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A b s t r a c t

A general purpose constraint handling technique for genetic algorithms (GA) is developed by 

borrowing principles from multi-objective optimisation. This is in view of the many issues 

still facing constraint handling in GA, particularly in the number of control parameters that 

overwhelms the user, as well as other GA parameters, which are currently lacking in 

heuristics to guide successful implementations. Constraints may be handled as individual 

objectives of decreasing priorities or by a weighted-sum measurement of normalised violation, 

as would be done in multi-objective scenarios, with full consideration of the main cost 

function. Rather than the unnecessary specialisation seen in many new heuristics proposed for 

GA, the simplicity, generality and flexibility of the technique is maintained, where several 

options such as partial or full constraint evaluation, tangible or Pareto-ranked fitness, and 

implicit dominance evaluation are presented. By reducing the number of constraint 

evaluations, these options increase the probability of discovering optimal regions, and hence 

increase GA efficiency. Studies in applications to a constrained numerical problem, and to the 

design of realistic composite laminate plates and structures, serve to demonstrate the ease of 

implementation and general reliability in heavily constrained problems. The difference in the 

dynamics of partial or full violation knowledge showed that while the former reduced the 

overall number of constraint evaluations performed, the latter compromises for the expense of 

full constraint evaluations in the reduced number of GA generations, whether in terms of 

discovering feasible regions or optimal solutions. The benefit of partial or full constraint 

evaluations is subjective, as it ultimately depends on the trade-off in the computational cost of 

constraint evaluations and GA search.
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1 In t r o d u c t io n

1.1 M o t iv a t io n s , A im s  a n d  O bjec tiv es

To borrow a quote from Richard Dawkins (2003) in A Devil’s Chaplain, “With evolution, a 

great light breaks through into the deepest recesses, into every comer, of the science of life... 

You understand not only what is, but why.” Life has shown tremendous fortitude in the most 

adverse of natural environment, adapting to the most extreme and hostile of conditions in 

beautiful and weird ways. Nature has an unmistakeable infallibility of evolving, via the 

process of natural selection, in producing the unique variations that abound everywhere. Yet 

this beauty in design is only but transient and in constant flux, for deep within, forces that 

drive evolution are blind and selfish.

With better understanding of such natural systems, so too is the ability to simulate, with 

increasing accuracy, such robust mechanisms to assist in the discovery of designs and 

solutions to a multitude of problems. Genetic algorithms (GA) are one such simulation. 

However, there remain many areas where improvements can be made, just as evolution 

continues unceasingly in its quest for perfection, only to be inhibited by environmental 

constraints. Here, practical and modest aims are sought, and can be generalised into two parts:

1. Explore alternate approaches to handling design requirements (constraints) to reduce 

sensitivities of parameters associated with the techniques and so minimise the 

approach-specific effects on design space, and

2. Investigate such alternate approaches in computationally expensive design and 

optimisation of prismatic composite laminated plate assemblies.

1.2 L it e r a t u r e  R e v ie w

The current work covers inter-disciplinary methods and techniques by using GA as an 

optimisation tool and search process to discover optimal designs of composite laminates. 

Extensive coverage of all published literatures is impossible. This section covers, instead, 

those that cover necessary groundwork of models and theories used here as well as
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developments that, in a way, influenced the current work. The definitions of GA and details of 

analytical models used in the design of composite laminates are presented elsewhere.

1.2.1 G e n e t ic  A l g o r it h m s

GA found its start with Holland (1975) initially as genetic plan, although the change to the 

former term was advocated by doctoral students in Ann Arbor to emphasise the centrality of 

computation in its implementation. In his preface to the 1992 edition of his monograph, he 

stressed the change of the use of the term ‘intrinsic parallelism’ to ‘implicit parallelism’ to 

reflect the implicit parallel processing via schemata. The crux of GA lies in its modelling of 

the natural process of evolutionary genetics as its search algorithm. The process is that of 

natural selection, which generally guarantees the survival of the fittest on a statistical rather 

than on an individual level.

Several other evolutionary-based algorithms, or evolutionary algorithms (EA), also emerged 

around this timeframe, namely evolution strategies (ES) and evolutionary programming (EP). 

Nevertheless, GA is still considered as the most widely known type of EA (Back, 1994). For a 

more detailed discussion of components relevant to a generic adaptive plan framework, see 

Chapter 2.

1.2.1.1 D e v e l o p m e n t s  in  S c h e m a  E v o l u t io n a r y  Th e o r ie s

Much of the early work concentrated primarily on modelling GA in a simplistic framework 

involving fixed-length binary digit structures and simple operators, hence the often termed 

Simple GA (SGA), also known widely as the canonical GA. Holland (1975) used such a 

model to develop a theoretical framework. The resulting Schema Theorem (Holland, 1975; 

Goldberg, 1989a) states that under a set of considered genetic operators and reproductive 

plans, schemata with above-average average fitness receive exponentially increasing number 

of representations (or trials) in subsequent generations.

Due to the many assumptions and generalisations made by Holland (such as using only the bit 

representations), the Schema Theorem has been considered only valid in that restricted 

scenario. Mitchell (1996) pointed out that such derived properties gave limited insight into the 

workings of GA, which led to the conclusion that perhaps a more useful approach to better 

understanding and predicting the behaviour of GA would be analogous to that of statistical 

mechanics in physics, where the traditional aims were to describe laws on a macroscopic level 

(pressure, temperature, etc.) rather than on the microscopic components (particles, molecules,
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etc.). This will lead to laws that describes GA behaviour on a statistical level, like ‘mean 

fitness in the population’. Unfortunately, developments of theories for explaining the success 

of GA have been few and far between, where most concentration lies mainly in developing 

extensional components.

This disparity in development pace often leads to contradictions, with one prime example in 

Goldberg’s Building Block Hypothesis (Goldberg, 1989a). It states generally that genetic 

alphabets of low cardinality, or ‘building blocks’, are important in ensuring successful GA 

deployment, with binary encoding as a main candidate. Even Goldberg (1990b) was drawn to 

the increasingly successful empirical usage of floating-point genes although it contradicts any 

simple analyses. Successes in floating-point representations have been widely reported, such 

as by Davis (1991), although it was also cautioned that a problem-sensitive approach is 

probably best, in which domain knowledge can and should be incorporated. Although the 

Building Block Hypothesis is now generally accepted as an article of faith by those 

employing GA, much still remains in making it more precise and characterising the types of 

fitness landscapes on which it is valid (Mitchell et al., 1991). However, work elsewhere 

showed discrepancies in the hypothesis.

The success of GA is often attributed to its property of ‘implicit parallelism’, which dictates 

an exponential allocation of trials based on implicit competitions amongst schemata. 

Attention should, however, be drawn to work by Bertoni and Dorigo (1993), which showed 

that Holland’s (1975) estimate, where at least the full population size of trials are processed 

usefully, is correct only in the particular case when the actual population size is proportional 

to 2”, where n is the number of genes. In fact, Grefenstette and Baker (1989) previously 

showed that GA does not solve the k -armed bandit problem1, in the sense of choosing the 

hyper-plane with the best mean objective function value within a given hyper-plane partition. 

Indeed, the accuracy of the Schema Theorem has been brought into question following other 

works (Vose, 1991; Mtihlenbein, 1991).

Following such reports, a later theoretical discussion (Grefenstette, 1991) suggested that the 

Building Block Hypothesis, built on analogies to the k -armed bandit problem, should 

probably be re-examined. It was then concluded that it is unlikely that a universal GA useful

1 Holland (1975) used this as an analogy to GA behaviour, and thus illustrating the workings o f implicit 
parallelism.

3



across all applications can be developed1. On a positive note, analysis showed that desirable 

results obtained are shown to be less dependent on sampling mechanisms or recombination 

operators. Perhaps this best explains the flurry of specialised operators and GA variants that 

seem to display robustness under specific contexts. Nonetheless, it also warns against 

unnecessary attempts at developing novel genetic operators and GA implementations.

An alternative analysis o f schema evolution (Stephens and Waelbroeck, 1999) has also shown 

that the Building Block Hypothesis is only partially true. With the notion of ‘effective’ fitness, 

a remarkably similar conclusion to the original Schema Theorem2 was made, in that schemata 

of high effective fitness received exponentially increasing number of trials as a function of 

evolution time. The similarity, however, ends here. Although it was shown that a building 

block in the form of a unit-gene schema cannot be destroyed by crossover, there is no 

preference over short, low-order schemata. On the contrary, typically large schemata may be 

favourable if schema reconstruction dominates.

1.2.1.2 G e n e r a l  P r o g r e s s

Early uses of GA showed an important factor influencing convergence, and hence, reliability. 

This phenomenon, known as epistasis, has also been observed in natural systems, and 

therefore, the term is often used interchangeably with deception. Initial work can be traced to 

back to Holland (1975), where the inversion operator was also proposed to encourage co­

adaptation.

Further investigative work was also performed, such as one by Goldberg (1987), which also 

led to various proposals (Goldberg, 1989b; Goldberg, 1990a; Goldberg et al., 1991), with 

some being easier to implement than others. One suggestion assumes prior knowledge of the 

objective function, so that the resulting genotypes are able to arrive at optimal solutions via 

‘tight’ building blocks (citing binary encoding as examples), i.e., genes that are clustered 

together. Inversion was also suggested as an alternative, although it had largely fallen out of 

use. Perhaps the most pervasive solution to the problem of epistasis is the proposal of the

1 It is important, therefore, to note that specialised GA with specialised operators, shown to work on a limited 
number o f problem classes, should not be indiscriminately applied to other areas without careful analysis.

2 The original Schema Theorem by Holland (1975) was based on actual fitness.
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messy genetic algorithm1 (mGA) with interesting features unlike standard GA.

Following insights into schema processing, such as those by Grefenstette (1991), work on 

deceptive problems may well be only partly accurate. This is because much of the work on 

epistasis was grounded on the Building Block Hypothesis.

The infancy of GA is still very much obvious, as there is still a lack of general guidelines on 

how best to configure and tune related GA parameters to achieve good response, despite 

numerous heuristic extensions to GA. Early research into mutation rates (Fogarty, 1989; 

Hesser and Manner, 1991; Back, 1992) showed that non-uniform mutation that is time- 

dependent may improve convergence. Previously, Holland (1975) concluded, based on the 

Schema Theorem, that mutation should be seen as nothing more than a ‘background’ operator. 

This statement has since been challenged by many others, and it is now generally accepted 

that mutation has a more important role to play in the overall search than was predicted by 

Holland.

Improvements can also be found when mutation rates are also encoded into genotypes to 

allow self-adaptation, as reported by B&ck (1993). Results indicated that mutation rates should 

ideally be 1 bit to the total number o f bits in the genotype for pseudo-Boolean functions with 

one optimum, as rates decreasing towards this value will only accelerate the search slightly 

during optimisation. It is also mentioned that Gray code (see Chapter 2) also assures 

unimodality of the fitness function whenever the objective function itself is unimodal. With 

multimodal fitness functions -  for example when using standard binary encoding -  

suggestions were to use values other than that suggested for unimodal fitness functions above 

to overcome local optima. Hence, the suggestion that self-adaptation of mutation rates may be 

beneficial. However, the current work adopted only the fixed mutation rate throughout all 

case studies conducted to prevent additional design variables from being introduced into the 

search.

There is still an abundance of reports on best-practice for GA parameter tuning, such as 

investigating effects of population size and functionalities of various crossovers (De Jong and 

Spears, 1990; Spears and De Jong; 1990, 1991). To prevent redundancy, further reviews are

1 Coverage o f mGA is ignored here as it bears little relevance to the current work, since only fixed-length 
genotypes and standard GA components are modelled in developments here. See cited references for more 
details.
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left where appropriate.

1.2.2 C o m p o sit e  P l a t e s  a n d  P a n el  A sse m b l ie s

Designs and optimisations of composite laminates often revolve around three important 

factors -  modelling, analysis and optimisation. Often, the details of the analysis depend 

largely on the modelling. For simple plates, the focus has been primarily on the well- 

established classical plate theory (CPT). However, stiffened composite panels often require 

rather more expensive analytical and complicated modelling, resulting often in the use of 

finite element method (FEM), with tools such as STAGS (Almroth and Brogan, 1978), 

FEMSYS (Peters, 1979), EAL (Whetsone, 1980), and NASTRAN, or approximate or exact 

finite strip methods, such as VIP AS A1 (Wittrick and Williams, 1974), VICON (Anderson et 

al., 1983), and STIPSY (Baburaj and Kalyanaraman, 1993). Finite strip analysis partitions 

panels into strips, where displacement fields are described using polynomial and 

trigonometric functions.

1.2.2.1 P l a t e  D e sig n  a n d  O p t im isa t io n

The unidirectional properties of fibre-reinforced composites give the freedom to generate 

bespoke designs. In the case of composite laminates, composed of many layers of thin fabrics 

or unidirectional layers in standard thicknesses, changes in ply thicknesses and fibre 

orientations allow tailoring to suit specific properties. Therefore, most practical laminates 

require integer multiples of a standard ply thickness, which then involves integer 

optimisations. Combinatorial optimisations are also possible and brings in fibre orientations 

of individual layers as design variables, usually limited to the common set of 0°, 90°, and 

±45* , to produce custom stacking-sequences with integer multiples of standard ply 

thicknesses that are most efficient for a variation of loading conditions.

For discrete optimisation, GA has proven to be the more popular optimisation tool. Callahan 

and Weeks (1992) have used GA to maximise stiffness and strength of a laminate under in­

plane and flexural loads. Many such optimisations have been reported by Haftka, Glirdal, and 

co-workers (LeRiche and Haftka, 1993; Gtirdal et al., 1994; Kosigo et al., 1994; Todoroki and 

Haftka, 1997), using specialised GA as their primary stacking sequence optimisation tool

1 Chapter 4 covers in detail the theoretical groundwork for the VIP AS A model, since it is used as the analytical 
tool for subsequent design and optimisation.
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under buckling and strength constraints.

Sargent et al., (1995) presented a comparison between GA and other random search 

techniques for strength design of composite laminated plates. Liu et al., (1998) developed a 

Gene-Rank GA and repair strategies for constraint handling and applied it to the maximisation 

of buckling load of composite laminated plates. Several specialised GA have also been 

developed, noticeably those by LeRiche and Gaudin (1998), and Potgeiter and Stander (1998), 

for ply angles and stacking sequence selection for dimensional stability optimisation subjected 

to thermal and hydro expansions, and strain energy minimisation subjected to lateral loads 

respectively. Costa et al., (2000) also approached the combinatorial problem of stiffness 

maximisation with the option of including cost constraints and employing an analysis based 

on the first and third order shear deformation theories.

Grosset et al., (2001) considered a multi-objective weight-cost optimisation of a rectangular 

laminated plate using GA, subjected to constraints on the first natural frequency, by allowing 

a mixture of graphite-epoxy and glass-epoxy in the resulting plate. Grosset et al., (2002) again 

investigated the improvement of GA in in-plane stiffness maximisation of a symmetric and 

balanced laminated plate with additional statistical sampling.

1.2.2.2 P a n e l  A ss e m b l ie s  D e sig n s  a n d  O pt im isa t io n s

Most panel designs and optimisations have concentrated on continuous design variables. 

Early examples can be seen in work by Stroud and Agranoff (1977), performing minimum 

mass designs on panels using exact finite strip analysis. The analysis was conservative when 

anisotropy effects were considered. An efficient computer program was introduced by 

Williams and Wright (1978) for buckling and vibration analyses of prismatic assemblies of 

longitudinally compressed isotropic plates, with capabilities of handling sub-structures. 

Attention should, however, be drawn to a more general analysis for plate assemblies by 

Wittrick and Williams (1974), employing the Wittrick-Williams algorithm, that allows 

anisotropy and combined loadings, which should prove more useful for composite laminates. 

Improvements to the analysis was later resolved by Anderson et al., (1983), accounting better 

for shear and anisotropic effects.

These developments led to the VICONOPT design computer program (Williams et al., 1990a; 

Williams et al., 1990b). Butler and Williams (1992) went on to report design studies using 

VICONOPT on stiffened panels with buckling and strength constraints. More practical
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loading conditions were explored by Butler (1994). Comparisons of VICONOPT analytical 

capabilities with FEM showed good agreement. Butler (1995) later obtained design charts for 

minimum weight designs for a range of loads.

A practical design for real structures can be seen in a full-scale parametric study of optimum 

designs for benchmark stiffened wing panels of a Domier aircraft by a GARTEUR (Group for 

Aeronautical Research and Technology in Europe) Action Group using VICONOPT by York 

et al., (1993). The continuous optimisation performed included design variables ranging from 

ply thicknesses and stiffener dimensions, to ply angles. It was also reported that allowance for 

transverse shear deformation made negligible difference as the design was governed by 

overall buckling and a maximum stiffener height constraint.

Relaxation of the height constraint for variant cases of the heaviest loaded panel of the 

Domier aircraft showed that designs obtained using CPT failed to carry the design load by up 

to 7% when analysed using the first order shear deformation plate theory (SDPT), as reported 

by Williams et al., (1996). On the other hand, redesign using SDPT incurred a mass penalty of 

approximately 2%. Mass and cost optimisations have also been performed using VICONOPT, 

as reported by Edwards et al., (1998) where the common minimum mass objective was 

replaced with a minimum cost objective or a combination of both.

A report by Kennedy et al., (1999) explored further practical applications into aerospace 

panels using VICONOPT. A two-stage optimisation process was performed to arrive at 

discrete optimum designs of blade-stiffened panel assemblies, showing negligible penalties of 

less than 1% when continuous thickness designs were forced to be discrete. In the same report, 

discontinuous cost functions were also successfully optimised as did inclusions of 

fundamental frequency and frequency-free band constraints.

Kennedy et al., (2004) presented a strategy of discrete optimum design with application to 

discrete mass design of composite plates with longitudinal voids. Bounds on the discrete 

optimum mass are first established by finding the continuous optimum and by binary partial 

enumeration in its vicinity. These bounds then permit an efficient branch-and-bound search 

for the discrete global optimum. Results showed a 50% reduction in the mass penalty 

associated with satisfying discrete thickness requirements, for plates with and without 

longitudinal voids.

An alternative optimum design program, PANDA/PANDA2, was reported by Bushnell 

(1987a; 1987b). It uses a wide range of simple physical models to capture individual failure
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modes. Reports have also been published that have verified optimum designs from PANDA2 

empirically in experiments (Bushnell, 1988), and using FEM (Bushnell, 1994) via the 

analytical tool STAGS.

Integer representations for ply thicknesses, fibre orientations and stiffener geometry used for a 

simple GA optimisation of a minimum mass design with buckling, strain and contiguity 

constraints were reported by Nagendra et al., (1993). A new and improved GA was later 

presented (Nagendra et al., 1996) that exhibited improved convergence and reliability, but still 

requires thousands of analyses.

Since analyses of a population of genotypes are expensive in GA, Harrison et al., (1996) 

explored the use of response surface methodologies (RSM) in an attempt to reduce 

computation overhead. Exact analytical data obtained from PANDA2 in the early stages of 

the search were used to construct a polynomial surface to serve as good approximations to 

failure loads for feasibility evaluations of genotypes in subsequent generations. GA was also 

used by Crossley and Laananen (1996) as the optimisation tool to maximise energy absorption 

with ply thicknesses, fibre orientations and stiffener types as design variables.

1.3 G e n e r a l  O v e r v ie w

Optimisation has been a goal, long sought in all aspects, from engineering applications 

through to natural systems, to find the most efficient systems and configuration of elements to 

fulfil the demands and requirements of the governing bodies. In nature, the driving force 

behind adaptation, leading to increasingly complex organisms, stems from the process of 

evolution since time immemorial.

Engineering designs, however, do not possess the luxury of time as solutions are expected in 

as little time as possible. As computational power increases, so is the ability to include more 

design variables in engineering designs and optimisations and the mimicry of more time- 

consuming natural processes invoked by natural adaptive systems. Genetic algorithm (GA) is 

one such example of a search procedure derived from analogies to natural systems. Many 

other similar methods have been successfully developed and deployed, ranging from 

evolutionary strategies (ES) to ant colony optimisation and swarm intelligence. Chapter 2 

provides a general overview of components involved in a typical GA framework. Practically, 

all systems have to satisfy certain requirements and conditions, known as constraints. A novel 

proposal for efficient handling of constraints in GA is outlined in Chapter 3, which also
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presents a study into a constrained numerical optimisation problem.

Such design capabilities, sometimes in hybrid systems involving traditional optimisation tools, 

have increased competitions for ever-increasing efficient designs. In structural applications, 

this implies a demand for better load carrying capacity without excessive penalties in weight 

and/or costs by using stronger and lighter materials. The ability to perform design analysis 

cheaply and rapidly also provides facilities for observing effects induced by changes to 

materials, geometry, physical dimensions, and other factors.

Chapter 4 covers the analytical concepts necessary to proceed on to the design and 

optimisation of composite laminated plates and prismatic plate assemblies. Chapter 5 presents 

the design of plates with longitudinal voids. Chapter 6 extends the constraint handling 

capabilities of the GA framework to design of a variation of stiffened panel assemblies, 

including box-sections, blade-stiffened and web-stiffened panels, before finally proceeding to 

a multi-objective mass-cost optimisation of a blade-stiffened panel involving structural foam 

core materials. It also includes a variant of the multi-objective optimisation that considers two 

composite materials considering carbon and glass fibres in an epoxy matrix.

Chapter 7 then provides a closing overview and conclusion of the various proposals and case 

studies conducted. Future perspectives are also presented as possible developments from this 

work.
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2 G e n e t ic  A l g o r it h m s

This chapter provides a general overview of Genetic Algorithms (GA) and the various objects 

and processes encapsulated by it. A generic framework is first presented followed by a close 

association to the standard optimisation formulation. Then a more detailed coverage of the 

various objects and processes is presented, ending with a general discussion of the different 

implementation models.

2.1 In t r o d u c t io n

GA is a set of stochastic algorithms derived from the fundamental principles underlying 

Darwinist evolution and Mendelian genetics -  evolutionary genetics, first presented and 

proposed by Holland (1975). Its processes are not unlike an evolving biological system, using 

micro-level genetic interactions coupled with macro-level environmental feedback to drive 

the emergence of organisms that has adapted itself to maximising the exploitation of 

environmental resources.

GA performs a stochastic search of a domain space of a simulated environment by modelling 

the processes of natural selection. Natural selection, in biological terms, is the process that 

stochastically guarantees organisms that are better adapted to a particular environment a 

higher probability o f survival. This then ensures that better genetic blueprints are propagated 

to organisms in successive generations. Organisms in future generations can then build upon 

this ‘memory’ imprinted in the blueprints and improve upon it, hence becoming more adapted 

to the environment while continuously transmitting improved knowledge of the landscape 

onwards.

In general, natural selection can be thought of as a continuous process of searching through a 

space for better solutions, which, in turn, can be viewed as a process of solving a problem -  

an optimisation process. For problems with a small solution space, an exhaustive search may 

be feasible but overhead increases dramatically when solution space becomes larger. In lieu of 

an exhaustive search, a more intelligent approach must be employed. Natural selection,
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observed in nature, has produced elegant results that are able to exploit the most hostile and 

varied of environments. GA mimics it hoping to reproduce the same success through an 

equivalent algorithm.

GA encourages evolutionary changes in structures via low-level simple and basic interactions 

in their sub-structures. These interactions, pivotal in GA, encourage these structures to 

exchange meta-information about their relative adaptability and performances, and recombine 

them to produce potentially more accurate and complex information. Thus, GA is evidently a 

bottom-up algorithm that, driven by evaluative feedback loops, is capable of self-learning on 

the sub-structure level without a priori information about the environment. Such a 

phenomenon of recognisable patterns and behaviours manifesting with simple seemingly 

inconsequential interactions is known as emergence (Holland, 1998; Johnson, 2001). Since 

GA model the behaviour of natural selection, they rely heavily on terminology borrowed from 

evolutionary genetics to emphasise this analogy.

2.2 Fr a m e w o r k  a n d  T e r m in o l o g y

The definitions of the terminology are set into the descriptive and simplified framework 

outlined below to introduce the overall workings of a GA. This will be later placed into the 

context of a general optimisation problem to provide an application-level overview and 

correspondence to components in a GA. The framework is simplified in the sense that it 

models commonly perceived objects and processes of a typical GA. It will also illustrate the 

differences between GA and other conventional optimisation techniques.

There are three major components central to a typical GA framework:

1. An environment, E on which a GA operates,

2. An adaptive plan, t that determines the low-level interactions between sub­

structures, and

3. A measurement of performance, p from which a GA obtains evaluative feedback 

on the environment.

The landscape or environment E can be defined as the domain space in which a GA operates 

and progressively evolves genetic structures or solutions that are increasingly adapted to the 

environment and exploitative of it. The full set of structures derivable from E and bounded 

by it is commonly known as the gene pool of genetic structures, X k . The genetic structures 

may be sets of design variables, sequences of instructions, probability distributions, or any
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other collection of structures that form the basis of the concerned field of study to which a GA 

is applied.

The genetic structure G of the modelled environment is known as a genotype, organism or 

individual (amongst other names). It should be noted that transformation of design variables 

to a genetic representation is often performed, e.g., floating-point values to binary strings, and 

will be discussed later. Therefore, the term genotype is often only used to imply the result of 

that transformation, while the true representation or the actual observed characteristics of the 

genotypes are called phenotypes. And it follows that for any genotype G , the relationship 

G e X G and X° c= X /: holds. The reason for introducing X° is that there exists a group of 

GA that allows groups o f genotypes to evolve simultaneously and independently in different 

regions of E , or niches. In the more commonly used group of GA without niches, then the 

above relationship simplifies to G e X h because X6 = X^ . This latter case will be used 

throughout, without loss o f generality, because it is not erroneous to consider niches as a 

single environment provided that genotypes in these niches remain independent and do not 

interact, i.e. the set they represent do not intersect.

A sub-structure of a genotype is called a chromosome, C0 where the subscripts i and j  

points to the j  -th chromosome of the i -th genotype. If all genotypes G e X E have / 

chromosomes and the j  -th chromosome is subjected to C, e X (j , then the set of the 

environment becomes the combination of all chromosomes

x ‘ = n ' . , x $ '  2-1

A chromosome can be further decomposed into smaller building blocks, drawn from GA’s 

analogy to evolutionary genetics, and these building blocks are known as genes, g iJk where

the definitions of the subscripts z and j  remain as before, and k points to the gene’s position 

in the chromosome, also known as the gene’s locus. The set of values that any one gene can 

carry are known as alleles. Thus, if the elements of Xfj are to represent chromosomes with m

specified genes, where the k -th gene has a set of alleles X Ajk, then X^ is the set of all 

combination of alleles

xy=rr..xi 2-2
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It then follows that

2-3

It should be noted that X k is potential rather than the actual set a GA will cover. It is the 

responsibility of the GA to exploit X k to its full potential in order to find the set of highly 

adapted genotypes, but without the compromise of evolution time.

Typically, a GA starts by giving all elements in X h equal probability distribution and 

readjusts that upon evaluative feedback. The adjustments are performed by the adaptive plan, 

t  . The plan, t  , typically iterates across small discrete instances of time, t , rather than 

continuously on a subset of X k , denoted X k (t). This subset at time t , a generation, is known 

as a population of genotypes. It is the responsibility of t  to traverse through the landscape 

exploiting existing knowledge of the environment while exploring the potential inX *, by 

making successive selection of X A(/ + 1) from X E(t) using a set of, usually linearly 

implemented, (genetic) operators, 11.

From the previous statement, we can see that a GA has two important roles to perform, and 

immediately defines the two pivotal tasks of genetic operators -  exploration and exploitation. 

This distinction of the tasks does not necessarily imply a discontinuity of roles, where in 

actual implementation the roles o f operators often overlap.

At generation t , the environment E responds to a genotype by producing a signal. Depending 

on the field of study, this signal may, possibly after transformation, be a payoff (game theory), 

utility (economics), error functions (control) or any other performance measure, p . This 

performance measure is known in GA as fitness, and the function transforming the signal into 

a suitable p is called the fitness function. The plan t  then proceeds as such: X E(t) is 

transformed by t  into X A(/ + 1) by assigning a probability distribution over X£(/) and then 

applying f t . This proceeds until some termination criterion is satisfied.

It is important to note that the relationship of fitness to allelic values and vice-versa, in most 

non-trivial landscapes, cannot be easily determined. This is because in such environments, the 

presence of certain alleles at certain genes may mask and inhibit the phenotypic effects of 

other alleles at different loci, resulting in different adaptability. This phenomenon is known in 

GA as epistasis, and is most observable in non-linear systems, where solutions cannot be
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superposed to produce solutions.

To summarise, a GA framework encapsulates the set of objects X /: ,p  ,11 , and t , where at 

generation f,

1. X /: (/) = {G,,G2,...} g  X /: is the population,

2. |i is the set o f fitness of genotypes in the population as a result of direct or 

transformed feedback from the environment,

3. f t  = { is the set of genetic operators acting on the population X A(/ + 1),

which is a transitional population derived from X* (/), until eventually 11 finalises 

it into X E(t +1), and

4. t  : p x X k (/) —> H is a GA which, on the basis of the probability distributions over 

population of generation r, determines what operator(s) to apply on to X li(t) to 

obtain X h (/ +1).

A generalized GA can be defined using the above objects. To illustrate the components of the 

above framework and place it in the context of optimisation, consider the standard 

formulation of such a problem:

Optimise
/(*),

such that
h,(x) = 0,
S,(x) < 0,

where
\ LB < x < \ UB

A vector of design variables, x = {x,,x2,...,x/ }, is analogous to a genotype, where the design 

variables and the corresponding objective function / ( x )  in this case are observable 

characteristics or phenotypes. Therefore, each generation will be composed of a set of 

solution vectors. A GA is able to operate on x only usually after some mapping to its 

genotypic equivalence, and the result of transformation of a single design variable r e x  is a 

chromosome. The number of genes in the chromosomes and the set of alleles governing the 

genes will obviously depend on this transformation. The environment E , defined by the 

boundaries imposed by X , then responds to a genotype in a particular population by applying

x e X,

i = l,2,...,m, 
i = w +
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the objective function, / ( x ) ,  the set of equality constraints, /i,(x) and inequality constraints, 

gj (x) and assigning a fitness that is representative of the cumulative effect of optimality of x 

in / (x )  coupled with satisfaction of the constraints.

The plan r  then assigns a probability distribution over the population and derives 

stochastically, using operators in H , the next population based on currently available 

knowledge. Upon the availability o f the next population, the algorithm is repeated until 

eventually the optimal set of x is attained.

The above illustration can also indicate the differences between GA and other conventional 

optimisation techniques (Goldberg, 1989a), and are summarised as follows:

1. GA works with genotypes and resulting sub-structures and not the solution vectors 

themselves, i.e., the transformed space of the environment proper to a GA 

landscape, particularly when encoders and decoders are used to map environment 

variables to and from genotypes (e.g., binary encoding),

2. GA works on a population of genotypes and not a single solution vector,

3. GA works on performance measurements of genotypes or fitness and not on 

derivatives, gradients or other auxiliary data, and

4. GA works on stochastic, not deterministic transition rules.

2.3 G e n e t ic  St r u c t u r e s , x *

In the summary of the preceding section, it has been shown that GA works on genotypes 

rather than solution vectors, and not only on a single instance but a population of them at any 

generation / .  Genotypes are elements from the set of genetic structures X k , which is the 

transformed domain of the environment, E . Hence

T : E - + X h 2 5

T~l : X* -> E

where the encoder, T , transforms elements in E to the corresponding genetic domain, X b , 

while the decoder, T~x reverses the transformation of T .
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2.3.1 B in a r y  E n c o d in g

The most commonly applied transformation traditionally, especially to decimal numbers, is 

the binary or base-two encoding. This simply transforms decimal numbers to a sequence of 

bits (or binary digits), thereby producing a binary vector or string. Hence, genotypes are also 

commonly referred to as simply strings. For example, the decimal value 25 is represented by a 

binary string1 11001. It is immediately obvious that the chromosome has a length of 5 and at 

every locus, the alleles are of the set = {0,l}.

Typically, a chromosome’s length is defined by the bounds of the variable it represents. The 

binary encoder-decoder also needs to accommodate negative values and floating-point 

numbers for any variable x e x .  The genotype is then a vector of chromosomes2. For example, 

consider the Rosenbrock function, which has been commonly used to test the robustness of 

GA and is presented below3:

Minimise
/ ( x )  = 100(x,2 -  x 2 )2 + (l -  x, )2 2-6

where
-  2.047 <x, <2.048

The problem consists of two design variables, where x, can be represented as a 12-bit binary 

string and thus defines the chromosome that represents x t . The genotype is simply the vector

of two chromosomes of identical lengths to form a 24-bit binary string where a random 

sample from the domain space might produce (in matrix representation)

G = [111010101001 100101111000]

1 This presentation format is known as big-endian, where the bits have decreasing significance from left to right, 
as opposed to little-endian where the order o f significance is reversed. Do note that this is the presentation 
format typically adopted by GA literature and the convention is observed here.

2 The term ‘chromosome’ is also used in literature to imply the whole genotype. In such cases, the distinction 
between genotype and chromosome is unclear. The convention used here is aimed at preventing this ambiguity, 
so that a one-to-one correlation between a design variable to a chromosome, and a solution vector (of design 
variables) to a genotype, may be implied directly without the need for further disambiguation throughout.

3 The usual lower bound is -2.048, but is here taken to be -2.047 because then it divides exactly into a 12-bit 
binary string with 4096 discrete states, giving a 0.001 difference between each state.

17



giving phenotypic values

x, =1.706 
*2 = 0.377 

/ ( x )  = 642.3282

Generally, for any solution vector x with n elements, a genotype can be represented as a 

vector of n chromosomes or as a 1 x n matrix. Therefore, all the genotypes of a population of 

size m can be represented by a m x n matrix.

With the binary encoding, moving a discrete step from an arbitrary value of x to x' often 

involves changing of more than one bit in the binary string. For example, consider a move 

from x  = 7 to x'= 8 in a 4-bit string. This will require 4 bit-flips in the corresponding 

chromosome from C = [0111] to C '= [lOOO]. The implication of this is that obtaining a small 

shift of value in C may require considerably more effort on genetic operators than a large 

shift. On top of that, the set of random bit flips of any arbitrary gene leading to considerable 

phenotypic changes is large particularly in long binary strings. As a result, many other forms 

of encoding, especially for real numbers, have been used to reduce this discrepancy.

Gray encoding, or the mapping of domain variables into Gray codes, is a common encoding 

that is used to overcome the disadvantages of binary encoding. The term ‘Gray code’ often 

refers to the binary reflected Gray code.

A Gray code1 equally has bits as alleles when used, but the difference lies in the fact that it 

represents the numbers in the sequence of integers {o,..., 2”-'} as a bit-string of length m 

where adjacent numbers differ only by a single bit. Thus, genetic operators need only operate 

on one bit to obtain the next phenotypic value.

This ‘adjacency’ property of Gray codes makes it more attractive when particular genetic 

operators are considered, and has been reported as performing slightly better than binary 

encoding. However, while the largest phenotypic change in value due to a random bit flip on a 

gene of a binary-encoded chromosome of length m is 2m~I, the change in a Gray-encoded 

chromosome of an equal length is larger. Nevertheless, the set of random bit flips on any

1 See Appendix I for conversion rules from Gray to binary, and vice-versa.
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arbitrary gene of a Gray-encoded string leading to considerable phenotypic changes is smaller 

than its binary-encoded equivalent.

2.3.2 D ir e c t  E n c o d in g

There is a growing preference, especially in the research of applications of GA, to directly 

apply GA to real parameters representative of the environment. For example, the floating­

point representation of genetic structures is often used for numerical optimization.

The use of direct encoding allows specialisations to specific problems by defining genetic 

operators that exploit any a priori knowledge of the domain. Although GA are intended to be 

a general plan for exploiting and exploring any ‘uncharted’ domain space, their robustness 

particularly in environments fraught with noises and local optima, which traditional search 

and optimisation methods have difficulties in traversing, prove attractive. Coupled with 

specialist ‘knowledge’, even more robust hybrid methodologies can be developed for practical 

applications.

For example, consider again the Rosenbrock function (Eq. 2-6). With floating-point encoding, 

the actual values of the design variables x l and x2 can be represented directly, where a 

random sampling across the domain might yield a genotype

G = [1.706 0.377],

Direct encoding does not imply only using floating-point values, but other forms of structural 

representations that are immediately indicative of the environment or problem domain. These 

are like, but not restricted to, tree structures, base- n values and subsets of the domain space 

(niches).

There is strong advocacy against using floating-point values in numeric optimisations by GA 

‘purists’ (Goldberg, 1990b). The use of such direct encoding, particularly when decomposable 

into smaller packets of information (like bits), tends to disagree with the Building Block 

Hypothesis. The hypothesis, proposed by Goldberg (1989a), states that complex adaptations 

evolve from simpler structures not unlike ‘a child [creating] magnificent fortresses through 

the arrangement of simple blocks of wood [...]’.

Although reports have been made that verify the hypothesis, others have also proven
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(empirically) that using floating-point values give significant advantages. The consequence is 

of course the development of new genetic operators that must deal with the inability of 

traditional operators to cope with non string-like representations. The edge recombination 

operator for the Travelling Salesman Problem (TSP) (Whitley et al., 1991) is an example of 

this.

2.4 M e a su r e m e n t s  o f  P e r f o r m a n c e , p

GA, as mentioned earlier, are bottom-up algorithms driven by evaluative feedback. While GA 

do not presuppose any derivative, gradient or other auxiliary data, a measurement of 

performance, p , is required in order to gauge the adaptability of genotypes in exploiting 

environmental resources.

For each genotype G e X k , a measure of performance, p determines the probability of 

survival of new structures derived partially or fully from it. In other words, the fitness of a 

genotype must be an indication of its optimality in E . Thus, for any genotype in E , there is a 

set of corresponding interpreters, I which decodes a set of environmental response, R E into 

a corresponding fitness value.

I : R e -> p 2-7

Traditionally, particularly in applications into optimisations, I is a monotonic fitness function 

that scales the response, R £ obtained directly from the formulation of the optimisation 

problem. This response is normally a value that is representative of the cumulative effect of 

the objective function and any constraints. Methods for deriving suitable fitness functions for 

such optimisation problems are varied and are discussed in Chapter 3.

2.4.1 E v a l u a t iv e  F e e d b a c k  a n d  th e  R o l e s  o f  p

In most non-trivial applications, the set of possible genotypes imposed by an environment E 

is very large, and combined with the effects of I , there may exist a large group of genotypes 

that show optimality, local or global. It should be noted that measurement of performance, p 

is not a concept that is only of consequence in GA. It is the approach towards it in GA that is 

different.

In methods like random-search, exploration is maximal with no exploitation of any
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knowledge arising from that exploration. On the contrary, hill-climbing methodologies are 

highly exploitative of knowledge but have little (random-restart hill-climbing) or no 

exploration. This leaves GA with a challenge: Optimise the balance between exploration of 

the domain space and exploitation of any evaluative feedback from environment E in the 

form of p . Thus, GA must persistently identify and compare properties of genotypes and 

incorporate high-performing properties into new genotypes.

2.4.1.1 G e n e t i c  C o - A d a p t a t i o n

In GA, as in evolutionary systems1, high-performing genotypes are generated from smaller 

components or properties. This then redefines the process of GA as one that searches for 

structures where alleles at various loci combine to improve the performance of their 

corresponding phenotypes. This phenomenon of different alleles of different functions 

merging together to augment phenotypic effects and improve survivability is called co­

adaptation.

The structure arising from the co-adaptation of alleles is called a schema, where S £

is the set of schemata representing the complete set of genetic structures X £ . In a nutshell, a 

schema is a set of genotypes with common allelic attributes. To achieve that, a 'don’t care' * 

meta-character is often used to allow any alleles to match it.

Consider again Rosebrock’s function (Eq. 2-6), and let the variables x, and x2 be binary- 

encoded (or Gray-encoded). A random sampling across the domain space might yield 

genotypes

G, = [100101011110 011010111001]
G2 =[000101111100 101010011110]
Gy = [l 11010111001 010010100111]

Consider also two schemata

1 A typical example will be the physical and functional combination o f replicators into primitive cell-like 
structures, and henceforth into more complex structures like viruses, bacteria and multi-celled organism.
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^  r=£l  * * * * * * * * * * *  Q * * * * * * * * * * * j

=  |() * * * * * * * * * * *  J * * * * * * * * * * * j

A genotype matches a schema if the value of its genes matches at all positions where the 

values are fixed, i.e., not denoted as *. In other words, a schema can also be viewed as a 

hyper-plane across the domain or a subset of \ h . In the above example, G, and G3 match ,

while G2 matches £2. It is also obvious that a schema matches ]~[^ N * genotypes, where

N f  is the size of the set o f alleles at position r , and r are positions where values are *. Also,

a genotype with m genes matches in total 2m schemata, regardless of the cardinality of the 

allelic set. Hence, in a GA where the number of genes are fixed at m , the number of schemata 

processed by a population of size p  at generation, t is then between 2m and p x 2 m.

2.4.1.2 Sc h e m a  G r o w t h

Schemata, as a basis for associating attributes to high-performance, must therefore be able to 

sustain the rigours of genetic operators. On top of that, increasingly complex schemata, i.e., 

has fewer *, must be progressively discovered. Hence, a comparison of the performance of 

schemata processed by a population must be made.

The fitness of a schema £ at generation t , is usually taken to be the average fitness of

p  number of genotypes in the population at t that matches it. If the fitness of the i -th 

genotype in the set of genotypes matched by £ is p(Gt,t) , then

Y P u(.G„t)
KZ,<)= —  2-8

If GA are to exploit this inherent knowledge in the form of schemata in genotypes, then 

above-average performing schemata must receive an increasing number of genotypes, below- 

average performing schemata must receive decreasing number of genotypes, and an average 

performing schema must receive equal number of genotypes at the next generation. This 

behaviour is proven to exist in GA by the Schema Theorem and modelled mathematically as
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the Schema Growth Equation. A general formulation1 of the Schema Growth Equation 

depends largely on two factors that are dependent on the type of GA employed:

1. The probability that a schema is sampled, and

2. The probability of survival2 of a schema upon the action of a genetic operator.

This behaviour of a schema where the number of instances (in the form of genotypes) to be 

sampled is proportional to its fitness and unaffected by other schemata3 is called implicit 

parallelism. It also results in an intrinsic process where schemata are ranked relatively to each 

other in terms of observed performance, and are continuously readjusted as new schemata 

emerge and instances of these schemata are evaluated. Therefore, GA rely on evaluative 

feedback and a measure of performance to progressively derive higher order schemata 

(increasing accurate representation of optimality) from low-order ones.

2.4.2 F it n e ss  E v a l u a t io n s  a n d  P r o b a b il it y  D ist r ibu tio n s

As mentioned previously, the fitness value of an individual, and hence the schemata it 

matches, is critical to the workings of GA. Without a proper measurement of performance, it 

cannot exploit useful and discard useless pieces of information. Hence, a good fitness 

function4 is pivotal to the success because it serves as the only link between the underlying

1 It should be noted that the Schema Theorem and its mathematical proof, the Schema Growth Equation, 
presented by Holland (1975) are specific to binary encoding, stochastic sampling mechanism and the one-point 
crossover. See Chapter 1 for recent developments in the Schema Theorem, and why it should be viewed 
cautiously.

2 When formulating for a string-like representation, two attributes o f a schema are commonly defined -  order 
and defining length. The order is simply the number o f fixed-value loci, i.e., those not with *, whilst defining 
length is the distance between the first and last fixed-value loci. The defining length is particularly important 
when formulating the probability o f  surviving a genetic operator that transforms a segment o f genes. On the 
other hand, the order is useful when the probability is formulated for an operator that modifies a single gene in 
isolation.

3 The reason it is unaffected is because many schemata can co-exist in a single genotype and concurrently across 
different genotypes, and can be processed without incurring additional overhead. On top o f that, there are 
potentially a larger number o f schemata sampled and processed than there are genotypes. Hence, the term 
‘parallel’ used by Holland.

4 There are a few misconceptions on GAs relating to fitness functions: (1) Fitness values must be positive. 
Depending on the sampling mechanism and scaling procedures (to be discussed below), the fitness values 
returned does not necessarily have to be positive. This misconception often arises because o f illustrative 
examples in literature when placed in the context o f a specific sampling mechanism, and (2) fitness functions 
must be modelled with positive gradients. Again, this is dependent on the sampling mechanism and scaling 
procedures as sampling may be readjusted to sample genotypes with lower fitness more than those with higher 
fitness. This is because o f  the generalisation that higher fitness equates to better performance.
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low-order processes of GA systems and the environment.

In its simplest form, the function is taken simply as the objective function of the optimisation 

problem on which GA is employed. However, in applications to constrained optimisation 

problems, many methods have been suggested and discussions are presented later.

Once fitness values are obtained, the likelihood that a genotype contains good schemata may 

be represented by the probability of selection, p s e p(/) . Methods of assigning p s are 

usually derived from the field of statistics. The most commonly adopted form of calculating 

p s requires fitness values to be positive. Given the fitness of the / -th genotype, G, in

population of size p  as p(Gn t ) , its probability of selection is

p s (g „o = 2-9

where p ( X E (/)) = p(Gn t) is the total fitness of the population and p{Gi,/) >= 0.

2.4.3 S c a l in g  o f  F it n e ss

The process of fitness scaling is often used in GA because of several factors:

1. Higher fitness is better performance. Based on this assumption, most GA are 

modelled to work on this basis. This implies that cases where minimisation 

problems are involved, resulting fitness values (taken almost always from objective 

functions) have to be inverted.

2. Sampling works only on positive values. As evident in Eq. 2-9, sampling methods 

that depend on this definition of probability of selection almost always need fitness 

values to be scaled to prevent negative values from occurring.

3. Exploration versus exploitation must be optimised. At any generation t , there may 

exist genotypes with such a high fitness value, p(Gn t ) »  p ( X E(t)) , where

ju(XE(t)) is the average population fitness, that they completely mask the 

performance of other genotypes. These super individuals will dominate the 

probability of selection thus leading to rapid convergence, possibly prematurely to 

local optima. Scaling of fitness, like sigma truncation, can be used to normalise this 

monopoly of high-fit genotypes when population standard deviation is particularly
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high.

The factors stated above affect almost every GA, and although scaling of fitness is a method 

commonly used, it is also possible to modify sampling mechanisms and genetic operators to 

accommodate these factors. A summary of commonly used scaling functions is provided 

below, where the scaled fitness value, also called the augmented fitness, is denoted fi'(Gn t ) :

1. Linear Scaling. This method is particularly useful in minimisation problems for 

handling negative fitness values. It simply involves applying an additional linear 

mapping to the fitness value. For minimisation problems, it is obvious that a < 0, 

and to prevent negative values from occurring, b must be large enough such that 

the smallest fitness value will at least map to a non-negative value.

= a- / j(G,J) + b 2-10

2. Sigma Truncation. This method involves mapping the fitness value to the scaled 

fitness using problem dependent information. The average population fitness is 

denoted by //(X £(/)), and the population fitness standard deviation by cr(XE(t)). 

Any negative scaled fitness values arising from the transformation are usually set 

to zero. The multiplier c is usually a value between 1 and 5.

M' (G,, t) = m(G, , t) + M X * (/)) -  (c • cj( X s (0)) 2-11

3. Power Law Scaling. This method simply requires taking the fitness to some power 

of k .

M'(Gn t) = ju(Gn t)k 2-12

It should be noted that most of the time, scaling of fitness is problem dependent and hence the 

above methods are merely generalised guidelines. It is also possible to dynamically update the 

scaling procedure or its parameters to reflect the general state of the system. With dynamic 

scaling parameters, the algorithm can be guided between an explorative or exploitative nature. 

It should be noted that scaling of fitness should not be done arbitrarily, but rather, as

mentioned by Hancock (1994), to readjust direct values to more sensible ranges.
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2.4.4 C o n st r a in t  H a n d l in g

Most optimisation problems involve constraints, thus requiring fitness values to reflect the

satisfaction of the constraints and the optimality of the evaluated genotypes. Generally, the 

approaches to handling constraints in GA can be classified into three distinct types -  

extinctive, penalty and repair methods.

The extinctive method, also known as the death penalty, is the simplest to implement and 

involves automatic termination of genotypes that do not satisfy all constraints. In other words, 

once a genotype does not satisfy all constraints, it is assigned the lowest possible fitness value 

making it impossible to further contribute to the search. In GA however, the contribution of 

weaker genotypes are equally as important as fitter genotypes because of the potentially good 

schemata that may simply be inhibited due to epistasis, and this leads to probably the sole 

criticism of this method. Then again, such an approach to constraint handling can be viewed 

as one that searches only from the safe regions.

A more popular approach, particularly to numerical optimisation problems, involves the use 

of the classic penalty function. The process usually entails transforming the objective function 

and constraints into a single monotonic fitness function. However, the more conventional 

approach is to provide two separate fitness functions, where one is used for fitness evaluation 

if a genotype satisfies all constraints and another if it does not,

The penalty function, p(x)  assigns a reduction in fitness if any constraints are violated. The

/?(x). Therefore, there exist different generic methods for assigning p(x)  and this will be 

discussed further in the next chapter, when a direct approach to constraint handling is 

proposed.

The repair methods are even more problem-dependent as they involve ‘repairing’ genotypes 

until they satisfy the constraints. These methods are particularly useful but should only be 

considered in cases when constraint evaluations are computationally cheap. Otherwise, the 

overhead can be better utilised for additional fitness evaluation, as in the case of composite 

laminates design and optimisation presented later. Repair algorithms are usually implemented

/(x )
f ( x )  + p(x)

if x satisfies, 
otherwise. 2-13

obvious shortcoming of this approach is the potential difficulty in deciding an appropriate
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as genetic operators.

2.5 G e n e t ic  O p e r a t o r s ,  a

In the summary of the framework, a set of operators, 12 based on the probability distribution 

p(0 performs low-level interactions. These interactions are responsible for preserving high- 

performing schemata and progressively explore and exploit knowledge inherent in these 

schemata. This behaviour is implicit and requires no additional processing overhead, and 

therefore, genetic operators are required to transfer information inherent in schemata to the 

next set of genotypes without explicit knowledge of it.

Each operator <ye!2 operates on a transitional population, X /: (t +1) and sequentially 

processes it until eventually the next population, X7i (/ +1) is formed.

n : X * ( 0 - » X * ( /  + l) 2-14

This then implies that the operators in 12 are often, but not exclusively, implemented in a

linear sequence. Following also from it, three important steps can be summarised as follows:

1. Replicate. This involves sampling and replicating genotypes from X E(t) for

genetic information processing to form X k (/ +1).

2. Interact. At this stage, the candidates derived in step 1 undergo a series of 

information exchange and renewal or schema processing, hence constantly 

updating X l: {t +1).

3. Replace. A new population X E(t + 1) is generated from X /: (7 +1) and X/: (/) 

based on some pre-deflned strategy.

2.5.1 R e p l i c a t io n

Genetic operators responsible for sampling a population to be further processed can be viewed 

as nothing more than replication operators or replicators. This process of replication is known
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as the selection mechanism. The fundamental role of replicators is to reproduce verbatim1 the 

genetic blueprint of genotypes.

In order for the Schema Theorem to hold true, the selection mechanism must replicate 

genotypes based on their performance and hence on the probability of selection, p s . However,

replication does not introduce new information into the system. It simply reinforces good 

schemata. The amplification, at which schemata are reinforced, is known as the selection 

pressure. By indiscriminately reinforcing good schemata, particularly during the early stages 

of evolution, genetic diversity may be lost, the result of which may be premature convergence 

to a local optimum. This is particularly true in cases when there is noticeable epistasis. On the 

other hand, insufficient selection pressure may degenerate the system into one that is 

comparable to a random walk. Current research is still far from reaching a universal sampling 

mechanism that can be effectively applied to all problem domains.

2.5.1.1 St o c h a st ic  M e t h o d s

i

The roulette-wheel selection (Goldberg, 1989a) (RWS) is probably the most well-known of 

stochastic sampling methods employed in GA. The strategy proceeds by first constructing a 

biased roulette wheel where the number of slots equals the population size under 

consideration, p . The sizes of the slots are proportional to the probability of selection, p s 

and each spin of the wheel constitutes the replication of a single genotype. The genotype 

replicated is based on the sector the marker lands. Consequently, genotypes with higher p s 

will have a greater likelihood that the marker will end on the sector that represents it. Figure 

2-1 provides a visualisation of RWS.

However, there are a few apparent drawbacks with RWS.

1. Effects o f  Super Individuals. RWS is unable to deal effectively with the 

overpowering effects of super individuals. Without some form of control, any super 

individuals present will most likely dominate next generation’s population because 

of their extremely high probability of selection relative to those in the same

1 This is not true in biological systems. Replicators are not perfect copying machines and therefore, mutations 
can occur during replication. These imperfections resulted in the first variations that then sparked the process of 
natural selection (Sterelny, 2001). This behaviour o f imperfect replication is explicitly modelled in another 
evolutionary-based algorithm, Evolution Strategies (ES).

28



population leading to rapid convergence before the domain space is sufficiently 

explored.

2. Stochastic Errors in Sampling. Inevitably, RWS will introduce sampling errors or 

selection error and hence produce replicas of genotypes that do not correspond to 

their probability of selection. Many corrections have been proposed and hence, 

RWS is no longer the most successful of selection mechanisms but is still widely 

quoted, like here, for illustrative purposes.

3. Fitness Landscape. RWS does not perform well when fitness landscapes are 

particularly flat. This is because the distribution of probability of selection does not 

impose sufficient selection pressure to exploit potentially good schemata. The use 

of scaling functions, in particular the Power Law Scaling or Ranking procedures, 

are therefore often applied in such cases.

Many other selection mechanisms have been proposed, though they are mainly centred on the 

principles governing RWS. The remainder stochastic selection with replacement (RSS-R) 

uses an expected count parameter to gauge exactly the number of copies a genotype is 

sampled. This value is obtained by

coun
(0)

Stochastic errors in sampling or selection errors arise due to the rounding up or down of this 

parameter for discrete copies of genotypes. To counter this effect, RSS-R first assigns exactly 

the number of copies due to the integer component of the expected count. The genotypes then 

compete for any remaining places in the population based on their fractional components of 

their corresponding expected count. Any suitable sampling mechanism can be used for the 

competition of remaining places in the population. The effects of super individuals and flat 

fitness landscapes still remain as problems in RSS-R.

The stochastic universal selection (Baker, 1987) (SUS) is similar to RWS. The algorithm also 

first constructs a biased roulette wheel where the number of slots is equal to the size of the 

population being sampled. The size of the slots is proportional to the probability of selection 

of the corresponding genotypes.
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Figure 2-1 Visualisation of RWS with 8 genotypes in the population with corresponding probability of selection.

G enotype 8 ,0 .1 5 G enotype 1 ,0 .1 7

G enotype 7, 0 .06

G enotype 2, 0.1G enotype 6, 0 .02

G enotype 5 ,0 .1

G enotype 3, 0 .22

G enotype 4 ,0 .1 8

Figure 2-2 Visualisation of SUS, which is similar to RWS, except with the addition of equally spaced markers. 
In this case, 2 markers pointing at genotype 4 implies that 2 copies of it is made.



Unlike RWS that requires the number of spins equal to the population size, SUS proceeds 

with only a single spin. From the position at the end of this spin, identically spaced markers 

are placed all around, where the number of markers equal the population size. The number of 

markers at a particular sector represents the number of copies made of the genotype 

represented by the section, as visually represented in Figure 2-2, guaranteeing minimum 

deviations in the spread of sampled genotypes.

It is obvious that SUS becomes RWS when the population size equals 1. However, the 

accuracy of the spread in SUS makes the use of RWS undesirable particularly in large 

populations. Then again, the problems inherent in both RWS and RSS-R still exist in SUS -  

super-individuals and flat fitness landscapes. In such cases, scaling functions often 

complement the performance of stochastic methods.

2.5.1.2 S t a t i c  a n d  O t h e r  M e t h o d s

Stochastic methods that deal directly with raw (without scaling) fitness have particular 

vulnerabilities outlined in the previous section. In combating such effects, sampling 

mechanisms that do not directly include fitness factors have distinct advantages.

One such different approach is the ranking selection (RS). RS simply discards the fitness 

values and eliminates sensitivities to its scale by constructing a ‘league table’ where 

performances of genotypes are sorted. With this fitness-to-rank mapping, usually constant 

across all generations, super individuals can never over-dominate. Similarly, the selection 

pressure of flat fitness landscapes is locally amplified. In multimodal or noisy landscapes, the 

consequence may be unnecessary augmentation of local optima but conversely, it may 

implicitly switch the algorithm to be more exploitative. Benefits of such methods, also known 

as static methods due to its constant relative fitness between genotypes, are therefore, highly 

subjective.

Rank-based sampling is characterised by the allocation of prizes1 to genotypes based on their 

positions in the league table. The prize, synonymous with expected count in RSS-R, is of 

course the number of copies of itself a genotype can replicate, which is usually allocated 

linearly or non-linearly. For a population of size p  and ranking the genotypes in decreasing

1 The use o f the term prize here is to prevent the confusion arising from the reuse o f the term ‘fitness’.
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fitness whereby the best genotype is situated at the top of the table at position 0 and the worst 

at position p - 1, the prize payoff, prize(Gt,t) of the i -th genotype in the table can then be 

allocated linearly as

prize ifi^ t) = k -  ( k - U - ^ —
I p - U

2-16

where the parameter k is an indication of the selection pressure and is \ <k  <2.  The lower 

bound imposes no selection pressure by assigning each genotype a single copy. The upper 

bound, however, arises naturally due to the natural constraint that no genotype can receive a 

negative number of copies and maintaining the same population size after replication. A non­

linear payoff can be a geometric progression

where k > 1, and the corresponding geometric series, where r can be suitably derived based 

on relationships between the total prize and the population size.

ranking is incorporated. It involves selecting and competing k number of random genotypes 

in a ‘mini league table’ scenario. The best genotype wins the tournament and contributes a 

copy, and the process is repeated until the required population size is reached. The value of k , 

also known as the tournament size, determines the selection pressure and is often taken as 2, 

or a binary tournament.

Although TS solves the super individual and flat fitness landscape problems, it reintroduces 

the selection error. Ways around this may be to use SUS to pre-select the genotypes of the 

tournaments. For a k -tournament with population size p , the total number of equally spaced 

markers will be k x  p . The genotypes of each tournament are spaced equally between each 

other, giving maximum genetic diversity with those of the next tournament in the next marker.

prize(Gn t) = kr 2-17

Another different approach to selection is the tournament selection (TS), where the idea of
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2.5.2 I n t e r a c t i o n

There are generally two types of interaction operators -  sexual and asexual. Sexual operators1 

require the participation of at least two genotypes and typically involve some form of genetic 

exchange to produce new genotypes or offspring, like the reproductive processes of natural 

adaptive systems. Sexual operators are necessary to exploit existing knowledge in the system. 

Educated guesses at the trajectory of the search come from exploiting the knowledge in the 

schemata. Thus, sexual operators are primarily responsible for this exchange of meta­

information between genotypes.

With only stochastic replication and sexual operations, a finite population will only be able to 

explore regions that are already inherent in the schemata it represents. In addition, a finite 

population through this process will inevitably lose potentially good schemata. Therefore, 

there are genetic operators that will reinstate lost information and inject genetic diversity into 

the population. This process is usually provided by the mutation operator and belongs to a 

wider class of operators known as asexual operators2 and they operate on genotypes 

independently.

2.5.2.1 C r o s s o v e r s  a n d  S e x u a l  O p e r a t o r s

Sexual operators have been traditionally the main difference between GA and other 

evolutionary-based algorithms. The underlying belief, proven in the Schema Theorem, is that 

the trajectory of the search can be obtained successfully from the embedded knowledge in 

previous explored regions in the form of genotypes. This exchange of information between 

genotypes is implemented in a process called crossing-over, where its genetic operator is the 

crossover operator.

The canonical crossover is the simple crossover (Holland, 1975; Goldberg, 1989a), which is 

more commonly known as the one point crossover (1PC) and is often attributed only to GA 

using binary-Gray or string-like encoding. The process involves randomly selecting a 

common locus between two genotypes (mates, parents, etc.) and swapping the segment

1 When the process involves only two genotypes, it is also known as a binary operator for obvious reasons. 
However, the more general term -  sexual operator -  is used here to indicate more than one genotype involved in 
the process.

2 The asexual operator is also known as a unary operator, but the former is used for consistency.
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demarcated by this locus and the end (or start) of the two genotypes to produce two offspring, 

as illustrated in Figure 2-3. Often, not every sampled genotype will undergo crossover and the 

probability that they will is known as the probability of crossover, p c .

An extension of 1PC is the multi-point crossover (MPC). The difference in the process is to 

randomly selection m loci and alternatively swapping the segments between these points. 

The introduction of m crossover points is to combat one particular shortcoming of 1PC, 

whereby it cannot effectively combine two high-performing schemata in a single iteration. 

This drawback of 1PC, and hence its use as justification for the use of other crossovers should 

be viewed with scepticism because it arises from three assumptions:

1. A high-performing schema is discontinuous (fixed alleles with * interspersed 

between),

2. Two high-performing schemata will only exist in a single generation, and

3. The combination of high-performing schemata will result in an even higher- 

performing schema, i.e., ignoring epistatic effects.

Discontinuous schemata will inevitably arise during the course of the search, and therefore the 

dependency on such schemata recombining to produce better ones is potentially inadequate 

and flawed. On top of that, it is possible to argue that the emergence of such higher- 

performing schemata particularly in the early stages of the search is detrimental as it may 

introduce the effect o f super individuals. The performance of any schema is only as good as 

the performance history to which it can be compared and evaluated. Therefore, the efficiency 

of 1PC and indeed most other crossovers should not be measured against their ability to 

recombine high-performing schemata to produce better ones, but against their inherent ability 

to generate high-performing high-order continuous schemata in the presence of epistasis and 

discontinuous schemata.

Parent 1 

Parent 2

0 0 1 1 0 0 1

1 0 o ] ; i j 0  0 1 ° J

One-Point Crossover

Offspring 1 

Offspring 2

>

>

0 0 1 r a n n

1 0 1 1 0 0 i

Figure 2-3 1PC on two parent genotypes, resulting in two offspring.
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The preceding factors have resulted in a myriad of crossovers. One particular crossover 

intended to overcome the discontinuous schemata effect is the a  -uniform crossover or simply 

uniform crossover (Syswerda, 1989) (UC). The operator involves progressively moving from 

one locus to the next, exchanging the genes at each locus based on a pre-defined probability 

that genes will swap. The most commonly used is the 0.5-uniform crossover, which implies 

that approximately half the genes between two mates will be exchanged. A feature of UC is 

that it is isolated from the problem of discontinuous schemata but then again, it potentially 

destroys continuous schemata.

The shuffle crossover (Caruna et al., 1989) (SC) is another method aimed at improving the 

robustness of crossovers. It proceeds by randomly shuffling the genes of the mates to a new 

position, performing some other crossover mechanism (like 1PC or MPC) before finally un­

shuffled back to their original positions. Shuffling is aimed at reducing the probability that 

continuous schemata are disrupted during crossover and also to encourage the transmission of 

discontinuous schemata across to the offspring. This generalises the shuffling process into an 

additional operator rather than a true crossover because it can be made independent of the 

crossover mechanism that is eventually deployed.

The purpose of the shuffle operator is also present in another sexual operator -  inversion 

operator1 (Holland, 1975). Inversion proceeds similarly like the shuffle operator, except that 

random segments of genes are selected for inversion rather than shuffling, crossover 

performed, and then restored back to its original form. The process of inversion is to reduce 

the length of the discontinuous schemata and thus increase the likelihood that such schemata 

have a greater chance of being transferred across to the offspring. Despite the proof by 

Holland that inversion works if the resulting schemata has a shorter defining length before 

crossover, it has largely fallen out of use due to inability to reproduce the results empirically. 

Nevertheless, it has found its revival as a solution to tackling epistasis (Goldberg, 1989b). 

Inversion, like shuffling, can also be considered an additional process rather than an operator.

A typical crossover is necessarily dependent on the underlying genotypic representation. 

Hence, a specialised crossover used primarily in applications to numeric optimisations is the 

arithmetical crossover (AC) (Michalewicz and Janikow, 1991a, 1991b). It targets direct

1 There has been confusion in literature referring to inversion as a unary operator. The actual definition by 
Holland requires that two structures (genotypes) be selected for inversion, and not one. Hence, it is a sexual 
(binary) operator.
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encoding, particularly real-value representations like floating-point numbers.

The process involved is defined as a linear combination of two genes. Given two 

chromosomes from the parents, C f  and C£ , the corresponding chromosomes in the offspring 

C,° and Cj is usually given as

C.° = aC,p + (l -  a)C?1 I V  r-2  2 1 g

C° = (l -  a)CC + aC[

where the parameter a = [0..l] determines the linear distribution of the value of the genes. It is 

also not uncommon to apply AC only to a randomly selected number of genes rather than to 

the complete vector. A feature of AC is that while crossovers involving string-like 

representations are able to produce offspring that lie outside the numerical bounds enclosed 

by the parents, AC is unable to do so. The special case when a = 0.5 is known as the 

averaging crossover1.

2 .5 2 .2  M u t a t io n s  a n d  A s e x u a l  O p e r a t o r s

Mutation, as an operator, aims to exploit the latency of high-performing schemata in an 

environment. A finite population coupled with the restriction of producing only a small 

number of offspring will lead to gene frequency error. Subsequent sampling, even without 

additional selective pressure, will draw the gene frequency towards a particular extremum, if 

no force drives it back to its original state. Since populations generally occur as independent 

events, it is impossible for a genotype to revert to its original state many generations ago. This 

phenomenon is known as genetic drift, and is observed in natural adaptive systems. Thus, 

mutation’s main role is to prevent this drift towards any such extrema, although other 

alternatives such as introducing random immigrants into the population (Grefenstette, 1992) 

are also feasible.

1 In evolutionary genetics, the concept o f averaging characteristics and attributes has already been long 
disproved by Mendel in his theory o f genetic inheritance. Nevertheless, variations o f arithmetical crossover, 
which goes against Mendelian genetics, are still widely employed in evolutionary computation particularly in 
applications to numerical optimisation.
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Offspring

Offspring

1 0 0 1 0 0 0

n Uniform Mutation

1 0 0 1 1 0 0

Figure 2-4 Uniform mutation and the flip from a 0 to 1 at the 5th locus.

The process of mutation, particularly in binary-Gray genotypic representations, is a simple 

one and involves only random bit flips1 as illustrated in Figure 2-4. Not all genes will undergo 

mutation and hence a parameter p M , called the probability of mutation, is used to govern the 

likelihood a gene will undergo mutation. This form of mutation is known as uniform mutation 

(UM), as p M is held constant throughout the search process. Traditionally, p M is usually 

assigned small values of around 0.001 and considered a ‘background’ operator2. However, it 

is now accepted that higher values are equally appropriate, but not arbitrarily too high to 

shadow the effect of selective pressure and degenerate the search into a random walk. In 

practical applications, genetic drift towards the later stages of the search is probably an 

advantage rather than a disadvantage due to its convergent nature. The constancy of p M in 

uniform mutation makes this impossible.

Non-uniform mutation (NUM), as the name suggests, varies p M by some predefined strategy. 

The most commonly used strategy would involve some deterministic decrease of p M over 

time, l im ,^  p M (/) = 0 (Fogarty, 1989). A slightly more complicated approach would be to 

encode p M directly into the genotype and allow even it to undergo self-adaptation in order to 

arrive at an optimal mutation rate (Back, 1992). The process begins by randomly assigning 

appropriate values to p M for each genotype at t = 0 . During the next mutation process, p M 

is mutated based on its own probability. The resulting new p M will then be the probability 

that the genes will undergo mutation.

1 There are two ways o f  implementing the flip. One is to force the flip from 0 to 1 and vice-versa. Another way 
is for equal probability between 0 and 1 to be assigned to the gene.

2 Mutation and selection alone is highly successful for numerical optimisation in another form o f  evolutionary 
computation -  Evolutionary Strategies. The argument as to whether mutation is a background operator also has 
its parallel in real evolutionary studies.
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Both UM and NUM described above are applicable only to bit representations. Non-bit 

representations, where the allelic domains are larger, often require a smaller p M . The uniform 

mutation for floating-point representations (UN-FP) then involves replacing a gene with 

another floating-point value within the enclosed domain. The non-uniform mutation for 

floating-point representations (NUM-FP) is also similar to NUM. If the domain of a gene is 

[gUB , g LB] and it has the value g , then the mutated gene can be

g ' = \  g  + d ( t ,gUB - g )  if rcmd(0,1) = 0 ^ ^
[ g  + S(t, g LB -  g) otherwise.

where lim ,^  S(t,x)  = 0 , and rand(0,1) is simply a random bit flip.

Most of the other asexual operators are mainly repair operators and therefore, are encoding 

and problem specific. Their use is particularly common in constrained optimisation problems 

where genotypes are often ‘repaired’ so that constraints are satisfied in problems such as TSP. 

However, the use of such repair mutations may be computationally expensive when objective 

and constraint evaluations are complex.

2.5.3 R e p la c e m e n t

One important genetic operator is to determine a strategy on how genotypes in the transitional 

population X H (t +1) and those in the original population X h (/) are merged to create the 

population of the next generation X* (f +1) . This step in the plan is known as replacement or 

reinsertion.

The merger of parents and offspring to create the new population can be done in a variety of 

ways. There are generally two classes of replacement strategies -  generational and steady- 

state. Traditionally and in the simplest GA, the generational strategy is often used where 

offspring unconditionally replace the entire population of parents.

It is commonly presumed, albeit erroneously, that population size using the generational 

replacement strategy has to remain constant and hence imposes a restriction on selection 

mechanisms to sample the number of genotypes equal to the population size. Most natural
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adaptive systems that tend to display a seasonal pattern in reproduction1 often produce 

substantially more offspring than there are number of parents. Of course, most offspring die 

before they reproduce (predation, environmental effects, etc.) and hence maintain a stable but 

by no means constant population size. This can be suitably simulated in the generational 

strategy. However, there is an issue of efficiency pertaining to additional fitness evaluation 

costs for the additional genotypes.

The steady-state, or incremental, replacement strategy requires the selection and genetic 

operation of a considerably smaller number of offspring, typically one or two. These offspring 

are then evaluated and reinserted into the population. The process of selecting the genotypes 

that will be replaced can be done using any one of the criteria below:

1. Parents. Replace the parents responsible for the reproduction.

2. Weakest. Replace the weakest genotype in the population.

3. Oldest. Replace the oldest genotypes in the population. This then requires an 

additional ‘age’ counter to be tagged along each genotype.

4. Random. Randomly replacing any genotypes in the original population.

Using either the parents or random criteria above is approximately similar to the generational 

approach particularly when the magnitude in the number of offspring is comparable. However, 

an additional replacement criterion can also be imposed such that an offspring only truly 

replaces the selected genotype if it has a better fitness than the replacement candidate, or 

fitness above some fitness threshold (usually population average fitness).

The advantage of steady-state over generational strategy is in the number of sampled and 

processed offspring. In complex fitness evaluations, the lower processing cost of steady-state 

is attractive. The earlier insertion of generated genotypes back into the population also adds to 

a steadier and faster increase in selection pressure, particular fitness-based replacement, for 

successive populations.

From a different perspective, replacement strategies are akin to selection mechanism because 

they discourage (or encourage) weaker genotypes from further contribution to the search. 

Thus, it is also possible to merge both the original and transitional population and using some

1 Unsurprisingly, the generational strategy finds its parallel in natural adaptive systems. In nature, reproduction 
in many species often takes place seasonally and many, if not all, parents eventually die and their offspring 
becomes the next generation.
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selection mechanism (RWS, SUS, etc.) to sample genotypes for the new population. Such a 

strategy, particularly when using stochastic sampling mechanisms, often increases the average 

fitness population while reducing the differential and hence, gives a guarantee towards 

convergence1. A strategy that unconditionally preserves the best genotypes in the new 

population is said to exhibit elitism.

During replacement, it is also not uncommon to additionally insert new genotypes into the 

population. This introduction of random immigrants has the benefit of injecting genetic 

diversity and hence reduces genetic drift effects. Another approach is to penalise the 

reproduction of similar genotypes by replacing genotypes that are most similar with offspring. 

The latter technique is known as crowding.

2.6 A d a p t iv e  P l a n s , t

Following the definition in the framework, the adaptive plan t is the cumulative strategy that 

determines the genetic processes involved in the evolution of genetic structures that 

individually represents particular points on the landscape.

t  : p  x X h (/) —> n  2-20

Traditionally, all genotypes in a population of every generation undergo the same genetic 

operators. For example, every population will be sampled, crossover and mutation performed, 

and replaced to generate the next population. Such an implementation is simple and has been 

widely reported for its success across different fields of research. However, it is also possible 

to implement operators in other ways such as alternating between performing only crossover 

or only mutation in a particular generation where the best genotypes produced are only 

replaced back into the population (steady-state).

Optimisation problems can be multimodal, such as in practical application of GA into design 

and optimisation of composite laminates (discussed later). Here, there are many candidate 

solutions that indicate global optimality and hence discovering them is equally as important as 

finding the optimum solution. The ability of GA to simultaneously process a set of solution

1 Convergence also implies genetic drift, which may or may not be a desired effect particularly in early stages o f 
the search.
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vectors gives it a major advantage in such fields. The naive implementation will be to 

conduct several runs to locate these optima, but success is not guaranteed. There are generally 

two distinct groups of plans that are suitable for the discovery of multiple optima -  parallel 

and niche plans.

2.6.1 P a r a l l e l  a n d  D ist r ib u t e d  Im p l e m e n t a t io n s

An interesting approach to adaptive plans is to allow subsets of genotypes to undergo 

different operators. Such implementations employ parallel architecture and are known 

collectively as parallel GA (p-GA). With continuously decreasing computation overhead and 

the increased availability of distributed computing, the developments and applications of p- 

GA have been more thoroughly researched and benefit from the amenability of GA to parallel 

computation without requiring further modification. Such plans have been particularly 

successful in tackling multimodal optimisation problems as separate populations are allowed 

to evolve simultaneously with minimal interaction and hence, have a greater likelihood of 

converging into separate optima. Parallel implementations are also particularly attractive 

when computation costs for fitness evaluations are high.

The traditional approach to parallel implementation is the farmer-workers model, where a 

centralised single ‘farmer’ handles the core GA processes while the ‘workers’ perform fitness 

evaluations. This methodology often involves delegating function evaluations to separate 

physical processors. Each processor is then responsible for the handling of a single genotype, 

and is particularly attractive in solving highly complex and difficult problems where 

traditional optimisation and search techniques fail due to time complexities. In such cases, 

maximum utilisation of computation resources is attained by immediately reinserting 

evaluated genotypes back into the central population for further genetic processes. A downfall 

to this approach is the bias towards genotypes that evaluate faster, which may or may not be 

desirable. This modelling approach, known as panmictic, often forces genotypes to mate and 

compete with one another without isolation and usually involves only a single population and 

thus do not guarantee the discovery of multiple optima. Therefore, this implementation in 

itself is not strictly a parallel model per se.

A more accurate parallel model is the island model. It proceeds by allowing several
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populations1 to evolve simultaneously and independently of each other most of the time. They 

are then allowed to interact intermittently by exchanging genotypes if migration is 

implemented. There is no restriction as to what lower-level GA model each population 

implements. Each island is then allowed to model any GA implementation. If and when 

populations do interact, there can be further distinguishing of ‘geographical locations’, where 

only islands close to one another may allow migration.

This is similar in context to actual evolutionary processes whereby geographical isolations 

often produce different organisms that are able to exploit the same environmental conditions. 

Such isolation is particularly promising in cases where domain spaces are unbounded or too 

large, and therefore each population is forced to evolve only to a constrained subspace of the 

domain proper. Without any or limited interactions between populations, the corresponding 

genotypes are restricted to the evolutionary model they are subjected to and are often referred 

to as structured. It is also possible to incorporate hybridisation into the model such that 

individual populations undergo additional domain specific optimisation.

Yet another approach is the diffusion model, where genotypes are distributed over some grid­

like structure and allowed to interact only with its immediate neighbours. A generalisation of 

this model is if the genotypes are extended to include a population, which then becomes 

similar to an island model with migration.

2.6.2 C l u st e r s  a n d  N ic h e  Id e n t if ic a t io n

Before the wide deployment of parallel implementations of GA, techniques like crowding 

(Goldberg, 1989a) and fitness sharing (Goldberg and Richardson, 1987) were used for 

multimodal optimisations and are highly successful. In fitness sharing, genotypes compete for 

the same resources in a closed environment. This environment is typically bounded by 

relationship through a genotypic or phenotypic distance threshold, crshare. By having to share

the same resources, genotypes are weakened2 and the resulting reduced fitness causes 

genotypes to cluster around different optima. However, this technique requires the

1 There is also the use o f the term sub-population to refer to this subset o f genotypes in the overall GA process. 
However the term population here is used to immediately imply that there is no immediate link o f genetic 
operators or processes between these groups o f genotypes in the form of employing the same selection 
mechanism, crossover, etc.

2 Weakened here points to the expected number o f replicas in the sampled population due to fitness sharing.
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determination of the difficult <Jshare parameter, which in turn should be an estimation of the

location and number of optima, both generally unknown parameters (Deb and Goldberg, 

1989). Techniques that construct genotype clusters are known as niche induction techniques.

Another approach is through a sequential identification of niches (Beasley, et al., 1993), not 

unlike the approach discussed earlier. The difference lies in the additional process of 

suppressing the fitness values within certain radii of identified optima in previous runs. If the 

depression of the fitness within the region is not done properly, this may lead to additional 

optima that are not part of the landscape in the first place. On top of that, the additional 

storage requirements for tracking identified optima particularly in problems with high 

dimensionality can lead to a slowing down of the search process during actual implementation.

More recent developments in niche identification are centred on the use of some ‘pattern 

recognition’ algorithm, in particular clustering algorithms commonly associated with data 

analysis and mining. A particular interesting approach includes the use of a ‘density-based’ 

clustering algorithm (Ester et al., 1996; Ester et al., 1998), known as the GDBSCAN 

algorithm, in the automatic identification of clusters in any evolutionary-based algorithm 

(Streichert, 2003). The problem still lies in correctly assigning an appropriate distance 

parameter, crdisl, which in numerical optimisations can simply be the Euclidian distance.

However, in more complex problems such as those experienced later in applications to 

optimisation of composite laminates, it is unnatural to assume that design variables of 

differing nature and behaviour (thickness, fibre orientation, etc.) can be assigned an 

appropriate Euclidian distance.

2.6.3 E v o l u t io n a r y  A l g o r it h m s

The approach of modelling natural adaptive systems is not unique to GA alone. There exists a 

general class of algorithms that model evolving systems and are known as evolutionary 

algorithms (EA). The similarities of such algorithms lie neither in their operators nor in their 

structures or representations (of solutions), but simply on the underlying notion of an adaptive 

system.

One particular class of EA that has attracted a lot of research, particularly in numerical 

optimisations, is Evolution Strategies (ES). It traditionally encompasses only a single 

individual as opposed to GA population, although extensions have now been made to include 

multi-member populations. Its main difference to GA is in the genetic representation, where a
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pair of floating-point vectors is used, v  = (x,<r). The vector x represents the solution vector 

of an optimisation problem, while o is a vector of standard deviations. The only operator 

used is the mutation operator and is realised by replacing x at time t , x' with

x,+1 = x' +Af(0,o) 2-21

where N(0,a) is a vector of independent random Gaussian numbers with zero mean and 

standard deviation o .  The offspring, v ' +l = ( x '+i ,<j )  replaces the parent if and only if its 

fitness is better. This traditional approach is now often referred to as the (1 +1) -ES, and other 

variants now exists that show promising results in numerical optimisations.

Other algorithms such as Evolutionary Programming (EP) techniques were initially intended 

for the evolution of artificial intelligence. Its representation uses finite state machines. Genetic 

Programming (GP) instead of solving a problem by building an evolution program, searches 

for the best computer programs that solve it. Therefore, a population consists of a group of 

executable programs, traditionally represented with LISP (List Processing). Both methods 

also require some operators that allow interaction between their respective structures.

It can be seen that the objects encapsulated by the GA framework are mutual across other EA 

although the actual implementation may differ. In fact, there is a constant flow of ideas 

between EA and this has led to the development of more generic evolutionary algorithms, 

such as the use of multi-individual ES.

2.7 C l o sin g  R e m a r k s

GA was not traditionally intended for applications in numerical and engineering optimisation, 

but provided a generalised framework for modelling adaptive systems. It is still actively being 

pursued as a suitable machine learning framework in the field of artificial intelligence.

Due to its flexibility and relative robustness in a broad range of problem domains, GA is now 

gaining considerable support and application in engineering and structural design and 

optimisation. The increasing availability of distributed computing and parallel architecture has 

made GA more attractive, especially in tackling previously intractable problems that were 

unmanageable with traditional methods due to high dimensionality and time complexity.

Since GA works on stochastic transition rules and a set of solution vectors, it has led to,
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understandably, the wrong assumption that the search processes involve long computation 

time and more unfortunately, GA have been branded as merely ‘improved’ random searches. 

In most non-trivial cases, the main overhead lies in the fitness evaluation, which is more an 

indication of the complexity of the problem domain rather than that of the GA itself.

A particular common criticism thrown at GA is the lack of heuristics in guiding the decision 

to specifying suitable values for the various control parameters such as population size, 

probability of crossover and mutation rates. However, such problems are not isolated to GA 

alone as most optimisation techniques equally require definition of parameters. Contrary to 

general perception, there are general guidelines for assigning appropriate values to the control 

parameters. Population size is always proportional to the complexity of the problem domain 

and almost always reflected in the number of genes in the genotypes. GA often employs the 

‘high-crossover low-mutation rate’ rule as opposed to other EA like ES. The emphasis on the 

higher crossover rate is to stress that GA are ‘self-learning’ algorithms capable of planning a 

suitable trajectory across the problem landscape from a constantly evolving knowledge 

repository modelled as schemata, as opposed to ‘discovery’ algorithms that traverses the 

domain usually by identifying the best surrounding points. This ‘self-learning’ behaviour of 

GA also makes it more robust in dynamic environments.

GA does not guarantee that the optimum is found because they are particularly weak in high- 

precision problems, but nevertheless they are sufficiently reliable to ensure that near-optimal 

solutions are obtained. Indeed, this reliability in identifying optimal regions should prove 

attractive enough for future developments of hybrid methodologies, particularly with 

gradient-based methods, for use in more practical applications such as engineering design and 

optimisations. The only difficulty lies in the lack of a simple to deploy and reliable niche 

identification technique that can be easily incorporated into GA without incurring the need to 

tweak additional control parameters.

As GA and indeed other EA continue to mature, they have been used in more practical 

applications. The successes of their applications have been reported many times over across 

different fields, and the next chapter introduces a new efficient constraint handling technique 

for constrained optimisation problems.
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3 C o n s t r a in e d  O p t im is a t io n  w it h  G e n e t ic  
A l g o r it h m s

This chapter covers the development of a new method for the handling of constraints for 

Genetic Algorithms (GA). It starts by introducing the standard constrained optimisation 

formulation and discusses some of the alternatives for constraint handling commonly 

employed in GA. Then, new and efficient methods for constraint handling will be presented. 

Various tests performed to gauge their robustness are then discussed, together with full results 

of comparisons and conclusions made to the performances of other commonly employed 

methods.

3.1 In t r o d u c t io n

GA, as mentioned in the previous chapter, was initially developed as an adaptive system 

aimed mostly as search algorithms particularly for machine learning and artificial intelligence. 

Its lack of direct correlation with the behaviour of objective functions (continuous, 

discontinuous, etc.) is a major departure from traditional optimisation techniques as it relies 

mostly on a measurement of performance. This departure from direct objective or cost values 

is particularly beneficial in multimodal landscapes fraught with noises. The independency on 

gradient or other direct information gives GA an additional robustness and has therefore been 

widely used for solving optimisation problems. Due to its highly robust nature in problem 

solving, it has increasingly gained applications into diverse fields of studies particularly in 

practical engineering optimisation.

However, most if not all engineering optimisation problems have a set of constraints that 

define the feasibility or preference of solutions. There are generally two kinds of constraints -  

domain bounds and system constraints. Domain bounds restrict and define the range of values 

in which the solution vectors are valid. GA deals with such constraints directly in the 

genotypic representation and they are therefore not considered as constraints in subsequent 

discussions below. System constraints define a set of preferences for solutions. It is these 

constraints that are considered in GA satisfaction of a set of design loads for an engineering
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problem being a prime example. Considering only a single objective optimisation problem, 

the standard formulation,

Optimise
/(*), X € X,

such that
h,(\)  =0 , 

g, (x) <0,
3-1

where

x e F c S

The objective function / (x) is defined on the search space S , and the set F c S  defines the 

feasible regions of the search space. The search space S itself is a hyper-dimensional 

rectangle defined by the domain bounds, which are determined by their respective upper and 

lower bounds of the variables in consideration. The feasible region is bounded by a set of n 

system constraints defined by the set of equality ht (x) and inequality g, (x) constraints. All 

equality constraints are active at all points x e F .

The functions / (x ) , ht (x) and g , (x) are not necessarily differentiable, but can instead be a

mixture of complex unrelated types such as linear or nonlinear, continuous or discrete, and 

analytical or procedural. The above formulation is the representation for the general nonlinear 

programming problem. Arriving at the global optimum is usually possible only if the 

objective function and the set of constraints satisfy certain properties, such as convexity. 

Methods proposed for solving the general nonlinear programming problem can be generally 

divided into two groups -  indirect and direct.

Indirect methods decompose the general nonlinear programming problem into one or more 

linear problems and solve it as a set of linear problems. Direct methods, however, tackle the 

problem head on by trying to derive a trajectory through the search space leading towards the 

global optimum. Traditional methods, like gradient-based methods, often transform the 

original problem into its unconstrained equivalent and use gradient knowledge to determine 

successive search points. Many indirect and direct methods have been widely documented 

elsewhere and are outside the scope of the current work, and hence will not be reported here.
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Based on the above definitions of indirect and direct methods, GA can be classified as a direct 

method, although the trajectory is not instantly identifiable1. There exists also a wider group 

of methods that proceed via a heuristic search. Whether GA belongs to this wider group or to 

the former group is believed to be nothing more than semantics, but its search proceeds 

stochastically by constantly updating its projected trajectory through the search space using 

schemata as indicators of optimality.

3.2 C o n st r a in t s  in  G e n e t ic  A l g o r it h m s  -  A  L ite r a t u r e  R ev iew

In the standard formulation for the general optimisation problems presented in Eq. 3-1, there 

are two immediately distinct groups of constraints -  equalities and inequalities. In methods 

such as linear programming, equality constraints are easily handled by exploiting the fact that 

the optimum, if it exists, lies at the surface of the convex set. The handling of inequalities, 

however, is less direct and requires the introduction of slack variables into the system. The 

system then proceeds by moving from one vertex to another around this surface.

On the other hand, GA has opposite characteristics to linear programming dealing excellently 

with inequality constraints but being rather weak when handling equalities. This is due to the 

stochastic nature of the underlying system. However, methods for handling equality 

constraints are available that reduce the whole optimisation problem to one that is mainly 

constrained by inequalities. One particularly simple method is to carefully eliminate equalities 

present in the set of constraints by variable substitution and producing a new set of constraints 

that are governed by inequalities, together with the domain bounds of the vector of variables. 

This method is only easy in the case of linear equalities and becomes increasingly 

complicated in the presence of nonlinearity. Nonlinear equalities are usually converted into 

inequalities by introducing accuracy parameters, where given a nonlinear equality h"L (x ), 

the resulting inequality is

- S < h ^ ( x ) < S  3-2

The accuracy parameter S  is normally sufficiently small so that the resulting solutions are as 

close to satisfying the constraints as possible.

1 The trajectory is inherent in the sampling o f the schemata, and is therefore not directly apparent in the search.
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Another interesting, albeit more difficult, approach to handling equalities is to design

of equality constraints by limiting transformation of potential solutions, or genotypes, to the 

constrained but not necessarily fully feasible solution space. The reason that such operators

as well, and these can be handled more readily. Furthermore, expecting full feasibility can be 

particularly difficult. Such methods are only suitable for systems whereby designing such 

operators is easy. One particular difficulty lies in the possibly large number of active1 

constraints at the optimum. The process of satisfying a large number of constraints using such 

operators is an optimisation process itself, and therefore developing a universal generalised 

operator applicable to a substantially wide range of problem types is probably an impossible 

task.

As mentioned previously, GA is well-suited to constrained problems with inequalities. As 

such, various approaches have been proposed to handle inequality constraints and they 

primarily fall into the traditional optimisation technique of using penalty functions. The 

concept of penalty function is centred on incurring an additional penalty to objective function 

values for non-feasible solutions. Without loss of generality, consider a typical minimisation 

problem, a solution vector x together with the original raw objective function / (x)

The function p ( \ )  is zero if the solution vector is fully feasible with respect to the complete 

set of constraints in consideration, or some positive value otherwise. Generally, a set of 

penalty functions p, (x) e  /?(x), i < n are considered, where the complete set of equality and 

inequality constraints are combined. Hence, the i -th penalty function provides a measurement 

of violation for the i -th constraint. This is typically done in the following manner, where the 

penalty of the / -th penalty function is

1 Active constraints imply constraints where the solutions lie at their boundary. Obviously, all equality 
constraints are active at any point in the feasible region.

specialised genetic operators. The main task of these operators will be to maintain satisfaction

are not expected to maintain full feasibility is the notion that there may be inequalities present

/ '(* )  = / ( * )  + />(*) 3-3

max
if 1 < k < m, 
otherwise.

3-4
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The implementation details of various methods differ largely with respect to the penalty 

functions and their application to infeasible solutions. A review of constraint handling 

methodologies in evolutionary algorithms was reported by Michalewicz (1995), although a 

more critical (literally) perspective can found in a paper by Coello (1999c), which also covers 

other taxonomies.

Proposed constrained handling methodologies often require the definition of a certain number 

of system parameters. This is due to the need to assign the amount of constraints violation to a 

fitness value that is reflective of global optimality, which then gives rise to another problem: 

For almost all such approaches, there often exists an optimal set of values for the system 

parameters that guarantees the best results for a set of problems.

The search for this optimal set of parametric values is an optimisation problem on its own. 

More often than not, the complexities of such systems goes beyond trivial analyses, and are 

therefore usually reported with sets of ‘best-performing’ system parameter values that are 

often arrived at empirically. Such ad hoc approaches leave a yawning chasm to be bridged if 

such methods are to be applied successfully to real optimisation problems. The matter is 

slightly alleviated if the set is a small one as several trial-and-error runs can be made to arrive 

at intuitive rule-of-thumb values. However, the problem is compounded in cases where the 

number of such parameters depends entirely on the nature of the optimisation problem and 

computationally cheap and rapid sensitivity evaluations are impossible.

3.2.1 D ea th  S e n t e n c e

The traditional approach to constraint handling in GA and indeed most other evolutionary- 

based algorithms has been to impose a direct penalty on infeasible genotypes by disregarding 

the amount of violation it has incurred. The method completely discards or minimises the 

contribution of infeasible genotypes from subsequent contribution, hence the term ‘death 

sentence’ or death penalty. This, though, can be done in a myriad of ways.

The easiest approach to achieving this will be to simply discard infeasible genotypes from the 

population and generating new ones until the required population size of genotypes is fully 

feasible. Such an approach, of course, breaks down if the proportion of the feasible space to 

the overall search is negligible.

Another more flexible and arguably better approach will be to allow infeasible solutions to 

coexist with feasible ones in the population by assigning an appropriate fitness. Contrary to
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common belief, it is not necessary for infeasible solutions to have fitness that is no better than 

that of the worst infeasible solution. Rather, it is sometimes more appropriate that infeasible 

solutions are merely never better than the best feasible solution. This allows sub-optimal 

infeasible genotypes to appear to be equally as good as feasible ones. However, such an 

approach is beginning to look more like a penalty-based approach. Nevertheless, the rationale 

behind this is that GA is equally likely to benefit from feasible as well as infeasible genotypes. 

Consigning infeasible genotypes to the death penalty implies directly discarding possibly 

beneficial schemata, which itself may bring detrimental effects. In optimisation, this has a 

direct implication in that the search is almost entirely directed from the feasible region rather 

than a two-prong approach from both the feasible and infeasible regions. Such an approach 

has a beneficial side-effect, which can be fully exploited by a later proposed method to 

handling constraints in GA.

3.2.2 Pe n a l t y  F u n c t io n s

Methods based on the traditional penalty function approach come in various shapes and sizes 

for GA and can be generally divided into two groups -  static and dynamic penalties. The 

static penalty formulations discount the effects of GA time. Therefore, genotypes experience 

the same selection pressure regardless of the point in time as long as the amount of violation 

remains the same.

The opposite is true for dynamic penalty formulations whereby the penalties imposed on 

infeasible genotypes are dynamically increased as a function of time t where 

lim^^ /?,(x,/) = oo1. The reason for doing so is to first allow the GA to search through a

combination of feasible and infeasible solutions, before progressively focusing the search and 

filtering onto regions with decreased violation. This leaves the use of such dynamic 

formulations with the task of balancing between exploration and exploitation of the search 

space. An over-zealous approach will undoubtedly force the search to be directed only from 

the feasible regions. Whether this is an intended effect and beneficial is highly subjective and 

problem dependent.

One approach to penalty functions (Powell and Skolnick, 1993), denoted M l, involves the

1 The use o f the infinite symbol is dependent on the context o f the problem. It is denoted as such to imply a 
substantially large enough value so that infeasible solutions are almost likely to be discarded, as in the death 
sentence approach.
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classical formulation with one notable exception, where fitness values are assigned according 

to the formulation

/ ' (x )  = / ( x )  + r^"_|Pj(x) + /l(x,/) 3-5

In essence, the parameter r determines the selection pressure on infeasible genotypes. The 

exception, however, is in the A(x,/) component. This additional component forces a further 

comparison between feasible and infeasible genotypes by applying the additional heuristic 

rule: For any feasible genotype and any infeasible genotype, the feasible individual is always 

better than any infeasible one. In other words, assuming that higher fitness implies better 

optimality, infeasible individuals cannot have higher fitness than the worst of infeasible 

individuals. The difficulty in this approach lies in the formulation of the /£(x,/) component. 

Often, it is implemented as a rule, and is updated as the search progresses and as more 

solution points are considered. The method is also sensitive to the correct value of the 

parameter r although it can be safeguarded against by a good formulation of A(x,/).

Another proposed penalty function approach (Schoenauer and Xanthakis, 1993), denoted M2, 

processes the constraints sequentially in a linear fashion. It proceeds with a random 

population of possibly both feasible and infeasible genotypes. A constraint counter k , used to 

trace the number of constraints satisfied, is introduced and initialised to 1 at the start. The 

population is evolved and the fitness assigned as

/ '( x )  = P*(x) 3-6

It proceeds as such until a given percentage of the population, the flip threshold (f>, is feasible 

for the k -th constraint. Once achieved, the constraint counter is incremented, where the 

k <r- k +1 -th constraint is now considered, and the fitness of genotypes in the current and 

subsequent populations evaluated as before. This is repeated until the flip threshold is again 

attained. If at any point a genotype does not satisfy any of the previous constraints considered, 

it is immediately dropped and eliminated from the population. The method proceeds in such a 

way until all constraints are eventually satisfied. Once fully satisfied, the genotypes are then 

assigned the fitness according to the raw objective function. By then, any genotypes not 

satisfying all the constraints are rejected.

It should be immediately apparent that this is not strictly a penalty-based approach because
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there is no standard formulation for assigning fitness values. The discontinuous treatment of 

constraints and eventual discarding of genotypes that do not satisfy earlier handled constraints 

often leads it to behave more like the death sentence. Therefore, this makes it highly sensitive 

to the size of the feasible region. It is also not known how the search will behave if the order 

of constraints handled is different. The method also needs to maintain diversity in the 

population rather than converge onto a specific region with each handled constraint, therefore 

requiring the deployment of some niche induction techniques. That having said, the method is 

particularly powerful in situations that makes it impossible to deploy a monotonic fitness 

function with penalty formulation.

Another method (Homaifar et al., 1994), denoted M3, employs a set of penalty coefficients 

for every constraint considered. First, a set of levels of violation L , for each constraint, is 

determined. Then an appropriate penalty coefficient Ru is defined for the / -th level of

violation of the i -th constraint. The GA process begins with a random population of possibly 

both feasible and infeasible genotypes. Each genotype is then assigned fitness according to 

the formula

/ '( x )  = / ( x )  + X > , p , 2(x) 3-7

The weakness of this method clearly lies in the number of system parameters in L and RH. In

most non-trivial optimisation problems, it is not easy to generalise a set of suitable parameters 

that is sensitive to the search domain, let alone a universal set for all problem types. The 

sensitivities of the penalty coefficients are important as they ultimately decide the selection 

pressure of the search process. Failing to tune the coefficients to the nature of the problem in 

hand may leave the ‘rewards’ of infeasible solutions too attractive to resist, thus guiding the 

search towards a local optimum or even an infeasible solution.

One dynamic approach (Joines and Houck, 1994), denoted M4, includes the effects of varying

timelines on the selection pressure of infeasible solutions. Dynamic, or non-stationary,

penalties incorporate GA time into the penalty functions, and in this method, the fitness is 

assigned as

/ '  (x) = / ( x )  + (C + t f  X"„ p f  (X ) 3-8
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Three system parameters - C , a  and p  - controls the general selection pressure. Although 

suitable values reported indicate that C = 0.5 , a  = P = 2.0 , these control parameters still 

require sensitivity analysis to ensure stable search progress. The indiscriminate application of 

values to system parameters may lead to over-zealous penalising of infeasible solutions or 

insufficient pressure to drive the search towards optimal regions. If the former is true, the 

search may degenerate into a search from only the feasible region far too soon since the death 

sentence is inadvertently simulated.

In general, penalty approaches based on dynamic penalties can be formulated as

/ W  =  / ( * )  + £ > - ( * . ' )  3 -9

The above formulation for dynamic penalties allows the weightings of violation effects as a 

function of time t , where generally lim ,.^ /?, (x,/) = oo is to ensure that the search develops

eventually into a search for only feasible solutions. The consideration of different weights for 

different constraints may be necessary particularly in cases when certain constraints result in 

tight feasible regions, i.e., they are difficult to satisfy.

Another dynamic approach (Michalewicz and Attia, 1994), known as GENOCOP II or 

denoted M5 here, involves also the use of a system parameter r , which is termed as the 

‘system temperature’. This, like many of the previously described approaches, determines the 

selection pressure on infeasible solutions. The process begins by first initialising the 

temperature to an initial value, r  = r 0, and terminates once a so-called ‘freezing’ temperature

r = r f  has been reached. At any temperature t  , the fitness are assigned based on the

formulation

/ ' ( x )  =  / ( x )  +  J - X " , , ^ 2( x ) 3 -1 0

Suggested starting and freezing temperatures are given as r 0 = 1 and rf  =1x10“*, where the 

temperature decreases with each iteration by r  <- 0.1 x r .

It should be noted that the GENOCOP II model encapsulates a lower-level GA, the 

GENOCOP, where a single iteration implies a complete evolution of this underlying system 

through to convergence. It starts by first selecting a starting point that forms the basic
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template for the genotypes in GENOCOP subjected to a set of constraints. Specialised 

mutation operators are applied to introduce genetic diversity and the evolution of GENOCOP 

is performed until some termination criterion is met. The best genotype from the evolution 

becomes the template for the genotypes in the next iteration of the GENOCOP II model with 

a reduced temperature and a new set of constraints violated by the template genotype.

The complexity of this approach lies in the need to possibly perform several complete GA 

processes. Whether there is significant advantage of simpler models that are highly-tuned to 

the nature of the problems is inconclusive and unreported. Furthermore, the effects of varying 

the decrement function of the temperature apart from the linear function above have not been 

reported. On the other hand, the same report did mention that the temperature parameter is 

sensitive to problems, and thus requires additional evaluations to extract a suitable set of 

values to guarantee good results.

3.2.3 M u l t i-O b je c t iv e  C o n st r a in t  H a n d l in g

There are also developments in using multi-objective concepts in handling of constraints in 

GA. All, however, are based on the same concept of redefining n constraints (equalities and 

inequalities alike) and the objective function into an n + 1 multi-objective problem. Multi­

objective optimisation procedures can then be applied on the vector of objectives, / 0, ,

where / ,  are constraints, described in more detail below. This adoption also makes

virtually all methods identical, except in the implementation details and approach towards the 

optimum.

Parmee and Purchase (1994) implemented a version of Vector Evaluated Genetic Algorithms1 

(Schaffer, 1985) (VEGA) for constraint handling. Each sub-population is made to handle a 

single objective (cost objective and constraints) to allow the GA to locate feasible regions in a 

highly constrained space. Instead of proceeding to use VEGA to explore the detected feasible 

regions, specialised operators were deployed to create variable-sized hyper-cubes around such 

regions to assist the GA in remaining within them. The report however did not go on to 

discover the global optimum, so it remains to show if optimal solutions can indeed be found.

1 VEGA forces distinct sub-populations to be affected only by a single objective o f a multi-objective problem, 
and thereby specialising genotypes. Crossover, however, did not differentiate between the various distinctive 
sub-populations. Heuristics such as inter-breeding and wealth/resources redistribution were developed. Studies 
showed that there is a tendency to converge towards solutions that were not optimal with respect to any 
objectives.
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Furthermore, specialised operators prove a major limitation for more general usage.

Surry et al., (1995) included the above multi-objective definition, as well as Pareto-dominance 

(see below for formal definition) to handle constraints in the COMOGA method. Pareto- 

dominance was used to rank genotypic preferences of a population based on constraints 

satisfaction. However, selection is not based fully on this information. A fraction of the next 

generation, determined by a threshold parameter that is not dissimilar to the flip threshold <j> 

of M2, will be selected based on dominance, while the remainder will rely on actual cost 

value. The threshold parameter is readjusted during run-time depending on preference for cost 

optimisation or constraints satisfaction. An important drawback of this approach lies in the 

increase in computational overhead as the number of constraints increases, which is a problem 

noticeable also in some penalty-based approaches.

At first glance, the method proposed by Camponogara and Talukdar (1997) appears to be 

similar to the one proposed here (see below). The method restates a constrained optimisation 

problem as a dual-objective problem, where the aim is to optimise the main cost function and 

minimise

0(x) = X L  max(°>/>,(*)) 3-11

The similarity ends here. Rather than proceed to use multi-objective tools to explore search 

space, non-dominated solutions are generated with respect to the two objectives. These are 

then used to define a search direction. Furthermore, no crossover is applied but search is 

projected along the defined direction, which limits the appeal for a more general GA 

application since impact of segments selected is unclear.

Jimenez and Verdegay (1999) proposed a method that, again on first glance, appears similar 

to the one proposed here (see below). The difference is in the min-max rules for genotypic 

preference. Comparisons are made between overall violations, by selecting the maximum 

violation values, and objective costs. However, constraints are non-dominated in the sense 

that the genotype with the lowest maximum violation is always preferred. If genotypes are 

both feasible, then costs become the basis of comparison. The drawback is in the lack of 

accuracy in constraint handling, since different classes of constraints may inevitably have 

wide ranges in violation values.

Coello (1999a; 1999b) proposed a population-based modelling VEGA to handle individual
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constraints and cost function instead, which implies n +1 sub-populations. A novel approach 

to fitness assignment is then made to drive the GA into progressively reducing constraint 

violations, until feasibility is attained. The primary drawback at the moment is in the lack of 

heuristics in the population size required for each sub-population. On top of that, the effects of 

a high number of constraints (with increasing number of sub-populations) on computation 

overhead may again be significant.

The above methods derived constraint handling methodologies from the discipline of multi­

objective optimisation. Two common problems befall the above approaches -  computational 

overhead, and introduction of specialised operators. Such issues will hopefully be tackled 

more easily in the proposal of a method that is also based on multi-objective principles, as 

presented below.

3.3 F e a sib il it y  o f  G e n o t y p e s : T h e  M u l t i-O bje c t iv e  Appr o a c h

Part of the aim of this work is to develop a highly efficient constraint handling technique that 

minimises the number of system parameters as a consequence of the technique for reasons 

discussed earlier. On top of that, it has to be capable of easy deployment without requiring 

excessive reimplementation of the underlying technique. Such a requirement arose due to the 

difficulty of determining a different optimal set of system parameters for different problem 

sets often associated with other constraint handling techniques, particularly penalty-based 

approaches.

Most of the currently available techniques often work on the objective function itself, 

transforming it into a monotonic fitness function by the addition of a penalty component that 

penalises infeasible solutions as shown in Eq. 3-2. The difficulty arises in cases when the use 

of penalty components is nigh on impossible. One particular situation illustrating such a 

scenario is when the use of too small a penalty leaves the basins of attractions of infeasible 

regions too rewarding to resist, thus leading the search to converge onto infeasible solutions. 

Although a higher penalty may emphasise regions of optimality, it will do so at the expense of 

transforming it to isolated peaks of optima with steep and almost vertical slopes with flat 

surrounding regions. If the search does indeed find such peaks, it will probably accomplish it 

by virtue of the random nature (through mutation) of the process itself rather than through 

gradual improvements. Furthermore, the use of a single monotonic fitness function 

incorporated with penalties obviously transforms the original fitness landscape. Indiscriminate 

use of penalty functions without careful analysis may lead to unwanted behaviours such as
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introduction of multimodality, flatness, discontinuities, etc. Therefore, perhaps the better 

option is to isolate both the objective/cost component and the violation of constraints as they 

both were initially, rather than force a marriage of the two.

Another problem arises when objective functions and constraints are not necessarily 

discernible. As mentioned earlier, it can even be as complicated as procedural or analytical. 

The use of penalty methods in such situations is again virtually impossible, and the death 

sentence may leave out too much useful knowledge for any good. Such a situation may occur 

if constraints arise only by virtual of the satisfaction, i.e., requiring sequential treatments.

In any constrained optimisation problem, the main aim is to search for solutions that minimise 

constraints violation while optimising the objective function. The ideal situation is when full 

feasibility is achievable.

In the standard formulation of an optimisation problem, the whole system can be considered 

as the multi-criterion or multi-objective optimisation of « + l criteria since the aim is to 

discover a set of solutions, if it exists, that minimises the violation of the set of n equality 

ht(x) and inequality g,(x) constraints and optimises the objective / ( x ) .

Multi-objective problems are often defined by a set of objective functions / 0, / i ,—>/» over 

the original search space S , where

Optimise / MOBJ = ( / „ , )  3-12

Solutions to multi-objective problems are usually not a unique singular solution, but a set of 

equally efficient, non-dominating, alternative solutions that are part of the Pareto-optimal set. 

The keyword here is dominance, and the Pareto-set is characterised by it. Consider two 

solutions x, and x2 in a multi-objective problem. The solution x, is said to dominate x2 if 

its optimality (here assumed to be minimisation again without loss of generality) against each 

of the objective functions /  is partially better than that of x2, and is defined formally as

follows

V /e  { 0 , 1 , . / ( x , ) < / ( x 2), 

and 3 ;e  { 0 , 1 , . / , (*i  ) < / , ( * 2)
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A solution x, is then said to be Pareto-optimal or non-dominated if there exists no other 

solution x2 that dominates it.

Consider again the constrained optimisation formulation from Eq. 3-1 and reformulated into a 

multi-objective problem formulation as

/ mobj = (/(*)> h, (x),..„ hm (x), g„ (x)) 3-14

This newer formulation gives a multi-objective formulation with n + 1 criteria. The 

formulation can be rewritten as

/m o b j = ( / ( x ) , C , ( x ) , . . . , C w( x ) )  3-15

where Cl (x) represents the full set of constraints, both equalities and inequalities, in

consideration. It is hereby noted that a higher value of C, (x) here indicates higher violation1,

whereby C, (x) = |/t, (x)| if i < m , and C, (x) = max{0,g; (x)} otherwise. The standard

constrained optimisation problem is now reduced to an unconstrained multi-objective problem, 

which makes it easier to adapt to GA as will be later shown. Closer inspection reveals that the

above formulation can be further reduced into a two-objective problem by defining the subset

of constraints a measurement of violation, / C0N , where

/ c o n ( x )  = ( C 1( x ) , . . . , C /i ( x ) )  3-16

which then produces the simplified form

/ mobj =  ( / ( * ) >  / con ( * ) )  3 - 17

With the above simplified form, many issues must still be addressed with regards to handling 

/ C0N and / M0Bj > without which it will be unable to differentiate between the optimality of 

one solution and another. There exist many various methodologies drawn from multi-

1 If the reverse is true, then the aim is to maximise the feasibility rather than to minimise the violation.
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objective optimisation, and only those implemented in the proposed techniques will be 

discussed below. Nevertheless, there are two possible approaches to handling the constraints 

violation / C0N given above -  priorities and weighting.

3.3.1 L e x ic o g r a p h ic a l  C o m pa r iso n  o f  Pr io r it ise d  C o n str a in ts

The approach using priorities is based on a lexicographical comparison of dominance 

(Fonseca and Fleming, 1993, 1998a, 1998b). Priorities can be used to determine the sequence 

in which feasibility is maximised or violations minimised. The formal approach in multi­

objective optimisation is to assign a priority value, / , which is typically an integer where 

higher values correspond to higher priorities of the individual objective function. In the case 

of GA, the underlying cost function can then be viewed as a universal measurement of 

violation, where / CON is such that for two genotypes with phenotypic values x, and x2

fc on ( x i )  <  / c o n  ( X2 ) ^

V; s  {l,2 , . 3j s  { l , 2 3-18 
C , ( x i ) < C , ( x 2) a C j ( x , ) < C j ( x 2)

This approach is suggested for constraints that require sequential processing and are 

dependent, i.e., when one constraint arises only by virtue of the satisfaction of another1.

For the general multi-objective problem, traditional search methods that deal with a single 

solution at any one point in time optimises the highest prioritised objective before proceeding 

to the next in the list of prioritised objectives. Adopting such an approach can be achieved 

easily as evident in the penalty-based approach M2 discussed earlier. However, it should be 

recalled that GA encapsulates a population of solutions at any one time, and thus sequentially 

processing the constraints can and probably should be regarded as a waste of resources 

(evolutionary time). Furthermore, it is not impossible for genotypes with several levels of 

violations to co-exist in a single population. The question, however, arises as how best to 

represent the feasibility of genotypes that has satisfied differing number of prioritised 

constraints.

1 This is also possible in natural adaptive systems whereby organisms need to adapt to environmental pressures 
(constraints) o f a different set due to their current adaptability and exploitation o f a particular environmental 
niche.
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An easy approach will be to sort genotypes based on the Pareto-dominance of feasibility. The 

resulting ranked population can then undergo some sort of rank-based (linear, quadratic, 

nonlinear, etc.) violation and fitness value assignment. This avenue has already been explored 

in the COMOGA approach (Surry et al., 1995) with known problems. As the number of 

constraints in the system increases, performing Pareto comparison can lead to serious 

computational overhead. The suggestion here, however, is to assign a universal violation 

value that implicitly perform Pareto comparison with minimal overhead.

The naive approach to a universal violation value will be to select several discrete levels of 

violation to represent the number of constraints satisfied, where feasible solutions will 

obviously have zero violation. However, such an approach leaves the need to determine the 

values that best represent such levels of violation. Similar to M3 (presented above), the 

number of parameters will be unwieldy with a large number of constraints. Hence, an 

alternative approach is required that ideally introduces zero system parameters (to reduce 

sensitivity to problems) and minimises computational overhead.

The suggestion here is to first normalise the range of violation of all considered constraints 

into a standard region [0,£/], where U > 0. With n constraints in consideration, the universal 

measurement of violation is then bounded by 0 < / CON (x) < U and can be assigned as

/ CON(x) = ( / - l ) -  + C,"(x) 3-19
n

where C 1/  (x) is the normalised violation of the i -th constraint such that 0 < C1/  ( \ ) < U /n .

Here, the priority value i can as easily be used to indicate the / -th constraint in consideration. 

A noticeable feature o f the above formulation is that the satisfaction of each constraint implies 

a shift in the upper bound of / C0N by U /n. Of course, the ideal situation is when genotypes

have / C0N = 0 , which implies full feasibility, while anything higher will imply partial

satisfaction or maximum violation when / C0N = U . This formulation also gives the added

advantage of automatically inducing implicit feasibility ranking based on Pareto-dominance 

into the genotypes without having to perform additional sorting, thus saving precious 

resources. The previous statement should be immediately obvious since no two genotypes 

satisfying differing number of constraints can possibly share the same violation value.

Possible routes to normalisation of the constraints violation can be taken from fitness handling
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techniques in GA, particularly when dealing with minimisation problem. Again, the ranking 

method can prove useful and used to rank genotypes that satisfy the i -th constraint according 

to their true violations and assign a new (prize) value, C 1/  (x) in the range [0,£/ / n] based on

individual performances in the resulting league table. The criticism of this method is the same 

as when applied to fitness -  indiscriminate disregard for behaviour of true violation values in 

the resulting assigned values. Furthermore, difficulty arises when there exists only a single 

genotype in the sampled population that satisfies the i -th constraint, which then requires 

either assigning the highest or lowest prize to it.

Another approach to normalisation, which still maintains the behaviour of the amount of 

violation between genotypes, is to assign the normalised violation according to

C," (x) = x — 3-20
k. n

The parameter ki can be drawn from many sources, where one is to initially assign a value 

large enough value such that maxfC, (x)} < kj . However, this is only suitable if it is easily 

identifiable either empirically or through careful analysis. Then again, the approach now 

requires n parameters kt .

Approach path

Constraint 1 
Feasible Region

Feasible Region

Constraint 3 
Feasible Region

  Constraint 2
^  Feasible Region

Figure 3-1 Directional approach path in prioritised constraints.
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One solution is to let ki = max{C;(x)}, which means that it can either be the largest violation

observed in the current population or encountered so far in the whole evolution for the i -th 

considered constraint. There is, however, a noticeable shortcoming with this solution, and the 

problem is evident when the highest observed violation of a constraint is updated. Such an 

update usually requires existing genotypes with feasibility normalised on a previous value

to be re-evaluated. This is particularly true when variants of steady-state replacement 

strategies are used since a comparison between offspring and parent needs to be performed. 

The compromise, though, is to decide whether this re-evaluation gives additional advantage to 

the search or is computationally too expensive to perform, and just allow the algorithm to 

proceed with this discrepancy inherent in the population as noise.

The lexicographic approach to constraint handling is useful when sequential treatment of 

constraints is required, or a progressive satisfaction of constraints is desirable. However, this 

makes an assumption that there exist such priorities exist and are easily identifiable. 

Otherwise, they need to be artificially introduced1. Priorities, in essence, form a predictable 

path of approach towards feasible regions by progressing towards areas of increasing 

feasibility, as shown in Figure 3-1. However, it often makes little sense in assigning priorities 

arbitrarily. The alternative option will be to use the weighting approach to multi-objective 

optimisation, which is not unlike the penalty component of penalty-based approaches.

3.3.2 Su m  V io l a t io n  o f  N o n -P r io r it ise d  C o n st r a in ts

A commonly used approach for handling multiple objectives in multi-objective optimisation 

is to introduce a new objective function that is a weighted sum of individual objectives. In the 

context of constraint handling, it is the measurement of violation where

/ co n ( * )  = X > ^ W  « /6  9T 3-21

The definitions for C, (x) are as before but positive weighting coefficients, a,, are introduced. 

In this approach, the full set of n constraints is considered unlike the lexicographic approach. 

The aim is then to minimise / C0N until full feasibility is achieved.

1 Artificial introducing o f priorities in the handling o f  constraint may be beneficial in certain cases even when no 
natural sequential treatment is required. One such case is when constraints are particularly complex and 
expensive to perform. This avenue will be explored again later.
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One limitation is that this approach can be sensitive to the setting of the weighting coefficients 

ai , particularly when assigned arbitrarily. If weighting coefficients are not tuned to the

problem, then preferential treatment of constraints will arise. This is because different 

constraints may have different violation levels and, unless precautionary steps are taken, two 

genotypes may share the same measurement of violation even though feasibility is different. 

In most cases, there exists no such preference of constraints and the unintentional simulation 

of it may even be disastrous. Such a situation may arise, for example, when there is a mixture 

of constraints where some restrict the feasibility space to a small negligible region. Another is 

when weights do not correctly scale the effects of violations (or are sensitive to the problem), 

as evident in the penalty-based approach M3. Another issue is of course the introduction again 

of n system parameters. Since the main aim is to introduce an effective constraint handling 

technique that minimises the effects of such parameters and reduces the number of system 

parameters (ideally to zero), a different approach is necessary.

The suggestion here is to completely discard the weighting coefficients, achievable by setting 

ai = 1, V/ e { l , 2 , . W i t h o u t  such parameters, hopefully the approach is more applicable to

a wider class of constrained problems since sensitivities to them are reduced. Violations are 

again normalised to a unit space, as before in the lexicographical approach, which reduces the 

measurement of violation to

/ c o n ( * )  =  Z " =, C , " ( x )  3 - 2 2

As before, the bound 0 < / C0N < U now holds. It is convenient to simply normalise U = n

which results in the violation bounds of individual constraints to 0 < C[/  (x) < 1, which then

reduces the normalisation formulation to

C,"(x) = ^ —1 3 .23
'  K

The limitation in the sum-weighted approach is the lack of clear indication of the number of 

constraints satisfied, although crude approximations due to normalisation may be possible. 

The Pareto-ranking of feasibility in this case is, at best, a rough estimation.
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Approach path 1

Constraint 1 
Feasible Region

Feasible Region

Constraint 3 
Feasible Region

Approach path 2 Constraint 2 
^  Feasible Region

Figure 3-2 Omnidirectional approach paths in non-prioritised constraints.

The benefit over the lexicographical model, though, is that the search is not forced to proceed 

via a predetermined path. This gives rise to a wider possibility of locating feasible regions 

from various perspectives and increasing detection of them, as shown in Figure 3-2. 

Nevertheless, there is also considerable expense in the approach, in terms of computation 

overhead, particularly if measurements of violations of individual constraints require complex 

analytical procedures. In such circumstances, the progressive approach taken by the 

lexicographical method is probably more suitable. However, no reports were found that 

considered the effects and tradeoffs between a directional (lexicographical) and 

omnidirectional (sum-weighted) approach towards feasible regions. An empirical study on a 

constrained numerical problem using both these methods will be presented later.

3.3.3 F itn e ss  o f  In f e a sib l e  G e n o t y pe s

With the above suggested methods for obtaining a measurement of violation / C0N, there is

still a need for assigning an appropriate fitness to genotypes. There are two general 

approaches -  Pareto-ranking or penalty-assignment.

3.3.3.1 Pa r e t o -R a n k in g  o f  G en o t y pe s

The Pareto-ranking approach is the more natural model since the constraints have been 

handled so far based on concepts drawn from multi-objective optimisation. Recall again that
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the re-formulated constrained optimisation problem is now

/ mobj ~ ( / X x ) > / con ( x ))

This approach involves first comparing genotypes on the basis of their Pareto-dominance in 

terms of the measurement of violation / C0N , and only then by cost /  if they share the same 

dominance. In essence, this means using the lexicographical approach and setting the priority 

of / CON higher than that of / .

The benefit of this approach is that it leaves out the need to specifically formulate a function 

that represents the resulting multi-objective function / M0BJ. However, only a restricted subset

of GA sampling mechanisms is able to directly utilise and exploit this knowledge of 

dominance, tournament-based selection mechanism being one of them. It is also worth 

pointing out that with this approach, the search process usually separates into two general 

phases -  constraint satisfaction and objective optimisation.

The search will most likely start by minimising the violation particularly when no feasible 

genotypes are present in the population. Only if more than one feasible solutions exists, i.e., 

when / C0N = 0 , will comparisons be made based on objective value and the system then

begins to optimise cost. Whether this is beneficial is highly subjective. Problems are likely to 

occur when feasible regions are tight, sparse and disconnected. The consequence, unless some 

precautionary steps are taken, is that the search for the optimal solution will finally occur 

from the feasible region and converging onto local optima. Thus, the search is left incapable 

of deriving and maintaining highly-feasible near-optimal solutions, assuming of course that 

such solutions exist and search trajectories through such regions are possible.

One precautionary step may be to maintain within a population, a subset of high-performing 

infeasible solutions. In other words, feasibility now becomes an asymptotic event for these 

genotypes. The population then degenerates into two populations where one strives for 

feasible optimal cost while another aims for continuous minimisation of violation without 

ever being fully feasible. This solution, though, is not foolproof since problems may also arise 

if problems where the feasible regions are sparse and disconnected which then allows high- 

performing infeasible solutions to possibly cling on to a single region of minimum violation 

that leads to local optima.
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A useful way out of this is to use niche induction techniques to maintain variability of such 

genotypes in the hope that clusters of genotypes will form around different locations. There is 

also no reason not to allow the size of this subset (number of genotypes) to vary dynamically 

as a function of evolutionary time to ensure that the final population of genotypes are feasible 

rather than a combination of both. Parallel implementation with island models may be more 

suitable here since then two separate populations can evolve independently of each other and 

only periodically some individuals, like the elitist group, come together on a third 

‘interaction’ island and exchange information. This is not explored in this work but discussed 

further as a possible future development.

3.3.3.2 P e n a l t y -A ssig n m e n t  o f  G e n o ty pes

If the broader group of selection mechanisms such as RWS and SUS are to be applicable, then 

inadvertently a tangible fitness value has to be derived based on the information of / C0N and

/  to produce a suitable / M0BJ •

The easiest will be to still perform sorting of genotypes based on dominance as outlined in the 

Pareto-ranking approach. Then, the resulting sorted population of genotypes can have their 

corresponding multi-objective value / MOBJ assigned based on their individual ranks in the 

resulting league table using some linear or nonlinear prize function. However, criticisms 

surrounding ranking methods again surface here.

To avoid such criticisms and other problems associated with ranking, then an approach not 

dissimilar from penalty-based approaches can be applied -  penalty functions. Consider now in 

the cases of minimisation, Eq. 3-14 can now be reformulated as

r ^  ^  f c  o n  (x) — 1-24
m°bj ^  + (x) otherwise.

The 8  component is used to define how feasible and infeasible solutions are actually 

compared. In other words, it is an indication of selection pressure on infeasible genotypes and 

the same is actually true of all penalty-based techniques. If the traditional model whereby the 

best infeasible solution is no better than the worst performing feasible solution is subscribed, 

then 8  can be the objective value of the worst performing feasible solutions. However, the 

problem arises when no feasible solutions have yet been encountered. It is here suggested that

67



8 is taken as the maximum observed feasible objective value in a population or throughout 

the run, or zero if no feasible solution exists yet

if feasible exists, 
otherwise. 3_25

Such a model, although commonly used, leaves the algorithm setting a search path only from 

feasible regions. Therefore, the best use of the 8  component is perhaps to formulate a 

function that allows high-performing infeasible solutions to be as likely to contribute to the 

search as high-performing feasible ones for reasons discussed earlier.

If the best observed combination of feasibility and cost is from the solution x* and the 

corresponding objective values is f i x * ) , one such function is

s = V(x*) + | / ( x * ) - / ( x ) |  3-26

The parameter k is used to control the selection pressure of infeasible solutions. In actual fact, 

k can be completely dropped if a minimalist system is preferred because Eq. 3-24 can be 

reformulated as

/ mobj = / ( * • )  + | / 0 O  -  /(* ) | + / con (*) 3-27

The selection pressure is now independent of any control parameters but merely reliant on the 

measurement o f violation / C0N , which arguably is a more accurate representation of the 

underlying problem when compared to ranking procedures. This, in turn, is then influenced by 

how / C0N is normalised to the unit space U . Provided it is normalised into a sufficiently

small unit space, high-performing infeasible solutions will then be able to contribute longer in 

the search rather than weeded out early. This is because the larger the U , the higher the 

selection pressure on infeasible solutions and the smaller the likelihood of high-performing 

infeasible solutions competing on a more or less equal basis with feasible solutions of similar 

objective value. The above formulation is limited to a single system parameter, which is 

actually the unit space U . Taking it to the extreme, the technique can be devoid of any 

system parameter if no normalisation of violation is performed. Anyway, the advantage it

0
max{/(x)}
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provides is the use of the same function for both feasible and infeasible solutions, since / C0N 

disappears completely for feasible ones. The system is now reduced only to the optimisation, 

or in this case, minimisation, of the resulting new objective function / M0BJ.

3.3.4 Pa r t ia l  K n o w l e d g e  o f  V io la tio n

In certain optimisation problems, the constraints are complicated as it could possibly involve 

either complex procedural analysis or some complicated sequence of evaluations in order to 

determine the feasibility of solutions. Such constraints usually involve expensive 

computational overhead and can be regarded as time-complex constraints, and are more 

noticeable in GA since a population of solutions has to be evaluated and maintained. While 

genetic operators like steady-state replacement provide a useful respite, it does not guarantee 

that the search will perform significantly less number of constraint evaluations before 

convergence. Therefore, a more robust approach for time-complex constraints can be a useful 

tool in the GA armoury.

The suggested method, here termed lazy evaluation, is straightforward and has probably been 

applied many times over. If such is the case, then it is reiterated and formalised here since it 

will be employed later on for practical optimisation. The argument is that for most practical 

search in constrained optimisation problems, the required solution is simply the best optimum 

solution with minimal, if not zero, violation. Without loss of generality, let the considered 

optimisation be a minimisation problem and recall also the earlier definition in the Pareto- 

ranking approach where the objective /  is given a lower priority than / C0N when deciding 

the dominance between two solutions. Lazy evaluation reverses this once a feasible solution is 

found, giving /  a higher priority than / C0N although still performing a lexicographic

comparison. Therefore, for any new genotypes, constraint evaluations are only performed for 

those that are possible improvements over the current best known optimal feasible solution, 

i.e., when / ( x )  < /(x * )  if / COn ( x *) = 0 . If the new solution shows improvement, obviously 

it replaces the best observed feasible solution as the new optimum. The reason that solutions 

that share the same cost, / ( x )  = / ( x * ) , should undergo constraint evaluation is the possibility 

that there may exist a subset of infeasible solutions that share the same objective value. For 

those that do not need to undergo the full range of constraint evaluations, some ‘fuzzy’ 

amount of violation can be assigned.

It is obvious that the difficulty lies in deciding the so-called fuzzy measurement of violation.
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In the worst case scenario, violation is assigned to solutions that are otherwise feasible and 

none is assigned to infeasible ones. The suggested solution here is to assign it some token 

value e , where

/ con ( * )  =  «■

The e parameter can be considered as a ‘safety factor’. However, it is believed that in most 

cases, e  = 0 should suffice. In other words, only genotypes with / ( x )  < /(x * ) will have the 

true measurement of violation, while others are assumed to be fully feasible. The rationale 

behind this statement is that this allows both sub-optimal feasible and infeasible solutions 

with similar cost to compete equally, giving rise to the possibility of developing a search 

trajectory through infeasible regions. Coupled with / C0N that has been tuned to a suitable unit

space, this gives the algorithm a large selection of search paths from which to focus in onto 

the optimal solution or region.

Another suitable method for handling time-complex constraints is by introducing priorities 

into constraints, albeit artificially. Although most constrained optimisations do not require 

sequential treatment of constraints, artificial prioritisation may save considerable computation 

overhead. This is due to the fact that there is no further need to evaluate remaining constraints 

once one with a higher priority has been violated.

The simple option to introducing priorities will be to consider the constraints randomly. 

Nevertheless, such an approach leaves much to be desired particularly if a more structured 

logical approach is required. Therefore, the better option may be to organise the constraints 

based on their relative ‘hardness’ in decreasing priority. Hardness here implies the size of the 

resulting feasible space imposed by the constraint alone, where smaller size naturally equates 

to harder constraints. The use of a hardness or ‘constrainedness’ parameter, k  (Gent et al., 

1999), may be a suitable measurement. For simplicity though, subsequent application in this 

work will only consider the random prioritisation with other techniques to be discussed in 

greater detail as possible future work.

Certain features stand out from the two approaches described above. It should be obvious that 

using priorities is particularly effective against performing unnecessary constraint evaluations 

just like lazy evaluations. However, as the search focuses in onto the feasible regions, most 

genotypes, assuming they are already feasible, will then undergo the full rigour of constraint
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evaluations. Therefore, artificial prioritisation is beneficial in reducing the number of 

evaluations only during the ‘pre-feasibility’ stage. On the other hand, lazy evaluation only 

becomes significant when some known feasible, not necessarily the optimum, solution has 

emerged. Thus, it is effective for ‘post-feasibility’ reduction in number of evaluations. The 

timeline in which both are uniquely effective then gives rise to an opportunity of integrating 

both into a singular technique, which may further provide significant discount of computation 

cost for time-complex constraints. Whether this is a beneficial marriage will be investigated 

further below when results of application in a constrained numerical optimisation problem are 

provided.

An important feature and probably of greater consequence is that both lazy evaluation and 

artificial prioritisation introduces partial knowledge of violation. In both cases, assumptions 

are made with regards to the true violation of a potential solution. The effect results in a 

transformation of the problem landscape, and a dynamic one. The reason it is dynamic is 

obvious: As more knowledge is gained from full scale evaluation, more details of the 

landscape are revealed. The question now remains as to how the search is affected by such 

‘partial’ genotypes amongst fully-evaluated ones.

The intuitive response to it is that the search will compensate for this impartial knowledge by 

requiring a longer evolution time to convergence. In other words, more such impartial 

genotypes will have to be scanned before the true picture of the problem landscape reveals 

itself to the search. It then begs the question as to whether the end product will require as 

many constraint evaluations as one that undergoes full evaluation from the start. The crux of 

the problem is whether this partial knowledge of the landscape is beneficial or detrimental to 

the search, and at this point, it remains inconclusive and a full mathematical analysis is far 

from trivial. Nevertheless, an empirical investigation will be performed and results produced 

below, which should shed some light on such issues.

3.4 C ase  St u d y  o n  C o nstrained  N u m er ic a l  O pt im isa t io n

A constraint handling technique drawn from the discipline of multi-objective optimisation has 

been proposed earlier together with several variations as potential improvements. In order to 

gauge the robustness of these methods, a case study was performed on a constrained 

numerical optimisation problem where results for the other penalty-based methods, namely 

Ml to M5, were readily available and comparisons may be made.
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3.4.1 Q u a d r a tic  T est  Fu n c tio n

The following test function (Michalewicz, 1995) was used to test the performance of the 

proposed technique and its variants. The quadratic test function (QTC) is to minimise a 

function

Minimise

/M  = EL,5*' - 5L> .2
subject to

2 x , +  2 x 2 +  x 10 +  x , , - 1 0  <  0,

2x j +  2 x 3 +  x 10 +  xl2 - 1 0  <  0,

2 x 2 + 2 x 3 + x u +  x 12 - 1 0  <  0 ,

-  8 jc, +  x 10 <  0,

-  8jc2 + xu < 0, 3-28
-  8x3 + xn ^ 0,
- 2 x 4 - x 5 +  x 10 <  10,

- 2 x 6 — x7 + xn < 10,
- 2 x 8 — Xg + xn <10,

with domain bounds
0.000 < X, <1.000, i = 1,2,...,9,13
0.000 < x, < 100.000, i = 10,11,12

The QTC has 9 linear inequality constraints with a single global minimum with objective 

value of /(x* ) = -1 5 a t

x* = (1.000,1.000,1.000,1.000,1.000,
1.000.1.000.1.000.1.000.3.000, 3-29
3.000.3.000.1.000)

3.4.2 E x pe r im e n t a t io n  F r am ew o rk

Several experiments were carried out in order to cover the main technique and its other 

variants. This can be broadly divided into two groups where one consists of variants of 

Pareto-Ranking (PR) approach and another that are Penalty-Assigned (PA). Detailed 

descriptions of these two groups and their variations are provided further below.
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A general purpose object-oriented GA computer program was written in C++ with 2551 lines 

of coding1 to perform the above test problem and other design optimisation problems 

(presented in Chapters 5 and 6). All tests, including those from Chapters 5 and 6, were 

conducted on an Intel Pentium III 600MHz PC with 128 MB RAM.

All experiments were conducted using Gray-encoded strings, although experiments for the 

referenced results on methods Ml to M5 were performed on floating-point representation. 

The conscious decision was made because it was felt that binary-type representations are 

more suitable as they are more applicable to a wider range of problems and even to those that 

are non-numerical. The number of bits in individual chromosomes (a single variable xt )

reflects the precision presented in the domain bounds outlined. Although this resulted in 

genotypes with a high number of bits, it will also be a good test on the suitability of binary 

representations particularly in high-precision numerical problems. The required number of 

genes for each chromosome is as summarised in Table 3-1.

i Precision Number of Genes
1,2,...,9,13 3 10

10,11,12 3 17
Total Num ber of Genes 151

Table 3-1  Number of genes required for each design variable in QTC to reflect the number of significant 
figures.

The published result employed a population size of 70. However, this is deemed unsuitable 

for binary-type representations since there will be insufficient genetic variation in a 

population of that size. Therefore, the population size was assigned to be equal to the 

genotype string length of 151. Since the reported experiments ran for 5000 generations, this 

implies 350000 genotypes were evaluated at most. The experiments conducted here 

compensated for this upper bound by setting the maximum number of generations to evolve to 

respect this ratio o f 350000:70. Non-integer numbers of generations were rounded down, i.e., 

maximum of 350000 evaluations is preserved.

As mentioned before, the PR approach produces no direct or tangible fitness value, which 

means that traditional sampling mechanisms break down here. In experiments where this is

1 Number o f  lines is approximate since comment lines and line breaks were not excluded. However, it does not 
include the coding for case studies.
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true, the binary tournament selection (B-TS) was used.

For PA though, the resulting fitness allows the use of traditional sampling mechanism, hence 

the stochastic universal sampling (SUS) was used in such cases. All sampling mechanisms 

were required to sample a transitional population with size equivalent to the original 

population. Since no genotypes are removed at any point in the search, this is a constant size 

of 151.

The genetic operator used for the recombination process is the a  -uniform crossover (UC), 

with uniform mutation (UM) complementing it. The probability of crossover was set at 0.8 

while the probability o f gene swap was taken to be 0.3, i.e., 3 in 10 genes are exchanged 

between mates. Initial runs indicate that the 0.5-UC is unsuitable as it is too disruptive and 

tends to generate offspring that are too dissimilar to their parents. Several mutation rates were 

also considered but it was finally settled at 1 in 151 because a higher mutation rate was only 

necessary in cases where epistasis is noticeable (Back, 1993). In this case, the linear 

inequality constraints did not impose a noticeable effect. A summary of the adopted GA 

parameters are provided in Table 3-2.

GA Parameters Value
Population Size 151

Probability of Crossover 0.8
Probability of Gene Swap 0.3

Probability of Mutation 1/151

Table 3-2  GA parameters and their corresponding values used in the QTC experimentation framework.

All conducted runs used the generational steady-state replacement strategy. It is only slightly 

different from the traditional steady-state in the sense that the transitional population size is 

identical in size to the preceding population rather than the typically smaller size associated 

with steady-state. This transitional population then undergoes recombination and evaluation. 

Then, the preceding parent population is merged with the transitional offspring population and 

the best performing individuals of up to population size are selected to be the new parent 

population, i.e., using a strong-replace-weak algorithm.

3.4.2.1 N o n -P r io r it is e d  P a r e t o -R a n k in g

The first part of the experiment concentrated on employing only the PR approach, denoted 

GAPR, without additional features. No constraint priorities are implemented. Instead, the sum
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violation method is used thereby giving all constraints equal priority. Nevertheless, violations 

for individual constraints are normalised to the [0,l] domain ( U = 9), which should then give 

an approximate indication of the number of constraints satisfied by each genotype.

Normalisation is performed with respect to the maximum observed violation so far in the run. 

For any new observed greater violation, only subsequent genotypes will reflect this change 

although strictly, any changes should require re-evaluation of the entire population as well as 

the parent population. However, the additional computational overhead was deemed too 

expensive since the benefit of doing so was only noticeable in the very early stages of the run. 

The inconsistency was therefore considered as noise in the system.

3.4.2.2  N o n - P r i o r i t i s e d  P a r e t o -R a n k in g  w i t h  L a z y  E v a l u a t io n

The second set furthered the GAPR approach by introducing the lazy evaluation feature, 

denoted GAPR-LZ. Once a feasible solution is present, only new solutions with improved 

objective value will undergo constraint evaluation. The main aim of this set of experiments 

was to investigate the reduction, if any, in the total number of constraint evaluations 

performed compared to GAPR. It was also believed that the partial knowledge of violation in 

genotypes may require significantly more generations of evolution before convergence. 

Therefore, the secondary aim was to investigate the trade-off between the number of 

constraints evaluated and the number of sampled genotypes. Generally, it was believed that 

significant advantages in terms of computational cost may be gained if constraints are 

significantly more time-complex compared to the underlying GA process and objective 

evaluation. Constraints violations, as before, are normalised to the [0,l] domain. No 

prioritisations are considered because the full set is performed once an improvement in the 

optimal objective value is deemed possible.

3.4.2.3  P r i o r i t i s e d  P a r e t o - R a n k in g

The third part is also based on the PR approach but introduces priorities, denoted GAPR-P, 

unlike the two set of experiments above. The constraints are simply prioritised based on the 

order presented in the outline of QTC (see Eq. 3-28). The algorithm proceeds from one 

constraint to another and continues to do so while the previous constraint is satisfied. 

Otherwise, it breaks from performing further constraint evaluation and assigns the violation of 

the remaining constraints as the maximum observed so far in the run for that constraint. The 

main aim of this part was to investigate the effect of prioritisation. Furthermore, the feasible
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knowledge of genotypes is also partial as a result of handling a set of time-complex 

constraints. Violations are again normalised to the [0,l] domain, which means that no two 

genotypes with differing number of satisfied constraints can share the same amount of 

violation. This in turn means that dominance due to feasibility is internally ranked.

3.4.2.4  P r i o r i t i s e d  P a r e t o -R a n k in g  w i t h  L a z y  E v a l u a t io n

The fourth part implements the notions presented earlier that artificial prioritisation and lazy 

evaluations gives additional time-saving in constraint evaluations, denoted GAPR-PLZ. In 

other words, it combines the process of GAPR-P and GAPR-LZ. The main aim is therefore to 

study the effect of performing only partial evaluation whenever possible and thus simulating 

incomplete knowledge of the domain at all stages of the search. It should also be noted that 

even in the case of a potential improvement over the observed optimum, the candidate 

solution does not need to undergo the full constraint evaluation as a consequence of constraint 

prioritisation. Results should then be indicative of the relative robustness of the method in the 

presence (or lack of) violation knowledge. It should also show, when compared to GAPR, 

whether excessive trade-off in terms of evolution time and sampled genotypes is required.

3.4.2.5  N o n - P r i o r i t i s e d  P e n a l t y - A s s ig n e d

The fifth and final part deals with the alternative PA approach denoted GAPA. Here, a true 

fitness value is assigned based on the measurement of violation / C0N as presented earlier in 

Eq. 3-22, and reproduced below

/m o b j = / O ’ ) + | / ( x ‘ ) -  / ( x ) | + / C0N (x)

This allows the use of traditional sampling mechanisms, which in this case SUS is employed. 

The performance is compared primarily against GAPR. The additional need of formulating a 

fitness function and performing real fitness evaluations is an additional overhead over PR 

methods. Furthermore, it was believed that this approach requires fitness values to be scaled 

appropriately in order to be sensitive to the underlying problem. Violations are normalised to 

the [0,l] domain. With this sensitivity, it was believed that this is the weakest approach 

overall due to the inclusion of a penalty component in the fitness function, which is also true 

in other penalty-based techniques in constraint handling.
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3.4.3 R e su lts  and  D is c u s s io n

Comparison results for penalty-based methods Ml to M5 were readily available and are 

reproduced in Table 3-3, for subsequent reference and discussion. It also combines the results 

obtained for the experimentation, namely for methods GAPR, GAPR-LZ, GAPR-P, GAPR- 

PLZ and GAPA. For the developed methods, ten independent runs were conducted for each. 

Each run had a random initial population, although the / -th run of every method is identical1.

The proposed GAPR and its variants as well as a penalty-based approach GAPA all showed 

promising results, where all runs conducted managed to find the optimum objective value 

without difficulty. None o f the methods in any run came up with solutions that were sub- 

optimal unlike M l, M2, M3 and M4, which, in their worst run, returned sub-optimal solutions 

even at the end of a relatively long evolution with respect to the experimentation results 

obtained. Even though M l to M5 employed floating-point representation combined with 

specialised operators like Gaussian mutation, arithmetical crossover and heuristic crossover, 

they still did not outperform PA and PR with its variants apart from M5. Furthermore, M3 

with its virtually countless number of system parameters even returned a non-feasible median 

solution.

Methods Representation /(x*) Violation CPU
Best Median Worst

Ml

Floating-Point

-15.000 -15.000 -14.999 0,0,0

\
M2 -15.000 -15.000 -14.998 0,0,0
M3 -15.002 -15.002 -15.001 0,0,4
M4 -15.000 -15.000 -14.999 0,0,0
M5 -15.000 -15.000 -15.000 0,0,0

GAPR

Gray-Encoding

-15.000 -15.000 -15.000

\
31.9

GAPR-LZ -15.000 -15.000 -15.000 56.7
GAPR-P -15.000 -15.000 -15.000 30.8

GAPR-PLZ -15.000 -15.000 -15.000 55.6
GAPA -15.000 -15.000 -15.000 40.3

Table 3-3  Results for 10 independent runs of penalty-based methods, Ml to M5, together with proposed 
methods and variants, GAPR to GAPA, on QTC. The violation values are a sequence of three-comma separated 
numbers indicating the number of violations with violation amount between 10.0 and 1.0, 1.0 and 0.1, and 0.1 
and 0.0001 respectively at the median solutions. It is applicable only for Ml to M5. Source for results from Ml 
to M5: (Michalewicz, 1995). Average solution times per run are given in the CPU column where the values are 
in CPU seconds.

1 For example, the initial populations o f  the 5-th and 6-th run o f  GAPR are different. However, the initial 
populations o f  the 5-th run o f  GAPR, GAPR-LZ, GAPR-P, GAPR-PLZ and GAPA are all the same.
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It has been observed that recent trends in the application of GA into practical problems have 

called for the use of a genotypic representation natural to the underlying system, numerical 

optimisation being one of them favouring floating-point representation over smaller building 

blocks like binary-type representation. The consequence of this is the additional need of 

developing specialised operators that deal specifically with such encoding. One conclusion 

that can be drawn from the above results is that using small genetic blocks, in this case Gray- 

encoding, is capable of handling even high precision numerical problems with relative ease. 

Recall also that no specialised operators were developed and adopted for this experimentation, 

as it relies primarily on genetic operators that were already well understood and extensively 

studied. If such common operators can be deployed with promising results, it does justify the 

questioning of developing over-complicated GA variants for general problem solving. 

Granted that specialised operators are suitable and give additional robustness to the 

underlying GA in problem-specific application, simplicity is still by far the best virtue in the 

application of GA.

The only additional feature introduced in the experimentation is the use of a slightly different 

steady-state (SS) replacement strategy, as described earlier. An additional set of experiments 

comparing GAPR using generational-elitist (GE) and SS were performed. No runs using GE 

found the true optimum within the stipulated timeframe unlike SS. The search appears to have 

benefited from having the best individuals in the population consistently with SS as shown in 

Figure 3-3. One drawback found of SS from the experimentation is that selection pressure 

induced by the strong-replace-weak algorithm may have been too strong particularly towards 

the later stages of the search as improvements on the current observed optimal becomes 

harder. Standard deviation in the population objective value indicates that the search is at risk 

from losing all genetic diversity if no improvements can be found after a significant period of 

time. This did occur in several runs as shown in Figure 3-4.

However, it is believed that the search benefited from steady-state replacement because of the 

quadratic nature of the test case as well as an apparent lack of epistasis. Such a strong 

selection pressure must be applied with caution particularly in noisy multimodal environments 

as the search may be driven far too early into local optima. The resulting lack of genetic 

diversity often also implies inability to escape from them unless mutation or other operators 

are able to induce such jump from local traps. Then again, its performance over traditional 

generational-elitist models is far too convincing to ignore in this case.
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Figure 3-3  Convergence behaviour of all ten GAPR runs under steady-state replacement strategy with respect 
to the population average objective value. The same pattern is prevalent across all runs for all other GAPR 
variants as well as GAPA with the only difference being the convergence rate.
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Figure 3-4  Population standard deviation in terms of objective value of all ten GAPR runs. It shows clearly that 
genetic diversity in later stages is minimal.
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Figure 3-5  Number of generations required on discovering the optimum, i.e., the true optimum appears in the 
population for all runs and for all constraint handling methodologies. The non-shaded column indicates the 
average number of generations required for each method.

If robustness can be considered as the ease in which a technique solves a problem, then the 

problem was relatively easy to solve from the resulting combination of GA setup, parameters 

and constraint handling techniques. Given the ratio of the number of genotypes evaluated 

overall to the population size as 350000:70 earlier, the maximum number of generation to 

evolve before termination, rounded to the lowest integer, is 2317 for the implemented 

population size o f 151. For the z-th run of each method, the starting population are always 

identical (seeded the same). This gives a more accurate comparison of starting conditions for 

each modelled constraint handling methodology. All of the methods discovered the optimum 

long before this maximum generation threshold as shown in Figure 3-5.

The difference in convergence rates for the different constraint handling algorithms are as 

expected. It is immediately noticeable from Figure 3-5 that those that have only partial 

knowledge of violations for the majority of the evolution process, namely GAPR-LZ and 

GAPR-PLZ, typically require almost double the evolution time. This, however, is not 

indicative of the number of constraint evaluations performed.

The effect of constraints prioritisation, implemented by GAPR-P, on convergence rate is 

however not obvious globally. This is not surprising since the effects of prioritisation are only 

more evident before a substantial number of feasible solutions start appearing as summarised
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in Figure 3-6. Upon appearance of feasible solutions, prioritisation effects no longer bear any 

significance as the search degenerates into mainly a simple PR approach since the search then 

focuses in onto the optimum from feasible regions. It is also interesting to note that GAPA did 

not show significant advantages in terms of discovering feasible regions over GAPR. Yet 

again, this is not indicative of the number of constraint evaluations required. Both GAPR and 

GAPR-LZ close in onto feasible regions via the same trajectory. This is due to the fact the 

lazy evaluation only materialises when at least a feasible solution has been found. On the 

other hand, both GAPR-P and GAPR-PLZ take the same path due to the artificial 

prioritisation.

Despite the difference in number of generations required before discovering the first zero 

violation solution to the problem, GAPR did not necessarily have an expected advantageous 

head start over GAPR-P even with the more complete knowledge of violation as average time 

required before discovering the true optimum is roughly equal. Figure 3-7 shows the 

difference in the knowledge of violation amounts between the best genotypes in GAPR and 

GAPR-P. Since the i -th run for each method begins with the same population, the individuals 

from GAPR represents the actual violation amount if individuals undergo the full set of 

constraint evaluations. It should also be noted that GAPR also represents GAPR-LZ at this 

stage just as GAPR-P represents GAPR-PLZ.

The next logical question is then to ask whether this average increase in evolution time with 

partial knowledge is justifiable. If prioritisation is to provide sufficient computational 

advantage in terms of overhead reduction, the number of evaluations should be significantly 

below the upper bound. The amount of reduction is, however, dependent on the complexity of 

the constraints themselves. The critical question as to whether prioritisation is beneficial 

cannot be answered definitively, since many other factors also influence the computational 

overhead such as genotypic representation and resulting number of genes (encoding/decoding 

functions), population size, complexities of genetic operators, etc. Furthermore, it is 

impossible, based on this isolated experimentation, to conclude for certain how constraint 

hardness affects the search for discovering feasible regions. Nevertheless, if the time required 

for performing constraint evaluations outstrips the computational cost of the underlying GA 

system, then prioritisation can be used to reduce the number of constraint evaluations.

Since GAPR undergo full constraint evaluations, its number of evaluations forms the upper 

bound as shown in Figure 3-8 for all methods. It is immediately obvious that there is 

substantial reduction in the early stages of the search before feasible solutions appear.
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Thereafter, the number of evaluations increases almost linearly as more and more genotypes 

begin to stabilise into sub-optimal feasible regions. This virtually linear growth and almost 

parallel to the upper bound in the number of evaluations continues in such a manner for 

GAPR-P until convergence.

Lazy evaluation, on the other hand, is evident and beneficial only after feasible solutions start 

appearing. GAPR-LZ focuses in onto feasible regions in the same manner as GAPR since no 

constraints are prioritised, visible in the small section at the bottom left comer at 

approximately the 10-th generation in Figure 3-9. However, as more such sub-optimal 

feasible individuals appear, the algorithm only performs full constraint evaluations if they are 

potential improvements over the current observed optimum.

In the case of QTC, the majority of the search process is concentrated on this phase, hence 

allowing lazy evaluation to give an increased bonus in terms of constraint evaluations as the 

search progresses. However, just like prioritisation discussed earlier, it is unwise to blatantly 

assume that lazy evaluation gives definitive benefits since many other parameters also do 

have influences. Therefore, the trade-off between longer evolution time and evaluations 

should always be decided locally to the underlying optimisation problem itself. In the case of 

QTC, the best GAPR-LZ run gave about 50.8% savings over the best GAPR run in terms of 

number of constraint evaluations to discover the optimum. Figure 3-9 also shows that in all 

runs conducted for GAPR-LZ, the increase in evaluations is relatively stable across different 

starting conditions although the same cannot be said about the number of generations required 

till convergence.

Given the evidence that prioritisation affects primarily the early stages of the search before 

discovering the feasible regions, or ‘pre-feasibility’ in GAPR-P, and lazy evaluations 

thereafter, or ‘post-feasibility’ in GAPR-LZ, the natural question arises as to whether the 

marriage of the two in GAPR-PLZ can yield further significant reduction in computational 

costs of constraint evaluations. Prior to the experimentation, the conjecture was that savings 

can be made and the results have indicated likewise as shown in Figure 3-10 since there will 

be some occasional encounters with infeasible genotypes. Results also indicate that the 

integration works far better than even GAPR-LZ in isolation. This is not unexpected.
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Figure 3-6  Number of generations required on discovering the first fully feasible (zero violation) solution for all 
runs and for all constraint handling methodologies. The shaded column indicates the average number of 
generations required for each method.
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Figure 3-7  Normalised violation for the best genotype observed in every generation at the start of the 
evolution for all runs of methods GAPR and GAPR-P before the first feasible solution is discovered for the worst 
run in GAPR-P (on generation 26). With full constraint evaluations, genotypes from GAPR have more accurate 
knowledge of violation and can be seen to be clustered in the bottom left corner. On the contrary, individuals 
from GAPR-P do not undergo the full set of constraint evaluations.
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Figure 3-8  Increase in the total number of constraint evaluations over successive generations for all runs of 
GAPR and GAPR-P before the worst run in GAPR-P discovers a feasible solution (on generation 26). Since all 
individuals in GAPR undergo full constraint evaluations, its total number of evaluations forms the upper bound 
from which alternative constraint handling algorithms must improve.
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Figure 3-9 Increase in the total number of constraint evaluations over successive generations for all runs of 
GAPR and GAPR-LZ. The plots for GAPR-LZ are truncated at the point the search terminates.
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Figure 3-10  Savings in constraint evaluations through the integration of artificial prioritisation and lazy 
evaluations of constraints for QTC. Plots for GAPR-LZ and GAPR-PLZ are truncated at the point the search 
terminates due to convergence onto the true optimum.

Consider a genotype that has a cost better than the current observed feasible optimum, which 

forces lazy evaluation since it is a possible improvement. Coupled with the effects of 

prioritisation, once this candidate optimum fails any constraints in the sequence of prioritised 

constraints, no further evaluations need performing, which in return, provides computational 

savings. In the case o f QTC, it appears that most of such candidate solutions, in spite of 

escaping the lazy evaluation ‘sieve’, fail the one simulated by constraints prioritisation. In fact, 

this is generally true for most optimisation problems where as the search progresses longer 

and gets closer to the optimal regions, it potentially becomes increasingly difficult, 

particularly in tight optimal regions, to discover solutions that improve upon the current 

observed optimum.

3.5  C o n c l u s i o n  a n d  C l o s i n g  R e m a r k s

Most constraint handling techniques to date are primarily based on the classical penalty-based 

approaches. Therefore, an alternative technique drawn from inspirations in multi-objective 

optimisations was developed. This technique provides several useful features and can be 

summarised as show below:

• Implicit ranking o f  feasibility. By normalising violations of all constraints to a
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standard region, genotypes are ranked implicitly according to their dominance in terms 

of feasibility without needing to perform additional sorting procedures.

• Fitness handling options. From the normalised measurement of violation, several 

approaches can be further deployed for fitness handling. Two earlier described options 

involve either a Pareto-Ranking, which requires no formulation of a fitness function, 

or Penalty-Assignment, which gives a tangible fitness value using a penalty-based 

fitness function.

• Minimal system parameters. Unlike most techniques, there is only one system 

parameter, the standard region U , on which all constraint violations are normalised. 

Provided the Pareto-Ranking approach to fitness determination is used, this system 

parameter is not sensitive to the underlying problem and is therefore applicable over a 

wider range of problems than traditional penalty-based approaches or other similar 

multi-objective routines.

• Reduced time-complex constraint evaluations. Using either artificial prioritisation or 

lazy evaluation of constraint, the number of constraint evaluations can be reduced and 

is therefore useful for time-complex constraints where evaluations are computationally 

expensive relative to the deployed GA. The integration of both can even be used and 

has been shown empirically to provide significant advantage over any both techniques 

in isolation for the investigated test case.

In most general applications of GA, it is almost unnecessary to develop complex algorithms 

or operators when simpler traditional ones are equally successful. Before proceeding to 

investigate the use of uncomplicated GA in more practical engineering design and 

optimisation of composite laminates, the next chapter first covers the necessary groundwork 

for the analyses involved.
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4 A n a l y sis  o f  C o m p o s it e  L a m in a t e s

This chapter provides a general overview of the design and analysis of composite laminates. It 

starts off by covering a brief introduction to composite materials particularly in the context of 

laminates commonly used in plate structures such as aircraft panels. Then an overview of 

available analysis methods is provided, before concentrating more on the approach that will 

be used as the analytical framework for subsequent work on the design and optimisation of 

composite plates and prismatic assemblies, which is an exact method based on the Wittrick- 

Williams algorithm. Finally, the algorithm is formalised into existing computer programs, 

namely VIPASA and VICONOPT, where the simpler model of the former is the main 

analysis tool featured in the optimisation studies conducted for this work.

4.1 I n t r o d u c t i o n

Composites, as the name implies, fuse several basic materials to galvanise the positive 

attributes evident when considered singly. The most commonly encountered composite in the 

field of building and structural engineering is concrete. Concrete, through a combination of 

cement, aggregates and other materials, is a material that is both capable of sustaining a wider 

load range than any of the constituent materials alone. The varying types of composite 

materials have allowed higher-performing lower-cost material to be used in many fields from 

bridges to aircraft structures.

Aircraft structures have benefited hugely from the development and advances in the design 

and analysis of composite materials. Modem jets are designed not only to incorporate the 

most efficient aerodynamic shapes for flights of all kinds (long range, supersonic, etc.), but 

they must also perform additional tasks and roles apart from the principles of flight. As the 

limits of flight are pushed further, so too must aircraft be able to sustain these new design 

loads as well as more severe environmental factors. The ability to engineer high strength, 

chemically stable and lightweight composite materials, particularly composite laminates, is 

such a material suitable for the use of aerospace applications. Nevertheless, resulting 

structures must still adhere to a serviceability of minimum maintenance over as long a period
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as possible while being economically viable. Minimum mass, in all applications, immediately 

implies a reduction in material cost. On the other hand, vehicles, especially aircraft, also 

benefit indirectly from reduction in mass in terms of reduced operating costs.

The design of such structures must be as close to the optimum as possible in terms of 

manufacturing technologies, design load capacity and requirements and production costs. 

Therefore, newer designs often incorporate the use of increasingly efficient materials and 

detailed analytical process. For example, minimisation of mass while maintaining ease of 

production is a common design goal in the design of composite laminates as competition 

increases for more efficient designs that are able to cope with more demanding performances 

with minimal weight penalty. As in the solution of many other engineering design problems, 

previously tedious time-consuming calculations are rapidly being processed by faster 

computers producing more efficient structures. The advent of such computing powers has also 

opened the doors to stochastic-based analytical tools, such as Genetic Algorithms, which 

previously involved impossible time scales.

4.2 C o m p o s i te  L a m in a t e s

As mentioned earlier, the most general definition of a composite material is evident in the use 

of the term composite itself. Composite materials incorporate two or more materials, or 

constituents, and typically aim to produce properties that cannot be achieved by the 

constituents alone. The use of the term ‘properties’ here is pretty broad, and covers not only 

engineering and material properties but economic cost, ease of manufacturing, etc.

Fibre-reinforced composites (FRC) are one such example of a class of composite material. 

The primary load-carrying constituents of FRC are the fibres1 themselves since they are 

generally strong and stiff, in contrast to the binding and supporting agent, the matrix. The 

matrix2 holds the fibres together in a continuous element serving also as a load-redistribution 

agent in the event of fibres failing under extreme loading conditions or environmental impacts. 

Typically, such composites are fully bonded together in thin layers to form composite

1 Typical examples o f materials used as fibres in FRC are glass, carbon and metals.

2 Matrix materials are typically polymer-based made from long chains o f organic molecules, although metal- 
based and other generic matrices are also possible. There are two general kinds of polymer-based matrices -  
thermoset and thermoplastic. Thermoset-based composites are soft and malleable whilst thermoplastic-based are 
harder and board-like. Typical thermoset matrices are like epoxy and polyester, whilst polyethylene is a 
thermoplastic example.
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laminates. It should be noted that it is not a pre-requisite that the individual layers are 

themselves composites, but may also be singular materials such as metals. One such example 

of a composite is the humble plywood, which orientates the plies of wood according to the 

grain in order to maximise strength.

In fact, composite laminates of FRC work as illustrated in Figure 4-1, thus forming two main 

material axes 1-2 that are indicative of the directional nature of the fibres. This introduces 

directional dependency of material properties, thus becoming part of the broader class of 

anisotropic materials. At the other end of the spectrum, isotropic materials display no such 

dependency. As indicated in Figure 4-1, fibres are typically aligned continuously in a single 

direction, thus forming principal material axes resulting in two mutually perpendicular planes 

of symmetry in material properties, producing orthotropic behaviour. In such composites, 

properties such as material elastic stiffness are therefore defined along two axes -  one parallel 

to the orientation of the fibres, and the other perpendicular to the orientation. An example of 

elastic properties of various FRC is as provided in Table 4-1.

FRC laminates are often described using a standard notation, the stacking sequence, which 

indicates how layers or lamina are arranged in the resulting laminate. The fibre orientation 0 

is clockwise positive from a reference axis, which is typically the set of axes describing the 

elastic properties of the laminate. The notation starts from the top of the laminate to the 

bottom «-th layer in the format [0xt0 2l ...!6n], which assumes a standard thickness t for

each lamina. This is usually correct because current manufacturing practice often requires 

specification to be provided as integer components of a standard thickness1. In such a case, 

layers of the same orientation when grouped together are often specified as an integer value, 

which represents the number of layers of the standard lamina, such as [02 /± 452 /902]. It is 

also standard practice to produce symmetric laminates for reasons described later, which are 

those where the orientations are mirrored along the mid-plane. Symmetric laminates are 

usually presented in the same format with an additional subscript S to denote symmetry, such 

as [02 /± 452 /902]s . Note that in this example, the laminate is also balanced, where all

positive off-axis layers have a corresponding negative off-axis layer of identical thickness. 

The ‘balanced and symmetric’ properties of a laminate are highly desirable for reasons 

presented later.

1 This requirement also has led to the research into the discrete optimisation o f laminate thickness because the 
simplistic rounding-up technique often results in sub-optimal mass.
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Figure 4-1  Constituents of a fibre-reinforced composite laminate and the main material axes together with 
stresses acting on it.

There are many issues that make the design and analysis of composite laminates complex and 

occasionally intractable, even when disregarding manufacturing complications. Therefore, the 

study of composite laminates is often divided between the macro and micro levels. The macro 

level, where properties o f the individuals are known a priori, is the main focus of this work. 

The difficulty arises due to the need to address the resulting anisotropy of laminates with 

different fibre orientations. For any given stacking sequence of a laminate, the stress-strain 

relationships are required to model the various coupling mechanisms between the in-plane 

and out-of-plane deformations.

Material
Constituents Ex

(GPa)
e 22

(GPa) <7,2 (GPa) V\2 VfFibre Matrix
AS4/3501-6 Carbon Epoxy 142 10.3 7.2 0.27 0.63
7781/5245C Glass Epoxy 29.7 29.7 5.3 0.17 0.45

Kevlar 149/Epoxy Aramid Epoxy 87 5.5 2.2 0.34 0.60

Table 4-1  Properties of a selection of fibre-reinforced composite materials. The material properties are 
subscripted, where 1 indicates the primary axis (parallel to fibre) and 2 points to the secondary (perpendicular 
to fibre). Source: http://composite.about.com/
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4.2.1 S t r e s s -S t r a in  R e l a t io n s h ip  o f  a n  O r t h o t r o p ic  L a m in a

As mentioned earlier, orthotropic behaviour is a special case of anisotropic materials and is 

generally the case for FRC laminates (unidirectional lamina). For an orthotropic layer, four 

elastic engineering properties are generally used to fully describe the mechanical properties -  

two Young’s moduli along the principal material axes, Ex and E2, shear modulus Gn and 

Poisson’s ratio, v12, in the plane of the layer. These properties are related to the amount of 

fibre present, represented by the fibre volume fraction, Vf , but are not discussed further as

their study involves micro-level interactions between the fibres and the matrix and is outside 

the scope of the current work.

The stress-strain relation for a three-dimensional anisotropic linear elastic medium, Hooke’s 

Law, is typically expressed in the simplified matrix notation as

a = Cs 4-1

where a and 8 represents the vector of stress and strain components respectively, and C is 

known as the material stiffness matrix. The above relationship is reduced for a thin 

orthotropic material, a lamina, with principal material axes 1-2, with the assumption of plane 

stress (<r3 = 0 and r 23 = r 13 = 0  ), as

r°\ "0ii 012 0 "

^2 ► = 012 022 0 e2 ► 4-2

y\i. 0 0 SP u> \ y  12,

The above is often represented in the simpler matrix notation format as

<r = Qe 4-3

where Q is often referred to as the reduced material stiffness matrix. The reduced material 

stiffness coefficients, Q0 e Q  where i , j  = 1,2,3, are defined in terms of the four earlier 

described elastic engineering properties as
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The reciprocity relationship implies that vn E2 = v21£ , . The stress-strain relationship of Eq. 4- 

3 therefore constitutes the basic state of an orthotropic lamina subject to forces in its 

corresponding principal material axes. It should also be noted that Eq. 4-4 can be specialised 

to represent isotropic materials by simply applying the relationship vn = v2X, since E] = E2. 

It should also be noted that for isotropic materials, the relationship Gn = El /(2(l + vn )) holds.

Since orthotropic layers are generally part of a larger assembly of laminates and resulting 

structure, the principal material axes do not necessarily coincide with the laminate reference 

axes x , y  and z , as shown in Figure 4-2 with the fibres orientated at an offset angle 0 from 

the laminate reference axes. Transformation of the stress-strain relationship of Eq. 4-2 to the 

stress-strain relationship in the laminate reference axes will result in

' 0 i 012 013 “ **
* = 012 022 023 «

Txy 013 023 033 _ %

where the coefficients of the transformed reduced material stiffness matrix, Q tJ e Q where 

z, j  = 1,2,3, are related to 0 y by

0,i = 0n cos4 £ + 2 (0,2 + 2&3 )cos2 ^sin2 (9 + 0 22 sin4 0,
022 = 0 n sin4 0  + 2 (0 12 + 2 0 33)sin2 0 cos2 0 + Q22 cos4 0,
0 i2 = (0n +022  -  4033 )sin2 <9 cos2 0 + 0,2 (sin4 <9 + cos4

Q\3 = ( f i  1 0)2 )s n̂ 0 cos30 + (0 i2 -022 + 2 0 33)sin3<9cos<9, 4-6
023 =(011 -012  -  2033 )sin3 0 COS 0 + (0,2 -0 2 2  +2033 )sin0 cos3 0,
033 = (011 + 022 “  20,2 -  2033) sin2 #cos2 0  + 0 33 (sin4 0  + cos4 0 )
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Figure 4 -2  Lamina with an offset angle d  between its material axes and the governing laminate stresses with 
respect to the laminate reference axes.

4.2.2 C o n s t it u t iv e  R e l a t io n s h ip  o f  a  L a m in a t e

In the setup of a laminate consisting of n layers, Eq. 4-5 defines the stress-strain relationship 

of the k -th lamina as shown in Figure 4-3. The assumption made is that layers in the laminate 

are bonded perfectly together with an infinitely thin bond line with continuous in-plane 

deformations across this line. The resultant forces and moments, or stress couples, acting on 

the laminate are obtained by performing a through-the-thickness integration of individual 

lamina stresses as a result of making the assumption of constant through-the-thickness strain 

distribution in case of in-plane loading and linear variation across the layers.

\k = 1

k = 2-----

k = 3/ / ~

V
k = n-

Z  =

Z  =

z =
Laminate mid-plane

z =
z =

zz:

"n-l

Figure 4 -3  Lamina numbering system.
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Figure 4 -4  Sign conventions for membrane forces and bending moments.

The perturbation membrane forces per unit length, n = {nx ny nxy}, and perturbation bending 

and twisting moments per unit length, m = {mx my mxy} , can be expressed in terms of the 

perturbation membrane strains, 8 = {sx s y yxy} , and perturbation curvatures and twist, 

k  = {kx Ky Kxy) . These strains, curvatures and twist are related to the displacements u , v and 

w , parallel to the laminate reference axes x , y  and z as

du dv du dvs  -
» yOX Qy9

Uit

a ?

d2w d2w d2w
Qy2 ** dxdy

The sign conventions for perturbation forces and moments are as illustrated in Figure 4-4. The 

above definitions then allows the expression of the plate constitutive relationship, or in this 

case the laminate, in matrix notation, as

n = As + B k, 4 g

m = B e -  D k

The matrix A is often referred to as the extensional material stiffness matrix or in-plane



stiffness matrix, D as the material flexural stiffness matrix or out-of-plane stiffness matrix, 

and B as the coupling stiffness matrix. The constitutive equations, in the expanded form are

4 . A 12 As * 1 2 *13

ny = An A22 A s ► + B\2 B 22 B 23 < K>

/ V _As 4 3 A s _ * .3 Bis B33 _ 2*,y

~BU B\ 2 V S * D \2 Du
my ► = B\ 2 B22 Bjs > - D\ 2 D 22 D 23 * Ky

m*y -* 1 3 B\ 3 B33 _ Yxy D\ 3 B*23 D33 2 Kxy

The in-plane, out-of-plane and coupling stiffness matrices fully describe the elastic response 

characteristics of a laminate when subjected to in-plane and bending loads, where the 

coefficients of the matrices, as a result of through-the-thickness integration of n layers in the 

laminate, are

4  =XL(<L)Lz*
B ,J  = XL {Qij I (z* - z l< 1 where ’> j  = *>2*3 4- 11
^ = S L  (a, )>*-**-.)

The tradition of associating stiffness properties of a laminate with quantities modelled on 

classical elastic material properties is not possible for general laminates due to complex 

couplings between different deformation modes. The classical plate theory (CPT) is suitable 

only for thin plates with breadth-to-thickness ratio of 10 or more. Otherwise, analysis for 

thicker laminates is more accurate with the shear deformation plate theory (SDPT) (Cohen, 

1979).

The extension-twist coupling terms Bu and B23 cause twisting deformation under in-plane

loads even without twisting action. This is caused by off-axis layers that are not symmetric 

with respect to the laminate mid-plane. When laminates are restricted to symmetric sequences, 

the entire coupling stiffness matrix vanishes and thus eliminates the coupling between in­

plane and out-of-plane responses. However, this still does not display classical material 

behaviour. The presence of non-zero bending-twisting coupling terms DX3 and D23 will

couple the moment resultants mx and my with the twisting curvature K xy . These terms

always exist in laminates with layers that have off-axis fibre orientations. Similarly, non-zero



shear-extension coupling terms An and A23 induces shearing deformation under in-plane

stress resultants nx and ny . Unlike bending-twisting coupling, this effect can be eliminated

from the laminate by enforcing the rule whereby a layer with off-axis fibre orientations is 

balanced by an equivalent offset layer. In other words, a layer with positive off-axis fibre 

orientation is balanced by another layer of equal thickness with negative off-axis orientation 

and vice versa. Although there is no restriction needing such layers to be adjacent, doing so 

will result in smaller bending-twisting terms. Thus, the balanced and symmetric rules when 

applied will eliminate certain coupling behaviours and are therefore often included as 

constraints in the design of laminates. This behaviour is an important assumption and 

requirement in the analytical model used for design optimisation problems here.

4.3 Pr ism a t ic  P late  A ssem blies

Most practical uses of composite laminates are in complex geometrical shapes and forms. 

However, reliable analyses are available for the accurate modelling of structures that closely 

resemble flat rectangular prismatic plate assemblies. Prismatic plate assemblies here imply 

structures with panels of longitudinally invariant cross-sections. It is worth pointing out that 

such assemblies are not restricted to isotropic plates typically found in traditional plate 

construction, but includes the use of anisotropic panels as well such as composite laminates.

Different analytical models obviously make different assumptions of the macro-behaviour of 

the panels, but they are typically used to model the structure and find quantities that govern 

two commonly studied behaviours of prismatic thin-walled structures -  buckling and 

vibration. This work concentrates on optimisation of assemblies with buckling stability and 

hence will be covered in greater detail than vibration. Two classes of analytical models are 

available for the analysis of prismatic plate assemblies -  approximate and exact methods.

Two commonly used approximate methods are the finite element method (FEM) and the finite 

strip method (FSM). These two methods are commonly used in the analysis of structures such 

as floor slabs and walls. In the case of prismatic plate assemblies, they are used mainly to find 

the quantities associated with buckling and vibration phenomena -  critical buckling loads and 

natural frequencies of non-damped free vibration.

The basis of FEM is to model a continuous structure using a discrete representation with a 

finite number of degrees of freedom. In other words, the structure is modelled by a 

geometrically similar representation divided into simpler and smaller discrete regions than the
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resulting element, thus producing a mesh-like model. Equilibrium conditions are then applied 

to each element producing a (typically large) system of simultaneous equations. One 

approximation in FEM is the interpolation between the resulting nodes to find displacements. 

Another approximation is that mass can be represented on nodal points by lumping 

surrounding mass together instead of a distribution across the continuous structure.

Accuracy of the FEM model is improved by using finer meshes. However, this cannot be 

practically increased indefinitely due to the limit determined by a convergence check 

performed by all FEM analysis and the possibility of numerical instability. Beyond this 

practical upper limit, accuracy stays virtually the same while computational overhead 

increases. FSM is an alternative to FEM, which reduces computational effort and costs but 

maintaining the accuracy provided by FEM.

An alternative approach allows the governing differential equations of the constituent 

members of the structure to be solved exactly by mathematical manipulation. The approach is 

based on the exact finite strip method introduced by Wittrick (1968a, 1968b). As in FEM and 

FSM methods, member stiffness matrices are combined into a global stiffness matrix, K , 

representing the whole structure that relates a vector of perturbation forces P to 

corresponding displacements D through

KD = P 4-12

Unlike approximate methods like FEM, no approximations are made in representing the 

continuous structure because it involves an infinite number of degrees of freedom with a finite 

number of nodal freedoms, hence the ‘exactness’. The eigenvalues of the structure, the critical 

buckling load factors or frequencies depending on the aim of the analysis, can be found by 

solving Eq. 4-12 when P = 0, i.e.

KD = 0

The penalty of using this exact approach, though, is that the elements of K becomes 

complicated transcendental functions of the corresponding load factor F  or frequency co. 

The high nonlinearity of K then implies that standard methods traditionally deployed to solve 

linear eigenvalue problems cannot be used. Although eigenvalues of the problem are found at 

points where I k |  = 0 and D = 0 , the irregularity of the relationship between I k |  and F  or co
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makes it impossible to detect the full range of eigenvalues with certainty. Fortunately, an 

algorithm developed by Wittrick and Williams (1971b) is able to guarantee the detection of 

all eigenvalues to any required accuracy. The following sub-sections covers the assumptions 

leading to the expedient use of this algorithm -  the Wittrick-Williams algorithm. The 

algorithm itself will be covered in greater detail when the buckling phenomenon of prismatic 

plate assemblies is discussed.

4.3.1 F o r c e - D i s p l a c e m e n t  R e l a t i o n s h i p  o f  a  C o m p o n e n t  P l a t e

In CPT, four displacement components are considered, where the three displacements, u , v 

and w , are parallel along the plate reference axes x , y  and z , and ^  is the rotation about the 

longitudinal x axis. These perturbation displacements are considered at a point (x,y)  on the 

mid-plane of the plate. Figure 4-5 shows a component plate with the main reference axes, 

subjected to a basic force system. The force system comprises a uniform longitudinal 

compressive force per unit width, AfL, a uniform transverse compressive force per unit length, 

NT and a uniform shear force per unit breadth, Ns . These are the forces that give rise to

buckling instability in a buckling problem. On the other hand, a vibration analysis will regard 

them as forces that define the datum state of the structure about which small vibrations occur.

x,u

N L

Figure 4-5  Basic force and axis system for a component plate in an assembly.
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x,u
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Figure 4 -6  Perturbation edge forces, displacements and nodal lines of a component plate in an assembly. All 
edge forces and displacements are to be multiplied by exp(i7txA)cos(2nnt). The complex quantities allow for 
spatial phase differences between the edges.

The force system produces perturbation edge forces and moments during buckling or 

vibration, as illustrated in Figure 4-6, which vary in a sinusoidal mode in the longitudinal 

direction. Also illustrated in Figure 4-6, these perturbation edge forces and resulting 

displacements are to be multiplied by a factor of exp(/;ct//l)cos2;zw/, where X is the half­

wavelength of the mode, n is the frequency and t is time. In a buckling problem, n = 0. The 

magnitudes of the perturbation edge forces and displacements allows for the possibility of 

spatial phase differences between them by becoming complex quantities and are defined by 

the force and displacement vectors

P, = K  P:J Py, iPxj } 4-13 

d j  m V y  WJ V, iUj j

respectively at edges j  = 1,2. The complex factor i ( = V -T ) takes account of a 90° phase 

difference between p XJ and wy, and the other p 7 and d j components due to the assumption

of longitudinal sinusoidal variation1. The plate is then governed, together with stiffness 

matrices k y where i9j  = 1,2, by

1 This occurs even in an isotropic plate when no shear force is applied.
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Pi ~ ^11^1 ^12^2 > 
p2 = k 2|d, + k 22d2

4-14

which can then be reduced to a simpler form as

p = kd, 4-15

where p = {p,p2}, d -  {d, d2} and the matrix k is known as the plate stiffness matrix.

4.3.2 St iffn e ss  M a t r ix  o f  a  C o m po n en t  Plate

Recall again the laminate constitutive relationship as shown in Eq. 4-9 and Eq. 4-10. The use 

of Wittrick’s exact finite strip solution assumes a simpler behaviour of in-plane and out-of­

plane responses in the plate constitutive relationship, given as

«* 4 . A\2

ny = An A22
0 0xy

m x Ai D
my ► = - D\ 2 A

{m *y. A> A

33 xy

'1 2

)22

2̂3

D
D

13

23

D33

**> 
2 K xy

4-16

4-17

The above relationship defines both the in-plane and out-of-plane elastic properties of a 

component plate in the overall prismatic plate assembly.

First, consider the fact that the coupling stiffness matrix B has been eliminated. This implies 

that as far as the membrane deformations are concerned, the bending forces in the component 

plate produce no membrane strains. Although it is possible for the general class of plates like 

FRC laminates to violate this, full decoupling between the in-plane and out-of-plane 

deformations can be forced by using the symmetric rule about the mid-plane as described 

earlier.

Next, it should also be noted that an assumption is further made with regards to the shear- 

extension coupling terms where Au = A23 = 0 . In other words, this assumes that the

component plate displays only orthotropic properties along the principal elastic axes with 

regards to membrane deformations. Yet again, plates like FRC laminates can violate this
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assumption. However, a wide class of such composites do display orthotropic behaviour when 

they are fabricated using the balanced rule previously described. Nevertheless, such plates 

still exhibit full anisotropic bending properties and this is accounted for by the fully populated 

out-of-plane stiffness matrix D .

The above two assumptions were made to allow for the derivation of explicit analytical 

expressions for the elements in the plate stiffness matrix k . It is worthwhile to note that k is 

in general complex and Hermitian. The only special case where k is real and symmetrical is 

when the corresponding component plate displays full orthotropic bending behaviour and 

carries no shear loading, i.e., when Du = Z)23 = 0 and Ns = 0. For FRC laminates, this is 

only achievable if all layers have fibres aligned along the plate’s xy reference axes, known as

cross-ply laminates, which enforces the restriction that fibre orientations can only be 0°, 90° 

or a combination of both.

The stiffness matrices k ;> e k can be expanded, with in-plane stiffness coefficients sNN, sr r , 

s n n  » f n n  » frr a n < ^  f n t  > a n ^  out-of-plane coefficients sMM , Sqq , sMq , f MM , fgg and f Mq , 

as

S MM S MQ 0 0

~  ^  MQ S QQ 0 0
0 0 S NN ~ S NT

0 0 -  s NT S TT

S MM $mq 0 0 '

S MQ S QQ 0 0
0 o S  NT

0 0 S'lT _

JM M iM Q 0 0

~  / mq ~ / qQ 0 0
0 0 -  f  NN —  f NT

0 0 f NT frr

where a bar denotes a complex conjugate, and superscript T denotes a matrix transpose. All 

coefficients are always real, except sMQ, f MM , f QQ and f MQ, which are in general complex,

but become real too if Dn = Z)23 = N s = 0, i.e., for isotropic or orthotropic plates without 

shear loading. The stiffness coefficients for anisotropic and isotropic plate under combined
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loading are complicated transcendental functions, and explicit analytic expressions for them 

can be found in the literature, e.g., see Wittrick and Williams (1974). A simplified version of 

the expressions for longitudinally compressed prismatic isotropic plate assemblies by 

Williams and Wright (1978) can be a useful introductory material, because the resulting 

stiffness matrix is real and symmetric.

It is worth pointing out that so far, the edge forces and displacements of a component plate 

have been referred to the middle lines of the two longitudinal edges and to a set of plate 

reference axes x ,  _yand z ,  which are local to the plate. To construct the overall stiffness 

matrix of the resulting structure, transformation of the stiffness matrices of component plates 

must be performed to reflect the global edge references and an overall global reference axes.

4.3.3 T r a n s f o r m a t io n  o f  t h e  P l a t e  St if f n e s s  M a t r ix

For reasons pointed out earlier, individual plate stiffness matrices must be updated to reflect a 

global system of reference before the overall stiffness matrix K can be constructed. Two 

types of transformation provide for this -  eccentricity and rotational. Eccentricity 

transformation allows plates to be connected along a common longitudinal line at their 

respective edges, while rotational transformation caters for component plates with plate 

reference axes that do not coincide with the global reference axes.

Example node \

Plate Edge
Plate Edge

Example node

Figure 4 -7  Connection modelling between component plates.
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Figure 4 -8  Plate eccentric edge connections together with corresponding dimensions and displacements of a 
component plate.

x,x

V
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Figure 4 -9  Rotational transformation from member (x, y, z) axes to global axes (x', y', z').

For a plate that is to be connected along the longitudinal lines C, and C2, and corresponding 

transverse and lateral eccentricities as shown in Figure 4-8, the force and displacement 

vectors at edge j  = 1,2 referred to the eccentric connection line Cy, pey and d ej respectively,

is given as

P ej ~  Te/Py*

d , = TA
4-19
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where the eccentricity transformation matrix T . is

1 0 0 0

1 0 0

0 1 0

0
7veyj 1

X X

4-20

and p  j  and d y are the original force and displacement vectors of the component plate with

respect to the plate reference axes. It should be pointed out that T . is not exact. Nevertheless,

it is sufficiently accurate provided that eccentricities are small compared to the half- 

wavelength X , which is typically the case for prismatic plate assemblies.

The force and displacement vectors p ey and dej are then further transformed to reflect also

the global reference axes x ' , y '  and z' to produce corresponding vectors p 'y and d 'y . The

resulting relationship is formed by applying a rotational transformation matrix Tr , where a 

rotation of // about the longitudinal axis is required as shown in Figure 4-9, giving

P'y = T7P„
d l; = T ,d  ' j

4-21

where the rotational transformation matrix Tr is

T_ =

1 0  0 0
0 cos // sin // 0
0 - s in / /  cos ju 0
0 0 0 1

4-22

Relationships from Eq. 4-19 and Eq. 4-21 then allows Eq. 4-14 to be updated to reflect these 

transformations to produce, for individual component plates, the new relationships

n' =  k ' d' + k ' d'p  1 — K n u  1 -t-K ,2 u  2 ,

p '2 =  k '21 d '1+ k '22 d '2
4-23
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where the transformed stiffness matrices kV., where i , j  = 1,2, are

k '„  = T7Tjk,Tyrr 4 -2 4

It should be noted that since ky = k j , it follows that kV = kj , which then implies that the

transformed plate stiffness matrix k', to which k from Eq. 4-15 transforms, is also generally 

Hermitian. Derivations for the transformation matrices can be found in Wittrick and Williams 

(1974).

With the stiffness matrices of all component plates transformed to reflect global reference 

axes and eccentric connection lines, the assembly of an overall stiffness matrix K for the 

structure can be done using standard techniques and solved for eigenvalues as described 

below.

4.3.4 B u c k l in g  a n d  t h e  E ig e n v a l u e  P r o b l e m

The overall stiffness matrix K of a prismatic plate structure relates the forces vector P and 

displacement vector D . The force vector ¥ Qxp(i7vc/X)cos2mt is the set of perturbation 

forces at the longitudinal connection line and external plate edges, which are distributed in a 

sinusoidal mode along the longitudinal axis with half-wavelength X and 

Dewp(i7ixl X )cos2m t being the corresponding vector of displacements.

Regardless of whether the problem in consideration is buckling ( n = 0) or vibration, the 

eigenvalue problem corresponds to P = 0 such that solving for KD = 0 gives the critical load 

buckling factors or frequencies for a specified X . The non-trivial solution ( D * 0) is obtained 

only if |K| = 0 . In fact, there is a complete and simple relationship between the buckling

problem and the problem of the natural frequency of vibration of such structures (Wittrick and 

Williams, 1974). For a given value of half-wavelength X, the z-th buckling stress cr, and /- 

th natural frequency col are related by the formula

cr = 4 pX2cof 4-25

where p  is the density of the material. Furthermore, the modes of buckling and vibration are 

identical. The relationship therefore summarises to a simple fact that for every buckling
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problem, there is a corresponding vibration problem with a particular natural frequency.

In a buckling problem, interest centres mainly on the lowest eigenvalue or critical buckling 

load factor, which then becomes the governing critical buckling load of the overall structure. 

However, there may well be situations in which discovering other eigenvalues close to the 

lowest is important too. Nevertheless, several buckling modes can occur for any given 

structure although the tendency for any one to occur depends on many other factors such as 

the geometry, stiffness, loading conditions, etc.

4.3.4.1 W i t t r i c k - W i l l ia m s  A l g o r i t h m

It has been mentioned earlier that the elements of K are complicated transcendental functions 

of the corresponding load factor F  or frequency co. While standard methods for solving 

linear eigenvalue problems are available, the behaviour of K implies that such methods will 

fail. The hope of solving the eigenvalue problem here is provided by the Wittrick-Williams 

algorithm, a numerical iterative technique that guarantees the detection of all eigenvalues to a 

required accuracy. The Wittrick-Williams algorithm first found its use in vibration problems 

(Wittrick and Williams, 1971a, 1971b) before later extended into the general form here that 

also covers buckling (Wittrick and Williams, 1973), used in the VIPASA model (Wittrick and 

Williams, 1974). Many modifications have since been done, the most important being 

arguably the VICON analysis model, now found in VICONOPT (Williams et al., 1990a), that 

assumes a plate deflection mode that can be expressed as a Fourier series rather than the 

sinusoidal mode discussed so far (Williams and Anderson, 1983).

Since the concern of this work centres on buckling problems, the following description of the 

VIPASA model concentrates on finding the critical load factor F  rather than the natural 

frequency co. The problem of natural frequency, in vibration analysis, can be argued in the 

same fashion as a buckling problem by simply substituting co for F .

The basis of the algorithm involves calculating the number of eigenvalues J  (critical load 

factor F  ) that lie between zero, i.e., when F = 0, and some trial eigenvalue F > 0. This then 

implies that a change in J , A J , between any two trial values gives the number of eigenvalues 

lying between these trial values.

For example, consider a general buckling problem with two trial values F] and F2 such that 

F2 > F] > 0 . If J l represents the number of eigenvalues when F = Fx and J 2 similarly
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represents the number of eigenvalues when F = F2, then it can be concluded that the number 

of critical load factors lying between Fl and F2 is therefore AJ = J 2 -  J x. The interesting 

case here is when AJ = 1 has been established, which then allows determination of the 

appropriate m -th eigenvalue with certainty to any required accuracy. To converge onto the 

required eigenvalue, the iterative procedure of bisection (interval halving) can be used 

although more sophisticated techniques to speed up the convergence process are also possible, 

such as the multiple determinant parabolic interpolation method (Williams and Kennedy, 

1988; Kennedy and Williams, 1992).

The Wittrick-Williams algorithm is formalised as

J  = J 0 + i[K ] 4-26

where, as before, J  is the number of positive eigenvalues less than some chosen positive trial 

eigenvalue F *, J 0 is the number of eigenvalues less that F* if the nodes of the structure are 

fully constrained, K is the overall stiffness matrix of the structure evaluated at the trial value 

F *, and s[k] is known as the sign count of the matrix K . Clearly, the overall stiffness 

matrix K is obtained by constructing the individual component member stiffness matrix k' 

as described earlier.

The sign count s[k ] is derived from the Sturm sequence property of the generally Hermitian 

overall stiffness matrix K . An easy method exists for computing this value. First, K is 

converted into its upper triangular form, K A , by applying the usual form of Gaussian 

elimination without scaling or row interchanges and making all elements below the pivot zero. 

Then, s \k ] is simply the number of negative elements on the leading diagonal of the upper-

triangulated matrix K a .

A component requiring more detailed explanation is the calculation of J 0. In actual fact, J 0

is the number of eigenvalues which would have been exceeded by F * if all nodes of the 

structure were fully clamped, i.e., D = 0. The structure therefore degenerates into a set of m 

individual component members (plates) with their corresponding longitudinal edges fully 

clamped. Thus, J 0 is equal to the sum of the total number of positive eigenvalues of the

individual component plates with their edges fully clamped, J m that lie below F * , or 

formally as
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Jo = Z - 7*,
m

4-27

Two factors contribute directly to J m -  in-plane and out-of-plane eigenvalues of the 

respective members. Analytical formulae are provided by Wittrick and Williams (1974) for 

direct evaluation of J m.

Computational expediency for complex repetitive structures can be achieved by using sub­

structuring, which replaces repeating portions of the structure with sub-structures. This 

reduces the order of K by only including stiffness terms relating to nodes of the substructures 

that are connected to the overall assembly, thus saving processing time. Despite allowing 

unlimited nesting levels of sub-structuring, the analysis is still exact because no additional 

approximations are introduced. Sub-structuring modifies the J 0 term from Eq. 4-27 to

Jo = 2 X + i y ,  4-28
m v

which adds a second summation over all specified substructures. The term J s represents the

total number of positive eigenvalues less than the chosen positive trial eigenvalue F *, and is 

calculated in a similar manner as a complete structure on its own using Eq. 4-26 except with 

nodes that connect to the main parent structure modelled as fully clamped. It should also be 

noted that J s is recursive in the sense of allowing additional sub-structures to be connected to 

it. A complete description of sub-structuring is provided by Wittrick and Williams (1974).

4.3.4.2 B o u n d a r y  a n d  S u p p o r t  C o n d i t io n s

The assumption that buckling or vibration occurring in a sinusoidal mode in the longitudinal 

direction is important and is accurate only for a subset of plate assemblies. Nevertheless, this 

assumption approximates closely to other cases too up to a certain degree. Given the case that 

computation of eigenvalues for a specified value of half-wavelength X can now be performed 

accurately and with guarantee using the Wittrick-Williams algorithm, the resulting critical 

buckling load factors or natural frequencies are accurate provided several prerequisites are 

met.

Support and nodal conditions can be modelled directly in the overall stiffness matrix K itself 

without resorting to additional formulations. Recall that the on-going analysis model allows
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four degrees of freedom at every node aligned along longitudinal line supports, namely u , v , 

xv and y/ for the three displacements along the global reference axes jc' , y ' , z' and rotation 

about x' respectively. Displacement components at nodes or boundary supports, including 

internal nodes of sub-structures, can therefore be modelled as elastically or rigidly restrained 

by adding appropriate stiffness to the leading diagonal of K (or K s for sub-structures) which

corresponds to the displacement components. Rigid restraints can be simulated by making the 

corresponding stiffness substantially large.

NT

A /j\ /|\ /|\ /J\ /j\ /j\ /|\ / \  /J\ / \  / \  /|\ /j\ /j\ /|\

<-

Figure 4 -1 0  Straight nodal lines for isotropic plates or anisotropic plates without shear, compatible with simply 
support transverse ends.

/ | \  z | \  / J \  / | \  / \  z | \  / | \  z | \  / | \  / j x  / j s .  / | \  / j \  / J s  / j x

Figure 4 -11  Skewed nodal lines as a result of anisotropy and/or shear loading, resulting in incompatibility with 
simply supported transverse ends assumption.
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So far, there is no mention of supports in the transverse direction because they cannot be 

effectively simulated with the current model. The sinusoidal buckling or vibration mode 

assumption implies a deflection that is consistent with simply-supported end conditions, as 

shown in Figure 4-10, where lines of zero displacement are straight and perpendicular to the 

longitudinal panel axis and spaced X half-wavelength apart. Although it is very likely that 

most plates do not conform to this behaviour, isotropic or orthotropic plates in the absence of 

shear loading are consistent with this model. Hence, analyses of assemblies with simply- 

supported end conditions are generally considered accurate. In such a structure of length £, 

when its two end cross-sections are supported in a manner consistent with a sinusoidal mode, 

the half-wavelength X of the mode will be equal to

where k is any positive integer. In practical computation, only a finite range of X is 

considered either by specifying an upper bound for k , or selective values of X to which the 

relationship in Eq. 4-29 must hold.

In general, transverse cross-sections will be distorted and the nodal lines in the plates will be 

curved. Although the sinusoidal mode of half-wavelength X still applies in the longitudinal 

direction, the nodal lines are no longer compatible with simply-supported end conditions, but 

are skewed as illustrated in Figure 4-11. This inconsistency results in evaluated eigenvalues as 

no longer accurate but estimates. Nevertheless, the results are still realistically accurate for X 

that are considerable smaller than £, such as may occur if the governing buckling mode is 

local. On the other hand, estimates of eigenvalues become increasingly conservative as X 

approaches £ in the presence of anisotropy or shear.

4.4 D e s ig n  a n d  A n a l y t ic a l  T o o l s

There are several applications of Wittrick’s exact finite strip method combined with the 

efficient eigenvalue evaluation method of Wittrick-Williams algorithm, with the most 

successful arguably being VIPASA, VICON and VICONOPT. VIPASA and VICON are 

analytical tools, while VICONOPT includes the capability of both VIPASA and VICON as 

analysis options and provides additional design facilities.
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4.4.1 VIPASA

The computer program VIPASA (Vibration and Instability of Plate Assemblies including 

Shear and Anisotropy) encompasses the analytical model for prismatic plate assemblies 

outlined so far and was developed by Wittrick and Williams (1974). The program provided 

major improvements over their two previous plate analysis programs -  GAS VIP (General 

Axial Stress Vibration and Instability Program) and VIPAL (Vibration and Instability 

Program with Axial Load).

GASVIP and VIPAL were used for the evaluation of eigenvalues of buckling or vibration 

problems of isotropic plate assemblies loaded with uniform longitudinal stress. VIPASA 

extended the capabilities of both these programs and catered for anisotropy, thus opening the 

possibility of including more sophisticated materials such as FRC laminates in prismatic plate 

assemblies. On top of that, more complicated loading systems were now modelled that 

included longitudinal, transverse and shear loading. The VIPASA analytical model assumes a 

sinusoidal mode of deflection along any longitudinal line and incorporates phase differences, 

thus accurately representing the effects of anisotropy and shear. The only other assumptions 

are those already inherent in the classical small deflection thin plate theory. Other similar 

programs present at the same time were one by Smith (1968), which includes also 

longitudinal beam elements, and BUCLASP2 (Viswanathan et al., 1973), which allows 

curved plates as well as longitudinal beam elements. Both, however, did not allow full 

anisotropy and shear in component plates, but BUCLASP2 included coupling effects between 

bending and mid-surface deformations.

There is, however, a limitation to the analytical model of VIPASA. As mentioned previously, 

in-plane shear loading on component plates resulted in skewed sinusoidal modes, which are 

not properly modelled by VIPASA, results of which are accurate only for isotropic or 

orthotropic plate assemblies with shear or in shorter half-wavelengths in the case of full 

anisotropy or presence of shear. Otherwise, produced results are conservative. With this 

restriction in the analytical model, VICON was developed as an alternative to a more accurate 

model.

4.4.2 VICON

The VICON (VIPASA with CONstraints) analytical model overcomes the conservatism of 

VIPASA in the case of full anisotropy or in the presence of shear load (Anderson et al., 1983).
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One major improvement in VICON is the assumption that the deflection mode of a panel may 

be expressed as a Fourier series involving an appropriate set of half-wavelengths X , as 

opposed to the sinusoidal mode of VIPASA.

Results from the VICON model provided are for an infinitely long panel with supports 

repeating at intervals of i  , so that the plate assembly and its supports form identical 

lengthwise bays of length £ . This allows an assembly of a finite length i  with simply 

supported transverse ends to be modelled to reasonable accuracy by representing the end 

conditions as a line of rigid point supports at x = 0 and restraining appropriate displacements1.

The eigenvalues arising from the VICON analysis are obtained similarly to VIPASA with 

exception of an extension to the Wittrick-Williams algorithm (Williams and Anderson, 1983). 

A full derivation of the governing equations and extended stiffness matrix using Lagrangian 

multipliers can be found in Anderson et al. (1983). The VICON model was later adopted into 

the design and optimisation tool, VICONOPT.

4.4.3 VICONOPT

The computer program VICONOPT (VICON with OPTimisation) extends the analytical 

capability of VICON and provided an additional design optimisation feature (Williams et al., 

1990a; Williams et al., 1990b; Butler and Williams, 1990, 1992; Williams et al., 1991; 

Kennedy et al., 1994).

VICONOPT builds on the two analytical models of VICON and VIPASA by the addition of a 

design optimisation feature. The design objective in VICONOPT is the constrained mass or 

cost minimisation of a prismatic plate assembly. Available design variables include plate 

widths, layer thicknesses and layer ply angles, which can be linked to other dimensions to 

become dependent variables to keep geometric consistency. The constraints are typically 

those particular to the design of plate assemblies and include buckling constraints provided by 

either the VIPASA or VICON analysis, material strength constraints defined using maximum 

allowable stress or strain for compression, tension and shear, or calculated using the Tsai-Wu 

criterion, and other configuration requirements.

1 Since the analytical model o f VICON assumes lengthwise repetition, the modelling of supports at one end of 
the assembly also implies the occurrence o f the same support at the other end.
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Figure 4-12 VICONOPT continuous design strategy.

The continuous design strategy in VICONOPT, upon initial analysis, enters a stabilisation 

step, where the thicknesses of the initial design are factored to a just feasible design. Then, it 

enters into an overall sizing cycle with an optimiser routine within the cycle. First, a 

constraint and sensitivity analysis is used to obtain gradient information about the sensitivities 

of eigenvalues to small changes in the design variables. Then, the upper and lower bounds of 

the design variables are calculated (move limit calculation) to prevent large and unreliable 

design moves of the optimiser. VICONOPT then proceeds to the linear CONMIN 

optimisation step (Vanderplaats, 1973; Vanderplaats and Moses, 1973), which is based on the 

method of feasible directions. Here, it converges onto a design which may or may not be 

stable. Hence, the cycle again enter the stabilisation step and the whole optimiser routine 

repeats itself until either the maximum number of user-defined cycles has been reached or the 

stabilised mass of the prismatic plate assembly is within a user-defined tolerance of the mass
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after previous stabilisation. New sizing cycles are performed if the mass has not converged or 

the maximum number of sizing cycles has not been reached. Figure 4-12 illustrates the 

VICONOPT design strategy.

4.5 C l o s in g  R e m a r k s

The availability of accurate and even exact analytical models, such as the one outlined above, 

has opened up the opportunity for the design and optimisation of structures constructed from 

composite laminates, in particular FRC laminates. As computing power continues to increase, 

so too does the ability to include more design variables into the optimisation process and 

produce even more efficient composite laminates and assemblies. The design and 

optimisation of composite laminates falls broadly into two categories -  micro-behaviour and 

macro-mechanics optimisations.

Micro-behaviour optimisation obviously deals with the interaction of the constituents, i.e., 

between fibres and matrix. Although approximate analytical methods are available to study 

such behaviours, most properties of composite laminates are still obtained empirically. Thus, 

optimisation at this level is often limited to experimental studies of materials.

Macro-mechanics, on the other hand, studies the mechanical responses of composite 

laminates on a structural level such as buckling, post-buckling and vibration. However, such 

behaviours in composite laminates are more complex than most traditional materials 

commonly used in plate structures such as metals and alloys, particularly due to the 

anisotropy. Analysis at this level has improved a great deal with developments of accurate and 

exact methods. Even if such methods are not the preferred choice, more general analytical 

methods such as the FEM can still be used to give reasonably accurate estimates of 

mechanical responses although there may be compromise in terms of computational overhead.

Finding an efficient composite laminate design subjected to macro-mechanical constraints 

whether for an individual plate or an assembly is highly sought after in many areas of 

application such as in aircraft manufacturing. Efficiency here deals not only with load 

carrying capacity but extends equally to weight and cost savings or any acceptable trade-off 

margin. Perhaps the most common design optimisation of composite laminates, and indeed 

the use of other materials, involves some kind of mass reduction. In most applications, mass 

often has an effect on performance and cost, and therefore becomes the primary objective 

function. However, the mass minimisation of composite laminates goes beyond the simplistic
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optimisation of lamina thickness.

Mass minimisation of composite laminates, in particular FRC laminates, can be affected by 

layer fibre orientation, physical dimensions, enforcement of balanced and symmetric rules, 

amongst many others. The high-dimensionality of the design optimisation problem when all 

these factors are considered concurrently often makes it impossible to evaluate. Coupled with 

computationally expensive evaluations of constraints, such as satisfaction of a design 

buckling load, designs of FRC laminates are often forced to be reduced to the design of a 

single laminate rather than a complete assembly. Nevertheless, successful studies into such 

high-dimensionality mass design problems have been reported by York et al. (1993) and 

Kennedy et al. (1999).

Although mass optimisation is a common design problem, load capacity maximisation of 

composite laminates is also useful particularly in cases where there is a restriction or limit in 

geometrical dimensions. Such an optimisation, in the case of FRC laminate, typically involves 

finding a configuration of lamina fibre orientations that satisfy the geometrical constraint that 

optimises the load capacity, and is also known as a stacking sequence optimisation. This is 

evident from the fact that different configurations result in different in-plane and out-of-plane 

stiffness matrices, which, in turn, affects the overall stiffness of the structure.

With the availability of more sophisticated and robust optimisation techniques such as genetic 

algorithms, previously impossible or expensive high-dimensional design optimisation 

problems become easier, even if the objective landscape (mass, cost, load capacity, etc.), 

when subjected to numerous constraints, is unpredictable. The following two chapters 

investigate such problems.
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5 D e s ig n  o f  L a m in a t e s

Following the description of the Genetic Algorithm (GA) framework in Chapter 2 and 

effective handling of constrained optimisation methods in GA presented in Chapter 3, this 

chapter covers the design and optimisation of composite laminates. It begins with a thorough 

description of the general design problem formulation of mass optimisation together with the 

GA optimisation process. Then, more detailed coverage of several case studies performed will 

be presented, complete with full results and discussion.

5.1 I n t r o d u c t io n

The design of composite laminates and prismatic plate assemblies, particularly when relating 

to mass, is an important issue. In the simplest of correlations, reduction in mass can 

immediately be related to a reduction in material cost given the same material. While cost is 

an important economic constraint in certain cases, mass minimisation without consideration 

of cost is also useful, particularly in weight-critical applications. In such scenarios, with two 

materials of similar strength, obviously the one with lower resulting mass is preferable. An 

example of this is can be found between aluminium and a [±45/0/90]s T300/5208 

Graphite/Epoxy laminate, where their corresponding effective elastic moduli are both 

approximately 70 GPa while their weight density is approximately 26 kNm~3 and 15 kNm~3 

respectively (Gtirdal et al., 1999).

Despite advantages that can be gained from specific tailoring of composite laminates, early 

usages are noticeably simplistic. Traditional materials, like metals, were simply replaced with 

fibre-reinforced composite (FRC) laminates that were quasi-isotropic, thereby suppressing 

any directional properties of the unidirectional lamina and maintaining, to a certain degree, 

the predictability of behaviours previously offered by isotropic materials. One such laminate 

is like the one featured above, which has equal percentages, in terms of mass, of 

unidirectional lamina aligned symmetrically about the laminate mid-plane.

It is naive to consider that mass of a laminate can be reduced only by the optimisation of the
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individual lamina thickness. Unlike the use of a single traditional isotropic material, FRC 

laminates can be tailored to produce different effective laminate material properties for 

different design requirements and loading cases. As seen in the analytical framework of 

composite laminates presented in Chapter 4, the layering and variation in fibre orientations 

clearly have an effect on the stiffness properties of the resulting laminate. This opens the 

possibility of designing specialised laminates that are not only able to perform the structural 

duties provided by traditional materials, but do so with greater efficacy.

In general, the challenge of designing composite laminates, hereafter refers specifically to 

FRC laminate unless noted otherwise, is to maximise the utility of their directional properties 

in terms of mass, cost, buckling load capacity, amongst many others. For most engineering 

applications, analysis that addresses fibre-matrix interface stresses is unrealistic and as such, 

such micro-behaviours are often ignored. What are of more concern are usually the 

restrictions imposed on composite laminate as a result of commonly observed failure modes 

such as buckling and vibration. The emphasis of the design optimisation process here is on 

continuous, constant thickness laminates under any combination of in-plane longitudinal, 

transverse and shear loads. It is, however, important to note that realistic structures often 

include discontinuities and other quirks such as bolt holes and thickness variations in ply 

drop-offs that produce other localised issues such as stress concentrations. One assumption 

here is, therefore, that laminates are continuous and have constant thickness.

Composite laminates, unlike their other traditional counterparts such as metals or even wood, 

require more sophisticated modelling techniques in order to predict macro-mechanical 

behaviour such as buckling or vibration. This is due, in part, to the generally anisotropic 

nature of such laminates and various other corresponding assumptions as outlined earlier. 

With such apparent difficulties in the analysis, it is therefore not unusual to find that designs 

of composite laminates often centre on the use of approximate modelling techniques such as 

the finite element method (FEM).

Fortunately, the availability of the exact finite strip method by Wittrick (1968a, 1968b) 

together with a numerical iterative technique for solving the resulting transcendental 

eigenvalue problem, the Wittrick-Williams algorithm (Wittrick and Williams, 1971b), enables 

fast analysis of plates and plate assemblies in buckling or vibration problems. Therefore, the 

analysis technique used here is modelled on the above VIPASA model because of its 

simplicity and exactness. Although concerns may arise in anisotropic plates or in the presence 

of shear, they are unwarranted as the results are still accurate, albeit conservative estimates.
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The justification of using the VIPASA model is also in its speed, where the VICON model is 

inevitably slower due to half-wavelength coupling of stiffness matrices. Bearing in mind that 

since GA is used here as the optimisation tool and that it encapsulates a population rather than 

a single candidate solution at any one time, any computational savings are welcome indeed. 

Obviously, real-world applications should nevertheless use the more accurate model provided 

by VICON. Here, the emphasis is on evaluating the GA rather than on designing realistic 

aircraft structures.

A VIPASA analytical component was coded in C++ (approximately 2591 lines) to provide a 

more consistent platform for testing the design of composite laminates (also cases considered 

in Chapter 6). The only modification required to the GA component is to additionally code 

separate objective functions for each of the design cases considered.

5.2 M a ss  M in im is a t io n  D e s ig n  P r o b l e m  F o r m u l a t io n

The goal of the optimisation is to minimise the mass of a composite laminate subjected to two 

types of constraints -  structural constraints and physical attributes. The former is provided to 

account for structural obligations such as load capacity, etc., while the latter is to account for 

commonly imposed restrictions or practices in the fabrication process, although it also has 

significance on mechanical responses. Generally, the mass minimisation design problem can 

be formulated, like a typical optimisation problem, as

Minimise
M(x)

subject to
CS, (x) < 0,
CPj (x) < 0

where
x LB < x < x UB

The objective function, in this case, is the mass function M (x) with corresponding variable 

set x that governs the mass of the laminate and implemented constraints. Note that the 

optimisation here is bounded, as represented by x LB < x<  xUB . The structural constraints and 

restriction on physical attributes are accounted for by the set of constraints C Sfx)  and

CPj (x) respectively, giving a total of ncs + nCP constraints.

The same design problem formulation is sufficiently general to encompass problems

x e X

i 1,2 ,..., «c s ,

j  ~ 1>2,..., n^p.
5-1
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concerning prismatic assemblies, as will be covered in the next chapter. One of the 

modifications required will be the objective mass function M ( \) , which will undoubtedly 

include more design variables to reflect the configuration of the assembly. The constraints, to 

be described below, will, in general, be also applicable to prismatic assemblies unless 

otherwise stated. It should be noted that the constraints covered below do not include the full 

set of constraints, because some are specific to the individual design problems.

5.2.1 B u c k l in g  C o n s t r a in t

In the case studies conducted, only a single mechanical constraint is imposed on the overall 

system -  buckling load capacity. All laminates are required to be designed to have a critical 

buckling load of more than a design threshold. It is worthwhile to note that a single design 

threshold does not necessarily directly imply a single loading condition. The buckling load 

capacity of each laminate is performed using the yiPASA model and thus laminates of 

candidate designs are expected to behave, in theory at least, in a manner consistent with any 

corresponding assumptions.

A naive implementation of this constraint will require the full evaluation to find the lowest 

critical buckling load, and may be necessary if a different analytical model is used. However, 

the VIPASA model uses the Wittrick-Williams algorithm that may be exploited in such 

design optimisations. Recall again that the algorithm returns the number of eigenvalues that 

lie between some lower bound and upper bound positive trial value. In this case, this 

information is more than sufficient to determine whether a candidate is a stable (feasible) 

design.

Consider a candidate laminate x with a set of loading conditions Ndesign imposed and a set 

of X half-wavelengths for every loading condition NL0AD e Ndesign , where NL0AD is a 

singular loading event of any combination of invariant in-plane longitudinal compressive load 

per unit width N h , transverse compressive load per unit length N T and shear load per unit 

width N s , i.e., N LOAD = {Nl N t  N s} . For any given loading condition NL0AD and half­

wavelength X e X , the Wittrick-Williams algorithm returns the number of eigenvalues as the 

number of critical buckling loads exceeded at the trial value NL0AD. Thus, the candidate

laminate x is considered stable if, for all X e X of every corresponding NL0AD e NDES1GN, 

there exist no eigenvalues (critical buckling loads) less than the trial value NL0AD . To 

formalise, a laminate is defined as stable in buckling if and only if
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LOAD G  ^  DESIGN > ̂ ^ e t/(N LOa d  » — ^ 5-2

where J (N load,A) is the number of eigenvalues less than the trial value NL0AD at a 

particular X , as stated simply as J  in the Wittrick-Williams algorithm of Eq. 4-26.

The set of half-wavelengths X is determined typically by the laminate length £, such that for 

all A e X ,  they divide equally into the laminate length by some integer value. All conducted 

test cases will be analysed for the first 10 half-wavelengths, i.e.,

= |:Jfc = l,2,...,loJ 5-3

Since the VIPASA analytical model is used here, results at longer half-wavelengths 

(£/3 <X <£  ) are conservative in cases of laminates with simply-supported ends in the 

presence of shear load or anisotropy.

The combination of definitions from Eq. 5-2 and 5-3 allows a prioritised lazy evaluation of 

constraints. For a design candidate, constraint evaluation is only performed if its objective 

(mass) is equal or better than the current known optimum, i.e., lazy evaluation. If lazy 

evaluation is performed, prioritisation of constraints implies that evaluation is terminated once 

a single J (N load,A) is non-zero, since there exist buckling load factors less than the trial

load Nload at the particular half-wavelength X , i.e., the structure is not safe.

5.2.2 B a l a n c e d  a n d  Sy m m e t r ic  C o n s t r a in t

The constraints implementing the balanced and symmetric rules are necessary to model as 

close as possible the assumptions inherent in the VIPASA analytical model. They are the two 

other restrictions enforced on the physical attributes of a laminate. It is possible to design 

composite laminates using the VIPASA model without enforcing these limitations, but then 

the results obtained are no longer accurate. Furthermore, there are many practical reasons for 

the use of such configurations.

The rule of symmetric configurations of lamina will ensure that there is actual decoupling 

between in-plane and out-of-plane deformations. Symmetry is achieved by mirroring 

configurations about the mid-plane of the laminate. Consider a candidate laminate x with n 

layers, where the top and bottom surface of k -th layer can be defined using the laminate
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reference z axis with coordinate as zk_x and zk respectively and with corresponding fibre 

orientation Gk. The constraint that the laminate is symmetric about the mid-plane ( z = 0) is 

satisfied if and only if

n-k +1 A \Zk-1| — \Zn-k+\ 5-4

On the other hand, the rule of balanced configurations of lamina will ensure the elimination of 

shear-extension coupling, therefore ensuring that the laminate displays orthotropic behaviours 

along the principal elastic axes with regards to membrane deformations. Consider again the

tk - z k -  z*_,. The constraint that the laminate is balanced is satisfied if and only if

5.2.3 D is c r e t e  T h ic k n e s s  C o n s t r a in t

Many designs and optimisations of composite laminates and prismatic structures assumed 

continuous layer thicknesses, such as those conducted for benchmark stiffened aircraft wing 

panels by York et al., (1993). This is most often a result of the underlying optimiser, which is 

seldom unable to straddle discontinuous design variable values or cost functions. However, 

manufacturing considerations often require a laminate specification of integer (discrete) 

multiples of a standard lamina (ply) thickness, typically in the order of O.lmm per lamina. 

Consider any general standard lamina thickness tL, and a candidate laminate x with yi layers, 

where the k -th layer has a corresponding thickness tk. The constraint that the laminate is 

discrete is satisfied if and only if

where d  represents the integer multiples of the standard lamina thickness.

The imposing of the discrete thickness constraint adds a further difficulty to the design 

process, transforming it to a discrete optimisation process, which cannot be readily solved

candidate laminate x as described above, where the k -th layer has a corresponding thickness

5-6
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using the common gradient-based approaches applicable to continuous optimisation problems.

Although naive techniques such as rounding-up to the nearest discrete value are possible, they 

often produce stable sub-optimal designs in terms of mass, which are most often not the 

global optima of the discrete problems. Another route to such a problem (Kennedy et al., 1999) 

is to deploy a two-step approach, where the first step is to apply the standard continuous 

design phase to obtain the global continuous optimum, and then using this as a reference point, 

deploy discrete optimisation methods to arrive at the global discrete optimum.

5.3 M a s s  M in im is a t io n  w i t h  G e n e t i c  A l g o r i t h m s

Common design problems often consist of a priori knowledge of laminate configuration, with 

a typical configuration often being something along the line of [0/±45/90]s . The design 

strategy here takes this further by allowing the configuration to be designed as well. It has 

been mentioned earlier that specific tailoring of composites allows different stiffness 

properties, and thus can be more efficacious. This avenue is explored fully here rather than 

implement a fixed configuration where the design variables are merely the thickness of the 

laminate. The specific details will be covered later for the various laminate mass minimisation 

cases.

It is also not uncommon for designs to concentrate on continuous thickness, and, as 

mentioned before, this requires further rounding to discrete multiples of a standard ply 

thickness if manufacturing practices are taken into consideration. The design strategy 

developed here does not go through this continuous design process, but concentrates directly 

on the actual discrete optimisation process itself.

GA is used as the optimisation technique here. Developments, covered earlier, allow a more 

efficient handling of constraints. Despite the simplicity of the Wittrick-Williams algorithm, 

used to measure the buckling constraint satisfaction, it is still undoubtedly a computationally 

expensive algorithm as it involves setting up the individual layer stiffness matrices before 

forming the overall laminate stiffness matrix. The various generalised details of the 

underlying GA optimiser are as discussed below.

5.3.1 G e n e t i c  S t r u c t u r e s

All design variables are coded using the binary representation. In most cases, the Gray- 

encoding will be used as it displays adjacency properties not found in the standard binary
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encoding. This allows the resulting genotypes to be set up in a standard way, and 

concentrating rather on the performance of the constraint handling technique and the 

optimisation problem.

Three general properties are usually part of the design variables vector -  geometric dimension, 

fibre orientation and discrete thickness. Geometric dimensions are encoded in the standard 

way, as found normally in numerical optimisation problems, where a lower and upper bound 

coupled with a required precision becomes the determining factor for the number of bits 

required. Unless otherwise stated, all such geometric dimensions will be encoded in such a 

manner using Gray codes, where the specific details such as number of bits, etc., will be 

provided in their respective sections.

5.3.1.1 R e p r e s e n t a t io n  o f  F ib r e  O r ie n t a t io n

What requires further explanation, though, is the encoding of fibre orientation. Four types of 

layers with different fibre orientations will be considered throughout this design optimisation 

- 0°, 45°, 90° and -4 5 ° . This requires a binary string of 2 bits, and the default encoding 

being Gray-encoding. Exploiting the adjacency property of Gray-encoding gives an added 

advantage in the representation of fibre orientations. The binary representations together with 

their corresponding ply orientations are as illustrated in Figure 5-1.

0° (00) 45° (01)

>  90° (11)

v
z

Figure 5-1 Fibre orientations in consideration and corresponding encoded chromosomal representation. Notice 
also that the adjacency property of Gray-encoding here ensures that a 1-bit mutation shifts the fibre orientation 
of a lamina by 45°.
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In this case, the mutation of a single bit will imply a shift in the fibre orientation by ±45°, 

where a clockwise rotation is considered positive. An off-axis layer, i.e., 45° and -4 5 ° , 

comes with a corresponding layer that satisfies the balanced constraint, hence ±45° and 

+ 45° respectively. This restricts the configuration in a way that once an off-axis layer is 

encountered, the next layer must be a layer that will balance the configuration.

On the other hand, the symmetric constraint is more easily handled by only modelling half the 

configuration, either the top or bottom half. However, this introduces a natural assumption 

that there is an even number of layers in the laminate, which may or may not be desirable. For 

example, a random 10-layer symmetric configuration can be

5  = (01X00)01X11)

which represents the symmetric [± 45 / 0 / 90 / 90]s . Symmetry can also be achieved if the 

configuration is [± 4 5 /0 /9 0 /9 0 /9 0 /0 /+ 4 5 ], which implies a saving of one layer because 

symmetry is about the mid-plane of the mid-layer. An optional even-odd bit can be introduced 

to force this behaviour, but is deemed here unnecessary. Furthermore, savings can only be 

made if the layers do not have off-axis fibre orientation, otherwise the balanced rule will be 

broken.

5.3.1.2 R e p r e s e n t a t io n  o f  D is c r e t e  T h ic k n e s s

For all fibre orientation chromosomes, there is a corresponding chromosome representing the 

number of standard plies it incorporates -  the discrete thickness. Rather than encode the actual 

thickness, all which is required is the representation of the number of discrete standard ply 

thickness. Since discrete thickness is always an integer value, it is handled effortlessly by the 

binary representation. The upper bound determines the number of bits required.

It is natural to assume that the lower bound is one standard ply. However, this forces a lower 

bound on the number of layers in the laminate, which may or may not be desirable. One 

solution is to deploy a variable length genotype. Such a genotype is advantageous in the sense 

that it immediately reflects the laminate configuration. The downside, though, is the need to 

accommodate for the variability of the genotype during genetic operations.

It is the result of this that emphasised the benefit of allowing the lower bound for the discrete 

thickness to be zero rather than one, where the number of possible layers can be fully
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represented resulting in fixed-length genotypes. A zero thickness then simply implies a non­

existent layer as opposed to the need of ‘deleting’ the layer from the genotype. Thus, the 

existence (or non-existence) of a layer can be obtained from simple genetic operators, such as 

crossover and mutation, without having the need to introduce specialised ones.

An unnecessary complication, however, will arise out of adopting the zero lower bound 

approach. There is a possibility, however small, that there is zero thickness for all layers 

resulting in a laminate of zero mass, which inevitably, cannot be handled by the analysis. In 

such a case, analysis is not performed but assigned objective and constraint violations, if any, 

identical to that of the worst observed genotype.

5.3.2 M e a s u r e m e n t  o f  P e r f o r m a n c e

The objective function here is the mass of the resulting structure. This depends entirely on the 

material properties and the geometric dimensions of each genotype as candidate solutions, and 

cannot be fully detailed until individual cases are covered.

The balanced and symmetric constraints have already been handled entirely by the genetic 

structures, which ensure that all genotypes will be feasible in this respect. The discrete 

thickness requirement is also implicitly handled by the genetic representation.

The buckling constraint is handled as a normal constraint with full evaluation required in 

determining the feasibility of the genotype. However, the number of constraint evaluations is 

high. Consider a single loading condition NL0AD evaluated over 10 half-wavelengths1 A,

which results in 10 constraints. A case with more design loads will become highly impossible 

and expensive. Therefore, constraints are prioritised and undergo lazy evaluation, as described 

earlier, to reduce the number of constraint evaluation. For all loading conditions 

NLoad e N design and corresponding half-wavelengths X e X , constraint evaluations terminate

once a single combination of (NL0AD,/l) is violated.

In essence, the GAPR-PLZ (see Chapter 3) is used here since previous results show that the 

least number of constraint evaluations were performed. The lack of a tangible fitness value in

1 The number o f half-wavelengths considered here is excessive as the critical buckling mode will most likely 
occur at longer half-wavelengths for such a simple configuration. This choice is aimed primarily at stimulating 
the computational requirements with respect to constraint evaluations that would be needed for larger problems.
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the Pareto-Ranking (PR) approach also restricts the set of selection mechanism that can be 

used. The PR approach is also able to implicitly determine superiority of a genotype over 

another despite the minimisation process, which, in traditional fitness formulation, will 

require a scaling of fitness.

5.3.3 G e n e t ic  O p e r a t o r s

The use of the PR approach to fitness handling allows little room for choice in selection 

mechanisms. In this case, the binary tournament selection is deployed. The sampling 

mechanism is expected to select the number of genotypes identical to the population size, i.e., 

a fixed size sampling.

The recombination operator used here is the a  -uniform crossover complimented by the 

uniform mutation operator. The mutation rate or probability of mutation, in all cases, will be 

determined locally, while the probability of crossover is fixed at 0.8. The probability of gene 

swap a  is 0.3. These genetic parameters were adopted from the previous test (QTC) 

presented in Chapter 3, since they have been successful.

The generational steady-state replacement strategy is used here. It is slightly different to the 

traditional steady-state replacement only in the sense that the number of sampled genotypes 

here is the actual population size. Typically, only a fraction of the population size is sampled 

when using steady-state replacement strategy. Upon completion of sampling, crossover, 

mutation, objective evaluation and constraint evaluation, the offspring (transitional) 

population is merged with the parent (original) population. The 50% top-performing 

genotypes then becomes the default original population.

5.3.4 A d a p t iv e  P l a n

The adaptive plan here adopts the standard GA framework without additional modification. In 

other words, the model is deployed without prevention of in-breeding, incest, etc., and other 

such features. The overall GA optimisation framework is as illustrated in Figure 5-2, which is 

the GAPR-PLZ strategy developed (see Chapter 3). The GA cycle is intentionally left generic 

to indicate the flexibility of the constraint handling strategy, since the genetic structures, 

operators, etc., are independent.
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5.4 B e n c h m a r k  L a m in a t e

The design of a benchmark composite laminate here is to obtain a lower bound reference to a 

design case that will be an eventual datum reference for subsequent mass minimisation of 

more complicated plates, where longitudinal voids will be introduced.

For All Genotypes

No
Potential

Optimum?

Yes

Any
Constraints

Left?

No

Yes

l1

Yes
Termination

Criterion?

No
Yes

Constraint
Satisfied?

End

Start

End

Reset Priorities

Evaluate Violation

Next Constraint

Normalise Violation

Initialise Population

Selection Mechanism

Genetic Operators

Evaluate Objective 
Value

Constraint Handling 
Mechanism

Replacement
Mechanism

Figure 5-2 Developed GA optimiser framework with prioritisation and lazy evaluation of constraints.

As opposed to conventional design problem, the design variables will not be restricted to the 

discrete thickness of the layers with fixed configuration but extended to include finding the 

optimum sequence of fibre orientation in the hope of producing more effective laminates as 

shown in Figure 5-3.
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b

Figure 5-3  Design variables, layer fibre orientation and corresponding discrete thickness, of the benchmark 
laminate. The width and length of the laminate is fixed.

5.4.1 P r o b l e m  D e f in it io n

With the design variables defined, as shown above, the objective mass function M(x) can

now be formulated. Let 0k be the fibre orientation of the k -th layer with corresponding

discrete thickness tk, such that tk / t L = dk , where tL is the standard ply thickness and dk

being the integer number of standard plies for the k -th layer . For a laminate consisting of n 

layers, the objective mass function M {\)  is therefore

M{x) = t ,M p Y M ck 5-7

where ck - 2 d k for off-axis fibre orientation, i.e., 0k <£ {in/2 : i e Z}, or ck - d k otherwise, 

and p  is the density o f the material. The width and length, b and £ respectively, in this case, 

are both fixed at 0.2m , thus producing a square plate. These dimensions are taken arbitrarily 

but are nonetheless common dimensions expected of a composite laminate. The standard ply 

thickness here is taken to be O.OOOlw. The material used is carbon fibre reinforced plastic 

(CFRP) with material elastic properties defined in Table 5-1.
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Property Value
Primary Young’s Modulus, Ex (GNm~2) 125.00
Secondary Young’s Modulus, E2 (GNm~2) 8.80

Shear Modulus 1-2, Gn (GNm~2) 5.30
Poisson’s Ratio 1-2, vl2 0.35
Density, p (kgm ~3) 1620.00

Table 5-1 Material properties for CFRP.

5.4.2 P a r a m e t e r  E n c o d in g

Only two sets o f parameters are encoded into the genotypes -  fibre orientation and discrete 

number of layers. Also, the genotypes only need to model half of the maximum number of 

layers because o f the symmetry constraint.

The fibre orientation, as mentioned earlier, is represented by a 2-bit string. Modelling the 

complete laminate requires 12 bits. The discrete thickness, on the other hand, is modelled 

accurately by 10 bits per layer, thus requiring a total of 60 bits for the «/2 = 6 layers in the 

top half of the laminate. A genotype, therefore, has the following structure

^ b e n c h m a r k  = (0 1 11001000101), ...(0 1 11001010010)"
2

t  t  ... t  t
0, d,

2 2

This implies a total o f 72 bits per genotype, making the problem substantially difficult to 

tackle with the additional variation in stacking sequence. A population size equivalent to the 

string length is assumed without any fine-tuning procedures, and undergoes the operators as 

described earlier with a probability of mutation of 3 in 72 bits. Bits are forced to change 

during a mutation, i.e., 1 <-> 0 , thereby guaranteeing that mutation does occur. The 

optimisation process terminates once all genotypes have the same mass, or after a maximum 

of 2000 generations.

5.4.3 C o m p a r is o n  L a m in a t e

Before going into the main results, a comparison study was performed to determine the 

optimality of the discrete mass obtained from the main, rather more generalised, case. A pre-
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configured laminate, with general stacking sequence as shown in Figure 5-4, was designed 

such that the discrete thickness became the only set of design variables1. The design variables 

have the same discrete thickness bounds as the benchmark laminate, as shown in Table 5-2.

The optimisation of the comparison study was much easier as the fibre orientations of the 

individual layers are now not allowed to change even though they can be absent from the final 

configuration. In other words, the stacking sequence is fixed. The general case of the 

benchmark laminate should then at least be comparable in mass since the balanced and 

symmetry rule is also enforced. Each discrete thickness parameter requires, as before, a 10-bit 

string, thus totalling 60 bits. All GA parameters are as mentioned for the general benchmark 

problem except where the mutation rate is 2 bits in 60, with a population size also identical in 

magnitude to the overall genotype length.

Region A

ZZ 200mmRegion B

Region A
200mm

Region A

Mid-plane

Region B

Mid-plane

Figure 5 -4  Comparison laminate for the benchmark problem. The stacking sequence is fixed unlike the 
benchmark problem.

1 The reason for specifying such a laminate stacking sequence with two independent regions A and B is to cater 
for regions o f  longitudinal voids in design cases presented in section 5.5.
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Region Fibre Lower Bound Upper Bound Variables

A
±45° 0 1023 d {
90° 0 1023 d2
0° 0 1023 d,

B
±45° 0 1023 d4

V© O o 0 1023 d s
0° 0 1023 d6

Table 5-2  Design variables for the comparison study and the bounds, which is the number of standard plies.

F

<1

Flegion B
No. of Plies

Mass
t e )

CPU
± 4 5 ° \o © o 0° ± 4 5 ° 90° 0°

2 0 0 1 4 9

46 0.29808 3.036

2 0 0 1 7 6
3 0 0 0 1 10
3 0 0 0 6 5
3 0 0 1 0 9
3 0 0 3 4 1
3 1 0 1 6 1

x8 x4 x4 x4 x2 x2 ~ -----------

Table 5-3 Global discrete optima obtained on the best run out of 10 independent runs for the comparison 
laminate problem. The run terminated once all genotypes in the population share the same optimum mass, 
which in this case, is on the 29th generation. The last row indicates the actual number of occurrences of each 
orientation in the overall laminate, and the last column is the average solution time in CPU seconds.

5.4 .4  R e s u l t s  a n d  D is c u s s io n

Ten independent runs with different starting populations were conducted for the comparison 

laminate. The discrete optimum mass of 0.29808Ag were obtained for the comparison 

laminate, and has been confirmed1 to be the true global discrete optimum. It is also 

unsurprising that the results obtained from a typical run often gave more than a single 

optimum2, given the search space in excess of lx lO 18 discrete solutions, as shown in Table 

5-3. Although no niche induction techniques were deployed, the population tends to shift from

1 An ‘exhaustive’ search w as performed to verify the optimum mass o f  the comparison laminate. Since the best 
known optimum is close to the lower bound, the search started from the lower bound and slowly increased the 
number o f  plies in each region. Once a ‘just stable’ configuration was found, then configurations with higher 
mass no longer need to undergo the full stability check.

2 All the best genotypes (sharing the same mass) were reported. It does not imply that they were all maintained 
concurrently in a single generation, which would be virtually impossible unless niche induction techniques were 
introduced. It was observed, though, that there were occasionally at least 2 different genotypes that share the 
same optimum m ass in a single generation.
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one optimum to another. Nonetheless, all eventually settle onto a dominating solution at the 

final population before termination. It was also noticed that any additionally discovered global 

discrete optima tend to be similar to one another, which, in turn, implies that optima, crowded 

together into a region traversable by the genetic operators, tend also to be discovered.

The comparison laminate with fixed stacking sequence was extremely easy to solve for the 

underlying GA even though the upper bound was artificially forced to be high, making the 

optima clustered near the lower bound. Together with the constraint handling technique 

modelled on multi-objective optimisation principals, the GA was able to direct its search 

accurately despite the vast search space. Given this result, the benchmark laminate with its 

additional flexibility o f varying stacking sequence should improve, or at least match, the 

global discrete optimum of the comparison laminate.

Ten independent runs, where each population is seeded differently, were carried out for the 

benchmark laminate. All runs were expected to terminate either when the 2000th generation 

was reached, or when all genotypes shared the same mass. Results indicate that the latter 

termination criterion was met long before the former, with all converging before the 300th 

generation as illustrated in Figure 5-5. Whether the final discrete mass returned is the global 

discrete optimum is not verified1. Nonetheless, all ten runs converged onto a mass that 

matches exactly the global discrete optimum mass of the comparison laminate - 0.29808% 

with 46 standard plies. Hence, no improvements in mass were achieved although the 

minimum target was met.

As before in the comparison laminate, the problem was still handled effectively by the 

underlying GA and constraint handling technique despite the lack of a tangible fitness 

function, and having to rely on using sampling mechanisms that do not require tangible fitness 

values. In spite o f the criticisms that are often thrown at selection methods such as the 

tournament selection used here, particularly selection error, results here indicate otherwise. 

Evidently, Figure 5-5 also shows that the problem takes longer to optimise. This is not 

unexpected with the additional complexity of the varying stacking sequence and a resulting 

larger search space exceeding 4 x l0 21. Nevertheless, the implemented GA package showed 

encouraging robustness, even in the presence of incomplete violation knowledge, as Figure

1 Trial runs were conducted under the same GA parameters where they were allowed to run uninterrupted until 
the 2000th generation to determine whether any further improvement in mass is possible. None managed to locate 
a laminate with a lower mass.
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5-6 shows. With the optimal region located near the lower bounds of the set of discrete 

thickness design variables, none of the runs began their search from infeasible regions.

300

250 -

200

8
150

100

106 7 8 91 2 3 4 5

□  Convergence 
El Optimum

Run

Figure 5-5  Number of generations required until convergence, i.e., termination criterion is met, and until the 
optimum mass, i.e., the final mass each run converges onto, is first discovered for the benchmark laminate 
problem.
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Figure 5 -6  General convergence trend of all ten runs conducted for the benchmark laminate. The mass is the 
population average mass at every generation.
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Run No. of Optima Found
1 12
2 12
3 8
4 20
5 13
6 16
7 7
8 13
9 8
10 19

Total 128
Overall Unique Optima 125

Table 5 -4  Number of unique optima found in each of the ten runs conducted.

Solution No. Laminate Configuration
1 [ 4 5 2 / - 4 5 6 / 4 5 4 / 0 4 / + 4 5 / 0 , ] s

2 [ 4 5 2 / -  4 5  6 / 4 5 4 / 0 4 / +  4 5  / 9 0 ,  ] s

3 [ 4 5 2 / -  4 5 6 /  4 5 4 / 0 5 / 9 0 6 ] j

4 [ 4 5 2 / - 4 5 6 / 4 5 „  / 0 6 / 9 0 / 4 5 2 / - 4 5 2 ] s

5 [ 4 5 2 / - 4 5 6 / 4 5 4 / 0 6 / 9 0 s ] s

6 [ 4 5 2 / - 4 5 7 / 4 5 s / 0 4 / 9 0 5 ] s

7 [ 4 5 3 / - 4 5 6 / 4 5 3 / 0 / 9 0 2 / 0 2 / 9 0 6 ] s

8 [ 4 5 3 / - 4 5 6 / 4 5 3 / 0 2 / 9 0 2 / 0 7 ] s

9 [ 4 5 ,  / - 4 5 6 / 4 5 3 / 0 3 / 9 0 2 / 0 6 ] s

1 0 [ 4 5 ,  / — 4 5 6 / 4 5 3 / 0 / 9 0 / O j  / 9 0 6 ] s

1 1 [ 4 5 3 / — 4 5 6 / 4 5 3 / 0 2 / 9 0 / 0 2 / 9 0 6 ] s

1 2 [ 4 5 3 / — 4 5 6 / 4 5 3 / 0 2 / 9 0 / O g J s

Table 5-5  Unique set of discrete optima returned from the first run. These complete set of solutions from all 
10 independent runs, all 128 of them, are provided in Appendix II.

The constraint handling technique also bodes well for systems with time-complex constraints, 

which will otherwise be extremely expensive using stochastic methods like GA. It should be 

important to point out that since the constraint handling technique with prioritisation and lazy 

evaluation does not necessarily require formulation of a fitness function, it will also be 

generally applicable to other stochastic methods that require comparison between two 

candidate solutions. Even in the current benchmark laminate problem with 10 half­

wavelengths to be considered, full evaluation will then demand 10 full constraint evaluations
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for each genotype. If the problem is required to consider several more distinct loading 

conditions, then concurrent optimisation will become almost prohibitive.

Yet again, unsurprisingly, every single run returned several optima with all of them pointing 

to the same discrete mass of 0.29808&g. While most traditional methods will return only a 

single solution, the ability of GA to detect multiple optima even without any niche induction 

techniques implemented is an added advantage. One possible use for these detected optima, in 

this case, is to probably perform secondary analysis upon completion of the GA process, with 

one being the candidate solution that gives the highest safety factor in terms of buckling load 

capacity. The number of optima found for each run is as summarised in Table 5-4, with 

details from the first run in Table 5-5.

5.5 L a m in a t e  w it h  L o n g it u d in a l  V o id s

Upon obtaining the optimum discrete mass of a benchmark laminate above, the natural 

question will then be to ask whether further mass savings are indeed possible for another 

laminate of similar dimensions under the same loading condition. The section here explores 

the possibility of introducing longitudinal voids in the mid-plane of the plate. Such an avenue 

has been previously explored by Williams and Ye (1992a, 1992b), and was shown to yield 

substantial mass savings when designing a composite laminate or prismatic plate assembly 

subjected to buckling requirements. However, there remain other issues associated with such 

a configuration, particularly the concern of reduced damage tolerance and other such adverse 

effects.

The problem here, in a certain sense, extends the earlier benchmark laminate problem. All 

layer thicknesses are still subjected to the discrete constraint, and the balance and symmetry 

constraints are also implemented. Thus, the problem is made significantly more difficult, not 

only in the sense of dimensionality, but in the nature of the problem itself. The general 

laminate with longitudinal voids in the mid-plane of the plate is as shown in Figure 5-7. The 

width of non-void regions are fixed at 4mm1 except at the edges, which are 2mm , in order to 

model it as a standard repeating element. Therefore, each repeating element has a total width 

of (200/v)mm, where v is the total number of voids.

1 Optimisation tends to make these non-void regions as small as possible. Therefore, the value here is chosen to 
give a realistic lower limit.
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Figure 5 -7  Typical laminate with 3 longitudinal voids. The problem can be simplified into the repeating 
elements as shown, where the number of voids determine the number of such elements. The modelling with 
the VIPASA model though is slightly different as shown in the bottom diagram.

The modelling using the VIPASA model is slightly different from the actual model, as shown 

also in Figure 5-7. The continuous top and bottom plates, region A, are allowed a set of 

design variables available to the benchmark laminate, 0Ak and dAk , separate from the void 

boundary elements, region B, which also encompass all the design variables of the benchmark 

laminate, namely 6Bk and d Bk. The problem is therefore the design of the optimum stacking

sequence, in terms of mass, of regions A and B. Although it is possible to allow the number of 

voids as well as other parameters to be design variables as well, the current problem defines a 

fixed number of voids.

5.5.1 P r o b l e m  D e f in it io n

Three separate sets of studies were conducted for laminates with longitudinal voids. They 

each have a fixed number of longitudinal voids, namely 3, 4 and 5. As shown in Figure 5-8, a 

general objective mass function M (x) can therefore be formulated.

Let 0Ak and d Ak be the corresponding fibre orientation and integer number of standard plies 

respectively of the k -th layer of the stacking sequence of region A. Similarly, let 0Bk and dBk

200mm

< >
200mm
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be the corresponding fibre orientation and integer number of standard plies respectively of the 

k -th layer of the stacking sequence of region B. Assuming that regions A and B are allowed a 

maximum of nA and nR layers respectively, then a general laminate with v number of 

longitudinal voids has a mass M(x) defined as

M(x>=2tLtpJfcA x z , cM )) 5-8

where c^ = 2dRk,R = A,B  , for off-axis fibre orientation as before for the benchmark 

laminate, or = d Rk otherwise, and p  is the density of the material. The relationship 

vbA = b holds, where b is the overall breadth of the plate at 200mm , and H. is the length of 

the plate, or in this case 200m m . The parameter bB is the width of one of the two identical 

region B elements of each repeating section, which is set to be 2mm . The material here is 

taken to be CFRP as defined for the benchmark laminate problem, and similarly for the 

standard ply thickness.

Both regions are expected to have a maximum of 12 fibre orientation changes, nA - yir =12,

with each layer having a maximum of 1023 discrete plies, 0 < d Rk <1023. In other words,

both regions have the same makeup as the benchmark laminate in terms of design variables. 

The laminate is also expected to be stable in buckling under a single loading event of a 

uniform longitudinal compressive load of 1OOkN, with no transverse or shear loading. This is 

to preserve the continuity of extending the previous problem to form a coherent process of 

design optimisation. The edge and support conditions are as before in the benchmark laminate.

3 voids

200mm

Figure 5-8  General setup of the 3 cases studied for laminate with longitudinal voids.
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5.5 .2  P a r a m e t e r  E n c o d in g

The same two sets of parameters encoded for the benchmark laminate is also applicable here, 

and, as before, only half the stacking sequence of each region is modelled. Nevertheless, the 

presence of two regions up for optimisation implies that the number of bits is effectively 

doubled resulting in a genotype with 144 bits, and a problem in excess of 4 x l0 43 discrete 

solutions. The resulting genotypic structure is then the double concatenation of the structure 

from the benchmark laminate

^ V O ID  ~  ^BENCHM ARK '^BENCHMARK

The problem is noticeably more difficult than the benchmark problem, and combined with the 

complication of longitudinal voids, it is expected that the optimisation process will take a 

substantial number of generations to solve.

It is in this light and an indication from preliminary trial runs that the GA process is only 

subjected to the maximum generation termination criterion, where the search is allowed to 

proceed up to a maximum of 2000 generations. The population size is equivalent to the 

genotypic number of bits, i.e., 144, and undergoes the same mutation rate as the benchmark 

problem -  6 bits in 144. As before, bits are forced to flip during a mutation.

5.5.3 R e s u l t s  a n d  D is c u s s io n

Each case was subjected to ten independent runs, where the i -th run of every case having the 

same starting condition. None of the best solutions for each was confirmed as to whether it 

was the global discrete optimum. Nonetheless, the best solutions from each case showed 

substantial improvement in terms of mass savings over the simplistic configuration of the 

benchmark laminate, as summarised in Table 5-6. Assuming that these solutions are indeed 

the global discrete optimum, the reduction in mass by introducing longitudinal voids in what 

is otherwise a continuous laminate is far too impressive to ignore, let alone the further 

possible improvements if they are only sub-optimal solutions.

Despite the apparent difficulty of the underlying GA optimiser in solving the 3 cases, in terms 

of all runs of each case converging onto the same final mass, it showed extreme robustness in 

detecting the optimal regions (considered here to be below the 0.29808&g level) as shown in 

Figure 5-9. The difficulty then arises due probably to the high-dimensionality of the problem
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themselves. Reduction in mass in the later stages, compared to the benchmark laminate, is no 

longer achievable only by the reduction of an arbitrary standard ply and change in fibre 

orientation, but in achieving a fine balance of buckling stability and minimum mass between 

regions A and B.

The best runs of all cases, i.e., those with the feasible lowest discrete mass, typically returned 

several candidate solutions with different genotypic structure. Despite this dissimilarity, the 

resulting decoded structure, the phenotype, are mainly identical to one another. This is not 

unexpected since it is possible for genotypes to have zero standard plies, and adjacent layers 

may be sharing the same fibre orientation. The resulting unique set of solutions, though, seem 

to indicate that genotypes for laminates with longitudinal voids respectively all ended as 

identical phenotypes, as shown in Table 5-7.

What is also o f particular interest is that the solutions tend to be composed of mainly 90° for 

the continuous top and bottom layers, or A regions. On the other hand, the B regions, 

demarcating the longitudinal voids, have primarily 0°. Another particular property emerging 

from the best observed solutions indicate that the continuous A regions for the top and bottom 

layers have a small number of layers, in contrast to the B regions. This, in turn, causes the top 

and bottom layers to be spaced relatively far apart, as shown in Figure 5-10.

Case Best Mass (kg) Mass Savings (%)
Benchmark 0.29808 -

3 Longitudinal Voids 0.17315 41.9
4 Longitudinal Voids 0.13790 53.7
5 Longitudinal Voids 0.13349 55.2

Table 5 -6  Best solutions, in terms of mass, returned for each of the 3 cases with longitudinal voids. The mass 
savings are relative to the benchmark laminate.

No. of Voids Region A Region B
3 [± 45 / 903 ]s Ip  56 ]s
4 [90, ]s [048 / - 4 5 5 /4 5 5]s

5 K J s [̂ 63 ]S

Table 5-7  Best solutions found from all runs of all cases of the laminate with longitudinal voids.
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Figure 5 -9  Population average mass of the ten runs from the case with 3 longitudinal voids. The same 
behaviour is also observed in the other two cases.

A
12.6mm

V

2mm

j
0.4mm

40mm

Figure 5 -10  Scaled dimensions of a repeating element in the best solution of the laminate with 5 voids.

This behaviour can be attributed to the laminate configuration adjusting for Poisson’s ratio, v 

effects with 90° and 0° as the main load carrying component. Recall again that the laminate 

is loaded only with a single invariant uniform compressive longitudinal load of \00kN . There 

may be other effects if additional loads are present. An almost guaranteed occurrence is the 

presence of transverse effects, while shear effects will only occur if there is non-orthotropic 

anisotropy1 (since there is no shear loading). By having massive B regions, they effectively 

act as ‘semi-rigid’ supports spaced across the laminate. Thus, the overall buckling load is

1 This conclusion can be drawn from the derivation o f  the stiffness coefficients leading to the constitutive 
equations o f  the individual plates (Wittrick and W illiams, 1974).

140



increased. On the other hand, the top and bottom A regions have to cope primarily with 

localised buckling, as shown in the contour plot of the global and local buckling modes of the 

laminate with 5 voids given in Figure 5-11 and the summary of the critical buckling load 

factors at the considered wavelengths in Table 5-8. Higher efficiency is also obtained with the 

distribution of mass away from the neutral axis of the structure, and thus increasing the 

overall stiffness and rigidity.

With such properties emerging, it is then interesting to see whether laminates with 3 and 4 

voids do indeed have better optima with only 90° and 0° in regions A and B respectively 

without the contribution of off-axis layers (±45°). Furthermore, it should be noticeable that, 

for the 3 cases above, there is substantial mass savings as a result of the increase in number of 

voids. Additional studies conducted showed that results obtained for cases where fibre 

orientations were allowed to vary were no worse than cases that restricted regions A and B to 

90° and 0°, as shown in Table 5-9.
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Figure 5-11  Contour plot of the governing critical buckling mode, which is local, for the laminate with 5 
longitudinal voids. The nodal lines, parallel with at both transverse ends, indicate the accuracy of the VIPASA 
model in the absence of shear and anisotropy. See Appendix III for other modes of this panel.
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Half-Wavelength X Critical Load Factor
£ 1.287440878

£ p 1.736238700
£/ 8 1.388920512
i /9 1.158034764
£/10 1.000327968

Table 5-8 Critical buckling load factor at several of the wavelengths considered for the laminate with 5 voids. 
The lowest critical buckling load is at the 10th wavelength, just satisfying the design loading.

No. of Voids Region A Region B Mass (kg) Mass Penalty (%)
3 [90s]s Ip  64 ]s 0.17937 3.6

4 K L Ip 72 Is 0.15241 10.5

Table 5-9  Optima for laminates with 3 and 4 voids if restricted only to 90° and 0° plies in regions A and B 
respectively. The mass penalty is compared to the best known optimum if stacking sequence is allowed to vary, 
as presented in Table 5-6.
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Figure 5 -1 2  Overall global discrete optimum mass of laminates with different number of voids with regions A 
and B composing of only 90° and 0° plies respectively, and the distribution of mass between the regions.

However, results do show that there exist a corresponding optimum number of voids that 

results in the lowest global discrete optimum mass, as shown in Figure 5-12. Given the 

loading condition and geometrical dimensions of the laminate, the optimum number of voids 

is 7 resulting in a mass o f 0.12390kg . It can also be seen that as the number of voids 

increases, the distribution of mass is slowly biased towards B regions, and is so because the
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dimensions and distribution of the void regions make them less susceptible to localised 

buckling. However, it becomes more prone to overall buckling as the laminate becomes more 

uniform in the distribution of mass. It is worthwhile to note that region A of laminates with 7- 

15 voids took on the lower bound number of plies, i.e., [90]s .

5.6 G e n e r a l is e d  L a m in a t e  w it h  L o n g it u d in a l  V o id s

Longitudinal voids have been shown to provide significant mass savings, although additional 

considerations must be taken into view in practical applications. Also, from results of 

laminates with a fixed number of voids, it is clear that the number of voids can clearly 

influence the optimum structural mass for buckling stability. This section proceeds to further 

formalise and investigate a generalised laminate with longitudinal voids in the hope of 

pushing the boundary of mass reduction.

5.6.1 P r o b l e m  D e f in it io n

The generalised case introduces two design variables to the problem -  number of voids v , and 

the breadth of the B regions bB. Otherwise, the problem remains identical to the laminate with 

a fixed number of longitudinal voids. The design variables, namely 0Ak, d Ak , 0Bk and d Bk,

are all still applicable, as are the constraints imposed. The modelling of the generalised 

laminate with longitudinal voids is based on a single standard repeating element, as shown in 

Figure 5-13, although it must be noted, like before, the analytical model is slightly different. 

The objective mass function M{x)  from Eq. 5-8 remains the same without requiring any 

modifications.

Repeating
ElementRegion A

Region B

Region A
200mm

Figure 5-13  Schematic diagram of the generalised laminate with longitudinal voids.
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5.6 .2  P a r a m e t e r  E n c o d in g

The number of voids parameter, v , is handled without any complications since it is an integer 

value bounded by the range 1 < v < 16. This requires a 4-bit chromosome.

On the other hand, the encoding of the breadth of B regions, bB requires clarification. Rather 

than a direct encoding of the design variable itself, the chromosome represents the fraction of 

the breadth to half the breadth of a repeating element. As shown in Figure 5-14, the physical 

constraint where the breadth of B regions cannot be more than half the breadth of the 

repeating elements has to be imposed. Otherwise, discrepancy in the modelling will arise. 

This naturally imposes the bounds on bB such that

0 <bs < —  5-9
4 2v

where b in this case is, again, 200mm. Since v is not constant, encoding bB directly to a 

fixed bound will imply that for certain values of v , the values of bB becomes illogical. 

Therefore, the decision was made to represent instead a normalised value, b'B such that

*' = 2v^~  5-10
4 b

In other words, b'B represents the ratio of the breadths. The chromosome then encodes this 

value to a fixed range, where in this case, the bounds 0.10 < b'B < 1.00. One main reason for 

selecting a lower bound of 0.10 is that preliminary optimisation studies indicated that there is 

a tendency for this width to be reduced to as low a value as possible and taking the lower 

bound value. Therefore, the arbitrary lower bound of 10% of the breadth of region A was 

adopted to give a more reasonable result since the fibre orientations are varying in the xy 

plane. However, introducing the breadth of region B as a ratio to the overall breadth of the 

repeating element forces a different lower bound on laminates with different bounds. The 

chromosome requires at least 7 bits since a precision of 2 decimal places is expected.
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Figure 5-14  Constraints on the breadth of region B in a single repeating element.

The resulting genotypic structure is the extension of that from the laminate with a fixed 

number of voids plus the concatenation of the additional two design variables, resulting in a 

total of 155 bits. The problem has in excess of 4 x l0 46 discrete potential solutions, although, 

admittedly, many genotypes points to the same phenotypic representation as before. Therefore, 

there is a certain degree of redundant representation in the overall encoding scheme.

As in the previous studies, the number of genotypes in the population reflects exactly the 

number of bits in a genotype, which is 156 and the additional genotype is to create an even 

number of individuals. Mutation is arbitrarily taken to be 8 bits in 155 and genes are forced to 

bit-flip. The same termination criterion is also adopted, i.e., a maximum of 2000 generations.

5.6.3 R e s u l t s  a n d  D is c u s s io n

Ten independent runs were conducted where the starting conditions are seeded uniquely. It is 

important to note that the results obtained are not guaranteed to be the true global discrete 

optima of the problem. In fact, additional studies, discussed below, showed that they are not. 

Nevertheless, results again show substantial reduction in mass compared to the three cases of 

laminate with fixed number of voids. The best solution obtained indicates a mass of 

0.107568&g , where mass penalties from the best observed of previous studies are as shown in

Table 5-10.

Despite the variability of genotypes sharing the best discrete mass, the redundancy of 

representation pointed to only a single configuration, which is A = [90]s and B = [049 /9014]s

with 8 longitudinal voids and the breadth of region B being bB = 0.00125m , or 10% of half of
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bA, which is too small to be realistic. Hence, this justifies the reason for setting a lower bound 

of 4mm for the cases with fixed number of voids. As before, the main distribution of mass 

went into the B regions, where when compared to A regions, the distribution is in the ratio of 

3.15 :1. Of course, this is not an indication of the stiffness distribution.

It should be noted that the number of plies in region A is effectively the lower bound imposed 

by the problem. In fact, additional studies restricting the stacking sequence of regions A and B 

to 90° and 0° shows that such is indeed the case for laminates with 8 to 16 voids. Results also 

confirmed that the best solutions obtained were highly optimal solutions as no laminates with 

lower mass were found, as shown in Figure 5-15.

..... .... ...... ... """ ■.....—
Cases No. of Voids Mass (kg) Mass Penalty (%)

Generalised 8 0.10757 -
Benchmark 0 0.29808 177.1

Fixed 3 Voids 3 0.17315 61.0
Fixed 4 Voids 4 0.13790 28.2
Fixed 5 Voids 5 0.13349 24.1

Table 5 -10  Mass penalty incurred by the best observed feasible solution of other configurations of composite 
laminate compared to the best observed feasible solution from the generalised laminate with longitudinal voids.

cR hwshbwi Mass
^   Region A
z  — - - — Region B
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No. of Voids

Figure 5-15 Overall global discrete optimum mass of laminate with different number of voids with regions A 
and B composing of only 90° and 0° respectively, and the distribution of mass between the regions. The breadth 
of region B is 10% of the half of the width of the repeating elements.
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Figure 5-16  Scaled diagrams illustrating the breadth to thickness ratio of region B in the best obtained 
laminates with (a) 3, (b) 4, (c) 5 longitudinal voids, and the (d) generalised laminate with 8 voids.

One particular property emerging from laminates with longitudinal voids that has been 

previously overlooked, albeit intentionally, is the geometry of the B regions. As shown in 

Figure 5-16, the breadth to thickness ratio of the known optimum of the considered cases 

hardly justifies modelling them as a plate in the xy plane. In fact, the more accurate model 

should be as a plate in the xz plane.

5.7 C o n c l u s io n s  a n d  C l o s in g  R e m a r k s

For practical requirements, the design of composite laminates via continuous optimisation 

cannot readily give solutions satisfying the need of integer multiples of a standard ply 

thickness. Although rounding up layer thicknesses is possible and produces safe laminates, 

the resulting mass is often not the global discrete optimum.

GA provides an excellent alternative to handling such optimisation problems, while 

guaranteeing to a certain degree that results are optimal or near-optimal solutions. Results also 

show the robustness of GA in handling problems of high-dimensions and large problem 

spaces, thus allowing the inclusion of a wider range of design variables. Coupled with the 

constraint handling method, time-complex constraints can be implemented without having to 

undergo full evaluation and formulating fitness functions that may otherwise lead to problem- 

sensitivity.

Results from the benchmark laminate also show the ability of GA to detect multiple global 

optima even without the explicit use of niche induction techniques, granted that such optima
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were huddled close together and reachable using genetic operators imposed. Nevertheless, the 

ability of GA to discover multiple optima in a single design run is important, as it gives 

designers a wider selection of design candidates that can be further considered. For example, 

it may be useful, in this case, to select the design with the highest load safety factor.

Results have also shown that introducing longitudinal voids can provide substantial mass 

savings, up to a maximum of almost 64% when comparing between an optimal laminate 

without voids and a sub-optimal laminate with 8 voids. However, the inclusion of voids 

introduces other issues. Practical use of such laminates will inevitably have to consider 

additional detrimental effects particularly those relating to reduced damage tolerance and 

delamination. Nevertheless, results can also be interpreted as indicative of the minimum 

‘structural’ mass required if such a configuration is used.

An important point that requires further emphasis is that the behaviour of plates with 

longitudinal voids is not captured by VIPASA. The plates, delineating sections of voids, are 

not thin plates that satisfy CPT assumptions. This is not a weakness of the VIPASA model, 

but rather a consequence of the structural modelling. Therefore, a more appropriate model of 

a box-section should be considered instead, which is presented in the next chapter.

Voids can be optionally filled with lightweight core materials that are intended to ‘bulk up’ 

the plate and introduce greater stiffness without excessive mass penalties. Such a design 

optimisation with core materials will be studied in the next chapter. Furthermore, optimal 

solutions also show that modelling of laminates with longitudinal voids is probably more 

accurate when treated as box-sections.

Despite the optimiser producing dimensions of webs (region B) that are not compatible with 

classical thin plate theory, which requires breadth-to-thickness ratio of individual plates to be 

more than or equal to a factor of 10, such a construction is still possible if precautions are 

taken. This statement is based on a panel concept known generally as the orthogrid panel 

(Niu, 1993), as shown in Figure 5-17, although variation in dimensions is applicable. Such 

panels are composed of narrow strips of composite and syntactic materials, modelled almost 

similarly to laminates with longitudinal voids as discussed above. Although orthogrid panels 

provide structural continuity in frame and stringer and the opportunity for low cost automated 

fabrication, they are difficult to splice and skin-grid bonding must be carefully checked. 

Furthermore, such panels are difficult to inspect for quality assurance and delamination 

damages.
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Detailed studies conducted and presented above also showed that repeating sections can and 

should be optimised if greater mass reduction is desirable, as indicated by an optimum 

number of longitudinal voids in laminates. The conclusion that can be drawn is the same as 

that of other optimisation processes: The greater the number of design variables included in 

the optimisation, the likelier it is to discover solutions of better efficacy. The next chapter will 

move on to stiffened panel assemblies, which are used widely in a range of applications from 

aerospace to civil engineering construction.

Unidirectional Composite 
(Continuous through the node)

Low Density Syntactic 
(Discontinuous through the node)

Figure 5-17  Orthogrid panel concept.
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6 D e sig n  o f  St if f e n e d  Pa n e l  A ss e m b l ie s

The previous chapter has shown that the constraint handling technique proposed for Genetic 

Algorithms (GA) is capable of handling highly complex optimisation problems without the 

need of an actual fitness function, and without the use of stochastic sampling mechanisms. 

This chapter follows along this line and proceeds to further the use of the GA for design and 

optimisation of stiffened panel assemblies. Since previous chapters have covered all the 

necessary issues governing the design and optimisation of composite laminates, no such 

details will be further covered here. Instead, the chapter concentrates immediately on various 

practical design problems, common to the use of composite laminates in prismatic plate 

assemblies.

6.1 In t r o d u c t io n

Prismatic plate assemblies are structures with panels of longitudinally invariant cross-sections, 

such as those commonly used in the aerospace industry. With the advent of exact analytical 

methods and optimisation methodologies capable of handling vast problem spaces, it is now 

possible to explore difficult optimisation problems previously intractable with traditional 

methods with more realistic modelling of the structure.

Following results from the previous chapter, it has been shown that, despite apparently 

difficult optimisation problems of high-dimensionality and time-complex constraints, GA and 

the use of the proposed set of constraint handling were capable of traversing vast solution 

landscapes and home in onto regions of optimality. By including more design variables into 

the optimisation process and introducing additional features, the required structural mass of a 

simplistic laminate was reduced substantially by more than 50%. Nevertheless, results show 

that the resulting dimensions of a laminate with longitudinal voids were inconsistent with 

assumptions made by the underlying analytical model that is based on classical thin plate 

theory.

Ever since the advancement in the exact classical thin plate theory by Wittrick and Williams
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(1974), more practical design applications have been studied and researched, such as those 

performed by a GARTEUR (Group for Aeronautical Research and Technology in Europe) 

Action Group on Structural Optimization (York et al., 1993) and by Kennedy et al., (1999). It 

should also be mentioned that such works used the more sophisticated VICON analytical 

model, as opposed to the more conservative VIPASA model. Although the latter model is 

used here, it does provide more conservative results in the design studies presented in this 

section.

It should be obvious by now that any analytical model, or indeed any design and optimisation 

problems, can easily substitute the model in use without the need for additional modification 

to the GA framework. Despite this conservatism of the VIPASA analytical model, which can 

affect the results to a significant degree, the same model is shared by all test cases conducted, 

and hence should not consider as invalidating the results and conclusions presented hereafter.

6.2 B o x -S e c t io n  A n a l o g y  o f  L am inate  w ith  L ongitudinal  Voids

As shown in the previous chapter, the introduction of longitudinal voids has been shown to 

provide substantial mass savings. However, it resulted in geometrical dimensions inconsistent 

with the assumptions in the case of classical thin plate theory, particularly in the ‘web’ 

regions. This section attempts to solve this discrepancy in the modelling by designing a box- 

section in compression. The dimensions and other design environment variables will be made 

to follow as closely as possible the laminate with longitudinal voids design problem, as 

described previously.

As before, all layer thicknesses have to conform to the discrete thickness constraints. This 

provides an advantage over continuous optimisation, in the sense that it does not require an 

additional round of optimisation process to arrive at the discrete design solution, which, for 

reasons described previously, may or may not be the actual global discrete optimum. The 

balance and symmetry constraints are applied without any modifications, and will have to be 

satisfied by all panels in the resulting structure.

The modelling of the box-section considered here is similar to that for laminates with 

longitudinal void elements. Repeating elements will be used to construct the overall resulting 

structure as shown in Figure 6-1. Consideration of skin and web offsets is also considered to 

provide a more accurate representation during production of such a structure. The support 

conditions for the box structure are as shown in Figure 6-2, which has a significant difference
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compared to the case o f laminates with voids.

The skin and web are allocated a set of design variables similar to the laminate with 

longitudinal voids problem, where 0sk and d sk represent the fibre orientation and integer

number of standard plies of the k -th layer, and a corresponding 6wk and d wk for the web. 

The problem is therefore the design of the optimum stacking sequence and discrete 

thicknesses in terms o f mass subjected to a compressive design load.

Connection
Boundary

Connection
Boundary

A

V

A

h

<r-Repeating
Element

Skin Plate 
Offset

J J ___
*

Figure 6-1  Typical box-section with 3 voids. The problem can be simplified into repeating elements as shown. 
The VIPASA analytical model is as shown in the bottom diagram where the skin plate offsets are taken into 
consideration.

Figure 6 -2  Support conditions for an arbitrary box-section. The simply-supported ends prevent displacement in 
the three principal directions but allow rotation about the longitudinal axis.
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A A

A  A

Figure 6-3  Box-section design cases with 3, 4 and 5 repeating elements respectively, for which the breadth of 
the overall resulting assembly is not allowed to vary.

Number of Elements, v Web Breadth, bw (mm)
3 11.2
4 11.6
5 12.6

Table 6-1  Fixed web breadth of the three cases considered for the design of box-sections.

6.2.1 P r o b l e m  D e f in it io n

Firstly, three separate sets of studies were conducted for the design of compression box- 

section members. Each set considers a box-section with differing number of repeating 

elements, namely 3, 4 and 5, as shown in Figure 6-3. In this set, the breadth and depth of the 

individual elements are fixed, where the breadth of the skin is defined by the relationship, 

vbs = b = 200mm , where v is the number of repeating elements. The breadth of the web bw,

on the other hand, is set to reflect the best known solutions from laminates with 3, 4 and 5 

voids respectively, where the thickness of the B regions is used as the breadth and is as 

summarised in Table 6-1.

Following the above definitions, the objective mass function M(x) can therefore be 

formulated, which is a straightforward process. Assuming that the skins and webs of the 

repeating elements are allowed a maximum of ns and nw layers respectively, a general box- 

section with v number of repeating elements, therefore, has a mass M(x) of
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6-1

where cRk = 2d Rk , R = s,w  (subscripts for skin and web respectively) for off-axis fibre 

orientation, or cRk = d Rk otherwise, and p  is the density of the material. The length of the 

section I  here is as before in the laminate with voids, i.e., 200mm . The standard ply 

thickness, tL is taken again to be OAmm. Both skin and web are given a maximum of 6 fibre 

orientation changes from top to bottom surface, i.e., ns =nw = 6, with each layer having a 

maximum of 31 standard plies, 0 < ^  <31. Even without considering other design variables,

the search space is still sufficiently large, approximately 4 x l0 12 , to prevent from 

degeneration into a trivial optimisation problem.

The second set of studies concentrates on extending the above design problem by introducing 

the breadth of web as a design variable. The design bound imposed on the variable is 

0.1 mm<bw <204.8m m , where precision up to 1 decimal place is expected. Again, three 

different cases will also be considered by restricting the number of elements to 3,4 and 5.

The third and final set of studies incorporates the design variables from the second set and 

adds the number of elements v design variable. By doing so, it is hoped that an optimum 

number of repeating elements balanced by the stacking sequences, discrete thicknesses and 

breadth of the skin and web can be discovered, resulting in even greater mass reduction 

compared to the first and second set. The rationale behind this decision is due to the 

observations made from laminate with longitudinal voids, showing that there exist an 

optimum number of voids corresponding to a global discrete optimum mass. The bounds 

imposed on this additional design variable is 1 < v < 16.

For all cases, the assembly is expected to be stable under a single loading event of uniform 

longitudinal compressive load of lOO&N, with no additional transverse or shear loading. A 

total of the first 10 half-wavelengths are considered, as before.

6.2.2 GA P r o p e r t i e s  a n d  S e tu p

Generally, the genotypic representation for the fibre orientation and layer discrete thickness 

remains the same as that for the laminate with voids, presented in the Chapter 5. Fibre 

orientation and d ^  requires a 2-bit and 5-bit chromosome respectively for each layer. With 

only half the number of layer changes (3 for skin and 3 for web) needs to be modelled, the
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resulting genotype has a total of 42 bits, which is also same genotype for the first set of 

studies since no additional design variables are included.

In the second set of studies though, the additional design variables of bw are encoded in the

standard Gray-encoding for floating-point values. The bounds imposed on the breadth of the 

web require at least a l l  -bit chromosome in order to model also the required precision, 

resulting in a genotype with 53 bits.

The third and final set of studies simply concatenates the additional number of elements 

design variable chromosome into the genotypic structure from the second set. The bounds 

imposed on the number of elements is 1 < v < 16, which requires an extra chromosome with 4 

bits, thereby producing a genotype with 57 bits.

The Pareto-Ranking (PR) constraint handling technique will be used with artificial 

prioritisation and lazy evaluation, i.e., GAPR-PLZ. The model requires no extra formulation 

of a fitness function, but requires instead the use of sampling mechanisms that need no such 

fitness value. The fitness, in this case, is the measure of dominance first in terms of 

satisfaction of the buckling constraint, and then finally in terms of mass. The binary 

tournament selection is the selection mechanism used.

As before, the 0.3 a  -uniform crossover recombination operator is deployed, complimented 

by the standard uniform mutation. The probability of crossover is fixed at 0.8 throughout the 

search process, while the mutation rate will be representative of the number of bits in the 

resulting genotype, taken here to be 1 bit-flip in 42 for all design sets and cases. The steady- 

state replacement strategy is used, where the top 50% performing individuals are selected to 

be the new population of the next generation. The GA plan used here is identical to that used 

in the design and optimisation of laminates, where the population size is the number of bits in 

the genotypes of individual cases rounded to the nearest even integer value.

6.2.3 R e s u l t s  a n d  D is c u s s io n

For the first set where only the stacking sequence and discrete thicknesses of the skin and web 

are design variables, ten independent runs were conducted for each case and the termination 

criterion being either a maximum of 2000 generations or when all genotypes share the same 

mass. The starting populations for the i -th run were always identical. Table 6-2 gives the best 

solutions returned from the runs on the design of box-sections.
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V Mass (kg) Mass Savings Skin Web
3 0.18600 37.6% [+45/452 / - 4 5 2]s [90 / 06 ]s
4 0.15780 47.1% [+452]s [0,1s
5 0.14308 52.0% K L [0.1

Table 6-2  Best unique solutions found for box-sections with 3, 4 and 5 repeating elements respectively and 
their corresponding discrete mass. Mass savings are compared to the benchmark laminate in Chapter 4.

V Skin AM Web AM
3 83.6% 16.4%
4 65.7% 34.3%
5 54.3% 45.7%

Table 6-3  Distribution of mass between skin and web for the best known solution of the box-sections with 
fixed web breadth given earlier.

As expected, all showed substantial mass savings over the benchmark laminate spanning the 

same breadth and length and designed to the identical buckling constraint. This confirms the 

fact that even for plates spanning small distances, modelling additional features such as the 

box-section can provide substantial mass savings as a result of the redistribution of mass, and 

hence stiffness, to cope more efficiently with the overall and local buckling modes. Of course, 

deciding whether the mass saving justifies the additional fabrication complications and costs 

is another optimisation process altogether.

It should be apparent that, as in the results for laminates with voids (see Chapter 5), there is a 

trade-off between the distribution of mass in the skin and the web as the number of elements 

varies, as shown in Table 6-3. As the number of elements increases, the distance between the 

supports provided by webs along the top and bottom skin plates decreases and reduces the 

likelihood of overall buckling, and the structure begins to optimise for local modes. 

Additional studies showed that that such is the case for a box-section where the skins are 

composed of only 90° and the web of only 0° with fixed web breadth, as shown in Figure 6-4.

Despite the relatively similar dimensions between laminates with voids and box-sections with 

identical number of repeating elements, such as that shown in Figure 6-5, the necessary 

increase in weight of the latter can be attributed to a more accurate modelling and therefore a 

better analysis of the buckling stability of the structure. Nevertheless, the distribution of fibre 

orientations seems to indicate a similar pattern as that of laminates with voids. In all three 

cases, the majority of 0° plies are located in the web region with most of the ± 45° and 90° in 

the skin. The same explanation made previously is thus applicable here too.
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Figure 6 -4  Distribution of mass between skin and web of a fixed-breadth box-section as number of elements 
increases with standard stacking sequence. Both skin and web were not allowed to exceed 126 plies, with skin 
restricted only to 90° plies and web only to 0°.
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Figure 6-5  Scaled diagram illustrating the dimensional relationships of the best solution of a repeating element 
of the box-section with 5 elements.

However, the second set of experiments with varying web breadth did not show significant 

improvements in terms of mass, with the best found solutions changing little either in its 

overall stacking sequence or even web breadth, as summarised in Table 6-4, except for the 

box-section with 4 elements. Even for this latter case, mass savings were only around 5.4%. 

Nevertheless, what it confirms is that the breadths chosen initially for cases with fixed 

dimensions were clearly close to the optimum, which, in turn, seems to suggest that designing 

for laminates with longitudinal voids gave almost optimum dimensions. This is, of course, an 

unconfirmed generalisation that might not hold up for other cases.
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V Mass (kg) Mass Savings (%) bw (mm) Skin Web
3 0.18384 1.2 9.3 [±45/90,1 [ 0 j s
4 0.14930 5.4 11.0 [±45/+45]s [08]s
5 0.13770 3.8 10.5 [+ 452 ]s [0,1

Table 6 -4  Improvement in mass discovered by allowing the breadth of the web of box-sections to vary and 
savings over the corresponding case when web breadth is fixed as provided earlier in Table 6-2.
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Figure 6 -6  Optimum mass for a box-section with 5 elements. Both skin and web were not allowed to exceed 
126 plies, with skin restricted only to 90° plies and web only to 0°.

Additional studies were performed on a box-section of 5 elements and restricting top and 

bottom skin plies to 90°, and web plies to 0°, summarised in Figure 6-6. Results indicate that 

unless care is taken in the selection of an appropriate value for the breadth of webs, mass 

penalties relative to the optimum breadth value can be excessive. Putting it in another way, 

the inclusion of more design variables into the design optimisation process can produce highly 

efficient solutions, previously difficult or even impossible with more traditional optimisation 

methodologies. In this second set of studies, 13 design variables were considered in the GA 

optimisation process, and it is probably fair to say that despite the large search space, the 

deployed optimiser was sufficiently capable of finding optimal or near optimal solutions.

The final set of studies included also the number of elements in the box-section as a design 

parameter. Results show impressive mass savings from a set of 10 runs conducted, where
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every run began with a unique population. The best solution found had only a weight of 

0.09305% , which is the first solution ever found below the 0.1% threshold for a structure of 

the given dimension, loading and buckling constraint. The solution is fairly simple, where the 

skin and web both have the setup [90 / 0]s, with 15 repeating elements and a web breadth of 

0.0106mm . Therefore, each repeating element is almost square in dimensions of the structure, 

although it should be mentioned that the solution is not a confirmed optimum.

V bs (mm) bw (mm) Skin Web Mass (%)
15 13.3 1 0 .6 [90/0], [90/0], 0.09305
15 13.3 9.3 [90/0], Ms 0.09584
14 14.3 10.4 [± 45 / 0]s Ms 0.09663

Table 6-5 Selection of best solutions found for the box-section design including the number of elements and 
web breadth as design variables.

Nevertheless, substantial mass savings can already be seen over the benchmark laminate and 

other box-section designs obtained earlier, by as much as 68.8% over the benchmark laminate 

and even as much as 32.4% over the box-section with 5 elements that allowed variation in 

breadth web. In fact, the runs also found other solutions that are close to the optimum, as 

summarised in Table 6-5, although two out of ten runs returned the third solution listed. 

Whether this is an indication of multimodality is unknown, but results do show a tendency to 

converge onto this solution in the ten runs conducted. Even if the landscape is noisy and 

fraught with local optima, this is unsurprising given the number of design variables up for 

optimisation.

Admittedly, the problem is fairly difficult to solve given the GA framework. It should, 

however, be said that there is no problem in detecting regions of high-optimality given the 

large search space, but difficulty arises hereafter. It is probably fair to say that most, if not all, 

GA frameworks suffer from the same problem in the sense of homing in onto actual optimum.

6.3 D is c r e t e  T h ic k n e s s  D e s ig n  o f  S t if f e n e d  P a n e l s

This section proceeds to a practical design problem now commonly known as the GARTEUR 

benchmark problem as set out by York et al., (1993). The design is that of the components of 

Domier wing, which are stiffened panels, but have mainly been confined to a continuous 

optimisation problem. Thus, results presented required variables to be made discrete in order 

to comply further with common manufacturing practices. Two main plates were considered
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that consisted o f the component panels in the wing with lowest and highest maximum 

principal in-plane stresses, denoted P2 and P8 respectively. However, only panel P8 will be 

considered here since modelling panel P2 involves only a change of geometry and loading 

conditions. Loading conditions for panel P8 are as given in Table 6-6, and all cases must be 

satisfied by the panel. Whereas the transverse and shear loads are constant and considered 

only to be carried in full by the skin, the longitudinal loads are redistributed between the skin 

and stiffeners so as to give a uniform longitudinal strain over the panel cross-section. This 

calculation, thus, has to be done for each candidate solution. The geometry of the panel is 

such that the breadth and length is b = 0.6lOw and I = 0.752w respectively.

Panel Load Case Stress Resultants (kNm 1)
Longitudinal Transverse Shear

P8
1 2221.10 378.40 -643.70
2 2795.40 240.60 -187.70
3 1303.30 268.70 -420.70

Table 6-6  Loading conditions considered for the GARTEUR benchmark stiffened panel design with the highest 
maximum in-plane stress resultants, P8, in a Dornier wing.

In the literature mentioned earlier, GARTEUR covered widely the set of panel design 

variables in a continuous optimisation problem, which will not be attempted again here. 

Inevitably, some o f the design variables will overlap.

Although most structures justify the use of quasi-isotropic laminates, such an approach 

mitigates the primary advantage of directional properties of composites. Since no universal 

configuration can effectively satisfy the myriad loading conditions and stiffness requirements 

(buckling, static deformations, flutter, etc.), simultaneous optimisation of stacking sequence to 

determine the lamination geometry can be advantageous, albeit computationally expensive. 

Therefore, contrary to the design problem posed by GARTEUR, the stacking sequences here 

are allowed to vary. The fibre orientations are still restricted to the same set used in the 

preceding chapter, i.e., 0°, 90° 45° and -4 5 ° , and off-axis layers will be composed of two 

standard plies that seek to balance the laminate. All designs are immediately expected to 

satisfy the discrete thickness requirement, and therefore do not first undergo a continuous 

optimisation process. Stacking sequences in all component plates are also expected to be 

symmetric, with stiffeners dividing the skin into equal portions. Two stiffener types are 

considered in this design process -  blade and flanged stiffeners.
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6.3 .1  P r o b l e m  D e f in it io n

Two separate design sets were considered following the types of stiffeners considered. Each 

set was broken down further to accommodate differing number of stiffeners, as shown in 

Figure 6-7. The first set considers blade-stiffened panels, with 3, 4 and 5 number of stiffeners, 

and the panels denoted as 13, 14 and 15 respectively. Similarly for flanged-stiffened panels, 

three cases each with 3, 4 and 5 number of stiffeners were considered, with the panels denoted 

J3, J4 and J5 respectively.

The simply-supported longitudinal ends prevent in-plane and out-of-plane displacements, but 

allow rotation about the longitudinal axis. The difference is that the original GARTEUR 

optimisation prohibits only the out-of-plane and transverse in-plane skin displacements. 

Nevertheless, it was reported that allowing only rotation gave results with 3.8% lower mass. 

The analytical model o f VIPASA also assumes simply supported ends, which may be violated 

in this case as a result o f the presence of shear load. It should be noted that the GARTEUR 

work used the more accurate VICON analysis.

Stiffener heights bw for the blade-stiffened panels were measured from the mid-plane surface

of the skins, implying therefore that no plate offsets were considered. On the other hand, bf

for flanges o f flanged-stiffened panels were also measured from the mid-plane surface of the 

webs. This connection is true for all considered cases, as shown in Figure 6-8, which is the 

same as that employed in the parametric studies conducted by GARTEUR.

610mm "S 1N
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15
A"

bs I

k ------------- 610mm
—>1I

* J J J A

A J _ _ J A

<RA J J
->  < - b f

J J J A

J3

J4

J5

Figure 6-7  Three cases conducted for each set of stiffened panel assemblies.
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Skin , /      Skin mid-plane

Web ->

Flange > Flange mid-plane

Web mid-plane

Figure 6 -8  Components of a stiffened panel and connection boundaries considered in the design. The flange is 
not applicable in the case of blade-stiffened panels.

Given the above definitions, the objective mass function M (x) can therefore be formulated. 

Without loss o f generalisation, let v denote the number of stiffeners that divide the skin 

equally into equal portions with breadth bs . Also, let bw and bf  denote the breadth of the

web and flange respectively, where in the case of blade-stiffened panels, bf = 0. Assuming 

that the skin, web and flange have ns , nw and nf number of layers respectively, the mass of a 

stiffened panel assembly is therefore

M(x) = t , /p{(v + 1)&,2T-ic** + v(& »£*c.*  + bf'L7, ,cft 1 6‘2

where cRk = 2d Rk for off-axis fibre orientations, or cRk = d Rk otherwise for the k -th layer, 

and the subscript R = s , w , f  is used to represent the skin, web and flange components 

respectively. The parameter p  is the material density, £ is the length of the panel, and t, is 

the standard ply thickness and considered to be 0.125 mm. Therefore, the thicknesses of the 

individual components are summarised by

6-3
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Each component is allowed a maximum of 6 fibre orientation changes, i.e., 1 <nR < 6, with

each layer having a maximum possible of 127 standard plies, or 0 — ^Rk — 127 . In all cases

and where applicable, the breadths of the web and flange are fixed at 32.5mm and 20.0mm 

respectively. For every loading condition, 10 half-wavelengths were considered, as in the 

preceding chapter. This gives a total of 30 buckling constraints. On the other hand, the 

balance and symmetric constraints will be handled directly by the genotypic representation.

6.3.2 O p t im is e r  C o n fig u r a t io n  and  Setup

The design variables from the previous chapter can be used here without significant 

alterations, although the only change is the number of bits required to represent dm, which, in 

this case, is 7 bits1. Therefore, each layer is correctly modelled by two chromosomes, with 

one representing the ply angle Om and another the number of integer standard plies dRk. Each

component is thus fully represented by (9 x 3) 27 bits, where the blade-stiffened panel has a 

genotype with 54 bits and the flange-stiffened panel with 81 bits.

As before, the Pareto-Ranking (PR) approach with prioritisation and lazy evaluation is used as 

the constraint handling technique without specifically formulating a true fitness function. 

Therefore, the binary tournament selection is again used here without modifications, with 

constraints violation being the most prioritised objective over objective cost, i.e., mass. This 

then implies that the primary aim of the underlying GA is to first discover feasible regions 

before optimising based on the actual objective mass function value.

There are 30 constraints considered here since there are 3 load cases with each having to be 

evaluated against 10 buckling modes. This gives a virtually insurmountable number of 

constraint evaluations without artificial prioritisation and lazy evaluation. Therefore, the 

constraints are prioritised according to the sequence of the loading cases as presented above, 

and beginning first at the lowest half-wavelength. The violation is, therefore, the number of 

eigenvalues exceeded, with constraint evaluation terminated once a genotype is unfeasible at a 

particular load case and buckling mode. As before, this method will not provide the GA 

optimiser with a true account of the number of exceeded eigenvalues across all combinations 

of load and wavelength, which again leads to partial knowledge of violation in most cases.

1 The number o f bits required to represent the ply angles is still 2. See previous chapter for details.
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The population size follows the number of bits represented in the genotype of each case 

rounded to the highest even integer, with the sampling mechanism selecting this constant 

number of genotypes at every generation. The 0.3-uniform crossover is again used with 

probability o f crossover at 0.8, complimented by the uniform mutation at a rate of 1 in 27 bits. 

The replacement strategy merges the sampled genotypes with the parent population and 

selects up to population size number of top performing individuals to be the new set of 

parents. The process repeats itself until termination criterion, which, in this case, is either a 

maximum generation o f 2000, or when all genotypes share the same mass value, whichever is 

satisfied first.

6 .3.3 R e s u l t s  a n d  D is c u s s io n

There are a total o f six independent cases, with three for blade-stiffened panels and three for 

flanged-stiffened panels, and each undergoing ten independent runs. The i -th run of each case 

of each panel type has an identical starting population. The best found solution for each of the 

six cases is as summarised in Table 6-7, although it should be noted that they are not 

confirmed optima.

Case Mass (kg) Configuration Mass (%) Thickness (mm)

13 7.95511
S [906 / - 4 5 8/4 5 8/ 0 j s 60.7 6.50

w [454 / - 4 5 4 /0 64]s 39.3 18.00

14 8.34800
s [905 / - 4 5 7 /4 5 7 /0 6]s 55.6 6.25

w [04 / 455 /— 455 /0 50]s 44.4 16.00

15 8.10663
s [905 / - 4 5 9/459]s 52.7 5.75

w [453 / - 4 5 3 /0 47]s 47.3 13.25

s [909 / - 4 5 7 /4 5 7]s 64.3 5.75

J3 6.64398 w  T T [904 / - 4 5 7 /4 5 7]s 11.8 4.50
_
F_ [_455/4 5 s /0 77]s 23.9 21.75

s [907 / - 4 5 7 /4 5 7 /0]s 60.9 5.50

J4 6.70641 w [ -4 5 10 /4 5 10]s 17.3 5.00
F [ -4 5 2 /4 5 2 /0 56]s 21.8 15.00
s [905 / - 4 5 4 /4 5 4 /0 9]s 59.8 5.50

J5 6.83966 w [9 0 /-4 5 8/4 5 8]s 18.0 4.25

F [O50 ]s 22.3 12.50

Table 6 -7  Best solution found for each case of blade-stiffened panels (13 -  15) and flange-stiffened panels (J3 
-  J5). The rows S, W and F stand for skin, web and flange respectively, showing their final stacking sequence, 
mass distribution in the overall assembly and overall thickness.
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The GA optimiser found relatively efficient solutions to the six cases considered despite its 

relative naivety o f true constraint violations throughout the run. Furthermore, only simple and 

well-studied genetic operators such as uniform crossover and uniform mutation were used. 

Despite no parameter tunings being performed prior to the conducted experimentations, 

results were highly robust and efficient. It is, therefore, possible that solutions, convergence 

rate, reliability, and other factors, can be expected to improve if more detailed fine-tuning of 

parameters were performed.

The underlying constraint handling technique, which does not allow the use of standard 

stochastic-based selection mechanism, forced the use of ranked-based sampling techniques 

and this led to the use of the tournament selection. The advantage here is the lack of a need to 

couple constraint violations to the objective function and, therefore, produce a proper fitness 

function, as is often the case in penalty-based approaches to constraint handling. The Pareto 

dominance comparison of violations as primary objective and mass as secondary objectives 

makes the problem less susceptible to sensitivity of control parameters often found in penalty- 

based approaches. This is obvious from results presented so far, which showed relative 

stability to the effects of the number of constraints, violation and objective values. It is in the 

localised comparison of prioritised values, as opposed to a global one-off comparison with 

penalty-based fitness functions, that more accurate representation of genotypic fitness can be 

made in constrained optimisation problems.

Attention should be drawn to the 14 case, where result obtained showed a mass that is higher 

than 15, which is believed that it is a sub-optimal solution. The population size of 54 

genotypes for blade-stiffened panels is obviously too small, providing insufficient genetic 

diversity. Results are much more stable for flanged-stiffened panels with a population size of 

82. However, the larger size and the need to model additional flanges contributed to an 

increase in computation time. Citing the case of 3 stiffeners, the average time to convergence 

for blade-stiffened panel 13 is approximately 114 CPU seconds1. The equivalent flanged- 

stiffened panel J3 required an increase of approximately 6.9 times in computation time. This 

is an indication of an increase in analytical complexity due the additional flange. The number 

of generations to convergence for J3 increased approximately 4.7 times from an average of 

100 generations for 13.

1 All runs were performed on an Intel Pentium III 600MHz PC with 128MB RAM.

165



Load Case Half-Wavelength (mm) Critical Load Factor
1 752.0 1.005148091
2 94.0 1.065880668
3 752.0 1.550084673

Table 6-8  Critical buckling load factor and governing half-wavelength for flange-stiffened panel J3 for each of 
the loading condition.

Allowing stacking sequences to vary in all components of stiffened panel assemblies has 

shown remarkable improvement in terms of mass. This statement is justified since all 

dimensions, and loading conditions, especially for blade-stiffened panels, models closely that 

used by the GARTEUR benchmark problems. The only variation is in the analysis of buckling 

constraint satisfaction, which, in the case of GARTEUR, the more accurate VICON model 

was used. Since shear loading was present in all three loading conditions, mass results were 

generally expected to be higher. In the case of 13, York et al. (1993) reported that using the 

VIPASA model gave masses that were uneconomical, namely an increase in mass by 17.5%. 

Discrete thickness results of the GARTEUR benchmark blade-stiffened panels, reported by 

Kennedy et al., (1999) and obtained by forcing the continuous optimum to undergo a two- 

stage discrete optimisation via a simple sequential rounding technique and then a 

combinatorial partial enumeration method, suffered less than a 1% mass penalty.

It is, of course, impossible to make a direct comparison with published results due to the fact 

that stacking sequences are allowed to vary and integer multiples of standard plies are 

enforced in the work presented here1. Nevertheless, assuming that the discrete thickness 

optimum using the VIPASA model suffers the same mass penalty as that of the VICON 

model, the discrete optimum mass of 13 using the former analysis should be approximately 

9.3kg . Results here indicate that savings by allowing stacking sequences to vary can be as 

much as 14.6%, if the above assumptions are correct and that the best results obtained for the 

13 panel above is the global discrete optimum.

The conservatism of the VIPASA model can be clearly seen in a full analysis of the best 

solution for the J3 panel. Critical load factors for all load cases, given in Table 6-8, indicates 

that the critical buckling mode is the overall mode, ie., X  - 1 . Given the fact that the longer 

wavelength is the governing mode, the presence of shear loads has a significant effect on its

1 Published results had stacking sequences fixed in cases that were directly comparable to those presented here 
and were continuous optimisation problems, which required a secondary round o f  optimisation to reach a global 
discrete optimum.
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stability and producing skewed nodal lines, as plotted in Figure 6-9. In cases when the 

governing mode is local (e.g., X -  for load case two), the simply-supported ends are more 

accurately modelled, thereby increasing the accuracy of the load factor obtained. For example, 

additional analysis for load case 2 of the J3 panel using the more accurate VICON model gave 

a critical load factor of 1.067 as opposed to 1.066 for VIPASA, which is a difference of 

approximately 0.1%. In contrast, the factors for load case 1 of the corresponding panel, where 

a longer wavelength is the governing mode, are 1.156 and 1.005 for VICON and VIPASA, 

respectively. This implies that VIPASA, in this case, is 15.0% more conservative. Similarly 

for load case 3, the critical load factors of 1.856 and 1.551 for VICON and VIPASA analysis, 

respectively, amount to an estimate that is 19.7% more conservative by VIPASA. 

Nevertheless, all configurations listed in Table 6-7 have been verified to be stable when 

analysed with the VICON analysis.

A

Figure 6-9 Skin contour plot of the governing buckling mode of the best solution for the J3 panel. It clearly 
shows the skewed nodal lines that violate the simply-supported transverse end conditions assumption. 
Isometric plots of the critical modes of all load cases for the J3 panel are provided in Appendix IV.
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Figure 6-10  Scaled diagrams of the best solution found for each of the six cases of stiffened panels considered, 
together with longitudinal boundary support conditions.

The above results also show that flanged-stiffened panels give far better mass efficiency that 

their blade-stiffened counterparts. This behaviour is not unexpected, as the results have shown. 

Higher efficiency can be obtained by distributing mass away from the neutral axis of the 

structure, and thus increasing the overall stiffness and rigidity. In the blade-stiffened panels, 

this distribution is done most effectively in the web, whereas the flange is the more effective 

component in flange-stiffened panels. As evident in the results, the percentage of mass in the 

skin is relatively stable across all cases since the skin is expected to carry any transverse and 

shear loads.

The longitudinal compressive load, on the other hand, is redistributed across all components 

based on stiffness, thus the behaviour as seen. It is, therefore, not wrong to assume that 

allowing the web and flange breadth to vary will create more efficient structures in terms of 

mass subjected to buckling load constraints. However, fixing the breadths to constant values 

resulted in components, flanges in particular, that violate the assumptions of CPT. Even in
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blade-stiffened panels, as shown in Figure 6-10, the webs are particularly thick. This figure 

also shows the variation due to the increase in the number of stiffeners in the panel assembly, 

which clearly indicates, as a result of conclusions drawn from experiences in the optimisation 

of laminates with longitudinal voids and box-sections, that by including the web breadth, 

flange breadth and number of stiffeners as design variables in the optimisation process, 

further mass reduction is highly probable. Additional constraints can also be added to further 

restrict components, such as to force components to behave exactly as the assumptions made 

by CPT, i.e., the breadth-to-thickness ratio of all components plates must be equal to or 

greater than 10.

6.4 W eig h t  an d  C o st  D esig n  o f  Stiffened  Sa n d w ic h -P a nels

Although weight-critical applications are understandably more concerned with mass reduction, 

the broad appeal of the inherent flexibility, strength, and therefore, use of composite laminates 

in other fields and industries, has been largely limited due to overwhelming material and 

fabrication costs. More often than not, tradeoffs between mass and economic cost are highly 

sought in order to better understand the effects of such compromises. This section aims to 

apply the proposed GA framework and constraint handling technique to a multi-objective 

optimisation of two design objectives of importance, apart from the usual structural 

requirements1, in the application and use of composite laminates -  weight and cost. Combined 

weight and cost optimisation has been already performed using VICONOPT, such as those 

presented by Edwards et al., (1998), which replaced the minimum mass objective with 

minimum cost or a combination of both. Another work by Grosset et al., (2001), performed a 

mass-cost multi-objective optimisation involving two materials on a single laminated plate.

The design optimisation here will take on a more common manufacturing approach used in 

the industry of composite laminates to increase stiffness, and hence structural load capacity, 

without excessive increase in mass. This approach, also known as sandwich construction, uses 

generally isotropic and lightweight materials as the core, sandwiched between two layers of 

composite laminates as skins, hence the term, as shown in Figure 6-11. Engineering theory 

can easily show that flexural stiffness of any uniform panel is proportional to the cube of its 

thickness.

1 Structural requirements are almost always implemented as design constraints rather than design objectives.
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The purpose of any core material is, therefore, mainly to increase the laminate flexural 

stiffness by ‘thickening’ with a low-density, low-cost structural material. Figure 6-11 also 

shows how such a component can be likened to a structural I-beam, with the skins acting like 

the analogical flanges of the I-beam, and the core as a shear web. It is with this principle that 

selection of core materials should ideally be based on shear strength and stiffness. 

Nevertheless, the core must equally be capable of accommodating sufficient compression 

without premature failure to prevent adverse effects, particularly those with thin skins, such as 

face wrinkling.

Perhaps the most generally used cores are synthetic polymer-based, with examples such as 

polyurethane, polyvinyl-chloride and polystyrene, ranging from a density of less than 

30kgm~* to more than 300kgm~l , although other materials such as wood (balsa and cedar) 

and even metals1 have also been used. An important issue, regardless of core material, is the 

bonding between the composite laminate skins and the core2. Therefore, apart from plain 

block cores, honeycomb-structured cores can also be used, which allows small bonding fillets 

around cell walls.

Composite Laminate 
Skin

Lightweight Core

Composite Laminate 
Skin

>  Compression < r

Tension

Shear

Figure 6-11 Typical cross-section of sandwich construction, and forces acting on an element of a panel in 
flexure.

1 Metals, like aluminium, have also been used, although arguably, they function more than just as a lightweight 
core.

2 Although low-density core materials arguably provide excellent increase in stiffness with little penalty to mass, 
the porosity also increases absorption o f  matrix resins.
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Mid-Plane

Figure 6 -12  Stacking sequence of all component plates, i.e., the skin, web and flange of the stiffened panel.

Material Ex e 2 G.2 Pj2 P Price
CFRP 125.00 8.80 5.30 0.35 1620 10

SAN Core 0.161 0.161 0.057 0.40 140 1

Table 6-9  Material properties considered for the plies and core, as well as the price factor. The price factor is 
considered as price per unit volume and should not be considered as absolute. It is used here primarily for 
design studies.

6.4.1 P r o b l e m  D e f in it io n

The design problem concentrates on a single case of the GARTEUR P8 panel, namely the 

blade-stiffened panel 13, as illustrated in Figure 6-7 above, because it can be readily extended 

to other cases where the only difference is in the number of stiffeners and the addition of 

flanges in the case of flange-stiffened panels (J3 -  J5). The dimensions and loading conditions 

are, therefore, the same. Contrary to the design problems studied so far, a fixed stacking 

sequence will be used here. For all skin and web components, the stacking sequence remains 

identical, as shown in Figure 6-12, illustrating also the design variables associated with the 

thickness of different fibre orientations and the core material.

As before, the thicknesses are expected to be discrete, where t{0)R = d(0)RtL, hence the 

integer number of plies d{0)R are actually the design variables, and the subscript R is 

represented by 5 and w for skin and web respectively. The angles 6 considered, as seen, are 

0°, ± 45°, and 90°, with and additional C to represent the core. The discrete thickness of the
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standard lamina is here taken to be 0.125m/w, as in the GARTEUR benchmark problem 

presented earlier. The core thickness is expected to be accurate to 1.0m m , which is also 

discrete although manufacturers do specify other standard thicknesses.

All laminates will use the standard CFRP material properties used so far, while the properties 

for the structural sandwich foam core material are summarised in Table 6-9, together with the 

corresponding price factors rather than actual price. The core here is a linear polymer foam 

based on Styrene Acrylo-Nitrile (SAN), with a closed-cell structure. It can be seen that in the 

principal direction, CFRP has a stiffness-to-weight ratio ( E j p )  that is approximately 61 

times more than that of the core material. The price-to-weight factor will produce different 

solutions at different factors.

6.4.2 W e ig h t -C o s t  T r a d e o f f s

Coupling both mass and economical cost objectives require the use of multi-objective 

optimisation concepts. As covered in Chapter 3, the interaction between objective functions 

creates tradeoffs, otherwise known as the Pareto set. In this case, the Pareto surface is 

constructed from the interaction of the objective mass function M(x)  and objective material 

cost function E(x) . The compromise between these two functions is controlled by a parameter 

a , or the trade-off factor, such that

F{x) = aM(x)  + (l -  a)E(x), 0 < a < 1 6-4

The above method is based on the weighted sum of objectives. For any set of positive weights, 

the global optimum of F(x)  is always a non-Pareto dominated solution of the multi-objective 

problem. However, the reverse is not always true, where a non-dominated solution is not 

necessarily the global optimum, as illustrated in Figure 6-13. It shows concave and convex 

regions on the Pareto front, where non-dominated solutions on the concave front cannot be 

obtained since their sum-weighted objective value is sub-optimal. At best, therefore, the 

Pareto set obtained here is convex and does not guarantee global optima. Additionally, this 

approach is also particularly sensitive to the weights, i.e., a and I - a  in this case. Initial 

studies showed that the given bounds on the trade-off parameter gave acceptable convergence 

rates at all tradeoffs with the GA optimiser framework.
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Intermediate Trade-Off 
(Decreasing Sum-Weighted 

Objective)

Factor 1.0 (Reducing Mass)

Convex

Concave

Factor 1.0 (Reducing Cost)
Convex

V

>  Mass

Figure 6-13 Graphical representation of a Pareto front with convex and concave regions, as well as the lines of 
equal sum-weighted objective value at some arbitrary trade-off factor.

There exist GA that construct the Pareto set in a single optimisation, such as the one proposed 

by Deb (2001). The simpler approach of steadily incrementing a from 0 to 1 will be adopted 

here, thereby requiring several independent GA runs. Obviously, the more intervals taken 

between 0 and 1 for a ,  the better the accuracy of the Pareto front, but for the design studies 

conducted here, the interval is taken to be 0.1. Additional intervals of 0.02 will be taken 

between 0.9 and 1.0 to provide better estimate of the transition between optimum mass and 

sub-optimal mass as a result of a compromise with material cost.

6.4 .3  O p t im is e r  P a r a m e t e r s  a n d  C o n f ig u r a t io n

Since the stacking sequences are fixed in all panel components, the design variables 

concentrate solely on the integer number of standard plies d{0)R. Considering also the fact 

that the component plates are all balanced and symmetric, only half the set of variables of 

each panel are included in the genotype, i.e., </(0)s , <7(±45)v, d(90)v, d(C)s , d(0)w ,

d(±45)w , d(90)w , and d(C)w , where each are individual chromosomes, and d{C)w

represents the full thickness in millimetres of the foam core at each component panels since 

symmetry about the mid-plane of the core is implied. For each of these chromosomes, the 

design bounds1 are 0 < d ( 0 ) R <127, which requires precisely a 7-bit string, resulting in a

1 The upper bound is adopted for ease o f  applying a binary-type encoding, where in this case, it clearly fits a 7- 
bit string.
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total of 56 bits1. The zero lower bound allows certain plies to disappear completely, hopefully 

producing more efficient structures. With the current genotypic representation, the search 

space has in excess of 7 x 1016 discrete solutions.

It is actually impractical for laminate plies acting as localised skin in component plates to 

disappear leaving only the core material, which is indeed part of the search space here, since 

there is a zero lower bound on the integer number of standard plies. Preliminary studies 

showed that such fears are unfounded in the optimal regions, although it is nevertheless still 

possible for sub-optimal solutions to carry such a configuration. A particularly interesting 

behaviour emerging from the preliminary studies indicates that there is a tendency to 

distribute all the mass only in the stiffened panel assembly skin. By using the genotypic 

representation as outlined above, it is possible to reach such a solution, albeit with difficulty. 

With this in mind, the main studies concatenated an additional one-bit chromosome that 

allowed the genotype to ‘switch’ on or off the web stiffeners in the phenotypic representation. 

In other words, whenever this bit evaluates to Boolean true, stiffeners are added to the 

structure, otherwise, it is a simple plate spanning the breadth without stiffeners, as shown in 

Figure 6-14.

In the conducted studies, the effect of this chromosome has direct implication on the genotype 

too, which, if  present, will force an additional mutation operator to mutate all genes 

corresponding to web design variables to the lower bound, as shown in Figure 6-15. In other 

words, the switch chromosome takes precedence over other chromosomes. Forcing the 

‘switch’ mutation also ensures that future interactions between genotypes are done based on 

correct genetic information.

610mm 610mm

(a) (b)

Figure 6 -14  Two phenotypic representation depending on the additional on/off switch chromosome, where the 
bit evaluates to Boolean (a) true, or (b) false.

1 This also implies that core thickness can range from 0mm to M l mm.
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Web Chromosomes

d(±45)w

d m .

d(C)w
Switch Chromosome

Web Chromosomes <

rf(+45)„ 
d(0)w

d{
d(C)w

Switch Chromosome

— > 1 0 1 1 0 0 1
— > 0 0 1 0 0 0 1
— > 1 0 0 1 0 0 0

......> 1 0 1 0 0 0 1
— > 0

Switch Mutation

-------> 0 0 0 0 0 0 0
— > 0 0 0 0 0 0 0
-.. -•••> 0 0 0 0 0 0 0
— -> 0 0 0 0 0 0 0
—... > 0

Figure 6-15 Effects of the switch chromosome evaluating to false on web chromosomes. Skin chromosomes 
are not shown in full but indicated by the boxes in dashed lines.

The population size is taken arbitrarily to be 100 and is sampled at this constant value across 

all generations. The recombination process involves the binary tournament selection with a 

uniform crossover at a probability of crossover at 0.9 and probability of gene swap at 0.3. On 

the other hand, each population undergoes uniform mutation at a rate of 4 bits in 57. The 

search is terminated either when the objective values of all genotypes are identical or the 

2000th generation has been reached. The GA parameters were determined from results of trial 

runs.

The trade-off factor starts at 1.0 (minimum mass) and terminates at 0.0 (minimum cost), 

decreasing by 0.1 at each round, with additional intervals of 0.02 between 0.9 and 1.0. In 

order to obtain results with sufficient reliability, ten runs were conducted at each factor.

6.4.4 R e s u l t s  and  D isc u ssio n

Results for the best solution found for the 15 tradeoffs are as given in Table 6-10. At all 

factors, none of the best solutions found had web stiffeners, and their corresponding design 

variables are therefore left out from the results.

It interestingly shows that compromise between the mass and economic cost flattens out after 

a factor at 0.8 and lower, as no improvement can be gained either way, as shown in Figure
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6-16, where the case with 1.0 trade-off factor is considered the datum. This is believed to be 

the effect of forcing discrete values in both the ply and core thickness as integer multiples. In 

effect, therefore, are only three discrete candidates for a mass-cost compromise. For the 

lowest mass scenario, economic cost increased by a factor of almost 81.4% over the lowest 

cost solution with a reduction in mass of only about 18.5%.

The GA framework showed good reliability in this case, with most of the ten runs at each 

trade-off factor converging onto the same value. The reason that some of the runs failed to 

reach the optima can be attributed to the strong selection pressure, which is imposed by the 

steady-state replacement mechanism that subscribes to the strong-replace-weak rule. All runs 

terminated as a result of the equal objective value termination criterion, long before the 2000th 

generation with good convergence rate as illustrated in Figure 6-17, showing genotype 

distribution in the search space at different generations. Reliability was also improved over 

preliminary studies as a result of introducing the web on/off switch chromosome, which, in a 

single bit mutation, allowed genotypes to add or remove phenotypic features, i.e., the web 

stiffener. Otherwise, substantially longer evolution time will be required before the effect of 

not having web stiffeners is explicitly modelled by genotypic representation1.

Factor
TOO
0.98
0.96
0.94
0.92
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Mass (kg)

3.23398

3.37618

3.96793

Cost

13.26618

10.06432

d(±45)<

7.31200

d m

o

o

d(90)s

33

41

56

Table 6-10 Best solutions found at various trade-off factors. The core thickness is in millimetres.

1 It should be noted that this does not imply that solutions without stiffeners were almost impossible without the 
switch chromosome. In fact, preliminary studies without it were also successful in finding the same solutions.
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Trade-Off Factor 
0.60 0.50 0.40

Figure 6 -16  Percentage change in mass and cost relative to the minimum mass case (1.0 factor) with respect 
to trade-off factor.

Despite substantial mass savings over the GARTEUR 13 benchmark problem, presented in the 

previous section, o f up to almost 59.3% with the lowest mass of about 3.23kg , the skin panels 

were noticeably thick but still satisfy the assumptions of classical thin plate theory. Breadth- 

to-thickness ratios in the three discrete optima found are, from highest trade-off factor to 

lowest respectively, 17.7, 14.5 and 10.8. Although satisfying the traditional CPT assumption 

of breadth-to-thickness ratio, it should also be noted that the thick flexible core is highly 

deformable, and so may violate assumption of zero through-the-thickness shear deformation.

In all cases, thickness contribution came mainly from the foam core, which is as expected. 

The additional stiffness provided by lightweight core materials, by moving important stiffness 

contribution from composites further from the neutral axis, resulted in very thin skins 

enclosing the foam core. This, naturally, gives rise to concern about stress concentrations 

leading to micromechanical failures in the composite skins, such as face wrinkling. The 

absence of 0° or 90° plies is hardly surprising, as the thick foam core, with its isotropic 

properties, is advantageous also in in-plane longitudinal and transverse effects. The presence 

of minimal ± 45° plies is, however, indicative of the more efficient handling of shear effects. 

Nevertheless, additional good design practices such as the 10% design rule (Niu, 1993) should 

in essence be included to provide better practicality of such laminates.
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The variation in weighting factors of the multi-objective mass and cost problem allows the 

construction of the Pareto front, presuming that solutions found were non-dominated or were 

close to the surface. As mentioned earlier, the formulation allows only the discovery of points 

that were on the convex surface, as shown in Figure 6-18, which does not guarantee global 

optimality. The minimum mass and cost boundary are also depicted.

Generation = Initial

1000.0

0.0
0.0 100.0

Mass

Generation = 1

1000.0

u

0.0
0.0 100.0

Mass

Generation = 5

1000.0

u

0.0
100.00.0

Mass

Generation = 10

1000.0

to
8

0.0
0.0 100.0

Mass

Figure 6-17  Distribution of genotypes in terms of mass and cost at selection generations.
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Figure 6 -19  Distribution of best solutions (sub-optimal) of each generation of all runs at tradeoffs 0.96 -  1.00
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Figure 6-20  Distribution of best solutions (sub-optimal) of each generation of all runs at tradeoffs 0.90 -  0.94 
and Pareto points.
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The diagram, with available data, clearly shows that the surface is indeed convex and the use 

of the weighted sum approach is, therefore, justified. Since discrete thicknesses are expected 

of all plies, and to a certain degree the core as well (note the 1.0mm precision), solutions tend 

to be aligned along lines of equal magnitude in terms of the two objectives. Boundaries 

imposed by bounds of design variables, material density and price factors demarcating the 

search region are also apparent in the diagram, since cost is correlated closely to the mass of 

the assembly.

Distributions of sub-optimal solutions discovered at various tradeoffs are given in Figures 6- 

19, 6-20 and 6-21. When minimising primarily for mass (a > 0.96) as shown in Figure 6-19, 

it is clear that best solutions tend to be clustered around the Pareto points that give good mass. 

As the factor drops to gain improvement in terms of cost ( 0.90 < a < 0.94 and 

0.00 < a < 0.80) as oppose to mass, the preference is moved to Pareto points that give lower 

cost.

6.4.5 V a r ia n t  M a t e r ia l s

Additional design runs were performed to obtain less extreme solutions (bulking with 

lightweight core) by allowing switching between any combination of carbon (CFRP) and 

glass (GFRP) reinforced epoxy, with the same dimensions and loading conditions of the 13 

blade-stiffened panel. All parameters and constraints remain the same as before except that an 

additional material 1-bit chromosome is attached at every design variable to decide between 

both materials at each layer, as depicted in Figure 6-22. The summary of material properties 

in Table 6-11 shows the stiffness-to-density ratio in the principal direction of the selected 

CFRP is approximately 3.5 times higher than for GFRP. With price factor per unit mass of 

CFRP 8 times higher than GFRP, it is expected that only weight-critical tradeoffs will prefer 

the use of the former.

Results from a trade-off factor of 0.0 to 1.0 at intervals of 0.1 are as presented in Table 6-12. 

It has to be said again that solutions presented are the best found over an average of 10 

independent runs at each interval without any guarantee of Pareto or objective optimality. As 

in the case with foam core, tradeoffs disappear after a certain threshold, where in this case, it 

is at a factor of 0.7 and lower. However, the web has a more important role to play here since 

an increase in stiffness cannot be effectively achieved by an increase in the skin alone.

The best solution, in terms of mass, expectedly utilised fully the stiffness-to-weight properties
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of CFRP, giving a mass of 9Akg . Once a trade-off with cost is required, the cheaper GFRP 

starts to bulk up the core in the skin and web at intermediate factors (0.9 and 0.8), effectively 

creating a sandwich type construction as seen when using strictly structural core materials. At 

the other extreme of lowest cost, where mass is of no concern, then obviously GFRP becomes 

preferable. Care should, of course, be taken when using mixed materials, noticeably at non­

extrema tradeoffs. The two different fibres, in an otherwise homogeneous resin matrix, create 

hybrid laminates that may well experience internal thermal expansion effects.

Genotype <

V.

Figure 6 -22  Concatenation of the material 1-bit chromosome to the genotype.

Material Bit

___________

1-----------1

: I —
__

__
1

— i

4 n
1  1  | 0 0  11

0

1

_____ J

------------

________' ! !----------^

M aterial e 2 g 12 n 2 P Price
CFRP 125.00 8.80 5.30 0.35 1620 8
GFRP 43.00 8.90 4.50 0.27 2000 1

Table 6-11 Material properties between a carbon and glass fibre reinforced epoxy.

Factor Mass (kg) Cost Stacking Sequences

1.0 9.10787 72.86293
s
W

|458 / -4 5 8/0 ,2]s

[4S10 /-^S .o /O .o i

0.9 10.81747 51.03081
s

w
[456 / -4 5 6/0 20/902]s 
(45s / - 455/0 7I/90os]3

0.8 12.17615 43.54202
s
w

[45,
[45, / - 4 5 7/Q5S/9045]s

0.7-0.0 18.90058 18.90058
s

w
[45io/ -4 5 ,„ /0 29]s 
[45,o /- 45]0 / 0I23]g

Table 6-12  Results for mass-cost tradeoff at various levels for a CFRP/GFRP optimisation. Plies in CFRP are in 
bold.
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Figure 6 -23  Spread of best individuals (sub-optimal) at each generation at all tradeoffs of all runs conducted 
for the CFRP/GFRP variant case and Pareto points.
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Figure 6 -24  Spread of best individuals (sub-optimal) at each generation at factor 1.0 of all runs conducted for
the CFRP/GFRP variant case and Pareto points.
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Figure 6-25  Spread of best individuals (sub-optimal) at each generation at factor 0.9 of all runs conducted for 
the CFRP/GFRP variant case and Pareto points.
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Figure 6 -26  Spread of best individuals (sub-optimal) at each generation at factor 0.8 of all runs conducted for
the CFRP/GFRP variant case and Pareto points.
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Figure 6-27  Spread of best individuals (sub-optimal) at each generation at factors 0.0 to 0.7 of all runs 
conducted for the CFRP/GFRP variant case and Pareto points.

Figure 6-23 above shows the Pareto surface obtained from the weighted sum approach as well 

as combining the best solutions found at every generation of all runs of all tradeoffs. 

Limitations of the approach produced only the convex surface, but it is also clear that there is 

possibly a small degree o f concavity, which Pareto points on these concave regions will be 

considered as sub-optimal with the sum-weighted method.

Figures 6-24, 6-25, 6-26 and 6-27 show the spread of best individuals at various tradeoffs. It 

clearly shows general paths of various factors towards the discovered Pareto points, which is 

more noticeable than in the previous case with foam core. When considering only minimum 

mass (a  = 1.0), sub-optimal solutions discovered in the GA search process are clustered 

around the Pareto point with lowest mass. As the factor decreases until ultimately minimising 

only for cost, as shown from figures 6-25, 6-26 to 6-27, the scatter of sub-optimal solutions 

clearly indicates that the GA optimiser is able to detect these optimal regions.

6.5 C o n c l u s io n  a n d  C l o s in g  R e m a r k s

The lack of a fitness function and problems associated with the use of a non-stochastic 

sampling mechanism, the binary tournament selection, had no great effect in the various 

design cases considered. Even without the use of complicated genetic operators and hybrid



genetic representation, the deployed GA was able to discover, to a reasonable degree, optimal 

or near-optimal solutions. Consider also the fact that parameters were not extensively tuned to 

ensure optimal settings.

This chapter has investigated problems of higher difficulty in terms of more constraints, e.g., 

up to 30 constraints for the GARTEUR benchmark problem, which are generally 

computationally expensive compared to the GA framework. All solutions found were also 

confirmed to have been feasible designs, in the sense that they all fully satisfy the buckling 

requirements, again confirming the robustness of the constraint handling mechanism. In all of 

the conducted tests, search spaces were excessively large to prevent from optimising trivial 

problems. Nonetheless, convergence onto regions of optimality were rather good, credit going 

primarily to the sampling-replacement framework. Arguably, the framework led to a lack of 

genetic diversity as genotypes were progressively distributed over a smaller and smaller 

region of the search space. From a positive point of view, this, coupled with a small mutation 

rate and small gene swap probability of the uniform mutation and uniform crossover 

respectively, created a more steady and progressive search across the landscape rather than 

arbitrary random jumps. The main disadvantage of this approach is the more apparent effects 

of genetic drift leading possibly to premature convergence (equal objective termination 

criterion) and falling into local optima.

Understandably, additional work needs to be done if the GA framework is to be successfully 

applied into design programs such as VICONOPT. Time efficiency and reliability of the GA 

leaves a lot to be desired. These, and other issues, will be covered in greater detail in the next 

and final chapter as potential for future improvements and developments.
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7 C o n c l u s io n s  a n d  F u t u r e  W o r k

With results obtained using Genetic Algorithms (GA) on a wide range of composite laminates 

and prismatic plate assemblies design problems, this final chapter ascertains directions, and 

more importantly, practical guidelines on the future establishment of more robust GA tailored 

specifically to the optimisation of high-dimensional engineering problems.

7.1 G e n e t i c  A l g o r i t h m s

GA, and indeed other evolutionary algorithms like evolutionary computation (EC) and genetic 

programming (GP), have broadened the scope of optimisation in engineering practice. 

Without the involvement of over-complicated and problem-specific operators, they are mainly 

simple to deploy heuristic methods. Self-discovered domain features, without the aid of 

additional data or any gradient-based knowledge, are used to produce and refine search 

trajectories internally leading to regions of optimality.

7.1.1 Low C a r d i n a l i t y  G e n e t i c  A lp h a b e t s

One of the strengths of GA lies in its ability to incorporate any combination of coding 

alphabets into its genetic representation. In general, problems that involve mixed decision and 

design variables can be handled effectively, with a little bit of ingenuity, without having to 

resort to high-order alphabets such as integer and floating-point values. This statement is 

made in accordance with the Building Block Hypothesis (see Chapter 2 for definition, and 

Chapter 1 for issues associated with it) and the belief that complex structures (and behaviours) 

can be effectively adapted from seemingly unconnected small building blocks and simplistic 

interaction rules.

The question will inevitably be asked as to the applicability of the lowest common 

denominator that is the binary representation, to design and optimisation problems. Although 

by no means an extensive study of this issue, the various studies conducted have utilised none 

other than the binary representation from a constrained numerical problem to a multi­

objective engineering optimisation of prismatic plate structures involving the mass-cost

187



objective. It has to be admitted that the design variables considered in all cases involve 

primarily numerical variables. Nonetheless, decision variables have also been paired 

successfully with numerical design variables. The switch and material chromosomes (see 

Chapter 6) are prime examples here. This argument does not necessarily rest entirely on using 

only the binary representation, but urges, instead, the use of the simplest genetic 

representation possible, be it a ternary or any higher-order scheme, since a universal genetic 

alphabet is probably unlikely. For example, continuous numerical optimisation might 

probably benefit more from a floating-point representation rather than binary.

7.1.2 S e a r c h  C o n s t r a i n t s

Most, if not all, design and optimisation problems involve a certain number of constraints, be 

it bounds on design variables or system constraints. The former are almost certainly handled 

intrinsically by genetic representations and/or operators, but the latter require more careful 

considerations.

Traditionally, approaches to constraint handling in evolutionary-based algorithms are mainly 

restricted to test-and-discard, fitness penalties, and genetic repairs. While all such methods 

have strengths and weaknesses (see Chapter 3 for discussion), a more robust and problem- 

neutral approach is necessary to give GA a wider appeal and applicability. One of the main 

aims of this new approach is to reduce the number of tuning parameters, and hence, sensitivity, 

apparent in penalty-based methods, remove the specificity of repair algorithms, and increase 

exploitation of seemingly unworthy knowledge.

In Chapter 3, a new general-purpose constraint handling methodology was developed and 

presented, which borrows principles from multi-objective or multi-criterion optimisation. 

Constraints are handled as primary objectives to be optimised in an unconstrained multi­

objective optimisation framework, whether in terms of minimisation of violation or 

maximisation of feasibility. Consistency is also maintained in the technique by using multi­

objective methods for handling fitness assignment.

Another attractive feature of GA is the ability to address classes of problems that produce 

non-tangible fitness values. Despite the misnomer associated with measurement of fitness, 

GA only really requires information pertaining to relative preference of one genotype over 

another in order to generate internal ranking of performance by means of schema 

representation. On the simplest level, this implies a Boolean response of ‘better than’ or
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‘worse than’. Such is the principle modelled by the constraint handling methodology 

developed here, generating a relative comparison between two candidate solutions based first 

on feasibility before turning to objective optimality. With such a simple response, selection 

and replacement mechanisms are then able to rank genotypes accordingly.

The process of Pareto-ranking is potentially an expensive exercise as the number of 

constraints increases. Therefore, the new constraint handling method here improves efficiency 

using the simple process of normalisation. With all violations normalised to a standard region, 

the differences in the sum total violation between two or more genotypes is an immediate 

indication of the varying levels of feasibility. In other words, normalisation allows the GA to 

determine intrinsically, without additional ranking processes, the number of constraints 

satisfied by a genotype.

Studies have indicated that this knowledge of the Pareto-based dominance (see Chapters 5 and 

6 for practical applications) is sufficient to gear the search towards optimal regions. The 

proposed constraint handling method also pushes the robustness of GA by providing only 

partial knowledge of fitness in the form of lazy evaluation and artificial prioritisation of 

constraints. The advantage gained is in terms of savings in computation overhead, which is 

particularly beneficial to constraints that would have otherwise incurred expensive 

computation and analysis. This approach models a progressive adaptation to increasing 

number of environmental constraints observed in natural systems. The more constraints 

genotypes have adapted to, the greater their complexity, and hence, preference. Even without 

specialised genotypic representation and genetic interactions, results show that the typical GA 

framework deployed is able to cope well with the apparent lack of complete fitness 

knowledge on high-dimensional problems with a large number of constraints. Furthermore, 

genotypes in a population are allowed to be at varying stages of feasibility.

7.1.2.1 D y n a m ic  P r i o r i t i s a t i o n  o f  C o n s t r a i n t s  -  F u t u r e  W o r k

An area requiring further developments is in the decision of prioritising constraints. Most of 

the time, there exist no such priorities in constraint handling. It is believed that the ordering of 

constraints will inevitably affect performance and convergence rates. This is due mainly to the 

delineation of the search boundaries into regions of feasibility and infeasibility. Assuming 

that the feasible region is continuous regardless of the number of constraints in effect, 

imposing each constraint independently will result in feasible regions of differing sizes, such 

as that shown in Figure 7-1, where the true feasibility is in the intersection of all constraints.
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Constraint 1 Fully Feasible Constraint 2
Feasible Region Feasible RegionRegion

Less preferable approach

More preferable approach

Figure 7-1 Feasible regions imposed by the first and second constraints, and the fully feasible region located 
at the intersection of both.

Future work can possibly concentrate on developing a method of determining, internally and 

dynamically in the GA framework, the difficulty imposed by constraints or constraint 

‘hardness’. Once hardness can be decided to a degree of certainty, the prioritisation can be 

reordered during run-time to produce a more progressive approach towards the true feasible 

region, also illustrated in Figure 7-1. In this manner, genotypes are expected to adapt more 

steadily towards regions of increasing feasibility without hovering too long in infeasible or 

semi-feasible regions. The effect is particularly apparent when feasible regions are almost 

negligible when compared to the overall search space in GA-difficult problems, with equality 

constraints being obvious examples. If tight constraints are at the top of the prioritised list of 

constraints, there is a tendency for genotypes to either be infeasible or simultaneously 

satisfying several constraints at once. Dynamic prioritisation is also believed to be able to also 

increase reliability in discovering optimal regions. One possibility is to progressively shift the 

approach paths to various feasible regions from various perspectives.

7 .1 .2 .2  C l u s t e r i n g  f o r  C o n s t r a i n t s  S p e c i a t i o n  -  F u t u r e  W o r k

Although the lazy evaluation of constraint violations is able to introduce infeasible genotypes 

into the population, masked as feasible individuals due to sub-optimal objective values, 

further work can be done to increase the robustness in discovering the optimum. The benefit 

in a mixture of differing level of feasibility is the opening up of extra paths from which to 

approach the optimum. It may also be suitable for seemingly intractable problems for GA,
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such as those involving equality constraints, which are notoriously difficult to solve with GA.

Perhaps the most important first step is to conduct a more thorough study of the effects of 

maintaining stable sub-populations of near-optimal infeasible solutions that are allowed to 

interact with feasible solutions. The question then arises about the definition of ‘near-optimal’. 

It is expected that without any control, the search algorithm will produce increasingly feasible 

genotypes until eventually full feasibility is attained, as is the case in this work. This leads 

eventually only to an approach path from feasible regions onto the optimum.

One probable definition for near-optimal, then, may be in terms of minimum violation but 

introducing the additional constraint where full-feasibility is an asymptotic event, either 

]T C, (x) > 0 or individually as C, (x) > 0 , where C, (x) represents the i -th constraint.

Coupled with suitably adapted clustering algorithms used for data mining and data clustering, 

such as one explored by Streichert et al., (2003), feasibility boundaries may be detected by 

forming ‘species’ of genotypes around such boundaries. Species then, inadvertently, 

specialise into performing a specific role, whether it is to minimise the violation of one 

constraint, several constraints, or objective cost reduction with full feasibilities, etc. In fact, 

such an approach may be more suitable using a parallel implementation with individual 

‘islands’ enforcing different ‘environmental’ constraints and objectives. Inter-species 

interaction should then be encouraged to allow information exchange, hopefully producing 

better individuals with increasing adaptability to a range of constraints and objective(s).

7.1.3 Im pr o v in g  Sea r c h  R eso lu tio n

During the course of this work, one of the main difficulties encountered by GA was the lack 

of ability in focusing onto an optimum. This can perhaps be attributed to the large search 

space as a result of the bounds imposed on the design variables. Large search spaces have also 

been the main reason for turning to other genetic encodings that are more exact 

representations of the problem involved.

To illustrate using binary encoding (Gray or standard), the number of bits in a chromosome 

can be said to be proportional to some extent to the precision required of the solution of a 

numerical design variable. As more design variables are included in the search, the difficulty 

of reaching a solution of high-precision becomes increasingly apparent. This is due largely to 

the almost improbable event of operators producing the true optimum solution. In studies 

conducted here, the responsibility fell mainly on two operators -  uniform crossover and
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uniform mutation. It should be said that discovering the true optimum with the required 

precision is not impossible, but merely difficult with only random changes induced by genetic 

operators.

7.1.3.1 D iv id e-a n d -C o n q u er  -  Future  W o r k

Perhaps the most direct and simple approach to solving this resolution problem can be done 

via some form o f ‘divide-and-conquer’ technique. As search spaces become excessively large, 

a single run will require prohibitive computation time in reaching the optimum for reasons 

stated earlier.

Literally dividing the search domain into smaller domain components can be a simple 

alternative. However, such an approach breaks down in high-dimensionality problems. 

Consider a problem with 5 design variables xj , each with their respective lower and upper

bounds, x \B < xt < x VB. Assuming that, at the very least, the bounds are divided into non­

overlapping lower and upper halves, represented by the new set of variables x~ and x ,+

respectively. In order to cover all combinations, up to 32 set of separate studies must be 

conducted. Hence, the problem becomes intractable as more design variables are included.

Future work can, therefore, develop systems that are able to decide, to a reasonable degree of 

accuracy, the approximate location of potentially good, and hopefully, optimal solutions. This 

information can then be used by future generations of genotype to confirm or refute the fact. 

Such an approach may be successful since GA is able to detect optimal regions rather easily, 

but slows down considerably in fine-resolution situations.

The search starts off with a population of genotypes with insufficient number of bits 

(assuming binary representation) required to represent the precision expected in full. Rapid 

bursts of successive generations should be able to discover potentially good locations from 

which to expand resources on future searches. Once known, the bounds governing the bits are 

then updated to reflect these localised, potentially optimal, regions. Another possibility is to 

regenerate a new set of genotypes that are tailored specifically for such known regions. Again, 

due to the small number of bits, the search should again be able to detect rapidly even more 

optimal regions. The process can then be repeated until the required precision has been 

achieved.

Several precautionary steps should be taken. One is the possibility of missing global optima,
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particularly those that are tight and situated in an otherwise flat landscape, a steep optimal 

peak, for example. The resolution of the genotypes must also be able to detect substantial 

changes in objective values. Otherwise no decision can be made about optimal regions. 

Another is the probable failure in detecting optima in multimodal problems.

7.1.3.2 G en o ty pe  C r eep  -  Future  W o rk

Following from the fact that GA is useful as a higher level tool for detecting optimal regions, 

efficiency in focusing onto true optimal points should be increased. One possibility that can 

be explored is the use of ‘empty’ genes that are specialised according to the location of a 

genotype.

For example, consider, without loss of generality, a hypothetical 2-dimensional unconstrained 

minimisation problem.

Minimise
f ( x  , ,x2) 7-1

where
0 < x l9x2 < 127

Consider also that the search space is represented by a two-chromosome binary-encoded 

genotype, where each chromosome has 7 bits (additional bits may be added to increase 

precision where necessary). A random genotype may then be

G = [0001010 0011000]

which represents the phenotype xl = 10 and x2 = 24. Consider then that the last few bits of 

each chromosome are in fact ‘empty’ genes

G = [0001*** 0011***]

which is not unlike a schema. The genotype now represents the bounds 8 < xx <15 and 

24 < x2 < 31, as shown in Figure 7-2. Depending on the number of empty genes to consider, 

the genotypes can move, or ‘creep’, across this restricted space to the best position that gives 

an optimum objective value locally. It is believed that such a creep operator will provide fine- 

grain tuning of genotypes compared to the usual crossover/mutation combination. It is worth
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stating that the usual genetic operators should still be involved to provide coarse-grain 

resolving of global optimal regions.

Although using GA to set a creep path to the local optimum will provide a consistent 

framework, it is believe that other search methodologies may also be useful here to create a 

hybrid search system. Techniques such as hill-climbing, binary partial enumeration or even 

exhaustive search of the creep region may be used, provided that such methods give excellent 

reliability with reasonable speed. It is important that the creep boundaries restrict a negligible 

space compared to the overall search domain. Otherwise, the localised search process may 

prove too difficult to be successful. With the schema analogy, the method can also be 

generalised further to allow empty genes to be in any loci the genotype, e.g.

G = [l*l**00 00 * * * 1 *]

7.2 C o m p o s i te  L a m i n a t e s

A simple GA framework complete with efficient constraint handling technique has shown 

good robustness in designing a range of different structures made up of composite laminates 

and other mixed materials. Studies range from simple plates to stiffened prismatic plate 

assemblies that allowed simultaneous design of stacking sequences and discrete thicknesses, 

as well as multi-objective mass-cost optimisation. However, the studies have still considered 

only a relatively small number of constraints that should ideally be enforced.

A

: Genotype best location

+Xi
< ----------------Genotype creep boundary

Sl\ -*2

/
— r ----------------------------------- >

Genotype initial location (10,24)

Figure 7-2 Boundary induced by the creep operator and movement from an initial to a locally optimal location.

+x2
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7.2.1 D e s ig n  C o n s t r a in t s  and  O b je c t iv e s

Studies here have concentrated only on buckling. Future design and optimisation studies 

should include as many design constraints as possible, such as buckling, vibration, material 

strength, displacement amplitudes, good design practices, etc., to provide a more realistic 

simulation of real-world demands on composite-based structures.

Objectives do not necessary have to be mass alone, although it is arguably the most sought 

after. This is primarily due to the majority of the use of composite laminates falling into 

weight-critical applications, such as aerospace. Nonetheless, the directional specificity of 

composite laminates is much too beneficial to ignore, provided that issues such as cost can be 

resolved. Therefore, multi-objective optimisations involving mass and cost can be further 

explored. Perhaps the most direct way to cost-saving use of composite laminates is in the 

design of a more varied range of standard laminates, apart from the usual quasi-isotropic 

laminates [± 45 / 90 / 0]s or its variants.

Another avenue of exploration for lowering costs and mass can be in the variation of fibre 

density in standard plies of unidirectional layers, since cost and mass are also affected by the 

fibre volume fraction. The use of rule-of-mixtures may well be used to provide theoretical 

estimation1 on the elastic properties of such configurations, and hence fibre/matrix volume 

fractions values that give optimal performance in terms of mass, cost or some intermediary 

compromise.

7.2.2 Sh a p e  o p t im is a t io n

The use of repeating elements is attractive in the fabrication of composite-based structure as it 

reduces work on fabrication, and inevitably, economic costs, and ease of assembly. This leads 

to the possibility of exploring efficient cross-sections, stacking sequences, and thicknesses 

that are ideal for a whole host of loading situations and design constraints.

1 The rule-of-mixtures gives, at best, rough estimates o f material properties. Physical tests are needed to give 
accurate properties before such theoretical designs can be used.
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Figure 7-3 Variation in repeating geometrical shapes and resulting structural members.

Figure 7-4 Topological grid with locations that require mass (shaded) and a possible interpretation of the 
resulting shape.

An interesting case can be the 2-dimensional repetition of elements with basic geometrical 

cross-sectional shapes, as shown in Figure 7-3. The number of repeating elements in the 

transverse and lateral directions obviously results in different types of structures. For example, 

the diagrams when assigned lengths substantially greater in magnitude in breadth or depth 

will result in long and slender structural members. Depending on the primary loading 

direction, these members will then be either beams or columns.

Topological optimisation of cross-sectional shapes also has potential for future developments. 

In the case of the design of laminates with longitudinal voids, the position and location of 

voids have been fixed in advance, with only the number and dimensions of these voids as 

design variables. Topological optimisation can potentially further the generalisation and 

investigate efficiency that can be gained from bespoke shapes.

It typically begins by setting up a system of grids, not unlike the repeating elements as shown 

in Figure 7-3, and search for optimal configurations where objective(s) are optimised, such as 

that shown in Figure 7-4. Care must be taken to ensure that continuity is observed so that 

resulting cross-sectional shapes are not composed of individual unconnected elements. It is 

believed that different shapes should result with different loading conditions and factors.
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7.3 C l o s in g  R e m a r k s

Most of the current researches on composite laminates, including this work, have rarely 

satisfied common manufacturing practices. Although such an approach is laudable as it 

immediately gives a general overview of design problems, it lacks the ability to drive further 

developments in production and fabrication.

On the other hand, GA has seen so many advances in all aspects, from genetic representation 

to specialised genetic operators, that it is becoming increasingly complicated. Of course, 

developments in any fields stem equally from success as well as failures. Although proof-by- 

analogy should always be viewed with a healthy dose of scepticism, nature has been able to 

develop complex structures and behaviours using simple interaction rules and small building 

blocks. It is perhaps wise to draw lessons from this in future approaches to GA.
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A p p e n d i x  I: G r a y  C o d e  C o n v e r s i o n s

The conversion procedures from a standard binary code b = (bx b2 ...bi ...bn) to the binary- 

reflected Gray code g = (g, g 2 ... g, ... gn) and vice-versa are as given in Figure AI-1. Figure 

AI-2 lists the first non-negative integers and its binary and Gray code equivalents.

Binary-to-Gray
Begin

g, =*i 
for / = 2 to « , do

g, = ftM XOR b,
End

Gray-to-Binary
Begin

v = g,
ft, =v
for / = 2 to n , do

if g( = 1 then v = NOT v
b,=v

End

Figure AI-1 Conversion procedures for Binary-to-Gray and vice-versa.

Decimal Standard Binary Gray Code
0 000 000
1 001 001
2 010 Oil
3 Oil 010
4 100 110
5 101 111
6 110 101
7 111 100

Figure AI-2 Equivalent decimal, standard binary and Gray codes.
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A p p e n d ix  II: U n iq u e  S o l u t io n s  t o  t h e  B e n c h m a r k  
P late

Figure AII-1 shows all 128 unique optimum solutions found using GA, as outlined in Chapter 

5. Results are a combination of 10 independent runs, and are presented in two columns for 

compactness.

452/-456/454/04/45/-45/05]s
452/-450/454/04/-45/45/90S1S
452/-456/454/05/906]s
452/-456/454/06/90/452/-452]s
452/-456/454/06/905]s
452/-457/455/04/905]s
453/-456/453/0/902/02/906]s
453/-456/453/02/902/07]s
453/-456/453/03/902/06]s
-453/456/-453/0/90/03/906]s
-453/456/-453/02/90/02/906]s
-453/456/-453/02/90/08]s
45g/-458/07]s
-453/454/-455/454/07]s
-453/45s/-452/0 i o/903] s
-453/455/-452/0i i/902]s
-453/455/-452/0i3]s
-453/456/-453/05/90/0/-452/452]s
-453/456/-453/06/905]s
-453/453/90/-454/455/-45/04/902]s
-453/453/90/-455/455/04/902]s
-456/458/-452/07]s
-456/456/902/-452/452/05]s
-457/459/-452/05]s
45/-454/454/-45/07/904/45/-45]s
452M 55/453/08/905]s
453/-455/452/01 ,/-45/45]s
453/-455/452/0,2/90]s
453/-459/456/04/90]s
-458/458/06/90]s
-459/45i i/-452/90]s
-459/459/90s]s
454/-454/03/-456/456]s
455/-456/452/-45/09]s
455/-456/45/0/90/09]s

455/-456/45/0ii]s
455/-456/45/90/010]s
455/-456/45/902/09]s
45 s/_45 7/452/02/90/06] s
455/-457/452/09]s
455/-458/453/90/06]s
455/-455/0/45/-45/02/902/06]s
455/-455/0/-45/45/0i 0]s
456/-456/0n]s
456/-456/02/903/06]s
456/-456/02/909]s
456/-456/90/0,o]s
456/-456/902/0/-45/45/06]s
457/-459/452/05]s
457/-457/02/90/06] s
457/-457/909]s
458/-458/07]s
456/-456/90ii]s
-452/455/-453/02/90,,]s
-453/455/-452/90i,/45/-45]s
-453/456/-453/02/909]s
-453/456/-453/90i,]s
-453/457/-454/909]s
-453/453/0/453/-453/908/-45/45]s
-454/456/-452/90i i]s
-454/456/-452/909/45/-45]s
-454/454/902/452/-452/909]s
-455/457/-452/909]s
-456/456/90,i]s
-457/457/909]s
-45,i/45,,/90]s
-453/453/902/455/-455/03/45/-45]s
-454/456/-452/03/-453/454/-45]s
-454/456/-452/03/-453/453/902]s
-454/456/-452/04/-453/453/90]s
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-454/457/-453/04/903/-45 /45 ]s

-454/457/-453/04/905]s
-454/458/-454/03/904]s

-454/458M54/06/90JS
-454/4 5 n /-4 5 7/0]s
-454/454/02/-456/456/90]s

-454/454/902/454/-454/03/45 /-45 ]s

-454/454/902/454A454/03/-45 /45]s

-454/454/902/454/-454/0 5]s
-456/459/-453/03/45 /-45 ]s

-45 7/451 i/-454/90 ]s
453M 5 , i/458/9 0 ]s

-4 5 ,i/4 5 , i/90 ]s

-454/454/ 0/-456/457/ -45]s
-455/455/0/-456/456]s
-456/456/902/-45 /45 /905/-45 /45]s

90 /-45 ,o/4 5 io/902]s

90 /-4 5 ii/4 5 n ]s
-456/457/-45/04/9 0 5]s

-456/457/-45/909]s
-456/458/-452/90 /04/9 0 2]s

-456/458/-452/907]s
-456/459/-453/905]s
-456/456/90/454/-454/902]s

-456/456/90/-454/454/902]s

-456/456/902/454/-454/9 0 ]s

-457/457/90 /-453/454/-4 5 ]s

-457/457/90/-453/453/902]s

-457/457/907/-45 /45]s

-458/4 5 8/9 0 5/45 /-45 ]s

-458/4 5 8/907]s

45/-454/4 5 8/-4 5 5/0 5]s
45/-454/459/-456/0 /902]s

456/-458/453/-4 5 /0 5]s

456/-459/453/05]s
-453/459/-456/05]s

0/-453/4 5 8/-4 5 5/06]s
0/-453/459/-4 5 8/452]s

90/-452/4 5 7/-4 5 5/0 8]s

454/-455/45/03/455/-455]s
454/-454/03/-456/4563S
45 5/-456/45/0/453/-455/452]s

45 5/-457/452/0 /453/-4 5 3/02]s

-453/454/-45 2/45/03/-455/455]s
-453/455/-45 2/03/-455/455]s
-453/456/-453/903/08]s

-453/457/-455/45/07]s
-453/457/-454/0/453/-453/02]s

-453/457/-454/03/906JS
-453/457/-454/09JS
_453/4 5 7/_454/9 0 /0 /45 /-45 /05]s
-453/4 5 7/-454/9 0 /0 8]s

-453/457/-454/9 0 2/07]s

-453/457/-454/903/06JS
-453/45 8/-4 5 5/03/-452/452]s
-453/458/-4 5 5/07]s
-4 5 4/4 5 8/-4 5 5/4 5 /O5] s
-457/457/0 /9 0 8]s

Figure A II-1 List of 128 unique optima found for benchmark laminate problem in Chapter 5.
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A p p e n d i x  III: B u c k l i n g  M o d e s  f o r  L a m i n a t e  w i t h  5 
L o n g i t u d i n a l  V o i d s

Figure AIII-1 shows the two other contour plots of the non-critical buckling modes of the 

laminate with 5 longitudinal voids, as outlined in Chapter 5. The first shows the overall 

buckling mode, while the second is a local mode, both non-critical.
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Figure A III-1 Contour plots of non-critical buckling modes for laminate with 5 longitudinal voids problem in 
Chapter 5.
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A p p e n d ix  IV: I s o m e t r i c  P l o t s  o f  J3 P a n e l  B u c k l i n g

Figure AIV-1 shows the three isometric plots of the critical buckling modes of the best found 

solution for the J3 panel at load cases 1 to 3 respectively from top to bottom, as given in Table 

6-6. It is obvious that the governing modes are global for the first and last load case. The 

problem with using the VIPASA analytical model is the skewed nodal lines, which makes the 

simply-supported transverse ends inaccurate. In the second load case, however, the critical 

buckling is at shorter wavelengths and the results become more accurate since there is less 

skew.

Figure AIV-1 Isometric plots of the critical buckling modes of the best found solution for J3 panel. The plots 
are for load case (a) 1, (b), 2, and (c) 3 from Table 6-6.
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