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Summary
The research reported in this thesis focused on the potential o f neural precursor cells to provide a 

suitable source o f neurones which can be used in cell replacement strategies for Huntington’s disease. 

Specifically, the parameters affecting the differentiation o f these cells into neuronal phenotypes were 

addressed and increasing the survival o f proliferating and differentiating neurones was attempted. In 

vivo characteristics and the fibre projections o f primary and 10 day expanded ENPs was also assessed. 

The limitations o f xenografts in this thesis led to the search for an alternative model system for such 

experiments.

Chapter Three involved an extensive study investigating the effects o f a range o f concentrations of 

FGF-2 and EGF on the proliferation and more importantly the neuronal differentiation o f murine ENPs 

over 6 passages in culture, and it was found that the concentration had an effect on the neuronal 

proportion as well as the neuronal yield o f these cultures.

Chapter 4 examined the turnover o f neuronal precursors in the ENP population cultured in the 

presence o f FGF2 and EGF, using BrdU. The ongoing proliferation o f neuronal precursors within ENP 

cultures was observed and the addition o f the growth factors: CNTF, BDNF, HGF and NGF, to 

enhance the survival o f these neurons on differentiation had no effect.

Chapter 5 examined the potential o f 10 day expanded human striatal ENPs to maintain a striatal like 

phenotype both in vitro and in vivo in comparison to primary foetal tissue. In vitro after 10 days 

expansion ENPs differentiated into DARPP-32 positive neurons and this characteristic was maintained 

in vivo, in a lesion model o f HD, albeit to a much lesser extent. This study was limited by the need for 

ongoing immunosuppression which reduced the life span o f the host animal.

Chapter 6 investigates further the potential o f ENPs. The ability for these cells to send long 

projections in the host brain and therefore repairing the circuitry lost or damaged as a result o f the 

disease. A four way analysis was carried out examining both alio- and xenograft environments with 

both primary and 10 day expanded ENPs. Mouse grafts were used to address the allograft environment 

given that such an experiment is not possible with human tissue and both human and mouse tissue 

addressed the xenograft environment. To overcome the issues associated with labelling the grafted 

tissue in the host brain, several techniques were employed, including; the use o f the GFP transgenic 

mouse, lentiviral labelling o f  the cells with the LacZ gene and iontophoretic labelling o f the graft with 

anterograde tracers. ENP grafts were shown to send out longer projections than that o f primary tissue 

although this may be due to migration o f the grafted cells.

Chapter 7 addresses the issue o f immunosuppression o f xenografted animals. An alternative model 

system was explored with the hypothesis being that it would be possible to tolerise the animal in the 

neonatal period to the xenograft tissue that would subsequently be used for intrastriatal grafting in the 

adult. Indeed, tolerising the animal resulted in healthy surviving grafts in the adult without the need for 

daily immunosuppression.

Work presented in this thesis contributes some understanding to the biology o f neural stem cells and 

neural xenografts that may ultimately be used for neural transplantation therapies in HD.
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Chapter One

Introduction

1.1 Huntington’s Disease

George Huntington described the disease that took his name in his now well-known 

paper of 1872 (Huntington, 1872). Huntington’s disease (HD) is a progressive and 

devastating neurodegenerative disorder that affects approximately 5-10 per 100,000 in 

the Caucasian community (Harper, 1996). It is inherited in an autosomal, dominant 

fashion, and can be reliably diagnosed by means of an accurate DNA test. A number 

of triplet repeat disorders have now been described, and these fall into two groups. In 

the first, the triplet repeat falls within the coding regions of the gene. HD belongs in 

this group and in all but one of these disorders, the triplet repeat is a CAG repeat 

sequence, coding for a sequence of glutamine residues. The other diseases identified 

to date are the spinocerebellar ataxias (SCAs) 1, 2, 3, 6, 7 and 17, spinal and bulbar 

muscular atrophy (SBMA) and dentatorubral pallidoluysian atrophy (DRPLA). In the 

second group, the repeat falls within the non-coding regions, and these include Fragile 

X Syndrome, Myotonic Dystrophy and Friedreich's Ataxia (Timchenko and Caskey, 

1999; Reddy et al., 1999).

The clinical symptoms of HD include a movement disorder (predominantly, chorea, 

bradykinesia, rigidity and dystonia), as well as a number of other symptoms including 

dysphasia and dysarthria, intellectual impairment (frontal in nature, at least in the 

early stages), and psychiatric disturbance. Although by the mid to late stages of the
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disease most patients have some symptoms across all categories, the predominant 

symptoms in the early stage vary from patient to patient. Furthermore, although 

disease onset is usually defined by the appearance of motor disorders, subtle cognitive 

decline may precede the onset of motor symptoms by up to 10 years (Lawrence et al.,

1998). The disease most commonly manifests in the 3rd and 4th decades and is 

relentlessly progressive with death approximately 20 years after diagnosis (Naarding 

et al., 2001; Ross and Margolis, 2001; Masino and Pastore, 2001). At the time of 

writing, symptomatic treatments are limited and there are no proven disease- 

modifying therapies available.

1.2 Genetics of HD

The gene for HD, now known as huntingtin (htt), comprises 67 exons (Ho et al., 2001) 

and is found on the end of chromosome 4 (4pl6.3) (Huntington's Disease Collaborative 

Research Group, 1993). The gene contains in exon 1 a repeated triplet CAG sequence that 

encodes for the amino acid glutamine, which is the region that is expanded in the mutant 

gene. The htt gene codes for the 350Kda protein Huntingtin (Htt), the normal function of 

which is still unclear. In the normal gene there are fewer than 36 triplet repeats, although 

those with repeats of 35-38 triplets are currently considered to be intermediate, and the 

extent to which any phenotype results from repeats in this range remains to be determined 

(Georgiou-Karistianis et al., 2003). There is a correlation between repeat length and age of 

disease onset, although this is largely due to the early onset in patients with very large 

repeat numbers, whereas for the majority with repeat numbers in the 40s and low 50s 

the correlation is poor.

7
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1.3 Pathology of HD

There have been considerable advances in understanding the cellular pathology of HD 

over the last 5-10 years, although the precise mechanism by which the gene induces 

cell death remains elusive. It appears that mutant Htt produces its effect in a ‘gain of 

function’ manner, although loss of function may also play a role (Cattaneo and 

Calabresi, 2002). Evidence in support of gain of function has been derived from the 

observation that exogenous mutant Htt can cause degeneration in a variety of cell 

culture systems despite the presence of endogenous wild-type Htt and small fragments 

have been shown to be more toxic than larger ones. There is accumulating evidence 

that aggregation of the mutant protein plays a key role, producing micro-aggregates as 

well as larger cellular aggregates which are now thought of as pathological hallmarks 

of the disease (Wanker, 2000). In vivo, post mortem antibody staining suggests that 

intraneuronal aggregates are predominantly comprised of truncated N-terminal 

fragments rather than full length mutant Htt (Furtado et al., 1996). The aggregates are 

believed to be the result of mis-folded expanded polyglutamine repeat sequences, 

leading to impaired cellular metabolism and cell death (Li and Li, 2004). Whether 

intracellular aggregates are part of the pathogenic process, for example by interfering 

with cellular trafficking (Saudou et al., 1998), are beneficial to the cell (Arrasate et al., 

2004), or are simply a disease marker with no interfering or beneficial effects is still 

controversial. It seems that wild-type huntingtin may be important in a wide range of 

cellular processes, and a number of potential effects of the mutant protein have been 

postulated as being of potential relevance to the disease state. For example: the 

cAMP response element (CRE)-mediated pathway shows the early disruption and is 

significantly down-regulated when compared to the retinoic acid response element 

(RARE) and the nuclear factor-K B pathways (Sugars et al., 2004), suggesting that

8
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reduced CRE dependent transcription may contribute to disease pathogenesis; 

polyglutamine expansion may also trigger apoptosis via the activation of the caspase 1 

and caspase 8 (Li et al., 2000) pathways; and mutant Htt seems to interfere with 

proteasome function, thus preventing toxic protein fragments from being removed 

from the cell (Venkatraman et al., 2004; Bence et al., 2001). A truly rational 

approach to the development of a disease modifying-therapy will require a more 

complete understanding of these processes.

At a macroscopic level, the pathology of HD is characterised by neuronal loss in the 

head of the caudate and putamen of the striatum (Figure 1.1), with the medium spiny 

projection neurones being more affected than striatal intemeurones (Ross and 

Margolis, 2001). As a result of the neuronal loss, there is eventually significant 

atrophy of striatal structures, with a compensatory expansion of the lateral ventricles. 

PET scans have shown there to be a progressive loss of D2 binding in the HD brain 

(Andrews et al., 1999). The remaining striatum is hypometabolic, with energy 

production and oxidative metabolism being significantly reduced (Kopyov et al.,

1998). As the disease progresses, the pathology becomes more widespread, including 

wide areas of neocortex, to the point where overall brain weight may decrease by up 

to 25-30%. Gliosis is seen alongside the marked neuronal loss. Neuronal loss in the 

cortex is found to be layer specific, with the greatest loss seen in layer VI and 

significant further loss seen in layers III and V (Reddy et al., 1999; Ross and 

Margolis, 2001).

9
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Figure 1.1

Figure 1.1 Coronal section through HD brain. Note the degree of atrophy of the 
caudate nuclei and the cerebral cortex. Courtesy of Prof. JR Hodges

1.4 The developing striatum

Development of the vertebrate nervous system begins with neural induction, when a 

dorsal region of the embryonic ectoderm becomes specified as neural plate. 

Neurulation then occurs, when the neural plate folds in on itself, forming the neural 

tube which is lined by a pseudostratified columnar epithelium consisting of 

uncommitted progenitors from which the future CNS will arise (Jain et al., 2001; 

Kandel et al., 2001). The adult human striatum consists of the caudate nucleus and 

the putamen. The origins of the striatum lie in the ventral telencephalic vesicle of the 

embryonic brain, derived from an area between the medial septum, and the border of 

the dorsal telencephalon that later develops into cortex.

10
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In mammalian development, the pallidum and striatum are derived from the transient 

swellings in the ventral region of the embryonic telencephalon known as the Medial 

Ganglionic Eminence (MGE), and the Lateral ganglionic Eminence (LGE) (also see 

Figure 1.4) and the caudal area where they both join, the Caudal Ganglionic Eminence 

(CGE). The MGE appears first, followed later by the LGE. These areas are 

collectively known as the Whole Ganglionic Eminence (WGE).

The basal ganglia are comprised of a number of interconnected nuclei linking the 

basal ganglia to the cortex, the thalamus and the brainstem through several 

independent pathways. These nuclei are the striatum, the sub thalamic nuclei (STN), 

the internal and external segments of the globus pallidus (GPi/e) and the substantia 

nigra pars compacta and pars reticulata (SNc and SNr).

Grafts comprised of tissue dissected from both the medial and lateral ganglionic 

eminences are heterogenous in composition, containing characteristic patches of 

striatal like tissue, termed P (patch) zones and tissue that lacks the characteristics of 

striatal neuronal phenotypes - NP (non patch) zones (Figure 1.2). P zones comprise 

neurons that are immunopositive for the striatal markers such as acetylcholinesterase 

(AChE), and DARPP-32 as well as GABA, enkephalin, dynorphin, and substance P. 

In contrast NP zone neurons are DARPP-32 and AChE negative and it has been 

suggested that these neurons are in fact not striatal, but have been derived from other 

progenitor cells and neuroblasts that have been dissected along with the ganglionic 

eminences (or which are migrating through the GE at this developmental age) and 

may include neurons from the globus pallidus, amygdala and cortex (Graybiel et al.,

11
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1989a; Zhou et al., 1989; DiFiglia et al., 1988; Walker et al., 1987; Sirinathsinghji et 

al., 1993).

The proportion of P zones in a striatal graft is influenced by the dissection of the 

ganglionic eminences. Grafts of tissue from whole GE (both the LGE and MGE) 

have 30-50% P zones as a proportion of the entire graft volume, whereas grafts of 

LGE alone resulted in an increase of the proportion of the P zone to 80-90%. Grafts 

of MGE result in grafts with only 25% P zone (Deacon et al., 1994; Grasbon-Frodl et 

al., 1996; Graybiel et al., 1989a; Isacson et al., 1985; Olsson et al., 1995; Pakzaban et 

al., 1993; Watts et al., 2000b; Wictorin et al., 1989b; Fricker-Gates et al., 2001; 

Grasbon-Frodl et al., 1997).

12
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Figure 1.2

Figure 1.2 The P (arrows) and NP (arrow head) zones of the striatum, stained with 

AChE.

1.4.1 Molecular aspects of striatal development

A host of molecular changes occur throughout development in response to 

fluctuations in the cells internal and external environment. Some of these changes 

regulate the expression of genes that code for many types of small molecules, some of 

which will act on the cell to influence its development and differentiation. These 

molecules range from signalling proteins such as Delta and Notch (Grandbarbe et al.,

2003) that inhibit neuronal fate and promote glial cell fate, later promoting astrocytic 

differentiation, to the newly discovered potential of the post transcriptional control 

exerted by other elements such as gene silencing using RNA interference molecules

13
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(Fire et al., 1998). All of these changes are controlled through changes in the 

transcription of genes, and the way the gene products interact with each other.

Sonic hedgehog” (Shh) is a morphogen that has a variety of effects in the developing 

embryo. Deletion of this gene shows that it is vital for the generation of the globus 

pallidus and the striatum (Kohtz et al., 1998), with the telencephalon being greatly 

dysmorphic and reduced in size (Machold et al., 2003) as well as changes in many 

other ventral structures along the rostra-caudal axis of the CNS. It induces ventral 

identity in a concentration-dependant manner (Shimamura and Rubenstein, 1997) and 

has been shown to induce the expression of Nkx-2.1 a brain marker in the MGE. 

Although Nkx-2.1 and Shh are both expressed in the MGE, neither has been detected 

in the LGE. However, after targeted mutagenesis of Shh the LGE fails to form as 

expression of the marker Dlx-5 is lost and the neocortical marker Emx-1 expands 

ventrally to take its place (Kohtz et al., 1998). Also, at a later stage of development 

(around E8.5 to E9.5 in the mouse), Shh expression has been shown to induce the 

expression of LGE proteins (Kohtz et al., 1998) and it seems that it is these changes 

within the ganglionic eminence, that regulate the formation of firstly the MGE, and 

then later the LGE (Kohtz et al., 1998).

Four of the Dlx genes (Dlx 1/2/5 and 6 (Anderson et al., 1997b; Eisenstat et al., 

1999)) are expressed in the developing ganglionic eminences and have been described 

as being critical for striatal development (Jain et al., 2001; Rubenstein and 

Shimamura, 1998; Panganban and Rubenstein, 2002; Marin et al., 2000; Eisenstat et 

al., 1999; Yun et al., 2002; Corbin et al., 2000; Nery et al., 2002; Rallu et al., 2002).

14
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These Dlx genes are thought to control the differentiation of a subset of GABA-ergic 

neurons of the basal ganglia and cerebral cortex (Panganiban and Rubenstein, 2002b).

The expression of Dlx-1 and Dlx-2 were originally thought to be indistinguishable, 

although recent work has indicated that Dlx-2 expression precedes that of Dlx-1, 

which itself precedes expression of Dlx-5, although early bom striatal cells still 

express Dlx-5 and Dlx-6, indicating that these earlier bom cells express Dlx-5/6 

independently of Dlx-1/2 (Eisenstat et al., 1999). Single mutants for Dlx-1, Dlx-2 and 

Dlx-5 have shown no discemable forebrain defects, suggesting there is some degree 

of genetic redundancy.

However, the Dlx-1/2 double mutant shows an absence of the later-bom (after E l2.5 

(Eisenstat et al., 1999) GABA-ergic intemeurons containing somatostatin, 

neuropeptide-Y and nitric oxide (Jain et al., 2001). These later bom striatal matrix 

neurons are believed to be derived from the sub ventricular zone (SVZ) of the 

developing striatum and are thought to remain in the SVZ apparently due to an arrest 

in their migration (Eisenstat et al., 1999; Anderson et al., 1997d). Tangential 

migration from the MGE to the cortex and pallidum is also decreased or absent 

(Anderson et al., 1997c; Anderson et al., 1997a). It seems that Dlx genes in general 

have a role to play in the development of GABA-ergic neurons, as the expression of 

the Dlx genes coincides with the location of virtually all neurons that use GABA as 

their transmitter. Further proof of this is shown in studies where ectopic expression of 

Dlx genes has induced a GABA-ergic phenotype (Panganiban and Rubenstein, 

2002a).
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Gsh-2 also leads to the expression of Mash-1 a gene that is closely related to the 

Drosophila “achaete-scute” gene and implicated in striatal early-born cholinergic 

intemeuron development (Jain et al., 2001) in the MGE; a loss of Gsh-2 will cause a 

subsequent loss of Mash-1, affecting the generation of neural precursors in the MGE 

by E l2.5 (Casarosa et al., 1999) and altering the timing of production of SVZ 

precursors in the LGE. This leads to a perturbed generation of neuronal populations 

in the basal ganglia and cortex (as a proportion of cells bom in the ganglionic 

eminence are destined to migrate tangentially towards dorsal regions to become cortex 

later in development (Casarosa et al., 1999; Nery et al., 2002). Mash-1 is confined to 

a subpopulation of neural precursor cells. Expression also precedes and ends upon 

neural differentiation in a similar fashion to its Drosophila homologue (Lo et al., 

1991).

Pax-6 is a homeobox gene expressed in the dorsal telencephalon, a region that later 

develops into cortex, but not in the ventral telencephalon which later forms the 

striatum (Toresson et al., 2000b). Conversely, Gsh-2, is expressed in the MGE (this is 

thought to be a result of the presence of Shh along the ventral antero-posterior axis) 

firstly at around E l0.5 (Corbin et al., 2000), then spreading to the WGE later on, but 

not in the dorsal telencephalon. These two DNA regulating genes (and perhaps many 

more like them) probably regulate the expression of a further subset of genes that will 

cause the cortex or striatum to develop a certain fate (Toresson et al., 2000b).

It can be seen, that both Pax-6, Gsh-2 and a number of other genes that are expressed 

are implicated in dorsal/ventral identity (Corbin et al., 2000; Toresson et al., 2000b; 

Yun et al., 2001). It seems they take part in laying a ‘molecular border line’ down
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between the ventral ganglionic eminence and the dorsal cortex, as well as many other 

roles that they may play in cellular differentiation, development and normal activity.

Another gene that is expressed in the foetus as early in development as the 3rd and 4th 

somite stages and in the MGE at around E9-E9.5 (Yun et al., 2003) is Nkx-2.1. As 

stated above, this gene is thought to be induced by the presence of Shh (Rubenstein 

and Shimamura, 1998) along the rostro-ventral axis of the neural tube at around E8.5. 

Nkx-2.1 is expressed in cells that originate in the MGE but later migrate dorsally into 

the LGE (although not as far as the cortex (Chapouton et al., 1999). At E l4.5 and 

later stages, Nkx2.1 expression is prominent in the developing globus pallidus and as 

development continues it’s expression can be detected in several other ventral 

telencephalic structures including the Bed Nucleus of the Stria Terminalis (BNST), 

parts of the septum, the ventral pallidum and parts of the amygdala (Sussel et al.,

1999).

Foxg-1, a gene formerly known as Bf-1 is a winged helix transcriptional factor first 

expressed at around E8.5-9 (Jain et al., 2001), that acts as a negative regulator in the 

telencephalon. A lack of expression of Foxg-1 as seen in the mutant Foxg-l'7’, results 

in cortical hypoplasia and still birth (these mutants are only viable up to the age of 

E l8.5 (Hanashima et al., 2004a)). This is thought to be due to progenitors 

differentiating early leading to reduction of the progenitor population and therefore a 

reduction in the final numbers of cells within the telencephalon (Xuan et al., 1995). 

In a recent study Foxg-1 was found to suppress the earliest bom cortical neurons (the 

Cajal/Retzius neurons of layer 1 of the cortex) in normal development, while in the
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Foxg-L7' mouse there is an excess of these cells within the cortex (Hanashima et al., 

2004b).

Differentiation of striatal cells may also be associated with the expression of the 

transcription factor Ebf-1 which is expressed in both the LGE and MGE between El 1 

and E l7.5 (Jain et al., 2001). In the normal brain, antibodies raised against Ebf-1 will 

highlight later bom matrix neurons (Corbin et al., 2000). Although the knockout 

model shows no defects within the striatum until E l7.5, inactivation of this protein 

does affect cells within the SVZ/mantle transition in the LGE, affecting the 

differentiation processes coincident with the migration of cells to the mantle zone, 

therefore leading to abnormal gene expression within the mantle later in development. 

Due to this, cell death later on in embryological development is increased (Garel et 

al., 1999).

The Meis family of homeobox genes belong to a super-group of transcription factors

that have a Three-Amino acid Loop Extension (TALE). Three Meis genes have been

found in vertebrates; Meis-1/2/3. However, only Meis-1 and Meis-2 have been

detected in significant levels within the telencephalon; at around E l0.5 Meis-1 is

detected in low levels in the ventricular zone (VZ) of the ventro-lateral telencephalon

while Meis-2 is present in high levels in the areas destined to become the LGE.

Twenty four hours later at around El 1.5, when the MGE and LGE become

morphologically distinct Meis-1 is highly expressed in the CGE and developing

amygdala and at lower levels in the LGE and MGE. This protein continues to be

expressed in ventro-lateral regions of the striatum, cortex, ventral pallidum and medial 
/

septum (Toresson et al., 2000a). In vertebrates Meis-1 and 2 are known to act as co­

factors with the “extra-denticle” TALE protein homologues Pbx-3 (Toresson et al.,
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2000a) and Pbxl (Knoepfler et al., 1997; Swift et al., 1998). Toresson and colleagues 

have also shown that Dlx expression overlaps that of Meis and Pbx proteins within the 

telencephalon.

The active metabolite of vitamin A; Retinoic Acid is another morphogenic molecule 

that has been implicated in the differentiation of striatal neurons. This molecule 

works as another gene regulator, via ligand activated transcription factors known as 

retinoic acid a receptors (RARs) and retinoid acid % receptors (RXRs) which are both 

nuclear receptors belonging to the steroid and thyroid hormone receptor family 

(Zetterstrom et al., 1999).

In the spinal cord, Retinoic acid acts in opposition to Fibroblast Growth Factor (FGF), 

as a requirement for neuronal differentiation (Diez del Corral et al., 2003). Retinoic 

acid begins to appear in the developing CNS around E7, and Cellular Retinoic Acid 

Binding Protein (CRABP) assays have been detected in high amounts in the striatum 

in newborn rats (when compared to cerebellum, hippocampus and control samples). 

This expression can also be related to the areas of dopamine D2 receptor innervation 

within the striatum suggesting a functional relationship between these two molecules. 

Expression falls back to just above background levels by the time the rat pup reaches 

5 weeks old (Zetterstrom et al., 1999). The appearance of retinoic acid is further 

confirmed by the presence of an enzyme that oxidises retinol (vitamin A) to retinoic 

acid; aldehyde dehydrogenase-2 (AHD-2, also known as retinaldehyde 

dehydrogenase) which has also been found within dopaminergic nerve fibre terminals 

within t^e striatum, suggesting that retinoic acid may be involved in gene regulation 

within this area (Zetterstrom et al., 1999) and projection neurons that express GAB A,
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dynorphin, substance P and enkephalin have also been shown to express RARs and 

RXRs (Ferre et al., 1997). Retinoic acid has limited or no effect on more ventrally- 

placed cells due to the opposing action of FGF, hence ventral cells remain under the 

influence of ventral transcription factors such as Nkx 2.1 (Marklund et al., 2004).

During embryonic development of the striatum, glial cells (possibly radial glia) within 

the LGE are a localised source of retinoids, allowing cells which are migrating 

through the LGE into the developing striatum to come under the morphogenic 

influence of retinoids that could affect their differentiation. Findings that treatment of 

LGE cells with either RAR or RXR agonists also enhances the striatal neuronal 

characteristics of these cells further supports this hypothesis (Toresson et al., 1999).

Such studies will hopefully identify genes that may be used in vitro and in vivo to 

direct the differentiation of various cells types down a striatal specific neuronal 

lineage for their subsequent use as a cell source for neural transplantation.

1.5 Neural Transplantation of Foetal Striatal Tissue

The relatively focal loss of medium spiny GABAergic projection neurons in the 

striatum presents an opportunity to explore neural transplantation as a strategy for cell 

replacement and circuit reconstruction. The medium spiny neurons of the caudate 

nucleus and putamen form part of a complex circuitry comprising parallel feedback 

loops involving discrete areas of cortex and subcortical structures. The medium spiny 

neurons\eceive major inputs from the cerebral cortex, thalamus and substantia nigra 

pars compacta, and have their primary outputs via GABAergic projections to the
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globus pallidus and the substantia nigra pars reticulata. Experimental studies in 

animals over two decades have established that striatal neurons lost through a lesion 

can be functionally replaced by transplantation of the homologous population of fetal 

neurons (see below). To achieve this, the developing fetal striatum is dissected, 

dissociated using enzymatic digestion of the tissue or diced into small tissue pieces 

less than 1mm3, and transplanted stereotaxically into the striatum (see Figure 1.3). 

Following transplantation the cells continue developing, innervate the surrounding 

neuropil, and repair the circuitry that has been damaged due to disease.

Figure 1.3

lesioned
striatum

collect pieces 
in basic medium

dissect embryonic -------------
striatal eminence

incubate in 
trypsin @ 37

stereotaxic 
implantation 
2-3pi aliquots

wash x4 
with DNase

Mechanical 
dissociation by 
Pasteur pipette

Figure 1.3 Schematic illustration of the dissection, preparation and implantation of

neural fetal striatal cells into the lesioned striatum of adult rats.
\
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1.5.1 Animal models

For better understanding of the potential of alternative cell therapies in HD it is 

important to use an animal model that closely resembles the disease. Metabolic 

toxins, such as 3-nitropropanoic acid (3-NP), have been investigated for their potential 

to mimic the human disease. 3-NP inhibits the mitochondrial enzyme succinate 

dehydrogenase and tricarboxylic acid cycle thus impairing energy metabolism (Coles 

et al., 1979). Unfortunately there is a large degree of variability when using this toxin 

in animals thus making it an unattractive model when consistency within and between 

groups of animals is required, as is the case for behavioural analysis (Lee and Chang, 

2004; Borlongan et al., 1997; Brouillet et al., 1995; Ryu et al., 2004; Brouillet et al.,

1999).

The most common animal model is the excitotoxic lesion of the striatum. 

Excitotoxins are naturally occurring glutamate receptor agonists that at certain 

concentrations can cause calcium influx, protease activation and sustained 

depolaristion, leading to death of cells bearing glutamate receptors (Beal et al., 1986). 

If infused into the striatum, excitotoxins are toxic to the GABAergic medium-sized 

spiny neurons that co-express enkephalin and substance P whilst sparing the 

cholinergic intemeurons, the NADPH-diaphorase-positive aspiny neurons and the 

somatostatin/neuropeptide Y neurons, thus they produce lesions bearing many of the 

histological characteristics of the lesions seen in HD. Indeed excitotoxicity is thought 

to contribute to the cell death in HD, providing further credence for the use of this 

model of the disease (Ho et al., 2001; Li and Li, 2004; Petersen et al., 1999; Ross and 

Margoli^ 2001; Browne and Beal, 2004). Common excitotoxins used to model HD 

include kainic acid, ibotenic acid and quinolinic acid. Kainic and ibotenic acid have
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been used extensively in the past as they produce large striatal lesions whilst at the 

same time sparing the fibres of passage; however the neuronal death observed tends to 

be non-specific (McGeer et al., 1978; Isacson et al., 1985). Behavioural studies using 

kainic and ibotenic acid lesions have been studied extensively due to the reliable 

functional deficits with these lesions. Quinolinic acid, which acts specifically at the 

N-methyl-D-aspartate (NMDA) glutamate receptor, is thought to be more reliable at 

mimicking the pattern of cell death and gliosis seen in HD (Beal et al., 1986; Beal et 

al., 1991; Ferrante et al., 1993; Huang et al., 1995; Roberts et al., 1993; Bazzett et al., 

1993). Typically, all neuronal types are lost at the centre of the lesion with the more 

selective cell loss being observed towards the periphery of the lesion. Heterogeneity 

between lesions in different labs may be a result of differences in dosage and 

histological analysis. For the purpose of this thesis we have chosen to use quinolinic 

acid given the greater degree of specificity associated with this toxin.

An alternative in recent times is the transgenic mouse models of the disease which 

carry mutated forms of human huntingtin. A transgenic mouse model will have a 

robust phenotype, may have a rapid disease onset and progression, a well defined 

quantifiable neurobehavioural abnormality, a neuropathology that mirrors the human 

disease and limited variability. Mouse models have been generated which have a 

mutant HD gene or HD gene fragment that has been added to the normal mouse 

genome, that already has two wild-type mouse HD genes, the transgenic mouse 

(Hodgson et al., 1999; Mangiarini et al., 1999; Reddy et al., 1998; Schilling et al.,

2004) or with an endogenous mouse HD gene engineered to express an abnormally 

long potyglutamine tract, knock-in animals (White et al., 1997). These mouse models 

of the disease develop pathological and phenotypic features of HD such as nuclear
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and neuronal aggregates. Mice expressing full length mutant huntingtin develop 

inclusions in the striatum only, whereas mice expressing only exon 1 of the mutant 

gene developed inclusions in most brain regions (Li et al., 2001) but, generally little 

or no striatal cell loss. A transgenic rat model of the disease with 51 CAG repeats and 

which exhibits pathology that closely mirrors that of the human, being slowly 

progressive and with late onset has been developed (von Horsten et al., 2003). This 

first rat model of the disease now allows a more detailed long term assessment of the 

disease progression to be measured. However, as with the transgenic mouse models 

there is no clear neuronal loss reported in the striatum and so the use of these animals 

for the assessment of neural transplantation is not ideal.

1.5.2 Transplantation in animal models

Neural transplantation experimentation began as early as 1890 when W. Gilman 

Thompson first described an attempt to transplant large segments of cortical tissue 

from dogs into the cortex of dogs (Thompson, 1890). However, the breakthrough in 

the field came in 1979 when it was first reported that neural transplants of primary 

foetal tissue could partly restore functionality in animal models of Parkinson’s disease 

(Bjorklund and Stenevi, 1979; Perlow et al., 1979).

1.5.2.1 Primary grafts

Following on from work in PD models, the first success in a HD model was reported

in 1981 when it was shown that embryonic rat tissue transplanted to the

excitotoxically lesioned rat striatum could survive over prolonged periods of time 
\

varying from 4-16 weeks. It was also demonstrated that the grafted tissue was 

capable of restoring choline acetyltransferase (ChAT) and glutamic acid
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decarboxylase (GAD) levels in the lesioned striatum when compared to lesion only 

controls (Schmidt et al., 1981). Following this, Isacson and Deckel both reported 

graft induced amelioration of locomotor hyperactivity induced by excitotoxic lesions 

(Deckel et al., 1983; Isacson et al., 1984). These early studies reported functional 

improvement in grafted animals on delayed alternation tasks in the T-maze and there 

was an amelioration of nocturnal hyperactivity that is observed in lesioned animals 

(Deckel et al., 1986a; Deckel et al., 1986b; Isacson et al., 1986; Deckel et al., 1983). 

However such studies failed to show an effect of the graft on the induced 

hyperactivity following amphetamine or apomorphine injection (Deckel et al., 1986b; 

Deckel et al., 1988).

Primary rat striatal tissue grafts placed in the lesioned striatum have been shown to 

grow (Isacson et al., 1984; Isacson et al., 1985), and will mature with a time course 

similar to that seen during normal development of the striatum, thus reaching their 

final size by 6-8 weeks (Labandeira-Garcia et al., 1991). The success of neural 

transplantation in this context depends on accurate dissection of the developing 

striatum (see Figure 1.4), at the appropriate gestational age, and for the preparation to 

be optimised to maximise cell viability. The greatest concentration of cells with the 

striatal characteristics of being positive for the dopamine- and adenosine 3’:5’- 

monophosphate regulated phosphoprotein (DARPP-32) (see section 1.4) is derived 

from the LGE (Deacon et al., 1994), and striatal intemeurons are predominantly 

derived from the MGE (Olsson et al., 1998), but it is still unclear as to whether 

maximal\functional benefits will be achieved by transplanting cells from selective 

dissection of the LGE (Nakao et al., 1996) or by implantation of cells derived from
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both parts combined (the so-called ‘whole ganglionic eminence’, WGE) (Fricker et 

al., 1997a; Watts et al., 2000b). We require more empirical studies to decide this 

tissue.

Figure 1.4 Schematic dissection of the whole, medial and lateral ganglionic 

eminences (WGE, MGE and LGE) from the developing fetal brain (Rosser and 

Dunnett, 2001).

1.5.2.2 Tissue dissection for transplantation

The gestational age of the tissue is known to be an important factor in determining 

appropriate neuronal differentiation and optimal survival of the grafts. Fricker et al 

has showh that grafts derived from younger E l4 foetal donors (corresponding to the 

stage of peak neurogenesis in the developing ganglionic eminence) and transplanted

Figure 1.4

LGE
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into adult rat hosts yield larger grafts, better differentiation of the DARPP-32 

phenotype, and improved recovery on tests of skilled paw use than do grafts from 

older foetuses. In the light of these findings, recent pilot clinical trials of cell 

transplantation in HD in France, the USA and the UK all use tissue of embryos from 

foetuses at approximately 6-9 weeks post conception (Rosser et al., 2003; Bachoud- 

Levi et al., 2002a; Hauser et al., 2002b). To date, the staging has been determined by 

analogy of developmental stages between species (Butler and Juurlink, 1987). Thus, 

the E14 foetuses used for optimal functional effect by Fricker et al (above) correspond 

to stage 18 in the Carnegie series of developmental stages (Butler and Juurlink, 1987). 

A similar pattern of graft survival and functional recovery has been reported in the 

marmoset (Kendall et al., 1998) using donor tissue of 73-75 days gestation which 

corresponds to a similar Carnegie stage (18-21) in this species (Annett et al., 1997). 

In humans, the corresponding stage is reached between 44-53 days post conception 

(when foetal size is approximately 13-24mm crown-rump length, CRL) (Butler and 

Juurlink, 1987). Since the striatal eminence in humans is difficult to dissect below 

20mm CRL, tissue for transplantation may most readily be harvested towards the end 

of this time window. Although validated by showing good survival of tissues at this 

stage of development when xenografted into immunosuppressed rat hosts, the optimal 

gestational age for human foetal striatal tissue has not yet been systematically 

determined experimentally. Animal xenotransplantation studies of human to rat have 

found surviving grafts using tissue derived from human fetal donors as large as CRL 

110mm. Although this may suggest that human fetal striatal tissues exhibits 

significant plasticity over an extended gestational period, older tissues have not yet 

been sho^vn to produce functional benefit in xenograft experiments. At this early 

stage of progress of the field, optimisation of tissue preparation procedures,
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comparing parameters of survival, differentiation and functional effect, is required to 

address these ambiguities.

Preparing the tissue as a cell suspension after dissection involves mechanical 

dissociation of the tissue and Fricker et al (Fricker et al., 1996) found that 

trypsinisation of rat striatal tissue prior to dissociation resulted in larger surviving 

grafts that also showed improvements in rotational behaviour. Moreover, these grafts 

contained more striatal tissue and more DARPP-32 positive medium spiny neurons 

than grafts implanted as tissue fragments. However, the issue as to whether cell 

suspension or tissue pieces provide optimum grafts remains ambiguous. There is only 

one study that examines this issue directly, and it reported no histological differences 

and a modest improvement in functional recovery on one test in animals receiving 

tissue fragment grafts compared to suspension grafts prepared from the same rat 

striatal donor tissue (Watts and Dunnett, 2000; Watts et al., 2000a).

1.5.2.3 Graft Integration

The integration of the grafted tissue has been demonstrated using anterograde and 

retrograde tracing methods that allow both afferents and efferents from the graft to be 

examined (Figure 1.5). Afferent connections from the cortex to the graft have been 

described using anterograde tracers in the frontal cortex and also by administering 

retrograde tracers to the graft (Wictorin and Bjorklund, 1989). The physiological 

activity of the cortico-graft connections has also been investigated. Electron 

microscopy has shown that these afferents do form synapses (Clarke and Dunnett, 

1993; Xu^et al., 1989) and furthermore, electrical stimulation of the cortex resulted in 

the expression of the immediate early gene c-fos within DARPP-32 positive areas of

28



Chapter 1 Introduction

the graft although the distribution of Fos protein was uneven when compared to the 

contralateral non-lesioned striatum (Labandeira-Garcia and Guerra, 1994; Liste et al., 

1995). Other afferents to the graft include TH-positive terminals that terminate 

specifically in P-zones, and synapse with the medium spiny neurons (Clarke et al., 

1988; Clarke and Dunnett, 1993; Graybiel et al., 1989a). In accordance with this, 

amphetamine induced rotation and its induction of c-fos indicates that there is an 

active dopaminergic input to the striatal graft. As well as the dopaminergic input 

there is also evidence for a serotonergic input from the raphe and thalamic nuclei 

(Wictorin, 1992).

Using similar methods of anterograde and retrograde tracing the efferent projections 

from the graft have also been investigated. Efferents have been studied in the primary 

striatal targets, mainly the globus pallidus and the substantia nigra pars reticulata. 

The efferents to the globus pallidus are from the GABAergic cells of the P-zone 

(Wictorin et al., 1989b; Wictorin et al., 1989c; Campbell et al., 1995c). It has been 

shown that, in response to a QA lesion there is an increase in spontaneous electrical 

activity in the pallidal neurons which is reduced 4 weeks following a striatal graft 

(Nakao et al., 2000). Likewise a restoration of GABA in the GPe by striatal grafts has 

also been reported using biochemical techniques (Sirinathsinghji et al., 1988). 

However, efferents to the substantia nigra are more restricted as this would require the 

graft cell fibres innervating the host white matter and travelling considerable distances 

(Nakao and Itakura, 2000). Anterograde transport experiments (Wictorin et al., 

1989b; Zhou and Buchwald, 1989) as well as retrograde tracer experiments 

(McAllister et al., 1989) reported no connectivity between the graft and the nigra and 

only occasionally (Campbell et al., 1995c; Wictorin et al., 1989c) have retrogradely
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injected cells been identified in the graft. However, it is important that one realises 

that these experiments were carried out in an allograft paradigm where accurate 

labelling of the grafted cells is difficult due to the inability of reliably identifying graft 

from host tissue. In comparison, xenografted striatal grafts which can be identified 

with the use of species specific markers have been shown to send long projections 

from the graft and as such may be an alternative for circuit reconstruction.

Figure 1.5
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Figure 1.5 Schematic of afferent and efferent connections of striatal grafts using 

anterograde and retrograde pathway tracing and immunohistochemistry. All major 

striatal inputs and outputs are established in striatal grafts. Based on Wictorin (1992).

\
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1.6 Clinical Trials

Much of the ground-breaking clinical research on neural transplants was done for PD, 

beginning in the late 1980s. These trials used primary human foetal mesencephalic 

tissue as the host tissue and transplanted it into the host striatum, which is the normal 

target area of these cells. Placing a graft into the substantia nigra is not viable, as the 

cells are unable to reliably project the distance from the substantia nigra to the 

striatum. The mesencephalic tissue contains fate-committed dopaminergic 

neuroblasts which have the capacity to differentiate into fully mature dopaminergic 

neurones following transplantation, provided that the biological principles determined 

from animal work are adhered to (see section 1.5.2.1). These include harvesting 

tissue between specific gestational ages and the optimisation of tissue preparation 

methodologies as described above. If one considers the PD trials in which these 

principles are taken into account and which use good longitudinal assessment, then 

results to date in the PD trials have demonstrated improvements in a range of motor 

skills and many, but not all, of the patients have been able to reduce or even eliminate 

their daily intake of L-dopa (Hagell et al., 2002a; Olanow et al., 1996). However, 

there is variability in the success of this approach, which may be a direct result of 

variations in transplant methodology as well as differences in patient selection criteria 

(Freed et al., 2001; Freeman et al., 2000a; Lindvall et al., 1990). Recent trials have 

also highlighted the possibility of dyskinetic side effects in some patients (Freed et al.,

2001), and the reasons for these is currently a topic of active investigation (Hagell et 

al., 2002b).

Parallel clinical trials of neural transplantation in HD are at a much earlier stage than 

the PD trials and are currently underway in a small number of centres around the
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world. The French trial, based in Creteil, was the first to provide efficacy data based 

on systematic long-term evaluation of their patients. Three of the five patients, having 

received bilateral striatal implants, were reported to show substantial improvement 

over several years (Bachoud-Levi et al., 2002b). More recently there has been an 

expansion of the French trial to include other French-speaking regions in Europe and 

a total of 40 patients will eventually receive transplants and will undergo follow-up 

although no efficacy data is available as yet. In another study in Florida, 6 of 7 

patients appeared to show improvement but one declined significantly, so that the 

overall group changes were not significant (Hauser et al., 2002a). One patient died 

after 18 months due to cardiovascular disease and post mortem analysis of this 

patient’s brain showed surviving graft tissue that was not affected by the underlying 

disease progression, at least at this time point (Freeman et al., 2000c). The graft tissue 

was positive for striatal markers such as acetylcholinesterase, calbindin, calretinin, 

dopamine and tyrosine hydroxylase. Moreover, there was no sign of immune 

rejection in the graft region (Freeman et al., 2000b). In the same study 3 patients 

developed subdural haemorrhages and 2 required surgical drainage (Hauser et al., 

2002b). These events may have been related to the stage of disease, which was rather 

more advanced than for the patients in the French or UK studies, in that more 

advanced cases of HD tend to have more cerebral atrophy with an accompanying 

increased risk of intracranial bleeding peri-operatively. Small numbers of patients 

have received grafts in several other centres with reports of safety (Kopyov et al 

1998b, Rosser et al 2002), and although efficacy studies are underway in these 

centres, systematic reports have not yet been published.
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The initial studies of cell transplantation in HD are providing accumulating evidence 

of the conditions for safety, and preliminary evidence for efficacy. However, the 

limited availability of foetal tissue and the difficulty in ensuring the high degree of 

standardisation and quality control when a continuous source of fresh donor tissue is 

required from elective abortion limits the widespread use of neural transplantation as 

a practical therapy. Ethical and legislative concerns about abortion and the large 

number of donors required to support each operation already restrict the number of 

patients that can receive grafts to a few specialist centres in a restricted number of 

countries. Moreover, the shifting preference for medical rather than surgical abortions 

may further limit the availability of tissues to supply even the limited number of 

programmes already in progress. These issues have stimulated the search for 

alternative sources of donor cells or tissue that circumvent the problems associated 

with primary foetal tissue collection.

1.7 Alternative Tissue Sources

A desired characteristic of an alternative cell source is the generation of large stable 

populations of cells to circumvent the supply issue and also to allow regular 

characterisation to ensure stability of the quality and character of the tissue, without 

the need for separate characterisation of each and every collection. Secondly, tissue 

storage methods need to be refined and validated so that the cells can be delivered on 

demand to advance optimal clinical management of the recipient, rather than the 

surgeon and patient being constrained to surgery around an erratic schedule of tissue 

availability. The trials using primary foetal tissue thus provide a proof of concept of 

the cell transplantation strategy as the basis for developing a practical therapy using a 

standardised, quality-controlled source of cells available to any appropriately
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equipped neurosurgical facility on demand. Several options are now being 

investigated as potential sources of donor tissue as described in the next section.

1.7.1 Stem Cells

Stem cells are a potential donor source that has attracted much recent attention. The 

diverse range of cell types that constitute mature animals arise from a single 

totipotential stem cell, the zygote. From this totipotential state, germinal populations 

of proliferative multipotential stem cells at the neurula stage of embryogenesis in the 

primordia of organs and tissues are established (Larsson). A multipotential cell has 

the ability to give rise to all the cell phenotypes specific to a particular tissue or organ. 

Stem cells undergo self-renewal by symmetric division and can also undergo 

asymmetric division to produce another stem cell and a more differentiated progeny 

(Morrison et al., 1997; Watt and Hogan, 2000). Some multipotential cells may persist 

into adulthood, either by remaining quiescent in specific regions of the CNS 

parenchyma or by continued self renewal (Morrison et al., 1997). Such cells are now 

referred to as “tissue specific stem cells” (Fuchs and Segre, 2000; Watt and Hogan,

2000). The presence of these cells in the adult may play an important role in 

maintaining tissue homeostasis by means of a transitory amplifying cell population 

that is also multipotential and proliferates rapidly in response to signals associated 

with plasticity, such as following injury (Fuchs and Segre, 2000; Weissman, 2000) 

(Figure 1.6).

Many definitions of a stem cell take into consideration the attributes described above 

and also include multipotentialty. However the exact definition remains a matter of 

dispute and at least some of the ambiguities in the stem cell field result from
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differences in usage of the term ‘stem cell’. It may therefore be better to use the term 

‘precursors’ rather than stem cells (van der Kooy and Weiss, 2000), which has the 

advantage of being inclusive, but the disadvantage that it specifies very few necessary 

or sufficient properties of the cell other than it is not in its final differentiated form. 

For simplicity, I will continue to use the term ‘stem cell’ here to refer to a wide 

variety of proliferating precursors, but I recognise the limitation of this terminology.

Stem cells from a range of sources have potential as donor cells for neural 

transplantation. However, whatever the source, therapeutic application will require 

that cells can be directed to differentiate into the precise phenotype required to 

replace the cells lost to the disease process, and specifically for this thesis, medium 

spiny neurons for HD. We describe here stem cell sources under consideration as 

potential donor cells in this context, and the extent to which directed differentiation 

has been achieved. This list is not exhaustive but covers at least the main categories 

of stem cells that are currently being explored as alternative cell sources for neural 

transplantation in HD as well as a number of other neurodegenerative disorders.
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Figure 1.6
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Figure 1.6. Alternative stem cells that may have the potential as a cell source for 

neural transplantation.

36



t'iuiptcr 1 introduction

1.7.1.1 Embryonic stem cells

Embryonic stem (ES) cells are isolated from the inner cell mass of the embryo at the 

blastocyst stage. They are pluripotent and can be propagated in culture for long 

periods of time in an undifferentiated state (Blau et al., 2001; Odorico et al., 2001; 

Schuldiner et al., 2001). ES cells have the potential for extensive expansion and the 

potential to differentiate into all cell types of the body. There have been significant 

ethical disputes associated with the derivation and use of ES cells, including concerns 

over the use of human embryos, and fears related to their potential for human cloning 

(McHugh, 2004; Sandel, 2004). As a result of these ethical issues many countries 

have restricted or banned ES cell research. Nevertheless, other countries have 

actively supported the development of ES cell research because of the perceived 

potential for therapeutic benefit in a wide range of diseases. Some, including the UK, 

allow cloning of human embryos for therapeutic purposes, while imposing tight 

regulations to preclude their use for reproductive cloning.

The culture conditions can be manipulated in such a way that the cells clump together 

to form embryoid bodies (EBs). EBs contain precursors that can generate cells 

pertaining to any of the 3 germ layers. Controlling the differentiation of ES cells is 

important, both to derive the target cell populations and to ensure the absence of cells 

with a continued proliferative potential. There has been progress in directing the 

differentiation of ES cells down a neuronal lineage, for example by the addition of 

retinoic acid and nerve growth factor to the medium (Reubinoff et al., 2001; 

Schuldiner et al., 2001).
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A more difficult issue is identifying methods for driving ES-derived neurons down the 

specific phenotypic lineages required for specific applications. Some progress has 

been achieved for the dopaminergic differentiation of ES derived neurons with reports 

of 16-35% tyrosine hydroxylase (TH) positive neurons being generated by the 

addition of specific factors to the culture medium (Kawasaki et al., 2000; Lee et al., 

2000; Okabe et al., 1996; Rolletschek et al., 2001). Expression of the transcription 

factor Nurrl enhances the differentiation of ES cells into dopaminergic neurons with 

reports of 80% TH positive neurons being generated (Chung et al., 2002; Kim et al., 

2002; Kim et al., 2003; Grothe et al., 2004; Wagner et al., 1999). However, many of 

these studies have based their results on the expression of one marker, TH. Whilst 

this is present in dopaminergic neurons it does not differentiate between the 

catecholamines, dopamine, noradrenaline and adrenaline and does not indicate that 

the cells are functional. Detailed analysis of these cells for appropriate receptors as 

well as dopamine synthesising enzymes storage and uptake molecules (Chung et al., 

2002; Kim et al., 2002) needs to be performed to characterise these cells more fully.

Less is known about the ability of ES cells to generate striatal-like cells. 

Differentiating the cells with chemically defined media containing Iscoves modified 

Dubelcco’s medium and Hams F I2 medium in a ratio of 1:1, glutamine, bovine serum 

albumin, lipids, transferring, insulin and monothioglycerol (Johansson and Wiles, 

1995) resulted in a cell population expressing neural fate characteristics typical of the 

forebrain such a Dlx5, Dlxl, Lhx5, Tbrl, Pax6, Dbxl, Gsh2, and Gshl. In these 

studies alternative fates were temporally restricted due to a loss of responsiveness to 

positional cues (Bouhon et al., 2004). In the presence of FGF-2 during the first 8 days
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in culture these cells maintain a largely neuronal fate, but with successive passaging 

an ontogenic drift towards gliogenesis is evident (Kato et al., 2004).

Another important issue is the potential of ES cells to form teratocarcinomas, since 

remaining undifferentiated ES cells in grafted cell suspension can continue to divide, 

forming tumours. For example (Bjorklund et al., 2002) grafted a mouse ES cell line 

into a rat model of PD and reported that 5 out of 25 grafts formed teratoma-like 

tumours with resulting death of the animals. One method for eliminating 

undifferentiated cells is by the introduction of suicide genes, such as the E.coli gpt 

and herpes thymidine kinase (HSVtk), into the cells prior to transplantation. The 

plasmid vector also contained a neomycin resistance gene that allowed selection of 

the undifferentiated ES cells as differentiated cells in the presence of the neomycin 

resistance gene will be resistant to the effects of ganciclovir. Undifferentiated HSVtk 

positive cells that continue to proliferate can then be destroyed by the conversion of 

the prodrug nucleoside ganciclovir to its phosphorylated form which is then 

incorporated into the DNA of replicating cells resulting in apoptosis of the cells 

(Schuldiner et al., 2003; Fareed and Moolten, 2002). The functionality and efficacy 

of the differentiated cells will also have to be addressed as well as the possibility of 

rejection before they can be considered for clinical trials.

1.7.1.2 Embryonic Germ Cells

Embryonic germ (EG) cells are diploid primordial cells that migrate from the 

posterior endoderm of the yolk sac via the gut mesentery during development thus 

populating the developing gonads (Molyneaux et al., 2001). Once in the gonads these 

cells proliferate and finally undergo meiosis to yield spermatozoa or ova. The
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population of EG cells taken for culture are obtained during the first trimester from 

the premeiotic foetal gonads (Shamblott et al., 1998).

Mouse EG cell lines have been found to vary in their properties depending on the day 

on which they were derived and this may be a result of imprinting which is the 

inactivation of either the maternal or paternal alleles at a particular locus. Imprinting 

of genes takes place during migration of the cells to the gonadal ridge, and this 

appears to have effects on the differentiation of these cell lines in vivo and in vitro 

(Durcova-Hills et al., 2001; Durcova-Hills et al., 2003; McLaren, 2001). The mouse- 

derived EG cells can proliferate for prolonged periods of time in culture in the 

presence of specific growth factors and are pluripotent and chromosomally stable, 

thus resembling ES cells.

Less is known about human derived EG cell lines, but early reports suggest that they 

are not as easy to maintain in culture as mouse EG cells and may spontaneously 

differentiate in vitro (Turnpenny et al., 2003). Little is known of the potential of these 

cells in relation to neural transplantation.

1.7.2 Tissue-specific neural stem cells

1.7.2.1 Fetal embryonic neural precursor cells (ENPs)

ES and EG cells are a totipotential or multipotential source of cells, and thus require 

manipulation in vitro to direct them firstly to a neuronal fate and furthermore to a 

striatal-specific phenotype. An alternative approach is to seek to identify stem cells 

that are already committed to a neural lineage (i.e. tissue-specific), and furthermore,
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from an even more restricted lineage - striatal precursors from which it may be easier 

to drive an explicitly striatal phenotype.

All cells of the adult CNS arise from the neuroepithelium, a germinal layer that 

surrounds the ventricle of the embryonic brain (Larsen, 1998). In vivo fate mapping 

experiments have been undertaken to demonstrate that multipotential cells play a role 

in generating the phenotypic diversity of the mammalian CNS and thus 

multipotentiality is described as the ability of a precursor cell to give rise to all cell 

types of the nervous system, neurons, astrocytes and oligodendrocytes. By injecting a 

low concentration of a replication-deficient retroviruses carrying a reporter gene into 

the forebrain ventricle of the embryo it is possible to infect individual cells and then to 

use this to determine multipotentiality by assessing the progeny of these cells in situ 

(Luskin et al., 1988). Based on this technique it has been postulated that by El 2-El4 

most precursor cells in the mouse cortical germinal zone are fate-restricted and 

generate only neurons or glia (Luskin et al., 1988; Grove et al., 1993). However, it 

has also been shown by others that the label in some cases may be inherited by both 

neuronal and glial progeny which would suggest a common precursor cell (Price and 

Thurlow, 1988).

Detailed study of the multipotentiality of precursor cells in the mammalian CNS is 

difficult given retroviral labelling can be used, although there are technical 

constraints; which includes the possibility that two neighbouring unipotent cells may 

be infected with the label thus leading to misleading interpretation of the clonality of 

the progeny (Walsh and Cepko, 1993; Walsh and Cepko, 1992). In vitro analysis of 

precursor cells using retrovirus labelling has helped to circumvent some of these
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problems and have confirmed the presence of multipotential cells in the developing 

mouse cortex (Williams and Price, 1995; Williams et al., 1991). Another method is to 

culture individual cells and follow their progeny and such experiments have shown 

for example that murine cortical cells differentiate into neurons and glia and also have 

the potential to self renew (Temple, 1989; Davis and Temple, 1994; Temple and 

Davis, 1994). These experiments also highlight the importance of epigenetic factors 

for differentiation and epidermal growth factor (EGF) and fibroblast growth factor-2 

(FGF-2) are strongly implicated in this regard.

Reynolds and Weiss have shown that E14 mouse striatal cells grown in the presence 

of EGF result in the proliferation of free floating spheres “neurospheres” (Reynolds 

and Weiss, 1992b) (Figure 1.7). These cells were able to differentiate into neurons 

and glia and were also shown to express the maker nestin which is an intermediate 

filament characteristic of neuroepithelium. To ensure that the differentiated progeny 

observed in these experiments were not from a separate population of lineage 

restricted progenitor cells it was subsequently shown that dissociated neurospheres 

cultured as single cells with EGF were able to form new multipotential spheres 

(Reynolds and Weiss, 1996).

Clonal analysis in the presence of FGF-2 has shown it to be mitogenic for ENPs 

(Drago et al., 1991; Gensburger et al., 1987; Ray et al., 1993; Ray and Gage, 1994; 

Richards et al., 1992; Vicario-Abejon et al., 1995). These studies have shown that 

ENPs will self renew and differentiate into neurons and glia in the presence of FGF-2.
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As well as stimulating cell proliferation in culture, FGF-2 and EGF act sequentially 

on the regulation of differentiation (Vescovi et al., 1993). FGF-2 is known to enhance 

the neuronal differentiation of the cells whilst EGF promotes astroglial differentiation 

(Armstrong et al., 2000). Several other growth factors have the potential to enhance 

the neuronal differentiation of these cells down particular lineages, including nerve 

growth factor (NGF), insulin-like growth factor (IGF) and tumour necrosis factor 

(TNFa) (Arsenijevic et al., 2001; Cattaneo and McKay, 1990; Santa-Olla and 

Covarrubias, 1995; Tropepe et al., 1997). Identifying an appropriate growth factor 

cocktail appropriate to the phenotype associated with each particular application may 

be a necessary prelude to using these cells for transplantation.
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Figure 1.7

Figure 1.7 A, Fetal ENPs can expand in culture to form free-floating spheres of cells 

(“neurospheres”), each of which contains several thousands of cells. B, Upon 

mitogen withdrawal these cells can differentiate into neurons, astrocytes and 

oligodendrocytes.

ENPs have been isolated from several species including mouse (Kilpatrick and 

Bartlett, 1993; Murphy et al., 1990; Reynolds and Weiss, 1992a), rat (Smith et al., 

2003; Svendsen et al., 1995; Svendsen et al., 1997b), pig (Armstrong et al., 2001b; 

Armstrong et al., 2003b; Armstrong et al., 2002; Jacoby et al., 1997; Talbot et al.,

2002), and human (Armstrong et al., 2000; Bumstein et al., 2004; Carpenter et al., 

1999; Carpenter et al., 2003; Englund et al., 2002b). There is cross species variation 

in the proliferative potential of ENPs (Svendsen et al., 1997b): Rat cells entered a 

state of senescence after a relatively short period of time, 30-40 days, in contrast to 

mouse and human cells that have the potential to proliferate for much longer periods 

of time in culture (Svendsen et al., 1997b). The underlying reasons for these
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differences are unclear, but may be related to species differences in tissue culture 

requirements (Smith et al., 2003).

Molecular characterisation of foetal ENPs in vitro has shown that they retain a degree 

of their site-specific identity when environmental cues are absent but when co­

cultured with cells of different origin they can adopt a new fate (Fricker et al., 1999; 

Parmar et al., 2002). Expression of genes associated with striatal development such 

as Isletl and Er81 is maintained over time in culture, but with neuronal differentiation 

expression of striatal specific neuronal markers such as DARPP-32 and Isletl are lost, 

although they do express homeobox transcription factors Dlx and MEIS2, which are 

associated with ventral forebrain development (Parmar et al., 2002; Skogh et al.,

2003). Thus, it appears that expansion of ENPs in culture may restrict the 

differentiation potential of the cells. Further evidence for this comes from 

transplantation of ENPs into disease models which demonstrate that after a short 

period of expansion ENPs can survive post-transplantation; but that this is 

compromised by longer expansion times (see section 1.7.3.1.1). One interpretation of 

these findings is that positional information is lost with continued expansion so that 

when long-term expanded cells are placed in an environment such as the adult CNS, 

they are not exposed to the developmental signals that they would see in the 

developing brain and are thus unable to differentiate into neurons appropriate to the 

site from which they were derived (for example medium spiny neurons from 

striatally-derived ENPs). However, when grafted to the neonatal brain, similar cells 

appear to respond to developmental signals and regional determinants by 

differentiating in a site-specific manner (Englund et al., 2002a; Englund et al., 2002b;
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Rosser et a l, 2000) suggesting that they retain the capacity to respond to 

developmental signals if they are present.

1.7.2.1.1 Transplantation o f expanded fetal ENPs

Grafts of ENPs have not been as extensively studied as primary foetal grafts but the 

literature suggests that the time that these cells are expanded for in culture may have 

an important impact on the survival of the cells in vivo. Zietlow (Zietlow et al., 2005) 

has shown that cells expanded for 4 weeks (short term expanded, STE) compared to 

those expanded for 20 weeks (long term expanded, LTE) will result in surviving 

grafts after 20 weeks in vivo. Graft disappearance was reported at 4 weeks in vivo and 

this was higher in the LTE group (25%) than the STE group (14%) thus suggesting 

that the mechanism leading to LTE graft death is already effetive at 4 weeks in vivo.

Svendsen and colleagues grafted 13 week human foetal tissue that had been expanded 

in culture in the presence of EGF for 10 days (unpassaged) or for 28 days (Svendsen 

et al., 1996). Grafts were placed into the 6-OHDA lesioned brain and 4 weeks post 

grafting it was found that 10 day expanded cells survived and formed large graft 

masses whereas those expanded for 28 days failed to form a discemable graft mass. 

In a subsequent study the same group reported that human foetal tissue expanded for 

14-28 days in the presence of EGF and bFGF gave surviving grafts after 20 weeks in 

vivo (Svendsen et al., 1997a). Most of the cells in such grafts were found to contain 

astrocytes that had migrated out from the graft core and there were only few neurons 

reported.

McBride and colleagues have reported striatal grafts of human cortical tissue that was 

expanded in culture for 12 weeks and maintained in vivo for 8 weeks. In these grafts

46



Chapter 1 Introduction

surviving human nuclear antigen (HuNu) stained cells were observed in most grafts 

and were seen to be widely distributed throughout the striatum. Migration of the 

grafted cells was also reported with HuNu positive cells observed in the globus 

pallidus, substantia nigra pars reticulata and the entopeduncular nucleus, however on 

no occasion were there HuNu positive cells reported on the contralateral side of the 

brain (McBride et al., 2004). Grafts of human foetal striatal tissue expanded in 

culture for 10-12 days to the lesioned striatum for 12 weeks sent out long projections 

diffusely in the brain (Armstrong et al., 2000) and differentiated into mature striatal 

neurons based on their expression of striatal markers such as DARPP-32.

The migration potential of ENPs post-transplantation has also been studied and it has 

been found that they have the potential to migrate out from the graft core. Fricker and 

colleagues have shown that human ENPs when placed in neurogenic regions of the 

adult brain will migrate to the appropriate targets of that region and differentiate into 

region specific neurons, as well as this, the same study also reported non-specific 

migration of the glial cells to the non-neurogenic striatum (Fricker et al., 1999).

From these studies and those in table 1 it is clear that ENPs have the potential for 

neural transplantation. However, for this to become successful it is imperative that we 

first optimise the conditions in which these cells are expanded so as to increase the 

frequency at which these cells differentiate into the appropriate phenotype. One 

possibility that is now being investigated is pre-differentiation of the cells prior to 

transplantation (Yang et al., 2004; Bumstein et al., 2004; Le Belle et al., 2004; Studer 

et al., 1998). Bumstein and Le Belle have both reported increased neuronal survival 

and migration in grafts of pre-differentiated cells. Studer and colleagues reported
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intrastriatal grafts of differentiated dopamine cells can induce functional recovery in a 

Parkinson’s disease model. However Yang and colleagues transplanted human neural 

progenitor cells to the 6-OHDA lesioned striatum and were unable to report TH- 

positive neurons in their grafts and so it is evident that much work is needed to 

establish the potential of this method for transplantation.
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Studies of non-genetically modified ENPs transplanted into the CNS

Growth factor responsive neural progenitors
Study Cells A ge and sta tus o f h ost N otes R esu lts

Sabate et al., 1995 Human (bFGF) Adult intact Cells propagated for 1 ldays in vitro and 
maintained in vivo for 2-3 weeks

Surviving grafts only when 6x l0 5 cells 
grafted

Winkler et al., 1995 Murine (EGF) Adult intact Cells proliferate and migrate in response 
to EGF infusion

Predominantly non-reactive glia

CO
O

Fricker et al., 1999 Human 
(EGF,bFGF,LIF) Adult intact Extension o f axons to GP and toward 

SN
Site-specific neuronal and glial 
differentiation

X
T3
CD
C

_ o
'55
ID

Fricker-Gates et al., 
2000 Murine (EGF) Adult intact Cells proliferate and migrate in response 

to EGF infusion
Predominantly non-reactive glia

c

3
- a
< Messina et al., 2003 Human (bFGF) Adult intact

Cortical cells were grafted with 
subpopulation o f nestin expressing cells 
and compared to nestin positive only 
grafts

More cell division with more neurons and 
astrocytes in the mixed graft paradigm

Jain et al., 2003 Human 
(EGF,bFGF,LIF) Adult intact Cells propagated for 6-10weeks in 

culture

Number o f neurons in vivo decreased with 
time in vitro but no difference in migration. 
More neurons migrated from hippocampus

Le Belle et al., 2004 Human 
(EGF,bFGF,LIF) Adult intact

Transplanted both differentiated and 
proliferating cells. Differentiated cells 
were pre-treated to boost glial energy 
stores and increase neuronal survival

Transplanted pre-differentiated cells were 
seen to respond to local cues in the 
hippocampus but showed less migration
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Study Cells Age and status of host N otes Results

Svendsen et al., 1996 Rat (EGF) 

Human (EGF)

Adult IA lesioned 

Adult nigrostriatal lesion

Only a little migration toward lesion, Cells 
were propagated for 10-23 days in vitro

No evidence of neuronal 
differentiation, mainly glial response 
TH-positive cells in graft

Svensen et al., 1997 Human (EGF,bFGF) Adult nigrostriatal lesion Propagated for only 14 days in vitro
TH-positive neurons in 2 animals that 
showed reduction in rotation

Studer etal., 1998 Rat (bFGF) Adult nigrostriatal lesion Propagated in vitro for 6-8 days and pre- 
differenitated for 7 days

Significant functional improvement 
and TH+ cells

Corti et al., 1999 Human (bFGF) Adult nigrostriatal lesion Regulatable expression of the TH transgene
Adenovirus-mediated transfection pre 
graft

Vescovi et al., 1999 Human (EGF, bFGF) Adult nigrostriatal lesion Differentiated for 6 days in vitro pre­
transplantation

Neuroanal differentiation in graft. 
TH+ cells not reported 
Dividing cells declined with time

Ostenfeld et al., 2000 Human (EGF, bFGF) Adult nigrostriatal lesion Cells propagated for 8weeks in vitro and 
maintained in vivo for 2, 6, and 20weeks

post-grafting. No functional effect 
and NF70 fibres only in low density

_c grafts
■ 3

UrX>
TD<Dc
0

Armstrong et al., 2002 Porcine (EGF,bFGF) Adult nigrostriatal lesion Cells transplanted to substantia nigra and 
striatum and maintained for up to 20 weeks

Dividing cells declined with time 
post-grafting. No functional effect 
and NF70 fibres only in low density

C/3<D•J Armstrong et al., 2000 Human (EGF, bFGF) Adult QA lesioned Propagated for only 10 days in vitro, diffuse 
projections not target directed

Site-specific neuronal and glial 
differentiation

Bumstein et al., 2004 Human 
(EGF,bFGF,LIF) Adult nigrostriatal lesion Cells propagated for lOweeks in vitro and 

maintained in vivo for 12weeks

Cells porpagated for 12weeks in vitro and

No behavioural effect. Differentiated 
and undifferentiated cells. More 
neurons in differentiated grafts

Neurons showing migration to GP,
McBride et al., 2004 Human (EGF,bFGF) QA lesion maintained in vivo for 8 weeks. One group 

received CNTF prior to transplantation
EPN and SN. Improvement on 
cylinder test.

Zietlow et al., 2004
Human (EGF, bFGF) 

Murine (EGF, bFGF) IA lesion or Adult intact Cells propagated for 4 or 20 weeks in vitro and 
in vivo for 4 or 20 weeks

Long term expanded cells did not 
survive 20 weeks post 
transplantation.
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Study Cells Age and status of host Notes Results
c
*5
X>
o
"c

Brustle et al., 1998 Human (EGF,bFGF) Embryo intact Propagated for up to 7 weeks in vitro 
and maintained for up to 7 weeks in vivo

Neurons with regional morphology, astrocytes 
and oligodendrocytes

o
b

X )
6

t u
Winkler et al., 1998 Murine (EGF) Embryo intact Cells placed in lateral ventricle, extensive 

migration throughout brain
Predominantly non-reactive glia

Flax et al., 1998 Human (bFGF) Neonate intact Maintained in vivo for 24hrs-5weeks
Glial differentiation in cortex. Neurons in 
olfactory bulb and cerebellum

Rosser et al., 2000 Human (EGF,bFGF) Neonate intact Propagated in vitro for 22 weeks and 
maintained in vivo for 4 weeks

Neurons with regional morphology, better 
survival in hippocampus than striatum

_c
"3k.
CO
<L>

Englund et al., 2002
Human 

(EGF,bFGF,LIF) Neonate intact Extension of axons to GP and toward SN Site-specific neuronal and glial differentiation

03
Coa>
Z Eriksson et al., 2003 Murine (EGF, bFGF) Neonate intact

Cells propagated for 5-6 passages and 
showed mature neuronal morphologies in 
vivo

Site-specific neuronal and glial differentiation

Parmar 2003 Human (EGF, 10% 
serum) Neonate intact

Cells propogated for 11-13 passages and 
both diferentiated and non differentiated 
cells were transplanted

Transplanted cells behaved similar to Olfactory 
bulb cells and expressed such markers

O
th

er Clarke et al., 2000 Adult Murine (EGF) Chick embryo and 
Mouse morula

Propagated for -14  days in vitro. No 
haematopoietic cells reported

Better incorporation in chick with donor cells in 
all three germ layers, immature markers only.
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1.7.2.1.2 Adult neural stem cells

Adult neural stem cells (ANSCs) are also a tissue-specific stem cell and are derived 

from the mature brain. Altman and colleagues provided the first clear evidence, using 

3H-thymidine autoradiography, that a low level of neurogenesis is ongoing in the 

dentate gyrus of adult rats (Altman and Das, 1965). ANSCs have since been 

confirmed in two main regions of the CNS: the sub granular layers of the dentate 

gyrus, from where the newly-formed neurons repopulate the dentate gyrus (Gage et 

al., 1995); and the subventricular zone (SVZ) of the lateral ventricles (Alvarez-Buylla 

et al., 2002), from where the newly formed neurons migrate via the rostral migratory 

stream to the olfactory bulb (Lois and Alvarez-Buylla, 1994) (Figure 1.8). More 

recently it has been reported that neural stem cells may also reside in other regions of 

the brain, albeit at an even lower concentration, including cortex (Gould et al., 1999; 

Rietze et al., 2000) and the medial-rostral part of the substantia nigra pars compacta in 

the lining of the cerebroventricular system of the midbrain (Zhao et al., 2003), 

although these reports remain controversial (Frielingsdorf et al., 2004).
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Figure 1.8
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Figure 1.8 Adult neural stem cells have been identified in the subventricular zone 

(SVZ) and the dentate gyrus (DG) of the hippocampus. The SVZ cells migrate along 

the rostral migratory stream to the olfactory bulb, whereas newly formed neurons in 

the DG take up residence within in the granule cell layer. (Dunnett, 2001).

The attraction of ANSCs as a donor supply for neural transplantation would be the 

possibility of autologous transplants, thus bypassing the immunological issues of graft 

rejection which can be severe in the case of xenografts and not entirely benign even 

for allografts. Furthermore, it may eventually be possible to recruit such cells for 

endogenous repair without a requirement for their isolation and re-implantation. That 

is, it might be possible to stimulate the resident population of ANSCs to migrate to the 

site of degeneration, although adult stem cells remain difficult to isolate and grow in 

culture and the factors that would be required to enhance the proliferation of these 

cells and their differentiation into the particular phenotypes relevant to the site of 

degeneration remains unknown.
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1.7.3 Trans-differentiation of other tissue-specific stem cell populations

Another approach is to attain trans-differentiation of non-neural tissue-specific stem 

cell population, the classic one being bone-marrow-derived stem cells. This 

population have the advantage of being more easily harvested than either foetal or 

adult neural stem cells, but the disadvantage that they do not by default produce 

neurally differentiated cells.

During development, mesenchymal stem cells (MSCs) give rise to all mesodermal 

cell types of the body, including osteoblasts, chondrocytes, adipocytes and muscle 

cells, and cells with similar characteristics are found in adult bone marrow along with 

more lineage-restricted cells that contribute to differentiated haematopoietic cells. 

There is currently controversy as to the precise categorisation of these marrow 

components (Ratajczak et al., 2004).

There is some evidence that trans-differentiation can be achieved, although this 

remains an area of dispute. MSCs have been reported to trans-differentiate to 

ectodermal and endodermal cell fates (Zhao et al., 2002) and, in vitro, MSCs have 

differentiated to form neurons and astrocytes. MSCs transplanted into the rat brain 

survive and express markers of neuroectodermal cells as well as having a functional 

effect (Zhao et al., 2002). MSCs are not the only cells able to trans-differentiate, as 

neural stem cells have also been shown to have this ability, where they were seen to 

differentiate into muscle (Galli et al., 2000). However, recent evidence suggests that 

this plasticity may be a result of cell fusion based on studies that have looked at the
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potential of MSCs to differentiate into hepatocytes (Wang et al., 2003; Vassilopoulos 

et al., 2003). This issue will need to be clarified for these cells to be serious 

contenders for neural transplantation.

Hematopoietic stem cells (HSCs), also derived from the bone marrow, continually 

reconstitute the blood and are the best characterised of the tissue-specific stem cells. 

Two classes of HSC have been identified in mouse, those that survive for around 2 

months, (the short term, ST-HSC), and those that survive for greater than 6 months, 

(the long term, LT-HSC) (Blau et al., 2001). Fluorescence-activated cell sorting 

(FACS) has been used to positively select cells based on the expression of specific 

cell surface markers. HSCs can be highly enriched up to 10,000 fold and then 

transplanted into the bone marrow of patients (Lagasse et al., 2001) for the treatment 

of oncogenic blood diseases. In an animal model of spinal cord injury, HSCs have 

been shown to survive for 5 weeks after transplantation, differentiate into astrocytes, 

oligodendrocytes and neuronal precursors and show improvement in functional 

behaviour using hindlimb motor function (Koshizuka et al., 2004), although no 

mature neurons were identified.

Human umbilical cord blood is easily retrieved following labour without the risk of 

harm to the mother or child and has been reported to contain multipotential progenitor 

cells that apparently have the ability to trans-differentiate into neuronal and glial cells 

(Sanchez-Ramos et al., 2001). Transplantation of these cells into the neonatal and 

adult brain have shown potential to survive and differentiate into neurons and glia (Li 

et al., 2004; Willing et al., 2003; Zigova et al., 2002; Nan et al., 2005; Sanberg et al., 

2005). It may be that intravenous delivery rather than neural transplantation will be a
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more advantageous method of administering these cells for therapeutic benefit, based 

on a study by Willing et al (2003) where there was significant improvement in certain 

behavioural tasks when compared to animals receiving neural transplants of cells 

directly to the striatum. However, further studies are necessary to validate the 

potential of these cells and again, the issue of cell fusion needs to be addressed in this 

context.

1.7.4.Xenogenic tissue

Xenotransplantation offers the opportunity of breeding animals for foetal striatal 

tissue donation under conditions where the supply can be regulated according to 

demand; where the breeding stock is inbred, well characterised and controlled for 

pathogens; and where tissue collection and preparation can be undertaken under 

standardised sterile GMP conditions. The most likely donor candidate is porcine 

tissue, the advantages being: the extensive experience of animal husbandry within this 

farm species; the reliability of breeding; the large size of the litters; the possibility of 

sterile collection under standardised conditions; the comparable size and time course 

of development of the pig and human brain; and the potential application of 

transgenic technology to porcine tissue, which would open up the possibility of 

genetic manipulation, for example to modify the immunogenicity of transplanted 

tissue.

Transplantation of xenogeneic tissues into the immunosuppressed host CNS has been 

performed using a number of species, for example human to rat, pig to rat, rat to 

mouse and vice versa (Armstrong et al., 2002; Deacon et al., 1999; Galpem et al., 

1996; Garcia et al., 1995; Isacson et al., 2001; Svendsen et al., 1997b). Both primary
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and expanded tissue graft experiments have been reported using xenogenic tissue. 

The grafted tissue has been found to survive transplantation, axonal and glial fibre 

projections from the grafts, and make synapses with the host brain.

Studies of the potential of porcine tissue to achieve brain repair have been carried out 

predominantly in PD models. Primary tissue grafts have been shown to integrate into 

the host environment but even with Cyclosporine A (CsA), a slow rejection process 

ensues, and finding ways to overcome the issue of graft rejection is the subject of 

much investigation. Primary porcine VM tissue grafted into cortically lesioned 

neonate brains survived, integrated with the host brain, and sent out long axonal 

projections, thus showing the potential for porcine tissue to respond to rat axonal 

guidance factors (Castro et al., 2003). Similar findings have been reported following 

placing porcine VM tissue into the lesioned cortex of adult rats (Garcia et al., 1995) 

and into the striatum in animal models of HD and PD (Isacson et al., 1995b). There 

has been good functional improvement with grafts placed in the striatum of a 6- 

OHDA lesioned rat model based on compensation on the amphetamine rotation test 

(Larsson et al., 2000a). In these studies, CsA was used as an immunosuppressant to 

protect the grafted tissues from host rejection. Further improvement of graft survival 

was achieved by the addition of caspase inhibitors, which increased the number of TH 

positive cells in the grafts by 2.5 fold (Cicchetti et al., 2002). Again, donor age is an 

important issue. Comparison of donor ventral mesencephalic tissue ranging in ages 

from E24 to E35, indicated that E26-E27 embryos gave the highest yield based on TH 

differentiation of the tissue (Barker et al., 1999; Larsson et al., 2001a; Molenaar et al., 

1997).
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Clinical studies of CNS xenotransplantation are limited. Primary porcine embryonic 

striatal tissue has been transplanted into the caudate and putamen of 12 

immunosuppressed PD patients with some clinical improvements reported, although 

there was little convincing evidence of graft survival (Isacson et al., 2001). The 

immune response from these grafts was more vigorous than that seen in human to 

rodent models. One patient died 7 months post-operatively for reasons unrelated to 

the graft, and was found to have very small numbers of surviving neurons in the graft 

region, raising the possibility that the majority had been rejected. In the same series, 

12 HD patients received porcine striatal grafts but, again, there was little evidence of 

graft survival or functional effect. Twelve months of post-operative analysis of these 

patients demonstrated no change in the mean total functional capacity score (Fink et 

al., 2000a).

Striatal allografts of primary foetal tissue in the HD lesion model have been shown to 

send out projections in the host brain as evidenced by anterograde and retrograde 

tracing methods (Wictorin et al., 1989b; Wictorin, 1992) (see Figure 1.6). Similarly 

xenotransplantation of striatal tissue has also been shown to send out projections in 

the host brain (Olsson et al., 1997; Wictorin et al., 1991; Armstrong et al., 2001b; 

Armstrong et al., 2000). Neurofilament staining using species-specific antibodies for 

xeotransplanted tissue has been successful in revealing the extent and richness of 

short and long distance outgrowth from striatal grafts (Armstrong et al., 2000; 

Wictorin et al., 1991). However, it is difficult to assess whether or not this is different 

to the allograft situation, as there are many fewer tools for discerning allograft 

projections from host projections and thus allowing a comparison to be made.
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Two key issues need to be resolved for xenografts to progress as to practical 

therapeutic trials. The first relates to the fact, as illustrated by the first pilot clinical 

trial reported above, that xenografted tissue is largely rejected in the absence of 

effective immune protection. Two alternative strategies were adopted in the Diacrin 

trial -  daily treatment with CsA or treatment with an antibody against major 

histocompatability complex 1 (MHC 1) to block the host T cell response (Fink et al., 

2000b). There is no clear evidence that either strategy proved effective for yielding 

good cell survival in patients, and it is surprising that the study had progressed on the 

basis that preliminary reports of the same strategies in primates were equally 

ineffective. Combination immunoprotection strategies to promote xenograft survival 

are an area of active research (Harrower et al., 2004b; Armstrong et al., 2001a) but a 

clear optimal protocol that will allow reliable long-term survival of xenografted neural 

tissue in the adult brain in the majority of subjects has not yet been defined.

The second key issue that requires resolution relates to safety of xenografted tissues. 

In the light of the recent spread of bovine spongiform encephalopathy to man in the 

form of new variant Creutzfeld-Jacob disease, and the difficulty in controlling the 

spread of animal pathogens, as exemplified by the recent UK foot-and-mouth 

epidemic, there is widespread concern world-wide about the difficulties of eliminating 

the possibility of transmitting animal diseases to man. This may be particularly risky 

in the context of transplantation of tissues directly into the immunosuppressed CNS. 

The concern is not just for the recipient but, in the case of porcine endogenous 

retrovirus (PERVs), whether direct transfer into the brain might provide a route of 

transmission that allows virus mutation into new forms of viruses that give rise to 

unpredicted new diseases in man, even giving rise to de novo epidemics. Although

59



Chapter 1 In troduction

the chances of such mutation are recognised to be very low, the cost of occurrence 

could be devastatingly high. Moreover, the risk of generating a new disease by an 

unknown mechanism is one that it is impossible to absolutely exclude by any known 

safety screen. The regulatory climate is consequently such that any novel xenograft 

approach is unlikely to gain approval for trial in the foreseeable future, at least in 

Europe. In the absence of having suffered the same major BSE, CJD and FMD 

epidemics, US regulations, although strict, are somewhat more permissive, with the 

result that most academic and commercial research of developing xenotransplantation 

as a therapeutic strategy for the CNS has moved westwards across the Atlantic over 

the last 5 years.

The capacity for embryonic porcine neural tissue to be expanded in culture is 

dependant on gestational age of the tissue, with E22 tissue expanding and surviving 

transplantation more robustly than that of tissue from an E27 embryo (Armstrong et 

al., 2003a). Following transplantation, expanded neural porcine tissue differentiated 

into neurons and sent out projections to the appropriate target areas. Moreover, 

expanded porcine cells survived for longer periods of time in the non- 

immunosuppressed rat host than did primary porcine CNS tissue (Armstrong et al., 

2001b). Thus, it may be that expansion of the tissue confers a benefit in terms of 

reduced immunogenicity, and there is some supporting in vitro evidence that the 

expression of surface histocompatibility antigens is reduced in porcine neural stem 

cells (Harrower et al., 2004a). However, in common with other stem cell sources (see 

below), there remains a significant problem in the expanded cells retaining a specific 

striatal or dopaminergic phenotype limiting their functional effects until this can be 

overcome.
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1.7.5 Genetically Engineered Cells

A variety of cells may be engineered in vitro either for the purpose of producing 

molecules of potential importance for CNS release (for example, in the form of 

polymer encapsulated cells, as below), or to alter the properties of a cell to render it 

potentially useful for circuit reconstruction. Of course, these strategies are not 

necessarily mutually exclusive - trophic factor support may be crucial for transplanted 

cells to survive and integrate in the host brain, and genetically engineering cells to 

release trophic factors in the graft region is one potential method for optimising graft 

survival.

The herpes simplex viral vector was the first virus to be tested as a method of 

introducing genes into the adult CNS (During et al., 1994; Song et al., 1997; Fraefel et 

al., 1996). More recently, other viral vectors have been introduced, including 

adenovirus, the recombinant adeno-associated virus (rAAV), lentivirus and 

pseudotyped vectors. The rAAV vector is more efficient than the HSV in that it is 

possible to achieve much higher levels of expression. The use of such vectors has 

allowed genes to be transferred to a specific group of cells in the CNS (Janson et al., 

2001), and has provided support for the efficacy of factors such as GDNF for PD 

(Eslamboli et al., 2003; Kirik et al., 2000; Mandel et al., 1999; Mandel et al., 1997) 

and CNTF for HD (Regulier et al., 2002; Kahn et al., 1996; Emerich and Winn, 2004; 

Mittoux et al., 2002).
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Polymer capsules have been considered as a system for trophic factor delivery to the 

CNS as they have the advantages of being relatively cheap to produce and can also be 

removed from the CNS as required, but the major drawback is that the effect is not 

long lasting (Emerich et al., 1994). Where a limited amount of a protein is required 

for relatively short periods of time, polymer microspheres are an attractive alternative 

as they are biodegradable and subsequent surgical procedures are not required for 

retrieval (Date et al., 2001). However, improvements in the duration of release have 

been obtained by the use of encapsulated cells engineered to produce the desired 

molecules (Emerich et al., 1997a; Emerich, 1999). Here, cells engineered to secrete 

specific substances such as neurotrophic factors are protected from the host immune 

system by a semi-permeable selective biocompatible outer membrane (Emerich et al., 

1994; Emerich et al., 1996; Emerich et al., 1997b; Emerich et al., 1998; Emerich and 

Winn, 2004). The outer membrane allows the entry of nutrients to the cells whilst 

also allowing the exit of neuroactive molecules. The advantage of this strategy is that 

it allows for the implantation of xenogeneic cells, which may be much easier to obtain 

or engineer than human cells. This approach has been used for delivery of factors 

such as GDNF in animal models of PD (Date et al., 2001; Sautter et al., 1998) and 

CNTF in animal models of HD (Emerich et al., 1997a).

In the case of HD there have been several studies using polymer encapsulated cells for 

the delivery of CNTF. Baby hamster fibroblasts have been genetically modified to 

produce hCNTF and incorporated into polymer capsules (Anderson et al., 1996; 

Emerich et al., 1996). Both rodent and primate studies have been carried out 

incorporating this method (Anderson et al., 1996; Emerich et al., 1996; Emerich et al., 

1997b; Emerich and Winn, 2004; Kordower et al., 2000; Mittoux et al., 2000). These
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animal studies suggested that CNTF can protect striatal neurons against subsequent 

damage from an excitotoxic lesion. As well as protecting specific populations of 

striatal neurons from lesion-induced cell death, behavioural improvement was 

observed on skilled motor and cognitive tasks when compared to control animals. 

Encapsulated CNTF released by BHK cells is now in clinical trials (Bachoud-Levi et 

al., 2000). Nevertheless, the use of encapsulated cells for the delivery of growth 

factors and neurotrophic factors is an attractive alternative and may be required in 

combination with neural transplantation as a means of providing trophic support to the 

grafted cells.

Another potential cell source is immortalised cell lines, the neurally committed lines, 

such as the Ntera2 cell line, RN33B and Hib5. Functional benefit has been reported 

using these cells in various animal models (Lundberg et al., 1996a; Saporta et al., 

2001; Miyazono et al., 1995; Catapano et al., 1999). The Ntera2 cell line has been the 

most widely used. These cells are derived from human embryonal carcinomas and are 

terminally differentiated in vitro with retinoic acid. They have been found to respond 

to environmental cues when transplanted into the excitotoxically lesioned striatum 

(Saporta et al., 2001; Miyazono et al., 1995), sending out target-specific projections as 

well as expressing a site-specific phenotype. Grafting Ntera2 cells into the 

excitotoxic lesioned striatum resulted in neuronal differentiation, and a preliminary 

study reported rather dramatic functional effects (Hurlbert et al., 1999). However, on 

more detailed analysis the cells did not express any striatal-specific markers and there 

was no sustained improvement on skilled paw reaching and cylinder placing (Fricker- 

Gates et al., 2004a). Transplantation of the RN33B cell line to the lesioned and non- 

lesioned striatum of rats has demonstrated their potential to differentiate into neurons

63



Chapter 1 Introduction

in a site-specific way and form connections with target areas such as the globus 

pallidus (Lundberg et al., 1996b), although only a proportion of the cells showed this 

differentiation potential. A major disadvantage of using such cell lines is the 

genotypic variability that arises from the immortalization process (Renfranz PJ et al., 

1991), and the risk that cells continue to proliferate to form tumours after 

transplantation.

1.8 Conclusions

The replacement and repair of striatal neurons by transplantation in Huntington’s 

disease may achieve circuit reconstruction and might alleviate some of the devastating 

symptoms associated with the disease. Transplants using primary foetal striatum as 

the donor tissue are crucial for proof of principle, but ethically and logistically this 

donor source will not be suitable for widespread therapeutic application. Alternative 

cell sources including xenografts, engineered cell lines and stem cells may have the 

potential to replace primary foetal tissue and hence to provide a cell source that would 

be widely available to patients. Neural transplantation may not be a suitable therapy 

for all patients and the degree of degeneration may be one limiting factor. The extent 

to which the disease has progressed, and its relationship to transplant survival are 

issues that are as yet unanswered. Promising results of the first clinical trials make 

this an exciting field worthy of active and focussed further investigation.
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Chapter Two

iMaterials and Methods

In vitro methods

2.1 Cell Culture

Embryos (E l4) were collected in Hanks solution over ice. On removal of the head 

(Figure 2.1) the cortical and striatal eminencies were dissected according to (Dunnett, 

1996) (Figure 2.2). Dissection was undertaken using a dissecting microscope in a 

laminar flow hood. Dissected tissue was collected using a pasteur pipette and left to 

settle in a 15ml tube containing Hanks solution on ice. The medium was removed and 

200pl of trypsin/DNAse was added to the tissue for 20 minutes at 37°C. Trypsin 

inhibitor and DNAse were added, mixed and incubated for 5 minutes at 37°C. The 

tissue was then washed twice with normal medium, Dulbecco’s modified Eagle’s 

medium (DMEN F-12) supplemented with 1%PSF, and then collected by 

centrifugation at lOOOrpm for 3 minutes. The medium was poured off and the tissue 

was resuspended in normal medium plus growth factors at (FGF-2, 20ng/ml and EGF, 

20ng/ml), proliferation medium. The tissue was resuspended in 200pl normal 

medium and then triturated using a fire-polished pipette or no more than 10 strokes of 

a 200pl Gilson pipette to produce a single cell suspension. Cells were counted under 

a haemocytometer using trypan blue exclusion to assess the viability of the cells. To 

do this lOpl of the cell suspension was diluted in 40pl of differentiation medium
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(DMEM/F12-1%PSF, 2%B27 and l%fetal calf serum (FCS)), lOpl of this was mixed 

with an equal volume of trypan blue and finally lOpl was transferred to the 

haemocytometer for counting. Cell viability was calculated according to the formula:

cells/square x dilution factor x 10 = cells/pl cell suspension.

Having assessed the viability of the cells adjustments were made accordingly so as to 

culture the cells at a concentration of 200 cells/pl in T25 flasks with lOmls of 

proliferation medium (normal media plus growth factors). Cultures were maintained 

at 37°C in humidified 5% C02,95% atmospheric air.

66



i  hapt er  2 tM aterials and m e th o d s

.cut
prise

pinch

Figure 2.1 Removal of the brain from the embryo
A single cut is made just above the eye at base of the brain back to the ventral mesencephalic flexure. 
Using a fine forceps placed under the skin the skin and meninges overlying the whole o f the brain are 
pulled gently away (Adapted from(Dunnett, 1996b).

Figure 2.2 Dissection of the striatal and cortical eminencies

A longitudinal cut is made through the medial cortex, thus exposing the striatum on 
the floor of the lateral ventricle. Using an iridectomy scissors the striatum can be 
gently removed from both hemispheres. Cortical tissue is collected by carefully 
removing the overlying meninges (Adapted from (Dunnett, 1996b).
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2.2 Human tissue collection

Human foetal tissue was collected by ultrasound guided low pressure aspiration at 

routine surgical termination of pregnancy (TOP), following local research ethics 

committee approval and under the guidelines of the Polkinghome report 

(Polkinghome, 1989) and the UK Department of Health (Department of Health, 

1995), with full consent from the maternal donor, under the South Wales initiative for 

transplantation in HD (SWIFT-HD) program. Foetal tissue ranged in age from 5-11 

weeks post conception and foetal age was based on ultrasound recordings as well as 

foetal morphometric measurements and using a mathematical model (Dunnett, 

1996a). Embryonic age was estimated and compared against the estimated age given 

by the ultrasound (Figure 2.3). A previous report by our group demonstrated the 

value of abdominal ultrasound and low-pressure suction (Rosser et al., 2003). Using a 

vaginal ultrasound guidance method we have found more consistent retrieval of brain 

tissue. We have also demonstrated a better correlation between morphometric 

measurements and ultrasound estimation of gestational age using this method, R- 

squared value of 0.847 (previous correlation R-squared value of 0.638). This may be 

due to a combination of more-intact fetal tissue using this method but advances in 

ultrasound technology over this time period may also have contributed. Tissue was 

collected in hanks balanced salt solution with heparin (5ng/ml) in a 50ml tube. On 

removal of placenta the tissue was placed in 2mls of hibernation media for transport 

to the lab for dissection under a sterile laminar flow hood. Tissue of interest was 

carefully dissected based on the approval of at least one other experienced scientist as 

the foetal tissue was generally fragmented making accurate dissection difficult. 

Figure 2.4 shows the relative frequency of retrieving CNS tissue from specific brain 

regions and Figure 2.5 relates retrieval to the gestational age of the foetus.
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Following dissection the tissue was prepared for ENP culture as described above for 

rodent tissue. One variation being that leukaemia inhibitory factor (LIF, lOng/ml) 

was added to the proliferation medium.

Age from Ultrasound versus Age from Calculation with Morphometric 
measurements

90 -

j Calculation for estimation of
]

80 j
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Figure 2.3 Data collected between October 2003 and May 2005 from the Cardiff TOP 

clinic. The x-axis gives the estimation of age from the ultrasound and the y-axis gives 

the estimation of age following the use of the mathematical model using 

morphometric measurements. There is a good, positive correlation between the two 

age-determining methods, with an R-squared value of 0.8479.
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% of Brain tissue collected from various regions

CNS Tissue Striatum VM Cortex Other brain areas eg
brain stem

CNS region

Figure 2.4. This bar chart shows the various regions of the brain that were yielded 

from collection and successfully dissected, as a percentage of the total CNS tissue 

retrieved.
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Number of case and tissue type collected at each age.
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Figure 2.5. This bar chart shows the various regions of the brain retrieved at the 

different foetal ages collected (using ultrasound estimated age). With just the limited 

number of cases attempted, most success appears to be at foetal age of 9 weeks.
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2.3 Passaging of cultures

Over time, in culture, embryonic neural precursors form free floating spheres of cells 

‘neurospheres’ which continue to grow in size. However, as the spheres grow in size 

the cells at the centre of the sphere are no longer able to obtain sufficient nutrients 

from the media and hence the spheres must be broken up into smaller spheres or 

triturated to a single cell suspension. This technique which is carried out regularly on 

cultured cells is referred to as passaging. Cells were passaged by mechanical 

dissociation using a fire-polished pipette, 10 strokes, into a single cell suspension. An 

aliquot of cells (1/10) was trypsinised and a trypan blue count carried out, as 

described above. From this aliquot the cells were plated onto poly-L-lysine coated 

coverslips in 24 well plates at a concentration of 100,000 cells/30pl in the presence of 

differentiation medium (normal medium plus 5% foetal calf serum, FCS). 30pl of the 

cell suspension was plated onto the coated coverslips. Cells usually began to adhere 

within a few hours but in general cells were allowed to adhere over night, after which 

the wells were flooded with 500pl of differentiation medium per well. Cultures were 

maintained in the same conditions as described above for 7 days. Dissociated cells 

were resuspended at the same concentration as mentioned above in proliferation 

medium, except that B27 was replaced with 1%N2 after the first passage. Passaging 

was repeated every 7 days in the case of mouse tissue and every 14 days with human 

tissue or as required. Every 2-3 days cells were fed by replacing half the medium 

with fresh medium that was made up of twice the concentration of growth factors, 

thus maintaining the growth factor concentrations throughout.
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2.4 Immunocytochemistry

Those cells that had been subjected to differentiation medium for 7 days were fixed 

by removing the differentiation medium and exposing the cells to a 3 minute wash in 

PBS (see Appendix 1). Coverslips were then subjected to 20 minutes in 4% 

paraformaldehyde solution at 4°C followed by 3 x 3 min, PBS. Coverslips were 

rinsed with 100% ethanol for 2 mins again followed by 3 x 3 min, PBS.

Indirect, single- or multiple-label, fluorescent immunocytochemistry was performed 

using established protocols at room temperature, except where stated (Johnstone, 

Turner, 1997). Appendix 2 and 3 lists the antibodies that have been used, their 

suppliers, whether cell permeablisation is required, the optimal determined 

concentration and the appropriate blocking serum/secondary antibodies.

Non-specific antibody binding was prevented by the addition of a blocking serum 

(isolated from a species different to that in which primary antibodies were raised) for 

lhour (3% normal serum and 3%BSA in PBS). Triton X I00 was omitted from this 

and subsequent stages of the procedure when the antigens of interest were present on 

the cell surface. The appropriate primary antibodies diluted in 3%BSA and 1% 

normal serum in PBS, were added for either 2-3 hours at room temperature or left 

overnight at 4°C. Removal of primary antibody was followed by 3 x 5 min, washes in 

PBS. In double labelling experiments, both primary antibodies (either raised in 

separate species, or monoclonal antibodies of different isotypes) were added 

contemporaneously. Secondary antibodies, (all diluted 1:200 in PBS with 1% normal 

serum), either directly conjugated to a fluorochrome, or, biotinylated, were then added
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for 2hrs. From this point, coverslips were protected from ambient light by covering 

them in aluminium foil. Nuclear staining was done using the stain Hoechst; this step 

involved 3x5min, washes in PBS after removal of the secondary antibodies and the 

4.5mins, in Hoechst (12.5jul in 10ml PBS). Again coverslips were rinsed 3 times in 

PBS and were then mounted onto gelatinised slides using PBS/glycerol, 1:1 as the 

mountant. Coverslips were sealed with clear nail varnish and stored in the dark at 

4°C. Staining controls: for each primary antibody used, negative controls were run 

routinely and consisted of the omission of the primary antibody from the procedure.

2.4.1 BromodeoxyUridine (BrdU) immunocytochemistry

The thymine analogue BrdU is incorporated into the DNA of dividing cells in the S- 

phase of the cell cycle. Effective immunocytochemistry requires nuclear 

permeablisation and DNA denaturation to allow antibody success. Subsequent to 

formalin fixation, and prior to application of the blocking serum, coverslips went 

through a number of processing steps to accomplish this. Coverslips were post-fixed 

in ice-cold methanol for 20 min at -20°C, washed (3x5 min, PBS), and incubated in 

2M HCL(aq) for 20 min at 37°C. Coverslips were then washed twice in 0.1M 

NA2B4O 7(aq) to neutralise the acid, and washed again in PBS (3x5 min). Subsequent 

immunocytochemical procedures were identical to those for other primary antibodies, 

save that when BrdU- staining was performed in combination with labelling for 

another marker the entire BrdU staining protocol was completed prior to commencing 

staining for the other marker.
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2.5 Quantification and photomicroscopy of fluorescent staining

Fluorescent staining was visualised using a Leica DRMBE microscope. The 

wavelengths used to visualise each stain were 560nm (red), 494nm (green) and 346nm 

(blue). Fluorescent tags were routinely used such that neurones stained red, astrocytes 

green and nuclei blue. Cell counts were taken at 40x magnification using a counting 

grid. In order to be as unbiased as possible, 5 random fields were chosen to take 

counts from. On almost all occasions, unless otherwise stated, there were 4 replicate 

coverslips of each condition. Colour images were processed using Optronics 

magnaFIRE software, and were subsequently processed using Adobe Photoshop.

2.6 Freezing Cells

When preparing tissue for grafting (see below), cells for freezing were placed in T25 

flasks in complete medium overnight. Following this cells were spun at 700rpm for 6 

minutes and the supernatant removed. Cells were then placed in 0.5ml freezing 

medium (Appendix A) and then alliquoted into cryovials at a concentration of 2 

million cells per vial. A cryochamber was used to gradually bring the cells down to -  

80°C for subsequent storage at -80°C.

2.7 Thawing Cells

For each vial thawed, lOmls of normal medium was prepared in 15ml tubes. Cells 

were thawed rapidly by swirling the vial in a 37°C water bath until the contents were 

almost thawed. The vial was wiped with 70% ethanol and the contents quickly 

transferred to the 15ml tube that was spun at lOOOrpm for 2-3 minutes. The
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supernatant was removed and the cells were placed in 5 ml of proliferation medium 

before being reseeded in T25 flasks in the appropriate amount of medium.

2.8 Tissue preparation for grafting

For cells used for transplantation, the following procedure was carried out; cells were 

removed from flasks and an aliquot was taken for trypsinisation, trypan blue analysis, 

and subsequent differentiation. The remaining cells were centrifuged at lOOOrpm for 

3min. The clump of cells was then transferred to a sterile eppendorff tube in 

DNAse/glucose (10pl 0.6%glucose per 1ml DNAse). The cell suspension was 

centrifuged at lOOOrpm for 1 min. The medium was removed and the cell 

concentration adjusted appropriately, based on the results from the trypan blue counts 

to allow for a graft of 125,000cells/pl. Cell suspension was maintained on ice until 

ready for grafting. The same preparation protocol was used for primary cultures.

2.9 LacZ treatment of cells

Prior to grafting cells were infected with the lentivirus LacZ. The optimum infection 

method was found to be 2 molecules of infection (MOI) per cell for 1 hour. To 

optimise the infection rate of the cells a range of MOIs were tested from very low to 

very high (1-80) and over various amounts of time (l-12hours). MOI of 2 for lhr was 

chosen as this resulted in good cell survival as well as optimum infection of the cells. 

After infection, the cells were washed 3 times and resuspended for grafting based on a 

revised cell count.
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2.10 Animal care, immunosupression and anaesthesia

All animal experiments were performed in full compliance with local ethical 

guidelines and approved animal care according to the U.K. Animals (Scientific 

Procedures) Act 1986 and its subsequent amendments. Adult female Sprague-Dawley 

rats typically weighing 200-250g at the start of the experiments were used. They were 

housed in cages of 4 in a natural light-dark cycle with access to food and water ad 

libitum.

In most transplantation experiments, animals were immunosuppressed with daily 

intraperitoneal injections of Cyclosporin A (CsA, Sandimmun, lOmg/kg) for the 

duration of the experiment, commencing the day prior to transplantation. 

Antibacterial prophylaxis was administered by addition of aureomycin to the drinking 

water (5g/l) with sucrose (5g/l) and sodium chloride (0.5g/l) throughout the course of 

the experiment.

All surgery was performed under isoflurane anaesthesia. Anaesthesia was induced in 

an induction box with isoflurane and oxygen (4 1/min), and maintained by passive 

inhalation of isoflurane (1-2 1/min) and a mixture of oxygen (0.8 1/min) and nitrous 

oxide (0.4 1/min). Animals were allowed to recover in a warmed recovery chamber 

and received analgesia through paracetamol dissolved in drinking water (2mg/ml) for 

3 days subsequent to surgery.
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2.11 Quinolinic Acid Lesioning of the Rat Striatum

Animals received a unilateral 45 nmol quinolinic acid lesion of the right striatum. 

Quinolinic acid (QA) was dissolved in 0.1 M phosphate-buffer at 15 mg/ml (90mM), 

and small amounts of 10M NaOH(aq) were added in order to fully dissolve the QA and 

final pH adjusted to 7.4 with concentrated HCL(aq). 0.75pi of solution was infused to 

two sites over a 3 min period using a lpl Hamilton syringe targeted at stereotaxic 

coordinates: -3.2/-2.4mm lateral (L) of bregma, +0.4/+1.4 mm anterior (A) of 

bregma and -5.0/-4.5 mm below dura (vertical, V) with the incisor bar set to 2.3 mm 

below the interaural line. The syringe needle was left in situ for 3 min following the 

infusion. It was then withdrawn and the wound cleaned and sutured. For quinolinic 

acid lesions of the mouse striatum one infusion site was used with injection of 0.5pl 

over a 4 minute period targeted at the stereotaxic coordinates: -2.8mm lateral (L) of 

bregma, + 1.0mm anterior (A) of bregma and -4.5mm below dura (vertical, V) with 

the incisor bar set to 0 mm below the interaural line.

2.12 Grafting tissue

Quasi-single cell suspensions of primary tissue or undissected ENP spheres were 

transplanted in the studies presented here. For ENPs, an estimate of cell number and 

viability within the ENP sphere suspensions was obtained from two representative 

aliquots of the suspension that were dissociated, via a trypsin digest and mechanical 

trituration, to single cells and counted with a haemocytometer using trypan blue 

exclusion. Representative aliquots were obtained by taking 1/10 of the cell sample 

from each flask. Using this information, undissociated spheres were harvested by 

centrifugation and re-suspended in DNase. Methods used to prepare primary tissue
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transplantation were identical to those used to prepare such tissue for cell culture, and 

these cells were similarly re-suspended at a specified density in DMEM for 

transplantation.

In all transplant experiments into adult rat brain, 2pi of the grafting suspension were 

delivered slowly over a 2min period at each height using stereotaxic apparatus and a 

lOpl Hamilton microsyringe with a bore diameter of 0.25mm. All grafts were placed 

ipsilateral to the side of the lesion and were targeted to the striatum (A +1.0 mm, L -

2.8 mm, V -5.0/-4.5 mm, incisor bar set 2.3 mm below the interaural line). The 

needle was left in situ for 3 min following grafting to minimise reflux of grafted cells 

along the needle tract, following which the needle was removed and the skin incision 

cleaned, closed, and sutured. For transplants into adult mouse brain 2pl of the graft 

suspension were deposited to the lesioned striatum at the coordinates: A +1.2mm, L - 

2.6mm, V -4.5mm, incisor bar set to 0mm below the interaural line, with infusion and 

completion of the procedure as above.

For neonatal transplants into the rat hippocampus, at P0, the following coordinates are 

taken: (L) +2 mm, (A) +lmm with these points taken from the post-sagittal sinus. 

Hippocampal grafts into 6week old rats were at the following coordinates from 

bregma: L +3.5mm, A -5.5mm and (V) -2.9mm. For hippocampal grafts both at P0 

and 6weeks, 2.5pi of the cell suspension were infused slowly over a 2 min period, 

after which time the needle was left in place for a further 1 min to prevent a back 

surge of the graft tissue. For neonatal rat striatal grafts coordinates used from bregma 

were L -1 .8mm, AP +0.9mm and V -2.7mm. In this case, cells were infused over 2.5
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mins and the needle was kept in place for a further 2 min. Sutured animals were 

administered the appropriate amount of glucose saline to prevent dehydration, for rat 

5 ml, and for mouse 0.5ml.

For intraperitoneal injections (i.p.) the cell suspension was prepared as described and 

lpl of cell suspension was injected over 1 minute and the needle left in place for a 

further 1 minute. In each case 200,000 cells were injected.

2.13 Iontophoresis

Injection of the anterograde tracers neurobiotin and PHA-L was carried out using the 

technique of iontophoresis. This involves a current driving the tracer into the cell 

whilst the animal is anaesthetised. Glass micropippetes were prepared with the tip 

diameter ranging from 20-50 pm and were attached to an electrode holder fixed to the 

stereotaxic frame. A silver wire was inserted into the filled pipette and the tracer was 

injected with a square wave pulse of 10 micro-amps at a rate of 7secs on 7secs off for 

20 minutes. Tracers were injected to the graft area using the same coordinates as 

those used for grafting. The tracer was injected 7 days prior to perfusion.

2.14 Perfusions and Tissue Sectioning

Animals were terminally anaesthetised with 0.8 ml intraperitoneal injection of sodium 

pentobarbitol (Euthatal, 200mg/ml), prior to transcaridal perfusion. When no reflexes 

were present the animal was perfused. The heart was exposed by cutting the skin 

rostrally along the midline of the thorax and by deflecting the rib cage rostrally
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following a lateral incision of both sides of the cage. A spencerwells forceps blocked 

the main descending artery and a cannula was inserted into the left ventricle of the 

heart and passed into the ascending aorta. The right atrium was then incised to allow 

the perfusates to drain. Vascular rinse was administered for 2 min followed by 3 

mins of 4% paraformaldehyde (PFA) using gravity as the pump system. The animal’s 

head was removed using a guillotine and the brain carefully removed. Brains were 

post-fixed in 4% PFA for 4 hours, cryoprotected by transferring to 25% sucrose (in 

vascular rinse, pH 7.3) until they sank, and were then sectioned at 40pm on a freezing 

stage microtome. Sections were stored in 96 well plates in Tris-buffered saline (TBS) 

with 0.2% sodium azide added to prevent deterioration.

2.15 Cresyl Violet Staining

Cresyl violet stains nissl granules, allowing identification of different neural cell 

types. A 1 in 6 series of sections was mounted onto glass microscopoe slides (coated 

with 1% gelatin), and air-dried overnight at 37°C. Cresyl violet staining was 

automated on a Shandon tissue-processing machine that firstly dehydrated and 

rehydrated to water the sections in increasing levels of alcohol before delipidation in 

chloroform. They were then placed in the stain for 10 seconds, followed by a 

dehydration step in increasing concentrations of alcohol and finally the slides were 

placed in xylene before coverslips were applied with DPX mountant.

2.16 Haemotoxylin and Eosin

Another Nissl stain used was Haematoxylin and Eosin. As with cresyl violet the 

sections were dehydrated and rehydrated in increasing levels of alcohol before being
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placed in xylene for lhour. Sections were then placed in haematoxylin for 20minutes 

followed by acid alcohol for 3minutes and 1 minute of eosin before being dehydrated 

in increasing concentrations of alcohol. Finally the slides were placed in xylene 

before coversliping with DPX mountant.

2.17 Immunocytochemistry on Tissue Sections

Indirect immunocytochemistry was carried out on both mouse and rat sections for a 

variety of antigens, as listed in Appendix A. As with cresyl violet stains, and unless 

otherwise stated, a 1 in 6 series was processed. Quenching of endogenous peroxidase 

activity in 80% distilled water/10% methanol/10% H2O2, was for 5 mins. Sections 

were then washed 3 x 5mins in TBS and block was added for 1 hour (30pl/ml of the 

appropriate serum (as indicated in appendix A) in TBS +0.2% Triton X I00 (TXTBS) 

(see Appendix A)). Without washing, the sections were transferred to primary 

antibody made up to the correct concentration in 1% serum in TXTBS over the 

weekend at -20°C. After the appropriate amount of time, the tissue sections were 

washed 3 x lOmins in TBS. A biotinylated secondary antibody at 1:200 in TBS with 

1% serum is added for 3hours followed by another round of 3 x lOmin washes in 

TBS. A dako streptavidin ABC kit made up of 5 pl/ml A and 5pl /ml B in TBS with 

1% serum was added for 2 hours. After washing 3 x lOmin TBS the sections were 

rinsed 2 x 5mins in 0.04M tris non-saline (TNS). Positive staining was visualised 

using diaminobenzidine (DAB, 0.5 mg/ml in TNS with 12.5 H2O2 at a 1 in 5 dilution). 

Finally the sections were washed 3 x 5min in TNS before being mounted on 

gelatinised slides and air-dried overnight prior to dehydration, clearing of any lipid 

residues and coverslipping in DPX mountant. Controls were routinely carried out in 

parallel and consisted of omission of the primary antibody.
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2.18 Quantification and photomicroscopy of grafts.

Grafts were visualised under the Leitz DRMB light microscope. Digitised images 

were captured using a Hamamatsu C4752 video camera and NIH 1.55.2 image 

analysis software, and the area corresponding to grafted tissue in each section was 

traced around and measured. Graft volume was subsequently calculated to be:

V = Sa.M V = graft volume (mm3)

f a = area (mm2)

M = section thickness (0.06/0.04 mm)

F = frequency of sampled sections (1:6)

Cell number was calculated where possible by counting all cells.

Abercrombie correction formula:

Total number of cells = F x A x M/(D+M)

Where F = Frequency of sections i.e. 1 in 6 

A = Cell counts for entire animal 

M = Section thickness 

D = Average cell diameter

However where cell number was too great to count each cell, stereology was used on

an Olympus C.A.S.T. grid system in which cells were counted in random regions

within the defined graft area. Using the following formula the total number of cells

in the structure per section can be calculated:

n = Sc x (EA/Ea) x (M/d) Sc = The total number of cells counted

EA = The sum of all the inclusion areas 

l a  = The sum of all the sample areas 

M = Mean section thickenss
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The total number of cells in the structure is

En x f f = the frequency of sectioning.

2,19 Statistical analyses

Genstat 5 release 3.2 (Rothampsted Agricultural Research Station, UK) package was 

used for parametric uni- and multifactorial analysis of variance (ANOVA), with 

appropriate post-hoc tests (Newman Keuls) performed by hand with reference to 

statistical tables.
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Chapter 3

In vitro cuCture conditions: optimising growth 

factor concentrations fo r  the prodferation and 

neuronaCdifferentiation ofUddPs.

Summary

FGF-2 and EGF are the two major mitogens for ENP proliferation in culture 

however, as well as their role in precursor cell expansion; FGF-2 and EGF also play a 

key role in the division of astrocytes, and in neuronal differentiation. Thus, it is 

important to establish the optimal concentrations of these factors for expansion and 

differentiation of neuronal phenotypes. In this chapter I explore the effect of FGF-2 

and EGF concentrations ranging from l-20ng/ml on the expansion and differentiation 

capacity of ENPs isolated from the striatum and cortex of E14 mice. ENP expansion 

was seen under all conditions, but proliferation was greatest at 10 and 20ng/ml and 

least at lng/ml. The proportion of neurons (as a proportion of total cell number) 

differentiating from ENP populations appeared to be greatest at lng/ml. However, 

once adjustments were made for the amount of expansion at each dose, final neuronal 

yield was maximal at the highest concentration of FGF-2 and EGF used.

85



Chapter 3 Introduction

3.1 Introduction

ENPs can proliferate in culture in the presence of mitogens and following mitogen 

withdrawal, ENPs spontaneously differentiate in vitro into the major cell types of the 

central nervous system. Both the proliferation and differentiation of ENPs is 

influenced by the presence of mitogens in the culture medium (Tropepe et al., 1999), 

and growth factors have been shown to act in a sequential manner in the regulation of 

differentiation (Vescovi et al., 1993; (Ciccolini and Svendsen, 1998). A number of 

growth factors have been explored, including nerve growth factor (NGF), epidermal 

growth factor (EGF), basic fibroblast growth factor (FGF-2), insulin like growth 

factor (IGF), brain-derived neurotrophic factor (BDNF) and tumor necrosis factor 

(TNF) (Arsenijevic et al., 2001; Arsenijevic and Weiss, 1998; Cattaneo and McKay, 

1990; Murphy et al., 1990; Santa-Olla and Covarrubias, 1995; Tropepe et al., 1997). 

The factors important for continued proliferation of these precursors are complex, and 

likely to involve contact as well as diffusible elements (Svendsen et al., 1998; Temple 

and Davis, 1994), although it is clear that FGF-2 and EGF are important mitogens for 

such cells (Anchan et al., 1991; Gensburger et al., 1987; Kilpatrick and Bartlett, 1993; 

Lillien and Cepko, 1992; Ray et al., 1993; Reynolds and Weiss, 1992a; Vicario- 

Abejon et al., 1995). However, the relationship between cells grown in response to 

either EGF or FGF-2 is unclear; comparisons between published reports are difficult 

because of variations in embryonic ages, growth factor combinations, and the brain 

regions used. To add to this complex situation, both EGF and FGF-2 can stimulate 

the division of astrocytes as well as neurons (Hou et al., 1995; Kilpatrick and Bartlett, 

1995) which are themselves capable of making and releasing a wide range of growth 

factors.
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A further important complexity is the observation that there may be significant 

species differences in the behaviour of ENPs (Smith et al., 2003). For example, EGF 

responsive neural precursor cells isolated from the embryonic mouse brain expand for 

long periods of time whilst retaining pluripotency (defined by their ability to produce 

neurons, astrocytes and oligodendrocytes) in contrast to EGF responsive cells from 

the developing rat striatum that only undergo a finite number of divisions before 

entering crisis (Svendsen et al., 1997b). It has also been shown that FGF-2 responsive 

neural precursors isolated from E l4 mouse striatum arise earlier than EGF responsive 

cells during development in vitro (Ciccolini and Svendsen, 1998), a result confirmed 

using mouse striatum, by isolating precursors from different gestational ages (Tropepe 

et al., 1999). Ciccolini (Ciccolini, 2001) has also reported that there is a 

developmental switch in the responsiveness of ENPs from FGF-2 to EGF both in vitro 

and in vivo. Furthermore, early mouse precursors (E l4) are responsive to FGF-2 but 

by E l8 these cells are responsive to both FGF-2 and EGF (Ciccolini, 2001).

Both FGF-2 and EGF are considered to act on the classical receptor tyrosine kinases 

that induce the activation of the Ras/extracellular signal-regulated kinase (ERK) 

pathway that ultimately leads to the phosphorylation of the transcription factor CREB 

(Marshall, 1995). In the absence of mitogen stimulation only 1% of cells show 

nuclear phospho-CREB immunoreactivity whereas in the presence of EGF and FGF-2 

or FGF-2 alone 10-12% of cells are immunoreactive for CREB phosphorylation, in 

E14 striatal cultures 24hrs after culturing (Ciccolini and Svendsen, 1998). FGF-2 is 

used in the presence of the stabilising agent heparin which has been shown to enhance 

FGF-2 induced proliferation whilst also reducing the numbers of astrocytes produced 

on differentiation (Caldwell and Svendsen, 1998; Caldwell et al., 2004). Insulin is
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present (at a concentration of 500pg/ml) and has also been found to enhance the 

proliferative effects of FGF-2, predominantly via the type 1 IGF receptor (Drago et 

al., 1991; Santa-Olla and Covarrubias, 1999).

Here we report the effects of a range of FGF-2 and separately, EGF concentrations on 

the proliferation of E l4 mouse-derived striatal and cortical ENPs, and the capacity of 

these cells to differentiate along a neuronal phenotype in vitro following mitogen 

withdrawal. Two separate experiments were carried out, one looking at the effects of 

varying FGF-2 concentrations, experiment la, and the other the effects of similar 

concentrations of EGF, experiment lb. For each experiment the corresponding 

mitogen concentration was maintained constant at 20ng/ml, the optimal 

concentrations previously reported in the literature.

3.2 Experimental design

The rationale for experiment la was firstly to establish the optimum concentration of 

FGF-2 for the proliferation and, more importantly, the neuronal differentiation of 

striatal and cortical-derived ENPs, and secondly to establish whether priming cells 

with 20ng/ml of FGF-2, would allow the cells to establish and subsequently be 

responsive to lower concentrations. An additional group was maintained at 20ng/ml 

FGF-2, the most frequently used concentration in the literature, as a control. 

Throughout experiment la the concentration of EGF was maintained constant at 

20ng/ml. All cultures were maintained over 6 passages and at each passage cells were 

plated for differentiation.
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Figure 3.1 A/B (overleaf). Experiment la  was carried out such that the cells were 

exposed to various concentrations of FGF-2. Both striatal and cortical-derived murine 

El 4 tissue were exposed to concentrations of 1,5,10 and 20ng/ml of FGF-2. After one 

week one group of cells that had been primed with 20ng/ml of FGF-2 were 

subsequently cultured in lower concentrations of FGF-2 for the remainder of the 

experiment. In experiment lb the FGF-2 concentration was maintained at 20ng/ml. 

The cultures were exposed to 1,5,10 and 20ng/ml EGF over a period of 6 passages 

with cells being plated at each passage for differentiation.
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Figure 3.1A Experiment la
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3.3 Results

3.3.1 ENP proliferation

i) The effects o f various concentrations o f FGF-2

Mouse embryonic striatal and cortical-derived ENPs expanded in number over the 6 

passages under all conditions examined in this study, as shown in Figure 3.2 A and C. 

Expansion profiles were between 102 to 104 fold over the 6 passages, depending on the 

dose of FGF-2 used. Expansion patterns for striatal and cortical-derived ENPs were 

not significantly different: all cultures showed a trend for an increase in expansion 

over time (Fi,35=1.38, P=2.4 n.s). There was a significant effect of FGF-2 

concentration (F6,35= 150.98, p<0.001), and of passage (F6,35=916.21, p<0.001) on 

expansion. Before passage 2 (P2), expansion rates are similar across all doses of 

FGF-2. After P2 differences emerge, and the greatest levels of expansion are seen at 

10 and 20ng/ml FGF-2. Thus for both striatal and cortical-derived cells, 20ng/ml and 

lOng/ml FGF-2 resulted in greater proliferation than did 5ng/ml FGF-2 (which 

produced the next highest level of proliferation): for striatal-derived tissue t46=7.39, 

p<0.001 and t47=8.26, p<0.001 for 20ng/ml and lOng/ml vs 5ng/ml respectively; and 

for cortical-derived tissue tsi=10.39, p<0.001 and ts2l2.26, p<0.001 for 20ng/ml and 

lOng/ml vs 5ng/ml respectively.

The effect of priming cells with 20ng/ml FGF-2 for the first week followed by a 

reduction to 10, 5, or lng/ml is shown in Figure 3.2 B and D. For cultures grown in 

lOng/ml FGF-2, exposure to 20ng/ml for the first week appeared to have a detrimental 

effect on expansion (t5 = 6.83; p< 0.05 at P4, and = 16.31; p< 0.001 by P6). No
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significant effect of priming was seen at 1 and 5ng/ml FGF-2 with these cultures 

proliferating at similar rates to those maintained at 1 and 5ng/ml throughout.
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Legend to Figure 3.2

Proliferation capacity of E14 Striatal and Cortical-derived cells in vitro. A and C) 
For both striatal and cortical-derived cultures, 10 and 20ng/ml FGF-2 resulted in 
significantly greater proliferation than did 5 and 1 ng/ml (*p<0.001). B and D) show 
the proliferation of cultures primed with 20ng/ml FGF-2 for one week before being 
cultured at a lower concentration of 1, 5, or lOng/ml. Primed cultures did not 
proliferate significantly better than those at the lower concentration throughout. Cells 
grown at lOng/ml proliferated significantly less when primed with 20ng/ml FGF-2 
for one week than those not primed for the first week.

93



t. hdpic i  ’ 1R esu lts

ii) ENP proliferation in the presence o f various concentrations o f EGF 

Mouse embryonic striatal and cortical-derived ENPs expanded in number over the 6  

passages under all conditions examined in this study, as shown in Figure 3.3 A and B. 

Expansion patterns for striatal and cortical-derived ENPs were not significantly 

different (Fi35=0.52, P=0.817 n.s). There was a significant effect of EGF 

concentration (F335 =109.26, p<0.001), and of passage (F6,35= 192.21, p<0.001) on 

expansion. There was also a significant interaction between EGF concentration and 

time in culture/passage (F 18,35=8.08, p<0.001), as well as an interaction between 

source, i.e. striatum or cortex, and EGF concentration and passage (Fi8,35=3.13,

p<0 .0 0 1 ).

Striatal-derived cultures proliferated to a lesser degree than cortical-derived cultures. 

The optimum concentration of EGF for proliferation is 10 and 20ng/ml, with no 

significant difference between these two concentrations at any time point in culture 

(F6,35=5.16, P<0.005). However, at both P5 and P6  these cultures grown in 10 and 

20ng/ml EGF expanded more than those maintained in 5ng/ml of EGF (the 

concentration resulting in the next highest proliferation): P5: t7=5.05, p<0.001, and 

t6=4.23, p<0.005; P6 : ti2=8.23, p<0.001, and tn=7.29, p<0.001 for 20ng/ml vs 5ng/ml 

and lOng/ml vs 5ng/ml respectively. There was also a significant difference between 

cultures expanded in 5ng/ml and those in lng/ml EGF at P4 and P5 (P4: tn=5.52, 

p<0.001, and P5: tio=4.94, p<0.005). However this was no longer significant at P6  

(t5=3.17, n.s).

In the case of cortical-derived cultures there were differences between the higher and 

lower concentrations at all time points except P4 at which point there was no
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difference between any of the EGF concentrations. By P6 it is apparent that cortical- 

derived cultures exposed to 10 or 20ng/ml EGF proliferated significantly better that 

those at 5ng/ml (tg=6.46, p<0.001, t7=6.23, p<0.001) and lng/ml (ti9=l 1.75, p<0.001, 

ti8=l 1.633, p<0.001), with there being no significant difference between 10 and 

20ng/ml (t2=0.025, ns). At P4, P5 and P6 cultures maintained in 5ng/ml proliferated 

significantly better than those in lng/ml (P4: ti2=6.463, p<0.001, P5: tis=6.82, 

p<0.001, and P6; ti2=5.41, p<0.005).
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Figure 3.3 A and B
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Legend to Figure 3.3 A and B.
Proliferation of striatal (A) and cortical (B)-derived cultures over a period of 6 
passages in culture. In the presence of 20ng/ml FGF-2, 10 and 20ng/ml EGF, 
proliferation was maximum when compared with cultures expanded in 5 and lng/ml 
EGF, for striatal and cortical-derived cultures respectively. Proliferation at all lower 
concentrations assessed was significantly less, p<0.001.
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3.3.2 ENP differentiation

(i) The effect of varying concentrations of FGF-2 on neuronal proportion 

Figure 3.4 A and C shows p-tubulin III positive neurons (as a proportion of total cell 

number) differentiating from striatal and cortical-derived ENPs grown in l-20ng/ml 

FGF-2. Figure 3.4 B and D show the corresponding neuronal yields (i.e. expected 

neuronal numbers after adjustment for expansion). Results of P2 and P6 alone are 

presented for clarity, as the values for P3 - P5 lay between these two (ranges for 

neuronal proportion were P3 = 2-7%; P4=2-6%; P5=l-5%; and for neuronal yield 

were P3=lxl02 -1.8xl03, P4=1.6xl02- lx l0 4, P5=lxl03 -  1.8xl04). Figure 3.5 A and 

B show the effect of priming ENPs with 20ng/ml FGF-2 for the first week on 

neuronal proportion and yield compared to those maintained at lower doses from the 

start.

The proportion of neurons differentiating from ENPs was influenced by FGF-2 

concentration (F2,i8=l 19.36, p<0.001), and passage (Fifi8=280.38, p<0.001), with 

neuronal proportion decreasing with increasing passage. For striatal-derived cultures, 

the highest neuronal proportions were seen with the lower concentrations of FGF-2 

(see below), although even at lng/ml FGF-2, the predominant cell type following 

differentiation is the astrocyte (Figure 3.8).

Between P2 and P6 there is a significant decline in the proportion of neurons 

differentiating from both striatal and cortical-derived cultures (Fi,i8=280.38, p<0.001). 

For striatal-derived cultures at P2 there was a significant difference in the proportion 

of neurons differentiating from cultures in lng/ml compared to 5, 10 and 20ng/ml
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(t5=5.12, p<0.05, t3=4.62, p<0.05, t2=3.5, p<0.05). At P6 there was a significant 

difference between cultures at 1 and 5ng/ml (t3=7.41, p<0.001), but there were no 

other significant differences. Post hoc analysis of the neuronal proportions for 

cortical-derived cultures at P2 revealed that there was no difference between cultures 

maintained in 1 or lOng/ml nor between 5 and 20ng/ml, but significant difference 

existed between either 1 or lOng/ml compared to 5 or 20ng/ml (ts=4.4, p<0.05 and 

t4=3.43, p<0.05). By P6 there was still no significant difference between 1 and 

lOng/ml, however there was significant differences between cultures maintained in 

lOng/ml compared to 5ng/ml and lOng/ml compared to 20 ng/ml (t2=2.63, p<0.05 and 

t5=6.85, p<0.001 respectively).

The effect on neuronal differentiation of exposing ENPs to 20ng/ml FGF-2 for the 

first week were similar for striatum and cortex, and thus, for clarity of presentation, 

only the former is shown (Figure 3.5). Following differentiation, neuronal proportion 

was higher if ENPs had been exposed to 20ng/ml FGF-2 for the first week of 

proliferation (Fi,i8=l 1 -29, p<0.001). This was entirely due to a significant increase in 

neuronal proportion in cells reduced to 5ng/ml after one weeks expansion in 20ng/ml 

(t2 =6.2 p<0.001) and did not reach significance at any other concentration.

(ii) Neuronal yields - FGF-2

Overall, neuronal yields were greater for cortex than striatum (Fi>ig=8.60, p<0.05). 

Neuronal yields were affected by FGF-2 concentration (F2)i8=51.25, pO.OOl), but in 

the opposite direction to the neuronal proportion, with the greatest yields being at 

20ng/ml (compared to lOng/ml: t5 = 7.67; p<0.01; 5ng/ml: t2 = 4.07; p<0.05; and
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lng/ml: X-] = 15.59; p<0.01) for cortical-derived cultures and (compared to lOng/ml: 

t6=8.136, p<0.001; 5ng/ml: t7=l 1.97, p<0.001 and lng/ml: t9=13.17, p<0.001), for 

striatal-derived cultures. Exposure to 20ng/ml FGF-2 for the first week of 

proliferation did not have a significant effect on yield (Fijis=1 -46 n.s Figure 3.5B).
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Figure 3.4 ( A, B, C and D)
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Legend to Figure 3.4 A,B C and D

The neuronal differentiation of E14 Striatal and Cortical-derived ENPs at 1, 5, 10, 
and 20ng/ml FGF-2. A and C represent the neuronal proportion of striatal and 
cortical-derived ENPs respectively. Following adjustment for proliferation B and D 
-  greatest differentiation was at 20ng/nl FGF-2. (Note the axis difference in B and 
D)
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Figure 3.5 A and B
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Legend to Figure 3.5

The effect of priming cultures to 20ng/ml FGF-2 in the first week of culture before 
subsequently reducing the FGF-2 concentration to 1, 5 or lOng/ml FGF-2 is compared 
to those cultures exposed to the same concentration of FGF-2 for the entire 
experiment. A) Compares the effect of priming with 20ng/ml FGF-2 on the neuronal 
proportions of striatal-derived cultures at P2 whereas B) compares the neuronal yields 
of striatal-derived cultures also at P2.
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(Hi) The effect o f varying the concentration o f EGF on neuronal proportion

Overall, the proportions of neurons differentiating from striatal-derived cultures was 

significantly higher than from cortical-derived cultures (Fi)i8=21.72, pO.OOl). 

However, there was a significant effect on neuronal differentiation of varying EGF 

concentration in both striatal and cortical-derived cells (F3)ib=4.34, pO.OOl) and 

overall patterns looked similar between the two (Figure 3.6). There was more 

variability in neuronal proportion over passage than was seen with FGF-2 and for this 

reason data from all passages is displayed in Figure 3.6.

To maintain consistency with the analysis of neuronal differentiation following FGF-2 

variation (see above), post-hoc statistical comparison was carried out for P2 and P6 

for both striatum and cortex (Figure 3.7 A and B).

Striatal-derived cultures at P2 exposed to lng/ml EGF resulted in a greater proportion 

of neurons than did cultures exposed to 5, 10 and 20ng/ml EGF (t2= l5.823, pO.OOl, 

t4= 16.609, pO.OOl, t7=22.358, pO.OOl). Cultures exposed to 5 and lOng/ml EGF 

also resulted in significantly greater neuronal proportions than those exposed to 

20ng/ml EGF (t4=5.248, pO.OOl, t4=5.749, pO.OOl). There was no significant 

difference between cultures exposed to 5 and lOng/ml EGF (t2=0.78, NS). The 

pattern was similar at P6: cultures exposed to lng/ml EGF resulted in a greater 

neuronal proportion than those exposed to 10 and 20ng/ml EGF (t4=4.204, p0 .005, 

and t6=8.76, pO.OOl); cultures exposed to 5 ng/ml EGF produced a greater 

proportion of neurons than those exposed to 20ng/ml (t4=5.248, pO.OOl); and there
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were no significant difference between cultures at lng/ml and 5ng/ml EGF nor 5ng/ml 

and lOng/ml EGF (t3=3,15, NS 1 t2=0.68, NS).

Cortical-derived cultures at P2 exposed to 1,5, and lOng/ml resulted in significantly 

greater neuronal proportions than those exposed to 20ngml ( fp  10.07, PO.OOl, 

t3=4.84, PO.OOl, t5=10.56, PO.OOl, respectively). Cultures exposed to lng/ml also 

resulted in a significantly greater neuronal proportion than the cultures exposed to 

5ng/ml and lOng/ml (t2=5.233, pO.OOl, t3=5.723, PO.OOl, respectively). There was 

no significant difference between those exposed to 5 and lOng/ml EGF (t2=0.49, ns). 

At P6 differences in neuronal proportions only reached significance when comparing 

cultures exposed to lng/ml EGF with those exposed to 20ng/ml EGF which had much 

less neurons (ts=4.52, P0.005).

(iv) Neuronal yields - EGF-2

Overall there was no difference between yields for striatal and cortical-derived cells. 

For striatal-derived cultures, there was no effect of varying EGF concentration at P2 

(F3=4.07, ns). In contrast, at P6 cultures exposed to 5, 10 and 20ng/ml EGF showed 

significantly greater neuronal yields than cultures exposed to lng/ml EGF (t2=6.24, 

pO.OOl, t3=9.43, pO.OOl and tp ll .0 4 , pO.OOl). There was no significant 

difference between cultures exposed to 5, 10 and 20ng/ml EGF (Figure 3.7C).

There was no interaction between the EGF concentration, passage and the source. In 

the case of cortical-derived cultures there was no significant effect of EGF 

concentration either at P2 or P6 (Figure 3.7D).
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Figure 3.6 A and B 
A Striatum neuronal proportions b  Cortex neuronal proportions
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EGF Concentration
1 5 10

EGF Concentration

Legend to Figure 3.6

The neuronal differentiation of E14 striatal and cortical-derived ENPs at 1, 5, 10, and 
20ng/ml EGF. A and B represent the neuronal proportion of striatal and cortical- 
derived ENPs respectively.
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Fgure 3.7 A,B,C and D
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Legend to Figure 3.7
The neuronal differentiation of E14 striatal and cortical-derived ENPs at 1, 5, 10, and 
20ng/ml EGF. A and B represents the neuronal proportions for striatal and cortical- 
derived cultures. C and D) Following adjustment for proliferation -  greatest 
differentiation of cortical-derived cultures was at lOng/ml compared to 5 and 20ng/ml 
and for striatal-derived cultures at 5, 10 and 20ng/nl FGF-2 compared lng/ml.
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Figure 3.8 A and B

Immunohistochemical staining of 

differentiated embryonic neural 

precursor cells in vitro expanded in 

the presence of; A) lOng/ml FGF-2 

or B) lng/ml FGF-2 (both in the 

presence of 20ng/ml EGF). A is 

triple labelling for neurons (red), 

astrocytes (green) and a nuclear stain 

(blue), double labelled cells (yellow). 

B represents B-III tubulin positive 

neurons expanded at the lower 

concentration of lng/ml FGF-2 at P2.

Scale bar = 200pm
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3.3.3 Comparison between Experiment la  and lb.

Table 1 summarizes the results from both experiments la and lb with the data 

presented as the range for each concentration of each growth factor assessed in each 

group. Overall the trends are similar in the two experiments although some 

intriguing differences are apparent. In the case of neuronal proportions there is a 

large difference between the experimental groups. In experiment la the EGF 

concentration was maintained constant at 20ng/ml and there was a much lower 

neuronal proportion whereas in the experiment lb, in the condition where EGF 

concentration was low and the FGF-2 concentration was constant at 20ng/ml there 

was a greater proportion of neurons differentiation in these cultures. For neuronal 

yield which takes into account the proliferation of the cultures, there was also a big 

difference between the two experiments with striatal cultures in the presence of 

varying concentrations of EGF resulting in a greater neuronal yield than in the 

presence of varying concentrations of FGF-2. The reverse was true for cortical 

cultures in that varying FGF-2 concentrations resulted in greater neuronal yield than 

did varying EGF concentration. It is also important to point out that there is a 

difference in the neuronal differentiation between the two experiments in the case of 

the control cultures (20ng/ml EGF and 20ng/ml FGF-2) which highlights the 

variability between experiments in the expansion and neuronal differentiation of 

CNS derived ENPs. Thus, it is important to be cautious in interpreting these 

comparisons.
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Striatum Cortex

P2 P6 P2 P6 Comments

Mitogen
concentration
range

Proliferation (total cell number)

FGF-2 
Low to high

106-107 107-109 106-107 107-109 No difference between 
Striatum and Cortex

EGF
Low to high

106-107 106-108 106-107 106-108 No difference between 
Striatum and Cortex

Neuronal Proportions (%)

FGF-2 
Low to high

2.5-4.5 1.0-2.6 2.5-4.0 0.5-2.5 No difference between 
Striatum and Cortex

EGF
High to low

2.5-10.0 0.1-4.5 3.5-8.5 0.0-5.5 No difference between 
Striatum and Cortex

Yield (theoretical cell number)

FGF-2 
Low to high

102-104 103-105 106-108 107-109 Big difference between 
Striatum and Cortex

EGF
High to low

103-104 104-108 103- 1 o4 105-107 No difference between 
Striatum and Cortex

Table 1 summarizes the results for each experiment. Each experiment was carried 

out separately. The data presented here represents the range across all concentrations 

of growth factor assessed in each experiment.
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3.4 Discussion

It is reported here the effects of a range of FGF-2 and EGF concentrations on both the 

expansion and the numbers of neurons differentiating from ENP populations, with an 

ultimate view to producing donor cells for neural transplantation studies.

3.4.1 Proliferation of ENPs in response to FGF-2 and EGF

The greatest expansion of cells in this study was achieved in the presence of 10 and 

20ng/ml of FGF-2 and EGF. This is supported by Minger et al (Minger et al., 1996) 

who reported optimum proliferation of mouse ENPs in the presence of 20ng/ml FGF- 

2. Murphy et al (Murphy et al., 1990) reported maximum stimulation at 

concentrations of 20ng/ml FGF-2 and above, and half-maximal stimulation at 

1.40ng/ml FGF-2. Kitchens et al (Kitchens et al., 1994) also looked at various 

concentrations of FGF-2 ranging from lng/ml to lOng/ml and reported maximum 

proliferation at lOng/ml FGF-2. Ray et al (Ray et al., 1997) assessed the mitogenic 

effect of several members of the FGF family on ENP proliferation, and concluded that 

at a concentration of lng/ml FGF-2 or below, FGF-2 had a survival effect on the cells, 

whereas at concentrations greater than lOng/ml, FGF-2 had a mitogenic effect with 

maximum proliferation observed at 20ng/ml. They also reported similar results with 

FGF-4. Whether concentrations greater than 20ng/ml have a more pronounced effect 

was not addressed in our study, although a previous study (Murphy et al., 1990) 

demonstrated a plateau of response above 20ng/ml.

We also looked at the effect of exposing cells to 20ng/ml FGF-2 for the first week 

following transfer to medium containing lower doses of FGF-2. Priming the cells in 

this way had no effect on cell number except when cells were transferred from 20 to
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lOng/ml FGF-2. Given that there was no significant difference in proliferation for 

cultures expanded with 10 or 20ng/ml FGF-2 from the beginning, it is interesting that 

a switch from one concentration to the other after one week in culture should have 

such a negative effect. Whilst the decrease in concentration of FGF-2 did not have a 

significant effect at 1 and 5ng/ml it is of interest to note that by P6 all three culture 

conditions were proliferating at the same rate. This is in direct contrast to cells grown 

under constant growth factor conditions where cells with higher growth factor levels 

were expanding more rapidly than those under low growth factor levels. Therefore 

one could speculate, that continuing the experiment for more passages would lead to a 

significant difference at all concentrations, given that there was a trend for the rates of 

proliferation to diverge, with cells in 5ng/ml proliferating more, which was not the 

case in cultures that had been primed. If such was the case, then this would be in 

contrast to reports by Ciccolini (Ciccolini, 2001) in which it was shown that priming 

the cells had a positive effect on the proliferation of cultures. However, in the 

Ciccolini study, after priming, the cells were starved of any mitogens for several days 

and then re-exposed to the mitogens at the same concentration at which they were 

primed. The switch in concentrations may have an effect on proliferation or cell death 

or both and specific assays of cell death and BrdU incorporation may help to 

understand this. Further studies are required to understand what is happening to these 

cells during this time.

It was also shown in the present study that optimum proliferation of murine striatal 

and cortical-derived ENPs can be achieved equally well by 10 or 20ng/ml EGF, with 

the FGF-2 concentration held constant at 20ng/ml. Svendsen (Svendsen et al., 1997) 

has shown previously that mouse ENPs expand for long periods of time in culture and
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still maintained the ability to differentiate into neurons, astrocytes and 

oligodendrocytes. This is in contrast to rat ENP cultures in which the cells undergo a 

finite number of divisions (Kelly et al.in press). In contrast to the results presented 

here, Kitchens (Kitchens et al., 1994) found that in EGF-only medium there was no 

significant difference between 1 and lOng/ml on the proliferation of C l7-2 ENPs, 

which are an immortalized clonal progenitor cell line from the neonatal murine 

cerebellum.

In the present studies EGF and FGF-2 were not analysed alone but always in 

combination and therefore an understanding of the changes in responsiveness of these 

cultures to either growth factor can not be addressed. However, it has been shown 

that the emergence of EGF responsiveness with increasing gestational age is 

consistent with in vivo studies demonstrating increasing expression of EGF mRNA 

from E14 onwards in the developing mouse CNS (Komblum et al., 1997; Lazar and 

Blum, 1992), and the observation that E14 mouse embryonic precursors can only 

respond to EGF after 4-5 days in culture (Reynolds and Weiss, 1992b; Svendsen et 

al., 1995; Reynolds and Weiss, 1992a), presumably due to up-regulation of the EGF 

receptor as the precursors mature. There is also evidence that EGF-responsiveness is 

primed by exposure to FGF-2 (Ciccolini and Svendsen, 1998), and that E8.5-derived 

mouse CNS precursors, which proliferate only in FGF-2, can give rise to EGF- 

responsive cells (Tropepe et al., 1999). Indeed, CNS precursors grown from chimeric 

mice homozygous for the FGF-1 receptor, which is thought to be the major receptor 

for FGF-2, show poor proliferation in response to FGF-2 at early gestational ages and 

poor response to both FGF-2 and EGF at a later age, implying that the priming with 

FGF-2 is essential for the development of EGF responsiveness (Tropepe et al., 1999).
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3.4.2 Differentiation of ENPs cultured in FGF-2 and EGF

Looking at the neuronal proportions and neuronal yield of cells differentiated from 

these cultures is a step in obtaining an understanding of the characteristics of the 

cultures. When ENPs, grown in the various concentrations of FGF-2, were allowed to 

differentiate in the absence of mitogen, the greatest neuronal proportions were seen in 

cells from the lower FGF-2 concentrations. This is in accordance with Qian (Qian et 

al., 1997) who looked at the effects of FGF-2 concentrations on mouse E10 cortical 

ventricular zone cells. They concluded that low or basal levels (0-10ng/ml) of FGF-2 

produced almost pure populations of neurons whereas higher concentrations of FGF-2 

induce the generation of both neurons and glia. However, a calculation of the 

theoretical neuronal yield in the present study revealed that the greatest overall 

neuronal yields were seen in the presence of 20ng/ml FGF-2 for both striatal and 

cortical-derived cultures. The effect of exposing ENPs to 20ng/ml of FGF-2 for the 

first week, before subsequent reduction of FGF-2 level, was to increase the neuronal 

proportion after differentiation in culture. However, the effect on yield was much less 

clear-cut once adjustment was made for cell proliferation.

As with FGF-2, analysis of the neuronal proportions of striatal and cortical-derived 

cultures exposed to EGF concentration variations demonstrated that at the lower 

concentrations of EGF a greater number of neurons were observed. The proportion of 

neurons generated at the lower concentrations of EGF was greater than those 

generated at the lower concentrations of FGF-2. This is consistent with the role of 

EGF in astrocyte precursor proliferation and differentiation. In this study the FGF-2
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concentration was maintained at 20ng/ml, thus resulting in a greater proportion of 

neurons.

Striatal neuronal precursors appeared to be more responsive to lower concentrations 

of EGF, i.e. lng/ml than to the higher concentrations assessed, and this was more 

marked than in the cortical cultures. Jori (Jori et al., 2003) found that EGF at 20ng/ml 

impaired neuronal differentiation in postnatal day 3 rat cultures, and resulted 

primarily in the production of type 1 astrocytes. Reynolds and Weiss (Reynolds and 

Weiss, 1996) carried out a clonal and population analysis of murine striatal ENPs and 

their responsiveness to EGF. They found that in response to EGF close to 90% of the 

primary generated spheres differentiated into the 3 principle cell types of the CNS, but 

with the predominant cell type being the astrocyte.

Cortical-derived cultures presented no significant difference in neuronal yield for 1, 5 

and lOng/ml, but all produced significantly higher yields of neurons than did 20ng/ml, 

hitherto generally perceived as the optimal EGF dose. The differences in the neuronal 

differentiation between the FGF-2 and EGF experiments (la  and lb) suggest that 

EGF, which was always at a high concentrations in experiment la, was driving the 

proliferation and differentiation of astrocytes in these cultures, whereas in lb where 

FGF-2 was maintained at a high concentration and EGF could be given at a lower 

concentration, there was an increased tendency for neuronal differentiation.

The neuronal yield, which takes into consideration the proliferation of cultures as well 

as the proportion of neurons, showed 10 and 20ng/ml to produce maximum neuronal
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yields in striatal-derived cultures, with 20ng/ml being marginally better. In cortical- 

derived the optimum neuronal yields were from ENPs exposed to lOng/ml EGF.

When considering the effects of FGF-2 and EGF in this study, it is important to 

recognize that ENPs are probably a heterogeneous population comprising neuronal 

progenitors, glial progenitors, and small numbers of true multipotential stem cells. 

One interpretation of the results in this study is that neuronal progenitors proliferate 

maximally at lower concentrations of FGF-2, with little increase in expansion at 

higher doses, and that the greater numbers of cells seen at higher FGF-2 

concentrations are due to the proliferation of astroglial progenitors. Indeed, in this 

study, the predominant cell type at all passages and at all concentrations of FGF-2 was 

the astrocyte (data not shown, but see Figure 3.8).

Optimising the conditions for expansion of ENPs is of great importance if these cells 

are to be considered an alternative for cell replacement therapy in neurodegenerative 

disease. However, whilst obtaining a large quantity of cells is central to overcoming 

the logistical constraints associated with current supplies of human foetal tissue, it is 

imperative that we establish the characteristics of these cell populations. To date, 

most studies that analyse the effects of growth factor such as EGF and FGF-2 on 

ENPs focus almost entirely on the effects of these factors on proliferation. This study 

underlines the importance of carefully considering the effects on differentiation and is 

one of the first studies to do so in detail.

A further consideration is that the time window for neuronal progenitor proliferation 

may be limited, and this would be consistent with the gradual decline in neuronal
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proportion with subsequent passages. This idea would also be consistent with the 

finding that neuronal proportion is increased by exposure to higher levels of FGF-2 in 

the first week. That is, FGF-2 may be capable of driving neuronal progenitor division 

soon after ENP isolation, after which the ENP populations gradually switch to 

astroglial production. This would be in accordance with the events of normal 

development, in which neuronal generation predominates until the latter part of 

gestation, after which astroglial production predominates. The effect of 1 week 

priming exposure to higher levels of FGF-2 was less pronounced in cortically-derived 

compared to striatally-derived ENPs, perhaps due to differences in the developmental 

stage of these two brain regions. FGF-2 may also have an effect on neuronal 

progenitor survival as well as proliferation (see chapter 4).

This synergy between EGF and FGF-2 has been described previously in E l4.5 

germinal zone-derived mouse precursors, where the effect was noted in high density 

(as used in our study), but not low density, cultures (Tropepe et al., 1999). It has also 

been seen in E l5 rat striatal precursors (Svendsen et al., 1997a), and E l3.5 mouse 

mesencephalic precursors (Santa-Olla and Covarrubias, 1995). However, the nature 

of this synergistic effect is not clear and whether or not it represents a priming effect 

in this context has not been resolved. Arsenijevic (Arsenijevic et al., 2001) has 

reported that EGF and FGF-2 have a distinct mode of action on ENPs in culture which 

may in part be through an intracellular mechanism. In these experiments it was 

reported that FGF-2 promoted the survival of the precursor state of 50% of ENPs for 6 

days in vitro and when EGF was used in conjunction with IGF the proliferation of 

murine ENPs was induced by an autocrine secretion of IGF. Marie (Marie et al., 

2003) has shown that FGF-2 responsive, but not EGF responsive, neural precursor
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cells can sustain a calcium-dependent self-renewal and together EGF and FGF-2 

permit the initial commitment of embryonic neural precursors into neuronal and glial 

phenotypes.

The present results emphasize a need to seek alternative methods for increasing 

neuronal numbers. This may require investigating a range of mitogens to stimulate 

neuronal progenitor proliferation, methods for improved survival of neuroblasts, and 

possibly inhibition of astroglial generation. However, a prerequisite will be to 

understand the dynamics of this system by examining neuronal progenitor turnover 

using agents such as BrdU (see chapter 4). Finally, it will ultimately be crucial to 

determine empirically the effect of FGF-2 and EGF concentration on the 

differentiation of ENPs in transplantation paradigms, in order to establish the 

relationship between neuronal differentiation in vitro and the survival, differentiation, 

and functional effects of these cells in vivo.
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Chapter 4

(BrcfV anaCysis o f the proliferation of<E!N<Ps and 

the quest fo r  survivaC enhancing factors.

Summary

The exact role of FGF-2 and EGF in the proliferation and neuronal differentiation of 

ENPs is not yet known. It is clear that the presence of these mitogens has a major role 

in the proliferation of ENPs in culture but whether these factors act purely as 

proliferative agents or are as survival factors (or both) for ENPs and their 

differentiating progeny is unknown. Here, this question is explored by exposing 

ENPs that are proliferating in the presence of FGF-2 and EGF, to BrdU for a 24hr 

period prior to differentiation, to assess how many of the neurons differentiating from 

these populations were derived from actively dividing precursors. It is concluded that 

there is proliferation of a neuronal precursor population of cells within the cultures 

over at least 6 passages. Potential survival enhancing factors were also explored in 

differentiating ENPs and it was found that the addition of CNTF, BDNF, NGF and 

HGF had no effect on the neuronal numbers.
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4.1 Introduction

ENPs proliferate in culture in the presence of growth factors such as FGF-2 and EGF 

as described in the previous chapter. However, it is not clear whether FGF-2 and EGF 

are acting purely as proliferating factors or also as survival factors for ENPs, given the 

low percentage of neurons reported from our previous experiments. Specifically, 

given the fact that neuronal number declines over time, the possibility existed that 

neurons were produced within the first passage or two only, and that the decline was 

then due to loss of post-mitotic neuronal progenitors that are not supported by the 

culture conditions. 5-Bromo-2-deoxyuridine (BrdU) is an analogue of the radioactive 

form of thymidine and can be used in vitro to analyse cell proliferation. It is 

incorporated into the cell’s DNA thus labelling the dividing cell. By directly relating 

this to the neuronal differentiation of the cells one can determine whether FGF-2 and 

EGF are enhancing the proliferation of this population of neuronal precursors or 

whether their primary effect is to simply promote the survival of these cells in the 

culture system.

In this chapter, ENPs were expanded in culture in the presence of FGF-2 and EGF and 

BrdU was added to the culture for 24 hours prior to passaging and differentiation in 

order to assess the number of new neurons being bom in culture. A second issue is 

addressed here, which is whether it is possible to promote the survival of neurons 

developing from ENP cultures by the addition of other trophic molecules such as: 

cilliary neurotrophic factor (CNTF), brain derived neurotrophic factor (BDNF), nerve 

growth factor (NGF) and hepatocyte growth factor (HGF) to the differentiating 

medium.
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CNTF is a member of the alpha-helical cytokine superfamily. It acts through the 

CNTF receptor-a (CNTFRa), leukaemia inhibitory factor (LIF) receptor-(3, and 

gpl30 and is believed to initiate signalling by activating the Jak/Tyk family of 

kinsases (Murphy et al., 1997; Richardson, 1994). It has been shown that 

degenerating motor neurons are extremely sensitive to the trophic effects of CNTF 

and neuroprotection effects of CNTF have been demonstrated on cholinergic, 

dopaminergic, GABAergic and thalamocortical neurons in various lesion models and 

hence may have an effect in animal models of HD (for review see (Kordower et al., 

2000). In vitro CNTF has been shown to have a protective effect on striatal neurons 

under excitotoxic attack by NMDA (Petersen and Brundin, 1999) and to increase the 

number of GAB A neurons differentiating from cultures (Caldwell et al., 2001). In 

vivo studies, in which encapsulated CNTF expressing cells were transplanted to both 

the rat and monkey striatum prior to lesion, have demonstrated beneficial effects on 

both motor and cognitive behavioural tasks (Emerich et al., 1996; Emerich et al., 

1997a; Emerich et al., 1997b; Emerich et al., 1998). In such experiments CNTF was 

shown to protect striatal neurons from degeneration induced by the toxin quinolinic 

acid. Phase 1 clinical trials have just been completed in which CNTF-producing BHK 

cells surrounded by a semi-permeable membrane, were implanted to the right lateral 

ventricle of 6 patients with stage 1 or 2 HD (Bloch et al., 2004; Bachoud-Levi et al., 

2000). The capsule was exchanged for a new one every 6 months over a 2 year 

period. There were no signs of toxicity reported, although depression was observed 

following removal of the capsule in 3 patients. The retrieved capsules were examined 

and found to contain varying numbers of surviving cells with low CNTF release 

(Bloch et al., 2004). Overall there was no clear evidence that this technique may be 

useful.

119



C h a p te r  4 Introduction

NGF was first characterised by Levi-Montalcini (Levi-Montalcini and Cohen, 1956) 

and it was the first neurotrophic factor used in animal models of HD. NGF’s mode of 

action is through the Trk family of receptor tyrosine kinases, TrkA, to which it binds 

with high affinity and the gp75 receptor to which it binds with low affinity 

(Schumacher et al., 1991). It has been shown that its region of influence is the 

cholinergic intemeurons of the striatum (Gage et al., 1989; Martinez et al., 1985; 

Mobley et al., 1985). It is known to act on two populations of cholinergic neurons, 

the cholinergic projection neurons of the basal forebrain and the cholinergic 

intemeurons of the striatum. In vivo it has been shown that cellular delivery of NGF 

to the striatum prior to lesion-induced toxicity can protect not only cholinergic 

neurons of the striatum but also nicotinamide adenine diphosphate reductase 

(NADPH-d) positive neurons (Kordower et al., 1994; Frim et al., 1993b; Venero et 

al., 1994; Frim et al., 1993a; Schumacher et al., 1991). This suggests that GABA- 

ergic neurons of the striatum can be protected from toxin induced cell death by 

cellular delivery of NGF. In relation to understanding the function of htt, it has been 

demonstrated in El 5 rat striatal cultures, that at high concentrations of NGF there is a 

significant decrease in the expression of ITI5 (htt), whereas FGF-2 increased the 

levels in ITI5 in the same study (Haque and Isacson, 2000).

BDNF also acts through cell surface Trk receptors, in this case TrkB, and also binds 

to gp75 which may activate spingomyelin hydrolysis thus releasing the second 

messenger, ceraminde (Binder and Scharfman, 2004; Lachyankar et al., 1997). 

BDNF is known to enhance the neuronal differentiation of neurospheres (Ahmed et 

al., 1995), to promote the survival of neurons arising from the subependymal zone,
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forebrain cholinergic neurons, dopaminergic neurons, and cerebellar granule neurons 

(Binder and Scharfman, 2004). It also mediates the activity-dependent survival of 

cortical neurons (Cheng and Mattson, 1994; Nakao et al., 1995). In vitro BDNF has 

been shown to inhibit free radical and apoptotic pathways and to increase the length 

of neurites as well as the number of branching points on the neurites and the soma 

area of striatal cultures (Caldwell et al., 2001; Nakao et al., 1995). In vivo BDNF has 

been shown to promote the survival and fibre innervation of striatal neurons resulting 

from lesion induced toxicity (Petersen et al., 2001b; Nakao et al., 1995). Recent 

studies in mouse models of HD have demonstrated that wild type htt stimulates the 

production of BDNF and a decrease in the cortical BDNF messenger levels correlates 

with disease progression thus implicating BDNF as a possible therapeutic agent for 

HD (Perez-Navarro et al., 1999; Petersen et al., 2001b).

HGF is a polypeptide growth factor that acts by binding to the c-Met tyrosine kinase 

receptor and both have been found to be expressed in the developing and mature CNS 

(Achim et al., 1997; Hamanoue et al., 1996; Honda et al., 1995; Jung et al., 1994). As 

well as its neurotrophic effects, HGF is also implicated in morphogenesis, motility, 

mitogenesis and antiapoptotic activities (Zamegar and DeFrances, 1993; Isogawa et 

al., 2005; Akimoto et al., 2004; Gutierrez et al., 2004; Cacci et al., 2003). In vitro 

HGF has been shown to enhance the proliferation and neuronal differentiation of 

mouse striatal cultures (Kokuzawa et al., 2003), however little is known of its 

function in vivo in the CNS.
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4.2 Experimental design:

Experiment 1

Tissue from E14 mouse 
Cortex/Striatum ---------------

Cultured with 
FGF-2+EGF

1
PI

D2

D3

D4

D5

D6

D7

’assage

P6

BrdU 24hrs

Differentiate 7 days in the absence of mitogens and BrdU

o o o o o o

o o o o o o

o o o o o o

o o o o o o

Stain

Figure 4.1. E l4 mouse cortical and striatal tissue was expanded in culture in the 
presence of EGF and FGF-2 (both at 20ng/ml). Prior to each passage BrdU (lOng/ml) 
was added to the culture for 24hrs. Passaged cultures were allowed to differentiate in 
the absence of mitogens or BrdU and stained with antibodies for BrdU and p-III 
Tubulin. Between passage 1 and passage 2, BrdU was added to different populations 
of cells daily and after each 24hr period cells were also differentiated and stained with 
antibodies to BrdU and p-III Tubulin. These cells were not trypsinised before plating 
in contrast to passaged cultures.
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Experiment 2

The rationale of this experiment was to address the possibility of enhancing the 

survival of differentiating neuronal precursor cells following passaging in culture. 

Data presented in experiment 1 showed that over time in culture, there was a decline 

in the proportion of neurons differentiating in these cultures, yet the percentage of 

BrdU positive neurons was quite high and between 2 passages (PI and P2) the 

proportion of BrdU positive neurons was also high. One hypothesis was that the 

passaging technique of trypsinisation and trituration was having a detrimental effect 

on these cells and thus the effect of the addition of survival enhancing factors 

following passaging was addressed.

Cortex /Striatum ------------ ► FGF-2 + EGF

Passage 1-6

Differentiation media + CNTF (20ng/ml)

Or BDNF (50ng/ml)

Or HGF (20ng/ml)  ^ Stain

Or NGF (lOOng/ml)

Or No added factor

Figure 4.2. At each passage cells were plated for differentiation. Differentiation 
medium was supplemented with various survival factors. Control cultures had no 
survival factors added. After 7 days differentiation cells were stained with antibodies 
to P-III Tubulin, GFAP, and Hoechst and analysed for differences in overall neuronal 
differentiation. The concentrations of factor used were based on the most commonly 
used concentrations reported in the literature.
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4.3 Results

^Results

4.3.1 Experiment 1-BrdU uptake over time

The number of neuronal precursors dividing in the cultures was expressed as a 

percentage of total neurons positive for p-III tubulin (Figure 4.3 and Figure 4.4). In 

the case of striatal neurons there is a highly significant effect of passage (F5,i2=28.85, 

pO.OOl) and a less significant effect of differentiation (Fi, 12=14.85, p<0.05). There 

was no significant difference between PI, P2 and P3, however by P4 there is a 

significant decline in the percentage of BrdU positive neurons (t2=2.805, P<0.005). A 

similar trend was also observed in the case of cortical neurons, there was a highly 

significant effect of passage (F5,12= 1 7 1 .6 8 , PO.OOl) and a less significant effect of 

differentiation (Fi)i2= 15.47, P<0.05). There was a significant difference at P2 to PI, 

P3, P4, P5, P6  (t2= 19.66, t4=4.077, t5=2.60, t6=0.859, t7=0.611, PO.OOl, respectively) 

and by P4 there was significantly less BrdU positive neurons (t2=2.60, PO.OOl). By 

P5 less than 50% of all neurons are BrdU positive.

For striatal cultures there was an overall significant difference in the neuronal 

differentiation over time (Fs, 12= 171.68, PO.OOl). There were no differences between 

P4, P5 and P6  however, PI, P2 and P3 were significantly greater than P4, P5 and P6  

(t4=2.8, p0 .005 , t5=l .32, p0 .005 , t6=0.57, p0.005). In the case of cortical cultures 

there was also an overall significant difference in neuronal differentiation over time 

(F5  ̂12== 28.85, PO.OOl) (Figure 4.4B). The trend was similar to that of striatal 

cultures in that there were differences between PI, P2, and P3 compared to P4, P5 and 

P6  (t4=2.6, PO.OOl, t5=0.85, PO.OOl, t6=0.612,PO.OOl). There was no difference 

between striatal and cortical-derived cultures.
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When proliferation of the cultures was taken into account the neuronal yield increased 

over time (Fig 4.4) in striatal cultures only ^12=3.25, p<0.05). There was no 

significant difference in the overall proliferation of striatal and cortical cultures 

(Figure 4.4 C).

To elucidate the data further, BrdU analysis over 1 week, between 2 passages (PI and 

P2) was carried out in striatal cultures only. The percentage of neurons labelling for 

BrdU remained high between 43% and 70% throughout. Between D2 and D4 there 

was a gradual decline in the percentage of BrdU positive neurons; however this was 

not significant on ANOVA analysis. After D4 the percentage of BrdU positive 

neurons increased and there was no differences at all other time points (Figure 4.6 A). 

When the proliferation of these cultures over the 7 days in culture (Figure 4.6C) was 

taken into account it was seen that there was a significant effect of day in culture on 

the neuronal differentiation (Fiii2=84.09, pO.OOl) (Figure 4.6 B).
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Figure 4.3. Overleaf
BrdU positive neurons are expressed as a percentage of P-Tubulin positive neurons 
for both striatal, A, and cortical, B, cultures. A, there was a significant difference 
between p-III tubulin positive neurons and BrdU positive neurons at PI and P3. B, 
there is a significant difference in the proportion of BrdU positive neurons to P-III 
tubulin positive neurons at PI and P2. There was an overall significant difference in 
neuronal differentiation over time. By P4 there was significantly less BrdU positive 
neurons and by P5 less that 50% of all neurons are BrdU positive.
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BrdU and p-Tubulin Positive 
Neuronal Yield in Striatal Cultures

BrdU and p-tubulin Positive 
Neuronal Yield in Cortical Cultures
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Figure 4.4 A, Following adjustments for proliferation (C), there was an increase in 
the neuronal yield with time in culture for striatal cultures. B, the increase in neuronal 
yield over time in culture is less apparent in cortical cultures and there is no major 
difference over time for striatal or cortical cultures.
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BrdU/B-III tubulin positive neurons

Figure 4.5. Cultures were double labelled for P-III tubulin (red) and BrdU (green) to 
assess the proportion of dividing precursors that were o f a neuronal fate. Double 
labelled cells are Yellow (arrows). BrdU positive cells that were not double labelled 
with p-tubulin were also present (small arrow). For the first 3 passages in culture 
more than 70% of all neurons are BrdU positive however after this time point the 
percentage of BrdU positive neurons starts to decrease and by passage 6 less than 
20% are BrdU positive. Scale bar = 500pm.
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Figure 4.6. The percentage of BrdU positive neurons was quantified between two 

passages in culture. After passaging the percentage of BrdU positive neurons 

declined with there being a significant difference between D2 and D4 however after 

D4 this percentage increased again and there was no significant differences at all other 

time points.
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4.3.2 Experiment 2-Effects of various survival factors over time

The effects of various survival factors on the neuronal differentiation of E14 mouse 

striatal and cortical tissue was assessed over time. CNTF, BDNF, HGF and NGF 

were added to differentiating cultures to assess their potential as survival factors for 

striatal and cortical cultures (Figure 4.7). There was a significant effect of passage 

(F6,32=668.63, pO.OOl) with there being a decline in the percentage of neurons 

differentiating in the cultures with time. There was no overall effect of the factors on 

the neuronal survival of striatal and cortical cultures.
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Figure 4.7. The effects of various survival factors on the neuronal differentiation of 
E14 mouse striatal and cortical tissue over time. A, striatal tissue, there was a 
significant difference at P2 between CNTF treated cultures and those treated with no 
survival factor and the HGF treated group. At the same time point there was also a 
significant difference between BDNF and HGF treated cultures. At P6 there was a 
significant difference between CNTF and BDNF treated cultures. B, cortical cultures, 
there was a significant difference at PI between NGF and none treated cultures. There 
were no significant differences at all other time points.
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Figure 4.8 (overleaf). P-III tubulin staining of cultures with no treatment or with 
CNTF, BDNF, HGF or NGF over 6 passages in culture. There was no overall effect 
of treatment however it would appear the BDNF has an effect on the dendritic 
arborisation of neurons. Compared to other treatment groups the neurons in the 
BDNF treated group appeared more mature however this was not quantified in this 
experiment. Scale bar = 200pm
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4.4 Discussion

Work presented in this chapter provides evidence that, under the culture conditions 

employed in this experiment, there is an ongoing turnover of neuronal precursors with 

time in culture. However, the proportion of neurons differentiating from the cultures 

decreased. When the proliferation of the cultures was taken into account, the 

theoretical neuronal yield was seen to increase with time in culture. The addition at 

passage of the survival factors CNTF, BDNF, HGF and NGF had no effect on the 

neuronal survival of either striatal or cortical cultures after passaging.

4.4.1 BrdU uptake over time

Over time in culture the neuronal differentiation from proliferating cultures decreases. 

Thus the question arises as to whether FGF-2 and EGF are acting as survival factors 

or as proliferating factors in these cultures. To understand this, BrdU was added to 

the cultures for 24hours prior to passaging and allowed to differentiate. BrdU positive 

p-III tubulin positive neurons were found at all passages. Up to passage 3 more than 

70% percent of neurons were BrdU positive with there being a gradual decline 

thereafter and by P6 less than 20% of all neurons were BrdU positive.

There are several possibilities that may explain what is happening to these cultures; 

the first possibility is that most of the labelling that is observed in the early passages 

arises from the precursor cell population and that with time in culture these cells loose 

the ability to continue proliferating and are phased out of the culture system leaving a 

smaller sub-population of cells that are true multipotential stem cells. These true stem 

cells may have a slower turnover than the more restricted precursor cells or it may be
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that the culture conditions that supported the proliferation of the ENPs initially no 

longer supports the proliferation of this population of cells. A second possibility is 

that the neuronal precursor cells are being diluted in the culture system by other cell 

types such as astrocytes. Looking at the theoretical neuronal yield from the striatal 

cultures, it would appear that there is a trend towards the P-III tubulin positive cells 

and the BrdU positive cells to diverge away from each other which would further 

support this possibility of other cell populations taking over the culture. A third 

possibility is that the neural precursor cells are subjected to extreme stress during the 

passaging technique and as a result are killed off. This was the hypothesis which lead 

to Exp 2, looking at the effects of various survival factors on the neuronal 

differentiation of these cultures over time. Given that there was no effect of any of 

the factors analysed in this study would suggest that this may not be the case. 

However, it is necessary to repeat this experiment adding the survival enhancing 

factors to the proliferation rather than the differentiation medium as it is possible that 

the cells require these factors before being passaged. Ultimately, however, resolving 

these alternatives will remain extremely difficult until we have a better understanding 

of the precise lineages underlying the development of neural precursors, along with 

selective and specific markers for each stem/precursor cell in that lineage. These are 

not currently available but their search is an active topic of our lab as in many others.
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Figure 4.9

ENPs
(Heterogeneous
population) i Time in culture

multipotential 
population 

(small numbers)

Neuronal Progenitor

Glial Progenitor

Figure 4.9 Simplistic schemata of the theoretical proliferation dynamics, it is 
important to emphasise that this is theoretical as the precise lineages of ENP 
populations, are still not fully defined.
A working hypothesis is that the multipotential stem cell within the ENP population 
results in low numbers of cells as their turnover is slow. The neuronal progenitor has 
a higher rate of proliferation than that of the multipotential stem cell and a lower rate 
than the glial progenitor population of cells. There is the possibility that the neuronal 
precursors are depleted with time or they undergo a switch at some point during their 
proliferation to the production of glia. Furthermore, cells that have undergone their 
final division and are ready to differentiate into neurons (black dots) fail to do so as 
they die due to unfavourable conditions.
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To try and analyse the situation further, BrdU was added each day between passage 1 

and passage 2 and it was found that there were no significant changes in the 

percentage of BrdU positive neurons between the 2 passages. However, there was a 

non-significant decline over the first 4 days and by day 5 the number of BrdU positive 

neurons had increased again. One possible explanation for this may be that the cells 

at this point were running short of adequate nutrients as the nutrient supply to the 

culture is routinely replenished on day 4 and would explain the increase observed 

again at day 5. This is supported by the proliferation data which also shows a 

marginal reduction in the rate of proliferation at this time point and the neuronal yield 

data which initially showed an increase followed by a decrease at day 4. Thus this 

highlights the importance of regular feeding of the cells to maintain cell proliferation 

and neuronal differentiation.

4.4.2 Survival factor effect on the neuronal differentiation.

Given the relatively low proportions of neurons differentiating from ENPs as reported 

in Chapter 3, it is possible that neuronal survival is compromised by conditions during 

passaging or differentiation. For example passaging using enzymes and trituration 

may have been traumatic to the cells. With this in mind Exp 2 (described above) was 

undertaken in which the growth factors CNTF, BDNF, HGF and NGF were added to 

the differentiation media of the cultures, as they have previously been reported to 

have effects on striatal cultures (Gregg and Weiss, 2005; Kokuzawa et al., 2003; 

Kordower et al., 2000; Lachyankar et al., 1997). However it was found that the 

survival factors chosen had no overall significant effect on the neuronal survival of 

these cultures. Growth factors were not combined in this study nor were the factors 

added to the proliferation medium. Several other potential survival factors are
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available but for the purpose of this experiment those most associated with HD were 

chosen to be assessed.

Previously CNTF has been shown to have a survival effect on striatal cultures against 

NMD A toxicity but no effect was seen on calcium ionophore A23187-induced 

toxicity in striatal cultures, which indicates that the growth factor does not promote 

survival by enhancing general defences against raised intracellular levels of calcium 

(Petersen and Brundin, 1999). Several in vivo studies have shown the survival effects 

of CNTF in animal models of HD (Emerich et al., 1996; Emerich et al., 1997a; 

Emerich et al., 1997b; Emerich et al., 1998; Emerich, 1999; Emerich and Winn, 2004; 

McBride et al., 2004). It may be that CNTF is required during the proliferation phase 

or in combination with other factors to optimise neuronal survival.

In accordance with other findings (Nakao et al., 1995; Petersen et al., 2001b) BDNF 

appeared to have an effect on the neuritic outgrowth of neurons as seen in Figure 4.8. 

BDNF treated neurons appeared to have longer neurites compared to all other 

conditions, although this data was not quantified. In relation to HD, BDNF has been 

found to be a critical factor associated with the motor symptoms and disease 

progression (Canals et al., 2004). In mouse models of the disease cortical BDNF 

levels of expression have been shown to correlate with disease progression and 

cortical BDNF mRNAs displayed a positive correlation between cortical neuronal 

activation and expression of BDNF mRNA and thus expression of BDNF in cortical 

areas projecting to striatum is dependent on both target integrity and neuronal activity 

therefore having an implication in disease progression as cell death progresses 

(Petersen et al., 2001a; Rite et al., 2005; Zuccato et al., 2005; Canals et al., 2004).
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In culture NGF has been shown to maintain the proliferation of ENPs and on removal 

of the mitogen, the cells were seen to differentiate implying a role in maintaining 

ENPs in a proliferative state (Cattaneo and McKay, 1990). NGF expression has been 

shown to decrease the expression of IT 15 in striatal cultures (Haque and Isacson, 

2000) which implicates NGF as a possible candidate for therapeutic intervention in 

HD. In vivo studies have shown NGF to have a survival enhancing effect on 

excitotoxically lesioned striata (Frim et al., 1993b; Frim et al., 1993a; Kordower et al., 

2000; Schumacher et al., 1991; Venero et al., 1994). In this study, NGF failed to have 

an effect on the neuronal differentiation of striatal and cortical cultures.

In the case of HGF it has previously been shown that the addition of this factor to the 

differentiation conditions of EGF and FGF-2 expanded striatal cultures results in a 

significant increase in the percent of neurons generated (Kokuzawa et al., 2003), such 

an effect was not observed in this study. Little is known about the effect of this factor 

on striatal cultures and further work is warranted to validate its potential as a 

candidate neurotrophic factor.

Further studies are required to understand the dynamics of ENP cultures. One 

possible experiment would involve labelling the cells with the marker, succinimidyl 

ester of carboxyfluorescein diacetate (CFSE) which is a reliable fluorescent marker 

for the analysis of cell generation over time. Each cell generation can be identified by 

the level of intensity of the marker. Such cell populations could be isolated using a 

FACS sorter and differentiated in culture. Such a study would help to characterise in 

detail the turnover of specific cell populations within the culture. A second approach 

would be to add survival enhancing factors to the proliferation media of the cultures.
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As well as the addition of various factors to the medium of these cultures other 

manipulations to improve neuroblast survival may be warranted such as culturing the 

cells in lowered oxygen levels as previously reported by Studer (Studer et al., 2000). 

Analysing cell death within these cultures also warrants investigation and this might 

be carried out using the CFSE method previously mentioned or again using BrdU over 

different time points in culture. The work presented here has been carried out in 

mouse ENPs and for manipulation into the clinical context it will be imperative that 

the same experiments are repeated with human ENPs. Clearly further work is 

warranted on the basis of the results presented here to fully understand the true 

potential of ENPs.

4.5 Conclusion

From this study it can be concluded that the expansion of ENPs in the presence of 

FGF-2 and EGF supports the proliferation of neuronal precursors for a period of time 

in culture, whether this is a long lasting effect is not clear from this study and further 

experiments are required to answer this question. However, it would appear that the 

addition of survival factors to the differentiation condition has no effect on the 

survival of neurons. Thus, much work is required to understand fully the dynamics of 

this system and to determine ways of maintaining a significantly high proportion of 

neurons of a specific phenotype.
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Chapter 5

Characterisation o f primary and 10 day expanded 

human HWPs in a rat modeC o f Odd).

Summary

The potential of human derived ENPs to differentiate into striatal like DARPP-32 

positive neurons both in vitro and in vivo was assessed in this study and compared to 

that of primary foetal striatal tissue. It was found here that after 10 days expansion in 

culture ENPs maintained a striatal phenotype although the number of neurons 

differentiating from the culture decreased. In vivo striatal positive markers were also 

observed, albeit at a much lower level which may be a result of the relatively short 

time these grafts were given to differentiate, 12 weeks. However, it is promising that 

10  days expansion in culture can yield a population of cells that maintain a striatal like 

phenotype that can also be seen in vivo.
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5.1 Introduction

ENPs from the developing striatum will proliferate, and if expanded for short periods 

of time in vitro differentiate to form DARPP-32 positive neurons, a surrogate marker 

for the GABAergic, medium sized spiny projection neurons. The expression of 

DARPP-32 has been shown to correlate with the degree of functional recovery on 

many tests (Fricker et al., 1997b; Nakao et al., 1996; Nakao et al., 1999; Watts et al., 

2000b). In the previous chapter it was shown that there was a reduction in the 

capacity of ENPs for neuronal differentiation over time in culture. This is confirmed 

by transplant studies which show a reduction in the neuronal differentiation and graft 

survival of long term expanded ENPs (Armstrong and Svendsen, 2000; Zietlow et al., 

2005). Thus, more work is needed to determine whether long term expansion of 

ENPs have a clinical potential. However, despite the modest increase in cell number 

of short term expanded ENPs, the possibility that these cells retain the capacity to 

differentiate into medium spiny neurons, may represent a real and useful clinical 

opportunity. Therefore the aim here is to characterise these cells with a view to 

considering them as a potential donor source for striatal repair.

In relation to the current situation where primary foetal tissue is used as the tissue 

source for transplantation there are huge pragmatic constraints on the therapy, and 

hence the importance of such investigations looking into the potential of ENPs as an 

alternative tissue source. Although modest, the increase in cell number over a 10 day 

period in culture could have a substantial influence on clinical studies at this stage of 

the process where no other alternatives are available. If the 10 day expansion of these 

cells was sufficient for the generation of an increased number of functional medium
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spiny projection neurons over the number obtainable from the starting striatal 

material, it may then pave the way for further clinical studies in neural stem cells.

Work presented in this chapter aimed to characterise the potential of hENPs compared 

to primary foetal tissue. Specifically the potential of 10 day expanded ENPs to 

survive transplantation in a quinolinic acid lesioned striatum and to maintain a striatal 

phenotype both in vitro and in vivo.
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5.2 Experimental Procedures

5.2.1 Experimental Design

Differentiation in vitro

hENPs
GF, FGF-2, LIF, lOd

QA-Lesioned Rat

9

f

•O' o  o  <o
Saline Control

\
1 2w 

Histology

Primary

/  ° s °

Differentiation in vitro

QA Lesioned Rat

QA-Lesioned Rat

Figure 5.1 Schemata of the experimental design. There were 14 animals in each of 
the graft groups and 8 control animals, all animals received a 45nmol quinolinic acid 
(QA) lesion 1-3 weeks prior to grafting and all animals were immunosuppressed with 
cyclosporine A (CsA) for the duration of the experiment starting one day prior to 
grafting.
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5.2.2 In vitro experiments

5.2.2.1 Human Tissue

Whole ganglionic eminences from three human foetuses were used in these studies, 

with post conceptional ages ranging from 55-75d (c. 8 .0 -1 0 .5w) as determined by in 

utero ultrasound. Primary foetal tissue was maintained overnight in Hibernation 

medium which is an effective method of short term cool storage that does not 

adversely affect graft survival in immunosuppressed animals (Hurelbrink et al., 2003) 

and alleviates some of the issues associated with human foetal tissue in that it allows 

an interval between tissue harvesting and transplantation to be extended.

5.2.2.2 Propagation o f striatal ENPs

Coarse single cell suspensions of whole ganglionic eminences were prepared as 

described in Chapter 2. For in vivo study, these cells were treated in one of 2 ways: i) 

Stored as primary cells overnight in Hibernation medium (Hibernate E, Gibco) at 4°C 

at a density of 500,000 cells/ml; or it) Expanded as ENPs for 10 days (Chapter 2). 

Briefly, 200,000 cells/ml were seeded in B27 proliferation medium supplemented 

with EGF (20ng/ml), FGF-2 (20ng/ml) heparin (5pg/ml) and LIF (lOng/ml). ENPs 

were fed, by replacing half the medium with fresh medium containing twice the 

concentration of B27, EGF, FGF-2 and LIF, every 4 days.

5.2.2.3 Characteristics o f ENPs in vitro

The characteristics of striatal ENPs following 10 days propagation were assessed in 

vitro as described in Chapter 2. Briefly, spheres were dissociated to a coarse single 

cell suspension and plated onto poly-L-lysine-coated coverslips at a density of lOxlO4 

cells in 30jul differentiation medium. After 4-6 hours cells were flooded with 500pl
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of differentiation medium and allowed to differentiate for 7 days prior to fixation. 

Cells were fed by replacing half the medium with fresh medium every 3 days.

Indirect fluorescent immunocytochemistry was performed using standard protocols 

(Chapter 2) with primary antibodies directed against p-III Tubulin (1:1000), DARPP- 

32 (1:30,000) and GFAP (1:1000). Fluorescent staining was visualised on a Leitz 

DRMB microscope, and cell counts performed at x40 magnification. Pseudocolour 

fluorescent images were obtained using Openlab 2.1 image analysis software.

5.2.2.4 Neural Transplantation

All animals were administered Cyclosporine A (CsA) daily starting one day prior to 

transplantation. The primary graft group (n=14) received intrastriatal grafts of 

primary human striatal tissue, hibernated over night. Following 10 days expansion in 

culture the second group of animals (n=14) received an intrastriatal graft of cells. All 

cell implants were performed as described in Chapter 2 and consisted of 2pl injections 

of 500,000 cell suspensions delivered over 2 mins. Briefly, for ENP grafts, an aliquot 

of the cells was dissociated, via a trypsin digest and mechanical trituration, to single 

cells, allowing an estimate of the cell number and viability within the sphere 

suspension as well as allowing cells to be differentiated for in vitro characterisation. 

Using this information, undissociated spheres were harvested by centrifugation and 

resuspended in DNase at 250,000 viable cells/pl. Hibernated tissue was prepared for 

transplantation by washing the tissue three times in DMEM/F12, determining the 

viable cell count and resuspending the cells in DNase at a density of 250,000 viable 

cells/pl.
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5.2.2.5 Histology and immunohistochemistry

Twelve weeks following transplantation animals were transcardially perfused and 

their brains processed for histological analysis. Serial coronal 40pm frozen sections 

were prepared, collected and stored as described in Chapter 2. A 1:12 series of 

sections were processed for Nissl staining using haemotoxylin and eosin (H&E) and 

histochemically stained for AChE A further 1:6 series was processed for indirect 

single label immunohistochemistry with the following primary antibodies:

Mouse anti-HuNu (1:1500) (human specific nuclei)

DARPP-32 (1:30,000)

Calbindin (1:20,000)

Parvalbumin (1:4,000)

The basic protocol was identical in all cases and is described in Chapter 2. 

Visualisation was via the DAB method. Staining controls consisted of omission of 

the primary antibody and these confirmed the specificity of staining in all cases.

5.2.2.6 Quantification o f graft parameters

Graft volume was determined as described (Chapter 2) on a 1:12 series of Nissl- 

stained sections.
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5.3 Results

5.3.1 In vitro characteristics

Striatal ENPs used for transplantation underwent a 1.94x increase in absolute cell 

number after 10 days, when characteristic spheres were seen in suspension. Tissue 

maintained in hibernation medium for up to 24 hours maintained viability above 92% 

in all cases based on trypan blue exclusion assay analysis.

Primary and expanded tissue was differentiated for 7 days in vitro prior to fixation 

and histological analysis. Cells were stained for DARPP-32 and p-III tubulin (Figure 

5.2). Primary tissue consisted of an average of 72% neurons, 75% of which were 

DARPP-32 positive neurons (55% of all cells were DARPP-32 positive). After 10 

days expansion there was a reduction in the total number of neurons differentiating in 

culture from 72% to 43%, 64% of which were DARPP-32 positive neurons (28% of 

all cells were DARPP-32 positive) (Figure 5.3 A and B). There is a significant 

difference in the neuronal differentiation between primary and 10  day expanded 

cultures (t2= 43.479, P<0.05) with there being more neurons in the primary than the 

10 day expanded cultures, and a similar significant difference in the DARPP-32 

neuronal differentiation (t2= 29.344, P<0.05).
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Primary and 10 day expanded human striatal tissue positive for DARPP-32

Figure 5.2. Fixed cultures were immunohistochemically stained for DARPP-32 and 
P-III tubulin. DARPP-32 immunopositive staining of A) Primary and B) 10 day 
expanded hENPs. There was no significant difference in the proportions of neurons 
staining for DARPP-32 between primary and lOday expanded cultures.
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Figure 5.3 A) Total neuronal differentiation was based on p-III tubulin 
immunoreactivity as a percent of total cells as was DARPP-32 neuronal 
differentiation. There is a significant difference in the neuronal differentiation of both 
P-III tubulin and DARPP-32 positive neurons between primary and 10 day expanded 
cultures and B) The percent of total neurons that were DARPP-32 positive for primary 
and expanded cultures. There is no significant difference between the primary and 
expanded groups.
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5.3.2 Graft survival and morphology

Surviving grafts from both primary and expanded tissue could be identified in Nissl- 

stained sections (Figure 5.4 and 5.5) on the basis of cytological and cytoarchitectonic 

features and in sections stained for human specific antigen (HuNu). Graft survival 

with immunosuppression in the case of primary grafts was 1 0 0 % and for 10  day 

expanded grafts was 8 6 % with two animals showing signs of graft rejection. Grafts 

were consistent in morphology and the grafted tissue remained as a distinct mass with 

no apparent vascular infiltration or ventricular compression. The cellular distribution 

within, both the primary and ENP grafts was heterogenous, with zones of high 

cellularity interspersed among less intensely cellular regions. Primary tissue grafts 

were densely cellular and positioned along the lateral wall of the caudate-putamen 

(Figure 5.4). 10 day ENP grafts had a similar morphology to primary tissue grafts 

with zones of densely cellular regions interspersed with less dense regions (Figure 

5.5).

5.3.3 Graft Volume

There was no significant difference in the volume of primary and 10 day expanded 

ENP grafts (Table 5.1). There was an overall effect of striatal and ventricle volume 

resulting from the lesioned induced striatal atrophy, for all groups (Fi>26=289.47, 

P0.001, Fi>26=166.95, P0.001 and Fi,26= 1 8 9 .5 7 , P,0.001 respectively). There was a 

significant difference in the volume of the lesioned striatum and the non-lesioned 

striatum for primary and 10 day expanded grafted animals (t2=21.49, P 0 .001) with 

the non-lesioned striatum being significantly larger than the lesioned. As a result of 

the lesion there was also a significant difference in the ventricular volume with the 

ventricle on the lesioned side significantly larger than that on the non-lesioned side
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(t2=4.32, PO.OOl). Control animals also presented with a decrease in striatal volume 

and an increase in ventricular volume arising from the lesion (t2= 1 2 .9 3 , PO.OOl and 

t2=8.24, PO.OOl respectively). Calculating control volumes allowed for a measure of 

graft compensation to be made and it was found that neither primary nor 10  day 

expanded grafts significantly compensated for the striatal atrophy associated with the 

lesion.
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Primary graft in the lesioned host.

Figure 5.4 Graft morphology of a primary graft as demonstrated by Nissl staining. 
Distributed neuronal profiles are present throughout the graft with zones of densely 
cellular areas interspersed with less dense areas (higher power images, lower panel). 
Zones of necrotic cavitation are evident and some reflux up the implantation tract is 
also evident (indicated by *). Scale bar = 500pm
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Expanded graft in the lesioned host.

Figure 5.5 The graft morphology of an expanded graft is similar to that of primary 

grafts as demonstrated by Nissl staining. Distributed neuronal profiles are present 

throughout the graft with zones of densely cellular areas interspersed with less dense 

areas (higher power images, lower panel). Scale bar = 500pm
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Primary Expanded Control

Graft Survival 1 0 0 % 8 6 % na

Graft Volume 3.59 ±0.47 4.34 ±0.56 na

Striatal Volume 13.86 ±0.85 12.12 ±0.98 13.65 ±0.96

Ventricle Volume 8.42 ± 1.0 8.03 ± 0.53 8.46 ±0.81

Table 5.1 There is no significant difference in the graft volume of primary and 10 day 
expanded hENP grafts after 12 weeks in vivo. As a result of the lesion induced striatal 
atrophy there is an overall significant difference in the striatal volume of the lesioned 
and non-lesioned side for both primary and 10  day expanded grafts as well as for 
control animals. Likewise, there was an overall significant increase in ventricle 
volume for all groups.
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5.3.4 Expression o f striatal markers in vivo

Grafted animals were analysed for the expression of the striatal markers DARPP-32, 

calbindin, parvalbumin, and AChE and expression of all markers was relatively 

sparse. Control animals that received a sham graft to the lesioned striatum displayed a 

typical near complete loss of DARPP-32 expressing neurons on the lesioned side and 

associated striatal atrophy.

DARPP-32 positive cells were evident in graft regions and were seen to double label 

with HuNu (Figure 5.6). Between subjects there was heterogeneity in the number and 

the distribution of DARPP-32 positive neurons and in general immunoreactivity was 

low. However, numbers of DARPP-32 neurons were counted and although there 

appeared to be more DARPP-32 positive neurons in the 10 day expanded graft group 

compared to primary grafted animals, this failed to reach statistical significance 

(Figure. 5.7). DARPP-32 positive neurons within both the primary and expanded 

grafts adopted an immature morphology when compared to those on the non-lesioned 

side and there was some heterogeneity in the morphology of DARPP-32 positive cells 

between the graft groups, however on analysis this was not significant. In all subjects 

analysed there was no evidence of DARPP-32 positive projections across the graft- 

host boundary (Figure. 5.8 A, D, G and J). AChE activity was diffuse throughout the 

body of the grafts and there were some P-zones in primary grafts but this stain was 

weak and there were few clear P-zones of dense AChE activity in 10 day expanded 

grafts (Figure 5.9).

For parvalbumin stained sections, no immunopositive cells were identified within the 

grafts, however immunopositive fibres were seen in the graft. Sections were double
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labelled for HuNu to identify that immunopositive cells were graft derived (Figure 5.8 

B, E, H, and K). Low levels of cabindin positive cells were identified within the graft 

area of both primary and 10  day expanded and grafts but not all calbindin positive 

cells were HuNu positive (Figure. 5.8 C, F, I and L).

Figure 5.6 HuNu/DARPP-32 positive cells within the graft. Scale bar = 500pm
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Figure 5.8. A,D,G and J, DARPP-32/NeuN positive cells in Primary (A and D) and 
expanded (G and J) grafts. B, E, H and K, Parvalbumin positive cells were only 
occasionally seen within the graft but none were seen to double label with HuNu 
(arrow in E and K). Parvalbumin positive fibres were seen within the graft area 
(arrowhead in E and K). C, F, H and L, Calbindin positive /HuNu positive cells 
within the graft (arrows in F and L). Scale bar = 500pm
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Primary 10 day expanded

Figure 5.9 AChE staining of Primary and 10 day expanded grafts the primary grafts 
show weak P-zones (arrows in A). The expanded grafts also show P-zone activity 
(arrows in B) although perhaps less frequent P-zones were seen in this study.
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5.4 Discussion

Work presented in this chapter supports the notion that hENPs have the potential to 

maintain a striatal phenotype for at least 10  days expansion in culture. 10  day 

expanded tissue in vitro retains a strong striatal phenotype as seen with the high 

proportion of DARPP-32 positive neurons present after this short expansion time. 

However, the true potential of these cells in vivo is difficult to understand given the 

low striatal specific marker expression in both primary and expanded grafts and long 

term survival of grafts will be important for this.

5.4.1 In vitro nature of ENPs

After 10 days expansion in the presence of FGF-2, EGF and LIF there was a 1.94 fold 

increase in the total number of cells available for grafting which suggests that there is 

an initial phase of cell death that is then followed by a proliferative phase. Several 

studies have reported specific differentiation of such cells in disease models after 

similar expansion times (Armstrong et al., 2000; Armstrong et al., 2003b; Minger et 

al., 1996; Studer et al., 1998; Svendsen et al., 1997a; Zietlow et al., 2005). 

Populations of hENPs appear to change with time in culture and with passaging in 

relation to their phenotypic differentiation potential and this will need further analysis 

for an understanding of the clinical potential of long term expanded cells. In culture 

there is a relatively small increase in cell number, 2x after 10 days expansion. Whilst 

the proportion of DARPP-32 neurons differentiating from the cultures decreases, there 

is a 1.7x increase in DARPP-32 neuronal yield. Therefore, longer expansion times 

would result in more cells or alternatively other methods that would increase the 

expansion of these cultures could be employed (see below).
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Chapter 3 addressed the issue of mitogen concentration; however, there are other 

factors that have been identified that may be crucial for the optimal culture of these 

cells such as lowered oxygen levels and the free floating rollo tube expansion of these 

cells. Studer (Studer et al., 1996) reported a novel method for preoperatively testing 

the levels of dopamine in culture systems using a free floating rollo-tube expansion 

culture system. This method allowed the selection of the optimum dopamine 

secreting cultures for transplantation in models of PD. In another study by Studer 

(Studer et al., 2000) the oxygen levels at which cultures were expanded was reduced 

from 20% to 3±2% and an increase in the proliferation of VM-derived cultures was 

reported and also a 9 fold increase in the dopaminergic neuron differentiation of the 

cultures. Erythropoietin was also shown in the same study to increase the neuronal 

differentiation of these cultures. These or similar strategies could be used to increase 

the yield of short term expanded striatal cells.

5.4.2 Graft survival

Twelve weeks following transplantation, all primary grafts survived and almost all 

(12/14) ENP grafts survived, thus suggesting that the inflammatory environment of 

the acute excitotoxic striatal lesion is compatible with the survival of these cells 

(Duan et al., 1998). There was no significant difference in survival or graft volume 

between primary and 10 day expanded graft groups. In the quinolinic acid lesioned 

striatum there is a decrease in the striatal volume with a resulting increase in the 

ventricle size as a result of the cell death of striatal neurons. In this study, there was 

no compensation in striatal or ventricular volume in the graft groups compared to 

control animals.
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5.4.3 Graft phenotype of primary and 10 day expanded ENPs

Nissl staining of both primary and 10 day expanded grafts showed that the grafts 

consisted of zones of densely cellular areas that were interspersed with less dense 

areas. The donor origin of these cells was also confirmed by immunohistochemical 

staining for human nuclear antigen (HuNu).

Characteristic striatal markers such as DARPP-32, AChE, calbindin and parvalbumin 

were examined in this study. All grafts displayed a diffuse AChE activity and 

DARPP-32 immunopositive neurons were few and morphologically immature. There 

was strong evidence of a P/NP zone organisation within both primary and expanded 

grafts. DARPP-32 medium sized spiny neurons are heterogenous in nature and are 

composed of neurons that co-express substance P and the D1 dopamine receptor and 

those that express met-enkephalin and the D2 dopamine receptor. In normal 

development those that co-express substance P and the D1 dopamine receptor would 

be involved in the direct pathway whereas those expressing met-enkephalin and the 

D2 dopamine receptor would be involved in the indirect pathway (Campbell et al., 

1995b; Graybiel et al., 1989a; Campbell et al., 1995a). The P-zones of striatal grafts 

also contain intemeurons and glia (Graybiel et al., 1989b; Graybiel et al., 1989a) 

whose function in striatal graft function is uncertain. Thus it is evident that if ENPs 

are to be a true alternative for neural transplantation in HD they should be able to 

yield a range of striatal phenotypes in vivo.

It is known that in rat to rat isografts DARPP-32 positive neurons are first seen 4-5 

days following transplantation and by 6  weeks there are rich P zones of DARPP-32 

neurons and AChE activity (Labandeira-Garcia et al., 1991). Sirinathsinghji
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(Sirinathsinghji et al., 1993) has also shown that such grafts are fully mature by 12 

weeks post transplantation by examining the expression of growth associated protein 

(GAP,43), a gene associated with immature neurons. In the case of human to rat 

xenografts this period of maturation appears to be considerably extended (Grasbon- 

Frodl et al., 1996; Naimi et al., 1996; Pundt et al., 1996a; Pundt et al., 1996c). One 

such study in which human foetal tissue of a similar gestational age as that used in the 

present study, found weak DARPP-32 immunoreactivity as well as diffuse AChE 

activity and a paucity of P zones after 17 weeks in vivo (Pundt et al., 1996c) . Several 

studies in which xenografts derived from species with extended gestations such as 

human (Armstrong et al., 2000; Brundin et al., 1986; Englund et al., 2002b; Geny et 

al., 1994) and pig (Armstrong et al., 2003b; Armstrong et al., 2002; Galpem et al., 

1996; Garcia et al., 1995; Huffaker et al., 1989; Larsson et al., 2000b) have been 

carried out and support the prolonged maturational period of xenograft tissue. 

Furthermore, ENPs containing a heterogenous population of cells and a large 

proportion of immature precursor cells and thus the maturational time line may be 

even more prolonged. Therefore, it seems likely that the failure of the grafts in this 

study to attain maturity would explain the low immunoreactivity of the striatal 

markers examined in both primary and expanded cells.

Although DARPP-32 immunoreactivity was low in general, it was encouraging to 

find immunopositive neurons in 10  day expanded grafts which suggest that after this 

short period of time in culture hENPs are capable of maintaining the phenotype of 

medium-sized spiny neurons. Calbindin reactivity was also low but present within the 

grafts of both primary and 10 day expanded tissue. Parvalbumin positive cells within 

the graft were not graft derived as none of the few positive cells identified double
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labelled with HuNu. Despite this, parvalbumin positive fibres were seen traversing 

the graft parenchyma, which are possibly afferent fibres coming into the graft.

Understanding the true potential of ENPs in this study has been restricted by the low 

neuronal maturation and subsequently the reduced expression of neurochemical 

phenotypes. The use of daily immunosuppression hinders long term studies from 

being carried out as the animals become unwell and die and thus for further more long 

term studies to be carried out a model system is required that will overcome the need 

for immunosuppression (see Chapter 7). Another possible explanation for the delayed 

maturation may be that extrinsic epigentic signals are required for phenotypic 

induction and are lacking in the transplant environment and this is supported by the 

demonstration that exposure of FGF-2 expanded rat mesencephalic precursors to 

serum factors prior to grafting may increase phenotypic differentiation (Studer et al., 

1998).

5.5 Conclusions

In this chapter it has been shown that hENPs have the potential to maintain a striatal 

phenotype both in vitro and after grafting after a relatively short period ( 1 0  days) of 

expansion in culture. However, full characterisation was hindered by overall low 

differentiation within the grafts. Further studies with extended post grafting survival 

times are required to better characterise the differentiation potential of these cells. 

Other experiments are required to look at extended expansion times of the cells in 

vitro as well as alternative methods for the improved expansion of ENPs in culture. 

Work toward this is addressed in chapter 7.
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Chapter 6

(jraft neuronaCprojections in the host 

environment.

Summary

Reconstruction of the circuitry lost as a result of the disease state is a major aim of 

neural transplantation. Animal studies have shown that primary foetal transplants 

have the ability to send neuronal projections from the graft to host target areas such as 

the globus pallidus and substantia nigra. Whether ENPs share this potential or even if 

they can send projections more extensively in the brain is not fully understood. It has 

been shown that human ENPs can project widely in the adult host and there are 

suggestions that ENPs are better than primary cells in this respect although the 

specificity of these projections is unknown (Armstrong et al., 2000). In such studies 

projections could be an intrinsic feature of ENPs or they could be a product of the 

xenograft environment. This chapter compares both primary and expanded foetal 

grafts in the alio- and xenograft environment. The xenograft environment may be 

permissive to long projections from the donor tissue as the donor tissue may not 

recognize the stop signals present in this environment. Several labelling techniques 

were employed to validate the outgrowth of the graft including; GFP transgenic mice, 

LacZ labeled cells and iontophoretic injection of the anterograde tracers BDA, 

neurobiotin and PHA-L. Neuronal projections were seen from all grafts although 

ENP grafts sent out projections more extensively. When comparisons were made 

between mouse and human grafts it was observed that human ENPs had a greater 

potential for long distance fibre outgrowth than mouse ENPs.
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6.1 Introduction

One of the assumed requirements of neural transplantation is that the grafted cells be 

able to reform the circuitry lost as a result of disease. Thus, it is important that the 

grafted cells can communicate with the host and it is supposed that the closer the 

reconstruction to normal, the better. For full reconstruction it may be important that a 

graft can project to distant sites. In the case of Huntington’s disease, the grafted cells 

are required to reform the lost links previously formed by the medium spiny neurons. 

In allografts of primary neural tissue it appears that donor projections cross the graft 

host boundary, but it is not clear that they travel long distances (For review see 

(Wictorin, 1992). Armstrong (Armstrong et al., 2000) showed that expanded human 

ENPs, when grafted to the lesioned rat brain, projected to distant sites. These 

projections were seen to cross the graft/host border as well as crossing the corpus 

callosum and entering the globus pallidus bilaterally. Clearly there are a number of 

explanations for these findings which need to be explored further. Firstly, the 

projections could be a property of the ENPs, that is, ENPs may be intrinsically more 

able to send out long projections than are primary cells. Alternatively, they may be a 

result of the xenograft environment i.e., the donor tissue may not recognize the ‘stop’ 

signals present in the host brain that would otherwise prevent allografted tissue from 

sending out long projections. Thirdly, it may be that such projections are also present 

in the allograft situation but have not been reported previously due to the problems of 

being able to reliably identify donor allograft projections.

Tracing the projections of grafted tissue is dependent on the availability of reliable 

markers. In the case of human to rat experiments NF70 reliably labels human donor
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neurons and their projections but not the rat host cells. However, when grafting 

mouse tissue to the rat brain it becomes more complicated as there are few reliable 

mouse markers available. M2 and M6 are reported to label mouse neuronal and 

astrocytic tissue respectively; however in our hands the specificity of these two 

markers was markedly less reliable than generally reported, making their use for such 

experimental analysis limited. As a result alternative methods of labelling the grafted 

tissue had to be identified.

The first experimental approach was to use a transgenic mouse expressing the green 

fluorescent protein under a prion promoter as the donor tissue. Whilst this was the 

most obvious alternative to labelling the grafted cells it failed to give optimal results 

(see results) for the purpose required, and therefore other methods of identifying the 

donor cells were also explored.

Labelling of tissue for transplantation with a lentiviral (LV) vector is one alternative 

that has been taken in addressing this issue. An equine LV vector expressing the lacZ 

construct was used to infect the cells prior to grafting. LV vectors are derived from a 

group of highly pathogenic retroviruses, which includes the human immunodeficiency 

virus HIV. With properties common to the oncoretroviral vectors which are widely 

used, LV viruses also have the advantage of being able to infect both dividing and 

non-dividing cells. Their properties are favorable for long term expression of the 

transgenes in the nervous system in that they have a large cloning capacity, at least 

9kb, and are stably integrated into the genome of the target cells (for review see 

(Bjorklund et al., 2000). There are safety issues regarding the use of viral vectors for 

clinical application, particularly those which are HIV derived and especially the
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possibility of reversion to replication competent forms (Castro et al., 2001). LV 

vectors do not carry the same risk, as they can be attenuated to obtain replication- 

defective, non-pathogenic vectors.

Another approach is the use of anterograde tracers, and was also incorporated to this 

study using the method of iontophoresis for the delivery of these tracers to the graft 

site. Tracers used include; Neurobiotin, PHA-L and BDA. Neurobiotin is an amino 

derivative of biotin that can be used as a label for even the finest axonal arborisations 

and is non-toxic. In comparison to other tracers such as biocytin, neurobiotin is more 

soluble and it iontophoreses better and so it remains in the cells longer. It has a high 

affinity for avidin, which provides the basis for its detection (Luo et al., 2001; 

Novikov, 2001; Xue et al., 2004). Phaseolus vulgaris leucoagglutinin (PHA-L) is a 

plant lectin that has four ‘L’ subunits and has a high affinity to specific sugars (a-D- 

Manatose and p-D-galactose). It binds to glycoconjugates on the neuronal membrane 

and is internalized and transported along the neurites of the neuron. Its rate of 

transport is approximately 4.6mm/day with a survival time of 18-20 days. It can be 

detected with a highly specific antibody to the lectin (Wouterlood and Groenewegen, 

1991; Gerfen and Sawchenko, 1984; Dolleman-Van der Weel MJ et al., 1994; 

Wouterlood and Jorritsma-Byham, 1993). Biotynilated dextran amine (BDA) is a 

high molecular weight, water-soluble dextran conjugate. BDA is transported rapidly 

into the neuron and along the neurites and its labelling of cellular processes is highly 

detailed. BDA however does not survive over long periods of time and hence is better 

suited to short term experiments (Reiner et al., 2000; Veenman et al., 1992; 

Wouterlood and Jorritsma-Byham, 1993; Dolleman-Van der Weel MJ et al., 1994; 

Brandt and Apkarian, 1992).
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In this chapter the aim is to explore: (i) whether ENP grafts have more extensive 

projections into the host tissue than do primary tissue grafts post-transplantation and if 

so (ii) whether this may occur only in the xenograft paradigm.
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6.2 Experimental Plan

The experimental design was structured so as to allow a comparison between allograft 

and xenograft environments as well as primary versus expanded tissues. This could 

only be performed systematically in our lab using rodent tissue which allowed both 

alio- and xenograft as well as primary and expanded tissue groups in a four way 

experimental design. However, we have a particular interest in human cells and 

therefore we proceeded with the xenograft arm alone in this particular experiment. 

Grafting human foetal tissue to rat in both the primary and expanded state would 

allow a direct comparison of cell type for the potential for long projections in the 

lesioned adult rodent brain and there is the advantage that there are effective and 

convenient human-specific markers for the identification of these cells in the host 

brain. Grafts of primary and expanded mouse donor cells into a mouse host 

comprised the allograft paradigm and were directly compared to the mouse grafts of 

primary and expanded mouse donor tissue into the rat host, i.e. a xenograft (Table 

6 . 1).
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Donor cells

GFP mouse 
Primary Tissue

Host animal

Mouse Rat 

(adult lesioned)

•v/ V

GFP mouse 
1 Oday expanded 

ENPs

V  V

CD 1 mouse 

(LacZ) 
Primary tissue

V  V

CD 1 mouse 

(LacZ) 
lOday expanded ENPs

V  V

CD 1 mouse 

(Tracer) 
Primary tissue

V V

CD 1 mouse 

(Tracer) 
lOday expanded tissue

V  V

Human 
Primary Tissue

x V

Human 
lOday expanded ENPs x V

Table 6.1 Outlines the different transplant paradigms in which graft

projections were analysed for the purpose of this experiment. 

Tracers = BDA, Neurobiotin and PHA-L
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6.2.1 Human and Mouse Tissue

Whole ganglionic eminences from three human foetuses were used in these studies, 

with post conceptional ages ranging from 55-75d (c. 8.0-10.5w) as determined by in 

utero ultrasound. Mouse tissue was obtained from E14 GFP transgenic mice and E14 

CD1 mice.

6.2.2 Propagation of striatal ENPs

Coarse single cell suspensions of whole ganglionic eminence were prepared as 

described in Chapter 2. For in vivo study, human cells were treated in one of 2 ways: 

/) Stored as primary cells overnight in Hibernation medium (Hibernate E, Gibco) at 

4°C at a density of 500,000 cells/ml; or ii) Expanded as ENPs for 10 days (Chapter 2). 

Mouse cells were treated in a similar fashion with the omission of the overnight 

hibernation as this was not required. Briefly, 200,000 cells/ml were seeded in B27 

proliferation medium supplemented with EGF (20ng/ml), FGF-2 (20ng/ml) heparin 

(5pg/ml) ± LIF (lOng/ml) (Mouse cultures were not expanded in the presence of LIF). 

ENPs were fed, by replacing half the medium with fresh medium containing twice the 

concentration of B27, EGF, FGF-2 and LIF, every 3-4 days.

6.2.3 Characteristics of ENPs in vitro

The characteristics of striatal ENPs following 10 days propagation were assessed in 

vitro as described in Chapter 2. Briefly, spheres were dissociated to a coarse single 

cell suspension and plated onto poly-L-lysine-coated coverslips at a density of lOxlO4 

cells in 30pl differentiation medium. After 4-6 hours cells were flooded with 500j l x 1
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of differentiation medium and allowed to differentiate for 7 days prior to fixation. 

Cells were fed by replacing half the medium with fresh medium every 3 days.

6.2.4 LacZ labelling of cells in vitro

Primary and 10 day expanded cells were treated with LacZ prior to transplantation. 

Conditions for infection were optimised by varying the concentration of virus used 

(MOI=molecules of infection) and the time for which the virus was exposed to the 

cells. The optimum infection was with an MOI of 2 for lhour and all cell suspensions 

were treated equally.

Indirect fluorescent immunocytochemisrty was performed using standard protocols 

(Chapter 2) with primary antibodies directed against P-III Tubulin (1:1000), p- 

Galactosidase (1:6000) and GFAP (1:1000). Fluorescent staining was visualised on a 

Leitz DRMB microscope, and cell counts performed at x40 magnification. 

Pseudocolour fluorescent images were obtained using Openlab 2.1 image analysis 

software.

6.2.5 Neural Transplantation

Mouse to mouse and mouse to rat:

For all xenograft experiments animals were administered with Cyclosporine A (CsA) 

on a daily basis starting one day prior to grafting. GFP transgenic mice were bred in 

house. E l4 foetuses were dissected as described in Chapter 2 and tissue was treated 

in one of two ways: i) Primary tissue was immediately prepared for transplantation 

and ii) Tissue was expanded in culture for 10 days in the presence of FGF-2 and EGF. 

CD1 mice were used for all subsequent mouse experiments as time-mated C57BL/6
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mice could not be obtained from suppliers due to difficulties breeding. For LacZ 

treated groups CD1 E14 foetuses were obtained as described for GFP tissue. In this 

instance both the primary and 10 day expanded tissue was treated with an MOI of 2, 

of a 2.4 x 109 titre equine lentivirus carrying the LacZ reporter gene, for 1 hour at 

37°C. Animals in the tracer groups received transplants of primary and 10 day 

expanded E14 CD1 mouse tissue untreated. One week prior to perfusion, 11 weeks 

post transplantation animals received an iontophoretic injection of tracer to the graft 

site, as described in Chapter 2.

Human to rat

The primary graft group received intrastriatal grafts of primary human striatal tissue, 

hibernated over night. Following 10 days expansion in culture the second group of 

animals received an intrastriatal graft of cells. As with mouse grafts just described, 

the human grafted animals received iontophoretic injections of the anterograde tracers 

one week prior to perfusion. Human tissue was not treated with the Lac Z virus or 

with the anterograde tracers as it was considered that there were adequate antibodies 

available for the identification of human tissue grafts.

Control animals received grafts of dead cells and in the tracer groups control animals 

received an injection of tracer to the lesioned striatum to estimate the extent of non­

specific labelling within the lesioned striatum when analysing the graft data.

All cell implants were performed as described in Chapter 2 and consisted of 2pl 

injections of 500,000 cell suspensions delivered over 2 mins. Briefly, for ENP grafts, 

an aliquot of the cells was dissociated, via a trypsin digest and mechanical trituration,
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to single cells, allowing an estimate of the cell number and viability within the sphere 

suspension as well as allowing cells to be differentiated for in vitro characterisation. 

Using this information, undissociated spheres were harvested by centrifugation and 

re-suspended in DNase at 250,000 viable cells/pl. Hibernated/Primary tissue were 

prepared for transplantation by washing the tissue three times in DMEM/F12, 

determining the viable cell count and re-suspending the cells in DNase at a density of

250,000 viable cells/pl. All animals that received a xenograft were administered CsA 

daily starting one day prior to transplantation.

6.2.6 Iontophoresis

One week prior to perfusion animals received an iontophoretic injection of 

Neurobiotin, PHA-L or BDA to the graft site. The tracer was injected with a square 

wave pulse of 10 micro-amps at a rate of 7secs on 7secs off for 20 minutes with a 

micropipette of 20-50pm diameter.

6.2.7 Histology and immunohistochemistry

Twelve weeks following transplantation animals were transcardially perfused and 

their brains processed for histological analysis. Serial coronal 40pm frozen sections 

were prepared, collected and stored as described in Chapter 2. A 1:12 series of 

sections were processed for Nissl staining using cresyl violet. A further 1:6 series was 

processed for indirect single label immunohistochemistry with the following primary 

antibodies:
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Mouse anti-HuNu (1:1500) (human specific nuclei)

NF70 (1:500)

Rabbit anti-f-GAL (1:6000)

Chicken anti-GFP (1:4000)

Neurobiotin

PHA-L

BDA

The basic protocol was identical in all cases and is described in Chapter 2. 

Visualisation was via the DAB method. Where double labelling was carried out the 

first antibody was completed before commencing the second antibody which was 

visualised using the Vector SG kit. Staining controls consisted of omission of the 

primary antibody and these confirmed the specificity of staining in all cases.

6.2.8 Quantification of graft parameters

Graft volume and cell number was determined as described (Chapter 2) on a 1:12 

series of Nissl-stained sections. Fibre outgrowth from the graft was calculated by 

manual counts and in the case of human grafts where the fibre density was such that 

accurate counts could not be made an estimation of fibre number was made.
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6.3 Results

6.3.1 In vitro characteristics of grafted cells

Striatal mENPs used for transplantation underwent a 5x increase whereas hENPs 

underwent a 1.6x increase in absolute cell number after 10 days, when characteristic 

spheres were seen in suspension. Primary tissue had viability above 95% in all cases 

based on trypan blue exclusion assay analysis. Cells labelled with the LacZ LV had a 

lower viability and to allow for this, double the volume of cells was exposed to the 

virus. Uptake of the virus was analysed by immunohistochemistry and found to be in 

the range of 60-70%.

6.3.2 Graft survival and morphology

A total of 192 animals received grafts with n=8 for each graft group. Graft survival in 

general was good. Mouse to mouse grafted animals had a 90% graft survival whereas 

mouse to rat graft survival was lower at 75%. Human to rat grafted animals had a 

65% graft survival.

6.3.3. Graft volume and cell number.

Graft volume was measured based on Nissl stained sections. For analysis, mouse to 

mouse and mouse to rat graft groups for each different method of tracing were 

grouped together. Despite the transplantation of equal numbers of cells the volume of 

mouse donor grafts was generally small, whereas those of human grafts were large 

and tended to fill the entire striatum. There was no significant difference in the 

volume of primary and expanded mouse grafts however there was a significant 

difference between human graft volume and all other groups (Figure 6.1 A,
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f 2 ,192=562.31, p<0.001). The total cell number in each group was calculated based on 

Nissl stained sections, as described in chapter 2 and, as for graft volume, all mouse to 

mouse and all mouse to rat graft groups were combined. There was no significant 

difference in the number of cells in the mouse to mouse and mouse to rat graft groups, 

however there was a significant difference in the number of cells in the human grafts 

than all other graft groups (Figure 6.IB, F2,i92=372.95, p<0.001).
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Figure 6.1 A) Graft volume revealed no significant difference between primary and 

expanded grafts. There was no difference between mouse to mouse and mouse to rat 

grafted animals. There was a significant difference in the graft volume of human to 

rat animals compared to all other graft groups. B) The total number of cells was 

calculated from Nissl stained sections and there was a significant difference between 

animals receiving grafts of human tissue compared to all other grafted animals.

(m-m = donor mouse cells to mouse host, m-r = donor mouse cells to rat host, h-r = 

donor human cells to rat host)

181



'hapler (j 'Results

6.3.4 Fibre projections of the grafted cells

Primary mouse grafts to rat and mouse

Primary grafts were placed in the quinolinic acid lesioned adult striatum. Grafts of 

GFP labelled cells were small and the fibre projections from these grafts were limited. 

Fibres were only seen adjacent to the graft in the striatal neuropil and no fibres were 

seen traversing other brain regions (Figure 6.2a,b,c and Figure 6.3a,b,c). However, 

when LacZ and neuroanatomical tracers were used to trace the fibre projections of 

primary mouse grafts it was found that the cells do in fact migrate out from the graft 

and in addition, immunopositive cells were identified in corpus callosum and the 

internal capsule (Figure 6.2d,e,f and Figure 6.3d,e,f). Projections were observed 

emanating from across the graft host border to the corpus callosum and further from 

the graft core to the medial and lateral globus pallidus and the internal capsule 

however fibres were not seen to innervate other brain areas.

Expanded mouse grafts to rat and mouse

In contrast to primary grafts, cell migration from the mENP graft core was more 

pronounced in both mouse and rat host striatum. Projections from expanded grafts 

were observed in similar areas to that of primary grafts, such as the corpus callosum, 

the internal capsule and the globus pallidus. However, fibres in these grafts were also 

observed in more distal regions such as the basal nucleus, the ventrolateral thalamic 

nucleus, the subthalamic nucleus, the entopeduncular nucleus and the basolateral 

amygdaloid nucleus. No fibres were seen in the substantia nigra of these grafts 

(Figure 6.4 and 6.5). The use of LacZ labelled cells and the neuroanatomical tracers 

allowed the identification of the graft fibres that were not observed in GFP grafted 

animals (Figure 6.6).
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Primary grafts o f  human tissue to the rat

Primary human foetal tissue was transplanted to the lesioned rat brain. Grafted cells 

were identified with the human specific immune marker N F 70 (Figure 6.7). Graft cells 

were located throughout the striatum and fibre projections were seen crossing the 

graft -  host border to the corpus callosum as well as along the needle tract as a result 

of backflush during the grafting procedure. Fibres from human derived neurons were 

also observed in the globus pallidus and caudally in the subthalamic nucleus and 

entopeduncular nucleus.

10 day expanded hENPs grafted to the rat

Human ENPs were expanded in culture for 10 days before grafting to the lesioned 

striatum. As above, these cells were identified with NF70. Immune positive graft cells 

were located in the striatum with fibre projections emanating from the graft across the 

graft host border. Immune positive fibres were identified in the corpus callosum, and 

the globus pallidus, more caudally fibres were identified in the subthalamic nucleus, 

entopeduncular nucleus, and the substantia nigra.

Table 6.2 summarises the projections for each paradigm and also compare 

iontophoretically injected animals to GFP and LacZ labelled grafts.
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Figure 6.2 Primary xenografts of mouse striatal donor tissue to the lesioned rat adult 

brain. A and E, lower power magnification showing few fibre projections protruding 

from the graft core. B higher power of A shows GFP positive projections travelling 

relatively short distance (arrow) in contrast to F where lacZ labelled cells are shown 

to send out longer projections. Some GFP immune positive cells were seen in the 

corpus callosum (cc) and in the globus pallidus (GP) of one animal B and C (arrows). 

G and H show lacZ positive fibres in the internal capsule (ic) and the subthalamic 

nucleus (STN) (arrows). Scale bar (A and B) = 500pm, all others =200pm. I, 

represents a schematic of the summary of areas where projections (as shown by grey 

lines) were seen in all primary mouse grafts to the rat host brain.
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Primary mouse donor tissue to the mouse host brain (allograft). 

GFP labelled mouse cells

LacZ labelled mouse cells

E % A  *

cc

1 : *
■ \  \  *

Figure 6.3 Primary graft of GFP (A-C) and LacZ (D-F) labelled striatal tissue to the 

lesioned adult mouse brain. This is the largest graft in the GFP graft group (A,B, 

show the graft mass) with all others being small thin grafts, similar to those shown in 

Figure 6.2 and 6.4. Positive cells and projections were seen in the striatum, D 

(arrow), the internal capsule (ic), (C) and the corpus callosum (cc) (E) as well as 

positive fibres in the globus pallidus (F) (arrows). Scale bar = 500pm (A-E) and = 

200pm (F). G represents a schematic of the summary of areas where projections (as 

shown by grey lines) were seen in all primary mouse grafts to the mouse host brain.
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Expanded mouse grafts in the rat brain (xenograft)

GFP labelled mouse cells

C  . D
1C

LacZ labelled mouse cells

Figure 6.4 10 day expanded GFP and lacZ labelled ENPs grafted to the lesioned rat 

striatum. Projections can be seen emanating from the graft across the graft host 

border (A and arrow in B). GFP positive fibres were seen projecting in the internal 

capsule (ic), C and to the globus pallidus (GP), D. LacZ labelled cells and fibres were 

identified in the globus pallidus (GP), subthalamic nucleus (STN) and the cortex (Ctx) 

(arrows), H, and, G. Scale bar =500pm. I, represents a schematic of the summary of 

areas where projections (as shown by grey lines) were seen in all expanded mouse 

grafts to the rat host brain.
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Expanded mouse grafts in the mouse brain 

GFP labelled mouse cells

LacZ labelled mouse cells
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Figure 6.5 10 day expanded GFP and lacZ labelled striatal tissue grafted to the 

lesioned mouse brain. Fibre projections can be seen emanating from the graft (A,B 

and E) across the graft host border. GFP positive fibres were seen projecting in the 

internal capsule (ic) and to the globus pallidus (GP) (arrows). Immune positive fibres 

(arrow) were observed in the grey matter close to the graft, F. Dense axonogenesis of 

the grafted cells was observed on lacZ labelled cells, G (arrow). Scale bar = 500 (A 

and E) and 200 pm (all others). I, represents a schematic of the summary of areas 

where projections (as represented by grey lines) were seen in all 10 day expanded 

mouse grafts to the rat host brain.
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Mouse to ratMouse to mouse

Neurobiotin

Figure 6.6 Anterograde tracers were inotophoretically injected to the graft region one 
week prior to perfusion. Immune positive fibres were identified for each tracer in a 
similar pattern to that of lacZ labelled cells and a sample of each tracer is shown here 
for clarity of presentation. A, and B represent BDA positive cells within the graft. C 
and D, neurobiotin positive projections in the corpus callosum (cc) and the internal 
capsule (ic). E and F, PHA-L positive projections in the globus pallidus (GP). There 
were no major differences in the pattern of projections between each labelled group. 
Arrows point to immune positive fibres. Arrows show immune positive projections. 
Scale bar = 500pm.
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Human cells transplanted into the rat brain labelled with NF?o

Expanded

Primary

Figure 6.7 An antibody to NF70 was used to identify the human derived grafted cells 

in the host brains, A and B. Human primary and expanded grafts had a larger volume 

than mouse grafts with grafted cells acquiring the entire striatum, as represented in the 

schematic of human graft projections in the rat brain, C. Immune positive fibres were 

identified caudally in the subthalamic nucleus, the globus pallidus, and in substantia 

nigra as well as rostrally in the region of the olfactory bulb. C represents a schematic 

of the summary of areas where projections (as represented by grey lines) were seen in 

all primary and 10 day expanded human grafts to the rat host brain.
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Table 6.2 Summary of fibre projections in the host brain using all approaches.

CC IC GP STN SN

Primary mouse

to rat
+ /- + + + + + /- 0

Iontophoresis only +/- + +++ + /- 0

Expanded mouse

to rat
+ + + + + + + + /-

Iontophoresis only
+ ++ -H-+ + 0

Primary mouse

to mouse +/- + + + + /- 0

Iontophoresis only + /- + + + + /- 0

Expanded mouse

to mouse
+ + + + + + + /- + /-

Iontophoresis only
+ + + + + + + /- + / -

Primary human

to rat
+ +++ +++ ++ +

Expanded human

to rat
+ +++ +++ + + + +

0 = no fibres, +/- = negligible fibres, + = tens of fibres, ++ = hundreds of fibres and 

+++ = thousands of fibres, observed in each region, based on estimated or actual 

counts. Iontophoresis only animals for the corresponding groups are shown in red.
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6.4 Discussion

The results presented in this chapter and summarised in Table 6.2, confirm that 

primary foetal cells project into the host parenchyma including some distant sites in 

the host brain and that expanded ENPs show a more marked ability to do so. The 

projections from grafted cells were observed at distances both rostral and caudal to the 

graft core in all paradigms examined in this study.

Mouse primary and expanded cells grafted in the allograft and xenograft environment 

were seen to send projections to striatal targets possibly via the internal capsule 

fascicles such as at the level of the external pallidum, the globus pallidus, the 

subthalamic nucleus and the basal nucleus. Fibres were also observed in host white 

matter tracts in which branching of the fibres could be seen. No immunopositive 

fibres were seen to innervate the substantia nigra in the primary tissue grafted animals 

and a tiny number of fibres were observed in the substantia nigra of expanded grafts 

in the mouse and rat brain. These were only identifiable when cells were treated with 

LacZ prior to grafting or when a tracer was iontophoretically injected to the graft.

In contrast to this, human ENPs grafted to the rat brain were shown to send long 

projections from the graft to the olfactory bulb and specific target regions of the 

striatum including the substantia nigra. Both primary and expanded human grafts 

were much larger in volume than mouse grafts, even though the same number of cells 

was grafted in each case, thus suggesting that human foetal tissue continued to 

proliferate in vivo to a much greater extent than any proliferation that may have been 

ongoing in the rodent tissue grafts. The density of fibres from human tissue grafts
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was such that quantifying the number of projections in specific regions was difficult 

and therefore an estimation of fibre number was made.

It has previously been shown that primary human tissue transplanted to the rat brain 

can send out extensive projections to the pallidum and the substantia nigra (Wictorin 

et al., 1990; Wictorin et al., 1992) and that the projections of xenografted tissue tends 

to be limited to the normal target sites of the donor tissue itself (Garcia et al., 1995; 

Wictorin et al., 1992; Isacson et al., 1995a; Isacson and Deacon, 1996). Armstrong 

(Armstrong et al., 2000) has previously shown that when primary human tissue was 

grafted to the lesioned striatum, projections were only observed as far as the pallidum 

whereas the fibre projections of expanded human ENP grafts were much longer and 

were present in non-specific targets of the host tissue. In this study such non-specific 

fibres were not observed to the same extent and immune positive fibre were only 

observed traversing the corpus callosum to the contralateral side however, expanded 

ENP grafts did present projections in more caudal regions of the host brain. It may be 

that there are specific guidance cues still present in the adult CNS that ENPs are 

responsive to in a manner not seen for primary tissue, thus allowing these cells to send 

out such long projections (Garcia et al., 1995).

Direct comparison of the graft groups would suggest that human derived grafts had a 

greater potential to send long projections into the host brain than those of mouse 

derived grafts. This raises the issue in relation to relative brain size: human tissue 

being derived from a phylogenetically more mature donor may have the necessary 

receptors for long distance growth which mouse derived cells would not have, given 

the differences in brain size of the two donors. Studies of pig tissue xenografted to
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the rat brain also show the potential for long distance projections to traverse the host 

brain (Armstrong et al., 2003b; Armstrong et al., 2002) and therefore the use of 

xenografted human tissue into rodent host brains may not provide a true 

representation of the potential of this tissue for use in neural transplantation. Another 

possibility for the differences observed in this study may be due to the presence of 

specific signals in the allograft and xenograft brain. Xenografted donor cells may be 

unresponsive to specific stop signals thus leading to longer projections. However, the 

first would seem more likely in this case given that there were not the same fibre 

outgrowth observed from the mouse to rat grafts as that seen in human to rat grafted 

animals.

A further consideration is whether CsA could have an effect as all xenografted 

animals in this study were administered CsA throughout the experiment and 

allografted animals were not. CsA has been reported to have an effect on the neuronal 

growth in vitro (Steiner et al., 1997). However, a substantial effect is not likely as 

there were no substantial differences between the alio- and xenograft environments 

and thus it appears to be largely due to the expanded cells. Further studies in which 

all animals, both alio- and xenografted are immunosuppressed are required to be able 

to compare all graft groups directly as it is not clear what effects CsA may be having 

on the graft itself.

Another crucial issue with respect to the interpretation of these studies is cell 

migration. It was observed that there was migration of the primary as well as the 

expanded cells in the host brain although the degree of migration appeared to be 

greater in the animals receiving ENPs rather than primary tissue, however; this was
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not quantified in this study. In a recent report (Hurelbrink and Barker, 2005) it was 

shown that allografted cells had the potential to migrate throughout the host brain and 

that human derived cells migrated significantly more than mouse or rat cells. Thus it 

may be that at least a proportion of the long projections observed in this study in the 

human to rat grafted animals could be a direct result of cells having migrated away 

from the graft core, thus having the potential to reach more caudal brain regions. In 

this respect, the study using iontophoretic injection of tracers to the graft site was 

informative as there were no projections observed in the more caudal nuclei such as 

the substantia nigra in most animals. This suggests that indeed, some of these 

projections may originate from cells that have migrated away from the graft core. 

Thus, there is the possibility that ENPs have the potential to project more extensively 

in the host brain, but it is clear that the migration of cells in the host brain is also a 

factor that needs to be taken into consideration. If migration was a crucial factor it 

would then suggest that the potential for projection outgrowth is not influenced 

entirely by specific striatal signals, as the cells that have migrated away from the 

striatum will be exposed to different signals than those within the striatum.

In this study, GFP labelled cells showed much less pronounced projections and this 

may be a result of down regulation of the transgene in vivo. It was found that, when 

compared to Nissl stained sections, only a proportion of the cells were labelled 

positive for GFP. Looking at GFP expression over time in vivo demonstrated that the 

GFP expression was down-regulated with time, and this is in accordance with 

Eriksson (Eriksson et al., 2003) who also reported a down-regulation of GFP 

expression albeit under a different promoter. Thus it may be that, at the time points 

analysed, this particular GFP transgene was significantly down-regulated in a large
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proportion of cells and hence the difference in the fibre networks from these grafts 

compared to those labelled with the anterograde tracers and the lacZ labelled grafts. 

Details of the down regulation of GFP are shown in Appendix 4.

The use of the neuroanatomical markers in this study was to characterise further the 

fibre outgrowth of the allograft and xenografted mouse tissue grafts. Anterograde 

tracers were used in this study so as to trace the graft derived fibres in the host brain, 

given the non-specific nature of expanded graft fibres reported by Armstrong 

(Armstrong et al., 2000). Retrograde tracers were not employed in this study, 

although several studies of primary grafts have been carried out using such tracers and 

they have shown that fibres from the globus pallidus and entopenduncular nucleus 

project back to the graft and the labelled neurons were shown to overlap with patches 

of DARPP-32 and AChE positive staining (Wictorin et al., 1989b; Wictorin and 

Bjorklund, 1989; Wictorin et al., 1989c; Wictorin et al., 1989a). Neurobiotin, BDA 

and PHA-L are all neural anterograde markers that have been shown to clearly label 

neurons in vivo (Novikov, 2001). There was no significant difference in the labelling 

pattern of the three tracers although it was apparent that BDA and neurobiotin labelled 

the axons and dendrites in a more specific manner than did PHA-L. The immune 

positive fibres identified corresponded to those observed in lacZ labelled neurons. 

Other studies incorporating the use of anterograde tracers to label the donor primary 

derived projections in the host brain have also reported fibre outgrowth in the globus 

pallidus and in some cases the entopeduncular nucleus (Wictorin et al., 1989c; Pritzel 

et al., 1986). Where human tissue was the donor, immune positive fibres were also 

observed more caudally in the substantia nigra and the cerebral peduncle. To 

overcome the possibility of leakage of the tracers, and the subsequent possibility of
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misconceptions in relation to the fibre projections of the graft tissue as opposed to 

host brain projections, control quinolinic acid lesioned animals received an injection 

of tracer, and labelling from these animals was then used to identify possible host 

derived projections in the grafted animals. In control animals there was no sign of 

labelling of projections as seen in grafted animals following iontophoretic injection of 

tracers.

Further studies looking at the behavioural differences between these primary and 

expanded graft groups are warranted to understand the functional significance of these 

fibre projections. However, such studies using human tissue are limited in the 

xenograft paradigm given the problems associated with graft survival and the ongoing 

need for daily immunosuppression. Therefore an alternative model system is required 

to overcome such issue (see Chapter 7).

We can conclude from this study that the outgrowth from expanded ENPs is greater 

than that of primary grafted tissue although as already mentioned further studies are 

required to address the issue of cell migration from these grafts as this may be the 

source of a proportion of the fibre outgrowth reported here.
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Chapter 7

J ?  new animaC mocCef tofacidtate anaCysis o f  

C9CS xenografts.

Summary

Xenotransplantation of neural tissue to the host brain requires immunosuppression of 

the host to prevent graft rejection. However, this limits the amount of detail that can 

be obtained about the potential of the xenografted tissue, and of particular interest for 

the clinical work, human tissue. Thus, an animal model system is required that would 

allow long term analysis of these grafts in vivo. This chapter describes a novel animal 

model in which the animal is tolerised in the neonatal period, and consequently does 

not require immunosuppression, thus allowing long term graft analysis. Animals that 

received an ip injection of primary or expanded human tissue in the neonatal period 

subsequently supported intrastriatal grafts of the same tissue in the adult without 

immunosuppression. Animals that received an intrastriatal neonatal graft followed by 

an adult intrastriatal graft in the contralateral striatum resulted in poorer graft survival.
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7.1 Introduction

Previous chapters have explored the potential of human neural precursor cells as an 

alternative for neural transplantation. One major limitation of these studies is the 

need for immunosuppression treatment of the host rodents to prevent rejection of the 

grafted human tissue. This involves daily injections of the immunosuppressant drug 

cyclosporine A (CsA), and without some form of immunosuppression grafts will be 

rejected within 4 weeks (Barker et al., 2000a). This drug is expensive and daily 

injections are unpleasant for the animals and inconvenient for the researcher. 

However, more importantly, it restricts the type of experiments that can be carried out 

due to the fact that the animals have limited tolerance of immunosuppression and 

become unwell after 12-16 weeks of treatment, thus restricting the ability to perform 

long term experiments for the assessment of the potential of human ENPs in vivo. 

This is crucial given that human ENPs take substantially longer to differentiate than 

rodent cells in vivo. An alternative to CsA is the use of immunocomprimised animals 

(e.g. Nude rats and SCID mice). These animals are immunocomprimised, with few if 

any T cells, to fight any form of infection and so must be housed in contained 

environments to reduce the risk of infections. Their lack of an immune system also 

renders them useless for detailed behavioural analysis following lesion and graft, as 

such studies impose a constant need for regular handling and removal from the 

contained air controlled housing and put the animals at severe risk of infection. As 

with CsA, nude rats are very expensive. Given these issues long term assessment of 

xenografted tissue has been limited, with approximately 20 weeks being the upper 

limit (Ostenfeld et al., 2000; Pundt et al., 1996c; Svendsen et al., 1997a). Thus it is 

clear that an alternative model is required in order to facilitate full assessment of the
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true potential of human tissue for neural transplantation using long term evaluation of 

the grafts.

It has been shown that xenogenic tissue grafted into the CNS of non- 

immunosuppressed rodents in the neonatal period is not rejected, as the animals 

immune system is still developing until the latter part of the first week (Pundt et al., 

1996b). Transplantation of human ENPs into the CNS of neonatal rodents has 

previously been carried out (Betarbet et al., 1996; Demeter et al., 2004; Lundberg et 

al., 2002; Munoz-Elias et al., 2004; Winkler et al., 1998; Young et al., 2000; Zigova et 

al., 2000; Englund et al., 2002a; Rosser et al., 2000; Olsson et al., 1997; Zigova et al., 

2002). Olson (Olsson et al., 1997) transplanted E13.5-14 mouse LGE, MGE, and 

cerebellar primordium to the striatum of PI, P7 and P21 rat pups. PI and P7 grafts 

were seen to integrate into the host brain and send out projections to striatal targets. 

P21 transplanted animals received daily immunosuppression with cyclosporine A to 

prevent transplant rejection. The transplants in P21 animals were similar to that 

reported for adult grafts in that the cells showed little migration but rather clustered 

around the injection site and the fibre projections from these cells were only reported 

in the globus pallidus. It was clear from this study that transplanting in the neonatal 

period can be beneficial for circuit reconstruction. The ability for these transplants to 

send out projections to striatal targets may be a result of specific guidance cues being 

expressed at this developmental stage or, may relate to the smaller size of the host 

brain at this time point, thus the donor cells have a shorter distance to travel in the 

host brain to reach specific target areas. However, the fact that the neonatal rodent 

brain is still undergoing growth and development means that signals are present that 

are not present in the adult brain. Thus, although it has proven an important model for
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understanding the capacity of stem cells to respond to developmental cues, it is not an 

appropriate model to understand adult CNS transplantation.

The fact that human xenografted tissue survives in the neonatal brain into early 

adulthood suggests that the host rat may develop tolerance to the tissue. This study 

has explored whether tolerance can be induced in neonatal models using human foetal 

tissue that will allow a graft to be placed intracerebrally in adulthood without any 

form of immunosuppression. This requires (i) demonstrations as to whether tolerance 

developed to the transplanted tissue in the neonatal stage is lasting (i.e. do transplants 

alone in the neonatal brain survive long term into adulthood) and (ii) exploration as to 

whether injection of human tissue in the neonate will produce tolerance that will allow 

survival of xenogenic CNS tissue transplanted in adulthood.
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1.2 Experimental Procedures

7.2.1 In vitro experiments

7.2.1.1 Human tissue

Cortical tissue from six human foetuses were used in these studies, with post 

conceptional ages ranging from 55-77d (c. 8.0-1 l.Ow) as determined by in utero 

ultrasound.

7.2.1.2 Propagation of cortical ENPs

Coarse single cell suspensions of cortical tissue were prepared as described in Chapter

2. For the in vivo study these cells were treated in one of two ways: 1) Stored as 

primary cells for up to 24hours in hibernation medium (Hibernate E, Gibco) at 4°C at 

a density of 500,000 cells/ml; 2) Expanded in culture as ENPs for 10 days (Chapter 

2). Briefly, 200,000 cells/ml were seeded in B27 proliferation medium supplemented 

with FGF-2 (20ng/ml), EGF (20ng/ml), LIF (lOng/ml) and heparin (5pg/ml). ENPs 

were fed by replacing half the medium with fresh medium containing twice the 

concentration of B27, FGF-2, EGF and LIF every 4 days. After 10 days propagation 

in culture these cells were either: 1) transplanted to animals or 2) frozen down as 

described in Chapter 2 for further use 6 weeks later.

7.2.2 In vivo experiments

7.2.2.1 Characteristics of ENPs in vitro

The characteristics of cortical ENPs following 10 days propagation were assessed in 

vitro as described in Chapter 2. Briefly, spheres were dissociated to a coarse single 

cell suspension and plated onto poly-L-lysine-coated coverslips at a density of lOxlO4
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cells in 30fj,l differentiation medium. After 4-6 hours cells were flooded with 500pl 

of differentiation medium and allowed to differentiate for 7 days prior to fixation. 

Cells were fed by replacing half the medium fresh medium every 3 days.

Indirect fluorescent immunocytochemisrty was performed using standard protocols 

(Chapter 2) with primary antibodies directed against P-III Tubulin (1:1000) and 

GFAP (1:1000). Fluorescent staining was visualised on a Leitz DRMB microscope, 

and cell counts performed at x40 magnification. Pseudocolour fluorescent images 

were obtained using Openlab 2.1 image analysis software.
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7.2.3 Experimental Design

‘Ejqyerim entaC (Procedures

Primary tx into 
adult host CNS

10 day expanded tx 
into neonatal host 
CNS

10 day expanded 
tissue to neonate 
CNS

10 day expanded 
tissue injected ip to 
neonate

Primary foetal tissue 
injected ip to neonate

1 1 1 6w
ee

ks

contralateral 
intrastriatal tx of 
same cells 
(cryporeserved)

adult intrastriatal tx 
of same cells 
(cryporeserved)

adult intrastriatal tx 
of same cells, 
primary tissue 
(different donor) CS)

1 1 1 1 <D
£

<N
1

VO

Animals sacrificed and their brains processed for histological examinataion

Tx = transplantation ip = intraperitoneal

Table 7.1 Experimental plan.

Neonatal hosts were obtained from five pregnant Sprague-Dawley rats. No groups 
were given immunosuppression. Each neonatal animal was placed into one of five 
groups:

1. To receive a graft of primary human CNS tissue to the adult unilateral striatum for 
20weeks without any form of immunosuppression.

2. To receive a graft of 10 day expanded human tissue to the neonatal striatum or 
hippocampus at P0 with subsequent survival for 12 weeks.

3. To receive a graft of primary or expanded human tissue to the neonatal striatum 
followed by a graft to the contralateral striatum at 6weeks with subsequent survival 
for 6 weeks.

4. I.P. injection of primary foetal cortical cells at P0 followed by a graft of primary 
foetal cortical cells from a different donor, to the striatum at 6-9weeks with 
subsequent survival for 6 or 13 weeks.

5. I.P. injection of lOd expanded human foetal cortical cells at P0 followed by a graft 
of the same lOd expanded human foetal cortical cells to the striatum at 6-9weeks 
with subsequent survival for 6 or 13 weeks.
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1 2 2 2  Neural Transplantation

Group one (n=6) received intrastriatal grafts of primary human cortical tissue without 

any immunosuppression. On the day of birth all other animals received either an 

intrastriatal transplant of lOd expanded ENPs (n=18) or an intraperitoneal injection of 

primary cortical tissue (n=12) or an intraperitoneal injection of lOd expanded ENPs 

(n=12). 6-9 weeks after the initial transplant animals that had received a graft of 10 

day expanded tissue to the striatum received a contralateral intrastriatal graft of the 

same 10 day expanded cells that had been frozen down after the initial transplant 

(n=9). The remaining animals in this group (n=9) did not receive a second graft. 

Animals that received an ip injection of primary foetal tissue received an intrastriatal 

transplant of primary foetal tissue (obtained from a different donor to that used in the 

initial injection) (n=12). Animals that received an ip injection of 10 day expanded 

cortical tissue as neonates received an intrastriatal transplant of the same cells 

(cryopreserved) 6-9 weeks later (n=12).

All cell implants were performed as described in Chapter 2 and for the intrastriatal 

transplants consisted of 2pl injections of 500,000 cell suspensions delivered over 2 

mins. The ip injections consisted of a lpl suspension of 200,000 cells delivered over 

2 mins.

ENPs were prepared for transplantation after 10 days in culture. An aliquot of the 

cells was dissociated, via a Trypsin digest and mechanical trituration, to single cells, 

allowing an estimate of the cell number and viability within the sphere suspension as 

well as allowing cells to be differentiated for in vitro characterisation. Using this 

information, undissociated spheres were harvested by centrifugation and resuspended

204



Chapter 7 ‘E xpe iim entaC (procedures

in DNase at 250,000 viable cells/jnl. Hibernated cells were prepared for 

transplantation by washing the cells three times in DMEM/F12, determining the 

viable cell count and resuspending the cells in DNase at a density of 250,000 viable 

cells/jLtl.

7.2.2.3 Histology and immunohistochemistry

Six to thirteen weeks following the second transplant animals were transcardially 

perfused and their brains processed for histological analysis. Serial coronal 40pm 

frozen sections were prepared, collected and stored as described in Chapter 2. A 1:12 

series of sections were processed for Nissl staining using cresyl-fast violet. A further 

1:6 series was processed for indirect single label immunohistochemistry with the 

following primary antibodies:

Mouse anti-HuNu (1:1500) (human specific nuclei)

Mouse anti-rat CD8 (1:500) (host cytotoxic T-cells)

0X42 (activated microglia)

Mouse anti-rat C3 (1:500) (host complement)

The basic protocol was identical in all cases and is described in Chapter 2. 

Visualisation was via the DAB method. Staining controls consisted of omission of 

the primary antibody and these confirmed the specificity of staining in all cases.

1.2.2 A Quantification o f graft parameters

Graft volume was determined as described (Chapter 2) on a 1:12 series of Nissl- 

stained sections. The extent of immunostaining for C3, CD8 and 0X42 was graded 

on a scale according to the following strictly defined criteria, adapted from Larsson
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and colleagues (Larsson et al., 1999a). For this procedure, coded sections were 

viewed and rated blinded to experimental groups and this is shown in Table 7.2.

Grade Histological criteria

0a No immunopositive cell present in the grafted striatum

1 Very occasional scattered immunopositive cells

2 Several positive cells, principally confined to peripheral graft regions or discrete 
patches, little perivascular distribution.

3 Numerous immunopositive cells present throughout the graft mass, perivascular 
distribution often obvious.

4 Florid infiltrate of immunopositive cells throughout the entirety of the graft 
mass, and often in the surrounding striatum.

Table 7.2 Histological criteria used to assess the degree if which markers of the host 

cellular and humoral immune response, CD8, 0X42 and C3 were recruited. aA 

category of Grade 0.5 was introduced which was reserved for specimens where only a 

scar remained and the only immunpositive cells were occasional, rounded 

macrophage-like cells at the site of the scar.
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7.3 Results

7.3.1 Cell status at transplantation

Cortical ENPs used for transplantation underwent an average 1.94 fold increase in 

absolute cell number after 10 days, at which time characteristic spheres were seen in 

suspension. Tissue maintained in hibernation medium for up to 24 hours maintained 

viability above 92% in all cases based on trypan blue exclusion assay analysis.

Subsequent in vitro experiments were undertaken in an attempt to further elucidate the 

identity of cells that composed the ENP population after 10 days expansion. A similar 

expansion in overall cell number was achieved in each donor expansion (2.5 ± 0.3 

fold in total cell number). Cells could be induced to differentiate by removing the 

growth factors and plating on a substrate. By seven days, the cortical ENPs 

differentiated to yield a mixed population of p-III tubulin positive neurons (42.8% ± 

7.0) and GFAP-positive (13.6% ± 3.6) astroglia, the remainder of the cells were not 

stained by either marker and their identity remains undetermined (Figure 7.1).
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In vitro staining of differentiated primary and 10 day expanded human cortical

tissue.

Figure 7.1
The in vitro characteristics of 
human cortical primary tissue 
(A), and 10 day expanded 
human cortical ENPs (B).
P-III tubulin positive cells were 
present in both primary (64%) 
and expanded (42.8%) cell 
cultures (Red). There was an 
increase with time in culture in 
the proportion of GFAP positive 
astrocytes (Green) from 5.6% to 
13.6%. Cell nuclei were 
labelled with Hoechst stain 
(blue). Scale bar 200pm
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7.3.2 Graft survival and morphology

Surviving grafts could be identified in Nissl-stained sections (Figure 7.2 and 7.3) on 

the basis of cytological and cytoarchitectonic features and in sections stained for 

human specific antigen HuNu (Figure 7.4). Grafts of primary tissue transplanted into 

the adult rat CNS with no immunosuppression were rejected by 6 weeks post 

transplantation and there was no trace of any surviving cells. Nine animals received a 

unilateral intrastriatal graft of human cortical tissue at PO and no further grafts were 

received. After 12 weeks survival 66% (6/9) of the animals appeared to have healthy 

surviving grafts. Of the 9 animals receiving an intrastriatal graft at PO followed by a 

second intrastriatal graft as an adult only 44% (4/9) had surviving grafts 6 weeks after 

the second graft was received. These grafts were significantly smaller in volume 

when compared to all other groups (Table 7.3) (F4)2i=21.34,p<0.001). Animals that 

received an ip injection of either primary or 10 day expanded cells at PO with a 

subsequent intrastriatal graft in adulthood had surviving grafts up to 13 weeks after 

the graft was implanted (93 and 50% respectively). The grafts are laterally placed but 

contain HuNu positive cells and show little sign of rejection (Figure 7.4) as measured 

by expression of the immunological markers 0X42, CD8 and C3. Overall, there is a 

significant difference in graft survival between the grafts of 10 day expanded human 

foetal tissue and primary human foetal tissue (Fi;2i=3.13, p<0.001) with the primary 

grafts showing optimum survival and this may be due to the large cell loss observed 

as a result of the freeze/thawing of the expanded cells which ultimately resulted in a 

smaller volume of cells being transplanted to the adult animal and hence the smaller 

volume of the graft. Where primary human foetal tissue was used as the tissue source 

there was no freeze/thawing of the tissue and as a result tissue used for the ip injection 

in the neonate was from a different foetus and in some cases of different gestational
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age to that used for the intrastriatal adult graft. This appeared to have no effect on 

survival of the intrastriatal graft in adulthood.

Graft morphology was similar for primary and expanded grafts with both graft groups 

comprising a heterogenous population of cells and there was no apparent vascular 

infiltration or ventricular compression within the grafts. Primary grafts comprised of 

a heterogenous distribution of large neuronal type nuclei and smaller spindle-shaped 

nuclei (Figure 7.2 a,e and 7.2 c,g). 10 day ENP tissue grafts were densely cellular and 

positioned along the lateral wall of the caudate-putamen. The cellular distribution 

within the grafts was heterogenous, with zones of high cellularity interspersed among 

less intensely cellular regions (Figure 7.2 b,f). In animals with no discernible 

surviving grafts, only a thin strip of scar-like tissue was apparent at the level of the 

needle tract (Figure 7.2 d,h).

7.3.3 Graft Volume

Intrastriatal implants at PO that were not followed by any other intervention resulted in 

significantly larger graft volumes than for any other group (t4=7.02, p<0.001) (Table

7.3). In the group receiving a neonatal, followed by an adult intrastriatal graft, only 

four animals showed signs of surviving grafts on both sides. In all four cases both 

grafts were extremely small and there were increased signs of rejection with cells 

within the graft area immunopositive for the immune markers 0X42, CD8 and C3 

(Figure 7.2 c,g).

There was no significant difference in the volume of primary and 10 day expanded 

ENP grafts placed into animals that received an ip injection of human tissue at PO,
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however both the primary and expanded grafts in this group had significantly greater 

volume than that of the group receiving a neonatal intrastriatal graft followed by an 

intrastriatal graft in the contralateral striatum in the adult (t4=3.45, t6=4.27, p<0.001) 

(Table 7.3).

211



Chapter (ResuCts

Graft survival and volume measurements for each group.

Group % Survival Graft volume 
(Including rejected 
grafts)

Graft volume 
(Excluding rejected 

grafts)
Intrastriatal as 
neonate only 65% 4.4 ±0.1 mm3 5.6 ±0.12 mm3

Intrastriatal as 
neonate + 
contralateral 
striatum as adult

44% Neonate 0.43 ±0.17 mm3 
Adult 0.35±0.15mm3

0.612±0.13 mm3 
0.504±0.11 mm3

i.p as neonate + 
intrastriatal as 
adult

ENPs 50% 
Primary 93%

ENPs 1.9±0.08mm3 
Primary 2.54±0.15mm3

2.85±0.1 mm3 
4.32±0.13mm3

Table 7.3

Graft volumes and striatal volumes were calculated as described in Chapter 2 and are 

presented as mean ± SEM in this table. In the second column measurements have 

been determined for all animals within a group, whether or not a graft was considered 

to have survived and in the third column only for surviving grafts. There is a 

significant difference in graft volume between the group receiving 2 grafts (one in the 

neonate period and one in the adult period) and all other graft groups P<0.001. There 

is no significant difference in the striatal volume between groups.
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Cresyl violet staining showing graft survival and morphology.

Typical morphology of intrastriatal grafts from primary and 10 day expanded ENPs in 
tolerised animals.

a Primary

Figure 7.2
Graft morphology as demonstrated with Nissl staining, (a, and boxed detail c) the 
typical appearance of a primary grafts which have a characteristic graft core. In this 
example there has been some reflux of cells along the needle tract and the graft is 
laterally placed in the striatum. ENP grafts (b, and boxed detail d) in which the graft 
has a typical patchy appearance of ENP grafts. Scale bar = 500pm.
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Neonatal intrastriatal and contralateral adult intrastriatal grafts of 10 day expanded 
tissue at PO and adulthood.

Figure 7.3
Grafts in the group receiving a neonatal intrastriatal and contralateral adult 
intrastriatal graft (a, and boxed detail c) were significantly smaller on both the right 
and left striatum than all other grafts. A glial scar signified a rejected graft (b, and 
boxed detail d). Scale bar 500pm (boxes are to scale).
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HuNu positive staining in primary and lOday expanded human cortex grafts after 12 
weeks in vivo following tolerisation with an ip injection of human cortical cells.

a Primary
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Figure 7.4
HuNu positive cells (arrow) represent human positive cells within the graft, a primary 
tissue graft a), and a 10 day expanded graft b), 10 day expanded graft showed more 
signs of migration out of the graft core to the surrounding neuropil whereas in the 
primary graft the HuNu positive cells are located mainly within the graft core. Scale 
bar 500pm

215



tuple. ‘R esu lts

7.3.4 Host cellular immune response

In ‘healthy surviving’ grafts only very occasional, scattered CD8-positive cells were 

seen. The cells had a morphology consistent with them being lymphocytes: they were 

rounded with a high nucleus:cytoplasm ratio and CD8 staining had a cytoplasmic, 

punctuate distribution (grade 1, Figure 7.5a,e). The presence of signs of increasingly 

severe rejection correlated with increasing numbers of CD8-positive infiltrating cells. 

Such cells were predominantly confined to peripheral regions and small patched areas 

within grafts that showed a moderate sign of rejection. There was also evidence of 

clustering around the vasculature (grade 2, Figure 7.5b,f). Grafts which exhibited 

signs of marked rejection were very heavily infiltrated, and in such grafts CD 

immunoreactivity was often seen throughout the graft mass in cells with ramifying 

cytoplasmic processes as well as those with a lymphocytic appearance (grade 3-4, 

Figure 7.5c,d,g,h). In animals where the graft had not survived, only occasional 

weakly immunoreactive cells remained around the scar (Figure 7.5 d,h).

Activated microglia in the host were quantified using the same criteria as with CD8. 

0X42 positive cells in ‘healthy’ grafts were predominantly along the needle tract, and 

very few immunopositive cells were present within the graft core (grade 1 Figure 

7.6a,e). With increased rejection there was also an increase in the degree of 0X42 

immunopositive cells present in the graft core as well as a more pronounced infiltrate 

along the needle tract (grade 2, Figure 7.6b,f). Clusters of cells were seen in the graft 

core. Rejected grafts were heavily infiltrated with 0X42 positive cells and this 

immunopositivity was present throughout the graft mass (grade 3-4, Figure 

7.6c,d,g,h).
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7.3.5 Host humoral immune response

Levels of C3 binding were generally very low and C3 was seen to bind most strongly 

at the edges of the grafts and around zones of necrosis and cavitation. Most animals 

showed little or no signs of C3 binding with only 3 animals showing high 

immunoreactivity with staining seen throughout the grafted area (Table 7.6, Figure

7.4).
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Table 7.4 CD8 immunopositive cells within the graft

Group/Grade 1 2 3 4

Single intrastriatal 
graft in adult host

H—1—1—h ++ ++ +

PO striatal graft 
followed by a 
contralateral adult 
graft

++ ++ +++ ++

Ip + striatal graft 
into adult (lOd ENP)

++++ ++++ +++ +

Ip + striatal graft 
into adult(Primary)

+++++++ +++ ++

Table 7.4 CD8 positive cells within the graft were graded according to Larsson 

(Larsson et al., 1999b). Immune positive cells were identified in areas of rejection 

and animals where no surviving graft was evident showed only signs of rejection, 

(each + represents one animal)
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Grade 1

CD8 positive cells within the graft

Grade 2 Grade 3 Grade 4

□ □ □
0

Figure 7.5. The degree of rejection within the graft was measured based on the 

presence of CD8 positive cells (arrows), graded as described above. With increased 

rejection there is an increase in the number of CD8 positive cells. Rejected grafts (d 

and boxed at higher magnification h) show the infiltration of the graft area with CD8 

positive cells. In such grafts there were little or no signs of positive surviving donor 

cells. Scale bar 500pm (boxes are to scale).
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Table 7.5 0X42 im mu noreactivity within grafts

Group/Grade 1 2 3 4

Single intrastriatal 
graft in adult host

++++ H—1—h + +

PO striatal graft 
followed by a 
contralateral adult 
graft

+ + +++ ++++

Ip + striatal graft 
into adult (lOd 
ENP)

++++ ++++ ++++ +

Ip + striatal graft 
into adult(Primary)

++++++ +++++ +

Table 7.5 0X42 positive cells within the graft were graded according to Larsson 
(Larsson et al., 1999c). Immune positive cells were identified in areas of rejection 
and animals where no surviving graft was evident showed only signs of rejection. 
There was a similar trend observed for both CD8 and 0X42 immunoreactivity within 
the grafts, (each + represents one animal)
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0X42 immunoreactivity within grafts

Grade 1 Grade 2 ^ ^ ( j r a d e  3 Grade 4

b e d

Figure 7.6. The degree of rejection within the graft was also measured based on the 

presence of 0X42 positive microglial cells. 0X42 positive cells within the graft were 

graded as described above. 0X42 positive cells were observed along the needle tract 

in almost all graft and with increased rejection there is an increase in the number of 

0X42 positive cells in the graft core. Rejected grafts (d and boxed at higher 

magnification h) show the infiltration of the graft area with 0X42 positive cells. In 

such grafts there were little or no signs of positive surviving cells. Scale bar 500pm 

(boxes are to scale).
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Table 7.6 C3 immunoreactivity within grafts

Group/Grade 1 2 3 4

Single intrastriatal 
graft in adult host

+ (x9)

PO striatal graft 
followed by a 
contralateral adult 
graft

+ (x6) + + +

Ip + striatal graft 
into adult (1 Od ENP)

+ (xll) +

Ip + striatal graft 
into adult(Primary)

+ (xl2)

Table 7.6 C3 immunopositive cells within the graft were graded according to 
Larsson (Larsson et al., 1999d). Immune positive cells were only identified in a small 
number of animals indicating that the immune response within the graft was cellular 
rather than humoral. (Number of animals in each group = 9) (each + represents one 
animal)
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C3 immunoreactivity within grafts

Grade 1 Grade 2

Figure 7.7. The degree of humoral rejection within the graft was also measured 
based on the presence of C3 positive cells. C3 positive cells within the graft were 
graded as described above. C3 immunoreactivity within grafts. Little or no 
immunorectivity was observed in all grafts with only 3 grafts showing immune 
positive cells.
Scale bar 500pm (boxes are to scale).

Grade 3 Grade 4
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7.4 Discussion

Work presented in this chapter provides evidence that it is possible to tolerise an 

animal to foreign tissue in the neonatal period for subsequent transplantation in the 

adult without the need for immunosuppressive therapy. This non-invasive method 

would eliminate the need for ongoing immunosuppression throughout the experiment, 

allowing long term experiments to explore the potential of human tissue for brain 

repair.

7.4.1 Graft survival

The histological evidence of ongoing rejection observed in CsA immunosuppressed 

rats in these grafts suggests that immune mechanisms may be the principal reason for 

the variable survival in this paradigm. Results clearly demonstrate substantially 

improved survival following tolerisation of animals in the neonatal period. This was 

most marked with ip injections of primary tissue and least marked in animals 

receiving a neonatal intrastriatal graft followed by a contralateral intrastriatal graft in 

the adult. The improved survival in the animals previously tolerised with primary 

striatal cells and receiving primary grafts compared to those tolerised and transplanted 

with ENPs may have an immunological basis; for example, differences between the 

two populations of cells (primary vs ENPs), as rejection of histocompatible neural 

transplants has been shown to vary depending on the cellular composition of the 

grafted material (Bartlett et al., 1990). Another explanation and a more likely one 

may be due to a compromise of the cell viability following cryopreservation ie ENPs 

were subject to suboptimal cryopreservation and work is ongoing to improve this 

technique. This would explain the differences between the data presented here and 

that reported with pig tissue (Armstrong et ah, 2002), i.e. that ENP grafts yielded
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better survival than primary grafts; however in the Armstrong study ENPs were not 

cryopreserved.

One possible explanation for the lower survival of graft tissue seen in animals 

receiving a neonatal intrastriatal graft followed by a contralateral striatal graft in the 

adult period may be a result of the repeated attack on the host blood brain barrier as a 

result of two sequential penetrations of the brain. During the period immediately after 

graft implantation and before the blood brain barrier reforms, the grafted tissue is 

more susceptible to immunological rejection and so a pre-existing antibody or 

activated lymphocytes that may have been generated in response to the first graft 

could lead to the rejection of the second graft. The good graft survival observed in the 

neonate only group would lead one to hypothesise that PO intrastriatal grafts produce a 

partial tolerance or no tolerance but remains protected from the immune system so 

that the second penetration of the brain exposes both grafts to immune attack. The 

small volume of both grafts and the expression of immune rejection markers are 

supportive of this idea. In some instances, only a scar remained indicating that the 

supposed immune response was complete. Another possibility is that ENPs injected 

into the CNS is less effective at tolerising and thus making the brain susceptible to 

immune attack upon subsequent penetrations or the tolerance may be short lived again 

making both grafts subject to rejection.

7.4.2 Mechanisms of rejection

Cellular immunity is believed to be important in the rejection of neural xenografts 

(Low et al., 1999). The markers CD8 and 0X42 were used in this experiment to 

determine the degree to which cellular immune components were recruited to graft
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rejection. 0X42 recognises activated microglia and cells with a typical microglial 

morphology were seen surrounding the graft periphery and needle tract of ‘healthy’ 

grafts in small numbers, and heavily infiltrating ‘rejecting’ grafts. These cells have 

been proposed to represent an afferent limb of the immune response in that they may 

act to initiate an immune response by presenting xenoantigens to T-lymphocytes 

(Finsen, 1993b; Geny et al., 1995; Finsen, 1993a; Lund et al., 1994; Poltorak and 

Freed, 1989a; Armstrong et al., 2001b; Larsson et al., 2001b; Larsson et al., 2000b). 

Microglial activation has consistently been shown to be an early event following 

neural transplantation (Mason et al., 1986; Lawrence et al., 1990; Duan et al., 1995; 

Shinoda et al., 1996) and was evident in this study especially in animals showing 

overt rejection. The presence of 0X42 positive cells in this study thus supports the 

notion that microglial activation may be an initiating event in xenograft rejection 

although in this study there was no analysis of graft rejection over time. Another 

explanation for the presence of 0X42 positive cells within grafts, is that they may be 

involved in carrying out antibody-dependent-cell-mediated cytotoxicity (ADCC) 

(Fanger et al., 1989). Microglia are also known to act as phagocytes and thus the 

presence o f 0X42 positive cells in grafts where only a scar remains may be indicative 

of such a mechanism (Davis et al., 1994). Thus the role of activated microglia in graft 

rejection is one that requires further work to elucidate the exact mechanisms of such 

cells.

CD8 is an accessory molecule expressed on cytotoxic T-lymphocytes, those cells 

involved in cell killing and it has been shown in rat studies to be ubiquitously 

expressed on cells of a macrophage lineage and on NK cells (Wallgren et al., 1995a). 

In this study CD8 positive cells had a morphology that is characteristic of
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lymphocytes. There have been several studies that have reported CD8 positivity in 

rejecting xenografts (Sumitran-Holgersson et al., 2003; Wallgren et al., 1995b; 

Wennberg et al., 2001; Duan et al., 2001; Barker et al., 2000b; Armstrong et al., 

2001b; Larsson et al., 2001b). There are differences of opinion in relation to the 

importance of these cells in graft rejection. However, it is clear that these cells do 

play a role in the rejection mechanism although the extent of this role is unknown. In 

this study there was a clear increase in the expression of CD8 positive cells in 

rejecting grafts compared to that of ‘healthy surviving’ grafts suggesting that, along 

with the 0X42 results, there is a cellular immune response ongoing in these grafts.

C3 is a major component of the complement system and is referred to as an opsonin 

given its ability to bind to neutrophils and macrophages in preparation for 

phagocytosis. The absence of any significant C3 immunoreactivity within the grafts 

suggests that the humoral mechanisms were not prominent.

The apparent tolerance in the experiments outlined here requires further work to 

elucidate the underlying mechanisms. One possibility is that the cells administered 

intraperitoneally are inducing a macrophage response which then acts via antigen 

presenting-cells to reduce or eliminate the immune response following intracerebral 

transplantation. Therefore further experiments will aim to identify what happens to ip 

injected cells. The differences in graft volumes reported here may be a result of poor 

survival of cryopreserved cells following thawing resulting in poor cell suspensions 

on grafting. However in the case of animals receiving bilateral intrastriatal 

transplants, the reduced graft volume may be a result of an ongoing immune response 

in the host brain.
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Further experiments are required to validate this model system. It has been shown 

here that cortical primary foetal tissue from different gestational ages and donors 

could be used to tolerize the animal to human tissue. It would be interesting to further 

explore the mechanism involved using various tissue types such as muscle or skin 

tissue as the tolerising tissue and to establish what is happening to the ip injected 

cells. These experiments are currently ongoing within the lab. There may also be 

implications for trial design in the ongoing trials of primary foetal tissue (see general 

discussion).

7.4.3 Conclusion

The model system presented here has potential importance for long term studies of 

new human donor cells for neural transplantation. It would present an alternative to 

the use of immunosuppression or immune-incompetent host experimental animals. 

Also, from the available literature it is evident that the neonatal host, whilst yielding 

useful information, is not an ideal model system given the differences between it and 

the adult host environment.
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Chapter 8

general <■.Discussion

Neural transplantation can be an effective strategy for treating neurodegenerative 

disorders such as HD; however, its clinical application is limited by the absence of a 

suitable and readily-available source of donor neurones. This thesis attempted to 

assess the potential of embryonic/foetal neural stem cells (ENPs) to provide a source 

of neurones suitable for transplantation and their ability to reform the damaged 

circuitry in a lesion model of HD.

8.1 In vitro characteristics o f ENPs

ENPs have been shown to have the potential to undergo asymmetrical and 

symmetrical division over time in culture. There has been a considerable amount of 

data produced over the last number of years in relation to the culture conditions 

necessary for the expansion of ENPs. However, there are still a lot of ambiguities in 

the field and direct comparisons between experiments are difficult given the 

heterogeneity in protocols used for this purpose. It has been widely accepted that 

EGF and FGF-2 are important mitogens, albeit not the only mitogens, for the 

expansion of ENPs in culture, and in the case of human ENPs, LIF is also an 

important factor. However, despite multiple studies characterising their expansion in 

number in the presence of these mitogens, there is relatively little known of their 

effect on the neuronal differentiation of these cultures over time, and this was the
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focus of Chapter 3. In this chapter it was found that the concentration of FGF-2 and 

EGF can influence neuronal differentiation (Kelly et al., 2003; Kelly et al., 2005), and 

this thus emphasises that it is important to consider the effect of mitogens on the 

differentiated phenotype as well as the increase in cell number. It would appear that 

lower concentrations of EGF with a higher concentration of FGF-2 are the preferred 

proliferation condition for subsequent neuronal differentiation. From this study it is 

clear that further work is required in this area to understand more clearly the 

conditions necessary for optimal culture of these cells in relation to their potential use 

for neural transplantation. This also has relevance to chapter 5 in terms of 

maximising the potential of the short term expanded cells.

The data arising in Chapter 4 provides an insight into the turnover of neuroblasts 

within the ENP population over time. In the culture conditions employed in this 

experiment, a continuous turnover of neuronal precursors was observed (as measured 

by BrdU incorporation), over the time period studied. It was clear from this data that 

neurons continue to be bom in culture over several passages, although the proportion 

of neurons (relative to total cell number) declined over time. The precise reason for 

this proportionate loss of neurons was not clear, although the data pointed to dilution 

by newly bom astrocytes as a major factor. Whether there is an additional loss of 

neuroblasts or a switch of these progenitors to produce glia, could not be determined 

from this study and will require further analysis. Recent evidence suggests that the 

GFAP positive cells that are observed in these cultures may in fact be a renewable 

multipotential population of cells rather than a true astrocyte (Alvarez-Buylla et al., 

2001) and therefore this population of cells may have the potential to produce neurons 

under the right conditions.
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Some other studies in the literature suggest that mouse ENPs may continue to produce 

neurons over extended periods of time (Smith et al., 2003), and it would be interesting 

to extend the BrdU studies to look at cultures expanded for much longer periods of 

time (months and years). Equally, species differences are known to exist (Kelly et al., 

2005; Smith et al., 2003; Svendsen et al., 1997b) and, whilst studies in Chapter 3 and 

Chapter 4 were carried out in mouse tissue, owing to the problematic and limited 

supply of human tissue in the early parts of this PhD, it is of great importance that the 

experiments presented here are repeated in human tissue.

A further question that arose from these studies was whether the cumulative neuronal 

yield was as great as should be expected and whether cells undergoing their last 

division in the proliferating culture may die in culture and be lost. Whilst a precise 

answer to this requires further work, it is likely that the current culture conditions are 

not optimal for the long term survival of these cells, and manipulation of the culture 

conditions may be necessary for them to survive long term within the population.

The ability to grow these cells in large numbers not only has implications for neural 

transplantation but is also relevant to an understanding the general biology and the 

development of human and murine neural tissue, of major influence on such work will 

be the identification of new markers of striatal differentiation. The identification of 

gene expression markers is one potential approach. Understanding the role of these 

genes in striatal development may also be important for directing the differentiation of 

ENPs to generate striatal-specific neuronal populations.
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8.2 In vivo characteristics o f ENPs

If ENPs are to be considered for neural transplantation in HD, it is essential, that they 

are of functional benefit in lesion models of the disease. It has been shown that there 

is a strong correlation between functional outcome and post mortem histological 

measures of neurochemical phenotypes within primary grafts. In the excitotoxic 

lesion model of HD the amount of striatal-like tissue (i.e. DARPP-32 positive tissue) 

correlates with most measures of behavioural recovery (Fricker et al., 1997b; Fricker 

et al., 1997a). Therefore, in this thesis, DARPP-32 was used as a reliable measure of 

striatal differentiation of ENPs both in vitro and in vivo.

In chapter 5 it was shown that 10 day expanded human striatal ENPs had the potential 

to differentiate into DARPP-32 positive neurons. There was a decline in the number 

of neurons differentiating from the culture after 10 days expansion; however a large 

proportion of these neurons retained the potential to differentiate into DARPP-32 

positive neurons. In vivo, the DARPP-32 specific differentiation of both primary and 

ENP grafts was lower than might be expected considering the in vitro results. This 

may indicate that DARPP-32 positive cells survived the transplantation process 

poorly, although this would be surprising considering studies using rodent fetal 

striatum as the donor tissue (Wictorin, 1992). Or it may be that human tissues 

require a prolonged time in vivo to differentiate into mature neurons, this is the more 

likely explanation given that rodent tissue grafts have been shown to develop a mature 

phenotype 6-8 weeks post-transplantation (Watts et al., 2000c). The puzzle remains 

as to why DARPP-32 levels are apparently higher in vitro after only 7 days 

differentiation. One possible explanation for this is that the cells differentiating in
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vitro are mature striatal cells that were present in the primary tissue and the low level 

seen following transplantation indicate that these mature cells don’t survive 

transplantation well but that less mature precursor cells, that can go on to differentiate 

into mature neurons, form the major neuronal population in the graft This is 

supported in a study by Fricker-Gates (Fricker-Gates et al., 2004b) who reported, 

using BrdU, that at least a proportion of the graft tissue comprised neurons from 

precursor cells that divided following transplantation. However, the fact that DARPP- 

32 positive neurons were observed within the graft indicates that ENPs do indeed 

have the potential to differentiate into the appropriate phenotype in vivo, and that 

longer term survival studies are warranted.

Another strategy may be to pre-differentiate the cells prior to transplantation. In a PD 

model it has been shown that pre-differentiating human ENPs derived from the VM 

resulted in elevated levels of dopamine in the graft region as well as amelioration of 

behavioural deficits in comparison to non-differentiated ENP grafts (Wang et al., 

2004). This method would require careful manipulation of the cells during the 

transplantation procedure as differentiated neurons may be more susceptible to 

damage and also the degree to which the cells are differentiated prior to 

transplantation would need to be optimised. The identification of specific genes 

associated with striatal development as described above, would provide new striatal- 

specific markers that are much needed to allow a detailed characterisation of ENPs 

differentiation both in vitro and in vivo.

No functional analysis of these grafts was carried out in this study although it is likely 

that, given the low numbers of mature neurons within the grafts that there would be
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no improvement on behavioural analysis at this time point (12 weeks), although long 

term graft survival may prove functional benefit. As discussed in more detail below, 

a model system is required to be able to carry out such experiments without the need 

for ongoing immunosuppression.

8.3 Neuronal projections in vivo

One of the underlying maladies of HD is the damage to the striatal circuitry. 

Therefore, it is crucial that for a cell therapy to be of benefit in HD, it must be able to 

reform this lost or damaged circuitry. The potential for ENPs to send out neuronal 

projections in the host brain was addressed both in the allograft and xenograft 

environment in this study using both mouse and human tissue to address the xenograft 

issue. It was found in this study that human derived striatal ENPs had a greater 

potential to send out long projections into the host brain than did mouse derived 

striatal ENPs which may be a result of phylogenetic differences between the two 

species. To confirm this, further studies are required, for example, transplanting fetal 

pig tissue into a rat host and comparing this to fetal rat tissue transplanted into to pig. 

Pig ENPs have been grafted to the rat brain and it was found that, like human to rat 

grafts, pig ENPs were also able to send long projections in the host brain (Armstrong 

et al., 2003b; Armstrong et al., 2002), however, in this study there was no other graft 

paradigm employed for comparison.

The specificity of projections is clearly an important issue, and indeed, non-specific 

projections may have adverse effects. In a study by Armstrong pig ENPs transplanted 

into a rodent host striatum were reported as producing profuse non-specific 

projections (Armstrong et al., 2000). In my studies, these non-specific projections
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were not seen to the same degree. In fact, the only non-specific fibres were seen 

traversing the corpus callosum on the ipsi- as well as the contralateral side.

For grafted cells to send out fibre projections in the host brain the neurons must have: 

(i) the intrinsic ability to do so and (ii) the surrounding environment must be 

permissive to such growth (Fawcett, 1997; Goldberg and Barres, 2000b). The 

technique of neural transplantation induces trauma to the host brain with a resulting 

astrocytosis. This then causes changes in the surface proteoglycan expression and 

secretion of extracellular matrix, along with damage to the oligodendrocytes (Barker 

et al., 1996; Chen et al., 2000; Goldberg and Barres, 2000a; Qiu et al., 2000). It is this 

glial scar that is believed to inhibit the regeneration of axons from the allografted 

tissue (Dunnett et al., 1989; Brecknell et al., 1996; Bentlage et al., 1999; Wilby et al., 

1999). This is in contrast to the studies presented here where projections were seen 

from allografts albeit to a lesser extent than those observed in the xenograft paradigm. 

The fact that xenografted tissue is not affected by such inhibitory mechanisms may be 

a result of differences in growth inhibitory molecules and or receptors thus rendering 

xenografted tissue unresponsive to such inhibitory cues in the host environment. 

Alternatively, the protracted development period of human tissue may result in the 

xenograft tissue being insensitive to the inhibitory envorinment thus allowing human 

tissue to maintain an embryoninc phase of axon growth for longer periods of time 

(Fawcett, 1997).

Another factor that may be of importance in relation to assessing the projections from 

striatal primary and ENP grafts is the ability of the grafted cells to migrate out from 

the graft following transplantation. In both primary and ENP grafts in this thesis,
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migrating cells were identified. Although the numbers were not quantified, it was 

apparent that there were more migrating cells from ENP than primary grafts. Thus, it 

is important that migration is taken into account when analysing the projections of 

striatal grafts. Iontophoresis, which uses an electrical square wave pulse to drive a 

tracer into the cells, was one method of addressing this issue as the tracer was taken 

up by graft core only one week prior to perfusion. Differences in the projections from 

ENP grafts labelled iontophoretically and those labelled using LacZ or GFP suggests 

that at least some of the additional projections seen in ENP grafts originated from 

migrated cells rather than from the graft core. Clearly this is important in considering 

the clinical safety and potential efficacy of ENP grafts, but will also deserve 

consideration when assessing grafts using donor cells from any stem cell source.

The migration of grafted cells may be a detrimental factor for neural transplantation as 

it may result in cells acquiring site-specific fates that are not necessarily desirable. 

Non-specific projections seen in ENP grafts may be a result of migrating cells sending 

projections to the ‘wrong’ site. Wang (Wang et al., 2004) suggests that the pre­

differentiation of ENPs prior to transplantation may be a way of overcoming the issue 

of migration, as it was shown in this study that pre-differentiated cells showed little 

migration in comparison to non-differentiated ENP grafts. The xenograft 

environment appears to favour the growth of graft neuronal projections in the studies 

carried out as part of this thesis. However there is of course no allograft arm for the 

human primary or expanded ENP donor tissue. One way to explore whether the 

apparent extensive projections from human donor tissue was related to donor brain 

size would be to perform the 4 way experiment using pig tissue, i.e the pig brain being 

bigger than the rat or mouse brain and could thus be used to explore the issue
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systematically. Whilst in this study, the xenograft environment would appear to 

favour graft projections in the host brain it is not possible to say conclusively that this 

is a result of the xenograft environment per se as it may also be influenced by the 

migration abilities of the grafted cells in the xenograft environment.

8.4 Animal model for long term transplantation studies

One of the main constraints of the studies carried out in this thesis, and one that 

affects the understanding of the true potential of human derived ENPs for neural 

transplantation and their progression into the clinical setting, is the lack of long term 

post transplantation data. Animal studies using human ENPs result in graft rejection 

if no immunosuppressive therapy is administered. However, immunosuppressive 

therapies such as daily injections of CsA or using nude rats or scid mice are are 

limiting, as behavioural analysis is restricted due to the housing environment required 

for these animals. Therefore, it is important that a model system be developed that 

allows graft survival and differentiation as well as functional integration to be 

assessed without the added complication of immunosuppression. Chapter 7 has 

addressed this issue by considering the ability to tolerise animals to foreign tissue 

during the first week of the postnatal period, before the immune system has fully 

developed. Both primary and ENP grafts were analysed following tolerising with the 

same tissue by ip injection in the neonate, and lead to substantially improved graft 

survival. Furthermore, there was better graft survival in the case of primary grafts, 

which is in contrast with the small number of studies so far on this topic, that suggests 

that ENP grafts are less immunogenic than primary tissue. The reason for this 

disparity between the tolerisation using primary fetal CNS and ENPs may be because 

(i) primary tissue is better at inducing tolerance or (ii) cryopreservation of ENPs
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compromised their viability. Also it should be noted that following cryopreservation 

the cells were expanded for 10-14 days before grafting to return the cells to a 

proliferative state. Therefore, the cells may have undergone changes during this time 

that may have rendered them significantly different from the cells used to tolerise the 

host in the neonatal period. Methods for improving the cryopreservation of human 

tissue are being investigated within the lab.

The results presented in Chapter 7 showing that an intrastriatal graft in the neonatal 

period followed by an intrastriatal graft on the contralateral side in adulthood resulted 

in poorer survival of the adult graft than if the tolerisation was performed ip (but 

better than if no tolerisation took place), could have relevance to ongoing clinical 

studies: some HD patients have received sequential bilateral human striatal tissue 

transplants, up to 18 months apart. In one study, one patient, showed initial 

improvement after the first graft, but deteriorated dramatically after the second graft 

and an MRI brain scan showed the presence of a cyst like structure at the graft site 

(Bachoud-Levi et al., 2002b). One could hypothesise that the second graft caused an 

acute immune response resulting in both grafts being rejected, a concept that would be 

consistent with an interpretation of our results. This hypothesis will require further 

studies to elucidate the precise underlying mechanism, and a more appropriate study 

would be to perform sequential grafts in an adult host animal. Animal studies using 

allograft tissue, which is less susceptible to immune rejection, has demonstrated that 

intracerebral grafts in presensitized hosts (animals were sensitized with donor spleen 

cells prior to intracerebral transplantation) do not survive well (Mason et al., 1986). 

Widner (Widner and Brundin, 1993) has shown that bilateral allogenic grafts can 

survive and show improvement on rotational analysis up to 40 weeks post grafting.
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However, it was shown that in 5/9 cases the second graft was clearly smaller than the 

first graft suggesting that there was some rejection ongoing in the second graft. In a 

second study by the same group (Duan et al., 1993a) there was no trend observed in 

relation to graft size. However, it was again observed that sequential grafting in the 

allograft situation into the rodent brain did not affect graft survival. There was an 

increase in the expression of MHC class II in and around the second graft and this was 

more pronounced than that seen in animals receiving only one graft. This may be due 

to the host being immunised by the first graft inducing a low level immune response, 

although but this moderate increase in MHC class II expression does not correlate 

with graft rejection (Duan et al., 1993b; Poltorak and Freed, 1989b). Where there is a 

significant increase in MHC expression there is a correlation with graft rejection 

(Lawrence et al., 1990; Mason et al., 1986). This work thus raises questions that may 

be crucial for the way in which transplants are administered in the clinical setting. A 

requirement to perform one stage bilateral grafts to reduce the risk of rejection would 

raise the importance of an alternative cell source to provide sufficient quantities of 

human foetal tissue.

Concluding remarks

This thesis addresses several issues in relation to the use of ENPs as an alternative cell 

source for transplantation in HD. Transplantation of ENPs into animal models of HD 

has over the last 5-10 years highlighted a number of problems for the potential clinical 

use of these cells that are still to be solved, and in recent years the focus has switched 

back to an emphasis on determining the fundamental characteristics of these cells, 

although a better understanding of the nature of these cells awaits the identification of 

more precise cellular markers of precursor differentiation. Moreover, it is clear that
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the basic culturing of the cells prior to transplantation is far from optimised and 

warrants further consideration. It is not clear currently whether long term expanded 

human ENPs have the capacity to produce sufficient numbers of neurons of the 

appropriate phenotype to be of clinical use, and these issues may take a substantial 

amount of time to address satisfactorily. Equally, other stem cells sources also bring 

with them issues of how to direct the final differentiated phenotype and also safety 

issues. However, an interim step may be to capitalise on the already-committed cells 

that can be expanded from ENPs over the first couple of weeks in culture. Even a 

modest increase in cell number may be advantageous at this early stage in the field, 

and could provide a starting point for understanding the issues associated with stem 

cell transplantation. However, it is clear that it would not be appropriate to consider 

taking such cells into the clinic at this early stage. The next steps are to assess whether 

these cells can improve behavioural deficits in animal models of HD and to try to 

improve the rate of proliferation and cell survival within this window of expression.

Caution in this respect is of utmost importance: the recent criticisms of neural 

transplantation arising from studies carried out in the US (Freed et al., 2001) have 

already added an air of scepticism to the field, thus it is imperative that we are 

confident experimentally that any stem cell source is safe and efficacious in animal 

models before considering pilot human studies.
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Appendix 1
Solutions and Recipes

Culture Media:

Dulbecco’s modified eagle’s medium and Hams-F12 with 1% PSF (penicillin, 

streptomycin, fungizone). Either 2%B27 or 1%N2 was added to this medium along 

with the appropriate concentrations of EGF and FGF-2.

Differentiation media:

The basic medium of DMEM plus 1% PSF as well as 2%B27 and 1% fetal calf serum 

(FCS).

Freezing media:

7% DMSO (Dimethyl-sulphoxide) and 15% BSA in basal medium. For 33mls, 

30.5ml basal medium, 5g BSA and 2.5ml DMSO are used.

Trypsin solution:

Mix 0.1% trypsin with 0.05% DNase in HBSS \

DNase solution:

Mix 0.05% DNase into dissection medium.

A



■Ippendi v J SoCutions a n d (Recipes

Phosphate Buffered Saline:

Constituents include 8.5g sodum chloride, 0.4g dihyrogen sodium phosphate and lg 

disodium hydrogen phosphate per litre of distilled water. The pH was 7.4, adjusted 

using hydrochloric acid.

Quench:

Made up with 10ml concentration hydrogen peroxide, 10ml methanol and 80ml 

distilled water, reduces background staining.

TRIS-buffered saline:

This is made up as a 4x stock solution. 48g of Trizma base and 36g of sodium 

chloride were added to 1 litre of distilled water. The pH was adjusted to 7.4 using 

hydrochloric acid.

To make TXTBS 0.2% Triton-XlOO was added to the solution, this allows membrane 

permeabilisation.

For the long term storage of tissue sections, the addition of 0.02% sodium azide is 

added to the stock solution, this prevents any microbial growth from taking place.

TRIS non-saline solution (0.05M Trizma solution):

6g of Trizma base is added to 1 litre of distilled water and again the pH is adjusted to 

7.4 using hydrochloric acid.

Perfusion buffer:

18g of di-sodium hydrogen phosphate and 9g sodium chloride were added to 1 lire of 

distilled water. Orthophosphoric acid was used to adjust the pH to 7.4.
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4%  Paraformaldehyde:

To 1 litre of perfusion buffer 40g of paraformaldehyde is added. 10M sodium 

hydroxide was added over heat to help dissolve the paraformaldehyde. 

Orthophosphoric acid was used to adjust the pH to 7.4.

25% Sucrose solution:

250g of sucrose is made up to 1 litre using 750ml perfusion buffer.

Cresyl fast Violet Protocol (nissl stain):

Cresyl violet is made up by dissolving 5g cresyl violet in 600ml of distilled water, and

then adding 600ml of 1M sodium acetate and 340ml of acetic acid, folowed by

stirring and filtering. A Shandon processing machine is used for staining.

Distilled water 3x5 min

70% alcohol 5 min

95% alcohol 5 min

100% alcohol 5 min

50/50 chloroform/alcohol 20 min

95% alcohol 5 min

70% alcohol 5 min

Distilled water 5 min

Cresyl violet 5 min

Distilled water end

Sections are then cleared and dehydrated on removal from the machine:

70% alcohol 5 min

95% alcohol 5 min

Acid alcohol 5 min

100% alcohol 5 min

Xylene 5 min

Slides are then converslipped using a DPX mountant.
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Appendix 2

Materials & Suppliers

b-FGF R & D Systems EGF Sigma

DMEM-F/12 GIBCO HBSS' Solution: GIBCO

DMSO Sigma BSA Sigma

B27 GIBCO Hepes buffer GIBCO

PSF GIBCO L-Glutamine GIBCO

FCS GIBCO NGS Dako

Isoflurane Vericore Dnase Sigma

Trypan blue Sigma o2 BOC Gases

Euthatal Rhone Merieux n 2o BOC Gases

Glucose Sigma

Trypsin Worthington Biochemical Corporation

Molecular Probes Leiden, Netherlands

Chemicon Southampton, UK

Sigma Poole, Dorset, UK

GIBCO Paisley, Scotland

R & D Systems

Worthington Biochemical Corporation

Vericore

Rhone Merieux 

BOC Gases 

Dako

Abingdon, Oxon, UK 

Freehold, New Jersey, 

USA

Marlow,

Buckinghamshire, UK 

Harlow, Essex, UK 

Manchester, UK 

Glostrup,Denmark

D



Jippendix.3 Jinti6odiesfor immunofiistocficmutry

Appendix 3

IMMUNO-HISTOCHEMISTR>r- Primary, Secondary & Blocking Sera
PRIM ARY
Antibody

B G alactosidase

Raised
in

Rabbit

Supplier

Cappel

Dil'n

1:6000

ul
per
ml

0.16

Norm al
Serum

Goat

B locking
D il’n

ul j 
per 
ml

'Norm al'
Dil'n

ul
per
ml

SEC O ND AR Y
A ntibody

Dil'n
ul

per
ml

Comments

3% 30 1% 10 Goat anti-rabbit 1:200 5

B i l l  Tubulin Mouse Sigma 1:400 2.5 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

BrdU Mouse Roche 1:25 40.0 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

C ALBINDIN Mouse Sigma 1:20,000 0.05 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

CD8 Mouse Serotec 1:500 2.0 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

C hAT Rabbit Chemicon 1:2,000 0.50 Goat 3% 30 1% 10 Goat anti-rabbit 1:200 5

D ARPP-32 Mouse Cornell Univ 1:30,000 0.03 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5
already diluted 1:50 
N eeds 1:600 diln.

GFAP Rabbit DAKO 1:2,000 0.50 Goat 3% 30 1% 10 Goat anti-rabbit 1:200 5

GFP Chicken Chemicon 1:4000 0.25 Goat 3% 30 1% 10 Goat anti-chicken 1:200 5

HuNu Mouse Chemicon 1:1500 0.67 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

M2 Rat Bjorklund Lab 1:50 20.0 Rabbit 10% 100 5% 50 Rabbit anti-rat 1:200 5
}No Triton Use 10% in 
}primary then

M6 Rat Bjorklund Lab 1:50 20.0 Rabbit 10% 100 5% 50 Rabbit anti-rat 1:200 5
}5%  for 2ndry(ABC 1%)

NeuN Mouse Chemicon 1:4,000 0.25 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

O X-42 Mouse Serotec 1:500 2.0 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

Parvalbum in Mouse Sigma 1:4,000 0.25 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed

Tau Mouse Zymed ?1 :100 10.0 Horse 3% 30 1% 10 Horse anti-mouse 1:200 5 2ndry Rat adsorbed
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Appendix 4
GFP expression over time in vivo

GFP expression over time in vivo was analysed. Primary and 10 day expanded grafts 

were administered (4 animals per group for each time point). Grafted animals all 

received the same number of cells and were sacrificed at 3, 6, 12 and 20 weeks post 

transplantation. It was found that by 12 weeks the expression of GFP within the 

grafts was significantly diminished and by 20 weeks there were no GFP positive cells 

in any of the grafted animals. 3 and 6 week grafts were similar to those described in 

Chapter 5, however, by 12 weeks the graft volume as measured by GFP positive cells 

had decreased and by 20 weeks there were only occasional GFP positive cells 

identified.
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3 weeks 6 weeks

12 weeks 20 weeks

Figure 1. Graft morphology at the various time points analysed in this study.
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Volume of primary and ENP grafts over time

2.5 4

1.5

0.5

3weeks

□  Primary
□  Expanded

c f i .
6 weeks 12 weeks 20weeks

Figure 2. Graft volume decreased with time in vivo and by 20 weeks there were only 

a very small number of GFP positive cells.


