
Cardiff
U N I V E R S I T Y

P R I F Y S G O L

C a eRDV[§)

BINDING SERVICES
Tel +44 (0)29 2087 4949
Fax +44 (0)29 20371921

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk

Ca r d i f f
U N I V E R S I T Y

PRIFYSGOL
C a ER D Y j§>

NEURO-FUZZY MODELLING AND CONTROL OF

ROBOTIC MANIPULATORS

A thesis submitted to the University of Wales, Cardiff

In candidature for the degree of

Doctor o f Philosophy

By

A. A. FAHMY, B.Sc., M.Sc.

Intelligent Robotic Systems Laboratory

Cardiff School of Engineering

University o f Wales, Cardiff

United Kingdom

2 0 0 5

UMI Number: U584714

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584714
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

In the name of Allah,

The Most Gracious, The Most Merciful

To my family

ACKNOWLEDGEMENTS

I would like to express my special gratitude to the supervisor of my studies, Professor

D. T. Pham, for his encouragement, invaluable guidance and strong support throughout

my studies. I consider myself very lucky to have him as my study supervisor.

I wish to express my sincere thanks to the University of Wales Cardiff, especially the

Intelligent Robotic Systems Laboratory and Manufacturing Engineering Centre, Cardiff

School of Engineering for the use of the facilities to pursue this research work.

Grateful acknowledgement for my funding and support must be made to my home

country Egypt and the Egyptian Ministry of Higher Education. Also my sincere thanks

must go to their representative in UK, the Egyptian Educational and Cultural Bureau.

My hearty thanks go to my family, Mother, Father, and my valuable wife for their

encouragement and support over the past years.

SYNOPSIS

The work reported in this thesis aims to design and develop a new neuro-fuzzy control

system for robotic manipulators using Machine Learning Techniques, Fuzzy Logic

Controllers, and Fuzzy Neural Networks. The main idea is to integrate these intelligent

techniques to develop an adaptive position controller for robotic manipulators. This

will finally lead to utilising one or two coordinated manipulators to perform upper-limb

rehabilitation. The main target is to benefit from these intelligent techniques in a

systematic way that leads to an efficient control and coordination system. The

suggested control system possesses self-learning features so that it can maintain

acceptable performance in the presence of uncertain loads. Simulation and modelling

stages were performed using dynamical virtual reality programs to demonstrate the

ideas of the control and coordination techniques.

The first part of the thesis focuses on the development of neuro-fuzzy models that meet

the above requirement of mimicking both kinematics and dynamics behaviour of the

manipulator. For this purpose, an initial stage for data collection from the motion of the

manipulator along random trajectories was performed. These data were then compacted

with the help of inductive learning techniques into two sets of if-then rules that form

approximation for both of the inverse kinematics and inverse dynamics of the

manipulator. These rules were then used in fuzzy neural networks with differentiation

characteristics to achieve online tuning of the network adjustable parameters.

The second part of the thesis introduces the proposed adaptive neuro-fuzzy joint-based

controller. To achieve this target, a feedback Fuzzy-Proportional-Integral-Derivative

incremental controller was developed. This controller was then applied as a joint servo-

controller for each robot link in addition to the main neuro-fuzzy feedforward

controller used to compensate for the dynamics interactions between robot links. A

feedback error learning scheme was applied to tune the feedforward neuro-fuzzy

controller online using the error back-propagation algorithm.

The third part of the thesis presents a neuro-fuzzy Cartesian internal model control

system for robotic manipulators. The neuro-fuzzy inverse kinematics model of the

manipulator was used in addition to the joint-based controller proposed and the forward

mathematical model of the manipulator in an adaptive internal model controller

structure. Feedback-error learning scheme was extended to tune both of the joint-based

neuro-fuzzy controller and the neuro-fuzzy internal model controller online.

The fourth part of the thesis suggests a simple fuzzy hysteresis coordination scheme for

two position-controlled robot manipulators. The coordination scheme is based on

maintaining certain kinematic relationships between the two manipulators using

reference motion synchronisation without explicitly involving the hybrid position/force

control or modifying the existing controller structure for either of the manipulators. The

key to the success of the new method is to ensure that each manipulator is capable of

tracking its own desired trajectory using its own position controller, while

synchronizing its motion with the other manipulator motion so that the differential

position error between the two manipulators is reduced to zero or kept within

acceptable limits. A simplified test-bench emulating upper-limb rehabilitation was used

to test the proposed coordination technique experimentally.

CONTENTS

DECLARATION AND STATEMENTS ii

ACKNOWLEDGEMENTS iv

SYNOPSIS v

LIST OF FIGURES xii

LIST OF TABLES xvii

ABBREVIATIONS xviii

NOMENCLATURE xx

CHAPTER 1. INTRODUCTION 1

1.1. Motivation 2

1.2. Research Objectives 5

1.3. Outline of the Thesis 7

CHAPTER 2. OVERVIEW OF FUZZY AND NEURO-FUZZY

TECHNIQUES 10

2.1. FLS Basic Structure and Design Elements 13

2.1.1. Fuzzification Process 14

2.1.2. Knowledge Base 15

2.1.2.1. Data Base 15

2.1.2.2. Rule Base 19

2.1.2.2.1. Choice of the FLS Input/output Variables 19

2.1.2.2.2. Derivation of the Fuzzy Rules 20

2.1.2.2.3. Functional Implementation of Fuzzy Rules 23

2.1.3. Decision Making Logic 27

2.1.3.1. FLS Inference Strategies 27

2.1.3.2. FLS Inference Mechanisms 28

2.1.4. Defuzzification Strategies 30

2.1.5. Models of FLS 31

2.2. Fuzzy Neural Networks (FNN) 33

2.2.1. Feedforward Fuzzy Neural Networks (FFNN) 33

2.2.1.1. Mamdani-Model-Based FFNN 34

2.2.1.2. TS-Model-Based FFNN 37

2.2.2. Recurrent Fuzzy Neural Networks (RFNN) 39

2.2.3. Self-Organising Fuzzy Neural Networks (SOFNN) 40

2.2.4. Learning in FFNN 40

2.2.4.1. Supervised Learning 40

2.2.4.2. Reinforcement Learning 41

2.3. Applications of FLS and FNN in Modelling and Control 42

2.4. Applications of FLS and FNN in Robotic Systems Modelling 44

2.5. Applications of FLS and FNN in Robotic Systems Control 49

2.5.1. Conventional Control of Robotic Manipulators 49

2.5.2. Fuzzy Control of Robotic Manipulators 55

2.5.3. Adaptive Control of Robotic Manipulators 55

2.5.4. Internal Model Control of Robotic Manipulators 58

2.6. Applications of FLS and FNN in Robotic Systems Coordination 59

2.7. Summary 62

CHAPTER 3. NEURO-FUZZY INVERSE MODELLING OF ROBOTIC

MANIPULATORS 64

3.1. Inverse Model Identification of Robotic Manipulators 66

3.2. Virtual Dynamics Model for PUMA 560® Manipulator 70

3.3. Rule Generation from Observation Data 75

3.3.1. Data Generation Technique 7 7

3.3.2. Inductive Learning Algorithm 79

3.3.2.1. Seed Example Selection 81

3.3.2.2. Formation of a Rule 82

3.3.2.3. Rule Post Processing 84

3.3.3. Inverse Kinematics and Inverse Dynamics Rules 85

3.4. Proposed Neuro-Fuzzy Network (DYNAFUZZNN) 87

3.4.1. Softmin and Softmax Functions 88

3.4.2. DYNAFUZZNN Proposed Neuro-Fuzzy Network Structure 90

3.4.3. Neuro-Fuzzy Network Parameters Tuning 97

3.5. Puma 560® Manipulator Inverse Modelling Results 105

3.6. Summary 110

CHAPTER 4. NEURO-FUZZY JOINT-BASED CONTROL OF ROBOTIC

MANIPULATORS 111

4.1. Proposed Controller Structure 117

4.1.1. Forward Path Neuro-Fuzzy Controller 119

4.1.2. Feedback Path Fuzzy-PID-like Incremental Servo Controller 119

4.1.3. Design Procedures for Fuzzy-PID-like Incremental Controller 123

4.1.3.1. Fuzzy Proportional Control Element 124

4.1.3.2. Fuzzy Derivative Control Element 129

4.1.3.3. Fuzzy Incremental Integral Control Element 132

4.2. Feedback-Error Learning Scheme 138

4.3. Comparison Study of the Results 141

4.4. Summary 151

CHAPTER 5. NEURO-FUZZY CARTESIAN CONTROL OF ROBOTIC

MANIPULATORS 152

5.1. Internal Model Control 154

5.2. Modified Neuro-Fuzzy Internal Model Cartesian Control 161

5.3. Training Procedure 165

5.4. Robustness Analysis 171

5.4.1. Disturbance Analysis 171

5.4.2. Sensitivity Analysis 172

5.4.2.1. Sensitivity to Multiplicative Uncertainties 172

5.4.2.2. Sensitivity to Additive Uncertainties 174

5.5. Simulation Results 176

5.6. Application to Upper-Limb Rehabilitation 179

5.6.1. Robotized Upper-Limb Rehabilitation 180

5.6.2. Human Upper-Limb Dynamics Model 186

5.6.3. Upper-Limb Rehabilitation Using One Robot Manipulator 190

5.7. Summary 196

CHAPTER 6. MANIPULATORS POSITION COORDINATION 197

6.1. Synchronization Function 202

6.2. Proposed Coordinator Structure 208

6.2.1. Synchronization Error Controller 210

6.2.2. Error Mapping Look-up Table 211

6.3. Fuzzy Hysteresis Coupling Coordinator 214

6.4. Experimental Coordination Between Two SCARA® Type Robots 216

6.4.1. Experimental Setup 217

6.4.2. Experimental Results 219

6.5. Summary 228

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 229

7.1. Contributions 229

7.2. Conclusions 231

7.3. Future work 233

REFERENCES 235

APPENDIX A. MATHEMATICAL FORMULATION 250

A. 1. Kinematics Equations for Puma 560® Manipulator 250

A.2. D’Alembert Dynamics Equations for Puma 560® Manipulator 255

APPENDIX B. PRO/MECHANICA SOFTWARE INTERFACE 260

B. 1. Custom Load Definition 260

B.2. Writing the Custom Load 262

B.3. Writing the Interface File 263

B.4. Writing the Custom Load Subroutine 273

APPENDIX C. HARDWARE INTERFACE SPECIFICATIONS 280

C.l. Interface Card Specifications 280

C.2. Filters and Power Amplifiers Specifications 281

C.3. DC Motor Specifications 283

LIST OF FIGURES

Figure Page

(2.1) Basic configuration of a fuzzy logic system. 14

(2.2.a) Discretised membership function. 18

(2.2.b) Gaussian membership function. 18

(2.2.c) Triangular membership function. 19

(2.3) Structure of Mamdani-model based FFNN. 35

(2.4) Structure of TS-model based FFNN. 38

(2.5.a) Direct inverse learning. 48

(2.5.b) Indirect inverse learning. 49

(2.6) PID controllers with gravity compensator. 50

(2.7) Modified computed torque control method. 50

(2.8) Trajectory conversion using inverse kinematics. 51

(2.9) Inverse Jacobean Cartesian control scheme. 52

(2.10) Transpose Jacobean Cartesian control scheme. 53

(2.11) Cartesian hybrid position/force control scheme. 54

(2.12) Direct inverse learning control scheme. 56

(2.13) Indirect inverse learning control scheme. 57

(2.14) Feedback-error learning control scheme. 57

(2.15) Internal model control structure. 58

(3.1) Coordinate definition for the Puma 560® robot arm. 71

xii

(3.2) Virtual dynamics model for the Puma 560® robot arm. 73

(3.3) Pro/Mechanica calculated parameters for link-1. 74

(3.4) Data collection test for the Puma 560® robot arm. 78

(3.5) Steps in the proposed neuro-fuzzy modelling. 78

(3.6) Selected output membership functions. 80

(3.7) Types of generated input membership functions. 85

(3.8) The structure of the proposed neuro-fuzzy network. 91

(3.9) Results for ink-1 angle prediction. 106

(3.10) Results for ink-2 angle prediction. 106

(3.11) Results for ink-3 angle prediction. 106

(3.12) Results for ink-1 angle error. 107

(3.13) Results for ink-2 angle error. 107

(3.14) Results for ink-3 angle error. 107

(3.15) Results for ink-1 torque prediction. 108

(3.16) Results for ink-2 torque prediction. 108

(3.17) Results for ink-3 torque prediction. 108

(3.18) Results for ink-1 torque error. 109

(3.19) Results for ink-2 torque error. 109

(3.20) Results for ink-3 torque error. 109

(4.1) Proposed controller structure. 118

(4.2) Input membership functions of fuzzy controller. 121

(4.3) Output membership functions of fuzzy controller. 122

(4.4) Structure of the fuzzy servo controller. 123

xiii

(4.5) Input/output operation of the fuzzy-P control element. 128

(4.6) Input/output operation of the fuzzy-D control element. 131

(4.7) Input/output operation of the fuzzy-I control element. 134

(4.8) Pro/Mechanica user interface for neuro-fuzzy controller. 142

(4.9) Neuro-fuzzy controller position trajectories tracking. 143

(4.10) Neuro-fuzzy controller position tracking errors. 144

(4.11) Neuro-fuzzy controller velocity trajectories tracking. 145

(4.12) Neuro-fuzzy controller velocity tracking errors. 146

(4.13) Conventional-PID controller position trajectories tracking. 147

(4.14) Conventional-PID controller position tracking errors. 148

(4.15) Conventional-PID controller velocity trajectories tracking. 149

(4.16) Conventional-PID controller velocity tracking errors. 150

(5.1) Standard internal model control structure. 157

(5.2) Classical feedback control structure. 157

(5.3) Modified neuro-fuzzy internal model controller. 167

(5.4) Internal model controller block diagram. 168

(5.5) Simplified internal model controller block diagram. 169

(5.6) Modified internal model controller block diagram. 170

(5.7) Cartesian trajectories tracking results. 177

(5.8) Cartesian trajectories tracking errors. 178

(5.9.a) Simple exercise - Start position. 182

(5.9.b) Simple exercise - End position. 182

(5.10) Representation of teach-in mode. 184

xiv

(5.11.3) Representation of play-back mode using one robot. 185

(5.1 l.b) Representation of play-back mode using two robots. 185

(5.12) Virtual dynamics model of the limb. 186

(5.13) Kinematics model of the human arm. 188

(5.14) Simplified model for upper-limb rehabilitation using one
robot.

190

(5.15) Upper-limb rehabilitation position trajectories tracking
results.

192

(5.16) Upper-limb rehabilitation position trajectories tracking
errors.

193

(5.17) Upper-limb rehabilitation Cartesian trajectories tracking
results

194

(5.18) Upper-limb rehabilitation Cartesian trajectories tracking
errors.

195

(6.1) Mobile robot tracking a curved path. 203

(6.2) Two manipulators holding a rigid object. 204

(6.3) Two robot manipulators performing upper-limb
manipulation.

206

(6.4) Structure of the proposed control and synchronization
system.

209

(6.5) Hysteresis controller input/output characteristics. 211

(6.6) Input/output membership functions for the fuzzy
hysteresis coordinator.

214

(6.7) Experimental setup formed by two 2-link SCARA® type
robots.

216

(6.8) Experimental overall system control architecture. 218

(6.9) Robot# 1 X-coordinate trajectory without coordination.

XV

220

(6.10) Robot# 1 Y-coordinate trajectory without coordination. 221

(6.11) Robot#2 X-coordinate trajectory without coordination. 222

(6.12) Robot#2 Y-coordinate trajectory without coordination. 223

(6.13) Robot# 1 X-coordinate trajectory with coordination. 224

(6.14) Robot# 1 Y-coordinate trajectory with coordination. 225

(6.15) Robot#2 X-coordinate trajectory with coordination. 226

(6.16) Robot#2 Y-coordinate trajectory with coordination. 227

(A. 1) Definition of the Puma 560® robot arm position 239
configuration.

(A.2) Vector definition for D’Alembert equations. 240

(B.l) Custom load selection user interface. 245

(B.2) List of available custom loads user interface. 246

(C.l) Circuit diagram for one motor filter/anti-aliasing filter. 267

(C.2) Circuit diagram for one motor power amplifier. 268

xvi

LIST OF TABLES

Table Page

(3.1) Link coordinate system for the Puma 560® robot arm. 72

(3.2) Link mass values [kg]. 73

(3.3) Coefficients of friction [Nm & Nm/rad.]. 73

(4.1) Proportional element FAM bank. 125

(4.2) Derivative element FAM bank. 129

(4.3) Integral incremental element FAM bank. 133

(4.4) Fuzzy servo controller combined FAM bank. 137

(5.1) Human arm model coordinate system. 189

(6.1) Error mapping and corresponding compensating signals. 213

(6.2) Fuzzy hysteresis coupling rules. 215

(B.l) Input variables arrays as seen from C++. 259

(B.2) Output variables arrays as seen from C++. 260

(B.3) Numerical values representing joint type. 261

(C.l) Design values for circuit’s elements. 267

(C.2) Motors equivalent circuit parameters. 269

xvii

ABBREVIATIONS

ADC Analog to Digital Converter.

AFNC Adaptive Fuzzy Neural Controller.

ANFIS Adaptive Network-Based Fuzzy Inference System.

ARMA Auto Regressive with Moving Average.

BP Back-Propagation.

CAD Computer-Aided Design.

COA Centre Of Area.

CRS Cooperating Robot System.

CSTR Continuously Stirred Tank Reactor.

D Derivative.

DC Direct Current.

EC European Commission.

EU European Union.

FAM Fuzzy Associative Memory.

FCE Fuzzy Control Element.

FCM Fuzzy C-Mean clustering.

FDCE Fuzzy Derivative Control Element.

FEL Feedback Error Learning.

FFNN Feedforward Fuzzy Neural Network.

FICE Fuzzy Integral Control Element.

FLC Fuzzy Logic Controller.

FLS Fuzzy Logic System.

FNN Fuzzy Neural Network.

FPCE Fuzzy Proportional Control Element.

FPID Fuzzy Proportional-Integral-Derivative Controller.

GMP Generalised Modus Ponens.

GMT Generalised Modus Tolens.

xviii

HPFC Hybrid Position/Force Control.

I Integral.

IMC Internal Model Control.

KBS Knowledge Base System.

MF Membership Function.

MIMO Multi-Input Multi-Output.

MLT Machine Learning Techniques.

MOM Mean Of Maxima.

NB Negative Big.

NL Negative Large.

NN Neural Network.

NNC Neural-Network Controller.

NS Negative Small.

P Proportional.

PB Positive Big.

PD Proportional-Derivative.

PID Proportional-Integral-Derivative.

PL Positive Large.

PS Positive Small.

RC Regularity Criterion.

RFNN Recurrent Fuzzy Neural Network.

SE Seed Example.

SISO Single-Input Single-Output.

SLS Systematic Laser Sintering.

SOC Self-Organising Controller.

SOFNN Self-Organising Fuzzy Neural Network.

TDOF Two-Degree-Of-Freedom.

TS-model Takagi-Sugeno's Model.

ZE Zero Equal.

xix

NOMENCLATURE

CHAPTER (2)

A j , B j , and C j Linguistic terms of the linguistic variables.

A , B , and C Specific linguistic terms of the linguistic variables.

a„ bi, and c, Parameter set of the z'th node at the first layer of ANFIS
network.

E Error function.

f and a Net input of a node and the node activation function.

F End-effector equivalent force vector.

A An n x l vector of friction of robot manipulator.
r(0,0)

G(0) An n x l vector of gravity terms of robot manipulator.

J(0) Jacobean matrix of robot manipulator.

j - 1 (0) Inverse Jacobean matrix of robot manipulator.

j T (0) Transposed Jacobean matrix of robot manipulator.

Kp Position controller gain.

Kv Velocity controller gain.

M (0) An nxn inertia matrix of robot manipulator.

thMembership function of the j term at the term set
* 1 describing the /th fuzzy variable.

my and ay Centre (or mean) and width (or variance) of Gaussian
function.

qP Activation function of the /th node at the nth layer of
1 ANFIS network.

XX

Parameter set of consequent linear equation of
TS-model based FLS.

7th Fuzzy rule.

Control mode diagonal matrix with ones and zeros.

thi Joint torque of robot manipulator.

An n x l vector of unknown terms that represents joint
load torques of robot manipulator.

thi Maximum point at the universe U.

Universes of discourse corresponding to the linguistic
variables.

Input of the nih layer node corresponding to the z'th
fuzzy variable.

Centre (or mean) and width (or variance) of Gaussian
function.

An n x l vector of centrifugal and coriolis terms of a
manipulator.

Adjustable free parameter.

thThe point in the j quantisation level in a universe W
at which p(w) achieves its maximum value.

A crisp output of a fuzzy system.

Link weight at the nth layer.

Change in weight w.

Linguistic variables.

Crisp inputs and crisp output.

Desired Cartesian position vector.

Cartesian position error vector.

y (t) and y net (t) Desired output and the current network output.

a Choice parameter.

tha x i Rule firing strength.

a* ^ Rule firing strength in case of using the product
compositional operator.

tha A i Rule firing strength in case of using the min
compositional operator.

th •0t (t) i Joint displacement of robot manipulator.

th■ i Joint velocity of robot manipulator.
Ui (t)

th- , . i Joint acceleration of robot manipulator.0,(0
50 Joint position error vector.

\iA (x) Membership degree of variable x to fuzzy membership
function^.

p tR i = p (Ai and Bi -> c i) Fuzzy implication (relation),

p (w) Membership function defined over the universe W.

^ Learning rate.

Fuzzy implication function,

o Compositional operator.

* Operator that represents a triangular norm.

+ Operator that represents a triangular co-norm.

X Cartesian product.

A Minimum operator.

CHAPTER (3)

thA], A2, , Am m Attribute (equivalent to linguistic variables).

thi Joint axis normal distance from previous joint axis.

a ancj a zth Argument of softmin and softmax functions and its
‘ complement.

Cdti /lh condition on z'th attribute.

Ce Class (output) value.

Cruie Rule class value.

Dexampiei &exampie2 Measure for the distance between any two examples.

dt Ith Joint coordinates normal distance from previous
joint coordinates.

E Example data (input record).

E Error function.

Fse Gaussian output membership function of seed
example.

f 2 , a2, and Wr Aggregation function, activation function and weight
1J 7 link of the / h node of the ith group of nodes at layer

two.

/ 3 and a Aggregation function and activation function of the rth
r rule node at layer three.

f 4 ii4 and Aggregation function, net input and activation
J ij ’ u y j Uij „ .th . „ . .th ^

function of th e /h node of the z'th group of nodes at
layer four.

f 5 ,,5 an<\ Aggregation function, net input and activationJ n i 9 U ni ? cuAvi Uni
function of the i numerator node at layer five.

f 5 •, Udi, and ad, Aggregation function, net input and activation
1 function of the /th denominator node at layer five.

f 6 , y , and ai Aggregation function, crisp output and activation
1 1 function of the zth output node at layer six.

f k () and nk() Aggregation function and activation function of a
node at the kth layer.

xxiii

J(0)

L

M 1,M 2,...,M 6

m,j and

P

q

r(t)

Softmin

Sofmax

Tk

Ui

u(k)

1y output
V SE

V ■ and V'min max

W

Jacobean matrix of robot manipulator.

Number of output variables.

Robot manipulator link mass.

Centre (or mean) and width (or variance) of the
Gaussian membership function.

Number of input linguistic variables.

/th Node output.

Number of rules sharing the same consequent.

Number of inputs for a particular rule.

End-effector displacement in Cartesian coordinates.

Soft minimum function.

Soft maximum function.

z'th Joint torque of robot manipulator at time interval k.

ith Node input.

System input at time interval k.

thi Joint speed of robot manipulator at time interval k

Output class value of seed example.

thi Attribute range of values (equivalent to linguistic
membership functions).

Adjustable free parameter of the proposed neuro-fuzzy
network.

Aw

w
n i J

Change in weight w.

• thLink weight that connects the i output numerator
node to the output term nodes.

XXIV

Link weight that connects the zth output denominator
node to the output term nodes.

Link weights associated with each output variable
node at layer six.

The z'th input, aggregation function, net input,
activation function and weight link of the zth node at
layer one of the proposed neuro-fuzzy network.

End-effector Cartesian position.

System output at time interval k.

Desired output and current network output.

zth joint axis rotation from previous joint axis.

Characteristic value for the sigmoidal function.

thi Joint angle of robot manipulator at time interval k.

Propagated error from layer six to numerator and
denominator nodes at layer five.

Propagated error from layer five to the j th node at the
thi term set at layer four.

thPropagated error from a node at the i output term set
that layer four to the r rule node at layer three.

thTotal propagated error from layer four to the r rule
node at layer three.

thPropagated error from the m rule node of the rule
nodes that share the same j th term node at the zth input
term set at layer two.

thTotal propagated error from layer three to the j term
thnode at the i term set at layer two.

Propagated error from the / h term node at the zth term
thset at layer two to the i input node at layer one.

3-

il

c

CHAPTER (4)

CopRi

CodRi

CoiRi

E ,oAWt)

ej and e2

e\ and e\

err{ and err2

e(kt) and e(kt-t)

e(k t) = ex

e (k t - t) = e2

err (kt) = errx

err (k t - t) = err2

Total propagated error from layer two to the /th input
node at layer one.

Membership degree to fuzzy membership A\.

Learning rate.

Constant that determines the degree of softening and
the accuracy of the approximation of fmin and fmax
functions.

FPCE output membership function centre value for ith
rule.

FDCE output membership function centre value for ith
rule.

FICE output membership function centre value for ith
rule.

Total error at the kth iteration.

Two normalized input error variables of the FPID
controller.

Current and past position errors at link /.

Two input error variables of the FPID controller.

Present and previous time sample error values.

Discrete form of normalized current input error
variables of the FPID controller.

Discrete form of normalized past input error variables
of the FPID controller.

Discrete form of current input error variables of the
FPID controller.

Discrete form of past input error variables of the FPID
controller.

xxvi

fmin

fm a x

f P, f D, and f I

h

hei and he2

hp, and hp2

K p 5 K d ? K i

Knp, Knd, and Kni

K = K P = Ke2 e, e

K u

L

Lp, Ld, and Li

/

M f

[PL, PS, ZE, NS, NL]

T

Two argument softmin function.

Two argument softmax function.

Proportional, Derivative, and Incremental Integral
functions to be implemented using the FPID
controller.

Membership degree.

Two arguments offmin function.

Two arguments offmax function.

Proportional, Derivative and Integral gains of discrete
form PID controller.

Equivalent nonlinear Proportional, Derivative and
Integral gains that can be defined according to input
condition.

Scaling factors corresponding to the two input
variables.

Output scaling factor of the FPID controller.

Distance between the centres of each two consecutive
membership functions of the input universes of the
FPID controller.

Distance between the centres of each two consecutive
membership functions of the Proportional, Derivative
and Integral fuzzy control elements of the FPID
controller.

The total link numbers of the robot.

Membership function.

Term sets of the normalised input variables and
normalised output variables of the FPID controller.

Sampling time.

xxvii

T1 FF
Feedforward controller torque at robot link /.

V1 FB
Feedback controller torque at robot link i.

TM tot
Total torque at robot link i.

Ui Output of the integral element of the FPID controller.

Ui(kt-t) The past output of the integral controller element.

AUj {k t) Incremental value of integral controller element.

Up {kt) , UD {kt) , and Uf {kt) Proportional, Derivative and Integral control actions
of discrete form PID controller.

Upid (kt) Discrete form of the FPID controller total output.

wk
aL

Vector of weight values after the k iteration.

Awk Change in weight vector.

MRi(e O Membership degree of the present error to ith rule.

MRi(e 2) Membership degree of the past error to ith rule.

ft Learning rate.

CHAPTER (5)

D External disturbances acting at the plant inputs.

F Low-pass pre-filter.

R Vectors of reference inputs to the system.

U Vectors of control inputs to the plant.

Y Vectors of the system outputs.

xd Desired Cartesian position vector.

xm Measured Cartesian position vector,

xxviii

Controller equivalent transfer function.

Internal model controller overall disturbance transfer
function.

Existing joint-based controller disturbance transfer
function.

Forward path controller equivalent transfer function.

Feedback path controller equivalent transfer function.

Inverse kinematics neuro-fuzzy network equivalent
transfer function.

Forward kinematics equations equivalent transfer
function.

Plant model.

Plant.

Existing joint-based controller equivalent transfer
function.

Unmodelled dynamics and/or parameters additive
uncertainties of the plant.

Unmodelled dynamics and/or parameters
multiplicative uncertainties of the plant.

Overall input/output transfer function.

Measured joints position vector.

Desired joints position vector.

Existing joint-based controller closed loop
multiplicative sensitivity function.

Internal model controller overall closed loop
multiplicative sensitivity function.

Existing joint-based controller closed loop additive
sensitivity function.

xxix

Internal model controller overall closed loop additive
p sensitivity function.

CHAPTER (6)

A Constant vector.

e (t) Cartesian error vector of robot manipulator

ev (/) Connection-vector error,

g (7) Synchronization error.

/ (x,) Synchronization function.

e Tolerance bandwidth for the synchronization system.

l\(t) and 12 ft) Displacement of the mobile robot two driving wheels.

Rj(t) and R2O) Radii of the desired curves that the mobile robot two
driving wheels follow.

rlm (t) and r2m (t) Reference modification signal for the two cooperating
robots.

S<1 Reference connection-vector traj ectories.

,s(7) Actual connection-vector trajectories.

x. (t) Cartesian coordinates of robot manipulator i.

xf(t) Desired Cartesian position trajectory of robot
manipulator i.

juei(k) and pie2 (k) Membership degree of ej and e2-

jues(k) Membership degree of es.

Hrim(k) and Hr2m(k) Membership degree of rjm and r2m.

XXX

CHAPTER 1

Introduction

The complexity of industrial processes has increased dramatically in the last few

decades. This in turn limits the use of conventional control design techniques because

their success is based mainly upon knowledge of the process mathematical model. In

fact, it is often impossible to obtain exact mathematical models even for the simplest

dynamics processes. This is because most mathematical modelling techniques rely upon

a linearization of the process dynamics around a certain operating point. On the other

hand, experienced operators of an industrial process can efficiently control such a

process to achieve the required performance. These operators know nothing about

process mathematical models or complex control theories. Their strategy when

controlling such a process is mainly based on heuristics which can be expressed as “if

antecedent then consequent” rules. The antecedent and consequent are vague and

involve fuzzy expressions such as faster, small, approximately, large, etc., with which

traditional logical systems cannot deal. In 1968, Lotfi A. Zadeh introduced his

pioneering fuzzy set theory which offers a mathematical framework that can deal with

such vague information. In his subsequent work, [Zadeh, 1973] explained how vague

logical statements can be employed within a computational method to enable inferences

to be derived from vague data. It was realised that this method could be applied to

model and control complex systems [Mamdani, 1974], such as robotic manipulator

systems [Kazemian, 2002].

1

1.1. Motivation

Constructing an efficient rule base is the main problem in the development of fuzzy

logic controllers. Due to difficulties in knowledge acquisition, it often requires great

effort to construct a fuzzy rule base using a heuristic method. This has led to attempts

to extract these rules from numerical observation data. One approach seeks to capture

the operational knowledge of human experts during normal process operation. This

approach records the states of the process under study and the human operator’s control

actions as input and output data pairs and extracts fuzzy control rules from the recorded

data pairs. An alternative approach utilises a fuzzy model of the process. To construct

such a model, the process is stimulated and both the stimulus and its response are

recorded. Fuzzy rules are then extracted from the recorded data. An efficient method

for extracting rules from the recorded data is via the use of machine learning techniques

(MLT). A particularly interesting type of machine learning technique is symbolic

inductive learning, because the models it creates have a structure similar to that

employed in human reasoning (in the form of if-then rules). The generated rules can be

regarded as fuzzy rules. In this way, fuzzy rules can be generated to form the inverse

model of the system and then used as a controller.

Following the pioneering work of Zadeh, many applications of fuzzy control for

industrial processes were presented. There has also been increasing interest in the

application of neural networks (NN) for modelling and control of dynamics systems

[Pham and Liu, 1993; 1995; and 1996]. NN possess interesting and attractive features

such as online learning. A NN can learn a mapping between input-output spaces and

2

form an associative memory that retrieves the appropriate output when presented with

an input. It can also estimate an output when activated with previously unseen inputs.

Subsequent research has explored NN capabilities for function approximation and

adaptive control. Recently, the application of the learning abilities of NN to automate

the realisation of fuzzy logic systems (FLS) has become a very active research area

[Takagi and Hayashi, 1991]. This integration brings the low-level learning and the

computation power of NN to FLS and brings the high-level human-like thinking and

reasoning of FLS to NN. This integration has developed new intelligent systems called

fuzzy neural networks (FNN). FNN provide a new method for the realisation of

intelligent control systems. The ability of such systems to learn or to adapt their control

policy according to its past experience makes them an ideal solution for all those

applications characterised by time-changing dynamics and unstructured operating

conditions.

The use of robots in many industrial applications is becoming more commonplace due

to the necessity to increase productivity and requirement to reduce cost. Robot

manipulators are multi-input multi-output (MIMO) coupled dynamics systems.

Mathematical modelling or mathematical model-based control techniques for such

systems are very complex, and very difficult to be implemented [Appendix A]. With

the help of new model-free techniques such as fuzzy and neuro-fuzzy mechanisms,

modelling and efficient control of such complex systems can be achieved without the

need for tedious mathematical formulation processes. Currently industrial robots are

generally used for tasks that involve one-handed manipulation. Inevitably some

applications, for example handling large, heavy, or awkwardly shaped objects, may

3

require two-handed manipulation. Utilisation of robotics for medical applications is

also an increasing demand, especially in the area of rehabilitation in relation to the

shortage of physiotherapists. A Physiotherapist usually uses both arms to perform

upper-limb rehabilitation. A robotic cell would likewise require two robot arms to

perform the task effectively. In this case, efficient control and coordination techniques

have to be developed.

The use of a robotic cell incorporating intelligent identification and control techniques

for upper-limb motion therapy for patients with neuro-motor impairments is

particularly attractive for the following reasons:

• Patients lack appropriate personalised motion therapy because of the limited

numbers and unavailability of physiotherapists.

• Current commercial rehabilitation robotic systems do not utilize the knowledge,

dexterity and skill of the physiotherapist.

• Current commercial rehabilitation robotic systems are not adaptable for motion

parameters.

• Physiotherapists may be unable to conduct motion therapy for a long period of

time, with very slow speed and high torque requirements in some cases.

• Rehabilitation robotics has achieved little market success probably because research

has resulted in custom-made equipments, which requires strong marketing both

among manufacturers and users.

4

1.2. Research Objectives

The work reported in this thesis aimed to design and develop intelligent neuro-fuzzy

control systems for robot manipulators using machine learning techniques, fuzzy logic

controllers, and fuzzy neural networks in a systematic manner. The main target is to

integrate these techniques to achieve a mathematical-model-free manipulator adaptive

control system capable of adapting its parameters to cope with the variations in the

dynamics characteristics of the load attached to the manipulator. The final objective is

to utilise one or two coordinated robots as a working cell to perform upper-limb

rehabilitation application. The control and coordination systems must be able to drive

the robots to perform the basic actions that a physiotherapist usually carries out in these

situations. In this respect, the specifications of the control system are:

• Efficiently perform both inverse kinematics and inverse dynamics calculations

using neuro-fuzzy techniques from numerical input/output observation data.

• Possess self-learning and adaptive capabilities to achieve the required trajectories

with unspecified loading conditions from the human-arm resistance to motion.

• Effectively coordinate between two robot manipulators to perform upper-limb

rehabilitation within acceptable accuracy.

The overall targets of this research can be summarised as follows:

- To develop intelligent adaptive models that represent both the inverse kinematics

and inverse dynamics of the robot manipulator.

- To develop a virtual dynamics model for the robot manipulator.

5

- To develop intelligent adaptive robotic control techniques.

To develop an efficient synchronisation technique for two robot manipulators.

- To test the developed control and coordination technique on a simplified

experimental test-bench.

To achieve the above targets, several components needed to be designed, developed

and then integrated to form the proposed control system. For this purpose, an inductive

fuzzy learning technique dynafuzz Bigot [2003] is modified and applied for fuzzy rule

generation during the offline structure learning phase. A new differentiable fuzzy

neural network termed dynafuzznn is developed to construct the feedforward robotic

inverse control system. A modified Fuzzy-PID-like incremental feedback controller is

also used as the servo-controller for each link of the robot. A new modified neuro-fuzzy

Cartesian internal model control technique for robotic manipulators is developed to

construct an adaptive Cartesian control of the robot arm. Also, a new simple motion

synchronisation technique is developed to achieve motion coordination between two

robot arms. The proposed control system is applied to a virtual dynamics model of the

Puma 560® industrial robot arm for visual inspection of the proposed strategy. Finally,

a simplified rapid prototype test-bench was constructed to experimentally investigate

the proposed method.

6

1.3. Outline of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2 presents background information on fuzzy logic systems and fuzzy neural

networks and their applications in systems modelling and control of robotic

manipulators. In this chapter, the basic components of FLS are described. Different

techniques for the adaptive tuning of the free parameters of FLS are presented.

Different types of FNN are also discussed. Finally, robot manipulator kinematics,

dynamics, control, and coordination techniques using conventional, intelligent, fuzzy,

neural, and neuro-fuzzy systems are discussed.

Chapter 3 first reviews different classes of existing neuro-fuzzy robot modelling

techniques. Then, it proposes a method for virtual dynamics modelling and data

collection from the motion of the robot arm along random trajectories. Next, it proposes

a modelling technique based upon machine learning for automatic fuzzy rule generation

from observation data. Then, it proposes the use of these rules in a full differentiable

fuzzy neural network termed dynafuzznn to achieve online adaptation of the model.

Finally, to investigate the proposed structure performance, the results for robot inverse

kinematics and inverse dynamics FNN for Puma 560® are compared with the targeted

outputs at the end of the chapter.

Chapter 4 first reviews different types of existing joint-based robot control techniques.

Then, it introduces the structure of the proposed controller. The inverse dynamics FNN

developed in chapter (3) is used as the feedforward controller to compensate for the

7

dynamics interaction in the robot structure in addition to a Fuzzy-PID-like incremental

servo-controller for each robot link. Feedback-error learning scheme is used to provide

an online adaptation mechanism for the proposed controller. The control system is used

to drive the virtual model of the Puma 560® robot to follow certain joint trajectories.

Finally, the obtained results compared with conventional-PID link controller’s results

are presented.

Chapter 5 first reviews different classes of existing manipulators Cartesian control

techniques. Then, it introduces a brief analysis of conventional internal model control

structures. Furthermore, it introduces a new modified neuro-fuzzy Cartesian internal

model control technique for robotic manipulators. Next, it presents the simulation

results when the control structure is used to drive the virtual model of the Puma 560®

robot to follow Cartesian end-effector trajectories. Then, it discusses the idea of upper-

limb rehabilitation using robotic manipulators. Finally, it introduces the obtained results

when the proposed joint-based and Cartesian internal model controllers are used to

control one robot manipulator while performing upper-limb rehabilitation.

Chapter 6 first reviews different classes of existing robot position coordination

techniques. Then, it explains the synchronization function notation. Furthermore, it

introduces the structure of the proposed coordination scheme for two position-

controlled robot manipulators. The coordination scheme is based on maintaining certain

kinematic relationships between the robot manipulators using motion synchronisation.

Finally, the chapter presents a test for the proposed control and position coordination

technique using a simplified rapid-prototype test-bench for the upper-limb

8

rehabilitation cell formed by two 2-link planar robots linked to a simplified upper-limb

model. The experimental results for the actual trajectories are presented and compared

with the targeted trajectories at the end of the chapter.

Finally, Chapter 7 summarises the conclusions and contributions of the research, and

gives suggestions for further investigation.

9

CHAPTER 2

Overview of Fuzzy and Neuro-Fuzzy Techniques

The traditional approach to formal modelling, reasoning and computation is mostly

deterministic and precise rather than uncertain or vague. In conventional logic, for

instance, a statement can be true or false and nothing in between. In set theory, an

element can either belong to a set or not, and in optimisation, a solution is either

feasible or not. Real situations, on the other hand, are very often uncertain or vague in a

number of ways. One familiar type of uncertainty is that, due to lack of information, the

future state of the system might not be known completely. This category is called

stochastic uncertainty, and has been treated appropriately in theory and statistics.

Despite the ambiguity of the system state, in stochastic uncertainty it is assumed that

the meaning of statements and events is clearly defined. There is however another type

of vagueness concerning the description of the semantic meaning of events, phenomena

or statements themselves, which can be called fuzziness. Fuzziness is found in many

areas of daily life, particularly those in which human judgement, evaluation and

decision are relevant. For example, there are fuzzy terms that are well-known in science

and engineering such as linear approximation, small neighbourhood, and ill-

conditioned matrix [Pasino and Yurkovich, 1998].

Applications of formal methods to describe real world phenomena may be limited to

simple systems or at least viewed as an approximation of more complex situations. In

10

analytical modelling, for instance, based on classical set theory, there are two

difficulties:

- The first is due to the excessive complexity of the situation being modelled so that

either it is not possible to formulate the mathematical model, or the model is too

complicated to be implemented in practice.

The second inconvenience consists of the indeterminacy caused by the inability to

differentiate events in real situations exactly and hence, inability to define system

behaviour in a precise form.

Real situations are very often not “crisp” and they cannot be described precisely. An

underlying philosophy of the theory of fuzzy sets is to provide a strict mathematical

framework, where imprecise conceptual phenomena in modelling, decision-making,

and control may be precisely and rigorously studied. In the particular field of

application concerned with systems modelling and control, there are many difficulties

that are commonly experienced by practicing engineers. For instance, it is generally

difficult to accurately model a complex process using a mathematical model.

Furthermore, it is common knowledge that the performance of some processes can be

considerably improved through control actions (tuning actions in particular) provided

by an experienced and skilled operator. Although some of these actions have been

recently formulated using conventional control algorithms, it seems that the key

elements in human thinking are not numbers, but labels of not crisp but fuzzy sets, that

is, classes of objects in which transition from membership to non-membership is

gradual rather than abrupt.

11

The fuzzy methodology of fuzzy-logic modelling and control, based on fuzzy set theory

and fuzzy logic, appears promising when the phenomena are too complex for analysis

by conventional quantitative techniques, and when the available sources of information

are interpreted qualitatively, inexactly or uncertainly. Thus, fuzzy-logic modelling and

control may be viewed as a step towards a rapprochement between the conventional,

precise analytical approach and human-like decision making.

Artificial Neural Networks (NN) are made up of simple, highly interconnected

processing elements called neurons. Each of these neurons performs two main

functions: aggregation of its inputs from other neurons or the external environment and

generation of an output from the aggregated inputs. The output from a neuron is fed to

other neurons to which it is connected via weighted links. Through this simple

structure, NN have been shown to be able to approximate most continuous functions to

any degree of accuracy, by the choice of an appropriate neuron structure, activation

functions, and learning algorithm [Tsoukalas and Uhrig, 1997].

Fuzzy Logic Systems (FLS) and Neural Networks (NN) have played an important role

in the development of intelligent control systems. FLS have the ability to deal with

system uncertainty using their logically oriented reasoning techniques. NN handle

system complexity by employing their particular structure and learning methods. A

promising approach to obtaining the benefits of both NN and FLS is to combine them

into an integrated system termed a Fuzzy Neural Network (FNN) or neuro-fuzzy

system. This integration brings the low-level learning and computation powers of NNs

to FLS and the high-level human-like thinking and reasoning of FLS to NNs. Many

12

researchers have studied different techniques to employ FLS and FNN together with

control theory to build high performance controllers for complex systems that involve

imprecise data and nonlinear dynamics such as for the case of robot manipulators.

This chapter presents background information on FLS and FNN and their applications

in robotic systems modelling and control. The basic components of FLS and their

design parameters are described. Furthermore, different techniques for the adaptive

tuning of FLS are discussed. Various types of FNN are presented based on different

structures and learning algorithms. Finally, applications of FLS and FNN in robotic

systems modelling and control are outlined.

The remainder of this chapter is organised as follows. Section 2.1 reviews the basic

structure and design elements of FLS. Section 2.2 examines the basic structure and

design elements of FNN. Section 2.3 describes applications of FLS and FNN in control.

Section 2.4 describes applications of FLS and FNN in robots modelling. Section 2.5

describes the applications of FLS and FNN in robots control. Section 2.6 describes

applications of FLS and FNN in robots coordination. Section 2.7 gives a summary of

the chapter.

2.1. FLS Basic Structure and Design Elements

The basic structure of a FLS consists of four main components [Lee, 1990a]. These are

the fuzzification process, knowledge base, decision-making logic, and defuzzification

13

process as shown in figure (2.1). In the following sections, the function and design

parameters of each of these components are presented.

Fuzzification
H

- Knowledge-base J —

>t

Decision-making | | Defuzzification

Figure (2.1). Basic configuration of a fuzzy logic system.

2.1.1. Fuzzification Process

Fuzzification is related to the vagueness and imprecision of natural languages. It is a

mapping that transforms measurements into a linguistic value, and hence it could be

defined as a mapping from an observed measurement space into a subjective feature

space. In fuzzy control applications, the observed data is usually crisp. Since the

processed data in FLS are based on fuzzy sets, fuzzification is necessary during the

early stages to transform the observed crisp data into fuzzy sets. A commonly used

fuzzification approach is to transform this crisp data into fuzzy singletons (fuzzy sets

comprising a single element) within a certain universe of discourse. The transformation

process begins with the normalisation or scaling of the crisp measurements to a certain

bounded range say [-1, +1] using suitable scaling factors. The purpose of the

normalisation process is to map the crisp input data into a universe of discourse with a

14

finite range. Subsequently, the fuzzification interface transforms the normalised crisp

input x0 into a fuzzy set A in universe X with the membership function \x a (x 0) equal to

a value between zero and one according to the location of x0 with respect to the centre

of the fuzzy set A in the universe of discourse. In general, the role of the fuzzification

interface can be summarised as follows [Keller et. al., 1992]:

a) It observes the crisp input values to a FLS.

b) It performs a scale transformation (normalisation) from the measurement space

into the corresponding universe of discourse.

c) It performs the fuzzification function that converts the scaled input data into

fuzzy sets.

2.1.2. Knowledge Base

The knowledge base [Lee, 1990a] comprises knowledge concerning the application

field and the desired control or modelling objectives. It consists of a database and a

linguistic (fuzzy) rule base in the form of i f antecedent then consequent. The database

provides necessary definitions, which are employed to define linguistic rules and data

manipulation in FLS.

2.I.2.I. Data Base

The definitions associated with the database are employed to characterise fuzzy rules

and data manipulation in FLS. These definitions are subjective in nature, which reflects

engineering experience and judgement. These definitions comprise the

15

normalisation/discretisation of a fuzzy universe of discourse, the partition of a fuzzy

universe of discourse and the definition of membership functions associated with fuzzy

sets. In what follows, important definitions relating to the construction of the database

in FLS are discussed.

a. Normalisation/Discretisation o f a fuzzy universe o f discourse

The normalisation of a universe of discourse involves a priori knowledge of the

input/output universe of measurements. The normalisation process is a scale

transformation of the input/output universe of measurements into a normalised closed

interval universe. For example, if the measured input data ranges from -8.0 to +4.5, the

universe of the input measurements can be normalised by a scale transformation into a

closed interval universe [-1, +1].

Discretisation of a universe of discourse is defined as the quantisation of this universe

into a certain number of segments (quantisation levels). Each segment is labelled as a

generic element of a discrete universe. A fuzzy set is then defined by assigning a grade

of membership to each generic element of the universe.

b. Fuzzy partition o f the input/output universe

A linguistic variable in the antecedent or consequent of a fuzzy rule forms a fuzzy input

or output feature space respectively. The input or the output feature space of each input

or output linguistic variable is defined over a certain universe of discourse. Each feature

space is internally partitioned into a number of clusters or fuzzy sets that define the

16

term set of the input or output linguistic variables. Each fuzzy set is defined by a certain

linguistic term, and usually has a meaning such as negative big (NB), negative small

(NS), positive big (PB), etc. The number of partitions of the input and output feature

spaces determines the maximum number of fuzzy rules that can be generated. Therefore

the selection of the number of partitions influences the generated number of rules for

FLS. In most applications of FLS, experience and engineering judgement are employed

to choose the number of partitions of the fuzzy feature space. However, some

applications follow heuristic methods for feature space partitioning as in [Abe and Lan,

1995]. Other applications employ a deterministic method, for example the Fuzzy C-

Mean (FCM) method was employed to partition the fuzzy feature space in [Sugeno and

Yasukawa, 1993; Wang and Langari, 1996; and Emami et. al., 1999].

c. Definition o f the membership functions offuzzy sets

There are two commonly used methods which define the membership functions of

fuzzy sets depending on whether the universe of discourse is discrete or continuous

[Lee, 1990b]. The first method is a numerical definition where the grade of membership

in a fuzzy set is represented as a vector of numbers. The dimension of this vector

depends on the number of discrete levels in the feature space. In this case, the

membership function of each fuzzy set can be written as follows:

pA (x) = [pA (x0) / x0 + pA (xj) / xi+ + pA (x„) / xn] (2.1)

where n is the number of supports of the discrete universe of discourse, xn is the n1*1

support of the discrete universe of discourse, and pA (xn) is the membership grade of the

17

nth support in fuzzy set A as shown in figure(2.2a). The second method is a functional

definition, which expresses the membership function of a fuzzy set in a functional form,

typically a Gaussian, right/left sigmoidal, right/left saturation, trapezoid-shaped, or

triangle-shaped function (figures (2.2b, c)). The functional definition of the Gaussian

membership function, for example can be written as:

H a (x „) = exp.[-(x0 - u)2 / cr2] (2.2)

where u and c j are respectively, the centre (or mean) and the width (or variance) of the

Gaussian function as shown in figures (2.2b).

1

1
Figure (2.2a). Discretised membership function.

1

Figure (2.2b). Gaussian membership function.

18

a c b

Figure (2.2c). Triangular membership function.

2.I.2.2. Rule Base

A FLS is characterised by a set of linguistic statements based on expert knowledge. The

expert knowledge is usually in the form of i f - then rules, which are easily implemented

by conventional fuzzy statements in fuzzy logic. The collection of fuzzy rules that are

expressed as fuzzy conditional statements forms the rule set or the rule base of a FLS.

In this section, the following factors which influence the design and implementation of

a fuzzy rule base are discussed: the choice of the FLS input/output variables, the

approaches employed to generate fuzzy rules, and the functional implementation of

fuzzy rules.

2.I.2.2.I. Choice of the FLS Input/output Variables

It is important to choose suitable input and output variables for FLS, because they

influence the number of rules generated and the final performance of the system. In

many applications of FLS, the selection of input/output variables relies on experience

and control engineering. In some other applications, the selection is based on a

deterministic method [Sugeno and Yasukawa, 1993]. In such applications the employed

FLS is tested using only one of the available input variables at a time. A function of the

19

FLS output termed the Regularity Criterion (RC) is calculated for each variable. The

variable that minimises the calculated function is chosen to be the first effective

variable of the FLS. The employed FLS is tested further using the selected variable and

only one of the remaining variables at each step. The second variable that minimises the

criterion when employed in addition to the first selected variable is chosen to be the

second effective variable. This process is continued to obtain the maximum number of

effective variables, identified as when the value of RC starts to increase.

2.1.2.2.2. Derivation of the Fuzzy Rules

There are two common approaches to deriving fuzzy rules. These two approaches are

not mutually exclusive, and it seems likely that a combination of them is necessary to

construct an effective method of deriving fuzzy rules. The first approach is to generate

fuzzy rules based on expert experience and control engineering knowledge. This

approach is mainly suitable for generating fuzzy rules for diagnosis systems including

fault diagnosis and medical diagnosis systems. It is also suitable for generating fuzzy

control rules for Fuzzy Logic Controllers (FLC). This approach is a heuristic approach,

in which the fuzzy rules are obtained mainly from human experience. A human expert

has to interpret his experience as linguistic relations between the input and output

variables of the FLS. This approach can be successful if the human expert can perform

this interpretation. However, if the human expert cannot express his experience

linguistically, then the second approach, based on the observed input/output data, can

be employed. This approach can be used to generate fuzzy rules for FLC and for fuzzy

process models. In the case of FLC, the fuzzy rules can be generated based on

20

observations of the human expert's control actions in terms of input/output data. In the

case of fuzzy process models, the fuzzy rules are generated based on the process

input/output data [Takagi and Sugeno, 1985; Wang and Mendel, 1992a and 1992b].

With this method, the input/output universes are partitioned into fuzzy regions, the size

and shape of which are determined by experience. Then, based on the given

input/output numerical data and the input/output fuzzy regions, the fuzzy rules are

generated. Finally, a Fuzzy Associative Memory (FAM) bank is constructed using rules

generated from the numerical data and rules obtained from expert experience as well. A

disadvantage of this method is that the number of generated rules increases

dramatically as the number of input variable increases.

Modem techniques based on data mining algorithms can also help in generating mles

from numerical observation data. These algorithms are based on a range of

technologies, from statistics to machine learning techniques, and include neural

networks, genetic algorithms, inductive learning, association mles, etc. These

algorithms allow the creation of different types of models that describe the patterns

found in the data. The obtained model can be used as a predictive model.

One interesting type of data mining techniques, namely inductive learning algorithm, is

very important, as its model structure (in the form of if-then mles) is similar to that

employed during human reasoning. Because of this, inductive learning has become

popular for classification problems. Consequently in the work of [Srinivasan et al.,

1993], the ID3 inductive learning algorithm was employed to reduce the number of

mles generated utilising the method proposed in [Wang and Mendel, 1992a and 1992b].

21

In these last examples, structure design was performed based on experience. In [Sugeno

and Yasukawa, 1993], in contrast, structure identification was performed using

deterministic methods. The number of necessary input/output variables was decided

using the so-called Regularity Criterion (RC) and the number of clusters of fuzzy

input/output variables was determined using the clustering technique known as Fuzzy

C-Mean clustering (FCM). In addition, a performance index was employed to tune the

free parameters of the membership functions (width and centre in the case of a

Gaussian membership function). Whereas in the methods employed by Wang and

Mendel, Srinivasan et al., and Sugeno and Yasukawa, the number of fuzzy regions is

fixed, a method to generate fuzzy rules with variable fuzzy regions was presented in

[Abe and Lan, 1995]. With this method, the fuzzy rules are extracted directly from

numerical data by recursively resolving overlaps between each pair of classes. The

numerical data employed to generate the fuzzy rules sometimes includes a large amount

of noise and/or involuntary mistakes made by the operator. To address this, an

intermediate Auto-Regressive-with-Moving-Average (ARMA) model was generated in

[Zapata et al., 1999] as an alternative to directly extracting fuzzy rules from raw

experimental data. This ARMA model was then employed to generate the required

linguistic fuzzy model. Another rule generation method designed to deal with noisy

data was introduced in [Li, 1999]. With this method, a confidence degree is given to

each rule according to the frequency that it is generated during the presentation of the

data. Based on this confidence degree, rules that are generated infrequently are

considered less important than rules generated more often.

22

Using fuzzy logic theory in combination with clustering techniques such as C-mean

clustering, fuzzy rule induction is proposed in order to handle noisy continuous outputs

and inputs in [Bigot, 2003]. The presented algorithm allows the automatic creation of

membership functions and produces accurate and compact fuzzy sets.

2.I.2.2.3. Functional Implementation of Fuzzy Rules

A rule base of a FLS consists of a set of fuzzy rules. For example, consider the

following rules:

R i: IF x is Ai and y is Bi THEN z is Ci

R2 : IF x is A2 and y is B2 THEN z is C2

R n: IF x is An and y is B n THEN z is Cn

where x, y and z are linguistic variables and A i , B j and C j are linguistic terms (fuzzy

sets) of the linguistic variables x, y and z in the universes of discourse U, V and W

respectively, with i = 1, 2,...., n. The ith fuzzy rule is implemented by a fuzzy

implication (fuzzy relation) R j. This fuzzy relation is a fuzzy set in UxVxW and is

defined for all u e U, v e V and w e W as follows:

R i = {[(u,v,w), pRi (u,v,w)] | (u,v,w)e (UxVxW)} (2.3)

23

and its membership function is given by:

HRi (u , V, w) = n (Ai a„dRt _> c ,) (u , V, w) = [nA i(u) and M-b.(v)] -> | i c , (w) (2.4)

where “ A i and B j ” is a fuzzy set in the Cartesian product space UxV which can be

defined based on the interpretation of the sentence connective "and" and R j = (A j and

B j) —* C j is a fuzzy implication (relation) in the Cartesian product space UxVxW which

can be defined based on the interpretation of the sentence connective "and ' and the

definition of the fuzzy implication function-*-. Since a fuzzy rule represents a fuzzy

relation, the overall behaviour of a FLS can be characterised by a single fuzzy relation

that is the combination of the fuzzy relations in the rule base. This combination can be

defined based on the definition of the sentence connective "also". In the following, the

fuzzy implication function —> and the sentence connectives "and" and "also" are

defined.

Many implication functions have been proposed. In general, they can be classified into

two categories. The first category is the fuzzy conjunction that is defined for all u e U

and v e V as follows:

A —» B = J n A(u)* n B(v)/(u ,v) (2.5)
U x V

where A and B are fuzzy sets in the universes of discourse U and V respectively, A - *

B is a fuzzy implication in the Cartesian product space UxV and * is an operator that

24

represents a triangular norm [Keller et al., 1992]. The second category is the fuzzy

disjunction that is defined for all u e U and v e V as follows:

A -> B = j n A(u)+ |xB(v)/(u ,v) (2 .6)

where A and B are fuzzy sets in the universes of discourse U and V respectively, A —>

B is a fuzzy implication in the Cartesian product space UxV and + is an operator that

represents a triangular co-norm [Keller et al., 1992]. Based on these definitions, many

fuzzy implication functions may be generated using different triangular norms and co

norms. In general, using the fuzzy conjunction along with the intersection and algebraic

product triangular norms, the two commonly used fuzzy implication functions can be

written as follows:

where p A (u) a p B(v) = min[|LiA(u),|j,B(v)] is the intersection triangular norm.

A —► B = J h a (u) a h b (v) / (u , v) (2.7)
UxV

(2 .8)
UXV

where pA (u) • p B(v) = p A (u)p B (v) is the algebraic product triangular norm.

25

In most existing FLS, the sentence connective "and" is usually implemented as a fuzzy

conjunction in a Cartesian product space [Lee, 1990b]. As an illustration, for two fuzzy

sets A and B in the universes of discourse U and V respectively, “A and B” is defined

by a fuzzy set AxB in the Cartesian product space UxV. If the sentence connective

"and" is interpreted using the intersection triangular norm, the membership function of

this fuzzy set is expressed as:

^ A,B(U x V) = m in [^ A(u) , ^ B(v)] (2.9)

Alternatively, if the sentence connective "and" is interpreted using the algebraic

product triangular norm, the membership function of this fuzzy set is expressed as

follows:

^ a*b(U xV) = M u) W v) (2-10>

On the other hand, the interpretation of the sentence connective "also" is based on the

fact that different orders of fuzzy rules in the rule base should not influence the overall

behaviour of a FLS. This requires that the sentence connective "also" have the

properties of commutatively and associativity. It has been reported in [Lee, 1990b] that

the operators in triangular norms and co-norms (intersection, algebraic product,

bounded product, union, algebraic sum, bounded sum, etc.) possess these properties and

thus qualify as candidates for the interpretation of the connective "also". However,

investigations in [Lee, 1990b], concerning FLS characteristics using different

26

interpretations of triangular norms and co-norms concluded that the interpretation of the

connective ’’also” as the union operator Y yielded the best results. The union operator

Y is a triangular co-norm defined using the max function [Lee, 1990b].

2.1.3. Decision Making Logic

FLS may be regarded as a means of emulating a skilled human operator through an

inference engine. More generally, the FLS inference engine may be viewed as another

step towards modelling the human decision making process within the conceptual

framework of fuzzy logic and approximate reasoning. The function of the FLS

inference engine is to infer recommended solutions from fuzzy rules relevant to given

inputs based on the employed inference strategy and inference mechanism.

2.1.3.1. FLS Inference Strategies

Generally, there are two important inference strategies in approximate reasoning. They

are generalised modus ponens (GMP) and generalised modus tollens (GMT).

Specifically, consider the following rule:

IF x is A THEN y is B

where x and y are linguistic variables and A and B are linguistic terms of the linguistic

variables x and y in the universes of discourse U and V respectively. The GMP strategy

can be defined as "given x is A' and the fuzzy relation R of the fuzzy rule then infer y is

B' ". This inference strategy is a data-driven or forward chaining strategy, which is

27

particularly useful in FLC. On the other hand the GMT strategy is defined as "given y

is B' and the fuzzy relation R of the fuzzy rule then infer x is A' This inference

strategy is a goal-driven or backward chaining strategy, which is commonly used in

expert fault diagnosis systems.

2.1.3.2. FLS Inference Mechanisms

Consider the rule base of Subsection 2.1.2.2. Given x is A' and y is B', based on the

GMP inference strategy, the role of the inference engine is to infer an output z = C'. In

general, the compositional rule of inference [Zadeh, 1973] is employed to deduce the

resultant output fuzzy set C' in the universe W as follows:

C' = (A', B') o R = {(w, nc ,(w)) |w s w} (2.11)

And its membership function is given by:

K c (w) = (b a ' (u W (w) W r (u > v , w) (2 . 1 2)

where R is the fuzzy relation defined in Equation (2.3), and p R(u, v, w) is the

membership function of the fuzzy relation defined in Equation (2.4) using the union

interpretation of the connective "also" and o denotes a compositional operator.

In general, a compositional operator may be expressed as the sup-star composition

where star represents an operator e.g. min, product, etc. In applications of FLS, the sup-

28

min and sup-product operators are the most frequently adopted compositional operators

[Lee, 1990a].

However, the FLS inference in Equation (2.11) can be expressed in different forms

using different implication functions, different interpretations of the connectives "and"

and "also" and different compositional operators. For example, in the case of FLC, if

the fuzzified inputs are fuzzy singletons, namely A' = u0 and B' = v0 and if the union

interpretation of the connective "also" is employed, four commonly used inference

mechanisms can be expressed. The first inference mechanism is achieved using the min

interpretation of the connective "and" and the min implication function and can be

expressed as follows:

n n

Cl = Y pAi(Uo) ApBj(v0)ApCi(w) = Y oiiA a pCj(w) (2.13)
/ = i / = i

The second inference mechanism is achieved using the min interpretation of the

connective "and" and the product implication function and can be expressed as follows:

n n

C2 = Y P'Ai(Uo) A pBi(vo) * pCj(w) = Y 0CiA • pCi(w) (2.14)
/ = 1 7=1

where a A = p A j (u 0) a pBj(v0) is the ith rule firing strength when using the min

interpretation of the connective "and".

29

The third inference mechanism is achieved using the algebraic product interpretation of

the connective "and" and the min implication function and can be expressed as follows:

n n

C 3 = Y n A j (U o) • n B j (v o) a n C i (w) = Y a * a (i C j (w) (2.15)
/ = 1

The fourth inference mechanism is achieved using the algebraic product interpretation

of the connective "and" and the product implication function and can be expressed as

follows:

where a* = p A j(U o) • p B j (v 0) is the ith rule firing strength when using the algebraic

product interpretation of the connective "and".

2.1.4. Defuzzification Strategies

Most practical control applications require crisp control actions to drive the controlled

process. Moreover, the output of most modelling and prediction systems has to be crisp.

Defuzzification is the mapping from the linguistic fuzzy output defined over an output

universe into a crisp output space [Grzegorzewski, 2001]. There are three commonly

used defuzzification strategies. The first strategy is the maximum criterion. The max

criterion produces the point w0 in the output universe W that has the maximum degree

n n

C 4 = Y p A i(U o) • p B i (v o) • p C i (w) = Y a r p Q (w) (2.16)

30

of membership in the output fuzzy set max fi(w) = p.(w0) • A problem arises with this
weW

method when more than one element of W possesses this maximal value and thus w0 is

not uniquely determined. The second strategy is the Mean of Maxima (MOM). If there

is more than one element in the output universe W possess the maximal membership

value, then the MOM method produces the average value of the maxima. MOM method

does not consider rules fired below the maximum level [Saade, 1996]. The third and

most commonly used strategy is the Centre of Area (COA) strategy. The COA method

attempts to correct the drawback of MOM by considering rules that may be fired below

the maximum level. COA generates the centre of gravity w0 of the possibility

distribution of a control action as follows:

n
I H (w j) .W j

W „= — n -------------- (2 .1 7)

Z K w j)
. j=l

where n is the number of quantisation levels of a universe W, Wj is the point in the j*

quantisation level in a universe W at which p(w) achieves its maximum value, and

p (w j) is the inference membership degree of the output membership function p(w).

[Runkler, 1997] discusses in more details the advantages and disadvantages of MOM

and COA in terms of their static and dynamic properties.

2.1.5. Models of FLS

In general, several models of FLS have been reported in the literature. These models

can be distinguished because they employ different types of consequents and

antecedents in the FLS rule base, different type of membership functions and different

31

type of inference mechanisms. The two most frequently used models are Mamdani's

model [Lee, 1990b], and the TS-model [Takagi and Sugeno, 1985]. Mamdani's model

employs linguistic terms in both the antecedents and the consequents of its rule base

and adopt the min operation as the fuzzy implication function. The inference

mechanism of this model employs the sup-star compositional rule of inference to infer

the resultant output fuzzy set. The TS-model employs linguistic terms to represent the

antecedents of the rules and uses a linear function of its input linguistic variables to

represent the consequents. In this model, the rule base contains rules of the following

form:

R i : IF x is Aj and y is Bj THEN z = fj (x, y)

where x and y are linguistic variables, Aj and Bj are linguistic terms of the linguistic

variables x and y in the universes of discourse U and V respectively, with i = l,2,....,n

and fj (x, y) is a linear function of the linguistic variables x and y. Given the crisp inputs

x0, y0, the crisp output z0 of this model can be written as follows:

n n

Zo = (X ccifi (X o , y o) / (I a j) (2.18)
(=1 ;'=1

where a ; = p A j (x 0) - p B j (y 0) is the ith rule firing strength when the algebraic product

interpretation of the connective "and" is used, or a j = p A j (x 0) a p B j (y 0) is the ith rule

firing strength when the min interpretation of the connective "and" is used.

32

2.2. Fuzzy Neural Networks (FNN)

NN and FLS are both numerical model-free estimators for dynamic systems. They

share a common ability to deal with difficulties arising from uncertainty, imprecision,

and noise in the natural environment. Both systems and their techniques have been

successfully applied to various areas [Efe and Kaynak, 1999]. A promising approach to

obtain the benefits of both NN and FLS is to combine them into an integrated system.

The low-level learning and computation power of NN can enhance FLS, and the high-

level human-like thinking and reasoning of FLS can improve NN. Several approaches

have been presented for combining NN and FLS into so-called Fuzzy Neural Networks

(FNN). These approaches can be categorised into three commonly used classes

according to the neural network structure. These are the Feedforward Fuzzy Neural

Network (FFNN), Recurrent Fuzzy Neural Network (RFNN), and the Self-Organising

Fuzzy Neural Network (SOFNN). Each of these classes can be categorised into a

number of sub-classes according to the employed fuzzy model, learning algorithm,

learning technique, and type of processed data. In the following, background

information is provided on the different types of fuzzy neural networks [Choi et. al.,

1992; Leeet. al., 1993].

2.2.1. Feedforward Fuzzy Neural Networks (FFNN)

Several types of FFNN are described in the current literature, according to the fuzzy

model and learning techniques employed. The two common fuzzy models that can be

integrated within a FNN structure to form a FFNN are the Mamdani-model [Lee,

1990b] and the TS-model [Takagi and Sugeno, 1985]. There are two learning

33

techniques that can be employed for both of these models, namely supervised learning

and reinforcement learning. In the following, some examples of FFNN that employ the

two fuzzy models and these two learning techniques are described.

2.2.1.1. Mamdani-Model Based FFNN

Several examples of Mamdani-model based FFNN have been presented. For example,

in [Lin and Lee, 1991 and 1992], a FFNN structure consisting of five layers was

employed to represent a FLC as shown in figure (2.3). The inputs and outputs of this

FFNN are numerical crisp inputs and outputs. The first layer is an input layer that

simply transmits the input crisp values of the fuzzy variables to the second layer, which

is the input term nodes layer. The output function of each node in the second layer is

the membership degree corresponding to one linguistic term in the term set which

describes each fuzzy variable. For example, a Gaussian function can be written as

follows:

where f is the net input to the node, a is the node activation function, M-* is the
Xi

membership function of the j th term in the term set describing the ith fuzzy variable, m y,

and ay are respectively the corresponding centre (or mean) and the width (or variance)

of the Gaussian function, and uf is the input to the second layer node corresponding to

the ith fuzzy variable (the superscript "2" corresponds to the layer number).

34

Layer 1
Input nodes

Figure (2.3). Structure of Mamdani-model based FFNN.

Layer 5
Output nodes
(defuzzification)

Layer 4
Output term nodes

Layer 3
Rule nodes
(Inference)

Layer 2
Input term nodes
(Fuzzification)

Hence, the link weight in layer two (wjj) can be interpreted as my, which can be

adaptively tuned through learning. The nodes in the third layer are rule nodes, each of

which represents the antecedent of one rule in the rule base. Therefore, the nodes of the

third layer are employed to perform precondition matching of fuzzy rules. Hence, the

rule nodes perform the fuzzy min function as follows:

= m i n (Up U 2 > >Up) a n d a == f (2 .2 0)

35

Therefore, the link weights of this layer are set to unity. The nodes of the fourth layer

integrate the output fuzzy sets of the fired rules which have the same consequents using

the bounded sum triangular co-norm as follows:

f = Z u f and a = min(l , f) (2 .21)
i=l

Therefore, the link weights of the fourth layer are also set to unity. The fifth layer nodes

and the weights attached to them act as a defuzzifier. If my and ay are respectively the

centres and widths of the output fuzzy variable linguistic terms, then the following

function is employed to approximate the COA defuzzification method:

tuned through learning. Based on the above network structure, a hybrid learning

algorithm is developed. The first learning phase is self-organised learning to obtain the

network initial structure. The second learning phase is supervised learning to change

the network adjustable weights using the Back-propagation (BP) learning algorithm.

The structure and the fuzzy model that were employed in this network were as

described in [Lin and Lu, 1995]. The advantage of using a Mamdani-model based

FFNN is that the rule base is in the form of linguistic rules with linguistic antecedents

as well as linguistic consequents, so that it is understandable by human users.

f = Z wy uf = £ (my ay)uf and a = (2 .22)

where the ith link weight in layer five (wjjjl is given by my ay, which can be adaptively

36

Moreover, the rule base can be constructed with numerical data and/or linguistic

information from human experts. However, a disadvantage of this model is that it does

not allow easy mathematical analysis due to the logical nature of its inference

functions, e.g. min/max functions. Moreover, all the examples just reviewed employ BP

as a learning algorithm, however the differentiation results of the algorithm are not

accurate due to the non-differentiable min/max functions. Furthermore, [Estevez and

Nakano, 1995] introduced an alternative for the logic-max and logic-min functions in

the form of a differentiable function that could approximate either of these two

functions with proper selection of parameters. Later, [Shankir, 2001] introduced both

the softmin and softmax functions for use in the Mamdani-model based feedforward

fuzzy neural networks as a direct fuzzy logic complement to each other.

2.2.I.2. TS-Model Based FFNN

Similarly, several TS-model based FFNN have been reported. For example, in [Jang,

1992 and 1993], a FFNN termed Adaptive Network-Based Fuzzy Inference System

(ANFIS) was designed to represent a FLC as shown in figure (2.4). A TS fuzzy model

was employed in ANFIS that can be written as follows:

IF xi is Aj and X2 is Bj THEN y is pj Xj + q, X2 + rj

where Aj and Bj are the fuzzy subsets describing the fuzzy variables x\ and x2

respectively, [p j ,qi and rj] are the parameter set of the consequent linear equation.

ANFIS is also a five-layer FFNN. In layer one, every node has a node representing the

linguistic input term nodes.

37

Layer 5
Final output node
(Defuzzification)

Layer 4
Rule output nodes

Layer 3
Rule ratio nodes

Layer 2
Rule nodes
(Inference)

Layer 1
Input term nodes
(Fuzzification)

X i x2 xn

Figure (2.4). Structure of TS-model based FFNN.

In layer two, the number of nodes is equal to the total number of rules. The output of

each node represents the firing strength of a rule. Normally, product triangular norm is

used in this layer. In layer three, the i111 node calculates the ratio of the firing strength of

the ith rule to the sum of the firing strength of all fired rules. In layer four the output of

each rule is computed, where the ith node has a node function:

Of = w„(pixj + r i) (2.23)

38

• tVi •where wn is the output of layer three and [pi and rj] is the i node parameter set. Finally,

every node in layer five sums all the incoming signals so that a weighted sum

defuzzification technique is performed. The parameter sets of the FLC antecedents and

consequents are tuned or learned using the BP learning algorithm. In [Jang, 1992], the

same FFNN configuration was employed but the learning algorithm was a hybrid

algorithm. This learning algorithm combined both the BP and the least-square

estimation algorithm. In [Yaochu et al., 1995], two interconnected NN were employed

to represent a TS-model based FLC. One network represents the antecedent part and the

other represents the consequent linear equation. The two NN are then connected

through n or product neurons. The BP learning algorithm was employed for learning

the parameters of the consequents and antecedents. Using a TS-model based FFNN has

the advantage that it allows a relatively easy mathematical design and stability analysis

[Wang and Langari, 1996]. Also, it allows a straight forward application of powerful

learning algorithms such as BP due to its differentiable inference functions. On the

other hand, a disadvantage of this model is that the interpretation of the fuzzy linear

rules is difficult compared to that for linguistic rules. Also, the rule base of this model

can only be constructed using only numerical input/output data and it is not possible to

incorporate linguistic information from human experts to construct such a model.

2.2.2. Recurrent Fuzzy Neural Networks (RFNN)

RFNN can be considered a feedforward fuzzy neural network with some feedback

connections from some neurons output to other neurons input in the same layer or in

previous layers. In some cases, this feedback is made between the same neuron output

39

and inputs. There are many RFNN described in the current literature with different

feedback connections structure, almost all of them belong to Mamdani-model fuzzy

neural network while a few reported to be of TS-model type [Ballini et. al., 2001; Jeen-

Shing and Lee, 2003].

2.2.3. Self-Organising Fuzzy Neural Networks (SOFNN)

Despite the successful applications of FFNN and RFNN in modelling and control, they

suffer from a main problem with regard to the connectionist structure. The structure of

the FFNN cannot be dynamically changed, it is fixed and reflects the designer’s

experience. If the structure needs to be changed due to poor performance, the designer

has to repartition the input/output universes, regenerate the rule base and retrain the

FFNN. Self-Organising Fuzzy Neural Networks (SOFNN) are characterized by being

able to modify their structure dynamically. They use the competitive learning technique

as their learning algorithm. Therefore, they have the ability to accommodate new data

without destroying old information [Baraldi and Blonda, 1999a and 1999b].

2.2.4. Learning in FFNN

As already mentioned, there are two common learning strategies that can be employed

for learning in FFNN namely supervised learning and reinforcement learning.

2.2.4.I. Supervised Learning

In supervised learning, a teacher provides the desired control objectives and necessary

control actions to the learning system at each time step. The desired control objectives

40

are specified in the form of a desired output or a desired trajectory. The goal of the

learning algorithm is to minimize the error between the output of a FFNN and a desired

output as follows:

E = | (y (t) - y n e t(t)F (2.24)

where y(t) is the desired output, and y net (t) is the current network output. If BP is

employed as the learning algorithm, a backward pass is used to compute the rate of

change of the error function with respect to the weights for all the hidden layers.

Assuming that w is the adjustable weight, the general learning rule used is:

Aw = (2.25)
aw

w(t + 1) = w(t) + p Aw (2.26)

where r\ is the learning rate. Examples of FFNN that employ supervised learning can

be found in [Lin and Lee, 1992; Lin and Lu, 1996].

2.2.4.2. Reinforcement Learning

In reinforcement learning, the feedback is not direct, immediate and informative as in

supervised learning. If precise and immediate input/output training data are available,

then supervised learning can be more efficient than reinforcement learning. However

for some real-world applications, precise data for training can be difficult and

41

expensive if not impossible to obtain. In reinforcement learning, only an evaluative

feedback signal (reinforcement signal) is available. The reinforcement signal, r(t), can

take one of four different forms [Lin and Lu, 1995]. It can be a two-valued number, r(t)

e [-1,0], such that r(t) = 0 means reward and r(t) = -1 means penalty. It can be a multi

valued discrete number in the range [-1,0], for example, r(t) e [-1,-0.75,-0.5,-0.25,0]

which corresponds to different degrees of reward or penalty. Also it can be a real

number, r(t) e [-1,0], which represents more detailed and continuous degrees of reward

or penalty. Moreover, the reinforcement signal can be given in the form of fuzzy

feedback information such as (good, very good, bad, very bad, etc.). Reinforcement-

leaming-based FFNN systems can be categorised in terms of type of the reinforcement

signal into two main categories. In the first category, the reinforcement signal is

numerical [Lee, 1991; Berenji and Khedkar, 1992]. In the second category, the

reinforcement signal is a fuzzy reinforcement signal [Lin and Lu, 1995]. Reinforcement

learning is sometimes called learning with a critic as opposed to learning with a teacher

as in supervised learning.

2.3. Applications of FLS and FNN in Modelling and Control

When designing a FLC, certain controller parameters must normally be tuned by trial

and error [Lai et. al., 1996; Li et. al., 1995; and Liaw and Wang, 1991]. Such

parameters include scaling factors, and the width and centre of the membership

functions [Costa Branco and Dente, 1998]. Moreover some rules have to be modified,

deleted or added. It would be useful for control engineers to be able to automate the

learning or tuning of the parameters and/or structure of FLC. FFNN is one of the tools

42

that can be applied for this purpose. FFNN can be interpreted as a FLC that can

automatically tune its parameters using the learning capability of neurons [Pham and

Oh, 1993]. In general, FFNN for control applications can be categorised as supervised-

leaming based FFNN controllers and reinforcement-learning based FFNN controllers.

Several examples of supervised-leaming-based FFNN controllers have been reported in

literature [Delgado and Gonzalez, 1993; Lee et al., 1996]. Different fuzzy models were

employed within the FFNN structure to perform the control function. In these

examples, BP generally was employed as a learning algorithm to perform the parameter

learning. For example, a TS-model based FFNN was employed for ship collision

avoidance in [Hiraga et al., 1995], for the control of carbon monoxide concentration in

[Tanaka et al., 1995], and for temperature control in [Lai and Lin, 1999; Lin and

Chung, 1999]. A Mamdani-model based FFNN was employed for backing a truck to a

loading dock in [Lin and Lin, 1997], and for welding process control in [Chen et al.

1997]. Moreover, a Mamdani-model based FFNN that employs compensatory neurons

was employed to control a cart-pole balancing system in [Zhang and Kandel, 1998].

Fuzzy controllers have been suggested for motion control planning of mobile robots

[Watanabe et al., 1996] and for intelligent control of complex robotic systems. For

actuator-level applications, most research has focused on kinematics control.

Calculation of the inverse kinematics of manipulators is computationally expensive,

and consumes a large percentage of time in the real-time control of manipulators. Lack

of the solutions for singularity configurations and existence of multiple solutions for

redundant cases add further complexity to the problem. The idea of using human

intuition and experience, by means of a fuzzy logic approach, to avoid complex

43

computation for inverse kinematics mapping has been investigated by several

researchers.

2.4. Applications of FLS and FNN in Robotic Systems Modelling

The establishment of an input/output model for a process is a very important problem in

systems engineering. Many deterministic and stochastic methods have been proposed to

derive acceptable mathematical models for both continuous-time and discrete-time

processes. However, in the modelling of complicated and/or ill-defined processes,

precise mathematical models may fail to give satisfactory results. Also, the nonlinear

behaviour of many practical systems and the uncertainty in these systems make

analytical modelling and control of these systems by conventional methods very

difficult. This is why FFNN have featured in several applications for systems

modelling. For example, the Adaptive Network Fuzzy Inference System (ANFIS)

[Jang, 1993] was employed for nonlinear function approximation.

In the robotics community, there is currently a growing interest in the use of intelligent

neuro-fuzzy technology [Er et. al., 1997]. Almost all NN and FNN applications in robot

control involve identifying the robot dynamics and/or inverse dynamics and

incorporating this knowledge into the robot controller [Narendra and Parthasarathy,

1990; Pham and Oh, 1994; Pham and Yildirim, 1999, and Yildirim, 1998]. Sometimes,

it is also required to incorporate the robot kinematics and/or inverse kinematics to

achieve certain control objectives. Hence, for a controller design, a preliminary stage of

robot modelling is essential. The basic idea is to employ a NN or FNN to learn

44

repeatedly the characteristics of the robot and then use this knowledge to generate

control inputs. Forward kinematics of a robot manipulator is the relation between the

end-effector Cartesian position and a given set of manipulator joint angles. In most

cases, forward kinematics is straightforward and usually performed mathematically in

the feedback path of the control system in the case of a Cartesian control system.

Generally, for the Cartesian control of the robot, the inverse kinematics should be

calculated exactly. Solving the inverse kinematics of a robot manipulator means finding

the joint angles corresponding to a given end-effector Cartesian position. However,

inverse kinematics calculation is complex and too much time consuming for a

manipulator control system to calculate in real-time [Craig, 1996]. The calculation of

the inverse kinematics can result in significant control delay. Fuzzy logic mapping and

FNN have been used in literature to calculate approximate inverse kinematics for robot

manipulators [Sang-Bae, 1997; Martinez et. al., 1996].

In [Nedungadi and Wenzel, 1991], a fuzzy associative memory bank (FAM) is used to

relate the change in the Cartesian end-effector position to the change in the robot joint

angles. In [Kim et. al., 1993], a fuzzy logic system is developed to solve the differential

relationship between the joint space and Cartesian space of redundant manipulators. In

this method, the inverse kinematics solution is performed with the help of the Jacobean

matrix and a fuzzy system to calculate the differential change in the joint angles

required to achieve a desired Cartesian displacement [Xu and Nechyba, 1993]. A

similar idea was used in [Martinez et. al., 1996] for the configuration of a three-links

revolving robot manipulator. In this method, by relating the polar position of the end-

effector to its Cartesian position, a space variation for the joint angles can be drawn and

45

a fuzzy system relationship can be established relating the polar position to the joint

angles. The degree of accuracy in these methods is strongly influenced by the selected

membership function for the inputs and outputs, which have to be selected manually.

Some of these methods require pre-calculation of the robot manipulator Jacobean

matrix, resulting in additional computational burden. These methods also do not

include any additional learning stage and are not generic or systematic. Robot

manipulators have a dynamical model similar to that of the motion of rigid bodies of

the form:

T = M(0) 0 + V (0,0) + G(0) + F(0,0) + xd (2.27)

where M (0) i s the n x n inertia matrix of the manipulator, V(0,0) is an n x l vector of

centrifugal and Coriolis terms, G (0)is an n x l vector of gravity terms, F(0,0)is an n x l

vector of friction, and Td is an n x l vector of unknown terms that represents joint load

torques arising from un-modelled dynamics and external disturbances [Craig, 1996].

The parameters of this model are mostly obtained from CAD solid modelling or

measured by the disembodied robot which results in inaccurate values. Forward and

inverse dynamics of robotic manipulators are very complex and can almost never be

accurately calculated due to parameter variation, nonlinearity, and backlash.

Neural networks have been used to identify or extract inverse dynamics for robot

manipulators through learning. Some researchers used feedforward NN to learn the

robot inverse model [Miyamoto et. al., 1988], others uses the dynamic structure of the

recurrent neural network [Pham and Yildirim, 1999; Pham and Oh, 1994]. Other

46

researchers use self-organising neural networks to build the robot model, through

online tuning of the network structure and network parameters, to reach the closest

behaviour possible to the real system [Kishan and Jamshidi, 1997].

Regarding the relation between the neural network used and the investigated robot

during learning, there are two main approaches to the identification of the inverse

dynamics of the robot. The first approach can be called direct inverse learning, where a

neural network is fed with the outputs from the robot and directly taught to generate the

robot inputs that produced those outputs as shown in figure (2.5a). Errors between the

desired and actual outputs of the network are used to adjust the network weights. The

second approach can be called indirect inverse learning, where the learning is achieved

by training the neural network to act as a controller to the robot as shown in figure

(2.5b). Errors between the forward model outputs and actual outputs of the robot are

back propagated through the robot forward model to adjust the weights of the inverse

model network [Pham and Oh, 1999; Pham and Yildirim, 1999].

Most of the approaches used for robot forward and inverse dynamics model input

variables selection are heuristic, and based on the method of using the model in the

controller. These inputs may include present and past values of the robot joint

positions, speeds, accelerations, position errors, and actuating torques according to the

required approximation order of the model and the size of the network used. Generally,

the higher the approximation order, the larger the size of the network, and the slower

the learning and execution time. Also, different techniques for training and adaptation

are used, with back-propagation algorithm being the most commonly used method

47

[Shin, 1994; Pham and Yildirim, 1999; Pham and Oh, 1999; and Pham and Sagiroglu,

2001].

Although most of these methods succeed in obtaining an approximate inverse dynamics

model for the robot manipulators, they are poor in terms of the transparency to the

dynamics behaviour of the robot and form a black box relationship between its inputs

and outputs. Also, the learning in these techniques is performed online with the robot

operating in control and with the network connected to it. The structure of the network

is to be selected according to the experience of the user without direct relation to the

robot behaviour, except for the self-organising neural network which is rarely used for

robot inverse dynamics modelling.

/
/

Inve/se
Mddel

\f _ /

Ti

 /

Robot
0m

0m

0m

Figure (2.5a). Direct inverse learning [Pham and Oh, 1999].

48

0 d

0 d

0 d

Forward
Modfel

Inverse Robot
Model

Figure (2.5b). Indirect inverse learning [Pham and Yildirim, 1999].

2.5. Applications of FLS and FNN in Robotic Systems Control

2.5.1. Conventional Control of Robotic Manipulators.

As explained in Appendix (A), nonlinearly, interactive dynamics, and other

uncertainties in robotic systems prevent linear servo controllers from providing a

satisfactory performance especially in transient and high-speed modes of operation.

Although, conventional independent-PID joint controllers are used in many industrial

robots, they limit the capability of the robot to pick and place operations and to slow

motion applications. Many modifications have been added to the independent-PID joint

controllers to include nonlinearity and coupling between joint dynamics. In some

industrial robots, a gravity element has been added to the independent-PID joint

controllers to compensate for the joint weights [Pan and Woo, 2000] as shown in figure

(2 .6).

49

Trajectory

Planner
Robot >

0m

0m

0m

Individual
PID

Controllers

+

Figure (2.6). PID controllers with gravity compensator [Pan and Woo, 2000].

The problem of controlling a complicated nonlinear coupled system such as a robot

manipulator can be handled by the partitioning of the controller into two parts, a model-

base part and a servo part. The model-based part is affected by the manipulator model

parameters and includes information about the system nonlinearity and dynamics

coupling effects, whilst the servo part is independent of these parameters. Model-based

control algorithms have been used as nonlinear feedback controllers to robotic

manipulators under the name of the computed-torque control method [Craig, 1996].

This method was then modified to the control system shown in figure (2.7).

0 d

0 d

0 d > Dynamics

w Model
Robot

4

+

Figure (2.7). Modified computed torque control method [Craig, 1996].

50

In the control systems shown above, it was assumed that the desired trajectory was

available in terms of joint position, velocity, and acceleration, so that what is called

joint-based control scheme was built. Generally, the final target of the control system is

to achieve certain trajectory for the robot end-effector, so that a trajectory conversion

stage has to be performed first. The trajectory conversion process is quite difficult to

undertake analytically. Inverse kinematics, inverse Jacobean, and inverse Jacobean

differentiation have to be calculated which requires high computational resources [Hu

et. al., 1996]. Usually, trajectory conversion is performed with the help of the inverse

kinematics only for the end-effector position and successive numerical differentiation is

used to obtain the joint speeds and accelerations from the resulting joint positions as

shown in figure (2.8).

Inverse
Kinematics

Trajectory Conversion

Figure (2.8). Trajectory conversion using inverse kinematics.

An alternative approach is shown in figure (2.9). Here, the sensed position of the

manipulator is immediately transformed by means of forward kinematics equations into

a Cartesian position of the end-effector. This Cartesian position is then compared to the

desired one in order to form the error in Cartesian space. Control schemes that are

50

based on forming errors in Cartesian space are called Cartesian-based control schemes

[Craig, 1996].

X , +
RobotGains

Forward
Kinematics

0m

0m

0m

Figure (2.9). Inverse Jacobean Cartesian control scheme [Craig, 1996].

In figure (2.9), an inverse Jacobean has to be calculated to map the error in the

Cartesian space to error in joint space. Finally, this latter is multiplied by a gain to

compute the torques required to reduce the error.

Another scheme is shown in figure (2.10). Here, the Cartesian error vector is multiplied

by a gain to compute a Cartesian force vector. This can be thought of a Cartesian force

which, if applied to the end effector of the robot, would push the end-effector in a

direction tending to reduce the Cartesian error. This Cartesian force vector is then

mapped through the Jacobean transpose in order to compute the equivalent joint torques

which would tend to reduce the Cartesian error [Craig, 1996].

50

V a ® | — — VF I------------- L Tl----------- L
^ ------ > Gains I ------- > J T (6) I > Robot » —#■

Forward
Kinematics

Figure (2.10). Transpose Jacobean Cartesian control scheme [Craig, 1996].

Robot control is more difficult when the robot has contact with external forces. When

any contact is made between the end-effector and the manipulator's environment,

position control may not suffice. In this case, control methods should generate high

compliant or, in other words, low stiffness (where compliance is the inverse of

stiffness) motion to balance external forces. Compliance is the tendency of a body to

distort due to applied forces. When a robot manipulator is moving through free space,

the natural constraints are all zero. If the end-effector is glued to a wall, the robot

manipulator is subjected to position constraints. Position control schemes are designed

to deal with the first situation, while the second situation does not occur in practice.

Usually control systems consider force control in the context of partially constrained

tasks in which some degrees of freedom are subjected to position control, while others

are subjected to force control. Thus, in this case a Cartesian hybrid position/force

control scheme is introduced as shown in figure (2.11).

50

X a +

Forward

V “ -----

Kinematics

Constraints

F a +

M I

Coordinate
Transform

Position Sensing

Robot

Force Sensing

Figure (2.11). Cartesian hybrid position/force control scheme [Craig, 1996].

The hybrid position/force controller controls the manipulator by performing in three

ways. First, position control is utilised along directions in which a natural force

constraint exists. Second, force control is utilised along directions in which a natural

position constraint exists. Third, these modes are mixed along the degrees of freedom

of the robot manipulator [Wedel and Saridis, 1988].

In the control system shown in figure (2.11), both position controller and force

controller are presented. The matrix S is used to select the control mode (position or

force) of each joint. The S matrix is diagonal with ones and zeros. Hence, it is simply a

switch which sets the control mode of each joint of the robot arm. In accordance with

50

the setting of S, there are always a number of components of the trajectory being

controlled equal to the degrees of freedom of the robot, where the relative mix between

position and force control is arbitrary according to the control mode. Hence when a

certain degree of freedom is under force control, position errors on that degree of

freedom are ignored [Craig, 1996].

2.5.2. Fuzzy Control of Robotic Manipulators.

Fuzzy control has been used extensively for independent direct feedback control of

robot manipulators [Erbature et. al., 1995; Moudgal et. al., 1994 and 1995; Green and

Sasiadek, 2001; Hitam, 2001; and Tang et. al., 2001]. During control, no adaptation of

the rule base or membership functions is carried out, only system gains were modified

in relation to link speeds and joint errors within predetermined design parameters. Few

techniques considered the coupling dynamics between the manipulator links.

2.5.3. Adaptive Control of Robotic Manipulators.

A more recent research strategy for robot manipulator control is to incorporate a control

scheme that is able to adapt (adaptive control) to uncertainties in the robot dynamics

parameters. This allows the controller parameters to be modifies in real time until they

converge to exact values. This has lead to the application of neural networks and FNN

in robot manipulators control systems. The structure of the neural network or the FNN

varies according to the order and input variables used in the approximation model [Tsai

et. al., 1996]. Most of these techniques use different learning algorithms to tune the

inverse dynamics model of the robot manipulator contained in the neural network using

55

error minimisation and online modification of the network link connection weights.

Generally, a feedback controller is used along with the feedforward controller to

improve the disturbance rejection capabilities of the control system. The feedback

controller can be of any combination of a conventional P, I, D, or a fuzzy controller.

The feedforward controller is normally a neural or a neuro-fuzzy network. As learning

proceeds, the error signal will reduce and the role of the feedforward controller

increases while that of the feedback controller decreases [Pham and Yildirim, 1999].

According to the learning signal used to train the inverse model, three main learning

schemes are listed. The first is the direct inverse learning scheme, where the inverse

model is connected in parallel with the robot. The error between the robot input and the

model output is used to tune the model parameters. These parameters are then copied to

the forward path controller as shown in figure (2.12) [Pham and Yildirim, 1999].

/
/ |

Inverse 1

y -
Model I

FeedBack
Controller

Trajectory B
------------------ 1

Itfverse I v v V
Planner 1 W ' ' P

/M odel I
Robot

0 m

0m

0 m

Figure (2.12). Direct inverse learning controlscheme [Pham and Yildirim, 1999].

56

/

■Forward
ftlodel

Inverse
^Klodel

Trajectory
Planner

Robot
0m

0 m

0m

Figure (2.13). Indirect inverse learning control scheme [Shin, 1994],

FeedBack
Controller

The second scheme is the indirect inverse learning scheme, where the forward model is

connected in parallel with the robot as shown in figure (2.13). The error between the

robot and the forward model outputs is used to tune the parameters of the inverse model

with information obtained for this purpose from the forward model [Shin, 1994]. The

third scheme is the feedback-error learning scheme, where the feedback torque signal

(from the servo controller portion) is used to tune the parameters of the inverse model

[Kawafuki et. al., 1997] as shown in figure (2.14).

Figure (2.14). Feedback-error learning control scheme [Kawafuki et. al., 1997].

\

Invdrse
Model

Trajectory
Planner

Robot

FeedBack
Controller

0 m

* 0 m

0 m

57

Although the total torque acting on the robot is simply the sum of the feedback torque

and the feedforward torque, these two play entirely different roles in the robot control.

The feedback is used for clumsy but robust control at an early stage of learning. The

feedforward torque is necessary for smooth control and fast movement of the robot

[Miyamoto et. al., 1988] [Emami et. al., 1996, 1998, 1999, and 2000].

2.5.4. Internal Model Control of Robotic Manipulators.

The application of internal model control (IMC) for robot manipulator has received

much attention in the last decade (figure (2.15)). The IMC provides a direct method for

the design of the nonlinear feedback controller, if a good model of the robot is

available, the closed-loop system will achieve exact set point following despite

unmeasured disturbances acting on the robot [Yildirim and Sukkar, 1996]. In [Li et. al.,

1995] a back-propagation neural network is incorporated into a fixed standard structure

internal model controller to achieve robot manipulator control.

d

ROBOTInverse Model

Forward
Model

Figure (2.15). Internal model control structure [Yildirim and Sukkar, 1996].

58

2.6. Applications of FLS and FNN in Robotic Systems Coordination

Currently, industrial applications that utilise multiple manipulators involve the use of

two or more robots, which although working simultaneously on the same task, are not

manipulating the same object at the same time. Hence, the main area of concern is

collision avoidance. The ability to manipulate the same object at the same time by two

robots would enable the system to undertake the difficult two-handed manipulation

tasks that humans are capable of performing [Akella and Hutchinson, 2002].

However, the formation of a cooperating robot system (CRS) causes control

complications since an over constrained closed kinematic chain is generated. This

means that a new control technique may be required to enable the CRS to perform

handed manipulative tasks.

The techniques used for controlling a CRS can be broadly separated into two main

categories:

• Position Control.

• Hybrid Position/Force Control.

In the position control scheme, the difference between the desired position and actual

position of the robot is used to generate an appropriate control signal designed to

minimise this error. For most industrial applications that use of single robot systems, a

position-based scheme is satisfactory.

59

One approach for controlling a CRS uses a master/slave configuration, where the

motion of the master robot is pre-planned according to the desired motion of the

manipulated object and the motion of the slave robot is to follow the master. For further

enhancement for the position control method, feedforward signals based on the object

and robot dynamics can be incorporated into the controller to minimise trajectory

errors. Sometimes a constant offset is specified to provide suitable following

characteristics for the slave robot. That is, when the master is ready to begin motion

along a pre-planned trajectory, it sends its destination to the slave robot, which

performs a transformation of coordinates from the master’s reference frame to its own

reference frame. However, this transformation is dependent on the geometry of the

manipulated object and has to be specified before motion begins [Tinos et. al., 2002].

In the position based control scheme outlined above, each robot in the CRS is

controlled by minimising the position error of the end-effector along a common path.

However, accurate knowledge of the robots kinematics properties is essential and also

the scheme does not consider geometric errors. Geometric errors in the robot

kinematics properties of a CRS can cause the target end-effector paths of each robot to

be inconsistent. Since the robots are joined to form a closed chain, any inconsistency in

the end-effector paths can result in forces being applied to the manipulated object. To

solve this problem, flexible joints are introduces in the CRS system in [Osumi and Arai,

1994] between the robots and the manipulated object. In [Osumi et. al., 1997], free joint

mechanisms are introduced to solve this problem.

60

In the hybrid position/force (HPFC) control scheme for a single robot, the force

information is combined with position information to satisfy a set of position and force

constraints as explained before. Methods for obtaining force information are: motor

current measurements, motor output torque measurements, and wrist mounted force

sensors. The HPFC method can be exploited for use in CRS [Sun and Liu, 2001] and,

like all robot control strategies, can be implemented on either a centralised controller

architecture (one controller for all robots) or a de-centralised controller architecture

(independent controllers for each robot).

The HPFC can also form part of a master/slave CRS where the master robot is position

controlled while the slave one is force controlled. For all HPFC schemes listed in

literature, pre-planned force trajectory and appropriate force measurement at the end-

effectors of the robots are required. This not only results in the need for force sensors of

a suitable resolution, but also additional hardware and software to interpret and

transform the data into usable format. Furthermore, to incorporate the force data, the

computational complexity of the control scheme is increased. One further disadvantage

of these control systems is that they are based on exact knowledge of the dynamics

properties. However, in general, exact robot and load dynamics are difficult to drive

due to the complex mechanical construction of the robot.

Adaptive control schemes explained before can be further extended for use in CRS

systems, which then incorporate feedforward signals based on the robot and/or object

dynamics. With the adaptive control scheme, the controller not only has to calculate the

robot and object dynamics but also modify them to take into account parameter

61

inaccuracies. Few neuro and neuro-fuzzy adaptive control techniques have been

reported for the coordination of robot manipulators in the literature [Gueaieb et. al.,

2001]. A recurrent neural network is used to build a hybrid position/force controller for

two SCARA type robots in [Yildirim, 2001]. In this case, both of the position and force

controllers are built using the proposed recurrent neural network. A position reference

model and force reference model are used to train the two neural controllers. Another

method for separating interconnection variables in order to achieve a fully decomposed

fuzzy model is introduced in [Rajasekharan and Kambhampati, 2001] for cooperative

manipulators handling a common object. In [Jang, 2001], a neuro-controller is

introduced to control a nonlinear two-robot MIMO system. The proposed neuro

controller consists of two linear controllers and a neural-network controller (NNC) to

compensate for the nonlinearities and interactions between the two robots. The NNC is

trained through a neural network identifier with an indirect learning scheme.

Even though most adaptive schemes provide suitable control for a CRS, many result in

a control structure that is not suitable for application to conventional robot systems.

Furthermore, in most cases, the suggested scheme is computationally expensive and

requires complex mathematical techniques to ensure convergence of the system

parameters to their exact values.

2.7. Summary

This chapter has outlined the basic concepts of FLS and FNN to provide background

information concerning their structure and design parameters. A classification of FLS

62

according to their structure and design parameters has been presented. Similarly, a

classification of FNN according to their structure, fuzzy model, and learning technique

has been given. Finally, some applications of these techniques to the modelling,

control, and coordination of robotic systems have been outlined.

63

CHAPTER 3

Neuro-Fuzzy Inverse Modelling of Robotic Manipulators

As a consequence of the rapid development in FLS and NN techniques in the 1980s,

great progress in FNN design and implementation techniques was made. Since the early

1990s, FNN have attracted a great deal of interest because such systems are more

efficient and more powerful than either NN or FLS alone. Different types of FNN have

been presented in the literature. As mentioned in Chapter (2), these types can be

identified based on the structure of the FNN, the fuzzy model employed and the

learning algorithm adopted. On the one hand, according to the FNN structure and

learning algorithm, the most commonly used and successful approach is the

feedforward and recurrent structure model using the BP learning algorithm. On the

other hand, according to the fuzzy model adopted, there are two types of fuzzy models

that can be integrated with a neural network to form a FNN. These two models are the

TS-model [Takagi and Sugeno, 1985] and the Mamdani-model [Lee, 1990a and 1990b]

using either the sup-min or sup-product compositional operator. However, based on the

review of the models of FNN in Chapter (2), Mamdani-model based FNN represent

more transparent neuro-fuzzy systems compared with TS-model-based FFNN. The

reason is that the rule base of the Mamdani-model is more understandable to human

users. Also, it is more general in terms of how its rule base is created, because it can be

constructed using human experience and/or numerical data. Also, it may be noted that

feedforward neural networks are normally used for mapping of arbitrary static

64

functions while mapping of dynamic functions is normally performed using recurrent

neural networks which is normally a feedforward NN with some feedback signals.

This chapter deals with the problem of both inverse kinematics and inverse dynamics

modelling of robotic manipulators as a pre-control stage. The main target is to benefit

from inductive learning techniques to develop rule sets for both inverse kinematics and

inverse dynamics from data collected from the robot during random trajectories

following. These rule sets will be then arranged in a Mamdani-type neuro-fuzzy set of

networks for further tuning of the obtained fuzzy models.

“Pro/Engineer® ” and “Pro/Mechanica® ” visual dynamics simulation packages were

used to simulate the robot manipulator. These packages allow simulation of dynamic

systems by transferring the assembly CAD model from “Pro/Engineer®” to the

associated virtual dynamics simulation program “Pro/Mechanica® ”, which in turn

allows the user to specify masses, loads, drive forces, torques, friction, etc., and many

other dynamics parameters of the modeled assembly. This package generates the

equations of motion, inertia parameters, orientation matrices, etc., for each body in the

model and for the whole assembly from the geometry of the modeled system and the

parameters specified by the user. Due to the nature of the research, no access to these

equations of motion is required although “Pro/Mechanica®” allows for this if

necessary. The most powerful part of this package is that it allows the user to interface

to the modeled system with a user specified custom C++ subroutine. This subroutine

allows the user to get information about the modeled system and to design a controller

for the assembly and/or add any other feature to the modelling process, which may not

65

be present in the package programming tools. The Puma 560® industrial robot

manipulator is used for the simulation process as the parameters of this robot are well

published and can be checked against the parameters obtained from the virtual model.

The remainder of this chapter is organized as follows. Section 3.1 presents a review of

current techniques used for inverse identification for robot manipulators. Section 3.2

describes the method used to virtually model the Puma 560® industrial robot

manipulator under the “Pro/Mechanica® ” environment. Section 3.3 explains the

technique used to collect numerical data from the modeled robot and discusses the

fuzzy rule generation method using the inductive learning technique DynaFuzz [Bigot,

2003]. Also, in the same section, the rules obtained for both inverse kinematics and

inverse dynamics for the Puma 560® industrial robot are listed. Section 3.4 presents the

structure of the proposed Mamdani-type neuro-fuzzy network used to formulate the

fuzzy rules for online tuning of the fuzzy model. Also, in the same section the network

decision-making mechanism using softmin and softmax differentiable activation

functions [Estevez and Nakano, 1995] and the online adaptation mechanism are

explained. Section 3.5 discusses the simulated performance of the proposed system

when used to model the Puma 560® industrial robot manipulator for both inverse

kinematics and inverse dynamics. Section 3.6 gives a summary for the chapter.

3.1. Inverse Model Identification of Robotic Manipulators

The forward kinematics of a robot manipulator produces the Cartesian position of the

end-effector according to a given set of manipulator joint angles while the inverse

66

kinematics of a robot manipulator gives the joint angles according to a given end-

effector Cartesian position. As stated in chapter (2), the inverse kinematics calculation

is complex and consumes too much time to perform in real-time [Craig, 1996].

Moreover, singularities and multiple solutions exist in the inverse kinematics

calculation. The inverse kinematics equations constitute a set of highly coupled

nonlinear equations. The common method is to utilise the relationship between the joint

speed and the end-effector speed to resolve the inverse kinematics problem. The

differential motion relationship between end-effector Cartesian space and joint space is:

r(t) = J(0)0(t) (3.1)

where r(t) is the end-effector displacement in Cartesian co-ordinates, 0(t) is joint

displacement, and J(0) is the Jacobean matrix from joint space to Cartesian space. From

equation (3.1), the joint velocities can be obtained by calculating the inverse Jacobean

and then the joint variables can be evaluated by numerical integration.

Many methods have been reported to circumvent the direct calculation of the inverse

Jacobean using fuzzy logic mapping, NN, or the pseudo-inverse of the Jacobean matrix

[Kim et. al., 1993; Xu and Nechyba, 1993; and Sang-Bae, 1997]. For example, in

[Nedungadi and Wenzel, 1991], a fuzzy associative memory bank (FAM) is designed to

relate the change in the Cartesian end-effector position to the change in the robot joint

angles. In this method, the contribution of the joint angle variation to achieve the user

requested move in the Cartesian coordination of the end-effector can be calculated

through the developed FAM bank. Firstly, a total of 98 rules have been created for the

67

inverse kinematics solution of a single-link planar manipulator. Then, these rules were

reduced to 28 rules due to symmetry in the FAM bank. This means that large numbers

of rules for multi-link manipulators will be created. The FAM bank was developed

based on the kinematics equations of the robot manipulator. In [Ming et. al., 2001], the

same technique is used with a reduced number of fuzzy membership functions resulting

in 25 rules for a two-link planar manipulator. A three-link three-dimension revolve

manipulator was studied in [Martinez et. al., 1996]. In this method, the use of geometric

relationships to relate the spherical coordinates of the end-effector to its Cartesian

coordinates reduced the 3-dimentional positioning problem to a 2-dimentional problem

where 0i is found trivially. Contours of constant angles 0 2 with varying 6 3 through its

full range were drawn for the remaining two spherical coordinates. Contours of

constant angles 8 3 with varying 0 2 through its full range were also drawn. By

examining these contours, a total of 198 fuzzy rules were established relating the polar

position to the joint angles. These rules were reduced to 82 due to the physical range

constraints of the joints. As mentioned before, the degree of accuracy in these methods

and the number of generated rules are strongly influenced by the selected membership

function for both inputs and outputs, which are selected manually. Most researchers

studied planar or simplified manipulators. Furthermore, these systems do not possess a

further learning stage and are not generic or systematic.

The forward dynamics of a robot manipulator is the determination of the joint

displacement variables (0*) according to a given set of manipulator joint torques (T j) ,

while the inverse dynamics of a robot manipulator is the determination of the joint

torques required to cause certain joint displacements. As stated in chapter (2), forward

68

and inverse dynamics calculations are very complex, nonlinear multi-input multi-output

problems, and can almost never be accurately calculated due to parameter variation, un

modelled friction, and backlash. The parameters of these models are mostly obtained

from CAD solid modelling or measured by disembodied robot, which results in

inaccurate values.

For a dynamic system with single input u and single output y, the system output at time

interval k can be expressed in discrete form as:

y(k) =f(y(k-l), y(k-2) y(k-n), u(k-l), u(k-l),...., u(k-m)) (3.2)

This equation can be used to represent any SISO dynamic system in discrete format and

can be extended to represent MIMO dynamical systems as well. When input/output

data are used, function f and integer n and m define the dynamic system. If n and m are

given, the only task is to find function f f does not change with time for time-invariant

systems. Feedforward neural networks can be employed to approximate / [Narendra

and Parthasarathy, 1990]. Robot manipulators are assumed to be bounded-input

bounded-output (BIBO) stable in presence of input, which means that equation (3.2)

can be used to approximate robot manipulator dynamics.

Neural networks have been used extensively to identify the forward and inverse

dynamics for robot manipulators. Most of the approaches used for network input

variable selection are heuristic. These inputs may include present and past values of the

robot joint positions, speeds, accelerations, position errors, and actuating torques. The

number of the network input variables and the assumed order of the approximation

69

model affect the network size and learning capabilities. Furthermore, neural networks

are poor in providing transparency to the dynamics of the robot and form a black box

relationship between its inputs and outputs. In most cases, the structure of the network

is to be selected according to the experience of the user [Miyamoto et al., 1988; Pham

and Oh, 1999].

Dynamic system identification consists of first choosing an appropriate identification

model structure and then adjusting the parameters of the model according to some

adaptive law such that the response of the model to an input signal that approximates

the response of the real system to the same input. In the following sections, an inductive

learning technique is first used to automatically identify the inverse kinematics and

inverse dynamics model structure from numerical observation data by generating

fuzzy-type identification rules. Then, the obtained model structure will be arranged in a

full-differentiable version of the Mamdani-type neural network for final tuning of the

model parameters. This technique allows simple and direct creation of the neuro-fuzzy

model, which will be used later as part of the control system of the robot.

3.2. Virtual Dynamics Model for Puma 560® Manipulator

The Puma 560® is the “guinea pig” of robotics research. It has been studied and used

in countless experiments over many years and in many laboratories. The values of

dynamics and kinematics parameters depend upon the choice of coordinate frames in

which they are expressed. Figure (3.1) represents the commonly used definitions for the

Puma 560® robot arm coordinates. Table (3.1) lists the relative values for these

70

coordinates in addition the actual joint ranges as it is stated in the manufacturer’s

manual. For the first three joints, because of their long link length for maximum reach

and long travel distance between initial position and final position, the effects of

transitional motion dominate the rotational motion. In contrast to the first three joints,

the rotational effects dominate for the last three joints. This means that the first three

joints can be considered responsible for reaching of a point, while the last three joints

are responsible for the manipulation at this point.

■o y 'V'v ^ ' * :

6 R

\ y /

ID

Figure (3.1). Coordinate definition for the Puma 560® robot arm.

71

Link Joint Variable 0t a i ^(m m) a, (mm) g,.-; Range

±90 660.4 0 -160 to +160

0 149.5 432 -225 to +45

3 03 ±90 0 0 -45 to +225

4 04 ±90 432 0 -110 to +170

5 05 ±90 0 0 - 1 0 0 to + 1 0 0

l l l l l l 0 6 0 56.5 0 -266 to +266

Table (3.1). Link coordinate system for the Puma 560® robot arm.

± Indicate left and right shoulder configuration, respectively.

With regard to model parameters for the Puma 560® robot arm, [Armstrong, 1988;

Armstrong et. al., 1986; and Armstrong and Corke, 1994] represent the most commonly

used references for these parameters. For the purpose of creating a virtual model of the

Puma 560® robot arm, physical robot dimensions are first used to create a CAD solid

model for each link under “Pro/Engineer® Then, these links are assembled together

to form the robot using the pin-joint assembly feature in addition to assigning robot co

ordinates. The assembled robot is then passed to the associated virtual dynamics

simulation program “Pro/Mechanica® ” where the link mass, gravitational coefficient,

and coefficients of friction between joints are defined according to the average values

listed in [Armstrong and Khatib, 1986; Armstrong and Corke, 1994]. Table (3.2) lists

the link mass parameters for each link, while table (3.3) lists the coefficients of friction

for the first three links. All of the other parameters for the Puma 560 robot arm are

listed in [Armstrong and Khatib, 1986; Corke and Good, 1992; Armstrong and Corke,

1994]. Figure (3.2) shows the obtained virtual dynamics model for Puma 560® robot.

72

Ml M2 M3 M4 M5 M6

13.00 17.4 4.8 1.18 0.35 0.13

Table (3.2). Link mass values [kg].

Link-1 Link-2 Link-3

Static Dynamic Static Dynamic Static Dynamic

8.43 3.45 7.67 12.77 5.57 3.27

Table (3.3). Coefficients o f friction [Nm & Nm/rad.].

Figure (3.2). Virtual dynamics model for the Puma 560® robot arm.

73

J File Edit D isplay Utility R ev iew W indow s A pplica tion H elp

Thesis\promech\robot" is now current.
COMMAND:

X
View j Group |

I
— Undo | Redo |

__________ 1
■ |

>Main
W .\W Geometry:

'C'r- ■ Model:
B p Analysesw Design Study

Run
Results:

I

_ $ $ $ &
Pro/M£tHANtCA|R) BYlldf ir« |TM)

R0UII 24
• 14.14

puma sea virtual dynamic model

NEC. SYSTEMS EH t I K E E R I N D D I V I S I O N

C A R D I F F S C M t l & L B E E N G I N E E R I N G

“Pro/Mechanica®” calculates the remainder of the required parameters for the

dynamics simulation. It also generates the equations of motion for each body in the

model and for the whole assembly from the geometry of the modelled system and the

parameters specified by the user. For example, figure (3.3) lists the inertia matrix

parameters calculated by “Pro/Mechanica®” for link-1 of the robot around its centre

of mass.

Body N am e: _^J UNK1

M ass: 131486

Center of M ass:

X: -1.67831 e-08 V: 0.273602 Z: 0.228071

M om ents and Products of Inertia (about COM):

XX: 1.39376

XV: -2.25976e-008 YV: 0.298121

XZ: 2.43415e-008 YZ: 0.190931 ZZ: 1.20101

M ass properties of the b ody se le c te d w ere ca lcu la ted

from its volum es.

OK

Figure (3.3). Pro/Mechanica calculated parameters for link-1.

74

3.3. Rule Generation from Observation Data

Many real world applications require the creation of approximate models because it is

impossible or difficult to mathematically model the system otherwise. While the

optimal solution would be the creation of an exact mathematical model, such model

neither always exist nor can be derived for all complex systems, such as robot

manipulators.

Due to such complexity, many techniques have been developed to generate

approximate models from input/output numerical observation of complex systems. One

of the most successful techniques for continuous numerical observations is the creation

of neural network model, however this requires a great much effort to select the

network structure and finally results in a non-transparent “Black Box” model as

mentioned earlier.

The other method, which does possesses transparency and does not require

sophisticated mathematics, is the fuzzy logic model system. Perhaps the most famous

method has been presented by Wang [Wang and Mendel, 1992a]. This efficient

technique first requires pre-defmed input/output fuzzy membership functions, which

divide the attribute space into fuzzy regions. Based on these membership functions, a

fuzzy rule is generated for each pair of input/output data. Each rule is stored in a

decision table, and in the case of conflict, a degree for each rule is assessed to select the

best rule, and therefore to select the fuzzy membership function to be stored in the

decision table. However, as mentioned earlier, there is a “growing memory” problem

75

when more and more training examples become available, and more and more rules are

created, so that the selection of the best rules becomes difficult.

The use of a fuzzy rule for the classification of an example is in many ways similar to

the use of rule created via inductive learning [Delgado and Gonzalez, 1993, Pham and

Aksoy, 1995]. The main difference is that, due to the notion of fuzziness, a particular

example will have a particular “degree of match” (p rule(example)) with each rule

[Srinivasan et. al., 1993]. This could be used for instance to evaluate how likely a rule

is to classify an example properly. This “degree of match” is obtained by first assessing

the membership degree of each example attribute value with regard to the

corresponding fuzzy condition in the rule; (p condition (Input Attribute Value)).

For example; assume the input attributes are Speed=14 km/h and Distance=57 m. For

the rule IF Speed is zero AND Distance is long Then Brake is zero, the membership

degrees are (p speed zero (14)) = 0.4 and (p distance_long (57)) = 0.8. Using these

membership degrees; the “degree of match” of an example to each rule can be assessed.

Two main methods are available:

- The first selects the minimum membership degree and if an example contain N

attributes, it is defined as:

(p rule(example)) = min(p condition_l(Input_Attribute_Valuel),...............,

, , p condition_N(Input_Attribute_ValueN)).

76

- The second uses the product of all membership degrees and if an example contains N

attributes, it is defined as:

(p rule(example))= I I M -fuzzy co n d itio n (Input_Attribute_Value)
fo r _ e a ch _ attribute

It is important to note that if one membership degree is equal to zero, for both methods

(p rule(example)) will also be equal to zero; this represents the case when one example

is not covered by a rule.

In order to obtain a single fuzzy output, one solution is to select the output membership

function of the best covering rule (identified using a particular heuristic, for instance

the “degree of match”). However a more appropriate method (because it fully takes in

consideration the notion of fuzziness) is to combine the output membership function of

each covering rule in order to obtain a new output fuzzy set. The obtained fuzzy sets

can then be merged, by considering overlapping or fusion between fuzzy sets in order

to obtain the output fuzzy set. The transformation of a fuzzy output set obtained

through a fuzzy model into a single crisp continuous value is carried out by

defuzzification.

3.3.1. Data Generation Technique

The first step in rule generation via observation data is the data collection strategy. For

this purpose, random trajectories are applied to suitable gain P-controllers, as shown in

figure (3.4). The resulting P-controller torques with random values and frequencies

generated from the error signals are applied to the joints of the virtual dynamics model

77

of the robot arm as explained before. These torques allow the robot arm to move in all

directions in the three-dimensional space. The data consists of the applied torque, their

corresponding joint angles, joint velocities, and the three Cartesian coordinates (x, y

and z) of the end effector main reference point, and are recorded for current and

previous sampling intervals. The data collection test was performed for the first three

joints only as they are the main joints responsible for the reaching process of the robot

arm as mentioned earlier.

Random Joint-Angles
Trajectories

(0 i, 0 2 , 6 3)
+ Primitive

controller

Actuating Joint-Torque
(Ti, T2, T3)

Pro/Mechanica
Virtual Model
For Puma 560

Forward
Kinematics, Time
Delay, and Data

Storage

Current Joint-Angles
(0i, 02, 63)

Figure (3.4). Data collection test for the “Puma 560®” robot arm.

The collected data will be used to construct the model of the inverse kinematics and

inverse dynamics of the robot manipulator in two stages, a structure identification stage

followed by parameters identification stage. Figure (3.5) illustrates these two stages.

Input/Output
Data

Self-Constructing
Rule Generation

Initial Fuzzy
Rules

Fuzzy Neural
Network

Final Fuzzy
Rules

Structure Identification Parameter Identification

Figure (3.5). Steps in the proposed neuro-fuzzy modelling.

78

3.3.2. Inductive Learning Algorithm

The predefinition of the membership functions for both inputs and outputs used in

Wang method [Wang and Mendel, 1992a] could be a difficult task. In fact, the problem

of designing the membership function may be just as complex as designing the rules.

The task of decomposition into membership functions can be seen as relatively similar

to the task of discretisation in machine learning. One of the advantages of machine

learning algorithms is that they permit the creation of compact models. In the next

section, the fuzzy inductive learning algorithm dynafuzz [Bigot, 2003] is briefly

explained including the suggested modifications. This method uses an automatic

technique for input membership function creation during the rule forming process.

The algorithm is designed to extract fuzzy IF-THEN rules from a collection of

examples (training set). Firstly, a manual step is performed to divide the output domain

for continuous output examples to generate target classes. In the robot modelling case

under investigation, the output is divided into equal, 50% overlapped Gaussian

membership functions as shown in figure (3.6). The selection of the output membership

functions shape, number, and degree of overlap is arbitrary. The Gaussian function is

selected to allow for further tuning of the output membership function parameters in the

Mamdani-type neuro-fuzzy network if required in the online learning stage. The

number of the output membership functions can be regarded as the degree of precision

prescribed for the model. The higher this number is; the higher should be the accuracy

of the created rule set, however the number of rules will also be increased. This number

79

therefore gives the user a degree of control over the size and precision of the model to

be created.

H(x)

1

Figure (3.6). Selected output membership functions.

Each example (E) (input record) is described in terms of a fixed set of m (no. of inputs)

attributes (A 1, A2, ... , Am) (equivalent to linguistic variables) and by a class (output)

value (Ce). A range of values ([V̂ m,]) (equivalent to linguistic membership

functions) is assigned for the z'1*1 attribute. Each created rule is composed of a number of

conditions on each (or some of the) attribute(s) (Cdt,) and by its class value (Cmie)•

Each rule can be represented as follows: Cdt] a Cdt2 a ... /v Cdtm—> Cmie• Each

condition takes the form [FT, <Al <] for continuous attributes z.

In order to create a rule set this algorithm incrementally employs a specific rule

forming process until all examples are covered. Three particular steps of this process

are of interest for the development of the fuzzy model.

The first step in this process is to select a seed example (SE), which is the first example

in the list not covered by previously created rules. The second step consists of

80

employing a specific search process to create a consistent and general rule covering the

(SE). The main feature of this search is that the conditions for continuous inputs are

created automatically during the rule forming process. The continuous inputs are not

pre-discretised (not divided into membership functions). The result is a rule where all

continuous conditions will take the form [< A1 <]. These conditions might

cover large areas in the example space. Thus, as the third and final step, the algorithm

employs a post-processing technique that reduces the coverage of some continuous

attribute conditions to the training data range only. This avoids the coverage of

“unknown” areas and reduces the presence of overlapping rules.

3.3.2.1. Seed Example Selection

In this covering algorithm, a (SE) is selected from among the examples not covered by

previously created rules. Then, the output class value (V ^ tput) (output fuzzy set) of

(SE) is used as target class for the rule to be created. For instance, for the Gaussian

membership function, the output membership function will be the fuzzy set (F s e (a, b,

c)) in which the membership degree will be maximum. In the particular case of 50%

overlapping membership functions, where the membership degree is equal to 0.5 for

two adjacent membership functions, only one of them is considered. Another problem

occurs, with a fuzzy rule, because there are various degrees for the coverage of an

example. In particular, one example might be covered and classified by a rule but its

output value may have a low degree of belonging to the rule output membership

function. This rule does not therefore properly represent the example. Thus, the “fuzzy

algorithm” needs to create another rule for this example. In dynafuzz, the (SE) selected

81

is the first example in the training list that is not covered by at least one previously

created rule where the degree of belonging of its output value to the rule output fuzzy

set (Fse (a,b,c)) is a maximum and > 0.5.

3.3.2.2. Formation of a Rule

During the selection of (SE), the targeted fuzzy set has been identified (F s e) - Thus, for

the discretisation of the example output values, it is proposed to classify as positive

examples (belonging to the target class), those having an output value belonging to

(F s e) with (j J > 0) and to classify the remaining examples as negative.

The search mechanism searches for rules that cover as many examples as possible from

the target class and at the same time excludes examples belonging to other classes. The

rule formation starts with a condition excluding the closest example not belonging to

the target class. The assumption is that this also leads to the exclusion of the maximum

number of other examples not belonging to the target class. To find the closest

tViexample, a measure is used to assess the distance between any two examples for the i

continuous attribute as follows:

D,example 1 &example2

/ \ 2 Attr Value E x .l - A ttr_Value_Ex.2
Max Attr Value - M in A ttr Value

(3.3)

where £ is the sum over all continuous attributes in the examples, Attr_Value_Ex.l
c

and Attr_Value_Ex.2 are the values of zth continuous attribute in these two examples,

82

and Max Attr Value and Min_Attr_Value are the maximum and minimum known

values for the zth continuous attribute.

Applying this distance measure, the closest examples not belonging to the target class

and covered by the rules formed so far can be found. Thus, in the next iteration the rule

forming procedure considers appending only those conditions to the rule that exclude

the closest examples.

For a particular uncovered example, the algorithm takes the closest example not

belonging to the target class and creates candidate conditions to exclude it. These

conditions are formed using attributes having different values for the considered two

examples. The format of the formed condition will be [(attribute name) > or < (the

attribute value of the closest example)]. For instance, if the attribute value of an

example for which a rule is being created is V=5 and the attribute value of the closest

example is V=10 then the resulted candidate condition will be [V < 10].

By applying this procedure, the algorithm handles continuous attributes generated from

random operation of the robot manipulator arm. Thus, there is no need to pre-process

the data in order to discretise the continuous input attribute data. The algorithm

identifies splitting points for each continuous attribute range during the learning

process.

83

At the end of the rule formation process, a rule is obtained belonging to the output class

positive. Each condition will takes the form [V{ < A1 < F2] for continuous attributes,

where V[and V[are continuous values included in the i continuous attribute range

3.3.2.3. Rule Post Processing

In the created rules, there is no need to account for overlapping and coverage of

“unknown areas”, as the fuzzy logic representation permits the handling of such

uncertainties. In addition, it makes the transformation of condition ranges into

membership functions more straightforward. Also, the use of the generated rules in the

Mamdani-type neuro-fuzzy network will tune the obtained model to the most

appropriate one.

After the rule forming process, the class of the rule (positive) is replaced by the

targeted fuzzy set (F s e) and each continuous conditions is transformed into a fuzzy

condition using the following method in order to obtain the final fuzzy rule.

• For continuous attributes, considering the condition [F/ < A l < F2] it is transformed

into a membership function F(a, b, c):

If F/ and V‘ exist; a= V ' ; b = V ' ; and c = (F2' + V')/2.

If V/ is equal to -oo; a= -oo; b= F2 ; and c = F^in, which is the minimum known

value of the attribute.

84

If V[is equal to +0 0 ; a = V{ ; b = +0 0 ; and c = F^ax, which is the maximum

known value of the attribute.

These values are then used to generate equivalent Gaussian and sigmoidal

membership functions to be used in the Mamdani-type neuro-fuzzy network as

shown in figure (3.7).

It can be noted that this algorithm allows the automatic creation of different

membership functions for each continuous attribute in each created rule during the rule

forming process.

H(x)

Figure (3.7). Types of generated input membership functions.

3.3.3. Inverse Kinematics and Inverse Dynamics Rules

To model the inverse kinematics of the robot arm in a Mamdani-type neuro-fuzzy

network using the data recorded, a fuzzy rule-base that represents the inverse

kinematics of the robot arm is generated first using the inductive learning rule

85

generation algorithm explained. Equation (3.4) expresses an approximate relation

between the desired Cartesian position trajectory of the end-effector, the required joint

angles trajectories to achieve this, and the current joint angles of the robot manipulator,

et*' s f (/ * ' , / * ' , /* ' , e,t e2\ e„k) (3.4)

where k is the sampling interval, i = (1,2,..., n), n is the number of links, (x, y, z) are the

end-effector Cartesian position, and 6 is the joint angle.

Using equation (3.4) in addition to the data collected for full range operation of the

joints from the virtual model for the first three links of the Puma 560® robot arm, an

incremental-based model can be generated. Three sets of fuzzy rules can be generated

representing the robot inverse kinematics. Each of these sets expresses a joint angle

trajectory required to achieve the end-effector Cartesian trajectory as a function of this

Cartesian trajectory and previous recorded values of the joint angles forming a 6 -input

single-output relationship. The entire training set is composed of 28,821 examples. The

outputs have all been decomposed into 11 Gaussian membership functions. The

resulting model is composed of 1 1 rules for the prediction of 0 i, 1 2 rules for the

prediction of 0 2 and 16 rules for the prediction of 0 3 , totaling 39 rules for performing

the prediction of all outputs compared to more than eight hundred rules using Wang

method [Wang and Mendel, 1992a]. Wherever an input variable is not mentioned in a

rule, it means that this rule has no dependency on that particular input value. Each pair

of margin values represent the generated membership function for that particular input

as explained before.

86

Another rule-base representing the inverse dynamics of the robot arm is also generated.

Equation (3.5) expresses an approximate relation between the desired joint angles

trajectories of the robot arm, the required joint torques to achieve this, the current joint

angles, and the current torques of the robot manipulator,

T k+I = / (T / , . . . , T„k, e,k+1,..., ek+', 9 h ... 0n, v / +/, v , v„k) (3.5)

where T is the joint torque and v is the joint velocity. Using equation (3.5) in addition to

the data collected for full range operation of the joints from the virtual model for the

first three links of the Puma 560® robot arm, three sets of fuzzy rules can be generated

representing the robot inverse dynamics. Each set expresses a joint torque trajectory

required to achieve the joint angle trajectories as a function of these trajectories and

previous recorded values of these trajectories forming a 1 2 -input single-output

relationship. The entire training set is composed of 39,821 examples. The outputs have

all been decomposed into 11 Gaussian membership functions. The resulting model is

composed of 85 rules for the prediction of Ti, 92 rules for the prediction of T2 and 51

rules for the prediction of T3 , totaling 228 rules performing the prediction of all outputs

compared to more than fourteen hundred rules using Wang’s method.

3.4. Proposed Neuro-Fuzzy Network (DYNAFUZZNN)

The proposed neuro-fuzzy network is a feedforward connectionist representation of a

Mamdani-model based FLS so that the transparency of the fuzzy system generated so

far is maintained. The neural network in fact employs time-delayed feedbacks from the

87

output layer to the input layer to represent the current state of the network output being

feedback to the network input. Furthermore in order to achieve a suitable trade-off

between the transparencies of the neurofuzzy system, the ease of mathematical

analysis, and the effective application of back-propagation learning algorithm, the

network has to employ differentiable alternatives for the logic-min and logic-max

functions to implement its decision-making mechanism. For this purpose, a

differentiable alternative of the logic-min function termed softmin and a differentiable

alternative of the logic-max function termed softmax are presented [Estevez and

Nakano, 1995; Shankir, 2001]. Using these two differentiable functions to implement

the network decision-making mechanism allows a more accurate calculation of the

partial derivatives, which are necessary for the back-propagation learning algorithm. In

this way, online tuning for rule degree of confidence and for membership functions can

be performed. The selected Gaussian and sigmoidal membership functions are

differentiable and their parameters (a,b,c) can be tuned through back-propagation

algorithm.

3.4.1. Softmin and Softmax Functions

Mamdani-model based FNN are the most commonly used FNN, but the parameter

learning using BP through these networks is not accurate enough due to the chosen

non-differentiable min/max functions. A few attempts have been presented to introduce

analytical differentiable alternatives for the logic-min and logic-max functions [Yuan et

al., 1992; Berenji and Khedkar, 1992]. In [Berenji and Khedkar, 1992] an analytical

approximation of the logic min function termed softmin, is given by:

88

where, at is the ith argument and the parameter £ controls the softness of the softmin

function. As £ -> oo, softmin function -> logic min. However, for a finite £ softmin

becomes a multi-argument analytical approximation of the logic min function. [Estevez

and Nakano, 1995] introduced the multi-argument softmax function used to

approximate both the logic-max and logic-min function with a proper selection of

parameters. Furthermore, based on De Morgan's law, which is valid for set theory and

can be preserved for fuzzy sets, [Pedrycz, 1993; Shankir, 2001; and Zhang, 1996]

presented a multi-argument alternative of the logic-max function termed softmax as a

logic complement of the above mentioned sofmin function:

n

softmax(aj,i = l ,2, . . . ,n)= 7 - - ^ (3.7)

i=1

where a t = . and a t = 1 - at
I

These two differentiable functions will be utilized as the inference mechanisms within

the neuro-fuzzy networks representing the model for both inverse kinematics and

inverse dynamics of the Puma 560® robot manipulator.

3.4.2. DYNAFUZZNN Proposed Neuro-Fuzzy Network Structure

Figure (3.8) presents the structure of the proposed neuro-fuzzy network used for both

inverse kinematics and inverse dynamics modelling. The network consists of a six-

layer feedforward connectionist representation of a Mamdani-model based FLS,

representing a Mamdani-model based RFNN. The network employs a full time-delayed

feedback from output layer to input layer. This representation is due to the fact that the

generated rules relating the output of the fuzzy system to the inputs which include the

current state of the system, i.e. the previous time sample network output.

The network structure is similar to other Mamdani-model based FFNN with the first

four layers have the same structure as the first four layers in Lin and Lee’s FFNN [Lin

and Lee, 1991] and in Berenji and Khedkar’s FFNN [Berenji and Khedkar, 1992]. The

difference is in the representation of the defuzzification function, which is represented

using the last two layers (layer five and layer six). In Lin and Lee’s FFNN and Berenji

and Khedkar’s FFNN the defuzzification function is represented using the last layer

only (layer five). The reason for the chosen representation is to introduce adjustable

scaling factors at the output layer in order to be able to tune the output membership

functions during online adaptation.

In general, a node in any layer of the network has some finite fan-in of connections

represented by weight values from other nodes and fan-out of connections to other

nodes. Associated with the fan-in of a node is an aggregation function / that serves to

combine information, activation, or evidence from other nodes.

90

y i yi

L a y e r 5 &

L a y e r 6

O u tp u t n o d e s

(d e fu z z i f ic a t io n)

L a y e r 4

O u tp u t term n o d e s

L a y e r 3

R u le n o d e s

(In fe r e n c e)

L a y e r 2
In p u t term n o d e s

(F u z z if ic a t io n)

L a y e r 1

In p u t n o d e s

Figure (3.8). The structure of the proposed neuro-fuzzy network.

Using the same notation as in [Lin and Lee, 1991], the function provides the net input

for such a node as follows:

itp u t
ime-
dayed
eedback

91

input — / y
net

 ̂ k k k . ^
U j >u2 , > M p>

k k k{ W j , W 2, , W p J
(3 .8)

where p is the number of fan-ins of the node, w is the link weight associated with each

fan-in, u is an output of a node in the preceding layer associated with the fan-in and the

superscript k indicates the layer number. A second action of each node is to output an

activation value as a function of its net-input,

output = of = ak(f k j (3.9)

where a ^ () denotes the activation function in layer k. The functions of the nodes at

each of the six layers of the proposed network are described next.

Layer 1: Nodes at layer one are input nodes, which represent input linguistic variables.

Layer one contains n nodes (n=6 for inverse kinematics and n=15 for inverse

dynamics), which receive a crisp input vectorX = (;c/,.•••, xn) • The nodes in this layer

simply transmit input values directly to the next layer. That is,

f \ = u ,i = x i and a\ = f \ (3.10)

From the last equation, the link weights at layer one are fixed to unity.

92

Layer 2: Nodes at layer two are input term nodes which act as membership functions to

where A(x) is the term set of x, that is the set of the generated membership functions for

previously. Layer two therefore accommodates n independent term sets, where each

term set corresponds to an input xz and is partitioned to mz terms representing input

membership functions. The function of each node j in a term set i is to calculate the

degree of membership of the input xz with respect to the membership function

associated with the term set A.(xj) according to the specific equation of this

membership function:

where my and cry are, respectively, the centre (or mean) and the width (or variance) of

cry, and fly all calculated from the (a,b,c) parameters generated for each membership

represent the terms of the respective n input linguistic variables. An input linguistic

variable x in a universe of discourse U is characterized by A(x) = {a ^ A I , . . . , v4*},

each input derived from inductive learning of the linguistic values of x, as explained

and aij = e ^ lj f or Gaussian functions

2 1and au = y fa r L eft sigm oidals (3 .11)

1 + / «

2 1and aij = y fa r R ight sigm oidal functions
\ + e f <J

the Gaussian function and fiy is the characteristic value for the sigmoidal function, my,

function from the offline inductive learning stage. Hence a link weight at layer two wjj

93

can be interpreted as an adjustable free parameter of the input membership function.

The tuning of this parameter (link weight) has the effect of tuning the membership

function parameters (a,b,c).

Layer 3: The nodes at layer three are rule nodes which have been generated during the

offline inductive learning stage explained previously; where each node associates one

term node from each term set to form a condition part of one fuzzy rule if it is part of

that rule. Hence, the rule nodes should perform the logic min operation if the min

interpretation of the sentence connective "and" between the antecedents of a fuzzy rule

is employed, or the algebraic product if the product interpretation of the sentence

connective "and" is employed. In the proposed neuro-fuzzy network, the min

interpretation is employed; consequently the logic-min function is replaced by the

softmin function. Therefore the function of the rth rule node using softmin can be

written as follows:

f l = softmin (ulul uq)= —q--------
(3-12)

1=1

and a 3r = f l

where r = and R is the number of rules or rule nodes in layer three , q is the

number of inputs for that particular rule, w, is the i input to layer three, and £ is an

index representing the softness of the softmin function. However, in this layer, there are

no link weights to be adjusted because all the link weights are fixed to unity to transmit

only the membership degree of the linguistic input to the rule interpretation mechanism.

94

Layer 4: The nodes at layer four are output term nodes which act as membership

equal to 11 in this case, that is the set of the class membership functions for each

output, as explained previously, representing the linguistic values of y. Consequently

layer four accommodates three independent term sets, where each term set corresponds

to an output y t and is partitioned to 11 terms representing output membership functions.

The nodes in layer four should perform the logic-max operation to integrate the fired

rules that have the same consequent. In the proposed neuro-fuzzy network the logic

max function is replaced by the softmax function. Therefore, the function of each term

node j in the output term set i, can be written as follows:

where p is the number of rules sharing the same consequent (the same output term

variables, i.e. two nodes for each output variable. The function of these two nodes is to

calculate the denominator and the numerator of an approximate form of Mean o f

functions to represent the output terms of the respective / linguistic output variables (in

this case 1=3). An output linguistic variable y in a universe of discourse W is

characterized by F(y) = {fJ, , F 2y Fy 1}, where F(y) is the term set of y which is

n

f * = softm ax (u 4i , u42 ,, u p) = 1 - ^
(3.13)

i=1

and a \ = f]j

node), u, is the ith input to layer four, and ^ is an index representing the softness of the

softmax function. Hence the link weights at layer four are fixed to unity.

Layer 5: The number of nodes at layer five is 2/, where / is the number of output

Maxima (MOM) defuzzification function [Saade, 1996; Runkler, 1997] for each output

variable. The functions of the two nodes of the ith output variable are described as:

f i r a i r m u a n d a 5n i= f 5ni (3.14)

f 5d = a i j and a 5d i= f 5di (3.15)

where f 5 . and f ̂ . are respectively the node functions of the numerator and the

denominator nodes of the ith output variable. is the centre (or mean) of the Gaussian

function of the f h term of the ith output linguistic variable y t. Layer five employs 21

weight vectors, with two weight vectors for each output variable. The first link weight

vector connects the numerator node of the ith output to the term nodes in its term set and

its components are denoted by w5nij • Each component of this weight vector represents

the centre (or mean) of the membership function of the j th term of the term set of the ith

output variable. The second link weight vector connects the ith output denominator node

to the term nodes in its term set and its components are denoted by w5dij-. Hence the link

weights at layer five are fixed to unity.

Layer 6: The nodes at layer six are defuzzification nodes. The number of nodes in layer

six equals the number of output linguistic variables. The function of the ith node

corresponding to the ith output variable can be written as follows:

^ \V ■ * C l . JC
f i = — ---- and ctf = f t and y t = af (3.16)

K i * a di

96

where w 6ni and w 6di are layer six link weights associated with each output variable

node. These two link weights represent a scaling factor of an output variable.

3.4.3. Neuro-Fuzzy Network Parameters Tuning

Following the network construction phase, the network then enters the parameter

learning phase to adjust its free parameters through online adaptation. The network

adjustable free parameters were selected to be centres (mys) of the output membership

functions of the term nodes in layer four as well as the link weights at layers two and

six. The supervised learning technique is employed along with the back-propagation

learning algorithm to optimally tune these parameters. The problem for the supervised

learning can be stated as: Given n input patterns xrft), i = 1 n, and I desired output

patterns yrft), i = 1,.... ,/, the fuzzy partitions, and the fuzzy rule base, adjust the

network free parameters optimally. In the parameter learning phase, the network works

in the feedforward manner, that is the goal is to minimize the following error function:

where y(t) is the desired output, and ynet(0 is the current network output. For each

training data set, starting at the input nodes, a forward pass is followed to compute the

activity levels of all the nodes in the network. Then, starting at the output nodes, a

backward pass is followed to compute the rate of change of the error function with

respect to the adjustable free parameters for all the hidden nodes. Assuming that (w) is

the adjustable free parameter in a node, then the general learning rule can be written as

follows:

(3.17)

97

A w = -
dE_
dw

(3 .1 8)

w{t + l) = w(t) + r/Aw (3.19)

where 77 is the learning rate, then using the chain rule, the partial derivative can be

defined as follows:

dE_ = dE d (y (t) -y m (t))
dw d (y(t)-y„ J t)) dw

_ dE d f _ dE da d f
d f dw da d f dw

(3.20)

Using the last learning rule, the calculations of the back-propagated errors as well as

the updating of the free parameters can be described next starting at the output nodes:

Layer 6: Using Equation (3.20) and Equation (3.16), the adaptive rule to tune the

weights of layer six is derived as follows:

d E _ d E d a f d f]

d w 6
ni d a f d f 6 d w 6 .1 J i m

{ y i ^ - y n e M)

(3.21.a)
a ni

w di*a di

W6„ , (t + l) = W6ni(t) + T]t (3.21 .b)

98

dE

dwdi d a f Of? d Wdi

- C K O - j w M) *
—W^ */75 • r m u ni

(wd ,)2 * a 5dl

(3.22.a)

™ d i (t + \) = W6di (t) + T] 6
dE

dw
(3.22.b)

di J

where 775 is the learning rate of the link weights at layer six. The propagated error from

layer six to the numerator and the denominator nodes at layer five are derived as

follows:

6 SE
8m =

d a 5ni

c 6 _
Qdi~

BE

d E d a f d f *
— a t e ____ i— sk____ L_ —

d a f d f 6. d a 5ni

-{y^-ynetit))

 _ dE t d a f t d f 6

d a di d a f d f f d a 5di

- { y i ^ - y n e M)

W6.sjc____m
6 sk 5

w di * c i di

—W6- * /75 •m u m

Wdi(4)'

(3.23.a)

(3.23.b)

Layer 5: At layer five, no adjustment is required for the link weights connected to the

denominator nodes, while an adjustment is required for the link weights w ^ j ' s which

represent the centres my’s of the output membership functions. Consequently, using

99

Equation (3.14) and Equation (3.20), the adaptive rule to tune the free parameters layer

five is derived next. The adaptive rule to tune the centres of the output membership

functions can be derived as follows:

6 * 4

d<& d f * , d m ‘J '
(3.24.a)

(- d E ^

V m ij
(3.24.b)

where r/5 is the learning rate of the adjustable parameters (my’s) at layer five. The

propagated error from layer five to the j th node in the ith term set in layer four is derived

as follows:

4 =

•5
ni

d a 5ni d f 5ni d a t
+

d E d
 * ®di d f

d ®di d f 5di

5
__di
d a t

(3.25)

Layer 4: No adjustment is required for the link weights of layer four. Only the error

signals d i s need to be calculated and to be propagated to a rule node r in layer three.

Each one of these error signals is a summation of L propagated error signals S i), one

error signal from a specific node j of each term set i, where i = 1 L and L is the

100

number of output variables (or term sets). Using Equation (3.20), the error signal d i is

calculated as follows:

S r = z si*
da* d f 4. a u t J V

d f 4. d a l
J V

(3.26)

Then from Equation (3.7) and Equation (3.13)

dai

d f 4 J v
= 1 , a nd

d f l J v
d a l

1 - C a l) * e - ^ a 3r * J ^ e -C {u ljm) + ^ * e ~C a r *
m=1 m=1

(~ 4 ^
M jjm\ J y

V/w=l

r \ \ 2
- 4
U,ijm

J

if the j th term node at the itn term set at layer four is connected to the rm rule node at

layer three, otherwise,

■th th

d f i j

 T = °
ddr

h ~4where p is the number of rules sharing the same / output term node, and Ujjm is the

complement of the mth input to the j th output term node at the ith term set at layer four.

101

Layer 3: Similarly to layer four, no adjustment is required for link weights at layer

three. Only the error signals d]j s need to be calculated and propagated from the rth

rule node at layer three to the j th term node at the ith term set at layer two. Each one of

these error signals is a summation of p propagated error signals Sijm from layer three,

where m = l , . . . ,p , and p is the number of rules which share the same j th term node at the

same ith input term set at layer two. Using Equation (3.20), the error signal Sy can be

calculated as follows:

A 4 *0 r~m
d a 3 d fu m * J m

d fJ m
lay

(3.27)

Then from Equation (3.6) and Equation (3.12),

d f

d fJ m
da} j

(l ~ C a y) * e ^ a U*'^Je £«mi + g * e ^ a U*'^lu l,i* e ^ u
’ /=! i=l

mi

N
q humi

3 ^ 2
£ umi

i=1

if the j th term node at the ith input term set in layer two is connected to the rule node m

at layer three, otherwise,

102

d fJ m

dalj
= 0

J

where N is the number of input term sets and umj is the ith input to the rule node m in

layer three.

Layer 2: Using Equation (3.20) and Equation (3.11) the adaptive rule to tune the

weights at layer two is derived as follows:

d E d E

d w f j

da?- d f l
 t a v t J lJ

d 4 d f l d 2

3 d a j j d f y
S i j * — ~ *

Wiu d f v
d w f j

(3.28.a)

w f j (t + 1)
f - d E f

K d w f j j
(3.28.b)

d a f
where o ls calculated as follows:

f U

-e f l

- -e
A \

1+ / v
V

-e

r f 2^l + / v
V

fo r Gaussian functions

fo r Left sigmoidal functions

fo r Right sigmoidal functions

103

dfiJ
and r is calculated as follows:

dwfj

a / ((* ! * « /) - in
fe r Gaussian functions

P j
7 * 1

~ / Clj

P»

fo r Left sigmoidal functions

fo r Right sigmoidal functions

where 772 is the learning rate of the link weights in layer two. The propagated error from

layer two to the ith input node at layer one is derived as follows:

s h
dE d a y d f

___________ j|e — _____________

d a y d f d a }

1 D f l a J

(3.29)

where
d f lv .
da)

is calculated as follows:

in
fo r Gaussian functions

l * w l

Pa

Ph

fo r Left sigmoidal functions

fo r Right sigmoidal functions

104

ddjj
and r is calculated as mentioned above.

3 f l

Layer 1: The nodes in this layer just transmit input values to the next layer directly

without any processing. So, the link weights at layer one are fixed to unity and no

tuning is required in this layer.

Following the construction phase and the learning phase, an online tuning process is

performed to obtain the optimum mapping for the inverse kinematics and inverse

dynamics of the robot manipulator.

3.5. Puma 560® Manipulator Inverse Modelling Results

The modelling results for some random joint angle trajectories for the robot inverse

kinematics compared with the real outputs and the filtered errors are shown in figure

(3.9) through figure (3.14).

Also, the modelling results in per-unit (normalized) of the maximum joint torque for

some random joint trajectories executed for the robot inverse dynamics compared with

the real outputs and the filtered errors are shown in figure (3.15) through figure (3.20).

It can be seen from the modelling results that the suggested modelling method is very

effective resulting in minor errors.

105

180

120

60

0

-60

120
N etw ork O u tpu t Target O utput

-180
T im e S a m p le

Figure (3.9). Results for link-1 angle prediction.

60

-40
C/3

8
feb -90<DQ

-140

-190
Netw ork O u tpu t Target O u tpu t

-240
T im e S a m p le

Figure (3.10). Results for link-2 angle prediction.

240

190

140

-10

Netw ork O u tp u t Target O utpu t
-60

T im e S a m p le

Figure (3.11). Results for link-3 angle prediction.

1 0 6

L ink-1 E rro r

T im e S a m p le

Figure (3.12). Results for link-1 angle error.

50
40 -
30 -
20 -

8 1 0 -

g, 0 -
^ -10 -

-20 -

-30 -
-40 -I
-50

I I . I. I . .I

T I I rl u T

■ L in k -2 E rro r

T im e S a m p le

Figure (3.13). Results for link-2 angle error.

50
40
30
20

8 10
w> 0
 ̂ -10

-20
-30
-40
-50

l4 .inwirNranmiiii
Liii1sm tiii ,.,;,vi, ifliiiWHM

■ L in k -3 E rro r

T im e S a m p le

Figure (3.14). Results for link-3 angle error.

107

0.75

0.5

0.25

CL -0.25

-0.5

-0.75
fetwork O u tpu t Target O u tpu t

T im e S a m p le

Figure (3.15). Results for link-1 torque prediction.

0.75

0.5

0.25

-0.25

-0.5

-0.75
N etw ork O u tpu t irget O u tpu t

T im e S a m p le

Figure (3.16). Results for link-2 torque prediction.

0.75

0.5

0.25

-0.25

-0.5

-0.75
N etw ork O u tpu t Target O utpu t

Time Sample

Figure (3.17). Results for link-3 torque prediction.

1 0 8

0.2

0.15
0.1

0.05

0
-0.05

- 0.1

-0.15
- 0.2

Link-1 E rror

T im e S a m p le

Figure (3.18). Results for link-1 torque error.

c5JL
J!

0.2

0.15
0.1

0.05

0
-0.05

- 0.1

-0.15
- 0.2

■ Link-2 E rror

T im e S a m p le

Figure (3.19). Results for link-2 torque error.

0.2

0.15

0.1
0.05

Q
pi 0
pH-0.05

-0.1
-0.15

-0.2
■ Link-3 E rror

Time Sample

Figure (3.20). Results for link-3 torque error.

109

3.6. Summary

This chapter proposed a new solution for the problem of both inverse kinematics and

inverse dynamics modelling of robotic manipulators for further implementation in

inverse-model based robotic control systems as will be explained in later chapters. The

main aim was to benefit from the use of inductive learning techniques to develop fuzzy-

type rule sets for both inverse kinematics and inverse dynamics from numerical

observation data collected from the robot during random trajectories operation. These

rule sets were then arranged in a Mamdani-type neuro-fuzzy set of networks with both

a differentiable inference system and differentiable membership functions for further

online tuning of the obtained fuzzy models during inverse control. The results showed

that the method was successful for both inverse kinematics and inverse dynamics

modelling of the robot manipulators.

110

CHAPTER 4

Neuro-Fuzzy Joint-Based Control of Robotic Manipulators

Traditional proportional integral derivative (PID) controllers can be successful for

systems that can be modelled relatively precisely by mathematical equations. Various

combinations have been widely used for industrial processes due to their simplicity and

effectiveness. PID controllers can be effectively used for first- and second-order linear

systems, but usually cannot be employed for higher-order and nonlinear systems.

The control of a multi-input multi-output (MIMO) plant is a difficult problem when the

plant is nonlinear and time varying and there are dynamic interactions between the

plant variables. Robot manipulators, with two or more joints handling a changeable

load, are of such type of systems. Conventional methods of designing controllers for a

MIMO plant such as a multi-joint robot generally require, as a minimum, an accurate

knowledge of the form of a mathematical model for the plant. In many cases, the values

of the parameters of the model also need to be precisely known.

A model-based computed torque controller gives good control response if the dynamic

model of the robot is available. For robot manipulators, it is almost impossible to

identify precisely such a model and its parameters. Moreover, during operation, the

dynamics of the robot may change significantly due to varying loading conditions. As a

result, it is difficult to obtain an accurate mathematical model to allow computed torque

i l l

controllers or other model-based controllers to be accurately applied. This led to so

called model-free control techniques.

The performance of model-free control techniques relies on incorporating a control

scheme which is able to adapt (adaptive control) to uncertainties in the system dynamic

parameters and to external disturbances. Neural Networks, which can learn the forward

and inverse dynamics behaviour of complex plants, offer alternative methods of

realising MIMO controllers capable of adapting to environmental changes. Neural

Network controllers have been used extensively for adaptive robotic manipulator

control. Most of the schemes utilizing Neural Networks use different learning

techniques to adjust the inverse dynamic model of the robot manipulator contained in

the Neural Network. In theory, the design of a Neural Network based control system

should be relatively straightforward as it does not require any prior knowledge about

the plant. However, practical problems regarding the Neural Network structure to be

adopted, the number of input units and the training procedure, including training

patterns, require investigation. This uncertainty regarding the appropriate network

structure can result in large discrepancies between network output and desired output at

the early stages of learning. This error can increase the learning time and convergence

cannot be guaranteed.

In the last few decades, much research effort has been directed at the design of

intelligent robotic controllers using fuzzy logic. These schemes provide nonlinear

behaviour that is determined exclusively by the designer, lower sensitivity to plant

parameter variations than Neural Network controllers, and simplicity of

112

implementation. Fuzzy control has been used for direct feedback control of robot

manipulators [Erbature et al., 1995; Lin, 1993; Moudgal et al., 1995; and Tang et al.,

2001]. In these examples, no adaptation for the rule base or membership functions of

the fuzzy controller is carried out online, and only controller gain is modified in

relation to link speed and joint errors within specific predetermined design parameters

[Breedon et. al., 2002]. Although the idea of using fuzzy controllers for robotic

manipulators was introduced in early 1990s, almost no systematic algorithm or detailed

design procedure can be located in the literature. For example, the shape and location of

the membership function for each fuzzy variable must be obtained using a heuristic (or

trial-error) approach. Also, when the human expert cannot easily express his knowledge

or experience in the form of linguistic “IF-THEN” control rules, it is not easy to

construct the control rules.

A fuzzy logic system has the ability to express control rules as a linguistic fuzzy

description but it has no learning capability. Neural Networks have the ability to

generalize and can predict new output data from new input data, in real-time, without

the need for a prior knowledge o f the plant model. The fusion of these two approaches

has the potential to produce a powerful intelligent control system having the features of

adaptation and learning. Neural Networks are associated with the theory of polynomial

function approximation, whereas fuzzy logic is based upon symbolic and linguistic

processes expressed in an interactive rules base, with each rule fired with varying belief

or support. The belief or confidence vector associated with a fuzzy logic rule base is

equivalent to a weight in a Neural Network. [Er and Gao, 2003] presented a robust

adaptive fuzzy neural controller (AFNC) suitable for motion control of multilink robot

113

manipulators. The proposed controller was of a self-organizing fuzzy Neural Network

structure, where fuzzy control rules are generated or deleted automatically according to

their significance to the control system and the complexity of the mapped system and

no predefined fuzzy rules are used.

As mentioned before, in most inverse model control techniques, a feedback controller

(servo controller) is used along with the Neural Network feedforward controller to

improve the disturbance rejection capabilities of the control system. As learning

proceeds, the error signal will reduce and the role of the feedforward neural controller

increases while that of the feedback controller decreases [Pham and Yildirm, 1999].

Although the total torque acting on the robot is the sum of the feedback torque and the

feedforward torque, these two play very different roles in the robot control. The

feedback torque is used for clumsy but robust control at an early stage of learning,

while the feedforward torque is necessary for smooth control and fast movement of the

robot [Miyamoto et al., 1988]. Usually conventional P, PD, or PID controllers are used

as the feedback controller in many reported works concerning Neural Network control

of robot manipulators [Akbas and Esin, 2003]. The use of two feedback controllers in

addition to the feedforward neuro-fuzzy controller is presented in [Peng and Woo,

2002]. The first feedback controller is a fuzzy-PD-like controller implemented in the

form of a Neural Network with 15 rules derived from experience. The control strategy

is to train this controller to approximate the optimum weights representing the optimum

membership functions for the output torque. This is accomplished by using the data

pairs collected from the system with a computed torque controller to train the Neural

Network. This controller is trained offline and is kept fixed whilst online. The second

114

feedback controller is a sliding-mode controller calculated from the position and

velocity errors of the robot joints. This controller is divided into two cascaded parts.

The first part is a function of the position error and the velocity error, and the output of

this function is used to train the feedforward neuro-fuzzy controller online. The second

part is a sign function of the first part with a small constant gain representing the

approximation error. The output of this part is used to make the tracking errors

approach zero. The position and velocity references are chosen to be the input of the

feedforward controller. [Peng and Woo, 2002] presents a complex control technique

that depends on data collected from a computed-torque controller to train one of the

feedback controllers. The structure of the main feedforward controller and the use of

the computed-torque controller however are not clear.

This Chapter deals with the problem of the control of robot manipulators to track an

arbitrary reference trajectory under the conditions of:

• A time-varying, nonlinear, multivariable, and coupled plant.

• An unknown plant and load model.

The main aim is to benefit from the approximate inverse dynamics neuro-fuzzy

networks developed in Chapter (3) to achieve the required control. To do so, a

nonlinear fuzzy-PID-like incremental controller is incorporated as a feedback servo-

controller in addition to the developed network [Li, 1998; Mizumoto, 1995; and

Yildirim et. al., 1996]. Incorporating dynafuzznn in the forward path controller gives

the control system the proper structure and model parameters very close to those of the

accurate robot inverse model. This in turns helps to reduce the convergence time of the

115

controller during online learning. For this purpose, two main parts are employed, the

first is the neuro-fuzzy inverse dynamics of the robot manipulator developed at the

offline stage, and the second is a fuzzy-PID-like incremental nonlinear controller. The

direct inverse Neural Network controller is one of the several types of neuro-controllers

which have been reported recently. It utilizes an inverse system model which can be

directly cascaded with the controlled system. This approach relies on the fidelity of the

inverse model used as the controller. Generally, serious problems arise due to the lack

of robustness as a result o f the absence of the feedback. This problem can be overcame

to some extent by adjusting the parameters of the inverse model online, although the

plant can still loose robustness during the control phase since it depends on the initial

weight matrix of the Neural Network [Sasaki et. al., 1997]. Another approach to

achieving an inverse Neural Network controller which aims to overcome this problem

is known as feedback-error learning controller (specialized inverse learning controller).

This scheme is based on using a workable traditional controller to stabilize the plant

and on helping the Neural Network learn in order to provide precise control. A

feedback-error learning control technique is used to form an efficient adaptive neuro-

fuzzy controller. This technique differs from direct and indirect learning in that the

controller no longer learns from input/output data pairs but from a direct evaluation of

the network accuracy (during actual operation) with respect to the output of the plant.

In this way, the feedforward controller will adapt its parameters (neuro-fuzzy network

weights) to compensate for model changes during operation resulting from the attached

load. The feedback controller response to the system error is used to tune the

feedforward controller online. The suggested controller structure differs from previous

work in two important aspects. The first is the use of the developed dynafuzznn

116

algorithm as the feedforward controller to achieve the proper controller structure. The

second is the use of the fuzzy-PID-like incremental feedback controller to generate the

nonlinear learning signal. Using a variable learning signal with variable feedback gain

from a conventional PD servo controller has been reported to be successful in

[Nascimento and McMichael, 1991]. This idea of variable feedback gain conventional

PD servo controller motivated the idea of utilizing the fuzzy-PID-like incremental

feedback controller to generate a nonlinear (variable gain) learning signal.

The remainder of this Chapter is organized as follows. Section 4.1 presents the

proposed controller structure and the suggested fuzzy-PID-like incremental feedback

controller. Section 4.2 explains the feedback-error learning scheme. Section 4.3

describes a comparative study of the simulation results for the developed controller

while controlling the Puma 560® virtual model explained in chapter (3). Section 4.4

presents a summary for the Chapter.

4.1. Proposed Controller Structure

The structure of the proposed control system as shown in Figure (4.1) resembles the

additive feedforward control that presented in [Craig, 1996] in some aspects. It consists

of a feedforward path controller in addition to a feedback path controller. The net

control action applied to the joints of the robot arm is the sum of the output from the

feedforward controller and the output from the feedback controller. There are two

differences in the proposed control system compared with that presented in [Craig,

1996]. The first is that a new nonlinear fuzzy-PID-like incremental controller is

117

adopted as the feedback servo-controller instead of the conventional linear PD

controller. The second is that a new adaptive feedforward neuro-fuzzy network

dynafuzznn developed in Chapter (3) is employed to incrementally approximate the

inverse dynamics model of the robot arm instead of the linearised mathematical model.

The feedback-error learning scheme described in Chapter (2) is used to tune the

forward path neuro-fuzzy controller online. The suggested feedback fuzzy-PID-like

incremental servo-controller provides a variable learning signal, which is necessary for

robotic systems [Nascimento and McMichael, 1991].

Backpropagation
Feedback-error

Learning

Online
\ Adaptation

dynafuzznn
Inverse

Dynamic
model for the

robot arm

Robot
Arm

FPID Servo
Controller

Figure (4.1). Proposed controller structure.

118

4.1.1. Forward Path Neuro-Fuzzy Controller

This path as shown in Figure (4.1) is a neuro-fuzzy approximate model of the inverse

dynamics for the robot arm. The first step is to generate this model offline as explained

in Chapter (3). The approximate inverse dynamic network has to be trained online to

compensate for any external disturbances and/or reactions resulting from the attached

load on the manipulator. This online training scheme utilizes the feedback controller

response for adjusting the network link weights to adapt the network output so as to

reduce the feedback controller response to zero.

4.1.2. Feedback Path Fuzzy-PID-like Incremental Servo Controller

This controller is mainly utilized to deal with the disturbances from the external load in

early learning stages. The controller receives the error between the desired joint angles

and the actual ones. It generates a control action, which is combined with the action

from the feedforward controller to form the net torque (control action) applied to the

joints of the robot.

Conventional PID controllers’ output is proportional to an error, the time derivative of

the error and the integral of the error. The controller employs a proportional control

action to reduce the settling time and the rise time of the plant response, a derivative

control action to reduce the overshoot and the oscillations of the plant response during

transient conditions, and an integral control action to eliminate the steady state error

during steady state conditions. This controller is easy to implement and sufficient

tuning rules are available to cover a wide range of plant specifications. For example,

119

the well known Ziegler-Nichols [Ziegler and Nichols, 1942] tuning method can be

applied to estimate the controller gains based on the transient response characteristics

of a given system. Moreover, the available PID tuning heuristics are easy to understand

and implement for simple practical control problems. This controller is more effective

for linear plants than for nonlinear plants, due to its linear control policy. As explained

before, FLC have been used successfully in nonlinear control applications. They

generally provide nonlinear transfer elements for nonlinear control. The majority of

FPID applications belong to the direct-action FPID type where the direct-action FPID

is placed within the feedback control loop to compute the control actions through fuzzy

inference. Several direct-action FPID structures have been reported using one, two or

three inputs (error, rate of change of error and integral of error) [Mann et. al., 1999]. In

all of these direct-action FPID controllers, the derivative and integral functions are

performed quantitatively outside the FLC. They do not employ a FLS as a function

approximator to perform a fuzzy integral or fuzzy derivative function. In these

controllers, the FLS performs the nonlinear amplifications associated with the three

PID control actions. For this work a new Fuzzy-PID controller [Shankir, 2001] is

adapted with extended rules; this controller functionally performs fuzzy derivative and

fuzzy integral functions, so that no calculations are required outside the FLC. The

suggested fuzzy-PID-like incremental controller employs only two inputs (present and

previous errors), so that the design procedure is simpler. Each element of the fuzzy-

PID-like incremental controller can approximate the corresponding control function

with separate nonlinear gain using five fuzzy set partitions (NL, NS, ZE, PS, and PL)

for both input and output universes of discourses. The input universe of discourse of

each input variable is uniformly partitioned using fuzzy sets defined by symmetrical

120

triangular membership functions with 50% overlap to allow continuous approximation

of input signals as shown in figure (4.2). The left most and the right most membership

functions of the input universe of discourse are saturated to unity membership value in

the domain less than -2L and more than +2L respectively, where L is the distance

between two consecutive membership functions centres. The output universe of

discourse is uniformly partitioned using fuzzy sets defined by symmetrical triangular

membership functions with 50% overlap as shown in figure (4.3). The left most and the

right most membership functions of the output universe of discourse are both limited to

the output minimum and maximum range of operation in the domain less than -2L, and

more than +2L, respectively. These minimum and maximum ranges in addition to

controller gains are related to the maximum permissible servo torque applied to the

robot joints. L, represents the distance between two consecutive output membership

functions centres where, i is replaced by P, I, or D according to the proportional,

integral, or derivative control element respectively.

NS ZE PS PLNL

+L +2L-2L 0L

Figure (4.2). Input membership functions of fuzzy controller.

121

a //P, jA, or /jD

ZE PSNS PLNL

P, I, or D

m n̂ Value - 2 L p j 5 or D "Lp,!, or D 0 + L p 5i5 or D + 2 L p j or D MCIX Value

Figure (4.3). Output membership functions of fuzzy controller.

The proportional, derivative and incremental part of the integral control actions of a

fuzzy-PID-like incremental controller are mainly functions of the two present and past

error variables, err(kt) and e r r (k t - t) , or their normalized variables, e(kt) and

e (k t - t) . Consequently,

U piD(kt) = f P(e(k t),e(k t-t)) + f D(e(kt),e(kt-t))

(4.1)

+ t /7 (& /-/) + f j(e(kt},e(kt-ty)

where the three functions/ p if D, and / 7 are the proportional, derivative and

incremental integral functions to be implemented using the fuzzy logic controller and

Uj (kt-t) is the past output of the integral controller element. It was proved in [Wang and

Mendel, 1992] that fuzzy logic systems are universal approximators. Therefore, the

three functions in equation (4.1) can be approximated using three two-input Fuzzy

Control Elements (FCEs). Consequently, the outputs of the three FCEs are summed

together to form the proposed fuzzy-PID-like incremental controller as shown in figure

122

(4.4). In the following sections, the design of the operation rules and implementation of

the three functions in equation (4.1) in the form of three fuzzy control elements are

explained.

Proportional
FCE

> f

Integral
FCE

UD
Derivative

FCE

Figure (4.4). Structure of the fuzzy servo controller.

4.1.3. Design Procedures for fuzzy-PID-like Incremental Controller

Let the two error variables e rr(k t) and err(k t-t) be defined as errx and err2

respectively. After normalizing the error variables, let the normalized error variables be

given by e (k t) = K e errx = ex, and e(k t — t) = K e err2=e2, where K e> and K ê are the

scaling factors corresponding to the two input variables. Because the two input

variables are of the same nature, their scaling factors are equal, i.e. K ej = K ej = K e ,

and their input universes are designed similarly as shown in figure (4.2). Each output

function of the fuzzy PID-like incremental controller is of a different nature

(proportional, derivative, or integral). Therefore the partition of the output universe of

discourse is selected to be of the same membership function shape and degree of

123

overlapping but with different scaling factors to allow for different tuning of each

control element. The design value for the membership functions adapted for the three

output universe of discourses are (L=0.3 p.u), (Lp=0.2 p.u), (L d= 0 .1 5 p.u), and (Li=0.05

p.u) of the error domain range. These assigned values result in a small gain integral

element compared to the other controller elements.

4.I.3.I. Fuzzy Proportional Control Element

To derive the general output of the Fuzzy Proportional Control Element (FPCE), the

input universes of the normalized input variables et and e2 are partitioned into five

fuzzy sets with five membership functions as shown in figure (4.2). A five-fuzzy-set

output universe is considered for the normalized output Up (kt) as shown in figure

(4.3). For the case of FPCE, the distance between the centres of any two adjacent

membership functions is Lp. The fuzzy rules of the operation of the FPCE according to

the suggested partitions are generated heuristically based on the intuitive concept that

the proportional control action at any time step is directly proportionally to an error e,

at the same time step regardless of the value of the error at the previous time step e2.

Therefore if the error variable e, is expressed linguistically as zero, positive small,

positive large, negative small, or negative large, the proportional control action can be

expressed linguistically as zero, positive small, positive large, negative small, or

negative large respectively, regardless of the linguistic value of the error variable e2.

Consequently, the Fuzzy Associative Memory (FAM) rules according to this concept of

the FPCE can be written as shown in table (4.1).

124

NL NS ZE

NL NL NL NL NLNL

NS NS NS NS NS NS

ZE ZE ZE ZE ZE

PS PS PS PS PSPS

PL PLPL PL PLPL

Table (4.1). Proportional element FAM bank.

where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables el and

e2 and the normalized output variable UP (k t) . From the above rule-base, it can be seen

that although the consequent depends only on e, , the rules employ two antecedent

variables corresponding to the two variables e} and e2. The reason for this is to unify

the number of antecedent variables in the rules of the three FCEs (P, I, and D).

Therefore, the rules in the three FCEs can be integrated into one rule base to represent

the fuzzy-PID-like incremental controller. The rules in this integrated rule base have

two-variable antecedents corresponding to the input variables and e2) and three-

variable consequents corresponding to the three fuzzy-PID-like incremental controller

elements (P, I, and D).

125

To infer the fuzzy output of the FPCE, Mamdani’s min/max method using the bounded

sum triangular co-norm is employed. In [Yuan et al., 1992], the fm in and fmax

functions were introduced to approximate the logic min and logic max functions

analytically. These two functions were formulated as follows:

fm in(h„hej) = 0.5 (h„ +ha) - J (h „ - h elf + (0 .0 l)2 +0.01

fmax{hpl,hpl) = 0.5 (hpl+hp!) + ̂ (h p, - h p!f + (0.0l)2 -0.01

(4.2)

(4.3)

where (heI and he2) are defined as the fuzzy membership values of the input error

variables (et and e2), while (hpIand hp2) are defined as the fuzzy membership values

of the same output membership function resulting from any two different rules at any

time step. For generality, the softmin and softmax functions presented in Chapter (3)

can replace equations (4.2) and (4.3). The centre average defuzzification method

(Height method) [Ying et. al., 1990; Ying, 1993] is employed to calculate the crisp

output of the FPCE. The use of these inference and defuzzification methods with

overlapping triangular membership functions for both input and output variables

defines the nonlinearity of the fuzzy controllers. Consequently, based on the defined

membership functions, only four rules are triggered at a time. Therefore, the inference

system produces four non-zero fuzzy outputs for the two crisp error inputs. The fuzzy

output of a rule (output fuzzy sets after inference) is a fuzzy set with a trapezoid

membership function whose height (h) equals the membership degree produced by the

126

min operator of equation (4.2). Based on the input errors condition, employed inference

method, and defuzzification method used, a numerical example for the fuzzy output and

the (h) value for each of the four rules for the FPCE are shown in figure (4.5).

The output of the FPCE is calculated for any input condition using the centre average

defuzzification method, assuming different membership output function for each rule

inference, as follows:

V[h value of the input Mfwith min h * output Mfcentre]
FPCE ̂ H i ---------3---(4.4)

f \h value of the input Mfwith min /zj
I Rulej

Using equations (4.2) and (4.4), the analytical solution of the proportional function of

the FPCE f p (ex,e2) in Equation (4.1) can be expressed as follows:

4

a Cop.

F P C E ^ . Rulej
4

2* Ijz=l

(4.5)

Rulej

where Copm is the FPCE output membership function centre value for rule z, pRi(ei) is

the membership degree of the present error to the rule i, and fiRi(e2) is the membership

degree of the past error to the rule i.

127

+2L

>̂ P > < P

JL NS ZE PS >L h L NS ZE PS

0 2 J \ I \ 0.2 \ I \

-----> <—

PL

min -2Lp - L p 0 +LP +2Lp max min -2LP -Lp 0 +LP +2LP max

0.2a0.3=0.2

0.2a0.7=0.2

0.8a0.3=0.3

0.8a0.7=0.7

*2 NL NS ZE PS PL

NL min min min min min

NS -LP -LP -LP -Lp -LP

ZE 0.0
V

0.0 0.0 0.0 0.0

PS +Lp +Lp +Lp +Lp +Lp

PL max max max max max

0.1x0 .0+0.2x(-L p)

(0.1+ 02)

=-0.222Lp

Crisp P-element
Output

ZE PSZE PS

min -2LP -Lp 0 +Lp +2LP max min "2Lp -Lp 0 +Lp +2Lp max

Figure (4.5). Input/output operation of the Fuzzy-P control element.

1 2 8

4.1.3.2. Fuzzy Derivative Control Element

In the case of the Fuzzy Derivative Control Element FDCE, the same input/output

number of partitions as in the last section is employed. However, the distance between

the centres of any two adjacent output membership functions is now Ld. The fuzzy

rules for the operation of the FDCE according to the suggested partitions are generated

heuristically as well based on the intuitive concept that the derivative control action at

any time step is directly proportionally to rate of change of the error (difference)

between two successive time steps. For example, if the error variables e, and e2 are

both expressed linguistically as positive, the derivative control action can be expressed

linguistically as zero. Consequently, the Fuzzy Associative Memory (FAM) rules

according to this concept of the FDCE can be written as shown in table (4.2).

Vs\ K i m m ZE PS PL

NL ZE NS NL NL NL

NS PS ZE NS NL NL

PL PS ZE NS NL

PS PL PL PS ZE NS

PL PL PL PL PS ZE

Table (4.2). Derivative element FAM bank.

129

where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables and

e2 and the normalized output variable UD (kt).

Consequently, based on the defined membership functions, only four rules are

triggered at a time. Therefore, the inference system generally produces four non-zero

fuzzy outputs for the two crisp error inputs. The fuzzy output of a rule (output fuzzy

sets after inference) is a fuzzy set with a trapezoid membership function whose height

(h) equals the membership degree produced by the min operator of equation (4.2)

during the fuzzy inference. Based on the input errors condition, employed inference

method, and defuzzification method used, a numerical example for the fuzzy output and

the (h) value for each of the four rules for the FDCE are shown in figure (4.6).

Using the same inference and defuzzification methods in the last section, the analytical

solution of the FDCE function f D (el,e2) in equation (4.1) can be written as follows:

F D C E ^

Cod, +(001) +0.01
Rule,

4

2* z/=1
ej) +(0.0l)2 +0.01

(4.6)

Rulet

where CodRi is the FDCE output membership function centre value for rule i, juRi(ei) is

the membership degree of the present error for the rule and juRi(e2) is the membership

degree of the past error for the rule

130

A D

NL PLZE PSNS
NS ZE PS NS ZE PSPL PL

0.7

0.3

-2L + L +2L min min

NL NS ZE PL 0.2 x 0.0+0.3 x + 0.7 x/wax

f0.2+0.3+0.7;

0.7max+03Ln
NL 0.0 min min min

NS 0.0+Lo min min

ZE 0.0 =0.583 max+ 0.25 Lt

C risp D -e le m e n t

O u tp u t

max min

0.0max max

0.0+Ldmax max max

NL NS PL
NS NS ZE PSZE PS PL0.8

0.7

0.2

10-2L -L +L +2L -2Ld -Ld 0 +Ld +2Ld max■2Ln -L n 0 +Ln +2L] max minmin

ei Figure (4.6). Input/output operation of the Fuzzy-D control element.

131

4.1.3.3. Fuzzy Incremental Integral Control Element

The conventional integral control action is composed of two parts. The first part is the

integration initial condition or the controller's output history Uj (kt-t) and the second

part is the controller's incremental output f I(el,e2) = AUt (kt) . Therefore, the output of

the integral element is composed of the same two parts. To implement the Fuzzy

Integral Control Element (FICE), the same numbers of input/output partitions as in the

previous two sections are employed. However, in this case, the distance between the

centres of any two adjacent output membership functions is Li. To implement the

integration initial condition and the incremental part into one fuzzy controller element,

ththe centres of the output universe membership functions are shifted after the k time

k-\
step to a distance U, (kt — t) = ^ AU, (mt) . The shifting process represents the

m=0

memory of the FICE, so that the old information is stored within the FICE in the form

of a dynamic (time changeable) output universe of discourse partition [Shankir, 2001].

Only the incremental part of the integral control element is of interest for the moment.

The fuzzy rules of the operation of the incremental FICE according to the suggested

partitions are generated heuristically as well based on the intuitive concept that the

incremental part of the integral control action at a time step is directly proportional to

the sum of the error variables at two successive time steps. For example, if the error

variables el and e2 are expressed linguistically as positive and negative, the

incremental part of the integral control action can be expressed linguistically as zero.

Consequently, the Fuzzy Associative Memory (FAM) rules according to this concept of

the incremental FICE can be written as shown in table (4.3).

132

\ *2 NL NS ZE PS

NL NL NL NL NS ZE

NS NL NL NS ZE PS

7F NL NS ZE PS PL

PS NS ZE PS PL PL

PL ZE PS PL PL PL

Table (4.3). Integral incremental element FAM bank.

where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables et and

e2 and the normalized output variable A Uj (K T) .

To obtain the output of the incremental FICE, the same partitions, inference, and the

same defuzzification method as in the last two sections are employed. Consequently,

only four rules are triggered at a time. Therefore, the inference system generally

produces four non-zero fuzzy outputs for the two crisp error inputs. The fuzzy output of

a rule (output fuzzy sets after inference) is a fuzzy set with a trapezoid membership

function whose height (h) equals the membership degree produced by the min operator

of equation (4.2) during the fuzzy inference. Based on the input errors condition,

employed inference method, and defuzzification method used, a numerical example for

the fuzzy output and the (h) value for each of the four rules for the incremental FICE

are shown in figure (4.7).

133

NL NS r7T,ZE PS PL

NL min min min -Li 0.0

NS min min -Li 0.0 +Li

ZE min - L i 0.0 +Li max

PS -Li 0.0 +Li max max

PL 0.0 +Lj max max max

0.2a0.3=0.2

0.2a0.7=0.2

0.8a0.3=0.3

0.8a0.7=0.7

>
min -2Li -Lj 0 +Li +2Li wax min -2Lj -Lj 0 +Li +2Li wax

Figure (4.7). Input/output operation of the Fuzzy-I control element.

In cr em e n ta l

I -e le m e n t O u tp u t

ZE PS

>
min -2 Li -Li 0 +Li +2 Li wax

_ 0.2x(min)+0Jx(-LI)
(0.2+ 0.7)

_ 0.2 min-0.7 L,
0.9

=0.22 min-OJSLj

>
777/77 -2Lj -Li 0 +Li +2Li wax

134

Using the same inference and defuzzification methods as in the last two sections, the

analytical solution of the incremental FICE function / 7 (el,e2) in equation (4.1) can be

written as follows:

4 f I 2 2
Y CoiK (MK(e,)+MH(e2))-^(e,)-M ^(e2)) +(0.0l) +0.01

AFICE,
\ \Rulei

+ (o ° i f + 001

(4.7)

where Coim is the incremental FICE output membership function centre value for rule

jURj(ei) is the membership degree of the present error for the rule /, and Hm(e2) is the

membership degree of the past error for the rule i.

Incorporating the integral controller memory part, the total analytical solution for the

FICE function UI(k t - t) + / 7 (el,e2) in equation (4.1) at any time step k can be written

as follows:

FICE = —-k

Y +(0- 0 l f +0.01
(48)

2'J1 +{0Mf +°01
.Rulej

or in another format:

£ { (m ^ (f i c e) ^ (p H (e I) + M K (e 2)) - j l [p H (e l) - M K (e 2) f + (0 . 0 l f +0.01

2-Y +0.01

M (4.9)

-Rulej

This finally leads to:

135

4

3
FICE, = FICE, +-K K-l

(G**]
Rule;

2*Y
/=i

+(0.01) +0.01
(4.10)

From this last equation it can be seen that the integration using the shifting process in

Fuzzy-PID as proposed by [Shankir, 2001] is similar from the analytical point of view

to integration using a delay loop in the case of conventional discrete integral controller.

A feedback-error learning scheme is utilized in the suggested robot control system. As

mentioned earlier, this scheme ensures that online training will stop only when the

feedback error is zero. This behavior resembles the integration action in a classical

integral controller which will be achieved in this case by shifting the output

membership functions centres of the proposed forward path network (Dynafuzznn), so

that only the incremental part of the integral control element (equation (4.7)) is used for

training of the neuro-fuzzy controller to ensure the learning signal reduces to zero

automatically when the error reduces to zero and to guarantee that the control signal

converge to that of the forward path controller only. Consequently, the rule base of the

three incremental FCEs (P, D and I) can be combined together to form one rule base for

the total fuzzy-PID-like incremental servo controller output as follows:

k / j .

U p i d =-

(k p p K + k f u t n + k p * *) (+(0.01) + 0.01

4
2 * y

1=1

(4.11)

Ride,

where kp, kd, and kt are the scaling factors corresponding to the three control actions,

while ku is an overall gain for the servo controller. A total of 25-rules with two inputs

136

and three outputs can represent the combined fuzzy-PID-like incremental controller as

shown in table (4.4).

; m i e2 P-element D-element I-eiement

NL NL NL ZE NL

NS NL NS PS NL

ZE NL ZE PL NL

PS NL PS PL NS

PL NL PL PL ZE

NL NS NL NS NL

NS NS NS ZE NL

ZE NS ZE PS NS

PS NS PS PL ZE

PL NS PL PL PS

NL ZE NL NL NL

NS ZE NS NS NS

ZE ZE ZE ZE ZE

PS ZE PS PS PS

PL ZE PL PL PL

NL PS NL NL NS

NS PS NS NL ZE

ZE PS ZE NS PS

PS PS PS ZE PL

PL PS PL PS PL

NL PL NL NL ZE

NS PL NS NL PS

ZE PL ZE NL PL

PS PL PS NS PL

PL PL PL ZE PL

Table (4.4). Fuzzy servo controller combined FAM bank.

137

Finally, the total servo-controller output can be represented in the form:

U pid ku_kPk NPei + k DkND(.ei - e*)+ k i k nM i+ e*)] (4*12)

where k^p , ksD , and km are the equivalent nonlinear gains that can be defined

according to the input condition (value of current and previous error) and values of the

three partition values Lp, Ld, and Li. The nonlinear gains provide the general nonlinear

policy for the controller and the learning signal.

4.2. Feedback-Error Learning Scheme

Following the selection of the feedback controller, the total control torque acting on the

robot manipulator is the sum of the feedforward torque and the feedback torque.

7i i r p i r p i

tot ~ *FB “*■ FF (4.12)

Kawato and his group [Kawato et. al., 1988] proposed a novel architecture for control

called the feedback error learning (FEL) method, which combines learning and control

efficiently. It is essentially an adaptive two-degree-of-freedom (TDOF) control system

with an inverse model in the feedforward path. In some sense, the method is closely

related to the adaptive internal model control mentioned in Chapter (2). The novelty of

the FEL method lies in its use of feedback error as a teaching signal for learning the

inverse model, which is essentially new in control literature. The objective of control is

to minimize the error between the command signal and the plant output. If the learning

138

part of the architecture is disregarded, then, if the inverse model of the plant exists and

is stable, the tracking will be perfect. In [Miyamura and Kimura, 2002; Terashita and

Kimura, 2001] a stability proof for the FEL algorithm for linear time-invariant systems

is presented. Another important point, which was not investigated in Kawato’s work, is

the problem concerning non-invertibility of the plant, however this aspect was also

proved to be stable in [Kimura and Miyamura, 2002].

The neuro-fuzzy forward path controller parameters are tuned online using the

feedback controller response as the error signal. This control structure provides an

internal teacher so that the control scheme works in an unsupervised manner as there is

no external teacher in this case. The adjustment of the neuro-fuzzy network parameters

during the control by feedback-error learning is more convenient than other learning

structures. The network adjustable free parameters were selected to be centres (mys) of

the output membership functions of the term nodes in layer four as well as the link

weights at layers two and six as mentioned before. Despite the effectiveness of the

back-propagation, its speed of convergence can be painfully slow in online learning.

The reasons for this have been discussed in details in [Jacobs, 1988]. Jacobs also

presented an overview of heuristics that can be used to accelerate the convergence of

the algorithm, suggesting that each weight should be given its own learning rate, and

that learning rate be allowed to change over time during the learning process. He also

suggested how the learning rate should be adjusted heuristically. [Fukuda et. al., 1990]

proposed a variable learning method for robotic manipulators Neural Network

controllers called “Fuzzy Turbo”, which is based on fuzzy set theory to avoid

stagnation during learning. In this method, a linear PID feedback controller is used

139

along with the Neural Network feedforward controller. In order to accelerate learning,

they experimentally proposed a table relating the value of the learning rate to the fuzzy

representation of the output error and the sum of weight changes at learning instant. In

[Arabshahi et. al., 1992], fuzzy control of the learning rate ij is suggested. The central

idea behind fuzzy control of the back-propagation algorithm is the implementation of

the heuristics used for faster convergence in terms of fuzzy IF... THEN rules. This is

done by considering the error and the change in error to be fuzzy variables taking on

the feedback controller output at each learning iteration n. A fuzzy variable is also

considered for the change in learning rate A rjn. The resulting rule set is suggested on the

bases of changing the learning rate in the way to quickly drive the feedback controller

output to minimum or zero in relation to the current output and the change in output.

However, there is still no general guidance for the proper selection of the learning rate

and one can say it is case dependent policy. In this study, the fuzzy PID-like feedback

controller along with a fixed learning rate provides the general nonlinear policy of the

controller and learning signal as well. The back-propagation learning algorithm

explained in Chapter (3) is a gradient descent search in the space of the Neural Network

weights and aims to minimize energy function which is normally defined as the sum of

the squared errors, where each error is defined as the difference between target values

and the actual values obtained during each iteration of the algorithm. Weight changes

are performed at the klh iteration according to:

A dElol(wt) ■ ^dT'FF(wk)
A w * = - t j l0‘ = (V T FB) * " * - (4 .14)

o w k o w k K ’

v Tfb = ti k u [k p k N P e‘i + k DkND{e’ - ei’) + k Ik N M + e 'J~\ (4-15)

where Etot(^k) is the total error at the kth iteration, T tot is the total acting torque at robot

link i, T FF is the feedforward controller torque at robot link i, T FB is the feedback

controller torque at robot link i, Wk is the vector of weight values after the k iteration,

Aw/c is the change in these weights, I is the total link numbers of the robot, e] & e ‘2 are

the current and past position errors at link i, and rj is the learning rate. The chain rule is

then applied to calculate the network output partial derivative with respect to the

variables weights at each layer as explained in Chapter (3).

4.3. Comparison Study of the Results

The proposed control system is tested by applying it to control the first three links of a

Puma 560® industrial robot. The controller algorithm was programmed in C++ and

linked to the “Pro/Mechanica® ” virtual model of the Puma 560® industrial robot as a

subroutine as explained in Appendix (B). Figure (4.8) shows the user interface in the

“Pro/Mechanica® ” environment for the neuro-fuzzy controller developed. For

comparison purposes, a conventional PID controller, tuned using the Ziegler-Nichols

tuning rule [Ziegler and Nichols, 1942] and then fine tuned by trial-error, is also used to

control the robot over the required pre-planned joint-trajectories while carrying a fixed

payload of 7.0 kg. Figures (4.9) to (4.12) represent the results for the suggested neuro-

141

fuzzy controller, while figures (4.13) to (4.16) represent the results for the conventional

PID controller. It can be observed from the results that the proposed neuro-fuzzy

controller outperforms the conventional PID controller, both in terms of joint

displacement and velocity tracking, as a result of the embedded knowledge of system

dynamics in the neuro-fuzzy feedforward controller component.

N am e: |ExtController S u b a sse m b ly : _^J s u b a s s y l

Custom Load N am e: pum a560

Custom Load Description: Help... J
PUMA560 N euro-Fuzzy A d ap tive Controller

Load is Active: (■ A lw ays r Conditionally

A ccep t C ancel

L

Figure (4.8). “Pro/Mechanica” user interface for neuro-fuzzy controller.

142

100

5 0

co oo in o>
CDin

- 5 0

-100

- 1 5 0

-200
Target Angle-1 Robot Angle-1

- 2 5 0
S e c .

100 -i

5 0 -

CDCO CM
CDCM

- 5 0

g -ioo
- 1 5 0

-200
Target Angle-2 Robot Angle-2

- 2 5 0
S e c .

1 5 0

100

5 0

CO t- CD
CD CO CD

-CM------ CM— e i

CDCD
CM

- 1 5 0

R o b o t A n g l e - 3T a r g e t A n g l e - 3
-200

S e c .

Figure (4.9). Neuro-fuzzy controller position trajectories tracking.

143

A n g l e - 1 E r r o r

2.5

0.5
w

r

CO CO
-or
cocoCNJ C\l CNJ

-2.5
A n g l e - 3 E r r o r

3.5

Figure (4.10). Neuro-fuzzy controller position tracking errors.

144

150

100

50 -

0 5 m c n i t - 05 to
i T t ^

CM

-CM CM CM

-100

■150
T a r g e t V e l o c i t y - 1 R o b o t V e l o c i t y - 1

-200
S e c

150

100

CO to ^ CO CO CO
CM

-100

150
T a r g e t V e l o c i t y - 2 R o b o t V e l o c i t y -2

-200 J
S e c

oo
co

200 -

150
100
50

0 J

? -50
-100

-150
-200

-250 -

> C M C M C N O O ' c— M - t— 0 0 0 5 r-- Nj5 CO 00
r — c o c o c o t o t— L f 5 i-— : c o c o ! • c o

M-cn
05 ig f l
c o i M

C M T U . L p.1 J
O O O t- t- C M C M C M CO CO*f« m - ■«*

--------T a r g e t V e l o c i t y - 3 -------- R o b o t V e l o c i t y - 3

S e c .

Figure (4.11). Neuro-fuzzy controller velocity trajectories tracking.

145

O -10

 V e l o c i t y - 1 E r r o r

O -10

V e l o c i t y - 2 E r r o r

5 20

V e J o c i t y - 3 E r r o r

Figure (4.12). Neuro-fuzzy controller velocity tracking errors.

146

100

50

co csj
CD

-50

g -100

-150

-200 -

Target Angle-1 R obot Angle-1
-250 J

S e c .

100

5 0

c I cd co cd r^-
CM CO 00 CO-d__Q__Q_JtL

CO
CO

- 5 0 SO . xa

-100

- 1 5 0

-200
Target A ngle-2 R obot A ngle-2

- 2 5 0
S e c .

150

100 -

50 -

CM 0 0 COr (\ IO CO CM CM M" CO CO
lo ° 9 ------- to

c o CM
CO

-150
R obot A ngle-3T arget A ngle-3

-200
S e c .

Figure (4.13). Conventional-PID controller position trajectories tracking.

147

A ngle-1 Error
-4

S e c .

5

4

3

2co
1 1
a 0

c> 1- in in
r ™ oo—o----

CO
1 o

-2
A n g l e - 2 E r r o r

■3
S e c .

1 ■ ■1
1

ll III 1
j | jim.j |, I

o d d o ^ l ^ c v i c v i c N c s i c o c o c o 1 l l n i l l n TTl iH
-1TI

r 1
it

--------A n g l e - 3 E r r o r

S e c .

Figure (4.14). Conventional-PID controller position tracking errors.

148

T a r g e t V e l o c i t y - 1 R o b o t V e l o c i t y - 1

150

100

50

o 0 C/3
ff -50
Q

-100

-150

-200

T a r g e t V e l o c i t y - 2 V e l o c i t y - 2

R o b d t

200 -j

150 -
100
50

0

? -50
Q -100

-150 -
-200 -

-250 -
T a r g e t V e l o c i t y - 3 V e l o c i t y -3

Figure (4.15). Conventional-PID controller velocity trajectories tracking.

149

80

60 -

U)
c > co 'l<£> ''in

0 0 ° CO1
Trfni-20 o mCM

-40
V e l o c i t y - 1 E r r o r

-60
Sec.

60

40

O)o
Q -20

C > CM CO CO U 7
 H---O---O-°-

O T-
oo | o co
CM CO CO m

-40

-60
V e l o c i t y - 2 E r r o r

-80
S e c .

V e l 5 c i t y - 3 E r r o r

Figure (4.16). Conventional-PID controller velocity tracking errors.

150

4.4. Summary

This chapter proposed a new solution for the problem of trajectory control of robotic

manipulators. The main aim was to benefit from the neuro-fuzzy inverse dynamics

network developed in the previous chapter using input/output data collected from the

robot. This neuro-fuzzy network forms the forward controller for the proposed control

system. A new fuzzy-PID-like incremental controller is incorporated in the control

system as a feedback servo controller. A feedback-error learning scheme utilizing a

nonlinear learning signal was used to tune the network weights online. The control

system was then applied to control the Puma 560® virtual model over pre-planned

joint-trajectories while carrying a fixed payload. The results showed that the method

was successful and applicable for robotic manipulators control.

151

CHAPTER 5

Neuro-Fuzzy Cartesian Control of Robotic Manipulators

Most recent developed manipulator control schemes require as inputs the desired

position, velocity, and in some cases, acceleration of each joint of the manipulator.

However, it is most likely for the control system to specify the desired trajectory in

Cartesian coordinates as the task description is normally expressed in terms of a

sequence of end-effector coordinates in Cartesian space. Generally, this information is

transformed through inverse kinematics to a series of angular positions in the joint

space, while the end-effector control is then accomplished indirectly by controlling the

joint angles. Although end-effector control is the ultimate goal of any robot control

system, direct control of the end-effector motion in Cartesian space has not attracted

much attention. The transformation process from joint coordinates to Cartesian

coordinates is a vector-valued non-linear function which can be obtained in a

straightforward way from the geometry of the manipulator and is known as the forward

kinematics method. However, the reverse process, the inverse kinematics may not be

unique and is known not to exist in closed form for certain manipulators. To avoid the

need to calculate the inverse kinematics, two techniques are used for Cartesian control

of manipulators, the first technique transfer the sensed position of the manipulator

immediately by means of forward kinematics equations into a Cartesian position of the

end-effector. This Cartesian position is then compared to the desired one in order to

form the error in Cartesian space. An inverse Jacobean matrix has to be calculated to

map the error in the Cartesian space to error in joint space. Finally, this latter is

152

multiplied by a gain to compute the torques required to reduce the error. The second

technique multiplies the Cartesian error vector by a gain to compute a Cartesian force

vector. This can be thought of as a Cartesian force which, if applied to the end effector

of the robot, would push the end-effector in a direction tending to reduce the Cartesian

error. This Cartesian force vector is then mapped through the Jacobean transpose in

order to compute the equivalent joint torques which would tend to reduce the Cartesian

error. In all these cases, even though no direct calculation for inverse kinematics

involved in the control loop, there still a need to calculate the Jacobean matrix or its

transpose, which is not an easy task. Fuzzy systems and Neural Networks have been

used in literature to approximate the inverse kinematics calculation for robot

manipulators [Sang-Bae, 1997; Martinez et. al., 1996; and Kim et. al., 1993]. Most of

these methods still require pre-calculation of the manipulator Jacobean matrix, resulting

in additional computational burden. Also, these techniques are referenced as Cartesian

control systems because the controller is implemented over the Cartesian error and

cannot be applied to an existing joint-space control scheme found in all industrial

manipulators. The operation of transforming the position component of a trajectory in

Cartesian coordinates into a trajectory in joint coordinates which will be then used as

inputs to an existing joint-space control system is called a command generator

[Vaccaro and Hill, 1988], because it generates commands to the existing manipulator

joint-space control system to move along the demanded Cartesian trajectory. [Jung and

Hsia, 1995] proposed a new Neural Network control technique for non-model based PD

control of robot manipulators. The main feature of this technique is that compensation

of robot uncertainties is performed outside the control loop by modifying the desired

input trajectory. By introducing the Neural Network outside the control loop, the

153

control algorithm was implemented at the command trajectory planning level external

to an existing controller. Although the idea seems promising for Cartesian control of

robot manipulators, it was implemented in [Jung and Hisa, 1996] for the joint-based

control technique only.

The remainder of this chapter is organized as follows. Section 5.1 reviews the

conventional internal model control structure. Section 5.2 presents a modified neuro-

fuzzy internal model Cartesian control for robot manipulators. Section 5.3 presents the

tuning method used to adapt the controller parameters. Section 5.4 introduces a

robustness analysis for the proposed controller. Section 5.5 presents the simulation

results obtained when the proposed controller is used to control the Puma 560®

industrial robot virtual model developed in chapter (3) to follow both joint and

Cartesian trajectories. Section 5.6 presents the application to upper-limb rehabilitation.

Section 5.7 presents a summary for the chapter.

5.1. Internal Model Control

Both inverse control and internal model control have been recently used in non-linear

control systems. Many o f the control methods using neural/neuro-fiizzy networks are

based on the principle of inverse control. Neural networks have been also used in non

linear internal model control lately. By studying the control principles of these

schemes, it can be seen that the strengths of internal model control may compensate the

disadvantages of inverse control. The principle of inverse control is the dynamics

cancellation of the controlled plant. This is a special case of model reference

154

feedforward control in which the controller is cascaded with the plant. The block

combining the controller and the plant is called the reference model. When this

reference model is chosen to have no dynamics, the task of the controller is to achieve

total cancellation of the dynamics of the plant. When they are combined, the two blocks

disappear and reduce to an identity transfer function, so that the output from the system

is exactly the input to the controller. This is the concept of perfect control. When there

is dynamics in that model, the control system can also be viewed as a detuned inverse

control system. When implementing a neural network in an inverse control scheme,

usually the function approximation ability of the neural network is used as the

controller to perform inverse mapping. Let U denote the input to the process and Y

denote the process output. The task of the neural network is to produce U given Y.

However, using Y alone as an input is not sufficient to generate U correctly. The most

common remedy is to add other inputs, for example state feedback signals as explained

in chapter (4). An inverse control scheme has a few serious problems. It is not possible

to obtain an inverse model in some cases and the inverse controller is not robust. A

control scheme is called robust when it remains stable under model uncertainty or

inaccuracy.

The Internal Model Control (IMC) system was first introduced by [Garcia and Morari,

1985]. They designed an overall structure using a linear single-input single-output

(SISO) discrete time process model. Then, they extended the SISO systems to multi

input multi-output (MIMO) systems. This control structure presents a model predictive

process control algorithm. Actually, the name IMC came from the fact that the process

model is explicitly an internal part of the controller. The IMC provides a

155

straightforward yet effective framework for analysis of control system performance,

especially with respect to stability and robustness issues. The design of IMC is also

simpler and more transparent than that of traditional control methods even when the

goal is just a conventional PID feedback controller. IMC is composed of an inverse

model connected in series with the plant and a forward model connected in parallel

with the plant, this structure allows the error feedback to reflect the effect of

disturbance and plant mismodelling resulting in a robust control loop. IMC is

characterized by its fast smooth response to set-point changes and robustness against

parametric changes. Also, if the match between the plant and the plant model is perfect,

perfect control is achieved. However, perfect matching between plant and plant model

is difficult to obtain and may lead to sensitivity problems. Normally, a pre-filter is

introduced before the controller in the control loop forward path to reduce the gain of

the feedback system in order to move away from the perfect controller and to introduce

desirable robustness to the closed-loop system. Detailed study for IMC robustness and

stability issues can be found in [Morari and Zafiriou, 1989]. The IMC structure is

shown in figure (5.1). This structure consists of the plant Op to be controlled, the model

of the plant Om, the inverse model of the plant Oc which represents the controller, and

R, U, Y, and D the vectors of the reference inputs to the system, the control inputs to

the plant, the system outputs and the external disturbances respectively.

For simplicity, all these quantities are assumed to be of dimension n. In general the

IMC requires that both the plant Op and the controller Oc be stable. In the case of an

open-loop unstable plant, pre-stabilization for the plant by a conventional feedback

loop is necessary before the standard IMC can be applied [Garcia and Morari, 1985].

156

R. Oc
u

Controller

D

+ X
-> o Y

Plant

Model

Figure (5.1). Standard internal model control structure.

D

R

Controller Plant

Figure (5.2). Classical feedback control structure.

The particular structure of IMC shown in Figure (5.1) can be proved to be equivalent to

that of the conventional linear feedback control structure illustrated in Figure (5.2)

regarding the following transformation:

(5.1)

157

^ (Z + C O J - 'C (5.2)

The equivalence of these two control structures implies that whatever is possible

employing a conventional linear control structure can be accomplished with the IMC

structure and vice versa. However, it is more straightforward to design Oc instead of

designing C. Furthermore, the IMC structure allows designers to include robustness as

a design objective in a very intuitive manner [Garcia and Morari, 1985]. These can be

illustrated by examining the IMC properties.

From the block diagram shown in figure (5.1), the input output (from R to Y) transfer

function Or , and the disturbance transfer function (from D to Y) Od of the IMC

system can be derived as:

(5.3)
[7 + 0 0 - 0 O 1L p c m e J

(5.4)
r / - o $ + 0) 0 1L m e p c J

Equations (5.3) and (5.4) can be rewritten as:

<p r = [/+ (« > ;' - o j ® - 1]-1 (5.5)

158

(j>D=[<jr'+(dr1-<j>m (5.6)

The most important property of Equations (5.3) and (5.4) is that if the IMC controller is

designed to be equal to the plant inverse model (O c= O ”1), perfect reference tracking

(Y = R) with asymptotically vanishing control error and disturbance rejection can be

achieved despite any model/plant mismatch (i.e. O p ^ O "1). This can be seen from

Equations (5.5) and (5.6) as for (O c = O m[), the input transfer function and the

disturbance transfer function become <DR = I and O d = 0 , respectively. If a low-pass

pre-filter F is introduced in the control loop, Equation (5.5) can be rewritten as:

+ (5.7)

In the ideal case, i.e. when the plant model is perfect and there is no disturbance, the

above equation results in O R = F , which means that a desired closed-loop robust

performance of the control system can be easily achieved by a proper design of the pre

filter. Furthermore, by choosing the pre-filter dynamics appropriately, the stability of

the closed-loop system can be achieved for any degree of plant/model mismatch. In

general, slower filters are required for large model errors. This can be interpreted as

(ide-tuning) of an ideal controller, while the procedure is more straightforward and

intuitive than that of conventional linear controller.

159

Another important property of the IMC is that if both of the plant <DP and the IMC

controller Oc are stable, the stability of the overall IMC system is achieved subjected to

perfect plant modelling (^ p — O m).This can be seen from Figure (5.1) as

for(Op= O m), the plant input control signal and plant output Y can be derived as

follows:

U = cDc(R -D < D p) (5.8)

Y = (Dp<DcR + (/ - a) p<Dc)D ® p (5.9)

From Equations (5.8) and (5.9), the internal stability of Op and Oc determines the

stability of U and Y. Therefore, the overall IMC system in Figure (5.1) will be stable

for stable <bp and <DC.

It is clear from the literature that the IMC approach has not been widely applied to the

control of mechanical systems. The reason for this could be that the IMC scheme, in its

original design form is applicable only to asymptotically stable systems, which is not

the case for most mechanical systems. IMC is a powerful control strategy for linear

systems, however its performance when applied to non-linear processes is not good

enough. The development of a general non-linear extension of IMC faces the difficulty

that non-linear systems are usually described by non-linear models while linear IMC is

based on transfer function models in addition to the lack in powerful tools for design

and analysis of robust non-linear controllers. However, several non-linear IMC based

160

controllers have been reported due to recent advances in intelligent modelling

techniques. Actually, the key characteristics of the IMC described above also apply in

the non-linear case. For example, a number of researchers have suggested Neural

Networks to provide the non-linear plant models necessary for IMC from input/output

data collected from the plant. Likewise, the application of neural networks to the

inverse modelling of non-linear systems is common in the literature, particularly in the

field of robotics control. This due to the fact that Neural Networks parallel processing

architecture, adaptation and learning capabilities, and fast processing for large-scale

dynamic systems provide solid base to represent the robot forward and inverse model

within the IMC controller structure. Li et al. proposed compensations procedure for the

robot dynamics, before the standard IMC scheme can be applied. This compensation

procedure consists of two stages, namely pre-linearization using approximate inverse

dynamic model and pre-stabilization using a conventional PD feedback loop [Li et al.,

1995]. Li et al. proposed an adaptive algorithm based on Neural Networks to construct

a joint-based IMC for robot manipulators. In this method, a Neural Network inverse

model and a conventional PD feedback were used to pre-linearise and pre-stabilize the

plant in a fixed structure IMC controller. The utilized Neural Network consists of an n

sub-network structure, each sub-network operates independently based on each link

angle, velocity, and acceleration to generate respective link actuating torque.

5.2. Modified Neuro-Fuzzy Internal Model Cartesian Control

In their subsequent work, Li et al. implemented the IMC structure to control robot

manipulators in a comparison study with internal model control [Li et al., 1996]. In

161

their work, the computed-torque controller was used as the pre-compensation structure,

which comprises a lineariser and a stabilizer, to modify the dynamics of the robot

manipulator so that the standard IMC structure can be implemented without violating

its original straightforward and intuitive design principle. In their proposed method, it

can be seen that the computed-torque control is constructed in the same way as the

design of the pre-compensation structure of the robot in the IMC system. Therefore, the

overall robot IMC system can actually be considered as a framework combining the

computed-torque-like control structure, i.e. the pre-compensation structure, as the inner

loop, with the general IMC structure as the outer loop. On the other hand, from the

viewpoint of a standard robot computed-torque control, the IMC configuration can be

considered as an enhanced scheme of this control algorithm, because the outer loop

structure in the IMC configuration, which includes the feedforward and the feedback

component, can be considered as an additional compensator to the original computed-

torque controller. Another IMC modification technique has been presented in [Liu and

Yu, 2002]. In this work, a double control scheme, based on the PID control law and the

internal model control strategy is used to control a continuously stirred tank reactor

(CSTR) in which parameter uncertainty and system disturbance are considered. The

plant model was constructed using generalized neuro-fuzzy network. Modelling errors

due to input/output data of the plant result in mismatching between the inversion model

and plant’s practical characteristics. If the degree of model mismatching increases to

some extent, the closed-loop response of the CSTR plant tends to be unstable because

the internal model structure becomes invalid. So, the suggested modified control

structure comprises neuro-fuzzy inverse model of the plant shunted by a conventional

PID feedback controller and used in the forward path of the internal model control.

162

This has been done to improve the response performance and to extend the controllable

range of the CSTR [Liu and Yu, 2002]. [Wen et. al., 2003] presented a general

algorithm on internal model control based on fuzzy neural networks, where both the

inverse and plant models are represented by FNN with online error back-propagation

learning algorithm. These ideas motivated the implementation of the robot Cartesian

controller system illustrated in figure (5.3). In the proposed control scheme, an

approximate inverse kinematics model can satisfactorily act as a Cartesian controller. In

this system, the original structure of the IMC is modified to make it suitable for

practical Cartesian adaptive control of robotic manipulators. In this way, the IMC can

be regarded as an adaptive form of command generator working for an existing joint-

based robot controller. A pre-compensation structure, which comprises the neuro-fuzzy

inverse dynamic neural network and the FPID servo controller explained in chapter (4),

is used so that the IMC structure can be implemented using the inverse kinematics

neuro-fuzzy network and the forward kinematics mathematical model, which is

generally a group of trigonometric equations (see Appendix A), of the robot arm to

achieve Cartesian control of the robot manipulator. The sensed joint displacements are

transformed using the forward kinematics equations to the actual Cartesian

displacement of the end effector, or this Cartesian displacement can be obtained by

means of any ultrasonic measuring system. Note that in this case, the internal model

(forward kinematics mathematical model) represents the model of the robot in addition

to the existing joint-based controller cascaded by the Cartesian position calculation.

From the block diagram shown in figure (5.4), the input/output (from Xd to Xm)

relationship can be directly derived as:

163

(5.10)

where , the part surrounded by the dashed line, is the existing joint-based controller

regarded as the pre-compensation structure of the robot dynamics, where Op represents

the robot arm dynamics, O ff is the neuro-fuzzy inverse dynamic neural network

regarded as the pre-lineariser, and O fb is the FPID servo controller regarded as the

stabilization element. The input/output relation of this part can be derived as:

I _ (^ F F + ^ F B) _ ^ . ^ (^ P ^ F f)

(/ + O p O F B) K d > - ^ / + < D P 0 F B] (5 1 1)

Consequently equation (5.10) can be rewritten as:

o R =
(O ik O k) (/ + ^ p ^ F B)

[^FF ^FB]

-1

(5.12)

Comparing the configuration shown in figures (4.1), (5.1), and (5.4), it can be seen that

the neuro-fuzzy joint-based control is constructed in the same way as the design of the

pre-compensation structure for the robot in the neuro-fuzzy Cartesian IMC system.

Therefore, the overall Cartesian IMC can be considered as a framework combining the

neuro-fuzzy joint-based control structure, i.e. the pre-compensation structure, as the

inner loop controller, with the general IMC structure as the outer loop controller.

164

On the other hand, from the viewpoint of the neuro-fuzzy joint-based controller, the

IMC configuration can be considered as an enhanced scheme of this control algorithm,

because the outer loop structure in the IMC configuration, which includes the

feedforward component Oik (inverse kinematics neuro-fuzzy network) and the

feedback component Ok (forward kinematics mathematical model), can be considered

as an additional compensator for the original neuro-fuzzy joint-based controller. In

another form, the IMC can be regarded as an adaptive form of a command generator

for the existing neuro-fuzzy joint-based robot controller by introducing the Neuro-fuzzy

inverse kinematics network outside the control loop achieving compensation for robot

Cartesian uncertainties by modifying the desired input Cartesian trajectory.

5.3. Training Procedure

Both of the inverse kinematics and inverse dynamics neuro-fuzzy networks are

constructed using the offline procedure explained in chapter (3). Adaptation for inverse

dynamic neuro-fuzzy network parameters is performed online as explained in chapter

(3) and chapter (4). Also, adaptation for the neuro-fuzzy inverse kinematics network

parameters is performed online using the joint error signal calculated as an input for the

FPID servo controller. This error signal is propagated through the inverse dynamic

neuro-fuzzy network to the inverse kinematics neuro-fuzzy network to form adaptive

Cartesian control through online parameters optimization as explained in chapter (3). It

can be seen that by proper tuning for the parameters of the inverse kinematics neuro-

fuzzy network, = O k and Equation (5.12) can be reduced to O r = / resulting

in perfect tracking result over the Cartesian trajectory. Note that in the above analysis, a

165

well tuned existing joint-based controller or its model is not strictly necessary for

perfect tracking, only a well trained neuro-fuzzy inverse kinematics model is enough

for the control structure to follow the Cartesian trajectories.

From the above analysis, apparently there are no restrictions on the choice of the

0 IF! and O k transfer functions as far as they are the inverse of each other. However, it

is most likely to select them to be the approximate inverse and forward model of the

controlled plant. The reason of this can be explained through a modification of the

control loop diagram of figure (5.4) to that of figure (5.5) and figure (5.6). Since

0 IF! and O k should ideally cancel each other out completely in the proposed control

system, the positive feedback loop (1) appears to have the possibility of producing an

infinite gain. However, if the controller is an exact inverse of the controlled

process (joint-based controller and plant up to Cartesian values), the signal in feedback

loop (1) is balanced by that of feedback loop (2) effectively. The fundamental

advantage of this scheme is that only an exact inverse neuro-fuzzy kinematic model

could be enough for perfect Cartesian tracking, while a well tuned existing joint-based

controller or its model is not strictly necessary.

166

j Existing Joint-based Controller as shown in figure (4.1)

dynafjizznn
Inverse

Kiiiematics

dynafuzznn
Inverse

Dynamics

Forward
kinematics
Calculation

Robot

Servo
Controller

Forward
kinematics
Calculation

Figure (5.3). Modified neuro-fuzzy internal model controller

Figure (5.4). Internal model controller block diagram.

Figure (5.5). Simplified internal model controller block diagram

169

Figure (5.6). Modified internal model controller block diagram

170

5.4. Robustness Analysis

In this section, the proposed controller structure is analysed in terms of disturbance

rejection and sensitivity to model uncertainties. The analysis is compared with the

original joint-based controller response to disturbance and model uncertainties to

highlight the added benefits from the new structure.

5.4.1. Disturbance Analysis

For robotic manipulators control, external disturbance are due to load torques acting at

the joints as shown in figure (5.4). The disturbance transfer function for the neuro-

fuzzy joint-based controller (from 0d to Xm) can be directly derived as:

For the proposed neuro-fuzzy internal model Cartesian controller, the disturbance

transfer function (from Xd to Xm) can be directly derived as:

(5.13)

\
(5.14)

171

Comparing equation (5.13) and (5.14), it can be seen that the effect of the external

disturbances for the modified IMC has been changed over the joint-based controller by

less sensitive control system to load disturbances compared to the original joint-based

controller.

5.4.2. Sensitivity Analysis

Generally, in order to analyse the performance of any control system, it is a common

practice to replace the plant by its modelled dynamics O m and possible model

uncertainties as follows:

where 5 0 p and AO p are the unmodelled dynamics and/or parameters multiplicative

and additive uncertainties of the plant respectively. Both kinds of uncertainties will be

studied separately.

5.4.2.I. Sensitivity to Multiplicative Uncertainties

For the neuro-fuzzy joint-based controller alone, the closed loop multiplicative

sensitivity function can be obtained as follows:

172

in the denominator. This term appears to have the possibility of

producing an infinite value driving the disturbance transfer function to zero, resulting in

® p = (/ + 8<I>p) O m + A O p (5.15)

SO
£ 0p _
Sdct) 5(80)

80.

aop aop sop
8O0 8(80) oD

(^ F F + ^FB)

_ ^ kC^ff+ ^ fb) ^ ggj (/+OpOFB)
" (^ ^ p ^ f b) 2 ” P

= - ^ 2 - 8 0
/ + O p (O f b) O p p

(5 .1 6)

For the neuro-fuzzy Cartesian IMC controller, the closed loop multiplicative sensitivity

function can be obtained as follows:

s o 1
£<X>' _ o R _

5(80)
SOR 50 p 80,
80 D 8 (8 0) O*

8 0 .

^ k K k - ^ k I K f + ^ f b)

(o kOp (Off + Ofb) + (o £ - Ok) (/+OpOFB))'

(oKoP (oFF+oFB)+(o ̂-o K)(/+opoFB))

0 80.

r

^ K ^ P (^ F F ^*FB)

/ O 80.
(5 .1 7)

7+0. ^F B /
(O ff + O fb)

V

I

V ^ V ^ IK
— I

o,

173

Comparing equation (5.16) and (5.17), again it can be seen that the multiplicative

sensitivity for the modified IMC has been changed over the existing joint-based

(<i>FF+<i>FB)
controller by the term j ---------- n----- in the denominator which appears to have the

- i

possibility of producing an infinite value resulting in less sensitive control system to

multiplicative uncertainties compared to the original joint-based controller.

5.4.2.2. Sensitivity to Additive Uncertainties

For the neuro-fuzzy joint-based controller alone, the closed loop additive sensitivity

function can be obtained as follows:

d ° p /
% _ / ® p _ d O p dO AOp_

d(A0p) / 3 0 3 (A O) 0 .
A 0 p

_ (^ F F + ^F B) (M pV f b)

(/+ 0 p 0 FB) OK0 p (^ F F + (^>Fb) (5.18)

/ A 0 p

/ + 0 p (0 F b) O p

For the neuro-fuzzy Cartesian IMC controller, the closed loop additive sensitivity

function can be obtained as follows:

174

5 0 '

^AOn —
0R 5<Dr S O p A<5p

AO.

3 (a o) / a o p a (A o p) o R
/ A O/ P

_____________(P k (^ k - (Pk)((Pff+^fb)

(0 K0 P (Off + Ofb) + (O',! - Ok) (^ p̂ fb))'

(oKoP (PFF+PFB)+(o-̂ - QK) (/+OpOFB))
o k o f (o f f + o fb)

/ A O n

/ + o , *Pfb /
(oFF+oFB)

V

/

V ^ K ^ I K J
- I

o,

J

(5.19)

Comparing equations (5.18) and (5.19), again it can be seen that the additive sensitivity

for the modified IMC has been changed over the existing joint-based controller by the

(Opp + Opfi)
term j ---------- n in the denominator. This term appears to have the possibility of

— - — M^d?K0 IK j

producing an infinite value resulting in lower sensitivity to additive uncertainties

compared to the original joint-based controller.

From previous analysis, it is clear that the overall performance of the system in the

modified IMC structure is improved over the existing joint-based controller.

175

The control system developed can be regarded as an inner joint-based control loop that

controls the joint angle of each link in addition to a Cartesian control loop which is

closed around the joint control loop. The Cartesian controller adds an offset Cartesian

position command, derived from the measured (calculated) Cartesian position of the

end-effector, to the joint control loop. Thus, the purpose of the Cartesian controller is to

minimize the measured (calculated) Cartesian end-effector position by modifying the

commanded end-effector reference position which in turn modifies the joint angles

references.

5.5. Simulation Results

In order to verify the effectiveness of the proposed Cartesian internal model control

system, the proposed control system was tested by applying it to control the first three

links of the Puma 560® industrial robot. The controller algorithm was programmed in

C++ and linked to the “Pro/Mechanic a® ” virtual model of Puma 560® industrial

robot as a subroutine as explained in Appendix (B). The joint coordinates trajectories

are re-planned in Cartesian coordinates and then applied to the suggested control

system as the reference Cartesian trajectory. The robot was tested again while carrying

the same fixed payload of 7.0 kg. Figures (5.7) and (5.8) show the Cartesian position

tracking results for the suggested neuro-fuzzy Cartesian internal model controller. The

obtained results highly support the validity of the proposed control system.

176

100

40

c 5 CNI OO
CO

t - T3- rO--o6
O cvi ^ N

 O -----O O "

cnj c o u n t - h -
r - ^ ! D C O O)

nd—od—od—cd—or
r - t- ^ co
T ^ ^ T

T O -------CO -------CO---- ^

CO
NT p tn-20

Desired X-position Actual X-position
-40

80 n

05
CO

COCO 0 5 O ' c o / ni
h - OO O CM / C O

c’d-̂ rd co co/ co
CM N l »
O C O u >

csi od c\i
t— CNI CO CNI

o ^ ^ ^o o o
C 5

-20

Actual Y-positionDesired Y-position
-40 J

140
120
100

£ 40 O
20

IS- CD

in
cn t— r—
CD-------OO----0 5

OO CM CD
to—t- —
T - CNJ CNJ

C 5-20
-40
-60

o ^ ^
o o

Desired Z-position Actual Z-position

Figure (5.7). Cartesian trajectories tracking results

177

C) ■«— C O -Sj-

O ^ t o _o
DUO C O CD CN t - [W

0 3 O 0 0 CO ' oCD

Q CM

X -position Error

S e c

Y-posi t ion Error

7
6
5
4
3
2
1
0
1
2
3
4

COCO CO T -
0 3 --------O ------CO ^

CO CO

CO
TXT

r - CM N—co—r=f
CM CM CM CM

CO trro n T o o O

 Z -posi t ion Error

S e c .

Figure (5.8). Cartesian trajectories tracking errors

178

5.6. Application to Upper-Limb Rehabilitation

The first task of medical personnel when people suffering from strokes or accidental

injuries are admitted into hospital is immediately to address life threatening conditions.

Usually, at such times, little attention is paid to neuro-motor impairment. One of the

main reasons for this is the shortage of qualified staff and the lack of devices available

for performing self-therapy. As a result, in most cases, this leads to incomplete

recovery when the treatment is provided. To address this situation, several research

groups have developed robotic devices that physically interact with people to stimulate

their sense of touch and help retain their ability to make coordinated movements. While

preliminary clinical trials are promising for both improved evaluation and therapy, key

practical problems remain. In particular, the cost and size of the proposed solutions

limit their application and practicality, especially for home use. Recognizing the

complexity of the task of developing engineering solutions for patients with neuro

motor impairments, in 1999, the European Commission (EC) started a multi-national

project, REHAROB (REHAbilitation ROBots), to produce a robotic system to

administer physiotherapy to people with upper-limb impairments. The project brought

together researchers with medical and engineering backgrounds to develop a system

utilizing the latest technological solutions in robotics and medical diagnostics. The

main objective of the REHAROB system is to minimize the time spent by

physiotherapists in performing repetitive exercises on patients recovering from upper-

limb neuro-motor impairments. This is to be achieved by replacing the physiotherapists

by a robotized rehabilitation cell capable of performing the same task that the

physiotherapist usually performs repeatedly on the patient. Consequently, the

179

introduction of the proposed system will allow more patients to be seen, assessed and

rehabilitated by the physiotherapist by limiting his/her job to the diagnosis of the proper

exercises, while leaving the muscular work to the robotized rehabilitation cell which

can be regarded as a tireless physiotherapist.

5.6.1. Robotized Upper-Limb Rehabilitation

The proposed system will include in the final stage two industrial robots adapted for

medical applications plus specialized teach-in and control modules. Information from

sensors attached to a patient’s arm together with data about the robot’s angular position

and velocity will be used to control and coordinate the movements of the robots to

perform personalized sequences of exercises on the patient. There are two phases in

performing the robotized physiotherapy with the proposed system. The first phase is the

teach-in phase. During this phase, the physiotherapist performs a prescribed exercise on

the patient’s arm and at the same time one or two robots holding the arm freely follow

its movements. Simultaneously, the motion trajectories for the next phase are generated

by the robot controllers using data captured on the robot joint angles and velocities. The

second phase is the play-back phase during which the robot/robots perform the taught

exercises without the help of the physiotherapist. The selection of a suitable sequence

of exercises in order to achieve a satisfactory rehabilitation result is a key to the

successful implementation of the proposed system. The design and functionality of a

knowledge-based system (KBS) is to assists physiotherapists in choosing the most

appropriate sequence o f exercises. One of the main problems is to simulate the muscle

resistance torques, specific for a given type of rehabilitation procedure. The patient’s

180

resistance torque values depend on a number of factors, such as the type of arm motion,

the degree of motor impairments of the arm, the sequence of the given exercises, etc.

This makes the load estimation an unsolvable task requiring the control system to be

designed considering this situation.

A video library of 45 exercises has been created by the medical experts involved in

REHAROB to include most o f the exercises that are commonly performed by

physiotherapists on patients with upper-limb neuro-motor problems. The KBS

objective is to study the physiotherapist’s decision-making process and develop a

mechanism that proposes a particular sequence of exercises depending on the status of

the patient. This intelligent mapping can be achieved by first encoding the exercises

and the patient’s data into formats suitable for further processing by the KBS [Pham et.

al., 2001]. The rehabilitation exercises can be encoded in the form of the duration of the

exercise cycle, movement range in each joint, degree of complexity, patient posture,

and then finally categorized into three groups namely: Simple, Moderate, and Complex

according to the number o f joints from the human arm involved in the required motion.

The KBS design itself is beyond the objectives of this thesis, as this categorization has

no effect on the robot arm control system, where the movement is recorded in the form

of robot end-effector position, link angles, and link velocities trajectories in the teach-in

stage. It may affect the decision of utilizing only one robot manipulator or using two

cooperating manipulators to perform the required exercise or group of exercises.

Details of the KBS design can be found in [Pham et. al., 2001].

181

RtHAflOB

Figure (5.9.a). Simple exercise - Start position.

Figure (5.9.b). Simple exercise - End position.

Figure (5.9) illustrates one of the exercises categorized as a simple exercise. Here, with

the patient lying on a couch, the arm is stretched until it points vertically upwards and

182

then lowered back to the initial position where the upper arm rests against the couch

and the lower arm is held vertical. Programming of industrial robots by demonstration

(teach-in) has been a popular and in some applications the only programming method.

In REHAROB project, it is planned that the physiotherapist trains the robots while

he/she is exercising the patient limb. When teaching mode is activated, the

physiotherapist takes over the load of the upper-limb and the orthoses (devices that

holds the upper and lower arms during therapy) from the robot(s) by grasping the

handles of the outer shells covering the human arm [Kovacs et. al., 2001]. He or she

can then exercise the patient while the robot(s) learns the trajectories. The teach-in

stage is defined as performing the upper-limb rehabilitation exercises with the robot

arm attached to the human arm and in idle condition (almost no actuating torques

acting on the joint drivers and with links free to rotate with small forces) with the help

of the physiotherapist expert as shown in figure (5.10). To achieve idle motion

following (without exerting any forces) from the robot manipulators during teach-in

stage, it is a requirement to control the grasping force subject to the end-effector to be

zero. This requires implementation o f incremental position based force control by

introducing force sensors between the robots end-effectors and the attachment

mechanism [Lange and Hirzinger, 1996]. The reference force trajectory in this case will

be constant and equal to zero. Since it is aimed to use standard industrial robots

controller with digital position control in REHAROB, therefore the teach-in control

stage will be implemented by an inner-loop/outer-loop control architecture. The inner-

loop represents the robot internal position control, while the outer-loop represents

standard robots programming language based force controller [Kovacs et. al., 2001].

183

Figure (5.10). Representation of teach-in mode.

During this stage the position sensors of the robot arm records the resulting motion of

each link in the robot in addition to the end-effector Cartesian position with respect to

the reference global coordinates. These recorded trajectories are then used as the

decoded exercises for the upper-limb rehabilitation application control system using

one or two robot arms in the play-back mode as shown in figure (5.11). The use of the

robots in the play-back mode requires implementation of incremental position based

control system. As the weight of the patient arm and the degree of illness (resistance to

motion) are very difficult to be pre-specified in accordance with the exercises

trajectories, moreover they vary from patient to patient, the control system has to be

capable of handling different patient states while achieving the main target trajectories

by considering the patient resistance to motion as external disturbance. Of course the

final control system must include some force sensing and safety devices to guarantee

safe operation in addition to some emergency tripping devices from the patient himself.

184

Figure (5.11.a). Representation of play-back mode using one robot.

Figure (5.1 l.b). Representation of play-back mode using two robots.

185

5.6.2. Human Upper-Limb Dynamic Model

It is required to test the control system developed in previous chapters in performing

upper-limb rehabilitation using one robot arm for a simple exercise as first stage.

Firstly, a mechanical anthropomorphic model for the human arm was designed as

shown in figure (5.12) to facilitate the required motion requested from the robot to

perform the rehabilitation training exercises.

The main function of the model of the human upper limb is to simulate and investigate

the patient arm movement for a given type of rehabilitation procedure and to generate

the attachment point (attachment points of the robots to the patient arm) trajectories in

global coordinates. It can be considered as an intermediate unit in between the learning

procedures of the cell and its influence on the patient.

View j G roup |

U ndo | R e d o |

dummy iUi& dynamic model

SYSTEMS EM a ME ER1118 DIVISIIM
lARDirr SCHOOL or emoimcerinc

i ' i Pro/MECHANICA(R) W ildfire(TM)

File Edit Display Utility Review Windows Application Help

COMMAND:
Entering dynam ic transla tion (RETU R N to com plete):
COMMAND:
COMMAND:

G eom etry

M o d e l

A nalyses

K esuhs

/MECMANtCAlft) W.ldf |TM>

> M a i n

Figure (5.12). Virtual dynamic model of the limb.

1 8 6

From a modelling point of view, the human upper-limb can be considered as a system

of rigid bodies (links) connected in a specific way by revolute joints. This is because

the processes in the soft tissues, the blood movement and the muscle deformation do

not influence the mass-inertia characteristics of the links. The creation of a model of the

limb consists of determining the number of links (bones), their shape, and the types of

the kinematic pairs (joints). Experimental medical investigations show that the

coefficient of friction in the joints is very small, so that joint characteristics can be

approximated to those of ideal kinematic pairs. In this study, the arm weights will be

approximated by an average value of around 3.5Kg for the lower arm and 4.0Kg for the

upper arm including the orthoses. The muscle resistance force/torque values depends on

a number of factors, such as the type of arm motion, the degree of motor impairments

of the arm, the sequence of the given cycle from the rehabilitation procedure, etc. An

experiment to evaluate the range o f the resistance torque was performed on a number of

patients with different motor impairment for different types of rehabilitation exercises.

During these exercises, force/torque sensors were attached to the patient arm to record

the values exerted from the patient during rehabilitation. From these data, different

profiles for the resistance torque of the patient arm were obtained. Based on all

measurements, the resistance torques in the joints is calculated as a function of the joint

angles. A detailed description of the process can be found in [Pham et. al., 2001].

To simplify the modelling of the control system, the human arm model is modeled as

chain of rigid links connected by movable joints [Hsu, et. al, 1993]. This assumption

allows us to formulate the human arm as a robot manipulator. The rigid links form a

kinematic linkage, and their motions are constrained according to the degrees of

187

freedom (DOFs) of the various joints. Figure (5.13) shows the kinematic modelling of a

human arm as a chain o f two rigid links, upper and lower arm, connected together to

other body parts by three joints, shoulder, elbow, and wrist. For the sake of simplicity,

we model the shoulder and wrist joints as ball joints of 3 DOFs, and the elbow joint as

butterfly (pin) joint of 1 DOF. So, the human arm model is approximated as a chain of

two rigid links with a total of 7 DOFs. Using the same notation as in Table (3.1), the

arm coordinate system can be represented as in Table (5.1). According to

biomechanical modelling, the seven degrees of freedom human arm model contains

twenty-nine spring-like muscles in the human arm [Byung-Ju and Freeman, 1995],

seven muscles around the elbow joint, thirteen muscles around the wrist, and nine

muscles around the shoulder. Dynamical modelling of such structure is very

complicated. So, for the sake of simplicity, the arm muscles representation is limited to

torsion springs of 2.0 N.m. torque constant at the arm joints and connection points to

the robot manipulators, while limiting the arm model to planar motion only.

Figure (5.13). Kinematics model of the human arm.

188

Link Distance d Twist a Length a

Li 0 , 0 90° 0

l 2 e 2 0 -90° 0

Ls Os d3 90° 0

l 4 04 0 1 o o

0

l 5 05 ds 90° 0

l 6 06 0 'O o o

0

L 7 07 0 0° 0

Table (5.1). Human arm model coordinate system [Hsu, et. al, 1993].

This model was then simplified to ignore the wrist as the attachment points of the robot

will be in the lower arm. Then, the lower and the upper arm model are attached to the

Puma 560 virtual dynamic model developed in Chapter (3) to test control system

functionality. Finally, the resulting combined model forms an upper-limb rehabilitation

cell dynamic model. The trajectories required from the robot arm to perform certain

exercise are pre-planned according to the simplified model. The aim is to test the ability

of the proposed control system to follow any of these decoded exercises with different

patient conditions within a safe operating range. Figure (5.14) shows the

“Pro/Mechanica®” virtual model used to simulate the robot holding the simplified

human arm model to perform upper-limb rehabilitation for a simple exercise from the

library of exercises supplied by the physiotherapist.

189

>Main

Geometry:

P r o /M E C H AN (C A IR) l i l i l d f \t FM) P U M A 5 6 0 V CRT U A L D VN AM IC M O D E L

SYSTEMS ENGINEERING DIVISION
tA R D IF F SCHOOL OF ENGINEERING

H Pro/MECHANICA(R) Wildfire(TM)
File Edit D isplay Utility R ev iew W indow s Application Help

COMMAND:
Entering dynam ic translation (R ET U R N to com p lete):
COMMAND:
COMMAND:

Model:

Results:

Figure (5.14). Simplified model for upper-limb rehabilitation using one robot.

5.6.3. Upper-Limb Rehabilitation Using One Robot M anipulator

The model shown in figure (5.14) was tested to follow the trajectories for one simple

exercise from the library of the exercises provided after decoding this exercise into

joint angles trajectories. The neuro-fuzzy controller described in chapter (4) was

programmed using C++ and compiled as a custom load to be attached to the model.

Figures (5.15) and (5.16) show the position tracking results for the suggested neuro-

fuzzy controller utilized to perform the upper-limb rehabilitation using one robot

manipulator. The obtained results support the validity of the proposed control system

for upper-limb rehabilitation application. Also, the Cartesian neuro-fuzzy internal

model controller developed was used to follow the trajectories for the same exercise

190

after decoding this exercise into end-effector position trajectories as well. Figures

(5.17) and (5.18) show the Cartesian position tracking results for the suggested neuro-

fuzzy Cartesian internal model controller utilized to perform upper-limb rehabilitation

using one robot manipulator. The obtained results also support the validity of the

proposed Cartesian control system for upper-limb rehabilitation application.

191

89

88.5

88

87.5

87

86.5

Target Angle-1 Robot Angle-1
86

S e c .

100

95

90

85

80

75

70

65
Robot Angle-2Target Angle-2

60

S e c .

180

170

160

150

140

130

120

Robot Angle-3Target Angle-3
100

S e c .

Figure (5.15). Upper-limb rehabilitation position trajectories tracking results.

192

0.6

0.4

0.2

- 0.2

-0.4

- 0.6

- 0.8

-1

- 1 . 2
Angle-1 Error

-1 .4

S e c .

0.5

-0.5

- 1

Angle-2 Error

-1 .5
S e c .

3

2 . 5

2

1 . 5

1

0 . 5

O
- 0 . 5

1

- 1 . 5
Angle-3 Error

-2
S e c .

Figure (5.16). Upper-limb rehabilitation position trajectories tracking errors.

193

LO D CO LO CO CNJ

-10

-20

-30

-40

-50
Desired X-position Actual X-position

-60
Sec

100

90

Desired Y-position Actual Y-position

LO CD CO LO D CO CO

CNJ CN CNJ CNJ

Sec.

0.5

o > — e o — t o — c o r*- cnj c o c d c d c o l o
 c o l o c o r ^ . o D ~>q cm— c o — — l o — — a x-0.5

CNJ CNJ CNJ CNJ

-2.5

Actual Z-positionDesired Z-position
-3.5

Sec

Figure (5.17). Upper-limb rehabilitation Cartesian trajectories tracking results

194

5

1

0.5

0
CNJ CO

t— C O L O C O

O---O---O-O- CNJ-0.5 -CNJ CNJ CNf

1
X-position Error

5
S e c .

2

5

1

0.5

0
L O 0 0 CNJ

-0.5 CNJ CNJ CNJ CNJ

1

5
Y-position Error

2
S e c .

0.5

CO CNI CO N

- ^ 1 0 CNJ'
CNJ CNJ CNJ

CNJ CO LO
cn j— c o —

CNI LOo>—e>LO co CO LO
-0.5

Z-position Error
-2.5 J

S e c .

Figure (5.18). Upper-limb rehabilitation Cartesian trajectories tracking errors

195

5.7. Summary

In this chapter, a modified neuro-fuzzy model-based internal model control strategy for

Cartesian control of robotic manipulators has been proposed, based on the conventional

structure of IMC systems. The necessary structure modification is very simple and

effective as it uses an approximate adaptive neuro-fuzzy inverse kinematics network in

conjunction with a forward kinematics mathematical model to form the internal model

structure over an existing neuro-fuzzy joint-based controller which was introduced in

chapter (4). The control structure converts the command generation stage in robotics

control systems into an additional adaptive control loop which in turn increases the

overall system robustness to both types of model uncertainties. Also, the proposed

control structure increases the overall system disturbance rejection capabilities.

Identification of the inverse kinematics and inverse dynamics neuro-fuzzy networks

was fully reported in chapter (3). The control system has been tested to control the first

three links of the Puma 560® virtual model presented in chapter (3) for free pre

planned trajectory tracking while carrying a fixed payload, giving reasonably good

results.

196

CHAPTER 6

Manipulators Position Coordination

Coordination of multi-robot systems has received extensive studies in the past decade.

This is due to applications that require more than one robot manipulator to be

performed like lifting heavy or awkwardly shaped object where independent

manipulators controllers cannot be trusted to fulfill the task. Each robot controller will

receive no information about the other, and any disturbance in one controller loop will

cause an error that is corrected only by this controller loop, while the other controller

loop will carry-on as before. This lack of coordination will cause an error in the overall

task. Coordination between robot manipulators can be divided mainly into two groups,

which are cooperation without interactions of forces between robots and cooperation

with them [Osumi and Arai, 1994]. In the form of scheme categorization, there have

been mainly three kinds o f coordination schemes reported in the literature. The first

scheme is the master/slave control where the motion of the master robot is pre-planned

according to the desired motion o f the manipulated object and the motion of the slave

robot is to follow the master [Akella and Hutchinson, 2002]. Sometimes, the slave

robot is position controlled with its desired trajectory is based on the actual position of

the master robot and is modified in real time. To further enhance the master/slave

position based scheme, relaxing o f the grasp o f the slave robot is used which basically

results in its end-effector supporting the manipulated object rather than rigidly grasping

it. Hence, any trajectory errors o f either o f the robots results in sliding of the

manipulated object along the supporting end-effector of the slave robot if the object

197

support to the slave robot permits it. The hybrid position/force control method can also

form part of a master/slave cooperative robotic system, where the master robot is

position controlled and the slave robot is subject to compliant force control to maintain

kinematic and force constraints. To further aid the HPFC method in minimizing

trajectory following error, feedforward signals based on the object and the master robot

position can be incorporated. HPFC schemes require appropriate force measurements at

the end-effector o f the robot. This not only results in the need for a force sensor of a

suitable resolution to be attached between the robot and the load, but also additional

hardware and software to interpret and transform the sensed value into a usable data

format. Furthermore, incorporating the force data will increase the computational

complexity. The second scheme utilizes centralized control architecture, in which

robots and the grasped payload are considered as a closed kinematic chain. This

method is designed based on a unified robot and payload dynamic model which is

generally not easy to formulate. The third scheme is a decentralized control, in which

each robot is controlled separately by its own local position controller, while

installation of compliance devices, such as springs or free joints among robots is used

to avoid excessive inner forces for the cooperative system [Osumi et al., 1997].

All of these coordination schemes considered the situation that the two manipulators

are physically connected together, like grasping a common rigid payload, and employed

complex setups o f the hybrid position/force control architecture to overcome excessive

inner forces between robots [Paljug and Yun, 1995; Subbarao et. al., 2001]. Actually,

few of these coordination schemes can be applied to commercially available robots so

far, this is due to the complex hardware and software setup of the control and

198

coordination strategy as explained. This situation gives another motivation for

developing a simple coordination scheme specially to addressed the coordination

problem when the robots are not kinematically constrained but perform a common task

together such as one robot holding a payload while the other spreads adhesive on the

edges, with both robots in motion simultaneously. In such cases coordination without

interactions of forces is more realistic. Upper-limb rehabilitation, using two robot

manipulators, can be viewed as an example for not kinematically constrained robots

performing a common task (although it is forming a closed-chain kinematic system),

where interacting forces between robots is not essential, due to the presence of the

elbow joint, and can be disregarded in the controller design, while task planning is the

most important issue while grasping the patient arm by the two robot manipulators. In

this way, the upper-limb rehabilitation application using two-robots is similar to a

closed-chain kinematic system with one free joint (elbow joint). Actually, position

coordination between two-robots when there is a free joint between them, gives the

designer a ready made solution that avoids excessive inner forces between the two

robots [Osumi et. al., 1997; Tinos and Terra, 2002]. Also, for such an application the

stability issue will not be so critical due to slow motion nature of the application.

In this chapter, a new coordination scheme for two position controlled manipulator

system is developed by maintaining certain kinematic relationship between

manipulators end-effectors using fuzzy motion synchronization to perform upper-limb

rehabilitation application. The basic idea of the new coordination strategy is mainly to

use the concept of motion synchronization. Since the problem of coordinating two

manipulators is basically the problem of maintaining certain kinematic relationships

199

between them, it is o f common practice to monitor and incorporate this kinematic

relationship somehow in the control system [Sun and Mills, 2002]. The key to the

success of the new method is to ensure that each manipulator tracks its desired

trajectory while synchronizing its motion with the other manipulator motion so that the

differential position error computed for the geometric connection-vector between the

two manipulator end-effectors is reduced to zero or kept within low acceptable value.

The proposed synchronization controller for each manipulator incorporates the cross

coupling technology into adaptive control architecture, by feeding back the differential

geometric connection-vector position error in the control system. In a broad sense,

cross-coupling control includes all control schemes that use feedback information from

more than one control loop to control a composite error, which is normally calculated

from individual loop errors, rather than individual loop error feedback. The use of the

cross-coupling control in robotics was introduced by [Feng et al., 1993], where the

differential velocity error of two driving wheels in a mobile vehicle was minimized

through cross-coupled motion synchronization.

Implementation of this new coordination scheme is more straightforward and it is

simple enough to synchronize any two kinematically constrained, physically not

connected robots working together to perform certain task while the load on each robot

is assumed to be within the capacity of these robots, which is typical the case of upper-

limb rehabilitation application. The proposed control provides a unique advantage and

opportunity for two-robot coordination by maintaining certain kinematic relationship

without explicitly employing the hybrid position/force control amongst robots. Using

this synchronization approach, manipulators are controlled in a synchronous manner so

200

that tracking errors and synchronization error converge to zero or to a very small value

acceptable by the application nature.

The synchronization error is defined as a differential position error between the two

manipulators end-effectors, and is used to evaluate the degree of coordination. The

consideration of synchronization error in the proposed control design aimes to regulate

robot trajectories in the transient stage which complies with the exercises execution

nature of the rehabilitation application as a result of the sudden change in patient arm

muscular resistance although the slow motion nature of the exercises. The significance

of the proposed coordination scheme comes from:

> Incorporation of the differential position error into an adaptive architecture for

two-robot control is relatively straightforward. There is no need to explicitly

employ hybrid position/force control in the controller design.

> The controller being implemented using both adaptive neuro-fuzzy inverse

kinematics and inverse dynamics robot controllers developed in previous chapters

and is capable to sustain external force disturbances from patient arm.

> Position errors and synchronization error converging to zero or small value to be

defined by the physiotherapist.

The remainder of this chapter is organized as follows. Section 6.1 presents the

definition of the synchronization function. Section 6.2 presents the detailed structure of

the proposed position coordinator for two robot manipulators. Section 6.3 explains the

idea of implementing the proposed motion coordinator in the form of a fuzzy hysteresis

201

coordinator. Section 6.4 introduces the experimental set-up of the proposed

coordination system over a simplified rapid prototype test-bench representing the

upper-limb rehabilitation and presents the experimental results obtained. Finally,

section 6.5 presents a summary for the chapter.

6.1. Synchronization Function

The problem of coordinating two robots is basically the problem of maintaining a

kinematic relationship between them. Consider a robotic cell formed by two

manipulators. Denote xi (t) as the Cartesian coordinates vector of robot manipulator i,

where i= 1 or 2. The position tracking error vector of the manipulator in following a

desired position trajectory vector, x f (t) , is given by:

Consider that coordinated manipulators are subject to the following synchronization

function, which defines the task supposed to be achieved:

Assuming that the synchronization function is a linear function of variables jc, (t) and is

valid for all desired coordinates for the two robots.

Using Taylor expansion, / (* ,) can be expanded at the desired coordinates x f (t) as:

ei(t) = xi (t) - x f (t) (6.1)

f (x i) = f (x i(t),x2(t)) = 0 (6.2)

f (x ?) = f (x dx (0 , * 2 (0) = 0 (6.3)

202

f (x i) = f (x l(t),X2(t))

= f { x f { t) , xd2 (t)) + (* , (/) -< (0)

+ I xi (x 2 (t) - * 2 (0) = 0

(6.4)

f (x i) = f (x l(t),x2(t))

= d/(*,)
d x}

(e , (0) +
5/(x ,)

cbcn *2
(e2(t)) = 0 (6.5)

Note that defining the synchronization function as a linear function of the

variables xt (t) limits the order o f the resulting Taylor expansion for it to be first order

as all higher order derivatives o f the series will equal to zero.

Example 1: Consider that a differential-drive mobile robot with two driving wheels

tracks a curved path as shown in figure (6.1).

Figure (6.1). Mobile robot tracking a curved path.

203

Radii of the desired curves that the two driving wheels follow are denoted by Rj(t) and

R2 O), while the displacement of the two driving wheels denoted by l\(t) and h(t),

respectively. The two wheels displacements are subject to a synchronization function:

/ (/ , (0 , l2(0) = %-¥77, = « x A (') - * , (0 x = 0
K x \ t) K 2 y t)

(6.6)

This synchronization function represents the condition which must be fulfilled to limit

the orientation error to zero in order to sustain the desired curved path of the robot

structure. According to equation (6.5), the above function is equivalent to causing the

displacement errors e\(t) and e2 (t) to satisfy:

/ (/ ,) = / (A (0 , 4 (0) = ^ (0) + ^ 5 p
0/j

= R2(t) x e l(t) - R l(t) x e 2(t) = 0
(6.7)

Example 2: Consider two robot manipulators holding a rigid object in a trajectory

tracking task as shown in figure (6.2).

xj(t)

o
Figure (6.2). Two robot manipulators holding a rigid object.

204

Since it is a requirement that the difference between positions of the two end-effectors

of the robots must remain constant in order not to damage the payload or robots, the

position coordinates of the two manipulators end-effectors, denoted by jq (/) and x2 (t) ,

are subject to the synchronization function:

f i x ,) = / (* , it), x2 (0) = x, (0 — x2(t) — A = 0 (6.8)

where A is a constant vector of a magnitude equal to the effective rigid object length.

According to equation (6.5), the above function is equivalent to causing position errors

e\(t) and ej(t) to satisfy:

/ (* «) = / (* ! =

= el(t) - e 2(t) = 0

df(x,)
obtj

(e , (0) +
df(x,)

(e2(0)
(6.9)

Generally, synchronization functions may contain coordinate errors in the first order

T T[i.e., ei(t) and e2 (t)] or o f higher order [i.e., ej(t) e i(t) and e2 (t) e 2 (t)\ However, it is

more common that synchronization functions arisen from manipulators coordination

tasks are linear functions of robot coordinates [Sun and Mills, 2002].

For an upper-limb rehabilitation application using two robot manipulators, the

rehabilitation task required to be performed by the two robots can be approximated by

the schematic diagram shown in figure (6.3).

205

Human-arm
simplified model

xi(t)

Figure (6.3). Two robot manipulators performing upper-limb manipulation.

The configuration of the arm is determined by the direction of the rotational axis for the

elbow joint, the position of a point on that axis, and the angle between the two arm

links. The position of the point can be computed by the joint angles of the manipulators

if they are rigidly grasping the arm. As the motion is restricted to be in one plane, the

direction of the rotational axis will remain fixed.

Since it is a requirement that the difference between position vectors of the two end-

effectors of the robots to a common coordinates system must equal to the connection

vector calculated from the pre-planned trajectories for each robot end-effector, the

position coordinates of the two manipulators end-effectors, denoted by x, (/) and x2 (t) ,

are subject to the synchronization function:

/ (* ;) = / (* i (0 , X2(0) = Xx(t) - X 2(t) ~ A (t) = 0 (6.10)

2 0 6

Where Aft) is a time-varying vector calculated from the pre-planned trajectories for

each robot end-effector, denoted by ^ (f ja n d x j (0 • According to equation (6.5), the

above function is equivalent to causing position errors e\(t) and e2 (t) to satisfy:

/(*,) =
d f (X i)

dx] (e.(0)
d /0 ,)

d x .
(e2(t)) = el(t) - e 2(t) = 0 (6.11.a)

Note that the result o f equation (6.11 .a) is the same like that of equation (6.9). This is

due to the fact that the time-varying vector A(t) in equation (6.11.a) is calculated from

the pre-planned robots end-effectors desired trajectories during the teach-in stage as

explained in chapter (5), which do not depend on the current positions of the robots

end-effectors, hence the partial derivative of vector Aft) with respect to either of the

actual position coordinates of the two manipulators end-effectors equal to zero.

Comparing this situation with the case of manipulating rigid object as in example 2, a

small tolerance error e above zero in equation (6.11.a) magnitude can be accepted as

the manipulated object (human-arm) contains a free joint (elbow-joint) which prevents

excessive forces from being transmitted from one robot to the other as indicated in

equation (6.1 l.b). This idea results in accepting small error in the over all motion of the

human arm due to the fact that the flexibility nature of the human arm tissues helps in

absorbing such errors. The control of the synchronization error within this tolerance

value aims to guarantee that no harmful twisting be applied to the human arm during

trajectory execution.

| /0 ,)| = d / O .)
dxx (e.W)

d /0 ,)
dx^ b)

207

6.2. Proposed Coordinator Structure

The proposed motion synchronization controller can be regarded as comprising three

main components. The first component is the joint-based controller, which controls the

motion of each robot joints as explained in chapter (4). The second component is the

Cartesian trajectory interpolator, which utilizes the inverse kinematics neuro-fuzzy

network to generate the desired joint trajectories for a given desired Cartesian path for

each robot as explained in chapter (5). The third component is the motion geometry

controller (coordinator) which uses motion synchronization to coordinate the motion of

the two robots. The motion synchronization system consists of:

• A hysteresis controller which is used to monitor the connection-vector between

the two robots end-effectors and gives a signal whenever this vector violates a

certain pre-defined tolerance value 8.

• Error mapping and decision-making logic which works to transform the error in

the connection-vector into trajectory compensation signal to be fed to either or

both of the two robots reference trajectories.

Actually, the compensation signal can be added to the robots local controllers output in

the form of an additional control signal to the robot or in another way, it can be added

to the robots local controllers inputs in the form of increased/decreased error (or

increased/decreased reference input) as will be used here. The direct modification of

the controllers’ reference command is straightforward method which does not involve

208

changing the system configuration which is of great importance in our case to keep the

internal model structure valid [Moore and Chen, 1995; Verdonck and Swevers, 2002].

The trajectory modification signal for each robot although depends on the

synchronization error, it also depends on that of the other robot as will be explained in

the following sections.

Figure (6.4) shows the general structure of the proposed control and synchronization

system for the two robot arms. The neuro-fuzzy Cartesian controller explained in

chapter (5) for each robot arm is minimized in one block to simplfiy the block diagram

and to clarify the synchronization part of the overall controller.

Motion Supervisory Coordination

Error
Mapping

Robot #1 neuro-fuzzy
Cartesian controller

Y

Robot #2 neuro-fuzzy
Cartesian controller

r
Figure (6.4). Structure o f the proposed control and synchronization system.

6.2.1. Synchronization Error Controller

The design issue here is how to map the measured synchronization error vector to the

demand position compensation vector of each robot so that the synchronization can be

controlled as accurately as possible. The mapping rules between synchronization error

and corrective actions are heuristically constructed from the commanded inputs and

measured responses with the main objective of forcing the synchronization error to lie

within the acceptable tolerance. The first component in the proposed coordinator is

simply a sign generator which gives +1 for positive synchronization errors and a -1 for

negative errors. The main component in the proposed coordinator is the hysteresis

controller which is used to monitor the synchronization error and generates a switching

signal for the error mapping mechanism to calculate the modifications required. The

input-output characteristic of the hysteresis controller is as shown in figure (6.5). The

width of the hysteresis loop, denoted by (c), which represents the tolerance bandwidth

for the synchronization system to interfere in the control system for modification. If the

synchronization error is below this value, then there is no vital need for the

synchronization system to interfere in any of the robots controllers and each controller

is supposed to cover this error alone or even the system overall performance will not be

affected by this error. This method ensures that the coordination controller is delayed

behind each robot controller to allow the robot controller first to compensate for the

generated error. In other words, the coordination controller is operating only when any

of the robots controllers fails to quickly compensate for its own generated error and

works to speed-up this compensation process.

210

Figure (6.5). Hysteresis controller input/output characteristics.

The tolerance bandwidth of the hysteresis controller is to be designed according to the

safety limits provided by the physiotherapist for the patient upper-limb allowable

torsion and/or exercises trajectories violation allowance.

6.2.2. Error Mapping Look-up Table

This is the part responsible for transferring the synchronization error to a compensating

signal to be added to either of the robot arms kinematics control part. The main strategy

depends on the most significant error concept, which is defined as the error which has

the largest impact on the motion accuracy at this moment.

The position tracking error et (t) o f the ith manipulator in following position trajectory,

x f (t) , is given by equation (6.1), where / = 1 or 2. Although the independent adaptive

control of each robot without synchronization ensures that position errors of each robot

converge to zero and eventually the synchronization error converge to zero, the

proposed synchronization control aims to improve the transient performance of the

system specially when a sudden or large change in the patient arm resistance occurs.

e,(t) = x f (t) - x i(t) (6.12)

where xt(t) is the end-effector Cartesian position of robot z, x f (t) is the reference

Cartesian position of robot i end-effector. The reference connection-vector trajectories

are calculated from the original values of both robots reference trajectories recorded

during the teach-in process. Also, the actual connection-vector trajectories are

calculated online from the forward kinematics positioning of the end-effector of each

robot as shown in equations (6.13), (6.14) and (6.15).

sd(t) = xdx{ t) - x i (t) (6.13)

s(t) = xl(t) - x 2(t) (614)

es{t) = sd{ t) - s { t) (6.15)

where sd(t) forms the reference connection-vector trajectories, s(t) forms the actual

connection-vector trajectories, andes(t) is the synchronization error. The error mapping

main function is to judge which robot is the one which is experiencing difficulty in

following its predefined trajectories at this moment and affecting the overall motion of

the manipulated object. By monitoring the present values of the synchronization error

and both of the robots end-effectors Cartesian position errors, a decision on which

robot to be helped to improve its response is taken according to table (6.1).

212

«i(0 r2m(f)

+ve >e +ve +ve es(0 zero

+ve >e +ve zero es(t) zero

+ve >e -ve -ve zero -es(0
+ve >e zero -ve zero -es(t)
-ve <-e +ve +ve zero es(0
-ve <-e -ve -ve zero

-ve <-e -ve zero -es(t) zero

-ve <-e zero +ve zero es(t)
+ve >e +ve -ve es{t) -es(0

-ve <-e -ve +ve -e3(t) es(t)

Table (6.1). Error mapping and corresponding compensating signals.

If one examines the first row in table (6.1), it implies that, i f the synchronization error is

positive and exceeded the tolerance value (s), and both o f the robots errors are positive

then, robot #1 error forms the most significant error. In this case a positive torque or

input reference compensation signal is to be added to robot #1 controller. Also, by

examining the last row in table (6.1), it implies that, i f the synchronization error is

negative and exceeded the tolerance value (e) , and robot #1 error is negative, while

robot #2 error is positive then, it is not certain which robot forms the most significant

error. A solution for this case is to add a negative torque or reference compensation

signal to robot #1 and a positive compensation signal to robot #2. By following this

intuition, a total of 10 rules can be generated for the motion coordinator. In this way, a

compensation signal will be added to the main controller of the robots to force the

synchronization error to be maintained within the pre-specified tolerance value.

213

6.3. Fuzzy Hysteresis Coupling Coordinator

The above mentioned look-up table can be transformed to form a fuzzy hysteresis

coordination system by assigning specific shape membership functions. Figure (6.6)

illustrates the suggested input/output membership functions characteristics.

0 +8-8

+ 11 ■s 0 + 8 + 2 e-2 s

- 2 s - s 0 + 8 + 2 e + 11

Figure (6.6). Input/output membership functions for the fuzzy hysteresis coordinator.

214

By assigning these membership functions, Table (6.1) can be re-written in the form of

fuzzy hysteresis coordinator rules as listed in table (6.2).

No. es(0 *i(0 * (0 r2m(t)

1 P p p P Z

2 P p z P Z

3 P N N Z N

4 P Z N Z N

5 N P P Z P

6 N N N N Z

7 N N Z N Z

8 N Z P Z P

9 P P N P N

10 N N P N P

11 Z - - Z Z

Table (6.2). Fuzzy hysteresis coupling rules.

Note that there is another rule added in this case (rule No. 11) to represent the case

when the synchronization error lies inside the tolerance band. Addition of this rule is

essential and helps to smooth the output characteristics of the fuzzy coordinator. The

COA defuzzification method [Runkler, 1997] is used to generate the crisp modification

signals for each robot reference input from the fuzzy output in order to have smoothly

varying modification signals while the synchronization error is in the range from

±s to ± 2c as specified in the input/output membership functions.

215

6.4. Experimental Coordination between Two SCARA® Type Robots

In order to test the coordination scheme, an experimental test for the proposed control

and coordination strategy over a simplified real-time test-bench for the upper-limb

rehabilitation cell formed by two 2-link similar planner robots linked to a simple upper-

limb model developed in the intelligent systems laboratory as shown in figure (6.7).

Figure (6.7). Experimental setup formed by two 2-link SCARA® type robots.

The mechanical structures of the robot’s links and the arm simplified model were

manufactured using Rapid-Prototyping facilities available in the Manufacturing

Engineering Centre, Cardiff School of Engineering. This facility allows the

transformation of the generated 3-D CAD model created for the parts (or even the

assembly) by ^Pro/Engineer® ” to be rapidly manufactured from a selection of plastic

or metallic powders using Selective Laser Sintering (SLS) machines. The manufactured

parts possess acceptable tolerances in model final dimensions after cooling down.

216

6.4.1. Experimental Setup

Each robot link is then fitted with suitable bearing and powered by a high-torque

compact frame D.C. motor with planetary reduction gear-head by which high-torque to

weight and inertia ratios and virtually zero backlashes are achieved. Two different gear

ratio gear heads of 224 and 111 were used for linkl and link2 drive motors in each

robot respectively. The angular displacement of each joint is measured by a high

accuracy potentiometer [Norberto et. al., 1997]. The system is controlled by an

ADLINK® DAQ/PXI-2501 PC general purpose interface card plugged in the host

computer. Appendix (C) summarizes the technical specification for the joint motors,

position sensors, interface card, ... , etc. Figure (6.8) shows the schematic view of the

overall system control architecture.

To apply the suggested control and coordination system, an adequate amount of input-

output data should be obtained. The validity, accuracy, and robustness of the model

depend on the experiment and the input-output data extracted from it. The main target

is to construct the inverse kinematics and inverse dynamic model for each of the 2-link

robot arms. The same procedure described in chapter (3) was used. A simple feedback

proportional controller was designed first for each link to perform stable behavior along

different trajectories. A collection of input-output data was obtained through a wide

range of joint movement. In order to ensure that the excitation during the identification

experiment covers the entire applicable range of system input/output variables, the

experiment should excite most of the modes of the system that may be excited when the

217

model is used. For robot manipulators, random joint trajectories that cover the desired

range of input/output parameters are considered proper and sufficient input signal.

PC BUS

DAC

Filters

Amplifiers

Power
Amplifiers

Anti-aliasing
Filters

Amplifiers

■ v v .

ADC

Figure (6.8). Experimental overall system control architecture.

218

6.4.2. Experimental Results

The neuro-fuzzy Cartesian control system presented in chapter (5) is used to control

each robot in addition to the proposed synchronization system in order to implement

the upper-limb rehabilitation application with two robots working together in order to

imitate the two hands of the physiotherapist. The task implemented in the experiment

was to move two robots along desired trajectories while carrying the human arm

simplified model and causing the differential position error to be within the tolerance

band (e =3 mm) for both x and y coordinates. The test carried out in the experiment

was to move the system with the independent adaptive control without synchronization

first then, the two robots are synchronized using the hysteresis coupling coordinator

developed for the defined synchronization error as in equation (6.15). Figures (6.9)

through (6.12) illustrate the actual and the desired joint angles of the two robots without

synchronization respectively. Figures (6.13) through (6.16) illustrate the actual and the

desired joint angles of the two robots with the hysteresis coordinator in action

respectively. The major difference between results with the two methods lies in the

involvement of the synchronization error in the control system. It can be seen that

although the independent control without synchronization could achieve satisfactory

performance in each robot tracking, it exhibits large errors especially at the instant of

sudden load change. In contrast, the proposed synchronized controller exhibits much

smaller errors and therefore exhibits better coordination ability.

219

Desired X 1-Position Actual X1-Position

CO CO 0 5 CNJ CO 0 5 CNJ L O CO r— LO 00 T— Nj- r-'-
CO CO 0 5 CO CD 0 5 CO CO 0 5 CO CO 0 5 c o CO 0 5

T_ T“ T_ CNJ CNJ _C N J
Sec.

CO CO CO LO LO LO

8
6 -

4 -
2 -

S i '
-4 -
- 6 -

-8 -
1 n

!i I , . . i .

L ~ - 4 r 1|| Vt 05 co ̂co cnj r̂ -l|
.̂iTTT-̂TTTTirT-lt

I - CD ’T-f O) C0||
Csi CN CO CO ^ II ^ ^ lo 1 ib ib

J

X1-Error |
-1U

Sec.

Figure (6.9). Robot#! X-coordinate trajectory without coordination.

2 2 0

60 -

50 -

Desired Y1-Position Actual Y1-Position
45

0 5 <M (O COco CO o co
LO LO LO

CO
CM CM CM CO CO

S e c .

4

3

2

1

0
COco

1 -CM CM CM

Y1-Error
2

S e c .

Figure (6.10). Robot# 1 Y-coordinate trajectory without coordination.

2 2 1

Desired X2-Position Actual X2-Position

o co h*.
LO LO LO

CO
CM CO CO

Sec.

COCM CO O CO CO

CM CO

X2-Error
10

Sec

Figure (6.11). Robot#2 X-coordinate trajectory without coordination.

2 2 2

65 i

£ 55

50

Desired Y2-Position Actual Y2-Position

O CO Is-;
LO LO LO

CO
CNJ CM CM CO CO

Sec.

4

3

2

1

0
G i CO f - LO

LO CO
- to — u i

CO CO CM 00CO
1 -CM CM CM

Y2-Error
2

Sec.

Figure (6.12). Robot#2 Y-coordinate trajectory without coordination.

223

Desired X1 -Position Actual X1-Position
10

CO CO 0 5 CM in 0 5 CM LO CO

CM Sec

2.5

0.5

O) T 0 5 CO*<r— —t-—rt—co
CM CM CO CO CO

CO 00 CO
-tn CO CM10.5 "CO" O—CO—h>=-

X1-Error

Sec

Figure (6.13). Robot#l X-coordinate trajectory with coordination.

224

65

60

50

Desired Y1-Position Actual Y1-Position
45

O ' ^ r ^ - T - ' ^ c o c N j i o o ^ c N c o i ^ c o r ^ - r ^ ^ c o T -
c o c q o c o t q o c o c q o c o p r j o c o ^ o c o r ^ .
o O T - T - T - c \ i c \ i cv i coco ^ in in in

Sec.

0.5

ri s cviT-fl Tj- CO
p\i—c\i—c\i

CO CO 0 0 T- LO 00
po—oo—ea

lo> Cp nJ-
LO CD CNJ CO

^ ----- LO--- Lfi

LO
00

CO CO

-1.5
Y1-Error

Sec

Figure (6.14). Robot# 1 Y-coordinate trajectory with coordination.

225

Desired X2-Position Actual X2-Position

60

O CO h -
10 lo idco

CNJ CNJ CNJ CO CO

Sec.

CO CNJCNJ-CO CO— -Of—CO id—
COCNJ

X2-Error

Sec

Figure (6.15). Robot#2 X-coordinate trajectory with coordination.

226

65

Actual Y2-PositionDesired Y2-Position
45

CO CO CO CO
co to lOCM

Sec

05 CO
CO CO o

COCNJ
CO

CM CM CM CO lO to

Y2-Error

Sec

Figure (6.16). Robot#2 Y-coordinate trajectory with coordination.

227

6.5. Summary

In this chapter, a simple coordination scheme is proposed for coordination of two

position-controlled manipulators. Each robot is assumed to track its desired trajectory

through its own controller, while maintaining a certain kinematic relationship with the

other robot, which can be derived from the synchronization function, through motion

synchronization. Failure to maintain this relationship in tracking may cause failure of

the task or damage of the system. The proposed coordination strategy is to stabilize

position tracking of each manipulator while synchronizing its motion with the other

manipulator by causing differential position errors between them to converge to zero or

a small acceptable tolerance value. In the control design, the cross-coupling technology

is incorporated into a supervisory structure for adaptive controllers. It has been shown

that the proposed coordination system helps to reduce trajectory errors for the robots

and hence better synchronization is achieved. The proposed coordination scheme is

straightforward and easy to be implemented without explicitly involving hybrid

position/force control systems. Experimental investigation on coordinating two

SCARA® type manipulators demonstrated the effectiveness of the proposed approach.

228

CHAPTER 7

Conclusions and Future Work

The overall objective of this work is to design and develop intelligent neuro-fuzzy

adaptive control systems for industrial robot manipulators using machine learning

techniques (MLT), fuzzy logic controllers (FLC), and fuzzy neural networks (FNN).

The main target is to integrate these techniques in a systematic manner to achieve

adaptive robot manipulator control. This control system is coordinated for two robot

manipulators to produce a work cell capable of performing upper-limb rehabilitation.

The remainder of this chapter is organised as follows. Section 7.1 reviews the main

Contributions of the thesis. Section 7.2 lists the conclusions of the thesis. Section 7.3

presents suggestions for future investigations.

7.1. Contributions

1. Development of a systematic robotic inverse dynamics and inverse kinematics

modelling technique based on machine learning technique for automatic fuzzy rule

generation from observation data. The developed technique introduces a fully

differentiable fuzzy neural network termed dynafuzznn to achieve online adaptation

of the developed models. The final result is a systematic neuro-fuzzy inductive

learning algorithm that integrates the capabilities and performance of a good

inductive learning algorithm with the ability to create accurate and compact neuro-

fuzzy models.

229

2. Development of an adaptive neuro-fuzzy joint-based robotic control technique. This

control technique uses the inverse dynamics FNN developed as a feedforward

controller that compensates for the dynamics interactions of the robot structure in

addition to a feedback Fuzzy-PID-like incremental servo-controller for each robot

link. A feedback-error learning scheme is applied to provide an online adaptation

mechanism for the proposed controller. This scheme ensures that online training

will stop only when the feedback error reduces to zero. This behaviour resembles

the integration action in a classical integral controller.

3. Development of an adaptive neuro-fuzzy Cartesian internal model control technique

for robotic manipulators. The suggested control technique utilizes the neuro-fuzzy

kinematic model of the robot arm in addition to the joint-based control structure

proposed and the forward mathematical model of the robot arm in an adaptive

internal model controller structure to achieve an adaptive form of robot Cartesian

control. The suggested IMC structure can be regarded as an adaptive form of a

command generator for the existing neuro-fuzzy joint-based robot controller by

introducing the neuro-fuzzy inverse kinematics network outside the control loop

which achieves compensation for robot Cartesian uncertainties by modifying the

desired input Cartesian trajectory. The feedback error learning scheme is extended

to include the IMC controller.

4. Development of a simple coordination scheme for two position-controlled robot

manipulators. The coordination scheme is based on maintaining certain kinematic

relationships between the two manipulators using reference motion synchronisation.

230

The coordination strategy is based on allowing each manipulator to follow its

desired trajectory using its own controller while synchronising its motion with the

other robot manipulator’s motion so that the differential position error between the

two manipulators end-effectors is reduced to zero or kept within acceptable limit.

7.2. Conclusions

1. Recent developments in intelligent algorithms such as machine learning techniques

and neuro-fuzzy systems can result in a systematic modelling and control

techniques which can be applied for complex systems such as robotic manipulators.

Efficient application and integration of these algorithms results in compact and

adaptable mathematical-model free control techniques capable of updating its

parameters online to cop with the varying unstructured dynamics in robotic

manipulators operating with unmodelled loads. By integrating these algorithms, a

fuzzy neural network termed dynafuzznn is developed that can be used to replace

any complex block in the control system effectively. The final result is an efficient

and simple control system.

2. Fuzzy systems can be used to perform feedback control application effectively. A

fuzzy-PID-like incremental servo-controller can be regarded as an online nonlinear

stabilizer for a nonlinear plant. Also, it can be regarded as a nonlinear learning

signal for an adaptive neuro-fuzzy feedforward control system by applying the

feedback-error learning scheme. In this way, the learning signal will reduce to zero

only when the feedforward controller outputs converge to the desired control

231

actions. Using nonlinear learning signals for control application of nonlinear

systems is more realistic than using linear learning signals.

3. Cartesian control of robotic manipulators, although being the main target for any

control application, is a tedious target when implemented using mathematical

techniques as a result of computing inverse kinematics. Internal model control

technique provides high disturbance rejection and low sensitivity to model

uncertainties capabilities. Integration of intelligent techniques, which is capable of

adapting its parameters to unstructured dynamic variations, with the internal model

control technique results in an efficient model-free Cartesian control system for

robotic manipulators. The internal model control structure can be applied as an

adaptive form of a command generator for an adaptive neuro-fuzzy joint-based

robot controller. This simplifies the implementation of Cartesian control for robotic

manipulators.

4. Coordination between two position-controlled robot manipulators is not an easy

task due to interactions between the manipulators. Generally, complex hybrid

position/force control techniques are used which are very difficult to be

implemented in practice. In some applications, interacting forces between robots

are not important while task planning is the main problem. For such applications,

by maintaining certain kinematic relationships between the two manipulators’ end-

effectors, coordination can be much simpler and effective, especially when the

robots are controlled by intelligent adaptive controllers.

232

7.3. Further Work

1. Further research could be conducted to automate the creation of the output

membership functions in the rule generation part of the modelling process to obtain

the optimum number and shape of the output membership functions. This

automation could be based on clustering techniques in order to reduce or enlarge

the membership functions in areas of the target output space where more or

less precision is required.

2. The selection of model variables from the available data is another problem to be

investigated. The training data should reflect all the system dynamics during normal

operation and cover the whole operation range. It is not certain how to detect which

parts of the data satisfy these conditions. Therefore, further research could be

conducted to automate the selection of input variables to be used in the model

between all past and present values of position, speed, acceleration, and torque

variables collected during the data collection test. Again this automation could be

based on clustering or data-mining techniques in order to select the most dominant

variables affecting the target output.

3. The proposed adaptation method tunes only the parameters of the neuro-fuzzy

network online. No modification is carried out for the model structure, in other

words, the rules generated in the offline stage are fixed during operation.

Consequently, the offline method used for fuzzy rule extraction could be modified

or integrated with other techniques so that the rule base could be also upgraded

233

online by generating new fuzzy rules or pruning the existing rules that are not

frequently used during different control tests.

4. The model generated input membership functions which are close to each other, in

regards to the membership function parameters, could be combined together into an

approximate single membership function to reduce the size of the input domain to

the neural network and to reduce the fuzzification calculation time.

5. The proposed FPID servo controller rules could be implemented in the same way as

a fully differentiable neuro-fuzzy network including replacement of the

membership functions by differentiable ones such as Gaussian membership

functions, so that a pre-specified controller performance could be met using this

controller only as a standing alone adaptive fuzzy PID feedback controller by

online adaptation of the controller membership function and scaling parameters to

produce control outputs that achieve the pre-specified system response.

234

REFERENCES

Abe S. and Lan M.S. (1995), Fuzzy Rules Extraction Directly from Numerical Data for
Function Approximation, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, January 1995, Volume 25, Issue 1, Pages 119-129.

Akbas E. and Esin E.M. (2003), Intelligent Stabilization of Direct Drive Manipulators,
EUROCON 2003, Computer as a Tool, The IEEE Region 8, 22-24 September 2003,
Ljublijana, Slovenia, Volume 1, Pages 367-371.

Akella S. and Hutchinson S. (2002), Coordinating the Motions of Multiple Robots
with Specified Trajectories, IEEE International Conference on Robotics and
Automation, 11-15 May 2002, Washington DC, USA, Volume 1, Pages 624-631.

Arabshahi P., Choi J.J., Marks R.J., and Caudell T.P. (1992), Fuzzy Control of
Backpropagation, IEEE International Conference on Fuzzy Systems, 8-12 March
1992, San Diego, California, USA, Pages 967-972.

Armstrong B. (1988), Dynamics for Robot Control Friction Modelling and Enduring
Excitation during Parameter Identification, Ph.D. thesis, Stanford University, USA.

Armstrong B. and Corke P.I. (1994), A Search for Consensus Among Model
Parameters Reported for the PUMA 560 Robot, IEEE International Conference on
Robotics and Automation, San Diego, California, USA, Volume 2, Pages 1608-1613.

Armstrong B., Khatib O., and Burdick J. (1986), The Explicit Dynamic Model and
Inertial Parameters of the PUMA 560 Arm, IEEE International Conference on
Robotics and Automation, April 1986, Washington, USA, Volume 1, Pages 510-518.

Ballini R., Soares S., and Gomide F. (2001), A recurrent Neuro-Fuzzy Network
Structure and Learning Procedure, Proceeding o f the Tenth IEEE International
Conference on Fuzzy Systems, 2-5 December 2001, Melbourne, Vic. Australia,
Volume 3, Pages 1408-1411.

Baraldi A. and Blonda P. (1999a), A Survey of Fuzzy Clustering Algorithms for
Pattern Recognition, Part-I, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, December 1999, Part B, Volume 29, Issue 6, Pages 778-785.

Baraldi A. and Blonda P. (1999b), A Survey of Fuzzy Clustering Algorithms for
Pattern Recognition, Part-II, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, December 1999, Part B, Volume 29, Issue 6, Pages 786-801.

235

Berenji H.R. and Khedkar P. (1992), Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements, IEEE Transactions on Neural Networks, September 1992,
Volume 3, Issue 5, Pages 724-740.

Bigot S. (2003), New Techniques for Continuous Values Handling in Inductive
Learning, Ph.D. Thesis, University o f Wales, UK.

Breedon P.J., Sivayoganathan K., Balendran V., and Al-Dabass D. (2002), Multi-
Axis Fuzzy Control and Performance Analysis for an Industrial Robot, Proceedings
o f the IEEE International Conference on Fuzzy Systems, 12-17 May 2002, Honolulu,
HI, USA, Volume 1, Pages 500-505.

Byung-Ju Y. and Freeman R.A. (1995), Feedforward Spring-Like Impedance
Modulation in Human Arm Models, IEEE International Conference on Robotics and
Automation, 21-27 May 1995, Nagoya, Japan, Volume 3, Pages 3121-3128.

Chen S.B., Wu L., and Wang Q.L. (1997), Self-Learning Fuzzy Neural Networks for
Control of Uncertain Systems with Time Delays, IEEE Transactions on Systems,
Manufacturing, and Cybernetics, Part B, Volume 27, Issue 1, Pages 142-148.

Choi J.J., Arabshahi P., Marks R.J., and Caudell T.P. (1992), Fuzzy Parameter
Adaptation in Neural Systems, International Joint Conference on Neural Networks,
7-11 June 1992, Baltimore, MD, USA , Volume 1, Pages 23-238.

Corke P.I. and Good M.C. (1992), Dynamic Effects in High-Performance Visual
Servoing, IEEE International Conference on Robotics and Automation, 12-14 May
1992, Nice, France, Volume 2, Pages 1838-1843.

Costa Branco P.J. and Dente J.A. (1998), An Experiment in Automatic Modelling an
Electrical Drive System Using Fuzzy Logic, IEEE Transactions on Systems,
Manufacturing, and Cybernetics, Part C, Volume 28, Issue 2, Pages 254-262.

Craig J.J. (1996), Introduction to ROBOTICS Mechanics and Control, Addison-Wesley
Publishing Company, 1996.

Delgado M. and Gonzalez A. (1993), An Inductive Learning Procedure to Identify
Fuzzy Systems, Fuzzy Sets and Systems, April 1993, Volume 55, Pages 121-132.

Efe M.O. and Kaynak O. (1999), A Comparative Study of Neural Network Structures
in Identification of Non-linear Systems, Mechatronics, Volume 9, Pages 287-300.

236

Emami M.R., Turksen I.B., and Goldengerg A.A. (1996), An Improved Fuzzy
Modelling Algorithm, Part-I: Interface Mechanism, IEEE Fuzzy Information
Processing Society, NAFIPS 1996, Biennial Conference o f the North American, 19-
22 June 1996, Berkeley, CA, USA , Pages 289-293.

Emami M.R., Turksen I.E., and Goldengerg A.A. (1996), An Improved Fuzzy
Modelling Algorithm, Part-II: System Identification, IEEE Fuzzy Information
Processing Society, NAFIPS 1996, Biennial Conference o f the North American, 19-
22 June 1996, Berkeley, CA, USA , Pages 294-298.

Emami M.R., Turksen I.E., and Goldengerg A.A. (1998), Development of a
Systematic Methodology of Fuzzy Logic Modelling, IEEE Transactions on Fuzzy
Systems, Volume 6, Issue 3, August 1998, Pages 346-361.

Emami M.R., Turksen I.E., and Goldengerg A.A. (1998), Fuzzy-Logic Dynamics
Modelling of Robot Manipulators, IEEE International Conference Proceedings on
Robotics and Automation, Leuven, Belgium, Volume 3, Pages 2512-2517.

Emami M.R., Turksen I.E., and Goldengerg A.A. (1999), A Unified Parameterized
Formulation of Reasoning in Fuzzy Modelling and Control, Fuzzy Sets and Systems,
Volume 108, Issue 1, 16 November 1999, Pages 59-81.

Emami M.R., Turksen I.E., and Goldengerg A.A. (2000), Fuzzy-Logic Control of
Dynamic Systems: from Modelling to Design, Engineering Applications o f Artificial
Intelligence, 1 February 2000, Volume 13, Issue 1, Pages 47-69.

Emami M.R., Turksen I.E., and Goldengerg A.A. (2000), Systematic Design and
Analysis of Fuzzy-Logic Control and Application to Robotics, Part-I: Modelling,
Robotics and Automation Systems magazine, Volume 33, Issues 2-3, Pages 65-88.

Emami M.R., Turksen I.E., and Goldengerg A.A. (2000), Systematic Design and
Analysis of Fuzzy-Logic Control and Application to Robotics, Part-II: Control,
Robotics and Automation Systems Magazine, Volume 33, Issues 2-3, Pages 89-108.

Er M.J., and Gao Y. (2003), Robust Adaptive Control of Robot Manipulators Using
Generalized Fuzzy Neural Networks, IEEE Transactions on Industrial
Electronics, June 2003, Volume 50, Issue 3 , Pages 620-628.

Er M.J., Yap S.M., Yeaw C.W., and Luo F.L. (1997), A Review of Neural-Fuzzy
Controllers for Robotic Manipulators, Thirty-Second IAS Annual Meeting, IEEE
Industry Applications Conference, 5-9 October 1997, New Orleans, Los Anglos,
USA, Volume 2, Pages 812-819.

237

Erbatur K., Kaynak O., and Rudas I. (1995), A Study of Fuzzy Schemes for Control
of Robotic Manipulators, IECON Twenty-First IEEE International Conference on
Industrial Electronics, Control, and Instrumentation, 6-10 November 1995, Orlando,
Florida, USA, Volume 1, Pages 63-68.

Estevez P.A. and Nakano R. (1995), Hierarchical Mixture of Experts and Max-Min
Propagation Neural Networks, IEEE International Conference on Neural Networks,
27 November -1 December 1995, Perth, WA, Australia, Pages 651-565.

Feng L., Koren Y., and Borenstein J. (1993), Cross-Coupling Motion Controller for
Mobile Robots, IEEE Control Systems Magazine, December 1993, Volume 13, Issue
6, Pages 35-43.

Fukuda T., Shibata T., Tokita M., and Mitsuoka T. (1990), Adaptation and Learning
for Robotic Manipulator by Neural Network, Proceedings o f The Twenty Ninth IEEE
International Conference on Decision and Control, 5-7 December 1990, Honolulu,
HI, USA, Volume 6, Pages 3283-3288.

Garcia C.E. and Morari M. (1985), Internal Model Control - Multivariable Control
Law Computation and Tuning, Industry and Engineering Chemistry Design and
Development, Volume 24, Pages 484-494.

Green A. and Sasiadek J.Z. (2001), Fuzzy and Optimal Control of a Two-Link
Flexible Manipulator, IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, 8-12 July 2001, Como, Italy, Volume 2, Pages 1169-1174.

Grzegorzewski P. (2001), Fuzzy Tests - Defuzzification and Randomisation, Fuzzy Sets
and Systems, Volume 118, Issue 3, 16 March 2001, Pages 437-446.

Gueaieb W., Karray F., and Al-Sharhan S. (2001), An Adaptive Fuzzy Control
Approach for Cooperative Manipulators, IEEE International Symposium on
Intelligent Control, 5-7 September 2001, Mexico City, Mexico, Pages 167-172.

Hiraga I., Furuhashi T., Uchikawa Y., and Nakayama S. (1995), An Acquisition of
Operator’s Rules for Collision Avoidance Using Fuzzy Neural Networks, IEEE
Transactions on Fuzzy Systems, August 1995, Volume 3, Is sue 3, Pages 280-287.

Hitam M.S. (2001), Fuzzy Logic Control of an Industrial Robot, IFSA World Congress
and 20th IEEE NAFIPS International Conference, 9th joint, 25-28 July 2001,
Vancouver, BC, Canada, Volume 1, Pages 257-262.

Hsu R., Kageyama M., Fukui H., Nakaya Y., and Harashima H. (1993), Human

238

Arm Modelling for Analysis/Synthesis Image Coding, The Second IEEE
International Workshop on Robot and Human Communication, Tokyo, Japan, Pages
352- 355.

Hu J., Dawson D.M., and Qian Y. (1996), Position Tracking Control for Robot
Manipulators Driven by Induction Motors Without Flux Measurements, IEEE
Transactions on Robotics and Automation, Volume 12, Issue 3, Pages 419-438.

Jacobs R.A. (1988), Increased Rates of Convergence Through Learning Rate
Adaptation, Neural Networks, Volume 1, Issue 4, Pages 295-307.

Jang J.O. (2001), Implementation of Indirect Neuro-Control for a Non-linear Two-
Robot MIMO Systems, Proceeding o f Control Engineering Practice, January 2001,
Volume 9, Issue 1, Pages 89-95.

Jang J.-S.R. (1992), Self-Learning Fuzzy Controllers Based on Temporal
Backpropagation, IEEE Transactions on Neural Networks, Pages 714-723.

Jang J.-S.R. (1993), ANFIS Adaptive-Network-Based Fuzzy Inference System, IEEE
Transactions on Systems, Manufacturing, and Cybernetics, May-June 1993, Volume
23, Issue 3, Pages 665-685.

Jeen-Shing W. and Lee C.S.G. (2003), Self-Adaptive Recurrent Neuro-Fuzzy Control
of an Autonomous Underwater Vehicle, IEEE Transactions on Robotics and
Automation, April 2003, Volume 19, Issue 2, Pages283-295.

Jung S. and Hsia T.C. (1995), New Neural Network Control Technique for Non-
Model Based Robot Manipulator Control, IEEE International Conference on
Systems, Manufacturing, and Cybernetics, 'Intelligent Systems fo r the 21st Century',
22-25 October 1995, Vancouver, BC, Canada, Volume 3 , Pages2928 - 2933.

Kawafuki M., Sasaki M., and Fujisawa F. (1997), Feedback-Error-Leaming Neural
Network for Trajectory Control of a Flexible Micro-Actuator, IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, 16-20 June 1997,
Tokyo, Japan, Page 73.

Kawato M., Uno Y., Isobe M., and Suzuki R. (1988), Hierarchical Neural Network
Model for Voluntary Movement with Application to Robotics, IEEE Control Systems
Magazine, Volume 8, Issue 2, April 1988, Pages 8-15.

Kazemian H.B. (2002), The SOF-PID Controller for the Control of a MIMO Robot
Arm, IEEE Transactions on Fuzzy Systems, August 2002, Volume 10, Issue 4, Pages
523-532.

239

Keller J.M., Yager R., and Tahani H. (1992), Neural Network Implementation of
Fuzzy Logic, Fuzzy Sets and Systems, 10 January 1992, Volume 45, Pages 1-12.

Kim S.-W., Lee J.-J., and Sugisaka M. (1993), Inverse Kinematics Solution Based on
Fuzzy Logic for Redundant Manipulators, Proceedings o f the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 1993, 26-30 July
1993, Yokohama, Japan, Volume 2, Pages 904-910.

Kishan K.K. and Jamshidi M. (1997), Neural Network Based Identification of Robot
Dynamics Used for Neuro-Fuzzy Controller, IEEE International Conference on
Robotics and Automation, 20-25 April 1997, Albuquerque, NM, USA, Volume 2,
Pages 1118-1123.

kovacs L.L., stepan G., Toth A., Arz G., and Magyar G. (2001), Industrial Robot in a
Medical Application- Back to Walk-Through Programming, 17th National
Conference on Manufacturing Research, Cardiff University, UK, Pages 479-485.

Lai J.H. and Lin C.T. (1999), Application of Neural Fuzzy Network to Pyrometer
Correction and Temperature Control in Rapid Thermal Processing, IEEE
Transactions on Fuzzy Systems, April 1999, Volume 7, Issue2, Pages 160-175.

Lai M.F., Nakano M., and Hsieh G.C. (1996), Application of Fuzzy Logic in the
Phase-Locked Loop Speed Control of Induction Motor Drive, IEEE Transactions on
Industrial Electronics, Volume 43, Issue 6, December 1996, Pages 630-639.

Lange F. and Hirzinger G. (1996), Learning Force Control with Position Controlled
Robots, IEEE International Conference on Robotics and Automation, 22-28 April
1996, Minneapolis, MN, USA, Volume 3, Pages 2282-2288.

Lee C.C. (1990a), Fuzzy Logic in Control Systems Fuzzy Logic controller Part I, IEEE
Transactions on Systems, Manufacturing, and Cybernetics, March-April 1990,
Volume 20, Issue 2, Pages 404-418.

Lee C.C. (1990b), Fuzzy Logic in Control Systems Fuzzy Logic controller Part II, IEEE
Transactions on Systems, Manufacturing, and Cybernetics, March-April 1990,
Volume 20, Issue 2, Pages 419-435.

Lee C.C. (1991), A Self Learning Rule-Based Controller Employing Approximate
Reasoning and Neural Network Concepts, International Journal o f Intelligent
Systems, Volume 6, Pages 71-93.

Lee K.M., Kwak D.H., and Kwang H.L. (1996), Fuzzy Inference Neural Network for

240

Fuzzy Model Tuning, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, Part B, August 1996, Volume 26, Issue 4, Pages 637-645.

Lee M., Cho Lee S.-Y., and Park C.H. (1993), A Feedforward/Feedback
Neural Control Structure and its Application to a Robotic System, Proceeding o f the
IEEE International Conference on Neural Networks, IJCNN 1993-Nagoya, South
Korea, 25-29 October 1993, Volume 3, Pages 2757-2760.

Li H.X. (1999), Approximate Model Reference Adaptive Mechanism for Nominal Gain
Design of Fuzzy Control System, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, Part B, February 1999, Volume 29, Issue 1, Pages 43-48.

Li H.X. and Gatland H.B. (1995), A New Methodology for Designing a Fuzzy Logic
Controller, IEEE Transactions on Systems, Manufacturing, and Cybernetics, March
1995, Volume 25, Issue 3, Pages 505-514.

Li Q., Poo A.N. and Lim C.M. (1996), Internal Model Structure in the Control of
Robot Manipulators, Mechatronics, August 1996, Volume 6, Issue 5, Pages 571-590.

Li Q., Poo A.N., Lim C.M., and Ang M. (1995), Neuro-Based Adaptive Internal
Model Control for Robot Manipulators, Proceedings o f the IEEE International
Conference on Neural Network, 27 Novmeber-1 December 1995, Perth, WA,
Australia, Volume 5, Pages 235-2357.

Li W. (1998), Design of a Hybrid Fuzzy Logic Proportional plus Conventional Integral-
Derivative Controller, IEEE Transactions on Fuzzy Systems, November 1998, Volume
6, Issue 4, Pages 449-463.

Liaw C.M. and Wang J.B. (1991), Design and Implementation of a Fuzzy Controller
for a High Performance Induction Motor Drive, IEEE Transactions on Systems,
Manufacturing, and Cybernetics, July-August 1991, Volume 21, Pages 921-929.

Lin C.-T. and Lee C.S.G. (1991), Neural Network-Based Fuzzy Logic Control and
Decision System, IEEE Transactions on Computers, December 1991, Volume 40,
Issue 12, Pages 1320-1336.

Lin C.-T. and Lee C.S.G. (1992), Real-Time Supervised Structure Parameter Learning
for Fuzzy Neural Network, IEEE International Conference on Fuzzy Systems, 8-12
March 1992, San Diego, CA, USA, Pages 1289-1290.

Lin C.-T. and Lu Y.C. (1995), A Neural Fuzzy System With Linguistic Teaching

241

Signals, IEEE Transactions on Fuzzy Systems, Volume 3, Issue 2, Pages 169-188.

Lin C.-T. and Lu Y.C. (1996), A Neural Fuzzy System with Fuzzy Supervised
Learning, IEEE Transactions on Systems, Manufacturing, and Cybernetics, Part B,
October 1996, Volume 26, Issue 5, Pages 745-763.

Lin Y. J. and Lee T.S. (1993), An Investigation of Fuzzy Logic Control of Flexible
Robots, Robotics Magazine, Volume 11, Pages 363-371.

Lin, C.J. and Lin C.-T. (1997), An ART-Based Fuzzy Adaptive Learning Control
Network, IEEE Transactions on Fuzzy Systems, Volume 5, Issue 4, Pages 477-496.

Lin, C.-T. and Chung I.F. (1999), A Reinforcement Neuro-Fuzzy Combiner for
Multiobjective Control, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, Part B, December 1999, Volume 29, Issue 6, Pages 726-744.

Liu S.-R. and Yu J.-S. (2002), Robust Control Based on Neuro-Fuzzy Systems for a
Continuous Stirred Tank Reactor, IEEE International Conference Proceedings on
Machine Learning and Cybernetics, China, Volume 3, Pages 1483-1488.

Mamdani E.H. (1974), Application of Fuzzy Algorithms for Control of Simple
Dynamic Plant, IEEE Proceeding, Volume 121, Issue 12, pages 1585-1588.

Mann G.K.I., Hu B.G., and Gosine R.G. (1999), Analysis of Direct Action Fuzzy PID
Controller Structures, IEEE Transactions on Systems, Manufacturing, and
Cybernetics Part B, June 1999, Volume 29, Issue 3, Pages 371-388.

Martinez J., Bowie J., and Mills P. (1996), A Fuzzy Logic Positioning System for an
Articulated Robot Arm, Proceedings o f the Fifth IEEE International Conference on
Fuzzy Systems, New Orleans, LA, USA, Volume 1, Pages 251-257.

Ming Y., Guizhang L., and Jiangeng L. (2001), An Inverse Kinematics solution for
Manipulators Based on Fuzzy Logic, IEEE International conference on Info-tech and
Info-net, 29 October-1 November 2001, Beijing, China, Volume 4, Pages 400-404.

Miyamoto H., Kawato M., Setoyama T., and Suzuki R. (1988), Feedback-Error
Learning Neural Network for Trajectory Control of Robotic Manipulator, Neural
Networks, Volume 1, Issue 3, Pages 251-265.

Miyamura A. and Kimura H. (2002), Stability of Feedback Error Learning Scheme,
Systems & Control Letters, Volume 45, Issue 4, 5 April 2002, Pages 303-316.

Mizumoto M. (1995), Realisation of PID Controls by Fuzzy Control Methods, Fuzzy
Sets and Systems, 20 March 1995, Volume 70, Issues 2-3, Pages 171-182.

242

Moore P.R. and Chen C.M. (1995), Fuzzy Logic Coupling and Synchronised Control
of Multiple Independent Servo-Drives, Control Engineering Practice, Volume 3,
Issue 12, December 1995, Pages 1697-1708.

Morari M. and Zafiriou E. (1989), Robust Process Control, Prentice Hall, Englewood
Cliffs, New Jersey.

Moudgal V.G., Kwong W.A., and Passino K.M. (1995), Fuzzy Learning Control for a
Flexible-Link Robot, IEEE Transactions on Fuzzy Systems, Volume 3, Issue 2, May
1995, Pages 199-210.

Moudgal V.G., Passino K.M., and Yurkovich S. (1994), Rule-Based Control for a
Flexible-Link Robot, IEEE Transactions on Control Systems Technology, Volume
2, Issue 4, December 1994, Pages 392-405.

Narendra K.S. and Parthasarathy K. (1990), Identification and Control of Dynamical
Systems Using Neural Networks, IEEE Transactions on Neural Networks, Volume 1,
Issue 1, Pages 4-27.

Nascimento C.L. and McMichael D.W. (1991), Robot Control Using the Feedback-
Error-Leaming Rule With Variable Feedback Gain, IEEE Second International
Conference on Artificial Neural Networks, Bournemouth, UK, Pages 139-143.

Nedungadi A. and Wenzel D.J. (1991), A Novel Approach to Robot Control Using
Fuzzy Logic, IEEE International Conference on Systems, Manufacturing, and
Cybernetics, Decision Aiding fo r Complex Systems Conference Proceedings, 13-16
October 1991, Charlottesville, VA, USA, Volume 3, Pages 1925-1930.

Norberto Pires J., Sa da Costa J.M.G., (1997), Position Sensing and Motor Control in
Industrial Robotics, Proceedings o f the IEEE International Symposium on Industrial
Electronics, 7-11 July 1997, Guimaraes, Portugal, Volume 3, Pages 866-871.

Osumi H. and Arai T. (1994), Cooperative Control Between Two Position-Controlled
Manipulators, IEEE International Conference on Robotics and Automation, 8-13
May 1994, San Diego, CA, USA, Volume 2, Pages 1509-1514.

Osumi H., Ono M., Fujibayashi M., and Kagatani M. (1997), Cooperative System
for Multiple Position-Controlled Robots with Free Joint Mechanisms, IEEE
International Conference on Robotics and Automation, 20-25 April 1997,
Albuquerque, NM, USA, Volume 2, Pages 1484-1489.

243

Paljug E. and Yun X. (1995), Experimental Study of Two Robot Arms Manipulating
Large Objects, IEEE Transactions on Control Systems, Volume 3, Issue 2, Pages
177-188.

Pan L. and Woo P.Y. (2000), PD Manipulator Controller with Fuzzy Adaptive Gravity
Compensation, Journal o f Robotic Systems, Volume 2, Pages 93-106.

Pasino K.M. and Yurkovich S. (1998), Fuzzy Control, Addison Wesley Publications
Incorporation, 1998.

Pedrycz W. (1993), Fuzzy Control and Fuzzy Systems, John Wiley & Sons Publications
Incorporation, Taunton, New York.

Peng L. and Woo P.-Y. (2002), Neural-Fuzzy Control System for Robotic
Manipulators, IEEE Control Systems Magazine, Volume 22, Issue 1, Pages 53-63.

Pham D.T. and Aksoy M.S. (1995), A New Algorithm for Inductive Learning, Journal
o f Systems Engineering, Springer-Velarg Ltd., Volume 5, Pages 115-122.

Pham D.T. and Liu X. (1993), Identification of Linear and Non-linear Dynamic
Systems Using Recurrent Neural Networks, Artificial Intelligence in Engineering,
Volume 8, Issue 1, Pages 67-75.

Pham D.T. and Liu X. (1995), Neural Networks for Identification, Prediction and
Control, Springier-Verlag Limited, London.

Pham D.T. and Liu X. (1996), Training of Elman Networks and Dynamic System
Modelling, International Journal o f Systems Science, Volume 27, Pages 221-226.

Pham D.T. and Oh S.J. (1993), Adaptive Control of Dynamic Systems Using Neural
Networks, IEEE-SMC Conference on Systems Engineering in the Service o f Human,
17-20 October 1993, Le Touquet, France, Pages 97-102.

Pham D.T. and Oh S.J. (1994), Adaptive Control of a Robot Using Neural Networks,
Robotica, Issue 12, Pages 553-561.

Pham D.T. and Oh S.J. (1999), Identification of Plant Inverse Dynamics Using Neural
Networks, Artificial Intelligence in Engineering, Pages 309-320.

Pham D.T. and Sagiroglu S. (2001), Training Multilayer Preceptrons for Pattern
Recognition a Comparative Study of Four Training Algorithms, International Journal
o f Machine Tools & Manufacture 41, Pages 419-430.

244

Pham D.T. and Yildirim S. (1999), Comparison of Four Methods of Robot Trajectory
Control, Artificial Intelligence in Engineering.

Pham D.T. and Yildirim S. (1999), Control of the Trajectory of a Planar Robot Using
Recurrent Hybrid Networks, Machine Tools & Manufacture, March 1999, Volume
39, Issue 3, Pages 415-429.

Pham D.T., Eldukhri E.E., Dimov S.S., Packianather M.S., Zlatov N.B., Fahmy
A.A., and Shankir Y. (2001), A Knowledge-Based System for Selection of
Exercises for Robotised Physiotherapy, Eighth IEEE International Conference on
Mechatronics and Machine Vision in Practice, 2001, Hong Kong, Pages.85-88.

Pham D.T., Zlatov N.B., Eldukhri E.E., Dimov S.S., Bratanov D., Dobrev T.,
Packianather M.S., and Fahmy A.A. (2001), Modelling and Control of an 8-dof
Mechatronic Limb, Eighth IEEE International Conference on Mechatronics and
Machine Vision in Practice, Hong Kong, 2001, Pages 314-317.

PTC, Parametric Technology Corporation, Pro/Engineer & Pro/Mechanica User
Manuals, Release 23.3 (2002), www.ptc.com.

Rajasekharan S. and Kambhampati C. (2001), Neuro-Fuzzy Modelling and Control
of Cooperative Manipulators Handling a Common Object, IEEE/IFSA World
Congress and 20th NAFIPS International Conference, 9th joint, 25-28 July 2001,
Vancouver, BC, Canada, Volume 3, Pages 1454-1459.

Runkler T.A. (1997), Selection of Appropriate Defuzzification Methods Using
Application Specific Properties, IEEE Transactions on Fuzzy Systems, February
1997, Volume 5, Issue 1, Pages 72-79.

Saade, J.J. (1996), A Unifying Approach to Defuzzification and Comparison of the
Outputs of Fuzzy Controllers, IEEE Transactions on Fuzzy Systems, August 1996,
Volume 4, Issue 3, Pages 227-237.

Sang-Bae L. (1997), Industrial Robotic Systems with Fuzzy Logic Controller and
Neural Network, IEEE First International Conference on Knowledge-Based
Intelligent Electronic Systems, Adelaide, SA, Australia, Pages 599-606.

Sasaki M., Kawafuku M., and Takahashi K. (1997), Comparison of Feedback
Controllers for Feedback-Error-Leaming Neural Network Control System with
Application to a Flexible Micro-Actuator, IEEE International Conference on
Systems, Manufacturing and Cybernetics, Orlando, FL, USA, Pages 4035-4040.

245

http://www.ptc.com

Shankir Y. (2001), Fuzzy Logic Systems and Fuzzy Neural Networks for Dynamic
Systems Modelling and Control, Ph. D. Thesis, University o f Wales, Cardiff School o f
Engineering, Cardiff University, UK.

Shin Y.C. (1994), Adaptive Control in Manufacturing, Artificial Neural Networks for
Intelligent Manufacturing, Pages 399-411.

Srinivasan A., Batur C., and Chan C.C. (1993), Using Inductive Learning to
Determine Fuzzy Rules for Dynamic Systems, Engineering Applications o f Artificial
Intelligence, Volume 6, Issue 3, Pages 257-264.

Subbarao K., Verma A., and Junkins J.L. (2001), Model Reference Adaptive Control
of Constrained Cooperative Manipulators, IEEE international Conference on Control
Applications, 5-7 September 2001, Mexico City, Mexico, Pages 553-558.

Sugeno M. and Yasukawa T. (1993), A Fuzzy-Logic-Based Approach to Qualitative
Modelling, IEEE Transactions on Fuzzy Systems, Volume 1, Issue 1, Pages 7-31.

Sun D. and Liu Y.H. (2001), Position and Force Tracking of Two-Manipulator System
Manipulating a Flexible Beam Payload, IEEE International Conference on Robotics
and Automation, 21-26 May, Seoul, Korea, Volume 4, Pages 3483-3488.

Sun D. and Mills J.K. (2002), Adaptive Synchronized Control for Coordination of Two
Robot Manipulators, IEEE International Conference on Robotics and Automation,
ICRA 2002, Washington DC, USA, Volume 1, Pages 976-981.

Takagi H. and Hayashi I. (1991), NN-Driven Fuzzy Reasoning,
International Journal o f Approximate Reasoning, Volume 5, Issue 3, Pages 191-212.

Takagi T. and Sugeno M. (1985), Fuzzy Identification of Systems and Its Applications
to Modelling and Control, IEEE Transactions on Systems, Manufacturing, and
Cybernetics, Volume SMC-15, Issue 1, Pages 116-132.

Tanaka, K., Sano M., and Watanabe H. (1995), Modelling and Control of Carbon
Monoxide Concentration Using a Neuro-Fuzzy Technique, IEEE Transactions on
Fuzzy Systems, August 1995, Volume 3, Is sue 3, Pages 271-279.

Tang W., Chen G. and Lu R. (2001), A Modified Fuzzy PI Controller for a Flexible-
Joint Robot Arm with Uncertainties, Fuzzy Sets and Systems, February 2001, Volume
118, Issue 1, 16 Pages 109-119.

Terashita J. and Kimura H. (2002), Robustness of Feedback Error Learning Method

246

with Time Delay, Proceedings o f the 41st SICE/IEEE Annual Conference, 5-7 August
2002, Tokyo, Japan, Volume 4, Pages 2240-2244.

Tinos R. and Terra M.H. (2002), Control of Cooperative Manipulators with Passive
Joints, IEEE Proceeding o f the American Control Conference, Anchorage, 8-10 May
2002, Sao Carlos, Brazil, Pages 1129-1134.

Tinos R., Terra M.H., and Bergerman M. (2002), Fault Tolerance in Cooperative
Manipulator, IEEE International Conference on Robotics & Automation, 11-15 May
2002, Sao Carlos, Brazil, Pages 470-475.

Tsai C.-H., Liu J.-S., and Lin W.-S. (1996), A Neuro-Fuzzy Logic Controller for
Trajectory Tracking of Uncertain Robots, IEEE International Conference on Robotics
and Automation, April 1996, Minneapolis, MN, USA, Volume 2, Pages 1929-1934.

Tsoukalas L.H. and Uhrig R.E. (1997), Fuzzy and Neural Approaches in Engineering,
John Wiley & Sons Incorporation, 1997.

Vaccaro R.J. and Hill S.D. (1988), A Joint-Space Command Generator for Cartesian
Control of Robotic Manipulators, IEEE Transactions on Robotics and
Automation, Volume 4 , Issue 1 , February 1988, Pages 70-76.

Verdonck W. and Swevers J. (2002), Improving the Dynamic Accuracy of Industrial
Robots by Trajectory Pre-Compensation, IEEE/ICRA International Conference
Proceedings on Robotics and Automation, Volume 4, 11-15 May 2002, Leuven,
Belgium, Pages 3423-3428.

Wang L. and Langari R. (1996), Complex Systems Modelling Via Fuzzy Logic, IEEE
Transactions on Systems, Manufacturing, and Cybernetics Part B, Volume 26, Issue
1, Pages 100-105.

Wang L.X. and Mendel J.M. (1992a), Generating Fuzzy Rules by Learning from
Examples, IEEE Transactions on Systems, Manufacturing, and Cybernetics, Volume
22, Issue 6, Pages 1414-1427.

Wang L.X. and Mendel J.M. (1992b), Fuzzy basis functions, universal approximation,
and orthogonal least-squares learning, IEEE Transactions on Neural Networks,
September 1992, Volume 3, Issue 5, Pages 807-814.

Watanabe K., Tang J., Nakamura M., Koga S. and Fukuda T. (1996), A Fuzzy-
Gaussian Neural Network and its Application to Mobile Robot Control, IEEE
Transactions on Control Systems Technology, Volume 4, Issue2, Pages 193-199.

247

Wedel D.L. and Saridis G.N.(1988), An Experiment in Hybrid Position/Force Control
of a Six DOF Revolute Manipulator, IEEE International Conference on Robotics and
Automation, 24-29 April 1988, Philadelphia, PA, USA, Pages 1638-1642.

Wen X.-Y., Zhang J.-G., and Zhao Z.-C. (2003), Fuzzy Neural Network Internal
Model Control, IEEE International Conference on Machine Learning and
Cybernetics, 2-5 November 2003, China, Volume 2, Pages 661-665.

Xu Y. and Nechyba M. (1993), Fuzzy Inverse Kinematic Mapping: Rule Generation,
Efficiency, and Implementation, IEEE/RSJ International Conference on Intelligent
Robots and Systems, 26-30 July 1993, Yokohama, Japan, Volume 2, Pages 911-918.

Xu. X. and Chen Y. (2000), A Method for Trajectory Planning of Robot Manipulators
in Cartesian Space, IEEE Third world congress on Intelligent control and
Automation, 28 June-2 July 2000, Hefei, China, Pages 1220-1225.

Yaochu J., Jingping J., and Jing Z. (1995), Neural Network Based Fuzzy
Identification and Its Application to Modelling and Control of Complex Systems,
IEEE Transactions on Systems, Manufacturing, and Cybernetics, June 1995, Volume
25, Issue 6, Pages 990-997.

Yildirim S. (1998), Robot Control Using Neural Networks, Ph.D. Thesis, University o f
Wales, Cardiff School o f Engineering, UK.

Yildirim S. (2001), Neural Network Controller for Cooperating Robots, Electronics
Letters, 25 Oct 2001, Volume 37, Issue 22, Pages 1351-1352.

Yildirim S. and Sukkar M.F.(1996), Internal Model Control of a Robot Using New
Neural Networks, IEEE International Conference on Systems, Manufacturing, and
Cybernetics, October 1996, Volume 4, Pages 3095-3100.

Yildirim S., Sukkar M.F., Demirci R., and Aslantas V. (1996), Design of Adaptive
NNs-Robust-PID Controller for a Robot Control, IEEE International Symposium on
Intelligent Control, 15-18 September 1996, Dearborn, MI, USA, Pages 508-513.

Ying H. (1993), The Simplest Fuzzy Controllers Using Different Inference Methods are
Different Non-linear Proportional-Integral-Controllers with Variable Gains,
Automatica, Volume 29, Issue 6, Pages 1579-1589.

Ying H., Siler W., and Buckley J.J. (1990), Fuzzy Control Theory: A Non-linear Case,
Automatica, Volume 26, Issue3, Pages 513-520.

Yuan F., Feldkamp L.A., Davis L.I., Jr., and Puskorius G.V. (1992), Training a

248

Hybrid Neural-Fuzzy System, IEEE/IJCNN International Joint Conference on
Neural Networks, 7-11 June 1992, Baltimore, MD, USA, Volume 2, Pages 729-744.

Zadeh L.A. (1973), Outline of a New Approach to the Analysis of Complex Systems
and Decision Processes, IEEE Transactions on Fuzzy Systems, Volume SMC-3, Issue
1, pages 28-44.

Zapata G.O.A., Galvao R.K.H., and Yoneyama T. (1999), Extracting Fuzzy Control
Rules from Experimental Human Operator Data, IEEE Transactions on Systems,
Manufacturing, and Cybernetics, Part B, Volume 29, Issue 3, Pages 398-406.

Zhang Y.Q. and Kandel A. (1998), Compensatory Neurofuzzy Systems with Fast
Learning Algorithms, IEEE Transactions on Neural Networks, January 1998,
Volume 9, Issue 1, Pages 83-105.

Zhang, X., Hang C.C., Tan S., and Wang P-Z. (1996), The Min-Max Function
Differentiation and Training of Fuzzy Neural Networks, IEEE Transactions on
Neural Networks, September 1996, Volume 7, Issue 5, Pages 1139-1150.

Ziegler J.G. and Nichols N.B. (1942), Optimum Setting for Automatic Controller,
Transactions on ASME, No. 64, pages 759-768.

249

APPENDIX A

Mathematical Formulation

A.I. Kinematics Equations for Puma 560® Manipulator

The Kinematics function of the Puma 560® simulator returns a 4x4 transformation

matrix representing the end-effector position and orientation with respect to the base

frame of the manipulator as its output using a given set of joint angles and link

parameters as input. The direct kinematics solution is a matter of calculating

T = Aq = EM/-i by chain multiplying the six A ‘_, matrices and evaluating each
7=1

element in the T matrix. The individual A ‘_x matrices are given by:

A 1 - A - i —

ce,
s e ,

0

0

-Cot,SB,

Ccc,C6,

S a t

0

S o ijS Q i a iC Q l

-S c^C B , a tSB,

C a t d t

0 1

(A.1)

Using the link coordinate system shown in figure (3.1) and table (3.1), each of the

Aj_i matrices for left and right arm orientation, respectively, can be expressed as

follows:

250

A =

"CO, 0 + 5 0 , o' "C02 0 -5 0 , a2C02
so, 0 ± c o , 0

>42 =
502 C02 0 a2S02

0 +1 0 7 1 0 0 1 d2
0 0 0 1 0 0 0 1

Ai =

C03 0 ± 5 0 3 0" CO 4 0 + 504 O '
503 0 + C03 0

A =
504 0 ±C 04 0

0 ±1 0 0 J 0 + 1 0 d4
0 0 0 1 0 0 0 1 _

a : =

C 0 5 0 ± 5 0 5 0" " C 0 6 - 5 0 6 0 o'
5 0 5 0 + C 0 5 0

> A =
5 0 6 C 0 6 0 0

0 ± 1 0 0
* 5

0 0 1 de
0 0 0 1_ 0 0 0 1 _

(A.2)

Where 50 (= sin(0;) and CO, = cos(0,).

In this way the end-effector orientation and position with reference to the base co

ordinate system (frame 0) can be obtained from T as:

n s a p
0 0 0 1

n x a x Px

” y a y P y

nz *z a z Pz

0 0 0 1

(A.3)

where:

n, = c e ,[C (e 2 + e 3){ c e 4c e 5c e 6 - s e . s e j - s c e j + e 3)s,e 5c e 6] - s e 1[.se4c e 5c e 6 + c e 4s e 6]

ny = 5 e ,[C (e2 + 0 3){ c e 4c e 5c e 6 - s e i s e 6} - s (e 2 + 0 3)S05C 0J+C 0,[,S04C0SC06 +C 04s 0 j

nz = + S (0 2 + 0 3)[C04C05C06 - 5 0 4S06] + C (02 + 0 3)S05C06

251

= o 9 , [- c (0 2 + e 3) { O 0 4o 9 55 e 6 + s e 4o 06} + s (0 2 + 0 3) s e 5s e 6] - s e , [- s 0 4o 0 5s e 6 + o e 4o e 6]

sy = 5 9 , [- c (0 2 + e 3) { c e 4c e 5s e 6 + s e 4c 0 6} + s ,(0 2 + e 3) s e 55 8 6] + o 0 , [- 5 e 4c e 5s e 6 + c e 4c e 6]

s, = ± S (6 2 + 0 3) { C 0 4 O 0 s S 0 6 + S 0 4 C 0 6 } + C (0 2 + 0 3) S 0 5 S 0 6

a, = ± C 0 , [C (0 2 + 0 3) C 0 4 S 0 5 + S (0 2 + 0 3) C 0 5] * S 0 , S 0 4 S 0 5

ay = ±sdl[c(02 + e2)ceysei + s(02 + o jcej ± ce,s04se5

az = - S (0 2 + 0 3) C 0 4S 0 5 + C (0 2 + 0 3) C 0 ,

p x = C 0,[±rf6{ C (0 2 + 0 3) C 0 45 0 j + 5 (0 2 + 0 3) C 0 5} ± S (0 2 + 0 3)rf4 + a 2C 0 2] + S0,{rf6S 0 4S 0 5 + rf2}

p , = s b , [± d 6 { C (e 2 + e 3) c e 4s e 5 + s (e 2 + e 3) c e 5} ± s (9 2 + e 3)rf4 + « 2C 0 2] + c e , {rf6s 0 4s o 5 + d 2}

p 2 = r f 6 { C (0 2 + 0 3) C 0 5 - S (0 2 + 0 3) C 0 4S 0 5} + C (0 2 + 0 3)rf4 + a 2S 0 2 +</,

• + Indicate left and right shoulder configuration, respectively.

Given the end-effector orientation and position as shown above, the inverse kinematics

approach is used to obtain the joint angles 0(of the robot arm as follows:

6, =Tan -i — P y ^ P x + P l ~ d \ ~ d l P ,

_ ± P , ^ P i + P i ~ d 2 + d l P y _

(A.4)

62 = Tan-i - (p ja 2 + d4S 0J + {d4C 0 J { ± J p l + p 2y - d \ })

p / d 4C03) - {a2 + d4S 0 J { ± J p l + P y - d l }
(A.5)

252

± Indicate left and right shoulder configuration, respectively.

6, = Tan 1
„ 2 . 2 . 2 j 2 2 j 2
Px + P y + Pz ~ 4 ~ a 2 ~ “ 2

(A.6)

• ± Indicate elbow-below-hand and elbow-above-hand configurations, respectively.

• The degenerate case (0 5=O), i.e., when the axis of joint 6 is aligned with the

approach vector[ax ay az]T, results in (0 4 + 06) = total angle required to align

the orientation of the hand.

• For a given arm configuration, (0j, 02, 03, 04, 05, 06) is a set of solutions and

• (0 ,,02,03, 04 + 7i ,-0 5, 06 + 7i) is another set of solutions.

• The joint angles 0, are obtained in the following sequence 0j, 03, 02, 04,05, 06.

04 = Tan 1
cexay-sexax

(A. 7)
C0xC(02 + 03)a x + S exC(02 + 02)a y - S(02 + 03)a : J ’

05 = T a n 1

• -180° <180°

253

Figure (A.l). Definition o f the Puma 560® robot arm position configuration.

254

A.2. D’Alembert Dynamic Equations for Puma 560® Manipulator

Zi Link i+1

Link i

Link i-1

Pi-1

Base coordinate system

Figure (A.2). Vector definition for D’Alembert equations.

The dynamic equations of any open chain robot manipulator are expressed as:

255

^ D vOJ + H l ^ { O 90) + H f*{p ,e) + Gi =Tl
7=1

Where:

D = D Rot + D Transi) v v

=Z{[*X,7/Kx]}+Z
S = j V s = j

S = j

ffl, <
J-l
X a + c,
j = k

(A. 10)

+ Z [» » J {Z ,- i x [>) - P j- 1] } x { Z m x - P m] }]
•5=7

H[ms(e,8) =

m.
k =1

ZX,-.
p = i

L X - .
9=1

XA
z
p=2

ZX,-,
.9=1

X,-.
XP*

n+z
s - i

m„ <
ZX,-.P=1

I
P=2

ZX,-,
.9=1

ZX,-,
.9=1

x X P-i

xc.

xc.

> +

, I (A. 11)

t f “ (X) = Z!

[• R X ,] r 7

l * X , x

Z
7=1

X X . x

ZXX-.
. p =1

Z XX,
k = j + 1

ZX,-,
9=1

> +

; i = (A.12)

256

G, = -gZ
j=i

g = (gX’gy>gz)T> |g| = 9.8062m / s 2

; i = l,...,n
(A. 13)

where;

nii = Mass of link /;

11 = The inertia about the centre o f mass of link i with respect to the base co-ordinate

system;

T i = The applied torque exerted on link z;

rs = The position vector to the centre o f mass of link from the base co-ordinate system;

— tVics = The position vector o f the centre o f mass of link s from the (s-1) co-ordinate

frame with reference to the base co-ordinate frame;

I s = The inertia tensor matrix o f link about its centre of mass expressed in the s* co

ordinate system;

R J = The rotation matrix with reference to the s111 co-ordinate frame; 1 < s < n ;

Z _j = The axis of rotation of joint j with reference to the base co-ordinate frame;

The dynamic coefficients Dtj and Gt are functions of both the joint variables and

inertial parameters o f the manipulator, while H jrans and H f ot are functions of the joint

variables, the joint velocities and inertial parameters of the manipulator. These

coefficients have the following interpretations:

257

1. The elements of the ZV matrix are related to the link’s inertia of the manipulator.

Equation (A. 10) reveals the acceleration effects of joint j acting on joint i where the

driving torque r(acts. The first term of equation (A. 10) indicates the inertial effects

of moving link j on joint i due to the rotational motion of link j , and vice versa. If i

=/, it is the effective inertia felt at joint i due to the rotational motion of link j , while

if i ^ j , it is the pseudo products of inertia of link j felt at joint / due to the

rotational motion of link j . The second term has same physical meaning except it is

due to the transitional motion of link j acting on joint /.

2. The H jrans (0,0) is related to the velocities of the joint variables. Equation (A.l 1)

represents the combined centrifugal and Coriolis reaction torques felt at joint / due

to the velocities of joints p and q resulted from the transitional motions of links p

and q. The first and third terms of equation (A .ll) constitute the centrifugal and

Coriolis reaction forces from all the links below link i in the kinematic chain due to

the transitional motion of the links. If p=q , then it represents the centrifugal

reaction forces felt at joint /.I f p ^ q , then it indicates the Coriolis forces acting on

joint /. The second and fourth terms of equation (A .ll) indicate the Coriolis

reaction forces contributed from links below link / in the kinematic chain due to the

transitional motion of the links.

3. The H * 0‘(Q,Q) is also related to the velocities of the joint variables. Similar to

the H j r a n s (0,0), equation (A. 12) reveals the combined centrifugal and Coriolis

reaction torques felt at joint / due to the velocities of joints p and q resulted from the

258

rotational motion of link p and q. The first term of equation (A. 12) indicates purely

the Coriolis reaction forces of joints p and q acting on joint i due to the rotational

motion of the links. The second term is the combined centrifugal and Coriolis

reaction forces acting on joint i, while i f p ^ q , then it represents the Coriolis

forces acting on joint i due to the rotational motion of the links.

4. The coefficient Gt represents the gravity effects acting on joint i from the links

above joint i.

For the Puma 560® robot arm, the elements of the Dy matrix come from the

transitional and rotational effects of the links. For the first three joints (0 1,0 2,03),

because of their usually long link length for maximum reach and long distance traveled

between initial position and final position, the effects of transitional motion will

dominate the rotational motion. In contrast to the first three joints, the rotational effects

will dominate for the last three joints. Hence, one can simplify the computation of the

Dy matrix by considering only the transitional effects for the first three joints and the

rotational effects for the last three joints. Similarly, one can evaluate the contribution of

H j r a n s and H . f o t and eliminate their computations if they are insignificant. The

resulting simplified model retains the entire major interaction and coupling reaction

forces at a reduced computation time and greatly aids the design of an appropriate

control law for controlling the robot arm.

259

A PP E N D IX B

Pro/Mechanica Software Interface

B.l. Custom Load Definition

To apply intelligent neuro-fuzzy control to the virtual model created using

Pro/Mechanica® software, there must be some way to exchange information with the

mechanism. A custom load can create measures in C++ to provide useful information

about the mechanism to the user and feed-back the driving torques and forces to the

Pro/Mechanica® Motion's engine. Proper design of custom load makes it appears as it

is a built-in feature of Pro/Mechanica® Motion's engine. When the custom load

command is selected, a form appears similar to this one:

Name: |Extfcontroller Subassem bly: A su b a ssy l

Custom Load Name: Select...

Custom Load Description:

Load is Active: (• Always C Conditionally

A ccept Cancel

Figure (B.l). Custom load selection user interface

2 6 0

When the user chooses Select, Pro/Mechanica® Motion queries its engine for the

names of available custom loads. A list of available custom loads appears and the user

selects the proper custom load he needs.

Custom Load Description:

A simple gear model

CancelAccept

55' $ List of Available Custom Load

mtirix
datagenl
datagen
puma560
pumatl
ro b lp o s l
rob1 pos11
rob2pos1
tworobot2
two robot

ear

Figure (B.2). List of available custom loads user interface

Pro/Mechanica® Motion again queries the engine for the description of the custom

load, and the contents of Interface and Help files are obtained. A description of the

custom load is displayed to the designer as shown above. Eventually the user selects

(Accept). At this point, he is prompted one item at a time for all information required

by the custom load from the virtual model. In general, the items prompted for are

bodies, points, joints, axes, vectors, scalars, and integers. Any other information about

the prompts can be obtained and passed to the custom load subroutine from

261

Pro/Mechanica® Motion engine such as orientations, inertia matrices ...etc. In addition,

if the custom load produces measures as output, the user is prompted to give names to

these measures and one icon identical to the built-in loads icons is produced for each

output load which is normally a driving force or torque.

B.2. Writing the Custom Load

This is a summary of the steps required to create the custom load successfully.

1- Plan the custom load.

The first step is to decide what inputs are required from the designer, what

additional data is required from Pro/Mechanica® Motion, what outputs are

produced by the custom load, and what error conditions can occur.

2- Write the interface file.

The Interface file contains the instructions to Pro/Mechanica® Motion for

implementing the plan. For examples, it tells Pro/Mechanica® Motion what kind of

data to get from the user and gives the prompts which should be used to request it,

what kind of forces or torques coming to the model and where they should be

applied, and what text should be used to report error conditions. This file is created

using any text editor with the extension “*.ifc”. The designer must compile this file

(to produce “*.ifo” file) so that Pro/Mechanica® Motion can link it in to the model.

3- Write the custom load subroutine.

The Interface file specifies the inputs and outputs to the custom load, the subroutine

actually accepts these inputs, processes them, and produces the outputs. The

262

designer creates a C++ subroutine with a predefined calling sequence. The designer

must know the array length in advance. The designer must compile this subroutine

(to produce “*.o” file) so that Pro/Mechanica® Motion can link it in to the model.

4- Write the help file.

The designer should document his custom load in sufficient details to allow

successful use of it. This information can be put in a simple text ASCII file (in the

form “*.hlp”) that is accessible to Pro/Mechanica® Motion engine.

5- Installing the custom load.

Once the custom load is working, it can be installed with the Pro/Mechanica®

Motion engine so that it is accessible to all users. All names of the files mentioned

above should be the same with only the file name extension varying according to the

file type.

B.3. Writing the Interface File

The interface file is a simple ASCII® file which can be created using any text editor.

Once created, it must be placed under the subdirectory (\ \i486_nt) in the

Pro/Mechanica® Motion directory and must be compiled from within this location

using the command:

\ \i486_nt\ mmifcc tworobot.ifc >tworobot.txt

263

This command will generate the tworobot.ifo file from the tworobot.ifc file and also a

summary file (tworobot.txt) containing the interfaced items description. The interface

file used for the coordination of two Puma 560® robots is listed below.

Interface file (tworobot.ifc):

LOAD {
DESCRIPTION

VERSION
LANGUAGE
SUBROUTINE

PROMPTS {
linkO
linkl
link2
link3
link4
link5
Unk6
linkl
link8
link9
linkl 0
linkl 1
linkl 2
linkl 3
linkl 4
enefctl
enefct2
vectal
vecta2
vecta3
vectjl
vectj2
vectj3
vecta4
vecta5
vecta6
vectj4
vectj5
vectj6
}

STATES {
errlint;
err2 int;

"2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing
Controller ";
"1. 0 ";

C;
tworobot;

"Select the ROBOT#l Link-0 body"
"Select the ROBOT#l Link-1 body"
"Select the ROBOT#l Link-2 body"
"Select the ROBOT# 1 Link-3 body"
"Select the ROBOT#l Link-4 body"
"Select the ROBOT#l Link-5 body"
"Select the ROBOT#l Link-6 body"
"Select the Connection Arm body”
"Select the ROBOT#2 Link-0 body"
"Select the ROBOT#2 Link-1 body"
"Select the ROBOT#2 Link-2 body"
"Select the ROBOT#2 Link-3 body"
"Select the ROBOT#2 Link-4 body”
"Select the ROBOT#2 Link-5 body"
"Select the ROBOT#2 Link-6 body"
"Select the end-effector#l point”
"Select the end-effector#2 point"

'Select the ROB#l Joint-1 angle vector"
'Select the ROB#l Joint-2 angle vector"
'Select the ROB#l Joint-3 angle vector"
'Select the ROB#l Joint-1 torque vector"
'Select the ROB#l Joint-2 torque vector"
'Select the ROB#l Joint-3 torque vector"
'Select the ROB#2 Joint-1 angle vector"
'Select the ROB#2 Joint-2 angle vector"
'Select the ROB#2 Joint-3 angle vector"
'Select the ROB#2 Joint-1 torque vector”
'Select the ROB#2 Joint-2 torque vector"
'Select the ROB#2 Joint-3 torque vector"

BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
BODY;
POINT;
POINT;

VECTOR linkl;
VECTOR link2;
VECTOR link3;
VECTOR linkl;
VECTOR link2;
VECTOR link3;
VECTOR link9;
VECTOR linklO;
VECTOR linkl 1;
VECTOR link9;
VECTOR linklO;
VECTOR linkl 1;

264

err3_int;
err4_int;
err5_int;
err6_int;
}

INPUTS {
orintO ORIENT linkO;
or inti ORIENT linkl;
orint2 ORIENT link2;
orint3 ORIENT link3;
orint4 ORIENT link4;
orint5 ORIENT link5;
orint6 ORIENT linkS;
orint7 ORIENT link9;
orint8 ORIENT linklO;
orint9 ORIENT linkl 1;
orintlO ORIENT linkl 2;
orintll ORIENT linkl 3;
axisl 10 XFORM vectal IinkO;
axis!21 XFORMvecta2 linkl;
axisl 32 XFORM vecta3 link2;
ctxis210 XFORM vecta4 linkS;
axis221 XFORM vecta5 link9;
axis232 XFORMvecta6 linklO;
}

OUTPUTS {
torql "torque on ROBOT#1 linkl joint" TORQUE linkl vectjl;
torq2 "torque on ROBOT#1 link2 joint" TORQUE link2 vectj2;
torq3 "torque on ROBOT#1 link3 joint" TORQUE link3 vectj3;
torq4 "torque on ROBOT#2 linkl joint" TORQUE link9 vectj4;
torq5 "torque on ROBOT#2 link2 joint" TORQUE linklO vectj5;
torq6 "torque on ROBOT#2 link3 joint" TORQUE linkl 1 vectj6;
errl_der "derivative o f ROBOT# 1 error-1" DERIV errl int;
err2_der "derivative o f ROBOT#! error-2"DERIV err2_int;
err3_der "derivative o f ROBOT#l error-3”DERIV err3_int;
err4_der "derivative o f ROBOT#2 error-1" DERIV err4_int;
err5_der "derivative ofROBOT#2 error-2"DERIV err5_int;
err6_der "derivative of ROBOT#2 error-3" DERIV err6_int;
}
}

Summary file (tworobot.txt):

Description : 2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing Controller
Load type : Ordinary
Language : C
Version : 1.0
Subroutine : tworobot

265

Prompts:
Name : linkO
Type : BODY
Prompt : "Select the ROBOT# 1 Link-0 body"
Index : 0

Name : linkl
Type : BODY
Prompt : "Select the ROBOT# 1 Link-1 body"
Index : 1

Name : link2
Type : BODY
Prompt : "Select the ROBOT#l Link-2 body"
Index : 2

Name : linkS
Type : BODY
Prompt : "Select the ROBOT# 1 LinkS body"
Index : 3

Name : link4
Type : BODY
Prompt : "Select the ROBOT#l LinkS body"
Index : 4

Name : Unk5
Type : BODY
Prompt : "Select the ROBOT# 1 LinkS body"
Index : 5

Name : link6
Type : BODY
Prompt : "Select the ROBOT#1 LinkS body"
Index : 6

Name : link7
Type : BODY
Prompt : "Select the Connection Arm body"
Index : 7

Name : link8
Type : BODY
Prompt : "Select the ROBOT#2 Link-O body"
Index : 8

Name : link9

266

Type : BODY
Prompt : "Select the ROBOT#2 Link-1 body"
Index : 9

Name : linklO
Type : BODY
Prompt : "Select the ROBOT#2 Link-2 body"
Index : 10

Name : linkl 1
Type : BODY
Prompt : "Select the ROBOT#2 Link-3 body"
Index : 11

Name : linkl 2
Type : BODY
Prompt : "Select the ROBOT42 Link-4 body"
Index : 12

Name : linkl 3
Type : BODY
Prompt : "Select the ROBOT#2 Link-5 body"
Index : 13

Name : linkl 4
Type : BODY
Prompt : "Select the ROBOT#2 Link-6 body"
Index : 14

Name : enefctl
Type : POINT
Prompt : "Select the end-ejfector#l point”
Index : 15

Name : enefct2
Type : POINT
Prompt : "Select the end-effector#2 point"
Index : 16

Name : vectal
Type : VECTOR
Prompt : "Select the ROB#l Joint-1 angle vector"
Index : 17
Frame : linkl
Default : 0 0 0

Name : vecta2

267

Type : VECTOR
Prompt : "Select the ROB#l Joint-2 angle vector”
Index : 18
Frame : link2
Default : 0 0 0

Name : vecta3
Type : VECTOR
Prompt : "Select the ROB#l Joint-3 angle vector"
Index : 19
Frame : link3
Default : 0 0 0

Name : vectjl
Type : VECTOR
Prompt : "Select the ROB#l Joint-1 torque vector"
Index : 20
Frame : linkl
Default : 0 0 0

Name : vectj2
Type : VECTOR
Prompt : "Select the ROB#l Joint-2 torque vector"
Index : 21
Frame : link2
Default: 0 0 0

Name : vectj3
Type : VECTOR
Prompt : "Select the ROB#l Joint-3 torque vector”
Index : 22
Frame : link3
Default : 0 0 0

Name : vecta4
Type : VECTOR
Prompt : "Select the ROB#2 Joint-1 angle vector"
Index : 23
Frame : link9
Default : 0 0 0

Name : vecta5
Type : VECTOR
Prompt : "Select the ROB#2 Joint-2 angle vector"
Index : 24
Frame : linkl 0
Default : 0 0 0

268

Name : vecta6
Type : VECTOR
Prompt : "Select the ROB#2 Joint-3 angle vector"
Index : 25
Frame : linkl 1
Default : 0 0 0

Name : vectj4
Type : VECTOR
Prompt : "Select the ROB#2 Joint-1 torque vector"
Index : 26
Frame : link9
Default : 0 0 0

Name : vectj5
Type : VECTOR
Prompt : "Select the ROB#2 Joint-2 torque vector"
Index : 27
Frame : linkl 0
Default : 0 0 0

Name : vectj6
Type : VECTOR
Prompt : "Select the ROB#2 Joint-3 torque vector"
Index : 28
Frame : linkl 1
Default : 0 0 0

States:
Name : errl int
Index : 29

Name : err2_int
Index : 30

Name : err3_int
Index : 31

Name : err4_int
Index : 32

Name : errS int
Index : 33

Name : err6_int
Index : 34

269

Inputs:
Name : orintO
Type : ORIENT
Index : 35
Inputld: linkO

Name : orintl
Type : ORIENT
Index : 36
Inputld: linkl

Name : orint2
Type : ORIENT
Index : 37
Inputld: link2

Name : orint3
Type : ORIENT
Index : 38
Inputld: link3

Name : orint4
Type : ORIENT
Index : 39
Inputld: link4

Name : orint5
Type : ORIENT
Index : 40
Inputld: link5

Name : orint6
Type : ORIENT
Index : 41
Inputld: link8

Name : orint7
Type : ORIENT
Index : 42
Inputld: link9

Name : orint8
Type : ORIENT
Index : 43
Inputld: linkl 0

Name : orint9
Type : ORIENT
Index : 44
Inputld: linkl 1

Name : orintlO
Type : ORIENT
Index : 45
Inputld: linkl 2

Name : orintll
Type : ORIENT
Index : 46
Inputld: linkl 3

Name : axisllO
Type : XFORM
Index : 47
Inputld: vectal
Inputld: linkO

Name : axisl21
Type : XFORM
Index : 48
Inputld: vecta2
Inputld: linkl

Name : axis 132
Type : XFORM
Index : 49
Inputld: vecta3
Inputld: link2

Name : axis210
Type : XFORM
Index : 50
Inputld: vecta4
Inputld: linkR

Name : axis221
Type : XFORM
Index : 51
Inputld: vecta5
Inputld: link9

Name : axis232
Type : XFORM

Index : 52
Inputld: vecta6
Inputld: linklO

Outputs:
Name : torql
Type : TORQUE
Desc : "torque on ROBOT'#1 linkl joint"
Index : 0
Inputld: linkl
Inputld: vectjl

Name : torq2
Type : TORQUE
Desc : "torque on ROBOT#l link2 joint"
Index : 1
Inputld: link2
Inputld: vectj2

Name : torq3
Type : TORQUE
Desc : "torque on ROBOT#l link3 joint"
Index : 2
Inputld: link3
Inputld: vectj3

Name : torq4
Type : TORQUE
Desc : "torque on ROBOT#2 linkl joint"
Index : 3
Inputld: link9
Inputld: vectj4

Name : torq5
Type : TORQUE
Desc : "torque on ROBOT#2 link2 joint”
Index : 4
Inputld: linkl 0
Inputld: vectj5

Name : torq6
Type : TORQUE
Desc : "torque on ROBOT#2 link3 joint"
Index : 5
Inputld: linkl 1
Inputld: vectj6

272

Name : e r r l de r
Type : DERIV
Desc : "derivative o f ROBOT#! error-1"
Index : 6
Inputld: errl int

Name : err2_der
Type : DERIV
Desc : "derivative o f ROBOT# 1 err or-2"
Index : 7
Inputld: err2_int

Name : errS der
Type : DERIV
Desc : "derivative o f ROBOT# 1 error-3”
Index : 8
Inputld: err3_int

Name : err4_der
Type : DERIV
Desc : "derivative o f ROBOT#2 error-1"
Index : 9
Inputld: err4_int

Name : errS der
Type : DERIV
Desc : "derivative of ROBOT#2 error-2"
Index : 10
Inputld: err5_int

Name : err6_der
Type : DERIV
Desc : "derivative of ROBOT#2 error-3"
Index : 11
Inputld: err6_int

B.4. Writing the Custom Load Subroutine

The interface subroutine is a C++ file which can be created using any text editor. Once

created, it must be placed under the subdirectory (\ \i486_nt) in the Pro/Mechanica

273

Motion directory and must be compiled using C++ compiler to produce the

corresponding object file in the same location.

Inputs as seen from C++

Input[i] Is INTS[i][d] REALS [i][d] VECS[i][d][c] Notes

BODY d=0: body tag 0: mass 0: COM loc

1: COM vel

2: angvel

(1) & (2)

ORIENT 0: body tag 0: orient 1

1: orient2

2: orient3

(3)

INERTIA 0: body tag 0: xx xy xz

1: xy yy yz

2: xz yz zz

(4)

POINT 0: point tag

1: body tag

0: location

1: velocity
(5)

JOINT 0: joint tag

1: joint type

2: bodyltag

3: body2 tag

(10)

AXIS 0: joint tag

1: axis num

2: rot/trans

0: position

1: velocity

0: axis vec (6)

VECTOR 0: vec (7)

SCALAR 0: real

INTEGER 0: int

DISTANCE 0: dist

1: sep. vel.
(8)

XFORM 0: vec (9)

STATE 0: real

Table (B.l). Input variables arrays as seen from C++

274

Then the object file must be compiled from the first parent directory using:

\ \ cl/J/c /Foi486_nt\tworobot.o tworobot.c

This command will generate the file tworobot.o from the tworobot.c file. The interface

subroutine exchanges data with Pro/Mechanica Motion engine in the form of arrays as

shown in tables (B.l) and (B.2).

Outputs as seen from C++

Output[i] is REALOUT[i] VECOUTp] PTLOCSfi] Notes

FORGE : signed frc mag (i i)

TORQUE signed trq mag d o
TWPOT signed frc mag (12)

GENFRC frc vector application point (13)

GENTRQ trq vector (14)

AXIS signed load (15)

MEASURE measure val

DERIV state deriv

ICOND state initial

condition

(16)

Table (B.2). Output variables arrays as seen from C++

Notes:

1- COM loc (centre of mass location) is ground frame measure numbers of vector

from ground origin to body COM.

2- Angular velocity is the angular velocity of the body with respect to ground,

expressed in the ground frame.

3- Orientation relates body local frame to ground frame, that is, orientl is the

ground frame measure numbers of a vector currently aligned with the first local

frame axis.

275

4- These are the moments and products of inertia about the body’s local frame

axes.

5- Point location and velocity are w.r.t. the ground origin and expressed in the

ground frame. The axis type is 1 for rotational and 2 for translational.

6- The joint axis vector is a unit vector parallel to the axis and expressed in the

ground frame.

7- The vector is a unit vector expressed in the ground frame.

8- Distance is non-negative, separation velocity is positive when points are

separating, negative when approaching.

9- The transformed vector is expressed in the local frame of the specified body.

10- The following table shows the numerical value passed in for each joint type and

the ordering of the joint axes (t=translational, r=rotational, -=part of ball joint).

Joint type No. 1 2 3 4 5 6

pin 0 r

slider 1 r

U-joint 2 r r

gimbal 3 r r r

cylinder 4 r t

planar 5 t t r

ball 6 - - -

freer 7 t t t - - -

sixdof 8 t t t r r r

bearing 9 t r r r

weld 10

Table (B.3). Numerical values representing joint type

27 6

11-For fixed or follower force or torque, Pro/Mechanica multiplies the returned

quantity by the fixed or follower vector, then applies the result to the

appropriate point or body.

12- For twopt (two points) force, Pro/Mechanica multiplies the returned quantity by

a unit vector aligned with (pt2-ptl) and applies the result at pt2. It applies the

negative of this value to ptl.

13-For the general force, Pro/Mechanica applies the force vector (expressed in the

global frame) to the point of the specified body which is coincident with the

application point (relative to the global origin and expressed in the global

frame).

14-For general torque, Pro/Mechanica applies the torque vector (expressed in the

global frame) to the specified body.

15-For an axis load, Pro/Mechanica applies the specified force or torque as a joint

axis force or torque.

16- Pro/Mechanica reference ICOND outputs only after it calls with flag=l.

The interface subroutine used for the coordination of two Puma 560 robots is too big to

be listed here, only the overall structure is outlined below.

Interface subroutine (tworobot.c):

/* Custom load subroutine for PRO/MECHANICA "tworobot" custom load. */
/* 2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing Controller */
/* - Copyright 2003 Cardiff School o f Engineering */

ttdefine NIN 52 /* Number of Input Variables from PRO/MECHANICA */
Meflne linkO 0 /* Link-0 Body ON ROBOT#1 ARM Link-0 */
#define linkl 1 /* Link-1 Body ON ROBOT#1 ARM Link-1 */
ttdeftne link2 2 /* Link-2 Body ON ROBOT#1 ARM Link-2 */

277

#define link3 3
#define link4 4
#define linkS 5
#define link6 6
#define link7 7
#define link8 8
#define link9 9
#define linkl 0 10
#define linkl 1 11
#define linkl 2 12
#define linkl 3 13
#define linkl 4 14
#define enefctl 15
#deflne enefct2 16
#define vectal 17
#define vecta2 18
#define vecta3 19
#define vectj 1 20
#define vectj 2 21
#define vectj3 22
#define vecta4 23
#define vecta5 24
#define vecta6 25
#define vectj4 26
#define vectj5 27
#defme vectj 6 28
#define errl_int 29
#define err2_int 30
#define err3_int 31
#defme err4_int 32
#deflne errSint 33
#define err6_int 34
#defme orintO 35
#define orintl 36
#define orint2 37
#defme orint3 38
#deftne orint4 39
#deflne orint5 40
#define orint6 41
#deflne orint7 42
#define orint8 43
#define orint9 44
#define orintlO 45
#defme orintl 1 46
#define axisllO 47
#deflne axisl21 48
#define axis!32 49

/* Link-3 Body ON ROBOT#l ARM Link-3 */
/* Link-4 Body ON ROBOT#l ARM Link-4 */
/* Link-5 Body ON ROBOT# 1 ARM Link-5 */
/* Link-6 Body ON ROBOT# 1 ARM Link-6 */
/* Link-7 Body ON CONNECTION ARM */
/* Link-11 Body ON ROBOT#2 ARM Link-0 */
/* Link-12 Body ON ROBOT#2 ARM Link-1 */
/* Link-13 Body ON ROBOT#2 ARM Link-2 */
/* Link-14 Body ON ROBOT#2 ARM Link-3 */
/* Link-15 Body ON ROBOT#2 ARM Link-4 */
/* Link-16 Body ON ROBOT#2 ARM Link-5 */
/* Link-17 Body ON ROBOT#2 ARM Link-6 */

/* End-effector of ROBOT# 1 Location in Ground Frame */
/* End-effector of ROBOT#2 Location in Ground Frame */
/* ROBOT#l Joint-1 Angle Vector to Ground Frame
/* ROBOT# 1 Joint-2 Angle Vector to Ground Frame
/* ROBOT# 1 Joint-3 Angle Vector to Ground Frame
/* ROBOT# 1 Joint-1 Torque Vector to Ground Frame
/* ROBOT#l Joint-2 Torque Vector to Ground Frame
/* ROBOT# 1 Joint-3 Torque Vector to Ground Frame
/* ROBOT#2 Joint-1 Angle Vector to Ground Frame
/* ROBOT#2 Joint-2 Angle Vector to Ground Frame
/* ROBOT#2 Joint-3 Angle Vector to Ground Frame
/* ROBOT#2 Joint-1 Torque Vector to Ground Frame
/* ROBOT#2 Joint-2 Torque Vector to Ground Frame
/* ROBOT#2 Joint-3 Torque Vector to Ground Frame

/* ROBOT 1 Error-1 Integration (Integral of err 1 _der)*/
/* ROBOT 1 Err or-2 Integration (Integral of err2_der)*/
/* ROBOT 1 Error-3 Integration (Integral of err3_der)*/
/* ROBOT2 Error-1 Integration (Integral of err4_der) */
/* ROBOT2 Error-2 Integration (Integral of errSder) */
/* ROBOT2 Err or-3 Integration (Integral of err6_der) */

/* ROBOT#l Link-0 orientation matrix to groundframe*/
/* ROBOT#! Link-1 orientation matrix to groundframe*/

* /
* /
* /
* /
* /
* /

*/
* /
* /
*/
* /
* /

/* ROBOT#1 Link-2 orientati
/* ROBOT#1 Link-3 orientati
/* ROBOT#1 Link-4 orientati
/* ROBOT#1 Link-5 orientati
/* ROBOT#2 Link-0 orientati
/* ROBOT#2 Link-1 orientati
/* ROBOT#2 Link-2 orientati

on matrix to groundframe */
on matrix to groundframe*/
on matrix to groundframe*/
on matrix to groundframe*/
on matrix to groundframe*/
on matrix to groundframe */
on matrix to groundframe */

/* ROBOT#2 Link-3 orientation matrix to groundframe*/
/* ROBOT#2 Link-4 orientation matrix to ground frame*/
/* ROBOT#2 Link-5 orientation matrix to groundframe*/

/* ROBOT#l Joint-1 Vector to Link-0 Local Frame */
/* ROBOT#1 Joint-2 Vector to Link-1 Local Frame */
/* ROBOT#! Joint-3 Vector to Link-2 Local Frame */

278

#define
#,define
#define
#define
Mefine
#define
Mefine
Mefine
Mefine
Mefine
Mefine
Mefine
Mefine
Mefine
Mefine
Mefine

axis210
axis221
axis232
NOUT 12
torql 0
torq2
torq3
torq4
torq5
torq6
err lder 6
err2_der 7
err3_der 8
err4_der 9
err5 der 10
err6 der 11

50 /* ROBOT#2 Joint-1 Vector to Link-0 Local Frame
51 /* ROBOT#2 Joint-2 Vector to Link-1 Local Frame
52 /* ROBOT#2 Joint-3 Vector to Link-2 Local Frame
/* Number of Output Variables to PRO/MECHANICA */

/* Follower Torque on ROBOT#l Joint-1 Through vectj 1 */
/* Follower Torque on ROBOT#l Joint-2 Through vectj2*/
/* Follower Torque on ROBOT#l Joint-3 Through vectj3*/
/* Follower Torque on ROBOT#2 Joint-1 Through vectj4*/
/* Follower Torque on ROBOT#2 Joint-2 Through vectj5*/
/* Follower Torque on ROBOT#2 Joint-3 Through vectj6*/

/* ROBOT#l Error-1 Derivative (d/dt of errl int) */
/* ROBOT# 1 Err or-2 Derivative (d/dt of err2_int)
/* ROBOT# 1 Err or-3 Derivative (d/dt of err3_int)

/* ROBOT#2 Error-1 Derivative (d/dt of err4_int)
/* ROBOT#2 Error-2 Derivative (d/dt of err5_int)
/* ROBOT#2 Err or-3 Derivative (d/dt of err6_int)

* /
* /

* /
* /
* /

void tworobotfflag, time, ints, reals, vecs, realout, vecout, ptlocs, err)
int flag, ints[NIN][4], *err;
double time, reals[NIN][2], vecs[NIN][3][3];
double realout[NOUT],vecout[NOUT][3],ptlocs[NOUT][3];
{

* /
* /
* /

xl = (vecs[vectalj [0] [0]);yl = (vecs[vectalj [0] [l]);zl = (vecs[vectalj [0] [2]);
x2 = (vecs[vecta2j [0] [0]);y2 = (vecs[vecta2j [0][l]);z2 = (vecs[vecta2j [0][2]);
x3 = (vecs[vecta3j[0] [0]);y3 = (vecs[vecta3J[0][l]);z3 = (vecs[vecta3J[0][2]);
x4 = (vecs[vecta4j[0][0]) ;y4 = (vecs[vecta4j [0][l]);z4 = (vecs[vecta4j [0][2]);
x5 = (vecs[vecta5j[0] [0]);y5 = (vecs[vecta5j [0][l]);z5 = (vecs[vecta5j [0][2]);
x6 = (vecs[vecta6j[0] [0]);y6 = (vecs[vecta6j [0][l]);z6 = (vecs[vecta6][0][2j);
xlt = (vecs [axis 110][0][0]);y It = (vecs[axisl 10] [0] [l]);z lt = (vecs [axis 110] [0] [2])
x2t = (vecs[axisl21][0][0]);y2t = (vecs[axisl21][0][l]);z2t = (vecs[axisl21][0][2])
x3t = (vecs [axis 132] [0] [0]);y3t = (vecs [axis 13 2][0][l]);z3t = (vecs [axis 132] [0] [2])
x4t = (vecs [axis 210] [0] [0]);y4t = (vecs[axis210][0][l]);z4t = (vecs[axis210][0][2])
x5t = (vecs[axis221][0][0]);y5t = (vecs[axis221][0][l]);z5t = (vecs[axis221][0][2])
x6t = (vecs [axis232] [0] [0]);y6t = (vecs[axis232J[0][l]);z6t = (vecs[axis232] [0][2])
pxl = (vecs[enefctl] [0] [0]);pyl = (vecs[enefctl][0] [l]);pzl = (vecs[enefctl][0][2])
px2 = (vecs[enefct2] [0] [0]);py2 = (vecs[enefct2][0] [l]);pz2 = (vecs[enefct2] [0] [2])
realout [torql] = torl;realout[torq2] = tor2;realout[torq3] = tor 3;
realout[torq4] = tor4;realout[torq5] = tor 5 ;realout[torq6] = tor 6;
//realout[err 1 der] = error 1 ;realout[err2 der] = error2;realout[err3 der] = error3;
//realout[err4 der] = error4;realout[err5 der] = error5;realout[err6_der] = error6;
}

279

APPENDIX C

Hardware Interface Specifications

C .l. Interface Card Specifications

For the purpose of interfacing the experimental set-up explained in chapter (6) to the

host computer for the control algorithm testing purposes, an ADLINK® DAQ/PXI-

2501 interface card with the following specifications has been used.

Analog Output (AO)

• Number of channels: 4-channels

• DA converter: AD7945

• Max update rate: 1 MS/sec.

• Resolution: 12 bits

• FIFO buffer size: 8K byte

• Voltage reference: internal 10V or external up to ±10V

• Output range: Unipolar and Bipolar

• Settling time: 2ps.

• Offset error: ±2mv max

Analog Input (AI)

• Number of channels: 8-channels

• AD converter: LTC1416

• Max sampling rate: 400KS/sec.

• Resolution: 14 bits

280

• FIFO buffer size: 2K byte

• Input range: Bipolar ± 10 V or Unipolar up to +10V

• Settling time: 2ps.

• Offset error: ±lmv max

General Purpose Digital I/O (G.P. DIO)

• Number of channels: 24 programmable Input/Output

• Compatibility: TTL/CMOS

• Input voltage: Logic Low: 0.8V max, Logic High: 2.0V max

• Output voltage: Logic Low: 0.5V max, Logic High: 2.7V min

General Purpose Timer/Counter (G.P. TC)

• Number of channels: 2 UP/Down Timer/Counters

• Resolution: TTL/CMOS

• Resolution: 16 bits

• Clock source: Internal or external

• Max source frequency: 10MHz

C.2. Filters and Power Amplifiers Specifications

For each motor, a filter, an anti-aliasing filter, and a power amplifier is used to

smoothen the input measurement, the continuous-time control, and to drive the motor.

All the filters are chosen to be first-order R C filters and have the same cut-off

frequency of 15 Hz. All anti-aliasing filters are chosen to be first-order R C filters as

well with the same cut-off frequency of 33 Hz. All filters are cascaded with non

inverting mode operational amplifier with a gain of 2 for R j = R f = 10KQ. The

281

operational amplifiers are biased by ±15V DC external supply. Figure (C.l) shows the

circuit diagram of one filter. The power amplifiers are LM12 linear series operational

amplifiers. They are biased through ± 13.8V, ±13.0A peak, ±10.0A continuous,

regulated DC power supply. Figure (C.2) shows the circuit diagram for one power

amplifier. Table (C.l) lists the design values for circuit’s elements.

Filters Anti-aliasing Filters

R V--AV; C

10KQ l.Opf 10KQ 47pf

Power Amplifiers
f t , ,, , ^

Oz

1.0KQ 220nf 4.0KQ 220pf

Table (C.l). Design values for circuit’s elements.

+VCC

741
Output

1st order filter
-Vcc

Figure (C.l). Circuit diagram for one motor filter/anti-aliasing filter.

282

+13.8V

Input O
LM12

Input Compensation

O Output

Clamp
Diodes

-13.8V

Figure (C.l). Circuit diagram for one motor power amplifier.

C.3. D.C. Motors Specifications

Each robot link is powered by permanent magnet DC motor equipped with position

decoding potentiometers and suitable planetary gear head to increase the motor

developed torque. Both of torque speed and torque current relationship for such type of

motors are linear.

Va-E„ = iaRa + La^~ (C1)dt

E b = k / n (C.2)

T = ktu (C.3)

T - TL = pa> + J ^ - (C.4)
dt

283

where Va ls the input voltage of the DC motor, Eb is the motor armature back educed

emf, i a is the armature current, Ra is the armature resistance, La is the armature

inductance, kf is the magnetisation constant, co is the motor speed in rad/sec, T is the

motor developed torque, Tl is the load torque, /3 is the equivalent friction constant at

motor shaft, and J is the equivalent inertia constant at motor shaft. The motor

equivalent circuit parameters are listed in table (C.2).

Rated Power 15 watt Starting Current 4010 m.Amp.

Rated Voltage 12 volt Armature Resistance 2.99 Ohm

No Load Speed 4590 rpm Torque Constant 24.1 m.N.m./Amp.

Stall Torque 96.8 m.N.m. Speed Constant 396 rpm/volt

ASpeed/ATorque 49.1 rpm/m.N.m. Armature Inductance 0.21 m.H.

No Load Current 115 m.Amp. Position Ratio 12 Degree/volt

Table (C.2). Motors equivalent circuit parameters.

r

284

