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Abstract

The work presented in this thesis relates to one of the major ongoing 

problems in robotics: Developing control architectures for cooperation in Multi 

Robot Systems (MRS). It has been widely accepted that Embodiment is a 

prime requirement for Robotics. However, in the case of MRS research, two 

major shortfalls were identified. First, it was highlighted that no effort had been 

made into research platforms for Embodied MRS. Second, it was also observed 

that, generally, the more units in an MRS the lower their capabilities and as a 

result the poorer their degree of embodiment. These two issues were addressed 

separately.

Firstly, a novel concept for MRS development platform named ‘Re- 

embodiment’ is presented. Re-embodiment aims to facilitate research on 

control systems for MRS by minimising the effort required to ensure that the 

robots remain embodied and situated. Using Re-embodiment, researchers can 

implement and test largely different control algorithms at virtually the same 

time on large fleets of robots.

Secondly, an innovative mono vision distance measurement algorithm is 

presented. The intention is to provide a cheap, yet information rich, sensory 

input that can be realistically implemented on large fleet of robots. After a 

‘one o ff calibration of the image sensor, distances from the robot to objects in 

its environment can be estimated from single frames.
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Chapter 1 Introduction

1.1 Preamble
Mankind has evolved into a unique species amongst the creatures on 

earth. Its emerging intelligence has fuelled its thirst for knowledge. In modem 

human civilisation, the understanding of the world has grown further than ever 

before, from the infinitely small to the infinitely large. This has driven people’s 

ability to create and achieve. Yet mankind is still puzzled about man, 

furthermost by the understanding of his own intellect. For centuries, man has 

dreamed to be able to reproduce his ultimate power: intelligence. The first 

records of this fantasy date back to the ancient Greeks who were clearly 

ensnared with the idea of creating artificial living beings. This was to be the 

root of Artificial Intelligence and modem Robotics.

Much progress has been achieved in the period between those early 

attempts to the latest humanoid biped [Honda, 2004], but robots are still far 

from having the versatility and intelligence of humans. Nowadays, Robotics is 

not just about creating artificial beings and mimicking intelligence. It is a 

converging point for many sciences. Robots are complete systems; they include 

mechanical, electric and electronic parts in both their sensors and actuators. 

The robot controller is the result of many fields of research, from psychology

1
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to computer science. Multi Robot Systems, in particular, have emerged as 

being ideal platforms for the integration of all those sciences.

1.2 Motivation and Objectives
The work presented in this thesis relates to one of the major ongoing 

problems in robotics: Developing control architectures and cooperation in 

Multi Robot Systems (MRS). MRS have aroused a great deal of interest 

amongst Robotics researchers. As a logical extension to single-unit Robotics, 

MRS have emerged as a distinct field of research. Although this field has been 

the subject to much theoretical and experimental work for over the last two 

decades, no definitive solution has yet emerged.

The first effort in the work presented in this thesis was to review and 

assess existing work and different control paradigms designed for, or applied 

to, Multi Robot Systems. One of the fundamental principles of Robotics, 

acknowledged in almost all current research, is embodiment. Based on this 

review, two key points, neglected or overlooked by research until now, were 

identified. Each of these points was then addressed in turn.

The basic idea behind embodiment is that robots are meant to be 

progressing in an environment [Brooks, 1991a; Brooks, 1991b; Anderson, 

2003a]. They must be able to both ‘sense’ and ‘act-upon’ their environment. 

As a result robots are complex systems. Furthermore, for the research to remain 

of interest to potential users, theoretical concepts have to be implemented and

2
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tested in the real world. Yet, no research effort has concentrated on test and 

development platforms that facilitate embodiment.

To address this, a novel concept for MRS development platforms named 

‘Re-embodiment’, is presented. Inspired by dualisms, soul and body are 

defined as the two building blocks of embedded robot systems. The proposed 

paradigm allows for largely different control systems to be implemented and 

tested, on a single hardware platform, by a number of researchers at virtually 

the same time. The effort required to ensure that the implemented system 

retains a good level of embodiment is minimised.

The first and most apparent appeal of multi robot systems is that 

increasing the number of units, performing the same task, should increase the 

overall performance. Unfortunately, larger fleets tend to consist of robots with 

lower capabilities, usually at both the computational and sensory-motory 

levels. One may assume that cost restrictions only allow for more 

computational power, better sensors and actuators on single units. Yet to 

remain as embodied as possible, robots must have good sensory and motory 

abilities.

This problem is addressed by the development of a simple, cheap, yet 

information rich, sensory input. A novel mono vision distance measurement 

method is proposed. Images are captured from an inexpensive camera. The 

computational requirements, especially those for image analysis, remain 

relatively low. After a one-off calibration, to derive intrinsic and extrinsic

3
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parameters, distance can be measured between the robot and objects in the 

environment, from single image frames.

1.3 Outline of Thesis
The preceding section outlined the motivation and objectives of the work 

presented here. This thesis contains a further three main chapters and a 

conclusion.

In the second chapter, a literature review of theoretical and experimental 

work related to cooperation and control of MRS is presented with a special 

emphasis on embodiment. Two main weaknesses in the research field are 

highlighted. They are then addressed, one by one, in the subsequent two 

chapters. Each of these chapters is self-contained and includes a specific 

literature review, a material and methodology subsection where applicable, a 

theoretical section, as well as discrete results, discussions and conclusions.

Chapter Three introduces the novel “Re-Embodiment” concept for MRS 

development platforms. A specific literature review presents previous works. 

Then, the robots used for tests and experiments are described. Subsequently, 

the architecture is formally introduced through a series of axioms. Possible 

applications are highlighted, putting forward advantages. Simple experiments 

demonstrate the abilities of such a system. Finally, two applications of the 

architecture are presented, firstly, on a fleet of six PC-based robots and 

secondly, a larger fleet of small microcontroller-based robots.

4
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The fourth chapter presents the innovative mono vision distance 

measurement algorithm. A literature review presents existing related sensing 

methods. Then the underlying mathematical model is detailed together with a 

theoretical accuracy analysis. An implementation on a cheap webcam is 

presented together with experimental accuracy results. Finally an application 

example in a simulated environment is demonstrated.

The fifth chapter concludes the work and highlights the contributions of 

the research presented in this thesis. A number of suggestions for future work 

are put forward.

5
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Chapter 2 Literature Review

2.1 The Roots of Robotics
It is in ancient Greece that one may find the earliest record of automatons, 

which were to become the roots of modem robotics. In Iliad [Homer, 2002], 

Homer describes several fictional artificial beings such as the ‘tripods’ and the 

‘golden maids of Hephaestus’. The Statesman, Philosopher and major 

Pythagorean mathematician Archytas of Tarentum built a wooden pigeon that 

it is said could flap its wings and fly [Encyclopaedia Britannica, 2004a]. In 

China during the Han dynasty, around 300BC, craftsmen built a mechanical 

orchestra [Encyclopaedia Britannica, 2004b]. Following the decline of Greece 

and Rome, interest in automata was rekindled in Mesopotamia. Abu al-Razzaz 

Jazari was an engineer working for the Artukid sultan Nasir ad-Din Mahmud 

(1200-1222). He built automata the technical perfection of which pleased the 

sultan, such as a clock made with a palanquin with characters and dragoons, set 

on an elephant and his mahout [al-Jazari, 1975].

In the 18th century clockwork automata, such as the ‘The flute player’ 

and ‘The duck’ created by Jacques de Vaucanson [Encyclopaedia Britannica, 

2004c], re-introduced the idea of ‘artificial beings’ who could do what humans 

can do.

6
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In 1921, the Czech author Karel Capek coined the term Robot in his best 

known work, the play “Rossum's Universal Robots” (R.U.R.), which featured 

machines created to simulate human beings [Capek, 1921]. The term is 

believed to be derived from the Czech word for ‘forced labour’ or serf. R.U.R's 

theme, in part, was the dehumanization of man in a technological civilization. 

Surprisingly, Capek’s robots were not mechanical in nature but were created 

through chemical means.

The term 'Robotics' referring to the study and use of robots was 

introduced and first used by the Russian-born American scientist and writer 

Isaac Asimov. He wrote prodigiously on a wide variety of subjects and was 

best known for his many works of science fiction. The word 'Robotics' was 

first used in Runaround, a short story published in 1942 [Asimov, 1942]. ‘I, 

Robot’, a collection of several of these stories in which Asimov proposed his 

three ‘Laws of Robotics’, was published in 1950 [Asimov, 1950]. He later 

added a 'zeroth law'.

“Zeroth Law: A robot may not injure humanity, or, through 

inaction, allow humanity to come to harm.

First Law: A robot may not injure a human being, or, through 

inaction, allow a human being to come to harm, unless this would violate 

a higher order law.
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Second Law: A robot must obey orders given it by human beings, 

except where such orders would conflict with a higher order law.

Third Law: A robot must protect its own existence as long as such 

protection does not conflict with a higher order law. “

After the second world war, together with the appearance of the first 

computers such as the ‘Manchester Mark I’ [Encyclopaedia Britannica, 

2004d], the first modem mobile robots made their appearance. Those were to 

renew interests in mobile robots, arouse imaginations and ambitions in modem 

society to finally bring robotics to the forefront of research and technology.

2.2 Emergence of Modern Mobile Robots
In the late 1940's Walter carried out pioneering research with 

autonomous mobile robots, ‘The Machina Speculatrix’, at the Burden 

Neurological Institute in Bristol [Walter, 1950; Walter, 1951; Walter, 1963]. 

As part of his quest to model brain functions, he was attempting to research the 

basis of reflex actions and tested his theory on complex behaviour arising from 

neural interconnections, (see Figure 2-1). The highly successful experiments 

with his tortoises, robots ‘Elsie’ (Light sensitive with Internal and External 

stability) and ‘Elmer’ (ELectro MEchanical Robot), are a landmark of robotics 

research [Holland, 1997; New Scientist, 1998]. It is fascinating to see that 

Walter’s ideas and experiments included, at least, three of the main 

components of modem robotics research: Reactive control, behaviour arising
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from neural interconnections and the use of a system comprising several 

robots. Walter’s robots were using reactive control by means of sensory 

stimuli, in this case light, to directly influence actions. Such a control 

architecture was not used throughout the ‘Classical’ Artificial Intelligence era 

of robotics. It is not until the 1980s that Braitenberg [Braitenberg, 1984] 

developed Walter’s experiments. A few years later, Brooks extended Walter’s 

architecture to the so-called behavioural approach, as discussed later. The 

theory stipulating that behaviour arises from neural interconnections was the 

basis of extensive research much of which was to be applied to robotics, such 

as neural networks. Finally, Walter employed in his experiment two robots. It 

is not apparent that he was purposely researching properties arising from the 

use of multiple robots. However there is evidence that ‘Elsie’ and ‘Elmer’ did 

interact during experiments (see Figure 2-5). This may have inspired others to 

investigate robot interaction.

Lately an international workshop titled “Biologically-Inspired Robotics: 

The Legacy of W. Grey Walter” was organised in Bristol. The workshop 

commemorated the 25th anniversary of Walter's death. It focussed on his 

pioneering work in cybernetics and artificial life, on the many important and 

exciting developments in the field since his death, on recent trends in 

biologically-inspired robotics, and the potential of the field for the future 

[Holland, 2003].

In 1964 at John Hopkins University Applied Physics Lab, ‘Beasts’ were 

presented [Moravec, 1998]. They were able to wander white corridors using
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ultrasound sensors, until their batteries ran low. Then they would seek black 

wall outlets with special photocell optics, and plug themselves in by feel with 

their special recharging arm (see Figure 2-2). After recharging, they would 

resume patrolling. The Beasts were much more complex than Elsie or Elmer, 

and demonstrated some deliberate behaviour.

From 1966 through 1972, Shakey, so-called because of its jerky motion, 

was developed at the Stanford Research Institute (The SRI's Artificial 

Intelligence Center nowadays) [Fikes et al., 1972; Nilsson, 1984]. It had a TV 

camera, a triangulating range finder, and bump sensors, and was connected to 

DEC PDP-10 and PDP-15 computers via radio and video links (see Figure 

2-3). Shakey used programs for perception, world-modelling, and acting. Low- 

level action routines took care of simple moving, turning, and route planning. 

Intermediate level actions strung the low level ones together in ways that 

robustly accomplished more complex tasks. The highest level programs could 

make and execute plans to achieve goals given to the robot by a user. The 

system also generalized and saved these plans for possible future use. Shakey 

was the first mobile robot to reason about its actions and has had a substantial 

legacy and influence on present-day artificial intelligence and robotics. It now 

resides in the Computer History Museum in Mountain View, CA.

10



Cardiff
U N I V E R S I T Y Literature Review

In the early 1970s, the Stanford Cart was developed at Stanford 

University [Moravec, 1983]. It was first designed to follow a white line but 

could be remotely operated as well. A prototype vision system was added in 

1979 (see Figure 2-4). This enabled it to cross a thirty-meter room dotted with 

obstacles but travel time was a lengthy five hours!

From then on research in Artificial Intelligence and robotics became 

more and more widespread and as a result the number of research projects and 

commercial platforms being developed increased.

Even if, nowadays, the general perception of robots still undoubtedly 

overshadows the reality of their abilities, Robotics remains at the forefront of 

technology. It is a converging point to many sciences and provides an ideal 

platform to integrate research from different fields into complete systems.

2.3 Robot Control
Robotics researchers are faced with the task of engineering machines that 

gather information about their environment via sensors and effect action via 

actuators. The link between the sensor data and the actuator effect is the 

control. To understand the evolution of the underlying ideas behind robots 

control, one has to go back to eighteenth century dualism.
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Figure 2-1. Walter Working on One of his Tortoises [Walter, 1950;
Walter, 1951]

Figure 2-2. Two Versions of the Johns Hopkins University’s ‘Beasts’
[Moravec, 1998]
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Figure 2-3.
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2-4. The Stanford Cart with its Prototype Vision System [Moravec,
1983]
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Figure 2-5. ‘Elsie’ and ‘Elmer’: Was This the First MRS System?

1 In this experiment, Walter observed the strange movements o f the ‘dance’ o f two turtles, each 
with a light sensor and a light. Was this the first experiment involving interacting robots?
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2.3.1 The Nature of Dualism

The term ‘dualist’ was first coined by Thomas Hyde in the early 18 

century [Hyde, 1700] to describe religious systems that consist of God and the 

devil as two co-eternal principles. However, it is Christian von Wolff who first 

used the term ‘dualism’ in 1734 [von Wolff, 1734]. He also introduced both 

terms into philosophical discourse. As a metaphysical theory, dualism states 

that the world is made up of two irreducible elements. This includes 

distinctions such as mind and body, good and evil or phenomena and noumena. 

Here, it is the mind-body distinction, which is of interest. It is also sometimes 

referred as the body and soul distinction.

Although this split between body and mind can be traced back to the 

ancient Greek philosopher Plato [Plato, 360 BC], it is Rene Descartes who 

undertook the first systematic analysis of the mind body issue. In the first of his 

works, although published after his death, ‘De Homine’ [Descartes, 1664], 

Descartes proposed a mechanism for automatic reaction in response to external 

events. This work also outlined the views that provided the first articulation of 

the mind-body interactionism. In 1641, ‘Meditationes De Prima Philosophia, In 

Quibus Dei Existentia, & Animae Humanae a Corpore Distinctio Demonstrator’ 

was published [Descartes, 1641]. In this work, Descartes presented the first 

extended discussion of the metaphysical distinction between mind and body. 

He reasoned that the world was divided into two domains: the non-physical - 

the mind and the physical - the body. According to his views, mind (or soul)
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and body are different substances, i.e. distinct and independent types of being. 

Descartes also suggests that only the mind is intelligent and that the body is 

only an interface to the world.

Philosophers after Descartes, such as Locke [Locke, 1690], Kant [Kant, 

1798] or Muller [Muller, 1834-40], refined this distinction between the 

qualities of the mental and the physical. The mind is active, invisible and 

intangible, while physical objects are inactive, visible and tangible. Most 

dualist theories of mind are based on Cartesian dualism. However, Descartes 

realised that the mind-body dualism is beset with an interaction problem. How 

is interaction possible between the mind and the body? For instance, how does 

one feel thirsty (mental event) when one’s body needs a drink (physical event)?

In 1949, Ryle raised fundamental criticisms of the dualist theories. In his 

book ‘The Concept of Mind’ [Ryle, 1949], he rejected dualism, which he 

called ‘the dogma of the ghost in the machine.’ Ryle argued that dualism 

makes ‘category mistakes’. Dualist doctrines establish a polar opposition 

between mind and body. At the language level, the mental properties are 

logical negation of the physical properties. Body is extended, has location and 

has parts, whereas mind is not extended, has no location and has no parts. So 

they belong, in accordance with the concept of category, to the same logical 

type, given that the expression used for the description of mental events are 

always mere negatives of the expressions used for description of natural events. 

According to Ryle this implied a category mistake, as the idea of mind cannot 

be a substance since it is only understood in contrast to properties that are
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assigned to substances. This is not the only category mistake that Ryle thinks 

dualists have committed. Other mistakes involve for instance mentalistic terms 

(such as mind, idea and pain) and the statements, which contain those terms.

Ryle’s solution is to argue that the correct use of words like ‘mind’, 

‘idea’ or ‘pain’ is in connection with human behaviour. For instance, having an 

idea means behaving in certain ways or being disposed to behave in such ways, 

by saying certain things, having a certain expression on one’s face etc. It is not 

having something intangible and invisible floating through one’s head. Ryle’s 

Theory is an attempt to explain away the mind. Although it is permissible to 

talk about doing things with one’s mind, for Ryle this means something quite 

different from what it would do Descartes. Having a mind just means that one 

is disposed to behave in certain ways, i.e. if circumstances were such and such, 

one would do such and such. There is nothing mysterious or occult going on.

Ryle’s theory was also in turn dismissed. A number of other theories try to 

explain the mind such as the Mind-Brain Identity Theory, Intentionality, 

Functionalism and Epiphenominalism. However, no single theory has been 

widely accepted and the theory of mind is still subject to many debates.
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2.3.2 GlO.F.A.I

Descartes has been referred to as the father of modem philosophy 

[Gaukroger, 1995] following his study of the body and mind [Descartes, 

1641]. He aimed to show that the body is distinct from the mind and that 

intelligence was an attribute of the spirit only.

Traditionally, the various branches of Cognitive Science also viewed the 

mind as an abstract information processor, whose connections to the outside 

world were of little theoretical importance. Sensory and motor systems, 

acknowledged to be objects of research in their own right, were not regarded to 

be relevant to the understanding of the central cognitive process. They were 

seen as peripheral input and output devices [Wilson, 2002].

In a similar way, Artificial Intelligence (AI) research was initially trying 

to prove that formal symbol manipulation is both necessary and sufficient to 

generate intelligent behaviour [Simon, 1957]. This, once more, suggested that 

intelligence could exist without a body or an environment. This is referred to as 

the Classical AI approach (CAI) or as dubbed by Haugeland, the ‘Good Old 

Fashion AT (GOFAI) [Haugeland, 1985]. Classical AI aimed to model human 

intelligent thought and showed potential for accomplishing complex tasks. 

Various problems were examined like playing chess or solving puzzles. Each 

program had a specific problem domain. The key methods to solve these 

problems were ‘symbolic representation’ and ‘symbol manipulation engines’. 

By using these methods, great achievements were attained, such as Deep
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Blue’s victory over chess grand master Gary Kasparov in 1997 [Morris, 1997]. 

However, these achievements have only been made in limited domains, 

referred to in the field as ‘microworlds’.

GOFAI as applied to robotics is also called Good Old Fashion Artificial 

Intelligence and Robotics (GOFAIR) [Mackworth, 1992; Sahota and 

Mackworth, 1994]. When researchers first started developing control 

architectures for mobile robots, the natural approach was to use the symbolic 

manipulation systems developed by AI. The ‘only’ other requirement then was 

to develop a perception system to abstract sensory information into symbols 

and a mechanism for turning symbols into actuator commands. These control 

paradigms are referred as the Sense-Model-Plan-Act (SMPA) framework 

[Brooks, 1991a]. Figure 2-6, shows a decomposition of the functional modules 

used in this type of mobile robot control system. GOFAI robots fuse the 

varying sensor data in order to develop some kind of world model. This world 

model is then used in varying degrees of reasoning and planning for action. 

Finally, the action is executed. These classical approaches have shaped 

research in Artificial Intelligence and Robotics since the late 1960’s. Although 

they proved to be a rich source of control ideas, especially when results were 

interpreted by a human, problems arose when applied to autonomous robots.

For instance, for the development of Shakey [Fikes et al., 1972; Nilsson, 

1984], several fundamental assumptions were made about the world. Firstly, 

there is only one agent. Secondly, the environment is static unless the agent
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changes it. Thirdly, actions are discrete and carried out sequentially. Finally, 

the world the robot inhabits can be modelled accurately and exhaustively by 

the robot. Although Shakey is a landmark in the development of robotics, these 

assumptions proved to be too restrictive [Sahota and Mackworth, 1994].

More generally, GOFAI when applied to Robotics suffered a number of 

limitations. Firstly, it was very sensitive to sensor noise and uncertainty. 

Secondly, it was computationally cumbersome and required large amount of 

processing power. Finally, it also tended to struggle with the real-time 

requirement of robotic applications. The most cited example is the Stanford 

Cart, which spent so much time computing the Planning stage, that its visual 

reasoning was disrupted by the changing shadows due to sun movement 

[Moravec, 1980].

2.3.3 Behaviour-Based Approach

The argument that a robot would simply provide the sensors and 

actuators for an artificial brain became seriously flawed. The whole ethos was 

plagued with problems such as real-time performance, stability through sensor 

noise or maintaining representational model validity.
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The inability of classical approaches to handle unconstrained interactions 

with the real world has led to new research in control architectures for 

autonomous agents. It became apparent that focussing on the interaction 

between the system and the environment was essential to achieve robust 

control for autonomous robots. This new approach was led by a series of 

provocative publications by Brooks presenting the ‘subsumption architecture’ 

[Brooks, 1986; Brooks, 1991a; Brooks, 1991b].

Brooks popularised in Artificial Intelligence and robotics ideas that had 

roots in divergent branches of Philosophy, Psychology and Cognitive Science. 

The developmental Psychology of Jean Piaget, which emphasises the 

emergence of cognitive abilities out of groundwork of sensorimotor abilities 

[Piaget, 1946]. The claims of German philosopher Heidegger that man 

functions in his environment because he is part of it [Dreyfus, 1991]. In 

Cognitive Science, motor theories of perception such as those suggested by 

William James and others were reviewed by Prinz [Prinz, 1987]. Brooks 

argued that both situatedness and embodiment are ‘cornerstones’ for the 

development of Artificial Intelligence. His work formed the basis of New AI or 

Nouvelle AI (NAI). The contrast between Classical AI and New AI is also 

referred to as ‘representation versus perception’ [Dufly and Joue, 2000].
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By “situated”, Brooks refers to creatures or robots being embedded in 

the environment. They do not deal with an abstract description of the world. 

Instead, their behaviour is directly affected, through their sensor, by the ‘here 

and now’ of the world.

By “embodied”, Brooks refers to creatures or robots experiencing the 

world directly through a physical body. Their actions are part of a dynamic 

interaction with the world and have immediate effects on their own sensations 

[Brooks, 1991a]

Mataric also strongly supports Brooks view on situated and embodied 

Robotics [Mataric, 2003]. They share the view that the two terms are 

somehow related [Brooks, 1991b; Brooks, 2002; Mataric, 2003].

Motivation for behavioural-based robotics stems from views that 

intelligence is something that happens in close interaction with the current 

situation. This in turn suggests that building a world model from sensor inputs 

in order to accomplish tasks is unnecessary. Instead, robots only need to 

process aspects of the world that are relevant to their tasks [Brooks, 1991a; 

Brooks, 1991b]. As shown in Figure 2-7, Subsumption architectures comprise 

built up ‘layers’ of ‘competence’. These are arranged in a vertical structure, as 

opposed to the horizontal GOFAI approach (see Figure 2-8). Each layer 

represents a single primitive behaviour. This method is known as Subsumption 

because each higher level behaviour includes the lower levels as a subset. In
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addition, higher levels subsume the lower levels by suppressing their output. 

Each new level adds to the overall competence of the robot. If each layer can 

be debugged before adding another, without disrupting the functioning of the 

lower ones, then the layers can be developed independently. This makes the 

design task considerably more manageable. Furthermore, these modular layers 

with very little cross communication, allow for behaviour to be added and 

removed as needed. One must bear in mind that each of these behaviours is 

simple when taken individually. The functionality of the system emerges from 

the interaction between these different primitive behaviours and the perceived 

environment. Taken as a whole, the system exhibits complex behaviours, 

seemingly making intelligent decisions about how to interact with its 

environment. These more complex behaviours are never explicitly designed 

into the robot. They simply emerge from complex interactions between the 

multitude of primitive behaviours designed into the system and the 

environment in which the robot exists. However, the designer is usually aware 

of the emergent behaviour, or even specifically designs to induce an emergent 

behaviour.

Since it requires no internal model of the environment, the behaviour- 

based approach to robotics was seen as the answer to the problems of GOFAI. 

It is ideally suited to the real-time computing necessary in mobile robotics 

because it offers the advantage of extremely quick processing. Although many 

successes have been achieved with this type of control architecture, two main 

problems stand out [Brooks, 1991a; Etzioni, 1993]. Firstly, it is not known
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how well they will scale. Secondly, there exists nothing like a Turing 

equivalence theorem that states, at least in principle, whether these schemes 

can be used to accomplish anything that may be desired of them. In addition, 

there are no analytical tools for understanding in advance what sort of conflicts 

and other unexpected interactions might arise from the ways behaviours are 

combined using these methodologies. In practice, it proved difficult to develop 

behavioural systems that ensure overall goal achievement, especially with more 

complex goals. This led, in recent years, to a number of new hybrid approaches 

that attempt to encapsulate the benefits of both architectures [Low et al., 2002]. 

These deliberative-reactive architectures allow the system to plan for goal 

achievement while maintaining immediate responsiveness to the environment.

Nevertheless, Brooks’s revolutionary ideas have forever changed the 

fundamental principles of Robotics by enforcing the requirement for 

Embodiment.

2.3.4 The Generalisation of Embodiment

In recent years, the importance of the interaction between a system or 

robot and its environment has become widely accepted in fields such as 

Artificial Intelligence, Artificial Life and Embodied Cognition. It is now seen 

as a ‘condition sine qua non’ [Pfeifer and Scheier, 2001; Ziemke, 2001a, 

Ziemke, 2002 #108] for the development of intelligent behaviour. For 

instance, Dautenhahn stated that:
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“Life and intelligence only develops inside a body, which is 

adapted to the environment which the agent is living in. Intelligence can 

only be studied with a complete system, embedded and coupled to its 

environment. ”[Dautenhahn, 1999p .l]

Pfeifer et al. also suggest that:

“Intelligence cannot merely exist in the form o f an abstract 

algorithm but requires a physical instantiation, a body”[Pfeifer and 

Scheier, 2001 p.649]

Wilson recently emphasised this emerging trend:

“The emerging viewpoint o f  embodied cognition holds that 

cognitive processes are deeply rooted in the body’s interaction with the 

world”[Wilson, 2002 p .l]

Although embodiment and situatedness have become important concepts 

in many areas, the terminology has remained very unspecific. Different notions 

emerged as to what embodiment and situatedness might mean. It is also unclear 

how the ideas of embodiment and situatedness overlap or diverge [Brooks, 

2002 pp.51-52]. Different terms related to situatedness have appeared in the 

literature, such as ‘Situated Action’ [Suchman, 1987], ‘Situated Cognition’ 

[Clancey, 1997], ‘Situated AI’ [Husbands el a l,  1993], ‘Situated Robotics’ 

[Brooks, 1991a; Hallam and Malcolm, 1994; Brooks, 2002; Mataric, 2003],
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‘Situated Activity’ [Hendriks-Jansen, 1996], ‘Situated Translation’ [Risku,

2002]. Note that this list is non-exhaustive.

The notion of Embodiment has also generated a myriad of expressions, 

such as ‘Embodied Mind’ [Varela et al., 1991; Lakoff and Johnson, 1999], 

‘Embodied Intelligence’ [Brooks, 1991a], ‘Embodied Action’ [Varela et a/., 

1991], ‘Embodied Cognition’ [Clark, 1997], ‘Embodied AT [Franklin, 1997], 

‘Embodied Cognitive Science’ [Pfeifer and Scheier, 2001] and ‘Embodied 

Evolution’ [Watson etaL , 1999].

This diversity does not only apply to the terminology itself. The notions 

behind the terms also diverge. Along with the interpretations put forward by 

Brooks [Brooks, 1991a], there are also a number of other explanations. For 

instance, Pfeifer et al. state that:

“In artificial systems, the term [embodiment] refers to the fact that 

a particular agent is realised as a physical robot or as a simulated 

agent. ” [Pfeifer and Scheier, 2001 p.649]

Terada et al. declare that:

“ We [Terada et al.] define the term embodiment as the extent o f  the 

agent’s body, locomotive ability and its sensor. The extent means how 

and how much the agent’s body occupies in the physical space, that is the 

shape and size o f  the agent’s body. [...] In other words, the significance 

o f existence o f  the object depends on the embodiment o f the agent.
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Therefore, the embodiment o f  the agent can be used to represent the 

relationship among its behaviour and environment. ” [Terada et aL, 2001 

P-2]

These differing notions of embodiment and situatedness have led to 

different opinions regarding the required conditions for a system to be 

considered embodied, or situated, in its environment. Once more, this led to 

different terminology such as, ‘Situated Embodiment’ [Zlatev, 1997; Zlatev,

2003], ‘Natural Embodiment’ [Ziemke, 1999], ‘Naturalistic Embodiment’ 

[Zlatev, 2001], ‘Mechanistic Embodiment’ [Sharkey and Ziemke, 2001], 

‘Phenomenal Embodiment’ [Sharkey and Ziemke, 2001], ‘Social 

Embodiment’ [Barsalou et al., 2003], ‘Social Embeddedness’ [Dautenhahn et 

al., 2002] ‘Physical Embodiment’ [Ziemke, 2001a], ‘Organismoid

Embodiment’ [Ziemke, 2001a] and ‘Organismic Embodiment’ [Ziemke, 

2001a].

One of the main debates is whether a physical body is required to achieve 

interaction with the environment. It is even unclear whether the environment 

itself has to be physical or not. Some, such as Brooks, Mataric or Pfeifer 

[Brooks, 1991a; Pfeifer and Scheier, 2001; Brooks, 2002; Mataric, 2003] 

argue that a physical body is required in a physical world. Brooks states that:
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“At each step we should build complete intelligent systems that we 

let loose in the real world with real sensing and action” [Brooks, 1991b 

p. 140].

Others argue that a physical body is not required [Oka et a/., 2001]. 

Etzioni goes as far as replying directly to Brooks and argues that software 

environments such as operating systems or databases are a valid substrate for 

intelligent agent research [Etzioni, 1993]. Franklin uses autonomous software 

agents as cognitive models to generate testable hypotheses about human 

cognition [Franklin, 1997; Franklin and Graesser, 2001]. He argues that:

“Software systems with no body in the usual physical sense can be 

intelligent. But they must be embodied in the situated sense o f being 

autonomous agents structurally coupled with their environment” 

IFranklin, 1997p .l]

Kushmerick demonstrates that embodiment in a software world, such as 

databases or the Internet, fits with the notion of interaction between an agent 

and its environment [Kushmerick, 1997].

Another unclear line of reasoning that has filtered into the literature 

revolves around the manner by which a system interacts with its environment. 

For instance, Werger and Mataric make a distinction between different levels 

of interaction [Werger and Mataric, 1999]. There exist systems where agents 

simply react to their environment. There are also systems where agents affect
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each others behaviours through more than mere interference, in applications 

such as flocking. Furthermore, there are systems that make use of 

environmental modification, for example, territorial marking or pheromone 

trails. Quick et al. highlight the fact that some robots have more sensory 

capabilities than others, thus suggesting that the extent of the embodiment has 

an impact on the capabilities of the system in an environment [Quick and 

Dautenhahn, 1999]. In another publication, they use the following example:

“In terms o f relationships with the social world (i.e. robot-human 

interactionsj, the Aibo robot dog (Sony) has a greater range o f  

interactive skills than for example a Khepera robot (K-Team). ” 

[Dautenhahn et aL, 2002 p.399]

Dautenhahn et al. mention that robots have differing relationships with 

the world. They mention that a mobile robot with translational and rotational 

capabilities in two dimensions (i.e. two degree of freedom) would have less 

capability to interact with the world than a robot that also possesses an arm 

with an extra five degree of freedom [Dautenhahn, 1997; Dautenhahn et al., 

2002].

Another point still being investigated is representation [Keijzer, 2002; 

Robbins, 2002].
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A recent paper by Anderson provides a review of publications, notions 

and points of view related to embodiment [Anderson, 2003a]. Anderson 

attempts to present the current attitude and goals of the research concerned 

with embodiment. However, there is still much debate [Anderson, 2003b; 

Chrisley, 2003].

This lack of uniformity has been acknowledged in the literature. For 

instance, Wilson indicated that this diversity is cause for concern, by stating 

that:

“ While this general approach [o f embodied and/or situated 

cognition] is enjoying increasingly broad support, there is in fact a great 

deal o f diversity in the claims involved and the degree o f  controversy 

they attract. I f  the term ‘Embodied Cognition ’ is to retain meaningful 

use, we need to disentangle and evaluate these diverse claims. ” [Wilson,

2002 p.2]

Quick et al. attempt to provide a formal definition embracing all the 

above notions. They first look at the underlying principles, common to all those 

different ‘situated/embodied/embedded/interactive’ theories, as Ziemke calls 

them [Ziemke, 2001a]. Quick et al. identified the sensorimotor dynamics 

between a system and its environment as a common principle. These dynamics 

were particularly emphasised by Beer [Beer, 1995]. They use the term 

‘structural coupling’ to denote these interactive dynamics [Quick and
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Dautenhahn, 1999; Quick et aL, 1999a; Quick et aL, 1999b]. ‘structural 

coupling’ was first used in this sense by Maturana and Verela [Maturana and 

Varela, 1980]. Quick et al. then use the more common terms ‘embodiment’ 

and ‘embodied’ to refer to systems which have structural coupling with their 

environment.

Quick et a l then put forward a minimal definition of embodiment 

[Quick and Dautenhahn, 1999; Quick et al., 1999a; Quick et aLy 1999b].

“A system X  is embodied in an environment E  i f  perturbatory 

channels exist between the two. That is, X  is embodied in E  i f  for every 

time t at which both X  and E  exist, some subset o f  E's possible states with 

respect to X  have the capacity to perturb X's state, and some subset o f  

X's possible states with respect to E  have the capacity to perturb E's 

state. ”

Through this definition, Quick et al. clarify that embodiment is not solely 

a feature of a system in an environment but is grounded in the relationship 

between the two.

This definition, by being minimal, embraces all of the divergent notions 

that appeared in the literature. Quick et al. do point out that this definition is 

minimal, and does not rule anything out, on the basis of higher theoretical 

situations, such as ‘belief or ‘intention’. They give the interesting example of a 

granite outcrop in the Antarctic tundra; this illustration is also examined by 

Ziemke [Ziemke, 2001b]. The outcrop (X) in the tundra (E) is persistently
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perturbed by the wind, and in turn perturbs the air currents’ flow. According to 

the definition of embodiment by Quick et al., the outcrop is an embodied 

system in the tundra. Ziemke argues that this definition does not make a 

distinction between cognitive and non cognitive systems by saying that:

“Certainly not many cognitive scientists would actually consider 

this [outcrop in the tundra,] an example o f embodied cognition. ” 

/Ziemke, 2001b p.2]

However, he himself does not provide any form of definition to 

distinguish between systems that are cognitive and systems that are not. The 

definition by Quick et a l does however, to some extent, allow for such a 

distinction. The definition contains variables such as the number of possible 

states and the scope for their perturbation (see [Quick et aL, 1999a] for further 

details). These variables allow for some quantification. It could be argued that 

although the definition provides the opportunity to explicitly quantify 

embodiment, it does not yet do so with any particular metric. Furthermore, as 

Quick et al. point out [Quick and Dautenhahn, 1999] there is still plenty of 

scope for discussion on exactly how coupling occurs and what phenomena are 

made possible as the result of coupling. Finally, this definition of embodiment 

is not plagued with material constraints; in other words, a system may be 

embodied as per the definition without having a physical body. This formally 

opens the notion of embodiment to domains such as software.
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In this thesis, the definition of embodiment by Quick et al will be 

regarded as valid for describing the structural coupling between a system and 

its environment. It will also be regarded as providing a formal term, i.e. 

embodiment, for the different expressions, such as situatedness, interaction, etc 

that have previously been mention in the literature [Brooks, 1991a; Ziemke, 

2001b; Ziemke, 2001a].

2.4 Summary
This chapter has traced the development of the field of robotics, from it 

ancient roots to the present days. The chapter has then focussed on the current 

situatedness embodiment debate in robotic research
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Chapter 3 “Re-Embodiment” a Novel 

Development Architecture Concept for 

Multi Robots Systems Research

3.1 Preamble
One of the basic requirements for Artificial Intelligence (Al) and robotics 

research is a hardware platform upon which to test and validate new theories or 

algorithms. Simulation provides little insight into the robustness and 

applicability of theory to the real world. This is widely accepted and 

understood at all levels in the robotics community [Mondada et al., 1993; 

Lichtensteiger and Ralf, 2000; Kellis, 2002]. This alleged importance of 

embodiment in Robotics was first advocated by Brooks [Brooks, 1991a; 

Brooks, 1991b]. In this thesis, it is further suggested that the physical 

validation of algorithms should not be undertaken in engineered environments, 

but rather in real, dynamic settings. In other words, testing and validation of an 

algorithm in an ‘arena’ with artificial obstacles will have less significance than 

one conducted directly in a typically cluttered robotics laboratory.

3.2 Review of Related Work
The process by which an algorithm can be implemented and tested on a 

hardware platform is of utmost importance. For a research exercise to be
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efficient, or in any way optimised, the implementation and testing process must 

be carefully thought through. This is particularly true in Robotics. Robots, 

being complex systems, consist of mechanical, electric, electronic and control 

elements. All those considerations have to be incorporated into the design and 

properly integrated as a whole. The problem is even more critical in multi­

robot research. The number of robots together with their potential 

heterogeneity rapidly complicates the implementation. Furthermore, and often 

because of cost, several researchers may have to test largely different 

algorithms and theories on a common hardware platform, at the same time. 

This demonstrates the need for flexible platforms.

Despite this need, there have been very few publications concentrating on 

the creation of ‘development architectures’. ‘Experimental Robotics’ by 

Wilberg and Siegberg is a rare example [Wilberg and Siegberg, 1998]. 

Software packages are available for the rapid prototyping of robot systems, 

such as SYMOFROS and RT-Lab [Lambert et al., 2001]. These allow for 

quick modelling and simulation of robot systems, but do not provide the 

functionality required to test control algorithms on hardware platforms.

Commercial hardware platforms for robotics research are widely 

available, as single units. For instance the Pioneer mobile robot and its related 

products, currently commercialised by Active Media Robotics, have been 

extensively used around the world over the last few years [Rus et al., 1996; 

Gerkey and Mataric, 2002]. Mondada and Franzi designed the very popular 

Khepera, a small modular mobile robot [Mondada et al., 1993]. They also co­
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founded the Swiss company K-Team S.A. which produces it commercially. 

Recently, Sony has released Open-R, an architecture to aid development based 

on the well-known Aibo entertainment robot [Fujita and Kageyama, 1997; 

Fujita et aL, 1997,Gutmann, 2003 #123]. The ‘Lego® MindStomT kit has 

proved very popular to various group, from school pupils to researchers 

[Martin, 1996; Levesque and Pagnucco, 2000]. It combines standard Lego® 

building blocks and a controller, the ‘Robot Command Explorer’ (RCX) brick, 

based on MIT’s programmable brick [Resnick et a l 1996]. It provides a cheap 

flexible platform for robot hardware design and prototyping, together with an 

easy-to-use controller [Reshko et al., 2002].

Webots [Michel, 2003], a robot simulation package commercialised by 

Cyberbotics, attempts to fill the gap between simulation and hardware 

validation. It provides modelling facilities based on VRML and simulation 

facilities for control algorithms coded in C or Java. It also has the ability to 

cross-compile and transfer control programs to a Khepera robot using a serial 

port interface cable. However, there are still a number of limitations, such as 

the coding language of the source program, the version of the Khepera 

platform, and the physical connection required between the robot and a 

personal computer (PC) for the download.

There seems to be a lack of systems facilitating development and 

validation of algorithms for multi-robot research. One could have a fleet of 

single commercial units, but would rapidly find it difficult to manage as the 

number of robot grows.
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One of the first assignments of the research presented in this thesis was to 

design a hardware platform based on a fleet of six existing robots know as the 

“Bunch of Mobile” (BOM) robots, [Beutler, 1998]. The platform had to be 

designed to ease the implementation and testing of control algorithms for multi 

robot systems. Although only six robots were to be used at first, expandability 

was a prime objective. The system was also expected to be easily usable by 

several researchers, testing largely different things, at the same time. Together 

with the development of this hardware platform architecture, several 

improvements were made to the individual robots [Corre, 2001].

This chapter first briefly describes the BOM robots as they were at the 

beginning of this project, and the improvements made. Then, the novel concept 

of the development architecture is explained, highlighting its usability for 

multi-robot research. The advantages, drawbacks, and possible improvements 

to the architecture are discussed. Possible applications are presented. 

Subsequently, the implementation of the development architecture on a fleet of 

six PC-based robots is documented, highlighting its flexibility through an 

example application. Finally, a second implementation, on a larger fleet of 

micro-controller based robots, is described.
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3.3 The BOM Robots

3.3.1 The BOM Project

The BOM project started back in 1996. It was a programme of work 

conducted by Beutler and seven visiting researchers [Beutler, 1998]. The 

original objective was to develop a research platform for the development of 

control algorithms for multi-robot systems. It was to include both software and 

hardware facilities.

"The aim o f this project was the prototyping o f an expandable, 

IBM-compatible-PC based low-cost mobile robot capable of co­

operating with other robots. The hardware price limit was set to £500. 

Furthermore, all hardware modules developed had to follow the PC/104 

standard that embodies a physically different version o f the ISA-Bus.

Further, software structures had to be developed to enable users to 

develop their own control algorithms. These algorithms have to be tested 

in simulation environments but also directly on the mobiles." [Beutler, 

1998 p.l]

To ensure that the BOM robots remain an efficient and powerful research 

platform, especially when several users are developing and testing algorithms 

simultaneously, several improvements were needed. The following section
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gives a brief description of the original hardware of the BOM robots based on 

the information given in [Corre, 2001].

3.3.2 The Original BOM Robots

The hardware-related part of the BOM project aimed to create several 

mobile robots [Beutler, 1998]. During the concept design stage of these robots, 

the following requirements were identified:

• Expandability - the system must allow future expansions of the 

hardware.

• Compatibility - the robot hardware must be compatible with 

commercially available standard components.

• Low-cost - the material cost of a single mobile must be below 

£500.

• Easy to program - standard software development tools must be 

applicable.

These demands led to the choice of an inexpensive, standard Intel 

processor (80386) computer motherboard as the base of the system. 

Furthermore, these IBM-PC compatible motherboards fulfil the need to support 

user-friendly programming environments.

41



Ca r d if f
U N I V E R S I T Y Re-Embodiment Architecture for Multi Robots Systems

Compatibility considerations led to the decision to build all hardware 

components around the ISA-Bus standard [IEEE, 1983]. This standard is only 

concerned with electrical connections (e.g. pin layout, signal timing). The 

physical realisation of this bus system in IBM-compatible computers is 

however demanding in space. Thus, the decision was made to use the PC/104 

version of the ISA-Bus. This version is only a physical re-definition of the 

ISA-bus connectors. The PC/104 standard [Consortium, 2001] was first 

introduced by AMPRO in 1987 and is now widely accepted among 

manufacturers and users of embedded systems. This is reflected in a variety of 

products, e.g. PC-motherboards, PCMCIA modules, network cards, GPS cards, 

I/O-boards and memory extension modules. Physically, this new version of the 

ISA-bus provides a stackable design, i.e. all boards are electrically connected 

and physically supported by a special ‘piggyback’ connector. This leads to a 

mechanically robust and compact realisation of the embedded system. 

Therefore, the BOM robots are fully compatible and extendable for future 

developments, or user specific requirements.

The control hardware of each robot is based around a single board PC. 

Most peripheral hardware is connected to this board via the PC/104 bus (Figure 

3-6).

Communication was based on a Frequency Modulation (FM) radio card 

connected directly to the RS232 serial port of the robot's on-board PC (see 

Figure 3-2). The Relative Robot Direction Determination (R2D2) module
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provided orientation information among radio transmitting and receiving 

mobiles (Figure 3-2). During the transmission of a radio message, the 

transmitting mobile switches on an infrared (IR) light, the direction of which 

can be detected by all receiving mobiles using circular mounted IR sensors 

[Schomaker, 1996; Djakov, 1997]. All IR-sensors and emitters are physically 

separated from the amplification and A/D converter stage, and are mounted on 

a sensor tower to facilitate transmission in all directions (Figure 3-1).

The stepper motor drive board supports two independent stepper motors, 

each of which is driven with separate control signals. The signals allow for 

change in direction and variable step frequencies to control speed of the 

wheels. The interface and motor control board generates the control signals. It 

also boasts six counters, eight lines for digital inputs, eight lines for digital 

outputs and one interrupt signal, all available for extra hardware (Figure 3-3).

The distance measurement board provides information about distances 

around the mobile robot as well as reporting collisions with other obstacles 

[Liedtke, 1997] (Figure 3-4). This board drives six piezo-electric-based 

ultrasonic sensors for range measurements up to seven metres. Four switches 

are also used to detect eventual collisions.
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The on-board power supply board manages and converts the battery 

voltage (+12V) into all the required voltages (+5V, -5V, +12V), for all 

electronic components. Furthermore, it indicates if the +5V voltage is outside 

an adjustable voltage band, e.g. a flat battery or a short circuit.

The chassis of the BOM robots (Figure 3-5) encloses the stepper motors 

as well as two gearboxes. These gearboxes reduce the stepper motor's speed 

with a ratio of two to one. In conjunction with its gearbox and stepper motors, 

the mobile is designed to pull heavy loads (up to 20 kg at a speed of 0.15 ms’1, 

assuming no slippage of wheels) [Cavaliere, 1996]. The battery can be easily 

taken out and replaced with another to enable near continuous operation. The 

motor drive card and the power supply board are secured to the chassis.

3.3.3 Notable Improvements to the Robots

Several improvements were made to each individual robot (Figure 3-8). 

Some were very straightforward, such as securing the main PC board and the 

PC/104 stack to the chassis, tidying and securing the cable connections 

between different components (Figure 3-9) or fitting and interfacing a camera 

(Figure 3-10). Other improvements are of more notable interest. Although not 

the subject of detailed study in this research, they are mentioned since they 

provide improvements or solutions to common problems in robotics.
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Figure 3-1. An Original BOM Robot.

Figure 3-2. The R2D2 and Radio 
Board.

Figure 3-3. The Interface and 
Motor Control Board.

g e i
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Figure 3-4. The Distance Board. Figure 3-5. The BOM Robot 
Chassis.
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3.3.3.1 Castor Wheel versus Roller Ball

One of the most popular and simple design of mobile robot is based on 

the differential drive. In this type of design two coaxial wheels are 

independently powered, which allows for direction and speed control 

[Balkcom and Mason, 2000]. At least one more, possibly passive, wheel is 

then needed to provide stability. If passive, the wheel needs to be able to 

reorient, to allow for changes in direction during motion. Traditionally, a castor 

wheel is used. A castor wheel can automatically reorient itself according to the 

direction of motion. Many commercial and research robot are based on this 

design, such as the Khepera or the Pioneer [Mondada et al., 1993; Gerkey 

and Mataric, 2002]. The original BOM robots were also fitted with a castor 

wheel each.

However, due to uncontrollable friction between the castor and the floor, 

the robot may jerk slightly when the castor reorients itself. Especially during 

non-continuous change of direction such as a ‘forward-stop-backward’, 

sequence. This may be solved by implementing a complex motion to reorient 

the castor after a change in direction. However, this would be rather 

unnecessarily complicated and would probably require a device to monitor the 

orientation of the castor to be efficient. A simpler way to solve this problem on 

the BOM robots was to replace the castor by a roller ball (Figure 3-11).
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3.3.3.2 A New Operating System

The previous operating system running on the robots was MS-DOS 

(version 6.2). Despite being stable and easy to use when controlling hardware, 

and having a small footprint, MS-DOS had three major drawbacks. Firstly, it is 

not a multi-tasking operating system. Secondly, an increasing number of new 

hardware devices is not supported under MS-DOS. Thirdly, it is not an open 

source operating system and most of the applications distributed under it are in 

binary form. When it was chosen as the operating system for the robot in 1996, 

MS-DOS was the most suitable operating system available.

"The choice o f the operating system (OS) was also based on 

compatibility considerations regarding other hardware components and 

their driver libraries. MS-DOS Version 6.2 was chosen because this fully 

documented and supported OS gave considerable advantages over not so 

popular OS, such as Mac." [Beutler, 1998 p.3]

Because MS-DOS is not a multi-tasking operating system, only one 

application can run at a time. This means that the application developed to 

control the robot had to include everything required. This limitation did cause 

problems in the past. For instance, when trying to use a web-cam in the control 

program, previous developers had to write the code for image capture, 

exposure time, etc. Under a multi-tasking operating system, one can use a 

ready-made application for image capture, in parallel with its control
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application. Furthermore, the program distributed under MS-DOS to capture 

images with this web-cam is in a binary form (precompiled). If the source code 

was available, the development of image capture functions for the control 

program would have been much easier. Finally, because most new hardware is 

not supported under MS-DOS, future development of the robot would be much 

more difficult. For instance if the robot were to be fitted with wireless network 

capability or a GPS device, the choice would be restricted because most new 

hardware is not supported under MS-DOS.

The problem caused by the limitation of MS-DOS highlighted the need 

for a more versatile operating system. This was an essential step in ensuring 

that the robots remain a versatile research tool and avoid becoming obsolete. 

Several operating systems were reviewed [Corre, 2001].

Linux was chosen because it is a multi-task and multi-threads operating 

system. It is possible to develop a small footprint distribution that would match 

the hardware requirements. Linux is stable, well documented and widely used. 

A device driver is required to control peripherals but documentation on driver 

development is available. There is full, well documented networking support. 

Device drivers are generally available for most commercial hardware, such as 

the most popular wireless LAN cards and web-cams. In addition, if required in 

the future, a real time extension of the kernel is available to deal with time 

critical tasks.
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As part of the development of the new operating system, a major concern 

was to ensure that interfacing with the motors and sensors of the robot is made 

easy. In order to enable simple and efficient ways to interface with them, from 

either a shell or any application, device drivers were developed for both the 

interface board and the distance board.

3.3.3.3 Wireless Communication

Another common problem in robotics is wireless communication. Efforts 

have been made throughout the evolution of robotics to free robots from 

umbilical cords. This was seen as an important step toward autonomous robots 

[Warwick et a l 1995]. Advances in battery technology and electronics made 

it practical for robots to have onboard power supply. Most robots are now 

designed free of power supply cables. A further problem was the wireless 

communication medium. Such a system is often required for remote 

controlling, monitoring or inter-robot communication. The BOM robots were 

originally fitted with a radio board, allowing simple communication between 

the robots themselves, and/or a stand alone PC. This link was, however, very 

limited in speed, range and reliability.
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Figure 3-7. The Wireless Network Architecture.
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Recent advances in wireless networking technology have resulted in 

compact, reliable and cheap commercial products, such as PCMCIA wireless 

LAN cards for laptop computers. Each robot was fitted with a PCMCIA 

wireless LAN card connected to the PC/104 stack via an adaptor. The wireless 

network card readily supports a range of protocol such as TCP/IP, thus 

widening the range of possible communications and data transfer between the 

robots and/or an eventual base station. A wide range of readily available 

software applications can then be used for numerous tasks, such as monitoring 

the wireless signal strength and quality, or running a web server on the robot.

To broaden the scope of possible applications and flexibility, a stand­

alone PC, connected to the University LAN, was also fitted with a wireless 

network card, using a PCMCIA to ISA adapter, and a range extender. This 

provides a link between the wireless network (i.e. the robot fleet) and services 

available via the University LAN (Figure 3-7).

3.3.3.4 Polarised Connectors

An additional problem, which affects robots and electrical equipment in 

general, is the possibility to misconnect a power supply. This can result in 

severe and irreversible damage to the hardware. On the BOM robots for 

instance, it was surprisingly easy to misconnect the PC/104 connector between 

each board. This did happen in the past and resulted in the destruction of 

several boards.
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This was easily solved by using non-symmetrical spacers between each 

board, (Figure 3-12) as recommended in the PC/104 standard [Consortium, 

2001], thus making it physically impossible to misconnect the boards in the 

stack. Another flaw in the original design was the connection between the 

power supply board (PSU board) and the PC/104 stack. Ideally the PSU should 

be fitted with a PC/104 connector and spacer and be part of the stack. This is 

not the case on the BOM robots. Originally, a wire was connected between the 

PSU board and the PC/104 connector at the top of the stack. This could, once 

again, be misconnected too easily. To solve the problem, a small, power 

distribution board was added to the stack. The board was designed so that it 

cannot be misconnected in the stack. The board was also fitted with a 

connector for a wire coming from the PSU board, and an auxiliary power 

output connector used to power the robot’s onboard flash memory. Again, 

those connectors are designed to prevent misconnection. Finally, the link 

between the battery and the PSU board can be misconnected. This was not 

resolved, as the PSU board is designed to prevent damage in case of a 

misconnection. However, a battery designed in such a way that it cannot be 

inserted, or does not make contact, if it is inserted wrongly, would be a better 

solution.
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Figure 3-8. The Fleet of Improved BOM Robots.

Figure 3-9. ‘Ape’ Robot. Figure 3-10. The Camera.

Figure 3-11. The Roller Ball. Figure 3-12. The PC/104 Stack.

54



Ca r d if f
U N I V E R S I T Y Re-Embodiment Architecture for Multi Robots Systems

3.4 Formal Concepts of the Architecture

3.4.1 Aims of the Architecture

It has been established that there is a need for development architectures 

that optimise research and implementation of multi-robot systems (MRS). The 

following objectives for such architectures were identified as necessary to 

provide versatile solutions:

• Scalability

• Easy embodiment

• Multi-user

The first objective is scalability. To ensure that the architecture can be 

used with different types of multi robot system and remain efficient it must be 

fully scalable. That is, the number of robots must not significantly affect the 

performance of the system. A simple action that may seem harmless when 

setting up one robot may prove a real chore for setting up a hundred robots.

The second objective is to optimise the process of implementing 

algorithms or control architectures within MRS, in other words, ease the 

embodiment process.

Finally, the architecture must remain efficient with a growing number of 

users developing or testing largely different algorithms or control architectures 

at virtually the same time.
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3.4.2 Axioms

The Re-Embodiment architecture presented here is based on the notions 

of embodiment previously described. A system is embodied if a perturbatory 

channel exists between that system and its environment. Some of the concepts 

of the Re-Embodiment architecture are also based on the basic idea of dualism 

that a system consists of a soul and a body. This section formally postulates the 

axioms along which the Re-Embodiment architecture functions.

Axiom 1: There exists an environment.

One of the basic requirements of embodiment as defined by Quick et al. 

[Quick and Dautenhahn, 1999; Quick et al., 1999a; Quick et a l , 1999b], is

the existence of an environment. In this research, whether this environment is 

physical or virtual, to avoid limiting the applicability of the architecture is not 

specified. The only prerequisite is that the environment is dynamic, in other 

words, it has at least one physical dimension: time. In a willingness to broaden 

application of the Re-Embodiment architecture, the boundary of the 

environment or what the environment consists of is not specified either.
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Axiom 2: Among the entities in this 
environment, there exist bodies and souls. 
Both souls and bodies can be present and 

contained in this environment.

This environment may contain or consist of a variety of entities 

depending on its dimensions. Inspired by the fundamental ideas of Cartesian 

dualism, it is stipulated that among those entities, there exist bodies and souls. 

As Re-Embodiment makes use of bodies and souls, it is a prerequisite that both 

souls and bodies exist in the environment. It is also supposed that bodies and 

souls - by being present in the environment - can be identified and quantified 

along the dimensions of the environment. For instance, in the ‘real world’ 

environment, one should be able to say that at time t , the body Bn, of

dimension LB xW B x H B , was at location T(Bn, t ) : {x,y,z}  with the

orientation R(Bn, t ) :
r l l  ' 2 1  ' 3 1

12 ' 2 2  ' 3 2

13 ' 2 3  ' 3 3

. See Figure 3-13.
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Axiom 3: A soul can interact with a body to 
form a system.

Based on the existence of bodies and souls in the environment (as 

defined in axiom 2), it is specified that a system, in this environment, consists 

of the incarnation of a soul with a body. A system here has the same meaning 

than in the definition of embodiment by Quick et al. [Quick and Dautenhahn, 

1999; Quick et aL, 1999a; Quick et aL, 1999b]. By incarnation, it is meant 

that for the soul and body to form such a system, the soul needs to be able to 

interact with the body and vice-versa. Note that the soul does not necessarily 

have to be physically contained in the body -along the dimension of the 

environment-. This again provides a larger scope of possible applications, by 

including the possibility of tele-embodiment. Tele-embodiment refers here to 

the interaction of a soul and a body each at different locations in the 

environment. See Figure 3-14.

Axiom 4: The soul-body system can interact 
with its environment.

It has been established that a system consists of a soul and a body 

interacting. This, per se, is not sufficient for the system to be embodied. The 

soul-body system must also be able to interact with its environment. This is a 

prerequisite of the definition of embodiment advocated by Quick et al. [Quick 

and Dautenhahn, 1999; Quick et a l 1999a; Quick e t a l 1999b]. See Figure 

3-15.
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Axiom 5: A soul is not body specific.

This means that a soul should be able to incarnate in any body, thus 

providing maximum flexibility to the development system. See Figure 3-16.

Axiom 6: A body is not soul specific.

This means that a body should be able to be incarnated by any soul. 

Again, this is done to provide maximum flexibility to the development system. 

See Figure 3-17.

Axiom 7: A trigger will initiate the 
incarnation process. This trigger may come 
from the body, the soul or the environment.

The incarnation process corresponds with the time t in the environment 

when a soul and a body start to interact. This process may be initiated by a 

combination or either one of the following: A body, a soul or the environment. 

See Figure 3-18.
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Body B,
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Figure 3-13. An Environment Containing Souls and Bodies.

Soul S

Body B

Figure 3-14. A Soul Interacting with a Body, Forming a System.

Soul S,

Body B,

Figure 3-15. A Soul-Body System Can Interact with its Environment.
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Axiom 8: A trigger will initiate the de­
incarnation process. This trigger may come 
from the body, the soul or the environment.

The de-incamation process corresponds with the time t in the 

environment when a soul and a body stop interacting. This process may be 

initiated by a combination or either one of the following: a body, a soul or the 

environment. See Figure 3-19.

Axiom 9: A body may be linked with some 
information, body-specific or not. The active 

soul may access that information.

A body may also be linked with data and information. This data may be 

body specific or not. A soul incarnated with a body (i.e. an ‘active’ soul) may 

access that information. See Figure 3-20 below.

So far, the axioms (summarised in Table 3-1, below) along which Re- 

Embodiment architectures are to be developed have been generally non 

restrictive. This was purposely done to broaden the scope of possible 

implementations and applications. However, as they stand, these axioms may 

be seen as too general for the implementation of development architectures for 

multi robot systems. For instance, they do not restrict the use of a single 

centralised soul to control several bodies.
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Body B

Body B

Figure 3-16. A Soul is not Body Specific.

Body B

Figure 3-17. A Body is not Soul Specific.
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/

Soul S,

Body B

Figure 3-18. A Trigger Initiates the Incarnation Process.
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Axiom 1: There exists an environment.
Axiom 2: Among the entities in this environment, 

there exist bodies and souls. Both souls and 
bodies can be present and contained in this 
environment.

Axiom 3: A soul can interact with a body to form a 
system.

Axiom 4: The soul-body system can interact with its 
environment.

Axiom 5: A soul is not body specific.
Axiom 6: A body is not soul specific.
Axiom 7: A trigger will initiate the incarnation 

process. This trigger may come from the 
body, the soul or the environment.

Axiom 8: A trigger will initiate the de-incarnation 
process. This trigger may come from the 
body, the soul or the environment.

Axiom 9: A body may be linked with some 
information, body-specific or not. The active 
soul may access that information.

Table 3-1. The Non-Restrictive Re-Embodiment Axioms.

The prime objective is that Re-Embodiment architectures are to be 

implemented to ease research and development of multi-robot systems. 

Therefore, one must ensure that Re-Embodiment architectures developed along 

the proposed axioms do not jeopardise the multi-robot system itself. As 

discussed previously, multi-robot systems are considered to be decentralised 

systems. In other words, they consist of several autonomous subsystems, or 

robots. Consequently, further axioms are suggested to address this matter.
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Axiom 10: A soul can only interact with a 
single body at a time.

This restriction ensures that a soul cannot control more than one body at 

a time and consequently that development architectures based on the Re- 

Embodiment axioms remain decentralised systems. See Figure 3-21.

Axiom 11: A body can only interact with a 
single active soul at a time.

This restriction ensures that a body is only controlled by a single soul at a 

time. Therefore, development architectures based on the Re-Embodiment 

axioms are not plagued with resource sharing problems. Note that, for ease of 

implementation, a body may contain other souls but only one can form part of 

the soul-body system. See Figure 3-22.

Axiom 10: A soul can only interact with a single body 
at a time.

Axiom 11: A body can only interact with a single active 
soul at a time.

Table 3-2. The Restrictive Re-Embodiment Axioms.
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Soul S

Body Bn1

Soul S

Figure 3-19. A Trigger Initiates the De-Incarnation Process.

Soul S

Body Info

Body Br

Figure 3-20. A Body May Contain Data that the Active Soul May Access.

Soul S

Soul S,

Body

Figure 3-21. A Body Can Only Interact with One Soul. A Soul Can Only
Interact with One Body.
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3.4.3 The Soul-Body Boundary

Although the soul body distinction in the Re-Embodiment architecture is 

inspired by Cartesian dualism, it is somewhat different. Dualists see soul and 

body as two distinct substances. The former is active, invisible and intangible, 

while the latter is inactive, visible and tangible. This forms the basis of one of 

the most pertinent criticisms of dualism, the category mistake. In the Re- 

Embodiment architecture, the soul-body separation is set arbitrarily. Both soul 

and body are part of the same world and are not different substances. 

Consequently the Re-Embodiment principle is unaffected by the category 

mistake.

In the Re-Embodiment architecture, this soul-body boundary is set 

according to the system itself and its implementation. As long as the axioms, 

along which development systems are to be implemented, are honoured, this 

boundary can be set arbitrarily.

It is important to note that the soul-body boundary is independent of any 

software-hardware boundary. Although it is tempting to imagine the soul as 

being the software and the body as being the hardware, this would restrict the 

applicability of the architecture. In most systems, both body and soul will be 

made of a mixture of software and hardware. For instance, a body may consist 

of a chassis, motors, sensors, and controller. There also may be some resident 

software, it may for example hold some information specific to the body and 

required by the implementation, such as a network address. The soul may 

consist of control programs and part of the operating system. It may also
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include some hardware. One could implement a system where the soul is a data 

storage medium, such as a CD or a data cartridge, loaded with software. This 

storage medium can then be inserted in the body, during the incarnation 

process. Soul and body will then interact to form the complete system.

3.4.4 Agent Systems versus Re-Embodiment

Another distinction, which may need to be clarified, is the one between 

so-called Software Agent Systems (SAS) and the Re-Embodiment architecture. 

The term agent system is used to refer to several different things. It may refer 

to a fleet of robots co-operating in the physical world, simulated ant colonies, 

or small software programs foraging in the Internet in a decentralised manner. 

These software agent systems may exhibit some similarity to the Re- 

Embodiment architecture, in that a software agent system may be used to 

control a fleet of robots [Beutler, 1998]. Both software agents and souls in a 

Re-Embodiment architecture may be able to ‘freeze’ and move to another 

machine or body to carry on running. There are, however, major differences. In 

software agent systems, several agents may be running at the same time on the 

same machine and may need to compete for resources. This is not the case in 

Re-Embodiment architecture. According to axioms 10 and 11, a soul can only 

interact with a single body at a time and vice versa.

It is possible to implement a Re-Embodiment system where a fleet of 

robots is controlled by travelling software agents. In this very particular case, 

the software agents are a subset of the soul. The souls to be incarnated on the 

robot will contain the necessary components to run the software agent system,
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such as an agent server and several software agents. Once the incarnation 

process is completed, the software agent system may start running.

3.5 Re-Embodiment Applied
The axioms according to which Re-Embodiment development 

architectures are to be implemented have been established. However, any 

implementation issues have been abstracted so far. Now that the formal axioms 

have been defined, one can envisage possible applications of the Re- 

Embodiment architecture. This section presents several possible applications in 

which a Re-Embodiment architecture would ease research and development of 

multi robot systems. Note that this list of possible applications does not attempt 

to be exhaustive. The distinct advantages of such architecture are also 

highlighted in each case.

3.5.1 Easy Re-Embodiment

The first, and obvious, advantage of Re-Embodiment architectures is, as 

the name suggest, Re-Embodiment. As defined previously a system consists of 

a body and a soul. While developing a robot or a multi-robot system, a large 

amount of time is spend on debugging and testing. This can be on either the 

soul or the body. One could be testing a new image capture routine, part of the 

soul, or a new control board for sensors, part of the body. In Re-Embodiment 

architectures, the process by which a soul incarnates a body to form a system is 

simplified; therefore, the development process can be optimised. Users can
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work on different parts of the system and easily bring the soul and body back 

together to have a system in a running state. This process can then be repeated 

throughout the development and test period. See Figure 3-22.

3.5.2 Multi-Embodiment

Another distinct advantage of the proposed architecture is multi­

embodiment. Researchers working with a fleet of robots can readily incarnate 

several instances of the same soul into several distinct bodies of the fleet. This 

is particularly advantageous with growing numbers of robots. The time 

required to bring each robot system to a running state becomes increasingly 

critical as the number of robots increases. The development process can be 

optimised by making such a task easier and faster. Development architectures 

based on the Re-Embodiment principle will provide such capabilities. See 

Figure 3-23.

3.5.3 Cloning

Another possible advantage of Re-Embodiment architecture is cloning. 

As part of a multi robot system, one can easily implement a cloning process. 

For instance, a soul-body system could duplicate itself. Several new instances 

of the soul can be embodied in new bodies. It is assumed that the new bodies 

used for the cloning are available for incarnation. See Figure 3-24.
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Figure 3-22. Easy Re-Embodiment.
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Figure 3-23. Multi-Embodiment.
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Figure 3-24. Cloning.
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Figure 3-25. Deployment.
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3.5.4 Deployment

A further advantage of the system is deployment. A soul can be easily 

deployed across a fleet of bodies. It is particularly advantageous in cases where 

there are restrictions in the communication range. If a soul cannot be 

incarnated in all the bodies from the start, it can be firstly incarnated in the 

bodies that are within range. Then, those bodies can clone instances of their 

soul into further bodies within their range. See Figure 3-25.

3.5.5 Crossover

An additional possible use is crossover mutation. One can easily 

implement a society where at some stage two souls crossover to form a third 

soul. This third soul can then be easily incarnated in available bodies. This 

would be particularly advantageous in system where co-evolution is to be 

implemented with robots in the physical world. See Figure 3-26.

3.5.6 Self-Mutation

A further possible use is self-mutation. One can easily implement a 

society where at some stage souls in robots systems mutate and re-incarnate in 

their own body. This would be particularly useful in cases where one wants to 

implement an evolutionary system using real robots. See Figure 3-27.
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Figure 3-26. Crossover.
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Figure 3-27. Self-Mutation.
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3.5.7 Multi-User Scenario

The main advantage of Re-Embodiment architectures is their versatility 

with multiple users. Development exercises may require several users to test 

largely different things at virtually the same time. Several projects may be 

running in parallel with only one available platform for testing purposes. Here, 

a small scenario highlights the adaptability of a development architecture, 

based on the Re-Embodiment principles.

Imagine a research laboratory where three researchers are developing 

essentially different control algorithms. The laboratory is equipped with four 

mobile robots for testing and development purposes. The researchers have to 

share these resources to test their theories (See Figure 3-28).

Researcher 1 is developing a control algorithm to track an object with the 

camera. He prepares a soul, containing all required drivers to interface with the 

robot hardware and the camera. It also includes a program where his algorithm 

is coded. At 4pm, he triggers the incarnation of two instances of his soul in 

robots 1 and 2 and commences testing.

Researcher 2 is developing control algorithms for robots to follow each 

other. She prepares two souls, one with her algorithm coded in a program, one 

with a program to make a robot randomly wander. At 4.10pm, she triggers the 

incarnation of her two souls in the two available robots, respectively robots 3 

and 4. Soon after, robot 4 starts wandering in the lab, while robot 3 follows it.
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At 4.20pm, researcher 1 ceases his test session and starts working on his 

algorithm again to correct minor unexpected problems he was able to uncover 

with his tests.

At 4.25pm, researcher 2 terminates her test session happy with the 

results.

Researcher 3 is developing control algorithms for moving robots in a 

formation. He has previously prepared and tested a soul, containing his 

algorithms. At 4.30pm, he triggers the incarnation of instances of his soul in all 

available robots for a demonstration to visiting researchers.

At 4.45pm the demonstration is finished and the visiting researchers are 

impressed.

At 4.50pm, researcher 2 triggers another incarnation to test a new 

algorithm she is developing.

This scenario aimed to demonstrate that the use of a single development 

platform, based on Re-embodiment, is easily optimized to a point where 

several researchers can work in parallel on different aspects of MRS and 

robotics research.
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Figure 3-28. Multi User Scenario.
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3.5.8 Cross-Platform Embodiment

Finally, another possible advantage could be cross-platform embodiment, 

this refers to the possibility of incarnating a soul across different platforms or 

heterogeneous bodies. This is the subject of some contemporary research in 

other disciplines, such as computing. For instance, cross-platform languages 

and cross-platform user interface toolkits have been developed.

It also has been the subject of some research in robotics. O’Hare and 

Duffy, for instance, have demonstrated agent migration between real and 

virtual space [O'Hare and Duffy, 2002]. The Webots simulation software 

features cross-compilation capabilities to allow a program to run on both a 

simulated platform and a real Khepera robot [Michel, 2003]. The Re- 

Embodiment principles allow for such implementations.

Soul Sn1 ^

/ i \
\

/ \
/ \

Real Robot Another 
Real RobotSimulated rw<*'

Robot
Figure 3-29. Cross Platform Embodiment.
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3.6 Implementing Re-Embodiment 
Architectures

In this section, two development architectures based on the Re- 

Embodiment principles are described. The first was implemented on the Bunch 

of Mobile robots (BOM robots), a fleet of six PC based robots. The second was 

implemented on small robots code-named SheepBots. The SheepBots are a 

large fleet of microcontroller based robots.

3.6.1 Re-Embodiment on the BOM Robots

The BOM Robots were developed at Cardiff University [Beutler, 1998]. 

Six were built. This small fleet has been used by the robotics group over the 

past few years as the hardware platform to implement, test, and validate control 

algorithms [Pham and Parhi, 2003]. With a growing number of researchers 

and a wider diversification of research scopes, the fleet had to remain a flexible 

tool. One of the first assignments of the research presented in this thesis was to 

implement a ‘development architecture’ based on the Re-Embodiment 

principles, using the six BOM robots.

The main objectives were expandability and flexibility. The system was 

to consist at first of only six robots but future expansion was to remain possible 

and easy. The system was to be used by a number of researchers working on 

largely different things, hence the need for flexibility.
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The first step was to devise the development architecture structure based 

on the Re-Embodiment concepts. Then a new custom-made operating system 

implementing the Re-Embodiment principles was developed for the robot. 

Device drivers were developed to control the robots’ specific hardware under 

this operating system [Corre, 2001]. Finally, the system reliability and 

performance were assessed through both testing and continuous use by the 

researchers of the robotics group.

3.6.1.1 System Design

The robots are to be used in the real world. According to axiom 1, the 

environment for the robots will be the physical world.

The robots are PC-based; the body of each robot will consist of all the 

hardware, and some resident software. Because the robot may be required for a 

number of tasks, the software part of the body will be kept minimal. It will 

consist of the operating system kernel and some body specific information.

The soul will be purely software. It will consist of the entire File System 

(FS) needed by the operating system and the robot to run. This allows for 

maximum flexibility. For instance, if one does not need to use the robot’s 

camera for a particular experiment, then one may omit the corresponding 

device driver and sample applications from the file system. The file system will 

include one or more programs where the algorithms to be tested are coded. It 

may also include programs and utilities, such as a shell, a telnet server for
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remotely logging on to the robot, or a web server. The soul and body have been 

defined in accordance with axiom 2.

The file system will also include some device drivers for the motors and 

sensors, allowing the soul to be able to interact with the body. Applications or 

user programs will also be able to interact with the body via these device 

drivers. A file containing the body-specific information will also be made 

available. Consequently, the soul will be able to interact with the body, hence 

fulfilling axiom 3.

The soul-body system consists of a Central Processing Unit (CPU), 

actuators (i.e. the motors, sensors,) and control programs. The system, once 

running, will be able to interact with its environment. In other words, the robot 

will be able to move, push objects, and dynamically affect other systems in the 

environment. It will also be able to perceive this environment through various 

sensors, such as bumpers, ultrasound range sensors, and vision sensors. 

Axiom 4 is thus also fulfilled.

The system is designed so that souls remain non-body-specific. For this 

to be possible, the required information specific to a body is held on that body 

in accordance with axiom 9. This information, held in a file, is part of the 

software side of the body. For this implementation, the only body specific 

information required is the Internet Protocol (IP) address of the body on the 

wireless network, together with its hostname. Axiom 5 is therefore met.

80



Ca r d if f
U N I V E R S I T Y Re-Embodiment Architecture for Multi Robots Systems

The system is also designed so that a body is not soul-specific. In other 

words, each body can accommodate any soul, hence fulfilling axiom 6. There 

are, of course, a few provisos. One can assume that the souls are developed to 

run on those bodies. A researcher developing a soul containing inadequate 

device drivers or no program cannot expect the system to be embodied after the 

incarnation process.

According to axiom 7, a trigger initiates the incarnation process. To ease 

the implementation, a simple trigger was chosen. Each time a body’s operating 

system reboots, it will look for a soul destined to be incarnated on that body. 

Souls, being purely software in this application, have to be held in a storage 

medium. When incarnated in a body they will be held in the memory of that 

body. When not incarnated, a computer, part of the wireless network, is made 

available for them to reside until an incarnation is triggered. This computer is 

referred to as the boot server. This computer is also connected to the University 

LAN. Users can develop their souls from any workstation on the University 

network or any workstation in the world connected to the Internet, provided 

there is authorised access to the University LAN. Souls, once ready, can then 

be transferred to that boot server.

This boot server is equipped with a specific directory structure. There 

exists a specific directory for each robot. A soul residing in one of those 

directories is considered to be waiting incarnation into the corresponding body. 

For instance, soul Sni may be stored in the folder corresponding to body Bni. 

When body Bni is powered up, its operating system will download soul Sni and
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use it for the incarnation process. There also exist folders for groups of robots, 

and a folder for the entire fleet. For example, one may want instances of the 

same soul to be incarnated in the entire fleet. The only step required for this is 

to place this soul in the directory corresponding to the entire fleet and then 

power up, or reboot, every robot in the fleet.

A default soul is also stored and compressed in each robot as part of the 

body’s software side. If there are no souls available on the boot server during 

the incarnation or if the available souls are invalid, this default soul is used for 

the incarnation. This allows for debugging of the incarnation process. After a 

failed incarnation from the boot server, a soul-body system is still created, thus 

allowing the user to investigate eventual problems. The default soul can also be 

used to quickly demonstrate the capabilities of the system, without having to 

prepare a soul and upload it on the boot server.

Axiom 8 stipulates that a trigger will initiate the de-incamation process. 

This will be achieved by a reboot or a power down of the body’s operating 

system. Before the de-incamation, the soul may be saved and stored back on 

the boot server or re-incamated in another robot. Otherwise, the soul is lost.
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Axiom 1: There exists an 
environment.

The real physical world.

Axiom 2: Among the entities in 
this environment, there 
exist bodies and souls. 
Both souls and bodies 
can be present and 
contained in this 
environment.

A body: the entire robot hardware i.e. 
the chassis, motors, electronics, etc. 
The operating system’s kernel. A file 
containing some body specific 
information. The linuxrc script. A 
compressed default file system image. 
A soul: Purely software, consists of a 
file system image containing required 
programs, servers, drivers, and 
applications.

Axiom 3: A soul can interact with 
a body to form a system

Device drivers have been developed 
for applications and programs to 
interact with the robot’s specific 
hardware. Device drivers are readily 
available for the robot’s commercial 
hardware.

Axiom 4: The soul-body system 
can interact with its 
environment.

The soul-body system is equipped 
with sensors and actuators allowing 
interaction with the environment.

Axiom 5: A soul is not body 
specific.

A soul is free from any body-specific 
information, hence can be incarnated 
in any available body.

Axiom 6: A body is not soul 
specific

A body is free to be incarnated by any 
consistent soul.

Axiom 7: A trigger will initiate 
the incarnation process. 
This trigger may come 
from the body, the soul 
or the environment.

The incarnation process takes place 
during the boot up sequence of the 
operating system. A power up or 
reboot triggers the incarnation.

Axiom 8: A trigger will initiate 
the de-incamation 
process. This trigger 
may come from the 
body, the soul or the 
environment.

The de-incamation process occurs 
when the system shutdowns or 
reboots.

Axiom 9: A body may be linked 
with some information, 
body-specific or not. 
The active soul may 
access that information.

A file, part of the body’s software, 
contains all required body specific 
information.

Table 3-3. The BOM Robot Implementation According to the Re-
Embodiment Axioms.
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3.6.1.2 Incarnation Process

This section details the incarnation process as it was implemented on the 

BOM robots. The incarnation process occurs as a part of the boot up sequence. 

Linux kernels have been designed to support boot loading via the use of the 

linuxrc script. This was originally developed as a workaround to enable the use 

of boot devices not directly supported by the kernel. That capability to 

implement the incarnation process was taken advantage of. This process is also 

summarised in Figure 3-31.

1st stage: The robot is powered up

When a computer is first powered up, the BIOS starts the system. Then a 

program called the bootstrap loader, located in ROM BIOS, looks for a boot 

sector. A boot sector is the first sector of a disk and has a small program that 

can load an operating system. When the robot is powered up the BIOS checks 

the memory and all other devices. Then the BIOS executes the Linux Loader 

(LILO) located on the first sector of the flash disk.

2nd stage: The Linux Loader (LILO)

When the computer loads a boot sector on a normal Linux system, what 

it loads is actually a part of LILO, called the 'first stage boot loader'. This is a 

tiny program which loads and runs the 'second stage boot loader'. The second 

stage loader gives a prompt (if it was installed that way) and loads the chosen 

operating system.

84



Ca r d if f
U N I V E R S I T Y Re-Embodiment Architecture for Multi Robots Systems

On the robot, the Linux Loader extracts the kernel from the flash disk 

and decompresses it into the RAM. Then the Linux kernel is executed.

3rd stage: The Linux kernel

The kernel makes the hardware do what the programs want, fairly and 

efficiently. The processor can only execute one instruction at a time, but Linux 

systems appear to be running several processes simultaneously. The kernel 

achieves this by quickly switching from task to task. It makes the best use of 

the processor by keeping track of which processes are ready to go, and which 

processes are waiting. This kernel task is called scheduling. If a program is not 

doing anything, then it does not need to be in RAM. Even a program that is 

doing something may have parts that are not doing anything. The address space 

of each process is divided into pages. The kernel keeps track of which pages of 

which processes are being used the most. The pages that are not used so much 

can be moved out to the swap partition. When they are needed again, another 

unused page can be paged out to make way for them. This is virtual memory 

management. The kernel contains large amount of specific code to interact with 

diverse kinds of hardware and presents it in a uniform way to the application 

programs. The kernel also manages filesystems, interprocess communication, 

networking, etc.

On the robot, the Linux kernel initialises all devices and then extracts a 

default file system from the flash disk into the RAM. This default file system 

contains:
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• File transfer applications (ftp, tftp, or nfs)

• The required device driver for the wireless network card

• A shell or command interpreter (bash or ash)

• A script (linuxrc)

Once the default file system is extracted into RAM, it is mounted as a 

default root file system and the linuxrc script is executed.

4th stage: The linuxrc script

The linuxrc script uses the bash command interpreter or shell to execute a 

sequence of task. First, the wireless network card is initialised. Then, the script 

checks if the boot server can be accessed and if there is a valid file system 

image available for download.

If there is a valid image, it is downloaded over the wireless network. It is 

then decompressed into RAM and mounted as the new root file system. Log 

files and the file containing the information specific to the body are transferred 

from the old root file system to the new one. The old root file system is 

unmounted. The boot process carries on running with the new file system.

If there is no valid image on the server, or if the server cannot be 

accessed, the script notifies the user by logging an error message. The boot 

process continues with the default file system.

This sequence is summarised in Figure 3-30 below. The full source code 

and flowchart are also available in Appendices B and C.
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Download filesystem 
image

Initialise wireless 
network card
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Transfer log files and 
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root to new root

Figure 3-30. Flowchart Summarising the linuxrc Script

87



CARDIFF
U N I V E R S I T Y Re-Embodiment Architecture for Multi Robots Systems

5th stage: The init program and other applications.

Only the "System V" style of initialisation used by most Linux systems 

will be described here. There are alternatives. In fact, one can put any program 

in ‘/sbin/init ' ,  and the kernel will run it.

Init’s function is to ensure that that everything is running the way it 

should be. It checks that the filesystems are ok and mounts them. It starts up 

‘daemons’ to log system messages, do networking, serve web pages, listen to 

the mouse, and so on. It also starts the ‘getty’ processes that put the login 

prompts on your virtual terminals.

‘Init’ reads the file ‘/etc/inittab’, which tells it what to do. Typically, 

the first thing it is told to do is to run an initialisation script. The program that 

executes (or interprets) this script is bash, the same program that gives a 

command prompt. In most Linux systems, the initialisation script is 

‘/etc/rc.d/rc.sysinit’. This is where the file systems are checked and 

mounted, the clock set, swap space enabled, hostname set, etc.

On the robot, the ‘init’ program from the current root file system, (either 

the default root file system or a downloaded root file system), is executed as 

well as all other required programs, as defined in the ‘/etc/inittab’ file.
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1st stage: The robot is powered up
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Kernel default filesystem Free Free

2nd stage: The Linux Loader (LILO)
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4th stage: The linuxrc script
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5th stage: The init program and other applications,
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Figure 3-31. The Five Stages of the Incarnation Process on the BOM
Robots.
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3.6.1.3 Performance Assessment

The performance of the system was first assessed through a series of 

tests. The system reliability was also tested through constant use by researchers 

in the robotics group over the last couple of years [Pham and Parhi, 2003].

The aim of the tests was to assess the performance of the system when 

downloading file system images. This was done by timing the boot sequence of 

each robot. It is important to note that the timing was done manually. The 

nature of the boot sequence does not allow software timing to be implemented. 

The time was measured from the moment were the robot is switched on and 

until the boot process is fully completed. Because the robots are not fitted with 

screens or other output devices, a double beep marks the end of that boot 

sequence. It is also important to note that the robots are not all fitted with the 

same PC board. One has an Intel 486 clocked at 33MHz and the other five have 

an Intel Pentium I clocked at 66Mhz. The full robot specifications are available 

in Appendix A.

The first series of tests was designed to time the boot sequence when no 

file system image is available on the boot server. Those experiments showed 

that the average boot time on the 486 is about 57 seconds, against 53 seconds 

on the Pentium. The full results from those experiments are available in 

Appendix D.
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Then a second series of tests was run to time the boot sequence when a 

four megabytes image is available. Finally, a third series of tests was run to 

time the boot sequence when an eight megabytes image is available. Those 

experiments showed that the average boot time with a four megabytes image 

on the 486 is 90 seconds, against 76 seconds for the Pentium. With an eight 

megabytes image, average times are 102 seconds and 85 seconds respectively.

Finally, a series of tests was run where all robots simultaneously boot up. 

Those tests were firstly run with no image to download, then with a four 

megabytes image to download each and finally with an eight megabytes image 

to download each. The aim of these tests was to assess how the bandwidth of 

the wireless network card affects the boot process. As expected, the results are 

unchanged when there are no images to download. When there is a four 

megabytes image to download, the boot up time increases to about 103 seconds 

for the 486 and 89 seconds for the Pentium. With an eight megabytes image, 

the boot up time also increases to 138 seconds for the 486 and 125 seconds for 

the Pentium. This increase in the download time is due to the limit of the 

wireless card bandwidth. However, it does not dramatically affect the usability 

of the system. All the results are summarised in Table 3-4 below.
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Average Boot-up Time
486 DX2

Individual
(Seconds)

33MHz
Simultaneous

(Seconds)

Pentium
Individual
(Seconds)

I 66MHz
Simultaneous

(Seconds)
0MB 57.31 57.41 52.77 52.74
4MB 90.04 103.12 76.28 89.03
8MB 101.99 137.80 85.21 125.15

Table 3-4. Average Boot-up Times.
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3.6.2 Re-Embodiment on the SheepBots.

Researchers at Cardiff University have been working on decentralised 

control systems relying on very large numbers of agents. The development and 

test platform based on the BOM robots and the Re-Embodiment principle has 

proved effective and flexible. However, the fleet only consists of six robots. 

Although the development architecture allows for expansions, the actual 

hardware design of the robot is cause for concern. The BOM robots are 

relatively large. To run an experiment involving a hundred robots would need a 

vast environment. The BOM robots, being PC based have good computational 

power but are relatively expensive. Generally, control systems relying on a 

very large number of agents may cope with reduced computational power for 

each individual. They rely instead on the sheer number of individuals in the 

system.

Therefore, there is a need for another hardware platform better suited to 

experiments involving large numbers of robots with relatively limited 

individual computational power. The main design requirements for the new 

fleet are:

• Very low cost per individual robot, thus allowing for the 

production of a large fleet with a reduced budget.

• Very small size to ensure that a fleet consisting of up to a hundred 

robots can be physically used in a realistically sized laboratory.

• Expandability. Again the platform must be fully extendable.
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• Flexibility, again, is also a prime requirement.

Several prototypes were developed. A fleet of fifteen robots code-named 

SheepBots was built based on the first prototype. This fleet was used as part of 

a display at the BBC Tomorrow’s World Road Show held in Cardiff in 2002 

[MEC, 2002]. Each robot consists of a small chassis and a sheep-like cover. 

Two small motors and gearboxes power the robots. The control electronics are 

based on a 16F873 PIC micro-controller. Simple infrared sensors interfaced 

with the PIC allow for obstacle detection. However, this small fleet was built 

for a one-off display and remained inflexible.

The objective of the second prototype was to implement the Re- 

Embodiment principle to provide a more flexible hardware platform.
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Figure 3-32. A SheepBot at the BBC Road Show.

Figure 3-33. A SheepBot Chassis Figure 3-34. The SheepBots Flock, 
and Cover.

Figure 3-35. SheepBots Chassis 
Assembled.

Figure 3-36. A SheepBot’s PCB.
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3.6.2.1 System Design

The final SheepBots will be used in the real world. According to 

axiom 1, the environment for the robots will be the physical world.

The robots are micro-controller based, the bodies of the robots will 

consist of all the hardware, and some resident software. Because the robots 

may be required for a number of tasks, the software part of the body will be 

kept minimal. It will consist o f resident bootloading code and body-specific 

information.

The soul will be purely software. It will consist of the user program that 

will run on the PIC micro-controller. The soul and body have been defined in 

accordance with axiom 2.

The SheepBots sensors and motors are connected to the PIC input/output 

interface pins. Consequently, the soul will be able to interact with the body, 

hence fulfilling axiom 3.

The soul-body system consists of a central processing unit - the PIC, 

actuators (i.e. the motors), sensors and a control program. The system, once 

running, will be able to interact with its environment. Axiom 4 is also fulfilled.

The system is designed so that a soul can remain non-body-specific. For 

this to be possible, the required information specific to a body is held on that
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body, in accordance with axiom 9. This information is held in the PIC’s 

memory, as part of the software side of the body. For this implementation, the 

only body-specific information required is the body identification number, 

( IDENT). Axiom 5 is therefore met.

The system is also designed so that a body is not soul specific. In other 

words, each body can accommodate any soul, hence fulfilling axiom 6.

According to axiom 7, a trigger initiates the incarnation process. In this 

implementation, the incarnation process can be initiated by three different 

triggers: boot-up, software interrupt or hardware interrupt. At power up, the 

PIC waits for a program to be sent to it from a PC workstation. A specific 

software interrupt, for instance generated from the workstation by a simple 

click of the mouse, can force the PIC to download a new program. Finally, the 

PIC can also be configured so that a hardware interrupt triggers an incarnation, 

for instance a switch placed on the robot.

Axiom 8 stipulates that a trigger will initiate the de-incamation process. 

This either happens at power-down, or when a new soul overwrites the 

previous one.
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Axiom 1: There exists an 
environment.

The real physical world.

Axiom 2: Among the entities in 
this environment, there 
exist bodies and souls. 
Both souls and bodies 
can be present and 
contained in this 
environment.

A body: the entire robot hardware i.e. 
the chassis, motors, electronics, etc. 
PIC resident software. The body 
specific information.
A soul: purely software, consisting of 
the user program that will run on the 
PIC.

Axiom 3: A soul can interact with 
a body to form a 
system.

The SheepBots specific hardware is 
connected to the PIC I/O interface. 
The soul can directly control the 
hardware through that interface.

Axiom 4: The soul-body system 
can interact with its 
environment.

The soul-body system is equipped 
with sensors and actuators allowing 
interaction with the environment.

Axiom 5: A soul is not body 
specific.

A soul is free from any body specific 
information hence can be incarnated in 
any available body.

Axiom 6: A body is not soul 
specific.

A body is free to be incarnated by any 
consistent soul.

Axiom 7: A trigger will initiate 
the incarnation process. 
This trigger may come 
from the body, the soul 
or the environment.

The incarnation process can take 
place:
• After powering up the PIC,
• After a software interrupt
• After a hardware interrupt.

Axiom 8: A trigger will initiate 
the de-incamation 
process. This trigger 
may come from the 
body, the soul or the 
environment.

The de-incamation process occurs 
when the system is powered down or 
reset. It can also occur when a soul is 
overwritten by a new soul.

Axiom 9: A body may be linked 
with some information, 
body-specific or not. 
The active soul may 
access that information.

All required body-specific information 
is stored on the PIC memory as part of 
the resident software.

Table 3-5. The SheepBot Imp ementation According to the Re-
Embodiment Axioms.
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3.6.2.2 Incarnation Process

The PIC 16F87X is fitted with both a serial communication interface 

(USART) and Flash memory. The Flash memory may be written in-situ 

without the use of a dedicated hardware PIC programmer. Consequently, a 

programmed received via the US ART may be directly written to memory.

All the code that a PIC executes has to be in the program memory. 

Therefore, both the resident code handling the incarnation process and the user 

code will have to share the program memory. The incarnation code will reside 

permanently in the PIC memory in protected zone. The user code will be 

rewritten according to the user’s needs. The combined memory map is 

presented in Figure 3-37below.

The PIC was connected to a PC via a serial port. First by using a cable 

link and a MAX 232 to convert the signal strength from RS-232 level to TTL 

level (See Appendix H for schematics). Once the bootloading was operational, 

this connection was replaced by a two way infrared data connection based 

around the HSDL-1001 IrDA compliant transceivers (See Appendix H for 

schematics). The use of RF Transceivers was also investigated.

On power up, both the US ART and a Timer are initialised. Then the PIC 

waits for an identification word ( ID ENT ) to be sent from the PC. If the 

IDENT matches the PIC personal identification number, the PIC will 

acknowledge by sending back the IDACK word. The PIC will then receive the
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program being sent. After successful completion of the transfer, the execution 

pointer will jump to the user program. A detailed flowchart and the source code 

are presented in Appendices E and F.

To further enhance the flexibility of the system, the range of signals that 

trigger an incarnation was extended to include peripheral interrupts and serial 

interrupts. Consequently, the incarnation may be triggered without having to 

reset the robot. A simple mouse ‘click’ on the PC can be used to generate a 

serial interrupt, thus triggering the reincarnation process. A switch or a sensor 

on the robot may be used to generate a peripheral interrupt.

To allow the user to have access to interrupts, the interrupt setup had to 

be part of the user code. However, the interrupt service routine (at least the first 

part of it) is part of the incarnation code. To insure that the interrupt setup 

remains consistent with the interrupt service routine in the Incarnation code, a 

template was created for the user code. This template already includes the part 

of the interrupt setup relevant to the incarnation code.

To allow the user to code Interrupt Service Routines (user ISR) for its 

own interrupt, a jump occurs at the end of the incarnation ISR to a fixed 

address where the user ISR must reside. A flowchart detailing interrupt 

handling is presented in Appendix G.
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Figure 3-37. Combined Code Memory Map in the PIC.
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3.7 Summary
This chapter has introduced Re-embodiment through a set of axioms 

along which it can be implemented. Its flexibility and efficiency were 

discussed. Two examples of implementation were presented.

1 0 2
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Chapter 4 A New Mono Vision Distance 

Measurement Method

4.1 Preamble
It has been established that one of the basic requirements of embodiment, 

according to the definition by Quick et al., is that there exists perturbatory 

channels between a system and its environment [Quick et al., 1999a; Quick et 

al., 1999b], In robotics, these perturbatory channels are instantiated by the use 

of actuators and sensors. A robot may use its actuators to perturb its 

environment state. In return, through its sensing abilities, the robot may be 

perturbed by the environment. Furthermore, it has been established that there 

are several degrees of embodiment [Werger and Mataric, 1999]. Quick et al. 

state that the extent of the sensory capabilities of a robot has a direct impact on 

the extent of the embodiment of the system in an environment [Quick and 

Dautenhahn, 1999]. They therefore suggest that the better the sensory 

resources of a robot are, the greater its interacting capabilities with the 

environment will be.

Sensory capabilities are primordial in robotics [Borenstein et al., 1996; 

Adams, 2002]. The classical Al approach in robotics failed mainly because of 

sensor unsuitability through noise and inaccuracy [Fikes et al., 1972; Nilsson,
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1984]. Images and sequences of images potentially carry a tremendous amount 

of information about the environment [Criminisi, 1999].

This chapter presents a new monocular distance measurement method. 

Firstly, existing methods for distance measurements are reviewed with a 

particular emphasis on vision based ones. Secondly, the geometrical projection 

model on which the new measurements method is based is detailed. Thirdly, a 

series of experimental tests are presented, highlighting accuracy and 

performance. Finally, two applications are presented, one in which robots 

follow each other in a simulated environment, and a second one where real 

robots track and kick a ball.

4.2 Review of Related Work

4.2.1 Existing Distance Measurement Methods

There already exist a number of methods to measure distances in the 

physical world. Those applicable to mobile robotics can be divided into two 

categories: Active and passive methods. Active devices emit signals into the 

environment and receive them back, whereas passive devices do not 

[Borenstein et al., 1996; Adams, 2002].

4.2.1.1 Active Methods 

Ultrasonic
Most active distance measurement methods are based on the Time-Of- 

Flight principle (TOF). In TOF systems, a pulse of signal is emitted into the
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environment. Then, using elementary physics, the distance is determined by 

multiplying the velocity of the energy wave and the time required to travel the 

round-trip distance. Many TOF distance measurement systems use ultrasonic 

technology for emitting and receiving energy waves. Systems using Ultrasound 

transducers (or RF transducers) can provide a relatively cheap solution to 

distance measurements [Borenstein et a l 1996].

The advantages of TOF systems arise from the direct nature of their 

straight-line active sensing. The returned signal follows essentially the same 

path back to a receiver located coaxially with or in close proximity to the 

transmitter. In fact, it is possible in some cases for the transmitting and 

receiving transducers to be the same device. The absolute range to an observed 

point is directly available as output with no complicated analysis required, and 

the technique is not based on any assumptions concerning the planar properties 

or orientation of the target surface. Furthermore, TOF sensors maintain range 

accuracy in a linear fashion as long as reliable echo detection is sustained 

[Borenstein et aL, 1996].

Potential inaccuracy in TOF systems can arise from a number of points. 

Firstly, the speed of propagation of the signal may vary in the environment. 

This is particularly true in the case of acoustical systems, where the speed of 

sound is markedly influenced by temperature changes, and to a smaller extent 

by humidity. Secondly, there may be uncertainties when determining the exact 

time of arrival of the reflected pulse. Detection uncertainties errors are caused 

by the wide dynamic range in returned signal strength due to varying
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reflectivity of target surfaces. These differences in returned signal intensity 

influence the rise time of the detected pulse, and in the case of fixed threshold 

detection will cause the more reflective targets to appear closer. Thirdly, 

ultrasound sensors can be confused by the interaction of the incident wave with 

the target surface. When radio waves strike an object, any detected echo 

represents only a small portion of the original signal. The remaining energy 

reflects in scattered directions and can be absorbed by or pass through the 

target, depending on surface characteristics and the angle of incidence of the 

beam. Instances where no return signal is received at all can occur because of 

specular reflection at the object's surface, especially in the ultrasonic region of 

the energy spectrum. If the transmission source approach angle meets or 

exceeds a certain critical value, the reflected energy will be deflected outside of 

the sensing envelope of the receiver. In cluttered environments sound waves 

can reflect from (multiple) objects and can then be received by other sensors. 

This phenomenon is known as crosstalk. Ultrasonic transducers themselves 

have several downfalls. They only give the distance to the first encountered 

obstacle within their operating volume. Furthermore, it is difficult to know 

what that operating volume is and what the sensor response across that volume 

will be. Finally, they are unreliable at detecting smaller objects [LoPresti et 

a l , 2002].

Many successful applications in robotics use ultrasonic sensors in tasks 

such as obstacle avoidance, map building, localisation or wall following [Zou 

et al., 2000; Palacin et al., 2003]. There are a number of commercially
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available sensors such as the SRF04 and SRF08 ultrasonic range finder 

designed by the British company Devantech Ltd [Devantech, 2004], or the 

more established Polaroid sensors [Cao and Borenstein, 2002]. Commercial 

robots, such as the Pioneer mobile robot [Gerkey and Mataric, 2002], are 

often fitted with such a type of sensor. Further applications in the real world 

include systems on car bumper to ease parking [Siuru, 1994; Adams, 2002].

Laser Range Finder
Another approach to measuring distance is based on the use of laser

range finders. The distance is derived by either TOF or phase analysis of the 

laser beams [Borenstein et aL, 1996; Adams, 2002].

Laser-based TOF distance measurement systems, (also known as LASER 

radar or LIDAR) first appeared in work performed at the Jet Propulsion 

Laboratory, Pasadena, in the 1970s [Lewis and Johnston, 1977]. Laser energy 

is emitted in a rapid sequence of short bursts aimed directly at the object being 

ranged. The time required for a given pulse to reflect off the object and return 

is measured and used to calculate distance to the target based on the speed of 

light [Adams, 2002].

Potential sources of error in this type of TOF systems include 

uncertainties in determining the exact time of arrival of the reflected pulse and 

inaccuracies in the timing circuitry used to measure the round-trip time of 

flight. The propagation speed of the signal in the environment will dictate the 

required response time of the timing circuitry to achieve reasonably accurate
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measurement. In applications where light is used as the active signal, the 

timing demands are severe. Typically a desired resolution of one millimetre 

requires a timing accuracy of three picoseconds (3 x l0 _12s)  [Borenstein et aL, 

1996]. As a result TOF LIDAR systems are relatively expensive due to the 

high speed and precision of the electronics necessary for timing the pulse 

transmission-reception time.

TOF LIDAR are commercially available as ready-made systems. The 

SICK sensor has been the most popular in the field of mobile robotics 

[Wetteborn, 1993; Adams, 2002]. It is available on commercial robots such as 

the Pioneer platform [Gerkey and Mataric, 2002]. It has been successfully 

used in a number of applications such as motion planning and maps building 

[Tovar et aL, 2002].

The phase-shift measurement (or phase-detection) ranging technique 

involves continuous wave transmission as opposed to the short pulsed outputs 

used in TOF systems. The reflected signal is then analysed using method such 

as frequency modulated continuous wave (FMCW) or amplitude modulated 

continuous wave (AMCW). In, FMCW approach, the beat frequency between 

an FMCW laser signal and its reflection is measured. For close range 

applications and particularly in mobile robotic applications, a simple means of 

determining range is by measuring the phase shift between an AMCW and its 

received reflection. However, there can be more than one distance 

corresponding to any given phase shift measurement. The potential for 

erroneous information as a result of this ambiguity reduces the appeal of phase-
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detection schemes. Some applications simply avoid such problems by 

arranging the optical path so that the maximum possible range is within the 

ambiguity interval. Alternatively, successive measurements of the same target 

using two different modulation frequencies can be performed [Borenstein et 

a l , 1996]. As TOF systems, phase shift systems suffer from uncertainties in 

determining the exact time of arrival of the reflected pulse, and are influence 

by the reflective property of the target. They are also relatively expensive. 

Although less popular, they have been used for applications such as world 

modelling [Mettenleiter et a l ,  2000].

Optical Triangulation

Optical triangulation position sensors use reflected waves, whose source 

may be an LED, infrared, or laser. Light emitted from the source is reflected 

off any object in the field of view and returned to a sensor. This creates a 

triangle between the points of reflection, the emitter and the detector. A 

precision lens transmits the reflected light onto various portions of the sensor. 

The sensor, usually integrally housed with the emitter, detects the angle at 

which the beam is reflected and calculates a distance to the obstacle. An output 

that varies with the distance is then provided. The sensing part of optical 

triangulation position sensors is usually a Charged Coupled Device (CCD).

These sensors are relatively cheap and readily available. For instance, the 

Sharp sensors are proving increasingly popular in robotics. However, with such 

sensors, the accuracy falls off rapidly with increasing range, and the depth of
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field (minimum to maximum measurable distance) is typically limited 

[LoPresti et al., 2002].

Structured Light

Other active methods to derive distance measurement is structured light. 

Such devices employ cameras to acquire images of an object illuminated by a 

regular light pattern. An auxiliary devices project a light pattern or a set of 

patterns onto an object. The shape of the object, as well as the distance from 

the sensor to the object can then be computed from the deformation of the 

projected grid. Structured light-based approaches have been used for accurate 

measurement of objects [Li and Chen, 2003]. However, the need for auxiliary 

light projection devices leads to a severe loss in the flexibility of the measuring 

tool.

4.2.1.2 Passive Methods

Active distance measurement sensors are generally affected by 

interference with the active signal. On the other hand, passive devices such as 

cameras do not suffer from the above problems and can be appropriate for a 

wider range of applications. Images potentially carry much more information 

than raw detectors from any of the sensors reviewed so far [Criminisi, 1999]. 

Cameras return bi-dimensional data, rather than mono-dimensional ones. They 

also have a relatively dense sampling across their field of view. As a result, 

they can be used to quantify a number of different parameters in addition to
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distance measurement with the same data source. However, taking 

measurements of the world from images is complicated by the fact that in the 

imaging process the 3D space is projected onto a planar surface, with some 

unavoidable loss and distortion of information [Criminisi, 1999].

Stereo Systems

Generally, most of the research to date relies on stereovision, where two 

image of the same scene are captured from different viewpoints [Faugeras, 

1992]. The distance in the scene computed by triangulation between the 

locations of matching features in images. Correspondence between features is 

usually established by searching through the image and comparing local pixel 

neighbourhood using measures such as Sum of Square Differences (SSD) or 

Sum of Absolute Difference (SAD) [Brown et al., 2003]. Note that a full 

review of the massively rich field of stereovision falls beyond the scope of this 

thesis. An excellent examination of the progress in the field as been put 

together by Brown et al. [Brown et al., 2003]. Instead, this section will 

concentrate on providing basic principles and highlighting pro and cons.

Although passive stereovision is one of the oldest research topics in 

computer vision, its use in robotics was at first limited by the large amount of 

computational power required. The first system that came close to achieving 

frame-rate was reported by Webb in 1993 [Webb, 1993]. He implemented the 

multi-baseline stereo algorithms of Kanade et al. [Kanade et al., 1992], on the 

Carnegie Mellon University (CMU) Warp machine [Crisman and Webb,
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1991]. Three images were used for this system. For efficiency, the sum of SAD 

(SSAD) was implemented. Sixty-four ‘iWarp’ processors were used to achieve 

fifteen frames per second with 256x240 pixel images.

In the past decade, swift advances in affordable computational power 

have opened new possibilities. Real-time stereo processing has become 

accessible to common desktop computers. For instance, Point Grey's Triclops 

[Kimura et aL, 1999] runs at twenty frames per seconds for 320x240 pixel 

images on a 1.4 GHz Pentium IV machine. Likewise, SRI's Small Vision 

Module (SVM) now runs at 30 fps for 320x240 pixel images on a 700 MHz 

Pentium III [Konolige, 1997]. With inexpensive and compact real-time 

systems like these now commercially available, many applications that 

previously were impractical can now be explored. However, these 

computational requirements remain relatively high for robotic applications, 

especially in multi robot systems.

Beyond the computational requirement issue, stereovision suffers from 

limitation due to the triangulation geometry. A compromise has to made 

between high image resolution and reduced ambiguity in matching [Hebert, 

2000]. Although systems with three or more cameras attempt to address this 

problem, by integrating matching result from multiple images, it remains an 

issue in contemporary robotic research.

Another downfall to stereovision systems is their sensitivity to points that 

are visible to one camera only. Detecting these occlusions [Wildes, 1991] and
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compensating for their occurrence remains a main focus of research [Zitnick 

and Kanade, 2000].

Monovision

As opposed to stereovision, the amount of research done on monovision 

system has been much less substantial. One of the main objectives of computer 

vision research has been to reconstruct three-dimensional (3D) scenes. 

Generally, monovision has been seen as being too restrictive in the amount of 

information that it can provide for scene reconstruction. However, some metric 

quantities can be computed with extra constraints.

Some algorithms compensate for the fact that only one camera is 

available by collecting a series of two or more images to extract useful 

information or reconstruct 3D scenes. Peer and Solina [Peer and Solina, 2002] 

developed a panoramic depth imaging system. In their system, a single camera 

rotates in an environment and assembles the captured images into a mosaic. An 

offset between the camera focal point and the centre of rotation allows for 

depth maps of the environment to be computed. Reconstruction, based on the 

system geometry and a symmetric pair of stereo panoramic images, can also be 

achieved.

Another possibility is to analyse object shadows. This was successfully 

applied to ball tracking in sport events. For instance, Kim et al [Kim et al., 

1998] compute the position of a ball from single images of a football game. 

They make use of the shadows on the ground plane to track the ball.
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Further information may also be extracted through texture analysis. 

Cantoni et al. derive depth from monocular images through histogram 

inspection [Cantoni et al., 2001]. They observed that on images, distant 

elements are less clearly defined and that the colours of different objects tend 

to blend, whereas edges of element in the foreground are much more clearly 

defined. They also observed that this was more pronounced if haze or fog was 

present, or when underwater images were examined. They explain this 

phenomena by the fact that rays of light are diffused by molecules of opaque 

medium. Air contains a great number of water participles, which refract light. 

As a result, in monochromatic images, the background grey levels tend to be a 

weighted average of all the grey levels present in the image itself, thus 

explaining the fact that images become more blurry as the distance from the 

observer increases. Note that this blur is not to be mistaken for the one 

produced by camera lenses. As a result for their algorithm to produce reliable 

data, they rely on defocusing blur to be avoided.

Different methods to derive depth from single images based on focus and 

blur information have emerged in the literature: Depth from Automatic 

Focusing (DFAF), Depth from Defocusing (DFD) and Depth from Automatic 

Defocusing (DFAD) [Aslantas and Tun9kanat, 2003; Deschenes et al., 

2004].

DFAF methods attempt to find the sharpest image possible of an object 

by varying camera parameters. After a sharp image has been obtained, depth
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can be computed using optics calculation. [Krotkov, 1987; Nayar and 

Nakagawa, 1990; Aslantas, 2001].

DFD methods do not require an element to be in focus in order to 

compute its depth. If an image of a scene is acquired by a real lens, points in 

the scene at a particular distance from the lens will be in focus, whereas points 

at other distances will be out of focus by varying degrees depending on their 

distances. Using this information, the depth of an object can be determined 

[Grossman, 1987; Aslantas and Tun^kanat, 2003]. This even led to 

successful application to robotics for obstacle avoidance and to detect steps 

[Nourbakhsh et aU, 1997].

DFAD is a combination of DFD and DFAF. The depth is computed by 

making use of both the blur information, and some alteration to the camera 

settings. However, a sharp image of the object is not required [Aslantas, 1997].

Another possible route is to compute depth from perspective effects. This 

usually involves determining vanishing points from perspective images 

[Almansa et aL, 2003]. Then spatial information can be extracted from images 

[Criminisi, 2001]. For instance, Se and Brady developed an algorithm to detect 

features for navigation [Se and Brady, 2003]. Criminisi derived new methods 

to measure height on un-calibrated images [Criminisi et al., 2001] and 

reconstruct 3D scenes from historical paintings [Criminisi, 1999].

Remondino and Roditakis devised a system to reconstruct a human 

skeleton from a single un-calibrated image. They first simplify orthographic 

projection equation using a scaling factor that mimic the effect that the image
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of an object shrinks with the distance. They then assume that the depth of the 

observed object is small compared to the distance between the camera and the 

object, thus implying that their scaling factor remains virtually constant. Then, 

knowing the physical length of a segment on the image and the depth of that 

segment, they can compute distance on the image and recreate a 3D scenes 

from singles images.

Lenser and Veloso put forward an interesting monocular obstacle 

avoidance method [Lenser and Veloso, 2003]. Their system copes with known 

and unknown obstacles by detecting occlusions of a floor of known colour. 

Range and angle to the objects are calculated and used to create a radial model 

of the robot’s vicinity. This modelling component keeps track of objects that 

are currently outside the field of view of the camera allowing the robot to avoid 

obstacles it is not currently looking at.

All those methods rely on extra constraints to compensate for the fact 

that only one camera or image is available. The method presented in this 

chapter will rely on two prerequisites. The first assumption is that the ground 

of environment, where the robots evolve, is flat. The second is that the camera, 

capturing the images, may be calibrated to obtain some internal in external 

information.
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4.3 Monocular Distance Measurement

4.3.1 Image Formation and Camera model

4.3.1.1 Perspective Projection

The pinhole camera model is the most general and well-known linear 

camera model. This system consists of two screens or planes; see Figure 4-1. 

The first one, the focal plane F , has an infinitesimally small hole. This hole 

O is also known as the optical centre or focal point. Light reflected on objects 

passes through this hole to form an inverted image on the second plane. The 

second screen is referred to as the image or retina plane R . The distance 

between the two planes is the focal length / .  The line going through the 

optical centre O and perpendicular to the focal plane F  is known as the focal 

axis or principal axis. The focal axis pierces the image plane at the principal 

point o . The model is often simplified by placing the retinal plane R between 

the focal point O and the object, so that the image is not inverted; see Figure 

4-2. This mapping between a three-dimensional object or scene and a two 

dimensional plane is called perspective projection or central projection.
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R etin a l p lan e  R

Figure 4-1. Perspective Projection in Pinhole Camera.

R etin a l p lan e  R

Figure 4-2. Simplified Perspective Projection.
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In a real application, the use of a pinhole is unpractical. Very little light 

passes through the hole leading to very long exposure time to capture an image. 

In modem cameras, a lens replaces the hole. The lens focuses more light onto 

the retinal plane thus reducing exposure time. However, lenses can only bring 

into focus objects lying on one particular plane that is parallel to the image 

plane. Lenses also introduce distortion.

The perspective projection model can be formulated mathematically. One 

can choose the coordinate system (0 ,x ,y ,z) for the three dimensional world 

and (o,w, v) for the retinal plane (Figure 4-1). The coordinate system (0 ,x ,y ,z) 

located at the optical point O , with the z axis perpendicular to the focal plane 

F, is often called the standard coordinate system of the camera, or camera 

reference frame. The relationship between the image coordinate and the three 

dimensional space can be written as:

This can be rewritten as:

C/1 [ " - /  0 0 o l *
V = 0 - /  0 0 y
S 0 0 1 0 z

(4.2)
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The interesting point about the vector [U V -S']7 is that:

— = u , — = v if and only if S  * 0 (4.3)
S S

Note that Equation (4.2) is defined up to an arbitrary scale factor. This 

Equation expresses the relationship between retinal (or image) coordinates and 

space (or world) coordinates in linear matrix form, such that:

m = PM  (4.4)

where the 3x4 homogeneous matrix P is the projection matrix. The retinal and 

space coordinates are represented by the homogeneous vector m = [U V -S']7 

and M  = [X Y Z  i f

4.3.1.2 Intrinsic and Extrinsic Camera Parameters

The camera model is completely specified once the matrix P is 

determined. Thus P must include all the camera parameters. Physical camera 

parameters are commonly divided into extrinsic and intrinsic parameters. The 

extrinsic and intrinsic parameters can be expressed in matrix form, such that:

P = PmP,« (4.5)
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Extrinsic parameters define the location and orientation of the camera 

reference frame with respect to a known world reference frame. They are the 

translation T and Rotation R , which specify the transformation between 

retinal and world reference. They are defined as follows:

'ii rn rn
R = *21 r22 r23 (4.6)

3 i r32 r33_

T = h h i (4.7)

Matrix R and vector T can be combined into a matrix to form Pext:

The intrinsic parameters are independent of the camera position and 

orientation in space. They are necessary to link the pixel coordinates of an 

image point with the corresponding coordinates of the camera reference frame. 

They characterise the optical, geometrical and digital attributes of the camera. 

They usually include:

• The focal length / .

• The location of the principal point in pixel coordinates (ox oy).
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• The effective horizontal and vertical pixel sizes sx and sy. These

allow for change from metric units to pixels and vice versa. Note 

that here, as usual in computer vision literature, the origin of the 

image coordinate system is in the upper left comer of the image 

array.

• The skew coefficient a c defines the angle between the x and y  

pixel axes, such that a c = 0 when x and y  are perpendicular.

The components of the intrinsic matrix - f / s x and - f / s y represent the

focal length, a unique value, expressed in units of horizontal and vertical 

pixels. To facilitate the notation, they can be replaced by f x and f

respectively.

The extrinsic and intrinsic parameters can be inserted in the linear matrix 

perspective projection equation (Equation (4.4)) to form:

’-/A , /«c ° x

Pm = 0 ~ f / Sy (4.9)
0 0 1

/ .  f a c ox
p«. = 0 /„ o, (4.10)

0 0 1

m  = (4.11)
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4.3.1.3 Image Distortion

Image distortion, as introduced by the lens and the camera assembly is a 

long known phenomenon [Clarke and Fryer, 1998]. It is particularly evident 

at the image periphery and worsened by large field of view. Although it does 

not significantly influence the image quality, it considerably affects the image 

geometry. The distance measurement algorithm presented in this thesis is based 

on the analysis of the image geometry. It is therefore important, for the 

accuracy of the measure, to be able to work with undistorted images. 

Therefore, the distortion needs to be modelled by a set of coefficients. The 

camera calibration will need to determine those coefficients. Then undistorted 

images will be computed from original captured images and the distortion 

coefficients.

Image distortion is due to a number of different phenomena; it is usually 

modelled by a radial and tangential component. Radial distortion is mainly due 

to spherical distortion of the length, which creates a slightly curved focal plane. 

This introduces both geometrical and focal distortion: Points are distorted 

geometrically from the true perspective position, by being displaced radially in 

the image plane [Heikkila and Silven, 1997]. Points also become more blurred 

as they approach the edge of the image. The radial distortion can be

approximated. Given a point p n of coordinates [un vn J  in the retinal plane as

derived from the pinhole projection.
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After radial distortion, the new coordinate of the point [udr vdrJ  can be 

expressed as follow:

Udr = (1 + kxr] + k2r* + k2r* +...) V
: Vdr_ _v

(4.12)

where ky ..kn are radial distortion coefficients and:

2 2 2r* =u„+v„n n n (4.13)

Tangential distortion is mainly due to imperfect centring of the lens 

components and other manufacturing defects in a compound lens. Tangential 

distortion can be approximated as follows:

2 Pxunvn + p 2(rlI +2  u2n)

y*_ _ P i tf  + 2vl) + 2p 2unun_
(4.14)

where p x and p 2 are the tangential distortion coefficients. The total distortion 

modelled so far can be expressed as

x d X dr +"V=
y d y dr y*

(4.15)
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An accurate camera model can be derived by combining the pinhole 

projection with the correction for the radial and tangential distortion 

components.

4.3.1.4 Camera Calibration

A priori requirement of the distance measurement method presented in 

this thesis is that it is possible to calibrate the camera to derive the required 

intrinsic and extrinsic camera parameters, as well as the distortion coefficients.

A number of visual algorithms have been developed to compute intrinsic 

and extrinsic camera parameters. This procedure is called camera calibration. 

Usually, calibration algorithms assume some of the camera internal parameters 

to be known and derive the remaining ones. Common assumptions are: unit 

aspect ratio, zero skew or coincidence of principal point and image centre.

The calibration techniques described in this section are based on a series 

of single view. The work of Tsai [Tsai, 1987] has been one of the most popular 

in the field of camera calibration. From a number of single images of a known, 

planar, calibration grid it estimates the focal length of the camera, its external 

position and orientation assuming known principal point. An attempt to analyse 

the accuracy of the estimated parameters is also reported.
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Caprile and Torre, in their classical work [Caprile and Torre, 1990], 

develop an algorithm to compute the internal and external parameters of the 

camera from single views, assuming unit aspect ratio and zero skew. They 

make use o f simple properties of vanishing points. These can be extracted 

directly from the image by intersecting images of parallel lines. A simple 

calibration device consisting of a cube with sets of parallel lines drawn on its 

faces is used. The authors demonstrate that the principal point of the camera 

coincides with the orthocentre of the triangle whose vertices are the three 

vanishing points for three orthogonal directions.

The problem of camera calibration is also discussed by Faugeras 

[Faugeras, 1993]. Algorithms to compute the projection matrix and eventually 

the camera internal parameters from only one view of a known 3D grid are 

presented. Linear and non-linear methods for estimating the projection matrix 

are analysed, as well as the robustness of the estimate and the best location for 

the reference points.

In Liebowitz and Zisserman’s work [Liebowitz and Zisserman, 1998] 

camera self-calibration is obtained simply from images of planar structures like 

building facades or walls, with distinguishable geometric features. Use is made 

of scene constraints such as parallelism and orthogonality of lines and ratios of 

lengths. No specifically designed calibration object is required.
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For the purpose of the work presented in this thesis a calibration 

procedure was implemented to determine the intrinsic and extrinsic parameters 

of the robot’s camera. The radial and tangential distortion coefficients are also 

determined using this implementation. This calibration procedure is based on 

the calibration algorithm developed by Zhang [Zhang, 1999; Zhang, 2000]. 

The first step involves finding the homography for all points in the series of 

images. The intrinsic parameters are then initialised and the distortion is set to 

zero. The extrinsic parameters for each image are then computed. Finally, an 

optimization procedure is applied to minimizes the error of projection points 

with all the parameters. This method yields an estimation of the camera 

intrinsic parameters (assuming zero skew) and, for each image, the 

corresponding extrinsic parameters. The algorithm assumes the bottom left 

comer of the chess board to be the origin of the world coordinate frame, thus 

the different extrinsic parameters for each images. However, only the extrinsic 

parameters of the camera with respect to the robot frame are of interest. In 

order to derive those, it is arranged so that one for the images the location and 

orientation o f the chessboard with respect to the robot frame are known.

127



C a r d if f
U N I V E R S I T Y A New Mono Vision Distance Measurement Method

4.3.2 Measurement From a Single View

4.3.3 Prerequisite Statement

To harmonize all spatial representations the robot reference frame 

(R , X , Y ,Z ) is defined to be such that:

• The X  axis is aligned with the driving wheel axis.

• The Y  axis is vertical, perpendicular to the environment floor.

• The Z axis is pointing forward.

• The origin R of the robot reference frame is at equal distance from

each wheel.

All distance measurements will be made in this reference frame from the 

origin.

4.3.4 Measurement Model

The basic measurement model will allow for the distance between the 

robot and an object in contact with the floor to be estimated. It is assumed that:

(i) The extrinsic and intrinsic camera parameters are known in the 

robot reference frame.

(ii) The environment floor is planar.

(iii) The object is in contact with the floor at a point M .

(iv) The coordinate m , of the projection of M  on the focal plane, 

can be estimated.
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Based on the projection model and the above assumptions the equation 

for the measurement model can be derived. Given the perspective projection

equation (Equation 4.16), the point M  = [x y  z  i f  in robot space, the 

coordinates m = [u v j  of its projection on the image plane can be computed.

~u~ ~ f x 0 Ox " ' i i rn rn h

V = 0 f y °y r2l r22 r23
s 0 0 1 / 3 , r32 r33 h

(4.16)

U VKnowing that — = u and — = v , if  and only if S  * 0 , one can rewrite the 
S  S

above as:

.. ( 11 M y  13 i )  ^  „
u = 7------------------------71J * °>[r^x + ̂ y  + r^z + t,) (4.17)

and

.. R i x + r22y  + r23z + t2)
( j. \  J y >(r3jX + r32y  + r33z + t3) (4.18)

The intrinsic parameters of the camera, its extrinsic parameters in the robot 

frame and the coordinates of the projected point in the image frame are known. 

The y  component of the coordinate of M  can be derived, knowing that M  is 

in contact with the floor and that the distance from the origin R , of the robot 

frame, to the floor, should be obtainable from the robot’s specification. This
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leaves a system of two equations (4.17 and 4.18) with two unknowns: x and 

z .

u = (rux + ruy  + rn z + l,)

V  =

(r2lx  + rn y  + r22z + t2)
R i x  + r22y  + r2)z  + t2) 
(rn x  + r,2y  + r23z + t3)

(4.19)

/ v + ° ,

The equation system 4.19 can be rewritten as:

x ( ( u - o x)r2l - f xru ) + z ( ( u - 0 x)r„ - f xru )
+ y((u - ox)r}2 -  f xrn )+ ((u - ox)t, -_ /> ,)=  0

(4.20)
x { ( v -o yY ii - f yr2l) + z ( ( v -o y)ri3 -  f / 23)

+ y { ( v - o y)r,2 - f yr22)+ ( ( v - o y)t3 - f yt2)=0

The Equation system 4.20 is equivalent to a simple equation system of the 

generic form

axX  + bxZ  + c, = 0 
Q-,X + b~)Z + c~, = 0

with solutions

(4.21)

x =
-ft,(a2Ci - a ,c 2) c, 
- a / a ^  - a 2b, ) a. (4.22)
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and

aXi - a xz =_ 2 1 1 2 (4.23)

where

"i =(u~o,K -fs» 
b\ = (M -o x) r „ - f A i  
c, = y{(u -  ox )r32 -  f xrn ) + ( u - o x )t, -  f j ,

(V~°y)rH ~ f y r21
(4.24)

b, = ( v - o y) r „ - f yrn 

Ci = W  -  oy)rn  -  f yr12)+ (v -  oy)t3 -  f yt2

4.3.5 Basic Centreline Measurement

From the measurement model formulated above, distances from robot to 

object can be derived in a number of ways. The simplest of those would be to 

set the physical location and orientation of the camera such that the distance 

from the robot to the object is directly equal to z  as defined in equation 4.23. 

For instance, in the case where the focal axis of the camera lies in the plane 

defined by the Y  and Z axes of the robot frame (R,X,Y,Z) .  In this particular 

situation, distances to objects directly in front of the robot can be computed by 

extracting the point at the intersection of the y  axis of the camera frame (i.e. 

the vertical line on the image passing through the optical centre O ) and the 

object edge in contact with the floor.
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4.3.6 Measurements Across the Field of View

The basic centreline measurement allowed for distances to objects 

straight in front of the robot to be computed. In some applications, 

measurement to objects across the field of view may be required. In those cases 

distance d  to object can be computed as follows:

with x  and z  as defined in equations 4.22 and 4.23. With this method, object 

edges in contact with the floor may be fully evaluated to retrieve object 

properties such as orientation. This can also allow, with tracking over time, for 

object velocities and changes in orientation to be assessed.

So far consideration has been limited to measurement to objects that are 

in contact with the floor. The measurement method can now be extended to 

objects or features that are not in contact with the floor. In this particular case it 

will be assumed that the distance between the detectable feature on the object 

and the floor is known. This required priory information may at first seem to 

restrict the number of possible applications. It is true that knowing the height 

from the floor to features on objects in an environment seems unrealistic for 

robot applications. However knowing the height of particular features on other 

robots within the MRS would appear perfectly reasonable. This in fact could

d  = y/x2 + z 2 (4.25)

4.3.7 Off-the-Ground Objects
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make the implementation easier. One could carefully choose these features for 

each robot to ensure that precise detection is made easier. An easy-to-detect 

colour against a contrasting background would even allow for sub-pixel edge 

detection. Then using the same formulation as above, distance to object can be 

computed.

4.3.8 Accuracy Estimation

Now that formulation of the distance measurement has been derived, it is 

important to theoretically assess its accuracy and limitations. The measurement 

primarily relies on two sources of information: The camera parameters and the 

location of the object feature on the image. Inaccuracies and noise in this data 

will result in imprecision in the distance measurement. First, the effect of 

feature detection in the image was studied. More specifically the consequence 

of non continuous feature detection across the image due to finite pixel size 

was investigated. Arguably this effect will be different for every possible 

extrinsic and intrinsic camera parameter. Nevertheless, and in order to gain a 

better understanding for such effects, an analysis was conducted with an 

arbitrary set of parameters. The results are presented in Figure 4-3. As one may 

expect, the inaccuracy varies greatly across the range. In that particular 

example, a single pixel accounts for all distances from thirty-six meters to 

infinity. However at the other end of the range, a pixel covers just over a 

millimetre.
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Figure 4-3. The Effect of Discrete Pixels on the Distance Measurement
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4.4 Experimental Measurements and 
Analysis

4.4.1 Calibration

For each available robot in the BOM fleet, the camera was calibrated a 

number of times throughout this research. To formally assess the repeatability 

and accuracy of the calibration the procedure was repeated with the same robot 

and without altering the physical orientation and focus setting of the camera. 

For this particular experiment, Robobug was used and the camera oriented so 

that the focal axis was approximately parallel to the environment floor. In each 

sequence 15 to 20 images were taken.

Results first showed some calibrations with unrealistic outcomes. Closer 

examination revealed that the chess board comer detection algorithm is 

sensitive to image quality. In instances where the whole of the chess board was 

not in the image, or if the chess board was too far away from the camera, not 

all comers were detected. In instances where one or more images were blurry 

in the calibration sequence, results were also inconsistent. Eventually 

consistent results were achieved through careful screening of every image in 

each calibration sequence. They are presented in Table 4-1.
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Calibration Nb fx fy Ox Oy
1 443.4981 485.8984 160.6691 150.0001
2 443.8726 484.6134 160.9896 150.1939
3 444.5847 483.7013 160.9767 149.9312
4 443.3297 485.0668 161.1719 150.2559
5 444.1101 483.5372 160.8502 150.2763
6 443.8022 484.2975 161.1922 149.8541
7 443.2476 483.7353 160.9558 149.6146
8 443.6057 484.2948 160.6625 149.9808
9 444.8007 485.2111 161.0576 149.5411
10 444.2613 484.4907 161.1664 149.2969

Average 443.9113 484.4846 160.9692 149.8945
Min 443.2476 483.5372 160.6625 149.2969
Max 444.8007 485.8984 161.1922 150.2763

Table 4-1. Typical Camera Calibration Results
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4.4.2 Distance Measurement

Following the theoretical accuracy assessment, the measurement method 

also had to be assessed in situ. Again, precision will vary with different camera 

parameters. Nevertheless, to gauge the performance of the measurement 

system an experiment was set up. Once more, Robobug was used, and the 

camera was orientated such that the optical axis lies parallel to the environment 

floor.

A series of seventeen measurements was taken at different distances. 

Figure 4-4 shows the nominal values against the measured values. Figure 4-5 

shows the relative error for each of those measurements. These results show 

that the measurement is reliable. Its accuracy will also be acceptable for a 

number of possible robotic applications.

4.5 Discussion
The measurement method has been formulated and its performances 

assessed. It was clearly demonstrated that this method provides reliable 

distance measurement information. Three important points were highlighted in 

the performance assessment. Firstly, the accuracy of the measure depends on 

precise estimation of the intrinsic and extrinsic camera parameters. If those are 

to be derived from calibration, this process must be closely monitored to avoid 

erroneous distance measurement at a later stage. Secondly, the error introduced 

by discrete pixel on the image is largely dependent, at a given distance, on the
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camera location and orientation in space. One should carefully select these 

settings to optimize the measurement accuracy across the required range. 

Obviously the more pixels covering a given range the better the accuracy will 

be. A possible improvement would be to implement sub-pixel feature 

extraction. Finally, there are some camera postures for which no measurement 

will be possible. In cases were the focal axis is parallel to the plane defined by 

the X  and Z axes of the robot frame, measurement will be totally impossible 

if the focal point also belongs to this plane. If the focal point is offset from this 

plane, measurement may only be possible across part of the image.

Despite the limitation enforced by the priori assumptions, this method 

will still prove useful to many mobile robotics applications. The effort to 

provide a good compromise between the required computational power and the 

richness of the information has remained the primary target. The ultimate goal 

would be the implementation of this method on small and relatively cheap 

hardware, to realistically envisage its use in large scale MRS.

4.6 Example Applications
This section presents two possible applications of the distance 

measurement algorithm. This is to demonstrate that from a simple distance 

measurement, one can implement a wide range of applications where a robot 

interacts with its environment.
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4.6.1 Tracking a Ball

The first example concerns a robot tracking and chasing a ball. In this 

application a single robot is involved. The robot first looks for the ball (Figure 

4-6). Once the ball is found (Figure 4-7), the robot moves toward it while 

continually assessing the remaining distance to the ball (Figure 4-8). The robot 

carries on moving towards the ball until impact, at this point, the ball bounces 

off (Figure 4-9). The robot then starts looking for the ball again.

In this application, it is fair to assume that the floor is perfectly flat. Both 

intrinsic and extrinsic camera parameters are known. The measurement 

algorithm also relies on the point at which the ball touches the floor to be 

extracted from the images. This point is not always necessary visible. The 

projection of the ball on the focal plane depends on the location of the ball in 

space and the camera parameters. Most of the time, this projection will be an 

ellipse. It will be assumed that the lowest point on this ellipse is the visible 

point on the ball closest to the contact point with the floor. This will give an 

approximate distance to the ball, nevertheless good enough for the example 

application. The projection of the ball on the image is extracted using a simple 

colour differentiation algorithm, the assumption being that the ball is yellow 

and that no other element in the environment has the same colour.
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Go robot!
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Figure 4-6. Robot Looking for the Ball
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Figure 4-7. Robot Having Located the Ball
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Figure 4-8. Robot Aiming for the Ball
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Figure 4-9. Ball Has Bounced Off on Impact
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4.6.2 Following Another Robot

The second example involves a robot following another. The first robot 

wanders randomly around the environment. The second tracks and follows the 

first one (Figure 4-10).

Again, in this application, it is fair to assume that the floor of the 

environment is flat. Here the algorithm for measuring distances to objects at a 

known height off the ground, was used. The wandering robot was modified so 

that one if its building blocks bears a distinct colour. To second robot locates 

the first one by looking for and extracting this specific colour. It then computes 

the distance to the wandering robot. Using this information, it controls its speed 

in order to maintain a constant distance with the wandering robot. The follower 

also computes the location of the extracted feature on the image. It then 

controls its direction to maintain this feature in the middle of the field of view.

4.7 Summary
This chapter has presented a simple method of determining the distance 

between a mobile robot and objects in front of it. The method only utilise one 

camera and therefore is also adequate to be implemented on fleets of mobile 

robots.
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Figure 4-10. A Robot Following Another
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Chapter 5 Conclusion and Future Work

5.1 Conclusions
The work presented in this thesis dealt with embodiment in Multi Robot 

Systems. In the last two decades, embodiment has developed from an idea 

behind the subsumption control architecture, to being formally defined. It has 

grown to be widely accepted throughout robotics and other fields. It has now 

emerged has a ‘condition sine qua non’ to any robotics system. Despite 

acknowledging its importance, the robotics community seems to have paid 

little attention to finding ways of best integrating embodiment to robotic 

systems. This is a particularly important shortfall because of the difficulty one 

faces in ensuring that good embodiment is achieved when developing an MRS. 

Robot systems at least include mechanical, electrical and electronic parts. The 

control of the robot is based on a number o f sciences ranging from psychology 

and Artificial Intelligence to computing and vision systems. Only a carefully 

orchestrated integration of all those sciences will ensure correct interaction 

between the robot and its environment.

The first component of work presented in this thesis deals directly with 

this issue. The ‘Re-embodiment’ architecture has been put forward. ‘Re­

embodiment’ provides a framework, through a number of Axioms, to 

implement Multi Robot Systems. In analogy with dualism, each system is 

considered to be made of a body and a soul. The boundary between the body
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and the soul is arbitrarily set and not confined to the hardware/software 

distinction. The Axioms define the properties of both body and soul with 

respect to the environment and each other. It was demonstrated that, provided 

the Axioms are fulfilled, the resulting system will have a number of properties 

that improve its versatility. Firstly, the amount of work required to build a new 

system will be reduced. One may reuse a body with a soul to be tested or vice- 

versa. Managing large fleets of robots will be made easier. One may incarnate 

a single soul into several bodies; one may force a robot to clone its soul into 

other bodies. One may deploy a soul into a fleet of bodies even when some of 

the bodies are not within range o f the starting point of the soul. Implementing 

co-evolution and mutation into an MRS will be much facilitated. One may 

easily implement triggers in a soul that activate mutation or cloning of several 

souls followed by re-embodiment. Multiple users working on largely different 

issues with limited numbers of units can operate at virtually the same time. 

Thanks to the Re-embodiment flexibility, the use and efficiency of a platform 

can be optimised to allow improved research and development. The 

possibilities do not stop here. One may implement an architecture where a soul 

can incarnate different types of physical body or even virtual bodies evolving 

in virtual environments.

Although no metric yet exists for embodiment, it has been clearly 

demonstrated that it is not a discrete state. As per the definition of embodiment 

there exist perturbatory channels between the system and the environment. The 

degree of perturbation on those channels may vary, mainly based on the
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sensory and motory ability of the robot. A common mistake across MRS 

research is that lower sensory and motory capabilities, compared to single 

robot systems, are deemed acceptable because of the increased number of 

units. This however contradicts the basic principle of embodiment. On the 

other end, it is understandable that budgets enforce limits on the costs of 

sensors and actuators for each unit.

To directly address this issue an information rich sensory input that can 

be cheaply implemented was developed. The method allows for ‘Robot-to- 

Objecf distance measurement from a single image frame. It is assumed that the 

intrinsic and extrinsic camera projection parameters can be determined through 

a one-off calibration. It is further assumed that the height of the target can be 

determined by supposing that the floor of the environment in which the robot 

evolves is flat and that the object is either at a known height from the floor or 

in contact with it. Based on this, it is possible to extract distances between 

objects on the image and the robot. The measurement system was implemented 

using inexpensive ‘Web-cams’. The accuracy of the measurement system was 

studied firstly through theoretical analysis and secondly through a series of 

experiments. Finally, two example applications were presented in order to 

demonstrate the large range of applications that can benefit from such distance 

measurement method. In the first one, a robot tracks a ball, in the second a 

robot follows another.
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5.2 Summary of Contributions
This section runs through the contributions made by the work presented 

in this thesis. Those contributions relate to a common subject: The importance 

of embodiment in robotics. The focus is on embodiment in Multi Robot 

Systems.

• Provide an architecture for MRS development platforms that eases 

implementation of embodied systems.

• Provide an architecture for MRS development platforms that is 

flexible and scalable to large numbers of units.

• Provide an architecture for MRS development platforms that allows 

for several users to work at virtually the same time on largely 

different systems.

• Provide an information rich sensory input, that allows for better 

embodiment.

• Provide a sensory input that is relatively cheap to implement, to 

allow realistic use on large numbers of units.
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5.3 Suggestions for Future Work
Since the late nineteen seventies, robotics, as a research field, has 

matured extensively. It has emerged as a meeting point for many sciences. 

Research is broad and moving forward on many fronts. Multi Robot Systems 

and cooperation have been at the forefront of this effort. Despite many 

breakthrough and advances, robotics as a science is still far from achieving the 

target set by the imagination. The old dream, of being able to understand and 

mimic intelligence, remains beyond grasp.

5.3.1 Development Platform for Large Scale MRS

One of the main breakthroughs at the end in the mid nineteen eighties 

was the emergence of embodiment. Despite its acceptance across the field 

since then, there remain huge gaps in its standardization in robotic systems. 

One of these gaps is the repeated effort and time spent by researchers, even in 

the same lab, to implement an embodied development platform. This is 

especially damaging to advances in the field because research only really 

begins once such a platform is operational. Furthermore, in robotics, findings 

are only seen as valid once tested in the real world on such a platform. Too 

often most of the research effort is spent on the implementation of such 

platform. This is even more damaging when a platform has no flexibility and 

can only be used for one particular test, thus forcing researchers to implement 

another all over again before further advances can be attempted. Part of
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robotics is about building the robot themselves but one must ensure that 

researching new theories and making those robots perform remains just as 

important. The Re-embodiment architecture was shown to provide such 

advantages, but more can be done. Although the Re-embodiment 

implementations described in this thesis have shown to be scaleable, more tools 

would probably be needed to manage very large fleets:

Firstly, a tool to record and monitor which soul has incarnated which 

body would be required. All available souls should be clearly listed as ready of 

use; all different bodies should also be classified with clear descriptions of 

capabilities should they be real robots or simulated agents evolving in virtual 

environments. All bodies should also be monitored allowing status checking at 

a glance, in order to minimize the effort required to maintain the fleet 

operational. The ability to detect faulty units or those out of power should be 

implemented to maximise the fleet availability.

Secondly each unit in a very large fleet should have the ability to manage 

its own power consumption and requirement. With growing numbers of units 

there will be a point where it would be practically impossible to have to 

manually recharge units to keep the system running. It is relatively easy to 

envisage the implementation of charging stations were units could come to 

refill their power supply. In very widespread systems, where it is impractical to 

travel back to charging stations, one could even implement ways of conveying 

power from one unit to another across the fleet.

Finally, and above all, the main emphasis should be the design of a multi 

user interface. To fully exploit the advantage of easy embodiment on large
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MRS, each user should be able to work on their respective projects at the same 

time with a unique platform. One could develop a system where researchers 

request the use o f bodies from a shared pool. They could also share their work 

by making available to others souls or bodies they have developed. These 

improvements are seen as important and urgently needed, especially 

considering recent developments with relatively large robot fleets. The 

Centibots project at SRI boasts 100 units [Konolige et a l., 2002]. More 

recently a student at MIT built 112 robots [Miranda, 2004].

5.3.2 Improving Cheap yet Information Rich 
Sensing

The foremost step towards standardization of Embodiment in robotic 

systems was the appearance of its formal definition [Quick and Dautenhahn, 

1999]. This formal qualification made it clear that embodiment is not a discrete 

state and that different degrees of embodiment may occur depending on the 

motory and sensory abilities of the robot. Obviously one should try to 

maximise the embodiment of a robot. In MRS, cost restrictions often limit the 

computational power and sensor complexity of each unit.

The mono vision distance measurement method put forward in this thesis 

addresses both these problems. Although the advantage of this measurement 

method is clear, the potential for further improvement remains high.

Firstly, the required calibration to determine the extrinsic and intrinsic 

parameters of the camera is somewhat tedious In fact, it would quickly become 

impractical with large MRS. Furthermore, any physical modification to the
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system, such a disassembly and reassembly would require recalibration. There 

exist numerous ways of calibrating cameras. Recently, calibration methods 

using references from the scene and known motions have been developed. 

Should such methods provide sufficiently accurate results, they would be a 

great improvement as each robot could self-calibrate its camera.

Secondly, the measurement method relies on the ability to detect a point 

or an edge on an object. To ensure that implementation in robots with less 

computational power, such as the Sheepbots, is possible, one must ensure that 

image analysis algorithms to extract features, simple enough to be realised on 

small programmable controllers, are available.

Thirdly, the measurement method, as presented here, relies on an 

environment with a planar floor. Although this is a perfectly valid assumption 

to be made, in a number of applications it is somehow limiting. There would be 

an easy way for the robot to at least check whether this assumption can be 

made. Suppose that the robot can detect a feature in contact with the floor on 

an object and assess the distance to this object. Assuming that the robot can 

measure distances travelled through odometry, it can then move by a known 

distance. This distance should be known precisely enough since it is only 

measured over a short time. The distance between the robot and the target can 

then be re-assessed. If the floor really is flat, the distance travelled by the robot 

should match the difference between the distances to object before and after the 

motion. In the case of a non planar floor, these distances will not match. 

Through this simple method the robot should be able to continually check the
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floor flatness assumption, allowing for measurements to be discarded when 

non planar floor are detected.

Finally, a plethora o f new algorithms and applications can be developed 

by exploiting the robot-to-object distance measurement. One can imagine 

applications such as group formation, where distance and orientation between 

robots need to be known. Assume that each robot in an MRS is fitted with a 

camera providing 360 degree field of view. Each robot should be able to 

compute the position of other robots around it by measuring angles and 

distances to each other unit. This could be used for applications such as 

flocking or multi target tracking.

5.3.3 Standardizing Cooperation

One of the next important steps for the future of MRS will be the 

standardization of cooperation. Many claim to have achieved cooperation with 

two or more robots. However, the definition of what cooperation really is, the 

setting of the experiment or application and the results greatly differ. A unified 

definition of cooperation will be the first step towards qualifying it. Then based 

on this definition one may start considering quantifying it.

153



C a r d i f f
U N I V E R S I T Y Appendix A - BOM Robots’ Specifications

Appendix A - BOM Robots’ 

Specifications

154



C a r d i f f
U N I V E R S I T Y Appendix A - BOM Robots’ Specifications

Name: Robobug2

PC board: AR-B1474 (Half Size 486DX4/DX2 CPU Card).

CPU: Intel 486DX2 33MhZ.

Motor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

2 Robobug was named so because it was the first o f the BO M  robots on which the custom 
operating system and the Re-Embodiment architecture were implemented and debugged. It is 
not related to the Mekatronix walking machine commercial kit o f the same name 
(http://www.mekatronix.com/detailed/robobug.htm).
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Name: Anic3

PC board: PIA-460 (half-sized Pentium PCI/ISA CPU Card with VGA) 

CPU: Intel Pentium I 66MHz.

Motor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

3 Botanic: adjective, from French botanique, from Greek botanikos o f herbs, from botane 
pasture, herb, from boskein to feed, graze; probably akin to Lithuanian guotas flock. 1: o f or 
relating to plants or botany. 2: derived from plants
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Name: Ape4

PC board: PIA-460 (half-sized Pentium PCI/ISA CPU Card with VGA) 

CPU: Intel Pentium I 66MHz.

M otor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

4 Ap6ro: noun, diminutive o f aperitif, from Medieval Latin aperitivus, irregular from Latin 
aperire, an alcoholic drink taken before a meal as an appetiser.
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Name: Bist5

PC board: PIA-460 (half-sized Pentium PCI/ISA CPU Card with VGA) 

CPU: Intel Pentium I 66MHz.

M otor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

5 Bistro: noun, from French, 1: a small or unpretentious restaurant, 2: a small bar or tavern.
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Name: Ch’up6

PC board: PIA-460 (half-sized Pentium PCI/ISA CPU Card with VGA) 

CPU: Intel Pentium I 66MHz.

Motor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

6 Botch’up: transitive verb, from Middle English bocchen, 1: to foul up hopelessly, 2: to put 
together in a makeshift way.
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Name: Toms’up7

PC board: PIA-460 (half-sized Pentium PCI/ISA CPU Card with VGA) 

CPU: Intel Pentium I 66MHz.

M otor interface board: Custom made motor interface board.

Sensor board: Custom made motor interface board.

Wireless network card: ORiNOCO Silver PCMCIA 802.1 IB Card 

PCMCIA to PC/104 adapter: JUMPtec PC/104-PCMCIA-1 Adapter 

Storage: 4MB Flash Drive

Sensors: four bumper switches, six ultrasound sensors.

Camera: ZoomCam PPC.

Operating system: Small print, custom operating system based on Linux.

7 Bottoms’up: expression, from English, drinking the whole glass o f something all at once 
(usually beer).
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#!/bin/sh

#This script tries to retrieve a root image over the wireless network
# link. The script first searches for an image in a directory common
# to all robots in the fleet, if nothing was found there, the script
# search for an image in a directory specific to the robot.
# The script try to be as robust as possible and check for:
# -No file in directory
# -File not readable
# -File not a ext2 fs image
# -Problem when transferring file (often size mismatch)
# between image and ramdisk ( image> ramdisk)
# -Several files in the directory no read after
# successful transfer of an image

#Change log
#

#Version 1.0.1
# +First stable release
# +This script tries to retrieve a root image over the wireless network

# link. The script first searches for an image in a directory common
# to all robots in the fleet, if nothing was found there, the script
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# search for an image in a directory specific to the robot.
# +If server unreachable or no image do download the default root
# image is used
# +The script try to be as robust as possible when downloading image
# and check for:
# -No file in directory
# -File not readable
# -File not a ext2 fs image
# -Problem when transferring file (often size mismatch)
# between image and ramdisk ( image> ramdisk)
# -Several files in the directory, no read after
# successful transfer of an image
# +If a valid root image is downloaded, log generated while the default
# root image is mounted as root, are transferred to the newly mounted
# root image before the default root image is unmounted.
#

#

#Version 1.0.2
# +Added robot specification information as part of the image
# +If a valid root image is downloaded the robot specific information
# are transferred onto the downloaded root image before the default
# image is unmounted
#

#

♦Version 1.0.3
# +The PCMCIA modules are unloaded if an image was successfully
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# retrieved from the boot server so that problems are avoided if
# the PCMCIA modules (from the initrd image) and the cardmgr (from
# the downloaded image) don't match.
# +Improved message displayed on console during image download
#

*

#Version 1.0.4
# +Updated image so that it includes the utilities required to update
# the initrd image on the robot. It avoid having to load a utility
# image when the initrd image is to be updated on the robot
#

#Version 1.0.5
# +Updated script and image to work with 2.2.19-7.0.1 Kernel
# +Use of a variable for kernel version
# +Had to mount nfs partition using nolock, as I was getting
# error messages, but don't know why??
# +Fix problem with time, use /usr/bin/time as time is now also a bash built-in command
#

#Version 1.0.6
# +Reverted back to work with kernel 2.2.19-6.2.1
# +Use BOM major number 251
# +Mounting with lock again
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

#This part of the script will set a few parameters

#ROBOT_NAME=
ROBOT_SPECIFICINFO_FILE=/etc/bomrobotinfo
ROBOT_NFS_MOUNTPOINT=/mnt/temp/
ROBOT_RAMDISK=/dev/raml
ROBOT_RAMDISK_MAJMINNUMBER=OxlOO
ROBOT jOLDLOGTRANSFER_MOUTPOINT=/mnt/temp/
BOOTSERVER_IP=10.0.0.10
BOOTSERVER_BOMFLEET_ROOT=/home/bomfleet/ 
BOOTSERVER_BOMFLEET_COMMONDIR=all 
INITRD_VER=1.0.6 
KERNEL_VER=2.2.19-6.2.1

#This part of the script will set the PATH,
# mount a proc filesystem and start the system and
# kernel loggers.

# Set the path
PATH=/bin:/sbin:/usr/bin:/usr/sbin 
export PATH

#Mount proc fs (Cardmgr requires proc to be mounted)
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echo "Mounting proc filesystem"; mount -nt proc /proc /proc 
sleep 1

#Start syslogd and klogd 
echo "Starting System logger" 
syslogd 
klogd

#Echo and log initrd root image version
echo "initrd root fs image version $INITRD_VER"
initlog -s "initrd root fs image version $INITRD_VER"

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

#This part of the script read robot specific parameter from a file 
# and log/display robot's name

#Retrieve robot specific info 
if [ -f /etc/bomrobotinfo ] ; then

#Get specific BOM robot information from file 
. /etc/bomrobotinfo
echo "Robot specific information retrieved" 
initlog -s "Robot specific information retrieved"

else
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#There is a problem, robot specific information are missing 
#use some default values, and log problem 
ROBOT_HOSTNAME=problem.bom
echo "Could not find robot specific information, using default" 
initlog -s "Could not find robot specific information, using default"

fi

#Echo and log robot name
echo "My name is $ROBOT_HOSTNAME.bom"
initlog -s "My name is $ROBOT_HOSTNAME.bom"

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

#This part of the script will load the BOM device module
# and reset the motor, to stop them if they start turning
# at power up.

#Insert BOM device module
echo "Loading BOM device driver and resetting motors" 
initlog -s "Loading BOM device driver and resetting motors" 
/sbin/insmod "/lib/modules/$KERNEL_VER/misc/motor2.o" bom_major=251 
echo IAx > /dev/mot
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#This part of the script will load required modules
# for the PCMCIA Wireless network card and start the
# card manager.

# PCMCIA configuration 
PCIC="i82365"
PCIC_OPTS=""
CORE_OPTS=""
CARDMGR_0 PT S=""

#Output message
echo "Starting PCMCIA services"

#Insert the required modules
/sbin/insmod "/lib/modules/$KERNEL_VER/pcmcia/pcmcia_core.o" $CORE_OPTS 
sleep 1
/sbin/insmod "/lib/modules/$KERNEL_VER/pcmcia/$PCIC.o" $PCIC_OPTS 
sleep 1
/sbin/insmod "/lib/modules/$KERNEL_VER/pcmcia/ds.o" 
sleep 1

#Configure the card
tManually, can't get it to work (it can't recognise ethO!!) 
#/sbin/insmod /lib/modules/2.2.14-5.0/pcmcia/wavelan2_cs.o port_type=3 
#/sbin/ifconfig ethO up 10.0.0.4 255.255.255.0 10.0.0.255
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#Using cardmgr, it works fine, so what the h##l 
/sbin/cardmgr $CARDMGR_OPTS 
sleep 3

^ *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

#This part of the script will retrieve the filesystem
# from isl-1.bom:/home/bomfleet and copy it into a ramdisk
# using nfs. Check are made for non-valid files, multi
# files and non-existent files. If no file is present on
# the boot server, the default fs (already loaded in ramO)
# set as the main root filesystem and init can be started
# from it.

tlnsert module required for nfs
/sbin/insmod "/lib/modules/$KERNEL_VER/misc/sunrpc.o" 
/sbin/insmod "/lib/modules/$KERNEL_VER/fs/lockd.o" 
/sbin/insmod "/lib/modules/$KERNEL_VER/fs/nfs.o"

#temp stuff 
#sleep 1
#cat /proc/modules 
#sleep 10
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GOTIMAGE=false 
#Try to mount nfs
if mount -n "$BOOTSERVER_IP:$BOOTSERVER_BOMFLEET_ROOT" $ROBOT_NFS_MOUNTPOINT ; then #-o nolock

#Check if an image file is present in common directory then in the robot specific directory
echo "File system image search on the boot server"
GOTIMAGE=false
for SEARCHDIR in "$ROBOT_NFS_MOUNTPOINT$BOOTSERVER_BOMFLEET_COMMONDIR/" "$ROBOT_NFS_MOUNTPOINT$ROBOT_HOSTNAME/"; do 

echo " Searching in $SEARCHDIR"
LIST="'Is $SEARCHDIR'";
#echo " file(s) $LIST was/were found on boot server in $SEARCHDIR directory"
initlog -s "file(s) $LIST was/were found on boot server in $SEARCHDIR directory"
for IMAGE in $LIST; do

if [ "$GOTIMAGE" = "false" ] ; then
if [ -n "$IMAGE" ] ; then

if [ -r "$SEARCHDIR$IMAGE" ] ; then 
#Check if file is a valid ext2 fs image

RESULT='fsck.ext2 -p "$SEARCHDIR$IMAGE" 2>&1' 
if echo "$RESULT" | grep "clean" >/dev/null; then 

initlog -s "$RESULT"
#Retrieve filesystem image and copy into ramdisk
echo " Image file $IMAGE being retrieved from network..."
initlog -s "Image file $IMAGE being retrieved from network"

if RESULT='/usr/bin/time dd if="$SEARCHDIR$IMAGE" of=$ROBOT_RAMDISK bs=lk 2>&1'; then
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echo " ...Image downloaded successfully"
initlog -s "$RESULT"
G0TIMAGE=true

else
echo " ...Download aborted!! check log for details"
initlog -s "$RESULT"
echo " Warning, image file $IMAGE not retrieved, may be size mismatch!"
initlog -s "Warning, image file $IMAGE not retrieved, may be size mismatch!"

fi
else

initlog -s "$RESULT"
echo " Warning, image file $IMAGE is not a valid ext2 fs"
initlog -s "Warning, image file $IMAGE is not a valid ext2 fs"

fi
else

echo " Warning, image file $IMAGE is not readable"
initlog -s "Warning, image file $IMAGE is not readable"

fi
else

echo " Warning, their is no file in directory!"
initlog -s "Warning, their is no file in directory!"

fi
else

echo " Warning, a root image was found but there are other file here"
initlog -s "Warning, a root image was found but there are other file here"
break
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fi
done

done
#If no image was downloaded mount default rescue system as root 
if [ "$GOTIMAGE" = "false" ] ; then

echo " Warning, no image found on server, starting default root image" 
initlog -s "Warning, no image found on server, starting default root image" 
echo $ROBOT_RAMDISK_MAJMINNUMBER > /proc/sys/kernel/real-root-dev

f i

#Unmount network file system 
umount -n $ROBOT_NFS_MOUNTPOINT

else
#Server unreachable for some reason, did not try to retrieve image 
# mount the default rescue system as root
echo "Could not mount nfs, not trying to retrieve fs image" 
initlog -s "Could not mount nfs, not trying to retrieve fs image" 
GOTIMAGE=false
echo $ROBOT_RAMDISK_MAJMINNUMBER > /proc/sys/kernel/real-root-dev

fi
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#Remove nfs modules 
rmmod nfs 
rmmod lockd o
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rmmod sunrpc

^ *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

#This part of the script will perform some cleanup
# before the temporary root filesystem can be unmounted, remaining
# process have to be killed and the logfiles copied to the new fs
# for future reference. If the temporary root fs is to become
# the main root fs, those process can carry on

if [ "$GOTIMAGE" = "false" ] ; then

initlog -s "No fs image retrieved, process lunched by linuxrc can carry on" 
sleep 3

else

#kill cardmgr (and wait a bit)
PID='cat /var/run/cardmgr.pid'
echo "The PID of cardmgr is $PID, killing cardmgr" 
initlog -s "The PID of cardmgr is $PID, killing cardmgr" 
kill $PID 
sleep 4

#Remove pcmcia modules
echo "Unloading pcmcia modules"
/sbin/rmmod ds 
sleep 1
/sbin/rmmod i82365 
sleep 1
/sbin/rmmod pcmcia_core 
sleep 3

#Kill syslogd and klogd 
PID='cat /var/run/syslogd.pid'
echo "The PID of syslogd is $PID, killing syslogd" 
initlog -s "The PID of syslogd is $PID, killing syslogd"
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kill $PID
PID='cat /var/run/klogd.pid'
echo "The PID of klogd is $PID, killing klogd" 
initlog -s "The PID of klogd is $PID, killing klogd" 
kill $PID 
sleep 1

#Transfer some info to new root fs (Cannot be logged)
##Remount old root
mount $ROBOT_RAMDISK $ROBOT_OLDLOGTRANSFER_MOUTPOINT
##Transfer old log file into the new fs
echo "Transferring old log file on new filesystem"
tinitlog -s "Transferring old log file on new filesystem"
cat < /var/log/messages > /mnt/temp/var/log/messages
##Transfer robot specific information into the new fs
echo "Transferring robot specific information file on new filesystem"
tinitlog -s "Transferring robot specific information file on new filesystem"
cat < "$ROBOT_SPECIFICINFO_FILE" > "/mnt/temp/$ROBOT_SPECIFICINFO_FILE"
ttUnmount old root
umount $ROBOT_RAMDISK
sleep 1

ttemporary check for remaining process 
#ps -A 
tsleep 50

tunmount the /proc filesystem 
echo "Unmounting proc filesystem" 
initlog -s "Unmounting proc filesystem" 
umount -n /proc 
sleep 1
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Appendix C - 

‘linuxrc’ Script Flowchart
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Appendix D - Experimental Assessment 

of the Re-Embodiment Implementation 

on the BOM Robots.

Aims

The aim of this series of experiments was to assess the performances of 

the development platform, implemented on the BOM robot along the Re- 

Embodiment principles.

The objective was to time the boot process in different conditions to get a 

general idea of the amount of time required to get an up and running system.

Experimental Condition

The timing of the boot process was measured manually using a 

conventional time watch from the time when the power switch is flicked on, to 

the time when the system is running (login prompt waiting). Because the robots 

are not fitted with a display device, a small application was developed to 

produce a double beep when the system is running. It is important to note that 

because o f the nature of the boot process software timing could not be 

implemented.
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The time required to download an eventual file system was also recorded. 

This was timed using software to achieved better precision.

Finally, it was observed during use that the battery voltage and the power 

supply greatly affects the wireless network card. For instance placing the 

wireless network card at different positions in the PC/104 stack would result in 

great differences in signal quality and overall performance. It was observed 

that better results were achieved when the card was as close as possible to the 

CPU board and the Power distribution board. Consequently, on the robot the 

wireless network card is placed between the CPU board and the power supply 

board in the stack. The Wireless network card also seems to be the first 

element of the system to be affected when the battery starts to be discharged. It 

was observed that when the battery voltage drops below approximately 11.5V 

the wireless card ceases to function properly.

To insure that experimental results are not distorted, the battery voltage 

was monitored during experiments.

Measurements

In the first series of tests, the boot process was timed in the following 

conditions. The boot server was running and accessible but no image was 

available. The boot process for each robot was first timed individually. Then, 

using the same conditions, the robots where timed when started 

simultaneously. Each measurement was repeated ten times.
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In the second series of tests, a four Megabytes image was available for 

each robot to download. Firstly, the boot process for each robot was timed 

individually. Then, the boot process for each robot was timed when they were 

all started simultaneously (and supposedly attempting to download their 

respective image simultaneously). Each measurement was repeated ten times.

In the third and fourth series of test an eight and sixteen megabytes image 

were available for each robot to download respectively. The same 

measurements were made as previously.

Variation in Raw Data

There were significant variations in the measurements obtained. This 

could be due to a number of factors. First, the manual timing is prone to error 

due to variations in human reaction time.

However, there were also variations in the download timings. Linux is a 

multi-tasks and multi-thread operating system. Several processes appear to be 

running at the same time on a single processor. Whereas, in fact, the kernel 

scheduler distributes the processor resources to different processes and 

interrupt handlers. The amount of processor time allocated to the processes 

affecting the download on both the server and the robot may vary. This may 

result in variation in the overall download time. Interference to the RF signal 

could also affect the performances. Finally, when several robots attempt to
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download filesystems, the wireless network bandwidth may affect the 

download time.

Results

Unexpectedly one of the Pentium robots (Bist) appears to be consistently 

slower than the other four. This difference occurs only in the overall boot up 

time not in the download time. This could not be explained. Consequently the 

data taken from Bist was discarded in the average time calculation.

Results show that the average boot-up times for the 486 and the Pentium 

when there is no image do download are about 57s and 52s respectively. There 

is no difference between individual and simultaneous boot up.

Boot-up times are about 90s and 76s respectively, when there is a four 

megabytes image do download and the robots are booting up individually. 

These times increase to 103 s and 89s when the robots boot simultaneously. 

This can be explained by the fact that the robots have to share the wireless card 

bandwidth.

When there is a eight megabytes image to download, boot up times are 

approximately 102s and 85s respectively. These times increase to 138s and 

125s when the robots boot simultaneously. Again, this can be explained by the 

fact that the robots have to share the wireless card bandwidth.
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Average Boot-up Time
486 DX2

Individual
(Seconds)

33MHz
Simultaneous

(Seconds)

Pentium
Individual
(Seconds)

I 66MHz
Simultaneous

(Seconds)
0MB 57.31 57.41 52.77 52.74
4MB 90.04 103.12 76.28 89.03
8MB 101.99 137.80 85.21 125.15

Average Download Time
486 DX233M

Individual
(Seconds)

Hz Pe
Simultaneous

(Seconds)

ntium I 66M
Individual
(Seconds)

Hz
Simultaneous

(Seconds)
0MB 0.00 0.00 0.00 0.00
4MB 12.57 23.69 8.32 21.22
8MB 24.88 58.75 17.38 57.42

Average Download Speed
486 DX2

Individual
(MB/s)

33MHz
Simultaneous

(MB/s)

Pentium
Individual

(MB/s)

I 66MHz
Simultaneous

(MB/s)
0MB 0.00 0.00 0.00 0.00
4MB 325.83 172.89 492.49 193.03
8MB 329.25 139.44 471.35 142.66
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Test with robots booting up individually and no image to download

Robo
Total tana 
{seconds}

bug
Download
(seconds)

Volatgo (volts) Total time 
(seconds)

Anic
Download
(seconds)

Volatgo (volts) Total time 
(seconds)

Ap6
Download
(seconds)

Votstgs |vo«s)
Total time 
(seconds)

Bist
(soconds) Vololgo (voKs)

Ch'u
Total Ume 
(seconds)

Download
(seconds) Volotgs (volts)

Toms
Total time 
(seoonds)

'up
Download
(seconds) VoWgolvots)

1 57.41 n-a 12.44 52.88 n-a 12.36 5234 n-a 12.30 53.00 n-a 12.33 57.72 n-a 12.01 53.05 n-a 12.31

2 57.59 n-a 12.42 52.88 n-a 12.36 53.00 n-a 12.25 52.84 n-a 12.30 58.06 n-a 11.95 52.21 n-a 12.29

3 56.88 n-a 12.41 53.09 n-a 12.35 52.91 n-a 12.16 52.94 n-a 12.26 57.75 n-a 11.94 52.68 n-a 12.28

4 57.59 n-a 12.38 53.09 n-a 12.33 52.15 n-a 12.09 52.62 n-a 12.20 58.37 n-a 11.91 52.01 n-a 12.27

5 57.00 n-a 12.36 53.19 n-a 12.31 52.13 n-a 12.07 52.38 n-a 12.16 57.66 n-a 11.89 52.98 n-a 12.25

6 57.72 n-a 12.35 53.34 n-a 12.30 52.38 n-a 12.07 52.28 n-a 12.16 58.16 n-a 11.89 53.02 n-a 12.23

7 57.06 n-a 12.34 53.06 n-a 12.28 52.76 n-a 12.07 52.75 n-a 12.16 57.71 n-a 11.82 52.54 n-a 12.22

8 57.13 n-a 12.32 53.62 n-a 12.26 52.75 n-a 12.06 52.60 n-a 12.16 57.72 n-a 11.79 52.16 n-a 12.21

9 57.56 n-a 12.31 53.44 n-a 12.24 52.69 n-a 12.06 53.03 n-a 12.16 58.59 n-a 11.76 52.78 n-a 12.21

10 57.16 n-a 12.29 53.04 n-a 12.23 52.44 n-a 12.06 52.94 n-a 12.15 57.85 n-a 11.73 52.98 n-a 12.20

A venge 57.31 53.16 52.56 52.74 57.96 52.64

Variance 0.088 0.057 0.095 0.069 0.104 0.154

Test with robots booting up sim ultaneously and no image to  download

Robe
Total time 
(seoonds)

►bug
Downlead
(seoonds) Volatgo (volts) Total time 

(seconds)

Anic
Download
(seconds)

Volatgo (volts)
Total time 
(seconds)

Ap6
Volstgs (volts) Total time 

(seconds)

Bist
Download Volatpe (volts)

Ch'u
Total time 
(seconds)

p

Download
(seconds) Volatgs (volts)

Toms
Total time 
(seoonds)

►'up
Download Votatga (volts)

1 57.33 n-a 12.21 53.12 n-a 12.30 52.36 n-a 12.20 52.98 n-a 12.25 57.46 n-a 12.24 52.26 n-a 12.12

2 57.68 n-a 12.20 52.98 n-a 12.30 52.98 n-a 12.29 52.15 n-a 12.24 57.87 n-a 12.23 53.01 n-a 12.11

3 56.98 n-a 12.20 53.12 n-a 12.29 52.61 n-a 12.27 52.48 n-a 12.22 57.84 n-a 12.21 52.76 n-a 12.10

4 57.76 n-a 12.19 53.41 n-a 12.28 52.48 n-a 12.26 52.68 n-a 12.21 58.03 n-a 12.20 52.09 n-a 12.09

5 57.43 n-a 12.18 53.24 n-a 12.27 52.18 n-a 12.25 52.94 n-a 12.20 57.61 n-a 12.19 52.48 n-a 12.08

6 57.12 n-a 12.17 53.64 n-a 12.27 52.21 n-a 12.24 52.47 n-a 12.19 57.44 n-a 12.17 52.69 n-a 12.07

7 57.91 n-a 12.15 53.18 n-a 12.26 52.78 n-a 12.22 52.26 n-a 12.17 57.81 n-a 12.16 52.47 n-a 12.06

8 57.46 n-a 12.14 53.16 n-a 12.25 52.61 n-a 12.21 52.73 n-a 12.16 57.67 n-a 12.14 52.43 n-a 12.05

9 57.31 n-a 12.13 53.45 n-a 12.24 52.12 n-a 12.20 52.76 n-a 12.15 57.98 n-a 12.13 52.76 n-a 12.04

10 57.16 n-a 12.12 53.36 n-a 12.23 52.48 n-a 12.19 52.73 n-a 12.13 58.24 n-a 12.12 52.81 n-a 12.02

Avorxis 57.41 53.27 52.48 52.62 57.80 52.58
Vwtwwe 0.088 0.039 0.076 0.075 0.065 0.078
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Test with robots booting up sim ultaneously and a four M egaBytes im age to download

Robe
Total time 
(seconds)

ibug
Download
(seconds) VoMg* (vob)

Total lima 
(seconds)

Anic
Download
(seconds) Volatgs (volts) Total time

Ap6
Download
(seconds) dolatBO (vote)

Total time 
(seconds)

Bist
Download
(seconds) Volatgs (volts)

Ch'u
Total time 
(seconds)

)

Download
(seconds) Votatga (vote)

Toms
Total time 
(seconds)

'up
Download
(seconds) VoMgolvolh)

1 102.15 21.72 1228 90.98 22.16 12.36 89.91 21.01 12.44 89.68 21.16 12.36 95.65 21.32 12.38 89.56 22 08 12.31

2 105.41 26.56 1228 89.25 21.06 13.34 88.97 20.73 12.44 88.95 20.89 12.34 94.87 2078 12.36 88.25 20.54 12.29

3 101.28 22 67 12.27 88.06 20 98 1232 87.97 21.16 12.42 89.12 21.36 12 31 93.68 21.64 12.32 89.03 21.17 12.27

4 102.38 22.09 1225 89.12 21.62 12.30 88.40 20 62 12.40 89.21 21.45 12.29 93.98 20.16 12.29 88.98 21 72 12.24

5 103.87 23.20 12.23 89.75 21 85 12.28 87.69 20.35 1236 88.32 20.98 12.26 93.67 20.24 12.27 88.53 20.86 12.21

6 102.44 23.59 12.22 90.32 22 85 12.24 90.68 2249 12.34 88.65 21.56 12.24 94.12 22.32 12.25 88.57 21 64 12.19

7 102.88 25.27 12.15 88.12 20.06 1222 89.94 22.13 12.31 88.06 21 49 12.21 93.32 21.12 12.22 8925 22 29 12.16

8 103.37 23.44 12.12 89.98 20.16 12.19 89.28 22.82 12.28 88.65 21.96 12.19 94.56 22.89 12.20 89.65 21 73 12.13

9 103 62 24.60 12.09 87.06 18.98 12.17 89.06 19.82 12.25 89.56 21.78 12.17 93.45 21.67 12.18 90.12 21.59 12.10

10 103.75 23.77 12.06 89.56 20.69 12 15 86 06 1853 12.21 90.45 21.78 12.15 94.16 22.43 12.14 8842 20.67 1208

Average 103.12 23.69 89.22 21.04 88.80 20.97 89.07 21.44 94.15 21.46 89.04 21.43

Variance 1.323 2.151 1.390 1.292 1.776 1.662 0.499 0.124 0.511 0.842 0.372 0.362

Test with robots booting up individually and a four M egaBytes im age to download

Robo
Total 0ms 
(seconds)

bug
Download Volatgs (volts)

Total time 
(seconds)

Anic
Oownioad
(seconds) Volatgs (volts) Total time 

(seconds)

Ap6
Download Volatgo (veto) Total time 

(seconds)

Bist
(seconds) Volatgs (volts)

Ch'u|
Total time 
(seconds)

3

Download Volatgs (voNs)

Toms
Total time 
(seconds)

'up
Download
(oocondi) tfoiatBO (vodo)

1 91.88 13.51 1245 79.44 1080 12.30 78.10 9.81 12 25 77.60 9.94 12 35 82.37 867 12.16 77.85 906 12 31

2 90 71 13 48 12.43 76.28 7.82 12.28 7540 8 16 12.19 75.87 834 12.31 81.03 842 12.16 7653 882 12.29

3 89.63 12.77 1241 7628 8.04 1223 75.29 768 12.13 75.75 7.86 12.27 81.38 8.13 12.14 76.12 802 12.26

4 89 03 12.17 12 39 76.78 7 88 12.19 7585 7.99 12 10 7625 82 5 1222 8069 874 12 12 76 23 812 1224

5 90.28 12.28 1238 76.48 8.04 12.13 75.56 8.01 12.04 77.09 9 79 12.16 81.34 7.61 12.10 77.06 7.94 12.21

6 90.40 12.70 1236 76.85 8.53 12.50 75.96 8.45 12.03 75.57 8.13 12.11 80.66 7.89 12.08 7638 8.01 12 19

7 89 09 12 08 12.33 75.62 7.94 1234 76 28 8.30 12.00 75.97 824 1208 80.46 888 12.05 7624 8.23 12.17

8 90.03 12.17 12.32 76.00 7.55 1222 7563 8 13 11.98 74.93 809 12.04 81.75 888 12.02 75.98 821 12.15

9 90.06 12.36 12.30 76.56 j 7.89 12.15 7588 7.96 11.96 75.97 7.99 12.01 81.46 8.62 12.00 76.02 8 45 12.13

10 89 29 12.19 1228 76.00 7.67 12.13 75.19 7.68 11.94 75.50 8.30 12.00 80.94 821 11.99 76.67 856 12.10

Average 90.04 12.57 76.63 8.22 75.91 8.22 76.05 8.49 81.21 8.41 76.51 8.34

Variance 0.742 0.289 1.117 0.892 0.700 0.372 0.606 0.545 0.332 0.188 0.329 0.140
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T est with robots booting up individually and an eight M egaBytes im age to download

Robo
Total tent 
(second*)

bug
Download
(ttcond t

Volatgo (volte) Total tent 
(ttcondt)

Anic
Download
(ttcondt)

Volatgt (volti)
Total tent 
(ttcondt)

Ap6
Download
(ttcondt)

Volatgt (volte)
Total tent 
(ttcondt)

Bist
Download
(ttcondt)

Volatgt (volte)

Ch'u
Total tent 
(ttcondt)

[)

Download
(ttcondt)

Volalga (volte)

Toms
Total tent 
(ttcondt)

'up
Download
(ttcondt) l/olatgt (volte)

1 102.47 25.30 12.26 89 63 2091 12.25 87 22 19.62 1245 90 44 22.71 12.55 93.69 20.78 12.48 89.91 2012 1241

2 101 72 2421 12.26 86.19 17.31 12.23 82 41 15.65 12.43 85.13 17.22 1253 91.02 17.46 12.47 86.56 17.59 12 39

3 101.44 24.00 12.25 84.94 17.09 12.22 84.38 1695 12.39 86.94 19.46 12.51 89.76 16.81 12.45 85.01 17.08 12.37

4 102 34 2535 12.23 84.43 16.42 12.20 84 56 16.47 1235 84.91 17.44 12.48 90.45 16.45 12.43 84.16 1647 12.34

5 101.97 24.60 12.21 86 63 18.48 12.17 86 34 18.12 1231 84 06 16.84 12.43 91.72 17.01 12.42 85.59 17.49 12.31

6 101 91 2533 12.19 84.16 16.38 12.14 84 31 18 12 1226 8391 16.00 12.41 90.78 16.92 12 38 85 76 17.58 12 28

7 102.44 2525 12.16 85.97 17.30 12.11 84.25 16.50 1222 86.16 17.94 1236 89.86 16.72 12.33 84.02 16.89 1224

8 102.37 25.58 12.14 83.50 15.99 12.08 85.81 18.09 12.17 84.31 16.25 12.31 89.12 16.43 12.29 85.19 17.65 12.21

9 102.41 25.04 12 12 83.22 14.20 12.05 84 62 16.75 12.12 8281 15.94 12.25 90.16 17.21 12.26 84.59 17.58 12.18

10 100.84 24 15 12.09 83.01 14.71 12.02 84 22 17.02 12.08 84.90 17.65 12.21 90.12 17.18 12.22 84.12 17.21 12.15

Avoraga 101.99 24.88 85.17 18.88 84.81 17.33 85.36 17.75 90.67 17.30 85.49 17.57

Variance 0.287 0.343 4.065 3.595 1.789 1.322 4.534 4.152 1.651 1.605 3.078 0.951

T est with robots booting up sim ultaneously and an eight M egaBytes im age to  download

Robe
Total tent 
(ttcondt)

ibug
Download
(ttcondt) Volalgo (volte) Total tent 

(ttcondt)

Anic
Download
(ttcondt) Volatgo (volte) Total tent 

(ttcondt)

Ap6
Download Volatgo (volte) Total tent

(ttcondt)

Bist
Download
(ttcondt)

VolaQo (volte)

Ch'u|
Total tent 
(ttcondt)

>
Download
(ttcondt) Volatgo (volte)

Toms
Total tent
(ttcondt)

I'up
Download
(ttcondt) Volatgo (volte)

1 151.44 73.53 12.55 130.12 61.58 12.36 129.34 61.06 12.21 130.21 61.49 1220 136.21 61.26 12.28 129 87 61.28 12.16

2 133 38 52.98 12.52 121.06 54.87 12.35 117.65 49.81 12.21 122.25 53.87 12.18 126.12 53.97 12.27 120.64 51.64 12.15

3 132 60 53.59 12.49 119.87 51.21 12.33 119.03 50.88 12.18 120.03 51.87 12.16 125.18 52.06 12.25 122.61 54.59 12.14

4 131.09 5265 12.43 124.36 57 68 12.31 127.84 59.68 12.15 12564 58.49 12.14 131.19 58.68 1223 124.56 58 03 12.12

5 131.25 51.71 12.40 12468 58.16 13.29 124.87 58.32 12.11 123 45 54 26 12.13 128.78 54.63 12.21 124.87 57.87 12.10

6 147.13 67.62 12.35 126 89 59.16 12.27 119.09 50.56 12.08 126 67 60.18 12.10 132.14 60.59 12.19 129.01 61.89 12.08

7 130.41 51.25 12.31 128.95 61.87 12.16 128.31 59.95 12.03 128.75 58.27 12.08 134.36 59.68 12.17 126.42 60.91 12.06

8 142.43 63 05 12.26 122.36 53.98 12.24 125.37 58.43 12.00 121.35 52.86 1206 126.87 53.12 12.15 125.24 5912 12.04

9 144 59 65 18 12.15 125.13 58.27 12.12 129.47 62.26 11.95 126.45 60.25 12.04 132.57 61.24 12.13 122.67 54.16 12.01

10 133 69 55 93 12.12 12876 60.58 1221 124.06 56.64 11 92 129 26 60.87 12.02 135.64 61.46 12.10 128.89 6012 11.99

Avaraga 137.80 58.75 125.22 67.74 124.60 56.76 125.41 67.24 130.91 67.67 125.48 57.96

Variance 60.739 63.095 12.043 11.929 20.111 21.555 12.333 13.314 15.928 14.299 9.453 11.881
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00

.********************************************************************************** 

.********************************************************************************** 
; Boot - and Interrupt loader for Microchip PIC16F87X
. * * * * * * * * * * * * * * * * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

.********************************************************************************** 

; Name of file: Re_Embodiment.asm
; Date: 12.12.2002
; Author: Jerome Corre
; University: Cardiff University
; Email: correjl0cf.ac.uk
; based on: Michael Cummins and Ekachai Asawabunsap (loader.asm)
; Email: cumminsm0cf.ac.uk

.********************************************************************************** 

; Use in connection with PICdownloader 1.08 for windows or linux.
; For interrupt loading User Program Interrupt Template is required (template.asm) 
.*********************************************■*************************************
;*********************************************************■*****************★*******

errorlevel -302, -306 ; no message 302 and 306
list b=2 ; tabulator size = 2

;================== user setting section ======================— — ==============

list p=16f877 ; type of micro-controller
tinclude <pl6f877.inc>
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#define
#define
♦define
♦define

ProgHI
FOSC
BAUD
TIMEOUT

OxlFFF
D ' 40000001
D ’9600'
D' 1'

; quartz frequency [ Hz] , max. 20 MHz 
; baud rate [ bit/sec] (19200/9600 for 20/4MHZ] 
; time [ 0.1s] , max. 25 sec (D *254')

Configuration

IDLOCS H'2100' ; version ID of bootloader
CONFIG CP OFF & WDT OFF & BODEN OFF & PWRTE ON & HS OSC & WRT ENABLE_ON & _LVP_ON & _DEBUG_OFF & _CPD_OFF

Constants

♦define DIVIDER (FOSC/(D'16' * BAUD))-1 
♦define HIGH_SPEED 1
♦define TIPS 8
♦define T1SU 0x31
TIMER EQU (D' 65538'-(FOSC/(D' 10 '* 4*T1PS)) ) ; reload value for TIMER1 (0.1s int)

; required for baud rate 
; high speed on 
; Timer configuration

♦define LoaderSize OxFF
♦define LoaderMain UserStart+5
♦define LoaderTop ProgHI
♦define LoaderStart (LoaderTop)-LoaderSize+1

/ size of bootloader 
; main address of bootloader 
; top address of bootloader 
; start address of bootloader

♦define NumRetries 1 ; number of writing retries
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#define WRITE 0xE3 ; write
tdefine WR_0K 0xE4 ; Write ok
tdefine WR_BAD 0xE5 ; write bad
tdefine DATAjOK 0xE7 ; received data ok
tdefine DATA_BAD 0xE8 ; received data bad
tdefine IDACK OxEB ; PIC -> PC ID-Acknowledgement
tdefine DONE OxED ; j ob done
tdefine Twait D ' 150' ; Time for Interrupt Timeout
tdefine ID_ALL OxEA ; PC -> PIC Identifier for all robots
tdefine I DENT OxEB ; PC -> PIC Identifier for robot 'XX'

Variables ===========

buff EQU 0x20
amount EQU 0x71
chkl EQU 0x72
chk2 EQU 0x73
retry EQU 0x74
address EQU 0x75
tmpaddr EQU 0x77
temp EQU 0x79
time EQU 0x7A
count EQU 0x7B

twaitl EQU 0x80 ; Time variable for Interrupt Timeout
twait2 EQU 0x81 ; Time variable for Interrupt Timeout
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ORG 0x0000 ; start of the boot code
Pagesel Main
Goto Main ; jumps to main boot code in upper memory

' - interrupt vector --- - -
ORG 0x0004 ; user program interrupt vector
Pagesel interrupt
goto interrupt ; goto Interrupt Service Routine

' user reset code - - - —  -
ORG LoaderStart

TrapError
Pagesel TrapError
goto TrapError ; trap for unintended running into Bootloader

UserStart
; this instruction never gets overwritten

clrf PCLATH ; clear PCLATH and change to bank 0

; the following 2 instructions get overwritten by user program
pagesel UserStart ; set PCLATH to program page of UserStart
goto UserStart ; loop for first start without a user program

; If first 2 relocated instructions of user code
;don't contain a branch to Main, execution
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/remains in endless loop to avoid unintended 
/operation

ORG
Main

—  stare or ooutruauriiy oouc 
LoaderMain / LoaderMain has address of UserStart+5

9 * S6uUp OI UbAKi

/set up USART for Asynchronous communication

movlw 0x90 / SPEN = 1, CREN = 1
movwf RCSTA /move contents of w reg to receive status and control register
bsf STATUS,RPO / set to bankl

/ USART SYNC=0/ SPEN=1/ CREN=1/ SREN=0/
bsf TXSTA,BRGH / TX9=0/ RX9=0/ TXEN=1/ (high baud rate enabled)
bsf TXSTA,TXEN / transmission enabled
movlw DIVIDER / baud rate generator
movwf SPBRG

'

timer
bcf STATUS,RPO
movlw TIMEOUT+1 / set timeout
movwf time
movlw T1SU
movwf T1CON / TIMER1 on, internal clock, prescale TIPS
bsf PIRl,TMR1IF
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cl time

call getbyte ; wait for IDENT or ID ALL
xorlw I DENT ; call getbyte subroutine
btfsc STATUS,Z ; skip when IDENT was not received
goto cl_time ; go to clear time and download
movf RCREG,w ; RCREG
xorlw ID_ALL
btf ss STATUS,Z ; skip when ID_ALL was received
goto user_restore
clrf time ; no more wait for IDENT
goto inst_ident ; bootloader identified, send of IDACK

.-------------------------R E C E I V E ------------------------------------------------------------------------------------------------

call 
movwf 
xorlw 
btf sc 
goto

movf 
xorlw 
btf ss 
goto

getbyte 
temp 
WRITE 
STATUS,Z 
inst_write

temp,w 
DONE
STATUS,Z 
receive

programming
get byte from USART

write instruction

done instruction ?
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'O

inst_done ; very end of programming

movlw WR_0K
call putbyte ; send of byte

movlw TIMEOUT+1
movwf time

call getbyte ; has built in timeout - waits until done

user restore
clrf T1C0N ; shuts off TIMER1
clrf RCSTA
bsf STATUS,RPO
clrf TXSTA ; restores USART to reset condition
bcf STATUS,RPO
clrf PIRl
goto UserStart ; run user program

inst_ident
movlw IDACK ; send IDACK
goto send byte

inst_write
call getbyte
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movwf address+1 ; high byte of address
call getbyte
movwf address ; low byte of address
call getbyte
movwf amount ; number of bytes -> amount -> count
movwf count
call getbyte ; checksum -> chk2
movwf chk2
clrf chkl ; chkl = 0
movlw buff
movwf FSR ; FSR pointer = buff

receive_data
call getbyte ; receive next byte -> buff[ FSR]
movwf INDF
addwf chkl,f ; chkl := chkl + buff[ FSR]
incf FSR, f ; FSR++
decfsz count,f
goto receive_data ; repeat until (— count==0)

checksum
movf chkl,w
xorwf chk2,w ; if (chkl !- chk2)
movlw DATA_BAD
btfss STATUS,Z
goto send byte ; checksum WRONG

checksum ok
movlw DATA_0K ; checksum OK
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call putbyte
write_byte

call write_eeprom ; write to eeprom
iorlw 0
movlw WR_OK ; writing OK
btfsc STATUS,Z
movlw WR_BAD ; writing WRONG

send_byte
call putbyte ; send of byte
goto receive ; go to receive from UART

'

putbyte
clrwdt ; clear watchdog timer
btf ss PIR1,TXIF ; check if Transmit Interrupt Flag bit of PIR1

; register is set, if yes, transmit buffer is empty,
; skip next line

goto putbyte ; if transmit buffer full goto putbyte
movwf TXREG ; move byte to transmit register of USART
return

9 yeLoyue suDrouuine — — -------------  ---- — —————
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getbyte

getbyte2

getbyte3

movf
btfsc
goto
btfss
goto
bcf
decfsz
goto
retlw

bcf
movlw
movwf
bsf

btfss
goto
movf
return

time,w 
STATUS,Z 
getbyte3 
PIR1,TMR1IF 
getbyte3 
T1CON,TMRION 
time,f 
getbyte2 
0

PIR1,TMR1IF 
high TIMER 
TMR1H
T1C0N,TMRION

PIR1,RCIF 
getbyte 
RCREG,w

write eeprom subroutine

write_eeprom
movf
movwf

SO-|l

address,w 
tmpaddr

move time value to w register
check for time==0
jump to getbyte 3
check for TIMERl overflow
no overflow
timeout 0.1 sec
time—

if time==0 then return

; pre-set TIMERl for 0.1s timeout

; whiled RCIF)

; RCREG

; tmpaddr = address
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movf address+1,w
movwf tmpaddr+1
clrf count ; count=0

write_loop
movlw NumRetries+1 ; retry = NumRetries+1
movwf retry

W_e_l_l
movf amount,w
subwf count,w ; while (count<amount)
btf sc STATUS,C
retlw 1 ; otherwise return 1 (OK)
movf count,w
addlw buff ; set buffer pointer
movwf FSR

w_e_l_2
movlw 0x21 ; if (0x2100 <= tmpaddr <= 0x21FF)
subwf tmpaddr+1,w
bsf STATUS,RP1
bsf STATUS,RPO ; (bank3)
btf sc STATUS,Z
goto data_eeprom ; goto data_eeprom

program_eeprom
bsf EECON1,EEPGD ; EEPGD = 1 -> program memory
clrf STATUS
movlw high (LoaderStart) ; if (tmpaddr >= LoaderStart)
subwf tmpaddr+1,w
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'O
Os

movlw low (LoaderStart) ; mask Bootloader, ( ICD-Debugger] ,
btfsc STATUS,Z ; __IDLOCS & __CONFIG
subwf tmpaddr, w
btfsc STATUS,C
goto next_adr ; next address
goto w_e__l_3

data_eeprom
bcf EEC0N1,EEPGD ; EEPGD = 0 -> data memory
clrf STATUS

w_e_l_3
movf tmpaddr,w
bsf STATUS,RPl
movwf EEADR ; EEADR = low tmpaddr
bcf STATUS,RPl
movf tmpaddr+l,w ; if (tmpaddr < 0x0004)
btfss STATUS,Z
goto w_e_l_4
movlw 4
subwf tmpaddr,w
btfsc STATUS,C
goto w_e_l_4
bsf STATUS,RPl ; (bank3)
bsf STATUS,RPO
btfss EEC0N1,EEPGD ; skip if (EEPGD)
goto w_e__l_31
bcf STATUS,RPO ; (bank2)
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movlw low UserStart+1 ; EEADRL + low UserStart+1
addwf EEADR,f ; (relocated first 4 user instructions)

w_e_l_31
clrf STATUS ; (bankO)
movlw high UserStart ; EEADRH = high UserStart
goto w e 1 5

w e 1 4
movf tmpaddr+l,w ; EEADRH = high tmpaddr

w_e_l_5
bsf STATUS,RPl
movwf EEADRH ; set EEADRH
movf INDF,w
movwf EEDATH ; EEDATH = buff] count]
incf FSR, f
movf INDF,w
movwf EEDATA ; EEDATA = buff[ count+1]
bsf STATUS,RPO
bsf EEC0N1,WREN ; WREN=1
movlw 0x55 ; EECON2 = 0x55
movwf EECON2
movlw OxAA ; EECON2 = OxAA
movwf EECON2
bsf EECON1,WR ; WR=1
nop ; instructions are ignored
nop ; micro-controller waits for a complete write
clrf STATUS
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goto w_e__l_l ; if (— retry != 0) repeat write
retlw 0 ; else return 0 (BAD)

next_adr
bcf STATUS,RPl
movlw 2 ; count := count + 2
addwf count,f
incf tmpaddr,f ; tmpaddr := tmpaddr + 1
btfsc STATUS,Z
incf tmpaddr+1,f
goto write loop

TKTmnnnTTTini PPDT7TPP Ô fTn’TXTU* _
9

-----  INTERRUPT SEKV1LE KUUIINE

interrupt ; Interrupt Service Routine
bcf STATUS,RPO ; bankO
bcf STATUS,RPl

btfsc INTCON,INTF ; external interrupt ?
goto Userlnt ; if yes, goto user interrupt service routine

movf RCREG,w ; writes receive buffer to working register
xorlw IDENT ; if IDENT was received, xorlw=0 — > skip
btfss STATUS,Z ; else xorlw=l
goto All_Rob ; goto All_Rob
goto Download
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All_Rob movf RCREG,w ; writes receive buffer to working register

xorlw ID_ALL ; if ID_ALL was received, xorlw=0 — > skip
btfss STATUS,Z ; else xorlw=l
goto Serlnt ; goto Serial Interrupt Service Routine

Download ; if IDENT was received
call iwait ; required interrupt timeout
pagesel Main
goto Main ; goto main and download new user code

Userlnt ; if an external interrupt occurred (user interrupt)
Pagesel OxlEOO ; go to user Interrupt Service Routine
goto OxlEOO

Serlnt ; if any serial interrupt occurred - except IDENT
bcf RCSTA,CREN
bsf RCSTA,CREN ; clear the overrun error bit OERR
retfie ; return from interrupt to user program

iwait movlw Twait ; Interrupt Timeout
movwf twaitl

iwaitll decf twaitl,1
call iwait2
btfss STATUS,Z
goto iwaitll
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Appendix F - 

PIC Incarnation Code Flowchart
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Appendix G - 
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Appendix H - ZoomCam Specifications

The ZoomCam PPC is an affordable, full-colour, parallel port camera 

(PPC). It is based on the VV0670 Vision CPiA chip [Vision, 1998], which 

interface with the VV6404 digital CMOS sensor [ST.Microelectronics, 1998]. 

The Specifications of the CMOS sensor are detailed below. The Camera is 

fully supported under Windows™ by the manufacturer, under linux a third

o
party driver is available .

W 6404 Coulour CMOS Sensor
Image Format 352 x 288 pixels (CIF)
Pixel Size 12.0 x 11.0mm
Image Array Size 4.2mm x 3.2mm
Array Format CIF
Exposure Control 25000:1
Sensor Signal/Noise 
Ratio

42dB

Supply Voltage 5.0v DC +/-5%
Package Type 48LCC
Operating Temp. Range OoC - 40oC
Serial Interface 
Frequency Range

O-lOOkHz

8 CPiA  webcam driver for Linux (http://webcam.sourceforge.net/)

206

http://webcam.sourceforge.net/


C a r d i f f
U N I V E R S I T Y Appendix I - A Typical Calibration Sequence

Appendix I - A Typical Calibration 

Sequence

207



C a r d i f f
U N I V E R S I T Y Appendix I - A Typical Calibration Sequence

The following illustrates a typical calibration sequence for a robot’s 

camera. Each images of the calibration chessboard taken during the sequence, 

are presented in turn, at he end of this section, in table, at the top of each 

columns. The second row illustrates the results of the comer approximation 

algorithm for each image. In the third row, the results of the refined sub pixel 

comer detection are presented. Finally in the fourth row displays, the original 

image undistorted, as computed from the calibration data. A total of seventeen 

images were taken in this particular sequence. Note that in the first image, the 

location and orientation of the chessboard, with respect to the robot reference 

frame, are known.

The intrinsic parameters derived from this calibration sequence are as

follow:

443.5 0 160.7
0 485.9 150.0
0 0 1

This places the principal point o slightly of from the centre of the image 

c , as can be expected from a cheaply manufactured camera. Both points o and 

c are illustrated in yellow on a copy of the first image of the calibration 

sequence, below.

"160.7"
c =

"176“
150.0 144_
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The world reference frame ( fV ,X ,Y ,Z ) , as defined by the chessboard for this 

frame, is represented in green. The camera reference frame (0 ,x ,y ,z ) located 

at the focal point O is represented in red. The z axis of the camera reference 

frame is collinear with the focal axis and pierces the image at the principal 

point o . The image coordinate frame (z,w,v)is represented in blue. Note that 

the camera reference frame and the image coordinate frame have the same 

orientation.
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Given that the pixel size of the camera is specified as: 

Sx = 12 jum S} = 11 /urn

One can thus derive the focal length as calculated along the horizontal 

and the vertical axes of the image’s pixels:

f x = —  Thus f x = 532mm

f  = Ll  Thus f 2 = 534mm  
s v

The focal length is obviously a unique physical value, the slight 

difference between the two focal length calculation can be explained by the 

fact that the skew a c was assumed to be 0, as part of the calibration. In reality 

the pixel edges might not be at a perfect right angle. Nevertheless, the focal 

length /  will be assumed to be equal to the average of the two calculated

values f x and f 2, thus giving: 

f  = 533mm

The extrinsic parameters derived from the calibration are:

0.999 0.020
0.021 -0 .998

-0 .008  -0 .052

-0.009 -53.15 
0.051 50.32
-0.998 456.17

210



Cardiff
U N I V E R S I T Y Appendix I - A Typical Calibration Sequence

T h e  rad ia l and tangential distortion parameters were estimated to be: 

k x = -0 .463 k2 = 0.656 k3 =0.000

A nd:

p x = —0.011 p 2 =0.006
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Image 1 Image 2
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Image 3 Image 4

i

%
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Image 6

214



Ca r d if f
U N I V E R S I T Y Appendix I - A Typical Calibration Sequence

Image 7 Image 8
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Image 9
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Image 11 Image 12

■
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Image 13 Image 14

■
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