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Abstract

Novel iterative and recursive schemes for the equalization of time-varying fre­

quency selective channels are proposed. Such doubly selective channels are shown to 

be common place in mobile communication systems, for example in second generation 

systems based on time division multiple access (TDMA) and so-called beyond third 

generation systems most probably utilizing orthogonal frequency division multiplex­

ing (OFDM).

A new maximum likelihood approach for the estimation of the complex multipath 

gains (MGs) and the real Doppler spreads (DSs) of a parametrically modelled doubly 

selective single input single output (SISO) channel is derived. Considerable com­

plexity reduction is achieved by exploiting the statistical properties of the training 

sequence in a TDMA system. The Cramer-Rao lower bound for the resulting estima­

tor is derived and simulation studies are employed to confirm the statistical efficiency 

of the scheme.

A similar estimation scheme is derived for the MGs and DSs in the context of a 

multiple input multiple output (MIMO) TDMA system. A computationally efficient 

recursive equalization scheme for both a SISO and MIMO TDMA system which ex­

ploits the estimated MGs and DSs is derived on the basis of repeated application of 

the matrix inversion lemma. Bit error rate (BER) simulations confirm the advantage 

of this scheme over equalizers which have limited knowledge of such parameters.

For OFDM transmission over a general random doubly selective SISO channel, the 

time selectivity is mitigated with an innovative relatively low complexity iterative



5

method. Equalization is in effect split into two stages: one which exploits the spar­

sity in the associated channel convolution matrix and a second which performs a 

posteriori detection of the frequency domain symbols. These two procedures interact 

in an iterative manner, exchanging information between the time and frequency do­

mains. Simulation studies show that the performance of the scheme approaches the 

matched filter bound when interleaving is also introduced to aid in decorrelation.

Finally, to overcome the peak to average power problem in conventional OFDM 

transmission, the iterative approach is extended for single carrier with cyclic pre­

fix (SCCP) systems. The resulting scheme has particularly low complexity and is 

shown by simulation to have robust performance.



6

A bbreviations and Acronym s

AML Approximate Maximum Likelihood

AMPS Advanced Mobile Phone System

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BW Band Width

CCM Channel Convolution Matrix

CDMA Code Division Multiple Access

CIR Channel Impulse Response

CP Cyclic Prefix

CRLB Cramer-Rao Lower Bound

CSI Channel State Information

DFE Decision Feedback Equalizer

DQPSK Differential Quadrature Phase Shift Keying

DS Doppler Shift

EDGE Enhanced Data rates for GSM Evolution

ETACS European Total Access Communication System

FDD Frequency Division Duplex

FDE Frequency Domain Equalization

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transform

FIR Finite Impulse Response

FIM Fisher Information Matrix

FO Frequency Offset

FRLS Fast-Recursive Least Squares
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GMSK Gaussian Minimum Shift Keying

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HSCSD High Speed Circuit Switched Data

IBI Inter-block Interference

IC Interference Canceller

ICI Inter-Carrier-Interference

iff If and only if

IFFT Inverse Fast Fourier Transform

IS-95 Interim Standard-95

ISI Inter-Symbol-Interference

ITU International Telecommunication Union

LS Least-Squares

LTE Linear Transversal Equalizer

LTI Linear-Time-Invariant

LTV Linear-Time-Variant

OFDM Orthogonal Frequency Division Multiplexing

MCM Multi-Carrier Modulation

MFB Match Filter Bound

MIMO Multiple Input and Multiple Output

MIP Multipath Intensity Profile

MG Multipath Gain

MLE Maximum Likelihood Estimator

MMSE Minimum Mean Square Error

MS Mobile Station

MSE Mean Square Error

MVUE Minimum Variance Unbiased Estimator

NTT Nippon Telephone and Telegraph System

OFDM Orthogonal Frequency Division Multiplexing

PDC Personnel or Pacific Digital Cellular
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PSK Phase Shift Keying

SCCP Single Carrier with Cyclic Prefix

SISO Single Input and Single Output

TD-SCDMA Time Division Synchronized Code Division Multiple Access

TDD Time Division Duplex

UMTS Universal Mobile Telecommunications System

UWB Ultra Wide Band

VV-CDMA Wide band Code Division Multiple Access

WSSUS Wide Sense Stationary Uncorrelated Scattering
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Operators

det(.) Determinant of a matrix

diag(.) Diagonal of matrix

E{.} Expectation

Re(.) Real Part of a Complex number

(.)T Transpose

(.)H Hermitian/Conjugate transposition

x  Estimated sample

|.| Absolute value

||.|| Euclidean norm

O  Schur-Hadamard Product

J~J Interleaver

x  Interleaved sample

O( N)  Order N
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Statem ent of Originality

As far as the author knows the majority of the work presented in chapter 3 to 6 

represents original contribution to the area of parameter estimation and equalization. 

The originality is partially supported by four journal and four conference papers. The 

most significant contributions are given below:-

1. In chapter 3, and [1] an Approximate Maximum Likelihood (AML) estimator 

for a single input and single output multipath channel with distinct frequency offsets 

is proposed. The AML estimator splits the L-dimensional maximization problem into 

L one dimensional maximization problems. In this scenario to compensate for the ef­

fects of multiple frequency offsets, structural movements of the matrices are exploited 

in the design of the Minimum Mean Squared Error (MMSE) equalizer, in particular, 

repeated application of the matrix inversion lemma yields a low complexity equalizer.

2. In chapter 4, the parameter estimation and equalization of single input single 

output channel is extended to Miltiple Input Multiple Output (MIMO) multipath 

and distinct frequency offsets channels, the related work is presented in [2,3].

3. In chapter 5 and [4-6], a new iterative equalization method for a doubly se­

lective Orthogonal Frequency Division Multiplexing (OFDM) channel is proposed. 

The proposed method exploits the sparsity of the channel convolution matrix to de­

sign a general MMSE equalizer. The transmitted time domain samples are estimated 

on the basis of interference cancellation. To cancel the interference the a posteriori 

mean values are found from the a posteriori mean values of frequency domain symbols.
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4. In chapter 6 and [7], iterative equalization of a single carrier cyclic prefix scheme 

is proposed, which also exploits the sparsity of the channel convolution matrix to 

find the general MMSE equalizer and estimator. In contrast to frequency domain 

equalization of single carrier cyclic prefix, this algorithm benefits from not requiring 

a fast Fourier and inverse fast Fourier transform at the receiver.
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Chapter 1

INTRODUCTION

The notion of mobile communication essentially began in 1980. Since then, it has 

undergone significant change and experienced enormous growth. The mobile sys­

tems introduced in the 1980s were based on analogue communication techniques and 

are commonly referred to as first generation systems, they only supported voice ser­

vices [8]. For first generation systems several standards were developed throughout 

the world such as Advanced Mobile Phone System (AMPS) in the United States, 

European Total Access Communications System (ETACS) in Europe and Nippon 

Telephone and Telegraph System (NTT) in Japan. The commonly used standards 

for first generation mobiles systems, throughout the world, and their key features are 

summarized in Table 1.1.

Region Europe North America Japan

ETACS AMPS NTT

Multiple access FDMA FDMA FDMA

Duplexing FDD FDD FDD

Down Link 935-960 MHz 869-894 MHz 870-885 MHz

Up Link 890-915 MHz 824-849 MHz 925-940 MHz

Channel Spacing 25 kHz 30 kHz 25 kHz

D ata rate 8 kbps 10 kbps 0.3 kbps

T able 1.1. Air interfaces and spectrum allocation in first generation mobile systems.

23
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In the 1990s digital transmission techniques were introduced and formed the second 

generation systems. They provided increased spectrum efficiency and higher quality of 

voice services than the first generation systems together with better data services [9]. 

The digital standards currently in use, such as Global System for Mobile commu­

nications (GSM) in Europe, Interim Standard-95 (IS-95) in the United States and 

Personnel or Pacific Digital Cellular (PDC) in Japan, are second generation systems. 

The most common standards used for second generation mobile systems in the world 

and their key features are summarized in Table 1.2.

Region Europe North America North America Japan

GSM TDMA (IS-54/136) IS-95 PDC

Multiple access TDMA TDMA CDMA TDMA

Duplexing FDD FDD FDD FDD

Modulation GMSK 7r/4 DQPSK QPSK/OQPSK tt/4  DQPSK

Down-link 935-960 MHz 869-894 MHz 869-894 MHz 810-826 MHz

Up-link 890-915 MHz 824-849 MHz 824-849 MHz 940-956 MHz

Channel spacing 200 kHz 30 kHz 1,250 kHz 25 kHz

Data/Chip rate 270.833 kbps 48.6 kbps 1.2288 Mcps 42 kbps

Table 1.2. Air interfaces and spectrum allocation for second generation mobile 

systems.

The initial second generation systems were originally designed for the delivery of only 

high quality voice services and their data handling capabilities were limited to several 

tens of kbps [10]. Therefore, for high data rates and more advance services, such as 

packet switched data, second generation systems were further upgraded and referred 

to as 2.5 generation systems. The three upgrade options for GSM include; Enhanced 

Data Rate for GSM Evolution (EDGE) that can provide data rates up to 500kbps 

within a GSM carrier spacing of 200kHz, General Packet Radio Services (GPRS), as 

the name implies, is a packet switch technique and High Speed Circuit Switched Data
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(HSCSD), which is a circuit switched technique that allows a single mobile user to 

use consecutive time slots in the GSM standard for high data rate applications [11]. 

EDGE and GPRS are also the upgrade options for IS-136, while the cdma2000 stan­

dard is the upgrade option for IS-95. [12].

In the 21st century, wireless mobile telephony is rapidly growing and providing new 

and improved multimedia services. High quality images and video will be transmitted 

and received; moreover, mobile telephony provides access to the web with high data 

rate requiring asymmetric access. Emerging requirements for high data rate services 

and better spectrum efficiency are the main drivers identified for the third gener­

ation mobile communication systems [9,13]. The International Telecommunication 

Union (ITU) describes third generation networks as IMT-2000 and prescribes wide­

band CDMA as the air interface. The main objectives of the IMT-2000 standard are 

summarized as [11,14]

• Data rate of 344 kbps for vehicular environment

• Data rate of 2 Mbps for indoor environment

•  Higher spectrum efficiency as compared to existing system

• High flexibility to introduce new services

Today’s research focuses on beyond third generation or fourth generation wireless 

systems, where mobile users may use portable computers. In the first phase the 

operating frequencies of fourth generation systems may be around 5.8GHz, and are 

likely to support [15]

• 2 Mbps for moving vehicles, and

• 2-600 Mbps for low mobility systems

This is the background to the evolution of mobile communication systems since 1980. 

To meet the demands for increased data rate services and improved spectrum effi-
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Region Europe North America China

UMTS CDMA-2000 TD-SCDMA

Multiple access W-CDMA MC-CDMA CDMA

Duplexing FDD/TDD FDD TDD

D ata Rate 2Mbps 2 Mbps 2 Mbps

Downlink 2110-2170MHz 1930-1990MHz 2010-2025MHz

Uplink 1920-1980MHz 1850-1910MHz 2010-2025MHz

Channel spacing 5MHz 5MHz 5MHz

Chip Rate 3.84Mcps 3.6864Mcps 1.28Mcps

Table 1.3. Expected air interfaces and spectrum allocation for third generation 

mobile systems.

ciency advanced digital signal processing techniques must be exploited at the physical 

layer [16], the heart of which is the radio channel between the transmitter and receiver.

1.1 Channel Modelling

In wireless mobile systems, communication is not normally line of sight, particularly 

in an urban environment; instead, the received signal consists of a large number of 

reflected, refracted and scattered waves. Therefore, the signal travels from the trans­

mitter to receiver via more than one path. Due to this multipath propagation, the 

transm itted signal arrives at the receiver at different time instances and with dif­

ferent amplitudes that may give rise to Inter-Symbol-Interference (ISI) [17]. An ISI 

producing channel is termed frequency selective. ISI is a fundamental limiting factor 

in the performance of high data rate communication, within the physical layer of a 

mobile communication system. If the channel is not changing significantly within the 

observation interval of time then the effects of ISI can be compensated for relatively 

easily by using an equalizer. In the noiseless case, an equalizer is designed such that 

the convolution of its impulse response with the channel impulse response should ide­
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ally be a Kronecker delta function [17]. Such an equalizer may require knowledge of 

the channel impulse response, which is not usually available. Hence, to estimate the 

channel impulse response, the transmitter is generally required to send training data, 

already known at the receiver. Indirect equalization techniques, such as adaptive do 

not require CSI, can also be employed. These techniques learn the channel or its 

inverse without estimating it [18].

On the other hand, if the frequency selective channel is time-varying (also called time 

selective), it is referred to as a doubly selective channel. Time selectivity of the chan­

nel degrades the Bit-Error-Rate (BER) performance and increases the computational 

complexity of conventional receivers [1,19]. However, time selectivity of the channel 

can be exploited to obtain time diversity benefit.

Therefore, the design of a relatively low complexity receiver that can provide signif­

icant improvement in BER performance over a conventional receiver in a frequency 

selective environment is the main motivation for this thesis. The causes of time 

variations in the channel are next discussed.

1.1.1 Sinusoidal time-varying channel

As previously discussed, from first generation to beyond third generation, the require­

ment for high data rates is continuously increasing. With the increase in data rate 

the operating frequency is also increasing. Mobility in the systems, at high operating 

frequencies yields significant Doppler Shifts (DSs). Therefore, even if in a given inter­

val of time the channel is not changing due to mobility, the DS may introduce time 

selectivity in the channel. Consequently, the assumption that the channel is constant, 

in a given interval of time, does not hold true and affect the BER performance of the 

receiver. In order to improve the BER performance of the receiver, the effects of the 

time selectivity of the channel due to DS must be cancelled. In most of the available 

literature [20-23], it is commonly considered that all multipaths have identical DSs 

and can be compensated for relatively easily prior to MLSE or adaptive equalization.
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However, the DS is defined as

fd =  “ “““ COS 6 (1.1.1)c
where ur , is the speed of the mobile station (MS) in m/s, f c is the carrier frequency in 

Hz, c is the velocity of light in m /s and 0 is the angle of arrival in radians. This equa­

tion shows that if the relative speed between the base station and MS is constant, then 

the DS will be a function of the angle of arrival. Therefore, when the DS is significant 

it is necessary to account for it from each angle of arrival or multipath, which is one 

of the main motivations of this thesis. For example, consider a mobile user in a fast 

moving vehicle with a speed of approximately 250 km /h and a carrier frequency of 4 

GHz. The DS at the base station for an arrival angle of zero degrees, is approximately 

1 kHz, whilst for an arrival angle of 60 degrees becomes 0.5kHz. This results in phase 

deviations of approximately 18 and 9 degrees respectively for both arrival angles, in 

every bit period, for a bit rate of 20 kbit/s, and distinct sinusoidal time variations into 

each multipath of the channel. In this scenario, it is difficult to compensate for the 

effects of DSs prior to equalization and that must be accounted for in equalizer design.

N um erica l E xam ple: In order to examine the benefits of accounting for the distinct 

DSs in equalizer design, the above mentioned scenario is simulated. In the first case, 

the receiver assumes the same DS from each multipath and cancels the effects of DS 

prior to equalization, which is a general type of equalization for frequency offset com­

pensation. In the second case, the receiver assumes distinct DSs from each multipath 

and accounts for them in the equalizer design. The BER performances of both cases 

are depicted in Figure 1.1. It can be noted that in the equalizer design accounting 

for distinct DSs from each multipath a better performance as compared to assuming 

identical DSs from each multipath is obtained. For example, at a fixed BER of 10“3, 

a 2 dB improvement in SNR is required by the receiver assuming a single DS.
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SNR

Figure 1.1. BER performance comparison of two receivers; one is assuming identical 

DS from each path and the second is accounting for multiple DSs from each multipath. 

For both simulations the length of the channel is kept equal to 2 and a 10 taps equalizer 

is used.

1.1.2 A general time-varying channel

In wireless mobile communications the channel is not stationary at all times, it may 

vary with respect to time. In wireless and wire-line communications data are trans­

mitted in frames and it is assumed that the channel is not changing during one 

frame at least [17]. But, sometimes the channel does not remain constant even in 

one frame. Therefore, to describe time varying nature of the channels a more general 

time-varying channel is modelled. Wide Sense Stationary and Uncorrelated Scattering 

(WSSUS) model is the most commonly used channel model in wireless communica­

tions [17,24,25]. In the WSSUS model the channel is characterized by its delay (or 

multipath) power spectrum and the scattering function.

When an impulse is transmitted over a multipath channel the received signal is a train 

of impulses. The range of locations of impulses with sufficient strength reveals the
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spreading of the channel. If the channel is time-varying then the complex strength of 

each impulse in the train will be time-varying in a random manner. For the WSSUS 

model the impulse response can be written as
L- 1

h(n;l) =  £ h ( n ; l„ ) S ( l - lP), (1.1.2)
p = 0

where h(n,l)  denotes the complex gain of the Zth path at time n. L and £(.) denote 

respectively the total number of paths, and the Kronecker delta function. Moreover, 

I e {lQ 11 • • • I I - i}, and l0 < h < • • • < I I - i- The auto-correlation of the channel is 

given by

E {h (n i ; h)h*(n2; Z2)} = rhk(ni -  n2; h -  l2) (1.1.3)

where (.)* denotes the complex conjugate operator. Since, the multipaths are uncor­

related

E{h{n\\  Zi)/i*(n2; Z2)} = rhh(nx -  n2; Zi)6(Zi ~ h), (1-1.4)

and can be decomposed into time and multipath auto-correlation functions as,

rhh(n i -  n2 'J) = rtt(m -  n2Kp(0> (1.1.5)

where rtt{nx — n2) and r (I) are respectively the auto-correlation of the Zth path with

respect to time and the auto-correlation of the channel (assuming time stationarity) 

with respect to multipath which is also called the Multipath Intensity Profile (MIP) 

[17].

Exam ple: For a Rayleigh fading channel, h{n, /) is a white Gaussian random variable 

with zero mean and of is the variance of the Zth multipath. Moreover,

h(n, /)|/=o,i,...,l-i are independent. Therefore, for a Rayleigh fading channel

rtt(nl -  n2) = 0 if rii -  n2 ±  0 (1.1.6)

=  1 if n ! - n 2 = 0 (1.1.7)

and rPP(0 = (1.1.8)
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F ig u re  1.2. Time variations in the amplitudes of two multipaths of a Rayleigh fading 

channel.
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F igu re  1.3. Time variations in the amplitudes of two multipaths of a Rayleigh fading 

channel based on Jakes’ model.
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If the coefficients h(n,l)  are taken from the classical Jakes’ model [26] then

r ft(ni -  n2) = JQ [27tf d{ni -  n2)\ if n x -  n2 ±  0 (1.1.9)

=  1 if n\ — n2 =  0 (1.1.10)

and r „P(0 =

where J G( ) denotes the zeroth order Bessel function of the first kind and f d is the 

normalized DS. In Figures 1.2 and 1.3, the envelopes of a two multipath Rayleigh 

fading and a Rayleigh fading channel based on Jakes’ model are plotted with respect 

to time. These plots confirm the highly time-varying nature of such channels. The 

time width for which the MIP is not diminishingly small defines the spreading of the 

channel. If the spreading of the channel is Ts seconds then the coherence bandwidth 

of the channel can be defined as [27],

(b h O* = T  (m u )
3

The relationship between the MIP, r ^ l ) ,  and its frequency spectrum, Rpp(/), is 

shown in Figure 1.4

Fourier transform

Inverse Fourier transform

Figure 1.4. M ultipath intensity profile and corresponding frequency domain repre­

sentation.

1.2 Channel Classification

The MIP helps to describe the nature of the channel. A channel is said to be frequency 

flat or non selective if within the bandwidth, B W ,  occupied by the transmitted signal
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the amplitude response of Rpp(f) is constant. In the time domain, it can be said that 

the spreading time, Ts, is less than the symbol period, T. Flat fading does not 

introduce ISI. Therefore, such a channel satisfies

Ts «  T. (1.2.1)

On the other hand, a channel is said to be frequency selective if within the bandwidth, 

B W , occupied by the transmitted signal, the amplitude response Rpp(f) is not flat for

the entire bandwidth of the transmitted signal. Hence, each frequency component of

the signal is amplified and phase shifted differently. Here, the multipath propagation 

spreads the transmitted signal over an interval of time which is longer than the symbol 

period, which can cause ISI. For frequency selective fading the channel satisfies

Ts »  T  (1.2.2)

i.e. the spreading of one symbol by the channel overlaps its neighbors.

1.3 Outline of the Thesis

O verview : This thesis proposes relatively low complexity equalization methods for 

time-varying frequency selective channels for communication systems that are based 

on Time Division Multiple Access (TDMA), Multiple Input Multiple Output (MIMO), 

Orthogonal Frequency Division Multiplexing (OFDM) and Single Carrier with Cyclic 

Prefix (SCCP) technologies. In the first two contribution chapters (chapters 3 and 4), 

the time variations in the multipaths of the channels are sinusoidal, while, in last two 

contribution chapters (chapters 3 and 4), a more general and realistic time-varying 

multipath channel is considered. This evolution corresponds to my period of research 

study. The following sub-sections review briefly what can be found in each of the five 

contribution chapters.

C h a p te r  3 studies parameter estimation and equalization for a Single Input Single 

Output (SISO), TDMA based communication system, such as GSM, where it is as­

sumed that each multipath of the channel has distinct DS and thereby makes the
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problem different from the identical DS problem. Here, unlike the identical DS prob­

lem [20,28,29], the distinct DSs cannot be compensated for prior to equalization and 

must be accounted for in equalization. In order to design an equalizer the complex 

Multipath Gains (MGs) and DSs are required. Presence of the distinct DSs converts 

the estimation of these parameters into a complicated L +  1 dimensional optimization 

problem, where L is the length of the channel. Therefore, in order to estimate the 

MGs and DSs, the correlation property of the transmitted training signal sequence is 

exploited which thereby splits the L +  1 dimensional estimation problem into L +  1 

one-dimensional problems. A maximum likelihood estimation approach is used to find 

the complex MGs and DSs. Moreover, to estimate the DSs the proposed algorithm 

does not require explicit knowledge of the MGs of the channel but requires knowledge 

of the support L of the channel. Then, to assess the performances of the proposed 

estimators the benchmark Cramer Rao lower bound (CRLB) for DSs and MGs [30] 

is derived.

As distinct DSs introduce time selectivity into the channel, adaptive and blind adap­

tive equalizers yield poor BER performance as the equalizer taps need to be up­

dated after every symbol interval. Further, it has been shown that the conventional 

minimum mean square error (MMSE) equalizer is computationally cumbersome as 

the effective channel convolution matrix (CCM) changes deterministically between 

symbols, due to the multiple DSs. By exploiting the structural property of these 

variations, and using multiple application of the matrix inversion lemma, a compu­

tationally efficient recursive algorithm for the equalizer design is proposed.

C h a p te r  4 extends the work presented in chapter 3 to MIMO frequency selective 

channels with each multipath having distinct DS. The MIMO technology uses mul­

tiple antennas at both the transmit and the receive sides to obtain spatial diversity. 

Recent research in communication theory has shown that large gains in diversity, ca­

pacity and reliability of communications over wireless channels could be achieved by 

exploiting such spatial diversity and will play a key role in future high rate wireless
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communications provided there is rich scattering environment [31,32]. The parameter 

estimation for flat fading channels in MIMO is studied in [33]. In this chapter the 

parameters in a MIMO system, allowing for a frequency selective channel between 

each transmit and receive antenna and each multipath, possibly having distinct DSs, 

are estimated. The training signals transmitted by all the antennas are assumed to be 

spatially and temporally uncorrelated. Therefore, by exploiting this property, MGs 

and DSs are estimated. In order to assess the performances of the estimators the 

benchmark CRLB is derived and used to compare the performances of the estima­

tors.

Again, as in chapter 3, by exploiting the structural property of the variations in the 

CCM in this case, the computationally efficient recursive algorithm reduces the di­

mension of the matrix to find the inverse of the matrix that is needed to find the 

equalizer coefficient values from t i r M  x  t i r M  to t l r  x  t i r ,  where h r  is the number of 

receive antennas and M  is the number of equalizer taps, as addressed in [2,3]. 

C h a p te r  5 studies the equalization of a general time-varying channel for an OFDM 

based system. Here in contrast to previous work, each multipath of the channel is 

randomly time varying. For this scenario the approach discussed in chapters 3 to 4 

can not be applied, since the CCM does not change deterministically. To combat the 

effects of time selectivity of the channel in an OFDM system, Schniter in [19] pre- 

processed the received signal by multiplying with window coefficients that render the 

Inter-Carrier-Interference (ICI) response sparse, and thereby squeeze the significant 

coefficients into the 2D +  1 central diagonals of an ICI matrix. Here, it is found that 

D = fdN  4-1, where /<* is the DS in the carrier frequency and N  is the number of car­

riers used to transmit an OFDM symbol. The complexity of this algorithm increases 

as the DS increases. In contrast to this work, examining the time domain model of 

the received OFDM signal reveals that the CCM is already sparse and has similar 

structure to that after preprocessing of the received samples in [19]. In this case, the 

number of non-zero elements in a row depends on the length of channel taps L, which
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for a wireless channel is typically small, for example 5. Therefore, in this chapter, 

a new low complexity iterative method is addressed to compensate for the effects of 

time selectivity of the channel. The method splits the equalization into two stages. 

The first stage exploits the sparsity present in the CCM to estimate the time domain 

transmitted samples and the second stage performs the a posteriori detection of the 

frequency domain symbols. Both the stages exchange their information iteratively. 

The performance of the algorithm is compared with the match filter bound. 

C h a p te r  6 studies the equalization of a single carrier with cyclic prefix (SCCP) 

scheme in a time varying frequency selective channel. A SCCP is an alternative to 

OFDM. OFDM is an attractive technique for transmission over frequency selective 

channels since it allows low complexity channel equalization at the receiver. However, 

OFDM requires an expensive and efficient transmitter amplifier at the front end, due 

to high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SCCP) 

is a closely related transmission scheme that possesses most of the benefits of OFDM 

but does not require an expensive linear amplifier that can operate linearly over a 

wide range of signal amplitudes. Although similar to OFDM, in a time invariant mul­

tipath environment an SCCP system is very robust, it is sensitive to the time selective 

fading characteristics of the wireless channel. Time selectivity of the channel disturbs 

the orthogonality of the channel matrix, thereby degrading the system performance 

significantly and increasing the computational complexity of the receiver. On the 

other hand, time selectivity introduces temporal diversity that can be exploited to 

improve the performance. In this chapter, working with time domain samples, a low 

complexity iterative algorithm is proposed to compensate for the effects of time selec­

tivity of the channel, which exploits the sparsity present in the CCM and a Maximum 

a Posteriori (MAP) detection in an iterative fashion, as in [7].

Finally, in chapter C h ap te r 7 conclusions are drawn and future research directions 

are suggested.

Throughout the thesis, MATLAB is used to simulate all the problems.



Chapter 2

PARAMETER ESTIMATION AND 

EQUALIZATION

In many radio communication systems such as wireless mobile, wire-line telephone and 

optical transmission there may be more than one path, also called multipaths, between 

the transm itter and the receiver. In mobile telephony these multipaths may be due 

to the reflections and refractions from the buildings and other obstacles between the 

transmitter and receiver [17]. In wireline telephony that may be due to the dispersive 

nature of the wires [34,35]. Multipaths may give rise to ISI, which limits high data 

rate transmission. Therefore, in a multipath environment to detect correctly the 

transmitted data, generally, a complex equalizer is designed that sometimes requires 

the Channel Impulse Response (CIR) i.e. the complex channel MGs. In order to 

estimate the CIR, generally, a training sequence is embedded in the transmitted 

signal sequence. In this chapter, a brief background to the technology of equalization 

and parameter estimation is presented.

2.1 Basic Baseband Model of a Communication System

Almost all baseband digital communication systems consist of three basic building 

blocks, the transmitter, the channel and the equalizer (receiver) as shown in Figure 

2.1. In the figure, x(n ) is the transmitted symbol, {/i(n)} is the MGs sequence, 

v(n) is the additive noise sample, r(n) is the received sample, {ic(n)} are equalizer

37
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coefficients, x(n)  is the estimated signal after equalization and n is the discrete time 

index.

m

x(n)x(n) Equalizer

{w<*)}
Channel

{*(<■)}Transmitter

Figure 2.1. Baseband model of a digital communication system, consisting of the 

transmitter, channel and equalizer (receiver).

In the basic baseband model of a digital communication system, the transmitter is one 

of the most important parts of a digital communication system. The main function 

of the transm itter is to convert the raw data into an appropriate form suitable for 

transmission, e.g., the voice signal is sampled and encoded into binary signals to 

transmit. The original band of frequencies occupied by the encoded binary signals is 

called a baseband signal. The baseband signal has wide frequency spectrum centered 

at zero frequency, which is bandlimited before transmission with a filter called a 

transmit filter. Usually the binary signals contain low frequencies, which axe difficult 

to propagate. Hence, signals centered around higher frequencies are preferred. The 

second function of the transmitter is therefore to shift the frequency spectrum of 

the bandlimited signal to some higher frequency centered at f c called the carrier 

frequency. To shift the frequency spectrum to a higher frequency, the bandlimited 

signal is multiplied by the high frequency sinusoidal signal of frequency f c [17]. The 

output signal is termed as the passband and the mapping of the baseband signal into 

the passband signal is called modulation.

The transmitted signal passes through the channel that can be considered as a Finite 

Impulse Response (FIR) filter and arrives at the receiver. The received signal is again 

passed through a filter called the receive filter matched to the frequency band of the 

transmitter. In general, the effects of the transmit filter, the transmission medium 

and the receive filter are included in the channel model h(n) with finite time support.
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Therefore, if the support of the modelled channel is L and the sampling rate at the 

receiver is equal to the symbol transmission rate then the received signal can be 

written as
L - 1

r(n) = h(l)x(n — I) 4- v(n) (2-1.1)
1=0

Before proceeding, the following assumptions are made that are imposed throughout 

this thesis.

•  The transmitted symbols {x(n)} are independently and identically distributed 

(i.i.d).

• The additive noise samples (u(n)} are zero mean white circularly Gaussian with 

variance cr„.

• The channel is an FIR filter of support L.

Let the multipath component h(m) possess the highest relative amplitude in the 

sequence {/i(n)}, this multipath is termed as main multipath, multipaths before and 

after the main multipath are respectively called pre- and post-cursors. The energy 

of the wanted signal is conveyed mainly by the contribution of the main path. In 

addition to that the received signal is also contributed to by the convolution of pre- 

and post-cursors. Therefore, the received signal in (2.1.1) can be written as

L— 1
r(n) =  h(m)x(n  — m) +  ^ ~^h(l)x(n — /) +  v (n)i (2-1-2)

/=o
l^m

the term "Ya I q h{l)x{n — I) is the interference from the other symbols due to pre- and
l^m

post-cursers and is called ISI. In the noiseless case, if h(m) is known then the decision 

device at the receiver may reconstruct the transmitted signal x(n) iff

L - 1

|fc(m)| > 5 > ( 0 I .  (2.1.3)
1=0
l^m
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however, if this condition is not satisfied an error may occur. The ISI effects can 

be cancelled by employing an equalizer that accumulates the energy transmitted for 

x(n), reduces the energy from other transmitted symbols and produces a decision 

variable, x(n).  Ideally,

x(n) = x(n) +  i/(n) (2-1.4)

where v{n) is additive colored noise with the same variance as v(n). If equalization 

is effective, a decision device can determine x(n) with the same reliability as if the 

channel did not introduce any ISI. If {u;(n)} is the impulse response sequence of the 

equalizer then ideally in the absence of additive noise the following identity will hold

h(n )*w (n ) =  5(n) (2.1.5)

=  1 n = 0 

=  0 0

although in practice a non zero delay and complex amplitude scaling can be tolerated.

2.2 Equalization Techniques

Equalization techniques have been developed since the 1960s/70s, [36-38], and the 

research in this area is continuously evolving to provide better performance. One of 

the reason for this on going research is due to the ever increasing demands for higher 

capacity and efficient bandwidth utilization of the channel. Channel equalization 

techniques to mitigate the effects of bandlimited time dispersive channel may be 

subdivided into two general types linear and nonlinear equalization. Furthermore, 

associated with each type of equalizer is one or more structures for implementing the 

equalizer. In this chapter, the most commonly used equalizers in practice are briefly 

reviewed.
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r(n)

w(0)( X) w<l)(X 2)(X) w(A/-1)( X

Figure 2.2. Linear Transversal Equalizer 

2.2.1 Linear Transversal Equalization

A basic structure of a Linear Transversal Equalizer (LTE) is shown in Figure 2.2. In 

such equalizers the current and past values of the received signal are linearly weighted 

by equalizer coefficients, w(l), and assumed to produce the estimate of the transmitted 

signal as an output that can be written as [17]

M-l
x(n) =  w*(l)r(n — I) = w Hr (n) (2.2.1)

1=0

where (.)H denotes the conjugate transpose operation, M  is the length of equalizer 

taps, w = [w(0) rc(l) ••• w(M — 1)]T is the tap weight vector, (.)T denotes

the transpose operation and r(n) =  [r(n) r(n — 1) • • • r(n  -  M l  1)]T is the

received signal vector to estimate x(n). The equalizer coefficients may be chosen to 

force the samples of the combined channel and equalizer impulse response to zero at 

all other than one of the T-spaced instances. Such an equalizer is termed zero forcing, 

clearly, when determining the equalizer tap weights this criterion neglects the effect 

of noise altogether [18]. A more robust criterion called the Minimum Mean Square 

Error (MMSE) is very commonly used. Here, the equalizer tap weights are chosen to 

minimize the mean squared error between the transmitted symbol and the output, 

the sum of all squares of all terms plus the power of the noise [18,36]. The cost

function for this criterion can be written as
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J(w) = E{\x(n) — x(n  — d) |2}

=  E{\v/Hr(n) — x(n — d) |2}, (2 .2 .2 )

to find the filter tap weights, the minimization of this cost function with respect to 

w yields the equalizer tap weight vector

w =  (HH" + <#*,) 1 Hij.

Where

H =

(2.2.3)

ho 0 0 0

hi h0 0 0 0

0 0

h i -1 hi ho 0

0 hL-i h0

M  x (A/ +  L -  2)

and id is the dth column vector of an identity matrix of size (M + L — 2) x (M + 

L — 2) and defines the delay in estimating the transmitted symbol. If the values 

of the channel impulse response (CIR) at the sampling instances are known, the M  

coefficients of the zero forcing and MMSE equalizer can be obtained from (2.2.3).

An LTE does not perform well in channels with deep spectral nulls in their frequency 

response characteristics [39]. In an attempt to compensate for channel distortion 

the LTE places a large gain in that null region, and as a consequence, significantly 

increases the noise in the received signal. Non-linear equalizers are, however, superior 

to linear equalizers in applications where the channel has deep nulls or distortion is 

too severe for an LTE.

2.2.2 Non-Linear Equalization

There are two very effective nonlinear equalization techniques that have been de­

veloped over the past three decades; the first one is maximum likelihood sequence
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estimation and the second is decision feedback equalization [39]. In the following, the 

key features of each are briefly described.

a. M axim um  Likelihood Sequence Detection: Maximum Likelihood Sequence 

Estimator (MLSE) was first proposed by Forney [40] in 1978, it is an optimal equalizer 

in the sense that it minimizes the probability of sequence error. In MLSE a dynamic 

programming algorithm known as the Viterbi algorithm is used to determine in a com­

putationally efficient manner the most likely transmitted sequence from the received 

noisy and ISI-corrupted sequence [17,41]. Because the Viterbi decoding algorithm is 

the way in which the MLSE equalizer is implemented, the equalizer is often referred 

to as the Viterbi equalizer. The MLSE equalizer tests all possible data sequences, 

rather than decoding each received symbol by itself, and chooses the data sequence 

that is the most probable in all combinations. Therefore, for a memoryless channel, 

if p(r; c) denotes the conditional probability of receiving r, when code vector c cor­

responding to sequence {x(n)} is transmitted. Then, the likelihood function, p(r;c), 

can be written as

1  "  | r ( n ) - x ( n ) | “

P{r;c) =  ( ^ ] «  I K  *■ ■ <2-2-4)
v vJ n = l

The MLSE chooses the estimate vector, c, for which the likelihood function is max­

imum. In GSM, the MLSE is often used to mitigate the effects of the channel at 

the receiver and to achieve optimal performance [42]. The GSM system is required 

to mitigate the signal dispersion of approximately 15 — 20^s and the bit duration in 

GSM system is 3.69/xs [43]. Thus the memory of the channel is 4 — 6 bit intervals 

long. For channels with memory the likelihood function to maximize can be written 

as

(2.2.5)
1 W n = l

where xn =  [x(n) x (n — 1) ••• x (n - L + l ) ] T and h = [h(0) h( 1) ••• h(L— 1)]T. The 

MLSE solution is to maximize the likelihood function jointly over the CIR sequence,
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{/i(n)}, and code vector c corresponding to the transmitted sequence (rr(n)}. The 

main drawback of the MLSE is its search complexity, measured in number of states, 

which increases exponentially with the channel support and large constellation points 

in the modulation, such as 8PSK or 16PSK schemes. Let M  be the order of modula­

tion and L the support of the channel then the number of equalizer states will be M L.

b. D ecision Feedback Equalization: A basic structure of a Decision Feedback 

Equalizer (DFE) is shown in Figure 2.3. It is a nonlinear equalizer, which is widely 

used in situations where the ISI is very high [38]. It exploits the already detected 

symbols to cancel the ISI by feeding them back. As shown in the figure, the equalized 

signal is the sum of the outputs of the forward and feedback filters.

Decision Device
Feed Forward Filter 

{ *1")}

Feedback Filter 

{?(")}

Figure 2.3. A basic structure of a DFE with forward and feedback filters.

The forward filter is just like the LTE. Decisions made on the equalized signals are 

fedback via a second LTE. The idea behind the decision feedback equalization ap­

proach is that if the previous or past symbols are known then in current decision the 

ISI contribution of these symbols can be removed by subtracting past symbols with 

appropriate weighting from the equalizer output. The combined output of a forward 

and feedback filter can be written as
Nj-l Nb

y(n ) =  w(k)r(n — k) — q(l)x(n — I) = w Hr (n) — q //x(n), (2.2.6)
k=0 1=1

which is quantized into a hard decision by a nonlinear decision device

x(n) = sign[j/(n)] (2.2.7)
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where w = [w(0) w(l)  • • • w(Nf — 1)]T is the forward filter tap weight vector 

and q = [ q(l) q{2) • • • q(Nb) ]r  is the feedback tap weight vector. The vectors

w and q are chosen to minimize jointly the minimum mean square error

J(w ,q) = E{\y(n) -  x(n)\2} (2.2.8)

=  E  {\wHr(n) — q H-k(n) — x(n)\2} (2.2.9)

If the CCM is defined by

H  = H U +  H C, (2.2.10)

where H u =  [ hi h 2 • • • h* | 0 • • • 0 ] and H c =  [ 0 • • ■ 0 | h^+i • • • h v - i  ] are 

respectively referred to uncancelled and cancelled symbols and h* is the A;th column 

of CCM H. Then the expression for forward and feedback tap weights can be written 

as [44,45]

w =  R ; 1h* (2.2.11)

q = H "w (2.2.12)

where R t, = (HuH « + < # ). The drawback of the DFE is that, at low SNR ratios, the 

already detected symbols may have higher probability of errors and when a particular 

incorrect decision is fed back, the DFE output reflects this error during the next few 

symbols due to incorrect decision on the feedback delay line. This phenomenon 

is called error propagation. It has been shown [18] that the DFE nearly always 

outperforms an LTE of equivalent complexity and offers ISI cancellation with reduced 

noise enhancement, hence it provides better BER performance as compared to an 

LTE [46,47].

2.2.3 Iterative Equalization based on Interference Cancellation

Iterative equalizers work on a similar principle to the DFE, in a way that the pre­

viously estimated symbols are fedback to cancel the interference caused by them in
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current decisions [17]. In DFEs, previously estimated symbols are fedback and de­

cision on current symbol is made only once. However, in iterative equalization the 

previously estimated symbols are fedback and decisions on the current symbol are 

made more than once. In iterative methods, once the estimation process is com­

pleted, it is started again to obtain more accurate estimates. Recalling (2.1.4), the 

received signal can be written as

The energy for x(n) is received in L samples {r(n ),r(n  4- 1), ...,r(n  4- L — 1)}. An 

interference canceller (IC) can be used to collects all the energy for x(n ) into a single 

sample as

From (2.2.14) it can be noted that x{n) is interfered by {x(n — L 4- 1 )1x(n — L 4- 

2 ) , . . . ,  x(n  — 1), x(n  4 -1 ) ,. . . ,  x(n  4- L — 1)}. If Channel State Information (CSI) and 

the sequence {x(/)/^n|} is known then ISI can be completely eliminated, therefore

In (2.2.15) u(n) is a coloured noise with the same variance An IC requires the 

knowledge of {x{n — L + 1 ),x(n — L 4- 2 ) ,... ,x (n  — 1)} that are the past decisions,

L —l

(2.2.13)

L - l

x(n) = h*(l)r(n 4 -1)
1=0

L - l  L - lL - l

x(n) = x(n) 4- q*(k)x{n 4- k) 4- q(k)x(n — k) + u(n) (2.2.14)

where
k = l

q(k) = h(l)h*(l -  k)
l =k
L - l

u (n ) = h*(k)v(n 4- k )
k=o

L - l L - l

x(n)ic = &{n) — q*{k)x(n 4- k) — q(k)x(n — k)
k= 1

= x{n) 4- u{n) (2.2.15)
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an LTE can be used to provide these decisions. On the other hand, {x(n 4-1 ),x(n  4- 

2 ) ,. . .  , x(n 4- L — 1)} belong to the future decisions. Iterative methods tackle this 

problem by assuming no knowledge in the first iteration about the future decisions 

and estimate all the symbols, on this basis the estimate is less accurate. In the 

next iteration the iterative methods use the information about the future decision 

obtained in the first iteration to estimate the current symbols, which are likely to 

be more accurate as compared to the first iteration. This way after each iteration 

more and more accurate estimates are obtained. To detect the transmitted signals, 

the iterative interference cancellation is performed in chapters 5 and 6.

2.2.4 Adaptive Equalization

The channel equalization techniques mentioned in the previous section require the 

knowledge of CIR that is usually not known at the receiver and varies with time. For 

optimal performance, these equalizers should track to the time variations in the CIR. 

An equalizer that tracks the CIR variations and updates the equalizer tap weights 

accordingly is called an adaptive equalizer. Adaptive equalizers usually do not require 

the explicit CIR knowledge. However, during the training period a known signal is 

transmitted and a synchronized version of this training signal is generated at the 

receiver to find the equalizer coefficient values [18,38]. At the end of the training 

period the optimal equalizer tap weights are continually updated. Adaptive equalizers 

can generally be classified into three categories. The first one involves the steepest 

descent methods [36], the second method incorporates the stochastic gradient method, 

also known as Least Mean Square (LMS) that was widely documented by Widrow [48]. 

The last one incorporates the Least-Squares (LS) algorithms. Among all adaptive 

algorithms the LMS algorithm is the most commonly used, for which the tap weight 

vector w is recursively estimated as follows

w(n 4- 1) =  w(n) + /ie(n)r(n), (2.2.16)
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where w(n) = [ w0(n) w\(n ) ••• i(n) ]T is the tap weight vector estimated

at time index n, /x is the step size, e(n) =  d(n) — y(n) is the error between the trans­

mitted and decoded signal at the output of an adaptive equalizer at time n, d{n) is 

the training signal and y{n) =  w H(n)r(n).

An adaptive equalizer can only track small variations in the channel. If the channel 

is fast time varying then the adaptive equalizer can not track the channel variations 

that degrade BER performance of the receiver, particularly, when higher constella­

tion points modulation schemes are used [1]. Therefore, in fast time varying channels 

conventional block based equalization schemes have to be used that generally require 

explicit estimation of the channel parameters.

The efficient estimation of channel parameters is very important to decode the trans­

mitted data accurately. Therefore, before continuing to the estimation techniques to 

design an estimator, it is very important to know wether the estimator being designed 

is unbiased or biased and if it is unbiased what is its variance about the true value. 

An estimator is said to be unbiased iff

E{9} = 6, a < 9  < b  (2.2.17)

where a and b represent the end values of an interval that the unknown parameter, 

9, can take on. On the other hand an estimator is said to be biased if

E{9} = 9 - b ( 9 )  (2.2.18)

where b{9) ^  0 is the bias in estimation.

2.3 Cramer Rao Lower Bound

To assess the performance of an unbiased estimator to have a lower bound on its 

variance is very useful. If an estimator attains this bound for every value of unknown 

parameter, 9, to be estimated, then, it is termed the Minimum Variance Unbiased 

(MVU) estimator. This lower bound provides the impossibility of determining an
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estimator, having lower variance than the bound. Among various variance bounds 

the Cramer Rao Lower Bound (CRLB) is the easiest to find and most commonly used 

in practice. The theory of the CRLB allows the determination of the MVU estimator, 

if it exist. If 9 is the estimator of 9, then

aj{9) > CRLB*(0) (2.3.1)

where crj(0) represent the variance of the estimator, 9, that is the best that can be 

expected to be done with an unbiased estimator. In order to find the variance of an 

unbiased estimator, let us suppose an unbiased estimator, 9 of a scalar parameter 9. 

Then it can be written as

/
OO

8p(r;6)dr = e (2.3.2)
■oo

where r  represents the N  sample receive vector. The regularity condition is

£ j a i n g ^ ) j  =  0 V 9  (2 33)

where the £{.} is evaluated with respect to p{r\9). From (2.3.3) it can be written as

/.

P(r-,0)d- ^ l d r  =  0 (2.3.4)
-oo  

oo

-oo
d f°° <91J  j ( r ; 9 ) d r = -  = 0 (2.3.6)
30 ,-00

Hence, the regularity condition holds true for every value of 9. Differentiation of 

(2.3.2) with respect to 9 yields

-oo

Note that

i L§p{r; e)dt = L =1 (237)
31np(r; 9) _  I dp(r; 9)

d9 p(r; 9) d9 [ }
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Therefore, using this result (2.3.7) can be written as

J j ~

Equation (2.3.4) can be written as

=  0 (2.3.10)

Subtracting (2.3.10) from (2.3.9) yields

j T  (6 -  e) dlnp9 ([ ' e)p(v, 6)dv = 1. (2.3.11)

The Cauchy Schwartz inequality is defined as

u;(r)p(r)/i(r)dr^ < J  w(r)g2(r)dr J  w(r)h2(r)dr, provided w(r) > 0 (2.3.12)

and equality holds when p(r) =  c h(r), where c is a scalar and not a function of r.

Define,

w(r) =  p(r; 6) ,

9( r) =

h{ r) =

g ( r ) = ( § - 0) ,  
<91np(r; 6)

d6

Squaring (2.3.11) and using the Cauchy Schwartz inequality [30], it can be written as

(£<* - s /*(» -

1 < g { ( « - » ) l ) ^ { ( a '“ * ;'>)) ’ }  P.3.13)

where E ^ 0  — 6)2 j- is the definition of the variance of an estimator, 6, therefore

°i(9) ̂  —r.---------- n r -  (2.3.14)
E
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In this expression for variance, the expected value of a square term, in the denomi­

nator, is to be found. However, it is more convenient to find the expected value of 

a unity power term. Therefore, by differentiating (2.3.4) with respect to 0 the unity 

power equivalent of this square term can be found as

(2.3.15)

/
/ oo 

•oo, (Mpti ( 2 3 , 6 )

/ > » >  ( ^ )  (33 .3 .

4 ( ^ ) 1  ( 2 3 “ >

Therefore, the variance of the estimator can be written as

<r?(0) > --------------  ,1- (2.3.19)
°K>-

Equality is the so called CRLB and the condition for equality is

=  ;< * - « )  (2-3-20)

where c is a scalar constant whose value may depend on 6. Therefore, this equation

implies that if the log-likelihood function can be written in this form then 0 will be

the MVU estimator. By differentiating (2.3.20) again the value of c(6) can be found 

as

a " l n P M )  (2-3-2!)

(2.3.22)

d6 d0 dO \c(6)
d2lnp(r;0) 1

dd2 =  ~ ^ 0 )

c(6) =  r  (2.3.23)
- E

Therefore, if (2.3.20) can be written in general form
<91np(r; 6)

dO = 1(6) (g(r) -  6) , (2.3.24)
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then g(r) is the MVU estimator. The 1(6) = and is termed the Fisher information 

[30]. The CRLB derived in this section can easily be extended for vector parameters 

and will be used throughout the thesis to assess the performance of the estimators.

2.4 Channel Parameter Estimation

Generally, the parameter estimation in wireless channels includes the estimation of 

channel MGs, Frequency Offsets (FOs), phase shift and synchronization pulses. In 

this thesis, only the estimation of MGs and FOs is discussed and the remainder of the 

parameters are assumed to be known. Channel parameter estimation can be classified 

into two broad categories, supervised and non-supervised or blind.

2.4.1 Supervised Parameter Estimation

Supervised or training data assisted (TDA) is a practical parameter estimation tech­

nique in digital mobile communications, it can provide high performance in a fading 

environment with large constellations and it has a simple implementation [17,49,50]. 

Burst digital communication, where the data are transmitted in frames, is used in 

various wireless communications systems, such as TDMA, CDMA, and OFDMA. In 

the TDA parameter estimation technique a training signal sequence is embedded in­

side the data frames and is more suitable for applications requiring fast and reliable 

parameter estimation [21,51]. In the GSM frame structure, for example, the middle 

26 bits in a time slot are dedicated for channel estimation as shown in Figure 2.4. 

Nevertheless, this method reduces the effective channel transmission rate as these 

extra bits do not contain useful data information bits. TDA parameter estimation 

can further be classified into two more categories, parametric, where the sample data 

follows a particular probability distribution, and non parametric, where the sample 

data does not follow any probability distribution. In the following the parametric and 

non-parametric approaches are briefly described.



Section 2.4. Channel Param eter Estim ation 53

Frame -  4 .6 l5 iru

TSO TSI i s : TS3 TS4 TS5 TS6 TS7

TSO: T im e Slot 0 
F: Flag 
G: G aurd

Tim e S lol = 577 us

F ig u re  2.4. Frame structure of GSM communications.

M axim um  Likelihood E stim ation : Maximum likelihood estimation (MLE) is the 

most popular parametric technique to estimate the parameters. The MLE technique 

determines the parameters that maximize the probability (likelihood) of the received 

sample data. From a statistical point of view, the MLE technique is considered to 

be more robust, versatile, and yields estimators with good statistical properties and 

can be applied to most of the data models [30]. Moreover, it provides efficient meth­

ods for quantifying uncertainty through confidence bounds. Although the method­

ology of the MLE is simple, the implementation is computationally expensive. If 

r = [ r ( 0 )  r ( l)  ••• r(N  — l ) ] i s a  vector of N  received samples with the Proba­

bility Density Function (PDF) p(r  ;0), where 6 — [ 6\ 02 • • • 9k ] is a vector of

K  unknown constant parameters to be estimated. Then, the likelihood function of 

the received samples can be written as

N - 1

p(r ;0 ) =  Ylp[r(i );0i ,02,- ,0K]-  (2.4.1)
i = 0

As In x  is a monotonically increasing function of x  between 0 and 1, taking the natural 

log of (2.4.1) will not affect the maximization, but simplify the problem, therefore

N - 1

ln[p(r;0)] =  Inp{r(i);0u 02, ...,0K\ (2.4.2)
i = 0
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Maximizing ln[p(r;0)], which is much easier to work with than p(r;0), the MLEs of 

the elements of 0 are the simultaneous solutions of K  equations such that,

dln[p(r;0)]
dBi

(2.4.3)

An MLE has three salient properties that are [30].

•  It satisfies the condition Urn E{6} = 6, i.e, it is asymptotically unbiased.
N—>oo

•  The distribution of the maximum likelihood estimator is Gaussian.

•  It asymptotically attains CRLB. This property of the estimator is termed as 

efficiency.

Increase in sample size of a maximum likelihood estimator decreases its variance, this 

property is termed as consistency. The draw back of the MLE is its complexity and 

it is difficult to apply for the signal models where the noise is not Gaussian. 

E xam ple 1: The N  received samples in (2.1.1) can be written in vector form as

r  =  X h +  v (2.4.4)

where

r =

X =

r(0) r ( l)  • • • r (N  — 1)

x(0) ^(~1) x( \  — L)

x (l) rr(0) • • • x(2 — L)

h =

and v =

^ ( W - l )  x ( N -  2) ••• 

h( 0) /i(l) ••• h ( L - l )  

r>(0) u(l) • • • v(L — 1)

x ( N  -  L)
T
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Here, {x(n)} are transmitted training symbols that are known at the receiver. In 

order to estimate h in (2.4.4) the log-likelihood function of r  can be written as

To maximize the likelihood function, differentiating with respect to h (considering 

the log-likelihood function is a function of h) yields

E xam ple  2: In this example, the joint estimation of h and FO is considered. Here, 

it is assumed that the support of the channel is L and each path experiences a DS of 

fd . The received sample can be written as

L - 1

r(n) = ^  h(l)x(n — + v(n) (2.4.8)
/=o

and N  received samples in vector form can be written as

(2.4.5)

Comparing it with (2.3.24) or equating to zero yields the MVU estimator

h  =  (X//X )“1X //r. (2.4.7)

r  =  E cX h + v (2.4.9)

where

1 0  0 0

0 ej2*fd 0 0

0 0
(2.4.10)

0
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The training signal matrix, X, and MGs vector, h, are defined in the previous ex­

ample. Ignoring the constant terms, as they will not affect the maximization of the 

log-likelihood function, for the log-likelihood function to be maximum with respect 

to the unknown parameters then

lnp(r; h; f d) =  - ( r  -  E„Xh)H(r -  E0Xh) (2.4.11)

or the cost function to minimize is

J(h-Jd) =  (r — E0X h)H(r — E„Xh)

= r"r -  r"E„Xh -  h " X " E f r +  h"X"Xh. (2.4.12)

Note that E ^ E 0 — I. To minimize the cost function with respect to h, by assuming 

fd constant, differentiate (2.4.12) with respect to h

^  = -X " E ? r  + X "X h, (2.4.13)
ah

equating it to zero yields

h =  ( XHX) ~1X HE^r.  (2.4.14)

In this expression the matrix Ec is unknown and depends on fd, therefore h can

not be estimated. In order to estimate fd, use of (2.4.13) in (2.4.12) yields the cost

function to minimize with respect to fd

J ( f d) = t h t  -  r//E0X (X //X ) -1X //E"r (2.4.15)

The training samples {x(n)} are assumed uncorrelated, therefore X WX «  AT. The 

minimization of (2.4.15) is equivalent to the maximization of the second term that 

can be written as

thE0X X hE"  r =

where
N —l  _ /  \  _ i ' 27r  f„n _ / _  \  x—* N — 1~tH Xl„=o r(n)ej27rf°nx(n) ■ ■ • £ n=0 r(n)ej2nf°nx(n -  L 4- 1)
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and hence
1 N - l L - l

r" E o X X " E » r =  ^  E  E  \r{n)e?2*fdnx(n - I )  |2 =  0 (/d), (2.4.16)
n= 0 /=o

and to estimate DS, /<*, the maximum likelihood solution can be written as

f d = a rgm ax0(/) (2.4.17)

The value of /  that maximizes (2.4.17) will be the maximum likelihood estimator 

solution for f d and can be used to estimate h in (2.4.14). In order to estimate f d a 

grid search method can be used and the accuracy of the estimator depends on the 

frequency bin chosen, which is computationally very expensive. However, in practice 

a less computationally expensive approach called the Fast Fourier Transform (FFT) 

is used.

Least-Squares Estim ation: Least-Squares (LSs) estimation is a non-parametric 

approach to estimate the parameters and is widely used in practice due to ease of 

implementation and optimality in Gaussian noise. Here, no probabilistic assumption 

about the data is needed other than the data. Therefore, it can be applied to almost

all types of data model. The disadvantage of the least-squares estimator is that it

does not guarantee the optimality of the estimator. A LSs estimator of an unknown 

parameter vector, 0, for a received signal model

r(n) = s(n; 6) +  v(n) (2.4.18)

minimizes the Mean Square Error (MSE) between the the deterministic term s(n; 6) 

and received data, r(n), as [30]
N - 1

J (Q) = ^2[r(n) -  s(n; 0)]2 (2.4.19)
n=0

Therefore, the estimator

<9 = argmin J(0) (2.4.20)0
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2.5 FO Estimation

In the above algorithms, to estimate FO, the training based estimation techniques 

were considered. However, the FO can be estimated without training data. In the 

following, some of the non-TDA estimation techniques are briefly discussed.

2.5.1 Frequency domain transformation

This is the easiest method to established the FOs and is a block based approach to 

estimate FOs. Here, the received signal samples are converted into the frequency 

domain by taking their discrete Fourier transform (DFT). If the received signal sam­

ples contain more than one FO then the Fourier transform gives peak values at the 

FOs provided there is sufficient separation between the offset frequencies. The ampli­

tude of the received samples at different frequencies can be established by using the 

discrete Fourier transform relation given by [30,52-54],

of using this method is that in the presence of multiple frequency components in 

the received signal, it is difficult to find the source corresponding to a particular FO 

component. Secondly, this method does not give good performance in the presence 

of multipath fading channels.

2.5.2 Sub-space based FO estimation

Sub-space based estimation algorithms such as MUSIC and ESPRIT [55-57] can pro­

vide high resolution frequency estimation at the expense of increased computational 

complexity. Sub-spaced based algorithms require eigen or singular value decomposi­

tion of the received sample covariance matrix R  to find the signal and noise orthogonal

j 2 n f n

where F( f )  is the complex amplitude of the received signal at frequency / ,  r(n), is 

the received signal sample and N  is the number of received samples. The drawback
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sub-spaces i.e., R  =  W A V H and V  =  [V5 Vyv]. Where A is a diagonal matrix of 

eigen values of the covariance matrix, while V s and V n  contain the basis vectors for 

the signal and noise spaces respectively. An inner product of any two vectors from 

the orthogonal noise and signal subspaces yields zero and it is this property that is 

used to find the FOs of the signal. A draw back in using sub-space based algorithms

is that as the number of frequency components in the received signal increases, the

order of the associated covariance matrix increases. Therefore, to find the singular 

value decomposition of a high order covariance matrix extensive computation is re­

quired. The subspace based algorithm MUSIC computes the frequencies of the signal 

as the peaks in the MUSIC spectrum estimate given by [56]

W ' c ( / )  =  s « ( / )V ^ V " s ( / )  (2'5'2)

where s ( /)  is the frequency scanning vector and is defined by

s ( /)  =  1 e~j2nf ... e~j2irfM T (2.5.3)

and M  is the order of the covariance matrix.

2.5.3 Un-supervised Parameter Estimation

In an un-supervised or blind parameter estimation technique, a training signal is 

theoretically assumed not to be needed. Hence, it has the potential to increase the 

overall capacity of the communication system. Here, the cost function based on some 

already known quantity, such as the modulus or energy of the transmitted signal 

is optimized to find some parameters. Blind algorithms generally take substantially 

more time to estimate the parameters and assume the channel is not changing rapidly. 

Therefore, they are not good for burst communication, where small numbers of bits 

are available. Although they have much potential where the channel is very slowly 

changing, as in fixed telephone networks. A number of blind parameter estimators is 

given in [58-60] and the references therein.
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2.6 Summary

In this chapter, a foundation was provided to proceed to mitigate the effects of time- 

varying multipath channels. First of all the fundamental question: what are the causes 

and how the effects of multipath channels are mitigated was answered. To mitigate 

the effects of a multipath channel the technology of equalization was introduced and 

several linear, nonlinear and adaptive equalization techniques were discussed briefly. 

In fast fading channels, it was highlighted that it is difficult for an adaptive equal­

izer to track the channel variations, thereby degrading the BER performance of the 

system. Therefore, in the fast fading environment conventional equalizers are used 

that require the accurate knowledge of the channel. The performance of these equal­

izers depends on the variance of the channel parameter estimators, therefore, a bench 

mark on the variance of an unbiased estimator, the CRLB was derived to assess the 

performances of various unbiased estimators. Then some optimal and non-optimal 

parameter estimation techniques were discussed briefly.



Chapter 3

PARAMETER ESTIMATION AND 

EQUALIZATION IN SISO WITH 

FREQUENCY OFFSETS

Wireless transmission is impaired by signal fading, interference and additive noise. 

Moreover, the presence of FO introduces the time-variations into the multipath chan­

nel that degrade the BER performance of a communication system, particularly one 

based on the assumption that the channel is time-invariant. There are two main 

causes for FOs; poor synchronization between the transmitter and the receiver car­

rier frequencies and the motion-induced DS due to the relative motion between the 

mobile station and the local scatterers [61]. The reason for poor synchronization could 

be due to an error in the crystal oscillator frequency or due to temperature variations. 

If the FO is due to temperature variations, then it will be slowly time-varying as the 

temperature changes are not very abrupt and may take a longer time to cause the 

frequency of the oscillators to drift. The FO due to DS may be random and fast 

time-varying. Therefore, the overall FO, / 0, can be written as [62].

fo = fd + fse (3.0.1)

where fd is the DS and f se is the frequency synchronization error between the trans­

mitter and the receiver local oscillator frequencies. The estimation of FO and its 

exploitation in equalization is crucial to enable accurate decoding of the transmitted

61
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information. In this chapter, parameter estimation and a low complexity equalization 

technique for a TDM A based communication system is studied. For a TDM A com­

munication system a SISO channel with each multipath possibly having distinct DS 

is considered. TDMA is a mechanism for sharing a channel, whereby several users 

have access to the whole channel bandwidth for a small period of time, which is called 

a time slot. The block of bits in one time slot is called a frame. For a Linear-Time- 

Invariant (LTI) channel, the adaptive equalizers do not require the explicit CSI and 

are very easy to implement. Therefore, the adaptive equalizers are commonly used to 

mitigate the effects of an ISI channel. Since a FO introduces time selectivity into the 

channel that degrades the BER performance of an adaptive equalizer, it is therefore 

necessary to estimate the FO and cancel its effects prior to adaptive equalization. 

In a TDMA system, it is difficult to estimate the FO due to the limited number of 

bits for training data; secondly, for voice, real time data are transmitted. Therefore, 

processing of the data must be completed before the arrival of the next frame. In 

a TDMA communication system, for example GSM, the duration of the time slot is 

only 0.576ms and each time slot contains 152 bits within which the middle 26 bits 

are dedicated for training data [43]. For a TDMA communication system, researchers 

have estimated FO by using different algorithms. Morelli [28] and Huseyin [63] have 

derived algorithms to estimate FO for a flat fading channel that are based on the 

autocorrelation of the channel. Channel estimates are noisy and require low pass fil­

tering and the bandwidth of the low pass filter depends on Doppler spread. Therefore, 

such types of receivers require adaptive low pass filtering that makes these algorithms 

complicated. Krasny [29] has described optimal and sub-optimal algorithms based 

on maximum likelihood principle to find FO, where it is assumed that the channel is 

non-dispersive but it does not require any filtering. For a dispersive channel, in [64] 

FO together with the channel are estimated, this algorithm is based on channel im­

pulse response estimation. In this method to estimate FO, channel estimation is also 

mandatory, the adaptive equalizers do not require channel information, hence, esti­
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mation of the channel and FO increases the complexity of the receiver. Harish [20] 

proposed a maximum state accumulation technique of FO estimation that does not 

require an explicit estimation of the channel. All the above algorithms, assume that 

the FO is identical from each multipath.

In contrast to previous work, in this chapter, equalization for a single transmit and 

receive antenna, under a general framework that allows distinct FOs from each multi- 

path, is addressed. Such a scenario may arise when either the receiver or the transmit­

ter moves at high speed, thereby, resulting in distinct DSs for the multipaths due to 

different angle of arrival. In this scenario, most of the above FO estimation algorithms 

cannot be applied. Therefore, for this scenario, exploiting the correlation property 

of the transm itted training symbols, an Approximative Maximum Likelihood (AML) 

estimator is proposed. Here, unlike the identical DS problem, the distinct DSs can 

not be compensated for prior to equalization and have to be accounted for in equalizer 

design. Now, it is imperative to use the conventional block-based equalizer design. 

In multipath with distinct FO scenario, it is further shown that the conventional 

MMSE equalizer is computationally cumbersome as the effective CCM changes de- 

terministically between symbols. However, by exploiting the structural property of 

these changes, a computationally efficient recursive algorithm for the equalizer design 

is proposed.

3.1 Problem statem ent

Consider a communication system employing a single transmit and receive antenna, 

and assume that the signal has propagated through L different paths, each having 

different FOs and complex MGs. If the sampling rate is equal to the symbol trans­

mission rate then the received baseband signal can be written as

L-l
r(n) =  f{n) +  v(n) =  hix(n — /)ej27r̂ 'n +  r>(n), (3.1.1)

1=0
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where hi and fi denote respectively the unknown complex channel gain and the FO 

for the Ith multipath of the channel. Herein, it is assumed that hi and fi are quasi- 

stationary, not changing significantly over the observed data frame, and only vary 

between data frames. Further, x(n)  is the transmitted signal with variance and 

v{n) is an additive circularly Gaussian distributed zero mean white (complex) noise 

with variance o\. Let X/jn denote the N  x TV diagonal matrix formed from the vector 

xjiTl along the diagonal, with
T

Xl,n = x(n — I) . . .  x(n — I — N  +  1) (3.1.2)

where N  is the length of training symbols. Further, let eitTl model the FO vector for 

the Ith path,
e j2irf in e j2i rf t ( n - N + l )

and form the N  x L matrix V n as

V 0,„ V L - l ,n

(3.1.3)

(3.1.4)

where v fcin =  x * , w i t h  © denoting the Schur-Hadamard (elementwise) product. 

Hence, the vector constructed from N  consecutive received samples can be expressed 

as
T

r n =  J r(n) . . .  r(n — N  +  1)
L - l

=  ^  ̂h/X/ine^n -I- vn
1=0

=  V„hL +  v n, (3.1.5)

where

and

hi = h0 . . .  hL - l

vri = v(n) . . .  v{n — N  + 1)
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Here, the problem of interest is given r n and the training symbols {x(n)}, estimate 

the unknown parameter vector

T
Hq

h I  fI

hL-1
T

fo / l-1

(3.1.6)

where fl = [fo f i  • • • Here, no explicit knowledge on the channel length is

required, other than the knowledge on its upper bound. For an over modelled system, 

the estimates of the additional channel coefficients would be close to zero and in this 

way the channel length can potentially be determined. In the next section, to estimate 

the unknown MGs and FOs a computationally efficient approach is presented.

3.2 Estimation of multipath gains and frequency offsets

In this section, an approximative maximum likelihood (AML) estimator of the com­

plex MGs and the FOs is outlined. Consider that the received signal, as expressed in

(3.1.5), is only a function of the complex MGs and FOs. The likelihood function, of 

the received sample vector, to be maximized can be written as

1  - ( r n - V n h L ) H ( r n - V n h L )

P(rn|0) = 7 2\Ne ^ f3-2'1)
( t t  <j $ ) n

where the probability of an event occurring can be between 0 and 1, and lnrr is a 

monotonically increasing function for x e  {0,1}. Therefore, the log-likelihood function 

will not have any effect on the maximization problem, the log-likelihood function can 

be expressed as (ignoring the constant terms)

lnp(r„|0) =  - 1  (rn -  V„ht )" (rn -  V nh i ) . (3.2.2)

Maximization of (3.2.2) with respect to yields [30]

h t = (V "V n) “‘ V"r„ t  V trn, (3.2.3)
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where V* denotes the Moore-Penrose pseudo-inverse. The FOs are estimated by 

minimizing the cost function, J (f^ ), obtained by substituting equation (3.2.3) into 

(3.2.2),

J ( h )  = rn Tn ~  r " n Vnr„, (3.2.4)

where n v „ =  V nVt is the projection onto the range space of V n. By choosing the 

training sequence, x(n), such that E  j  x*(n — l)x(n — p) j  =  £p-z, where 6k denotes 

the Kronecker delta function and (•)* the conjugate, the n-dimensional minimiza­

tion problem in (3.2.4) may be decoupled into n one-dimensional problems, which 

significantly reduces the complexity of the minimization. Note that V ^V n will be 

dominated by the large diagonal terms, with almost negligible contribution from the 

off-diagonal terms, if x(n) is chosen as a pseudo-random sequence (as in the case of 

a training signal). Thus, V ^ V n «  lx (n )|2I =  ^  where k is constant over

the frame considered, enabling the minimization of (3.2.4) to be approximated as the 

maximum of

N —l

J'( ft) =  r HV „V "r„
L - l

=  £
p = 0

(3.2.5)^ 2  r*(n)x(n -
n= 0

This is a difficult joint multi-dimensional optimization problem. Therefore, the FO of 

an arbitrary individual path s between a transmit and a receive antenna is considered, 

for which the contribution to (3.2.5) is

ips{n ) =  r*(n)x(n — s)ej27r̂ *n

=  +  ci(n) +  c2(n) (3.2.6)
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where

Qs = K  |x(n  -  s ) |2 ,

C i ( n )  = v*(n)x(n — s)ej2n^ n,
L - l

C2 (n) =  ^r^/ip(p)x*(n — p)x(n  — s)ejA2n p̂n
p= o  
p^s

A/p = f s -  f P

Moreover, as E{x(n  — u)x(n — u)} =  0 for u ^  v,

N - 1

n=0

L - l

iV2|/is|2|x(n — s) |4 +  N ^ ^ |h p |2|2 :(n — p)|2|x(n — s)|“
p = o
p^s

— N 2p s +  N  pi 

«  iV2/?,, (For large N) (3.2.7)

Therefore, provided that the ratio between the signal component for which the pa­

rameters are to be estimated, ps = \hs\2\x(n — s)|4, to the interfering components 

pi = ^2pIo\hp\2\x(n — p)\2\x(n — s)\2, is greater than 1/iV, the joint multi-dimensional
p^s

maximization problem in (3.2.5) can be reduced over all possible frequencies to the 

maximization of the following for each individual frequency

f s = arg max
N —l

^  r*{n)x(n — s)ef2n̂ n
n= 0

(3.2.8)

which can be efficiently evaluated using the fast Fourier transform (FFT). Once the 

FOs are estimated, the MGs, h*, can be estimated using (3.2.3).

3.3 Numerical Example for Variance of Estimators

In order to assess the performance of the proposed AML estimator, a two-tap chan­

nel with FOs fo =  0.003 and f \  = 0.005 is considered. This is reasonable as the



Section 3.3. Numerical Example for Variance of Estim ators 68

maximum DS for a vehicular speed of 250 km /h (RA250 channels as defined in GSM 

standards) at a carrier frequency of 1800 MHz is 416Hz, which corresponds to 0.005 

when normalized to the symbol rate of 100 kHz as in GSM [43]. The number of 

training samples to estimate MGs and FOs is N  = 100. Training samples are as­

sumed binary alphabets. Figures 3.1 and 3.2 show that the mean-square estimation 

error as obtained from 104 Monte-Carlo simulations attains the Cramer-Rao lower 

bound (CRLB), derived in the Appendix 3A. The complex channel gains h0 and hi 

have been assumed to be constant throughout a burst, but may change between the 

frames.
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3.4 MMSE equalizer design

As discussed earlier, identical FOs from each multipath can be compensated for easily 

before equalization, distinct FOs are difficult to compensate for easily. Distinct FOs 

produce time selectivity in the channel that not only degrades the BER performance 

but increases the computational complexity of the classical equalizers.

3.4.1 Equalizer for channels without FOs

In this section, initially the MMSE equalizer for the communication channel not 

affected by multiple FOs is considered. Consider the received baseband signal in

(6.2.1), for the case when f p = 0. For an equalizer of length Af, the received signal 

vector can then be written as

rn = H xn +  fjn1

where

x„ =

Vn =

r(n)

x(n)

v(n)

and H  is the M  x (L +  M  — 1) CCM,

H  =

r(n — M  +  1)

x {tl — AI  — L 2)
- | T

v(n — M  +  1)

0h i  0 ..

0 h i  0

: o •• o

o . . .  o h i

(3.4.1)

(3.4.2)

The MMSE equalizer, wQ, [30,65] for the estimation of x(n)  is found by minimizing 

the cost function

H ~  |2J(w0) =  |x(n) -  w D rn (3.4.3)
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that yields

wG =  ( HH" +  %
-1

Hz, (3 .4 .4)

where zv is a coordinate vector, only containing a non-zero component at position v,
T

i.e., z v = 0 0 1 0 0

3.4.2 Equalizer for channels with frequency offsets

In the presence of FOs, the effective CCM H will vary over time and (3.4.1) will be 

accordingly modified to

r„ =  (H © rL) x„ + r)n =  H„x„ +  r?n (3.4.5)

where

r, =
7 TI n o . .

0  7 n - l  0

: o

o . . .

0

o 7 i - A / + 1  .

(3.4.6)

and

7  k  =
e j 2 n f 0k e j 2 * f L - Xk (3.4.7)

The optimum equalizer derived using (3.4.5), instead of (3.4.1), will thus yield

-l
w0 = I HnH" + H„z„ =  R r;'H nz„ (3.4.8)

which due to the time-varying Hn will require the inversion of R„ for each symbol. 

Such an equalizer may be computationally infeasible. In the following, by fully ex­

ploiting the movement of sub-matrices in R„ a computationally efficient recursive 

scheme is proposed that does not require the inversion of R n after every symbol in­

terval. Generally, for stationary channels, long equalizers provide better performance, 

however for quasi-stationary channels, very long equalizers are not appropriate due 

to non-stationarity of the signal that enters into the equalizer. To understand the key
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ideas behind the proposed algorithm, for simplicity, consider a simple example with 

only three channel taps and a length three equalizer. Thus,

(3.4.9)
<* i i <*12 <*13

R n  = <*12 <*22 <*23

.  <*13 a 23 <*33

due to the structure of R „ ,

’ 011 012 013
R n + i  — 012 <*11 <*12

I— GO 
*

<*12 <*22

p
<*13

A  n
<*23

.  a 13 a 23 <*33

1

012 013

012
A  n*

21

(3.4.10)

the Hermitian matrix A n  will appear in both R „  and R n + i -  This structural property 

will hold for any number of channel coefficients and equalizer taps. For the general 

case, R n  is written as
cn

c" bn
R n  = (3.4.11)

where A n  G (J(M- 1)X(A/- 1)) Cn 6 C(A/_1)xl and bn G 1Z. Provided that the relevant 

inverses exist, the inverse of a general block matrix can be expressed as (3.4.12) or

(3.4.13) (see, e.g., [53,66]).

A  C  

D  B

- l

i--
---

---
--

1
O 

i—
i

i 
i

A - 1 I  0 +
—A -1C 

I

i 
---

---
--

1
HH 

O
I 

i

B 1 0  I +

i---------
i

QPQ1
i 

i

( B  — D A - 1 C )
- l

( A - C B - ' D )  1

- D A - 1  I

(3.4.12) 

I  - C B 1

(3.4.13)

Thus, given A " 1 , one can easily obtain R ” 1 and R ^ + i ,  avoiding the matrix inversion. 

As A n  does not appear in Rn+2 , it can not be used to find R^+2> anc  ̂ the scheme so 

far thus only allows for a pairwise computational saving, still requiring the inversion
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of A n+i to compute R n+2 efficiently. However, further exploiting the structure of R„, 

one may compute efficiently from R~+! using the following lemma.

Lem m a 1: Let

E
i

h 12

1

> A 1 2

r 
— a to H 22

1

> to A 2 2

where dim {Hu} = dim { A m}. Then, provided that the relevant inverses exist, the 

inverse of matrix A n can be written as the Schur complement o /H 22, i.e.,

Af,1 = H „  -  H 12H 2-2'H 21 (3.4.15)

The proof is given in Appendix 3B. At time n, let us find the inverse of submatrix 

A n, and use it respectively to find the inverses of R„ and Rn+i using (3.4.12) and

(3.4.13). Since the inverse of Rn+i is known, the inverse of the new top left hand corner 

submatrix, An+i, can be found by using Lemma 1. Once found the inverse of A n+i 

can be used to compute the inverse of R „ + 2  using (3.4.13). This is called a forward 

and backward recursion method to estimate the transmitted symbols. Therefore, the 

explicit inverse of the matrix A n is needed only once and thereafter, the equalizer is 

updated for every symbol with the forward and backward recursions method using

(3.4.13) and Lemma 1. Note that for this problem, H 22  is a scalar.

3.5 Simulations

In order to demonstrate the benefits of employing FOs in equalization, a two path 

wireless communication channel and an equalizer of length 10 is considered. It is 

assumed that the channel is quasi-stationary. The FOs have been initially set to 0.003 

and 0.005, and at every burst n they have been changed according to the random walk 

model, f i(n) =  //(n  — 1) + 0.0001u(n), where u(n) is a zero mean real Gaussian noise 

with unity variance. The complex channel gains ho and h\ have been assumed to be 

constant throughout a burst, but change between the frames. The training signal is 

assumed to have a binary alphabet while the data symbols in the burst have been
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drawn from an 8-PSK constellation. Here, three scenarios are considered. In the first 

scenario, the FOs associated with the first and the second paths are set /o=0.003 and 

f i  =0.005, and a recursive equalizer is designed as explained previously. In the second 

scenario, to equalize the channel effects a decision directed scheme is adopted, where 

the least mean square (LMS) algorithm is used to control the equalizer parameters. 

Here, the LMS equalizer is initialized with the correct MMSE solution, found at the 

end of the training interval. In the last scenario an equalizer is designed ignoring the 

effect of FOs. The results depicted in Figure 3.3 show the superior performance of our 

proposed scheme over the decision directed scheme and an equalizer not considering 

the effect of FOs. In all the simulation, a training signal of length 142 is considered 

for the estimation of the channel parameters including the FOs. The proposed scheme 

can also be employed in a GSM system. Here, the number of pilot symbols available 

in a burst is only 26. With this training length the channel can be estimated very 

efficiently, but to estimate FO this length is insufficient. However, the performance of 

the FO estimator can be enhanced, by concatenating the pilot symbols from a number 

of recent past bursts. To illustrate this, GSM burst transmission through a two path 

time varying channel identical to that used in the previous simulation is simulated. 

A normal burst in GSM consists of 116 encrypted data symbols and 26 pilot symbols 

in the middle [43]. At every burst the MGs h0 and hi were estimated using the 

pilot symbols, but the FOs have been estimated using 142 symbols from the previous 

burst obtained with the retrieved data symbols together with the pilot symbols, in 

this way to estimate FOs 5 previous successive bursts are used. To avoid occasional 

FO estimation error, the FO estimates are filtered through a moving median filter of 

length five. The BER performance of our proposed scheme for a BPSK modulation 

scheme is identical to the performance of a GSM communication channel without 

FOs as shown in Figure 3.4.
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Eb/No

Figure 3.3. Bit error rate performance for MMSE equalizers with and without FO 

estimation, and a decision directed adaptive equalizer

BPSK constellations

O The proposed  equalizer

Eb/No

F igure 3.4. Bit error rate performance of MMSE equalizers for a GSM system
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3.6 Summary

In this chapter, the estimation and equalization of a frequency selective channel with 

distinct FOs was considered. This problem could arise, when the receiver or trans­

mitter moves with very high speed with different paths experiencing distinct DSs, due 

to different angle of arrival. By exploiting the correlation property of the transmitted 

pilot signal, an AML estimator was provided and it was shown that the estimation 

error variance attained the CRLB. Since, in multipath and multiple FO scenario, the 

effective CCM varies deterministically between symbols, a recursive scheme to design 

the optimum equalizer for every symbol is provided. The simulation results demon­

strated the superior performance of the proposed scheme over an equalization scheme 

that did not consider the effects of multiple FOs.
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3.7 Appendices 3

Appendix 3A: Derivation of CRLB for single input single output

In this appendix, the Cramer Rao lower bound for the problem at hand is derived. Let

m  = r(n) r(n — N  +  1) R e(h i)T Im (hi) T  f T Underand 0 =

the assumption that v(n) is complex white Gaussian with zero mean and variance <t„, 

the CRLB can be found using Slepian-Bangs formula (see, e.g., [53]),

rP -i  (0 \] o  _ - 2p  f d r ' S i (0) ~j [ ^ c r l b W \ 1iP -  Re |  g0i ge" | (3.7.1)

where [A]fciP denotes the (A*,p)th element of A, and P  =  E $(0 — 6)(6 — 0)HX > 

P crlb- Further note that =  e-'In înr(n — I), = je^2”ftnr n̂~l\  and ~

j2'Ki\hie^finf(n  — I), where h\ and h\ are the Ith element of Re(hz,) and Im(h£,).
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Appendix 3B: Proof of Lemma 1

Using the block matrix inversion lemma, as expressed in (3.4.12) and (3.4.13), (3.4.14) 

can be written as (see, e.g., [53,66])

H „  =  A f , 1 +  A r /A ^ A ^ A ^ A r ,1 (3.7.2)

H 12 =  —A f11 A 1 2 A ^ 1 (3.7.3)

H 21 =  — A ^ 1 A 21 A f ,1 (3.7.4)

H 2 2  =  A i 1 (3.7.5)

where A a  =  A 2 2  — A2, A f /A , 2  is the Schur complement of A ,,. Substituting (3.7.5)

into (3.7.4), and (3.7.3) into (3.7.2), yields

H 21 =  —H 2 2 A 2 ,A f 11 (3.7.6)

H „  =  A f , 1 -  H ^ A ^ A r ,1 (3.7.7)

Substituting (3.7.6) into (3.7.7) yields

H u  = A u‘ +  H 1 2 H 22‘H 21 (3.7.8)

and hence (3.4.15), which concludes the proof.



Chapter 4

PARAMETER ESTIMATION AND 

EQUALIZATION IN MIMO WITH 

FREQUENCY OFFSETS

To increase the channel capacity and reliability of a communication system, the in­

formation data can be transmitted and received by using a number of transmit and 

receive antennas [67]. This configuration of the communication system is called a 

MIMO system. Recent research in communication theory [6 8 ] has demonstrated 

that large gains in capacity and reliability of communications over wireless channels 

can potentially be achieved by exploiting spatial diversity through MIMO anten­

nas [69-71]. Spatial diversity can be used to either increase the capacity or enhance 

coverage in a wireless communication system. In the first case, multiple antennas are 

used at the transmitter and the receiver to form multiple spatial channels to transmit 

multiple data streams through various spatial modes, which is termed data multiplex­

ing [31,32,72]. In the second case, multiple antennas are used to transmit multiple 

copies of the same data so that a better BER performance can be obtained at very 

low SNR [73,74]. This is exploited to increase the coverage in a wireless commu­

nication system. Therefore, multiple antennas at both the transmitter and receiver 

are very likely to play a key role in future high data rate wireless communication 

systems. Often, MIMO transmission schemes proposed in the literature are based

79
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on somewhat idealized assumptions. Such as most MIMO transmission schemes are 

designed for frequency-flat channels [33,73]. However, if there are multipath signals 

with large propagation delays, then the assumption of frequency-flat channel might 

not be valid, depending on the symbol duration.

Besson et al. [33] discussed the estimation of FOs in MIMO flat fading channels with 

distinct FOs between each transm itter and receiver. This chapter extend this work 

for MIMO frequency selective channels that allows distinct FOs for each multipath 

between each transmit and receive antenna. As discussed in chapter 1 , the perfor­

mance of such multiple antenna based systems may seriously degrade in the presence 

of FOs. Therefore, it is of importance to determine these FOs and to take them into 

account for in the equalizer design. In this scenario, to estimate the FOs and MGs, an 

AML estimator is proposed that exploits the correlation property of the transmitted 

training sequence. In order to assess the performance of the proposed estimator the 

corresponding CRLB is determined, and used as a benchmark for the performance 

of the proposed estimator. Furthermore, multiple FOs introduce deterministic time 

variations in the channel, which are exploited to design a low complexity MIMO 

recursive MMSE equalizer to account for symbol-by-symbol variations in the COM.

4.1 Problem Statem ent

Consider a MIMO communication system with tit transmit and hr receive antennas, 

where the signal between any two transmit and receive antennas has propagated 

through a total of L different paths, with each path possibly having different FO. If 

the sampling rate at the receive antenna k is equal to the symbol transmission rate 

then the received baseband signal can be written as

rk(m)  =  uk(m) + vk(m), (4.1.1)
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where
tit L — 1

uk{m) = E E  hki(p)ejuJklpinxi(m -  p ),
1 = 1  p = 0

(4.1.2)

for m = n , . . . ,  n — N  + 1 ,  k = 1 , . . . ,  n/*, where N  is the number of symbols received, 

hki(p) and ujkip are respectively the MGs and FOs between the receive antenna k and 

the transmit antenna /, for the multipath p ; these are assumed to be quasi-stationary, 

i.e., they do not change significantly over an observed data frame, but may change be­

tween the frames. Here, {x/(m)} is the training signal sequence, transmitted from the 

Ith transmit antenna and Vk(m) is assumed an additive zero mean circularly Gaussian 

distributed, spatially and temporally uncorrelated, white noise with variance a Let 

X/p =  diag |  x/p j ,  where diag{q} denotes a diagonal matrix with the vector q  along 

the diagonal, and
I?

xi(n — p) ••• xi(n — p — N  +  1)X/p

ew(p) = 

h ki =

eJUklpn

hki( 0)

e j u ki p { n - N + l )

hki(L — 1)

(4.1.3)

(4.1.4)

(4.1.5)

where the vector eu(p) contains the FO between the receive antenna k and the trans­

mit antenna I, for the multipath p and h ki is the vector of MGs between the receive 

antenna k and the transmit antenna /. Furthermore, suppose that

V « =  

h k = 

V* =

X/oejt/(0)

hH hL

Xf(£.-i)e,ti(L — 1)
. T

h L T

N  x L  

titL x 1  

N  x rixL

(4.1.6)

(4.1.7)

(4.1.8)"Vfcl "V k2 * "V kriT

Using these identities, the N  received samples in (4.1.1) can be written in vector form 

as
T

r k = rk{n) ••• rk( 7 i - N + l )  

V fchfc +  v k. (4 .1.9)
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To estimate the various MGs and the FOs, suppose

and

Uki = 

Uk =

WhlO Ukl 1 U kl (L - l )  

T
U>kl LJk2 <jJkriT

(4.1.10) 

nTL x 1 (4.1.11)

then, the unknown parameter vector, 0 k, corresponding to receive antenna fc, to be
T

estimated can be written as Ok =  

estimating Ok is considered.
h i  uj In the next section, the problem of

4.2 Estimation of Multipath Gains and Frequency Offsets

In this section, an approximate maximum likelihood (AML) estimator is outlined, 

which fully exploits the structure of the transmitted training sequence. Since the 

noise, u*(n), at the receive antenna is spatially uncorrelated, the parameters asso­

ciated with each receiver can be estimated independently from the received signal. 

Considering (4.1.9), the likelihood function of r*, can be written as [30]

1 ( r f c - V f c h fc) t f ( r fc- V fch fc)

P(r*l #*) =  7Z „ 2 \ n  e °v ’ (4 -2 -1){ w z r
Taking the natural logarithm and ignoring the constant terms, as they will not affect 

the maximization of the likelihood function, (4.2.1) can be written as

lnp(r*| 0k) = — (rk -  V k h k)H (rk -  V k h k) . (4.2.2)

In order to estimate parameter vector, 0 k, maximization of (4.2.1) is equivalent to the 

minimization of (4.2.2) (as the minus sign is omitted in the log-likelihood function) 

with respect to h*. and yields

h fc =  (V " V t ) - 1V " r lfe, (4.2.3)

then, inserting h k into (4.2.2) yields the cost function to minimize with respect to the 

FOs

J K , P) =  i f r *  -  i f  V U V ^ - 'V " ! - * .  (4.2.4)
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Note that minimizing (4.2.4) requires an titL-dimensional minimization. However, 

choosing the training sequence {x/(n)} such that

E {x*(n -  u)xd(n -  r/)} =  8u- v8i-d, (4.2.5)

this minimization can be decoupled into one-dimensional minimizations. Con­

sidering (??), note that will be dominated by the large diagonal terms, with al­

most negligible contribution from the off-diagonal terms. Thus, lxKn)|21

/cl, where /c is constant over the frame considered, enabling us to approximate the 

minimum of (4.2.4) as the maximum of

J\ujklp) =  i f  V fcV " rfc
tit L — 1

= £ £
1 = 1  p = o

N - l

^  r*k{n)xi{n — p)eju}klpTl
n=o

(4.2.6)

Maximizing J'{ujkip) is equivalent to maximizing all individual terms of the above 

outer sum. Consider a given path s from the transmit antenna q to the receive 

antenna k, the contribution of this path to the cost function, J'(ujkip), can be written 

as

Tpkqs(n) = r*k(n)xq{n -  s)eiWfc*'n 

and using (4.1.1) 'fikqsin) = h*kq(s) \x q(n ~  5 ) | 2 +  ^i(n) +  c2 (n), (4.2.7)

where

C i ( n )  = vk{n)xq{n — s)ePu>kqan 
rix L — 1

C2{n) = ^2 ^  hkl(P)XKn - p ) Xq(n -  S)e3AUJklpn>
1=1 P = o  

pjts | l=q

and AuJkip = ukqs — <̂kiP- The first term in 'ipkqs(n) corresponds to the signal power for 

the path s, and as E{x*(n — u)xd(n — v)} = 0 for u ^  v, or I ^  d, it will be significantly 

larger than the contribution from the interference term, c2 (n), constructed from all
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paths except p ^  s when transmit antenna I = q. Thus, each of the terms in the 

outer sum of (4.2.6) will be maximized for u  = Ukqs, suggesting the AML estimator 

for ujkqs, for q =  1 , . . . ,  nT, and s =  0 , . . . ,  L — 1, as

2N - l

kin )xq(n -  s ) ^
n = 0

^kqs — &rg max <pkqs (k-0 )

(4.2.8)

(4.2.9)

which can be efficiently evaluated using the FFT. Once the FOs axe estimated, the 

MGs, hfc, can be estimated by inserting the estimated values of the FOs in (4.2.3). 

It can be noted tha t the AML for FOs does not provide the block based solution but 

for MGs, the AML solution is block based.

4.3 Numerical Example for the Variance of the Estimators

To illustrate the theoretical findings a numerical example is provided. Consider a 

case with maximum vehicular speed of 250km/h, at a carrier frequency of 1800MHz 

(RA250 channels as defined in GSM standard [43]), this corresponds to the maxi­

mum DS of 0.005 when normalized to the symbol rate of lOOkbits/sec, which will be 

different for different angles of arrivals. For higher carrier frequency or speed, the 

normalized frequency will further increase. In order to see the performance of the 

proposed estimator, a case using two transmit and two receive antennas is simulated. 

Here, it is considered that there are two paths between each transmit and receive an­

tenna, allowing eight different paths and correspondingly eight different FOs. Using 

the assumption of a quasi-stationary channel, the channel parameters, A^(p), and the 

FOs, ujkip, remain constant throughout the training burst interval, but may change 

according to the Rayleigh distribution between the bursts. BPSK signals are used for 

training data, the length of the training data from each antenna is 200 samples. The 

training signals transmitted from each antenna are assumed uncorrelated. In order 

to estimate the FOs, an FFT based method is used, therefore, the difference between



Section 4.3. Numerical Example for th e  Variance of th e  Estim ators 85

any two FOs is assumed to be greater than 1/N. In the simulation, parameters are 

estimated and the variances of the estimators are compared with the corresponding 

CRLB, which is derived in Appendix 4A. Figures 4.1 and 4.2 depict the variance of 

the estimators for the MGs and the FOs, respectively. The simulation results show 

that the proposed estimator attains the CRLB. It can be noticed that the variance of 

the estimation error sometimes goes slightly below the CRLB. The reason for this can 

be attributed to the fact that an FFT based grid search method is used to estimate 

the FOs. The performance of this method relies on the chosen resolution of the FFT 

and hence the estimate of the FO. Therefore, for the variance of the estimation error 

to match the theoretical CRLB, the resolution should be infinitely small so that the 

frequency estimate is unbiased. As a consequence of the non-ideal resolution and 

hence the bias in the frequency estimate the error variance may sometimes go a little 

below the theoretical CRLB which assumes exact frequency knowledge.
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Figure 4.1. Comparison of the variance of the estimates of channel gains (dashed 

line) with the corresponding CRLB (solid line).
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Figure 4.2. Comparison of the variance of the estimates of FOs (dashed line) with 

the corresponding CRLB (solid line).
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4.4 A MIMO Recursive MMSE Equalizer Design

In order to design a recursive MIMO equalizer for the transmitted symbols from 

antenna /, the equalizer baseband model given in Figure 4.3 is used.

F igu re  4.3. A two transm itter and three receiver MIMO transmitter and receiver 

baseband system.

From the figure, the equalizer output for the symbol transmitted from antenna I can 

be written as
/

yi(n) = w i i  w /2 w lnR

r lm  

**2 m

\

(4.4.1)

\  r n Rm  )

where

w lk wik(°) wikW wik(M  ~  !)

is the length M  equalizer coefficient vector to decode xi(n) from the received samples,

, at the antenna k. By rearrangingrk{n) rk(n — 1) ••• rk(n -  M  + 1) 
the individual equalizer coefficients and received samples in (4.4.1), the equalizer 

output can be written as

yt{n) = w //r m

=  w /yH cxm + w //vm,

(4.4.2)

(4.4.3)
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where

w =

w (0

w(0)r w (l)r  

u'll(i) w u (l)

w(M  — 1)'
T

U>lnR ( l )

, 1  x nRM

l x %

rm = n W rnR(n) . More-r T(n) • • • r T(n -  M  +  1) and r(n) - 
over, Hc is the nRM  x nT(M + L — 1) CCM and x m is the nT(M  +  L — 1) x 1 

transmitted signal vector and are defined as

H , =

Hn =

K  =

H"

K ( p)

hy h j

hj(0)r h j(l)  

hkl( p ) e ^ r "

hnn R

■ K ( L - 1 ) T

hknT (p)eiUknTPn

xT(n) xT(n — M  — L +  2)

x(n) =  

Finally, vm =  vT(n) • •

xi  (n) . . .  x nT{n)

1 T
vT(n — M  +  1) and v(n) = v\ (n) VnR ( n )

Rem ark 1. Here, to estimate the transmitted symbols the condition t i r M  >  

t i t {M  + L — 1) must be satisfied or
L -  1

nR ^  nT 1 + M (4.4.4)

which implies that in a multipath channel nR > nr- This result contrasts with the 

result mentioned in [69] that says n R = tit• Moreover, M  > (̂ ~ I nT:(L — 1)^.

The length M  equalizer is obtained by minimizing the mean square error cost function

J  = E{\yt(n) -  xi(n -  d) |2}, (4.4.5)
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where I e  ( 1 , 2 , nT) and d e  (0,1 , M  +  L — 2). Therefore,

w = (4.4 .6)

where zv is the n r ( M  +  L — 1) x 1 coordinate vector, only containing a non-zero 

element at position i>, i.e.,

The position of the non-zero element in zv determines the equalizer corresponding to 

the various transmitters I 6  (1,2,..., nT) and retrieval delays d 6  (0,1,..., M  +  L — 2). 

For example the one at position nrd  + 1 will design an equalizer to decode the trans-

to the signal transmitted from antenna I can be found by just multiplying with the 

corresponding zv. Due to FOs, the COM H c changes after every symbol. Therefore, 

it is necessary to update the equalizer coefficient values at every symbol, which is 

typically computationally infeasible. To deal with this problem, exploiting the struc­

tural movement of the submatrices in R  a computationally efficient recursive scheme 

is proposed. This is an extension of the single user result presented in the previous 

chapter to the multiuser system considered herein. To emphasize the fact that R  

changes at every symbol time n, subscript n in (4.4.6), is used as follows

(4.4.7)

mitted signal from antenna I with delay d. The derivation of the equalizer coefficient 

vector is given in Appendix 4B.

Once (H CH ^  +  ^ I ) - 1 H C is known, the equalizer coefficient values corresponding

w n =  R n 1H c(n)zv (4.4.8)

and

wn+i =  R ni 1 H c(n +  l)zw (4.4.9)

A close inspection of H c(n) reveals that the matrices R„ and Rn+i can be written as 

follows
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Rn =

R -n + 1

...
. 

1

0 3 c n

I ..
... O

1

G 3 E„

_ E "
-----

1

e0

(4.4.10)

(4.4.11)

where G n e Cn«(M" 1)xn«{M_1), B n 6  CnRXnR, D n € Cn*xn«, Cn e CnR{M~l)xnR, 

and E n E CnRXnR M̂~l\  Note how the Hermitian matrix G„ moves from the top left 

corner to the bottom right corner from time n to n +  1. Further, if the inverse of 

G n, is known, then one could find the inverses of R„ and Rn+i using the matrix 

inversion lemma (see, e.g., [53]), yielding a computationally efficient update of w. As 

G n will not appear in Rn+2 , it can not be used to find the inverse of Rn+2 - Thus, the 

scheme so far only allows for a pairwise computational saving, still requiring inver­

sion of G n+i, to find the inverse of R „ + 2  efficiently. However, further exploiting the 

structure, one may compute the inverse of G„+i efficiently from the inverse of Rn+i 

using the following lemma obtained in the previous chapter.

Let

Q l l  Q l 2 

Q 2 1  Q 2 2

- 1

H n H 12  

H 2i H 2 2

(4.4.12)

Here, dim{H^} =  dim{Qfc/}, where dim{.} denotes the dimension of matrix. Then, 

provided the relevant inverses exist, the inverse of matrix Q n can be written as the 

Schur complement of H 2 2 , i.e.,

Q n 1 =  H „  -  H i2 H 2-2‘H 21 (4.4.13)

Therefore, starting at time n, the inverse of the sub-matrix G„ is found. The inverses 

of R„ and Rn+i are then found using the matrix inversion lemma. Once the inverse
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of Rn+i is known, the inverse of G n+i is found using (4.4.13). Further, the inverse 

of G n+i can then be used to find the inverse of Rn+2 , and so on. This is called a 

forward and backward recursion method to find the inverse of the matrix R„ at every 

symbol time n. Thus, the explicit inverse of the sub-matrix G n is needed only once 

at the start; thereafter, only the inverse of H 22 is required after every symbol, which 

significantly reduces the complexity of finding the inverse of R„ from 0 ( n 3R M 3) to 

0 ( n 3R).

R em ark  2. If only one path exists between any two transmit and receive antennas, 

then the matrix H c(n)H ^(n) will be block diagonal, enabling the inverse to be found 

by taking the inverse of individual blocks in H c(n)H ^(n).

R em ark  3. For single transmit and single receive antenna schemes with distinct FOs 

for each path, H 22  is only a scalar as shown in Chapter 3. Hence, for this case, the 

proposed recursive method does not require any explicit matrix inversion, whereas 

the conventional methods require inversion of an M  x M  matrix at every symbol.

4.5 Simulation

In order to demonstrate the benefits of employing FOs in equalization, a MIMO 

channel is considered. In this simulation a 2 transmit and 3 receive antenna system 

is considered. The number of multipaths between each transmit and receive antenna 

is assumed equal to 2 . The equalizer is designed using 4 taps. The FOs are initially 

chosen to be of the order of 1 0 ~2, but are changed at every burst according to a 

random walk model fk (n ) =  fk(n — l)  +  0 .0 0 1 u(n), where u{n) is the Gaussian random 

variable with zero mean and variance equal to 1. For simulations, three scenarios are 

considered. In the first scenario, FOs associated with each multipath are set to zero 

and the design equalizer is based on the MMSE criterion. In the second scenario, 

distinct FOs are considered from each multipath and are changed according to a 

random walk model after each frame. To compensate for the effects of multiple FOs, 

the proposed recursive equalizer is used that account for FOs in equalizer design. In
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the third scenario, a channel with FOs as in the second scenario is considered but 

the designed MMSE equalizer ignores the effects of FOs in the equalizer design. The 

bottom curve depicted in Figure 4.4 shows the benchmark performance in the first 

scenario, while the middle curve shows the performance of the proposed algorithm in 

the second scenario and finally the top curve shows the performance of an equalizer 

that does not accounts for FOs. The performance of the proposed recursive equalizer 

is close to the bench mark performance and in the third scenario the performance of 

the equalizer not accounting FOs is independent of SNR.

2
0

1

- 0 -  Frequency offsets with our proposed correction 
No frequency offsets
Frequency offsets without correction  ___

SNR

F ig u re  4.4. Bit error rate performance comparison of the proposed scheme account­

ing for FOs in the equalizer design with the conventional equalizer scheme ignoring the 

FOs in the equalizer design. For bench mark the simulation result of a conventional 

scheme when there is no FO in the channel is also shown.
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4.6 Summary

In this chapter, the estimation problem of the MGs and FOs for the frequency selec­

tive MIMO channel with distinct FO was addressed. By exploiting the correlation 

property of the transmitted pilot signal an AML estimator was proposed that de­

composed the tltL dimensional FOs estimation maximization problem into one 

dimensional FO estimation maximization problems. The performances of the esti­

mators were validated by comparing their variances with the corresponding CRLB, 

which was also derived. The estimators were found to be both computationally and 

statistically efficient. Then, the structural movements of the matrices inside the big 

matrix R„ was demonstrated at every symbol and a recursive equalizer was proposed 

that reduced the computational complexity significantly. Finally, simulation results 

showed substantial improvement in the performance, when the FOs were considered 

in the equalizer design, as opposed to an equalization without consideration of FOs.
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4.7 Appendices 4

Appendix 4A: Derivation of Cramer Rao Lower Bound for MIMO

This section is devoted to the derivation of the Cramer Rao lower bound for the 

estimators of MGs and FOs. Stacking all the received samples from time n to (n — 

N  + 1), from all antennas, (4.1.1) can be written in vector form as

r  =  u  +  v, (4.7.1)

where

r  =

r(n) =

r  (n)T 

r\(n)

r(n  — TV +  1 ): 
1 T

rnR(n)

with u and v  formed similarly. Denote the unknown desired vector parameters

where

r)

A
Vk =

T  Tm  m T (4.7.2)

(4.7.3)Re(hk)T I m ( h k)T u>l 

Since the noise sequence Vk(n) is spatially uncorrelated, the Fisher Information Matrix 

(FIM) for the estimation of 77 can be found using Slepian-Bangs formula (see, e.g, [30], 

[53]).

2  / d u H du
F  (k,l) = —-zReST*

v n = 0 V

dVk dViT
d\iH(n) du(n) 

dr)k dr)?
(4.7.4)

where

<9uH

drfk

du
d r?

du
8 R e (h k) 

d u H 
d l m ( h k ) 

d u H 
duik

(3titL x nRN)

d u  d u  du
d R e (h ,r ) d l m ( h i r ) du>,T (nRN  x 3titL )
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Here, k,l  = 1,2, ...,77/*. The FIM can be written as

F  =

F ( l , 1) F ( l, 2 ) ••• F ( l,n * )

F (2 ,1) F (2 ,2) ••• F(2 , n R)
(4.7.5)

F(nR, l )  F(rift,2) ••• F  {nR, n R)

where F(A:, I) denotes the (A;, /)th  sub-matrix of the FIM corresponding to the parame­

ters rjk and r^. From (4.7.4), it can be noted that F(A;, I) = 0 whenever k ^  I. Hence, 

there is a decoupling between the estimation error in parameters corresponding to 

two different receive antennas and the FIM is block diagonal, which justifies that the 

parameters corresponding to each receive antenna can be estimated independently. 

Let F t =  F(k,k),  the FIM of size 3t i tL  x  StitL  corresponding to the estimation of 

rjk = [Re(hk)T I m ( h k)T w*]7’, then F* can be represented as

F k[Re(hk) ,R e (hk)] F fc[i?e(hfc), I m ( h k)} F fc[/?e(hfc), u k\

F fc =  ^  F*[/m (hfc) ,/ te (h fc)] F*[/m (h*),/m (h*)] F k[Im(hk),Ljk] (4.7.6)

F k[u>k,R e (h k)] F* [<*>*, I m ( h k)] F ^u^u ;* ]

and the elements of F^ can be found using the differentials

dRehkl(p) 
duk(n) -  p)

d l m h ki(p)
duk(n)

=  j n h kl{ p ) e ^ nXl{ n - p )
OUlklp

(4.7.7b)

(4.7.7a)

(4.7.7c)



Section 4.7. Appendices 4 96

Introduce

U* =  P ? P *

Pfc = [p*i(0) Pfci (L-l )  ••• pfcnr( L - l ) ]

p k i ( p )  =  X/pe/tz(p)

D n =  diag (0 ,1, • • • , TV — 1)

D h = diag (hkl{0), • • • hkl(L -  1 ), • • • , hknr(L -  1))

T t  =  P " D „ P fcD A

S* =  D " P " D j P t D t

B =  [ f i e f S t - T f U ^ T t ) ] - 1

The individual elements corresponding to the estimation of rjk can be found from 

(4.7.4). Therefore, the initial row of the submatrices in (4.7.6) can be written as

F t  [fle(ht), fle(ht)] = Re [P?P*] (4.7.8)

F t [«e(h t), /m (h t)] = - I m  [P?P*] (4.7.9)

Ffc[/fe(h*),a>*] = - I m  [P ?  D nP t D t] (4.7.10)

The second row of matrices can be written as

F t (/m (h t), fle(ht)] = Im [P?P*] (4.7.11)

F t  [Im(h*), /m (h t)] = Re [ P f  P*] (4.7.12)

Ft [/m(h*), wt] = Re [P j^ P tD t]  (4.7.13)

Similarly, the third row of matrices can be written as

F t  [«*, fle(ht)] = - I m  [P fD n P tD t]"  (4.7.14)

F t [wt, /m (h t)] =  Re [P ?D nP*D *]" (4.7.15)
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F* [«*,«*] =  fle [D "P "D 2p)cD fc]

In compact form (4.7.6) can be written as

(4.7.16)

F k = —
Re{ U fc) -7m(Ufc) - I m ( T k)

I m ( U k) Re( U fc) R e(Tfc)

- /m (T * ) r  R e (T k)T Re(Sk)

(4.7.17)

Note that there is a coupling in the estimation error between the channel parameters 

and the FOs. The CRLB is obtained as the inverse of the FIM, i.e.,

C R L B (t7*) =  F -l (4.7.18)

The inverse of can be calculated by using the matrix inversion lemma, i.e,

C R L B (rjfc) =
Re{ U * 1) - / m ( U ^ )  0  

Im (  U t->) f l e ( U 0  

0 0 0

I m ( U ; lT k)
-1

+ - R e { V k lT k) [Re(Sk -  T fU ^ T * )]

I

/m (U t- 1T t )r  - R e ( V k lT k)T I 

From (4.7.19), the CRLB associated with the FOs becomes

CRLB(wjt) =  [Re(Sfc -  T " U * 1 T t ) ] ' 1, 

and the CRLB for the real and the imaginary parts of the MGs are given as

(4.7.19)

(4.7.20)

C R LB [/?e(hfc)] =  [« e (U * ‘) +  I m ( U k lT *)B /m (U *:‘T t )T] (4.7.21)

CRLB [/m (h*)] =  [f ie (U ^ ) +  R e ( U ? T k) B R e ( U ; 1T k)T] (4.7.22)
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Appendix 4B: Derivation of the MMSE Equalizer

Figure 4.3 allows the output of the equalizer, to decode the transmitted signal from 

antenna I, to be written as

yi(n) = w Hr

= w//H cxm + w "v 7 (4.7.23)

Suppose the equalizer is designed to retrieve the transmitted signal, x(n), with delay 

d. Then, the mean square error can be written as

J (w) =  E{\yi(n) -  xi(n -  d)\2}

= E { |w Hr m -  x t(n -  d)|2}

=  E {w wr mrj[w  -  w HH cx mx*(n -  d) -  xi(n -  d )x ^ H fw  + a2}

= w 7/ (HcHc^cr^ +  o2vI) w -  E { w HH cx mx^(n -  d) +  xi(n -  d)x% Hfw -  o2}

(4.7.24)

Differentiation with respect to w yields the MMSE equalizer

-1

/
xi(n)

>

x 2(n)

x nT{n)

2 :* (n — d)

x\{n — M  — L +  2)

2:2 (7 1  — M  — L +  2)

k x nT(n — M  — L + 2) >



Chapter 5

ITERATIVE EQUALIZATION FOR 

OFDM SCHEMES

Broadband wireless access technologies can offer bit rates of tens of mega bits per 

second to residential and business subscribers and are attractive and economical alter­

natives to broadband wired access technologies [75]. In such environments multipath 

interference can be severe, which raises the question of what types of anti-multipath 

measures are necessary. OFDM has been proposed as an effective anti-multipath 

technique because it offers good performance at low signal processing complexity [76]. 

Originally, OFDM was anticipated for time invariant channels, such as fixed wire-line 

telephone systems, where the multipath interference is severe [34]. However, the wire­

less mobile channels are generally time variant and one of the principal disadvantages 

of OFDM is its vulnerability to time variant channels. Time selectivity of the channel 

introduces frequency dispersion, i.e. loss of orthogonality between the sub-carriers. 

In most of the previous literature on OFDM, the time selectivity of the channels is ig­

nored and time selectivity due only to DS is accounted for that can easily be cancelled 

before equalization [77-82]. Modern wireless communication systems are expected to 

operate at high carrier frequencies to provide high data rate services to mobile users. 

Wireless systems that operate at very high frequencies employ smaller wavelengths, 

implying that their sensitivity to physical movements grows proportionally [26], and 

thereby may give rise to a non-sinusoidal time-varying frequency selective channel.

99
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Another reason for time selectivity of the channels is due to the desire to increase 

the capacity of an OFDM system. In OFDM based systems, data are transmitted in 

frames, each frame consists of a number of data bits and some extra guard bits are 

embedded in each frame. These extra bits do not carry any useful information. To 

increase capacity long length frames are preferred to reduce the loss due to redundant 

bits in each frame. Channel variation is more likely during such large length frames. 

Therefore, the primary advantage of OFDM, i.e. interference free operation, can not 

carry over to important future systems. Consequently, future mobile systems have 

to deal with time-varying channels. Mitigation of the time selectivity of the channel 

using an MMSE equalizer is discussed in [24,83], the drawback of these algorithms is 

their complexity of 0 ( N 2), which makes them impractical for large N.  In [19], Philip 

Schniter, pre-processed the received signal by multiplying with window coefficients 

that render the Inter-Carrier-Interference (ICI) response sparse, and thereby squeezes 

the significant coefficients into the 2D + 1 central diagonals of an ICI matrix. In this 

work, it is found that D = f j N  +  1, where fd is the normalized Doppler shift in the 

carrier frequency and N  is the number of carriers used to transmit an OFDM symbol. 

The complexity of this algorithm is 0 ( D 2N)  and as such increases considerably with 

the DS.

In previous chapters, equalization of Linear Time Variant (LTV) channels was consid­

ered, where the time-variations in MGs of the channel were sinusoidal. In contrast to 

previous chapters, this chapter considers a Rayleigh fading channel based on Jakes’ 

model [26], where the time selectivity in the channel is non-sinusoidal, however, a 

modified WSSUS channel model is proposed in [84]. To deal with such time selec­

tivity of the channel, a new approach is proposed, which exploits the sparsity of the 

CCM. Examining the time domain model of the received OFDM signal reveals that 

the CCM is sparse and has similar structure to that after preprocessing of the received 

samples [19]. The number of non-zero elements in a row of the CCM depends on the 

length of channel taps L, which for a wireless channel may typically varies from 4 to
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6 [85]. This characteristic of the CCM can help to design a low complexity OFDM 

equalizer for time-varying frequency selective channels. In a higher scattering envi­

ronment, channel shortening algorithms for a doubly selective channel can be used to 

shorten the channel length, investigation of them will be the part of my future work.

5.1 A Brief Overview of an OFDM System

OFDM is very similar to the well known and used technique of frequency division 

multiplexing (FDM), it uses the same principle of FDM to allow multiple messages 

to be sent over a single radio channel. It is different from FDM in several ways. In 

conventional FDM broadcasting, each radio station transmits on a different frequency 

and the separation between any two frequencies is kept high so that the carriers do 

not interfere with each other. However, there is no coordination or synchronization 

between the stations. On the other hand in OFDM, the data from each source 

are simultaneously transmitted on different densely packed orthogonal subcarriers 

that constitute an OFDM signal. All the subcarriers within the OFDM signal are 

time and frequency synchronized to each other to ensure the interference between 

the subcarriers is ideally equal to zero. These subcarriers overlap in the frequency 

domain but do not cause ICI due to the orthogonal nature of the subcarriers.

Figure 5.1 shows the construction of an OFDM signal with eight subcarriers, the 

binary signals from each information source modulate the amplitude of a different 

subcarrier, and then all subcarriers are combined together to form an OFDM signal. 

The baseband frequency of each subcarrier is chosen to be an integral multiple of the 

inverse of the OFDM signal time so that the subcarriers have an integral number of 

cycles per symbol. The subcarriers are thereby orthogonal to each other. Note that 

the phase of all these subcarriers is assumed zero.

In OFDM the overall system bandwidth is broken up into N  orthogonal sub-carriers, 

the data are transmitted on these sub-carriers resulting in a symbol rate that is N  

times lower than that of a single carrier system. For a fixed channel, orthogonal
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F igure  5.1. Time and frequency response of an 8 carrier OFDM system. Subplots 

Ci to eg show the subcarriers, f i  to /g show the corresponding magnitudes of the 

frequency spectrum occupied by each station and the bottom two show the sum of 

time waveforms and frequency spectrum.

spacing among the carriers prevents the demodulator from seeing frequencies other 

than their own. OFDM systems transm it low-rate signals simultaneously over a 

single transmission path. Low symbol rate makes OFDM resistant to the effects of 

ISI caused by multipath propagation. The effects of ISI on an OFDM signal can 

be further improved by the addition of a guard period to the start of each symbol 

in the time domain that yields more robustness to multipath spread. The guard 

period is generally a cyclic copy of the last bits of the actual data being transmitted. 

The length of the cyclic prefix is kept at least equal to L — 1; under this condition, 

a linear convolution of the transm itted sequence and the channel is converted to a 

circular convolution. By doing this the effects of ISI are easily and completely removed 

provided the length condition is not violated. Moreover, the approach enables the 

receiver to use the FFT for OFDM implementation [86]. The basic baseband model
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of a conventional OFDM system is given in the Figure 5.2. Here, the source data

r{n) i (  0 )

5(N-1)

LTI
Channel

a.

F igure  5.2. A basic baseband OFDM system, transmitting subsequent blocks of N  

complex data and the receiver removing the cyclic prefix and performing frequency 

domain equalization.

to be transmitted are converted into blocks, each of N  symbols. Then, the Inverse 

Fast Fourier transform (IFFT) stage converts each block into the time domain block 

by performing an IFFT operation. Before transmission the last L symbols in the 

time domain block, termed a cyclic prefix (CP), are prefixed to each time domain 

block. After the addition of CP the new block is termed as an OFDM symbol. To 

transmit the symbols serially, the OFDM symbol is passed through the stage called 

Parallel to Serial (PTS). The transm itted symbols travelled through the channel and 

at the receiver passed through a stage called Serial to Parallel (STP) that constructs 

blocks of receive samples each after N  + L  symbols. The first L  samples in each 

received block contribute to the symbols in the previous OFDM symbol. Therefore, 

to remove Inter-Block-Interference (IBI) the first L  samples from each received block 

are removed. In order to perform Frequency Domain Equalization (FDE), an FFT is 

performed on the received time domain samples to convert them into the frequency 

domain. The frequency domain received samples are passed through the FDE stage 

that performs MMSE equalization to obtain frequency domain transmitted symbols.
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5.2 Problem Statem ent

The complex OFDM transmission and reception model used in this chapter is given in 

Figure 5.3. First of all a data block of N  symbols is converted into the time domain by 

applying an IFFT operation, time interleaving is performed and a CP of length L is 

added at the head of the time interleaved samples. The whole block of data is termed 

as a random-OFDM symbol. If the (s(A;)} are the i.i.d symbols to be transmitted and
j(0)

|
JrfO) ^ jc(0)

STP
&

|T(0) *(0).

Smtcc
F n p LTV ------ ► MMSE n-'

•
F
T ' Add CP : s C hannel Discard
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! Equalizer ! FFT
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s ( N - 1) x{ N- \ ) x(N + L - 1) r ( N - 1) 
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diag(c,)
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&
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i (N - l)
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F igure  5.3. A basic baseband OFDM system, transm itting subsequent blocks of N  

complex data and an iterative detection of the transm itted data.

the (x(n)} are the time samples after IFFT operation then the relationship between 

them can be described by the following Appoint DFT operation,
N - 1

x[n) =  —  > s(k)e>%kn (5.2.1):(n) =  — V '  s(fc)e  ̂»
J n U

where the term ~̂ = is used to normalize the FFT  and IFFT operations. The N  

samples of the sequence {x(n)} in vector form can be written as x =  F^s, where F is 
the DFT matrix of order N  and s is the frequency domain signal vector. If the signal 

has propagated through L different paths, then the received baseband signal at time 

n after removing the cyclic prefix can be written as
L - 1

r(n) = ^ 2  l)x((n -  l)N) +  v(n), (5.2.2)
1=0

where x(.) denotes the interleaved samples, h(n,l)  is the unknown complex MG for 

the Ith channel tap and v(n) is the complex white Gaussian noise at sample time
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n. Herein, it is assumed that h(n, I) is a complex Gaussian random variable. The 

estimation of the parameters of time-variant and time invariant channels is discussed 

in [83] and [1]. Throughout this chapter, it is assumed as in [19] that perfect knowledge 

of the channel is available, so only frequency domain transmitted signals are estimated 

in this work. The received samples in vector form can be written as

r =  Hx  +  v  =  H F^s +  v, (5.2.3)

Applying the FFT to (5.2.3), the frequency domain sample vector denoted by R  can 

be written as

R =  F H F h s +  F v =  H dfs 4- F v  (5.2.4)

where, H is the CCM of size N  x N, H nd = h(n , (n — l)N) and H dj  is the ICI 

matrix. The MMSE equalizer for the estimation of symbols {$(&)} can be found by 

minimizing F { ||s  — W r/ ||2} yielding

W  =  +  c l  (5.2.5)

where o\  is the variance of the noise. If in (5.2.4) the channel is LTI then the ICI 

matrix, H d / , is diagonal and to estimate the symbols {s(A;)}, L-MMSE equalization 

requires the inversion of a diagonal matrix, which is computationally inexpensive.

On the other hand, if the channel is LTV then the matrix H df  is not diagonal, a con­

sequence of which is that ICI is introduced. Hence, L-MMSE equalization requires 

the inversion of an N  x N  Hermitian m atrix that needs 0 ( N 2) operations, which is 

infeasible for large N  and yields poor BER performance [83].

To improve the BER performance, the frequency domain samples can indirectly be 

estimated from the transmitted time domain samples. In this scheme, the channel 

effects can be mitigated by using a length M  equalizer and M  can be much higher 

than the length of channel. Since the CCM changes after every symbol interval, there­

fore new equalizer coefficient values are required for each symbol. The computational
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complexity to find the length M  equalizer is 0 ( M 3), thereby the computational com­

plexity to estimate N  samples will be 0 ( N M 3). However, as shown in Figure 5.4, 

if modulo-TV indexing is assumed then the structure of H  reveals that the individual 

symbol x(n) contributes only to the observation samples r (n ) to r(n  + L — 1). There­

fore, applying modulo-TV indexing in the sequel, it can be noted that these are the 

only required samples to estimate x{n) and in vector form these received samples can 

be written as,

r n =  H nx +  v n, (5.2.6)

where

r T1 =
. T

r(n ) r(n +  1) • • • r(n  +  L  — 1)

matrix H n contains L rows of the matrix H  from n to n +  L -  1 and
1 T

v(n) v{n + 1) ••• v{n + L — 1)

5.3 Equalization

Figure 5.3 illustrates the transmitter and the receiver structure used in this chapter, 

where the equalization has been split into two stages:-

(i) In the first stage the CP is removed and by exploiting the sparsity of the CCM, 

a length L, MMSE equalizer is designed and transm itted time domain samples are 

estimated.

(ii) In the second stage performing the FFT on the estimated time domain samples, 

obtained from first stage, frequency domain symbols are estimated and the corre­

sponding a posteriori values of the means are determined. The second stage passes 

the a posteriori values of means to the first stage for better estimation of time domain 

samples. These two stages iteratively exchange their information learned from each 

other until the specified number of iterations has passed. The first and second stages 

are separated by a random interleaver and de-interleaver of length N  that help to 

de-correlate the correlated outputs between the stages.
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F igure  5.4. Diagonal like structure of the channel convolution matrix, H, showing 

the sparsity. The dots represent the non-zero elements.

5.3.1 MMSE Equalization

In order to design a length L MMSE equalizer, it is assumed that the noise is tem­

porally uncorrelated and circularly distributed. Therefore E { v n} = 0, E {vnv nH} = 

ct2I l  and E{x(n)vn} =  0. Moreover, define x(n) = E{x(n)} ,  x  = E{x}, c x = 

[ cx(0) cx(l) ■ • • cx(N  -  1) ] and cx(n) =  Cov[x(n), x(n)\. The length L MMSE 

equalizer, wn, for the estimates of x(n) can be derived by minimizing the cost func­

tion,

J (w„) =  E { |(x(n) - (5.3.1)

By defining x(n) and x(n) respectively the estimated and mean values of the in­

terleaved sample x(n), x the mean value of interleaved sample vector x, cx is the 

variance vector of {i(n)} and hn is the nth column of the matrix H n the generalized 

MMSE equalizer coefficient vector can be found by minimizing (5.3.1) as (derived in 

Appendix 5A)

-lwn =  (Hndiag(cx)H ^ + a2n IL) h ncx(n) 

and estimate (derived in Appendix 5B)

x(n) = x(n) -(- (r„ -  H nx).

(5.3.2)

(5.3.3)
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The estimated samples {i(n)} are de-interleaved to obtain samples {x(n)}. If the 

samples {x(n)}, are known the values of symbols (s(A;)} can be found as

N- 1

s(k) = i f  F x  =  i f  F  ^ 2  inx(n), (5.3.4)
n=0

where i* is the kth column of an identity matrix of size N  x N.  Therefore, the 

equalizer can be translated in terms of s(k) as

-lw„ =  (H „Fa d iag (c ,)F H ?+ * & ,)"  H „F"diag(cs)Fi„

and the estimate of s(k) becomes

N- 1

s(k) =  i f F ^ i  nx(n)
n=0  
N- 1

= F S  +  W n (Fn “  H nx)]
n=0

N - 1

= s(k) +  i f  F  ^ 2  *nWn [HnF W(s -  s) +  vn] .

(5.3.5)

(5.3.6)
n=0

Suppose that V be the vector of dimension N  x 1 of frequency domain noise samples, 

then

vT, =

\H

\H*n+l

\Hn+L — 1

F^V  =  ZnF^V.

By defining the matrix

N- 1

Q = F ^ i „ w " H „ F "

and

n=0

N- 1

P = F ^ i„ w " l„ F "

(5.3.7)

(5.3.8)
n=0
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the equation (5.3.6) can be written as

s(k) = s(k) +  ij^Q(s — s) + i^PV. (5.3.9)

The time domain estimated values obtained in the first stage have high probability 

of error. To estimate any particular transmitted symbol, the estimator cancels the 

interference from the other (or extrinsic) symbols. In estimation, on the basis of 

interference cancellation, the performance of the estimator depends on the accuracy of 

the mean values of the extrinsic symbols. Therefore, the mean values after estimation,

i.e. posteriori means, can be found by finding the a posteriori probabilities of the 

time domain transmitted symbols. Since the transmitted time domain symbols do 

not have finite constellation points, it is difficult to find their posteriori probabilities. 

Therefore, time domain estimated samples are converted into the frequency domain 

where they have finite constellations. From these frequency domain estimated samples 

the a posteriori means are found, which are then converted into the time domain by 

an IFFT operation.

5.3.2 Iterative Algorithm

At the start, all the a priori mean values of the symbols (s(fc)} are initialized to zero 

so that all samples means are, (x(n)} =  0 and diag(cs) =  In  = diag(cx). To find the 

a posteriori values the following important steps are highlighted:

S tep  1 : To estimate x(n), only extrinsic information is used. Therefore, x(n) = 0 

and cx(n) =  1 and the estimates {x(n)} are found using (5.3.2) and (5.3.3), then the 

estimates are de-interleaved to obtain (x(n)}.

S tep  2: In the second stage, to obtain the frequency domain estimates, {s(n)}, the 

FFT is performed on samples {x (n)}.

S tep  3: Since the constellation of frequency domain symbols have finite alphabets, in
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order to determine the a posteriori values of (s(fc)} and (ca(/c)}, it is more convenient 

to work with Log-Likelihood-Ratios (LLR)s. The a priori and a posteriori LLRs of 

s(k) are defined as [87]

and

(5-3.10)

The difference between the a posteriori and a priori LLRs, also called the extrinsic 

information, of s(k) is

AL[s(k)j =  I[s(*)|,w ] -  L[s(fc)]
PW *) =  lU(fc)} p{*(*) =  1} , c ,

-  lnp{S(fc) =  - i | i(t)} -  V w  =  - 1 } ' (5-3'12)

Using Bayes’ theorem, p(a\b) =  , (5.3.12) can be written as

AL[s (k)] =  h, -  '» P{S{h) =  1}p{s(k )Uk)=-i}p{s{k) = -1 }  p{s{k) = -1}

= i a Pf - ( {k l U k ) = l \  =  i li (fc)l.wl> (5.3.i3)
P { s { k ) \ s ( k ) = - l }

therefore

Z/[s(A:)|5(fc)] =  L[s(k)} +  L[s(fc)|s(fc)]. (5.3.14)

To find L[s(A:)|s(jt)], it is assumed that the probability density function (PDF) of s(k) 

is Gaussian with variance a\  and can be written as

p { m }  =  ^  exp ( - (^ >  -  . (5.3.15)

Therefore, the conditional PDF of s(k) becomes

P{s(k)Uk)=b} =  . .M_ e x p j  (5316)
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where m k(b) = E{s(k)\sW=b} and cr2|s(fc)=fe =  Cov[s(k), s(k)\s(k)=b] are respectively 

the conditional mean and variance of s(k). Here, a binary phase shift keying (BPSK) 

system is considered for which b = { + 1 ,-1 } , for higher constellation systems, such 

as Quadrature Phase Shift Keying and 8PSK, the derivations are similar. Note 

£{s|*(fc)=&} = E { s +  h(b — s(k))} =  s +  ik(b — s(k)). Therefore from (5.3.9)

m k(b) =  £ { i f  Q(s -  ik(s(k) -  6) -  s)}

=  +  « ( * ) ( ! ( 5 - 3 . 1 7 )

To estimate s(k), only the extrinsic information is used, therefore, setting T[s(A;)] =  0, 

yields s(k) =  0 and cs(k) =  1. In (5.3.17), it can be noted that m k(b) depends on the 

particular value of b. Similarly, it can be shown that the conditional variance of s(k) 

becomes,

0?l»(*)=4 =  E{(s(k)  -  m k(b))(s(k) -  m k(b))H}

=  E{(s(k) -  Q k,kb)(s(k) -  Q k,kb)H}

=  B{s(fe)s(*)"|,w=6} -  |Q*,fc|2

= i f  Q diag(cs)Q "ifc +  <T̂ |Pfc,*|2 -  |Qfc,t|2. (5.3.18)

Unlike the mean, variance of the estimator is independent of 6, therefore when writing

variance in the sequel the conditional value is omitted. Now everything is available

for L[s(/c)|s(jt)], therefore

rr^/-M i ( s ( A : ) - m fc(+ l ) )2 (s(k) -  mk(-1 ))2
L[s{k)\s(k)\ = ------------ —2----------+ -----------—2----------

Re{s(k)Q*kk}
= 4— 1 (5.3.19)

S tep  4 : Once the LLRs are obtained, the a posteriori values for s(k) and cs(k) are 

obtained as [87]

s(k)\i(k) = Pr{s(k) = +l|j(fc)} -  Pr{s(k) = - l | S(fc)}
(.

c s( k ) \m  =  1 -  s ( k ) \ 2m . (5 .3 .21 )

= tanh ( (5.3.20)
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Step  5: The terms obtained from (5.3.20) and (5.3.21) are transformed into the time 

domain to determine the a posteriori values of {x(n)} and {cx(n)}. Hence, the re­

sulting values are interleaved to use in (5.3.2) and (5.3.3) in the following iteration.

S tep  6 : Proceed to step 1 for the next iteration until the desired BER is obtained or 

the specified number of iterations has elapsed. Table 5.1 shows the overall iterative 

algorithm used for the simulations.

5.4 Complexity of the Algorithm

Although the size of matrix H n is L x N,  it contains only 2L — 1 non-zero columns. 

In each iteration to find the equalizer coefficient values, wn, the algorithm requires 

the computation of (Hndiag(cx)H ^ +  cr^l£,)_1hn. The computation of diag(cx) = 

F //diag(cs)F requires NlogN  operations and must be performed once per iteration, 

given diag(cx) the computation of H ndiag(cx)H ^ requires 0 ( L 2) operations and must 

be performed N  times per iteration. The size of the matrix (Hndiag(cx)H ^ + <ĵ Ix/)“1 

is L x L and it is Hermitian, therefore it will require 0 ( L 2) operations to be per­

formed N  times per iteration. In order to estimate x(n), the computation of H nx 

requires 0 { L 2) operations and must be performed N  times per iteration. To find 

the a posteriori values of Cov[s(fc), s(k)] the values of ij^Q diag(cs)Q Hijt, Q**. and 

P k,k]k = 0,1,..., A — 1 are required and can be computed explicitly from the ex­

pressions for Q and P  in the computations of 0 ( L N )  or C^MogN) [88]. Hence, to 

estimate N  symbols, only [0{N\ogN) +  0 ( N L 2)] operations are required.
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T able 5.1. MMSE-Iterative algorithm for OFDM 
L = zeros(N , 1) 

x =  zeros(N , 1) 

diag(cx) =  1N 

while iter < max — iter 

Q =  zeros(N , N )

P =  zeros{N, N)  

diag(cx) =  F^diag(cs)F 

for n = 1 : N

C = diag(cx) ; x(n) = 0 ; C(n, n) = 1 

wn =  (H nC H "  +  a 2l ) - lU nin 

x(n) =  x(n)  +  ww(r„ — H nx)

Q = Q +  inW^Hn 
P =  P  +  i„w^Jn 

end

Q =  F Q F "

P  =  F P F "
X = ; s = F HX

for k = 1 : TV

a s ( k ) =  'l k Q diag(cs)Q //ifc +  a l \ P kyk\2 -  |Qfc,fc|2
a  r  ( 1-\ -  4 R e ( S ( k ) Q •  fc)

L(k) = L(k) +  AL(k)  
s(k) =  tanh(L(A:)/2) 

c,(*) =  1 -  s(k)2
end

x =  F Hs ; x =  IK *)

end
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5.5 Simulation

In this section, the performance of the proposed MMSE-iterative algorithm is com­

pared with the L-MMSE equalizer and Match Filter Bound (MFB). For all simula­

tions, the length of the CP is kept equal to the order of the channel and number 

of carriers is equal to the number of symbols in an OFDM block. A 4-tap wireless 

fading channel model is used in which each channel tap is represented by a complex 

Gaussian random variable. The real and imaginary parts of each channel tap are 

independently generated with the Doppler spectrum based on Jakes’ model. At all 

DSs, it is assumed that the channel is known. At low DSs the channel variations 

are very small while an increase in DS increases the time variations in the channel. 

Here, it is assumed that a f  = where af  is the variance of the Zth path. The 

transmitted frequency domain symbols (s(&)} are BPSK. The MFB is obtained by 

assuming all the transmitted frequency domain symbols {s(Z)|/^fc} are known. For 

the MFB the interference due to other symbols is cancelled completely and hence 

provides the best achievable performance.

In Figures 5.5 and 5.6 the convergence of the iterative algorithm for the block length 

of 32 is shown. It can be noticed that the algorithm takes five iterations to converge 

and there is no significant improvement in the BER performance after 5 iterations. 

Moreover, an increase in the DS increases the time selectivity of the channel, which 

effects the time diversity gain. For example, for the same block length of 32, in the 

figures it can be noted that an increase in DS from 0.01 to 0.05 yields an improvement 

of 2dB in SNR. The comparison of the BER and Symbol Error Rate (SER) perfor­

mances of the proposed algorithm with the L-MMSE and MFB is depicted in Figures 

5.7 and 5.8. Here, it can be seen that the proposed algorithm outperforms the L- 

MMSE equalizer and the performance difference as compared to the MFB is less than 

ldB. Moreover, as the DS increases the performance difference between the proposed 

algorithm and the MFB also increases slightly. The performance of the proposed 

algorithm when the interleaver is not exploited is also shown. The algorithm without
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the interleaver outperforms the L-MMSE equalizer, but it is poor when compared to 

the MFB.

For the OFDM block length of 64, Figures 5.9 and 5.10 compare the BER and SER 

performances of the iterative algorithm with the L-MMSE and MFB. As compared 

to the block length of 32, more extrinsic information is available in the block length 

of 64 to estimate any arbitrary transmitted symbol. Therefore, in the figures approx­

imately 2dB improvement in the SNR can be noticed.

To find the posteriori mean and variance of the frequency domain symbols, the pos­

teriori variance of the estimator, cov(s(k), s(k)): is required. By sacrificing some 

performance gain, the computations of calculating the variance of estimator can be 

saved. Therefore, if the variance of the estimator is supposed equal to one, it will 

decrease the overall computational complexity. Figures 5.9 and 5.10 also show the 

simulation results when Cov(s(/c), «(Aj))|j(A:) =  1 for all k. The performance gap is less 

than ldB.

Finally, Figure 5.11 shows the improvement in the BER performance, for a fixed value 

of SNR, as the DS or the number of carriers in an OFDM block is increased.
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Figure 5.5. Bit-error-rate performance of the MMSE-iterative algorithm after dif­

ferent numbers of iterations at DS of 0.01.

fd ■ 0.05
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Figure 5.6. Bit-error-rate performance of the MMSE-iterative algorithm after dif­

ferent numbers of iterations at DS of 0.05.
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Figure 5.7. BER performance comparison of the MMSE-iterative algorithm, after 

five iterations and at different DSs, with the L-MMSE equalizer and MFB.
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Figure 5.8. SER performance comparison of the MMSE-iterative algorithm, after 

five iterations and at different DSs, with the L-MMSE equalizer and MFB.
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Figure 5.9. BER performance comparison of the MMSE-iterative algorithm, after 

five iterations and at different DSs, with the L-MMSE equalizer and MFB.
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Figure 5.10. SER performance comparison of the MMSE-iterative algorithm, after 

five iterations and at different DSs, with the L-MMSE equalizer and MFB.
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N = 8 
N =  16 
N = 32 
N = 64 
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F igure  5.11. Bit-error-rate performance using an MMSE-iterative algorithm after 

five iterations at different DSs for different number of carriers in an OFDM block.
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5.6 Summary

In this chapter, the design of a low complexity OFDM iterative receiver, for a doubly 

selective channel, was studied. The equalization was divided into two stages; the first 

stage estimated the transmitted time domain symbols, with a length L MMSE equal­

izer, and then passed the estimated values to the second stage. In the second stage, 

an FFT was applied on the estimated time domain symbols to convert them into the 

frequency domain. Then, the means and variances of the transmitted frequency do­

main symbols were determined. The time domain means and variances were obtained 

from the frequency domain means and variances using FFT and IFFT operations. In 

order to obtain more accurate estimates, the time domain means and variances were 

passed to the first stage to use in the following iteration. The first stage used these 

values to update equalizer coefficient values and cancel the interference and provided 

more accurate estimates. Thereby both stages iteratively exchanged their informa­

tion learnt from each other. To de-correlate the correlated outputs from both stages 

an interleaver was introduced. The simulation results demonstrated the superior per­

formance of the proposed iterative scheme over the linear MMSE equalization, that 

is not only computationally expensive but had poor performance. Importantly, the 

new scheme had performance very close to the MFB. Moreover, unlike the iterative 

method proposed in [19], the computational complexity of the proposed algorithm 

was independent of DSs, and did not require any preprocessing and could work for a 

large range of DSs, without increasing the computational complexity.
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5.7 Appendices 5

Appendix 5A: Derivation of General MMSE Equalizer

From (5.2.6) it can be written as

r n =  H nx +  vn,

to estimate time domain samples {x(n)}, the MMSE equalizer can be found by min­

imizing the cost function

J(w n) =  E{\x{n) — w ^ rn|2}

=  E{x(n)x*{n) -  x(n)r^ w n -  w ^ rn:r*(n) +  w ^ rnr^w n}. (5.7.1)

To minimize the cost function, J (w n), differentiate with respect to wn and equate to 

zero to yield

E{rnx*(n)} = ■E { r n r " } w „ (5.7.2)

E{(H.nx  + v n)x*{n)} = £{(H „x  +  vn)(H„x +  vn)"}w„ (5.7.3)

H n£{xx*(n)} = (£ { H „ x x "H "  + v „ v " } ) w „ (5.7.4)

H nCov[x(n),x(n)]in = ( H „ £ { x x " } H "  + £ { v ,v "} )  w„ (5.7.5)

hnCx(ri) = [HnC ov(x ,x)H " +  <r2vl L\w n (5.7.6)

and therefore the equalizer coefficient vector can be determined as

wn = (Hndiag(cx)H ^  +  o*lL) 1hncx(n)
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Appendix 5B: Derivation of General Estimator

The samples {z(n)} can be estimated by

x{n) = w ^ rn (5.7.7)

and the expected value of the estimator can be written as

E{x(n)}  = w ^H nx (5.7.8)

If the estimator is unbiased then E{x(n)}  =  x(n), therefore, subtracting (5.7.8) from

(5.7.7) yields

x(n) =  x(n) -  w ^ (rn -  H nx) (5.7.9)



Chapter 6

ITERATIVE EQUALIZATION FOR A 

SINGLE CARRIER WITH CYCLIC 

PREFIX SCHEME

OFDM is an attractive technique for achieving high bit rate transmission over wireless 

channels and provides low complexity channel equalization over severe time invariant 

multipath environments [89,90]. However, an OFDM signal has very high Peak to 

Average Power Ratio (PAPR) that has limited its application, since high PAPR re­

quires an expensive transmitter power amplifier [91]. In the worst case scenario, peak 

transmitted power may be up to N  times the average power, where N  is the num­

ber of subcarriers used to transmit the OFDM block [92]. These large peaks cause 

saturation in power amplifiers. The conventional methods to reduce the PAPR are 

to use a linear power amplifier or back off the operating point of a non-linear power 

amplifier. Both of these methods result in a significant power efficiency penalty. To 

reduce PAPR the work in [91,93] deliberately clips the OFDM signal before ampli­

fication, which mitigates the PAPR but introduces some performance degradation. 

Cimini in [94,95] has presented a suboptimal strategy to tackle this problem.

Single Carrier with Cyclic Prefix (SCCP) is a closely related transmission scheme that 

possesses most of the benefits of OFDM but does not have PAPR problem, thereby 

eliminating the need for an expensive transmitter power amplifier that can operate

123
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linearly over a wide range of signal amplitudes. On top of that the use of single carrier 

transmission has several attractive features, which are given below [76,90,96]:

1. When combined with CP, its performance with FDE is similar to that of OFDM, 

even for very long channel delay spread.

2. Single carrier modulation is a well proven technology in many existing wireless

and wire-line applications and its radio frequency requirements are well known.

Therefore, this chapter provides the application of iterative algorithm, presented in 

the last chapter for OFDM, for SCCP systems.

6.1 A Brief Overview of the SCCP System

The basic baseband model of a conventional SCCP transmission and reception system 

is shown in Figure 6.1. Here, similar to OFDM, the data are transmitted in blocks 

and a CP is appended at the beginning of each data block. By doing this the effects of 

IBI are completely removed. Moreover, for an SCCP system, this approach enables 

the receiver to use the FFT and IFFT for FDE [86]. The data block is passed 

through a PTS stage to transmit the symbols serially. At the receiver N  +  L — 

1 successive samples are collected and passed through an STP stage. Then, the 

first L — 1 received samples are removed that contribute to the symbols from the 

previous block. In FDE, the received time samples are converted into frequency 

domain and an MMSE equalization is performed to estimate the frequency domain 

transmitted symbols. If the channel is LTI then due to the presence of a diagonal 

ICI matrix the computational complexity of the equalization is O(N).  To obtain 

the transmitted time domain symbols an inverse FFT is performed on the estimated 

frequency domain symbols. The relationship between the time and frequency domain 

symbols is given in (5.2.1). However, similar to OFDM an SCCP system is very 

sensitive to time selectivity of the channel that disturbs the orthogonality of the ICI 

matrix. For FDE, the time selectivity increases the computational complexity and
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1(0)
* « ) .LTI

ChannelOu,

r(N-L+1) s(N-1)

F igure 6.1. A basic baseband SCCP scheme, transmitting subsequent blocks of N  

data symbols and the receiver is performing frequency domain equalization, where L 

is the support of channel.

decreases the BER performance due to the emergence of the off diagonal terms in the 

ICI matrix. FDE for SCCP in a frequency selective channel is discussed in [76,90,97]. 

In most of the algorithms given in these papers, it is assumed that the channel is 

only frequency selective. In order to perform FDE in SCCP systems operating over a 

doubly selective channel, Schniter et al. [88], pre-processed the time domain received 

signal by multiplying with window coefficients that squeeze the significant coefficients 

in the ICI matrix into the 2D+1 central diagonals. Here, it is found that D = fd N + 1, 

where /<* is the DS due to the relative motion between the transmitter and receiver 

and N  is the number of symbols used to transmit an SCCP block of data. The 

complexity of this algorithm increases as the DS increases. In contrast to this work, 

as discussed in previous chapter, examining the time domain model of the received 

SCCP signal too reveals that the CCM is already sparse and has similar structure to 

that after preprocessing of the received samples [19,88].

6.2 Problem Statement

The iterative SCCP communication system used in this chapter is given in Figure 

6.2. Before deriving the receiver, an intuitive explanation of its operation is discussed. 

Initially, all data to be transmitted are converted into blocks and a CP is added in
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Figure  6.2. A baseband iterative SCCP system, transmitting subsequent blocks of 

N  data symbols and the receiver is performing iterative time domain equalization.

each block. Each block of data is passed through a PTS stage to transmit each symbol 

in the block serially over the channel. At the receiver the signal is passed through 

the STP stage and the CP part is removed. Herein, in contrast to a conventional 

SCCP system no FFT and IFFT is performed on the received time samples. Then, 

an MMSE equalizer estimates the transmitted time domain symbols. The estimated

values are used to find the means and variances of the transmitted symbols. By

assuming the current estimated values are correct, their effects are cancelled when 

estimating the current symbol. This operation is done iteratively to obtain more 

accurate values. If the number of symbols in an SCCP block is N  and the signal has 

propagated through L different paths, then, considering the sampling rate equal to 

the symbol transmission rate, the received baseband signal sampled at discrete time 

n, after removing the CP can be written as

L - 1

r (n ) =  ^ 2  h ^ i x ( ( n  ~  O at) +  v (n )
1=0

N - l  L - 1

= —F= ^ 2  s (k)ej2*~kn 5 2  hn,ie~j ^ kl +  v(n), (6.2.1)
V ™ k= 0 1=0

where hn}i is the complex MG for the Ith channel tap, x(n), v{n) and s(k) are respec­

tively the transmitted time domain symbols, the zero mean circularly complex white 

Gaussian noise at sample time n and the frequency domain transmitted symbols at
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frequency k. By assuming the perfect knowledge of CIR, the N  received samples in 

vector form can be written as

r  =  H x  +  v  =  U F Hs +  v. (6.2.2)

For FDE, the received time domain sample vector, r, is multiplied with the FFT 

matrix that yields the frequency domain samples

Fr =  F H F ^ s  +  F v  =  H d/s +  Fv, (6.2.3)

where H  is the CCM of size N  x N,  the nth  row and Ith. column entry of the matrix 

H  can be written as H n)/ =  hn<(n-i)N. Similarly, as defined in the previous chapter, F 

is the FFT matrix of size N  x N,  H df is the ICI matrix and s is a vector of frequency 

domain transmitted symbols. The MMSE equalizer for the estimation of s can be 

found by minimizing E{\\s — W F r||2} yielding

W  =  (H " H d/ +  a & v )-1 H "  (6.2.4)

where W  is an equalizer coefficient matrix to decode all the frequency domain trans­

mitted symbols and o\  is the variance of the noise. For frequency domain equalization, 

if in (6.2.3) the channel is LTI then the matrix H df will be diagonal. Thereby, in or­

der to estimate the sequence of samples {s(A;)}, the L-MMSE equalizer requires the 

inversion of a diagonal matrix that is computationally inexpensive. Furthermore, to 

estimate the sequence of transmitted symbols {x(n)}, an IFFT is performed on the 

sequence of estimated samples {s(fc)}.

On the other hand, in a LTV channel the matrix H  is not circulant, therefore the 

matrix H df is not diagonal, a consequence of which is that ICI is introduced. Hence 

the L-MMSE equalizer requires the inversion of an N  x N  matrix that needs 0 ( N 2) 

operations, which is infeasible for large N  and yields poor BER performance [83]. 

However, as shown in Figure 5.4, if modulo-iV indexing is assumed, then the struc­

ture of H  reveals that the individual symbol x(n) contributes only to the observation
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samples r(n) to r(n  + L — 1). Therefore, considering modulo-N  indexing in the se­

quel, it can be noted that these are the only samples required to estimate x(n) and 

in vector form these received samples can be written as,

r n =  H nx +  v n, (6.2.5)

where

1Tr{n) r(n + 1 )  • • • r(n  +  L -  1) ,

matrix H n contains L rows of the matrix H  from n to n +  L — 1 and

= v{ri) v (n- \ -1) ••• v(n + L — 1)
T

6.3 Symbol Estimation

Similar to OFDM in the last chapter, to estimate the transmitted time domain sym­

bols, the sparsity present in the CCM is exploited to design a length L MMSE equal­

izer. As discussed in Chapter 5, in OFDM the time domain transmitted symbols have 

a high number of unknown constellation points as a consequence of the IFFT opera­

tion on the symbols to be transmitted. Therefore, it was impractical to find the LLRs 

of the time domain samples and frequency domain samples were obtained in order 

to find the LLRs. In contrast, in SCCP, the transmitted time domain symbols have 

finite constellation points. Therefore, the LLRs can be found without using frequency 

domain samples. On this basis, next a low complexity MMSE-iterative algorithm is 

described.

6.3.1 MMSE Equalizer

To find the MMSE equalizer for an SCCP system, the derivations of the previous chap­

ter are followed. The noise is assumed temporally uncorrelated, circularly distributed 

and zero mean, therefore £ { v n} =  0, E { v nv nH} = and E{x(n)vn} = 0. Fur­

ther, define x(n) = E{x(n)},  x =  £{x}, cx = [ cx(0) cx(l) • • • cx(N -  1) ] and
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cx(n) = Cov[x(n), x(n)]. The MMSE equalizer, wn, of length L for the soft estimates 

of x(n) can be derived by minimizing the cost function,

J(w n) =  E{\x(n) -  w ^ rn|2}, (6.3.1)

which yields the MMSE equalizer coefficient vector, wn, and estimator x(n) as derived 

in Appendix 5A and 5B,

wn =  (H ndiag(cx)H ^  +  <jx2I l ) -1 hncx(n) (6.3.2)

x{n) = x(n)  +  w ^ (rn -  H nx) (6.3.3)

with the assumption that {x(n) ^  0}, the mean values of the estimates of the in­

dividual symbols can not be equal to zero, in (6.3.2) h n is the nth column of H n.

For better estimates the a posteriori mean values {x(k)}  can be found to cancel their 

effects when finding any particular transmitted symbol. The posteriori mean values 

require the a posteriori probabilities, which are found in the next section.

6.3.2 Iterative Algorithm

For better estimates, it is intended to determine the a posteriori values of {^(n)} and 

(cx(n)} to use in (6.3.2) and (6.3.3) in the next iteration. To find these values the 

following steps are required to form the proposed iterative algorithm.

S tep  1: In the first iteration, all mean values are initialized to zero i.e. (x(n)} = 0 

that corresponds to diag(cx) =  I n , then, the estimate x{n) is obtained using (6.3.2) 

and (6.3.3).

S tep  2: As mentioned in the previous chapter, with the assumption of BPSK signals,

it is more convenient to work with the LLRs rather than the probabilities [98]. The

a priori and a posteriori LLRs of x(n)  are defined as

r r / m , (Pr{x(n) =  1} .
L[x{n)] =  Pr{x(n)  =  -1} ) (6'3'4)
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and

rr / M 1 , (Pr{x{n) = l | i(n)}
i [ x ( n ) l i < " )]  =  P r { x ( n )  l | i ( n ) } ) '  ( 6 ' 3 5 )

The difference between the a posteriori and a priori LLRs (which is the extrinsic 

information) of x(n), as derived in the previous chapter, is

A L[x(n)\ = L[x(n)\x(n)] -  L[x{n)\ = L[x(n)|x(n)]

= (6.3.6)

In order to find the extrinsic LLR, L[x(n)|x(n>], it is assumed that the probability

density function (PDF) of x(n) is Gaussian with variance and can be written as

p{i(n}} .  _ U e x p  ( - {i{n) ~ j  . (6.3.7)

Therefore the conditional PDF, when the transmitted signal x(n) = b e {+1, —1), of 

x(n) becomes

r~/ M i l  (  — rnn(b))(x(n) — mn(b))H\  . \̂
p{a;(n)|«(»)=6} =  “ Zf— exp ------- 9 2 H  !iLZL- > (6-3-3)v27rcrx \  Zcr£\x(n)=b J

where mn(b) = E{x(n)\x(n)=b} and 0-x|x(n)=6 =  Cov[£(ra),x (n)|x(n)=fe], which are the 

conditional mean and variance of x(n).

Throughout the iterative receiver process, to estimate x(n) only the extrinsic infor­

mation is used. Which implies that, when estimating x{n), the a priori information is 

set as x(n) = 0 and cx(n) =  1 in equations (6.3.2) and (6.3.3). Hence, the conditional
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mean can be determined by using (6.3.3) as

E{x{n) |x (n)=&} =  E  {x(n) +  (rn -  H nx)} |x(n)=6

x (0 )

= w^Hn b +  x(n) — x(n) -  w ^H nx

x(N )

w ^ H ninb +  w ^ H nx -  w ^ H nx

wfhn6 (6.3.9)

It should be noted that mn(b) depends on the particular value of b. Similarly, it can 

be shown that the conditional variance of x{n) becomes

^ xlx (n )= 6  =  E {x{n)xH( n ) \ x i n)=b} ~  m n(b)mn{b)H

= E {x{n)xH{n)\x{n)=b} ~  w ^ h nh ^w n (6.3.10)

within which the term

E {x(n )x” (n)\x{n)=zb} = w " (H ndiag(cx)H n +  crnIL)wn|x(n)=6 (6.3.11)

Substituting (6.3.2) in (6.3.11) yields E {x (n )xH(n) |x(n)=b} =  w ^ h n. Therefore (6.3.10) 

becomes

^ xlx (n )= 6  =  w ^ h n -  w " h nh " w n.H u  u H , (6.3.12)
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Note that unlike the mean the variance of the estimator is independent of 6, and the 

difference between the a posteriori and the a priori LLR of x(n) becomes

A L [x(n)j =  In
e x p f - <f<1rm'><+1))2Y

\  <Tx l i ( n )  =  +  l  )  m

(x(n) -  w ffhw)2 +  (x{n) +  wffhTO)2

= 4
Re{x(n)}
1 -  h " w n ‘

x |x (n)=  — 1

Therefore, the a posteriori LLR of x(n)

L [x(n)|x(n)] =  L M™)] +  A L [x(n)].

(6.3.13)

(6.3.14)

Step 3: Exploiting (6.3.14) and using the property Pr{x(n) = l|*(n)} +
Pr{x(n) =  — l|x(n)} =  1 the posteriori values for x(n) and cx(n) are obtained as

^WIx(n) = Pr {x(n) =  + l | x ( n ) }  -  P r  { x i n ) =  1 |x(n)}

= tanh (6.3.15)

and

x̂(w)|f(n) = ^  ̂ (6 x(7i)|f(n)) Pr(x(n) &|x(n))
6 e { + l . - l >

= l - * ( n ) |  l (n). (6.3.16)

Note that equations (6.3.15) and (6.3.16) update the values of x{n) and cx{n) in 

(6.3.2) and (6.3.3) in Step 1.

S tep  4: Steps 1 to 3 are repeated until the specified number of iterations has elapsed. 

The Table 6.1 shows the overall iterative algorithm used for the simulations.
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Table 6.1. MMSE-Iterative algorithm for SCCP 
L = zeros(N , 1) 

x =  zeros(N , 1) 

diag(cx) =  l N 

while iter < max — iter 

for n = 1 : N  

x(n) =  0 ; cx(n) =  1

wn =  (Hndiag(cx)H "  +  a2I)_1hn 

x(n) = x(n) +  w //(rn — H nx)

L ( k )  =  L ( k )  +  A L ( k )  

x{n) = tanh(L(fc)/2) 

cx(n) = 1 — x(n)2

end

6.4 Complexity of the Algorithm

6.4.1 Linear Time Variant Channel

In each iteration, to find the equalizer coefficient values wn, the algorithm requires 

the inversion of [Hndiag(cx)H ^ + that needs 0 ( L 2) operations and must be 

performed N  times per iteration. Although the dimensions of matrix H n are L x 

N, it contains only 2L — 1 non-zero columns. The product term inside the matrix 

H ndiag(cx)H ^ can be computed in 0 ( L 2) operations as a consequence of the sparsity 

within the channel convolution matrix. Once wn is obtained the estimation of x(n) 

requires the computation of H nx that also needs 0 { L 2) operations and must be 

repeated N  times per iteration. Therefore, to estimate N  symbols only G (N L2) 

computations per iteration are required.
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6.4.2 Linear Time Invariant Channel

In an LTI channel the FDE requires 0(2N\og2N) operations, while the proposed 

algorithm requires 0 { L 2N ) operations per iteration. Therefore, the complexity of the 

proposed algorithm for a small length of channel (<5) is identical to the complexity 

of the FDE but the performance is better.

6.5 Simulation

In this section, the performance of the proposed low complexity MMSE-iterative 

algorithm is compared with the L-MMSE equalizer and MFB. The length of the CP 

is kept equal to the length of the channel. A 4-tap wireless fading channel model is 

used in which each channel tap is represented by a complex Gaussian random variable. 

The real and imaginary parts of each channel tap are independently generated with 

the Doppler spectrum based on Jakes’ model. Here, it is assumed that =

1, where af is the variance of the Ith path. The transmitted symbols (a:(n)} are 

BPSK. The MFB is obtained from the model given in (6.2.2) by assuming the symbols 

{x(l)\ijtn} are known. In Figures 6.3 and 6.4 respectively, the convergence of the 

proposed iterative algorithm is analyzed for slow and fast time varying channels, for 

the SCCP block length of 32. From the figures it can be seen that the algorithm 

converges after five iterations and there is no significant change after five iterations. 

Moreover, for fast time varying channels it converges slightly faster. Figures 6.5 and

6.6 respectively compare the BER and SER performance of the iterative algorithm 

with the L-MMSE equalizer and MFB for the SCCP block length of 32. At low 

DS, for example fd =  0.001, the channel changes very slowly and in this case the 

performances of the iterative method and the L-MMSE equalizer are close to each 

other. However, as the large DS introduces significant time selectivity into the channel 

the proposed algorithm outperforms the L-MMSE equalizer. Figure 6.7 repeats the 

simulation in Figure 6.5 for the SCCP block length of 64. By comparing the results 

of these figures, it can be concluded that using long length SCCP blocks of data
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appears to yield better performance. For example, considering the performance of 

the iterative algorithm for the SCCP block length of 32 and 64 for the DS of 0.05. The 

algorithm for the SCCP block length of 64 yields ldB gain in SNR. The reason for 

this gain is due to the fact tha t to estimate a symbol x{n ), more extrinsic information 

is available. In Figure 6.8, the performance of the proposed algorithm is compared 

with the FDE for the case of an LTI channel. Even in the case of an LTI channel, 

the iterative method outperforms the FDE by at least ldB.
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F igure  6.3. BER performance of the iterative algorithm after different number of 

iterations at slow fading fd = 0.001.The number of symbols in a SCCP block is 32.
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F igure  6.4. BER performance of the iterative algorithm after different number of 

iterations at fast fading fd = 0.05. The number of symbols in a SCCP block is 32.
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Figure 6.5. Bit error rate performance comparison of the proposed iterative algo­

rithm after five iterations with the L-MMSE equalizer and MFB at different DSs. 

The number of symbols in one block is 32 and the length of the channel is 4.
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F igure 6.6. Symbol error rate performance comparison of the proposed iterative 

algorithm after five iterations with the L-MMSE equalizer and MFB at different DSs. 

The number of symbols in one block is 32 and the length of the channel is 4.
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Figure 6.7. BER performance comparison of the proposed iterative algorithm after 

five iterations with the L-MMSE equalizer and MFB at different DSs. The number 

of symbols in one block is 64 and the length of the channel is 4.
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Figure 6.8. BER performance comparison of the proposed iterative algorithm for 

an LTI channel after five iterations with the FDE and MFB. In both equalizations, 

the number of symbols in one block is 32 and the length of the channel is 4.
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6.6 Summary

In this chapter the design of a low complexity iterative SCCP receiver for LTV and LTI 

channels has been considered. The proposed algorithm exploits the sparsity present 

in the CCM to design a length L  MMSE equalizer. In contrast to FDE, the proposed 

algorithm does not involve the IFFT and FFT operations. The simulation results 

demonstrate the superiority of the proposed scheme over the L-MMSE equalizer, 

which is not only computationally expensive but has poor performance. On the other 

hand, unlike the iterative method proposed in [88], the computational complexity 

of the proposed algorithm is independent of DS, does not require preprocessing and 

can work for a large range of DSs without increasing the computational complexity 

significantly. The computational complexity of the proposed algorithm depends on the 

length of the channel that can be reduced by applying channel shortening algorithms.



Chapter 7

CONCLUSION AND FUTURE 

WORK

7.1 Conclusion

With the advent of multimedia services in mobile communication the demand for 

high data rate is continuously increasing. High data rate transmission on a bandlim- 

ited channel gives rise to ISI, the effects of which can be mitigated by employing 

an equalizer at the receiver. On the other hand, for high data rate transmission 

the signals are transmitted on very high frequencies that in a mobile environment 

introduces significant DSs in the carrier frequencies, which is one of the main rea­

sons for time variations in frequency selective channels. Time variation in frequency 

selective channels degrades the BER performance of communication systems and in­

creases the computational burden on the receiver. In fast time-varying channels with 

higher order modulation schemes, adaptive equalizers may not perform well. There­

fore, block based equalizers are preferred but they require the channel parameters. 

In fast time-varying channels the estimation of channel parameters becomes a chal­

lenging problem. Therefore, in this thesis the parameter estimation and equalization 

techniques for doubly selective channels have been developed and analyzed.

This thesis started with a simple time-varying deterministic channel, where the rela­

tive motion between the transm itter and receiver was very high and various multipaths 

experienced different DSs due to different angle of arrival. Distinct DSs introduced

140
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sinusoidal time-variations in each multipath of the channel. At first, the equalization 

of a wireless SISO channel that allowed multipath with distinct DSs was considered. 

For this scenario, to mitigate the effects of the channel, the equalizer coefficient val­

ues required the knowledge of CSI and FOs. To estimate the FOs using MLE was an 

L dimensional maximization problem, where L is the support of the channel. How­

ever, exploiting the correlation property of the transmitted training sequence the L 

dimensional maximization problem was split into L  one dimensional maximization 

problems. To validate the performance of FOs and CSI estimators, the CRLB was 

derived and the performance of the estimators was compared with this bound. The 

estimators were found to be statistically efficient. Moreover, distinct FOs could not 

be compensated for prior to equalization (as in conventional equalizations), therefore, 

they were accounted for in the equalizer design. By doing this, the equalizer design 

required the inversion of an M  x M  matrix to decode each symbol, where M  was 

the number of equalizer taps. To reduce the computational burden on the receiver, a 

novel equalization structure was proposed that exploited the deterministic structural 

movements of the matrices in CCM, using matrix inversion lemmas and a corollary 

derived from these matrix inversion lemmas. The proposed algorithm did not require 

the inversion of an M  x M  matrix, rather the inversion of an (M — 1) x (M — 1) matrix 

was performed only at the start of the frame, for rest of the symbols no inversion was 

required.

Then the equalization of a SISO channel with multipath and multiple FOs was ex­

tended for multi-user transmission systems where the channel was modelled as a 

multiple-input and multiple-output frequency selective system. Here, estimation of 

FOs was an u rL  dimensional problem. But due to uncorrelated training symbols from 

each transmit antenna, the problem was split into u rL  one dimensional maximization 

problems. Here, again due to distinct DSs, the equalizer required the inversion of an 

t i r M  x u r M  matrix. But, exploiting the structural movements of the matrices as 

in the SISO system the computational complexity was reduced significantly. In this
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case, at the start of the frame the inversion of a (M — 1)urX  (M  — 1)ur matrix was 

required, but for rest of the symbols in the frame, only the inversion of an h r  x  t l r  

matrix was required.

In the rich scattering environment or when there was motion of physical objects 

between the transmitter and the receiver, the CCM did not change deterministically 

and the structural movements of the matrices could not be seen. In this scenario the 

channel was assumed to follow the Rayleigh fading model. Therefore, in the next 

step, the equalization of a general doubly selective channel was studied. For the 

equalization of a doubly selective channel, an OFDM scheme was considered, since 

it is more sensitive to the time selectivity of the channel. Here, it was assumed that 

the channel was known at the receiver. In OFDM, a time-varying channel intro­

duced ICI that increased the computational complexity to 0 ( N 3) and degraded the 

BER performance of the receiver. For an OFDM doubly selective channel, using the 

time and frequency samples a low complexity iterative algorithm was proposed. This 

algorithm exploited the sparsity present in the CCM to design a length L MMSE 

equalizer to decode the transmitted time domain samples, where L was the number 

of multipaths. The time domain samples were estimated on the basis of interference 

cancellations. Here, the time domain samples did not have finite constellation due 

to the IFFT operation therefore, it was difficult to find the mean values. In order to 

find the mean values, the estimated time domain samples were passed to the second 

stage where the frequency domain symbols were found. As the frequency domain 

symbols had finite constellations, it was easy to find the mean values. Mean val­

ues obtained in the second stage were converted into the time domain and passed 

back to the first stage. Both of these stages shared their information learnt from 

each other iteratively and worked independently. To make the outputs of each stage 

independent of each other, a random interleaver and a de-interleaver were introduced.
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Finally, the iterative equalization of a Rayleigh fading channel for a SCCP system 

was considered. In contrast to the equalization of an OFDM channel, this algorithm 

worked only with time domain samples. In an SCCP system, at the transmitter no 

IFFT is performed on the signals to be transmitted, therefore, the transmitted time 

domain samples have finite constellations. In the proposed algorithm for SCCP, at 

the receiver, in contrast to conventional FDE, no FFT and IFFT was performed. 

To estimate the time domain samples a length L MMSE equalizer is designed and 

time domain samples were obtained by cancelling the interfering symbols obtained 

in the previous iteration. From the estimated time domain symbols the a posteriori 

probabilities were found and used to find the a posteriori means of the transmit­

ted symbols. In the following iteration these mean values were used to cancel the 

interfering symbols when estimating symbols for obtaining more accurate values.

7.2 Future Work

The work presented in this thesis can be extended in a number of directions, includ­

ing specific issues related to the algorithms presented. The proposed low complex­

ity equalization presented in first two contribution chapters can be extended to the 

DFE, wherein, exploiting the structural movement in the convolution matrix could 

be challenging, but the DFE could provide a much better performance. Moreover, 

the presented FO estimation and correction can be employed in Ultra Wide Band 

(UWB), where the problem is more challenging due to wide spectrum of the signal.

In the last two chapters iterative algorithms are presented and a critical issue of 

estimation of time-varying channels was ignored. In our on-going work, the estima­

tion of time-varying channels is being considered.

The proposed iterative algorithms also resemble turbo equalization, in on-going work 

the performance gap between the turbo equalization and the proposed algorithm when
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coding is applied is being considered.

Here, the computational complexity of the algorithm increases linearly with the length 

of the channel. This can limit the application of the algorithm only to small length 

channels. In on-going work, it is being tried to develop algorithms that do not in­

crease the computational complexity linearly with the channel length. Time domain 

channel shortening algorithms for doubly selective channels can also be found.

The work of iterative equalization could also be extended to MIMO OFDM.
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