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SYNOPSIS

The work reported in this thesis aims to design and develop a new neuro-fuzzy control 

system for robotic manipulators using Machine Learning Techniques, Fuzzy Logic 

Controllers, and Fuzzy Neural Networks. The main idea is to integrate these intelligent 

techniques to develop an adaptive position controller for robotic manipulators. This 

will finally lead to utilising one or two coordinated manipulators to perform upper-limb 

rehabilitation. The main target is to benefit from these intelligent techniques in a 

systematic way that leads to an efficient control and coordination system. The 

suggested control system possesses self-learning features so that it can maintain 

acceptable performance in the presence of uncertain loads. Simulation and modelling 

stages were performed using dynamical virtual reality programs to demonstrate the 

ideas of the control and coordination techniques.

The first part of the thesis focuses on the development of neuro-fuzzy models that meet 

the above requirement of mimicking both kinematics and dynamics behaviour of the 

manipulator. For this purpose, an initial stage for data collection from the motion of the 

manipulator along random trajectories was performed. These data were then compacted 

with the help of inductive learning techniques into two sets of if-then rules that form 

approximation for both of the inverse kinematics and inverse dynamics of the 

manipulator. These rules were then used in fuzzy neural networks with differentiation 

characteristics to achieve online tuning of the network adjustable parameters.

The second part of the thesis introduces the proposed adaptive neuro-fuzzy joint-based 

controller. To achieve this target, a feedback Fuzzy-Proportional-Integral-Derivative 

incremental controller was developed. This controller was then applied as a joint servo- 

controller for each robot link in addition to the main neuro-fuzzy feedforward 

controller used to compensate for the dynamics interactions between robot links. A 

feedback error learning scheme was applied to tune the feedforward neuro-fuzzy 

controller online using the error back-propagation algorithm.



The third part of the thesis presents a neuro-fuzzy Cartesian internal model control 

system for robotic manipulators. The neuro-fuzzy inverse kinematics model of the 

manipulator was used in addition to the joint-based controller proposed and the forward 

mathematical model of the manipulator in an adaptive internal model controller 

structure. Feedback-error learning scheme was extended to tune both of the joint-based 

neuro-fuzzy controller and the neuro-fuzzy internal model controller online.

The fourth part of the thesis suggests a simple fuzzy hysteresis coordination scheme for 

two position-controlled robot manipulators. The coordination scheme is based on 

maintaining certain kinematic relationships between the two manipulators using 

reference motion synchronisation without explicitly involving the hybrid position/force 

control or modifying the existing controller structure for either of the manipulators. The 

key to the success of the new method is to ensure that each manipulator is capable of 

tracking its own desired trajectory using its own position controller, while 

synchronizing its motion with the other manipulator motion so that the differential 

position error between the two manipulators is reduced to zero or kept within 

acceptable limits. A simplified test-bench emulating upper-limb rehabilitation was used 

to test the proposed coordination technique experimentally.
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CHAPTER 1

Introduction

The complexity of industrial processes has increased dramatically in the last few 

decades. This in turn limits the use of conventional control design techniques because 

their success is based mainly upon knowledge of the process mathematical model. In 

fact, it is often impossible to obtain exact mathematical models even for the simplest 

dynamics processes. This is because most mathematical modelling techniques rely upon 

a linearization of the process dynamics around a certain operating point. On the other 

hand, experienced operators of an industrial process can efficiently control such a 

process to achieve the required performance. These operators know nothing about 

process mathematical models or complex control theories. Their strategy when 

controlling such a process is mainly based on heuristics which can be expressed as “if  

antecedent then consequent” rules. The antecedent and consequent are vague and 

involve fuzzy expressions such as faster, small, approximately, large, etc., with which 

traditional logical systems cannot deal. In 1968, Lotfi A. Zadeh introduced his 

pioneering fuzzy set theory which offers a mathematical framework that can deal with 

such vague information. In his subsequent work, [Zadeh, 1973] explained how vague 

logical statements can be employed within a computational method to enable inferences 

to be derived from vague data. It was realised that this method could be applied to 

model and control complex systems [Mamdani, 1974], such as robotic manipulator 

systems [Kazemian, 2002].
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1.1. Motivation

Constructing an efficient rule base is the main problem in the development of fuzzy 

logic controllers. Due to difficulties in knowledge acquisition, it often requires great 

effort to construct a fuzzy rule base using a heuristic method. This has led to attempts 

to extract these rules from numerical observation data. One approach seeks to capture 

the operational knowledge of human experts during normal process operation. This 

approach records the states of the process under study and the human operator’s control 

actions as input and output data pairs and extracts fuzzy control rules from the recorded 

data pairs. An alternative approach utilises a fuzzy model of the process. To construct 

such a model, the process is stimulated and both the stimulus and its response are 

recorded. Fuzzy rules are then extracted from the recorded data. An efficient method 

for extracting rules from the recorded data is via the use of machine learning techniques 

(MLT). A particularly interesting type of machine learning technique is symbolic 

inductive learning, because the models it creates have a structure similar to that 

employed in human reasoning (in the form of if-then rules). The generated rules can be 

regarded as fuzzy rules. In this way, fuzzy rules can be generated to form the inverse 

model of the system and then used as a controller.

Following the pioneering work of Zadeh, many applications of fuzzy control for 

industrial processes were presented. There has also been increasing interest in the 

application of neural networks (NN) for modelling and control of dynamics systems 

[Pham and Liu, 1993; 1995; and 1996]. NN possess interesting and attractive features 

such as online learning. A NN can learn a mapping between input-output spaces and
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form an associative memory that retrieves the appropriate output when presented with 

an input. It can also estimate an output when activated with previously unseen inputs. 

Subsequent research has explored NN capabilities for function approximation and 

adaptive control. Recently, the application of the learning abilities of NN to automate 

the realisation of fuzzy logic systems (FLS) has become a very active research area 

[Takagi and Hayashi, 1991]. This integration brings the low-level learning and the 

computation power of NN to FLS and brings the high-level human-like thinking and 

reasoning of FLS to NN. This integration has developed new intelligent systems called 

fuzzy neural networks (FNN). FNN provide a new method for the realisation of 

intelligent control systems. The ability of such systems to learn or to adapt their control 

policy according to its past experience makes them an ideal solution for all those 

applications characterised by time-changing dynamics and unstructured operating 

conditions.

The use of robots in many industrial applications is becoming more commonplace due 

to the necessity to increase productivity and requirement to reduce cost. Robot 

manipulators are multi-input multi-output (MIMO) coupled dynamics systems. 

Mathematical modelling or mathematical model-based control techniques for such 

systems are very complex, and very difficult to be implemented [Appendix A]. With 

the help of new model-free techniques such as fuzzy and neuro-fuzzy mechanisms, 

modelling and efficient control of such complex systems can be achieved without the 

need for tedious mathematical formulation processes. Currently industrial robots are 

generally used for tasks that involve one-handed manipulation. Inevitably some 

applications, for example handling large, heavy, or awkwardly shaped objects, may
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require two-handed manipulation. Utilisation of robotics for medical applications is 

also an increasing demand, especially in the area of rehabilitation in relation to the 

shortage of physiotherapists. A Physiotherapist usually uses both arms to perform 

upper-limb rehabilitation. A robotic cell would likewise require two robot arms to 

perform the task effectively. In this case, efficient control and coordination techniques 

have to be developed.

The use of a robotic cell incorporating intelligent identification and control techniques 

for upper-limb motion therapy for patients with neuro-motor impairments is 

particularly attractive for the following reasons:

• Patients lack appropriate personalised motion therapy because of the limited 

numbers and unavailability of physiotherapists.

• Current commercial rehabilitation robotic systems do not utilize the knowledge, 

dexterity and skill of the physiotherapist.

• Current commercial rehabilitation robotic systems are not adaptable for motion 

parameters.

• Physiotherapists may be unable to conduct motion therapy for a long period of 

time, with very slow speed and high torque requirements in some cases.

• Rehabilitation robotics has achieved little market success probably because research 

has resulted in custom-made equipments, which requires strong marketing both 

among manufacturers and users.

4



1.2. Research Objectives

The work reported in this thesis aimed to design and develop intelligent neuro-fuzzy 

control systems for robot manipulators using machine learning techniques, fuzzy logic 

controllers, and fuzzy neural networks in a systematic manner. The main target is to 

integrate these techniques to achieve a mathematical-model-free manipulator adaptive 

control system capable of adapting its parameters to cope with the variations in the 

dynamics characteristics of the load attached to the manipulator. The final objective is 

to utilise one or two coordinated robots as a working cell to perform upper-limb 

rehabilitation application. The control and coordination systems must be able to drive 

the robots to perform the basic actions that a physiotherapist usually carries out in these 

situations. In this respect, the specifications of the control system are:

• Efficiently perform both inverse kinematics and inverse dynamics calculations 

using neuro-fuzzy techniques from numerical input/output observation data.

• Possess self-learning and adaptive capabilities to achieve the required trajectories 

with unspecified loading conditions from the human-arm resistance to motion.

• Effectively coordinate between two robot manipulators to perform upper-limb 

rehabilitation within acceptable accuracy.

The overall targets of this research can be summarised as follows:

- To develop intelligent adaptive models that represent both the inverse kinematics 

and inverse dynamics of the robot manipulator.

- To develop a virtual dynamics model for the robot manipulator.
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- To develop intelligent adaptive robotic control techniques.

To develop an efficient synchronisation technique for two robot manipulators.

- To test the developed control and coordination technique on a simplified

experimental test-bench.

To achieve the above targets, several components needed to be designed, developed 

and then integrated to form the proposed control system. For this purpose, an inductive 

fuzzy learning technique dynafuzz Bigot [2003] is modified and applied for fuzzy rule 

generation during the offline structure learning phase. A new differentiable fuzzy 

neural network termed dynafuzznn is developed to construct the feedforward robotic 

inverse control system. A modified Fuzzy-PID-like incremental feedback controller is 

also used as the servo-controller for each link of the robot. A new modified neuro-fuzzy 

Cartesian internal model control technique for robotic manipulators is developed to 

construct an adaptive Cartesian control of the robot arm. Also, a new simple motion 

synchronisation technique is developed to achieve motion coordination between two 

robot arms. The proposed control system is applied to a virtual dynamics model of the 

Puma 560® industrial robot arm for visual inspection of the proposed strategy. Finally, 

a simplified rapid prototype test-bench was constructed to experimentally investigate 

the proposed method.
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1.3. Outline of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2 presents background information on fuzzy logic systems and fuzzy neural 

networks and their applications in systems modelling and control of robotic 

manipulators. In this chapter, the basic components of FLS are described. Different 

techniques for the adaptive tuning of the free parameters of FLS are presented. 

Different types of FNN are also discussed. Finally, robot manipulator kinematics, 

dynamics, control, and coordination techniques using conventional, intelligent, fuzzy, 

neural, and neuro-fuzzy systems are discussed.

Chapter 3 first reviews different classes of existing neuro-fuzzy robot modelling 

techniques. Then, it proposes a method for virtual dynamics modelling and data 

collection from the motion of the robot arm along random trajectories. Next, it proposes 

a modelling technique based upon machine learning for automatic fuzzy rule generation 

from observation data. Then, it proposes the use of these rules in a full differentiable 

fuzzy neural network termed dynafuzznn to achieve online adaptation of the model. 

Finally, to investigate the proposed structure performance, the results for robot inverse 

kinematics and inverse dynamics FNN for Puma 560® are compared with the targeted 

outputs at the end of the chapter.

Chapter 4 first reviews different types of existing joint-based robot control techniques. 

Then, it introduces the structure of the proposed controller. The inverse dynamics FNN 

developed in chapter (3) is used as the feedforward controller to compensate for the
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dynamics interaction in the robot structure in addition to a Fuzzy-PID-like incremental 

servo-controller for each robot link. Feedback-error learning scheme is used to provide 

an online adaptation mechanism for the proposed controller. The control system is used 

to drive the virtual model of the Puma 560® robot to follow certain joint trajectories. 

Finally, the obtained results compared with conventional-PID link controller’s results 

are presented.

Chapter 5 first reviews different classes of existing manipulators Cartesian control 

techniques. Then, it introduces a brief analysis of conventional internal model control 

structures. Furthermore, it introduces a new modified neuro-fuzzy Cartesian internal 

model control technique for robotic manipulators. Next, it presents the simulation 

results when the control structure is used to drive the virtual model of the Puma 560® 

robot to follow Cartesian end-effector trajectories. Then, it discusses the idea of upper- 

limb rehabilitation using robotic manipulators. Finally, it introduces the obtained results 

when the proposed joint-based and Cartesian internal model controllers are used to 

control one robot manipulator while performing upper-limb rehabilitation.

Chapter 6 first reviews different classes of existing robot position coordination 

techniques. Then, it explains the synchronization function notation. Furthermore, it 

introduces the structure of the proposed coordination scheme for two position- 

controlled robot manipulators. The coordination scheme is based on maintaining certain 

kinematic relationships between the robot manipulators using motion synchronisation. 

Finally, the chapter presents a test for the proposed control and position coordination 

technique using a simplified rapid-prototype test-bench for the upper-limb
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rehabilitation cell formed by two 2-link planar robots linked to a simplified upper-limb 

model. The experimental results for the actual trajectories are presented and compared 

with the targeted trajectories at the end of the chapter.

Finally, Chapter 7 summarises the conclusions and contributions of the research, and 

gives suggestions for further investigation.
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CHAPTER 2

Overview of Fuzzy and Neuro-Fuzzy Techniques

The traditional approach to formal modelling, reasoning and computation is mostly 

deterministic and precise rather than uncertain or vague. In conventional logic, for 

instance, a statement can be true or false and nothing in between. In set theory, an 

element can either belong to a set or not, and in optimisation, a solution is either 

feasible or not. Real situations, on the other hand, are very often uncertain or vague in a 

number of ways. One familiar type of uncertainty is that, due to lack of information, the 

future state of the system might not be known completely. This category is called 

stochastic uncertainty, and has been treated appropriately in theory and statistics. 

Despite the ambiguity of the system state, in stochastic uncertainty it is assumed that 

the meaning of statements and events is clearly defined. There is however another type 

of vagueness concerning the description of the semantic meaning of events, phenomena 

or statements themselves, which can be called fuzziness. Fuzziness is found in many 

areas of daily life, particularly those in which human judgement, evaluation and 

decision are relevant. For example, there are fuzzy terms that are well-known in science 

and engineering such as linear approximation, small neighbourhood, and ill- 

conditioned matrix [Pasino and Yurkovich, 1998].

Applications of formal methods to describe real world phenomena may be limited to 

simple systems or at least viewed as an approximation of more complex situations. In
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analytical modelling, for instance, based on classical set theory, there are two 

difficulties:

- The first is due to the excessive complexity of the situation being modelled so that 

either it is not possible to formulate the mathematical model, or the model is too 

complicated to be implemented in practice.

The second inconvenience consists of the indeterminacy caused by the inability to 

differentiate events in real situations exactly and hence, inability to define system 

behaviour in a precise form.

Real situations are very often not “crisp” and they cannot be described precisely. An 

underlying philosophy of the theory of fuzzy sets is to provide a strict mathematical 

framework, where imprecise conceptual phenomena in modelling, decision-making, 

and control may be precisely and rigorously studied. In the particular field of 

application concerned with systems modelling and control, there are many difficulties 

that are commonly experienced by practicing engineers. For instance, it is generally 

difficult to accurately model a complex process using a mathematical model. 

Furthermore, it is common knowledge that the performance of some processes can be 

considerably improved through control actions (tuning actions in particular) provided 

by an experienced and skilled operator. Although some of these actions have been 

recently formulated using conventional control algorithms, it seems that the key 

elements in human thinking are not numbers, but labels of not crisp but fuzzy sets, that 

is, classes of objects in which transition from membership to non-membership is 

gradual rather than abrupt.
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The fuzzy methodology of fuzzy-logic modelling and control, based on fuzzy set theory 

and fuzzy logic, appears promising when the phenomena are too complex for analysis 

by conventional quantitative techniques, and when the available sources of information 

are interpreted qualitatively, inexactly or uncertainly. Thus, fuzzy-logic modelling and 

control may be viewed as a step towards a rapprochement between the conventional, 

precise analytical approach and human-like decision making.

Artificial Neural Networks (NN) are made up of simple, highly interconnected 

processing elements called neurons. Each of these neurons performs two main 

functions: aggregation of its inputs from other neurons or the external environment and 

generation of an output from the aggregated inputs. The output from a neuron is fed to 

other neurons to which it is connected via weighted links. Through this simple 

structure, NN have been shown to be able to approximate most continuous functions to 

any degree of accuracy, by the choice of an appropriate neuron structure, activation 

functions, and learning algorithm [Tsoukalas and Uhrig, 1997].

Fuzzy Logic Systems (FLS) and Neural Networks (NN) have played an important role 

in the development of intelligent control systems. FLS have the ability to deal with 

system uncertainty using their logically oriented reasoning techniques. NN handle 

system complexity by employing their particular structure and learning methods. A 

promising approach to obtaining the benefits of both NN and FLS is to combine them 

into an integrated system termed a Fuzzy Neural Network (FNN) or neuro-fuzzy 

system. This integration brings the low-level learning and computation powers of NNs 

to FLS and the high-level human-like thinking and reasoning of FLS to NNs. Many
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researchers have studied different techniques to employ FLS and FNN together with 

control theory to build high performance controllers for complex systems that involve 

imprecise data and nonlinear dynamics such as for the case of robot manipulators.

This chapter presents background information on FLS and FNN and their applications 

in robotic systems modelling and control. The basic components of FLS and their 

design parameters are described. Furthermore, different techniques for the adaptive 

tuning of FLS are discussed. Various types of FNN are presented based on different 

structures and learning algorithms. Finally, applications of FLS and FNN in robotic 

systems modelling and control are outlined.

The remainder of this chapter is organised as follows. Section 2.1 reviews the basic 

structure and design elements of FLS. Section 2.2 examines the basic structure and 

design elements of FNN. Section 2.3 describes applications of FLS and FNN in control. 

Section 2.4 describes applications of FLS and FNN in robots modelling. Section 2.5 

describes the applications of FLS and FNN in robots control. Section 2.6 describes 

applications of FLS and FNN in robots coordination. Section 2.7 gives a summary of 

the chapter.

2.1. FLS Basic Structure and Design Elements

The basic structure of a FLS consists of four main components [Lee, 1990a]. These are 

the fuzzification process, knowledge base, decision-making logic, and defuzzification
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process as shown in figure (2.1). In the following sections, the function and design 

parameters of each of these components are presented.

Fuzzification
H

- Knowledge-base J —

>t

Decision-making | | Defuzzification

Figure (2.1). Basic configuration of a fuzzy logic system.

2.1.1. Fuzzification Process

Fuzzification is related to the vagueness and imprecision of natural languages. It is a 

mapping that transforms measurements into a linguistic value, and hence it could be 

defined as a mapping from an observed measurement space into a subjective feature 

space. In fuzzy control applications, the observed data is usually crisp. Since the 

processed data in FLS are based on fuzzy sets, fuzzification is necessary during the 

early stages to transform the observed crisp data into fuzzy sets. A commonly used 

fuzzification approach is to transform this crisp data into fuzzy singletons (fuzzy sets 

comprising a single element) within a certain universe of discourse. The transformation 

process begins with the normalisation or scaling of the crisp measurements to a certain 

bounded range say [-1, +1] using suitable scaling factors. The purpose of the 

normalisation process is to map the crisp input data into a universe of discourse with a
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finite range. Subsequently, the fuzzification interface transforms the normalised crisp 

input x0 into a fuzzy set A in universe X with the membership function \x a  (x 0) equal to 

a value between zero and one according to the location of x0 with respect to the centre 

of the fuzzy set A in the universe of discourse. In general, the role of the fuzzification 

interface can be summarised as follows [Keller et. al., 1992]:

a) It observes the crisp input values to a FLS.

b) It performs a scale transformation (normalisation) from the measurement space 

into the corresponding universe of discourse.

c) It performs the fuzzification function that converts the scaled input data into 

fuzzy sets.

2.1.2. Knowledge Base

The knowledge base [Lee, 1990a] comprises knowledge concerning the application 

field and the desired control or modelling objectives. It consists of a database and a 

linguistic (fuzzy) rule base in the form of i f  antecedent then consequent. The database 

provides necessary definitions, which are employed to define linguistic rules and data 

manipulation in FLS.

2.I.2.I. Data Base

The definitions associated with the database are employed to characterise fuzzy rules 

and data manipulation in FLS. These definitions are subjective in nature, which reflects 

engineering experience and judgement. These definitions comprise the
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normalisation/discretisation of a fuzzy universe of discourse, the partition of a fuzzy 

universe of discourse and the definition of membership functions associated with fuzzy 

sets. In what follows, important definitions relating to the construction of the database 

in FLS are discussed.

a. Normalisation/Discretisation o f  a fuzzy universe o f  discourse

The normalisation of a universe of discourse involves a priori knowledge of the 

input/output universe of measurements. The normalisation process is a scale 

transformation of the input/output universe of measurements into a normalised closed 

interval universe. For example, if the measured input data ranges from -8.0 to +4.5, the 

universe of the input measurements can be normalised by a scale transformation into a 

closed interval universe [-1, +1].

Discretisation of a universe of discourse is defined as the quantisation of this universe 

into a certain number of segments (quantisation levels). Each segment is labelled as a 

generic element of a discrete universe. A fuzzy set is then defined by assigning a grade 

of membership to each generic element of the universe.

b. Fuzzy partition o f  the input/output universe

A linguistic variable in the antecedent or consequent of a fuzzy rule forms a fuzzy input 

or output feature space respectively. The input or the output feature space of each input 

or output linguistic variable is defined over a certain universe of discourse. Each feature 

space is internally partitioned into a number of clusters or fuzzy sets that define the
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term set of the input or output linguistic variables. Each fuzzy set is defined by a certain 

linguistic term, and usually has a meaning such as negative big (NB), negative small 

(NS), positive big (PB), etc. The number of partitions of the input and output feature 

spaces determines the maximum number of fuzzy rules that can be generated. Therefore 

the selection of the number of partitions influences the generated number of rules for 

FLS. In most applications of FLS, experience and engineering judgement are employed 

to choose the number of partitions of the fuzzy feature space. However, some 

applications follow heuristic methods for feature space partitioning as in [Abe and Lan, 

1995]. Other applications employ a deterministic method, for example the Fuzzy C- 

Mean (FCM) method was employed to partition the fuzzy feature space in [Sugeno and 

Yasukawa, 1993; Wang and Langari, 1996; and Emami et. al., 1999].

c. Definition o f  the membership functions offuzzy sets

There are two commonly used methods which define the membership functions of 

fuzzy sets depending on whether the universe of discourse is discrete or continuous 

[Lee, 1990b]. The first method is a numerical definition where the grade of membership 

in a fuzzy set is represented as a vector of numbers. The dimension of this vector 

depends on the number of discrete levels in the feature space. In this case, the 

membership function of each fuzzy set can be written as follows:

pA (x) = [pA (x0) / x0 + pA (xj) / xi+ ..................... + pA (x„) / xn ] (2.1)

where n is the number of supports of the discrete universe of discourse, xn is the n1*1 

support of the discrete universe of discourse, and pA (xn) is the membership grade of the
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nth support in fuzzy set A as shown in figure(2.2a). The second method is a functional

definition, which expresses the membership function of a fuzzy set in a functional form, 

typically a Gaussian, right/left sigmoidal, right/left saturation, trapezoid-shaped, or 

triangle-shaped function (figures (2.2b, c)). The functional definition of the Gaussian 

membership function, for example can be written as:

H a ( x „ )  = exp.[-(x0 - u)2 / cr2 ] (2.2)

where u and c j  are respectively, the centre (or mean) and the width (or variance) of the 

Gaussian function as shown in figures (2.2b).

1

1
Figure (2.2a). Discretised membership function.

1

Figure (2.2b). Gaussian membership function.
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a c b

Figure (2.2c). Triangular membership function.

2.I.2.2. Rule Base

A FLS is characterised by a set of linguistic statements based on expert knowledge. The 

expert knowledge is usually in the form of i f  - then rules, which are easily implemented 

by conventional fuzzy statements in fuzzy logic. The collection of fuzzy rules that are 

expressed as fuzzy conditional statements forms the rule set or the rule base of a FLS. 

In this section, the following factors which influence the design and implementation of 

a fuzzy rule base are discussed: the choice of the FLS input/output variables, the 

approaches employed to generate fuzzy rules, and the functional implementation of 

fuzzy rules.

2.I.2.2.I. Choice of the FLS Input/output Variables

It is important to choose suitable input and output variables for FLS, because they 

influence the number of rules generated and the final performance of the system. In 

many applications of FLS, the selection of input/output variables relies on experience 

and control engineering. In some other applications, the selection is based on a 

deterministic method [Sugeno and Yasukawa, 1993]. In such applications the employed 

FLS is tested using only one of the available input variables at a time. A function of the
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FLS output termed the Regularity Criterion (RC) is calculated for each variable. The 

variable that minimises the calculated function is chosen to be the first effective 

variable of the FLS. The employed FLS is tested further using the selected variable and 

only one of the remaining variables at each step. The second variable that minimises the 

criterion when employed in addition to the first selected variable is chosen to be the 

second effective variable. This process is continued to obtain the maximum number of 

effective variables, identified as when the value of RC starts to increase.

2.1.2.2.2. Derivation of the Fuzzy Rules

There are two common approaches to deriving fuzzy rules. These two approaches are 

not mutually exclusive, and it seems likely that a combination of them is necessary to 

construct an effective method of deriving fuzzy rules. The first approach is to generate 

fuzzy rules based on expert experience and control engineering knowledge. This 

approach is mainly suitable for generating fuzzy rules for diagnosis systems including 

fault diagnosis and medical diagnosis systems. It is also suitable for generating fuzzy 

control rules for Fuzzy Logic Controllers (FLC). This approach is a heuristic approach, 

in which the fuzzy rules are obtained mainly from human experience. A human expert 

has to interpret his experience as linguistic relations between the input and output 

variables of the FLS. This approach can be successful if the human expert can perform 

this interpretation. However, if the human expert cannot express his experience 

linguistically, then the second approach, based on the observed input/output data, can 

be employed. This approach can be used to generate fuzzy rules for FLC and for fuzzy 

process models. In the case of FLC, the fuzzy rules can be generated based on
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observations of the human expert's control actions in terms of input/output data. In the 

case of fuzzy process models, the fuzzy rules are generated based on the process 

input/output data [Takagi and Sugeno, 1985; Wang and Mendel, 1992a and 1992b]. 

With this method, the input/output universes are partitioned into fuzzy regions, the size 

and shape of which are determined by experience. Then, based on the given 

input/output numerical data and the input/output fuzzy regions, the fuzzy rules are 

generated. Finally, a Fuzzy Associative Memory (FAM) bank is constructed using rules 

generated from the numerical data and rules obtained from expert experience as well. A 

disadvantage of this method is that the number of generated rules increases 

dramatically as the number of input variable increases.

Modem techniques based on data mining algorithms can also help in generating mles 

from numerical observation data. These algorithms are based on a range of 

technologies, from statistics to machine learning techniques, and include neural 

networks, genetic algorithms, inductive learning, association mles, etc. These 

algorithms allow the creation of different types of models that describe the patterns 

found in the data. The obtained model can be used as a predictive model.

One interesting type of data mining techniques, namely inductive learning algorithm, is 

very important, as its model structure (in the form of if-then mles) is similar to that 

employed during human reasoning. Because of this, inductive learning has become 

popular for classification problems. Consequently in the work of [Srinivasan et al., 

1993], the ID3 inductive learning algorithm was employed to reduce the number of 

mles generated utilising the method proposed in [Wang and Mendel, 1992a and 1992b].
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In these last examples, structure design was performed based on experience. In [Sugeno 

and Yasukawa, 1993], in contrast, structure identification was performed using 

deterministic methods. The number of necessary input/output variables was decided 

using the so-called Regularity Criterion (RC) and the number of clusters of fuzzy 

input/output variables was determined using the clustering technique known as Fuzzy 

C-Mean clustering (FCM). In addition, a performance index was employed to tune the 

free parameters of the membership functions (width and centre in the case of a 

Gaussian membership function). Whereas in the methods employed by Wang and 

Mendel, Srinivasan et al., and Sugeno and Yasukawa, the number of fuzzy regions is 

fixed, a method to generate fuzzy rules with variable fuzzy regions was presented in 

[Abe and Lan, 1995]. With this method, the fuzzy rules are extracted directly from 

numerical data by recursively resolving overlaps between each pair of classes. The 

numerical data employed to generate the fuzzy rules sometimes includes a large amount 

of noise and/or involuntary mistakes made by the operator. To address this, an 

intermediate Auto-Regressive-with-Moving-Average (ARMA) model was generated in 

[Zapata et al., 1999] as an alternative to directly extracting fuzzy rules from raw 

experimental data. This ARMA model was then employed to generate the required 

linguistic fuzzy model. Another rule generation method designed to deal with noisy 

data was introduced in [Li, 1999]. With this method, a confidence degree is given to 

each rule according to the frequency that it is generated during the presentation of the 

data. Based on this confidence degree, rules that are generated infrequently are 

considered less important than rules generated more often.
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Using fuzzy logic theory in combination with clustering techniques such as C-mean 

clustering, fuzzy rule induction is proposed in order to handle noisy continuous outputs

and inputs in [Bigot, 2003]. The presented algorithm allows the automatic creation of

membership functions and produces accurate and compact fuzzy sets.

2.I.2.2.3. Functional Implementation of Fuzzy Rules

A rule base of a FLS consists of a set of fuzzy rules. For example, consider the 

following rules:

R i: IF x is Ai and y is Bi THEN z is Ci

R2 : IF x is A2 and y is B2 THEN z is C2

R n: IF x is An and y is B n THEN z is Cn

where x, y and z are linguistic variables and A i ,  B j  and C j are linguistic terms (fuzzy 

sets) of the linguistic variables x, y and z in the universes of discourse U, V and W 

respectively, with i = 1, 2,...., n. The ith fuzzy rule is implemented by a fuzzy 

implication (fuzzy relation) R j. This fuzzy relation is a fuzzy set in UxVxW and is 

defined for all u e U, v e V and w e W as follows:

R i = {[(u,v,w), pRi (u,v,w)] | (u,v,w)e (UxVxW)} (2.3)
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and its membership function is given by:

HRi (u ,  V, w )  = n  (Ai a„dRt  _> c ,) (u ,  V, w )  =  [nA i(u ) and M-b.(v)] -> | i c , ( w ) (2.4)

where “ A i  and B j ”  is a fuzzy set in the Cartesian product space UxV which can be 

defined based on the interpretation of the sentence connective "and" and R j =  ( A j  and 

B j )  —* C j is a fuzzy implication (relation) in the Cartesian product space UxVxW which 

can be defined based on the interpretation of the sentence connective "and ' and the 

definition of the fuzzy implication function-*-. Since a fuzzy rule represents a fuzzy 

relation, the overall behaviour of a FLS can be characterised by a single fuzzy relation 

that is the combination of the fuzzy relations in the rule base. This combination can be 

defined based on the definition of the sentence connective "also". In the following, the 

fuzzy implication function —> and the sentence connectives "and" and "also" are 

defined.

Many implication functions have been proposed. In general, they can be classified into 

two categories. The first category is the fuzzy conjunction that is defined for all u e U 

and v e V as follows:

A  —» B  =  J  n A(u )* n B(v)/(u ,v ) (2.5)
U x V

where A  and B  are fuzzy sets in the universes of discourse U and V respectively, A  - *  

B  is a fuzzy implication in the Cartesian product space UxV and * is an operator that
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represents a triangular norm [Keller et al., 1992]. The second category is the fuzzy 

disjunction that is defined for all u e U and v e V as follows:

A -> B = j n A(u)+ |xB(v)/(u ,v ) (2 .6)

where A and B are fuzzy sets in the universes of discourse U and V respectively, A —>

B is a fuzzy implication in the Cartesian product space UxV and + is an operator that 

represents a triangular co-norm [Keller et al., 1992]. Based on these definitions, many 

fuzzy implication functions may be generated using different triangular norms and co

norms. In general, using the fuzzy conjunction along with the intersection and algebraic 

product triangular norms, the two commonly used fuzzy implication functions can be 

written as follows:

where p A (u) a  p B(v) = min[|LiA(u),|j,B(v)] is the intersection triangular norm.

A —► B = J h a ( u ) a h b ( v ) / ( u , v )  (2.7)
UxV

(2 .8)
UXV

where pA (u) • p B(v) = p A (u )p B (v) is the algebraic product triangular norm.
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In most existing FLS, the sentence connective "and" is usually implemented as a fuzzy 

conjunction in a Cartesian product space [Lee, 1990b]. As an illustration, for two fuzzy 

sets A and B in the universes of discourse U and V respectively, “A and B” is defined 

by a fuzzy set AxB in the Cartesian product space UxV. If the sentence connective 

"and" is interpreted using the intersection triangular norm, the membership function of 

this fuzzy set is expressed as:

^ A,B(U x V ) = m in [ ^ A( u ) , ^ B(v )]  (2.9)

Alternatively, if the sentence connective "and" is interpreted using the algebraic 

product triangular norm, the membership function of this fuzzy set is expressed as 

follows:

^ a*b( U xV ) = M u ) W v ) (2-10>

On the other hand, the interpretation of the sentence connective "also" is based on the 

fact that different orders of fuzzy rules in the rule base should not influence the overall 

behaviour of a FLS. This requires that the sentence connective "also" have the 

properties of commutatively and associativity. It has been reported in [Lee, 1990b] that 

the operators in triangular norms and co-norms (intersection, algebraic product, 

bounded product, union, algebraic sum, bounded sum, etc.) possess these properties and 

thus qualify as candidates for the interpretation of the connective "also". However, 

investigations in [Lee, 1990b], concerning FLS characteristics using different
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interpretations of triangular norms and co-norms concluded that the interpretation of the 

connective ’’also” as the union operator Y yielded the best results. The union operator 

Y is a triangular co-norm defined using the max function [Lee, 1990b].

2.1.3. Decision Making Logic

FLS may be regarded as a means of emulating a skilled human operator through an 

inference engine. More generally, the FLS inference engine may be viewed as another 

step towards modelling the human decision making process within the conceptual 

framework of fuzzy logic and approximate reasoning. The function of the FLS 

inference engine is to infer recommended solutions from fuzzy rules relevant to given 

inputs based on the employed inference strategy and inference mechanism.

2.1.3.1. FLS Inference Strategies

Generally, there are two important inference strategies in approximate reasoning. They 

are generalised modus ponens (GMP) and generalised modus tollens (GMT). 

Specifically, consider the following rule:

IF x is A THEN y is B

where x and y are linguistic variables and A and B are linguistic terms of the linguistic 

variables x and y in the universes of discourse U and V respectively. The GMP strategy 

can be defined as "given x is A' and the fuzzy relation R of the fuzzy rule then infer y is 

B' ". This inference strategy is a data-driven or forward chaining strategy, which is
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particularly useful in FLC. On the other hand the GMT strategy is defined as "given y 

is B' and the fuzzy relation R of the fuzzy rule then infer x is A' This inference 

strategy is a goal-driven or backward chaining strategy, which is commonly used in 

expert fault diagnosis systems.

2.1.3.2. FLS Inference Mechanisms

Consider the rule base of Subsection 2.1.2.2. Given x is A' and y is B', based on the 

GMP inference strategy, the role of the inference engine is to infer an output z = C'. In 

general, the compositional rule of inference [Zadeh, 1973] is employed to deduce the 

resultant output fuzzy set C' in the universe W as follows:

C' = (A', B') o R = {(w, nc ,(w)) |w s  w} (2.11)

And its membership function is given by:

K c ( w )  =  ( b a ' ( u W ( w ) W r ( u > v , w )  ( 2 . 1 2 )

where R is the fuzzy relation defined in Equation (2.3), and p R(u, v, w) is the

membership function of the fuzzy relation defined in Equation (2.4) using the union 

interpretation of the connective "also" and o denotes a compositional operator.

In general, a compositional operator may be expressed as the sup-star composition 

where star represents an operator e.g. min, product, etc. In applications of FLS, the sup-
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min and sup-product operators are the most frequently adopted compositional operators 

[Lee, 1990a].

However, the FLS inference in Equation (2.11) can be expressed in different forms 

using different implication functions, different interpretations of the connectives "and" 

and "also" and different compositional operators. For example, in the case of FLC, if 

the fuzzified inputs are fuzzy singletons, namely A' = u0 and B' = v0 and if the union 

interpretation of the connective "also" is employed, four commonly used inference 

mechanisms can be expressed. The first inference mechanism is achieved using the min

interpretation of the connective "and" and the min implication function and can be

expressed as follows:

n n

Cl = Y pAi(Uo) ApBj(v0)ApCi(w) = Y oiiA a  pCj(w) (2.13)
/ = i  / = i

The second inference mechanism is achieved using the min interpretation of the 

connective "and" and the product implication function and can be expressed as follows:

n n

C2 = Y  P'Ai(Uo) A  pBi(vo) * pCj(w) = Y 0CiA • pCi(w) (2.14)
/ = 1  7=1

where a A =  p A j ( u 0)  a  pBj(v0) is the ith rule firing strength when using the min 

interpretation of the connective "and".
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The third inference mechanism is achieved using the algebraic product interpretation of 

the connective "and" and the min implication function and can be expressed as follows:

n n

C 3 =  Y n A j ( U o )  • n B j ( v o )  a  n C i ( w )  =  Y a *  a  ( i C j ( w ) (2.15)
/  =  1

The fourth inference mechanism is achieved using the algebraic product interpretation 

of the connective "and" and the product implication function and can be expressed as 

follows:

where a* = p A j(U o )  • p B j ( v 0)  is the ith rule firing strength when using the algebraic 

product interpretation of the connective "and".

2.1.4. Defuzzification Strategies

Most practical control applications require crisp control actions to drive the controlled 

process. Moreover, the output of most modelling and prediction systems has to be crisp. 

Defuzzification is the mapping from the linguistic fuzzy output defined over an output 

universe into a crisp output space [Grzegorzewski, 2001]. There are three commonly 

used defuzzification strategies. The first strategy is the maximum criterion. The max 

criterion produces the point w0 in the output universe W that has the maximum degree

n n

C 4 =  Y p A i( U o )  • p B i ( v o )  • p C i ( w )  =  Y a r  p Q ( w ) (2.16)
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of membership in the output fuzzy set max fi(w) = p.(w0) • A problem arises with this
weW

method when more than one element of W possesses this maximal value and thus w0 is 

not uniquely determined. The second strategy is the Mean of Maxima (MOM). If there 

is more than one element in the output universe W possess the maximal membership 

value, then the MOM method produces the average value of the maxima. MOM method 

does not consider rules fired below the maximum level [Saade, 1996]. The third and 

most commonly used strategy is the Centre of Area (COA) strategy. The COA method 

attempts to correct the drawback of MOM by considering rules that may be fired below 

the maximum level. COA generates the centre of gravity w0 of the possibility 

distribution of a control action as follows:

n
I H ( w j ) .W j

W „=  — n --------------  (2 .1 7 )

Z K w j )
. j=l

where n is the number of quantisation levels of a universe W, Wj is the point in the j* 

quantisation level in a universe W at which p(w) achieves its maximum value, and 

p ( w j)  is the inference membership degree of the output membership function p(w). 

[Runkler, 1997] discusses in more details the advantages and disadvantages of MOM 

and COA in terms of their static and dynamic properties.

2.1.5. Models of FLS

In general, several models of FLS have been reported in the literature. These models 

can be distinguished because they employ different types of consequents and 

antecedents in the FLS rule base, different type of membership functions and different
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type of inference mechanisms. The two most frequently used models are Mamdani's 

model [Lee, 1990b], and the TS-model [Takagi and Sugeno, 1985]. Mamdani's model 

employs linguistic terms in both the antecedents and the consequents of its rule base 

and adopt the min operation as the fuzzy implication function. The inference 

mechanism of this model employs the sup-star compositional rule of inference to infer 

the resultant output fuzzy set. The TS-model employs linguistic terms to represent the 

antecedents of the rules and uses a linear function of its input linguistic variables to 

represent the consequents. In this model, the rule base contains rules of the following 

form:

R i : IF x is Aj and y is Bj THEN z = fj (x, y)

where x and y are linguistic variables, Aj and Bj are linguistic terms of the linguistic 

variables x and y in the universes of discourse U and V respectively, with i = l,2,....,n 

and fj (x, y) is a linear function of the linguistic variables x and y. Given the crisp inputs 

x0, y0, the crisp output z0 of this model can be written as follows:

n n

Zo = ( X  ccifi ( X o , y o ) / ( I  a j )  (2.18)
(=1 ;'=1

where a ;  = p A j ( x 0) - p B j ( y 0)  is the ith rule firing strength when the algebraic product 

interpretation of the connective "and" is used, or a j  = p A j ( x 0)  a  p B j ( y 0)  is the ith rule 

firing strength when the min interpretation of the connective "and" is used.

32



2.2. Fuzzy Neural Networks (FNN)

NN and FLS are both numerical model-free estimators for dynamic systems. They 

share a common ability to deal with difficulties arising from uncertainty, imprecision, 

and noise in the natural environment. Both systems and their techniques have been 

successfully applied to various areas [Efe and Kaynak, 1999]. A promising approach to 

obtain the benefits of both NN and FLS is to combine them into an integrated system. 

The low-level learning and computation power of NN can enhance FLS, and the high- 

level human-like thinking and reasoning of FLS can improve NN. Several approaches 

have been presented for combining NN and FLS into so-called Fuzzy Neural Networks 

(FNN). These approaches can be categorised into three commonly used classes 

according to the neural network structure. These are the Feedforward Fuzzy Neural 

Network (FFNN), Recurrent Fuzzy Neural Network (RFNN), and the Self-Organising 

Fuzzy Neural Network (SOFNN). Each of these classes can be categorised into a 

number of sub-classes according to the employed fuzzy model, learning algorithm, 

learning technique, and type of processed data. In the following, background 

information is provided on the different types of fuzzy neural networks [Choi et. al., 

1992; Leeet. al., 1993].

2.2.1. Feedforward Fuzzy Neural Networks (FFNN)

Several types of FFNN are described in the current literature, according to the fuzzy 

model and learning techniques employed. The two common fuzzy models that can be 

integrated within a FNN structure to form a FFNN are the Mamdani-model [Lee, 

1990b] and the TS-model [Takagi and Sugeno, 1985]. There are two learning
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techniques that can be employed for both of these models, namely supervised learning 

and reinforcement learning. In the following, some examples of FFNN that employ the 

two fuzzy models and these two learning techniques are described.

2.2.1.1. Mamdani-Model Based FFNN

Several examples of Mamdani-model based FFNN have been presented. For example, 

in [Lin and Lee, 1991 and 1992], a FFNN structure consisting of five layers was 

employed to represent a FLC as shown in figure (2.3). The inputs and outputs of this 

FFNN are numerical crisp inputs and outputs. The first layer is an input layer that 

simply transmits the input crisp values of the fuzzy variables to the second layer, which 

is the input term nodes layer. The output function of each node in the second layer is 

the membership degree corresponding to one linguistic term in the term set which 

describes each fuzzy variable. For example, a Gaussian function can be written as 

follows:

where f  is the net input to the node, a is the node activation function, M-* is the
Xi

membership function of the j th term in the term set describing the ith fuzzy variable, m y,  

and ay are respectively the corresponding centre (or mean) and the width (or variance)

of the Gaussian function, and uf is the input to the second layer node corresponding to

the ith fuzzy variable (the superscript "2" corresponds to the layer number).
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Layer 1 
Input nodes

Figure (2.3). Structure of Mamdani-model based FFNN.

Layer 5 
Output nodes 
(defuzzification)

Layer 4
Output term nodes

Layer 3 
Rule nodes 
(Inference)

Layer 2
Input term nodes 
(Fuzzification)

Hence, the link weight in layer two (wjj) can be interpreted as my, which can be

adaptively tuned through learning. The nodes in the third layer are rule nodes, each of 

which represents the antecedent of one rule in the rule base. Therefore, the nodes of the 

third layer are employed to perform precondition matching of fuzzy rules. Hence, the 

rule nodes perform the fuzzy min function as follows:

=  m i n ( Up U 2 > >Up) a n d  a  ==  f  (2 .2 0 )
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Therefore, the link weights of this layer are set to unity. The nodes of the fourth layer 

integrate the output fuzzy sets of the fired rules which have the same consequents using 

the bounded sum triangular co-norm as follows:

f  = Z u f  and a = min( l , f ) (2 .21)
i=l

Therefore, the link weights of the fourth layer are also set to unity. The fifth layer nodes

and the weights attached to them act as a defuzzifier. If my and ay are respectively the 

centres and widths of the output fuzzy variable linguistic terms, then the following 

function is employed to approximate the COA defuzzification method:

tuned through learning. Based on the above network structure, a hybrid learning 

algorithm is developed. The first learning phase is self-organised learning to obtain the 

network initial structure. The second learning phase is supervised learning to change 

the network adjustable weights using the Back-propagation (BP) learning algorithm. 

The structure and the fuzzy model that were employed in this network were as 

described in [Lin and Lu, 1995]. The advantage of using a Mamdani-model based 

FFNN is that the rule base is in the form of linguistic rules with linguistic antecedents 

as well as linguistic consequents, so that it is understandable by human users.

f  = Z  wy uf = £  (my ay)uf and a = (2 .22)

where the ith link weight in layer five (wjjjl is given by my ay, which can be adaptively
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Moreover, the rule base can be constructed with numerical data and/or linguistic 

information from human experts. However, a disadvantage of this model is that it does 

not allow easy mathematical analysis due to the logical nature of its inference 

functions, e.g. min/max functions. Moreover, all the examples just reviewed employ BP 

as a learning algorithm, however the differentiation results of the algorithm are not 

accurate due to the non-differentiable min/max functions. Furthermore, [Estevez and 

Nakano, 1995] introduced an alternative for the logic-max and logic-min functions in 

the form of a differentiable function that could approximate either of these two 

functions with proper selection of parameters. Later, [Shankir, 2001] introduced both 

the softmin and softmax functions for use in the Mamdani-model based feedforward 

fuzzy neural networks as a direct fuzzy logic complement to each other.

2.2.I.2. TS-Model Based FFNN

Similarly, several TS-model based FFNN have been reported. For example, in [Jang, 

1992 and 1993], a FFNN termed Adaptive Network-Based Fuzzy Inference System 

(ANFIS) was designed to represent a FLC as shown in figure (2.4). A TS fuzzy model 

was employed in ANFIS that can be written as follows:

IF xi is Aj and X2 is Bj THEN y is pj Xj + q, X2 + rj

where Aj and Bj are the fuzzy subsets describing the fuzzy variables x\ and x2 

respectively, [p j ,qi and rj] are the parameter set of the consequent linear equation. 

ANFIS is also a five-layer FFNN. In layer one, every node has a node representing the 

linguistic input term nodes.
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Layer 5
Final output node 
(Defuzzification)

Layer 4
Rule output nodes

Layer 3
Rule ratio nodes

Layer 2 
Rule nodes 
(Inference)

Layer 1
Input term nodes 
(Fuzzification)

X i  x2 xn

Figure (2.4). Structure of TS-model based FFNN.

In layer two, the number of nodes is equal to the total number of rules. The output of 

each node represents the firing strength of a rule. Normally, product triangular norm is 

used in this layer. In layer three, the i111 node calculates the ratio of the firing strength of 

the ith rule to the sum of the firing strength of all fired rules. In layer four the output of 

each rule is computed, where the ith node has a node function:

Of = w„(pixj + r i) (2.23)
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• tVi •where wn is the output of layer three and [pi and rj] is the i node parameter set. Finally, 

every node in layer five sums all the incoming signals so that a weighted sum 

defuzzification technique is performed. The parameter sets of the FLC antecedents and 

consequents are tuned or learned using the BP learning algorithm. In [Jang, 1992], the 

same FFNN configuration was employed but the learning algorithm was a hybrid 

algorithm. This learning algorithm combined both the BP and the least-square 

estimation algorithm. In [Yaochu et al., 1995], two interconnected NN were employed 

to represent a TS-model based FLC. One network represents the antecedent part and the 

other represents the consequent linear equation. The two NN are then connected 

through n  or product neurons. The BP learning algorithm was employed for learning 

the parameters of the consequents and antecedents. Using a TS-model based FFNN has 

the advantage that it allows a relatively easy mathematical design and stability analysis 

[Wang and Langari, 1996]. Also, it allows a straight forward application of powerful 

learning algorithms such as BP due to its differentiable inference functions. On the 

other hand, a disadvantage of this model is that the interpretation of the fuzzy linear 

rules is difficult compared to that for linguistic rules. Also, the rule base of this model 

can only be constructed using only numerical input/output data and it is not possible to 

incorporate linguistic information from human experts to construct such a model.

2.2.2. Recurrent Fuzzy Neural Networks (RFNN)

RFNN can be considered a feedforward fuzzy neural network with some feedback 

connections from some neurons output to other neurons input in the same layer or in 

previous layers. In some cases, this feedback is made between the same neuron output
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and inputs. There are many RFNN described in the current literature with different 

feedback connections structure, almost all of them belong to Mamdani-model fuzzy 

neural network while a few reported to be of TS-model type [Ballini et. al., 2001; Jeen- 

Shing and Lee, 2003].

2.2.3. Self-Organising Fuzzy Neural Networks (SOFNN)

Despite the successful applications of FFNN and RFNN in modelling and control, they 

suffer from a main problem with regard to the connectionist structure. The structure of 

the FFNN cannot be dynamically changed, it is fixed and reflects the designer’s 

experience. If the structure needs to be changed due to poor performance, the designer 

has to repartition the input/output universes, regenerate the rule base and retrain the 

FFNN. Self-Organising Fuzzy Neural Networks (SOFNN) are characterized by being 

able to modify their structure dynamically. They use the competitive learning technique 

as their learning algorithm. Therefore, they have the ability to accommodate new data 

without destroying old information [Baraldi and Blonda, 1999a and 1999b].

2.2.4. Learning in FFNN

As already mentioned, there are two common learning strategies that can be employed 

for learning in FFNN namely supervised learning and reinforcement learning.

2.2.4.I. Supervised Learning

In supervised learning, a teacher provides the desired control objectives and necessary 

control actions to the learning system at each time step. The desired control objectives
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are specified in the form of a desired output or a desired trajectory. The goal of the 

learning algorithm is to minimize the error between the output of a FFNN and a desired 

output as follows:

E = | ( y ( t ) - y n e t( t)F  (2.24)

where y( t )  is the desired output, and y net (t) is the current network output. If BP is

employed as the learning algorithm, a backward pass is used to compute the rate of 

change of the error function with respect to the weights for all the hidden layers. 

Assuming that w is the adjustable weight, the general learning rule used is:

Aw = (2.25)
aw

w(t + 1) = w(t) + p Aw (2.26)

where r\ is the learning rate. Examples of FFNN that employ supervised learning can 

be found in [Lin and Lee, 1992; Lin and Lu, 1996].

2.2.4.2. Reinforcement Learning

In reinforcement learning, the feedback is not direct, immediate and informative as in 

supervised learning. If precise and immediate input/output training data are available, 

then supervised learning can be more efficient than reinforcement learning. However 

for some real-world applications, precise data for training can be difficult and
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expensive if not impossible to obtain. In reinforcement learning, only an evaluative 

feedback signal (reinforcement signal) is available. The reinforcement signal, r(t), can 

take one of four different forms [Lin and Lu, 1995]. It can be a two-valued number, r(t) 

e [-1,0], such that r(t) = 0 means reward and r(t) = -1 means penalty. It can be a multi

valued discrete number in the range [-1,0], for example, r(t) e [-1,-0.75,-0.5,-0.25,0] 

which corresponds to different degrees of reward or penalty. Also it can be a real 

number, r(t) e [-1,0], which represents more detailed and continuous degrees of reward 

or penalty. Moreover, the reinforcement signal can be given in the form of fuzzy 

feedback information such as (good, very good, bad, very bad, etc.). Reinforcement- 

leaming-based FFNN systems can be categorised in terms of type of the reinforcement 

signal into two main categories. In the first category, the reinforcement signal is 

numerical [Lee, 1991; Berenji and Khedkar, 1992]. In the second category, the 

reinforcement signal is a fuzzy reinforcement signal [Lin and Lu, 1995]. Reinforcement 

learning is sometimes called learning with a critic as opposed to learning with a teacher 

as in supervised learning.

2.3. Applications of FLS and FNN in Modelling and Control

When designing a FLC, certain controller parameters must normally be tuned by trial 

and error [Lai et. al., 1996; Li et. al., 1995; and Liaw and Wang, 1991]. Such 

parameters include scaling factors, and the width and centre of the membership 

functions [Costa Branco and Dente, 1998]. Moreover some rules have to be modified, 

deleted or added. It would be useful for control engineers to be able to automate the 

learning or tuning of the parameters and/or structure of FLC. FFNN is one of the tools
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that can be applied for this purpose. FFNN can be interpreted as a FLC that can 

automatically tune its parameters using the learning capability of neurons [Pham and 

Oh, 1993]. In general, FFNN for control applications can be categorised as supervised- 

leaming based FFNN controllers and reinforcement-learning based FFNN controllers. 

Several examples of supervised-leaming-based FFNN controllers have been reported in 

literature [Delgado and Gonzalez, 1993; Lee et al., 1996]. Different fuzzy models were 

employed within the FFNN structure to perform the control function. In these 

examples, BP generally was employed as a learning algorithm to perform the parameter 

learning. For example, a TS-model based FFNN was employed for ship collision 

avoidance in [Hiraga et al., 1995], for the control of carbon monoxide concentration in 

[Tanaka et al., 1995], and for temperature control in [Lai and Lin, 1999; Lin and 

Chung, 1999]. A Mamdani-model based FFNN was employed for backing a truck to a 

loading dock in [Lin and Lin, 1997], and for welding process control in [Chen et al. 

1997]. Moreover, a Mamdani-model based FFNN that employs compensatory neurons 

was employed to control a cart-pole balancing system in [Zhang and Kandel, 1998].

Fuzzy controllers have been suggested for motion control planning of mobile robots 

[Watanabe et al., 1996] and for intelligent control of complex robotic systems. For 

actuator-level applications, most research has focused on kinematics control. 

Calculation of the inverse kinematics of manipulators is computationally expensive, 

and consumes a large percentage of time in the real-time control of manipulators. Lack 

of the solutions for singularity configurations and existence of multiple solutions for 

redundant cases add further complexity to the problem. The idea of using human 

intuition and experience, by means of a fuzzy logic approach, to avoid complex
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computation for inverse kinematics mapping has been investigated by several 

researchers.

2.4. Applications of FLS and FNN in Robotic Systems Modelling

The establishment of an input/output model for a process is a very important problem in 

systems engineering. Many deterministic and stochastic methods have been proposed to 

derive acceptable mathematical models for both continuous-time and discrete-time 

processes. However, in the modelling of complicated and/or ill-defined processes, 

precise mathematical models may fail to give satisfactory results. Also, the nonlinear 

behaviour of many practical systems and the uncertainty in these systems make 

analytical modelling and control of these systems by conventional methods very 

difficult. This is why FFNN have featured in several applications for systems 

modelling. For example, the Adaptive Network Fuzzy Inference System (ANFIS) 

[Jang, 1993] was employed for nonlinear function approximation.

In the robotics community, there is currently a growing interest in the use of intelligent 

neuro-fuzzy technology [Er et. al., 1997]. Almost all NN and FNN applications in robot 

control involve identifying the robot dynamics and/or inverse dynamics and 

incorporating this knowledge into the robot controller [Narendra and Parthasarathy, 

1990; Pham and Oh, 1994; Pham and Yildirim, 1999, and Yildirim, 1998]. Sometimes, 

it is also required to incorporate the robot kinematics and/or inverse kinematics to 

achieve certain control objectives. Hence, for a controller design, a preliminary stage of 

robot modelling is essential. The basic idea is to employ a NN or FNN to learn
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repeatedly the characteristics of the robot and then use this knowledge to generate 

control inputs. Forward kinematics of a robot manipulator is the relation between the 

end-effector Cartesian position and a given set of manipulator joint angles. In most 

cases, forward kinematics is straightforward and usually performed mathematically in 

the feedback path of the control system in the case of a Cartesian control system. 

Generally, for the Cartesian control of the robot, the inverse kinematics should be 

calculated exactly. Solving the inverse kinematics of a robot manipulator means finding 

the joint angles corresponding to a given end-effector Cartesian position. However, 

inverse kinematics calculation is complex and too much time consuming for a 

manipulator control system to calculate in real-time [Craig, 1996]. The calculation of 

the inverse kinematics can result in significant control delay. Fuzzy logic mapping and 

FNN have been used in literature to calculate approximate inverse kinematics for robot 

manipulators [Sang-Bae, 1997; Martinez et. al., 1996].

In [Nedungadi and Wenzel, 1991], a fuzzy associative memory bank (FAM) is used to 

relate the change in the Cartesian end-effector position to the change in the robot joint 

angles. In [Kim et. al., 1993], a fuzzy logic system is developed to solve the differential 

relationship between the joint space and Cartesian space of redundant manipulators. In 

this method, the inverse kinematics solution is performed with the help of the Jacobean 

matrix and a fuzzy system to calculate the differential change in the joint angles 

required to achieve a desired Cartesian displacement [Xu and Nechyba, 1993]. A 

similar idea was used in [Martinez et. al., 1996] for the configuration of a three-links 

revolving robot manipulator. In this method, by relating the polar position of the end- 

effector to its Cartesian position, a space variation for the joint angles can be drawn and
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a fuzzy system relationship can be established relating the polar position to the joint 

angles. The degree of accuracy in these methods is strongly influenced by the selected 

membership function for the inputs and outputs, which have to be selected manually. 

Some of these methods require pre-calculation of the robot manipulator Jacobean 

matrix, resulting in additional computational burden. These methods also do not 

include any additional learning stage and are not generic or systematic. Robot 

manipulators have a dynamical model similar to that of the motion of rigid bodies of 

the form:

T = M(0) 0 + V (0,0) + G(0) + F(0,0) + xd (2.27)

where M ( 0 ) i s  the n x n  inertia matrix of the manipulator, V(0,0) is an n x l  vector of

centrifugal and Coriolis terms, G (0)is an n x l  vector of gravity terms, F(0,0)is an n x l

vector of friction, and Td is an n x l  vector of unknown terms that represents joint load 

torques arising from un-modelled dynamics and external disturbances [Craig, 1996]. 

The parameters of this model are mostly obtained from CAD solid modelling or 

measured by the disembodied robot which results in inaccurate values. Forward and 

inverse dynamics of robotic manipulators are very complex and can almost never be 

accurately calculated due to parameter variation, nonlinearity, and backlash.

Neural networks have been used to identify or extract inverse dynamics for robot 

manipulators through learning. Some researchers used feedforward NN to learn the 

robot inverse model [Miyamoto et. al., 1988], others uses the dynamic structure of the 

recurrent neural network [Pham and Yildirim, 1999; Pham and Oh, 1994]. Other
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researchers use self-organising neural networks to build the robot model, through 

online tuning of the network structure and network parameters, to reach the closest 

behaviour possible to the real system [Kishan and Jamshidi, 1997].

Regarding the relation between the neural network used and the investigated robot 

during learning, there are two main approaches to the identification of the inverse 

dynamics of the robot. The first approach can be called direct inverse learning, where a 

neural network is fed with the outputs from the robot and directly taught to generate the 

robot inputs that produced those outputs as shown in figure (2.5a). Errors between the 

desired and actual outputs of the network are used to adjust the network weights. The 

second approach can be called indirect inverse learning, where the learning is achieved 

by training the neural network to act as a controller to the robot as shown in figure 

(2.5b). Errors between the forward model outputs and actual outputs of the robot are 

back propagated through the robot forward model to adjust the weights of the inverse 

model network [Pham and Oh, 1999; Pham and Yildirim, 1999].

Most of the approaches used for robot forward and inverse dynamics model input 

variables selection are heuristic, and based on the method of using the model in the 

controller. These inputs may include present and past values of the robot joint 

positions, speeds, accelerations, position errors, and actuating torques according to the 

required approximation order of the model and the size of the network used. Generally, 

the higher the approximation order, the larger the size of the network, and the slower 

the learning and execution time. Also, different techniques for training and adaptation 

are used, with back-propagation algorithm being the most commonly used method
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[Shin, 1994; Pham and Yildirim, 1999; Pham and Oh, 1999; and Pham and Sagiroglu, 

2001].

Although most of these methods succeed in obtaining an approximate inverse dynamics 

model for the robot manipulators, they are poor in terms of the transparency to the 

dynamics behaviour of the robot and form a black box relationship between its inputs 

and outputs. Also, the learning in these techniques is performed online with the robot 

operating in control and with the network connected to it. The structure of the network 

is to be selected according to the experience of the user without direct relation to the 

robot behaviour, except for the self-organising neural network which is rarely used for 

robot inverse dynamics modelling.
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Figure (2.5a). Direct inverse learning [Pham and Oh, 1999].
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Figure (2.5b). Indirect inverse learning [Pham and Yildirim, 1999].

2.5. Applications of FLS and FNN in Robotic Systems Control

2.5.1. Conventional Control of Robotic Manipulators.

As explained in Appendix (A), nonlinearly, interactive dynamics, and other 

uncertainties in robotic systems prevent linear servo controllers from providing a 

satisfactory performance especially in transient and high-speed modes of operation. 

Although, conventional independent-PID joint controllers are used in many industrial 

robots, they limit the capability of the robot to pick and place operations and to slow 

motion applications. Many modifications have been added to the independent-PID joint 

controllers to include nonlinearity and coupling between joint dynamics. In some 

industrial robots, a gravity element has been added to the independent-PID joint 

controllers to compensate for the joint weights [Pan and Woo, 2000] as shown in figure 

(2 .6).
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Figure (2.6). PID controllers with gravity compensator [Pan and Woo, 2000].

The problem of controlling a complicated nonlinear coupled system such as a robot 

manipulator can be handled by the partitioning of the controller into two parts, a model- 

base part and a servo part. The model-based part is affected by the manipulator model 

parameters and includes information about the system nonlinearity and dynamics 

coupling effects, whilst the servo part is independent of these parameters. Model-based 

control algorithms have been used as nonlinear feedback controllers to robotic 

manipulators under the name of the computed-torque control method [Craig, 1996]. 

This method was then modified to the control system shown in figure (2.7).
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0 d > Dynamics 

w Model
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+

Figure (2.7). Modified computed torque control method [Craig, 1996].
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In the control systems shown above, it was assumed that the desired trajectory was 

available in terms of joint position, velocity, and acceleration, so that what is called 

joint-based control scheme was built. Generally, the final target of the control system is 

to achieve certain trajectory for the robot end-effector, so that a trajectory conversion 

stage has to be performed first. The trajectory conversion process is quite difficult to 

undertake analytically. Inverse kinematics, inverse Jacobean, and inverse Jacobean 

differentiation have to be calculated which requires high computational resources [Hu 

et. al., 1996]. Usually, trajectory conversion is performed with the help of the inverse 

kinematics only for the end-effector position and successive numerical differentiation is 

used to obtain the joint speeds and accelerations from the resulting joint positions as 

shown in figure (2.8).

Inverse
Kinematics

Trajectory Conversion

Figure (2.8). Trajectory conversion using inverse kinematics.

An alternative approach is shown in figure (2.9). Here, the sensed position of the 

manipulator is immediately transformed by means of forward kinematics equations into 

a Cartesian position of the end-effector. This Cartesian position is then compared to the 

desired one in order to form the error in Cartesian space. Control schemes that are
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based on forming errors in Cartesian space are called Cartesian-based control schemes 

[Craig, 1996].
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Figure (2.9). Inverse Jacobean Cartesian control scheme [Craig, 1996].

In figure (2.9), an inverse Jacobean has to be calculated to map the error in the 

Cartesian space to error in joint space. Finally, this latter is multiplied by a gain to 

compute the torques required to reduce the error.

Another scheme is shown in figure (2.10). Here, the Cartesian error vector is multiplied 

by a gain to compute a Cartesian force vector. This can be thought of a Cartesian force 

which, if applied to the end effector of the robot, would push the end-effector in a 

direction tending to reduce the Cartesian error. This Cartesian force vector is then 

mapped through the Jacobean transpose in order to compute the equivalent joint torques 

which would tend to reduce the Cartesian error [Craig, 1996].
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Figure (2.10). Transpose Jacobean Cartesian control scheme [Craig, 1996].

Robot control is more difficult when the robot has contact with external forces. When 

any contact is made between the end-effector and the manipulator's environment, 

position control may not suffice. In this case, control methods should generate high 

compliant or, in other words, low stiffness (where compliance is the inverse of 

stiffness) motion to balance external forces. Compliance is the tendency of a body to 

distort due to applied forces. When a robot manipulator is moving through free space, 

the natural constraints are all zero. If the end-effector is glued to a wall, the robot 

manipulator is subjected to position constraints. Position control schemes are designed 

to deal with the first situation, while the second situation does not occur in practice. 

Usually control systems consider force control in the context of partially constrained 

tasks in which some degrees of freedom are subjected to position control, while others 

are subjected to force control. Thus, in this case a Cartesian hybrid position/force 

control scheme is introduced as shown in figure (2.11).
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Figure (2.11). Cartesian hybrid position/force control scheme [Craig, 1996].

The hybrid position/force controller controls the manipulator by performing in three 

ways. First, position control is utilised along directions in which a natural force 

constraint exists. Second, force control is utilised along directions in which a natural 

position constraint exists. Third, these modes are mixed along the degrees of freedom 

of the robot manipulator [Wedel and Saridis, 1988].

In the control system shown in figure (2.11), both position controller and force 

controller are presented. The matrix S is used to select the control mode (position or 

force) of each joint. The S matrix is diagonal with ones and zeros. Hence, it is simply a 

switch which sets the control mode of each joint of the robot arm. In accordance with
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the setting of S, there are always a number of components of the trajectory being 

controlled equal to the degrees of freedom of the robot, where the relative mix between 

position and force control is arbitrary according to the control mode. Hence when a 

certain degree of freedom is under force control, position errors on that degree of 

freedom are ignored [Craig, 1996].

2.5.2. Fuzzy Control of Robotic Manipulators.

Fuzzy control has been used extensively for independent direct feedback control of 

robot manipulators [Erbature et. al., 1995; Moudgal et. al., 1994 and 1995; Green and 

Sasiadek, 2001; Hitam, 2001; and Tang et. al., 2001]. During control, no adaptation of 

the rule base or membership functions is carried out, only system gains were modified 

in relation to link speeds and joint errors within predetermined design parameters. Few 

techniques considered the coupling dynamics between the manipulator links.

2.5.3. Adaptive Control of Robotic Manipulators.

A more recent research strategy for robot manipulator control is to incorporate a control 

scheme that is able to adapt (adaptive control) to uncertainties in the robot dynamics 

parameters. This allows the controller parameters to be modifies in real time until they 

converge to exact values. This has lead to the application of neural networks and FNN 

in robot manipulators control systems. The structure of the neural network or the FNN 

varies according to the order and input variables used in the approximation model [Tsai 

et. al., 1996]. Most of these techniques use different learning algorithms to tune the 

inverse dynamics model of the robot manipulator contained in the neural network using
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error minimisation and online modification of the network link connection weights. 

Generally, a feedback controller is used along with the feedforward controller to 

improve the disturbance rejection capabilities of the control system. The feedback 

controller can be of any combination of a conventional P, I, D, or a fuzzy controller. 

The feedforward controller is normally a neural or a neuro-fuzzy network. As learning 

proceeds, the error signal will reduce and the role of the feedforward controller 

increases while that of the feedback controller decreases [Pham and Yildirim, 1999].

According to the learning signal used to train the inverse model, three main learning 

schemes are listed. The first is the direct inverse learning scheme, where the inverse 

model is connected in parallel with the robot. The error between the robot input and the 

model output is used to tune the model parameters. These parameters are then copied to 

the forward path controller as shown in figure (2.12) [Pham and Yildirim, 1999].
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Figure (2.12). Direct inverse learning controlscheme [Pham and Yildirim, 1999].
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Figure (2.13). Indirect inverse learning control scheme [Shin, 1994],
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Controller

The second scheme is the indirect inverse learning scheme, where the forward model is 

connected in parallel with the robot as shown in figure (2.13). The error between the 

robot and the forward model outputs is used to tune the parameters of the inverse model 

with information obtained for this purpose from the forward model [Shin, 1994]. The 

third scheme is the feedback-error learning scheme, where the feedback torque signal 

(from the servo controller portion) is used to tune the parameters of the inverse model 

[Kawafuki et. al., 1997] as shown in figure (2.14).

Figure (2.14). Feedback-error learning control scheme [Kawafuki et. al., 1997].
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Although the total torque acting on the robot is simply the sum of the feedback torque 

and the feedforward torque, these two play entirely different roles in the robot control. 

The feedback is used for clumsy but robust control at an early stage of learning. The 

feedforward torque is necessary for smooth control and fast movement of the robot 

[Miyamoto et. al., 1988] [Emami et. al., 1996, 1998, 1999, and 2000].

2.5.4. Internal Model Control of Robotic Manipulators.

The application of internal model control (IMC) for robot manipulator has received 

much attention in the last decade (figure (2.15)). The IMC provides a direct method for 

the design of the nonlinear feedback controller, if a good model of the robot is 

available, the closed-loop system will achieve exact set point following despite 

unmeasured disturbances acting on the robot [Yildirim and Sukkar, 1996]. In [Li et. al., 

1995] a back-propagation neural network is incorporated into a fixed standard structure 

internal model controller to achieve robot manipulator control.

d
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Figure (2.15). Internal model control structure [Yildirim and Sukkar, 1996].
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2.6. Applications of FLS and FNN in Robotic Systems Coordination

Currently, industrial applications that utilise multiple manipulators involve the use of 

two or more robots, which although working simultaneously on the same task, are not 

manipulating the same object at the same time. Hence, the main area of concern is 

collision avoidance. The ability to manipulate the same object at the same time by two 

robots would enable the system to undertake the difficult two-handed manipulation 

tasks that humans are capable of performing [Akella and Hutchinson, 2002].

However, the formation of a cooperating robot system (CRS) causes control 

complications since an over constrained closed kinematic chain is generated. This 

means that a new control technique may be required to enable the CRS to perform 

handed manipulative tasks.

The techniques used for controlling a CRS can be broadly separated into two main 

categories:

• Position Control.

• Hybrid Position/Force Control.

In the position control scheme, the difference between the desired position and actual 

position of the robot is used to generate an appropriate control signal designed to 

minimise this error. For most industrial applications that use of single robot systems, a 

position-based scheme is satisfactory.
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One approach for controlling a CRS uses a master/slave configuration, where the 

motion of the master robot is pre-planned according to the desired motion of the 

manipulated object and the motion of the slave robot is to follow the master. For further 

enhancement for the position control method, feedforward signals based on the object 

and robot dynamics can be incorporated into the controller to minimise trajectory 

errors. Sometimes a constant offset is specified to provide suitable following 

characteristics for the slave robot. That is, when the master is ready to begin motion 

along a pre-planned trajectory, it sends its destination to the slave robot, which 

performs a transformation of coordinates from the master’s reference frame to its own 

reference frame. However, this transformation is dependent on the geometry of the 

manipulated object and has to be specified before motion begins [Tinos et. al., 2002].

In the position based control scheme outlined above, each robot in the CRS is 

controlled by minimising the position error of the end-effector along a common path. 

However, accurate knowledge of the robots kinematics properties is essential and also 

the scheme does not consider geometric errors. Geometric errors in the robot 

kinematics properties of a CRS can cause the target end-effector paths of each robot to 

be inconsistent. Since the robots are joined to form a closed chain, any inconsistency in 

the end-effector paths can result in forces being applied to the manipulated object. To 

solve this problem, flexible joints are introduces in the CRS system in [Osumi and Arai, 

1994] between the robots and the manipulated object. In [Osumi et. al., 1997], free joint 

mechanisms are introduced to solve this problem.
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In the hybrid position/force (HPFC) control scheme for a single robot, the force 

information is combined with position information to satisfy a set of position and force 

constraints as explained before. Methods for obtaining force information are: motor 

current measurements, motor output torque measurements, and wrist mounted force 

sensors. The HPFC method can be exploited for use in CRS [Sun and Liu, 2001] and, 

like all robot control strategies, can be implemented on either a centralised controller 

architecture (one controller for all robots) or a de-centralised controller architecture 

(independent controllers for each robot).

The HPFC can also form part of a master/slave CRS where the master robot is position 

controlled while the slave one is force controlled. For all HPFC schemes listed in 

literature, pre-planned force trajectory and appropriate force measurement at the end- 

effectors of the robots are required. This not only results in the need for force sensors of 

a suitable resolution, but also additional hardware and software to interpret and 

transform the data into usable format. Furthermore, to incorporate the force data, the 

computational complexity of the control scheme is increased. One further disadvantage 

of these control systems is that they are based on exact knowledge of the dynamics 

properties. However, in general, exact robot and load dynamics are difficult to drive 

due to the complex mechanical construction of the robot.

Adaptive control schemes explained before can be further extended for use in CRS 

systems, which then incorporate feedforward signals based on the robot and/or object 

dynamics. With the adaptive control scheme, the controller not only has to calculate the 

robot and object dynamics but also modify them to take into account parameter
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inaccuracies. Few neuro and neuro-fuzzy adaptive control techniques have been 

reported for the coordination of robot manipulators in the literature [Gueaieb et. al., 

2001]. A recurrent neural network is used to build a hybrid position/force controller for 

two SCARA type robots in [Yildirim, 2001]. In this case, both of the position and force 

controllers are built using the proposed recurrent neural network. A position reference 

model and force reference model are used to train the two neural controllers. Another 

method for separating interconnection variables in order to achieve a fully decomposed 

fuzzy model is introduced in [Rajasekharan and Kambhampati, 2001] for cooperative 

manipulators handling a common object. In [Jang, 2001], a neuro-controller is 

introduced to control a nonlinear two-robot MIMO system. The proposed neuro

controller consists of two linear controllers and a neural-network controller (NNC) to 

compensate for the nonlinearities and interactions between the two robots. The NNC is 

trained through a neural network identifier with an indirect learning scheme.

Even though most adaptive schemes provide suitable control for a CRS, many result in 

a control structure that is not suitable for application to conventional robot systems. 

Furthermore, in most cases, the suggested scheme is computationally expensive and 

requires complex mathematical techniques to ensure convergence of the system 

parameters to their exact values.

2.7. Summary

This chapter has outlined the basic concepts of FLS and FNN to provide background 

information concerning their structure and design parameters. A classification of FLS
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according to their structure and design parameters has been presented. Similarly, a 

classification of FNN according to their structure, fuzzy model, and learning technique 

has been given. Finally, some applications of these techniques to the modelling, 

control, and coordination of robotic systems have been outlined.
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CHAPTER 3

Neuro-Fuzzy Inverse Modelling of Robotic Manipulators

As a consequence of the rapid development in FLS and NN techniques in the 1980s, 

great progress in FNN design and implementation techniques was made. Since the early 

1990s, FNN have attracted a great deal of interest because such systems are more 

efficient and more powerful than either NN or FLS alone. Different types of FNN have 

been presented in the literature. As mentioned in Chapter (2), these types can be 

identified based on the structure of the FNN, the fuzzy model employed and the 

learning algorithm adopted. On the one hand, according to the FNN structure and 

learning algorithm, the most commonly used and successful approach is the 

feedforward and recurrent structure model using the BP learning algorithm. On the 

other hand, according to the fuzzy model adopted, there are two types of fuzzy models 

that can be integrated with a neural network to form a FNN. These two models are the 

TS-model [Takagi and Sugeno, 1985] and the Mamdani-model [Lee, 1990a and 1990b] 

using either the sup-min or sup-product compositional operator. However, based on the 

review of the models of FNN in Chapter (2), Mamdani-model based FNN represent 

more transparent neuro-fuzzy systems compared with TS-model-based FFNN. The 

reason is that the rule base of the Mamdani-model is more understandable to human 

users. Also, it is more general in terms of how its rule base is created, because it can be 

constructed using human experience and/or numerical data. Also, it may be noted that 

feedforward neural networks are normally used for mapping of arbitrary static
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functions while mapping of dynamic functions is normally performed using recurrent 

neural networks which is normally a feedforward NN with some feedback signals.

This chapter deals with the problem of both inverse kinematics and inverse dynamics 

modelling of robotic manipulators as a pre-control stage. The main target is to benefit 

from inductive learning techniques to develop rule sets for both inverse kinematics and 

inverse dynamics from data collected from the robot during random trajectories 

following. These rule sets will be then arranged in a Mamdani-type neuro-fuzzy set of 

networks for further tuning of the obtained fuzzy models.

“Pro/Engineer® ” and “Pro/Mechanica® ” visual dynamics simulation packages were 

used to simulate the robot manipulator. These packages allow simulation of dynamic 

systems by transferring the assembly CAD model from “Pro/Engineer®” to the 

associated virtual dynamics simulation program “Pro/Mechanica® ”, which in turn 

allows the user to specify masses, loads, drive forces, torques, friction, etc., and many 

other dynamics parameters of the modeled assembly. This package generates the 

equations of motion, inertia parameters, orientation matrices, etc., for each body in the 

model and for the whole assembly from the geometry of the modeled system and the 

parameters specified by the user. Due to the nature of the research, no access to these 

equations of motion is required although “Pro/Mechanica®” allows for this if 

necessary. The most powerful part of this package is that it allows the user to interface 

to the modeled system with a user specified custom C++ subroutine. This subroutine 

allows the user to get information about the modeled system and to design a controller 

for the assembly and/or add any other feature to the modelling process, which may not
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be present in the package programming tools. The Puma 560® industrial robot 

manipulator is used for the simulation process as the parameters of this robot are well 

published and can be checked against the parameters obtained from the virtual model.

The remainder of this chapter is organized as follows. Section 3.1 presents a review of 

current techniques used for inverse identification for robot manipulators. Section 3.2 

describes the method used to virtually model the Puma 560® industrial robot 

manipulator under the “Pro/Mechanica® ” environment. Section 3.3 explains the 

technique used to collect numerical data from the modeled robot and discusses the 

fuzzy rule generation method using the inductive learning technique DynaFuzz [Bigot, 

2003]. Also, in the same section, the rules obtained for both inverse kinematics and 

inverse dynamics for the Puma 560® industrial robot are listed. Section 3.4 presents the 

structure of the proposed Mamdani-type neuro-fuzzy network used to formulate the 

fuzzy rules for online tuning of the fuzzy model. Also, in the same section the network 

decision-making mechanism using softmin and softmax differentiable activation 

functions [Estevez and Nakano, 1995] and the online adaptation mechanism are 

explained. Section 3.5 discusses the simulated performance of the proposed system 

when used to model the Puma 560® industrial robot manipulator for both inverse 

kinematics and inverse dynamics. Section 3.6 gives a summary for the chapter.

3.1. Inverse Model Identification of Robotic Manipulators

The forward kinematics of a robot manipulator produces the Cartesian position of the 

end-effector according to a given set of manipulator joint angles while the inverse
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kinematics of a robot manipulator gives the joint angles according to a given end- 

effector Cartesian position. As stated in chapter (2), the inverse kinematics calculation 

is complex and consumes too much time to perform in real-time [Craig, 1996]. 

Moreover, singularities and multiple solutions exist in the inverse kinematics 

calculation. The inverse kinematics equations constitute a set of highly coupled 

nonlinear equations. The common method is to utilise the relationship between the joint 

speed and the end-effector speed to resolve the inverse kinematics problem. The 

differential motion relationship between end-effector Cartesian space and joint space is:

r(t) = J(0)0(t) (3.1)

where r(t) is the end-effector displacement in Cartesian co-ordinates, 0(t) is joint 

displacement, and J(0) is the Jacobean matrix from joint space to Cartesian space. From 

equation (3.1), the joint velocities can be obtained by calculating the inverse Jacobean 

and then the joint variables can be evaluated by numerical integration.

Many methods have been reported to circumvent the direct calculation of the inverse 

Jacobean using fuzzy logic mapping, NN, or the pseudo-inverse of the Jacobean matrix 

[Kim et. al., 1993; Xu and Nechyba, 1993; and Sang-Bae, 1997]. For example, in 

[Nedungadi and Wenzel, 1991], a fuzzy associative memory bank (FAM) is designed to 

relate the change in the Cartesian end-effector position to the change in the robot joint 

angles. In this method, the contribution of the joint angle variation to achieve the user 

requested move in the Cartesian coordination of the end-effector can be calculated 

through the developed FAM bank. Firstly, a total of 98 rules have been created for the
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inverse kinematics solution of a single-link planar manipulator. Then, these rules were 

reduced to 28 rules due to symmetry in the FAM bank. This means that large numbers 

of rules for multi-link manipulators will be created. The FAM bank was developed 

based on the kinematics equations of the robot manipulator. In [Ming et. al., 2001], the 

same technique is used with a reduced number of fuzzy membership functions resulting 

in 25 rules for a two-link planar manipulator. A three-link three-dimension revolve 

manipulator was studied in [Martinez et. al., 1996]. In this method, the use of geometric 

relationships to relate the spherical coordinates of the end-effector to its Cartesian 

coordinates reduced the 3-dimentional positioning problem to a 2-dimentional problem 

where 0i is found trivially. Contours of constant angles 0 2  with varying 6 3  through its 

full range were drawn for the remaining two spherical coordinates. Contours of 

constant angles 8 3  with varying 0 2  through its full range were also drawn. By 

examining these contours, a total of 198 fuzzy rules were established relating the polar 

position to the joint angles. These rules were reduced to 82 due to the physical range 

constraints of the joints. As mentioned before, the degree of accuracy in these methods 

and the number of generated rules are strongly influenced by the selected membership 

function for both inputs and outputs, which are selected manually. Most researchers 

studied planar or simplified manipulators. Furthermore, these systems do not possess a 

further learning stage and are not generic or systematic.

The forward dynamics of a robot manipulator is the determination of the joint 

displacement variables (0*) according to a given set of manipulator joint torques (T j) ,  

while the inverse dynamics of a robot manipulator is the determination of the joint 

torques required to cause certain joint displacements. As stated in chapter (2), forward
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and inverse dynamics calculations are very complex, nonlinear multi-input multi-output 

problems, and can almost never be accurately calculated due to parameter variation, un

modelled friction, and backlash. The parameters of these models are mostly obtained 

from CAD solid modelling or measured by disembodied robot, which results in 

inaccurate values.

For a dynamic system with single input u and single output y, the system output at time 

interval k  can be expressed in discrete form as:

y(k) =f(y(k-l), y(k-2 ) y(k-n), u(k-l), u(k-l),...., u(k-m)) (3.2)

This equation can be used to represent any SISO dynamic system in discrete format and 

can be extended to represent MIMO dynamical systems as well. When input/output 

data are used, function f  and integer n and m define the dynamic system. If n and m are 

given, the only task is to find function f  f  does not change with time for time-invariant 

systems. Feedforward neural networks can be employed to approximate /  [Narendra 

and Parthasarathy, 1990]. Robot manipulators are assumed to be bounded-input 

bounded-output (BIBO) stable in presence of input, which means that equation (3.2) 

can be used to approximate robot manipulator dynamics.

Neural networks have been used extensively to identify the forward and inverse 

dynamics for robot manipulators. Most of the approaches used for network input 

variable selection are heuristic. These inputs may include present and past values of the 

robot joint positions, speeds, accelerations, position errors, and actuating torques. The 

number of the network input variables and the assumed order of the approximation
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model affect the network size and learning capabilities. Furthermore, neural networks 

are poor in providing transparency to the dynamics of the robot and form a black box 

relationship between its inputs and outputs. In most cases, the structure of the network 

is to be selected according to the experience of the user [Miyamoto et al., 1988; Pham 

and Oh, 1999].

Dynamic system identification consists of first choosing an appropriate identification 

model structure and then adjusting the parameters of the model according to some 

adaptive law such that the response of the model to an input signal that approximates 

the response of the real system to the same input. In the following sections, an inductive 

learning technique is first used to automatically identify the inverse kinematics and 

inverse dynamics model structure from numerical observation data by generating 

fuzzy-type identification rules. Then, the obtained model structure will be arranged in a 

full-differentiable version of the Mamdani-type neural network for final tuning of the 

model parameters. This technique allows simple and direct creation of the neuro-fuzzy 

model, which will be used later as part of the control system of the robot.

3.2. Virtual Dynamics Model for Puma 560® Manipulator

The Puma 560® is the “guinea pig” of robotics research. It has been studied and used 

in countless experiments over many years and in many laboratories. The values of 

dynamics and kinematics parameters depend upon the choice of coordinate frames in 

which they are expressed. Figure (3.1) represents the commonly used definitions for the 

Puma 560® robot arm coordinates. Table (3.1) lists the relative values for these
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coordinates in addition the actual joint ranges as it is stated in the manufacturer’s 

manual. For the first three joints, because of their long link length for maximum reach 

and long travel distance between initial position and final position, the effects of 

transitional motion dominate the rotational motion. In contrast to the first three joints, 

the rotational effects dominate for the last three joints. This means that the first three 

joints can be considered responsible for reaching of a point, while the last three joints 

are responsible for the manipulation at this point.

■o y 'V'v ^ ' * :

6 R

\  y /

ID

Figure (3.1). Coordinate definition for the Puma 560® robot arm.
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Link Joint Variable 0t a i ^(m m ) a, (mm) g,.-; Range

±90 660.4 0 -160 to +160

0 149.5 432 -225 to +45

3 03 ±90 0 0 -45 to +225

4 04 ±90 432 0 -110 to +170

5 05 ±90 0 0 - 1 0 0  to + 1 0 0

l l l l l l 0 6 0 56.5 0 -266 to +266

Table (3.1). Link coordinate system for the Puma 560® robot arm. 

±  Indicate left and right shoulder configuration, respectively.

With regard to model parameters for the Puma 560® robot arm, [Armstrong, 1988; 

Armstrong et. al., 1986; and Armstrong and Corke, 1994] represent the most commonly 

used references for these parameters. For the purpose of creating a virtual model of the 

Puma 560® robot arm, physical robot dimensions are first used to create a CAD solid 

model for each link under “Pro/Engineer® Then, these links are assembled together 

to form the robot using the pin-joint assembly feature in addition to assigning robot co

ordinates. The assembled robot is then passed to the associated virtual dynamics 

simulation program “Pro/Mechanica® ” where the link mass, gravitational coefficient, 

and coefficients of friction between joints are defined according to the average values 

listed in [Armstrong and Khatib, 1986; Armstrong and Corke, 1994]. Table (3.2) lists 

the link mass parameters for each link, while table (3.3) lists the coefficients of friction 

for the first three links. All of the other parameters for the Puma 560 robot arm are 

listed in [Armstrong and Khatib, 1986; Corke and Good, 1992; Armstrong and Corke, 

1994]. Figure (3.2) shows the obtained virtual dynamics model for Puma 560® robot.
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Ml M2 M3 M4 M5 M6

13.00 17.4 4.8 1.18 0.35 0.13

Table (3.2). Link mass values [kg].

Link-1 Link-2 Link-3

Static Dynamic Static Dynamic Static Dynamic

8.43 3.45 7.67 12.77 5.57 3.27

Table (3.3). Coefficients o f friction [Nm & Nm/rad.].

Figure (3.2). Virtual dynamics model for the Puma 560® robot arm.
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“Pro/Mechanica®” calculates the remainder of the required parameters for the 

dynamics simulation. It also generates the equations of motion for each body in the 

model and for the whole assembly from the geometry of the modelled system and the 

parameters specified by the user. For example, figure (3.3) lists the inertia matrix 

parameters calculated by “Pro/Mechanica®” for link-1 of the robot around its centre 

of mass.

Body N am e: _^J UNK1

M ass: 131486

Center of M ass:

X: -1.67831 e-08 V: 0.273602 Z: 0.228071

M om ents and  Products of Inertia (about COM):

XX: 1.39376

XV: -2.25976e-008 YV: 0.298121

XZ: 2.43415e-008 YZ: 0.190931 ZZ: 1.20101

M ass properties of the b ody  se le c te d  w ere ca lcu la ted

from its volum es.

OK

Figure (3.3). Pro/Mechanica calculated parameters for link-1.
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3.3. Rule Generation from Observation Data

Many real world applications require the creation of approximate models because it is 

impossible or difficult to mathematically model the system otherwise. While the 

optimal solution would be the creation of an exact mathematical model, such model 

neither always exist nor can be derived for all complex systems, such as robot 

manipulators.

Due to such complexity, many techniques have been developed to generate 

approximate models from input/output numerical observation of complex systems. One 

of the most successful techniques for continuous numerical observations is the creation 

of neural network model, however this requires a great much effort to select the 

network structure and finally results in a non-transparent “Black Box” model as 

mentioned earlier.

The other method, which does possesses transparency and does not require 

sophisticated mathematics, is the fuzzy logic model system. Perhaps the most famous 

method has been presented by Wang [Wang and Mendel, 1992a]. This efficient 

technique first requires pre-defmed input/output fuzzy membership functions, which 

divide the attribute space into fuzzy regions. Based on these membership functions, a 

fuzzy rule is generated for each pair of input/output data. Each rule is stored in a 

decision table, and in the case of conflict, a degree for each rule is assessed to select the 

best rule, and therefore to select the fuzzy membership function to be stored in the 

decision table. However, as mentioned earlier, there is a “growing memory” problem
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when more and more training examples become available, and more and more rules are 

created, so that the selection of the best rules becomes difficult.

The use of a fuzzy rule for the classification of an example is in many ways similar to 

the use of rule created via inductive learning [Delgado and Gonzalez, 1993, Pham and 

Aksoy, 1995]. The main difference is that, due to the notion of fuzziness, a particular 

example will have a particular “degree of match” (p rule(example)) with each rule 

[Srinivasan et. al., 1993]. This could be used for instance to evaluate how likely a rule 

is to classify an example properly. This “degree of match” is obtained by first assessing 

the membership degree of each example attribute value with regard to the 

corresponding fuzzy condition in the rule; (p condition (Input Attribute Value)).

For example; assume the input attributes are Speed=14 km/h and Distance=57 m. For 

the rule IF Speed is zero AND Distance is long Then Brake is zero, the membership 

degrees are (p speed zero (14)) = 0.4 and (p distance_long (57)) = 0.8. Using these 

membership degrees; the “degree of match” of an example to each rule can be assessed. 

Two main methods are available:

- The first selects the minimum membership degree and if an example contain N 

attributes, it is defined as:

(p rule(example)) = min(p condition_l(Input_Attribute_Valuel),...............,

, .......... , p condition_N(Input_Attribute_ValueN)).
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- The second uses the product of all membership degrees and if an example contains N 

attributes, it is defined as:

( p  rule(example))= I I  M -fuzzy co n d itio n  (Input_Attribute_Value)
fo r  _  e a ch  _  attribute

It is important to note that if one membership degree is equal to zero, for both methods 

(p rule(example)) will also be equal to zero; this represents the case when one example 

is not covered by a rule.

In order to obtain a single fuzzy output, one solution is to select the output membership 

function of the best covering rule (identified using a particular heuristic, for instance 

the “degree of match”). However a more appropriate method (because it fully takes in 

consideration the notion of fuzziness) is to combine the output membership function of 

each covering rule in order to obtain a new output fuzzy set. The obtained fuzzy sets 

can then be merged, by considering overlapping or fusion between fuzzy sets in order 

to obtain the output fuzzy set. The transformation of a fuzzy output set obtained 

through a fuzzy model into a single crisp continuous value is carried out by 

defuzzification.

3.3.1. Data Generation Technique

The first step in rule generation via observation data is the data collection strategy. For 

this purpose, random trajectories are applied to suitable gain P-controllers, as shown in 

figure (3.4). The resulting P-controller torques with random values and frequencies 

generated from the error signals are applied to the joints of the virtual dynamics model
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of the robot arm as explained before. These torques allow the robot arm to move in all 

directions in the three-dimensional space. The data consists of the applied torque, their 

corresponding joint angles, joint velocities, and the three Cartesian coordinates (x, y 

and z) of the end effector main reference point, and are recorded for current and 

previous sampling intervals. The data collection test was performed for the first three 

joints only as they are the main joints responsible for the reaching process of the robot 

arm as mentioned earlier.

Random Joint-Angles 
Trajectories

( 0 i, 0 2 , 6 3 )
+ Primitive

controller

Actuating Joint-Torque 
(Ti, T2, T3)

Pro/Mechanica 
Virtual Model 
For Puma 560

Forward 
Kinematics, Time 
Delay, and Data 

Storage

Current Joint-Angles 
(0i, 02, 63)

Figure (3.4). Data collection test for the “Puma 560®” robot arm.

The collected data will be used to construct the model of the inverse kinematics and 

inverse dynamics of the robot manipulator in two stages, a structure identification stage 

followed by parameters identification stage. Figure (3.5) illustrates these two stages.

Input/Output 
Data

Self-Constructing 
Rule Generation

Initial Fuzzy 
Rules

Fuzzy Neural 
Network

Final Fuzzy 
Rules

Structure Identification Parameter Identification 

Figure (3.5). Steps in the proposed neuro-fuzzy modelling.
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3.3.2. Inductive Learning Algorithm

The predefinition of the membership functions for both inputs and outputs used in 

Wang method [Wang and Mendel, 1992a] could be a difficult task. In fact, the problem 

of designing the membership function may be just as complex as designing the rules. 

The task of decomposition into membership functions can be seen as relatively similar 

to the task of discretisation in machine learning. One of the advantages of machine 

learning algorithms is that they permit the creation of compact models. In the next 

section, the fuzzy inductive learning algorithm dynafuzz [Bigot, 2003] is briefly 

explained including the suggested modifications. This method uses an automatic 

technique for input membership function creation during the rule forming process.

The algorithm is designed to extract fuzzy IF-THEN rules from a collection of 

examples (training set). Firstly, a manual step is performed to divide the output domain 

for continuous output examples to generate target classes. In the robot modelling case 

under investigation, the output is divided into equal, 50% overlapped Gaussian 

membership functions as shown in figure (3.6). The selection of the output membership 

functions shape, number, and degree of overlap is arbitrary. The Gaussian function is 

selected to allow for further tuning of the output membership function parameters in the 

Mamdani-type neuro-fuzzy network if required in the online learning stage. The 

number of the output membership functions can be regarded as the degree of precision 

prescribed for the model. The higher this number is; the higher should be the accuracy 

of the created rule set, however the number of rules will also be increased. This number
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therefore gives the user a degree of control over the size and precision of the model to 

be created.

H(x)

1

Figure (3.6). Selected output membership functions.

Each example (E) (input record) is described in terms of a fixed set of m (no. of inputs) 

attributes ( A 1, A2, ... , Am) (equivalent to linguistic variables) and by a class (output)

value (Ce). A range of values ([ V̂ m, ]) (equivalent to linguistic membership

functions) is assigned for the z'1*1 attribute. Each created rule is composed of a number of 

conditions on each (or some of the) attribute(s) (Cdt,) and by its class value (Cmie)• 

Each rule can be represented as follows: Cdt] a  Cdt2 a  ... /v Cdtm—> Cmie• Each 

condition takes the form [FT, <Al < ] for continuous attributes z.

In order to create a rule set this algorithm incrementally employs a specific rule 

forming process until all examples are covered. Three particular steps of this process 

are of interest for the development of the fuzzy model.

The first step in this process is to select a seed example (SE), which is the first example 

in the list not covered by previously created rules. The second step consists of
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employing a specific search process to create a consistent and general rule covering the 

(SE). The main feature of this search is that the conditions for continuous inputs are 

created automatically during the rule forming process. The continuous inputs are not 

pre-discretised (not divided into membership functions). The result is a rule where all 

continuous conditions will take the form [ < A1 < ]. These conditions might

cover large areas in the example space. Thus, as the third and final step, the algorithm 

employs a post-processing technique that reduces the coverage of some continuous 

attribute conditions to the training data range only. This avoids the coverage of 

“unknown” areas and reduces the presence of overlapping rules.

3.3.2.1. Seed Example Selection

In this covering algorithm, a (SE) is selected from among the examples not covered by 

previously created rules. Then, the output class value ( V ^ tput) (output fuzzy set) of

(SE) is used as target class for the rule to be created. For instance, for the Gaussian 

membership function, the output membership function will be the fuzzy set ( F s e  (a, b, 

c)) in which the membership degree will be maximum. In the particular case of 50% 

overlapping membership functions, where the membership degree is equal to 0.5 for 

two adjacent membership functions, only one of them is considered. Another problem 

occurs, with a fuzzy rule, because there are various degrees for the coverage of an 

example. In particular, one example might be covered and classified by a rule but its 

output value may have a low degree of belonging to the rule output membership 

function. This rule does not therefore properly represent the example. Thus, the “fuzzy 

algorithm” needs to create another rule for this example. In dynafuzz, the (SE) selected
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is the first example in the training list that is not covered by at least one previously 

created rule where the degree of belonging of its output value to the rule output fuzzy 

set (Fse (a,b,c)) is a maximum and > 0.5.

3.3.2.2. Formation of a Rule

During the selection of (SE), the targeted fuzzy set has been identified ( F s e ) -  Thus, for 

the discretisation of the example output values, it is proposed to classify as positive 

examples (belonging to the target class), those having an output value belonging to 

( F s e )  with ( j J > 0 ) and to classify the remaining examples as negative.

The search mechanism searches for rules that cover as many examples as possible from 

the target class and at the same time excludes examples belonging to other classes. The 

rule formation starts with a condition excluding the closest example not belonging to 

the target class. The assumption is that this also leads to the exclusion of the maximum 

number of other examples not belonging to the target class. To find the closest

tViexample, a measure is used to assess the distance between any two examples for the i 

continuous attribute as follows:

D,example 1 &example2

/  \ 2  Attr Value E x .l - A ttr_Value_Ex.2
Max Attr Value - M in A ttr Value

(3.3)

where £  is the sum over all continuous attributes in the examples, Attr_Value_Ex.l
c

and Attr_Value_Ex.2 are the values of zth continuous attribute in these two examples,
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and Max Attr Value and Min_Attr_Value are the maximum and minimum known 

values for the zth continuous attribute.

Applying this distance measure, the closest examples not belonging to the target class 

and covered by the rules formed so far can be found. Thus, in the next iteration the rule 

forming procedure considers appending only those conditions to the rule that exclude 

the closest examples.

For a particular uncovered example, the algorithm takes the closest example not 

belonging to the target class and creates candidate conditions to exclude it. These 

conditions are formed using attributes having different values for the considered two 

examples. The format of the formed condition will be [(attribute name) > or < (the 

attribute value of the closest example)]. For instance, if the attribute value of an 

example for which a rule is being created is V=5 and the attribute value of the closest 

example is V=10 then the resulted candidate condition will be [V < 10].

By applying this procedure, the algorithm handles continuous attributes generated from 

random operation of the robot manipulator arm. Thus, there is no need to pre-process 

the data in order to discretise the continuous input attribute data. The algorithm 

identifies splitting points for each continuous attribute range during the learning 

process.
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At the end of the rule formation process, a rule is obtained belonging to the output class 

positive. Each condition will takes the form [ V{ < A1 < F2 ] for continuous attributes, 

where V[ and V[ are continuous values included in the i continuous attribute range

3.3.2.3. Rule Post Processing

In the created rules, there is no need to account for overlapping and coverage of 

“unknown areas”, as the fuzzy logic representation permits the handling of such 

uncertainties. In addition, it makes the transformation of condition ranges into 

membership functions more straightforward. Also, the use of the generated rules in the 

Mamdani-type neuro-fuzzy network will tune the obtained model to the most 

appropriate one.

After the rule forming process, the class of the rule (positive) is replaced by the 

targeted fuzzy set ( F s e )  and each continuous conditions is transformed into a fuzzy 

condition using the following method in order to obtain the final fuzzy rule.

• For continuous attributes, considering the condition [F/ < A l < F2 ] it is transformed 

into a membership function F(a, b, c):

If F/ and V‘ exist; a= V ' ; b = V ' ; and c = ( F2' + V' )/2.

If V/ is equal to -oo; a= -oo; b= F2 ; and c = F^in, which is the minimum known 

value of the attribute.
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If V[ is equal to +0 0 ; a = V{ ; b = +0 0 ; and c = F^ax, which is the maximum 

known value of the attribute.

These values are then used to generate equivalent Gaussian and sigmoidal 

membership functions to be used in the Mamdani-type neuro-fuzzy network as 

shown in figure (3.7).

It can be noted that this algorithm allows the automatic creation of different 

membership functions for each continuous attribute in each created rule during the rule 

forming process.

H(x)

Figure (3.7). Types of generated input membership functions.

3.3.3. Inverse Kinematics and Inverse Dynamics Rules

To model the inverse kinematics of the robot arm in a Mamdani-type neuro-fuzzy 

network using the data recorded, a fuzzy rule-base that represents the inverse 

kinematics of the robot arm is generated first using the inductive learning rule
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generation algorithm explained. Equation (3.4) expresses an approximate relation 

between the desired Cartesian position trajectory of the end-effector, the required joint 

angles trajectories to achieve this, and the current joint angles of the robot manipulator,

et*' s f ( / * ' ,  / * ' ,  /* ' ,  e,t e2\  e„k) (3.4)

where k is the sampling interval, i = (1,2,..., n), n is the number of links, (x, y, z) are the 

end-effector Cartesian position, and 6  is the joint angle.

Using equation (3.4) in addition to the data collected for full range operation of the 

joints from the virtual model for the first three links of the Puma 560® robot arm, an 

incremental-based model can be generated. Three sets of fuzzy rules can be generated 

representing the robot inverse kinematics. Each of these sets expresses a joint angle 

trajectory required to achieve the end-effector Cartesian trajectory as a function of this 

Cartesian trajectory and previous recorded values of the joint angles forming a 6 -input 

single-output relationship. The entire training set is composed of 28,821 examples. The 

outputs have all been decomposed into 11 Gaussian membership functions. The 

resulting model is composed of 1 1  rules for the prediction of 0 i, 1 2  rules for the 

prediction of 0 2  and 16 rules for the prediction of 0 3 , totaling 39 rules for performing 

the prediction of all outputs compared to more than eight hundred rules using Wang 

method [Wang and Mendel, 1992a]. Wherever an input variable is not mentioned in a 

rule, it means that this rule has no dependency on that particular input value. Each pair 

of margin values represent the generated membership function for that particular input 

as explained before.
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Another rule-base representing the inverse dynamics of the robot arm is also generated. 

Equation (3.5) expresses an approximate relation between the desired joint angles 

trajectories of the robot arm, the required joint torques to achieve this, the current joint 

angles, and the current torques of the robot manipulator,

T k+I = / ( T / , . . . ,  T„k, e,k+1,..., ek+', 9 h ... 0n, v / +/, v , v„k)  (3.5)

where T  is the joint torque and v is the joint velocity. Using equation (3.5) in addition to 

the data collected for full range operation of the joints from the virtual model for the 

first three links of the Puma 560® robot arm, three sets of fuzzy rules can be generated 

representing the robot inverse dynamics. Each set expresses a joint torque trajectory 

required to achieve the joint angle trajectories as a function of these trajectories and 

previous recorded values of these trajectories forming a 1 2 -input single-output 

relationship. The entire training set is composed of 39,821 examples. The outputs have 

all been decomposed into 11 Gaussian membership functions. The resulting model is 

composed of 85 rules for the prediction of Ti, 92 rules for the prediction of T2 and 51 

rules for the prediction of T3 , totaling 228 rules performing the prediction of all outputs 

compared to more than fourteen hundred rules using Wang’s method.

3.4. Proposed Neuro-Fuzzy Network (DYNAFUZZNN)

The proposed neuro-fuzzy network is a feedforward connectionist representation of a 

Mamdani-model based FLS so that the transparency of the fuzzy system generated so 

far is maintained. The neural network in fact employs time-delayed feedbacks from the
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output layer to the input layer to represent the current state of the network output being 

feedback to the network input. Furthermore in order to achieve a suitable trade-off 

between the transparencies of the neurofuzzy system, the ease of mathematical 

analysis, and the effective application of back-propagation learning algorithm, the 

network has to employ differentiable alternatives for the logic-min and logic-max 

functions to implement its decision-making mechanism. For this purpose, a 

differentiable alternative of the logic-min function termed softmin and a differentiable 

alternative of the logic-max function termed softmax are presented [Estevez and 

Nakano, 1995; Shankir, 2001]. Using these two differentiable functions to implement 

the network decision-making mechanism allows a more accurate calculation of the 

partial derivatives, which are necessary for the back-propagation learning algorithm. In 

this way, online tuning for rule degree of confidence and for membership functions can 

be performed. The selected Gaussian and sigmoidal membership functions are 

differentiable and their parameters (a,b,c) can be tuned through back-propagation 

algorithm.

3.4.1. Softmin and Softmax Functions

Mamdani-model based FNN are the most commonly used FNN, but the parameter 

learning using BP through these networks is not accurate enough due to the chosen 

non-differentiable min/max functions. A few attempts have been presented to introduce 

analytical differentiable alternatives for the logic-min and logic-max functions [Yuan et 

al., 1992; Berenji and Khedkar, 1992]. In [Berenji and Khedkar, 1992] an analytical 

approximation of the logic min function termed softmin, is given by:
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where, at is the ith argument and the parameter £  controls the softness of the softmin

function. As £  -> oo, softmin function -> logic min. However, for a finite £  softmin

becomes a multi-argument analytical approximation of the logic min function. [Estevez 

and Nakano, 1995] introduced the multi-argument softmax function used to 

approximate both the logic-max and logic-min function with a proper selection of 

parameters. Furthermore, based on De Morgan's law, which is valid for set theory and 

can be preserved for fuzzy sets, [Pedrycz, 1993; Shankir, 2001; and Zhang, 1996] 

presented a multi-argument alternative of the logic-max function termed softmax as a 

logic complement of the above mentioned sofmin function:

n

softmax( aj,i = l ,2, . . . ,n)= 7 - - ^ (3.7)

i=1

where a t = . and a t = 1 -  at
I

These two differentiable functions will be utilized as the inference mechanisms within 

the neuro-fuzzy networks representing the model for both inverse kinematics and 

inverse dynamics of the Puma 560® robot manipulator.



3.4.2. DYNAFUZZNN Proposed Neuro-Fuzzy Network Structure

Figure (3.8) presents the structure of the proposed neuro-fuzzy network used for both 

inverse kinematics and inverse dynamics modelling. The network consists of a six- 

layer feedforward connectionist representation of a Mamdani-model based FLS, 

representing a Mamdani-model based RFNN. The network employs a full time-delayed 

feedback from output layer to input layer. This representation is due to the fact that the 

generated rules relating the output of the fuzzy system to the inputs which include the 

current state of the system, i.e. the previous time sample network output.

The network structure is similar to other Mamdani-model based FFNN with the first 

four layers have the same structure as the first four layers in Lin and Lee’s FFNN [Lin 

and Lee, 1991] and in Berenji and Khedkar’s FFNN [Berenji and Khedkar, 1992]. The 

difference is in the representation of the defuzzification function, which is represented 

using the last two layers (layer five and layer six). In Lin and Lee’s FFNN and Berenji 

and Khedkar’s FFNN the defuzzification function is represented using the last layer 

only (layer five). The reason for the chosen representation is to introduce adjustable 

scaling factors at the output layer in order to be able to tune the output membership 

functions during online adaptation.

In general, a node in any layer of the network has some finite fan-in of connections 

represented by weight values from other nodes and fan-out of connections to other 

nodes. Associated with the fan-in of a node is an aggregation function /  that serves to 

combine information, activation, or evidence from other nodes.
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Figure (3.8). The structure of the proposed neuro-fuzzy network.

Using the same notation as in [Lin and Lee, 1991], the function provides the net input 

for such a node as follows:

itp u t
ime-
dayed
eedback
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input — / y
net

 ̂ k k k . ^
U j >u2 ,  > M p>

k k k{ W j , W 2, ............. , W p J
( 3 .8 )

where p  is the number of fan-ins of the node, w is the link weight associated with each 

fan-in, u is an output of a node in the preceding layer associated with the fan-in and the 

superscript k indicates the layer number. A second action of each node is to output an 

activation value as a function of its net-input,

output = of  = ak( f k j (3.9)

where a ^ (  ) denotes the activation function in layer k. The functions of the nodes at 

each of the six layers of the proposed network are described next.

Layer 1: Nodes at layer one are input nodes, which represent input linguistic variables. 

Layer one contains n nodes (n=6 for inverse kinematics and n=15 for inverse 

dynamics), which receive a crisp input vectorX  = (;c/,.•••, xn) • The nodes in this layer 

simply transmit input values directly to the next layer. That is,

f \  = u ,i = x i and a\ = f \  (3.10)

From the last equation, the link weights at layer one are fixed to unity.
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Layer 2: Nodes at layer two are input term nodes which act as membership functions to

where A(x) is the term set of x, that is the set of the generated membership functions for

previously. Layer two therefore accommodates n independent term sets, where each 

term set corresponds to an input xz and is partitioned to mz terms representing input 

membership functions. The function of each node j  in a term set i is to calculate the 

degree of membership of the input xz with respect to the membership function 

associated with the term set A.(xj)  according to the specific equation of this

membership function:

where my and cry are, respectively, the centre (or mean) and the width (or variance) of

cry, and fly all calculated from the (a,b,c) parameters generated for each membership

represent the terms of the respective n input linguistic variables. An input linguistic 

variable x in a universe of discourse U is characterized by A(x) = {a ^ A I , . . . ,  v4*},

each input derived from inductive learning of the linguistic values of x, as explained

and  aij = e ^ lj f or Gaussian functions

2 1and  au =  y fa r  L eft sigm oidals  (3 .11 )

1 + / «

2 1and  aij =  y fa r  R ight sigm oidal functions
\ +  e f <J

the Gaussian function and fiy is the characteristic value for the sigmoidal function, my,

function from the offline inductive learning stage. Hence a link weight at layer two wjj
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can be interpreted as an adjustable free parameter of the input membership function. 

The tuning of this parameter (link weight) has the effect of tuning the membership 

function parameters (a,b,c).

Layer 3: The nodes at layer three are rule nodes which have been generated during the 

offline inductive learning stage explained previously; where each node associates one 

term node from each term set to form a condition part of one fuzzy rule if it is part of 

that rule. Hence, the rule nodes should perform the logic min operation if the min 

interpretation of the sentence connective "and" between the antecedents of a fuzzy rule 

is employed, or the algebraic product if the product interpretation of the sentence 

connective "and" is employed. In the proposed neuro-fuzzy network, the min 

interpretation is employed; consequently the logic-min function is replaced by the 

softmin function. Therefore the function of the rth rule node using softmin can be 

written as follows:

f l  = softmin (ulul uq)= —q--------
(3-12)

1=1

and a 3r = f l

where r = and R is the number of rules or rule nodes in layer three , q is the

number of inputs for that particular rule, w, is the i input to layer three, and £  is an 

index representing the softness of the softmin function. However, in this layer, there are 

no link weights to be adjusted because all the link weights are fixed to unity to transmit 

only the membership degree of the linguistic input to the rule interpretation mechanism.
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Layer 4: The nodes at layer four are output term nodes which act as membership

equal to 11 in this case, that is the set of the class membership functions for each 

output, as explained previously, representing the linguistic values of y. Consequently 

layer four accommodates three independent term sets, where each term set corresponds 

to an output y t and is partitioned to 11 terms representing output membership functions. 

The nodes in layer four should perform the logic-max operation to integrate the fired 

rules that have the same consequent. In the proposed neuro-fuzzy network the logic 

max function is replaced by the softmax function. Therefore, the function of each term 

node j  in the output term set i, can be written as follows:

where p  is the number of rules sharing the same consequent (the same output term

variables, i.e. two nodes for each output variable. The function of these two nodes is to 

calculate the denominator and the numerator of an approximate form of Mean o f

functions to represent the output terms of the respective / linguistic output variables (in

this case 1=3). An output linguistic variable y  in a universe of discourse W is 

characterized by F(y) = {fJ, , F 2y Fy 1}, where F(y) is the term set of y  which is

n

f *  = softm ax ( u 4i , u42 , ......., u p) =  1 - ^
(3.13)

i=1

and a \  = f]j

node), u, is the ith input to layer four, and ^  is an index representing the softness of the

softmax function. Hence the link weights at layer four are fixed to unity.

Layer 5: The number of nodes at layer five is 2/, where / is the number of output



Maxima (MOM) defuzzification function [Saade, 1996; Runkler, 1997] for each output 

variable. The functions of the two nodes of the ith output variable are described as:

f i r  a i r  m u a n d  a 5n i= f 5ni (3.14)

f 5d = a i j  and  a 5d i= f 5di (3.15)

where f 5 . and f  ̂ . are respectively the node functions of the numerator and the

denominator nodes of the ith output variable. is the centre (or mean) of the Gaussian 

function of the f h term of the ith output linguistic variable y t. Layer five employs 21 

weight vectors, with two weight vectors for each output variable. The first link weight 

vector connects the numerator node of the ith output to the term nodes in its term set and 

its components are denoted by w5nij  • Each component of this weight vector represents

the centre (or mean) of the membership function of the j th term of the term set of the ith 

output variable. The second link weight vector connects the ith output denominator node 

to the term nodes in its term set and its components are denoted by w5dij-. Hence the link

weights at layer five are fixed to unity.

Layer 6: The nodes at layer six are defuzzification nodes. The number of nodes in layer 

six equals the number of output linguistic variables. The function of the ith node 

corresponding to the ith output variable can be written as follows:

^  \V  ■ * C l . JC
f i = — ----  and ctf = f  t and y  t = af  (3.16)

K i * a di
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where w 6ni and w 6di are layer six link weights associated with each output variable 

node. These two link weights represent a scaling factor of an output variable.

3.4.3. Neuro-Fuzzy Network Parameters Tuning

Following the network construction phase, the network then enters the parameter 

learning phase to adjust its free parameters through online adaptation. The network 

adjustable free parameters were selected to be centres (mys) of the output membership 

functions of the term nodes in layer four as well as the link weights at layers two and 

six. The supervised learning technique is employed along with the back-propagation 

learning algorithm to optimally tune these parameters. The problem for the supervised 

learning can be stated as: Given n input patterns xrft), i = 1 n, and I desired output

patterns yrft), i = 1,.... ,/, the fuzzy partitions, and the fuzzy rule base, adjust the

network free parameters optimally. In the parameter learning phase, the network works 

in the feedforward manner, that is the goal is to minimize the following error function:

where y(t) is the desired output, and ynet(0 is the current network output. For each 

training data set, starting at the input nodes, a forward pass is followed to compute the 

activity levels of all the nodes in the network. Then, starting at the output nodes, a 

backward pass is followed to compute the rate of change of the error function with 

respect to the adjustable free parameters for all the hidden nodes. Assuming that (w) is 

the adjustable free parameter in a node, then the general learning rule can be written as 

follows:

(3.17)
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A w  =  -
dE_
dw

( 3 .1 8 )

w{t + l )  = w(t) + r/Aw (3.19)

where 77 is the learning rate, then using the chain rule, the partial derivative can be 

defined as follows:

dE_ = dE d (y ( t) -y m (t))
dw d (y(t)-y„ J t))  dw

_ dE d f  _ dE da d f  
d f  dw da d f  dw

(3.20)

Using the last learning rule, the calculations of the back-propagated errors as well as 

the updating of the free parameters can be described next starting at the output nodes:

Layer 6: Using Equation (3.20) and Equation (3.16), the adaptive rule to tune the 

weights of layer six is derived as follows:

d E  _  d E  d a f  d f ]

d w 6
ni d a f  d f 6 d w 6 .1 J i m

{ y i ^ - y n e M )

(3.21.a)
a ni

w di*a di

W6„ , ( t  +  l )  =  W6ni( t )  +  T]t (3.21 .b)
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dE

dwdi d a f  Of? d Wdi

- C K O - j w M ) *
—W^ */75 • r m u ni

( wd ,)2 * a 5dl

(3.22.a)

™ d i ( t  +  \ )  =  W6di ( t )  +  T] 6
dE

dw
(3.22.b)

di J

where 775 is the learning rate of the link weights at layer six. The propagated error from 

layer six to the numerator and the denominator nodes at layer five are derived as 

follows:

6 SE
8m =

d a 5ni

c 6 _
Qdi~

BE

d E  d a f  d f *
—   a t e ____ i— sk____ L_ —

d a f  d f 6. d a 5ni

-{y^-ynetit))

  _  dE  t  d a f  t  d f 6

d a di d a f  d f f  d a 5di

- { y i ^ - y n e M )

W6.sjc____m
6 sk 5

w di * c i di

—W6- * /75 •m u m

Wdi( 4 )'

(3.23.a)

(3.23.b)

Layer 5: At layer five, no adjustment is required for the link weights connected to the

denominator nodes, while an adjustment is required for the link weights w ^ j ' s  which 

represent the centres my’s of the output membership functions. Consequently, using
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Equation (3.14) and Equation (3.20), the adaptive rule to tune the free parameters layer 

five is derived next. The adaptive rule to tune the centres of the output membership 

functions can be derived as follows:

6 * 4

d<& d f * ,  d m ‘J '
(3.24.a)

(  - d E ^

V m ij
(3.24.b)

where r/5 is the learning rate of the adjustable parameters (my’s) at layer five. The 

propagated error from layer five to the j th node in the ith term set in layer four is derived 

as follows:

4 =

•5
ni

d a 5ni d f 5ni d a t
+

d E  d  
 * ®di d f

d ®di d f 5di

5
__di
d a t

(3.25)

Layer 4: No adjustment is required for the link weights of layer four. Only the error

signals d i  s need to be calculated and to be propagated to a rule node r in layer three.

Each one of these error signals is a summation of L propagated error signals S i), one 

error signal from a specific node j  of each term set i, where i = 1 L and L is the
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number of output variables (or term sets). Using Equation (3.20), the error signal d i  is 

calculated as follows:

S r = z si*
da* d f 4. a u t  J V

d f 4. d a l
J V

(3.26)

Then from Equation (3.7) and Equation (3.13)

dai

d f 4 J v
= 1 , a nd

d f l  J v
d a l

1 - C a l ) * e - ^ a 3r * J ^ e -C {u ljm) + ^ *  e ~C  a r *
m=1 m=1

( ~ 4  ^
M jjm\ J y

V/w=l

r \ \ 2 
- 4  
U,ijm

J

if the j th term node at the itn term set at layer four is connected to the rm rule node at 

layer three, otherwise,

■th th

d f  i j

 T = °
ddr

h ~4where p  is the number of rules sharing the same /  output term node, and Ujjm is the

complement of the mth input to the j th output term node at the ith term set at layer four.
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Layer 3: Similarly to layer four, no adjustment is required for link weights at layer

three. Only the error signals d]j s  need to be calculated and propagated from the rth 

rule node at layer three to the j th term node at the ith term set at layer two. Each one of 

these error signals is a summation of p  propagated error signals Sijm from layer three, 

where m = l , . . . ,p , and p  is the number of rules which share the same j th term node at the

same ith input term set at layer two. Using Equation (3.20), the error signal Sy  can be 

calculated as follows:

A 4 *0  r~m
d a 3 d fu m * J m

d fJ  m
lay

(3.27)

Then from Equation (3.6) and Equation (3.12),

d f

d  fJ m
da} j

( l ~ C a y ) * e  ^ a U*'^Je £«mi + g * e ^ a U*'^lu l,i* e ^ u
’ /=! i=l

mi

N
q humi

3 ^ 2 
£ umi

i=1

if the j th term node at the ith input term set in layer two is connected to the rule node m 

at layer three, otherwise,
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d fJ  m  

dalj
= 0

J

where N  is the number of input term sets and umj is the ith input to the rule node m in 

layer three.

Layer 2: Using Equation (3.20) and Equation (3.11) the adaptive rule to tune the 

weights at layer two is derived as follows:

d E  d E

d w f j

da?-  d f l
 t  a v  t  J  lJ

d 4  d f l  d  2

3 d a j j  d  f  y 
S i j *  — ~  *

Wiu d f v
d w f j

(3.28.a)

w f j ( t  + 1)
f  - d E f  

K d w f j  j
(3.28.b)

d a f
where o ls calculated as follows:

f  U

-e f l

-  -e
A \

1+ / v
V

-e

r f 2^l + / v
V

fo r  Gaussian functions 

fo r  Left sigmoidal functions

fo r  Right sigmoidal functions
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dfiJ
and  r  is calculated as follows:

dwfj

a / ( ( * ! * « / ) - in
fe r  Gaussian functions

P j
7  *  1

~  /  Clj

P»

fo r  Left sigmoidal functions

fo r  Right sigmoidal functions

where 772 is the learning rate of the link weights in layer two. The propagated error from 

layer two to the ith input node at layer one is derived as follows:

s h
dE  d a y  d f

___________ j|e —  _____________

d a y  d f  d a }

1 D f l  a J

(3.29)

where
d f lv .
da)

is calculated as follows:

in
fo  r Gaussian functions

l * w l

Pa

Ph

fo r  Left sigmoidal functions

fo r  Right sigmoidal functions
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ddjj
and  r  is calculated as mentioned above.

3 f l

Layer 1: The nodes in this layer just transmit input values to the next layer directly 

without any processing. So, the link weights at layer one are fixed to unity and no 

tuning is required in this layer.

Following the construction phase and the learning phase, an online tuning process is 

performed to obtain the optimum mapping for the inverse kinematics and inverse 

dynamics of the robot manipulator.

3.5. Puma 560® Manipulator Inverse Modelling Results

The modelling results for some random joint angle trajectories for the robot inverse 

kinematics compared with the real outputs and the filtered errors are shown in figure 

(3.9) through figure (3.14).

Also, the modelling results in per-unit (normalized) of the maximum joint torque for 

some random joint trajectories executed for the robot inverse dynamics compared with 

the real outputs and the filtered errors are shown in figure (3.15) through figure (3.20).

It can be seen from the modelling results that the suggested modelling method is very 

effective resulting in minor errors.
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Figure (3.9). Results for link-1 angle prediction.
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Figure (3.10). Results for link-2 angle prediction.
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Figure (3.11). Results for link-3 angle prediction.
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Figure (3.12). Results for link-1 angle error.
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Figure (3.13). Results for link-2 angle error.
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Figure (3.14). Results for link-3 angle error.
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Figure (3.15). Results for link-1 torque prediction.
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Figure (3.16). Results for link-2 torque prediction.
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Figure (3.17). Results for link-3 torque prediction.
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Figure (3.18). Results for link-1 torque error.
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Figure (3.19). Results for link-2 torque error.
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Figure (3.20). Results for link-3 torque error.
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3.6. Summary

This chapter proposed a new solution for the problem of both inverse kinematics and 

inverse dynamics modelling of robotic manipulators for further implementation in 

inverse-model based robotic control systems as will be explained in later chapters. The 

main aim was to benefit from the use of inductive learning techniques to develop fuzzy- 

type rule sets for both inverse kinematics and inverse dynamics from numerical 

observation data collected from the robot during random trajectories operation. These 

rule sets were then arranged in a Mamdani-type neuro-fuzzy set of networks with both 

a differentiable inference system and differentiable membership functions for further 

online tuning of the obtained fuzzy models during inverse control. The results showed 

that the method was successful for both inverse kinematics and inverse dynamics 

modelling of the robot manipulators.
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CHAPTER 4

Neuro-Fuzzy Joint-Based Control of Robotic Manipulators

Traditional proportional integral derivative (PID) controllers can be successful for 

systems that can be modelled relatively precisely by mathematical equations. Various 

combinations have been widely used for industrial processes due to their simplicity and 

effectiveness. PID controllers can be effectively used for first- and second-order linear 

systems, but usually cannot be employed for higher-order and nonlinear systems.

The control of a multi-input multi-output (MIMO) plant is a difficult problem when the 

plant is nonlinear and time varying and there are dynamic interactions between the 

plant variables. Robot manipulators, with two or more joints handling a changeable 

load, are of such type of systems. Conventional methods of designing controllers for a 

MIMO plant such as a multi-joint robot generally require, as a minimum, an accurate 

knowledge of the form of a mathematical model for the plant. In many cases, the values 

of the parameters of the model also need to be precisely known.

A model-based computed torque controller gives good control response if the dynamic 

model of the robot is available. For robot manipulators, it is almost impossible to 

identify precisely such a model and its parameters. Moreover, during operation, the 

dynamics of the robot may change significantly due to varying loading conditions. As a 

result, it is difficult to obtain an accurate mathematical model to allow computed torque
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controllers or other model-based controllers to be accurately applied. This led to so 

called model-free control techniques.

The performance of model-free control techniques relies on incorporating a control 

scheme which is able to adapt (adaptive control) to uncertainties in the system dynamic 

parameters and to external disturbances. Neural Networks, which can learn the forward 

and inverse dynamics behaviour of complex plants, offer alternative methods of 

realising MIMO controllers capable of adapting to environmental changes. Neural 

Network controllers have been used extensively for adaptive robotic manipulator 

control. Most of the schemes utilizing Neural Networks use different learning 

techniques to adjust the inverse dynamic model of the robot manipulator contained in 

the Neural Network. In theory, the design of a Neural Network based control system 

should be relatively straightforward as it does not require any prior knowledge about 

the plant. However, practical problems regarding the Neural Network structure to be 

adopted, the number of input units and the training procedure, including training 

patterns, require investigation. This uncertainty regarding the appropriate network 

structure can result in large discrepancies between network output and desired output at 

the early stages of learning. This error can increase the learning time and convergence 

cannot be guaranteed.

In the last few decades, much research effort has been directed at the design of 

intelligent robotic controllers using fuzzy logic. These schemes provide nonlinear 

behaviour that is determined exclusively by the designer, lower sensitivity to plant 

parameter variations than Neural Network controllers, and simplicity of
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implementation. Fuzzy control has been used for direct feedback control of robot 

manipulators [Erbature et al., 1995; Lin, 1993; Moudgal et al., 1995; and Tang et al.,

2001]. In these examples, no adaptation for the rule base or membership functions of 

the fuzzy controller is carried out online, and only controller gain is modified in 

relation to link speed and joint errors within specific predetermined design parameters 

[Breedon et. al., 2002]. Although the idea of using fuzzy controllers for robotic 

manipulators was introduced in early 1990s, almost no systematic algorithm or detailed 

design procedure can be located in the literature. For example, the shape and location of 

the membership function for each fuzzy variable must be obtained using a heuristic (or 

trial-error) approach. Also, when the human expert cannot easily express his knowledge 

or experience in the form of linguistic “IF-THEN” control rules, it is not easy to 

construct the control rules.

A fuzzy logic system has the ability to express control rules as a linguistic fuzzy 

description but it has no learning capability. Neural Networks have the ability to 

generalize and can predict new output data from new input data, in real-time, without 

the need for a prior knowledge o f the plant model. The fusion of these two approaches 

has the potential to produce a powerful intelligent control system having the features of 

adaptation and learning. Neural Networks are associated with the theory of polynomial 

function approximation, whereas fuzzy logic is based upon symbolic and linguistic 

processes expressed in an interactive rules base, with each rule fired with varying belief 

or support. The belief or confidence vector associated with a fuzzy logic rule base is 

equivalent to a weight in a Neural Network. [Er and Gao, 2003] presented a robust 

adaptive fuzzy neural controller (AFNC) suitable for motion control of multilink robot
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manipulators. The proposed controller was of a self-organizing fuzzy Neural Network 

structure, where fuzzy control rules are generated or deleted automatically according to 

their significance to the control system and the complexity of the mapped system and 

no predefined fuzzy rules are used.

As mentioned before, in most inverse model control techniques, a feedback controller 

(servo controller) is used along with the Neural Network feedforward controller to 

improve the disturbance rejection capabilities of the control system. As learning 

proceeds, the error signal will reduce and the role of the feedforward neural controller 

increases while that of the feedback controller decreases [Pham and Yildirm, 1999]. 

Although the total torque acting on the robot is the sum of the feedback torque and the 

feedforward torque, these two play very different roles in the robot control. The 

feedback torque is used for clumsy but robust control at an early stage of learning, 

while the feedforward torque is necessary for smooth control and fast movement of the 

robot [Miyamoto et al., 1988]. Usually conventional P, PD, or PID controllers are used 

as the feedback controller in many reported works concerning Neural Network control 

of robot manipulators [Akbas and Esin, 2003]. The use of two feedback controllers in 

addition to the feedforward neuro-fuzzy controller is presented in [Peng and Woo,

2002]. The first feedback controller is a fuzzy-PD-like controller implemented in the 

form of a Neural Network with 15 rules derived from experience. The control strategy 

is to train this controller to approximate the optimum weights representing the optimum 

membership functions for the output torque. This is accomplished by using the data 

pairs collected from the system with a computed torque controller to train the Neural 

Network. This controller is trained offline and is kept fixed whilst online. The second

114



feedback controller is a sliding-mode controller calculated from the position and 

velocity errors of the robot joints. This controller is divided into two cascaded parts. 

The first part is a function of the position error and the velocity error, and the output of 

this function is used to train the feedforward neuro-fuzzy controller online. The second 

part is a sign function of the first part with a small constant gain representing the 

approximation error. The output of this part is used to make the tracking errors 

approach zero. The position and velocity references are chosen to be the input of the 

feedforward controller. [Peng and Woo, 2002] presents a complex control technique 

that depends on data collected from a computed-torque controller to train one of the 

feedback controllers. The structure of the main feedforward controller and the use of 

the computed-torque controller however are not clear.

This Chapter deals with the problem of the control of robot manipulators to track an 

arbitrary reference trajectory under the conditions of:

• A time-varying, nonlinear, multivariable, and coupled plant.

• An unknown plant and load model.

The main aim is to benefit from the approximate inverse dynamics neuro-fuzzy 

networks developed in Chapter (3) to achieve the required control. To do so, a 

nonlinear fuzzy-PID-like incremental controller is incorporated as a feedback servo- 

controller in addition to the developed network [Li, 1998; Mizumoto, 1995; and 

Yildirim et. al., 1996]. Incorporating dynafuzznn in the forward path controller gives 

the control system the proper structure and model parameters very close to those of the 

accurate robot inverse model. This in turns helps to reduce the convergence time of the
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controller during online learning. For this purpose, two main parts are employed, the 

first is the neuro-fuzzy inverse dynamics of the robot manipulator developed at the 

offline stage, and the second is a fuzzy-PID-like incremental nonlinear controller. The 

direct inverse Neural Network controller is one of the several types of neuro-controllers 

which have been reported recently. It utilizes an inverse system model which can be 

directly cascaded with the controlled system. This approach relies on the fidelity of the 

inverse model used as the controller. Generally, serious problems arise due to the lack 

of robustness as a result o f the absence of the feedback. This problem can be overcame 

to some extent by adjusting the parameters of the inverse model online, although the 

plant can still loose robustness during the control phase since it depends on the initial 

weight matrix of the Neural Network [Sasaki et. al., 1997]. Another approach to 

achieving an inverse Neural Network controller which aims to overcome this problem 

is known as feedback-error learning controller (specialized inverse learning controller). 

This scheme is based on using a workable traditional controller to stabilize the plant 

and on helping the Neural Network learn in order to provide precise control. A 

feedback-error learning control technique is used to form an efficient adaptive neuro- 

fuzzy controller. This technique differs from direct and indirect learning in that the 

controller no longer learns from input/output data pairs but from a direct evaluation of 

the network accuracy (during actual operation) with respect to the output of the plant. 

In this way, the feedforward controller will adapt its parameters (neuro-fuzzy network 

weights) to compensate for model changes during operation resulting from the attached 

load. The feedback controller response to the system error is used to tune the 

feedforward controller online. The suggested controller structure differs from previous 

work in two important aspects. The first is the use of the developed dynafuzznn
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algorithm as the feedforward controller to achieve the proper controller structure. The 

second is the use of the fuzzy-PID-like incremental feedback controller to generate the 

nonlinear learning signal. Using a variable learning signal with variable feedback gain 

from a conventional PD servo controller has been reported to be successful in 

[Nascimento and McMichael, 1991]. This idea of variable feedback gain conventional 

PD servo controller motivated the idea of utilizing the fuzzy-PID-like incremental 

feedback controller to generate a nonlinear (variable gain) learning signal.

The remainder of this Chapter is organized as follows. Section 4.1 presents the 

proposed controller structure and the suggested fuzzy-PID-like incremental feedback 

controller. Section 4.2 explains the feedback-error learning scheme. Section 4.3 

describes a comparative study of the simulation results for the developed controller 

while controlling the Puma 560® virtual model explained in chapter (3). Section 4.4 

presents a summary for the Chapter.

4.1. Proposed Controller Structure

The structure of the proposed control system as shown in Figure (4.1) resembles the 

additive feedforward control that presented in [Craig, 1996] in some aspects. It consists 

of a feedforward path controller in addition to a feedback path controller. The net 

control action applied to the joints of the robot arm is the sum of the output from the 

feedforward controller and the output from the feedback controller. There are two 

differences in the proposed control system compared with that presented in [Craig, 

1996]. The first is that a new nonlinear fuzzy-PID-like incremental controller is
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adopted as the feedback servo-controller instead of the conventional linear PD 

controller. The second is that a new adaptive feedforward neuro-fuzzy network 

dynafuzznn developed in Chapter (3) is employed to incrementally approximate the 

inverse dynamics model of the robot arm instead of the linearised mathematical model. 

The feedback-error learning scheme described in Chapter (2) is used to tune the 

forward path neuro-fuzzy controller online. The suggested feedback fuzzy-PID-like 

incremental servo-controller provides a variable learning signal, which is necessary for 

robotic systems [Nascimento and McMichael, 1991].

Backpropagation 
Feedback-error 

Learning

Online 
\ Adaptation

dynafuzznn 
Inverse 

Dynamic 
model for the 

robot arm

Robot
Arm

FPID Servo 
Controller

Figure (4.1). Proposed controller structure.
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4.1.1. Forward Path Neuro-Fuzzy Controller

This path as shown in Figure (4.1) is a neuro-fuzzy approximate model of the inverse 

dynamics for the robot arm. The first step is to generate this model offline as explained 

in Chapter (3). The approximate inverse dynamic network has to be trained online to 

compensate for any external disturbances and/or reactions resulting from the attached 

load on the manipulator. This online training scheme utilizes the feedback controller 

response for adjusting the network link weights to adapt the network output so as to 

reduce the feedback controller response to zero.

4.1.2. Feedback Path Fuzzy-PID-like Incremental Servo Controller

This controller is mainly utilized to deal with the disturbances from the external load in 

early learning stages. The controller receives the error between the desired joint angles 

and the actual ones. It generates a control action, which is combined with the action 

from the feedforward controller to form the net torque (control action) applied to the 

joints of the robot.

Conventional PID controllers’ output is proportional to an error, the time derivative of 

the error and the integral of the error. The controller employs a proportional control 

action to reduce the settling time and the rise time of the plant response, a derivative 

control action to reduce the overshoot and the oscillations of the plant response during 

transient conditions, and an integral control action to eliminate the steady state error 

during steady state conditions. This controller is easy to implement and sufficient 

tuning rules are available to cover a wide range of plant specifications. For example,
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the well known Ziegler-Nichols [Ziegler and Nichols, 1942] tuning method can be 

applied to estimate the controller gains based on the transient response characteristics 

of a given system. Moreover, the available PID tuning heuristics are easy to understand 

and implement for simple practical control problems. This controller is more effective 

for linear plants than for nonlinear plants, due to its linear control policy. As explained 

before, FLC have been used successfully in nonlinear control applications. They 

generally provide nonlinear transfer elements for nonlinear control. The majority of 

FPID applications belong to the direct-action FPID type where the direct-action FPID 

is placed within the feedback control loop to compute the control actions through fuzzy 

inference. Several direct-action FPID structures have been reported using one, two or 

three inputs (error, rate of change of error and integral of error) [Mann et. al., 1999]. In 

all of these direct-action FPID controllers, the derivative and integral functions are 

performed quantitatively outside the FLC. They do not employ a FLS as a function 

approximator to perform a fuzzy integral or fuzzy derivative function. In these 

controllers, the FLS performs the nonlinear amplifications associated with the three 

PID control actions. For this work a new Fuzzy-PID controller [Shankir, 2001] is 

adapted with extended rules; this controller functionally performs fuzzy derivative and 

fuzzy integral functions, so that no calculations are required outside the FLC. The 

suggested fuzzy-PID-like incremental controller employs only two inputs (present and 

previous errors), so that the design procedure is simpler. Each element of the fuzzy- 

PID-like incremental controller can approximate the corresponding control function 

with separate nonlinear gain using five fuzzy set partitions (NL, NS, ZE, PS, and PL) 

for both input and output universes of discourses. The input universe of discourse of 

each input variable is uniformly partitioned using fuzzy sets defined by symmetrical

120



triangular membership functions with 50% overlap to allow continuous approximation 

of input signals as shown in figure (4.2). The left most and the right most membership 

functions of the input universe of discourse are saturated to unity membership value in 

the domain less than -2L and more than +2L respectively, where L is the distance 

between two consecutive membership functions centres. The output universe of 

discourse is uniformly partitioned using fuzzy sets defined by symmetrical triangular 

membership functions with 50% overlap as shown in figure (4.3). The left most and the 

right most membership functions of the output universe of discourse are both limited to 

the output minimum and maximum range of operation in the domain less than -2L, and 

more than +2L, respectively. These minimum and maximum ranges in addition to 

controller gains are related to the maximum permissible servo torque applied to the 

robot joints. L, represents the distance between two consecutive output membership 

functions centres where, i is replaced by P, I, or D according to the proportional, 

integral, or derivative control element respectively.

NS ZE PS PLNL

+L +2L-2L 0L

Figure (4.2). Input membership functions of fuzzy controller.
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a //P, jA, or /jD

ZE PSNS PLNL

P, I, or D

m n̂  Value - 2 L p j 5 or D "Lp,!, or D 0 + L p 5i5 or D + 2 L p  j  or D MCIX Value

Figure (4.3). Output membership functions of fuzzy controller.

The proportional, derivative and incremental part of the integral control actions of a 

fuzzy-PID-like incremental controller are mainly functions of the two present and past 

error variables, err(kt) and e r r ( k t - t ) ,  or their normalized variables, e(kt) and

e ( k t - t ) .  Consequently,

U piD(kt) = f  P(e(k t),e(k t-t)) + f  D(e(kt),e(kt-t))

(4.1)

+ t /7 (& /-/) + f  j(e(kt},e(kt-ty)

where the three functions/ p if D, and / 7 are the proportional, derivative and

incremental integral functions to be implemented using the fuzzy logic controller and 

Uj (kt-t) is the past output of the integral controller element. It was proved in [Wang and 

Mendel, 1992] that fuzzy logic systems are universal approximators. Therefore, the 

three functions in equation (4.1) can be approximated using three two-input Fuzzy 

Control Elements (FCEs). Consequently, the outputs of the three FCEs are summed 

together to form the proposed fuzzy-PID-like incremental controller as shown in figure
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(4.4). In the following sections, the design of the operation rules and implementation of 

the three functions in equation (4.1) in the form of three fuzzy control elements are 

explained.

Proportional
FCE

> f

Integral
FCE

UD
Derivative

FCE

Figure (4.4). Structure of the fuzzy servo controller.

4.1.3. Design Procedures for fuzzy-PID-like Incremental Controller

Let the two error variables e rr(k t) and err(k t-t) be defined as errx and err2

respectively. After normalizing the error variables, let the normalized error variables be

given by e (k t) = K e errx = ex, and e(k t — t )  = K e err2=e2, where K e> and K ê  are the

scaling factors corresponding to the two input variables. Because the two input

variables are of the same nature, their scaling factors are equal, i.e. K ej = K ej = K e ,

and their input universes are designed similarly as shown in figure (4.2). Each output 

function of the fuzzy PID-like incremental controller is of a different nature 

(proportional, derivative, or integral). Therefore the partition of the output universe of 

discourse is selected to be of the same membership function shape and degree of
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overlapping but with different scaling factors to allow for different tuning of each 

control element. The design value for the membership functions adapted for the three 

output universe of discourses are (L=0.3 p.u), (Lp=0.2 p.u), (L d= 0 .1 5  p.u), and (Li=0.05 

p.u) of the error domain range. These assigned values result in a small gain integral 

element compared to the other controller elements.

4.I.3.I. Fuzzy Proportional Control Element

To derive the general output of the Fuzzy Proportional Control Element (FPCE), the 

input universes of the normalized input variables et and e2 are partitioned into five 

fuzzy sets with five membership functions as shown in figure (4.2). A five-fuzzy-set 

output universe is considered for the normalized output Up (kt) as shown in figure

(4.3). For the case of FPCE, the distance between the centres of any two adjacent 

membership functions is Lp. The fuzzy rules of the operation of the FPCE according to 

the suggested partitions are generated heuristically based on the intuitive concept that 

the proportional control action at any time step is directly proportionally to an error e, 

at the same time step regardless of the value of the error at the previous time step e2. 

Therefore if the error variable e, is expressed linguistically as zero, positive small, 

positive large, negative small, or negative large, the proportional control action can be 

expressed linguistically as zero, positive small, positive large, negative small, or 

negative large respectively, regardless of the linguistic value of the error variable e2. 

Consequently, the Fuzzy Associative Memory (FAM) rules according to this concept of 

the FPCE can be written as shown in table (4.1).
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NL NS ZE

NL NL NL NL NLNL

NS NS NS NS NS NS

ZE ZE ZE ZE ZE

PS PS PS PS PSPS

PL PLPL PL PLPL

Table (4.1). Proportional element FAM bank.

where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables el and 

e2 and the normalized output variable UP (k t) . From the above rule-base, it can be seen 

that although the consequent depends only on e, , the rules employ two antecedent 

variables corresponding to the two variables e} and e2. The reason for this is to unify 

the number of antecedent variables in the rules of the three FCEs (P, I, and D). 

Therefore, the rules in the three FCEs can be integrated into one rule base to represent 

the fuzzy-PID-like incremental controller. The rules in this integrated rule base have 

two-variable antecedents corresponding to the input variables and e2) and three- 

variable consequents corresponding to the three fuzzy-PID-like incremental controller 

elements (P, I, and D).
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To infer the fuzzy output of the FPCE, Mamdani’s min/max method using the bounded 

sum triangular co-norm is employed. In [Yuan et al., 1992], the fm in  and fmax 

functions were introduced to approximate the logic min and logic max functions 

analytically. These two functions were formulated as follows:

fm in(h„hej) = 0.5 (h„ +ha ) - J ( h „ - h elf  + (0 .0 l)2 +0.01

fmax{hpl,hpl) = 0.5 (hpl+hp!) + ̂ (h p, - h p!f  + (0.0l)2 -0.01

(4.2)

(4.3)

where (heI and he2) are defined as the fuzzy membership values of the input error 

variables ( et and e2), while (hpIand hp2) are defined as the fuzzy membership values

of the same output membership function resulting from any two different rules at any 

time step. For generality, the softmin and softmax functions presented in Chapter (3) 

can replace equations (4.2) and (4.3). The centre average defuzzification method 

(Height method) [Ying et. al., 1990; Ying, 1993] is employed to calculate the crisp 

output of the FPCE. The use of these inference and defuzzification methods with 

overlapping triangular membership functions for both input and output variables 

defines the nonlinearity of the fuzzy controllers. Consequently, based on the defined 

membership functions, only four rules are triggered at a time. Therefore, the inference 

system produces four non-zero fuzzy outputs for the two crisp error inputs. The fuzzy 

output of a rule (output fuzzy sets after inference) is a fuzzy set with a trapezoid 

membership function whose height (h) equals the membership degree produced by the
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min operator of equation (4.2). Based on the input errors condition, employed inference 

method, and defuzzification method used, a numerical example for the fuzzy output and 

the (h) value for each of the four rules for the FPCE are shown in figure (4.5).

The output of the FPCE is calculated for any input condition using the centre average 

defuzzification method, assuming different membership output function for each rule 

inference, as follows:

V[ h value of the input Mfwith min h * output Mfcentre]
FPCE ̂  H i ---------3-------------------------------------------------------------------------(4.4)

f \h  value of the input Mfwith min /zj
I Rulej

Using equations (4.2) and (4.4), the analytical solution of the proportional function of 

the FPCE f p (ex,e2) in Equation (4.1) can be expressed as follows:

4

a Cop.

F P C E ^ . Rulej
4

2* Ijz=l

(4.5)

Rulej

where Copm is the FPCE output membership function centre value for rule z, pRi(ei) is 

the membership degree of the present error to the rule i, and fiRi(e2)  is the membership 

degree of the past error to the rule i.
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JL NS ZE PS >L h L NS ZE PS
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-----> <—

PL

min -2Lp - L p  0 +LP +2Lp max min -2LP -Lp 0 +LP +2LP max

0.2a0.3=0.2

0.2a0.7=0.2

0.8a0.3=0.3

0.8a0.7=0.7

*2 NL NS ZE PS PL

NL min min min min min

NS -LP -LP -LP -Lp -LP

ZE 0.0
V

0.0 0.0 0.0 0.0

PS +Lp +Lp +Lp +Lp +Lp

PL max max max max max

0.1x0 .0+0.2x(-L p)

(0.1+ 02)

=-0.222Lp

Crisp P-element 
Output

ZE PSZE PS

min -2LP -Lp 0 +Lp +2LP max min "2Lp -Lp 0 +Lp +2Lp max

Figure (4.5). Input/output operation of the Fuzzy-P control element.
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4.1.3.2. Fuzzy Derivative Control Element

In the case of the Fuzzy Derivative Control Element FDCE, the same input/output 

number of partitions as in the last section is employed. However, the distance between 

the centres of any two adjacent output membership functions is now Ld. The fuzzy 

rules for the operation of the FDCE according to the suggested partitions are generated 

heuristically as well based on the intuitive concept that the derivative control action at 

any time step is directly proportionally to rate of change of the error (difference) 

between two successive time steps. For example, if the error variables e, and e2 are 

both expressed linguistically as positive, the derivative control action can be expressed 

linguistically as zero. Consequently, the Fuzzy Associative Memory (FAM) rules 

according to this concept of the FDCE can be written as shown in table (4.2).

Vs\ K i m m ZE PS PL

NL ZE NS NL NL NL

NS PS ZE NS NL NL

PL PS ZE NS NL

PS PL PL PS ZE NS

PL PL PL PL PS ZE

Table (4.2). Derivative element FAM bank.
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where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables and 

e2 and the normalized output variable UD (kt).

Consequently, based on the defined membership functions, only four rules are 

triggered at a time. Therefore, the inference system generally produces four non-zero 

fuzzy outputs for the two crisp error inputs. The fuzzy output of a rule (output fuzzy 

sets after inference) is a fuzzy set with a trapezoid membership function whose height 

(h) equals the membership degree produced by the min operator of equation (4.2) 

during the fuzzy inference. Based on the input errors condition, employed inference 

method, and defuzzification method used, a numerical example for the fuzzy output and 

the (h) value for each of the four rules for the FDCE are shown in figure (4.6).

Using the same inference and defuzzification methods in the last section, the analytical 

solution of the FDCE function f D (el,e2) in equation (4.1) can be written as follows:

F D C E ^

Cod, +(001) +0.01
Rule,

4

2* z/=1
ej) +(0.0l)2 +0.01

(4.6)

Rulet

where CodRi is the FDCE output membership function centre value for rule i, juRi(ei) is 

the membership degree of the present error for the rule and juRi(e2)  is the membership 

degree of the past error for the rule
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NL PLZE PSNS
NS ZE PS NS ZE PSPL PL

0.7

0.3

-2L + L +2L min min

NL NS ZE PL 0.2 x 0.0+0.3 x + 0.7 x/wax

f0.2+0.3+0.7;

0.7max+03Ln
NL 0.0 min min min

NS 0.0+Lo min min

ZE 0.0 =0.583 max+ 0.25 Lt

C risp  D -e le m e n t  

O u tp u t

max min

0.0max max

0.0+Ldmax max max

NL NS PL
NS NS ZE PSZE PS PL0.8

0.7

0.2

10-2L -L +L +2L -2Ld -Ld 0 +Ld +2Ld max■2Ln -L n 0  +Ln +2L] max minmin

ei Figure (4.6). Input/output operation of the Fuzzy-D control element.
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4.1.3.3. Fuzzy Incremental Integral Control Element

The conventional integral control action is composed of two parts. The first part is the 

integration initial condition or the controller's output history Uj (kt-t) and the second

part is the controller's incremental output f I(el,e2) = AUt (kt) . Therefore, the output of

the integral element is composed of the same two parts. To implement the Fuzzy 

Integral Control Element (FICE), the same numbers of input/output partitions as in the 

previous two sections are employed. However, in this case, the distance between the 

centres of any two adjacent output membership functions is Li. To implement the 

integration initial condition and the incremental part into one fuzzy controller element,

ththe centres of the output universe membership functions are shifted after the k time

k-\
step to a distance U, (kt — t) = ^  AU, (mt) . The shifting process represents the

m=0

memory of the FICE, so that the old information is stored within the FICE in the form 

of a dynamic (time changeable) output universe of discourse partition [Shankir, 2001]. 

Only the incremental part of the integral control element is of interest for the moment. 

The fuzzy rules of the operation of the incremental FICE according to the suggested 

partitions are generated heuristically as well based on the intuitive concept that the 

incremental part of the integral control action at a time step is directly proportional to 

the sum of the error variables at two successive time steps. For example, if the error 

variables el and e2 are expressed linguistically as positive and negative, the 

incremental part of the integral control action can be expressed linguistically as zero. 

Consequently, the Fuzzy Associative Memory (FAM) rules according to this concept of 

the incremental FICE can be written as shown in table (4.3).
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\  *2 NL NS ZE PS

NL NL NL NL NS ZE

NS NL NL NS ZE PS

7F NL NS ZE PS PL

PS NS ZE PS PL PL

PL ZE PS PL PL PL

Table (4.3). Integral incremental element FAM bank.

where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables et and 

e2 and the normalized output variable A Uj ( K T ) .

To obtain the output of the incremental FICE, the same partitions, inference, and the 

same defuzzification method as in the last two sections are employed. Consequently, 

only four rules are triggered at a time. Therefore, the inference system generally 

produces four non-zero fuzzy outputs for the two crisp error inputs. The fuzzy output of 

a rule (output fuzzy sets after inference) is a fuzzy set with a trapezoid membership 

function whose height (h) equals the membership degree produced by the min operator 

of equation (4.2) during the fuzzy inference. Based on the input errors condition, 

employed inference method, and defuzzification method used, a numerical example for 

the fuzzy output and the (h) value for each of the four rules for the incremental FICE 

are shown in figure (4.7).
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NL NS r7T,ZE PS PL

NL min min min -Li 0.0

NS min min -Li 0.0 +Li

ZE min - L i 0.0 +Li max

PS -Li 0.0 +Li max max

PL 0.0 +Lj max max max

0.2a0.3=0.2 

0.2a0.7=0.2 

0.8a0.3=0.3 

0.8a0.7=0.7

>
min -2Li -Lj 0 +Li +2Li wax min -2Lj -Lj 0 +Li +2Li wax 

Figure (4.7). Input/output operation of the Fuzzy-I control element.
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Using the same inference and defuzzification methods as in the last two sections, the 

analytical solution of the incremental FICE function / 7 (el,e2) in equation (4.1) can be 

written as follows:

4 f I 2 2
Y CoiK (MK(e,)+MH(e2))-^(e,)-M ^(e2)) +(0.0l) +0.01

AFICE,
\ \Rulei

+ ( o ° i f + 001

(4.7)

where Coim is the incremental FICE output membership function centre value for rule

jURj(ei) is the membership degree of the present error for the rule /, and Hm(e2)  is the 

membership degree of the past error for the rule i.

Incorporating the integral controller memory part, the total analytical solution for the 

FICE function UI( k t - t )  + / 7 (el,e2) in equation (4.1) at any time step k  can be written 

as follows:

FICE = —-k

Y +(0- 0 l f  +0.01
(48)

2'J1 +{0Mf +°01
.Rulej

or in another format:

£  { ( m ^ ( f i c e ) ^  ( p H ( e I ) + M K ( e 2 ) ) - j l [ p H ( e l ) - M K ( e 2 ) f + ( 0 . 0 l f  +0.01  

2-Y  +0.01

M  (4.9)

-Rulej

This finally leads to:
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4

3
FICE, = FICE, +-K K-l

(G**]
Rule;

2*Y
/=i

+(0.01) +0.01
(4.10)

From this last equation it can be seen that the integration using the shifting process in 

Fuzzy-PID as proposed by [Shankir, 2001] is similar from the analytical point of view 

to integration using a delay loop in the case of conventional discrete integral controller. 

A feedback-error learning scheme is utilized in the suggested robot control system. As 

mentioned earlier, this scheme ensures that online training will stop only when the 

feedback error is zero. This behavior resembles the integration action in a classical 

integral controller which will be achieved in this case by shifting the output 

membership functions centres of the proposed forward path network (Dynafuzznn), so 

that only the incremental part of the integral control element (equation (4.7)) is used for 

training of the neuro-fuzzy controller to ensure the learning signal reduces to zero 

automatically when the error reduces to zero and to guarantee that the control signal 

converge to that of the forward path controller only. Consequently, the rule base of the 

three incremental FCEs (P, D and I) can be combined together to form one rule base for 

the total fuzzy-PID-like incremental servo controller output as follows:

k / j .

U p i d =-

( k p p K + k f u t n + k p * * )  ( +(0.01) + 0.01

4
2 * y

1=1

(4.11)

Ride,

where kp, kd, and kt are the scaling factors corresponding to the three control actions, 

while ku is an overall gain for the servo controller. A total of 25-rules with two inputs
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and three outputs can represent the combined fuzzy-PID-like incremental controller as 

shown in table (4.4).

; m i e2 P-element D-element I-eiement

NL NL NL ZE NL

NS NL NS PS NL

ZE NL ZE PL NL

PS NL PS PL NS

PL NL PL PL ZE

NL NS NL NS NL

NS NS NS ZE NL

ZE NS ZE PS NS

PS NS PS PL ZE

PL NS PL PL PS

NL ZE NL NL NL

NS ZE NS NS NS

ZE ZE ZE ZE ZE

PS ZE PS PS PS

PL ZE PL PL PL

NL PS NL NL NS

NS PS NS NL ZE

ZE PS ZE NS PS

PS PS PS ZE PL

PL PS PL PS PL

NL PL NL NL ZE

NS PL NS NL PS

ZE PL ZE NL PL

PS PL PS NS PL

PL PL PL ZE PL

Table (4.4). Fuzzy servo controller combined FAM bank.

137



Finally, the total servo-controller output can be represented in the form:

U pid ku\_kPk NPei + k DkND(.ei - e*)+ k i k nM i+ e*)] (4*12)

where k^p , ksD , and km are the equivalent nonlinear gains that can be defined 

according to the input condition (value of current and previous error) and values of the 

three partition values Lp, Ld, and Li. The nonlinear gains provide the general nonlinear 

policy for the controller and the learning signal.

4.2. Feedback-Error Learning Scheme

Following the selection of the feedback controller, the total control torque acting on the 

robot manipulator is the sum of the feedforward torque and the feedback torque.

7i i  r p i  r p i

tot ~  *FB “*■ FF (4.12)

Kawato and his group [Kawato et. al., 1988] proposed a novel architecture for control 

called the feedback error learning (FEL) method, which combines learning and control 

efficiently. It is essentially an adaptive two-degree-of-freedom (TDOF) control system 

with an inverse model in the feedforward path. In some sense, the method is closely 

related to the adaptive internal model control mentioned in Chapter (2). The novelty of 

the FEL method lies in its use of feedback error as a teaching signal for learning the 

inverse model, which is essentially new in control literature. The objective of control is 

to minimize the error between the command signal and the plant output. If the learning
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part of the architecture is disregarded, then, if the inverse model of the plant exists and 

is stable, the tracking will be perfect. In [Miyamura and Kimura, 2002; Terashita and 

Kimura, 2001] a stability proof for the FEL algorithm for linear time-invariant systems 

is presented. Another important point, which was not investigated in Kawato’s work, is 

the problem concerning non-invertibility of the plant, however this aspect was also 

proved to be stable in [Kimura and Miyamura, 2002].

The neuro-fuzzy forward path controller parameters are tuned online using the 

feedback controller response as the error signal. This control structure provides an 

internal teacher so that the control scheme works in an unsupervised manner as there is 

no external teacher in this case. The adjustment of the neuro-fuzzy network parameters 

during the control by feedback-error learning is more convenient than other learning 

structures. The network adjustable free parameters were selected to be centres (mys) of 

the output membership functions of the term nodes in layer four as well as the link 

weights at layers two and six as mentioned before. Despite the effectiveness of the 

back-propagation, its speed of convergence can be painfully slow in online learning. 

The reasons for this have been discussed in details in [Jacobs, 1988]. Jacobs also 

presented an overview of heuristics that can be used to accelerate the convergence of 

the algorithm, suggesting that each weight should be given its own learning rate, and 

that learning rate be allowed to change over time during the learning process. He also 

suggested how the learning rate should be adjusted heuristically. [Fukuda et. al., 1990] 

proposed a variable learning method for robotic manipulators Neural Network 

controllers called “Fuzzy Turbo”, which is based on fuzzy set theory to avoid 

stagnation during learning. In this method, a linear PID feedback controller is used
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along with the Neural Network feedforward controller. In order to accelerate learning, 

they experimentally proposed a table relating the value of the learning rate to the fuzzy 

representation of the output error and the sum of weight changes at learning instant. In 

[Arabshahi et. al., 1992], fuzzy control of the learning rate ij is suggested. The central 

idea behind fuzzy control of the back-propagation algorithm is the implementation of 

the heuristics used for faster convergence in terms of fuzzy IF... THEN rules. This is 

done by considering the error and the change in error to be fuzzy variables taking on 

the feedback controller output at each learning iteration n. A fuzzy variable is also 

considered for the change in learning rate A rjn. The resulting rule set is suggested on the 

bases of changing the learning rate in the way to quickly drive the feedback controller 

output to minimum or zero in relation to the current output and the change in output. 

However, there is still no general guidance for the proper selection of the learning rate 

and one can say it is case dependent policy. In this study, the fuzzy PID-like feedback 

controller along with a fixed learning rate provides the general nonlinear policy of the 

controller and learning signal as well. The back-propagation learning algorithm 

explained in Chapter (3) is a gradient descent search in the space of the Neural Network 

weights and aims to minimize energy function which is normally defined as the sum of 

the squared errors, where each error is defined as the difference between target values 

and the actual values obtained during each iteration of the algorithm. Weight changes 

are performed at the klh iteration according to:



A dElol(wt) ■ ^dT'FF(wk)
A w * =  - t j  l0‘ =  ( V T FB)  * "  * -  (4 .14)

o w k o w k K ’

v Tfb = ti k u [ k p k N P e‘i + k DkND{e’ - ei’ ) + k Ik N M + e 'J~\ (4-15)

where Etot(^k) is the total error at the kth iteration, T tot is the total acting torque at robot 

link i, T FF is the feedforward controller torque at robot link i, T FB is the feedback 

controller torque at robot link i, Wk is the vector of weight values after the k iteration,

Aw/c is the change in these weights, I is the total link numbers of the robot, e] & e ‘2 are 

the current and past position errors at link i, and rj is the learning rate. The chain rule is 

then applied to calculate the network output partial derivative with respect to the 

variables weights at each layer as explained in Chapter (3).

4.3. Comparison Study of the Results

The proposed control system is tested by applying it to control the first three links of a 

Puma 560® industrial robot. The controller algorithm was programmed in C++ and 

linked to the “Pro/Mechanica® ” virtual model of the Puma 560® industrial robot as a 

subroutine as explained in Appendix (B). Figure (4.8) shows the user interface in the 

“Pro/Mechanica® ” environment for the neuro-fuzzy controller developed. For 

comparison purposes, a conventional PID controller, tuned using the Ziegler-Nichols 

tuning rule [Ziegler and Nichols, 1942] and then fine tuned by trial-error, is also used to 

control the robot over the required pre-planned joint-trajectories while carrying a fixed 

payload of 7.0 kg. Figures (4.9) to (4.12) represent the results for the suggested neuro-
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fuzzy controller, while figures (4.13) to (4.16) represent the results for the conventional 

PID controller. It can be observed from the results that the proposed neuro-fuzzy 

controller outperforms the conventional PID controller, both in terms of joint 

displacement and velocity tracking, as a result of the embedded knowledge of system 

dynamics in the neuro-fuzzy feedforward controller component.

N am e: |ExtController S u b a sse m b ly : _^J s u b a s s y l

Custom Load N am e: pum a560

Custom Load Description: Help... J
PUMA560 N euro-Fuzzy A d ap tive  Controller

Load is Active: (■ A lw ays r  Conditionally

A ccep t C ancel

L

Figure (4.8). “Pro/Mechanica” user interface for neuro-fuzzy controller.
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Figure (4.11). Neuro-fuzzy controller velocity trajectories tracking.
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4.4. Summary

This chapter proposed a new solution for the problem of trajectory control of robotic 

manipulators. The main aim was to benefit from the neuro-fuzzy inverse dynamics 

network developed in the previous chapter using input/output data collected from the 

robot. This neuro-fuzzy network forms the forward controller for the proposed control 

system. A new fuzzy-PID-like incremental controller is incorporated in the control 

system as a feedback servo controller. A feedback-error learning scheme utilizing a 

nonlinear learning signal was used to tune the network weights online. The control 

system was then applied to control the Puma 560® virtual model over pre-planned 

joint-trajectories while carrying a fixed payload. The results showed that the method 

was successful and applicable for robotic manipulators control.
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CHAPTER 5

Neuro-Fuzzy Cartesian Control of Robotic Manipulators

Most recent developed manipulator control schemes require as inputs the desired 

position, velocity, and in some cases, acceleration of each joint of the manipulator. 

However, it is most likely for the control system to specify the desired trajectory in 

Cartesian coordinates as the task description is normally expressed in terms of a 

sequence of end-effector coordinates in Cartesian space. Generally, this information is 

transformed through inverse kinematics to a series of angular positions in the joint 

space, while the end-effector control is then accomplished indirectly by controlling the 

joint angles. Although end-effector control is the ultimate goal of any robot control 

system, direct control of the end-effector motion in Cartesian space has not attracted 

much attention. The transformation process from joint coordinates to Cartesian 

coordinates is a vector-valued non-linear function which can be obtained in a 

straightforward way from the geometry of the manipulator and is known as the forward 

kinematics method. However, the reverse process, the inverse kinematics may not be 

unique and is known not to exist in closed form for certain manipulators. To avoid the 

need to calculate the inverse kinematics, two techniques are used for Cartesian control 

of manipulators, the first technique transfer the sensed position of the manipulator 

immediately by means of forward kinematics equations into a Cartesian position of the 

end-effector. This Cartesian position is then compared to the desired one in order to 

form the error in Cartesian space. An inverse Jacobean matrix has to be calculated to 

map the error in the Cartesian space to error in joint space. Finally, this latter is
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multiplied by a gain to compute the torques required to reduce the error. The second 

technique multiplies the Cartesian error vector by a gain to compute a Cartesian force 

vector. This can be thought of as a Cartesian force which, if applied to the end effector 

of the robot, would push the end-effector in a direction tending to reduce the Cartesian 

error. This Cartesian force vector is then mapped through the Jacobean transpose in 

order to compute the equivalent joint torques which would tend to reduce the Cartesian 

error. In all these cases, even though no direct calculation for inverse kinematics 

involved in the control loop, there still a need to calculate the Jacobean matrix or its 

transpose, which is not an easy task. Fuzzy systems and Neural Networks have been 

used in literature to approximate the inverse kinematics calculation for robot 

manipulators [Sang-Bae, 1997; Martinez et. al., 1996; and Kim et. al., 1993]. Most of 

these methods still require pre-calculation of the manipulator Jacobean matrix, resulting 

in additional computational burden. Also, these techniques are referenced as Cartesian 

control systems because the controller is implemented over the Cartesian error and 

cannot be applied to an existing joint-space control scheme found in all industrial 

manipulators. The operation of transforming the position component of a trajectory in 

Cartesian coordinates into a trajectory in joint coordinates which will be then used as 

inputs to an existing joint-space control system is called a command generator 

[Vaccaro and Hill, 1988], because it generates commands to the existing manipulator 

joint-space control system to move along the demanded Cartesian trajectory. [Jung and 

Hsia, 1995] proposed a new Neural Network control technique for non-model based PD 

control of robot manipulators. The main feature of this technique is that compensation 

of robot uncertainties is performed outside the control loop by modifying the desired 

input trajectory. By introducing the Neural Network outside the control loop, the
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control algorithm was implemented at the command trajectory planning level external 

to an existing controller. Although the idea seems promising for Cartesian control of 

robot manipulators, it was implemented in [Jung and Hisa, 1996] for the joint-based 

control technique only.

The remainder of this chapter is organized as follows. Section 5.1 reviews the 

conventional internal model control structure. Section 5.2 presents a modified neuro- 

fuzzy internal model Cartesian control for robot manipulators. Section 5.3 presents the 

tuning method used to adapt the controller parameters. Section 5.4 introduces a 

robustness analysis for the proposed controller. Section 5.5 presents the simulation 

results obtained when the proposed controller is used to control the Puma 560® 

industrial robot virtual model developed in chapter (3) to follow both joint and 

Cartesian trajectories. Section 5.6 presents the application to upper-limb rehabilitation. 

Section 5.7 presents a summary for the chapter.

5.1. Internal Model Control

Both inverse control and internal model control have been recently used in non-linear 

control systems. Many o f the control methods using neural/neuro-fiizzy networks are 

based on the principle of inverse control. Neural networks have been also used in non

linear internal model control lately. By studying the control principles of these 

schemes, it can be seen that the strengths of internal model control may compensate the 

disadvantages of inverse control. The principle of inverse control is the dynamics 

cancellation of the controlled plant. This is a special case of model reference
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feedforward control in which the controller is cascaded with the plant. The block 

combining the controller and the plant is called the reference model. When this 

reference model is chosen to have no dynamics, the task of the controller is to achieve 

total cancellation of the dynamics of the plant. When they are combined, the two blocks 

disappear and reduce to an identity transfer function, so that the output from the system 

is exactly the input to the controller. This is the concept of perfect control. When there 

is dynamics in that model, the control system can also be viewed as a detuned inverse 

control system. When implementing a neural network in an inverse control scheme, 

usually the function approximation ability of the neural network is used as the 

controller to perform inverse mapping. Let U denote the input to the process and Y 

denote the process output. The task of the neural network is to produce U given Y. 

However, using Y  alone as an input is not sufficient to generate U correctly. The most 

common remedy is to add other inputs, for example state feedback signals as explained 

in chapter (4). An inverse control scheme has a few serious problems. It is not possible 

to obtain an inverse model in some cases and the inverse controller is not robust. A 

control scheme is called robust when it remains stable under model uncertainty or 

inaccuracy.

The Internal Model Control (IMC) system was first introduced by [Garcia and Morari, 

1985]. They designed an overall structure using a linear single-input single-output 

(SISO) discrete time process model. Then, they extended the SISO systems to multi

input multi-output (MIMO) systems. This control structure presents a model predictive 

process control algorithm. Actually, the name IMC came from the fact that the process 

model is explicitly an internal part of the controller. The IMC provides a
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straightforward yet effective framework for analysis of control system performance, 

especially with respect to stability and robustness issues. The design of IMC is also 

simpler and more transparent than that of traditional control methods even when the 

goal is just a conventional PID feedback controller. IMC is composed of an inverse 

model connected in series with the plant and a forward model connected in parallel 

with the plant, this structure allows the error feedback to reflect the effect of 

disturbance and plant mismodelling resulting in a robust control loop. IMC is 

characterized by its fast smooth response to set-point changes and robustness against 

parametric changes. Also, if the match between the plant and the plant model is perfect, 

perfect control is achieved. However, perfect matching between plant and plant model 

is difficult to obtain and may lead to sensitivity problems. Normally, a pre-filter is 

introduced before the controller in the control loop forward path to reduce the gain of 

the feedback system in order to move away from the perfect controller and to introduce 

desirable robustness to the closed-loop system. Detailed study for IMC robustness and 

stability issues can be found in [Morari and Zafiriou, 1989]. The IMC structure is 

shown in figure (5.1). This structure consists of the plant Op to be controlled, the model 

of the plant Om, the inverse model of the plant Oc which represents the controller, and 

R, U, Y, and D the vectors of the reference inputs to the system, the control inputs to 

the plant, the system outputs and the external disturbances respectively.

For simplicity, all these quantities are assumed to be of dimension n. In general the 

IMC requires that both the plant Op and the controller Oc be stable. In the case of an 

open-loop unstable plant, pre-stabilization for the plant by a conventional feedback 

loop is necessary before the standard IMC can be applied [Garcia and Morari, 1985].

156



R. Oc
u

Controller

D

+ X  
-> o Y

Plant

Model

Figure (5.1). Standard internal model control structure.
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Figure (5.2). Classical feedback control structure.

The particular structure of IMC shown in Figure (5.1) can be proved to be equivalent to 

that of the conventional linear feedback control structure illustrated in Figure (5.2) 

regarding the following transformation:

(5.1)
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^ ( Z  +  C O J - 'C (5.2)

The equivalence of these two control structures implies that whatever is possible 

employing a conventional linear control structure can be accomplished with the IMC 

structure and vice versa. However, it is more straightforward to design Oc instead of 

designing C. Furthermore, the IMC structure allows designers to include robustness as 

a design objective in a very intuitive manner [Garcia and Morari, 1985]. These can be 

illustrated by examining the IMC properties.

From the block diagram shown in figure (5.1), the input output (from R to Y) transfer 

function Or , and the disturbance transfer function (from D to Y) Od of the IMC 

system can be derived as:

(5.3)
[ 7  +  0 0 - 0  O  1L p c m e J

(5.4)
r / - o  $ + 0 ) 0  1L m e p c J

Equations (5.3) and (5.4) can be rewritten as:

<p r = [ /+ (« > ;' - o j ® - 1]-1 (5.5)

158



(j>D=[<jr'+(dr1-<j>m (5.6)

The most important property of Equations (5.3) and (5.4) is that if the IMC controller is 

designed to be equal to the plant inverse model (O c= O ”1), perfect reference tracking 

(Y = R) with asymptotically vanishing control error and disturbance rejection can be 

achieved despite any model/plant mismatch (i.e. O p ^  O "1). This can be seen from

Equations (5.5) and (5.6) as for ( O c = O m[), the input transfer function and the

disturbance transfer function become <DR = I  and O d = 0 , respectively. If a low-pass 

pre-filter F  is introduced in the control loop, Equation (5.5) can be rewritten as:

+ (5.7)

In the ideal case, i.e. when the plant model is perfect and there is no disturbance, the

above equation results in O R = F , which means that a desired closed-loop robust 

performance of the control system can be easily achieved by a proper design of the pre

filter. Furthermore, by choosing the pre-filter dynamics appropriately, the stability of 

the closed-loop system can be achieved for any degree of plant/model mismatch. In 

general, slower filters are required for large model errors. This can be interpreted as 

(ide-tuning) of an ideal controller, while the procedure is more straightforward and 

intuitive than that of conventional linear controller.
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Another important property of the IMC is that if both of the plant <DP and the IMC 

controller Oc are stable, the stability of the overall IMC system is achieved subjected to 

perfect plant modelling ( ^ p — O m ).This can be seen from Figure (5.1) as

for(Op= O m), the plant input control signal and plant output Y can be derived as 

follows:

U  = cDc(R -D < D p) (5.8)

Y = (Dp<DcR + ( / - a ) p<Dc)D ® p (5.9)

From Equations (5.8) and (5.9), the internal stability of Op and Oc determines the 

stability of U and Y. Therefore, the overall IMC system in Figure (5.1) will be stable 

for stable <bp and <DC.

It is clear from the literature that the IMC approach has not been widely applied to the 

control of mechanical systems. The reason for this could be that the IMC scheme, in its 

original design form is applicable only to asymptotically stable systems, which is not 

the case for most mechanical systems. IMC is a powerful control strategy for linear 

systems, however its performance when applied to non-linear processes is not good 

enough. The development of a general non-linear extension of IMC faces the difficulty 

that non-linear systems are usually described by non-linear models while linear IMC is

based on transfer function models in addition to the lack in powerful tools for design

and analysis of robust non-linear controllers. However, several non-linear IMC based
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controllers have been reported due to recent advances in intelligent modelling 

techniques. Actually, the key characteristics of the IMC described above also apply in 

the non-linear case. For example, a number of researchers have suggested Neural 

Networks to provide the non-linear plant models necessary for IMC from input/output 

data collected from the plant. Likewise, the application of neural networks to the 

inverse modelling of non-linear systems is common in the literature, particularly in the 

field of robotics control. This due to the fact that Neural Networks parallel processing 

architecture, adaptation and learning capabilities, and fast processing for large-scale 

dynamic systems provide solid base to represent the robot forward and inverse model 

within the IMC controller structure. Li et al. proposed compensations procedure for the 

robot dynamics, before the standard IMC scheme can be applied. This compensation 

procedure consists of two stages, namely pre-linearization using approximate inverse 

dynamic model and pre-stabilization using a conventional PD feedback loop [Li et al., 

1995]. Li et al. proposed an adaptive algorithm based on Neural Networks to construct 

a joint-based IMC for robot manipulators. In this method, a Neural Network inverse 

model and a conventional PD feedback were used to pre-linearise and pre-stabilize the 

plant in a fixed structure IMC controller. The utilized Neural Network consists of an n 

sub-network structure, each sub-network operates independently based on each link 

angle, velocity, and acceleration to generate respective link actuating torque.

5.2. Modified Neuro-Fuzzy Internal Model Cartesian Control

In their subsequent work, Li et al. implemented the IMC structure to control robot 

manipulators in a comparison study with internal model control [Li et al., 1996]. In
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their work, the computed-torque controller was used as the pre-compensation structure, 

which comprises a lineariser and a stabilizer, to modify the dynamics of the robot 

manipulator so that the standard IMC structure can be implemented without violating 

its original straightforward and intuitive design principle. In their proposed method, it 

can be seen that the computed-torque control is constructed in the same way as the 

design of the pre-compensation structure of the robot in the IMC system. Therefore, the 

overall robot IMC system can actually be considered as a framework combining the 

computed-torque-like control structure, i.e. the pre-compensation structure, as the inner 

loop, with the general IMC structure as the outer loop. On the other hand, from the 

viewpoint of a standard robot computed-torque control, the IMC configuration can be 

considered as an enhanced scheme of this control algorithm, because the outer loop 

structure in the IMC configuration, which includes the feedforward and the feedback 

component, can be considered as an additional compensator to the original computed- 

torque controller. Another IMC modification technique has been presented in [Liu and 

Yu, 2002]. In this work, a double control scheme, based on the PID control law and the 

internal model control strategy is used to control a continuously stirred tank reactor 

(CSTR) in which parameter uncertainty and system disturbance are considered. The 

plant model was constructed using generalized neuro-fuzzy network. Modelling errors 

due to input/output data of the plant result in mismatching between the inversion model 

and plant’s practical characteristics. If the degree of model mismatching increases to 

some extent, the closed-loop response of the CSTR plant tends to be unstable because 

the internal model structure becomes invalid. So, the suggested modified control 

structure comprises neuro-fuzzy inverse model of the plant shunted by a conventional 

PID feedback controller and used in the forward path of the internal model control.
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This has been done to improve the response performance and to extend the controllable 

range of the CSTR [Liu and Yu, 2002]. [Wen et. al., 2003] presented a general 

algorithm on internal model control based on fuzzy neural networks, where both the 

inverse and plant models are represented by FNN with online error back-propagation 

learning algorithm. These ideas motivated the implementation of the robot Cartesian 

controller system illustrated in figure (5.3). In the proposed control scheme, an 

approximate inverse kinematics model can satisfactorily act as a Cartesian controller. In 

this system, the original structure of the IMC is modified to make it suitable for 

practical Cartesian adaptive control of robotic manipulators. In this way, the IMC can 

be regarded as an adaptive form of command generator working for an existing joint- 

based robot controller. A pre-compensation structure, which comprises the neuro-fuzzy 

inverse dynamic neural network and the FPID servo controller explained in chapter (4), 

is used so that the IMC structure can be implemented using the inverse kinematics 

neuro-fuzzy network and the forward kinematics mathematical model, which is 

generally a group of trigonometric equations (see Appendix A), of the robot arm to 

achieve Cartesian control of the robot manipulator. The sensed joint displacements are 

transformed using the forward kinematics equations to the actual Cartesian 

displacement of the end effector, or this Cartesian displacement can be obtained by 

means of any ultrasonic measuring system. Note that in this case, the internal model 

(forward kinematics mathematical model) represents the model of the robot in addition 

to the existing joint-based controller cascaded by the Cartesian position calculation. 

From the block diagram shown in figure (5.4), the input/output (from Xd to Xm) 

relationship can be directly derived as:
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(5.10)

where , the part surrounded by the dashed line, is the existing joint-based controller

regarded as the pre-compensation structure of the robot dynamics, where Op represents 

the robot arm dynamics, O ff is the neuro-fuzzy inverse dynamic neural network 

regarded as the pre-lineariser, and O fb is the FPID servo controller regarded as the 

stabilization element. The input/output relation of this part can be derived as:

I  _  ( ^ F F  +  ^ F B  )  _  ^  . ^ ( ^ P ^ F f )

( / + O p O F B )  K d > - ^ /  +  < D P 0 F B ]  ( 5 1 1 )

Consequently equation (5.10) can be rewritten as:

o R =
( O ik O k ) ( /  +  ^ p ^ F B  ) 

[^FF  ^FB ]

-1

(5.12)

Comparing the configuration shown in figures (4.1), (5.1), and (5.4), it can be seen that 

the neuro-fuzzy joint-based control is constructed in the same way as the design of the 

pre-compensation structure for the robot in the neuro-fuzzy Cartesian IMC system. 

Therefore, the overall Cartesian IMC can be considered as a framework combining the 

neuro-fuzzy joint-based control structure, i.e. the pre-compensation structure, as the 

inner loop controller, with the general IMC structure as the outer loop controller.
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On the other hand, from the viewpoint of the neuro-fuzzy joint-based controller, the 

IMC configuration can be considered as an enhanced scheme of this control algorithm, 

because the outer loop structure in the IMC configuration, which includes the 

feedforward component Oik (inverse kinematics neuro-fuzzy network) and the 

feedback component Ok (forward kinematics mathematical model), can be considered 

as an additional compensator for the original neuro-fuzzy joint-based controller. In 

another form, the IMC can be regarded as an adaptive form of a command generator 

for the existing neuro-fuzzy joint-based robot controller by introducing the Neuro-fuzzy 

inverse kinematics network outside the control loop achieving compensation for robot 

Cartesian uncertainties by modifying the desired input Cartesian trajectory.

5.3. Training Procedure

Both of the inverse kinematics and inverse dynamics neuro-fuzzy networks are 

constructed using the offline procedure explained in chapter (3). Adaptation for inverse 

dynamic neuro-fuzzy network parameters is performed online as explained in chapter 

(3) and chapter (4). Also, adaptation for the neuro-fuzzy inverse kinematics network 

parameters is performed online using the joint error signal calculated as an input for the 

FPID servo controller. This error signal is propagated through the inverse dynamic 

neuro-fuzzy network to the inverse kinematics neuro-fuzzy network to form adaptive 

Cartesian control through online parameters optimization as explained in chapter (3). It 

can be seen that by proper tuning for the parameters of the inverse kinematics neuro-

fuzzy network, =  O k and Equation (5.12) can be reduced to O r =  /  resulting 

in perfect tracking result over the Cartesian trajectory. Note that in the above analysis, a
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well tuned existing joint-based controller or its model is not strictly necessary for 

perfect tracking, only a well trained neuro-fuzzy inverse kinematics model is enough 

for the control structure to follow the Cartesian trajectories.

From the above analysis, apparently there are no restrictions on the choice of the

0 IF! and O k transfer functions as far as they are the inverse of each other. However, it 

is most likely to select them to be the approximate inverse and forward model of the 

controlled plant. The reason of this can be explained through a modification of the 

control loop diagram of figure (5.4) to that of figure (5.5) and figure (5.6). Since

0 IF! and O k should ideally cancel each other out completely in the proposed control 

system, the positive feedback loop (1) appears to have the possibility of producing an

infinite gain. However, if  the controller is an exact inverse of the controlled

process (joint-based controller and plant up to Cartesian values), the signal in feedback 

loop (1) is balanced by that of feedback loop (2) effectively. The fundamental 

advantage of this scheme is that only an exact inverse neuro-fuzzy kinematic model 

could be enough for perfect Cartesian tracking, while a well tuned existing joint-based 

controller or its model is not strictly necessary.
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j Existing Joint-based Controller as shown in figure (4.1)
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Figure (5.3). Modified neuro-fuzzy internal model controller



Figure (5.4). Internal model controller block diagram.



Figure (5.5). Simplified internal model controller block diagram
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Figure (5.6). Modified internal model controller block diagram
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5.4. Robustness Analysis

In this section, the proposed controller structure is analysed in terms of disturbance 

rejection and sensitivity to model uncertainties. The analysis is compared with the 

original joint-based controller response to disturbance and model uncertainties to 

highlight the added benefits from the new structure.

5.4.1. Disturbance Analysis

For robotic manipulators control, external disturbance are due to load torques acting at 

the joints as shown in figure (5.4). The disturbance transfer function for the neuro- 

fuzzy joint-based controller (from 0d to Xm) can be directly derived as:

For the proposed neuro-fuzzy internal model Cartesian controller, the disturbance 

transfer function (from Xd to Xm) can be directly derived as:

(5.13)

\
(5.14)
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Comparing equation (5.13) and (5.14), it can be seen that the effect of the external

disturbances for the modified IMC has been changed over the joint-based controller by

less sensitive control system to load disturbances compared to the original joint-based 

controller.

5.4.2. Sensitivity Analysis

Generally, in order to analyse the performance of any control system, it is a common 

practice to replace the plant by its modelled dynamics O m and possible model 

uncertainties as follows:

where 5 0 p and AO p are the unmodelled dynamics and/or parameters multiplicative

and additive uncertainties of the plant respectively. Both kinds of uncertainties will be 

studied separately.

5.4.2.I. Sensitivity to Multiplicative Uncertainties

For the neuro-fuzzy joint-based controller alone, the closed loop multiplicative 

sensitivity function can be obtained as follows:
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in the denominator. This term appears to have the possibility of

producing an infinite value driving the disturbance transfer function to zero, resulting in

® p =  ( /  +  8<I>p) O m + A O p (5.15)
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For the neuro-fuzzy Cartesian IMC controller, the closed loop multiplicative sensitivity 

function can be obtained as follows:
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Comparing equation (5.16) and (5.17), again it can be seen that the multiplicative

sensitivity for the modified IMC has been changed over the existing joint-based

(<i>FF+<i>FB)
controller by the term j ---------- n----- in the denominator which appears to have the

- i

possibility of producing an infinite value resulting in less sensitive control system to 

multiplicative uncertainties compared to the original joint-based controller.

5.4.2.2. Sensitivity to Additive Uncertainties

For the neuro-fuzzy joint-based controller alone, the closed loop additive sensitivity 

function can be obtained as follows:

d ° p /
%  _  / ® p  _ d O p dO AOp_

d(A0p) /  3 0  3 (A O  ) 0 .
A 0 p

_ (^ F F  +  ^F B  ) ( M pV f b )

( /+ 0 p 0 FB) OK0 p (^ F F  + ( ^>Fb ) (5.18)

/  A 0 p

/ + 0 p ( 0 F b )  O p

For the neuro-fuzzy Cartesian IMC controller, the closed loop additive sensitivity 

function can be obtained as follows:
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Comparing equations (5.18) and (5.19), again it can be seen that the additive sensitivity 

for the modified IMC has been changed over the existing joint-based controller by the

(Opp + Opfi )
term j ---------- n in the denominator. This term appears to have the possibility of

— - —  M^d?K0 IK j

producing an infinite value resulting in lower sensitivity to additive uncertainties 

compared to the original joint-based controller.

From previous analysis, it is clear that the overall performance of the system in the 

modified IMC structure is improved over the existing joint-based controller.

175



The control system developed can be regarded as an inner joint-based control loop that 

controls the joint angle of each link in addition to a Cartesian control loop which is 

closed around the joint control loop. The Cartesian controller adds an offset Cartesian 

position command, derived from the measured (calculated) Cartesian position of the 

end-effector, to the joint control loop. Thus, the purpose of the Cartesian controller is to 

minimize the measured (calculated) Cartesian end-effector position by modifying the 

commanded end-effector reference position which in turn modifies the joint angles 

references.

5.5. Simulation Results

In order to verify the effectiveness of the proposed Cartesian internal model control 

system, the proposed control system was tested by applying it to control the first three 

links of the Puma 560® industrial robot. The controller algorithm was programmed in 

C++ and linked to the “Pro/Mechanic a® ” virtual model of Puma 560® industrial 

robot as a subroutine as explained in Appendix (B). The joint coordinates trajectories 

are re-planned in Cartesian coordinates and then applied to the suggested control 

system as the reference Cartesian trajectory. The robot was tested again while carrying 

the same fixed payload of 7.0 kg. Figures (5.7) and (5.8) show the Cartesian position 

tracking results for the suggested neuro-fuzzy Cartesian internal model controller. The 

obtained results highly support the validity of the proposed control system.
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5.6. Application to Upper-Limb Rehabilitation

The first task of medical personnel when people suffering from strokes or accidental 

injuries are admitted into hospital is immediately to address life threatening conditions. 

Usually, at such times, little attention is paid to neuro-motor impairment. One of the 

main reasons for this is the shortage of qualified staff and the lack of devices available 

for performing self-therapy. As a result, in most cases, this leads to incomplete 

recovery when the treatment is provided. To address this situation, several research 

groups have developed robotic devices that physically interact with people to stimulate 

their sense of touch and help retain their ability to make coordinated movements. While 

preliminary clinical trials are promising for both improved evaluation and therapy, key 

practical problems remain. In particular, the cost and size of the proposed solutions 

limit their application and practicality, especially for home use. Recognizing the 

complexity of the task of developing engineering solutions for patients with neuro

motor impairments, in 1999, the European Commission (EC) started a multi-national 

project, REHAROB (REHAbilitation ROBots), to produce a robotic system to 

administer physiotherapy to people with upper-limb impairments. The project brought 

together researchers with medical and engineering backgrounds to develop a system 

utilizing the latest technological solutions in robotics and medical diagnostics. The 

main objective of the REHAROB system is to minimize the time spent by 

physiotherapists in performing repetitive exercises on patients recovering from upper- 

limb neuro-motor impairments. This is to be achieved by replacing the physiotherapists 

by a robotized rehabilitation cell capable of performing the same task that the 

physiotherapist usually performs repeatedly on the patient. Consequently, the
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introduction of the proposed system will allow more patients to be seen, assessed and 

rehabilitated by the physiotherapist by limiting his/her job to the diagnosis of the proper 

exercises, while leaving the muscular work to the robotized rehabilitation cell which 

can be regarded as a tireless physiotherapist.

5.6.1. Robotized Upper-Limb Rehabilitation

The proposed system will include in the final stage two industrial robots adapted for 

medical applications plus specialized teach-in and control modules. Information from 

sensors attached to a patient’s arm together with data about the robot’s angular position 

and velocity will be used to control and coordinate the movements of the robots to 

perform personalized sequences of exercises on the patient. There are two phases in 

performing the robotized physiotherapy with the proposed system. The first phase is the 

teach-in phase. During this phase, the physiotherapist performs a prescribed exercise on 

the patient’s arm and at the same time one or two robots holding the arm freely follow 

its movements. Simultaneously, the motion trajectories for the next phase are generated 

by the robot controllers using data captured on the robot joint angles and velocities. The 

second phase is the play-back phase during which the robot/robots perform the taught 

exercises without the help of the physiotherapist. The selection of a suitable sequence 

of exercises in order to achieve a satisfactory rehabilitation result is a key to the 

successful implementation of the proposed system. The design and functionality of a 

knowledge-based system (KBS) is to assists physiotherapists in choosing the most 

appropriate sequence o f exercises. One of the main problems is to simulate the muscle 

resistance torques, specific for a given type of rehabilitation procedure. The patient’s
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resistance torque values depend on a number of factors, such as the type of arm motion, 

the degree of motor impairments of the arm, the sequence of the given exercises, etc. 

This makes the load estimation an unsolvable task requiring the control system to be 

designed considering this situation.

A video library of 45 exercises has been created by the medical experts involved in 

REHAROB to include most o f the exercises that are commonly performed by 

physiotherapists on patients with upper-limb neuro-motor problems. The KBS 

objective is to study the physiotherapist’s decision-making process and develop a 

mechanism that proposes a particular sequence of exercises depending on the status of 

the patient. This intelligent mapping can be achieved by first encoding the exercises 

and the patient’s data into formats suitable for further processing by the KBS [Pham et. 

al., 2001]. The rehabilitation exercises can be encoded in the form of the duration of the 

exercise cycle, movement range in each joint, degree of complexity, patient posture, 

and then finally categorized into three groups namely: Simple, Moderate, and Complex 

according to the number o f joints from the human arm involved in the required motion. 

The KBS design itself is beyond the objectives of this thesis, as this categorization has 

no effect on the robot arm control system, where the movement is recorded in the form 

of robot end-effector position, link angles, and link velocities trajectories in the teach-in 

stage. It may affect the decision of utilizing only one robot manipulator or using two 

cooperating manipulators to perform the required exercise or group of exercises. 

Details of the KBS design can be found in [Pham et. al., 2001].
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Figure (5.9.a). Simple exercise -  Start position.

Figure (5.9.b). Simple exercise -  End position.

Figure (5.9) illustrates one of the exercises categorized as a simple exercise. Here, with 

the patient lying on a couch, the arm is stretched until it points vertically upwards and
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then lowered back to the initial position where the upper arm rests against the couch 

and the lower arm is held vertical. Programming of industrial robots by demonstration 

(teach-in) has been a popular and in some applications the only programming method. 

In REHAROB project, it is planned that the physiotherapist trains the robots while 

he/she is exercising the patient limb. When teaching mode is activated, the 

physiotherapist takes over the load of the upper-limb and the orthoses (devices that 

holds the upper and lower arms during therapy) from the robot(s) by grasping the 

handles of the outer shells covering the human arm [Kovacs et. al., 2001]. He or she 

can then exercise the patient while the robot(s) learns the trajectories. The teach-in 

stage is defined as performing the upper-limb rehabilitation exercises with the robot 

arm attached to the human arm and in idle condition ( almost no actuating torques 

acting on the joint drivers and with links free to rotate with small forces) with the help 

of the physiotherapist expert as shown in figure (5.10). To achieve idle motion 

following (without exerting any forces) from the robot manipulators during teach-in 

stage, it is a requirement to control the grasping force subject to the end-effector to be 

zero. This requires implementation o f incremental position based force control by 

introducing force sensors between the robots end-effectors and the attachment 

mechanism [Lange and Hirzinger, 1996]. The reference force trajectory in this case will 

be constant and equal to zero. Since it is aimed to use standard industrial robots 

controller with digital position control in REHAROB, therefore the teach-in control 

stage will be implemented by an inner-loop/outer-loop control architecture. The inner- 

loop represents the robot internal position control, while the outer-loop represents 

standard robots programming language based force controller [Kovacs et. al., 2001].
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Figure (5.10). Representation of teach-in mode.

During this stage the position sensors of the robot arm records the resulting motion of 

each link in the robot in addition to the end-effector Cartesian position with respect to 

the reference global coordinates. These recorded trajectories are then used as the 

decoded exercises for the upper-limb rehabilitation application control system using 

one or two robot arms in the play-back mode as shown in figure (5.11). The use of the 

robots in the play-back mode requires implementation of incremental position based 

control system. As the weight of the patient arm and the degree of illness (resistance to 

motion) are very difficult to be pre-specified in accordance with the exercises 

trajectories, moreover they vary from patient to patient, the control system has to be 

capable of handling different patient states while achieving the main target trajectories 

by considering the patient resistance to motion as external disturbance. Of course the 

final control system must include some force sensing and safety devices to guarantee 

safe operation in addition to some emergency tripping devices from the patient himself.
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Figure (5.11.a). Representation of play-back mode using one robot.

Figure (5.1 l.b). Representation of play-back mode using two robots.
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5.6.2. Human Upper-Limb Dynamic Model

It is required to test the control system developed in previous chapters in performing 

upper-limb rehabilitation using one robot arm for a simple exercise as first stage. 

Firstly, a mechanical anthropomorphic model for the human arm was designed as 

shown in figure (5.12) to facilitate the required motion requested from the robot to 

perform the rehabilitation training exercises.

The main function of the model of the human upper limb is to simulate and investigate 

the patient arm movement for a given type of rehabilitation procedure and to generate 

the attachment point (attachment points of the robots to the patient arm) trajectories in 

global coordinates. It can be considered as an intermediate unit in between the learning 

procedures of the cell and its influence on the patient.
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Figure (5.12). Virtual dynamic model of the limb.

1 8 6



From a modelling point of view, the human upper-limb can be considered as a system 

of rigid bodies (links) connected in a specific way by revolute joints. This is because 

the processes in the soft tissues, the blood movement and the muscle deformation do 

not influence the mass-inertia characteristics of the links. The creation of a model of the 

limb consists of determining the number of links (bones), their shape, and the types of 

the kinematic pairs (joints). Experimental medical investigations show that the 

coefficient of friction in the joints is very small, so that joint characteristics can be 

approximated to those of ideal kinematic pairs. In this study, the arm weights will be 

approximated by an average value of around 3.5Kg for the lower arm and 4.0Kg for the 

upper arm including the orthoses. The muscle resistance force/torque values depends on 

a number of factors, such as the type of arm motion, the degree of motor impairments 

of the arm, the sequence of the given cycle from the rehabilitation procedure, etc. An 

experiment to evaluate the range o f the resistance torque was performed on a number of 

patients with different motor impairment for different types of rehabilitation exercises. 

During these exercises, force/torque sensors were attached to the patient arm to record 

the values exerted from the patient during rehabilitation. From these data, different 

profiles for the resistance torque of the patient arm were obtained. Based on all 

measurements, the resistance torques in the joints is calculated as a function of the joint 

angles. A detailed description of the process can be found in [Pham et. al., 2001].

To simplify the modelling of the control system, the human arm model is modeled as 

chain of rigid links connected by movable joints [Hsu, et. al, 1993]. This assumption 

allows us to formulate the human arm as a robot manipulator. The rigid links form a 

kinematic linkage, and their motions are constrained according to the degrees of
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freedom (DOFs) of the various joints. Figure (5.13) shows the kinematic modelling of a 

human arm as a chain o f two rigid links, upper and lower arm, connected together to 

other body parts by three joints, shoulder, elbow, and wrist. For the sake of simplicity, 

we model the shoulder and wrist joints as ball joints of 3 DOFs, and the elbow joint as 

butterfly (pin) joint of 1 DOF. So, the human arm model is approximated as a chain of 

two rigid links with a total of 7 DOFs. Using the same notation as in Table (3.1), the 

arm coordinate system can be represented as in Table (5.1). According to 

biomechanical modelling, the seven degrees of freedom human arm model contains 

twenty-nine spring-like muscles in the human arm [Byung-Ju and Freeman, 1995], 

seven muscles around the elbow joint, thirteen muscles around the wrist, and nine 

muscles around the shoulder. Dynamical modelling of such structure is very 

complicated. So, for the sake of simplicity, the arm muscles representation is limited to 

torsion springs of 2.0 N.m. torque constant at the arm joints and connection points to 

the robot manipulators, while limiting the arm model to planar motion only.

Figure (5.13). Kinematics model of the human arm.
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Link Distance d Twist a Length a

Li 0 , 0 90° 0

l 2 e 2 0 -90° 0

Ls Os d3 90° 0

l 4 04 0 1 o o

0

l 5 05 ds 90° 0

l 6 06 0 'O o o

0

L 7 07 0 0° 0

Table (5.1). Human arm model coordinate system [Hsu, et. al, 1993].

This model was then simplified to ignore the wrist as the attachment points of the robot 

will be in the lower arm. Then, the lower and the upper arm model are attached to the 

Puma 560 virtual dynamic model developed in Chapter (3) to test control system 

functionality. Finally, the resulting combined model forms an upper-limb rehabilitation 

cell dynamic model. The trajectories required from the robot arm to perform certain 

exercise are pre-planned according to the simplified model. The aim is to test the ability 

of the proposed control system to follow any of these decoded exercises with different 

patient conditions within a safe operating range. Figure (5.14) shows the 

“Pro/Mechanica®” virtual model used to simulate the robot holding the simplified 

human arm model to perform upper-limb rehabilitation for a simple exercise from the 

library of exercises supplied by the physiotherapist.
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Figure (5.14). Simplified model for upper-limb rehabilitation using one robot.

5.6.3. Upper-Limb Rehabilitation Using One Robot M anipulator

The model shown in figure (5.14) was tested to follow the trajectories for one simple 

exercise from the library of the exercises provided after decoding this exercise into 

joint angles trajectories. The neuro-fuzzy controller described in chapter (4) was 

programmed using C++ and compiled as a custom load to be attached to the model. 

Figures (5.15) and (5.16) show the position tracking results for the suggested neuro- 

fuzzy controller utilized to perform the upper-limb rehabilitation using one robot 

manipulator. The obtained results support the validity of the proposed control system 

for upper-limb rehabilitation application. Also, the Cartesian neuro-fuzzy internal 

model controller developed was used to follow the trajectories for the same exercise
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after decoding this exercise into end-effector position trajectories as well. Figures 

(5.17) and (5.18) show the Cartesian position tracking results for the suggested neuro- 

fuzzy Cartesian internal model controller utilized to perform upper-limb rehabilitation 

using one robot manipulator. The obtained results also support the validity of the 

proposed Cartesian control system for upper-limb rehabilitation application.
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Figure (5.15). Upper-limb rehabilitation position trajectories tracking results.
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Figure (5.16). Upper-limb rehabilitation position trajectories tracking errors.
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Figure (5.17). Upper-limb rehabilitation Cartesian trajectories tracking results
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Figure (5.18). Upper-limb rehabilitation Cartesian trajectories tracking errors
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5.7. Summary

In this chapter, a modified neuro-fuzzy model-based internal model control strategy for 

Cartesian control of robotic manipulators has been proposed, based on the conventional 

structure of IMC systems. The necessary structure modification is very simple and 

effective as it uses an approximate adaptive neuro-fuzzy inverse kinematics network in 

conjunction with a forward kinematics mathematical model to form the internal model 

structure over an existing neuro-fuzzy joint-based controller which was introduced in 

chapter (4). The control structure converts the command generation stage in robotics 

control systems into an additional adaptive control loop which in turn increases the 

overall system robustness to both types of model uncertainties. Also, the proposed 

control structure increases the overall system disturbance rejection capabilities. 

Identification of the inverse kinematics and inverse dynamics neuro-fuzzy networks 

was fully reported in chapter (3). The control system has been tested to control the first 

three links of the Puma 560® virtual model presented in chapter (3) for free pre

planned trajectory tracking while carrying a fixed payload, giving reasonably good 

results.
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CHAPTER 6

Manipulators Position Coordination

Coordination of multi-robot systems has received extensive studies in the past decade. 

This is due to applications that require more than one robot manipulator to be 

performed like lifting heavy or awkwardly shaped object where independent 

manipulators controllers cannot be trusted to fulfill the task. Each robot controller will 

receive no information about the other, and any disturbance in one controller loop will 

cause an error that is corrected only by this controller loop, while the other controller 

loop will carry-on as before. This lack of coordination will cause an error in the overall 

task. Coordination between robot manipulators can be divided mainly into two groups, 

which are cooperation without interactions of forces between robots and cooperation 

with them [Osumi and Arai, 1994]. In the form of scheme categorization, there have 

been mainly three kinds o f coordination schemes reported in the literature. The first 

scheme is the master/slave control where the motion of the master robot is pre-planned 

according to the desired motion o f the manipulated object and the motion of the slave 

robot is to follow the master [Akella and Hutchinson, 2002]. Sometimes, the slave 

robot is position controlled with its desired trajectory is based on the actual position of 

the master robot and is modified in real time. To further enhance the master/slave 

position based scheme, relaxing o f the grasp o f the slave robot is used which basically 

results in its end-effector supporting the manipulated object rather than rigidly grasping 

it. Hence, any trajectory errors o f either o f the robots results in sliding of the 

manipulated object along the supporting end-effector of the slave robot if  the object
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support to the slave robot permits it. The hybrid position/force control method can also 

form part of a master/slave cooperative robotic system, where the master robot is 

position controlled and the slave robot is subject to compliant force control to maintain 

kinematic and force constraints. To further aid the HPFC method in minimizing 

trajectory following error, feedforward signals based on the object and the master robot 

position can be incorporated. HPFC schemes require appropriate force measurements at 

the end-effector o f the robot. This not only results in the need for a force sensor of a 

suitable resolution to be attached between the robot and the load, but also additional 

hardware and software to interpret and transform the sensed value into a usable data 

format. Furthermore, incorporating the force data will increase the computational 

complexity. The second scheme utilizes centralized control architecture, in which 

robots and the grasped payload are considered as a closed kinematic chain. This 

method is designed based on a unified robot and payload dynamic model which is 

generally not easy to formulate. The third scheme is a decentralized control, in which 

each robot is controlled separately by its own local position controller, while 

installation of compliance devices, such as springs or free joints among robots is used 

to avoid excessive inner forces for the cooperative system [Osumi et al., 1997].

All of these coordination schemes considered the situation that the two manipulators 

are physically connected together, like grasping a common rigid payload, and employed 

complex setups o f the hybrid position/force control architecture to overcome excessive 

inner forces between robots [Paljug and Yun, 1995; Subbarao et. al., 2001]. Actually, 

few of these coordination schemes can be applied to commercially available robots so 

far, this is due to the complex hardware and software setup of the control and
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coordination strategy as explained. This situation gives another motivation for 

developing a simple coordination scheme specially to addressed the coordination 

problem when the robots are not kinematically constrained but perform a common task 

together such as one robot holding a payload while the other spreads adhesive on the 

edges, with both robots in motion simultaneously. In such cases coordination without 

interactions of forces is more realistic. Upper-limb rehabilitation, using two robot 

manipulators, can be viewed as an example for not kinematically constrained robots 

performing a common task (although it is forming a closed-chain kinematic system), 

where interacting forces between robots is not essential, due to the presence of the 

elbow joint, and can be disregarded in the controller design, while task planning is the 

most important issue while grasping the patient arm by the two robot manipulators. In 

this way, the upper-limb rehabilitation application using two-robots is similar to a 

closed-chain kinematic system with one free joint (elbow joint). Actually, position 

coordination between two-robots when there is a free joint between them, gives the 

designer a ready made solution that avoids excessive inner forces between the two 

robots [Osumi et. al., 1997; Tinos and Terra, 2002]. Also, for such an application the 

stability issue will not be so critical due to slow motion nature of the application.

In this chapter, a new coordination scheme for two position controlled manipulator 

system is developed by maintaining certain kinematic relationship between 

manipulators end-effectors using fuzzy motion synchronization to perform upper-limb 

rehabilitation application. The basic idea of the new coordination strategy is mainly to 

use the concept of motion synchronization. Since the problem of coordinating two 

manipulators is basically the problem of maintaining certain kinematic relationships
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between them, it is o f common practice to monitor and incorporate this kinematic 

relationship somehow in the control system [Sun and Mills, 2002]. The key to the 

success of the new method is to ensure that each manipulator tracks its desired 

trajectory while synchronizing its motion with the other manipulator motion so that the 

differential position error computed for the geometric connection-vector between the 

two manipulator end-effectors is reduced to zero or kept within low acceptable value. 

The proposed synchronization controller for each manipulator incorporates the cross

coupling technology into adaptive control architecture, by feeding back the differential 

geometric connection-vector position error in the control system. In a broad sense, 

cross-coupling control includes all control schemes that use feedback information from 

more than one control loop to control a composite error, which is normally calculated 

from individual loop errors, rather than individual loop error feedback. The use of the 

cross-coupling control in robotics was introduced by [Feng et al., 1993], where the 

differential velocity error of two driving wheels in a mobile vehicle was minimized 

through cross-coupled motion synchronization.

Implementation of this new coordination scheme is more straightforward and it is 

simple enough to synchronize any two kinematically constrained, physically not 

connected robots working together to perform certain task while the load on each robot 

is assumed to be within the capacity of these robots, which is typical the case of upper- 

limb rehabilitation application. The proposed control provides a unique advantage and 

opportunity for two-robot coordination by maintaining certain kinematic relationship 

without explicitly employing the hybrid position/force control amongst robots. Using 

this synchronization approach, manipulators are controlled in a synchronous manner so
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that tracking errors and synchronization error converge to zero or to a very small value 

acceptable by the application nature.

The synchronization error is defined as a differential position error between the two 

manipulators end-effectors, and is used to evaluate the degree of coordination. The 

consideration of synchronization error in the proposed control design aimes to regulate 

robot trajectories in the transient stage which complies with the exercises execution 

nature of the rehabilitation application as a result of the sudden change in patient arm 

muscular resistance although the slow motion nature of the exercises. The significance 

of the proposed coordination scheme comes from:

> Incorporation of the differential position error into an adaptive architecture for 

two-robot control is relatively straightforward. There is no need to explicitly 

employ hybrid position/force control in the controller design.

>  The controller being implemented using both adaptive neuro-fuzzy inverse 

kinematics and inverse dynamics robot controllers developed in previous chapters 

and is capable to sustain external force disturbances from patient arm.

> Position errors and synchronization error converging to zero or small value to be 

defined by the physiotherapist.

The remainder of this chapter is organized as follows. Section 6.1 presents the 

definition of the synchronization function. Section 6.2 presents the detailed structure of 

the proposed position coordinator for two robot manipulators. Section 6.3 explains the 

idea of implementing the proposed motion coordinator in the form of a fuzzy hysteresis
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coordinator. Section 6.4 introduces the experimental set-up of the proposed 

coordination system over a simplified rapid prototype test-bench representing the 

upper-limb rehabilitation and presents the experimental results obtained. Finally, 

section 6.5 presents a summary for the chapter.

6.1. Synchronization Function

The problem of coordinating two robots is basically the problem of maintaining a 

kinematic relationship between them. Consider a robotic cell formed by two 

manipulators. Denote xi (t) as the Cartesian coordinates vector of robot manipulator i, 

where i= 1 or 2. The position tracking error vector of the manipulator in following a 

desired position trajectory vector, x f (t) , is given by:

Consider that coordinated manipulators are subject to the following synchronization 

function, which defines the task supposed to be achieved:

Assuming that the synchronization function is a linear function of variables jc, (t) and is 

valid for all desired coordinates for the two robots.

Using Taylor expansion, / (* ,)  can be expanded at the desired coordinates x f (t) as:

ei(t) = xi ( t ) - x f ( t ) (6.1)

f ( x i) = f ( x i(t),x2(t)) = 0 (6.2)

f ( x ?) = f ( x dx (0 , * 2  (0 ) = 0 (6.3)
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f ( x i) = f ( x l(t),X2(t))

= f { x f  { t ) , xd2 (t)) + ( * , ( / ) -< (0 )

+  I xi ( x 2 ( t ) -  * 2  ( 0 )  =  0

(6.4)

f ( x i) = f ( x l(t),x2(t))

=  d/(*,)
d x}

( e , ( 0 )  +
5/(x ,)

cbcn *2
(e2(t)) = 0 (6.5)

Note that defining the synchronization function as a linear function of the 

variables xt (t) limits the order o f the resulting Taylor expansion for it to be first order 

as all higher order derivatives o f the series will equal to zero.

Example 1: Consider that a differential-drive mobile robot with two driving wheels 

tracks a curved path as shown in figure (6.1).

Figure (6.1). Mobile robot tracking a curved path.

203



Radii of the desired curves that the two driving wheels follow are denoted by Rj(t) and 

R2 O), while the displacement of the two driving wheels denoted by l\(t) and h(t), 

respectively. The two wheels displacements are subject to a synchronization function:

/ ( / ,  (0 , l2(0 )  = %-¥77, =  «  x A ( ' ) - * ,  ( 0  x = 0
K x \ t )  K 2 y t )

(6.6)

This synchronization function represents the condition which must be fulfilled to limit 

the orientation error to zero in order to sustain the desired curved path of the robot 

structure. According to equation (6.5), the above function is equivalent to causing the 

displacement errors e\(t) and e2 (t) to satisfy:

/ ( / , )  =  / ( A  ( 0 , 4 ( 0 ) = ^  ( 0 ) + ^ 5 p
0/j

= R2( t ) x e l( t ) - R l( t ) x e 2(t) =  0
(6.7)

Example 2: Consider two robot manipulators holding a rigid object in a trajectory 

tracking task as shown in figure (6.2).

xj(t)

o
Figure (6.2). Two robot manipulators holding a rigid object.

204



Since it is a requirement that the difference between positions of the two end-effectors 

of the robots must remain constant in order not to damage the payload or robots, the 

position coordinates of the two manipulators end-effectors, denoted by jq (/) and x2 (t) , 

are subject to the synchronization function:

f i x , ) = / ( * ,  it), x2 (0) = x, (0  — x2(t) — A = 0 (6.8)

where A is a constant vector of a magnitude equal to the effective rigid object length. 

According to equation (6.5), the above function is equivalent to causing position errors 

e\(t) and ej(t) to satisfy:

/ ( * « )  =  / ( * !  =

= el( t ) - e 2(t) = 0

df(x,)
obtj

( e , ( 0 )  +
df(x,)

(e2(0 )
(6.9)

Generally, synchronization functions may contain coordinate errors in the first order

T T[i.e., ei(t) and e2 (t)] or o f higher order [i.e., ej(t) e i(t) and e2 (t) e 2 (t)\ However, it is 

more common that synchronization functions arisen from manipulators coordination 

tasks are linear functions of robot coordinates [Sun and Mills, 2002].

For an upper-limb rehabilitation application using two robot manipulators, the 

rehabilitation task required to be performed by the two robots can be approximated by 

the schematic diagram shown in figure (6.3).
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Human-arm 
simplified model

xi(t)

Figure (6.3). Two robot manipulators performing upper-limb manipulation.

The configuration of the arm is determined by the direction of the rotational axis for the 

elbow joint, the position of a point on that axis, and the angle between the two arm 

links. The position of the point can be computed by the joint angles of the manipulators 

if they are rigidly grasping the arm. As the motion is restricted to be in one plane, the 

direction of the rotational axis will remain fixed.

Since it is a requirement that the difference between position vectors of the two end- 

effectors of the robots to a common coordinates system must equal to the connection 

vector calculated from the pre-planned trajectories for each robot end-effector, the 

position coordinates of the two manipulators end-effectors, denoted by x, (/) and x2 (t) , 

are subject to the synchronization function:

/ ( * ; )  =  / ( * i ( 0 , X2( 0 )  =  Xx( t ) - X 2( t ) ~  A ( t )  =  0 (6.10)
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Where Aft) is a time-varying vector calculated from the pre-planned trajectories for 

each robot end-effector, denoted by ^ ( f ja n d x j (0  • According to equation (6.5), the 

above function is equivalent to causing position errors e\(t) and e2 (t) to satisfy:

/(*,) =
d f ( X i)

dx] (e.(0)
d /0 ,)

d x .
(e2(t)) = el( t ) - e 2(t) = 0 (6.11.a)

Note that the result o f equation (6.11 .a) is the same like that of equation (6.9). This is 

due to the fact that the time-varying vector A(t) in equation (6.11.a) is calculated from 

the pre-planned robots end-effectors desired trajectories during the teach-in stage as 

explained in chapter (5), which do not depend on the current positions of the robots 

end-effectors, hence the partial derivative of vector Aft) with respect to either of the 

actual position coordinates of the two manipulators end-effectors equal to zero. 

Comparing this situation with the case of manipulating rigid object as in example 2, a 

small tolerance error e above zero in equation (6.11.a) magnitude can be accepted as 

the manipulated object (human-arm) contains a free joint (elbow-joint) which prevents 

excessive forces from being transmitted from one robot to the other as indicated in 

equation (6.1 l.b). This idea results in accepting small error in the over all motion of the 

human arm due to the fact that the flexibility nature of the human arm tissues helps in 

absorbing such errors. The control of the synchronization error within this tolerance 

value aims to guarantee that no harmful twisting be applied to the human arm during 

trajectory execution.

| /0 ,)| = d / O . )
dxx (e.W)

d /0 ,)
dx^ b)
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6.2. Proposed Coordinator Structure

The proposed motion synchronization controller can be regarded as comprising three 

main components. The first component is the joint-based controller, which controls the 

motion of each robot joints as explained in chapter (4). The second component is the 

Cartesian trajectory interpolator, which utilizes the inverse kinematics neuro-fuzzy 

network to generate the desired joint trajectories for a given desired Cartesian path for 

each robot as explained in chapter (5). The third component is the motion geometry 

controller (coordinator) which uses motion synchronization to coordinate the motion of 

the two robots. The motion synchronization system consists of:

• A hysteresis controller which is used to monitor the connection-vector between 

the two robots end-effectors and gives a signal whenever this vector violates a 

certain pre-defined tolerance value 8.

• Error mapping and decision-making logic which works to transform the error in 

the connection-vector into trajectory compensation signal to be fed to either or 

both of the two robots reference trajectories.

Actually, the compensation signal can be added to the robots local controllers output in 

the form of an additional control signal to the robot or in another way, it can be added 

to the robots local controllers inputs in the form of increased/decreased error (or 

increased/decreased reference input) as will be used here. The direct modification of 

the controllers’ reference command is straightforward method which does not involve
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changing the system configuration which is of great importance in our case to keep the 

internal model structure valid [Moore and Chen, 1995; Verdonck and Swevers, 2002]. 

The trajectory modification signal for each robot although depends on the 

synchronization error, it also depends on that of the other robot as will be explained in 

the following sections.

Figure (6.4) shows the general structure of the proposed control and synchronization 

system for the two robot arms. The neuro-fuzzy Cartesian controller explained in 

chapter (5) for each robot arm is minimized in one block to simplfiy the block diagram 

and to clarify the synchronization part of the overall controller.

Motion Supervisory Coordination

Error
Mapping

Robot #1 neuro-fuzzy 
Cartesian controller

Y

Robot #2 neuro-fuzzy 
Cartesian controller

r
Figure (6.4). Structure o f the proposed control and synchronization system.



6.2.1. Synchronization Error Controller

The design issue here is how to map the measured synchronization error vector to the 

demand position compensation vector of each robot so that the synchronization can be 

controlled as accurately as possible. The mapping rules between synchronization error 

and corrective actions are heuristically constructed from the commanded inputs and 

measured responses with the main objective of forcing the synchronization error to lie 

within the acceptable tolerance. The first component in the proposed coordinator is 

simply a sign generator which gives +1 for positive synchronization errors and a -1 for 

negative errors. The main component in the proposed coordinator is the hysteresis 

controller which is used to monitor the synchronization error and generates a switching 

signal for the error mapping mechanism to calculate the modifications required. The 

input-output characteristic of the hysteresis controller is as shown in figure (6.5). The 

width of the hysteresis loop, denoted by (c), which represents the tolerance bandwidth 

for the synchronization system to interfere in the control system for modification. If the 

synchronization error is below this value, then there is no vital need for the 

synchronization system to interfere in any of the robots controllers and each controller 

is supposed to cover this error alone or even the system overall performance will not be 

affected by this error. This method ensures that the coordination controller is delayed 

behind each robot controller to allow the robot controller first to compensate for the 

generated error. In other words, the coordination controller is operating only when any 

of the robots controllers fails to quickly compensate for its own generated error and 

works to speed-up this compensation process.
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Figure (6.5). Hysteresis controller input/output characteristics.

The tolerance bandwidth of the hysteresis controller is to be designed according to the 

safety limits provided by the physiotherapist for the patient upper-limb allowable 

torsion and/or exercises trajectories violation allowance.

6.2.2. Error Mapping Look-up Table

This is the part responsible for transferring the synchronization error to a compensating 

signal to be added to either of the robot arms kinematics control part. The main strategy 

depends on the most significant error concept, which is defined as the error which has 

the largest impact on the motion accuracy at this moment.

The position tracking error et (t) o f the ith manipulator in following position trajectory,

x f ( t ) , is given by equation (6.1), where / = 1 or 2. Although the independent adaptive 

control of each robot without synchronization ensures that position errors of each robot 

converge to zero and eventually the synchronization error converge to zero, the



proposed synchronization control aims to improve the transient performance of the 

system specially when a sudden or large change in the patient arm resistance occurs.

e,(t) = x f ( t ) - x i(t) (6.12)

where xt(t) is the end-effector Cartesian position of robot z, x f  (t) is the reference

Cartesian position of robot i end-effector. The reference connection-vector trajectories 

are calculated from the original values of both robots reference trajectories recorded 

during the teach-in process. Also, the actual connection-vector trajectories are 

calculated online from the forward kinematics positioning of the end-effector of each 

robot as shown in equations (6.13), (6.14) and (6.15).

sd(t) = xdx{ t ) - x i ( t )  (6.13)

s(t) = xl( t ) - x 2(t) (614)

es{t) = sd{ t ) - s { t )  (6.15)

where sd(t) forms the reference connection-vector trajectories, s(t) forms the actual 

connection-vector trajectories, andes(t)  is the synchronization error. The error mapping

main function is to judge which robot is the one which is experiencing difficulty in 

following its predefined trajectories at this moment and affecting the overall motion of 

the manipulated object. By monitoring the present values of the synchronization error 

and both of the robots end-effectors Cartesian position errors, a decision on which 

robot to be helped to improve its response is taken according to table (6.1).
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«i(0 r2m(f)

+ve >e +ve +ve es(0 zero

+ve >e +ve zero es(t) zero

+ve >e -ve -ve zero -es(0
+ve >e zero -ve zero -es(t)
-ve <-e +ve +ve zero es(0
-ve <-e -ve -ve zero

-ve <-e -ve zero -es(t) zero

-ve <-e zero +ve zero es(t)
+ve >e +ve -ve es{t) -es(0

-ve <-e -ve +ve -e3(t) es(t)

Table (6.1). Error mapping and corresponding compensating signals.

If one examines the first row in table (6.1), it implies that, i f  the synchronization error is 

positive and exceeded the tolerance value (s), and both o f the robots errors are positive 

then, robot #1 error forms the most significant error. In this case a positive torque or 

input reference compensation signal is to be added to robot #1 controller. Also, by 

examining the last row in table (6.1), it implies that, i f  the synchronization error is 

negative and exceeded the tolerance value ( e ) ,  and robot #1 error is negative, while 

robot #2 error is positive then, it is not certain which robot forms the most significant 

error. A solution for this case is to add a negative torque or reference compensation 

signal to robot #1 and a positive compensation signal to robot #2. By following this 

intuition, a total of 10 rules can be generated for the motion coordinator. In this way, a 

compensation signal will be added to the main controller of the robots to force the 

synchronization error to be maintained within the pre-specified tolerance value.
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6.3. Fuzzy Hysteresis Coupling Coordinator

The above mentioned look-up table can be transformed to form a fuzzy hysteresis 

coordination system by assigning specific shape membership functions. Figure (6.6) 

illustrates the suggested input/output membership functions characteristics.

0 +8-8

+ 11 ■s 0 + 8  + 2 e-2 s

- 2 s  - s  0 + 8  + 2 e + 11

Figure (6.6). Input/output membership functions for the fuzzy hysteresis coordinator.
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By assigning these membership functions, Table (6.1) can be re-written in the form of 

fuzzy hysteresis coordinator rules as listed in table (6.2).

No. es( 0 *i(0 * ( 0 r2m(t)

1 P p p P Z

2 P p z P Z

3 P N N Z N

4 P Z N Z N

5 N P P Z P

6 N N N N Z

7 N N Z N Z

8 N Z P Z P

9 P P N P N

10 N N P N P

11 Z - - Z Z

Table (6.2). Fuzzy hysteresis coupling rules.

Note that there is another rule added in this case (rule No. 11) to represent the case 

when the synchronization error lies inside the tolerance band. Addition of this rule is 

essential and helps to smooth the output characteristics of the fuzzy coordinator. The 

COA defuzzification method [Runkler, 1997] is used to generate the crisp modification 

signals for each robot reference input from the fuzzy output in order to have smoothly 

varying modification signals while the synchronization error is in the range from

±s to ± 2c as specified in the input/output membership functions.

215



6.4. Experimental Coordination between Two SCARA® Type Robots

In order to test the coordination scheme, an experimental test for the proposed control 

and coordination strategy over a simplified real-time test-bench for the upper-limb 

rehabilitation cell formed by two 2-link similar planner robots linked to a simple upper- 

limb model developed in the intelligent systems laboratory as shown in figure (6.7).

Figure (6.7). Experimental setup formed by two 2-link SCARA® type robots.

The mechanical structures of the robot’s links and the arm simplified model were 

manufactured using Rapid-Prototyping facilities available in the Manufacturing 

Engineering Centre, Cardiff School of Engineering. This facility allows the 

transformation of the generated 3-D CAD model created for the parts (or even the 

assembly) by ^Pro/Engineer® ” to be rapidly manufactured from a selection of plastic 

or metallic powders using Selective Laser Sintering (SLS) machines. The manufactured 

parts possess acceptable tolerances in model final dimensions after cooling down.
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6.4.1. Experimental Setup

Each robot link is then fitted with suitable bearing and powered by a high-torque 

compact frame D.C. motor with planetary reduction gear-head by which high-torque to 

weight and inertia ratios and virtually zero backlashes are achieved. Two different gear

ratio gear heads of 224 and 111 were used for linkl and link2 drive motors in each 

robot respectively. The angular displacement of each joint is measured by a high 

accuracy potentiometer [Norberto et. al., 1997]. The system is controlled by an 

ADLINK® DAQ/PXI-2501 PC general purpose interface card plugged in the host 

computer. Appendix (C) summarizes the technical specification for the joint motors, 

position sensors, interface card, ... , etc. Figure (6.8) shows the schematic view of the 

overall system control architecture.

To apply the suggested control and coordination system, an adequate amount of input- 

output data should be obtained. The validity, accuracy, and robustness of the model 

depend on the experiment and the input-output data extracted from it. The main target 

is to construct the inverse kinematics and inverse dynamic model for each of the 2-link 

robot arms. The same procedure described in chapter (3) was used. A simple feedback 

proportional controller was designed first for each link to perform stable behavior along 

different trajectories. A collection of input-output data was obtained through a wide 

range of joint movement. In order to ensure that the excitation during the identification 

experiment covers the entire applicable range of system input/output variables, the 

experiment should excite most of the modes of the system that may be excited when the
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model is used. For robot manipulators, random joint trajectories that cover the desired 

range of input/output parameters are considered proper and sufficient input signal.

PC BUS

DAC

Filters

Amplifiers

Power
Amplifiers

Anti-aliasing
Filters

Amplifiers

■ v v .

ADC

Figure (6.8). Experimental overall system control architecture.
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6.4.2. Experimental Results

The neuro-fuzzy Cartesian control system presented in chapter (5) is used to control 

each robot in addition to the proposed synchronization system in order to implement 

the upper-limb rehabilitation application with two robots working together in order to 

imitate the two hands of the physiotherapist. The task implemented in the experiment 

was to move two robots along desired trajectories while carrying the human arm 

simplified model and causing the differential position error to be within the tolerance 

band (e =3 mm) for both x and y coordinates. The test carried out in the experiment 

was to move the system with the independent adaptive control without synchronization 

first then, the two robots are synchronized using the hysteresis coupling coordinator 

developed for the defined synchronization error as in equation (6.15). Figures (6.9) 

through (6.12) illustrate the actual and the desired joint angles of the two robots without 

synchronization respectively. Figures (6.13) through (6.16) illustrate the actual and the 

desired joint angles of the two robots with the hysteresis coordinator in action 

respectively. The major difference between results with the two methods lies in the 

involvement of the synchronization error in the control system. It can be seen that 

although the independent control without synchronization could achieve satisfactory 

performance in each robot tracking, it exhibits large errors especially at the instant of 

sudden load change. In contrast, the proposed synchronized controller exhibits much 

smaller errors and therefore exhibits better coordination ability.
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Figure (6.9). Robot#! X-coordinate trajectory without coordination.
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Figure (6.14). Robot# 1 Y-coordinate trajectory with coordination.

225



Desired X2-Position Actual X2-Position
____________

60

O  CO h -
10 lo idco

CNJ CNJ CNJ CO CO

Sec.

CO CNJCNJ-CO CO— -Of—CO id—
COCNJ

X2-Error

Sec
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6.5. Summary

In this chapter, a simple coordination scheme is proposed for coordination of two 

position-controlled manipulators. Each robot is assumed to track its desired trajectory 

through its own controller, while maintaining a certain kinematic relationship with the 

other robot, which can be derived from the synchronization function, through motion 

synchronization. Failure to maintain this relationship in tracking may cause failure of 

the task or damage of the system. The proposed coordination strategy is to stabilize 

position tracking of each manipulator while synchronizing its motion with the other 

manipulator by causing differential position errors between them to converge to zero or 

a small acceptable tolerance value. In the control design, the cross-coupling technology 

is incorporated into a supervisory structure for adaptive controllers. It has been shown 

that the proposed coordination system helps to reduce trajectory errors for the robots 

and hence better synchronization is achieved. The proposed coordination scheme is 

straightforward and easy to be implemented without explicitly involving hybrid 

position/force control systems. Experimental investigation on coordinating two 

SCARA® type manipulators demonstrated the effectiveness of the proposed approach.
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CHAPTER 7

Conclusions and Future Work

The overall objective of this work is to design and develop intelligent neuro-fuzzy 

adaptive control systems for industrial robot manipulators using machine learning 

techniques (MLT), fuzzy logic controllers (FLC), and fuzzy neural networks (FNN). 

The main target is to integrate these techniques in a systematic manner to achieve 

adaptive robot manipulator control. This control system is coordinated for two robot 

manipulators to produce a work cell capable of performing upper-limb rehabilitation. 

The remainder of this chapter is organised as follows. Section 7.1 reviews the main 

Contributions of the thesis. Section 7.2 lists the conclusions of the thesis. Section 7.3 

presents suggestions for future investigations.

7.1. Contributions

1. Development of a systematic robotic inverse dynamics and inverse kinematics 

modelling technique based on machine learning technique for automatic fuzzy rule 

generation from observation data. The developed technique introduces a fully 

differentiable fuzzy neural network termed dynafuzznn to achieve online adaptation 

of the developed models. The final result is a systematic neuro-fuzzy inductive 

learning algorithm that integrates the capabilities and performance of a good 

inductive learning algorithm with the ability to create accurate and compact neuro- 

fuzzy models.
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2. Development of an adaptive neuro-fuzzy joint-based robotic control technique. This 

control technique uses the inverse dynamics FNN developed as a feedforward 

controller that compensates for the dynamics interactions of the robot structure in 

addition to a feedback Fuzzy-PID-like incremental servo-controller for each robot 

link. A feedback-error learning scheme is applied to provide an online adaptation 

mechanism for the proposed controller. This scheme ensures that online training 

will stop only when the feedback error reduces to zero. This behaviour resembles 

the integration action in a classical integral controller.

3. Development of an adaptive neuro-fuzzy Cartesian internal model control technique 

for robotic manipulators. The suggested control technique utilizes the neuro-fuzzy 

kinematic model of the robot arm in addition to the joint-based control structure 

proposed and the forward mathematical model of the robot arm in an adaptive 

internal model controller structure to achieve an adaptive form of robot Cartesian 

control. The suggested IMC structure can be regarded as an adaptive form of a 

command generator for the existing neuro-fuzzy joint-based robot controller by 

introducing the neuro-fuzzy inverse kinematics network outside the control loop 

which achieves compensation for robot Cartesian uncertainties by modifying the 

desired input Cartesian trajectory. The feedback error learning scheme is extended 

to include the IMC controller.

4. Development of a simple coordination scheme for two position-controlled robot 

manipulators. The coordination scheme is based on maintaining certain kinematic 

relationships between the two manipulators using reference motion synchronisation.
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The coordination strategy is based on allowing each manipulator to follow its 

desired trajectory using its own controller while synchronising its motion with the 

other robot manipulator’s motion so that the differential position error between the 

two manipulators end-effectors is reduced to zero or kept within acceptable limit.

7.2. Conclusions

1. Recent developments in intelligent algorithms such as machine learning techniques 

and neuro-fuzzy systems can result in a systematic modelling and control 

techniques which can be applied for complex systems such as robotic manipulators. 

Efficient application and integration of these algorithms results in compact and 

adaptable mathematical-model free control techniques capable of updating its 

parameters online to cop with the varying unstructured dynamics in robotic 

manipulators operating with unmodelled loads. By integrating these algorithms, a 

fuzzy neural network termed dynafuzznn is developed that can be used to replace 

any complex block in the control system effectively. The final result is an efficient 

and simple control system.

2. Fuzzy systems can be used to perform feedback control application effectively. A 

fuzzy-PID-like incremental servo-controller can be regarded as an online nonlinear 

stabilizer for a nonlinear plant. Also, it can be regarded as a nonlinear learning 

signal for an adaptive neuro-fuzzy feedforward control system by applying the 

feedback-error learning scheme. In this way, the learning signal will reduce to zero 

only when the feedforward controller outputs converge to the desired control
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actions. Using nonlinear learning signals for control application of nonlinear 

systems is more realistic than using linear learning signals.

3. Cartesian control of robotic manipulators, although being the main target for any 

control application, is a tedious target when implemented using mathematical 

techniques as a result of computing inverse kinematics. Internal model control 

technique provides high disturbance rejection and low sensitivity to model 

uncertainties capabilities. Integration of intelligent techniques, which is capable of 

adapting its parameters to unstructured dynamic variations, with the internal model 

control technique results in an efficient model-free Cartesian control system for 

robotic manipulators. The internal model control structure can be applied as an 

adaptive form of a command generator for an adaptive neuro-fuzzy joint-based 

robot controller. This simplifies the implementation of Cartesian control for robotic 

manipulators.

4. Coordination between two position-controlled robot manipulators is not an easy 

task due to interactions between the manipulators. Generally, complex hybrid 

position/force control techniques are used which are very difficult to be 

implemented in practice. In some applications, interacting forces between robots 

are not important while task planning is the main problem. For such applications, 

by maintaining certain kinematic relationships between the two manipulators’ end- 

effectors, coordination can be much simpler and effective, especially when the 

robots are controlled by intelligent adaptive controllers.
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7.3. Further Work

1. Further research could be conducted to automate the creation of the output 

membership functions in the rule generation part of the modelling process to obtain 

the optimum number and shape of the output membership functions. This 

automation could be based on clustering techniques in order to reduce or enlarge 

the membership functions in areas of the target output space where more or 

less precision is required.

2. The selection of model variables from the available data is another problem to be 

investigated. The training data should reflect all the system dynamics during normal 

operation and cover the whole operation range. It is not certain how to detect which 

parts of the data satisfy these conditions. Therefore, further research could be 

conducted to automate the selection of input variables to be used in the model 

between all past and present values of position, speed, acceleration, and torque 

variables collected during the data collection test. Again this automation could be 

based on clustering or data-mining techniques in order to select the most dominant 

variables affecting the target output.

3. The proposed adaptation method tunes only the parameters of the neuro-fuzzy 

network online. No modification is carried out for the model structure, in other 

words, the rules generated in the offline stage are fixed during operation. 

Consequently, the offline method used for fuzzy rule extraction could be modified 

or integrated with other techniques so that the rule base could be also upgraded
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online by generating new fuzzy rules or pruning the existing rules that are not 

frequently used during different control tests.

4. The model generated input membership functions which are close to each other, in 

regards to the membership function parameters, could be combined together into an 

approximate single membership function to reduce the size of the input domain to 

the neural network and to reduce the fuzzification calculation time.

5. The proposed FPID servo controller rules could be implemented in the same way as 

a fully differentiable neuro-fuzzy network including replacement of the 

membership functions by differentiable ones such as Gaussian membership 

functions, so that a pre-specified controller performance could be met using this 

controller only as a standing alone adaptive fuzzy PID feedback controller by 

online adaptation of the controller membership function and scaling parameters to 

produce control outputs that achieve the pre-specified system response.
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APPENDIX A

Mathematical Formulation

A.I. Kinematics Equations for Puma 560® Manipulator

The Kinematics function of the Puma 560® simulator returns a 4x4 transformation 

matrix representing the end-effector position and orientation with respect to the base 

frame of the manipulator as its output using a given set of joint angles and link 

parameters as input. The direct kinematics solution is a matter of calculating

T = Aq = EM/-i by chain multiplying the six A ‘_, matrices and evaluating each
7=1

element in the T  matrix. The individual A ‘_x matrices are given by:

A 1 -  A - i  —

ce,
s e ,

0

0

-Cot,SB, 

Ccc,C6, 

S a t 

0

S o ijS Q i a iC Q l 

-S c^C B , a tSB, 

C a t d t

0 1

(A.1)

Using the link coordinate system shown in figure (3.1) and table (3.1), each of the 

Aj_i matrices for left and right arm orientation, respectively, can be expressed as 

follows:
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A  =

"CO, 0 + 5 0 , o' "C02 0 -5 0 , a2C02
so, 0 ± c o , 0

>42 =
502 C02 0 a2S02

0 +1 0 7 1 0 0 1 d2
0 0 0 1 0 0 0 1

Ai =

C03 0 ± 5 0 3 0" CO 4 0 + 504 O '
503 0 + C03 0

A  =
504 0 ±C 04 0

0 ±1 0 0 J 0 + 1 0 d4
0 0 0 1 0 0 0 1 _

a : =

C 0 5 0 ± 5 0 5 0" " C 0 6 - 5 0 6 0 o'
5 0 5 0 +  C 0 5 0

> A  =
5 0 6 C 0 6 0 0

0 ± 1 0 0
* 5

0 0 1 de
0 0 0 1_ 0 0 0 1 _

(A.2)

Where 50 ( = sin(0;) and CO, = cos(0,).

In this way the end-effector orientation and position with reference to the base co

ordinate system (frame 0) can be obtained from T  as:

n s a p
0 0 0 1

n x a x Px

” y a y P y

nz *z a z Pz

0 0 0 1

(A.3)

where:

n, = c e ,[C (e 2 + e 3){ c e 4c e 5c e 6 - s e . s e j - s c e j  + e 3)s,e 5c e 6] - s e 1[.se4c e 5c e 6 + c e 4s e 6] 

ny = 5 e ,[C (e2 + 0 3){ c e 4c e 5c e 6 - s e i s e 6} - s ( e 2 + 0 3)S05C 0J+C 0,[,S04C0SC06 +C 04s 0 j

nz = + S (0 2 + 0 3)[C04C05C06 - 5 0 4S06] + C (02 + 0 3)S05C06
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= o 9 , [ - c ( 0 2 + e 3) { O 0 4o 9 55 e 6 + s e 4o 06} + s ( 0 2 + 0 3) s e 5s e 6] - s e , [ - s 0 4o 0 5s e 6 + o e 4o e 6] 

sy = 5 9 , [ - c ( 0 2 + e 3) { c e 4c e 5s e 6 + s e 4c 0 6} + s ,( 0 2 + e 3) s e 55 8 6] + o 0 , [ - 5 e 4c e 5s e 6 + c e 4c e 6]

s, = ± S ( 6 2 +  0 3 ) { C 0 4 O 0 s S 0 6 +  S 0 4 C 0 6 } +  C ( 0 2 +  0 3 ) S 0 5 S 0 6 

a, =  ± C 0 , [ C ( 0 2 + 0 3 ) C 0 4 S 0 5 +  S ( 0 2 +  0 3 ) C 0 5 ] * S 0 , S 0 4 S 0 5

ay = ±sdl[c(02 + e2)ceysei + s(02 + o jcej  ± ce,s04se5

az =  - S ( 0 2 +  0 3 ) C 0 4S 0 5 + C ( 0 2 + 0 3 ) C 0 ,

p x = C 0,[±rf6{ C ( 0 2 + 0 3 ) C 0 45 0 j  + 5 ( 0 2  +  0 3) C 0 5} ± S ( 0 2 + 0 3)rf4 +  a 2C 0 2] +  S0,{rf6S 0 4S 0 5 +  rf2} 

p ,  = s b ,  [ ± d 6 { C ( e 2 +  e 3 ) c e 4s e 5 +  s ( e 2 +  e 3 ) c e 5} ±  s ( 9 2 +  e 3 )rf4 +  « 2C 0 2 ] + c e ,  {rf6s 0 4s o 5 + d 2} 

p 2 = r f 6 { C ( 0 2 + 0 3 ) C 0 5 - S ( 0 2 + 0 3 ) C 0 4S 0 5} +  C ( 0 2 + 0 3)rf4 + a 2S 0 2 +</,

• + Indicate left and right shoulder configuration, respectively.

Given the end-effector orientation and position as shown above, the inverse kinematics 

approach is used to obtain the joint angles 0( of the robot arm as follows:

6, =Tan -i — P y  ^ P x  + P l  ~ d \  ~ d l P ,  

_ ±  P , ^ P i  +  P i  ~  d 2 + d l P y _

(A.4)

62 = Tan-i -  (p ja 2 + d4S 0J  + {d4C 0 J {  ± J p l  + p 2y -  d \ }) 

p / d 4C03) -  {a2 + d4S 0 J {  ± J p l + P y - d l }
(A.5)
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± Indicate left and right shoulder configuration, respectively.

6, = Tan 1
„ 2  . 2 . 2 j 2  2 j 2
Px  +  P y  +  Pz  ~  4  ~ a 2 ~ “ 2

(A.6)

• ± Indicate elbow-below-hand and elbow-above-hand configurations, respectively.

• The degenerate case (0 5=O), i.e., when the axis of joint 6 is aligned with the

approach vector[ax ay az]T, results in (0 4 + 06) = total angle required to align

the orientation of the hand.

• For a given arm configuration, (0j, 02, 03, 04, 05, 06) is a set of solutions and

• (0 ,,02,03, 04 + 7i ,-0 5, 06 + 7i) is another set of solutions.

• The joint angles 0, are obtained in the following sequence 0j, 03, 02, 04,05, 06.

04 = Tan 1
cexay-sexax

(A. 7)
C0xC(02 + 03)a x + S exC(02 + 02)a y -  S(02 + 03)a : J ’

05 = T a n 1

• -180° <180°
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Figure (A.l). Definition o f the Puma 560® robot arm position configuration.

254



A.2. D’Alembert Dynamic Equations for Puma 560® Manipulator

Zi Link i+1

Link i

Link i-1

Pi-1

Base coordinate system

Figure (A.2). Vector definition for D’Alembert equations.

The dynamic equations of any open chain robot manipulator are expressed as:
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^ D vOJ + H l ^ { O 90) + H f*{p ,e )  + Gi =Tl
7=1

Where:
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t f “ ( X )  = Z!

[ • R X ,] r 7
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Z
7=1

X X . x

ZXX-.
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Z XX,
k = j + 1
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> +
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G, = -gZ
j=i

g = (gX’gy>gz)T> |g| = 9.8062m / s 2

; i = l,...,n
(A. 13)

where;

nii = Mass of link /;

11 = The inertia about the centre o f mass of link i with respect to the base co-ordinate 

system;

T i = The applied torque exerted on link z;

rs = The position vector to the centre o f mass of link from the base co-ordinate system;

—  tVics = The position vector o f the centre o f mass of link s from the (s-1) co-ordinate 

frame with reference to the base co-ordinate frame;

I s = The inertia tensor matrix o f link about its centre of mass expressed in the s* co

ordinate system;

R  J = The rotation matrix with reference to the s111 co-ordinate frame; 1 < s < n ;

Z  _j = The axis of rotation of joint j with reference to the base co-ordinate frame;

The dynamic coefficients Dtj and Gt are functions of both the joint variables and

inertial parameters o f the manipulator, while H jrans and H f ot are functions of the joint 

variables, the joint velocities and inertial parameters of the manipulator. These 

coefficients have the following interpretations:
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1. The elements of the ZV matrix are related to the link’s inertia of the manipulator.

Equation (A. 10) reveals the acceleration effects of joint j  acting on joint i where the 

driving torque r( acts. The first term of equation (A. 10) indicates the inertial effects

of moving link j on joint i due to the rotational motion of link j , and vice versa. If i 

=/, it is the effective inertia felt at joint i due to the rotational motion of link j ,  while 

if i ^ j , it is the pseudo products of inertia of link j felt at joint / due to the

rotational motion of link j .  The second term has same physical meaning except it is 

due to the transitional motion of link j  acting on joint /.

2. The H jrans (0,0) is related to the velocities of the joint variables. Equation (A.l 1)

represents the combined centrifugal and Coriolis reaction torques felt at joint / due 

to the velocities of joints p  and q resulted from the transitional motions of links p 

and q. The first and third terms of equation (A .ll) constitute the centrifugal and 

Coriolis reaction forces from all the links below link i in the kinematic chain due to 

the transitional motion of the links. If p=q , then it represents the centrifugal 

reaction forces felt at joint /.I f  p ^ q ,  then it indicates the Coriolis forces acting on

joint /. The second and fourth terms of equation (A .ll) indicate the Coriolis 

reaction forces contributed from links below link / in the kinematic chain due to the 

transitional motion of the links.

3. The H * 0‘(Q,Q) is also related to the velocities of the joint variables. Similar to

the H j r a n s  (0,0), equation (A. 12) reveals the combined centrifugal and Coriolis 

reaction torques felt at joint / due to the velocities of joints p  and q resulted from the
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rotational motion of link p  and q. The first term of equation (A. 12) indicates purely 

the Coriolis reaction forces of joints p  and q acting on joint i due to the rotational 

motion of the links. The second term is the combined centrifugal and Coriolis 

reaction forces acting on joint i, while i f p ^ q ,  then it represents the Coriolis 

forces acting on joint i due to the rotational motion of the links.

4. The coefficient Gt represents the gravity effects acting on joint i from the links 

above joint i.

For the Puma 560® robot arm, the elements of the Dy  matrix come from the

transitional and rotational effects of the links. For the first three joints (0 1,0 2,03),

because of their usually long link length for maximum reach and long distance traveled 

between initial position and final position, the effects of transitional motion will 

dominate the rotational motion. In contrast to the first three joints, the rotational effects 

will dominate for the last three joints. Hence, one can simplify the computation of the 

Dy  matrix by considering only the transitional effects for the first three joints and the

rotational effects for the last three joints. Similarly, one can evaluate the contribution of

H j r a n s  and H . f o t  and eliminate their computations if they are insignificant. The

resulting simplified model retains the entire major interaction and coupling reaction 

forces at a reduced computation time and greatly aids the design of an appropriate 

control law for controlling the robot arm.
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A PP E N D IX  B

Pro/Mechanica Software Interface 

B.l. Custom Load Definition

To apply intelligent neuro-fuzzy control to the virtual model created using 

Pro/Mechanica® software, there must be some way to exchange information with the 

mechanism. A custom load can create measures in C++ to provide useful information 

about the mechanism to the user and feed-back the driving torques and forces to the 

Pro/Mechanica® Motion's engine. Proper design of custom load makes it appears as it 

is a built-in feature of Pro/Mechanica® Motion's engine. When the custom load 

command is selected, a form appears similar to this one:

Name: |Extfcontroller Subassem bly: A  su b a ssy l

Custom Load Name: Select...

Custom Load Description:

Load is Active: (• Always C  Conditionally

A ccept Cancel

Figure (B.l). Custom load selection user interface

2 6 0



When the user chooses Select, Pro/Mechanica® Motion queries its engine for the 

names of available custom loads. A list of available custom loads appears and the user 

selects the proper custom load he needs.

Custom Load Description: 

A  simple gear model

CancelAccept

55' $ List of Available Custom Load

mtirix
datagenl
datagen
puma560
pumatl
ro b lp o s l
rob1 pos11
rob2pos1
tworobot2
two robot

ear

Figure (B.2). List of available custom loads user interface

Pro/Mechanica® Motion again queries the engine for the description of the custom 

load, and the contents of Interface and Help files are obtained. A description of the 

custom load is displayed to the designer as shown above. Eventually the user selects 

(Accept). At this point, he is prompted one item at a time for all information required 

by the custom load from the virtual model. In general, the items prompted for are 

bodies, points, joints, axes, vectors, scalars, and integers. Any other information about 

the prompts can be obtained and passed to the custom load subroutine from
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Pro/Mechanica® Motion engine such as orientations, inertia matrices ...etc. In addition, 

if the custom load produces measures as output, the user is prompted to give names to 

these measures and one icon identical to the built-in loads icons is produced for each 

output load which is normally a driving force or torque.

B.2. Writing the Custom Load

This is a summary of the steps required to create the custom load successfully.

1- Plan the custom load.

The first step is to decide what inputs are required from the designer, what 

additional data is required from Pro/Mechanica® Motion, what outputs are 

produced by the custom load, and what error conditions can occur.

2- Write the interface file.

The Interface file contains the instructions to Pro/Mechanica® Motion for 

implementing the plan. For examples, it tells Pro/Mechanica® Motion what kind of 

data to get from the user and gives the prompts which should be used to request it, 

what kind of forces or torques coming to the model and where they should be 

applied, and what text should be used to report error conditions. This file is created 

using any text editor with the extension “*.ifc”. The designer must compile this file 

(to produce “*.ifo” file) so that Pro/Mechanica® Motion can link it in to the model.

3- Write the custom load subroutine.

The Interface file specifies the inputs and outputs to the custom load, the subroutine 

actually accepts these inputs, processes them, and produces the outputs. The
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designer creates a C++ subroutine with a predefined calling sequence. The designer 

must know the array length in advance. The designer must compile this subroutine 

(to produce “*.o” file) so that Pro/Mechanica® Motion can link it in to the model.

4- Write the help file.

The designer should document his custom load in sufficient details to allow 

successful use of it. This information can be put in a simple text ASCII file (in the 

form “*.hlp”) that is accessible to Pro/Mechanica® Motion engine.

5- Installing the custom load.

Once the custom load is working, it can be installed with the Pro/Mechanica® 

Motion engine so that it is accessible to all users. All names of the files mentioned 

above should be the same with only the file name extension varying according to the 

file type.

B.3. Writing the Interface File

The interface file is a simple ASCII® file which can be created using any text editor. 

Once created, it must be placed under the subdirectory (\ \i486_nt) in the 

Pro/Mechanica® Motion directory and must be compiled from within this location 

using the command:

\ \i486_nt\ mmifcc tworobot.ifc >tworobot.txt
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This command will generate the tworobot.ifo file from the tworobot.ifc file and also a 

summary file (tworobot.txt) containing the interfaced items description. The interface

file used for the coordination of two Puma 560® robots is listed below.

Interface file (tworobot.ifc):

LOAD {
DESCRIPTION

VERSION
LANGUAGE
SUBROUTINE

PROMPTS {  
linkO 
linkl 
link2 
link3 
link4 
link5 
Unk6 
linkl 
link8 
link9 
linkl 0 
linkl 1 
linkl 2 
linkl 3 
linkl 4 
enefctl 
enefct2 
vectal 
vecta2 
vecta3 
vectjl 
vectj2 
vectj3 
vecta4 
vecta5 
vecta6 
vectj4 
vectj5 
vectj6 
}

STATES {
errlint;  
err2 int;

"2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing 
Controller ";
"1. 0 ";

C;
tworobot;

"Select the ROBOT#l Link-0 body" 
"Select the ROBOT#l Link-1 body" 
"Select the ROBOT#l Link-2 body" 
"Select the ROBOT# 1 Link-3 body" 
"Select the ROBOT#l Link-4 body" 
"Select the ROBOT#l Link-5 body" 
"Select the ROBOT#l Link-6 body" 
"Select the Connection Arm body” 
"Select the ROBOT#2 Link-0 body" 
"Select the ROBOT#2 Link-1 body" 
"Select the ROBOT#2 Link-2 body" 
"Select the ROBOT#2 Link-3 body" 
"Select the ROBOT#2 Link-4 body” 
"Select the ROBOT#2 Link-5 body" 
"Select the ROBOT#2 Link-6 body" 
"Select the end-effector#l point” 
"Select the end-effector#2 point"

'Select the ROB#l Joint-1 angle vector" 
'Select the ROB#l Joint-2 angle vector" 
'Select the ROB#l Joint-3 angle vector"
'Select the ROB#l Joint-1 torque vector" 
'Select the ROB#l Joint-2 torque vector" 
'Select the ROB#l Joint-3 torque vector" 
'Select the ROB#2 Joint-1 angle vector" 
'Select the ROB#2 Joint-2 angle vector" 
'Select the ROB#2 Joint-3 angle vector" 
'Select the ROB#2 Joint-1 torque vector” 
'Select the ROB#2 Joint-2 torque vector" 
'Select the ROB#2 Joint-3 torque vector"

BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
BODY; 
POINT; 
POINT; 

VECTOR linkl; 
VECTOR link2; 
VECTOR link3; 
VECTOR linkl; 
VECTOR link2; 
VECTOR link3; 
VECTOR link9; 
VECTOR linklO; 
VECTOR linkl 1; 
VECTOR link9; 
VECTOR linklO; 
VECTOR linkl 1;
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err3_int;
err4_int;
err5_int;
err6_int;
}

INPUTS {
orintO ORIENT linkO; 
or inti ORIENT linkl; 
orint2 ORIENT link2; 
orint3 ORIENT link3; 
orint4 ORIENT link4; 
orint5 ORIENT link5; 
orint6 ORIENT linkS; 
orint7 ORIENT link9; 
orint8 ORIENT linklO; 
orint9 ORIENT linkl 1; 
orintlO ORIENT linkl 2; 
orintll ORIENT linkl 3; 
axisl 10 XFORM vectal IinkO; 
axis!21 XFORMvecta2 linkl; 
axisl 32 XFORM vecta3 link2; 
ctxis210 XFORM vecta4 linkS; 
axis221 XFORM vecta5 link9; 
axis232 XFORMvecta6 linklO;
}

OUTPUTS {
torql "torque on ROBOT#1 linkl joint" TORQUE linkl vectjl; 
torq2 "torque on ROBOT#1 link2 joint" TORQUE link2 vectj2; 
torq3 "torque on ROBOT#1 link3 joint" TORQUE link3 vectj3; 
torq4 "torque on ROBOT#2 linkl joint" TORQUE link9 vectj4; 
torq5 "torque on ROBOT#2 link2 joint" TORQUE linklO vectj5; 
torq6 "torque on ROBOT#2 link3 joint" TORQUE linkl 1 vectj6; 
errl_der "derivative o f ROBOT# 1 error-1" DERIV errl int;  
err2_der "derivative o f ROBOT#! error-2"DERIV err2_int; 
err3_der "derivative o f ROBOT#l error-3”DERIV err3_int; 
err4_der "derivative o f ROBOT#2 error-1" DERIV err4_int; 
err5_der "derivative ofROBOT#2 error-2"DERIV err5_int; 
err6_der "derivative of ROBOT#2 error-3" DERIV err6_int;
}
}

Summary file (tworobot.txt):

Description : 2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing Controller
Load type : Ordinary
Language : C
Version : 1.0
Subroutine : tworobot
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Prompts:
Name : linkO 
Type : BODY
Prompt : "Select the ROBOT# 1 Link-0 body" 
Index : 0

Name : linkl 
Type : BODY
Prompt : "Select the ROBOT# 1 Link-1 body" 
Index : 1

Name : link2 
Type : BODY
Prompt : "Select the ROBOT#l Link-2 body" 
Index : 2

Name : linkS 
Type : BODY
Prompt : "Select the ROBOT# 1 LinkS body" 
Index : 3

Name : link4 
Type : BODY
Prompt : "Select the ROBOT#l LinkS body" 
Index : 4

Name : Unk5 
Type : BODY
Prompt : "Select the ROBOT# 1 LinkS body" 
Index : 5

Name : link6 
Type : BODY
Prompt : "Select the ROBOT#1 LinkS body" 
Index : 6

Name : link7 
Type : BODY
Prompt : "Select the Connection Arm body" 
Index : 7

Name : link8 
Type : BODY
Prompt : "Select the ROBOT#2 Link-O body" 
Index : 8

Name : link9
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Type : BODY
Prompt : "Select the ROBOT#2 Link-1 body" 
Index : 9

Name : linklO 
Type : BODY
Prompt : "Select the ROBOT#2 Link-2 body" 
Index : 10

Name : linkl 1 
Type : BODY
Prompt : "Select the ROBOT#2 Link-3 body" 
Index : 11

Name : linkl 2 
Type : BODY
Prompt : "Select the ROBOT42 Link-4 body" 
Index : 12

Name : linkl 3 
Type : BODY
Prompt : "Select the ROBOT#2 Link-5 body" 
Index : 13

Name : linkl 4 
Type : BODY
Prompt : "Select the ROBOT#2 Link-6 body" 
Index : 14

Name : enefctl 
Type : POINT
Prompt : "Select the end-ejfector#l point”
Index : 15

Name : enefct2 
Type : POINT
Prompt : "Select the end-effector#2 point"
Index : 16

Name : vectal 
Type : VECTOR
Prompt : "Select the ROB#l Joint-1 angle vector" 
Index : 17 
Frame : linkl 
Default : 0 0 0

Name : vecta2
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Type : VECTOR
Prompt : "Select the ROB#l Joint-2 angle vector” 
Index : 18 
Frame : link2 
Default : 0 0 0

Name : vecta3 
Type : VECTOR
Prompt : "Select the ROB#l Joint-3 angle vector" 
Index : 19 
Frame : link3 
Default : 0 0 0

Name : vectjl 
Type : VECTOR
Prompt : "Select the ROB#l Joint-1 torque vector" 
Index : 20 
Frame : linkl 
Default : 0 0 0

Name : vectj2 
Type : VECTOR
Prompt : "Select the ROB#l Joint-2 torque vector" 
Index : 21 
Frame : link2 
Default: 0 0 0

Name : vectj3 
Type : VECTOR
Prompt : "Select the ROB#l Joint-3 torque vector” 
Index : 22 
Frame : link3 
Default : 0 0 0

Name : vecta4 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-1 angle vector" 
Index : 23 
Frame : link9 
Default : 0 0 0

Name : vecta5 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-2 angle vector" 
Index : 24 
Frame : linkl 0 
Default : 0 0 0
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Name : vecta6 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-3 angle vector" 
Index : 25 
Frame : linkl 1 
Default : 0 0 0

Name : vectj4 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-1 torque vector" 
Index : 26 
Frame : link9 
Default : 0 0 0

Name : vectj5 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-2 torque vector" 
Index : 27 
Frame : linkl 0 
Default : 0 0 0

Name : vectj6 
Type : VECTOR
Prompt : "Select the ROB#2 Joint-3 torque vector" 
Index : 28 
Frame : linkl 1 
Default : 0 0 0

States:
Name : errl int 
Index : 29

Name : err2_int 
Index : 30

Name : err3_int 
Index : 31

Name : err4_int 
Index : 32

Name : errS int 
Index : 33

Name : err6_int 
Index : 34
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Inputs:
Name : orintO 
Type : ORIENT 
Index : 35 
Inputld: linkO

Name : orintl 
Type : ORIENT 
Index : 36 
Inputld: linkl

Name : orint2 
Type : ORIENT 
Index : 37 
Inputld: link2

Name : orint3 
Type : ORIENT 
Index : 38 
Inputld: link3

Name : orint4 
Type : ORIENT 
Index : 39 
Inputld: link4

Name : orint5 
Type : ORIENT 
Index : 40 
Inputld: link5

Name : orint6 
Type : ORIENT 
Index : 41 
Inputld: link8

Name : orint7 
Type : ORIENT 
Index : 42 
Inputld: link9

Name : orint8 
Type : ORIENT 
Index : 43 
Inputld: linkl 0



Name : orint9 
Type : ORIENT 
Index : 44 
Inputld: linkl 1

Name : orintlO 
Type : ORIENT 
Index : 45 
Inputld: linkl 2

Name : orintll 
Type : ORIENT 
Index : 46 
Inputld: linkl 3

Name : axisllO 
Type : XFORM 
Index : 47 
Inputld: vectal 
Inputld: linkO

Name : axisl21 
Type : XFORM 
Index : 48 
Inputld: vecta2 
Inputld: linkl

Name : axis 132 
Type : XFORM 
Index : 49 
Inputld: vecta3 
Inputld: link2

Name : axis210 
Type : XFORM 
Index : 50 
Inputld: vecta4 
Inputld: linkR

Name : axis221 
Type : XFORM 
Index : 51 
Inputld: vecta5 
Inputld: link9

Name : axis232 
Type : XFORM



Index : 52 
Inputld: vecta6 
Inputld: linklO

Outputs:
Name : torql 
Type : TORQUE
Desc : "torque on ROBOT'#1 linkl joint" 
Index : 0 
Inputld: linkl 
Inputld: vectjl

Name : torq2 
Type : TORQUE
Desc : "torque on ROBOT#l link2 joint" 
Index : 1 
Inputld: link2 
Inputld: vectj2

Name : torq3 
Type : TORQUE
Desc : "torque on ROBOT#l link3 joint" 
Index : 2 
Inputld: link3 
Inputld: vectj3

Name : torq4 
Type : TORQUE
Desc : "torque on ROBOT#2 linkl joint" 
Index : 3 
Inputld: link9 
Inputld: vectj4

Name : torq5 
Type : TORQUE
Desc : "torque on ROBOT#2 link2 joint” 
Index : 4 
Inputld: linkl 0 
Inputld: vectj5

Name : torq6 
Type : TORQUE
Desc : "torque on ROBOT#2 link3 joint" 
Index : 5 
Inputld: linkl 1 
Inputld: vectj6
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Name : e r r l de r  
Type : DERIV
Desc : "derivative o f ROBOT#! error-1" 
Index : 6 
Inputld: errl int

Name : err2_der 
Type : DERIV
Desc : "derivative o f ROBOT# 1 err or-2" 
Index : 7 
Inputld: err2_int

Name : errS der 
Type : DERIV
Desc : "derivative o f ROBOT# 1 error-3” 
Index : 8 
Inputld: err3_int

Name : err4_der 
Type : DERIV
Desc : "derivative o f ROBOT#2 error-1" 
Index : 9 
Inputld: err4_int

Name : errS der 
Type : DERIV
Desc : "derivative of ROBOT#2 error-2" 
Index : 10 
Inputld: err5_int

Name : err6_der 
Type : DERIV
Desc : "derivative of ROBOT#2 error-3" 
Index : 11 
Inputld: err6_int

B.4. Writing the Custom Load Subroutine

The interface subroutine is a C++ file which can be created using any text editor. Once 

created, it must be placed under the subdirectory (\ \i486_nt) in the Pro/Mechanica
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Motion directory and must be compiled using C++ compiler to produce the

corresponding object file in the same location.

Inputs as seen from C++

Input[i] Is INTS[i][d] REALS [i][d] VECS[i][d][c] Notes

BODY d=0: body tag 0: mass 0: COM loc 

1: COM vel 

2: angvel

(1) & (2)

ORIENT 0: body tag 0: orient 1 

1: orient2 

2: orient3

(3)

INERTIA 0: body tag 0: xx xy xz 

1: xy yy yz 

2: xz yz zz

(4)

POINT 0: point tag 

1: body tag

0: location 

1: velocity
(5)

JOINT 0: joint tag 

1: joint type 

2: bodyltag 

3: body2 tag

(10)

AXIS 0: joint tag 

1: axis num 

2: rot/trans

0: position 

1: velocity

0: axis vec (6)

VECTOR 0: vec (7)

SCALAR 0: real

INTEGER 0: int

DISTANCE 0: dist 

1: sep. vel.
(8)

XFORM 0: vec (9)

STATE 0: real

Table (B.l). Input variables arrays as seen from C++
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Then the object file must be compiled from the first parent directory using:

\ \ cl/J/c /Foi486_nt\tworobot.o tworobot.c 

This command will generate the file tworobot.o from the tworobot.c file. The interface 

subroutine exchanges data with Pro/Mechanica Motion engine in the form of arrays as 

shown in tables (B.l) and (B.2).

Outputs as seen from C++

Output[i] is REALOUT[i] VECOUTp] PTLOCSfi] Notes

FORGE : signed frc mag ( i i )

TORQUE signed trq mag d o
TWPOT signed frc mag (12)

GENFRC frc vector application point (13)

GENTRQ trq vector (14)

AXIS signed load (15)

MEASURE measure val

DERIV state deriv

ICOND state initial 

condition

(16)

Table (B.2). Output variables arrays as seen from C++

Notes:

1- COM loc (centre of mass location) is ground frame measure numbers of vector 

from ground origin to body COM.

2- Angular velocity is the angular velocity of the body with respect to ground, 

expressed in the ground frame.

3- Orientation relates body local frame to ground frame, that is, orientl is the 

ground frame measure numbers of a vector currently aligned with the first local 

frame axis.
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4- These are the moments and products of inertia about the body’s local frame 

axes.

5- Point location and velocity are w.r.t. the ground origin and expressed in the 

ground frame. The axis type is 1 for rotational and 2 for translational.

6- The joint axis vector is a unit vector parallel to the axis and expressed in the 

ground frame.

7- The vector is a unit vector expressed in the ground frame.

8- Distance is non-negative, separation velocity is positive when points are 

separating, negative when approaching.

9- The transformed vector is expressed in the local frame of the specified body.

10- The following table shows the numerical value passed in for each joint type and 

the ordering of the joint axes (t=translational, r=rotational, -=part of ball joint).

Joint type No. 1 2 3 4 5 6

pin 0 r

slider 1 r

U-joint 2 r r

gimbal 3 r r r

cylinder 4 r t

planar 5 t t r

ball 6 - - -

freer 7 t t t - - -

sixdof 8 t t t r r r

bearing 9 t r r r

weld 10

Table (B.3). Numerical values representing joint type
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11-For fixed or follower force or torque, Pro/Mechanica multiplies the returned 

quantity by the fixed or follower vector, then applies the result to the 

appropriate point or body.

12- For twopt (two points) force, Pro/Mechanica multiplies the returned quantity by 

a unit vector aligned with (pt2-ptl) and applies the result at pt2. It applies the 

negative of this value to ptl.

13-For the general force, Pro/Mechanica applies the force vector (expressed in the 

global frame) to the point of the specified body which is coincident with the 

application point (relative to the global origin and expressed in the global 

frame).

14-For general torque, Pro/Mechanica applies the torque vector (expressed in the 

global frame) to the specified body.

15-For an axis load, Pro/Mechanica applies the specified force or torque as a joint 

axis force or torque.

16- Pro/Mechanica reference ICOND outputs only after it calls with flag=l.

The interface subroutine used for the coordination of two Puma 560 robots is too big to 

be listed here, only the overall structure is outlined below.

Interface subroutine (tworobot.c):

/* Custom load subroutine for PRO/MECHANICA "tworobot" custom load. */
/* 2-PUMA 560 Neuro-Fuzzy Adaptive Synchronizing Controller */
/* - Copyright 2003 Cardiff School o f Engineering */

ttdefine NIN 52 /* Number of Input Variables from PRO/MECHANICA */
Meflne linkO 0 /* Link-0 Body ON ROBOT#1 ARM Link-0 */
#define linkl 1 /* Link-1 Body ON ROBOT#1 ARM Link-1 */
ttdeftne link2 2 /* Link-2 Body ON ROBOT#1 ARM Link-2 */
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#define link3 3
#define link4 4
#define linkS 5
#define link6 6
#define link7 7
#define link8 8
#define link9 9
#define linkl 0 10
#define linkl 1 11
#define linkl 2 12
#define linkl 3 13
#define linkl 4 14
#define enefctl 15
#deflne enefct2 16
#define vectal 17
#define vecta2 18
#define vecta3 19
#define vectj 1 20
#define vectj 2 21
#define vectj3 22
#define vecta4 23
#define vecta5 24
#define vecta6 25
#define vectj4 26
#define vectj5 27
#defme vectj 6 28
#define errl_int 29
#define err2_int 30
#define err3_int 31
#defme err4_int 32
#deflne errSint 33
#define err6_int 34
#defme orintO 35
#define orintl 36
#define orint2 37
#defme orint3 38
#deftne orint4 39
#deflne orint5 40
#define orint6 41
#deflne orint7 42
#define orint8 43
#define orint9 44
#define orintlO 45
#defme orintl 1 46
#define axisllO 47
#deflne axisl21 48
#define axis!32 49

/* Link-3 Body ON ROBOT#l ARM Link-3 */
/* Link-4 Body ON ROBOT#l ARM Link-4 */
/* Link-5 Body ON ROBOT# 1 ARM Link-5 */
/* Link-6 Body ON ROBOT# 1 ARM Link-6 */
/* Link-7 Body ON CONNECTION ARM */
/* Link-11 Body ON ROBOT#2 ARM Link-0 */
/* Link-12 Body ON ROBOT#2 ARM Link-1 */
/* Link-13 Body ON ROBOT#2 ARM Link-2 */
/* Link-14 Body ON ROBOT#2 ARM Link-3 */
/* Link-15 Body ON ROBOT#2 ARM Link-4 */
/* Link-16 Body ON ROBOT#2 ARM Link-5 */
/* Link-17 Body ON ROBOT#2 ARM Link-6 */

/* End-effector of ROBOT# 1 Location in Ground Frame */ 
/* End-effector of ROBOT#2 Location in Ground Frame */ 
/* ROBOT#l Joint-1 Angle Vector to Ground Frame 
/* ROBOT# 1 Joint-2 Angle Vector to Ground Frame 
/* ROBOT# 1 Joint-3 Angle Vector to Ground Frame 
/* ROBOT# 1 Joint-1 Torque Vector to Ground Frame 
/* ROBOT#l Joint-2 Torque Vector to Ground Frame 
/* ROBOT# 1 Joint-3 Torque Vector to Ground Frame 
/* ROBOT#2 Joint-1 Angle Vector to Ground Frame 
/* ROBOT#2 Joint-2 Angle Vector to Ground Frame 
/* ROBOT#2 Joint-3 Angle Vector to Ground Frame 
/* ROBOT#2 Joint-1 Torque Vector to Ground Frame 
/* ROBOT#2 Joint-2 Torque Vector to Ground Frame 
/* ROBOT#2 Joint-3 Torque Vector to Ground Frame 

/* ROBOT 1 Error-1 Integration (Integral of err 1 _der)*/ 
/* ROBOT 1 Err or-2 Integration (Integral of err2_der)*/ 
/* ROBOT 1 Error-3 Integration (Integral of err3_der)*/ 
/* ROBOT2 Error-1 Integration (Integral of err4_der) */ 
/* ROBOT2 Error-2 Integration (Integral of errSder) */ 
/* ROBOT2 Err or-3 Integration (Integral of err6_der) */ 

/* ROBOT#l Link-0 orientation matrix to groundframe*/ 
/* ROBOT#! Link-1 orientation matrix to groundframe*/

* /
* /
* /
* /
* /
* /

*/
* /
* /
*/
* /
* /

/* ROBOT#1 Link-2 orientati 
/* ROBOT#1 Link-3 orientati 
/* ROBOT#1 Link-4 orientati 
/* ROBOT#1 Link-5 orientati 
/* ROBOT#2 Link-0 orientati 
/* ROBOT#2 Link-1 orientati 
/* ROBOT#2 Link-2 orientati

on matrix to groundframe */ 
on matrix to groundframe*/ 
on matrix to groundframe*/ 
on matrix to groundframe*/ 
on matrix to groundframe*/ 
on matrix to groundframe */ 
on matrix to groundframe */

/* ROBOT#2 Link-3 orientation matrix to groundframe*/ 
/* ROBOT#2 Link-4 orientation matrix to ground frame*/ 
/* ROBOT#2 Link-5 orientation matrix to groundframe*/ 

/* ROBOT#l Joint-1 Vector to Link-0 Local Frame */
/* ROBOT#1 Joint-2 Vector to Link-1 Local Frame */
/* ROBOT#! Joint-3 Vector to Link-2 Local Frame */
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#define 
#,define 
#define 
#define 
Mefine 
#define 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine 
Mefine

axis210 
axis221 
axis232 
NOUT 12 
torql 0 
torq2 
torq3 
torq4 
torq5 
torq6
err lder  6 
err2_der 7 
err3_der 8 
err4_der 9 
err5 der 10 
err6 der 11

50 /* ROBOT#2 Joint-1 Vector to Link-0 Local Frame
51 /* ROBOT#2 Joint-2 Vector to Link-1 Local Frame
52 /* ROBOT#2 Joint-3 Vector to Link-2 Local Frame
/* Number of Output Variables to PRO/MECHANICA */

/* Follower Torque on ROBOT#l Joint-1 Through vectj 1 */ 
/* Follower Torque on ROBOT#l Joint-2 Through vectj2*/ 
/* Follower Torque on ROBOT#l Joint-3 Through vectj3*/ 
/* Follower Torque on ROBOT#2 Joint-1 Through vectj4*/ 
/* Follower Torque on ROBOT#2 Joint-2 Through vectj5*/ 
/* Follower Torque on ROBOT#2 Joint-3 Through vectj6*/ 

/* ROBOT#l Error-1 Derivative (d/dt of errl int) */
/* ROBOT# 1 Err or-2 Derivative (d/dt of err2_int)
/* ROBOT# 1 Err or-3 Derivative (d/dt of err3_int)

/* ROBOT#2 Error-1 Derivative (d/dt of err4_int)
/* ROBOT#2 Error-2 Derivative (d/dt of err5_int)
/* ROBOT#2 Err or-3 Derivative (d/dt of err6_int)

* /
* /

* /
* /
* /

void tworobotfflag, time, ints, reals, vecs, realout, vecout, ptlocs, err)
int flag, ints[NIN][4], *err;
double time, reals[NIN][2], vecs[NIN][3][3];
double realout[NOUT],vecout[NOUT][3],ptlocs[NOUT][3];
{

* /
* /
* /

xl = (vecs[vectalj [0] [0]);yl = (vecs[vectalj [0] [l]);zl = (vecs[vectalj [0] [2]); 
x2 = (vecs[vecta2j [0] [0]);y2 = (vecs[vecta2j [0][l]);z2 = (vecs[vecta2j [0][2]); 
x3 = (vecs[vecta3j[0] [0]);y3 = (vecs[vecta3J[0][l]);z3 = (vecs[vecta3J[0][2]); 
x4 = (vecs[vecta4j[0][0]) ;y4 = (vecs[vecta4j [0][l]);z4 = (vecs[vecta4j [0][2]); 
x5 = (vecs[vecta5j[0] [0]);y5 = (vecs[vecta5j [0][l]);z5  = (vecs[vecta5j [0][2]); 
x6 = (vecs[vecta6j[0] [0]);y6 = (vecs[vecta6j [0][l]);z6  = (vecs[vecta6][0][2j); 
xlt = (vecs [axis 110][0][0]);y It = (vecs[axisl 10] [0] [l]);z lt = (vecs [axis 110] [0] [2]) 
x2t = (vecs[axisl21][0][0]);y2t = (vecs[axisl21][0][l]);z2t = (vecs[axisl21][0][2]) 
x3t = (vecs [axis 132] [0] [0]);y3t = (vecs [axis 13 2][0][l]);z3t = (vecs [axis 132] [0] [2]) 
x4t = (vecs [axis 210] [0] [0]);y4t = (vecs[axis210][0][l]);z4t = (vecs[axis210][0][2]) 
x5t = (vecs[axis221][0][0]);y5t = (vecs[axis221][0][l]);z5t = (vecs[axis221][0][2]) 
x6t = (vecs [axis232] [0] [0]);y6t = (vecs[axis232J[0][l]);z6t = (vecs[axis232] [0][2]) 
pxl = (vecs[enefctl]  [0] [0]);pyl = (vecs[enefctl][0] [l]);pzl = (vecs[enefctl][0][2]) 
px2 = (vecs[enefct2] [0] [0]);py2 = (vecs[enefct2][0] [l]);pz2 = (vecs[enefct2] [0] [2]) 
realout [torql] = torl;realout[torq2] = tor2;realout[torq3] = tor 3; 
realout[torq4] = tor4;realout[torq5] = tor 5 ;realout[torq6] = tor 6;
//realout[err 1 der] = error 1 ;realout[err2 der] = error2;realout[err3 der] = error3; 
//realout[err4 der] = error4;realout[err5 der] = error5;realout[err6_der] = error6;
}
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APPENDIX C

Hardware Interface Specifications

C .l. Interface Card Specifications

For the purpose of interfacing the experimental set-up explained in chapter (6) to the 

host computer for the control algorithm testing purposes, an ADLINK® DAQ/PXI- 

2501 interface card with the following specifications has been used.

Analog Output (AO)

• Number of channels: 4-channels

• DA converter: AD7945

• Max update rate: 1 MS/sec.

• Resolution: 12 bits

• FIFO buffer size: 8K byte

• Voltage reference: internal 10V or external up to ±10V

• Output range: Unipolar and Bipolar

• Settling time: 2ps.

• Offset error: ±2mv max 

Analog Input (AI)

• Number of channels: 8-channels

• AD converter: LTC1416

• Max sampling rate: 400KS/sec.

• Resolution: 14 bits
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• FIFO buffer size: 2K byte

• Input range: Bipolar ± 10 V or Unipolar up to +10V

• Settling time: 2ps.

• Offset error: ±lmv max 

General Purpose Digital I/O (G.P. DIO)

• Number of channels: 24 programmable Input/Output

• Compatibility: TTL/CMOS

• Input voltage: Logic Low: 0.8V max, Logic High: 2.0V max

• Output voltage: Logic Low: 0.5V max, Logic High: 2.7V min 

General Purpose Timer/Counter (G.P. TC)

• Number of channels: 2 UP/Down Timer/Counters

• Resolution: TTL/CMOS

• Resolution: 16 bits

• Clock source: Internal or external

• Max source frequency: 10MHz

C.2. Filters and Power Amplifiers Specifications

For each motor, a filter, an anti-aliasing filter, and a power amplifier is used to 

smoothen the input measurement, the continuous-time control, and to drive the motor. 

All the filters are chosen to be first-order R C  filters and have the same cut-off 

frequency of 15 Hz. All anti-aliasing filters are chosen to be first-order R C  filters as 

well with the same cut-off frequency of 33 Hz. All filters are cascaded with non

inverting mode operational amplifier with a gain of 2 for R j = R f  = 10KQ. The
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operational amplifiers are biased by ±15V DC external supply. Figure (C.l) shows the 

circuit diagram of one filter. The power amplifiers are LM12 linear series operational 

amplifiers. They are biased through ± 13.8V, ±13.0A peak, ±10.0A continuous, 

regulated DC power supply. Figure (C.2) shows the circuit diagram for one power 

amplifier. Table (C.l) lists the design values for circuit’s elements.

Filters Anti-aliasing Filters

R V--AV; C

10KQ l.Opf 10KQ 47pf

Power Amplifiers
f t , ,, , .......... ^

Oz

1.0KQ 220nf 4.0KQ 220pf

Table (C.l). Design values for circuit’s elements.

+VCC

741
Output

1st order filter
-Vcc

Figure (C.l). Circuit diagram for one motor filter/anti-aliasing filter.
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+13.8V

Input O
LM12

Input Compensation

O Output

Clamp
Diodes

-13.8V

Figure (C.l). Circuit diagram for one motor power amplifier.

C.3. D.C. Motors Specifications

Each robot link is powered by permanent magnet DC motor equipped with position 

decoding potentiometers and suitable planetary gear head to increase the motor 

developed torque. Both of torque speed and torque current relationship for such type of 

motors are linear.

Va-E„ = iaRa + La^~ (C1)dt

E b  = k / n  (C.2)

T = ktu (C.3)

T - TL = pa> + J ^ -  (C.4)
dt
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where Va ls the input voltage of the DC motor, Eb is the motor armature back educed

emf, i a is the armature current, Ra is the armature resistance, La is the armature

inductance, kf is the magnetisation constant, co is the motor speed in rad/sec, T is the

motor developed torque, Tl is the load torque, /3 is the equivalent friction constant at

motor shaft, and J  is the equivalent inertia constant at motor shaft. The motor 

equivalent circuit parameters are listed in table (C.2).

Rated Power 15 watt Starting Current 4010 m.Amp.

Rated Voltage 12 volt Armature Resistance 2.99 Ohm

No Load Speed 4590 rpm Torque Constant 24.1 m.N.m./Amp.

Stall Torque 96.8 m.N.m. Speed Constant 396 rpm/volt

ASpeed/ATorque 49.1 rpm/m.N.m. Armature Inductance 0.21 m.H.

No Load Current 115 m.Amp. Position Ratio 12 Degree/volt

Table (C.2). Motors equivalent circuit parameters.

r
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