald and Harbaugh, 1988). The resulting 2D groundwater 

flow equation can be written as (see paragraph 3.2.2):

<4-2>
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where Kxx, Kyy are values of hydraulic conductivity along the x  and y  coordinate axes, 

L T 1.

MODFLOW uses an implicit, backward in time, finite difference method to calculate the 

head distribution for a given time step or steady state flow condition over a set of 

discrete points in space. The aquifer system is discretised with a mesh of block-centred 

orthogonal cells where head values are computed at the centre point of the cell called a 

‘node’. The finite volume method suggested in this work uses a structured, quadrilateral, 

non-orthogonal and cell-centred mesh for domain discretisation, to maintain conformity 

with the MODFLOW discretisation convention. In addition, for three-dimensional 

problems hexahedral elements are a natural choice and allow a greater flexibility in 

designing a grid. Therefore, the ( ij)  indexing system used in MODFLOW has been kept 

(Figure 4.2). Each cell location is described in term of rows and columns. For a system 

consisting o f ‘«row’ rows and ‘ncoV columns, i is the row index, i.e. i=l...nrow, and j  is 

the column index, i.e. y=T.. .ncol. Thus in terms of Cartesian co-ordinates, increments in 

the row index /, would correspond to a decrease in y; and increments in the column index 

j  would correspond to an increase in x. The application of the model, however, differs 

from that used in MODFLOW in that it requires the designation of x  and y  co-ordinate 

axes as rows and columns that do not necessarily fall along their orthogonal directions.

1
\  Row (z) 2

/ 3
I  4

5

6

Figure 4.2 Space discretisation convention in MODFLOW and its equivalent 
finite volume discretisation.

Development of the groundwater flow equation in any form follows from the application 

of the continuity equation: the sum of all flows into and out of the cell must be equal the 

rate of change in storage within the cell (see section 2.3.1). In finite volume form, the
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balance of flow for a given arbitrary control volume is ensured when all of the face 

contributions that surround a cell are accounted for in a way that is conservative. 

Therefore, the construction of an outward normal surface vector at each face is then1 r

summed for all face contributions to ensure that a mass conservation system is adopted 

for the control volume. Figure 4.3 shows the quadrilateral control volume used, together 

with its outward normal surface vectors.

Figure 4.3 A quadrilateral cell with normal surface vectors.

The continuity equation expressing the balance of flow for a cell is given by:

X f i = S , f  AV (4.3)

where Q, is a flow rate into the cell (L3T !), Ss is the specific storage (L'1), AV is the 

volume of the cell (L3), Ah is the change in head over a time interval of length A /. 

Equation 4.3 is expressed in terms of the inflow and storage gain. The outflow and loss 

are represented by defining the outflow as a negative inflow and the loss as a negative 

gain. This equation can simply be obtained by integrating the general differential 

Equation 4.2 over an arbitrary control volume to give:

- u i w d v =iij>§^
^. ^1—.. ■ n — i mi i— ■ i   ^  J ^    —“

(4.4)

Diffusion term source term transient term

where dV  is volume of the considered element. The evaluation of the individual terms in 

Equation 4.4 is discussed separately.
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4.3.1 Diffusion Term

The Gauss divergence theorem is used to simplify the diffusion term of Equation 4.4, 

thus:

Discretising Equation 4.5 one can obtain:

nf dS

A  A .
XiSf

(4.5)

(4.6)

(4.7)
Jf

where Xi (i=  1, 2) forms the orthogonal co-ordinate system and nf represents the outward 

normal area vector in a counter-clockwise traversal around the control volume boundary 

as shown in Figure 4.3. S/ is surface vector of a cell face /  and/  is a subscript denoting 

cell faces.

One of the main potential problems at this stage is the handling of the diffusion term. Its 

integration over a control volume leads to the necessity to estimate the derivative of h 

with respect to the face normal. This will be discussed in more detail in the following 

section.

4.3.1.1 Gradient Approximation on a Control Volume Face: Review

In MODFLOW, the finite difference method approaches the gradient on a surface using 

a two-node backward difference scheme. In Figure 4.4, the gradient of h in the x 

direction from cell P  to cell N  is approximated by:

In the y  direction the derivative is null as the cells are orthogonal. With the finite volume 

method, the approximation of the gradient term for a common face presents more 

complexity as the grid is no longer orthogonal (see Figure 4.4). In fact, the accuracy of a 

control volume discretisation depends heavily on the order of approximation of the flux 

at the cell faces (Turkel, 1986).
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p w \ N
W

Figure 4.4 Two adjacent orthogonal control volumes in finite difference method.

Many methods have been proposed to approximate the gradient or fluxes along a control 

volume surface as the question has arisen from several CFD applications. In fact, the 

form of the diffusion term ruling the groundwater flow equation is common to a wide 

range o f similar physical processes, such as heat, general diffusion occurring in 

continuum mechanics, magnetics, gas dynamics, petroleum reservoir simulation, etc 

(Hyman et al., 2002). From a review of the different articles on this subject, it can be 

seen that methods for approximating fluxes (and/or gradients) on cell faces within a 

finite volume discretisation scheme, can be broadly classified into five categories:

(i) Control-Volume M ixed Finite Element Methods:

This method is a hybrid of the cell-centred approach and the finite element method 

(Ferguson, 1998). It also considered by some authors as a synthesis of the integrated 

finite difference and finite element methods p i  Giammarco et al., 1996). The method 

allows the use o f irregular grids while preserving many of the properties of block- 

centred finite difference methods for rectangular grids. In fact, on rectangular grids, the 

method can be even more accurate than finite differences in simulating flow in 

heterogeneous and anisotropic porous media Qai et al., 1997). There is considerable 

literature for this method Purlofsky, 1994, Di Giammarco et al., 1996, Turner and 

Ferguson, 1995).

The mass continuity equation is integrated over each control volume and the divergence 

theorem is used so that an equation similar to Equation 4.6 is obtained. Basis functions 

are then used to compute values at the points of integration (cell faces) by interpolating 

nodal values. In this study, the basis function has to be extracted from the four nodes 

forming the secondary cell (Figure 4.5), owing to the use of the quadrilateral element. 

The secondary mesh can be constructed by joining each four adjacent nodes. The 

gradient, and also head, at vertex A , is then approximated using an interpolation



CHAPTER 4. FINITE VOLUME DISCRETISATION 90

function, such as piecewise bilinear polynomials, involving heads at the four nodes 

surrounding A.

i 7 v - W '+1

v- iJ-V

Figure 4.5 Secondary mesh and related element 
used in finite element method.

The head (or gradient) value inside the secondary element can be approximated by:

h (x ,y )= ^ h ,N ^ y )  (4.9)
1 = 1

where l~(/+l,y); 2~(fH ,y+l); 3~(/,y+l) and 4~(/, j) . Ni is the interpolation function. 

For a bilinear quadrilateral element the appropriate choice of this function would be the 

piecewise bilinear polynomials, thus:

4

21
 ► JC

Figure 4.6 Quadrilateral element in physical space.

I/=±14)/=±1 (4.10)

A co-ordinate transformation of the general type (Figure 4.6):

x = x(&ri) and y  = y i^r j)  

must be defined. The transformation rules require for the x-co-ordinate the 

approximation x  = Nixi , and for the y-co-ordinate y  = N iy i, where Ni are the same 

shape functions as used for the quadrilateral element. The Jacobi-matrix is defined in the 

following manner (Lahrmann, 1992):
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(4.11)

where

r i  r n *> *
J = \ * t  y * = Nl't N u  N u  *2 y2

y.n\ K* N*n Ni.n *3
l*4 y4

(4.12)

The comma denotes the derivative with respect to a co-ordinate.

Therefore, Equation 4.6 can now be written in the local co-ordinate system as:

Unfortunately, the matrix associated with the head equations system is generally 

indefinite (Morel et al., 1998) or unsymmetric (Lahrmann, 1992) and thus difficult to 

solve. Also vertices (A) of the finite element are not always an accurate representation of 

the potential h over the control volume when it does not coincide necessarily with the 

centre (Figure 4.5). This method is also often called the vertex-centred control volume 

method, and requires that control volumes are constructed around nodes, which means 

that the domain is firstly covered by a mesh where the vertices are actually at the nodal 

points. This approach is not compatible with the MODFLOW discretisation. Therefore, a 

cell-centred approach in the finite volume discretisation is to be sought.

(ii) Support Operators:

Morel et al. (1998), have developed a local Support-Operators Method (SOM) to 

discretise the diffusion term on quadrilateral meshes. The underlying idea of the method 

is to develop a discrete operator calculus that faithfully reproduces selected properties of 

analytical calculus (Margolin et al., 2000). For diffusion problems, this is translated into 

developing finite difference approximations for the first-order spatial difference 

operators, namely divergence and gradient that mimics the fundamental properties of the 

physical problem, such as the conservation laws and symmetry in the solution. 

Therefore, these techniques are also called mimetic finite difference methods. The 

development of these discrete analogs proceeds in two steps. The first one is to define a 

‘prime’ operator, which is the discrete form for one of the fundamental operators (e.g.
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divergence). The second step is to construct the other fundamental operators (e.g. 

gradient) on the basis of the subset of analytical properties that one chooses to maintain 

(e.g. the accuracy order of energy conservation). The constructed operators are called 

‘derived’ operators.

The advantage of the support operator theory is that it may be applied with equal 

effectiveness to regular, irregular, and unstructured meshes in both Eulerian and 

Lagrangian simulations.

Shashkov and Steinberg (1995) have also combined the method of support operators and 

the mapping method, where the original diffusion equations are transformed to a general 

curvilinear coordinate system and the resulting equations are then approximated on a 

rectangular grid in curvilinear coordinates. However, such schemes are usually 

satisfactory only for smooth grids (Shashkov and Steinberg, 1996).

(iii) Flux Approximation using Decomposed Vectors (FADV):

Turner and Ferguson (1995), found that the two-node approximation, expressed in 

Equation 4.8, is quite straightforward and provides simple discretisation formulation that 

reduces the computational time. However, its accuracy can be seriously affected by both 

orientation and orthogonality of the mesh. It provides reasonable results when the 

normal vector n and the vector v are approximately coincident (i.e. orthogonality) (see 

Figure 4.7) giving:

(VA)/ .«=(V/, )/ . v = ^ (4.14)

The symbol n is the unit normal to the cell face, and v is a unit nodal distance vector. To 

take account of the mesh non-orthogonality effect on this discrtisation, Chow et al. 

(1996) integrated the diffusion term using the following expression:

IT K , j ^ d S ,= X  f t f * ;  A K , n A y - K yn M \  +C,V (4.15)
6 oxi n=it]8x +8y

where, N  represents the node at the control volume that shares a common face with the

control volume P, where Ax and Ay are the face surface area vector components and Sx

and Sy are the distance vector components between the nodes N  and P in Cartesian co-
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ordinates. It is noted that D  is the nodal distance vector with D=8xi+8yj, and S is the 

outward normal surface vector with S=Ayi-Axj. The variables inside the brackets are 

evaluated using the N  and P control volumes. Cdijf is the cross-diffusion term for the 

common cell face. This term disappears when the nodal distance vector D is 

perpendicular to the surface vector S, and it is small compared with the main term if the 

non-orthogonality is not severe. Moreover, if a time implicit scheme is used, this type of 

discretisation leads exactly to the same set of equations obtained by the finite difference 

method used in MODFLOW.

However, when the mesh is highly non-orthogonal, the cross-diffusion term is 

significant and thus, should not be neglected. Croft (1998) proposed two correction 

terms for this aspect of mesh skewness, which affects particularly the diffusion term. 

The approximation of the derivative along a face using formula such as:

is no more accurate as the line connecting the two adjacent nodes is no longer parallel to 

the face normal vector as shown in Figure 4.7. The amended term will be:

where fix and fiy are the Cartesian components of vector fi  as defined in Figure 4.7. For a 

fully orthogonal mesh, Equation 4.16 yields:

M  =M\ r in  '1
dh j _idh j _ hN -h P
Kdn ' n p  n p  dmp

Figure 4.7 Non-orthogonal control volumes.
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The estimation of the derivative of h with respect to the face normal in Equation 4.16 is 

now reduced to the calculation of the derivative of h on the control volume faces. Linear 

interpolation between nodal values, of the derivatives allows the face values to be 

calculated as:

(Hi
(4.17)

a  -  A w __u NP dty+d jp

In order to calculate the Cartesian derivative of h at a node the derivative is integrated 

over the control volume about the node in the following ways:

O h  \  1 rrr dh
<418>dx Jp VPJJJydx

and using the divergence theorem, this reduces to:

t t L § d H L hn jcds= ^ h' s - <4-19>

Substituting Equation 4.19 in Equation 4.18 yields:

(4.20)

The nodal value of the derivative is now given in terms of the sum of the face values of 

h.

The estimated face value of any quantity should be an average value for the whole face. 

As it is assumed at most stages of the discretisation that variables change linearly 

between two points, then the face centroid value is the representative average value on 

this face. The line connecting nodes in the elements either side of the face does not pass 

through the face centre. Therefore, a ‘non-conjunctionality’ correction term is introduced 

to represent this other form of skewness. The correction starts from the interpolated 

value at the intersection point and uses extrapolation based on the gradients of the 

quantity to obtain an estimate at the face centre:

hf — hj +chf.gradh (4.21)

Where dy  is a vector from the intersection point to the face centre as shown in Figure 

4.8.
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Substituting Equation 4.21 into Equation 4.20 gives:

( &  )„  = A fS^ h‘ + - '> gradh\  (4-22)

where (grad h)f is calculated using interpolation of its values in the elements either side 

of face f. This dependence is resolved by transforming Equation 4.22, and the similar 

equation for the y gradient into a 2 by 2 matrix equation for the unknown element 

gradients. To solve this equation, the gradients are stored and previous iteration values 

are used on the right hand side of Equation 4.22. The non-conjunctionality correction is 

not applied to any of the gradient terms, as gradients of gradients would be zero.

Figure 4.8 Skewness correction through surface S a p  for non-orthogonal mesh.

Croft (1998) showed that for relatively simple problems dominated by diffusion (e.g. 

heat transfer along a bar), then the use of the orthogonality correction terms on their own 

causes a deterioration in the accuracy of the simulation results as compared to those 

results obtained with no correction. For better accuracy, both the conjunctionality and 

the orthogonality corrections need to be used. However, the use of a Cartesian mesh 

yields results close to the analytical values than skewed meshes, even when both 

corrections are applied.

So far no research has been undertaken which definitively establishes the best way to 

approximate the gradient in the cross-diffusion flux term, the performance of each of the 

suggested methods being subject to specific boundary conditions, anisotropy ratios and 

mesh geometries. Jayantha and Turner (2001, 2003, 2005) investigated different 

strategies for solving the two dimensional diffusion equation in orthotropic medium.
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Different gradient approximation techniques and transformations were investigated to 

calculate the flux at control volume faces. Among these methods is the hybrid control 

volume finite element method (CV^FE), also called the vertex-centred control volume 

technique (Ferguson and Turner, 1996), and the flux approximation using decomposed 

vectors (FADV). In this latter method the gradients at node points are approximated 

using an interpolation technique, such as: Radial Basis Functions (RBF), Least-Squares 

Gradient Reconstruction (LSGR), Least-Squares Gradient Polynomial Reconstruction 

(LSPR), whereas in the hybrid CV-FE method, shape or basis functions are used for 

interpolations.

Model GWFV

In 2003, Jayantha and Turner proposed a high order gradient approximation technique 

that gives accurate results on coarse meshes. Their method is applicable even for highly 

anisotropic media, where the K  tensor is not necessarily diagonal. In this study, a model 

based on the high order flux approximation technique proposed by Jayantha and Turner 

(2003a, 2003b) has been developed, and will be termed hereinafter the GWFV model. 

The principle used in this method is to decompose the flux using vectors u and v in 

Figure 4.9, and then introducing corrections for mesh skewness using an improved Least 

Squares Gradient Reconstruction (ILSGR).

In the first step, the term (K57h\n of Equation 4.6 can be written as or Vh.w= Vh.(KTh) 

which is decomposed as follows:

(V/z)w = aV/*.v + /3(V/j.M)

= a(hN -  hP) + p frh .u )  (4.23)

B

8x
P

Figure 4.9 Representative control-volume face.
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where the constants a and fi depend on the tensor K  and the geometry of the CV mesh. 

This decomposition is made at each cell face. To find explicitly terms of Equation 4.23, 

the vector w = K rnshould be decomposed in terms of the vectors v and u . The two

vector equations v = (vm)u + (vn)h and w = (wju)u + (w.h)h give the following formula:

w = (w.u)u + (w it)-— (4. 24)VJl
Therefore, the term Wh.w can be expressed as:

(Wh).w = -^r-VA.v+ jw.w- w .h ^ z l{V/i.w) (4.25)
vjt [ v.n J

The primary term Wh.v is evaluated at the midpoint F of the CV face (see Figure 4.9) by: 

(Wh.v)F = hN- h p

In Equation 4.6, this term needs to be evaluated at point R, so that errors due to mesh 

skewness will be corrected. Using a Taylor series expansion of the function h yields:

/i(xf + 5 x +)= ^ j -(Sx+.w j h(xF)+ R + (4.26)
k=0 k-

and

/i(xf. + 5 x ")= ]£ ^ -(^x '.v )f /i(x F) + /?“ (4.27)
jt=o *1

where the reminder R has the Lagrange form. Subtracting Equation 4.27 from Equation 

4.26 and assuming R+ -R~ ~ 0 yields:

(VA.v), ~(hM- h P) - e . f  (4.28)

where e„p = X t i f e - V ) *  -  (S x \vJ  }i(*f ) (4.29)
k=2 K'

and m is the order of the Taylor expansion. In this study, the accuracy will be limited to 

second order. Thus, correction term in Equation 4.29 becomes:

£ np £ (4.30)

Substituting Equation 4.28 in Equation 4.25, yields:

{(Kv/,)«r = ^4 - / r )+ jwm - w.h m\[vh.uy;' - (^ r  (« d
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Figure 4.10 Neighbouring nodes involved in surface flux calculation.

(iv) Direct Surface Interpolation Techniques:

Other methods used to approximate gradients through cell faces deploy simple 

interpolations of the function values at particular points (nodes or vertices). Two cases of 

these interpolations techniques will be developed and tested for accuracy and 

comparison purpose with the previously developed model.

An alternative to approximate the gradient over control volume faces is merely to use the 

arithmetic average scheme using flux at the vertices defining the surface (Wasantha Lai, 

1998). This method seems to be the choice when polygons, not triangles, are used in the 

discretisation. Therefore, in Figure 4.9, the gradient on face AB will be approximated by:

Model V

(gradh)AB = ~[(gradh)A

In Cartesian co-ordinates, the approximation is written as follows:

(4.35-a)

(4.35-b)
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For a cell-centred finite volume method, Equations 4.35-a and 4.35-b provide 

straightforward approximations to the flux. They correspond to the application of a

second order accurate (Hirsch, 1988).

The fluxes through cell face approximations are therefore reduced to an average of the 

fluxes at the cell vertices A, B, C and D when summing the contribution of all the 

integrals over the four sides of the cell ABCD of Figure 4. 5.

Computation of the derivatives at the nodes has already been discussed in Croft’s 

method and is given by Equation 4.28. These derivatives need to be approximated at 

each of the four vertices of the control volume. The integral method is applied once 

more, but this time on an auxiliary control volume around each vertex point (Liu and 

Jameson, 1993). In Figure 4.11 the vertex A is considered in a two-dimensional mesh, 

with the index notation for a structured mesh being as in MODFLOW, the auxiliary cell 

is formed by connecting nodes (i, j) , (i, j+1), (i+ l,j)  and (7+7, j+1) and the midpoints 

(i+l/2,j), (i+ l,j+ l/2), (i+ l/2,j+ l) and (i,j+l/2) of the cell faces.

Figure 4.11 Auxiliary cell used to calculate diffusive balance in model V.

The derivatives at the vertex A can now be approximated by summing the flux balances 

over the eight faces of the auxiliary cell to give:

trapezium formula for the integral Jab/- dy = Ja+ZbXvb-J'a)^. This approximation is

(i+'J/2j) \  (i+ f/2j 
f + l j ) l .........V — *0-*

( i+ lj\ l /2 )

(4.36-a)

(4.36-b)
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where h in each edge of the auxiliary surface accounts for the head nodal value at the 

cell centre belonging to it, for example:

(4.37)

The derivatives at the other vertices can likewise be computed in the same manner. 

Substituting Equations 4.35-4.37 in Equation 4.6 yields an approximation of the 

diffusive term in cell (ij)  using the nodal values of h at the nine adjacent nodes. This 

model will be called model V hereinafter.

Model S

Faille (1992) proposed another conservative control volume scheme with a consistent 

approximation of the fluxes over a face S. Denoting the approximation of a surface 

integral over a side S by Ls(h) gives:

Ls (h)= (Kgrad h.ns )dS = (Kgrad h)s J£/isdiS (4.38)

In this equation, the gradient component along sides can be computed using the integral 

method. A staggered grid, also called the diamond-shaped region, surrounding the side is 

created (plmahi et al., 1999), and the flux is integrated over the surface of the new 

staggered grid. For example, for side AB, the surface integral is written as:

(K grad h)AB s  A - j  f tK  grad h dv(4.38) 

where VSab is the volume of the staggered grid around face AB, as shown in Figure 4.12.

AB

Figure 4.12 Staggered grid for face AB in model S.
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Applying the Gauss formula in Equation 4.38 yields:

(K grad h)AB = ^  (K 2rad h.n„) dS,„ =  'Y  hm.KlmS m (4.39)

where m refers to the four surfaces of the staggered grid VSab . The head required at the 

diamond-shaped co-volume faces is computed using the values of the data on the nodes 

and the vertex sharing this grid (Elmahi et al., 1999). Thus, Equation 4.39 is written as 

follows:

where Nj and N2 are the nodes of an edge m of the staggered grid surface S. The 

estimation of the head value at each vertex of the control volume is determined by a 

weighted average of the surrounding cell-centred solution quantities (Frink, 1992). As it 

is assumed that the known values of the solution are concentrated at the cell centres, the 

contribution to a vertex from the surrounding cells is inversely proportional to the 

surface between the vertices and each cell centre, as shown in Figure 4.13.

Heads at the remaining vertices can be computed in the same manner. Substituting 

Equations 4.40 and 4.41 in Equation 4.39 and expanding this formulation to the surface 

integrals over other faces of cell {ij), in Equation 4.6, yields an approximation of the 

diffusion term involving nodal variables at the eight cells surrounding cell {ij).

(K grad
* c _1

(4.40)

(i+lj+1)

1 _ A _ + A + * l + A .  

f _ l _ L ^  Vi V*
Z u  V A
*-1 V k t>

(4.41)

C

Figure 4.13 Volumes used in head interpolation at vertex A.
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The choice of the appropriate scheme is based upon accuracy, consistency, and 

adaptability to MODFLOW. In this sense, second-order accuracy is a minimum 

requirement. The method results also have to achieve a high level mesh-independence 

for reasonable mesh resolution. The adaptability to MODFLOW was already initiated by 

the choice of mesh structure. The following step would be to seek a matrix that has 

possibly the same features as the one solved in MODFLOW, especially since the latter 

has ideal properties which should be sought after in any finite volume discretisation. 

This is a more difficult task as the non-orthogonal feature of the cells, the type of 

interpolations used, and the number of nodes involved in the discretisation for each cell 

are determinant differences that dictate the elements of the new system matrix. If the 

matrix doesn’t have one of the following properties: sparse, five non-zero diagonals, 

symmetric, positive definite and diagonally dominant, then new solvers have to be used 

and thus, added to the MODFLOW programme as a new package. Other choice criteria 

such as storage, computational time, convergence and stability are left to a second 

selection level.

So far three discretisation methods out of the different techniques mentioned above have 

been developed to solve the groundwater flow equation. Ultimately, the choice of the 

best discretisation method is made on the basis of the accuracy, consistency, and the 

computational effort required to provide a converging solution. As stated by Morel et al.

(1998), the ideal cell-centred diffusion scheme for 2D quadrilateral meshes would 

require:

- second-order accuracy on both smooth and non-smooth meshes either with or 

without material discontinuities;

only cell-centre intensity unknowns;

- a local stencil; and

- a symmetric positive-definite matrix representation for the diffusion matrix.

The ideal method would achieve at least a second order spatial accuracy, produce a 

symmetric positive define and diagonally dominant matrix when the time formulation is 

implicit, and would not require strongly restrictive conditions to ensure stability and 

convergence of the solver as in explicit schemes.



CHAPTER 4. FINITE VOLUME DISCRETISATION 104

In this study comparisons have been undertaken to compare the performance of each of 

the approximation techniques for the flux at cell faces discussed above, with the 

particular aim of choosing the most suitable scheme to be implemented in MODFLOW. 

The assessment criteria used have been based on the performance of the selected method 

as well as the input and programme changes related to mesh consideration, the resulting 

diffusion matrix and the solver that have to be introduced into the MODFLOW 

programme. Therefore, a number of performance tests for the three methods have been 

carried out and these are detailed in the next chapter, together with a comparison of their 

relevant features. The properties of these methods are detailed in the following sections.

4.3.1.2 Approximating the Permeability on a Control Volume Face

As Equation 4.6 shows it, the permeability coefficient K  has also to be evaluated at cell 

faces. In MODFLOW this is achieved implicitly by introducing a new term combining 

grid dimensions and hydraulic conductivity into a single constant, called ‘conductance’. 

For two adjacent cells (see Figure 4.14) and using MODFLOW index notation, the 

conductance in row i and layer k between nodes (i,j-l,k) and (i,j,k) is written as:

CR , =KR , Af 'Av> (L2T ')  (4.42)
7 2

where KR j . .  is the hydraulic conductivity along row i between nodes (,j-l,k) andfyj 2*

(i,j,k\ L T 1; AaAvk is the area of the cell face normal to the row direction, L2; and Ar j
7 2

is the distance between nodes (J-l,k) and (ij,k). The index k will be dropped from 

MODFLOW formulations as only two-dimensional considerations are cited here. It is 

also assumed that all of the examples are given for a one-layer domain with a unit 

thickness.

Given that the nodes are considered to be at the centre of the cells and the transmissivity, 

in case of a confined aquifer, is uniform over each cell, then the horizontal conductance 

between the nodes is the equivalent horizontal conductance of two half cells in series, so 

that:
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CR

TRjj-ACj TR^ACj
A r^ /2  Arj/2

= 2 Ac,
TR.^TR.J

T R i j - M  TRi ,A c i ' TRuj- ^ j +  TRi'jATj.,
(4.43)

Arj_xl2  A ljH

where TR is the transmissivity in the row direction, (L2T !); Ar is the grid width along a 

row, L; and Ac is the grid width along a column, L.

Arf_/-i Ar,-

Ac, 4

------------ ^ ^-----------------------

4
(ij-l) (id)

Arj-V2

Figure 4.14 Geometrical weight factors for permeability interpolation in MODFLOW.

The same process is applied to compute the equivalent horizontal conductance in a 

column direction. For an unconfined layer the transmissivity is replaced by the product 

of the hydraulic conductivity and the saturated thickness. Expression 4.43 will be equal 

to zero - and thus allow zero flux - when one of the hydraulic conductivities is null (i.e. a 

no flux boundary) or the saturated thickness is null (i.e. a dewatered cell); this would be 

the expected value for either of these conditions. Two other alternatives for calculating 

the horizontal branch conductance, based on different assumptions about specific flow 

systems, were proposed by Goode and Apple (1992). They are used in the MODFLOW 

program as options to compute the interblock conductance when the above mentioned 

specific conditions apply.

In a finite volume discretisation, an equivalent hydraulic permeability has to be assessed 

at the face between two adjacent quadrilateral cells that are not necessarily orthogonal. 

Croft (1998) proposed the use of a harmonic mean value to describe the variation of 

such a coefficient between nodes. Therefore, for the same two adjacent cells, as in 

Figure 4.4, the equivalent permeability will be:

K/ =  PK l f P with a r = ^ ~ ~ r -  (4.44)c X f K p  +  (l - c i f ) K N  d y + d f p
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As the line connecting nodes N  and P  does not necessarily lay along the normal face / ,  

nor does it pass through the centre of the face, then another approximation is made to 

take into account these types of skewness (i.e. non-orthogonality and non-
^  i

conjunctionality). In Figure 4.8 for instance, the permeability [L T  ] along face /  can be 

estimated by using the formula:

\x i - * p\ + \*n ~*/l , \ y i - y p \  + \ y s - y i \
KXf = \ — i i  — “  md KYf = j r   i i —  i (4-45)\xj - x p | ( \ x j t - x !  \ y i - y p \  \yN -  yi\

KXP KXn KYP KYn

In terms of the MODFLOW index notation, for a common face between cells ( i j - 1) and 

(iJ), these formula may be written as:

KX  ,=|

KY
‘J -

x i—x_i -s/ + x>j-'-x,j-±
\ KXn,

)KXtJ_x
- f X- +KXtJ

'J 2
\ K Y fl

) & Y i t H y . j . L - y . j + W j

-ri_T

(4.46)

where the permeability coefficients are now written with respect to the Cartesian co

ordinate and not the row and column directions as in MODFLOW, since the 

orthogonality is no longer verified. These formulations give the same results as in 

MODFLOW when the same conditions apply (i.e. no flow boundaries and dewatered 

cells). If the mesh is orthogonal, that is line P in Figure 4.8 is orthogonal to face / ,  and I 

lies along this line, then the equivalent permeability in the y  direction will vanish 

according to Equation 4.46 and the equivalent permeability in the x direction will be:

/ \ KRf j_\FCRt ■.

KX  , = KR . , =(Ar. , + A r )—  A "  A------

The flow coming into cell ( i j)  from cell (y-1) in the row direction is given by Darcy’s 

law as:

h —h TR TR
----------------MODFLOW

qi.i-\ TR‘.j-!;Ac^ b ) , i  ^ i-< +Ari^T R ,^A rj+TR ^j.^0' Ar._,
J "n

^ ---------- Finite volume
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ArM+Ar-
As Ar t =—— — - ,  the finite volume approximation yields exactly the same expression

j 2 2

as in MODFLOW discretisation when the mesh is fully orthogonal.

4.3.2 Implementation of Boundary Conditions

One of the advantages of the cell-centred control volume technique is the ease with 

which the boundary conditions can be accommodated within the scheme (Turner, 1995). 

For control volumes that have a face coincident with the domain boundary, information 

is introduced into the equation to complete the formulation and enable it to be solved. In 

groundwater flow, the appropriate boundary conditions are: specified head boundaries 

(Dirichlet conditions), specified flow boundaries (Neumann conditions) and head 

dependent flow boundaries (Cauchy conditions). To simulate these types of boundaries, 

the three boundary categories that have been defined in MODFLOW are:

‘constant-head’ cells: these give the Dirichlet condition in which the head is 

specified in advance, and is held constant for all time steps of the simulation;

‘inactive’ or ‘no flow’ cells: no flow into or out of these cells is permitted at any time 

step of the simulation. This type of boundary is a special case Neumann condition. 

The specified flow boundary for which the flux across a boundary is known and 

differs form zero is simulated within the third category; and 

‘variable-head’ cells: for all of the remaining cells of the mesh. The Cauchy and 

Neumann conditions, in which the specified flow is not zero are simulated through 

the use of external source terms. Packages like River (RIV), Drain (DRN), Evapo- 

transpiration (EVT) and General Head Boundaries (GHD) are used in MODFLOW 

for this purpose.

In the three new discretisations, the same conditions are simulated in a similar way to 

those used in MODFLOW. However, in the model GWFV, the heads at surrounding 

cells of the stencil are needed to calculate the flux at faces of cells at boundaries, see 

Figure 4.15. Nine point values are required to write the matrix Equation 4.33. Thus, 

values at cells that cannot appear at boundaries are replaced with existing adjacent cells 

(empty circles), and associated vectors are extended only to the centre of the boundary 

face, as shown with filled circles in Figures 4.15.
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Figure 4.15 Typical boundary control volume and related point values.

4.3.3 Source Term

In equation 4.4, the source term can be written as:

l\[W dV  = = QSy

where ViJ is the volume (with unit depth) of node (ij), and W,j is the volumetric flux per 

unit volume,T1, accounting for flows into or out of cell (ij) from processes external to 

the aquifer, such as streams, drains, areal recharge, evaporation, wells and sinks,. For 

most of these physical processes, the source term QS,j can generally be linearised1 

giving:

Q S i j  =  Q t j  + Pi , jK j  (4.47)

where QSij is the sum of the flows from all external sources affecting the cell (ij), L3T l; 

and Pij and Q j  are constants, L2T } and L3T !. The coefficient pij must always be less 

than or equal to zero to ensure that the final head coefficient at node (ij) is always 

positive (Patankar, 1980). If a source is non-linear in h then it can be appropriately 

linearised, and cast into the format of equation (4.47), where the values of Pij and Qij are 

to prevail over the irregular control volume.

4.3.4 Transient Term -  Temporal Discretisation

In Equation 4.4, the transient term is approximated using the backward substitution as in 

MODFLOW, thus:
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m
(4.48)

where the superscript m denotes the old-time step value, Vy is the volume of the control

of the cell P.

It is worth noting that, in the model GWFV, the matrix equation (4.33) is solved 

explicitly. At each time step m+1, the vector Xd , that provides the function value and its 

derivatives at each CV face, is required to compute V/ui and enp in equation (4.31) with 

the vector values being available from the previous time step m. A fully implicit 

treatment of these equations is possible, but this solution leads to a nine-unknown 

equation for each cell for models S and V, whereas in the GWFV model as in 

MODFLOW, only five unknowns exist for each cell at each time step.

4.4 Form ulation  o f  L inear E quations

In the models V and S, the substitution of approximation terms into Equation 4.4 gives 

the finite volume approximation for cell (ij) as:

where the coefficients A \ B \ C \ D \ F \ G \ H ’ and / ’ depend upon the space 

discretisation method used.

volume defined by node (ij), t is the time step and hp denotes value of h at the centroid

(4.49)

>

Figure 4.16 A nine-node stencil reduced to five-node stencil.
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In the GWFV model, as in MODFLOW, only five nodes of the cross stencil (Figure 

4.16) are required. In order to reduce the nine-node computational stencil of models V 

and S to a five-node stencil, an interpolation method of second order accuracy is used to 

express the nodes at the four comers of the stencil at node (ij). This method is described 

herein. For the known values of a function at the four nodes presented in Figure 4.17, 

linear interpolation between point C and the other nodes gives:

/,(Q«<b,./U ) + (1-<0,W3) where 

/ a(C )* 0 ,7 (2) + (l-r» ;M 4) where " 1= ^

As f{Cy=f£C) then

tUi
(4.50)

f(2)

f(4)

Figure 4.17 Estimation of a function at one comer of a quadrilateral in 
terms of the function values at remaining comers.

According to Equation 4.50, approximation at any of the comer nodes, for instance node 

(Mj/'-l), can be written as:

[Ci-w-hOJ)]
= to-—177—i >; (*, _/>] “

Q*j-t = [O' - 1. J -  1). f t  /> ]n  [(' - 1. O'. - i )]

(4 .51)
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Expressing similar equations for each of the four comers of the molecule shown in 

Figure 4.16, and substituting each equation in Equation 4.49 yields a five-stencil 

formulation with new coefficients. The common equation of a cell (y) in the three 

models, has the form:

(4.52)

In MODFLOW formulation, the backward-difference scheme was used to write the time 

derivative of head when substituting the discretised terms into Equation 4.4 for each cell 

(i, j). The flow terms on the left-hand side of Equation 4.4 will be specified at time t+At, 

while the transient term, as shown in Equation 4.48, is approximated using the difference 

between the head at time t and the head at the next time step t+At. The same approach is 

used in the three suggested finite volume models. Each of the models proposed involves 

expressing the head at the considered cell and its four neighbouring nodes (after 

molecule reduction) with different coefficients that yield, in an implicit scheme, different 

matrix that needs to be treated individually.

4.5 Matrix Properties and Solution Method

4.5.1 Matrix Properties

The resulting matrix in each of the three models is a sparse banded matrix with five non 

zero diagonals, and has the common form:

AX=B

A,i A,i. H\,\
A ,2 A,2 1̂,2 H\2

where A = H
2̂,1

i?2,2

nrow-\,ncnl

P
■* nrnw,ncnt- 1 

D rj  p
**nrow,ncol *-̂ nrow,ncol ■‘-'nrow.nnl

(4.53)
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In the GWFV model, discretisation leads to a symmetric A matrix. This property is also 

satisfied in the model V and model S matrices if the grid is orthogonal and the medium 

is isotropic and homogeneous. When non-orthogonality, heterogeneity and/or anisotropy 

occur, this property is no longer satisfied. However, the difference between the diagonal 

terms that should be symmetric can be quantified, and thus controlled, in terms of the 

grid geometry and medium heterogeneity. If K  is isotropic the banded system will be 

well conditioned if the grid is near-orthogonal. However, for the general case of a non- 

orthogonal grid, the presence of strong variations in K  can lead to poor conditioning 

(Hyman et al., 2001). Nevertheless, the banded system is always positive definite. Also, 

the mesh technique, such as rezoning and remapping the grid if the grid is too distorted, 

can be used as explained by Margolin and Shashkov (2003). Generally, the stability of 

finite difference methods is satisfied when the interpolation operators are symmetric and 

positive definite (Hymann and Shashkov, 1999). Therefore these properties should be 

sought in the current schemes to guarantee stability. The GWFV model shows more 

similarities in the matrix properties with MODFLOW, and is closer to the ideal criteria 

of matrix resulting from discretisation on a quadrilateral grid. The matrix is symmetric, 

positive definite and diagonally dominant and a specific analysis of the model accuracy 

is considered further.

4.5.2 Solution Technique

The system of the form of the Equations 4.53 can be solved by direct methods. However, 

a great deal of computer memory and time may be required, in addition to round-off 

errors that may become unacceptably large. The classic direct solvers do not enable the 

advantage of the sparse feature of the system matrix to be taken into account, as many 

non-zero elements arise while factoring the matrix into a lower triangular and upper 

triangular matrices. Iterative solutions appear to provide a more appropriate solution 

option. A similar set of algebraic equations for various FV discretisations have been 

solved using different packages in different models. These include: Maple (Abell & 

Braselton, 1994) and Math-cad (Mathcad7, 1997).
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For the GWFV model, the iterative procedure used to solve the system of algebraic 

equations is the Strongly Implicit Procedure, as included in the MODFLOW programme
f

(i.e. the SIP solver). This method proved to be the best for large systems patankar, 

1980). Also, it provides accurate solutions if the proper combination of the SIP solver 

parameters is chosen. A comparison of this method with the Slice Successive 

Overrelaxation (SSOR) and the Preconditioned Conjugate-Gradient2 (PCG2) solvers in 

MODFLOW can be found in Osiensky and Williams (1997).

For the models V and S, the coefficients in Equation 4.52 show a non-symmetric 

behaviour in non-orthogonal cases, and treating this equation implicitly requires 

appropriate solvers to be chosen. Many solvers can be found in the literature or are 

available in public or private domains for such matrices, for example: SLAP (Seager, 

1988), PetSc (Smith et al., 1995), Itpack (Kincaid et al., 1989), DSLUGM in SLATEC 

(Brown et al., 1992). However, except the LMG package, all of the other MODFLOW 

solvers are restricted to symmetric matrices. Thus, at this stage, an explicit formulation 

in models S and V is sufficient to achieve a primary comparison of their accuracy with 

the GWFV model. The cells are chosen in such a way that computations are carried out 

within time steps restricted by the stability limit.

The explicit formulation of Equation 4.49 is:

rq=AT;
m + l

(4.54)

where EtJ =-BtJ-D UJ - Fi t r GitJ- H itj

This system is solved by starting from the initial distribution of piezometric heads AJy, 

and then h}tJ are calculated directly from Equation 4.54 for all nodes of the mesh. 

Recursive use of Equation 4.54 leads up to the solution at any desired time level. This 

solution procedure is relatively easy to program, but has a great disadvantage with 

regard to the time step having to be restricted to ensure computational stability and 

accuracy.
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4.6 Accuracy Issues of the Selected Scheme

The use of the midpoint rule in the finite volume technique can maintain second order 

accuracy only if the flux approximation at the CV face is at least second-order accurate 

(Murthy and Marthur, 1998). The approximation of the gradient component along the 

line joining two nodes, used in both the MODFLOW finite difference method, and in the 

finite volume method expressed in Equation 4.31, is the first order Taylor 

approximation. The error in the flux estimation is mainly dominated by the 

approximation of this term.

At the level of Equation 4.5, no approximation has been made, and thus, it is exact 

(Turkel, 1985). In the following steps, Equations 4.6 and 4.7 are second order in space if 

the flux approximation at the midpoint of the CV faces is at least second order accurate 

(Jayantha and Turner, 2003 (a) and (b)).

4.6.1 Numerical errors in the discretisation procedure

In the finite volume discretisation, sources of errors can be divided into two groups, 

namely: errors caused by discretisation of the solution domain and errors caused by 

equation discretisation (Jasak, 1996). The first category includes insufficient mesh 

resolution, mesh skewness and non-orthogonality. The second category is represented 

through numerical diffusion when a second-order finite volume method is used. This 

type of error is derived from the convection term and temporal discretisation. For the 

model considered herein, only numerical diffusion arising from temporal discretisation is 

of concern, and emphasis will be focused on the first type of error. Analysis of the two 

types of errors induced in this scheme are presented.

4.6.1.1 Numerical Diffusion from Temporal Discretisation

Considering the time integral from ndt to (n + l)8 t, the discrete form of Equation 4.4 

can be written as:
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.IH tI ^ +̂ i>+(i-A) p ^ x,sA+p ,A j +Qij

= s > ,q £ (% r-W )

(4.55)

The parameter, A = 1 gives a fully implicit scheme, A = 0 leads to a fully explicit 

scheme and A = 1 /2 provides a semi-implicit scheme or what is called the Crank- 

Nicholson method, which gives a fully second-order accurate discretisation in time. This 

latter represents a reference to which any other temporal discretisation scheme is 

compared to in order to derive its numerical diffusion (Jasak, 1996).

' * r - c
I

Using the Taylor expansion:

E = —— 2 X * ,
,4=1

* 1 .....
A= 1

(4-56>

h”" = h" + ^ -A ( and (V/i)”*1 = (V/i)" + ^ ^ A r

then Equation 4.56 can be written as:

4 3(va)
F -  At V  v  < \ v n )A  p  A tp  (3/i)

2 %C~A dt A 2 

where Et includes two errors namely:

• Diffusion error: Dd
A= l

acv*)„
9r

• Source term error: Ds = - ^ - P
i G \ j

(4.57)

(4.58)

(4.59)

To analyse these two terms, it is first necessary to express the temporal derivative of h as 

a combination of spatial terms. To do so, Equation 4.2 is used giving:

S &=M.KVh)-W  s at

Thus, the error terms given in equations 4.58 and 4.59 can be written as:
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The first terms in Do and Ds include higher derivatives of h and are therefore neglected. 

The second terms cannot be further analysed as they depend on the distribution of the 

source (Jasak, 1996).

4.6.1.2 Mesh-Induced Errors

(i) Non-Orthogonality Error:

The non-orthogonal correction potentially creates unboundness and the corresponding 

non-orthogonality error for the GWFV model has the following form:

E, = = I ( r DV/.), (4.62)
A A

where TD = fiju.S. This coefficient depends on the non-orthogonality angle of the mesh 

(angle between u and S).

(ii) Skewness Error:

When the line joining two nodes does not pass through the middle of the vertical face 

between the nodes then interpolation is needed to give the value of the parameter at the 

middle of the face using its value at the intersection point. Therefore, accuracy of face 

integrals is reduced to first order. For the GWFV model, this skewness error has the 

form:

Es=^ jxa.£a.Sa (4.63)
A

The magnitude of his error depends on the importance of eA, which involves the vectors

5x“and Sx* given in Equation 4.29. For meshes of reasonable quality, then the vertical 

component of the difference between the two vectors is smaller than the horizontal 

difference, which is equal to ||v|. The influence of this term is expected to be smaller than

the non-orthogonality error, except on highly distorted meshes where it can have 

significant influence.
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4.6.2 Error Estimation

The field of error estimation in the finite volume method is still in the stage of 

development and researchers are still improving the accuracy of the error estimators. 

This is particularly important since the estimation of the solution domain discretisation 

errors forms the basis of appropriate mesh generation, and what is more recently known 

as automatic resolution control or adaptive mesh refinement (Jasak and Gosman, 2000). 

Many authors used this estimation as a tool to assess the consistency and accuracy of the 

numerical method that they have developed (Croft, 1998). The most famous methods for 

error estimation are Taylor Series Error Estimate, Moment Error Estimate, Residual 

Error Estimate, and Element Residual Error Estimate, with each method having its 

strengths and deficiencies (Jasak and Gosman, 2000 and 2003, Ilinca et al., 2000). For 

the model reported herein, a Taylor series expansion based method has been used to 

assess the accuracy of the numerical scheme.

Most of the truncation error analyses for the FVM reported in literature is made for 

uniform rectangular grids. Botte et al. (2000) showed that the truncation error (T.E) was 

the same for the approximations of the second and first derivatives using central nodes in 

the FDM or internal control volumes in the FVM. MODFLOW uses a two-point central 

difference approximation for the first derivative at a cell face, which yields an accuracy 

of order (Ax,)2 in each x, direction. When reduced to (xj>) space, then the MODFLOW 

expression for the flux through a cell face, for instance (i,j+1/2) in Figure 4.9, is written 

as:

qiJ+V = c, (4.64)

In the GWFV model Taylor series expansion has been limited to second order as shown 

in Equation 4.30. The first term of the equation represents the discretised form of the 

first derivative along the line joining nodes P and N  (or When this line is

orthogonal to the face, the expression used for the first derivative in the GWFV model is 

the same as that used in MODFLOW; therefore, the accuracy and truncation errors must 

be the same when the mesh is orthogonal. For a general mesh, the expansion for the
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points hp and hN around the face AB represented by midpoint F  (see Figure 4.9) gives the 

following expression for the truncation error (T.E)p\
f

(T.E)F̂ R ’- R - ) . ^ = ^ { S x . v ) h ( x F̂ S x y ^ x .v ) h ( x F̂ S x-)\ (4.65)
. M M b

Using the (i j )  notation, the Taylor expansion of heads at adjacent nodes is:

/ j+p_ 
\

Therefore, the explicit form of Equation 4.65 can be written as:

[(ax' H ax- ^ )  4 M a/ H ( ax-Jav® 3y

+2[(Ax*(A/)!HAx-(Av-)!) l ^ ;r) + [(A >-*H A y)to |
y  / 7+jc y  / j+y1.

WR~ 

+R+

(4.66)

4.6.3 Accuracy Analysis

The finite volume method has the advantage of being conservative across each control 

volume, as well as being able to solve the flow equation on a non-rectangular mesh, 

without alteration to the formulation (Ferguson, 1998). Thus its stability is assured. Yet, 

currently there are no theories that predict the accuracy of the method on non-uniform 

grids. Generally, in grid-based numerical models, a loss of accuracy is unavoidable for 

strongly distorted meshes, and discontinuous mesh size variations should be avoided, 

when possible. Therefore, the question arises regarding the proper level of discretisation 

for accurate solutions. In numerically investigating the accuracy, particularly the 

accuracy of the fluxes (velocities), this is found to depend on the space and time 

discretisation and this will be considered in more detail in the next chapter. In his 

discussion, Patankar (1980) presented four basic rules that the discretisation equation 

should obey to ensure physical realism and overall balance. They are: consistency, 

positive coefficients, negative slope linearisation of the source term and the sum of the 

neighbour coefficients being equal to zero. The third and fourth rules are already
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checked in sections 4.3.3 and 4.5.2 (i.e. Equations 4.47 and 4.54). In the different 

methods developed above, it can easily be shown that the same expression is used to 

approximate the gradient of h at a cell face from the adjacent cell sharing the same face 

(i.e. Equations 4.23, 4.35, and 4.38). The expression of equivalent permeability on a 

common face remains also invariant as it depends only on the permeabilities of the two 

adjacent cells. Therefore, the flux of water at a common face between two adjacent 

control volumes is represented by the same expression in the discretisation equation; 

thus, the model is rigorously consistent.

For steady state flow, the discretised equation for groundwater flow has the form:

Bijhi.Xj-\-Dijhi>j+l-\-(Eij+HCOFij)hij+Fijhij +{+Hiyjhi+lj=RHSij  (4.67)

The positive coefficients rule states that the coefficients B, D, F, H and -E  must always 

be positive. In the GWFV model these coefficients are:

Bi,j=Si-]f2,/Xi-y2,j » Dij=Sij_]p(Xi j_]{2; Eij —Sij +]̂ xi<j+]/2; ff ij=Si+]f2jCti+]f2j

and Etj= -B ij-D ij-F ij-H ŷ

Since S and a  are always positive, then the rule is satisfied.

The accuracy of the three models with regard to their sensitivity to mesh shape and size, 

and boundaries, is investigated using numerical tests in the next chapter.



Chapter 5

Numerical Tests

5.1 Introduction

The numerical model GWFV has been compared to model S and model V. The three 

models have been tested and evaluated by running a suite of test cases that include the 

results generated by analytical solutions and by MODFLOW. The main feature of the 

programmes relating to the use of an irregular mesh has been assessed by analysing 

strengths and weaknesses of this particular aspect. Particularly in using an orthogonal 

grid, the new models have been assessed to confirm that the same formulation of the flow 

equation is used as in MODFLOW. Five examples were selected to test the codes 

performance. The accuracy of the methods has been examined for unsteady flow to a 

discharging well in a 2D confined aquifer well using the Theis analytical solution for this 

problem. The sensitivity of the models to the mesh size was tested using different random 

mesh resolutions for a simple Laplace equation. The same equation has been used with a 

2D Kershaw mesh to examine the effects of the grid non-orthogonality and skewness on 

the overall performance of these procedures. The accuracy at irregular boundaries has 

also been examined using a benchmark example. Finally, a heterogeneity test has been 

carried out to check the effectiveness of the selected equivalent permeability formulation. 

A comparison of the test results for the different selected schemes is provided.
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5.2 Model Testing and Evaluation

f
5.2.1 Numerical Tests Selection

The accuracy and performance of the new code first needed to be checked. According to 

the USEPA, the tests used to meet this task generally reputed to address five categories 

(Van der Heijde and Kanzer, 1997, p. 52) as cited below:

1- Conceptual problems in a theoretical framework,

2- Mathematical (non-coding) issues related to the formulation of the equations, the 

solution technique, etc.;

3- Implementation of the algorithms in code logic and code structure;

4- Input/output handling (e.g. file interaction, keyboard/screen interaction);

5- Internal data handling (e.g., argument handling in subroutines, common blocks, 

equivalencies, etc.)

The final objective of the development of the GWFV was to produce an additional 

process to the existing MODFLOW-2000, allowing the option of using the finite volume 

method within this programme to generate a more flexible mesh. Therefore, the 

identification of concerns relating to code correctness was based on this objective. The 

selected tests did not aim to check the existing MODFLOW functionality, performance or 

applicability issues, but to verify the correctness and compatibility of the new method 

within MODFLOW-2000. The tests have been particularly focused on the efficiency of 

the grid design in calculating groundwater heads. The testing methodology in this 

analysis used a two-level approach including analytical solutions and field validation 

tests.

5.2.2 Evaluation Methods

The exact solutions for the homogeneous isotropic case, and the corresponding numerical 

models results computed on very fine meshes for the anisotropic and heterogeneous 

cases, where analytical solutions are not available, were first used to assess the accuracy 

of the proposed schemes in tests 1 and 5. A comparison between the results for the new
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numerical schemes and the exact solution, or benchmark solution, were performed for 

certain selected points of the overall domain. For transient simulations, the variations in 

results through time have been assessed at selected points. Indeed, to gauge the accuracy 

of the numerical method relative to the exact solution, the errors were calculated overall 

nodes at the selected n nodes using the following root-mean-squared error (RMSE) 

formula:

RMSE-
1

^ ^ ( . ^ k ,  exact ~ ~ ^k  calculated)

& -----------------------  (5.1)

5.3 Numerical Tests

The three models, GWFV, model S and model V were tested for accuracy by applying 

them to a number of test problems having known solutions. The first test was used to 

check the ability of the finite-volume method to solve the diffusion equation accurately in 

time. A comparison between the three different approaches was carried out for a 2D 

groundwater flow scenario. The second test was carried out to check the result of the new 

models against benchmark results and MODFLOW results.

5.3.1 Test 1: Accuracy

In order to test the ability of the new finite-volume methods to solve the diffusion 

equation accurately, a problem with an analytic solution was first studied. The selected 

problem was a ground-water example from Wang and Anderson (1982). A well 

discharged at a constant rate of 2000 n? day'1 from the centre of a confined aquifer of 

4000 m x 4000 m, and having a constant transmissivity T of 300 m2 day'1. The 

potentiometric surface was initially horizontal and set to 10 m. The quadrilateral 

discretisation used within the two models is shown in Figure 5.1 with 1681 (41 x 41) 

cells and volumes varying within a range of 4x l03 to 2xl04 m2. No-flow boundaries were 

assigned along the domain borders and a storage coefficient S of 0.006 was chosen to 

avoid boundary effects influencing the numerical results. The MODFLOW model was 

also set up to simulate the same flow conditions. The flow for this test is normally
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symmetric and it is therefore common practice to simulate a quarter of the domain, with 

the well located at one comer. The entire domain was modelled in this study to check that 

the model kept the symmetry property, even on an asymmetric grid.

Figure

The analytic solution for this problem is the one given by Theis (1935). The drawdown at 

a radius r from the well given as:

ha-h = A L w {u)  (5.2)

where W(u)= u ~ \ 77

W(u) is called the well function and is given by Wang in tabular form. To represent the 

solution given in Equation 5.2, the Jacob approximation of the Theis solution is used 

given:

A °-/i= JL ln (& ) with (5-3)

where the well function is approximated by W(u)=-Q.5772-\nu, and u is less than about 

0.01. The term Rl is the radius of influence beyond which the drawdown is zero. The 

simulation time was taken as 30 days, therefore, the radius of influence at the end of the

0
0 1000 2000 3000

X(m)

5.1 The 41 x 41 random quadrilateral mesh used for

4000

the three models.



CHAPTER 5. NUMERICAL TESTS  124

simulation was 1837 m. All models were run for 30 time periods, each period has 1 day 

length and 100 time steps. The SIP solver was set up with a 0.01 m head change criterion 

for convergence, a number of iteration parameter set to 5 and an acceleration factor set to 

1.

The water level contours at the end of the 30 day simulations, as obtained for the three 

models GWFV, S and V, are shown in Figures 5.2(c), (d) and (e) respectively. The 

analytical solution and the finite difference model MODFLOW results obtained for this 

problem are presented in Figure 5.2(a) and (b) respectively.
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(d) Model S: Orth Non-orth

\ " 0 t ,
O  -&T- ✓

-  - * 5 '

30®

X(m)

(e) Model V: Orth

X(m)

3500

X(m)

Non-orth
4000

3500

3000

2500

1500

1000

500

00 1000 2000
X(m)

3000 4000

Figure 5.2 Head contours obtained using: (a) analytical solution; (b) MODFLOW;
(c) model GWFV; (d) model S; and (e) model V.

The test results show that the finite volume models with 1681 cells, of average surface of 

104 m2, exhibit radial convergence behaviour and can produce accurate and symmetrical 

solutions, as shown in Figures 5.2. On an orthogonal grid the three developed schemes 

gave the same results as MODFLOW. However, on a non-orthogonal grid the only model 

that still gives the same figures as MODFLOW was the GWFV model. Model S gave less 

accurate results, and model V showed even lower accuracy for this locally converging
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flow. Figure 5.3 illustrates the difference between the four models results on non- 

orthogonal grid and the analytical solution for the time of simulation.

6

5

Well
Analytic 
MODFLOW 
GWFV 
M odels  
Model V
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O  3-o °

200m
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000m

0
0 105 15 20 25 30

Time, days

Figure 5.3 Variation of drawdown with time at different distances 

from the well for Test 1.

The difference in drawdown between the three developed models tended to decrease 

relatively to the distance from the well. However, it was mostly the GWFV model that 

compared as well as MODFLOW to the analytic solution on the overall domain. The 

deviation of the numerical results from the Theis curve at the final time steps was due to 

the non-infinite nature of the model domain in the analytical solution. The comparison 

will continue to deteriorate if the models were run for longer time. The mesh resolution 

may also be a factor in the models accuracy. This issue is particularly investigated in the 

next test.

The GWFV model gave identical results on non-orthogonal and orthogonal grids. 

Although it might be considered that the size of the cells was not large enough to assess 

the effect of the non-orthogonality on the model accuracy, it was clear from the results 

that the two other models, i.e. S and V, did not provide as high a level of accuracy as the 

GWFV model, even for this level of discretisation . Therefore, the next test was set up to
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address the behaviour of the numerical error in the proposed finite-volume models on 

meshes of different levels of discretisation.
f

It was also noticed that even MODFLOW needed specific adjustments of the time 

parameters to give accurate heads. The number of time steps in the SIP solver changed 

considerably the simulation results (see Figure 5.4(a)). Therefore, as suggested by 

Osiensky and Williams (1997), a proper combination of the SIP matrix solution 

parameters should be found by trial runs to minimise water balance errors. In the case 

considered here, the analytical solutions were provided and no trials were necessary.

(a) (b)

Figure 5.4 Plot of drawdown values versus time for well test, computed using 
MODFLOW, for different time steps, using various matrix solvers 
at a distance of 1 km from the pumping well: (a) SIP solver,
(b) PCG solver, (c) SOR solver, and (d) WHS solver.

The SIP solver proved to be more accurate than all of other combinations for different 

matrix solvers when one time step was used, but converged to the same results as the 

PCG and WHS solvers when the number of time steps in a stress period was bigger than
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100 (Figure 5.5). For the general case, the PCG and WHS solvers proved to be the most

accurate and least sensitive to the solver parameters. Thus in the test undertaken herein,
*

the SIP solution parameters that gave the same results as the PCG and WHS solvers were 

the ones that have been considered (NSTP=100).
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Figure 5.5 Error on the overall test area versus number of time steps 
in each stress period for the four solvers.

5.3.2 Test 2: Numerical E rror -  Sensitivity to Mesh Size

For the MODFLOW model, the non-orthogonality is not an issue, but the predictions do 

depend upon the grid size and time steps. Andersen (1993) addressed these specific 

points, with his general conclusions being that a fine grid can approximate a spatial flow 

variation much better than a coarse grid, but requires a larger number of nodes and more 

CPU time. As a general mle the grid should be designed to match the curvature of the 

drawdown cone. Haitjema et al. (2001) also tested the accuracy of MODFLOW’s flow 

field for different types of boundary conditions. They established a set of rules of thumb 

for the minimum requirement on the grid resolution for each type of boundary condition 

to achieve accurate simulations.

In this test the effects of the grid structure, in terms of cell sizes, on the behaviour of 

numerical error and convergence of the three new schemes have been investigated. A test 

problem similar to the one used by Morel et al. (1992), has been used to demonstrate the 

accuracy of the different models as a function of the mesh size for ‘random’ meshes. A



CHAPTER 5. NUMERICAL TESTS 129

10 x 10 m square area was used to simulate a two-dimensional flow through a porous 

media. The domain was meshed with a quadrilateral grid of five different levels of 

discretisation, as shown in Figure ^.6. Each mesh was generated from a uniform 

orthogonal mesh by moving each interior node in a random direction, on a circle of radius 

equal to 20% of the interior-nodal distance and centred about the original position of the 

comer.

The problem to be solved has the following boundary and internal conditions:

Ah = 0in [0,10] x[0,10] 

h(x,0) = 0m  

h(x,\0) = \0m

% ft> .y )= § a o ,y )= o

the exact solution of which is h(x,y) = y . The relative mean-square norm was used to 

compute the error. The results from simulating this problem for different mesh sizes are 

given in Table 5.1. It has to be recalled that these results are dependent on the solver 

accuracy, which is represented in the SIP solver by the head change criterion for 

convergence. It was set to 10'4 as to the size of cells in the most refined mesh (80 x 80) 

and the head gradient.

The results from the 5-point models on orthogonal meshes showed similar behaviour. 

The three new models show even better results than MODFLOW on the most refined 

grid. However, on non-orthogonal meshes, models GWFV and S performed better than 

model V especially when results were closer to the solver precision criterion. From these 

model results it can be seen that the error was reduced by a factor of minimum 2 each 

time the mesh spacing was reduced by a similar factor, which indicates a second-order 

accurate method on all grids that have been used. MODFLOW reached its best accuracy 

level with the mesh resolution 40 x 40 (see Table 5.1), whereas the results from the other 

models were still improving relatively to higher mesh resolution (i.e. mesh 80 x 80).
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Figure 5.6 Test 2: Random grids, (a) 5 x 5; (b) 10 x 10; 
(c) 20 x 20; (d) 40 x 40; and (e) 80 x 80.
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Orthogonal meshes

Model Problem Size (cells) Relative L2 norm Error Ratio

GWFV
r

5 x 5 12.3091 x 10'2
10 x 10 5.5348 x 10‘2 2.22
20 x 20 2.6292 x 10‘2 2.1
40 x 40 1.2818 x 10‘2 2.05
8 0 x 8 0 6.3456 x 10'3 2.02

Model V 5 x 5 12.3091 x 10'2
10 x 10 5.5348 x 1 O'2 2.22
20 x 20 2.6292 x 10'2 2.1
4 0 x 4 0 1.2818 x 10‘2 2.05
8 0 x 8 0 6.3456 x 10'3 2.02

Model S 5 x 5 12.3091 x 10‘2
10 x 10 5.5348 x 10‘2 2.22
2 0 x 2 0 2.6292 x 10’2 2.1
4 0 x 4 0 1.2818 x 10'2 2.05
8 0 x 8 0 6.3456 x 10° 2.02

MODFLOW 5 x 5 12.3092 x 10'2
10 x 10 5.5346 x 10'2 2.22
2 0 x 2 0 2.6291 x 10'2 2.1
4 0 x 4 0 1.2824 x 10'2 2.05
80 x 80 6.6505 x 10'3 1.93

Non - Orthogonal meshes

Model Problem Size (cells) Relative L7 norm Error Ratio

GWFV 5 x 5 13.1917 x 10’2
10 x 10 6.1586 x 10’2 2.14
2 0 x 2 0 2.8816 x 10'2 2.14
4 0 x 4 0 1.4000 x 10'2 2.05
80 x 80 6.7411 x 10'3 2.07

Model V 5 x 5 13.6432 x 10'2
10 x 10 6.1241 x 10‘2 2.23
2 0 x 2 0 2.8685 x 10'2 2.13
4 0 x 4 0 1.3025 x 10‘2 2.2
80 x 80 9.5796 x 10'3 1.36

Model S 5 x 5 13.0794 x 10'2
10 x 10 5.9227 x 10'2 2.2
2 0 x 2 0 2.8090 x 10'2 2.1
4 0 x 4 0 1.3386 x 10*2 2.1
8 0 x 8 0 6.2311 x 10*3 2.15

Table 5.1 Test 2: Errors on random grids
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5.3.3 Test 3: Grid Shape Effect, Non-Orthogonality and Skewness

As discussed in section 4.3.1.1, the cross-diffusion term can significantly affect the 

accuracy of the models when the mesh is highly non-orthogonal. To test this particular 

aspect in the proposed models, a common test for the diffusion equation in hydrodynamic 

codes is the Kershaw test (Kershaw, 1981). This test allows the sensitivity of the model 

to the mesh shape to be studied, particularly for non-orthogonality and skewness. In this 

example a 10 x 10 Kershaw mesh was used (Figure 5.7). The unit area was meshed such 

that the shape of the elements varied from square to extremely skewed quadrilaterals. The 

area was given a hydraulic conductivity of 300 m/d, constant head boundaries at the 

upper and lower boundaries, with lm and 0m respectively, and no flow boundaries along 

the right and left boundaries.

1

>- 0.5

oo 0.5 1
X

Figure 5.7 The 10 x 10 Kershaw mesh.

The models were then run to determine a steady state head profile across the area. A tool 

which correctly calculates the heads will show equally spaced isolines parallel to the 

constrained sides. Therefore, the head results would not have been expected to be a 

function of the mesh generated or the shape of the elements. The problem was first solved 

for an orthogonal mesh. The contour plot of the steady state results gave straight lines for 

the four models as shown in Figure 5.8 (a). The analytical solution was linear in y, and 

the methods reproduced this result exactly, as shown by the straight contour lines. This
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was expected because the method reduced to the standard five-point finite difference 

method for the case of an orthogonal mesh. The head contours for the 10 x 10 Kershaw 

non-orthogonal mesh are shown for the three models in Figure 5.8. It can be seen from 

the results that the isolines from the GWFV model are not altered by the distortion of the 

grid. However, contours from Model S were less straight than the contours from the two 

other models. Model GWFV showed the best independence from the mesh shape as these 

contours were the straightest. The same simulation was repeated with a 20 x 20 mesh. 

The mesh and its corresponding head contours for the steady state results are shown in 

Figure 5.9.

(a) MODFLOW (b) GWFV: Non-orth

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X(m)

(c) Model S: Non-orth (d) Model V: Non-orth

Figure 5.8 Isolines on the 10 x 10 Kershaw mesh for the four models.
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The isolines in Figure 5.9 remain linear, even though the mesh was more severely 

skewed. This was particularly true for the model GWFV model as it gave less curvature 

and more accurate contour for both levels of mesh distortion. Indeed, this model 

calculations exhibited linearity of the solution down to machine precision.

(a) The mesh (b) GWFV: Non- orth

(c) Model S: Non-orth (d) Model V: Non-orth

Figure 5.9 The 20 x 20 Kershaw grid, (a) the mesh; (b) (c) and (d) 
isolines resulting from the three new models.
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5.3.4 Test 4: Accuracy at Irregular Boundaries

A non-orthogonal mesh overcomes the difficulty of representing irregular boundaries of 

the physical domain with grid lines normal to each other. To test this new feature, a 

groundwater application from Kinzelbach (1986), has been used as a benchmark 

problem. The aquifer shown in Figure 5.10 is phreatic and isotropic. There are constant 

head boundaries at the western and eastern edges of the modelled region, with heads at 80 

m above sea level on the western side and 75 m on the eastern side. The horizontal 

aquifer bottom is at an elevation of 10 m below the surface elevations. The grid had 10 

rows and 15 columns. The permeability had a constant value of 0.0003 m/s. The diffuse 

recharge by precipitation was on average 3x 10' 9 m3/s/m2. As steady-state results are 

required, the storage coefficient was set to zero everywhere, except at prescribed head 

boundaries where a value of 1*1015 was chosen. The initial heads were set equal to the 

prescribed head at prescribed-head-boundaries. At all other nodes an average value was 

assumed. A well of a water works withdraws water at a constant rate of 0.1 mVs.

100n-

well

river

0
0

Figure 5.10 Aquifer and grid used in Test 4.

A river is allowed to exchange water with the aquifer. The leakage factors at every river- 

node were 5.10*6 s '1. The river bottom elevation ranged from 79 m at the western edge to 

72 m at the eastern edge. The water surface in the river was 3 m above the river bed 

everywhere. The orthogonal and non-orthogonal meshes used to model the domain are 

shown in Figure 5.11 (a) and (b) respectively.
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(a) (b)

Figure 5.11 Aquifer mesh in Test 4: (a) orthogonal mesh; (b) non-orthogonal mesh.

Results from all of the models show a flow from west to east that slows down when it 

enters the wide part of the aquifer. A depression cone is formed around the well and the 

river water infiltrates into the aquifer as the resulting isolines show in Figure 5.12. All 

models give the same results for the orthogonal grid as MODFLOW (see Figure 5.12 (a)) 

and the benchmark results (Kinzelbach 1986). For the non-orthogonal grid, the three new 

models show a greater flexibility at the boundaries as the grid was allowed to fit more 

accurately the geometry and the isolines are smoother in this area than the MODFLOW 

finite difference model results. Nearly the same results as the benchmark results 

(Kinzelbach 1986) and the MODFLOW results are given by the new models, even if 

some cells show considerable non-orthogonality. Whilst the models GWFV and S gave 

similar contour results at boundaries, these differed for model V (Figure 5.12 (b), (c) and

(d)). In addition, the model GWFV isolines were the closest to those of MODFLOW 

inside the model region, especially near the river and around the well. The GWFV model 

was therefore seemed to be the most accurate model with regard to accuracy over the 

whole domain.
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(a) MODFLOW (b) GWFV

o -------------

(c) Model S
1000

(d) Model V
1000 ----------------------------

500 1000 1500
X(m)

Figure 5.12 Head isolines for Test 4 from application of (a) MODFLOW,
(b) GWFV, (c) model S, (d) model V.

5.3.5 Test 5: Permeability-Heterogeneity

He et al. (2002) have developed a procedure, called the conforming scale up method, for 

the calculation of equivalent cell permeabilitiy tensors appropriate for general two- 

dimensional control volumes (i.e. non-rectangular quadrilateral and other polygonal cells) 

in reservoir simulation studies. In this work, as discussed in Chapter 4, the new shape of 

cells involved a new formulation of equivalent permeability at cell faces. To test this 

modification, a simple two-data set was constructed with variable hydraulic conductivity 

and incorporating a single extraction well. Similarly to Test 1, no flow boundaries were 

assumed along the borders of the model domain. A well discharged at a constant rate of 

1000 mPday1 from the centre of a confined aquifer of 1000 m x 1000 m. The test runs
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were performed with uniform isotropy and benchmarked against MODFLOW results. 

The results of the transient simulation after 20 days with variable hydraulic conductivity 

are shown in Figure 5.13. The left hind side of the simulation area had a conductivity 

coefficient of 90 m/day and a storage coefficient of 8x1 O'3 m'1. Whereas the right hand 

side of the domain had values of 900 m/day and 8x10‘2 m'1 for the same parameters. The 

SIP solver was set to run with 20 stress periods, with each period being one day long. The 

number of time steps in each period was 800. This number was chosen to make sure that 

the MODFLOW solver would give the same results and thus can be considered as the 

benchmark result.

It has been noticed that the new equivalent conductivity formulation and that in 

MODFLOW gave exactly the same results when implemented in any of the three new 

models if the grids were orthogonal. However, the MODFLOW results are different from 

the results for the other models on non-orthogonal grids, as shown in Figure 5.13.

The GWFV model results with the non-orthogonal grid did not differ much from the 

results obtained with the orthogonal grid. However, the same equivalent permeability 

formulation gave less accurate results in models S and V in comparison with the GWFV 

model with the non-orthogonal mesh.
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(a) MODFLOW (b) GWFV: Non-orthogonal
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Figure 5.13 Head drawdown for Test 5 from application of (a) MODFLOW,
(b) Model GWFV, (c) Model S, and (d) Model V on non-orthogonal 
grids.
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5.4 Discussion

The suite of tests used herein is certainly not exhaustive but demonstrates the accuracy of 

the new models and the changes in comparison with the MODFLOW numerical concept. 

In particular, the use of non-orthogonal grids and the new equivalent permeability 

formulations were investigated. The comparative analysis of the tests results showed the 

strengths in all cases of the GWFV model as compared to the models S and V. The 

effects of grid non-orthogonality and skewness in the finite volume formulation used in 

the GWFV model were more absorbed than in the other formulations. The models S and 

V initially used a 9-stencil molecule associated to cell Qj) to formulate the system 

equation, but then this was reduced to a 5-stencil molecule as described in Equations 4.49 

to 4.52. The use of multiple reductions to come up with the five integration points 

adversely influenced the method accuracy during each reduction. In addition, the 

parameters associated with the head in each cell in the system equation in the GWFV 

model (namely By, Dij, Fij, Hij in Equation 4.52) contained less terms in relation to the 

geometry of the cells when compared with the models S and V. Therefore, model GWFV 

proved to be less sensitive to grid non-orthogonality and skewness and more accurate as 

to heterogeneity and boundary conditions.

The simulations showed also that time stepping considerably affected the head 

distribution results. This was essentially due to the solver performance. It should be noted 

that the tests were all carried out with a single solver, namely the SIP. The 

implementation of the new numerical model in the MODFLOW programme allows the 

use of all of the other solvers available to be used after making the necessary changes. 

Additional tests related to the stability and convergence of the new implemented method 

can also be carried out, but this will place more emphasise on the efficiency of the 

solvers, rather than on the numerical changes in the new model. The solvers performance 

in terms of convergence behaviour, computing time and memory requirements are related 

to the new resulting matrix properties, which have been discussed in the previous chapter. 

The appropriate choice of solver parameters and initial head distributions were also 

discussed.
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The accurate results obtained from these tests using some analytical or benchmarked 

conditions have provided a good indication of the correctness of the new model, but are 

not sufficient to guarantee that results will be accurate for more complex boundary 

conditions. Therefore, a real field case will be used as an additional test in chapter 6 

where observed and predicted hydraulic heads will be compared as one measure of model 

accuracy.

5.5 Finite Volume- Based Changes in MODFLOW

The GWFV model was based on the same mathematical model as MODFLOW but 

treated numerically the governing equations with finite volume technique instead of the 

finite difference method. Consequently, new input data were required for generating the 

new non-orthogonal structured cells. The discretisation of the equation system included 

new arrays to be accounted for when solving the generated matrix.

The GWFV code was written as a separate executable version of MODFLOW. The 

model was implemented as an optional ‘process’ for MODFLOW. This integration 

required the use of a separate “name” file that includes names compatible with 

MODFLOW. Changes affecting the programme from both programmer’s and user’s 

perspectives are described in Appendix D. The computer-memory requirement for the 

new GWFV model was greater than those for the MODFLOW programme. The 

additional arrays used by the code increased the memory size requirement which was 

strongly dependent on the number of nodes used in the studied area.
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A Field Application: Case Study

6.1 Introduction

To validate the new developed model, a two-dimensional field application has been used. 

The Visual MODFLOW groundwater flow and transport model (see Table B.2 in 

Appendix B) was set up in the Hydroenvironmental Research Centre of Cardiff 

University, in co-operation with a private company. This work was undertaken within the 

Research Centre’s European Research Development Fund project ‘Provision of 

Environmental Water Management Software Tools to Small and Medium Enterprises 

(SMEs) in Industrial South Wales (ISW)’. The site comprised a nickel refinery plant and 

a landfill area, passed through by a river. The refinery activity was suspected of causing 

an adverse environmental impact on the river water quality. Investigations indicated the 

presence of nickel contamination in the surface waters. The numerical model was set up 

to give a clear insight into the quantity and direction of the groundwater flow beneath the 

site and therefore to quantify the mass contribution of nickel into the river. Substantial 

amounts of data were available from many official sources such as the Environment 

Agency and the Geological Survey of Great Britain) and site investigations and routine 

monitoring were carried out by the refinery company.

The model was initially set up as a three-dimensional study. The flow simulations in this 

study area suggested that there was a four-layer aquifer system, drained by a river. In this 

chapter the three-dimensional flow simulations have been presented. An equivalent unit
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layer model was then set up in order to provide a two-dimensional case study to validate 

the GWFV programme. This was conceptually achieved by generating new flow 

conditions for the parameters thaft have uncertainties. The resulting new calibrated 

parameters were then used to simulate the same field conditions with the new GWFV 

model. Comparisons between the results from MODFLOW and the GWFV programmes 

were then undertaken and are reported herein.

This study was chosen as a model-validation field test to establish the accuracy of the 

final simulations. The available data and flow conditions allowed the dimensionality of 

the site groundwater flow simulations to be reduced from a three-dimensional to a two- 

dimensional study, as ideally appropriate for this case.

6.2 Site Presentation

6.2.1 Land Description

The site is located to the southeast section of the town of Clydach in South Wales (see 

Figure 6.1) in a region of varied topography and diverse landscape character. It is set 

within the Lliw Valley district, to the north of Swansea and southeast of Clydach, and 

covers an area of approximately 121 hectares, of which approximately 21.5 hectares are 

developed. The Ordnance Survey Grid Reference for the site centre is SN 694 012.

The landscape of the area surrounding the site is complex, comprising strong natural 

landscape elements, such as: the Mynydd Gelliwastad to the west, mixed woodland areas 

to the northeast, the Lower Clydach Valley to the north and open fields to the south. 

However, many of these have been overlain or affected by anthropogenic influences.

In close proximity to the refinery site lie: (i) the River Tawe, which flows in a westerly 

direction immediately south of the works, (ii) the Swansea Canal, which borders the 

northern boundary of the site, and (iii) the Lower Clydach River. The Swansea canal 

discharges into the Lower Clydach River to the west of the refinery, prior to its 

confluence with the River Tawe.
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Figure 6.1 Site location plan from Digimap (Digimap, 2004).
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The refinery site lies at an approximate elevation of 23 metres above Ordnance Datum 

(OD). However, the surrounding land lies at a higher elevation. Immediately to the south 

of the works (i.e. south of the Afonf Llynfi and the dismantled railway) the land rises to 

approximately 53 metres above OD. Located to the north of the works are the town centre 

Clydach and accompanying residential areas. These areas lie at much higher levels than 

the works, with settlement of Penydre being at elevations of over 100 m above OD.

To the west, Clydach and the refinery site are bounded by the eastern slopes of the 

Mynydd Gelliwastad, which rises to approximately 213 m above OD.

6.2.2 Site Geology

The Geological Survey of Great Britain Sheet SN 60 SE scale 1:10560 (see Figure 6.2) 

depicts the site to be directly underlain by an undetermined thickness of alluvial material, 

consisting of intermixed lenses of sandy, silty clay and coarse gravels. Immediately to the 

south of the site, across the River Tawe, the Glais Moraine lies east-west across the 

valley and is shown to be approximately 30 m to 40 m higher than the valley floor. The 

Moraine generally consists of sands and gravels. Underlying the superficial materials, the 

Geological Survey plan depicts the solid strata to be the Grovesend Beds of the 

Carboniferous (UCM), upper Pennant measures. The bedrock in this area typically 

comprises sandstones.

The ground investigations generally confirmed the existence of the superficial deposits. 

However, as would be expected of an industrial site, varying depths of made ground were 

found overlying recent alluvial material. Correlations between the strata of the 

encountered sands, clays and gravels, recorded in the exploratory boreholes, were 

problematic as dense and soft materials within the strata were at varying depths, 

suggesting intermixing of glacial and fluvial deposits. Such strata irregularities could also 

be indicative of channel systems and possible sediment reworking. In general, sandstone 

bedrock was not encountered during drilling operations on site. However, some deeper 

exploratory holes, drilled as part of a structural investigation (records held by the refinery 

company), suggested that the bedrock might occur at depths between 30 m and 40 m 

below ground level.
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6.2.3 Site Hydrogeology

The Environment Agency classifiesfthe Carboniferous rocks beneath the site as a minor 

aquifer. The sandstone beneath the site forms a multi-layer aquifer system with separate 

water bodies in each sandstone horizon. These sandstone formations yield large quantities 

of water, which vary both spatially and temporally and are important for local supplies 

and maintaining the base flow of the local rivers.

6.3 Data Availability and Site Investigation

Several site investigations have been undertaken since 1993. The location of all the 

boreholes and wells is illustrated in Figure 6.3. Borehole logs from these investigations 

can be found in the ExCal Report (2000). Borehole locations 1 to 16 were drilled in 1993 

under the supervision of GIBB (UK) Limited. This survey later included a surface water 

survey of the River Tawe (GIBB Report, 1996) to acquire a more detailed assessment of 

the material transported to the river. In a second phase of the site investigations, initiated 

after discussions with the Environment Agency, borehole locations 17 to 27 and trial pits 

A to Y were excavated in 1997. The borehole locations A, B, C and D were drilled 

around a chloride building condemned to demolition, and in 2000 the boreholes SI to S5 

were drilled around an old sulphate plan prior to its demolition. Pumping tests were also 

carried out on two wells during this phase. The initial aquifer properties resulting from 

field test data (for sand and gravel) and estimated values (for clay lenses and landfill) are 

given as follows:

S, [1/m] SyH Eff. Por [-] Tot. Por [-]
Sand and Gravel i o -4 0.1 0.25 0.35
Landfill 10'5 0.02 0.1 0.2

Clay 0.0013 0.01 0.4 0.48
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Figure 6 . 3 Borehole locations (courtesy of ExCal Ltd.)
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To quantify the material that may be needed to profile the landfill, the refinery company 

excavated a further 18 trial pits in the landfill site in March 2000. A further four 

boreholes (locations 28 to 31) were'drilled at this site to evaluate the contribution from 

the landfill to the River Tawe.

6.4 MOFLOW Three-Dimensional Simulations

6.4.1 Model Domain and Boundaries

The model simulated area was limited to the refinery site on the right bank of the River 

Tawe and the landfill on the left bank. Figure 6.4 gives a plan view of the considered 

area. The model was 820.575 m in length and 574.743 m in width, with the number of 

rows and columns being similar and initially assigned 100. Therefore, the uniform cells 

of the 100 x 100 finite difference mesh were 8.2 m length and 5.75 m width, covering the 

M 2  ha total area.

Although the geology beneath the site generally consisted of alluvial material, the model 

was considered to contain four layers to allow the clay lenses to be modelled. The 

information related to the layer elevations and the clay lenses were interpolated from the 

borehole logs and the topographical surveys (ExCal Report, 2000). The bottom of the last 

layer was assigned as a horizontal surface, corresponding to the impermeable sandstone 

bedrock at a depth of 80.84 m. The minimum thickness between these layers was set to 

lm. The ground surface maximum elevation was recorded near borehole 20 in the landfill 

at 108.35 m, and the minimum elevation recorded was in the downstream riverbed at 93m 

while the refinery site covered a relatively flat area.

The units used in the simulations were as follows:

Length: meters Conductivity: m/day

Time: days Recharge: mm/year
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Figure 6.4 Plan view of the model and boundary conditions.

6.4.1.1 Northern and Eastern Boundaries

The model area is crossed by River Tawe and the Swansea Canal and is limited to the 

refinery site and the landfill area. Many scenarios were tested to simulate as accurately as 

possible boundary conditions. At the beginning of the simulation, data (especially ground 

levels and the location of the water table) in the landfill site were rare. As the domain of 

prime interest was the flow to the north east of the river, an approach was adapted to 

overcome the lack of information at the landfill site and this involved assigning inactive 

cells all over this area for all of the layers. For this scenario, the river was assigned as a 

constant head boundary since it was located at the edge of the refinery site. This 

simulation may have ignored leakage from the river, but it showed that the flow was still 

coming into the river even without imposing any constant head boundary condition at the 

eastern comer. The equipotentials for different times also showed a net flow coming 

along the sides of this comer into the model. Therefore, constant head boundaries were 

assigned along the half edges, meeting at the upper right comer (see Figure 6.4). No flow 

boundaries were imposed elsewhere along these sides.

Swansea Can;

Tawe River

LAMJPCLL
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6.4.1.2 Swansea Canal

The canal could be considered to act as a river, with a very low conductance or a general 

head boundary, since the amount of flow entering, or exiting, the model was dependent 

on the head at a cell in the model. These two scenarios were also considered for the 

different runs.

6.4.1.3 W estern and Southern Boundaries

It was also shown from the different scenarios simulated that contribution to the river 

flow from the landfill site was important, and that this may also affect the flow coming 

from the refinery site. This area was assigned to be active, except at a few cells in the 

comer which had negligible influence on the flow as long as they were bordered by a 

constant head boundary imposing a flow into the river. The location of this boundary 

followed the shape of the initial flow equipotential in this region. No flow boundaries 

were imposed elsewhere along these sides.

As the calibration process was simulated for each scenario, Figure 6.5 shows the location 

of the final boundary conditions imposed for the flow simulations.

Figure 6.5 Three-dimensional view of the final model input.
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6.4.1.4 Tawe River

The riverbed was assumed to be 0.3 m deep and consisted mainly of fine sand gravel and 

silt, which corresponded to a conductivity of 0.67 m/d. The conductance of the riverbed 

was then computed from:

C = K.L.W/M = 104.38 irf/d 

where: C is the hydraulic conductance (irf/d), L is the length of a reach through a cell 

(m), W is the width of the river in the cell (m), M is the thickness of the river bed (m) and 

K is the hydraulic conductivity of the river bed material (m/d).

The average of water level in the river was assumed to be 0.41 m and its stage dropped 

from 96.509 m to 94.013 m between the most southwesterly point of the river and the 

northeast extremity. Monthly values of river stage were recorded at station: Ynystanglws, 

downstream of the refinery site, for the period 01/2000 to 07/2000. Linear interpolations 

were made to find the related stage of the River Tawe at the refinery site, as shown in 

Figure 6 .6 .

96.7

96.6

96.5
R iver T aw e

96.4

96.3

96.2

96.1

Figure 6.6 River stage upstream River Tawe in year 2000.

6.4.1.5 General Head Boundaries

As the Swansea Canal seemed had been in existence for some considerable time and the 

flow tranquil and steady, the canal bed was assumed to be covered with old fine sand
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deposits. The canal bed was at an elevation of 99 m and the canal stage was set to 99.78 

m. The conductivity value of the bed was assumed to be 0.0259 m/d, and the relative
f

conductance was 4.038 rrfVd. These values have been adjusted with calibration.

6.4.1.6 Constant Head Boundaries

Constant head boundaries were assigned in the northeast boundary along the model edge, 

and at the southwesterly comer along the limit of inactive cells. This choice of boundary 

condition was made mainly on the basis of the initial water table as the equipotentials 

showed a net flow into the model area along these sides.

6.4.1.7 Recharge Data

Monthly values of rainfall were available only for year 2000 at the Rhoose station near 

Cardiff (see Figure 6.7). These data were used in the transient model as they coincide 

with the availability of the river stage data. The recharge data were also interpolated to 

represent data related to the study area using the standard annual average rainfall (SAAR) 

at the site, which was reported to be 1301mm. Not all of the rainfall percolated through to 

the aquifer. The effective recharge was reduced by the surface runoff, the rational 

coefficient indicating the percentage share of surface runoff and by evapotranspiration 

which was assumed to reduce the effective recharge by another 50%. As the rational 

coefficient for heavy industrial area of this type was 0.6 to 0.9, the remaining 10-40% 

was reduced by 50% due to the evapotranspiration. Of the remaining value, 10% was 

considered as recharge to the ground in the industrial area (i.e. the refinery site), 20% to 

the surrounding housing area, 30% to the landfill site and 50% to the river. Therefore, in 

steady state simulation, four values were assigned according to the type of ground surface 

use (see Figure 6.8):



CHAPTER 6. A FIELD APPLICATION: CASE STUDY 154

■  .A n g le s e y
■  R h o o s e
□  .Atoerporth

Figure 6.7 Monthly rainfall in mm/year in 2000

□  Zone 1: 260 mm/year (outside refinery site)

S Zone 2: 180 mm/year ( refinery site and near the landfill) 

■  Zone 3: 650 mm/year (the river)

|  Zone 4: 340 mm/year (the landfill)

Figure 6.8 Recharge model zone distributions.
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6.4.2 Model Calibration
f

6.4.2.1 Calibration Programme

The model was calibrated by comparing measured and predicted values of groundwater 

heads at different observation boreholes. The model was calibrated in two modes:

• steady state, to calibrate the aquifer permeabilities and the hydraulic conductance of 

the River Tawe and the Swansea Canal, and

• transient, to calibrate the aquifer storage coefficients.

The calibration of the hydraulic conductance of the River Tawe was also achieved 

through both steady and transient simulations.

6.4.2.2 Calibration Results for Steady State Simulations

The observation boreholes that were used in this calibration are shown in Figure 6.9. 

They were focused around three major groups: the landfill group, the river group and the 

refinery site group, thereby enabling separate and global calibrations to be undertaken for 

each site covered by these groups.

X(m)

Figure 6.9 Location of observation boreholes used for model calibration.
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The observed heads at the boreholes were taken as the average heads recorded during the 

period 11/1998 to 07/2001. Figure <6.10 shows a statistical measure of the difference 

between the observed and calculated heads at 95% confidence interval with all 

observation groups being used. The root mean square error RMSE is given by:

RMSE = ^ " 0 i~ Pi)

where P, are the predicted values and O, are the observed values, with the summation 

being over n observation points. The RMSE is equal to zero when all predicted values are 

identical to observed values.

In this steady state calibration, the RMSE calculated was equal to 0.36 m over the whole 

model area. This result implies a very good approximation when the range of water levels 

is in excess of 94 m. The steady state groundwater levels resulting from this simulation 

are given in Figure 6.11 and can be considered as the average water levels over the last 

four years over the model area. It was clear from these results that the river drains the 

aquifer system from both sides. The model water balance for the steady state conditions 

is given in table 6.1.

Table 6.1 Steady state water balance

Component Flow mVd

Constant Head 

General Head Boundary 

Recharge 

River Leakage

539.41 

42.27 

286.36 

867.835 

Inflow -  Outflow = 0.008667
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(a) ___________________________________________________________
Calculated vs. Observed Head : Steady state

| ■ Extrapolated [Head] •  Interpolated [Head] 95% confidence interval |

9S.7 97.7 99.7
Otos Head (meters)

Num .Points: 29 
Mean Error -0.1411788 (meters) 

Mean Absolute : 0 .3069795 (meters) 
Standard Error of the Estimate : 0 .0629627 (meters) 

Root mean squared : 0.3618451 (meters) 
Normaized RMS : 7 .516012 ( % )

(b)
Calibration R esiduals Histogram

■  Frequency 
—  Normal Distribution 
▼ Mean Value=0.1411788

0.13
Residuals:[Calc-Obs]

Figure 6.10 Steady state calibration results: (a) Statistical measure of 
predictions, and (b) calibration residuals histogram.
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X(m)

Figure 6.11 Predicted steady state groundwater levels 
(equipotentials at 0.5 m intervals).

It was apparent from the steady state model water balance that the aquifer was 

discharging to the River Tawe. A small leakage was predicted from the Swansea Canal, 

due to the difference between the heads in the canal and the water table. The estimated 

flow coming from the refinery site to the river was 84 ir?/day, while the contribution of 

the landfill was found to be 10 m3/day. The model discrepancy was calculated to be zero, 

which provided a good match between the approximated flow coming into and out of the 

system when the precision (head change criterion for convergence) was of the order of 

10'2m

6.4.2.3 Calibration Results for Transient State Simulations

The groundwater model was then run for year 2000, using the steady state groundwater 

levels as initial conditions. This was the only year for which data were available, for both 

the recharge and river discharge. The time reference was fixed at April 1995. The
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calculated heads were compared with the time dependent monitoring results available for 

all of the observation wells shown in'Figure 6.9. Comparisons of the groundwater levels 

were provided in Figure 6.12 at Borehole 1 near the Swansea Canal, Borehole 21, next to 

the river from the landfill side, Borehole 6 near the river from the refinery side, Borehole 

25 for the refinery site and Borehole 13 for the landfill.

These results generally show good agreement between the observed and predicted levels. 

The RMSE for all of the well groups and time steps varied from 0.37 to 0.46 m which is 

similar to the error obtained for the steady state simulations.

(a)

1700

(b)
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(c) ______________________ t
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(d)
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Figure 6.12 Observed and predicted groundwater levels for transient simulation
at different boreholes: (a) BH1, (b) BH6, (c) BH21, (d) BH 25, (e) BH13.
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6.4.2.4 The Calibrated Conceptual lyiodel

The final conceptual model was arrived at after running many scenarios of the aquifer 

system and then calibrating each. The final calibrated aquifer permeabilities are shown in 

Figure 6.13.

TOJ
]TPI2

Brpj

E,
>

LLL1

Ho
X(m)

Figure 6.13 Calibrated model permeability distribution in layer 2.

K x fm/dl K v fm/dl K z fm/dl Colours
Sand and gravel 3.024 3.024 0.3024

Landfill 0.147 0.147 0.025

Clay 0.00864 0.00864 0.00777
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These values are within the range of the expected values given in literature. The low 

permeability at the landfill was due to the nature of the waste buried in the landfill. The 

resulting value was consistent with the pumping test result in Borehole 28 (see GIBB, 

1996). The same distribution was used for the storage coefficient in all layers with the 

calibrated values being as given below:

Ss [1/ml Sv H Eff.Por [-1 Tot.Por [-] Colours
Sand and gravel io-4 0.1 0.25 0.35

Landfill io-5 0.02 0.1 0.2 ■ ■ ■

Clay 0.0013 0.01 0.4 0.48 ■ ■ ■
Uniform hydraulic conductance values were applied to River Tawe and Swansea Canal 

and calibrated by matching groundwater levels in the upper and lower parts of the stream 

respectively using specific observation well groups. The final calibrated values were:

River Tawe conductance = 104.38 irf/d 

Swansea Canal conductance = 2.048 m2/d.

The larger value for the River Tawe was entirely consistent with it being below the water 

table and draining the aquifer, while the canal exchanged very little flow with the aquifer.

6.4.3 Sensitivity Analysis

In order to evaluate calibration errors, a number of sensitivity runs were undertaken. The 

model parameters were varied from the calibrated set and the corresponding predictions 

compared. As the measured data available for comparison were long term averaged 

groundwater levels for monthly sets for the period 98-2000, the model was run for both 

the steady and transient states. The results have been compared with measurements using 

the root mean square error as an indicator of the overall degree of model fit. The results 

are presented in Table 6.2.
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Table 6.2 Root medn squared error for sensitivity runs.

Model parameter variation RMSE (m)

The calibrated model 0.36

Permeability increased 40% 0.43

Storage increased 40% 0.46
Storage decreased 40% 0.68

Recharge decreased 40% 0.42

River Tawe level increased 40% 0.41
River Tawe level decreased 40% 0.362

River Tawe hydraulic conductance increased 40% 0.365
River Tawe hydraulic conductance decreased 40% 0.38

Swansea Canal level increased 40% 0.361
Swansea Canal level decreased 40% 0.365

Swansea Canal hydraulic conductance increased 40% 0.362
Swansea Canal hydraulic conductance decreased 40% 0.37

As a permeability test had been carried out in the landfill area at Borehole 28 (GIBB, 

1996), a uniform value of the permeability was assigned to this area. The remaining 

values for the refinery site and the clay lenses were varied over a realistic range, within 

typical interval values. It was noticed that the model was more sensitive overall to the 

sand and gravel conductivity. This can be explained by the fact that this area had the 

largest surface areas and more boreholes than other areas, therefore its impact in error 

calculations was more significant. When this value was increased then the RMSE 

increased, since the water table dropped and thereby leaving many cells dry within the 

first layer. The value given to the permeability of sand and gravel was the lowest 

plausible, based on typical values. The clay lenses permeability affected the model 

predictions much less than the sand and gravel formation.

In transient mode, it was noticed that the model was very sensitive to both the storage 

coefficient and the effective porosity at the beginning and end of the simulations, 

affecting the solver run time (number of iterations and time). As the river stage was 

fluctuating and the recharge values were variable, an increase in the storage and porosity
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raised the water table above observed values and a decrease meant that more water 

flowed into the river. The calibrated values were optimal, as the data available for this 

transient simulation were given for a relatively short period, thereby making the model 

more sensitive to any change in the input. A general decrease of the recharge values gave 

under-estimated predictions of the water heads. Specifically, a decrease in the refinery 

site recharge lowered the water table, as this was the dominant surface in the modelled 

area. The final value of the recharge was assigned the highest possible value regarding 

the average rainfall over 10 years recorded in this area.

The model was more sensitive to changes in the River Tawe data than Swansea Canal 

since the river basin size, location and number of observation boreholes available in the 

locality were larger than for the canal. When raising the river stage it was noted that the 

calculated heads were lower than the observed ones. The same effect was noticed when 

the river conductance was increased. Finally, the flow velocities were found to increase 

towards the river, as shown in Figure 6.14.

/  /  /

Figure 6.14 Increasing flow velocities towards the river.
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6.5 MODFLOW Two-Dimensional Simulation

Producing two-dimensional simulations instead of a three-dimensional model was 

achieved by considering a unit thickness in the z direction, starting from the horizontal 

bottom of the last layer of the model. From an aquifer viewpoint, this unit layer is 

confined and the flow is strictly horizontal through this layer, with leakage going into and 

up to the river, as may be seen in the fourth layer of the area three-dimensional 

simulation (see Figure 6.15). The hydraulic approach normally consists of averaging the 

flow conditions in the vertical dimension in a depth integrated model. However, neither 

the aquifer geometry nor the vertical flow components could justify this simplification. 

Indeed for this case the aquifer was 820.6 m x 574.7 m to 27.5 m in depth, and induced a 

net flow to the river; this scenario did not allow the vertical flow components to be 

neglected relatively to the horizontal components. Appropriate flow conditions had to be 

chosen for the new two-dimensional conceptual model. Many parameters were specified 

according to their values from the three-dimensional calibrated model. The distribution of 

the clay lenses in this layer and the hydraulic parameters of each formation were kept the 

same as for the three-dimensional model. The river surface was projected in this layer as 

water was still drained from this layer too. However, the conductance values of this new 

feature had to be adjusted. Also the flow budget in the 3D model showed that flow was 

coming into this layer from the upper layers, especially at the landfill zone and the 

refinery site. This incoming flow was simulated as a recharge in the 2D model, but with 

values adjusted according to the thickness of the overlaying layers and their 

conductivities.

The flow was essentially horizontal. The water budget showed that the contribution to the 

flow from the refinery site and the landfill basically came horizontally from layer 3 

through the riverbanks, whereas layer 4 contributed from both vertical and horizontal 

directions. Also, the geological formation showed that there was basically one major 

geological set, namely the sand and gravel, where layers only arose due to the clay lenses 

distributions. The uncertainty in their distribution allowed the use of a one-layer 

conceptual model in theses regions.
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Figure 6.15 Flow direction in the fourth layer in the three-dimensional 100x100 
MODFLOW simulation in vertical cut along row 50.

In the new two-dimensional model, the distribution of the clay lenses was reflected in the 

three layers containing the lenses in the original three-dimensional model. The 

permeability of all geological formations was kept to the same values as used in the 

initial calibrated model. However, the recharge was modified. The unit layer was 

assumed to be flat, and the clay lenses appeared at the surface, whereas in the 4-layers 

model the clay lenses started from the second layer and the recharge was applied only to 

the highest active cell in each vertical column. Therefore the recharge values were 

reduced by factors based on the original elevations of the surface and the geological 

nature of the terrain (see Figure 6.16). The initial layer bottom was located at 94 m and 

was coincident with the average elevation of the riverbed. The Swansea Canal was 

omitted from this layer as it did not affect the flow at these elevations. Many scenarios 

where run to find the final recharge values relatively to their distribution. The steady state 

groundwater levels resulting from the 2D simulation are shown in Figure 6.17. The 

calibrated 2D model has 7.11 % normalised RMSE on the overall domain, and 12.75 % 

over the river (see Figure 6.18).
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Figure 6.16 Recharge input for two-dimensional simulation of MODFLOW.

X(m)

Figure 6.17 Predicted hydraulic heads from the 2D steady state MODFLOW
simulation on the 100 x 100 mesh (equipotentials at 0.5 m intervals).
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(a)
Calculated vs. Observed Head : Steady state

| •  Extrapolated [Head] •  Interpolated [Head] 95% confidence interval

95.6 97.6 9 9 6
Obs. Head (meters)

Num.Points: 35 
Mean Error: -0.1573978 (meters) 

Mean Absolute : 0.2988707 (meters) 
Standard Error of the Estimate: 0.05211475 (meters) 

Root mean squared . 0.3422225 (meters) 
Normalized RMS : 7 108902 ( % )

(b)
Calculated vs. Observed Head : Steady state
•  Interpolated [Head] 95% confidence interval

956 9 6 6 97.6
Obs. Head (meters)

Num Pomts: 12 
Mean Error: -0.1976691 (meters) 

Mean Absolute : 0.2134596 (meters) 
Standard Error of the Estimate : 0.04878976 (meters) 

Root mean squared 0.2554563 (meters) 
Normalized RMS : 12.74732 ( % )

Figure 6.18 Calibration of the two-dimensional MODFLOW simulation 
(a) error for the overall observation boreholes
(b) error for the river observation boreholes.
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6.6 GWFV Two-Dimensional Simulation

6.6.1 Discretisation

The new non-orthogonal grid was generated using the Tecplot Mesh Generator (Amtec, 

1999). The model rectangular area was divided into 50 rows and 50 columns on an 

algebraic structured mesh. The row direction was chosen to be parallel to the riverbanks 

and the columns were drawn in such a way that fitted the flow direction towards the river 

(see Figure 6.19).

6.6.2 Data Generation

The quadrilateral cell coordinates were generated using the write mesh file option of 

Tecplot and then reconverted to a format adapted within the GWFV programme input. 

Another file gave the equivalent cell indices (i, j )  for each orthogonal cell from the non- 

orthogonal generated mesh. This basic file allowed the translation of all the MODFLOW 

input parameters (e.g. permeability, recharge, boundary conditions, etc.) into properties 

file adapted to the GWFV programme for the structured non-orthogonal grid.

6.6.3 Program Run

The GWFV model was run for the non-orthogonal grid using the same run parameters as 

for MODFLOW. For a steady state simulation, the Slice Implicit Procedure (SIP) solver 

was used with a user-defined seed equal to 0.1, with 5 iteration parameters and a head 

change criterion for convergence equal to 10"2m
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FIGURE 1. TRIAL PfT, BOREHOLE AN(

Figure 6.19 The non-orthogonal 50 x 50 mesh.

6.7 C om parison  and  D iscu ssion

For an orthogonal grid, model GWFV gave the same results as MODFLOW. The heads 

contour map is shown in Figure 6.20. For the non-orthogonal mesh, Figure 6.21 

illustrates the contour map for the heads calculated from the GWFV simulation. From 

both models, it can be seen that the river is still draining into the one-layer aquifer. 

However, differences between the heads arose at a few borehole sites. To assess the 

accuracy and correctness of the two models, a comparison was undertaken with the 

observed heads for the existing.

Table 6.3 Root mean squared error results comparison.

RMSE (m) Refinery well group River well group Landfill well group All groups
MODFLOW 0.31199 0.50776 0.49619 0.42176
GWFV 0.28770 0.43227 0.49262 0.381931
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Figure 6.20 Head results from MODFLOW (50 x 50 mesh),
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Figure 6.21 Head results from GWFV on non-orthogonal grid (50 x 50 mesh).
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The observation wells were grouped into three groups to make more distinctive 

comparisons between the accuracy of the two models. The root mean squared error 

(RMSE) of all the groups and the overall area is given in Table 6.3. The basic difference 

between the models is solely the shape of the mesh used in the GWFV model, and it can 

be seen that the best improvement in accuracy was noticed at the river well group since 

the cells fitted exactly to the shape the river and the direction of the flow towards the 

river. Figure 6.22 emphasises the improved accuracy for this group. Figures 6.23 shows 

the overall features of the steady state calculated vs. observed head around a line of equal 

relation. The normalised RMSE for MODFLOW was 8.21%, on the orthogonal 50 x 50 

mesh whereas the GWFV on the 50 x 50 non-orthogonal mesh gave 7.15%. This 

accuracy was only reached by MODFLOW when running the model on a mesh refined 

by two (i.e. a 100 x 100 mesh). The MODFLOW normalised RMSE was then 7.11%. 

This clearly highlighted the higher accuracy of the GWFV relatively to MODFLOW 

when using non-orthogonal grid that capture the geometry of the river for this particular 

case. A lower mesh resolution was needed for the GWFV to give the same results as 

MODFLOW.

6.8 Conclusion

Although only a 50x50 mesh was used, the results of the GWFV model for a non- 

orthogonal mesh were compared to the results from the 100x100 mesh using 

MODFLOW and the comparisons showed a high level accuracy. In particular, the 

agreement was closest near the river, where heads at observation boreholes were close to 

the predicted heads. Therefore, it can be noted that using a grid that fits closely the 

geometrical layout of the river with the GWFV model, in this case, reduced the use of 

mesh nodes by 50% in comparison with MODFLOW, without loosing accuracy in the 

predicted heads. The new model generated from MODFLOW with a non-orthogonal 

quadrilateral grid can give more accurate results, with a greater flexibility at internal 

and/or external boundaries.
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Figure 6.22 Comparison of head results from MODFLOW and the GWFV model 
for non-orthogonal with observed heads, for different observations 
well groups.
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Figure 6.23 Steady state calculated vs. observed heads on 35 observation boreholes.



Chapter 7

Conclusions and Recommendations

7.1 Review and Conclusions

As outlined in Chapter 1, the main objective of this work has been to develop, 

implement and verify a 2D finite volume solution within MODFLOW, to predict flow 

processes in groundwater systems. This new capability was to include non-orthogonal 

grids, and include the benefits of unconditional mass conservation. Following a 

critical review of MODFLOW, and recent improvements, it was found that the use of 

the finite difference method presented limitations in the representation of features 

with a curved geometry and thus a loss of accuracy in the numerical solutions. To 

tackle this problem, a new 2D groundwater flow finite volume model, named the 

GWFV model, was developed in this study as an alternative solution method, within 

the finite difference-based simulator MODFLOW. The numerical method used to 

solve the governing equations was aimed at giving broad flexibility for grid shapes in 

the x andy directions. Therefore, when constructing a conceptual model, assumptions 

related to the geometry of the boundaries could be more realistic and accurate. The 

changes that were made in developing the new model were made in a consistent 

manner to the structures of MODFLOW, with popularity-oriented objectives.

The main developments and findings from this study can be summarised as follow:

Firstly, many forms of the approximation of a flux through a surface that can be 

employed in the discretisation of the groundwater flow equation, using a quadrilateral 

geometry, were reviewed and evaluated with respect to their suitability for numerical
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solution by the finite volume approach and within the MODFLOW objectives. Three 

different finite volume discretisation methods were selected and developed to solve 

the groundwater flow equation. The differences between these methods were in the 

way that the gradient on a control volume face was approximated and, consequently, 

the generated matrix coefficients.

Secondly, numerical tests were carried out to check the performance of the three 

constructed methods. Five particular aspects were investigated, namely: accuracy, 

sensitivity to mesh size, grid shape effects in terms of non-orthogonality and 

skewness, accuracy at irregular boundaries, and heterogeneity effects. It was found 

that the model based on the higher order flux approximation technique, termed the 

GWFV model, gave the most accurate results.

Thirdly, a brief description of the implementation of the preferred finite volume 

method into the existing MODFLOW code, and the consequent changes and 

requirements were presented. The core of these changes was: (i) the computational 

grid enabled by the new method, which consisted of structured quadrilateral-shaped 

control volumes defined by the coordinates of their vertices, and (ii) the calculations 

needed to approximate the gradient terms at cell faces.

Fourthly, a field case model was set to validate the GWFV model. The model was 

first set up in 3D in order to have the best choice of parameter estimation and 

boundary conditions. The calibration process gave good results. The model was then 

conveniently reduced to a 2D model, for the new GWFV code to be fully validated. 

The test results indicated that GWFV offers a viable alternative to the finite difference 

solution method used in MODFLOW. Its use is desirable when accurate simulation of 

boundary conditions or complex property distributions with a mass balance are 

required. For the field case of this study, the GWFV model performed better than the 

MODFLOW model.

When constructing the GWFV model, the primary focus was on finding the best finite 

volume method to solve the groundwater flow equation, for the same assumptions, 

and with a more accurate representation of the boundary conditions, giving a similar 

ease of use as in MODFLOW, and minimal changes to the source code. In this sense,
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when developing the three finite volume methods in Chapter 4, the mesh structure 

was kept constant but the resulting matrix coefficients showed similar properties to 

the matrix system equations in MODFLOW, with the exception of the GWFV model
f

when using the non-orthogonal grid. The numerical errors of this method and 

accuracy issues were discussed. Numerical tests showed that the method was second- 

order accurate and had the lowest non-orthogonality induced error. The changes 

necessary within MODFLOW, to make it compatible with the new finite volume 

formulation, mainly affected the input data and the code lines concerned with the 

equations formulation. The calibrated field model also showed that the GWFV model 

performed well in simulating flow to a river boundary that was sited diagonally in a 

near rectangular aquifer. The accuracy improvement from the GWFV model was 

particularly noticeable near the river and at the landfill site, where the cells were fitted 

to the boundaries closely. The simulated results, the benchmarked results, and the 

field observation results are shown to give good agreement.

7.2 Recommendations for Further Work

7.2.1 Two-Dimensional Finite Volume Extension to Other Processes

In this study, the changes inspired by the finite volume implementation were basically 

made in the MODFLOW-2000 global (GLOBAL) and groundwater flow (GWF) 

processes. Similar changes can be expanded to the observation and sensitivity 

processes of MODFLOW 2000. Several packages of these processes involve cell 

geometry dimensions and thus should be adjusted for compatibility with the new 

numerical method implemented in the GLOBAL and GWF processes.

The finite volume discretisation used in this study can be adequately used to simulate 

transport in strongly orthotropic and anisotropic media in two dimensions (see 

Jayantha and Turner, 2003 (a) and (b)). This method can also be particularly applied 

to the solute-transport equation, as used by the U.S. Geological Survey MOC3D 

transport model or the MT3DMS model. The MOC3D model uses the method-of- 

characteristics to solve the transport equation, on the basis of the hydraulic gradients 

computed with MODFLOW for a given time step. It is also in the public domain and 

the code is available from the World Wide Web, within the MODFLOW-2000



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 178

process and is called GWT. The MT3DMS model includes the standard finite- 

difference method, along with three optional solution schemes for transport. This 

model is private (developed at the University of Alabama for the U.S. Department of
r

Defense). However, recent versions of MODFLOW incorporate the package LMG, 

linking MODFLOW to the MT3DMS model.

7.2.2 Extension to 3D and Implementation in MODFLOW Recommendations

7.2.2.1 Three-Dimensional Finite Volume Discretisation

Few studies have been undertaken to investigate accurate three-dimensional finite 

volume discretisations for solving flow and transport problems dominated by 

diffusion in heterogeneous and anisotropic media. This is due to the fact that these 

techniques are still being improved in two dimensions. The extension of these 

methods to three dimensions is a laborious task and the algebra may be quite 

complicated. Thus, the extension should be made on the basis of an exhaustive 

investigation of the available techniques in two-dimensions and a rigorous analysis 

and comparison of their performances.

The study reported herein has presented a thorough investigation of the existing two- 

dimensional finite volume techniques that are applicable to solve the governing 

groundwater flow equation as used in MODFLOW. The final selected method was 

developed after analysing and comparing the performance of a range of investigated 

techniques. Naturally, the next recommended step in this work would be to develop 

the finite volume model in three dimensions. This could be achieved by adding a 

vertical discretisation (i.e. along the z direction) to the groundwater equation used in 

MODFLOW, as expressed in Equation 3.1. The vertical discretisation concepts used 

in MODFLOW would no longer be needed, as the flexibility of the non-orthogonal 

grid would enable the model to fit the layers stratification. This method would provide 

a good foundation upon which the three-dimensional extension of the finite volume 

model, developed within MODFLOW, could be made. The method has proved to 

perform well throughout the numerical and field tests in this study comparatively to 

the analytical and/or MODFLOW solutions, with the solution not requiring any new 

solvers to treat the generated system of equations. Furthermore, extending the scheme



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 179

to 3D applications would be less costly than using the other methods considered in 

terms of computational effort and storage requirements. However, the increase in 

computer memory requirements due to the introduction of additional arrays in the 3D
f

model code should be investigated. Tests should also be carried out to assess the 

performance of the existing solvers with the newly generated matrix, as well as their 

sensitivity to the new 3D cell shapes and number. The computational effort would be 

analysed by a CPU time measurement.

7.2.2.2 Implementation in MODFLOW

The traditional process of discretisation, consisting of manually calculating 

appropriate parameter values to assign to each fmite-difference cell, would no longer 

be necessary with a 3D finite volume solution. Assigning a non-orthogonal and 

structured mesh to an aquifer system to be modelled, and its related parameters, is a 

task that could be achieved by using a graphical tool. For MODFLOW-2000, the 

recently developed USGS programme MFI2K (Harbaugh, A.W., 2002) helps in 

preparing model input-data by interactively entering the data through a series of 

display screens. However, the program does not allow any space visualisation or mesh 

generation of the modelled area.

A link to visualisation software tools and a mesh generator will be needed, 

particularly for discretising the aquifer system to be modelled into a three dimensional 

mesh. Robins et al. (2005) have pointed out the main role of visualisation tools as a 

foundation for a conceptual model. They also presented 3D visualisation software to 

facilitate the development of a conceptual model and allow data held within it to be 

directly accessed by Visual Modflow. This will help the modeller in fitting more 

precisely the grid to the hydrogeological features of the aquifer in 2D and 3D. An 

interface with a Geographical Information System (GIS) could also be considered. A 

combination of a 3D visualisation software tool and a GIS would provide a more 

valuable tool for displaying and analysing data. In this sense, software tools such as 

MDR (Modflow Data Reader) or GW Modeler (see Table B.2) should be modified to 

account for the new MODFLOW finite volume process GWFV input requirements.
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Finally, an interface with a mesh generator that can discretise the geometric domain of 

the aquifer into quadrilateral (in 2D) or hexahedra (in 3D) fitting with the spatial 

distribution of boundaries, geologic formations and hydraulic constraints could be
f

included. Mesh generators such as Easymesh (2D) and LaGriT (3D) give an insight as 

to how a suitable MODFLOW-GWFV linked-mesh generator should be. An interface 

between Tecplot Mesh Generator (‘Mesh file’ format ASCII) and the GWFV 

programme as the MODFLOW free format-reading programme can also be 

suggested.

1.2.2.3 Three-Dimensional Finite Volume Model Testing

The numerical model could be validated for a 3D flow situation by comparison with 

laboratory experimental observations. For example, a 3D sand model (see section 

2.1.1) could be set up to check the accuracy of the numerical model, particularly with 

respect the representation of irregular geometries of specific hydraulic features. 

Complex flow situations could be studied, such as uniform flow in a heterogeneous 

medium with an irregular interface shape either vertically (layers) or horizontally 

(adjacent geological formations), or a semi-phreatic flow between two channels with a 

curved pattern in a homogeneous aquifer with uniform recharge. The model could 

replicate groundwater flow using a container with dry glass beads of known shape, 

and therefore hydraulic conductivity, and the tests could be constructed at an 

appropriate laboratory scale.

Analytical solutions could also be used and developed further for specific conditions 

of ID, 2D and 3D flow cases (see section 2.4.1). The cross section cases, such as flow 

to a pumped well in a confined, unconfmed, or leaky aquifer (e.g. Theis solution, 

Hantush solution, Moench and Prickett solution), or 2D flows in vertical plane (Toth 

solution) could be used to check the accuracy of the added vertical discretisation in 

the new model.

Finally, a field case study that has been extensively investigated would be ideal to 

validate the 3D model. The case would preferably have a multi-layer aquifer system, 

curved areal extension, and hydraulic features that could highlight the adaptability of 

the non-orthogonal grid to the geometry for the surface and/or vertical dimensions
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(e.g. river, different areal recharges, stream, wetlands). Most importantly, if not 

already modelled and calibrated, this study would ideally have enough monitoring 

data in space and time to build a realistic conceptual model, with a minimum of 

uncertainties, and offering reliable field observations data to enable comparison with 

the numerical model predicted results.
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Table A. 1 Compilation of few analytical groundwater flow models.

3DFLOW* 3-D groundwater flow Analytic Element 

Method

Steady flow to horizontal wells, partially or fully penetrating wells in a regional field o f  

uniform flow. Bounded horizontal, semi-infinite or infinte aquifer can be simulated.

Steward, D.

Kansas State University

ANALYT 2 and 3-D groundwater flow 

with recharge/discharge

Superposition Isotropic or anisotropic, homogeneous water-table aquifer with an impermeable or semi- 

pervious layer; different boundary conditions and geometry; and several independent 

recharge or discharge sources of different geometry, operational time, and flux rate.

Kolesov, A.A.

Production and Research Institute for 

Engineering Construction Survey 

(PNAIS), RUSSIA
AQTESOLV Aquifer test analysis Exact /  approxiamte 

analytical

Confined, unconfined, leaky or fractured aquifers, one or two-aquifer systems, single or 

multiple pumping wells, partially or fully penetrating wells.

Duffield, G.M. 

HydroSOLVE, Inc
AquiferTest Pro Pumping Test Analysis Exact / approxiamte 

analytical

Confined, unconfined, leaky aquifers and fractured rock aquifers. Waterloo Hydrogeologic, Inc.

AquiferWellTest Aquifer test analysis Exact / approxiamte 

analytical

Single well test data with solutions for: slug, constant discharge, variable discharge, step 

drawdown and recovery tests.

BOSS International

AquiferWin 32 Aquifer test analysis Exact /  approxiamte 

analytical solution 

and analytic elements

Confined, unconfined or leaky aquifers with completely or partially penetrating pumping 

wells, fissured groundwate reservoir with fracture skin.

Scientific Software Group

BEAVERSOFT 2-D groundwater flow 

and pollution
Analytic solutions Steady and unsteady 2-D flow in nonhomogeneous aquifers, flow through dams. Venuijt, A., and Bear, J.

Delft University of Technology
CAPZONE 2-D groundwater flow Exact / approxiamte 

analytical
Isotropic and homogeneous confined, leaky-confined, or unconfined flow conditions with 

up to 100 wells.

Bair, E.S., et al. 

IGWMC
GFLOW2000* 3-D local flow, 

2-D regional flow
Analytic Element 

Method
Confined and unconfined, homogeneous or heterogeneous aquifers,streams, lakes, 
wetlands, areal recharge and drains can be simulated.

Haitjema, H.M.

Haitjema Software, LLC
GWFLOW 7 groundwater flow 

problems

Exact / approxiamte 
analytical

Homogeneous, isotropic aquifers, confined, unconfined or leaky aquifer, fully penetrating 
single well, circular recharge area.

Van der Heijde, P.K.M. 

IGWMC
MLPU 3-D groundwater flow Analytic Element 

Method

Multiaquifer system, wells, linesinks, infiltration ponds and transient wells, confined and 

leaky aquifers, aquifer assumed to be of infinite extent, laterally homogeneous and 

isotropic, but aquifers can be composed o f up to 3 layers with distinct 
permeability, porosity and thickness.

Nienhuis, P.R. 
The Netherlands

ModAEM* 3-D regional groundwater 
flow

Analytic Element 
Method

Partially penetrating well in confined/unconfined and stratified aquifers. Haitjema, H.M. Wittman Hydro 
Planning Associates (W.H.P.A. Inc.)

PhreFlow* 3-D groundwater flow and 

advective transport

Analytic Element 

Method

Single layer groundwater flow, unconfined with partially penetrating wells and 

inhomogeneities.

Fankovic, I., and Bames, R. 

University at Buffalo
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PRINCE 2-D groundwater flow 

1, 2 and 3-D solute transport

Exact / approxiamte 

analytical

Confined, unconfined or leaky, isotropic or anisotropic aquifer o f finite, semi-finite and

infinite lateral extent, single or multiple injection and extraction

wells. Simnle treatment of recharge/barrier boundary conditions can be used.

Cleary, R., and Ungs, M. 

Waterloo Hydrogeologic, Inc.

QuickFlow 2-D groundwater flow Semi-analytical Confined and unconfined aquifers, wells, uniform recharge, circular recharge/discharge 

areas, line sources and sinks.

Rumbaugh, J.O. 

Rockware. Inc.

RBCA Tier 2 
Analyzer

2-D groundwater flow and 

contaminant transport 

simulation

Superposition Complex boundary conditions and 'leaky' boundary conditions representing pumping 

wells and injection wells, flow boundaries, rivers and lakes with 

complex geometries, and regional hydraulic gradients.

Scientific Software Group

SATEM 2002 Aquifer test analysis Exact / approxiamte 

analytical

Unconsolidated, confined, leaky confined or phreatic aquifers, fully or partially 

penetrating wells.

Boonstra, J. International 

Institute for Land Reclamation 

and Improvement fILRI)

Single Well Solutions Pumping test analysis Exact / approxiamte 

analytical

Single well pump, constant or variable discharge, folly or partially penetrating in confined 

or unconfined aauifers.

Streamline Groundwater 

Applications '
SLAEM/MLAEM 2 and 3-D regional 

groundwater flow

Analytic Element 

Method

Confined, unconfined, and leaky heterogeneous aquifers, single or multi-layers, 

streams, lakes, rivers, extraction or infiltration and leakage can be reDresented.

Strack, O.D.L.

Strack Consulting. Inc.
SLUGC/SLUGT Aquifer test analysis Exact / approxiamte 

analytical

Simulates traditional manual curve fitting. In addition, SLUGT can estimate effects 

due to air entrapped in the completion region of a piezometer.

Van der Heijde, P.K.M. /  Mills, A. 

IGWMC
SPLIT* 2-D groundwater flow Analytic Element 

Method

Single-layer groundwater flow in heterogeneous aquifers with particle tracking, capture- 

zone delineation, and parameter estimation.

Jankovic, I. 

University at Buffalo
THCVFIT Pumping test analysis Exact /  approxiamte 

analytical

Nonsteady state Theis equation for radial flow. Van der Heijde, P.K..M. 

IGWMC
THEISFIT 2-D groundwater flow Exact / approxiamte 

analytical

Isotropic homogeneous nonleaky confined aquifer (Theis assumptions). McElwee, C.D. 

IGWMC
THWELLS Pumping / injection 

test Analysis

Exact / approxiamte 

analytical

Isotropic, homogeneous confined, leaky confined or unconfined aquifer o f infinite extent. 

Up to 100 pumping and/or injection wells can be used.

Van der Heijde, P.K..M. 

IGWMC
TimSL/TimML* Groundwater flow Analytic Element 

Method
Single aquifer steady-state and transient groundwater flow. 
Multi-aquifer steady-state groundwater flow with analytic elements.

Bakker, M., et al.
The University of Georgia

TIMELAG Single-well test analysis Exact / approxiamte 

analytical

Estimates hydraulic conductivity from single-well test. Thompson, D.B. 
IGWMC

TWODAN 2-D groundwater flow model Analytic Element 
Method

Unconfined and confined aquifers, stratified aquifers, heterogeneities, thin barriers, local 
and global infiltration or leakage. Uniform regional flow, wells and sinks, resistant and 

impermeable elements.

Fitts, C.
Fitts Geosolutions

VERTPAK* Groundwater flow and solute 

transport
Exact / approxiamte 

analytical

Fractured and unfractured porous media, homogeneous, isotropic confined aquifer of 

infinite lateral extent, folly or partially penetrating well.

Lester, B., et al.

Nuclear Energy Agency
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Visual BLUEBIRD* 2-D groundwater flow Analytic Element 

Method

Single-layer heterogeneous aquifers. Rivers, lakes, wells, recharge, leakage, horizontal 

wells can be represented.

Craig, J.

University at Buffalo
WALTON 35 2 and3-D groundwater flow, 

solute and heat transport

Exact /  approxiamte 

analytical

Confined/leaky confined/water-table aquifer, steady/non-steady state, multiple fully 

penetrating wells, recharge and stcaim depletion.

Walton, M.W.C 

IGWMC
WELLTEST Pump test and 

slug test analysis

Exact / approxiamte 

analytical

Homogeneous, isotropic, confined, leaky confined and water table aquifers, partially or 

fully penetrating wells.

IGWMC.

WhAEM 2000* Capture zone delineation and 

protection area mapping

Analytic Element 

Method

Confmed/unconfmcd, homogenuous/heterogenuous aquifers, hydrological boundaries 

such as rivers, recharge, and no-flow contacts.

Strack, O.D.L., and Haitjema, H.M. 

USEPA
WHPA* 2-D groundwater flow 

capture zone delineation

Semi-analytical Homogeneous confined, unconfined, and/or leaky aauifers. multiple pumping and iniectioi 

wells , barrier or stream boundary conditions can be used.

Blandford, T.N., and Huyakom, P.S. 

USEPA
WinFlow 2-D groundwater flow Analytic Element 

Method

Homogeneous confined, unconfined, and/or leaky aquifers with multiple wells, uniform 

recharge, circular recharge/discharge areas, and line sources or sinks.

Rumbaugh, J. ' 

Environmental Simulations Inc.

* can be found in a public domain version

USEPA United State Environment Protection Agency
USNRC United State Nuclear Regulatory Commission
USACE United State Army Corps of Engineers
USDOE United State Department of Energy
IGWMC International Ground Water Modeling Center

185



Table A.2 Compilation of few numerical groundwater flow models.

3DFATMIC* 3-D subsurface flow, 

transport and fate

FE Transient or steady-state density-dependent flow field in heterogeneous and anisotropic 

media with variable boundary conditions.
Yeh, G.T., 

USEPA
3DFEMFAT 3-D flow groundwater 

and transport

FE Saturated/unsaturated media, heterogeneous and anisotropic , transient or steady-state, 

variable boundary conditions.

Yeh, G.T.,

Scientific Software Group
ABCFEM 2-D groundwater flow and 

transport

FE Steady state or transient flow, pumping or injection wells. Variety of boundary conditions. 

Confined/ unconfined systems.

Brown, A., and Hertzman, R. 

Adrian Brown Consultants Inc.
AQUA3D 3-D groundflow, heat and 

solute transport

FE Inhomogeneous and anisotropic flow conditions, variable boundary conditions, steady or 

transient flow.

Scientific Software Group

AQUIFEM 2 and 3-D groundwater flow FE Anisotropic, heterogeneous, phreatic or confined, leaky or non-leaky aquifers under 

transient or steady state conditions.

Townley, L.R., et al., 

Scientific Software Group
BEAVERSOFT 2-D groundwater flow 

and transport

FD and FE Steady and unsteady 2-D flow in nonhomogeneous aquifers, flow through dams. Veiniijt, A., and Bear, J.

Delft University of Technology
BEMLAP 2 or 3-D Laplace problems BEM Steady state, homogeneous and isotropic media, subject to any type of the domain 

boundary conditions, no sources/sink can be considered.

Kirkup, S.

Integrated Sound Software
BIGFLOW 3-D groundwater flow FDorFV Saturated/unsaturated, heterogeneous and anisotropic media, transient and/or steady- 

state. variable boundary conditions.

Ababou, R.

U.S.Nuclear Regulatory Commission
BioF&T 3-D biodegradation, ground

water flow and transport
FE Saturated/unsaturated, heterogeneous, anisotropic porous media or fractured media, 

variable boundary conditions, steady or transient flow.

Scientific Software Group

BIOSLURP 2-D groundwater flow and 

vapor transport
FE Multiphase flow in saturated/unsaturated zones, heterogeneous, anisotropic porous 

media or fractured media, 1 st and 2nd type boundary, source/sink boundary .

Scientific Software Group

CFEST* 2 and 3-D coupled fluid, 
energy and solute transport

FE Accounts for heterogeneity and anisotropy, steady and transient -state flow, multilayered 

system and time-dependent or constant source/sinks.

Gupta, S.K., and Cole, C.R. 

USDOE
DSTRAM 3-D groundwater flow 

and transport
FE Density-dependent flow and transport in fully saturated porous media, steady/transient 

simulations, heterogeneous and anisotropic media, a wide range of boundary conditions

Huyakom, P.S. 
HydiGeoLogic, Inc.

DYNFLOW 3-D groundwater flow FE Transient and/or steady-state flow, hetregeneous anisotropic saturated media, confined- 
unconfined flow conditions, allows a wide range of stresses and boundary conditions.

Riordan, P.J., et al. 
Camp Dresser&McKee

FACT 3-D groundwater flow 
and contaminant transport

FE Saturated/unsaturated, porous media, highly heterogenous, multi-layer aquifer system 
with different options for boundary conditions implementation.

Aleman, S. 
USDOE

FEFLOW 2 and 3-D groundwater flow 

and transport
FE Transient or steady-state flow, density-dependent flow, variable boundary conditions. Durbin, T.J., and Bond, L.D. 

Waterloo Hydrogeologic, Inc.
FEMWATER* 3-D saturated/unsaturated 

groundflow
FE Heterogeneous and anisotropic media, transient and/or steady-state, variable boundary 

conditions.
Yeh, G. T.
USEPA and USNRC

FLONET 2-D groundwater flow FE Steady-state, confined or unconfined aquifer, heterogeneous and anisotropic porous 

media with complex boundary.

Frind, E., et al.

Waterloo HydroGeologic Software
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FLOWPATH 2-D groundwater flow FD Steady-state, confined, leaky or unconfined flow in heterogeneous and anisotropic 

porous media, variable boundaries.

Franz, T., and Guiguer, N. 

Waterloo HydroGeologic Software

FTWORK 1, 2 and 3-D groundwater 

flow and solute transport

FD Steady-state and transient flow in saturated media under confined and unconfined 

conditions. The model handles heterogeneities and anisotropy for flow.
Faust, C.R., et al. 

GeoTrans, Inc.

GGU-SS FLOW2D 
GGU-TRANSIENT 
GGU-SS FLOW 3D

2 -D groundwater flow

3 -D groundwater flow

FE Steady state. Considerations o f seepage lines and unsaturated zones apply. 

The transient state flow model.

Steadv state onlv.

GGU-Software

Golder Groundwater 
Computer Package

2 and 3-D groundwater flow 

and solute transport

FE Steady-state or transient simulation, in anisotropic, heterogeneous, multi-layered aquifer 

systems, for confined, leaky-confined and unconfined flow problems.

Miller, I., and Marlon-Larabert, J. 

Golder Associates, Inc.

HMS (SHM, THM, 
GHM, CGI)

3-D hydrolgic model system FD The sub-model GHM simulates satureted flow for confined-unconfined aquifers, 

restrictions on boundary conditions.

Yu, Z. Earth System Science Center, 

Penn State University >

HST3D* 3-D groundwater flow, heat 

and solute transport
FD Saturated groundwater flow, onfined or unconfined aquifer, heterogeneous and 

anisotropic with variable boundary conditions.

Kipp, J.K.L. 

USGS
JDB2D/3D* 2-D groundwater flow 

quasi-3D flow
FD 2D, single-aquifer (JDB2D) and quasi-3D, multi-aquifer (JDB3D), transient flow for 

confined and leaky-confined aquifer systems.

Bredehoeft, J.D. 

USGS
MARS 2 or 3-D groundwater flow 

and solute transport
FE Multiphase flow in unconfined heterogeneous, anisotropic aquifers, in saurated or 

unsaturated zones.

Scientific Software Group

MicroFEM 2-D groundwater flow FE Confined, leaky and unconfined conditions, heterogeneous aquifers and aquitards 
steady-state and transient flow, anisotropic aquifers, spatially and temporally - varying 

wells and boundary conditions, Precipitation, evaporation, drain, rivers, saturated 

single-density flow, multiple-aquifer systems and stratified aquifers.

Hemker, C J and Boer, R.G. 

Scientific Software Group

MikeSHE 2 or 3-D groundwater flow 

and hydrologic processes

FD Saturated/unsaturated zones, heterogeneous and isotropic media, steady/unsteady state 

confined/unconfmed aquifer, variables boundary conditions, link to surface water models.

DHI Software

MODFE* 2-D groundwater flow FE Transient or steady state conditions; nonhomogeneous and anisotropic flow, 
confined and unconfined, the three types o f boundary conditions.

Torak, L.J., et al. 

USGS
MODFLOW* 3-D groundwater flow FD Transient or steady state conditions; nonhomogeneous and anisotropic flow, confined 

and unconfined, variable boundary conditions.

McDonald, M.G., and Harbaugh, A.W. 

USGS
MOFAT* 2-D groundwater flow and 

solute transport
FE Multiphase flow in variably-saturated porous media, heterogeneous, anisotropic porous 

media, boundary type 1 and 2 can be simulated.
Katyal. A.K., et al. 
USEPA

MOTIF 1, 2 or 3-D groundwater flow, 
heat and solute transport

FE Variably saturated flow in fractured, deformable or porous media, steady/transient 
state, heterogeneous and anisotropic media.

Guvanasen V., et al.
Atomic Energy of Canada, Ltd.

MOVER 2-D groundwater flow FE Multiphase flow, saturated/unsaturated zones, heterogeneous, anisotropic porous or 

fractured flow systems, with specified head and flux conditions and source/sink.

Scientific Software Group
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PLASM 2-D groundwater flow FD Nonsteady flow of ground-water in heterogeneous anisotropic aquifers under water 
table, nonleaky, and leaky confined conditions, Includ pumpage from wells.

Prickett, T.A., and Lonnquist, C.G. 
Thomas A. Prickett & Associates, Inc.

PORFLOW 2 or 3-D groundwater flow, 

heat and mass transport

FV Multiphase fluid flow, variably saturated, fractured or porous media, anisotropic and 

heterogeneous, arbitrary sources o f sinks and varied boundary conditions

Runchal, A.K..

Analytic & computational research Inc.
ROCKFLOW* 2-D groundwater flow 

heat and mass transport

FE Variable density flow, porous or fractured media, confined/unconfmed aquifers, 

anisotropy and heterogeneity, variable boundary conditions.

Krohn, K..P., et al.

Institute of Fluid Mechanics, Hannover.
SEEP2D 2-D groundwater flow FE A steady state, confined or unconfined, saturated and unsaturated flow model with non

homogeneous and anisotropic soil. It is designed to compute seepage on profile models.

Tracy, F. 

USACE
SEEP/W 2-D groundwater flow FE Saturated/unsaturated conditions, steady/transient state flow , wells, a variety of 

boundary conditions, confined/phreatic heterogeneity and anisotropy may be analysed.

Krahn, J., et al.

GeoSlope International, Inc.
SUTRA* 2 and 3-D groundwater flow, 

solute or energy transport

FE and IFD Saturated/unsaturated, constant or variable-density fluid flow, steady-state or transient 

flow, variables flowboundary conditions.

Voss, C.I., 
USGS

SWICHA 3-D groundwater flow and 

solute transport

FE Simulates variable density fluid flow and solute transport processes in fully-saturated 
porous media, steady-state or transient field problems.

Huyakom, P.S., et al. 

GeoTrans, Inc.
SWIFT 3-D groundwater flow 

and transport

FD Flow and transport of fluid, heat, brine, and radionuclide chains in porous and fractured 

geologic media. Heterogeneity, anisotropy and a variety o f boundary condition and 

sources mav be modeled.

Cranwcll,R.M., et al. 

GeoTrans, Inc.

TARGET 2, 3-D groundwater flow and 

chemical-SDecies transport

IFD 2-D confined/unconfmed, transient ground-water flow,

3-D saturated, density coupled, transient uround-water flow.

Shaima, D., et al. 

IGWMC
VS2DT 1 and 2-D groundwater flow 

------ and_solute transport

FD Variable saturated flow, confined/unconfmed aquifers, anisotropy and heterogeneity 

roav.be modeled, varied_boundarv conditions. _

Healy, R.W. 

USGS

* can be found in a public domain version

USEPA United State Environment Protection Agency
USNRC United State Nuclear Regulatory Commission
USACE United State Army Corps of Engineers
USDOE United State Department o f Energy
IGWMC International Ground Water Modeling Center
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Table B.l Current MODFLOW compatible pre and post-processors (February 2003).

Maplt A software tool that rapidly produces code specific flow and transport modeling (ex. MODFLOW, 
MT3D) input files. It can read a variety of model independent 1, 2 and 3-D data sources, provides 

interpolation and extrapolation control, as well as extensive mesh editing capabilities with an easy- 

to-use graphical interface.

MFI2K* A data input programme for MODFLOW-2000 and MODPATH. Data are entered interactively USGS http://water.usgs.gov/

m o d e l g is

through a series of display screens.
A menu-driven GIS-based interface for MODFLOW running on Unix workstations, which helps to 
prepare data sets with separate menus for each of the MODFLOW packages.

HIS GeoTrans, USA. http://www.hsigeotrans.com

MODLMAKR A graphical interactive pre-processor for flow and solute transport models (MODFLOW and MOC). Microcode Inc. USA. NA

MODPORT A graphical-based pre-processor for MODFLOW. It uses two different screens ( the foreground and 
background) to modify existing arrays of data and to build MODFLOW input files.

SDI Environmental 
Services, Inc. USA.

http://www.isgw.com/
>

modport.html

PREMOD An interactive user friendly programme used to create new input data files and editing existing ones 
for MODFLOW. Array data entry is facilitated by six different algorithms that eliminate repetitive data

IGWMC, USA. http://typhoon.mines.edu 
/softwa re/igwmcsoft/

RAD MOD*

3D Groundwater Explorer 
(or 3D M aster Explorer)

A pre-processor to the programme MODFLOW for simulation of axisymmetric problems, USGS http://water.usgs.gov/ 
calculating the conductances and storage capacity. ___ __ v v-v-v .

A software that provides three-dimensional visualization and animation of data from groundwater flow Scientific Software http://www.scisoftware.com 

and transport models. It uses MODFLOW 88/96/2000 input files or models created by PMWIN. Group, USA. ...............................
CONTOUR* A basic contouring programme for gridded data designed for use with finite difference models. It can USGS http://water.usgs.gov/

GW_Chart* A utility programme developed in conjunction with the MODFLOW-GUI and is used for postprocessing 
of the output of MODFLOW creating specialized graphs (calibration plots, water budget plots, 
hydrographs, lake plots and piper diagrams).

USGS http://water.usgs.gov/

GMPP (Groundwater Modeler's 
Productivity Pak) ...........  w w
Model Viewer*

A programme that converts MODFLOW, SUTRA and MOC output to a variety of file formats for 
graphical display of model results.
A computer programme that displays the results of 3-D groundwater models (including MODFLOW). 
It can display colorful isosurfaces, vectors, pathlines, cells or nodes that represent model features, 
auxiliary graphical objects, and animation.

Saguaro Software 
Inc. USA.

USGS

http://www.saguarosoft.com

http://water.usgs.gov

MODPATH* and 
MODPATH-PLOT*

A particle-tracking post-processor model for MODFLOW which computes 3D flow paths and 
MODPATH-PLOT displays results graphically.

USGS http://water.usgs.gov/

MODTOOLS* A set of computer programmes that translates data arrays input to or output by a MODFLOW 
simulation, and data from MODPATH into the GIS software ARC/INFO.
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PATH3D A general particle tracking programme for calculating groundwater flow paths and travel times using S.S. Papadopulos & http://www.sspa.com/
input and resulting head files solution of MODFLOW. It is a DOS-based code with a menu-driven shell. Associates, lnc; USA. products^ath3d.htm

pmod_ada* A MODFLOW post-processor added to MT3D software package. It creates 2D head/drawdown 
ASCII files using the binary output from MODFLOW. The resulting files can be used in SURFER or any

USEPA http://www.epa.gov/ada/
csmos.html

POSTMOD
software for countour plots*.  ̂ .................... .......... ............
A MODFLOW post-processor that reformats the model output of head, drawdown, and cell-by-cell 
flow terms. The reformatted output is compatible with graphical contouring packages such as

IGWMC, USA. http://typhoon.mines.edu
/software/igwmcsoft/

Visual Groundwater A graphical tools for 3-D visualization, animation and interpretation of site characterization data and 
modeling results. It provides a direct import of Visual MODFLOW groundwater modeling projects. 
SURFER.

Waterloo Hydrogeo
logic, Inc. Canada.

http://www.flowpath.com/

ZONEBDGT*

CADSHELL

A post-processor to calculate subregional water budgets from MODFLOW simulation results. 
A separate budget is computed for each user-specified zone.

AutoCAD-based graphical pre-processor and post-processor for the simulation programmes 
MODFLOW, MODPATH and MT3D.

USGS http://water.usgs.gov/

IHU GmbH, Germany http://www.ihu-gmbh.com

Graphic Groundwater * A graphical interface for MODFLOW and MODPATH wich simplifies model development and data 
input, helps to develop maps and diagrams, and provides graphic and text files which can be processed 
outside Graphic Groundwater.

Southern Illinois 
University, USA

http://bear.geo.siu.edu/

Groundw ater Data Utilities A set of nearly 40 programs designed for data preparation, translation and formatting tasks required 
in groundwater modeling and data analysis. It can be used with MODFLOW, PEST, and PMWIN, and for

Scientific Software 
Group, USA.

http://www.scisoftware.com

GW Modeler (GWM) An ArcView 3.1 extension that assists pre and post-processing for MODFLOW by creating and passing 
parameter input files to MODFLOW and interactively displays output.

University of 
Wyoming, USA.

http://www .wygisc.u wyo. 
edu/gwmodeler/

ModelCad* and 
TMR Wizard*

- - - - - -

User Interface with Argus ONE)

Pre- and post-processing capabilities for the groundwater flow and solute transport models 
MODFLOW, MODPATH, MT3D, and MODFLOWT. TMR Wizard is a telescopic mesh refinement 
programme for ModelCad.
GIS -based pre and post-processor graphical-user interfaces for preparing MODFLOW-2000, 
MODFLOW-96, MOC3D, MODPATH, and ZONEBDGT input data and viewing model output for 
use within Argus Open Numerical Environments (Argus ONE).

Stonemont Solutions 
Inc. USA

USGS

http://www.hydrotrak.com

http://water.usgs.gov/
http://www.argusone.com

MODFLOWwin32 An advanced pre and post-processing version of MODFLOW developed specifically for Microsoft 
Windows (Win32s) and Windows NT.

Environmental http://www.
Simulations, Inc. USA. groundwatermodels.com/
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MODIME A user-friendly, DOS-based graphical interface for preparation of input files and analysis of simulation 
results forthe.MQpFLOWt_PATH3D and MT3D programs.

S.S. Papadopulos & 
Associates, Inc. USA..

http://www.sspa.com/

MMSP (Modular Model Statistical A statistical pre- and post-processor for analyzing MODFLOW input data and output results. It allows USGS http://ok.water.usgs.gov/

Processor) to easily read data input to and output from the Modular Model, calculates descriptive statistics, 
generates histograms, performs logical tests, calculates data arrays, and calculates flow vectors for 
use in a graphical-display program.

abstracts/wrir89-4159.html

PMDIS A countouring program that works with PMWIN, or independently, to assign cell values using Kriging 
or other interpolation (extrapolation) methods.

Scientific Software 
Group, USA.

http://www.scisoftware.com

* can be found in a public domain version

IGWMC International Ground Water Modeling Center
USEPA United State Environment Protection Agency
USGS United State Geological Survey

192

http://www.sspa.com/
http://ok.water.usgs.gov/
http://www.scisoftware.com


Table B.2 Up-to-date MODFLOW related programmes (February 2003).

BIOMOD 3-D A finite-element fate and multicomponent transport model that is linked to MODFLOW. It simulates convection, 
dispersion, diffusion, adsorption, desorption, and some microbial processes.

>er Web Reference

Draper Aden Environ- http://www.techstuff.com/ 
mental Modeling, Inc. draper.htm

MF2K GWT*

MOC3D* (with 
ELLAM algorithm)

MODFLOWT

An enhanced version of MODFLOW-2000 that incorporates the additional capability to simulate solute- 
transport processes (advection, hydrodynamic dispersion, retardation, decay, matrix diffusion, and mixing 
with multiple fluid sources] based on MOC3D mpdel.__
A 3-D transport model that uses the method-of- characteristics to solve the transport equation on the basis 
of the hydraulic gradients computed with MODFLOW for a given time step. It also gives the alternative of 
using a finite volume Eulerian-Lagrangian localised adjoint method (ELLAM) to solve the transport equation. 
A contaminant transport model which is fully compatible with previous MODFLOW versions (88/96). It 
simulates advection, dispersion, adsorption and first-order decay using fully implicit finite difference method.

USGS

USGS

http://water.usgs.gov/

http://water.usgs.gov/

Hydrosolve, Inc. USA. http.V/www.hydrosolveinc. 
com/

MT3DMS* (Modular 3 -D 
Transport packages)

RT3D (Reactive Transport 
in 3-D)
SEAM3D (Sequential 
Electron Acceptor Model 3-D)

A contaminant transport model that was developed for use with any block-centered finite-difference flow 
model such as MODFLOW. The simulated transport processes include advection, dispersion, diffusion, and 
single-species basic chemical reactions, with various types of boundary conditions and sources or sinks.
An add-on MT3DMS bioremediation transport package for simulating 3D multi-species, reactive transport 
in groundwater. It can accommodate multiple sorbed and aqueous phase species with any reaction framework. 
An add-on MT3DMS bioremediation transport package for modelling aerobic and sequential anaerobic 
biodegradation (includes biodegradation, NAPL dissolution, dechlorination and cometabolism packages).

SEA WAT*

MODCAUF (MODflow and 
CALIbration with Front 
limitation)

AIR3D* 

MODAIR

P3DAIR

A programme that combines MODFLOW and MT3DMS to simulate 3-D variable-density groundwater flow 
in porous media.
A program based on MODFLOW and MT3D for modelling flow and density-dependent transport. It solves 
the equations according to the front limitation algorithm. It also performs parameter calibration using the 
sensitivity method, and is compatible with VISUAL MODFLOW.

An adaptation of MODFLOW code to simulate three dimensional air-flow induced through dry wells or 
trenches, as in vapor- extraction remediation c a u s ^  by atmospheric-pressure variations in unsaturated zqnes. 
A software for modeling airflow in the unsaturated zone, including airflow to an extraction well. It is based on 
MODFLOW, AIRGEN, a preprocessor for preparing the input files for MODFLOW; and PMAIR, a post
processor to plot two-dimensional air-pressure distributions. Supported MODFLOW packages are BAS,
BCF, WEL, CHD, SIP and ouput control utilities.
It uses the input files and pressure solution of MODAIR to simulate air movement and the advective transport 
of vapor in unsaturated soils. It is particularly useful for delineating contaminant capture zones and evaluating 
the effectiveness of vapor extraction wells.
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The University of 
Alabama, USA.

PNL, USA.

Virginia Tech 
university, USA.

*
USGS

Institute of Drilling 
Engineering and Fluid 
Mining, Germany.

USGS

http://hydro.geo.ua.edu/
mt3d/

http://www.pnl.gov/

http://gms.watermodeling. 
org/html/seam3d.html

http://water.usgs.gov/

http://www.tu-freiberg.de

http://water.usgs.gov/

Sicentific Software , http://www.scisoftware.com 

Group, USA.
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DAFLOW*

IHM (Integrated Hydrologic 
Model

MODNET

MOD RET ( MODel to
design RETention ponds)

...........................
MOD TMR*

An integrated surface water/groundawater model that couples the Diffusion Analogy Surface-water flow 
model toMODFLOW to compptewater exchange b e tw e e n .^
It is the coupled BRANCH (branch-network dynamic flow model) and MODFLOW-96 models to simulate 
surface and groundwater interactions, specifically open-channel/aquifer leakage.
An integrated surface water/ground water model which couples Hydrologic Simulation Programme-Fortran 
HSPF(version 12) and M O D FL O yy-96 to simulate the full hydrqlpgic qycle.
A MODFLOW-based integrated hydrologic model that includes additional modules to simulate overland flow,
channel flow, and solute trans£ort.   ...................  ..... .............................................
A model that couples MODFLOW with UNET (Flow through a Full NETwork of Open Channels model) 

developed by USACE..HNjIT I?;..PP.Mp.fgd with MODFLOŴ.through channel b e d ^ ^
A program that calculates unsaturated and saturated infiltration losses from stormwater retention/detention 
ponds in unconfined shallow aquifers. The saturated infiltration is calculated using MODFLOW.

USGS http://water.u3gs.g0 v/

USGS http://water.usgs.gov/

INTERA , Inc. USA. http://www.intera.com/

HydroGeoLogic, Inc. http://www.hgl.com
USA. _
West Consultants, Inc.

Sicentific Software http://www.scisoftware.com
Group, USA.

TMRDIFF*

A program for telescopic mesh refinement using MODFLOW. It allows construction of local-model data sets USGS
that specify perimeter boundary conditions of local models embedded within regional models constructed
with MODFLOW-96.________ ____ ________  ____ ___________________ _________________ ___
A program which provides a means of comparing computed head or drawdown in a local model and those in USGS

http://water.usgs.gov/

http://water.usgs.gov/

RIVGRID* A program to construct MODFLOW data sets for head-dependent boundaries (river, drain, general-head 
..toundary , stream) usjng grid:independent data ^ .....

USGS http://water.usgs.gov/ 

h ttp ://www. haitjema .com/GFLOW2000*

GW Modeler 

M6bFLbWARC;

A groundwater flow model based on analytic element method and particularly suitable for modeling regional 
horizontal flow. It supports a MODFLOW-extract option to automatically generate MODFLOW files in a user 
defined area to facilitate detailed local flow modeling.

An ArcView 3.1 extension that was developed to assist pre-processing and post-processing for MODFLOW. 
It creates and passes parameter input files to MODFLOW and interactively displays output.
A modified version of MODFLOW which can read and write files used by a geographic information system .

Haitjema Consulting, 
Inc. USA.

University of 
Wyoming, USA. 
USGS

IDRISMOD A software that translates between regular images from IDRISI Geographical Information System files and 
MODFLOW array-images.

IGWMC, USA.

http://www.wygisc.uwyo.
edu/gwmodeler/
http://oregon.usgs.gov/
projs_dir/modflowarc/
http://typhoon.mines.edu
/software/igwmcsoft/
http://www.geotransinc.comMDR (MODFLOW 

Data Reader)
An ArcView® GIS Software extension that imports MODFLOW input data sets into ArcView shape files. 
The optional version of the MDR can contour MODFLOW output data into lines and/or shaded model 
grid cells. The shape files created with the MDR are available for further processing in the ArcView 
Software environment.

GeoTrans, Inc. USA.
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AQMAN3D____
MOD MAN* (MODflow 
MANagement)

ModGA^

ModGA^P......................
ASAP (Adaptive Simulated 
Annealing Package)

MODOFC*

PEST-ASP* (Advanced 
special parameterisation)
MODFLOW-ASP*

MODINV

MODPUMP (MODflow 
simulated PUMPing test)

A mathematical programming system dataset generator for aquifer management using MODFLOW.
Adds optimization capability to MODFLOW-96.When it is used in conjunction with the Lindo© optimisation 
software, it can determine where pumping and injection wells should be located, and at what rate water 
should be extracted or injected at each Wgj!;.
A model for optimal design of groundwater hydraulic control and remediation systems under general field 
conditions. The model couples genetic algorithms technique with modflow and MT3D .
The version of ModGA for aquifer parameter estimation.
The software provides optimised engineering designs for surface water and groundwater management prob- Waterstone Inc.
lems. It also combines MODFLOW and MT3DMS with artificial neural network (ANN) and adaptive simulated USA.
annealing (ASA) techniques for groundwater remedial design and water resource planning optimisation .
It determines optimal pumping solutions for groundwater flow control problems by coupling MODFLOW University of

USGS _ http7Awater.usgs.goy/
GeoTrans. Inc. USA. http://www.geotransinc.com

The University of 
Alabama, USA.

http://hydro. geo. ua.edu/ 
mt3d/modga.htm

http://www.waterstoneinc.
com/

V A V M V /M 'A 'iW W

http://www.ecs.umass.edu/

UCODE*

A parameter estimation software which can be used in both groundwater and surface water model calibration.
It can be used to calibrate MODFLOW-2000 models for special complex situations.
A special version of MODFLOW-2000, modified for optimal use with PEST. It provides a MODFLOW2000- 
to-PEST translator which converts input dataset for MODFLOW-2000's PES process to a MODF LOW/PEST 

......in.py.t.™.t3set.
3-D transient inverse model which performs a non-linear weighted least squares parameter value optimisation

 for MODFLOW tomodify. parameters to[.obtainthebest fit te tw e e ^ ......
A computer program that allows calculation of aquifer parameters for a single or multiple (up to three) layer 
aquifer systems by simulating field pumping test data using the MODFLOW model. The aquifer parameters 
are calculated by trial and error using graphical data matching techniques.
A general purpose parameter estimation utility using a modified Gauss-Newton method to minimise the obj- IGWMC, USA.
ective function . Its interface in GMS can be used to perform automated parameter estimation for MODFLOW.

Massachusetts, USA. modofc/

Watermark Numerical http://members.ozemail. 
Computing, Australia, com.au/

http://www.sspa.com/pest/

Sicentific Software http://www.scisoftware.com

Group, USA.
Sicentific Software http://www.scisoftware.com

Group, USA.

http://www.mines.edu/
igwmc/
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MODFLOW-SURFACT An extension of MODFLOW capabilities for subsurface flow calculations and contaminant transport HydroGeoLogic, Inc. http://www.hgl.com
simulation accommodating up to 5 contaminant species in a simulation. USA.

MS-VMS (MODFLOW- MODFLOW-SURFACT based ground-water flow and contaminant transport modeling system which provides
SURFACT Visual Modeling a modeling environment for visual data preparation and interpretation using Groundwater Vistas, graphics
System) and animations of model data and results using a Tecplot Interface (TIF).

PMWIN (Processinq 
MODFLOW)

A simulation system with graphical user interface for modeling groundwater flow and transport processes 
with MODFLOW2000, MT3D, MT3DMS, M0C3D, RT3D, PMPATH, PEST, and UCODE

Chiang, W.-H, and 
W. Kinzelbach

http://www.pmwin.net/

GMS (Groundwater 
Modeling System)

A graphical user environment for numerical subsurface flow and contaminant transport modeling. It supports 
FEMWATER, MODFLOW2000, MODPATH, MT3D, RT3D, ART3D (analytical multi-species reactive 
transport model), SEAM 3D, NUFT(Nonisothermal, Unsaturated Flow and Transport model), UTCHEM* 
(multi-phase flow and transport model), FACT (subsurface flow and contaminant transport model), SEEP2D, 
PEST and UCODE codes.

DOD, USA. http://chl.wes.army.mil/
software/gms/stochastic.htm
http://www.emrl.byu.edu/
gms.htm
http://www.ems-i.com/

Visual MODFLOW A modeling platform designed for groundwater flow and contaminant transport modeling using MODFLOW, 
MODPATH, and MT3DMS and RT3D programs. Professional version includes parameter estimation with 
winPEST.more graphical capabilities with 3-D explorer, and support for MODFLOW-SURFACT programme.

Waterloo
Hydrogeologic, Inc. 
Canada.

http://www.flowpath.com/

Groundw ater V istas A Windows graphical user interface and modeling environment for MODFLOW2000, MT3D99, GFLOW, 
MODPATH, MT3DMS, RT3D, PATH 3D, MODFLOWT, MODFLOW-SURFACT, PEST ASP , MODOFC, and 
UCODE. Advanced version of the software allows risk assesment using Monte Carlo versions of MODFLOW 
(Stochastic MODFLOW), MODPATH and MT3D .

Environmental http://www.groundwater- 
Simulations, Inc. USA. vistas.com/

http://www.esintemational.
com

MIKE SHE An integrated modeling environment for simulating major hydrological processes of the land phase (saturated 
/unsaturated flow, channel flow, overland flow, solute transport, particle tracking, geo-chemistry, micro
biology). It supports MODFLOW2000 and MODFLOW-SURFACT.

DHI Software 
Danemark

http://www.dhisoftware.com
/mikeshe/

* can be found in a public domain or freeware version

DOD United State Department of Defense
IGWMC International Ground Water Modeling Center
PNL Battelle Pacific Northwest National Laboratory
USACE United State Army Corps of Engineers
USGS United State Geological Survey
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MODFLOW FUNCTIONALITY DESCRIPTION

MODEL NAME: MODFLOW-2000 
VERSION: 1.15.01 

RELEASE DATE: April 2005

AUTHOR(S): Harbaugh, et al. 
INSTITUTION OF DEVELOPMENT: U.S. Geological Survey

CONTACT ADDRESS: U.S.G.S Office of 
PHONE: (703)648-5615 

FAX: (703)648-5644

Ground Water, Reston, VA

PROGRAMME LANGUAGE: FORTRAN77 
COMPUTER PLATFORM (S): DOS, UNIX,

LEGAL STATUS: Public domain 
PREPROCESSING OPTIONS: Not included

POSTPROCESSING FACILITIES: RESAN-2000, YCINT-2000, BEAL-2000

MODEL TYPE

■  single phase saturated 
flow

□  single phase unsaturated 
flow

□  vapor flow/transport
■  solute transport
□  virus transport
□  heat transport
□  matrix deformation
□  geochemical
□  optimization
■  groundwater and surface 

water hydraulics
■  parameter ID saturated 

flow (inverse numerical)

□  parameter ID unsaturated 
flow (analytical/numerical)

□  parameter ID solute 
transport (numerical)

□  aquifer test analysis
□  tracer test analysis
□  flow of water and steam
□  fresh/salt water interface
□  twophase flow three 

phase flow
□  phase transfers
□  chemical transformations
□  biochemical 

transformations
□  watershed runoff

□  sediment transport
□  surface water runoff
□  stochastic simulation
□  geostatics
□  multimedia exposure
□  pre-/postprocessing
□  expert system
□  data base
□  ranking/screening 
■  water budget
□  heat budget
□  chemical species mass 

balance

UNITS

□  SI system
□  metric units

□  US customary units 
■  any consistent system

□  user-defined

PRIMARY USE

□  research
□  education

■  general use 
□  site-dedicated

□  policy-setting
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GENERAL MODEL CHARACTERISTICS

Parameter discretisation

□  lumped
□  mass balance approach
□  transfer function (s)

■  distributed
■  deterministic
□  stochastic

Spatial orientation

saturated flow
■  1D horizontal
■  1D vertical
■  2D horizontal (areal)
■  2D vertical (cross-sectional profile)
□  2D axi-symmetric (horizontal flow only)
□  fully 3D
■  quasi-3D (layered; Dupuit approx.)
□  3D cylindrical or radial (flow defined in 

horizontal and vertical directions)

unsaturated flow
□  1D horizontal
□  1D vertical
□  2D horizontal
□  2D vertical
□  2D axi-symmetric
□  fully 3D
□  3D cylindrical or radial

Restart capability -  types of updates possible

Discretisation in space

□  no discretization
■  uniform grid spacing
■  variable grid spacing
□  movable grid (relocation of 

nodes during run)
□  maximum number of nodes/cells/elements

□  modifiable in source code (requires 
compilation)

□  modifiable through input
□  maximum number of nodes (standard 

version):
□  maximum number of cells/elements 

(standard Version):

Possible cell shapes
□  1D linear
□  1D curvilinear
□  2D triangular
□  2D curved triangular
■  2D square
■  2D rectangular
□  2D quadrilateral
□  2D curved quadrilateral
□  2D polygon
□  2D cylindrical
■  3D cubic
■  3D rectangular block
□  3D hexaedral (6 sides)
□  3D tetrahedral (4 sides)
□  3D spherical

■  dependent variables (e.g., head, 
concentration, temperature)

□  fluxes
□  velocities
■  parameter values
■  stress rates (pumping, recharge)
■  boundary conditions
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FLOW SYSTEM CHARACTERISATION

Hvdroaeoloaic zoning

■  confined
■  semi-confined (leaky- 

confined)
■  unconfined (phreatic)
■  hydrodynamic approach
■  hydraulic approach pupuit- 

Forcheimer assumption for 
horizontal flow)

■  single aquifer
■  single aquifer/aquitard 

system
■  multiple aquifer/aquitard 

systems
■  max. number of aquifers:

■  discontinuous aquifers 
(aquifer pinchout)

■  discontinuous aquiterads 
(aquitard pinchout)

■  storativity conversion in 
space (confined-unconfined)

□  storativity conversion in 
time

□  aquitard storativity

Hvdroaeoloaic medium

■  porous medium
□  fractured impermeable rock 

(fracture system, fracture 
network)

□  discrete individual fractures
□  equivalent fracture network 

approach
□  equivalent porous medium 

approach
□  dual porosity system (flow in 

fractures and optional in 
porous matrix, storage in 
porous matrix and exchange 
between fractures and 
porous matrix)

■  uniform hydraulic properties 
(hydraulic conductivity, 
strorativity)

■  anisotropic hydraulic 
conductivity

■  nonuniform hydraulic 
properties (heterogeneous)

Saturated zone
r

Flow characteristics

■  single fluid, water
□  single fluid, vapor
□  single fluid, NAPL
□  air and water flow
□  water and steam flow
□  moving fresh water and 

stagnant salt water
□  moving fresh water and salt 

water
□  water and NAPL
□  water, vapor and NAPL
■  incompressible fluid
□  compressible fluid
□  variable density
□  variable viscosity
■  linear laminar flow (Darcian 

flow)
□  non-Darcian flow
■  dewatering (desaturation of 

cells)
□  dewatering (variable 

transmissivity)
■  rewatering (resaturation of 

dry cells)
□  delayed yield from storage

Boundary conditions

□  infinite domain
□  semi-infinite domain
■  regular bounded domain
■  irregular bounded domain
■  fixed head
■  prescribed time-varying head
■  zero flow (impermeable 

barrier)
■  fixed cross-boundary flux
■  prescribed time-varying
■  cross-boundary flux
■  areal recharge:

■  constant in space
■  variable in space
■  constant in time
■  variable in time

Boundary conditions -continued

■  induced recharge from or 
discharge to a source bed 
aquifer or a stream in direct 
contact with ground water
■  surface water stage 

constant in time
■  surface water stage 

variable in time
■  stream penetrating more 

than one aquifer
■  induced recharge from a 

stream not in direct contact 
with groundwater

■  evapotranspiration 
dependent on distance 
surface to water table

■  drains (gaining only)
□  free surface
■  seepage face
■  springs

Sources/Sinks

■  point sources/sinks 
(recharge/pumping wells)
■  constant flow rate
■  variable flow rate
■  head-specified
■  partially penetrating
□  well loss
□  block-to-radius correction
□  well-bore storage
■  multi-layer well

■  line source/sinks (internal 
drains)
■  constant flow rate
■  variable flow rate
■  head-specified

□  collector well (horizontal, 
radially extending screens)

□  mine shafts (vertical)
□  water-filled
□  partially-filled

□  mine drifts, tunnel 
(horizontal)
□  water-filled
□  partially filled
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F L O W  S Y S T E M  C H A R A C T E R IS A T IO N  -  continued

DeDendent variable tsl
f

■  head □  potential
■  drawdown □  moisture content
□  pressure □  stream dunction
□  suction □  velocity

Solution methods - Flow

□  Analytical ■  Numerical
□  single solution
□  superposition Spatial approxiamtion
□  method of images ■  finite diffrence method

■  block-centred
□  Analytic element method □  node-centred

□  point sources/sinks □  integrated finite diffrence method
□  line sinks □  boundary elements method
□  ponds □  particle tracking
□  uniform flow □  pathline integration
□  rainfall □  finite element method
□  layering
□  inhomogeneites Time-stepping scheme
□  doublets ■  fully implicit
□  leakage through confining beds □  fully explicit

□  Crank-Nicholson
□  Semi-analytical

□  continuous in time, discrete in space
□  continuous in space, discrete in time Matrix-solving technique
□  approximate analytical solution ■  Iterative

■  SIP
□  Solving stochastic pdes □  Gauss-Seidel (PSOR)

□  Monte Carlo simulations □  LSOR
□  spectral methods ■  SSOR
□  small perturbation expansion □  BSOR
□  self-consistent or renormalization □  ADIP

technique □  Iterative ADIP (IADI)
□  Predictor-corrector

■  Direct
■  Gauss elimination
□  Cholesky decomposition
□  Frontal method
□  Doolittle
□  Thomas algorithm

□  Point Jacobi

■  Iterative methods for nonlinear equations
■  Picard method
□  Newton-Raphson method
□  Chord slope method

■  Semi-iterative
■  conjugate-gradient
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F L O W  S Y S T E M  C H A R A C T E R IS A T IO N  - continued

Inverse Modellina/Parameter Identification for flow 
/

Parameters to be identified User inDut
■  hydraulic conductivity ■  prior information on parameter (s) to be
□  transmissivity identified
■  storativity/storage coefficient ■  constraints on parameters to be identified
■leakance/leakage factor ■  instability conditions
■areal recharge □  non-uniqueness criteria
■  cross-boundary fluxes □  regularity conditions
■  boundary heads
■  pumping rates
□  soil parameters/coefficients
■  streambed resistance

Parameter Identification method

□  aquifer tests (based on analytical solutions)
■  numerical inverse approach

Direct method (model parameters treated as Indirect method (iterative improvement of
dependent variable) parameter estimates)

□  energy dissipation method □  linear least-squares
□  algebraic approach □  non-linear least-squares
□  inductive method (direct integration □  quasi-linearization

of PDE) □  inear programming
□  minimising norm of error flow □  quadratic programming

(flatness criterion) □  steepest descent
□  linear programming (single- or □  conjugate gradient

multi-objective) ■  non-linear regression (Gauss-Newton)
□  quadratic programming □  Newton-Raphson
□  matrix inversion □  influence coefficient
□  Maquardt □  maximun likehood

□  (co-) krigging
□  gradient search
□  decomposition and multi-level

optimization
□  graphic curve matching
■  Marquardt algorithm
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F L O W  S Y S T E M  C H A R A C T E R IS A T IO N  - continued

Output Characteristics -  Flow

Echo of input (in ASCII text format)
□  grid (nodal coordinates, cell size, 

element connectivity)
■  initial heads/pressures/potentials
□  initial moisture content/saturation
□  soil parameters/function coefficients
■  aquifer parameters
■  flow boundary conditions
■  flow stresses (e.g., recharge, pumping)

Simulation results -  form of output
■  dependent variables in binary format
■  complete results in ASCII text format
■  spatial distribution of dependent variable 

for post-processing
■  time-series of dependent variable for 

post-processing
□  direct screen display -  text
□  direct screen display -  graphics
□  direct hardcopy (printer)
□  direct plot (pen-plotter)
□  graphic vector file
□  graphic bitmap/pixel/raster file

Simulation results -  type of output
■  head/pressure/potential

■  areal values (table, contours)
■  temporal series (table, x-t graphs)

□  saturation/moisture content
□  arael values (table, contours)
□  temporal series (table, x-t graphs)

■  head differential/drawdown
■  arael values (table, contours)
■  temporal series (table, x-t graphs)

□  moisture content/saturation
□  areal values (table, contours)
□  temporal series (tabl, x-t graphs)

Type of output -  continued
□  internal (cross-cell) fluxes

□  areal values (table, vector plots)
□  temporal series (table, x-t graphs)

□  infiltration fluxes
□  areal values (table, vector plots)
□  temporal series (table, x-t graphs)

□  evapo(transpi)ration fluxes
□  areal values (table, vector plots)
□  temporal series (table, x-t graphs)

□  cross boundary fluxes
□  areal values (table, vector plots)
□  temporal series (table, x-t graphs)

□  velocities
□  areal values (table, vector plots)
□  temporal series (table, x-t graphs)

□  stream function values
□  streamlines/pathlines (graphics)
□  capture zone delineation (graphics)
□  traveltimes (table of arrival times; tics on 

pathlines)
□  isochrones (i.e., lines of equal travel 

times; graphics)
□  position of interface (table, graphics)
□  location of seepage faces
■  water budget components

□  cell-by-cell
■  global (main components for total 

model area)
■  calculated flow parameters
■  uncertainty in results (i.e., statistical 

measures)

Computational information
■  iteration progress
■  iteration error
■  mass balance error
□  CPU time use
□  memory allocation
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Data Input Instructions for GWFV

The finite volume simulation can be activated by introducing a new file type (Ftype) 

called “FV” in the MODFLOW name file to link to the GWFV name file.

The GWFV name file specifies the files to be used when simulating groundwater flow 

with the finite volume method. This file includes basically the same files as the 

MODFLOW name file, with exceptions in the Basic, Block Centered Flow and Output 

control files.

GWFV Name File (GWFV)

FOR EACH SIMULATION

Data: FTYPE NUNIT FNAME

FTYPE: contains the same file type as in MODFLOW, except for the

following character strings:

BASFV new Basic input data for GWFV

OCFV output for GWFV

BCFV new Block Centered Flow input data for GWFV
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Input:
r

All the input packages are similar to the ones used by the MODFLOWW GWF process , 

except for the discretisation file where input data DELR and DELC are no longer 

required. The input data that are needed instead are XV and YV, which refer to the 

vertices coordinates along the x and y  directions respectively. The indexing notation 

(ij,k) used in MODFLOW was kept the same, with the difference being the k index equal 

to 1 as one-unit layer was assumed at all of the model development steps. The array 

dimensions of the two new variables are also different from those removed outlined 

below:

DELR—is the cell width along rows. One value is read for each of the NCOL columns.

XV—is the jc-coordinate of a vertex of the mesh. One value is read for each of the 

(NCOL+l)x(NROW+l) vertices.

DELC— is the cell width along columns. One value is read for each of the NROW rows.

YV—is the ̂ -coordinate of a vertex of the mesh. One value is read for each of the 

(NCOL+l)x(NROW+l) vertices.

2 -Code:

- The cell non-orthogonality has induced new expressions for calculating cell faces and 

volumes. DELR and DELC are no longer used in the programme, instead a new 

subroutine that accounts for the cell geometry has been added. The output of this 

subroutine was two face surfaces (vertical right-hand side face and horizontal lower 

face), the volume (the cell surface times unit vertical depth) and the node location 

(XN,YN) for each cell (ij ,l) . Consequently, appropriate changes were made to the 

subroutines calling variables DELR and DELC. The changes were executed in:
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The GL01BAS6 package to:

• allocate space for the new arrays (variable ISUM) (AL);

• read and prepare the XV and YV arrays,

• compute new cell entries (RP).
The GWF1BCF package to:

•  compute equivalent permeabilities at cell faces (instead 

branch conductance) using the new formulation 

(SGWF1BCF6C in RP),

• add storage capacity conformingly to the new 

mathematical formulation through HCOF and RHS, 

(SGWF1BCF6N in FM),

•  new subroutine to add the new finite volume 

decomposition - related terms on the RHS of Equation 

4.31,

• print out node locations (XN,YN) (OT).

The GWFV1WEL6, GWF1RECH6 packages to:

• add recharge/discharge rates to RHS (FM).

The SIP5 package to:

• assign new formulae for the coefficients of Equation 

system 4.54 (i.e. B, D, F, G, H, E) (in AP).

3 -Output:

The indexing system used in MODFLOW is the only indication used when writing 

calculated heads at nodes in the LIST file or GLOBA1 output files. As the grid used in 

MODFLOW is orthogonal, node locations can be easily deduced. In the GWFV model, 

this indexing system can still be used, but finding the node locations is no longer a simple 

task. Thus, the output procedure of the GWF1BCF package was changed to allow the 

user to print out the node locations if needed. UTL (ULAPRS for SGWF1BAS6H called 

from GWF1BAS60T) package was changed.
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