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Synopsis

This work proposes a biologically inspired collective behaviour for a team o f  co

operating robots. Collective behaviour is achieved by controlling the local interactions 

among a set o f  identical mobile robots, each robot performing a set o f  sim ple behaviours 

in order to realise group goals. A m odification o f  the subsumption architecture is 

proposed for implem enting control o f  individual robots. This architecture is adopted 

because it is computationally inexpensive and potentially suitable for low-level reactive 

and reflexive behaviours.

In this scenario, the individual behaviours o f  the robots have different aims, which may 

cause conflict. To address this issue, a fuzzy logic-based approach for m ultiple behaviour 

coordination within each robot is proposed.

The work also focuses on the developm ent o f  intelligent multi-agent robot teams capable 

o f acting autonomously and o f  collaborating in a dynamic environm ent to achieve team 

objectives. A knowledge-based software architecture is proposed that enables these 

robots to select co-operative behaviours and to adapt their perform ance during the 

specified time o f  the mission. These abilities are important because o f  uncertainties in the 

environmental conditions and because o f  possible functional failures in some team 

members. Improvement in team perform ance is achieved by updating the control o f  the 

robots based on knowledge acquired on-line. This architecture is implemented in a 

simulated team o f  mobile robots performing a proof-of-concept collaborative task. The



results show a significant improvement in overall group performance and the robot team 

is able to achieve adaptive cooperative control despite dynamic changes in the 

environm ent and variation in the capabilities o f the team members. Finally, a task 

involving real mobile robots is undertaken to demonstrate a practical, though simplified, 

implementation o f  the proposed collective behaviour.
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Chapter 1

Introduction

1.1. Prelim inaries

The increasing current interest in m obile robots and in particular, m obile  robot team s, 

is due to their applicability to a w ide range o f  tasks. Exam ple tasks suitable for 

m obile robots include nuclear and hazardous waste cleanup, m ining - including 

m aterial rem oval, search and rescue operations, mine sweeping for both m ilitary and 

hum anitarian purposes, space m issions, lifting and carrying o f  m aterials, surveillance 

and sentry, as well as underw ater excavation.

A  m ulti-robot system  or team  consists o f  a  group o f  robots that can take specific roles 

w ith in  that organisation. The team  m ay be com posed o f  individual robots that either 

differ or are sim ilar in structure and capability, i.e., either heterogeneous or 

hom ogeneous. Furtherm ore, it m ight have co-operative individuals w orking together 

tow ards a m utual goal, or it could be com posed o f  rivals com peting for som e lim ited 

resources.

B iological agents, for exam ple social insects, have been m anifestly successful in 

exploiting  the natural environm ent in order to survive and reproduce. Scientists are 

interested in understanding the strategies and tactics adopted by such natural agents to 

im prove the design and functionality  o f  com puter-based artificial agents (robots). 

They observe how  these social insects locally interact and co-operate to achieve
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com m on goals. It seem s that these creatures are program m ed in such a way that the 

required global behaviour is likely to em erge even though some individuals m ay fail 

to carry out their tasks.

In th is work, a  biologically inspired collective behaviour for a team  o f  co-operating 

m obile robots is proposed. This behaviour em erges by controlling  the local 

interactions betw een a num ber o f  identical m obile robots perform ing a set o f  sim ple 

behaviours. A m odification o f  the subsum ption architecture is proposed for 

im plem enting the control o f  the individual robots. The context o f  tracking  a dynam ic 

target is used to illustrate the proposed approach.

Since the control in behaviour-based system s is distributed am ong a set o f  specialised 

behaviours, the behaviours o f  the robots have different aims, w hich m ay cause 

conflict. Therefore, it is necessary to  obtain  an appropriate trade-off betw een the 

objectives o f  the robots that can po ten tia lly  conflict.

To address this issue, a fuzzy logic-based approach for behaviour coordination is 

proposed. Fuzzy logic is robust in the presence o f  system  and external perturbations.

It is straightforw ard to design and im plem ent and efficient at representing know ledge 

for system s that deal w ith continuous variables. The fuzzy rule form at m akes it easy 

to write sim ple and effective behaviours for a variety o f  tasks w ithout having to use 

com plex m athem atical m odels. It is possib le to adopt a w eighted com bination o f  

behaviours, which gives sm oother control. The local nature o f  fuzzy rules allow s one 

to identify the fired rules im m ediately and m akes it possible to m odify specific 

behaviours quickly.

2



The focus o f  developm ent in co-operative robotic system s is to construct team s o f  

robots able to accom plish m issions that cannot easily be achieved, i f  at all, using 

single robots. The potential advantages o f  co-operative system s over single robot 

solutions include increased fault to lerance, sim pler robot design, w idened application 

dom ains, and greater solution efficiency. However, the use o f  m ultiple robots 

introduces additional issues o f  robot control that are no t present in single robot 

solutions. Forem ost am ong these is the question o f  how  to achieve globally  coherent 

and efficient behaviours from  the interaction o f  robots lacking com plete global 

inform ation.

The robots need to be responsive to continual changes in the capabilities o f  robot team  

m em bers and to changes in the state o f  the environm ent and m ission. They should be 

aware o f  the actions o f  their team  m ates and have the ability to adapt to these dynam ic 

changes. To address this issue, a know ledge-based software architecture is proposed 

that enables these robots to perform  co-operative behaviours and adapt their 

perform ance during the specified tim e o f  the m ission. This im provem ent in team  

perform ance is achieved by updating the control o f  the robots based on know ledge 

acquired on-line.

1.2. Research Objectives

The overall aim o f  this research w as to develop intelligent m ulti-agent robot team s 

capable o f  acting autonom ously and collaborating in a dynam ic environm ent to 

achieve team  goals.
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To reach the aim  o f  the research, the fo llow ing objectives were set:

1- To use the collective behaviour o f  sim ple creatures to enable a team  o f  robots to 

accom plish a com plex task, such as a dynam ic target tracking task, and to m odify 

the subsum ption architecture to be suitable for controlling the robots.

2- To find a new  technique for solving conflicts betw een the contradictory

behaviours o f  each robot.

3- To generate a know ledge-based softw are architecture for a team  o f  robots to

enable them  to select appropriate actions and adapt the m ission perform ance to

deal w ith uncertainties in the environm ent or changes in the capabilities o f  team  

m em bers.

4- To construct a team  o f  m obile robots for real experim ents to investigate the 

proposed techniques.

1.3. Organisation of the Thesis

The rem ainder o f  the thesis is organised as follows. C hapter 2 review s the 

background literature relevant to the w ork presented in this thesis. This includes 

literature on co-operating m obile robots, the collective behaviour o f  sim ple creatures 

such as social insect colonies, the action selection problem  (ASP), behaviour

coordination, robot aw areness and the basic com ponents o f  fuzzy logic system s.



C hapter 3 describes the m odification o f  the subsum ption architecture and exam ines 

the collective behaviour o f  social insects as applied to co-operating m obile robots in 

the context o f  dynam ic target tracking.

C hapter 4 proposes a fuzzy logic approach for behaviour coordination in m ulti-robot 

system s.

Chapter 5 discuses the developm ent o f  a know ledge-based system  for m ulti-agent 

robot team s and proposes a softw are architecture to enable m ultiple robots to perform  

co-operative behaviours and adapt their perform ance during the specified tim e o f  the 

m ission.

C hapter 6 focuses on the design o f  a team  o f  m obile robots and real experim ents to 

illustrate an im plem entation o f  som e o f  the proposed ideas.

C hapter 7 concludes the thesis and suggests areas for further investigation.
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Chapter 2

Background

2.1. Preliminaries

D uring the last few decades, m ajor research efforts have been directed tow ards 

im proving the perform ance o f  individual m obile robots through the use o f  advanced 

sensors and actuators and the application o f  intelligent control algorithm s. This was 

m ainly driven by the need to perform  increasingly com plex real tim e tasks. As a 

result, individual m obile robots have becom e very sophisticated. M ore recently, an 

alternative approach to achieving com plex tasks using m ultiple co-operative 

autonom ous m obile robots has been investigated (Hu and Gan, 2005; M elhuish  et al., 

1998; Alam i et al., 1998; Hu et al., 1998; A rkin, 1990; M ataric, 1998, 1996). G roups 

o f  m obile robots have been constructed, w ith the aim o f  studying such issues as group 

architecture, resource conflict, m obile robots co-operation and learning.

Collaboration increases the perform ance o f  a robot team  w ithout requiring significant 

m odifications to individual robot capacities. Collaboration m ay be obtained using 

com m unication schem es, im plicit com m unication via the environm ent or sim ple 

explicit com m unication schem es. By these m eans, the task accom plished by the team  

can be m ore com plex and its perform ance enhanced w ithout losing the autonom y or 

increasing the com plexity o f  individual robots. In some cases (G hanea-H ercock and 

B am es, 1996; Boehringer et al., 1995; M ataric et al., 1995; M artinoli, 1999a, 1999b),
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the task m ay require collaboration for it to be successfully perform ed at all, w here a 

single robot is not able to carry out the task  alone. Such tasks can be defined to be 

“strictly collaborative” .

2.2. Co-operative M obile Robotics Classification

Research in the field o f  co-operative m obile robotics has increased substantially  in 

recent years. M ost o f  this research has concentrated on how  to obtain the desired 

interaction dynam ics betw een agents (robots) to increase the overall team  

perform ance. This field can be broadly  categorised into two groups: “co llective” 

(sw arm  type) co-operation and “in ten tional” co-operation.

Collective robotics is usually behaviour-based and characterised by distributed control 

o f  hom ogeneous robot team s. The desired  collective behaviour is obtained as an 

em ergent property o f  the interaction m echanism  designed into each robot. The 

approaches developed and the problem s addressed are for hom ogeneous robot team s 

only, in which each robot has the sam e capabilities and control algorithm . 

A dditionally, issues o f  efficiency are largely ignored. The types o f  tasks im plem ented 

take inspiration from social insect societies, such as ants and bees.

A num ber o f  researchers have investigated ‘sw arm ’ robotics. Steels (1990) presented 

sim ulation studies o f  several dynam ic system s to achieve em ergent functionality w ith 

application to the collection o f  rock sam ples on a distant planet. D rogoul and Ferber

(1992) undertook sim ulations o f  foraging and chain-form ing robots. A rkin et al.

(1993) im plem ented research concerned w ith sensing and com m unication for tasks



such as foraging. M ataric (1992) described the im plem entation o f  group behaviours 

for physical robots such as dispersion, aggregation and flocking. K ube and Zhang

(1992) detailed an em ergent control strategy applied to a group o f  physical robots 

perform ing the task  o f  locating and push ing  a brightly-lit box.

“ Intentional” robotics achieves co-operation am ong a lim ited num ber o f  typically 

heterogeneous robots perform ing several distinct tasks. Such system s norm ally 

em ploy either central control or a m ix o f  central and distributed control.

In an intentional co-operative system , the robots often have to deal w ith som e kind o f  

efficiency constraint that requires a m ore directed type o f  co-operation than is found 

in collective co-operative system s. Furtherm ore, the robots are usually required  to 

perform  several d istinct tasks. These m issions thus usually require a sm aller num ber 

o f  robots involved in m ore purposeful co-operation, although the individual robots 

involved are typically able to perform  usefu l tasks on their own. Such system s require 

a robust allocation o f  subtasks to robots, to m axim ise the efficiency o f  the  team , and 

p roper coordination am ong team  m em bers, to allow  them  to com plete their m ission 

successfully. M ost existing w ork on heterogeneous physical robots uses a traditional 

artificial intelligence approach, w hereby the robot controller is divided into m odules 

for sensing, w orld m odelling, planning, and acting. This is the so-called sense-m odel- 

p lan-act paradigm , in contrast to the functional decom position m ethod used in 

behaviour-based approaches.



M any researchers have investigated these intentional co-operative system s. N oreils

(1993) addressed one such sense-m odel-plan-act control architecture, w hich includes 

three layers o f  control. The planner level m anages coordinated protocols, decom poses 

tasks into sm aller sub-units, and assigns the sub-tasks to a netw ork o f  robots. The 

control level organises and executes the tasks o f  the robots. The functional level 

provides controlled reactivity. This architecture was applied to two m obile robots 

perform ing box pushing.

Caloud et al. (1990) presented another sense-m odel-plan-act architecture, which 

includes a task planner, a task allocator, a m otion planner and an execution m onitor. 

Each robot had goals to achieve, e ither based on its own current situation or v ia a 

request by another team  m em ber.

A sam a et al. (1992) described a robot system  called ACTRESS, w hich addressed the 

issues o f  com m unication, task  assignm ent and path planning am ong heterogeneous 

robotic agents. Their approach revolves prim arily around a negotiation fram ew ork, 

w hich allow s robots to recruit help w hen needed. They dem onstrated their 

architecture on m obile robots perform ing a box-pushing task.

In general, co-operative (both sw arm  and intentional) approaches to robotics should 

include m echanism s within the control software o f  each robot that allow s team  

m em bers to recover from dynam ic changes in their environm ent or in the robot team . 

Researchers have recognised that a  m ore prom ising approach for the developm ent o f  

co-operative control m echanism s is by the inclusion o f  learning algorithm s (H u and
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Gu, (2005, 2004); Cragg and Hu, 2005; A costa  and Hu, 2003a; 2003b). M uch w ork in 

particular has been carried out in the field o f  m ulti-agent learning (M inguez and 

M ontano, 2005; Elfw ing, 2004; W eiss et al., 1996; M ataric et al, 1995). A pplications 

include predator/prey scenarios (Korf, 1992; Tan, 1993; G asser et al., 1989; Levy and 

Rosenschein, 1992; Stephens and M erx, 1990), m ulti-robot soccer team s (D uhaut et 

al., 1998), and box-pushing tasks (S tilw ell and Bay, 1993; K ube and Zhang, 1992; 

Sen et al., 1994).

2.3. Collective Behaviour o f Social Insects

Collective behaviour is dem onstrated  in any type o f  system  where patterns are 

determ ined not by som e centralised body, bu t instead by the interactions o f  a group o f  

decentralised bodies (Fong et al., 2003; K ristina and Aram, 2002). There is no need 

for centralised authority at all, no r for explicit com m unication betw een interacting 

bodies.

Collective behaviour dem onstrates also a fundam entally im portant principle that has 

been beneficial to nature and hum ans alike, nam ely that some objectives are easier to 

accom plish in a group rather than  by an individual. This interaction does not 

necessarily require a high level o f  intelligence, or even com m unication betw een the 

participating bodies, yet objectives m ay be accom plished that are outside the scope o f  

an individual. M any exam ples o f  collective behaviour can be found in nature, e.g. 

flocking o f  birds, term ites building enorm ous mounds, and ants collectively carrying a 

large grasshopper back to the nest to be used as food. A flock o f  birds m anoeuvring
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through the air is quite im pressive. There is no a leader bird telling the other birds 

which way to m ove. Each bird sim ply has an instinctive behaviour to react to the 

other birds around it, and when they all fly together the result is a collective behaviour 

called flocking. A nother exam ple is ants, which have m inim al form s o f  

com m unication and are considered to have very low  intelligence, yet arm y ants are 

able to m ove large objects thousands o f  tim es heavier than them selves back to their 

nest (Franks, 1989). One ant could no t direct the all other surrounding ants to return 

that object, and could not m ove the object itself. It is also the case that an ant could 

not determ ine the weight o f  the entire object by simply tugging on it. H ow ever, the 

collective behaviour that results in successful com pletion o f  the an ts’ objective is due 

to a genetic trait possessed by the ants. As shown by these exam ples, collective 

behaviour provides a m eans for very sim ple creatures to accom plish com plicated 

objectives.

Social insects can process m any sensor inputs, m odulate their behaviour according to 

m any stim uli, including interactions w ith nest-m ates, and take decisions on the basis 

o f  a large am ount o f  inform ation. The success o f  social insects lies m ainly in their 

self-organising behaviour (SO), w here com plex behaviour em erges from  the 

interactions o f  individuals that exhibit sim ple behaviour by them selves (Parker et al., 

2005; Tarasew ich and M cM ullen, 2002). They can also solve problem s in a changing 

environm ent (flexibility) and give the h ighest level o f  perform ance even though some 

individuals fail to perform  their tasks (robustness). M ore and m ore researchers are 

interested in this exciting way o f  achieving a form o f  artificial intelligence - swarm  

intelligence -  in which it is attem pted to link the functioning principles o f  insect 

colonies to the design principles o f  artificial system s. For exam ple, Bay and U nsal
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(1994) described the design and developm ent o f  a class o f  small m obile robots 

intended to be sim ple, inexpensive and physically identical, thus constituting a 

hom ogeneous team  o f  robots. They derive their usefulness from  their group actions, 

perform ing physical tasks and m aking co-operative decisions as a coordinated team. 

Because o f  their behavioural resem blance to their insect counterparts, they have been 

nam ed “arm y-anf ’ robots.

B onabeau et al. (1999) and K ube and B onabeau (2000) stated that social insects such 

as bees, ants and term ites all function collectively as groups, and efficiently 

accom plish a range o f  tasks in order to m aintain  their societies.

Kube and Zhang (1992, 1994) exam ined  the problem  o f  controlling m ultiple 

autonom ous robots based on observations m ade from  the study o f  social insects. They 

proposed m echanism s that allow ed populations o f  behaviour-based robots to perform  

tasks w ithout centralised control or use o f  explicit com m unication.

Chantem argne and H irsbrunner (1999) presented a collective robotics application 

w hereby a pool o f  autonom ous robots regroup objects that are distributed in their 

environm ent. There is no supervisor in the system, the global task is not encoded 

explicitly within the robots, the environm ent is not represented w ithin the robots, and 

there is no explicit co-operation protocol betw een the robots. Instead, the global task 

is achieved by virtue o f  em ergence and self-organisation.

M artinoli and M ondada, (1995; 1998), M artinoli et al., (1997a; 1997b; 1999a; 1999b) 

and M artinoli (1999) focused on the hardw are tools needed to m onitor team
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perform ances as well as those needed to achieve collective adaptive behaviours. They 

presented a sim ple bio-inspired collective experim ent, nam ely the gathering and 

clustering o f  random ly distributed passive seeds. V aughan et al. (2001a; 2001b) 

show ed a team  o f  real m obile robots that co-operated based on the ant-trail-follow ing 

behaviour and the dance behaviour o f  bees to robustly transport resources betw een 

two locations in an unknown environm ent.

A nt-inspired solutions to various search problem s have been dem onstrated (D origo et 

al., 1996; Deneubourg et al., 1990, 1991; Beckers et al., 1994), as has chem ical trail 

laying and following in robots (Sharpe and W ebb, 1998; Russell, 1999).

W agner et al. (1998) and W agner and B ruckstein (1995) described an ant-inspired 

m ethod for exploring a continuous unknow n planar region. Such a m ethod m ight 

em ploy robots w ith lim ited sensing capabilities but with the ability to leave m arks on 

the ground to cover a closed region for the purposes o f  cleaning a floor, painting a 

wall, or dem ining a m ine field. A m ark  and cover (MAC) rule o f  m otion is proposed 

using tem porary m arkers (“pherom ones”) as a m eans o f  navigation and indirect 

com m unication.

Ijspeert et al. (2001) investigated collaboration in a group o f  sim ple reactive robots 

through the exploitation o f  local interactions. A test-bed experim ent is proposed in 

w hich the task o f  the robots is to pull sticks out o f  the ground -  an action that requires 

the collaboration o f  two robots to be successful. The experim ent is im plem ented in a 

physical set-up com posed o f  a group o f  m obile robots, and in W ebots, a three 

dim ensional sim ulator o f  m obile robots, (M ichel, 1998).
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As m entioned above, through the use o f  collective behaviour inspired by social 

insects, sim ple tasks that require a sm all num ber o f  m obile robots working in 

uncluttered environm ents can be accom plished. The question o f  interest is whether 

this collective behaviour approach can help accom plish com plex tasks, such as 

dynam ic target tracking, which require m ore collaboration, interaction, coordination 

and aw areness am ong a large num ber o f  robots working together in a highly cluttered 

and dynam ic environm ent.

2.4. Behaviour Coordination

In behaviour-based robotics, the control o f  a robot is shared betw een a set o f  

purposive perception-action units, called  behaviours (M urrieta-Cid, 2003; Parker, 

2002; Schultz and Parker, 2003; A rkin, 1999; Pirjanian and Christensen, 1997). Based 

on selective sensor inform ation, each behaviour produces im m ediate reactions to 

control the robot with respect to a  particu lar objective, i.e., a narrow  aspect o f  the 

overall task  o f  the robot such as obstacle avoidance or wall following. Behaviours 

w ith different and possibly incom m ensurate objectives m ay produce conflicting 

actions that are seem ingly irreconcilable. Thus, a m ajor issue in the design o f  

behaviour-based control system s is the form ulation o f  effective m echanism s for 

coordination o f  the behaviours in a robot. This is known as the action selection or 

behaviour coordination problem  (Pirjanian, 1998).

B ehaviour coordination is generally recognised as one o f  the m ajor open issues in 

behaviour-based approaches to robotics. It can be split into two conceptually different 

problem s: (1) how  to decide w hich behaviour(s) should be activated at each m om ent;
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and (2) how  to com bine the results from  different behaviours into one com m and to be 

sent to the effectors o f  the robot. These are called the behaviour arbitration and the 

com m and fusion problem s, respectively.

N um erous action selection m echanism s (ASM s) have been proposed over the last 

decade and these can be classified into a num ber o f  logical groups. M ackenzie et al. 

(1997) classified them  into state-based and continuous m echanism s. W ith a state- 

based A SM , in a given state, only a relevant subset o f  the behaviour repertoire o f  the 

robot needs to be activated. W ith a continuous ASM , there are no discrete states and 

the w hole behaviour repertoire is available for activation.

Saffiotti (1997) divided A SM s into arbitration and comm and fusion m echanism s, 

corresponding respectively to the state-based and continuous approaches o f  

M ackenzie et al. A rbitration is concerned w ith “how  to decide which behaviour to 

activate at each m om ent” and com m and fusion is concerned with “how  to com bine 

the results o f  different behaviours into one com m and to be sent to the effectors o f  the 

robot” .

Based on these classifications, it seem s that ASM s can be best classified according to 

one m ain characteristic, nam ely w hether the ASM  can handle only one or m ultiple 

behaviours sim ultaneously.
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2 .4 .1 . Arbitration ASMs

Arbitration m echanism s select one behaviour from  a group o f  com peting behaviours, 

and give it ultim ate control o f  the system  (the robot) until the next selection cycle. 

This approach is suitable for arbitrating betw een the set o f  active behaviours in 

accordance w ith the changing objectives and requirem ents o f  the system  under 

varying environm ental conditions. A rbitration m echanism s for action selection can be 

classified as priority-based, state-based and winner-takes-all. In priority-based 

m echanism s, an action is selected based on priorities assigned in advance. Thus, 

behaviours w ith higher priorities are allow ed to take control o f  the robot. State-based 

m echanism s select a set o f  behaviours that is com petent to handle the situation 

corresponding to the given state. Finally, in winner-takes-all m echanism s, action 

selection results from  the interaction o f  a set o f  distributed behaviours that com pete 

until one behaviour w ins and takes control o f  the robot.

2.4.2. Command Fusion ASM s

Com m and fusion com bines recom m endations from m ultiple behaviours to form  a 

control action that represents their consensus. This approach allows all the behaviours 

to contribute sim ultaneously to the control o f  the system  in a co-operative rather than 

a com petitive m anner. C om m and fusion m echanism s can be divided into voting 

techniques, superposition techniques and m ultiple objective behaviour coordination 

techniques.
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V oting techniques interpret the output o f  each behaviour as votes, and then select the 

action that receives the largest num ber o f  votes. Superposition techniques combine 

behaviour recom m endations using linear com binations. Finally, m ultiple objective 

behaviour coordination techniques provide a formal theoretic approach to m aking 

decisions based on m ultiple objective decision theory.

2.4.3. Priority-Based Arbitration (Subsumption Architecture)

The subsum ption architecture (Brooks, 1986) represents a priority-based arbitration 

m echanism , where behaviours w ith h igher priorities are allowed to subsum e the 

output o f  behaviours w ith low er priorities. This architecture is covered in m ore detail 

in chapter three.

2.4.4. State-Based Arbitration

2.4.4.I. Discrete Event Systems (DES)

B ehaviour selection is accom plished using state-transition (Kosecka, 1993) w here, 

upon detection o f  a certain  event, a  shift is made to a new  state and thus to a  new  

behaviour. U sing this form alism , system s are m odelled in term s o f  finite-state 

autom ata (FSA), w here states correspond to the execution o f  actions o r behaviours 

and where events, which correspond to observations, cause transitions betw een these 

states.
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2.4.4.2. Temporal Sequencing

The tem poral sequencing approach is also know n as perceptual sequencing (Arkin 

and M ackenzie, 1994) and is very sim ilar to the discrete-event system s approach. A 

finite-state autom aton is used to sequence betw een a series o f  behaviours based on 

perceptual triggers. At each state, a d istinct behaviour is activated and perceptual 

triggers cause transitions from  one state to another. See the exam ple in figure 2.1.

2.4.4.3. Bayesian Decision Analysis

The approach o f  sensor p lanning w ith Bayesian Decision Analysis (K ristensen, 1996) 

is used to address the problem  o f  sensor selection, i.e., which sensors to use for w hich 

purpose. Sensor selection can be considered a special case o f  action selection, where 

the actions are certain sensor operations. It operates according to the purposive 

paradigm , where the system  consists o f  a set o f  purposive m odules sim ilar to 

behaviours.

For exam ple, the problem  in figure 2.2 is to decide which sensors to allocate to which 

purposive m odules in order to accom plish  a given task, declared by the m ission 

planning-m odule.
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2.4.4.4. Reinforcement Learning Approaches to Action Selection

A fundam entally different approach to action selection is to learn the action selection 

m echanism  (H um phrys, 1997; Lin and Lu, 1996). O f  the several learning approaches 

proposed, the m ost prom ising is reinforcem ent learning. R einforcem ent learning in 

this context operates to induce, based on trial and error, a perception-to-action 

m apping that m axim ises some rew ard.

The robot leam s the perception-action m apping, know n as a policy, by exploring 

actions that lead to some rew ard. The rew ard function is designed so as to encourage 

desired behaviours and suppress unw anted ones. Thus, the robot will select actions 

that m axim ise the expected rew ard.

2.4.5. Winner-takes-All: Activation Networks

W ith this approach, the system  consists o f  a set o f  behaviours or competence m odules 

w hich are connected to form  a netw ork. In th is network, each behaviour is described 

by the preconditions under w hich it is executable, the effects after successful 

execution in the form o f  add-lists and delete-lists and the activation level, which is a 

m easure o f  applicability o f  the behaviour (M aes, 1989). W hen the activation level o f  

an executable behaviour exceeds a specified threshold, it is selected to furnish its 

action.
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2.4.6. Voting-Based Command Fusion

To m anage the ongoing tasks o f  an agent so that action conflict is m inim ised and 

desired levels o f  com pliance with overall goals are achieved, each behaviour votes for 

one action, w hich is suitable from  its point o f  view. The votes received from  all 

behaviours are summ ed for each action and the action with the largest num ber o f  

votes is then selected. For exam ple, D A M N  is a distributed architecture for m obile 

robot navigation (Rosenblatt, 1997; R osenblatt and Thorpe, 1995). It consists o f  a set 

o f  behaviours (figure 2.3) that pursue the system  goals, based on the current state o f  

the environm ent. Each behaviour votes for o r against each action w ithin the current 

possible set o f  actions. The action w ith the m axim um  weighted sum o f  received votes 

is then selected, where each behaviour is assigned a weight, which reflects the relative 

im portance or priority o f  the behaviour in a given context.

2.4.7. Multiple Objective Behaviour Coordination

W ith this approach, m ultiple behaviours are blended into a single m ore com plex 

behaviour that seeks to select the action that sim ultaneously satisfies all behavioural 

objectives as far as possible. In (P irjanian and Christensen, 1997; P irjanian and 

M ataric, 2000) m obile robot navigation and co-operative target acquisition exam ples 

are given, in which the principles o f  m ultip le objective decision-m aking (M O D M ) are 

dem onstrated. Sim ulated as well as real-w orld experiments show  that a sm ooth 

blending o f  behaviours according to the principles o f  M ODM  enables coherent robot 

behaviour.
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2.4.8. Superposition-Based Command Fusion (Potential Field)

The potential-field  approach, introduced in ( Khatib, 1986), is an approach to m otion 

planning where the robot, represented as a point in configuration space, m oves under 

the influence o f  an artificial potential field produced by an attractive force at the goal 

configuration position and repulsive forces at the obstacles. Action selection in this 

case corresponds to a m ove, at each configuration, in the direction indicated by the 

negative gradient o f  the total potential U. The potential function U is constructed as 

the sum  o f  two potential functions:

U = U att+U rep (2.1)

w here Ua n  is the attractive potential associated with the goal and Urep  is the 

repulsive potential associated w ith the obstacles.

M uch w ork has been carried out in behaviour coordination and action selection that 

does not directly relate to the above.

Saffiotti et al. (2000) espoused desirab ility  functions as an effective w ay to  express 

and im plem ent com plex behaviour coord ination  strategies within a single robot. The 

desirability function approach w as ex tended  to deal with the behaviours o f  team s o f  

robots. The authors showed that desirability  functions offer a  convenient tool to 

incorporate and blend individual objectives and team  objectives.
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Y am ada and Saito (1999) described an action selection m ethod for m ultiple m obile 

robots perform ing box pushing in a  dynam ic environm ent. The robots are designed to 

need no explicit com m unication, and to be adaptive to dynam ic environm ents by 

changing their active set o f  behaviours. The researchers proposed a m echanism  that 

changed the active behaviour set depending on the situation.

Hu et al. (1998) presented a feasible solution for a team  o f  autonom ous m obile robots 

to function in a co-operative m anner. To realise coordination, a m ulti-channel infrared 

com m unication system  was developed to exchange m essages am ong m obile robots. 

Tw o exam ples o f  flocking and shared experience learning were given to dem onstrate 

the perform ance o f  the system.

Due to their co-operative nature, com m and fusion m echanism s prom ise im proved 

perform ance over arbitration-based m echanism s. H ow ever, there are draw backs that 

should be highlighted. W here a linear com bination m echanism  is em ployed, the 

obtained solution m ight be far from  the required one. C om m and fusion system s are 

also costly both in com putation tim e and hardw are, and unnecessarily so i f  system  

accuracy is not critical. Furtherm ore, in m ulti-objective m echanism s, it is difficult to 

control the robots even heuristically  to m eet all objectives.

Fuzzy logic is suitable for a coordination scheme that allows all behaviours to 

contribute sim ultaneously to the control o f  the system  in a co-operative rather than a 

com petitive manner. This is therefore the solution proposed in th is research for 

behaviour coordination in the context o f  dynam ic target tracking.
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W hen the output o f  a behaviour is represented by a fuzzy set, the problem  o f  

com m and fusion can be seen as an instance o f  the problem  o f  com bining individual 

preferences. Fuzzy operators can be used to com bine the preferences o f  different 

behaviours into a collective preference, and finally to choose a com m and based on 

this collective preference. A ccording to this view, com m and fusion is decom posed 

into two steps: (1) preference com bination and (2) decision. Fuzzy logic offers many 

different operators to perform  a com bination and m any defuzzification functions to 

select a decision. It is im portant to note that the decision taken from  the collective 

preference can be different from the result o f  com bining the decisions taken from  the 

individual preferences. Figure 2.4 graphically  illustrates this point in the case o f  two 

behaviours B1 and B2 both controlling  the steering angle o f  a m obile robot. This 

explains why fuzzy com m and fusion is fundam entally different from  vector 

sum m ation.

Several proposals that use fuzzy logic to perform  comm and fusion have appeared in 

the literature. Curiously enough, the first such proposal was m ade, in a naive form , by 

two roboticists who were unaw are o f  fuzzy logic but were frustrated by the p itfalls o f  

existing on-off arbitration schem as (R osenblatt and Payton, 1989). T heir suggestion 

was later restated in term s o f  fuzzy logic by Yen and Pfluger (1995). O ther authors 

have proposed sim plified form s o f  fuzzy com m and fusion. For instance, G oodridge 

and Luo (1994) used weighted singletons as fuzzy outputs and the centre o f  gravity 

(COG) m ethod for defuzzification and Pin and W atanabe (1994) used  sym m etric 

rectangles and COG.
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Even though there is not m uch w ork on behaviour coordination based on fuzzy logic, 

fuzzy logic is w idely used in the controlling and learning m echanism s o f  m obile 

robots (H u and Gu, 2005; Larsson, 2005; Lin and M on, 2004; A bdessem ed et al., 

2004; Lin and M on, 2004; D em irli and M olhim , 2004; Saffiotti and W asik, 2003, 

W asik and Saffiotti, 2002; C oradeschi et al., 2001; B uschka et al., 2000; Sossai, 2000; 

H offm ann and Pfister, 1997; Surm an et al., 1995; Pan, et al., 1995).

2.5 Awareness Effect on M obile Robot Co-operation

M uch existing work in the area o f  robo t aw areness addresses the problem  o f  global 

coherence and efficiency by designing  robotic team s that use sensor inform ation to 

glean im plicit inform ation on the activ ities o f  o ther robot team  m em bers and/or the 

current state o f  the w orld (D eneubourg et al., 1990; Kube and Zhang, 1992). W ith 

these approaches, no explicit com m unication  am ong robots is utilised. A  m ore 

difficult approach requires the robots to use passive action recognition to observe the 

actions o f  their team -m ates and m odify their ow n actions accordingly (H uber and 

Durfee, 1993). A  third, quite com m on, approach involves explicit co-operation among 

team  m em bers by em ploying direct com m unication betw een robots to relay 

inform ation on robot goals and/or actions to o ther team  m em bers (A sam a et al., 1992; 

Parker, 1994; 1995; 1996; 1999). T hese three approaches define a continuum  in the 

degree o f  aw areness o f  a robot o f  the actions or goals o f  its team -m ates, from  im plicit 

awareness through the effect o f  a team -m ate on the world, to passive observation o f  

its actions or goals, to explicit com m unication o f  actions and/or goals. These 

approaches raise interesting questions concerning the im pact o f  the aw areness o f  the 

robot team  m em bers o f  the actions and/or goals o f  its team -m ates.
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For im plicit co-operative system s and those using passive action recognition, the 

question is: W hat is the im pact o f  a lim ited ability to sense the effect o f  robot actions 

on the w orld? For explicit com m unication system s, the question is: ‘W hat is the 

im pact o f  com m unication failure, w hich leads to the lack o f  aw areness o f  team  

m em ber actions/goals?’ or, conversely: ‘W hat benefits can be gained by using explicit 

com m unication to increase robot aw areness o f  team  m em ber actions/goals?’ Previous 

research concerning the effect o f  robo t aw areness, or recognition, o f  team  m em ber 

actions w as usually described in term s o f  the effect o f  com m unication in co-operative 

robot team s (Balch and Arkin, 1994). H ow ever, Parker (2000) has used the phrase 

“robot awareness, or recognition, o f  team  m em ber actions” to describe precisely the 

issue o f  interest (aw areness o f  team -m ate actions), rather than the accessing o f  

inform ation that could possib ly  be com m unicated betw een team  m em bers. For 

exam ple, the bid o f  a robot for an activ ity  in a  negotiation system  m ay depend on the 

current local state o f  the environm ent near a given robot, or the sensed location o f  an 

intruder, etc. This shows that a robo t m ay becom e aware o f  the actions o f  a  team  

m em ber w ithout the use o f  explic it com m unication.

M acLennan (1991) investigated the evolu tion  o f  com m unication in sim ulated worlds 

and concludes that the com m unication o f  local robot inform ation can result in 

significant perform ance im provem ents. B alch and A rkin (1994) exam ined the 

im portance o f  com m unication in robotic societies perform ing forage, consum ption, 

and grazing tasks. They found that som e com m unication could significantly im prove 

perform ance for tasks, and that com m unication  o f  the current robot state was alm ost 

as effective as com m unication o f  robo t goals. Their research w as perform ed 

prim arily on real robots, rather than  sim ulated robots.
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D eveloping team s o f  robots that are able to perform  their tasks over long periods 

requires the robots to be aware o f  and responsive to continual changes in the 

capabilities o f  the robot team  m em bers and to changes in the state o f  the environm ent 

and m ission. Parker (1997; 2000; 2001; 2002) described the L-ALLIA NCE 

architecture, which enables team s o f  robots dynam ically to adapt their actions over 

tim e. This architecture, w hich is an extension o f  earlier w ork on A LLIA N C E (Parker, 

1994), is a distributed, behaviour-based architecture aim ed at applications consisting 

o f  a collection o f  independent tasks. The key issue addressed in L-A LLIA N C E is the 

determ ination o f  which task robots should select to perform  during their m ission, even 

w here there are m ultiple robots w ith  heterogeneous, continually changing capabilities 

present on the team. The L -A L L IA N C E  architecture is im plem ented on a team  o f  

heterogeneous real robots perform ing  proof-of-concept box pushing experim ents.

Due to the unreliability o f  the sensors and actuators em ployed and uncertainties in the 

environm ent, the approach o f  Parker o f  using  a predefined tim e for each behaviour 

resulted in inconsistency, even i f  the  behaviours are repeated and the values are 

averaged. This is because there is no guarantee that each robot will repeat the same 

behaviour at the same tim e. In th is respect, it m ay be preferable to propose an 

architecture which does not rely on explicit com m unication or passive recognition and 

generate autom atically the required tim e for a particu lar behaviour by accessing an 

on-line know ledge-base, updated by the use o f  neuro-fuzzy techniques, as w ill be 

discussed later.
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2.6. Fuzzy Logic System s (FLSs) Basic Structure and Design 

Elements

The basic structure o f  a FLS com prises four basic com ponents (Lee, 1990a). They are 

the fuzzification interface, know ledge base, decision-m aking logic and defuzzification 

interface. Each com ponent is responsible for a certain function in a FLS. In the 

follow ing sections, the function and design param eters o f  each o f  these com ponents 

are presented.

2.6.1. Fuzzification interface

Fuzzification is related to the vagueness and im precision in natural languages. It is a 

m apping that transform s m easurem ents into a subjective value, and hence it could be 

defined as a m apping from  an observed m easurem ent space into a subjective feature 

space. In fuzzy control applications, the observed data is usually crisp. Since the 

processed data in FLSs are based on fuzzy set theory, fuzzification is necessary during 

the early stages to transform  the observed crisp data into fuzzy sets. A  com m only used 

fuzzification approach is to transform  this crisp data into fuzzy singletons w ithin a 

certain universe o f  discourse. T he transform ation process begins w ith the 

norm alisation or scaling o f  the crisp m easurem ents to certain bounded range say 

[ - l ,+ l]  using suitable scaling factors. The purpose o f  the norm alisation process is to 

m ap the crisp input data into a un iverse o f  discourse with a finite range. Subsequently, 

the fuzzification interface transform s the norm alised crisp input x0 into a fuzzy set A 

in universe X with the m em bership function Ha (x) equal to zero for all x e  X  except at
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the point x0, at w hich p.a(x0) equals one. In general, the role o f  the fuzzification 

interface can be sum m arised as follow s (K eller et al., 1992):

a) It observes the crisp input values to a FLS.

b) It perform s a scale transform ation (norm alisation) from  the m easurem ent 

space into the corresponding universe o f  discourse.

c) It perform s the fuzzification function that converts the scaled input data into 

fuzzy sets.

2.6.2. Knowledge base

The know ledge base (Lee, 1990a) com prises knowledge concerning the application 

dom ain and the desired control objectives. It consists o f  a data base and a linguistic 

(fuzzy) control rule base. The data  base provides necessary definitions, w hich are 

em ployed to define linguistic control rules and fuzzy data m anipulation in FLSs. The 

rule base characterises the control ob jectives and the control policy o f  dom ain experts 

by m eans o f  a set o f  linguistic control rules.

2.6.2.1. Data base

The definitions associated w ith  the data  base are em ployed to characterise fuzzy 

control rules and fuzzy data m anipulation in FLSs. These definitions are subjective in 

nature, which reflects engineering experience and judgem ent. These definitions 

com prise the norm alisation o f  a fuzzy universe o f  discourse, the partition o f  a fuzzy 

universe o f  discourse and the defin ition  o f  m em bership functions associated with
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fuzzy sets. In w hat follow s, im portant definitions relating to the construction o f  the 

data base in FLSs are discussed.

A. Normalisation o f a fuzzy universe o f discourse

The norm alisation o f  a universe o f  d iscourse involves a priori know ledge o f  the input- 

output universe o f  m easurem ents. The norm alisation process is a  scale transform ation 

o f  the input-output universe o f  m easurem ents into a norm alised closed interval 

universe. For exam ple, i f  the m easured input data ranges from  -7.0 to +3.5, the 

universe o f  the input m easurem ents can be norm alised by a scale transform ation into a 

norm alised closed interval universe [-1, + i] ,

B. Fuzzy partition of the input-output universe

A linguistic variable in the an tecedent o r consequent o f  a fuzzy rule form s a fuzzy 

input or output feature space respectively. The input or the output feature space o f  

each input or output linguistic variable is defined over a certain universe o f  discourse. 

Each feature space is internally partitioned  into a num ber o f  clusters o r fuzzy sets that 

define the term  set o f  the input or ou tput linguistic variables. Each fuzzy set is defined 

by a certain linguistic term , and usually  has a m eaning such as negative big (NB), 

negative small (NS), positive big (PB), etc. The num ber o f  partitions o f  the input and 

output feature spaces determ ines the m axim um  num ber o f  fuzzy rules that can be 

generated. Therefore the selection o f  the num ber o f  partitions influences the generated 

num ber o f  rules o f  FLSs. In m ost applications o f  FLSs, experience and engineering 

judgem ent are em ployed to choose the num ber o f  partitions o f  the fuzzy feature space.
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C. Definition o f the membership functions o f fuzzy sets

There are two com m only used m ethods w hich define the m em bership functions o f  

fuzzy sets depending on w hether the universe o f  discourse is discrete o r continuous 

(Lee, 1990b). The first m ethod is a num erical definition where the grade o f  

m em bership in a fuzzy set is represented as a vector o f  num bers. In this case, the 

m em bership function o f  each fuzzy set can be written as follows:

P a  ( x )  =  [ p A (Xo) /  x 0 +  |I a  ( x i )  /  x i + ...........................+  p A (x „ ) /  x n ] ( 2 .2 )

• • *li
w here n is the num ber o f  supports o f  the  discrete universe o f  d iscourse, xn is the n 

support o f  the discrete universe o f  d iscourse, and p A (xn) is the m em bership grade o f  

the n th support in fuzzy set A. The second m ethod is a functional definition, which 

expresses the m em bership function o f  a fuzzy set in a functional form , typically  a 

bell-shaped, triangle-shaped, trapezoid-shaped function, etc. For exam ple the 

functional definition o f  the bell-shaped  m em bership function can be w ritten as 

follows:

P a ( x 0 )  = exp[-(x0 - u )2 / a 2 ] (2.3)

w here u and a  are respectively, the centre (or m ean) and the width (or variance) o f  the

bell-shaped function.
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2.6.2.2. Rule base

A FLS is characterised by a set o f  linguistic  statem ents based on expert knowledge. 

The expert know ledge is usually  in the form  o f  IF - TH EN  rules, w hich are easily 

im plem ented by fuzzy conventional statem ents in fuzzy logic. The collection o f  fuzzy 

rules that are expressed as fuzzy conditional statem ents forms the rule set or the rule 

base o f  a FLS. In this section, the fo llow ing factors which influence the design and the 

im plem entation o f  a fuzzy rule base are discussed: the choice o f  the FLS input-output 

variables, the approaches em ployed to generate fuzzy rules, and the functional 

im plem entation o f  fuzzy rules.

A. Choice o f the FLS input-output variables

It is im portant to choose suitable input and output variables for FLSs, because they 

influence the num ber o f  rules and the perform ance o f  FLSs. In several applications o f  

FLSs, the selection o f  input-output variables relies on experience and control 

engineering judgem ent (Sugeno and N ish ida, 1985). In som e other applications, the 

selection is based on a determ inistic m ethod (Sugeno and Yasukawa, 1993).

B. Derivation o f fuzzy rules

In general there are two com m on approaches to deriving fuzzy rules. These two 

approaches are not m utually exclusive, and it seem s likely that a com bination o f  them  

would be necessary to construct an effective m ethod o f  deriving fuzzy rules. The first 

approach is to generate fuzzy rules based on expert experience and control
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engineering knowledge. This approach is m ainly suitable for generating fuzzy rules 

for diagnosis system s including fault d iagnosis and m edical diagnosis system s. This 

approach is a heuristic approach, in w hich the fuzzy rules are obtained m ainly from 

hum an experience. A hum an expert has to interpret his experience as linguistic 

relations betw een the input and output variables o f  the FLS. This approach can be 

successful if  the hum an expert can perform  this interpretation. How ever, i f  the hum an 

expert cannot express his experience linguistically , then the second approach w hich is 

based on the observed input-output da ta  can be em ployed. This approach can be used 

to generate fuzzy rules for FLC s and for fuzzy process m odels. In the case o f  FLCs, 

the fuzzy rules can be generated based  on observations o f  the hum an expert's control

actions in terms o f  input-output data. In the case o f  fuzzy process m odels, the fuzzy

rules are generated based on the process input-output data (Sugeno and N ishida, 1985; 

Takagi and Sugeno, 1983, 1985; W ang and M endel, 1992).

C. Functional implementation o f fuzzy rules

A rule base o f  a FLS consists o f  a set o f  fuzzy rules. For exam ple, consider the 

following rules:

R i : IF x is Ai and y is Bi T H E N  z is Ci

also R 2: IF x is A 2 and y is B 2 T H E N  z is C 2

also Rn: IF x is A n and y is B n T H E N  z is Cn
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w here x, y and z are linguistic variables and Aj, Bj and Cj are linguistic term s (fuzzy 

sets) o f  the linguistic variables x, y and z in the universes o f  discourse U , V and W

im plication (fuzzy relation) Rj. This fuzzy relation is a fuzzy set in U  x  V x  W  and is 

defined for all u e  U ,  v  e  V and w e W a s  follows:

and its m em bership function is g iven  by:

jaRi (u , v, w) = ( A i  and B i  -» c i ) (u ,  v, w ) = [ p Aj(u) a n d  P B i(v ) ]  -»  Mci(w) (2.5)

where “ Aj and  Bj” is a fuzzy set in the C artesian  product space U  x V w hich can be 

defined based on the interpretation o f  the  sentence connective "an d " and, Rj = (Ai and  

Bj) ->  Cj is a fuzzy im plication (relation) in the Cartesian product space U  x V x W  

w hich can be defined based on the in terpreta tion  o f  the sentence connective "and" and 

the definition o f  the fuzzy im plication  function —

The im plication functions can be c lassified  into two com m only used categories 

(K eller et al., 1992). The first category is the fuzzy conjunction that is defined for all 

u e U  and v e  V as follows:

respectively, w ith i = 1, 2 ,.. . . ,  n. T he ith fuzzy rule is im plem ented by a fuzzy

Ri = f(u , v, w ) ,n R.(u ,v ,w ) j  |(u, v, w ) e  (U xV xW )) (2.4)

(2 .6)
uxv
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where A and B are fuzzy sets in the universes o f  discourse U and V respectively, 

A -»  B is a fuzzy im plication in the Cartesian product space U x V and * is an 

operator that represents a triangular norm . The second category is the fuzzy 

disjunction that is defined for all u e  U  and v e  V as follows:

where A and B are fuzzy sets in the universes o f  discourse U and V respectively, 

A —>B is a fuzzy im plication in the C artesian  product space U x V and + is an 

operator that represents a triangular co-norm . In general, using the fuzzy conjunction 

along with the intersection and algebraic product triangular norm s, the two com m only 

used fuzzy im plication functions can be w ritten  as follows:

w here jlxa  ( u )  a  |aB(v) = m in [p A( u ) ,p B(v)] is the intersection triangular norm .

where p A(u) p B(v) = p A( u ) p B(v) is the algebraic product triangular norm.

In m ost existing FLSs, the sentence connective "and" is usually im plem ented as a 

fuzzy conjunction in a Cartesian product space (Lee, 1990b). As an illustration, for

(2.7)
uxv

(2 .8)
uxv

(2.9)
uxv
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two fuzzy sets A and B in the universes o f  discourse U and V respectively, “A and  B ” 

is defined by a fuzzy set A  x B in the C artesian  product space U x V. I f  the sentence 

connective "and" is interpreted using the intersection triangular norm , the m em bership 

function o f  this fuzzy set is expressed as follows:

A lternatively, i f  the sentence connective "and" is interpreted using the algebraic 

product triangular norm , the m em bersh ip  function o f  th is fuzzy set is expressed as 

follows:

On the other hand, the in terpretation o f  the sentence connective "also" is based on the 

fact that different orders o f  fuzzy ru les in the rule base should not influence the 

overall behaviour o f  a FLS. T his requires that the sentence connective "also" should 

have the properties o f  com m utativ ity  and associativity. It has been reported in (Lee, 

1990b) that the operators in triangu lar norm s and co-norm s (intersection, algebraic 

product, union, algebraic sum , etc) possess these properties and thus qualify as 

candidates for the in terpretation o f  the  connective "also". H ow ever, several 

investigations have been reported  in (Lee, 1990b). These investigations studied FLS 

characteristics using different in terpretations o f  triangular norm s and co-norm s. Based 

on these investigations, it has been concluded that the com m on interpretation o f  the 

connective "also" as the union opera to r U yielded the best results. The union operator 

U is a triangular co-norm  defined using  the m ax function (Lee, 1990b). Subsequently,

H A x b ( u x v )  =  m i n M U ) ’ H B ( V )] (2 .10)

!^a x b ( u x v (  =  H a ( u )  1̂ b ( v ) (2 .11)
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considering the rule base o f  Subsection 2.1.2.2, the overall fuzzy relation R  is defined 

as a fuzzy set in U x V x W  for all u  e  U, v e  V and w  e  W  as follows:

R = { ((u ,v ,w ),pR (u ,v ,w ))  |(u, v , w ) < e  (UxVxW )} (2.12)

and its m em bership function is given by:

| i R ( u , v , w )  = m a x  fiRi (u, v ,  w )  (2.13)
i=i

w here U, V, and W  are universes o f  d iscourse, Rj is the ith fuzzy relation o f  the ith rule 

in the rule base and p R (u ,v , w ) is as defined  in Equation (2.4).

2.6.3. Decision making logic

FLSs m ay be regarded as a m eans o f  em ulating  a skilled hum an operator through an 

inference engine. M ore generally, the  FLS inference engine m ay be view ed as another 

step tow ards m odelling the hum an decision  m aking process w ithin the conceptual 

fram ew ork o f  fuzzy logic and approxim ate reasoning. The function o f  the FLS 

inference engine is to infer recom m ended solutions from  fuzzy rules relevant to given 

inputs based on the em ployed inference strategy. Generally, there are two im portant 

inference strategies in approxim ate reasoning (Lee, 1990b). They are generalised 

m odus ponens (GM P) and generalised  m odus tollens (GM T). Specifically, consider 

the following rule:

IF x is A TH EN  y is B
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where x and y are linguistic variables and A and B are linguistic term s o f  the 

linguistic variables x and y in the universes o f  discourse U and V respectively. The 

GM P strategy can be defined as "given x is A' and the fuzzy relation R  o f  the fuzzy 

rule then infer y = B' This inference strategy is a data-driven or forw ard chaining 

strategy, w hich is particularly useful in FLC s. On the other hand the GM T strategy is 

defined as "given y is B' and the fuzzy relation R  o f  the fuzzy rule then  infer x = A '". 

This inference strategy is a goal-driven  o r backw ard chaining strategy, w hich is 

com m only used in expert fault d iagnosis system s.

2.6.4. Defuzzification strategies

M ost practical control applications require crisp control actions to drive the controlled 

process. M oreover, the output o f  m ost m odelling and prediction system s has to be 

crisp. D efuzzification is the m apping from  the linguistic fuzzy output defined over an 

output universe into a crisp ou tpu t space. There are three com m only used 

defuzzification strategies (Shankir, 2001). The first strategy is the m axim um  criterion. 

The m ax criterion produces the po in t w 0 in the output universe W  that has the 

m axim um  degree o f  m em bership in the output fuzzy set m ax M-(w) = |i (w 0) • A
w eW

problem  arises with this m ethod w hen m ore than one elem ent o f  W  possesses this 

m axim al value and thus w 0 is no t un iquely  determ ined. The second strategy is the 

M ean O f M axim a (M OM ). I f  there  is m ore than one elem ent in W  possessing the 

m axim al m em bership value, then M O M  produces the average value o f  the m axima. 

M ore specifically, let Z denote a set o f  Wj for w hich an output fuzzy set in a universe

W attains m axim um  m em bership values that is Z  = I w ; : m ax q (w j) = M-(wi) andI j=l,2,.... J
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assum e that the cardinality  equals r; that is card(Z) = r . Then the defuzzified output 

w0 is w ritten as follows:

W 0 =  Z (2.14)
Wiew r

H ow ever, M OM  does not take account o f  rules fired below  the m axim um  level 

(Saade, 1996). The third and the m ost com m only used strategy is the Centre O f  A rea 

(COA) strategy. COA attem pts to co rrec t the draw back o f  M O M  by considering rules 

that can be fired below  the m axim um  level. C O A  generates the centre o f  gravity w 0 o f  

the possibility distribution o f  a con tro l action  as follows:

wf
ZP-(wj).W j

= t l ________
n

Z H(wj)
j=l

(2.15)

where n is the num ber o f  quantisation  levels o f  a  universe W  and wj is the point in the

th • •j quantisation level in a universe W  at w hich p(w ) achieves its m axim um  value
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2.7. Summ ary

This chapter review ed background literature relevant to the w ork presented in this 

thesis. The literature on co-operating m obile robots was exam ined from  different 

perspectives. First, it was surveyed w ith a focus on the classification o f  co-operating 

m obile robots. Second, the focus shifted  to the collective behaviour o f  social insects 

and the connection o f  the functioning principles o f  social insect colonies w ith the 

design principles o f  artificial system s. Third , the literature related to the action 

selection problem  (ASP) and behav iour coordination was reviewed. Fourth, previous 

w ork on robot awareness and its effect on the perform ance o f  co-operating m obile 

robots was exam ined. Fifth, a b r ie f  rev iew  for the basic com ponents o f  the fuzzy logic 

system  was given.
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Chapter 3

Biologically Inspired Collective Behaviour and Co-operating

Mobile Robots

3.1. Preliminaries

Social insects such as ants and bees co-operate to achieve com m on goals with 

rem arkable success. H ow ever, ind iv idually  these insects are very sim ple creatures. 

For exam ple, a bee is unlikely to have a global understanding o f  the collective task 

being perform ed. Instead, com plex behav iours can em erge from  a swarm  o f  bees to 

provide solutions through the in teractions o f  individual bees sensing and acting 

locally on the basis o f  sim ple rules. C ollective tasks can thus be perform ed by the 

swarm  even though some individuals m ight fail or the environm ent they operate in 

m ight change.

Studying this phenom enon m ight enable biologists to understand how  living 

organism s work and engineers to develop  new  robust and adaptive technologies for 

dealing w ith com plex problem s that have defied conventional solution m eans.

This chapter focuses on the developm ent o f  in telligent m ulti-agent robot team s that 

are capable o f  acting autonom ously and  o f  collaborating in a dynam ic environm ent to 

achieve team  objectives. It p roposes a  biologically-inspired collective behaviour for a
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team  o f  co-operating m obile robots. This behaviour is achieved by controlling the 

local interactions am ong a set o f  identical robots w ith sim ple behaviours with the aim 

o f  tracking a dynam ic target. The subsum ption architecture is taken as the starting 

point for im plem enting the control o f  individual robots. W ith this architecture, 

behaviours are arranged in o rder o f  priority . W hen different behaviours are applicable 

sim ultaneously, the behaviour w ith  the h ighest priority is activated. This so-called 

“com petitive” architecture is adopted because it is com putationally inexpensive and 

potentially suitable for low -level reactive and reflexive behaviours.

The rem ainder o f  the chapter is o rgan ised  as follows. Collective dynam ic target 

tracking is discussed in section 2. Section 3 describes a m odified subsum ption 

architecture. The sim ulation tool developed  to test the proposed architecture is 

presented in section 4. Section 5 describes the experim ents conducted using the tool 

and the results obtained.

3.2 Collective Dynamic Target Tracking

An im portant issue that arises in the autom ation o f  m any security, surveillance and 

reconnaissance tasks is that o f  m onito ring  and tracking the m ovem ents o f  targets 

navigating in a bounded area o f  interest.

The collective dynam ic target track ing  task  investigated here is based on the 

em ergence o f  collective strategy in p rey-predator behaviour, w here the predators co

operate to catch the prey or the prey  co-operate to defend them selves. The term  

collective is used in the sense o f  the collective m otion o f  defence or attack. The
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dynam ics o f  predator-prey in teractions w here the predators surround the prey to catch 

it using local sensor-based in teractions am ong them  have been im plem ented in the 

task o f  dynam ic target tracking. The prey-capture task  is a special case o f  pursuit- 

evasion problem s, w hich consist o f  an environm ent w ith one or m ore prey and one or 

m ore predators. Pursuit - evasion tasks are interesting because they are ubiquitous in 

the natural world, and offer a c lear ob jective that requires com plex coordination with 

respect to the environm ent, and w ith  respect to other agents w ith the sam e goal. They 

are therefore challenging for even the best learning system s, requiring accurate 

success m easurem ent and good analysis and visualisation o f  the strategies that evolve.

D ynam ic target tracking involves the fo llow ing  and capturing, by a group o f  m obile 

robots, o f  a m oving object w ithin a c lu ttered  w orkspace, while avoiding collision with 

obstacles and w ith each other.

The target is unpredictable; i.e., its tra jecto ry  is no t know n in advance. It is how ever 

assum ed to move with a bounded velocity  tha t is com parable w ith the velocity o f  the 

tracking robots.

The research objective w as to identify  ho w  these robots co-operate to search for, 

pursue, surround, and finally capture the target even though some individuals m ay fail 

to carry out their tasks. A nother aim  w as to dem onstrate how  individual m em bers o f  

the collective team  can perform  the task  in a distributed fashion so that the collective 

team  as a whole m eets its goal.
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From  the perspective o f  an individual robot, the task consists o f  searching for the 

target, broadcasting m essages to o ther robots, receiving m essages from  other robots 

and approaching and capturing the target, as depicted in the state diagram  o f  figure 

3.1(a). In order to decide the d irection  from  w hich it should approach the target, the 

robot is required to be aware o f  the  actions o f  its partners.

The target-tracking task o f  the robot team , from  a group perspective, can be described, 

at a high level, by the state d iagram  o f  figure 3.1(b). The accom plishm ent o f  th is task 

is a function o f  the effective co-operation  betw een the robots.

3.3. M odified Subsumption A rchitecture

Early strategies for controlling robots involved building a representation o f  their 

environm ent, and then p lanning  the ir actions accordingly. Those strategies are 

expensive and cannot react w ell to changes in a dynam ic environm ent. In the 

subsum ption architecture (figure 3.2) there is no world m odel. Instead, a  robot 

responds directly to inform ation it receives through its sensors; the robot acts ‘by 

reflex’ and in this way the contro l softw are can  be very sim ple. The architecture 

im plem ents several independent 'behaviours' that react to sensory inputs, and provide 

control signals to the actuators (m otors) o f  the robot. These ‘behav iours’ have 

different priorities, such that only one behaviour is allow ed to com m and the m otors at 

any one time.
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Figure 3.1(a): State d iagram  from  the perspective o f  an individual robot
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Figure 3.1(b): State d iagram  from  the perspective o f  the group
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Figure 3.2: T he Subsum ption  A rchitecture
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The subsum ption architecture com prises a h ierarchy o f  controller layers where each 

layer is capable o f  instantly  overrid ing  all low er layers and taking control o f  the robot 

for as long as it w ishes. It then  relinquishes control to w hatever low er layer was 

previously in com m and o f  the robot. T he architecture control system  is determ ined by 

the structure o f  the behaviours and their interconnections. The layer that subsumes 

control o f  the robot at any poin t needs no know ledge o f  w hat is currently  controlling 

the robot at that point, and sim ilarly  the  usurped m odule does not require any 

inform ation about the subsum er.

As previously m entioned, one o f  the prob lem s associated with subsum ption is that 

only a single behaviour, one behav iour per layer, is active at any tim e. W hile this is 

satisfactory in m any situations, there are tim es w hen a com bination o f  m ore than one 

behaviour is required. In practice, it has also been found that this very loose coupling 

betw een layers is not sustainable (P irjan ian , 1998). Layers often need to pass 

inform ation back and forth. Take, for exam ple, the task  o f  m oving tow ards a target 

and avoiding obstacles. Each o f  these  sub-tasks could be im plem ented as a single 

behaviour. So long as no obstacles are detected, the robot will gracefully head 

tow ards its target. I f  an obstacle is detected , how ever, the obstacle avoidance 

behaviour becom es active and steers the robot away from  the obstacle. The problem  

with this is that the obstacle avoidance behaviour has no know ledge about the target, 

and therefore will not necessarily  s teer in a  d irection that takes the robot closer to its 

desired path.
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In this work, the subsum ption architecture is m odified to com prise m ore than one 

behaviour m odule w ith in  one layer (figure 3.3). Those m odules run in parallel and 

have the sam e priority. B ased on inform ation from  the sensors, the activated 

behaviour m odule subsum es the others.

The design o f  the target-tracking  con tro ller begins by specifying the sensing 

requirem ents for the task. C ollision  free m ovem ent will require an obstacle sensor; to 

follow  other robots needs a robo t sensor; track ing  the target w ill require a target or 

goal sensor.

To accom plish the task o f  track ing  a dynam ic target, each robot was given four m ain 

behaviours. The lowest priority  defau lt behaviours are the “search” and “listen for 

m essages” behaviours. “Search” d irec ts the robot to advance along its current path. 

Sim ultaneously, “listen for m essages” m akes the robot receptive to m essages sent by 

other m obiles. N o sensors are requ ired  to activate these behaviours.

The above default behaviours can  be suppressed by the “follow  m essage sender” 

behaviour i f  a m essage has been  received  from  another robot (by m eans o f  the robot 

sensor on the current robot). “F o llow  m essage sender” causes the robot to m ove to its 

nearest sensed neighbour. The “send m essage” and “approach goal” behaviours are 

activated by the goal sensor. “ Send a m essage” m akes the robot issue a “target 

intercepted” m essage to the o ther m obiles and “approach goal” directs them  towards 

the target. “A pproach goal” causes the robots to turn a num ber o f  degrees tow ards the 

target while the goal sensor is active. The task  is accom plished once several robots 

collectively have captured the target.
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The “search” , “follow  m essage sender” and “approach goal” behaviours can create 

m otion resulting in collisions. To p reven t them , the “avoid” behaviour is added. This 

highest priority behaviour becom es active and rem ains active as long as the obstacle 

sensor has detected an obstacle. T urn ing  the robot a fixed num ber o f  degrees away 

from  the sensed obstacles at each  sim ulation  tim e step prevents collisions.

3.4 Simulation

The objective o f  the developed sim ulation  tool is to test the proposed architecture 

based on the context o f  the  co-operative task  o f  dynam ic target tracking. For this, a 

sim ulated environm ent has been designed  to m odel a large population o f  robots (a few 

thousand), different obstacles (e.g. in shape and size), and m ultiple dynam ic targets.

A ccom plishing tasks using a decen tralised  system  o f  autonom ous robots requires the 

control algorithm s o f  each robot to m ake use o f  local inform ation. This inform ation is 

acquired by the on-board robot sensors and m ust be sufficient to ensure that the entire 

system  o f  robots converges tow ards the desired  goal.

Two kinds o f  sensors were sim ulated: obstacle detection sensors and target detection 

sensors.

The purpose o f  the obstacle detection  sensors was to provide obstacle distance 

inform ation to the robot. Three ultrasonic sensors were m odelled to provide 

inform ation on obstacles to the left and  the right, and in front o f  the robot. The same 

m odels were used for the ultrasonic sensors fitted to the m oving target.
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Target detection w as sim plified by using  an infrared source at the centre o f  the target 

and infrared target sensors m ounted on the robots. The signal received by the sensors 

depended on the distance and the o rien tation  betw een the robot and the target: the 

closer the distance the stronger the signal; sim ilarly, the more directly the source and 

sensor were aligned, the m ore pow erfu l the  signal.

Two actuators were m odelled , one for each m otor (left and right)- Steering o f  the 

robot was achieved by d ifferen tia lly  tu rn ing  the motors.

The behaviours m apped inputs from  sensors to outputs to actuators to define a 

stim ulus-response relationship. Sensors provided inform ation to the behaviour 

m odules, which then processed the da ta  to provide com m ands to actuators.

D uring a sim ulation tim e step, each  behaviour m odule read its related sensors and 

calculated an appropriate response, w ith  the resulting com m and sent to a  behaviour 

arbitration m odule, w hich decided  the overall response.

3.5. Experiments and D iscussion

M any factors determ ine the effectiveness o f  a co-operative m ultK obot system  for 

dynam ic target tracking. E xperim ents w ere run w ith d ifferent numbers o f  robots and 

different obstacle densities. Each experim ent on a collection o f  robots was perform ed 

thirty tim es and the results w ere averaged. Several sets of experim ents were 

conducted to analyse the effects o f  various factors on perform ance. The first 

experim ent analysed how  varying the  num ber o f  robots affected the tim e required to
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track (capture) the target. This experim ent took  place in a lim ited arena containing 

one small target (requiring at least tw o robots to track and capture it) and no obstacles. 

The average tracking tim e (m easured as the num ber o f  steps by w hich the target has 

m oved before being captured) versus the num ber o f  robots was exam ined. The second 

experim ent differed from  the first on ly  by the addition o f  obstacles in the arena. 

Again, perform ance was analysed relative to the num ber o f  robots perform ing the 

task. Figure 3.4(a) show s one o f  the sim ulated environm ents before the experim ent 

started. This contained fifteen robots (eleven in one com er and four in another 

com er), one target in the opposite com er, and different kinds o f  obstacles random ly 

distributed. Figure 3.4(b) dep icts an interm ediate stage o f  target tracking. The 

developed technique enabled the robots to com plete their m issions successfully even 

though in some trials som e o f  them  failed  (becam e stuck for a long tim e to avoid an 

obstacle) to carry out their tasks as show n in figure 3.4(c). Figure 3.4(d) show s the 

final stage where the robots have captured  the target. Figure 3.5(a-c) show s that 

increasing the num ber o f  robots reduced  the tim e required to track the target. 

H ow ever, robot collision and in terference tended to degrade the perform ance. A dding 

m ore robots did therefore produce a proportional increase in perform ance. A dding a 

very large num ber o f  robots causes the environm ent to be full o f  robots. Then, the 

target cannot move very far and track ing  tim e does not change.

The third experim ent w as conducted  by changing the environm ent com plexity 

(obstacle density) w ith d ifferen t target sizes (a small target that requires at least two 

robots to capture it, a m edium -sized  target needing at least four robots and a large 

target necessitating at least six robots). F igure 3.6 show s the results obtained. A dding 

obstacles in the environm ent increased the tim e required for capturing the target.
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Furtherm ore, the robots took longer to capture the larger target because m ore robots 

were required for this.

Experim ent four concerns m ultip le targets distributed in the environm ent. Again, 

perform ance was analysed relative to the num ber o f  robots perform ing the task in 

environm ents with different obstacle densities. Figure 3.7 shows that the robots co

operated to track the targets even  in a cluttered environm ent. Com pared w ith the 

results for tracking one target only, there  is no significant difference in perform ance, 

except that the num ber o f  tim e steps is reduced  as show n in figure 3.8. This is because 

m oving m ore than one target in the env ironm en t reduces the tracking area available to 

the robots and hence increases the chance for successful capturing. H ow ever, in 

several trials the robots could not track  all the targets as show n in figure 3.9. This is 

because there is no coordination am ong the behaviours w ithin one robot and betw een 

the robots them selves. A lso, there is no task  allocation o r task  assignm ent techniques 

to allocate a suitable num ber o f  robo ts for each  target.
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3.6. Summary

This chapter has proposed an approach to controlling m ultiple robots that involves the 

use o f  collective behaviour resulting from the sensor-based behaviours o f  individual 

robots. The approach was inspired by the study o f  sim ple creatures that exhibit 

collective task achieving behaviours in the way they collaborate and interact w ith one 

another.

The control o f  each robot in the collective team  is based on a m odified subsum ption 

architecture. The m odularity o f  the subsum ption architecture m akes the control o f  the 

robot readily adaptable to another task.

The sim ulation results obtained show ed that the robots successfully m anaged to track 

and capture the target under different environm ental conditions.

The influence o f  environm ental factors (e.g., num ber o f  obstacles and target size) and 

the num ber o f  robots on the perform ance o f  the group in a dynam ic target-tracking  

task  has been analysed. As expected, increasing the num ber o f  robots reduced the 

tim e required to track the target. H ow ever, robot collision and interference tended to 

degrade the perform ance. Continually adding m ore robots produced a proportional 

increase in perform ance.

For m ultiple targets, increasing the num ber o f  robots reduced the tracking  tim e 

because the search space was reduced. How ever, the lack o f  coord ination  and task  

allocation algorithm s caused some targets to escape.
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Chapter 4

Fuzzy-Logic-Based Behaviour Coordination in Multi-Robot

Systems

4.1 Preliminaries

Behaviour-based system s have proved to be useful in enabling robots to cojewith the 

dynam ics o f  real-w orld environm ents. The behaviour repertoire defines the skills 

available to a robot to enable it to react to situations encountered in its environment. A 

robot can exhibit m ultiple behaviours. Each behaviour is responsible for achieving or 

m aintaining a particular objective. H ow ever, the objective o f  one behaviour might be 

in conflict w ith those o f  o ther behaviours and it is necessary to reach a compromise 

betw een conflicting objectives. This highlights the solution o f  actions to achieve the 

required trade-off as a m ajor issue in the design o f  system s for control and co 

ordination o f  m ultiple behaviours in a robot. For this purpose, a fuzzy logic technique 

for behaviour coordination is proposed. Fuzzy logic has been adopted as tire basis o f  

the technique because o f  its ability easily to com bine the d ifferent individual 

behaviours in a robot w ith a m odified subsum ption-based control architecture

The rem ainder o f  this chapter is organised as follows. Section 2 outlines the fuzzy 

logic technique for coordinating behaviours in each robot including command fusion 

and dynam ic target tracking. The results obtained are presented and discussed in 

Section 3.
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4.2 Fuzzy Behaviour Coordination

4.2.1 Command Fusion

The desired outcom e can be achieved by integrating the outputs o f  the applicable 

behaviours, a process referred to as com m and fusion. For exam ple, the outputs from  

the target following behaviour and the obstacle avoidance behaviour are com bined to 

produce a heading that takes the robot tow ards its target w hilst avoiding obstacles. A n 

approach based on fuzzy sets operations is proposed here that takes into account the 

recom m endations o f  all applicable behaviour m odules. B ehaviour coord ination  is 

achieved by weighted decision-m aking and rule-based (behaviour) selection. The 

w eights used for weighted decision-m aking are the degrees o f  confidence p laced on 

the different behaviours. They are em pirical m easures o f  applicability  o f  particu lar 

behaviours.

To illustrate the process o f  behaviour coordination, assum e there are ju s t  two 

behaviours B1 and B2 as shown in figure 4.1. The degrees o f  confidence for B1 and 

B2 are oq = 0.25 and ot2 = 0.75 respectively. The contribution o f  individual

behaviours, each represented by a fuzzy set, is weighted by the corresponding degree 

o f  confidence. Thus, B1 and B2 are activated to degrees oq and ot2 respectively.

Behaviour activation is accom plished via scalar m ultiplication o f  the output fuzzy sets 

by the appropriate degrees o f  confidence oq and ot2 in this exam ple).

M ultiplication o f  an output fuzzy set by a scalar oq is equivalent to the conjunction  o f  

a set o f  uniform  m em bership degree oq w ith that output fuzzy set. The resulting  fuzzy 

sets are then aggregated using an appropriate t-conorm  operator (such as the ‘M ax ’



operator), and defuzzified to yield a crisp output u* that is representative o f  the 

intended behaviour.

In th is procedure, the scalar oq represents the w eight o f  a behaviour in the aggregated

control decision and m ultiplication by oq expresses the applicability  o f  the behaviour

to the current situation. It is not necessary that the sum  o f  the oq’s is equal to 1. This

hypothetical exam ple, illustrated in figure 4.1, reveals that the output o f  the  system  is 

influenced more by its dom inant behaviour B2 as intended. Control recom m endations 

from  each applicable behaviour m odule are considered in the final decision. In 

general, the resultant control action can be thought o f  as a consensus o f  

recom m endations offered by m ultiple experts.

In som e instances, it m ay be evident from  current sensory data that only one particu lar 

behaviour is fully applicable (oq associated w ith that behaviour is equal to 1). In this

case, coordination sim ply reduces to behaviour selection, a process also referred  to as 

sw itching coordination since behaviours are alternately sw itched on and off.
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Figure 4.1: Fuzzy coordination o f behaviours
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4.2.2. Fuzzy-Logic-Based Dynam ic Target Tracking Behavioural 

Architecture

As w ith other behavioural approaches, the fuzzy-logic-based architecture for m obile 

robots, in the context o f  a dynam ic target tracking system , consists o f  several 

behaviours, such as target follow ing and obstacle avoidance. Each behav iour relates 

sensor data and robot status to control recom m endations, as show n in figure 4.2, and 

has two com ponents: a set o f  fuzzy rules and a fuzzy inference m odule. The fuzzy 

rules o f  a behaviour explicitly represent its control strategy in the form  o f  linguistic  

statem ents. As illustrated in figure 4.2, m ultiple behaviours could share a  com m on 

fuzzy inference m odule. Fuzzy control recom m endations generated by all behaviours 

are fused and defuzzified to generate a final crisp control com m and.

The basic algorithm  executed in every control cycle by the architecture consists o f  the 

follow ing four steps: ( 1) the target follow ing behaviour determ ines the desired  turning 

direction; (2 ) the obstacle avoidance behaviour determ ines the d isallow ed turning 

directions; (3) the com m and fusion m odule com bines the desired and disallow ed 

directions and (4) the com bined fuzzy com m and is converted into a crisp com m and 

through a defuzzification process. The desired and disallow ed d irections are 

m aintained in fuzzy set form to reduce possible loss o f  inform ation during com m and 

fusion. Figure 4.3 shows an exam ple o f  a situation in w hich the target follow ing 

behaviour suggests that the robot should turn left, but the robot m ust continue straight 

on a little longer to avoid the obstacle on the left (i.e., obstacle A). This exam ple is 

used in the following subsections to describe and dem onstrate each step o f  the 

algorithm .
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4.2.2.1. Target Following Behaviour

The target follow ing behav iour genera tes a desired turning direction based on the 

current location o f  the  target and its cu rren t bearing. The target follow ing behaviour 

determ ines the desired steering  d irec tion  in three steps. First, it senses the target. 

Second, the behaviour com putes the target angle, w hich is the angle betw een the 

current direction o f  the  robo t and a vecto r from  its current location to the target. For 

the exam ple given, w ith the robo t head ing  N orth , the target angle 0 is -3 0  degrees. 

Third, the behaviour uses a set o f  fuzzy  ru les to change the specific target angle into a 

general desired direction, w h ich  g ives the robo t m ore flexibility in avoiding obstacles 

while still follow ing the target. F igu re  4.4 show s the two fuzzy rules R1 and R2 

em ployed in the exam ple by the  targe t fo llow ing behaviour. The fuzzy inference 

m odule o f  the target fo llow ing  b ehav iou r com bines the desired directions 

recom m ended by all target fo llow ing  b ehav iou r fuzzy rules using w eighted decision

m aking as explained previously . T he p rocess is illustrated in figure 4.5 for a  target 

angle o f -3 0  degrees using  R1 and R2 from  figure 4.4. The antecedent m em bership 

functions (i.e., “around 0 deg rees” and “around  - 4 5  degrees”) are designed to overlap 

such that the sum  o f  th e ir m em bersh ip  values in that region is 1 .0 .
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4.2.2.2. Obstacle Avoidance Behaviour

The obstacle avoidance behav iour uses u ltrasonic data to generate a fuzzy set that 

represents the d isallow ed d irections o f  travel (i.e., d irections that lead, in the short 

term , to or near an obstacle). T he beh av io u r operates by first com paring the distance 

o f  the closest obstacle de tec ted  by  each  direction  sensor to a fuzzy set, “N ear” , 

associated w ith the sensor. B ased  on  the resu lt o f  the com parison, the behaviour 

determ ines the degree to w hich  the general direction o f  each sensor is considered 

disallow ed. Exam ples o f  fuzzy  ru les u sed  by  the obstacle avoidance behaviour are 

show n in figure 4.6. The m em bersh ip  functions o f  disallow ed turning directions 

associated w ith a sensor have been  designed  such that: (1) they  partially  overlap those 

o f  neighbouring sensors and (2) they  have a m ajor influence on the direction o f  the 

sensor.

Once all the fuzzy rules associated  w ith  the obstacle avoidance behaviour have been 

fired, their fuzzy conclusions are com bined  using  the M ax operator. Figure 4.7 shows 

an exam ple o f  th is com bination  w ith  senso r inputs (three u ltrasonic sensors) based on 

the situation in figure 4.3. H ere, the  fuzzy  inference m odule o f  the behaviour uses the 

M ax operator instead o f  o th er t-conorm  operators (such as the arithm etic sum) 

because it is consistent w ith  the in tu itive  idea that the degree to w hich a direction is 

disallow ed should be determ ined  by  the sensor source that has the strongest opinion 

about it.
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4.2.2.3. Fuzzy Command Fusion

The third com ponent o f  the m obile ro b o t con tro ller com bines the fuzzy conclusions 

about the desired  d irection  and the d isa llow ed  direction into a single fuzzy control 

com m and. Since the final robo t d irec tion  should be both  desired from  the target 

fo llow ing v iew poin t and n o t d isa llow ed  by obstacle avoidance considerations, the 

com m and fusion m odule uses the M in  o p era to r in fuzzy logic to form  a conjunction o f 

the output o f  the tw o behav iours as fo llow s:

^T um ing-D irec tion (x ) =  ^ D esired (x ) A N D  N o t D isallow ed(x)

m *n ̂ D e s i r e d  (x)’ ^ N o t  D isallow ed (x)^

m in { p  D esired (x )’ ^  A llow ed(x)^

For convenience, the negated  D isa llow ed  D irec tion  w ill be referred to as the Allowed 

D irection o f  travel.

W ith reference to the exam ple in figure  4 .3 , figure 4.8 illustrates the com m and fusion 

and defuzzification steps un d er consideration .

4.2.2.4. Defuzzification

For the case show n in figures 4.3 and  4 .8 , by  using the centre o f  area  (CO A ) strategy, 

the crisp turn ing  d irection  is found to  be -  20 degrees. This angle com bines the 

recom m endations o f  both  the target fo llow ing  and obstacle avoidance behaviours (see 

figure 4.4 and 4 .7b) and enab les the robo ts  to approach the target w ithout colliding 

w ith obstacles.
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4.3. Experiments and Discussion

The experim ents reported  in chap te r th ree, concerning tracking a dynam ic target in a 

lim ited arena w ith a d ifferen t num ber o f  robots and different obstacles, were repeated 

to dem onstrate the fuzzy logic techn ique for behaviour coordination. In addition, 

situations in which the robots face conflic ting  behaviours, such as obstacle avoidance 

and target tracking, have been  illustrated , to prove the reliability o f  the technique. 

W ithout coordination (as in ch ap te r th ree), w hen the robots face obstacles while 

tracking a target, as show n in F igu res 4 .9a  - 4.1 la ,  obstacle avoidance has the highest 

priority. Even though the robo ts subsequen tly  lose the target, the robots avoid the 

obstacles and one another as show n in F igures 4 .9b - 4.11b. Subsequently, the robots 

start searching again, w asting  m uch  tim e. H ow ever, w ith  behaviour coordination (the 

resolution o f  conflicts be tw een  con trad ic to ry  behaviours), obstacle avoidance and 

target tracking are achieved by se lec ting  an action that represents the consensus 

am ong the behaviours and th a t b est sa tisfies the decision objectives that they encode.

As shown in Figures 4 .9c - 4 .11c the robo ts avoid  the obstacles and m oved directly 

towards the target to fo llow  it. A fter these  specific instances show ed im provem ent in 

the system  perform ance, the experim en ts  described in chapter three were repeated and 

evidence o f  the successful app lication  o f  fuzzy logic for behaviour coordination is 

shown in figure 4.12. W here conflic t am ong contradictory behaviours is correctly 

m anaged by behav iour coord ination , the tracking  tim e reduces w ith  increasing 

num bers o f  robots.
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4.4. Summary

This chapter has dem onstrated  ho w  a fuzzy  logic technique enables the resolution o f  

conflicts betw een con trad icto ry  robo t behav iours by selecting an action that represents 

the consensus am ong the behav iours and that best satisfies the decision objectives that 

they encode. The results show  an im provem ent in the global perform ance o f  a 

m ultiple robot system .
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Chapter 5

Knowledge-Based Software Architecture for Adaptive 

Co-operative Mobile Robots

5.1 Preliminaries

M ulti-robot teams can increase  the re liab ility , flexibility, robustness and efficiency o f  

autom ated solutions by ta k in g  advan tage  o f  the redundancy and parallelism  o f  

m ultiple team  m em bers. B efo re  m u lti-robo t team s can becom e w idely used in 

practise, it is necessary to  d ev e lo p  au tom ated  techniques that enable robot team  

m em bers autom atically to a d a p t th e ir  ac tions over tim e in response to changes in their 

environm ent or in the robo t te a m  itself.

A chieving adaptive co -o p e ra tiv e  robo t behav iou r is m ore challenging. M any issues 

m ust be addressed in o rd e r  to  develop  a w orking co-operative team ; these include 

action selection, task a llo c a tio n , coherence, com m unication, resource conflict 

resolution, and aw areness. A w areness  o f  o ther m em bers o f  the robot team  is a 

necessary com ponent o f  c o -o p e ra tio n ; how ever th is causes an increase in the search 

space dim ension (Touzet, 2 0 0 0 ) .

A know ledge-based so ftw a re  a rch itec tu re  is proposed  to enable robot agents to 

accom plish  collective b e h a v io u rs  and  adapt their perform ance during the specified 

tim e o f  the  m ission. The im p ro v e m e n t in team  perform ance is achieved by updating 

the control o f  the robots b a s e d  o n  know ledge acquired on-line.
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The rem ainder o f  the chap ter is o rgan ised  as follow s. Section 2 outlines the proposed 

adaptive co-operative action se lec tion  architecture. Section 3 explains the 

perform ance evaluation and m on ito ring  m odules o f  the architecture. The control 

strategy, com prising  off-line and on -line  learning phases, is described  in Section 4. 

The feed-forw ard neuro-fuzzy  techn ique and param eter learning algorithm s are 

described in Section 5 and Section 6. Section  7 presents sim ulation results for a box 

pushing exercise using ex isting  sim u la tion  softw are.

5.2 Adaptive C o-operative A ction Selection A rchitecture

The m ajor design goal in the d ev e lo p m en t o f  th is  architecture is to address the real- 

w orld issues o f  behav iour coo rd in a tio n , fau lt tolerance and adaptiv ity  w hen  using  

team s o f  fallible robots equ ipped  w ith  no isy  sensors and effectors. T he architecture 

m ust also allow  the bu ild ing  o f  ro b o t team s able to cope w ith  failures and  uncertain ty  

in action selection and action  execu tion , and  w ith  changes in a dynam ic environm ent. 

Furtherm ore, in o rder to m ain tain  a  p u re ly  d istribu ted  co-operative con tro l schem e 

w hich affords an increased degree  o f  robustness, ind iv idual agents m ust alw ays be 

fully au tonom ous, w ith the ab ility  to  pe rfo rm  useful actions even  am idst the  failure o f  

the o ther robots.

The architecture is developed  to be fully  d istributed, and  giving all robots the 

capability  to determ ine their ow n actions based upon th e ir  curren t situation, the 

activities o f  o ther robots and the cu rren t environm ental cond itions. N o  centralised 

control is u tilised , so that it is possib le  to investigate the p o w e r o f  a fu lly  d istributed 

robotic system  to accom plish  g roup goals.
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The com ponents o f  th is  a rch itec tu re  (F igure  5.1) w ill be explained in th is chapter, 

w ith the excep tion  o f  the  fuzzy -log ic -based  action selection arbiter w hich  was 

explained in C hap ter 4.

5.2.1. Assum ptions

In this architecture, it is no t requ ired  th a t a  robo t be able to determ ine the actions o f  its 

team -m ates through passive  o b se rv a tio n , w hich  can be d ifficu lt to achieve. Instead, 

robots are enabled to learn abou t the ac tions o f  th e ir team -m ates through an  explicit 

com m unication  m echanism , w hereby  the  robots broadcast in form ation  concern ing  

their curren t activ ities to the rest o f  the  team .

Furtherm ore, it is assum ed that the robo ts  are bu ilt to w ork as a team , and are neither 

in direct com petition  w ith  one ano ther, n o r a ttem pting  to subvert the actions o f  their 

team -m ates, although con flic t m ay  arise  at a  low  level due to, for exam ple, 

the sharing o f  com patib le  goals, (N o te , how ever, that som e m ulti-robo t team  

applications, such as robo t soccer and  m ilita ry  battles, m ay require the ab ility  to deal 

w ith adversarial team s).

It is further assum ed in the arch itec tu re  that robots do not have access to som e 

centralised  store o f  know ledge, and  that no centralised  agent is available that can 

m onitor the state o f  the en tire  robo t env ironm en t and m ake control decisions based 

upon this inform ation.
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5.2.2. Architecture Mechanism

At all tim es during  the m ission , the  m otivation  for each robot to activate a certain 

behaviour set is based on receiv ing  sensory  input and in ter-robot com m unication. 

W hen these inputs are valid , the  behav io u r set becom es active.

Intuitively, the m otivation  o f  ro b o t q  to activate  any given behaviour set is initialised 

to 0. O ver tim e, the m otivation  increases qu ick ly  as long as the task  corresponding  to 

that behaviour set is no t be ing  accom plished , as determ ined  from  sensory  feedback.

H ow ever, robots also have to be responsive  to the actions o f  o ther robots, adapting 

their task  selection to the ac tiv ities o f  team  m em bers. Thus, i f  robot q  is aw are that

another robot r^  is w orking  on  a ce rta in  task  T l ,  then  q  should be satisfied  for som e 

tim e (based on know ledge learned  on -line) tha t the task  w ill be accom plished even 

w ithout its ow n participation , and  thus go on  to som e o ther applicable actions. Its 

m otivation to activate the b eh av io u r set (addressed  by another robot) still increases, 

but at a slow er rate. T his charac te ris tic  p reven ts  any robo t from  replicating  the actions 

o f  the o thers and w asting  energy. O f  cou rse , detecting  and in terpreting the actions o f  

the o ther robots (som etim es ca lled  action  recognition) is no t a trivial p roblem , and 

often requires perceptual ab ilities  tha t are no t yet possible w ith curren t sensing 

technology. T hus, to enhance  the percep tua l abilities o f  the robots, the architecture 

utilises a sim ple form  o f  b ro ad cast com m unication  to allow  robots to inform  other 

team  m em bers o f  th e ir cu rren t ac tiv ities, rather than  relying to tally  on sensory 

capabilities. A t a  p re-specified  rate , each  robo t q  broadcasts a statem ent o f  its current
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action, w hich o ther robots m ay listen  to o r ignore as they w ish. Tw o-w ay 

com m unication is no t em ployed  in th is arch itecture .

Each robot is designed  to be som ew hat im patien t, in that a robot q  is only w illing for 

a certain  am ount o f  tim e to a llo w  the m essages from  ano ther robot to affect its own 

m otivation to activate a g iven  behav iour. C ontinued  sensory feedback indicating that 

a task  is not accom plished thus o verrides  the statem ents o f  another robo t perform ing 

that task. T his characteristic  a llow s robo ts  to adapt to failures o f  o ther robots, causing 

them  to ignore a robot that is no t successfu lly  com pleting  its task.

A com plem entary  characteristic  in these  robots is acquiescence (com pliance). Just as 

the im patience characteristic  o f  a  ro b o t reflects the recognition  that o ther robots m ay 

fail, the acquiescence characteristic  recogn ises that the robot itse lf  m ay  fail. This 

feature operates as follow s. A s a ro b o t q  perfo rm s a task, its w illingness to give up

that task increases over tim e p rov ided  th a t the sensory feedback  indicates that the  task  

has not been accom plished. A s soon as som e o ther robot r^  signals it has begun  that 

sam e task  and q  feels that it (q ) has a ttem p ted  the task  for an adequate length o f  tim e, 

the unsuccessful robot q  g ives up its task  in an attem pt to find an action at w hich it is 

m ore productive. A dditionally , even  i f  ano ther robot q< has no t taken over the task, 

robot q  m ay give up its task  anyw ay  i f  it is no t com pleted  w ithin a tim e lim it. This 

allow s q  the possib ility  o f  w o rk ing  on ano ther task  that m ay prove to be m ore fruitful

rather than attem pting  in vain  to perfo rm  the original task forever. W ith this 

acquiescence characteristic , therefo re , a  robo t is able to adapt its actions to its ow n 

failure.
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As a sim ple illustrative exam ple, co n sid e r a team  o f  tw o robots A  and B unloading 

boxes from  a truck and p lac ing  them  on one o f  tw o conveyor belts, depending upon 

the labelling on the box. B oth  robo ts have the ability  to unload boxes from  the truck 

to a tem porary storage location , and  the ability  to m ove them  from  the tem porary 

storage location to the appropria te  co n v ey o r belt, (it is assum ed that, due to the way 

the loading dock is designed , the robo ts  canno t m ove boxes im m ediately  from  the 

truck to the conveyor belt). A t the  beg inn ing  o f  the m ission, say robo t A  elects to 

unload the boxes from  the truck . R obo t B is then satisfied that the boxes w ill be 

unloaded, and proceeds to m ove the boxes from  the tem porary  location to the correct 

conveyor belt. As the m ission  p rog resses , it is assum ed that the m echanism  o f  robot A 

for un loading  the truck  fails. S ince no m ore boxes are arriv ing at the tem porary 

location, robot B becom es increasing ly  im patien t to take over the task  o f  unloading 

boxes, even though robot A  is still a ttem p ting  to accom plish  that task  - unaw are that 

its sensor is returning fau lty  read ings. Fo llow ing  a predeterm ined  num ber o f  

unsuccessful attem pts at un lo ad in g  b o x es  and receip t o f  a signal from  robo t B that it 

has begun the unloading  task , be ing  com plic it, robo t A  abandons that task  and turns 

its attention to the task  o f  load ing  the  conveyo rs instead.

5.3. M onitoring and P erform ance Evaluation

O ne item  o f  central im portance to the learn ing  m echanism  used is the requ irem ent for 

robots to m onito r and evaluate  the perfo rm ance  o f  team  m em bers in executing  tasks.

W ithout this ability , a  ro b o t m ust rely  on  hum an-supplied  m easurem ents o f  the 

perform ance o f  robot team  m em bers tha t are unlikely  to be responsive to changes
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occurring over tim e. In e ither case , once these perform ance m easurem ents are 

obtained, the robot team  m em bers have a basis for determ ining the preferential 

activation o f  one behav iour over ano ther, e ithe r for the sake o f  efficiency and long

term  adaptation, o r to determ ine w hen  a robo t failure has occurred.

The m onitor function, im plem ented  w ith in  each  robot, is responsible for observing 

and evaluating the perform ance o f  any  robo t team  m em ber (including itself) w henever 

it perform s a behaviour. Thus each  robo t m onito rs the perform ance o f  o ther robots for 

tasks that it itse lf is able to accom plish , record ing  inform ation on the tim e o f  task 

com pletion. R obots do not m o n ito r all tasks by all robots -  only tasks that they 

them selves have the ability  to perform .

D uring a live m ission, each robo t chooses the  m ost suitable action to execute based on 

sensory feedback  and the cu rren t system  situation . It then  broadcasts that action to its 

team  m ates to avoid dup lication . T he m on ito r function w ill observe its progress. I f  

there is no progress during  the expected  tim e, the  robo t m ust e ither leave th is task, or 

request help from  the o ther robots. A t the  sam e tim e, its team  m ates also m onitor its 

perform ance w hen they receive  its b roadcast m essage. I f  there seem s to be no 

progress in task  perform ance, they  start to  negotia te  w ith that robot to help it or to 

take over the task. This p rocedure is repeated  until the task  is com pleted.

5.4. Architecture C ontrol Strategy

The degree to w hich robot team  m em bers can actively  pursue know ledge concerning 

team  m em ber abilities depends on  the type o f  m ission  in w hich they are engaged. If
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they are on a train ing  m ission, w hose sole purpose is to allow  robots to become 

fam iliar w ith them selves and w ith the ir team  m ates, then the robots have more 

freedom  to explore their capab ilities w ithou t concern  for possib ly  not com pleting the 

m ission. On the o ther hand, i f  the  robo ts are on a live m ission that m ay continue for a 

long tim e, then the team  has to ensure  that the m ission is com pleted  as efficiently  as 

possible, w hile continuing to adap t the ir perform ance over tim e as the capabilities o f  

their team  m ates change. D uring  tra in ing  m issions, the robots w ill be in an off-line 

learning m ode w hereas during  live m issions, they  w ill be in an on-line learning m ode.

5.4.1 Off-line Learning Phase

The best way that the robots can independen tly  leam  about their ow n abilities and 

those o f  their team  m ates is by  ac tiva ting  as m any o f  the ir behaviours as possible 

during a m ission, and m onito ring  th e ir ow n progress and the progress o f  team  

m em bers during task  execution . O n any  given m ission, no t all o f  the  available 

behaviour sets m ay be appropriate , so it is usually  not possib le to leam  com plete 

inform ation about the capabilities o f  the  robo ts  from  ju s t  one m ission scenario.

H ow ever, this learning phase allow s the team  to obtain as m uch inform ation as 

possible to allow  each robot to se lec t its nex t action properly. T his action is one o f  

the actions that is currently  incom plete , as determ ined  from  the sensory feedback, and 

not being executed by ano ther robo t, as determ ined from  the broadcast 

com m unication m essages. A ll th is in fo rm ation  is used as a com m on know ledge base 

from  w hich fuzzy m les are generated . T hese rules are then fine-tuned using a feed

forw ard neuro-fuzzy techn ique exp la ined  later in this chapter.
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5.4.2. On-line Learning Phase

W hen a robot team  is on a m ission , it canno t afford to allow  m em bers to attem pt to 

accom plish  tasks for long periods w ith  little o r no dem onstrable progress.

The team  m em bers have to m ake a concerted  effort to accom plish the m ission with 

w hatever know ledge is availab le abou t team  m em ber abilities, and m ust no t tolerate 

long episodes o f  robot actions that do not contribute to the task  execution. How ever, 

each robot continues to observe robo t perform ance during this phase, and to update 

the com m on know ledge base (built during  the off-line phase) i f  required. For 

exam ple, due to the unreliability  o f  the sensors and actuators and uncertain ties in the 

environm ent, there m ight be a sm all, bu t acceptable, variation in the tim e required  for 

robots to im plem ent the sam e behav iour. A ccordingly , the know ledge base has to be 

updated. Furtherm ore, i f  a n ew  situation  occurs, a  suitable action w ill be executed, 

m onitored, evaluated and, i f  app ropria te , added  to the know ledge base.

5.5. Feed-Forward N euro-fuzzy Technique

One m ajor disadvantage o f  fuzzy approaches is that there are no clear guidelines as to 

how  to fine-tune the fuzzy m em bersh ip  functions. H ow ever, learning techniques are 

being developed that can help in th is process.

U pdating the know ledge-base affects the curren t rules and hence the system  outputs. 

Therefore, a neuro-fuzzy techn ique has been proposed to fine-tune these rules and 

m inim ise the total error betw een  the desired  output and the fuzzy controller output.
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M am dani-m odel-based fuzzy neural ne tw orks (FNN s) represent m ore transparent 

neurofuzzy system s com pared w ith  T akagi Sugeno-m odel-based FN N s (Shankir, 

2001). The reason is that the rule base o f  the  M am dani-m odel is m ore understandable 

to hum an users. A lso, it is m ore general in term s o f  how  its rule base is created, 

because the latter can be constructed  using  hum an experience and num erical data. 

H ow ever, a d isadvantage o f  th is m odel is that it does not allow  easy m athem atical 

analysis due to the logical natu re  o f  its inference functions, e.g., the logic m in/m ax 

functions. A lso, it does not a llow  the sim ple application o f  BP as one o f  the m ost 

pow erful learning algorithm s, due to the non-differentiable m in/m ax functions 

em ployed.

In this chapter, a M am dani-m odel-based  FN N  w ith  D ifferentiable A ctivation 

functions (D A -FN N ) is described . A  d ifferen tiab le  alternative to the logic m in  and 

logic m ax functions term ed so ftm in  a n d  so ftm ax  (Shankir, 2001) are presented. These 

two differentiable functions (.so ftm in  and so ftm ax ) are em ployed instead o f  the two 

non-differentiable functions (logic m in  and logic m ax) to im plem ent the decision

m aking m echanism  o f  D A -FN N . U sing  these d ifferentiable functions allow s the 

effective application o f  B ack  p ropaga tion  (BP) for the param eter learning o f  DA- 

FNN.

Figure 5.2(a) presents the structure o f  the  proposed  neuro-fuzzy system . The structure 

is a six-layer feed-forw ard connection ist representation o f  a M am dani-m odel-based 

fuzzy logic system  (FLS) (M am dani, 1974). In general, a node in any layer has some 

finite "fan-in" o f  connections represen ted  by w eight values from other nodes and a 

"fan-out" o f  connections to o ther nodes (see Figure 5.2(b)). A ssociated w ith the fan-in
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o f  a node is an aggregation  f u n c t i o n , / ,  that serves to com bine information, 

activation, o r evidence from  o ther nodes. U sing  the same notations as in (Lin and Lee, 

1992), the function that prov ides the ne t input to such a node is w ritten as follows:

net input = / k (u!< k k k 
, Up  ; W,  , W 2 , , W (5.1)

w here p is the num ber o f  fan-ins o f  the  node, w  is the link w eight associated w ith each

fan-in, u is an output o f  a node  in the p reced ing  layer associated w ith the fan-in and 

the superscrip t indicates the layer num ber. A  second action o f  each node is to output 

an activation value as a function o f  its n e t input,

w here a k denotes the ac tivation  function  in layer k. The functions o f  the nodes in 

each o f  the six layers o f  the p roposed  structure  are described next.

L a y e r  1: N odes in Layer 1 are input nodes that represent input linguistic variables. 

Layer one contains N  nodes, each  o f  w hich receives a crisp input 

v e c to rx  = (x , , . . . . ,x N). The nodes in th is layer sim ply transm it input values to the next 

layer directly. T ha t is,

output = 0jk = a k ( / k) (5.2)

(5 .3 )

The link w eights in L ayer 1 are fixed  at unity.
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nodes

Layer 1 
input nodes

Figure 5.2(a): S tructu re  o f  the  proposed  neuro-fuzzy system

Layer k

wWj

u

Figure 5.2(b): B asic  structure o f  a  node in the netw ork
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Layer 2: N odes in L ayer 2 are input term  nodes w hich act as m em bership functions. 

An input linguistic variable x in a un iverse  o f  discourse U is characterised by 

T(x) = { t 1x,T x v ,T?} and M (x) = { m 'x > M x v ?Mx},  w here T(x) is the term  set o f  x; 

that is the set o f  nam es, e.g., (sm all, m ed ium , large), o f  the  linguistic values o f  x and 

M(x) is the m em bership function, e.g ., (triangular, trapezoidal, bell-shaped), defined 

on a universe U. The bell-shaped  function is chosen because it is differentiable 

function. The function o f  each  node j in a term  set i is to calculate the degree o f

m em bership o f  input Xj w ith  respect to  the m em bership  function M JX , j = l ,2 , . . . . ,N j ,

associated w ith the term  set T (x j) acco rd ing  to  the fo llow ing bell-shaped function:

f  \ 2
( w j j* a j  ) - m i j

f  \ -  M^ (m ij, oij) = -------------- j-------------  anc* a,2 = e" A  (5.4)
Gij

w here my and ay are, respectively , the  cen tre  (or m ean) and the w idth (or variance) o f  

the bell-shaped function o f  the  j th term  o f  the  ith inpu t linguistic variable Xj.

Layer 3: The nodes in L ayer 3 are ru le nodes, w here each node associates one term  

node from  each term  set to form  a cond ition  part o f  one fuzzy rule. In th is structure, 

the softm in  function (B erenji and K hedkar, 1992) and its com plem ent softm ax  

function (Shankir, 2001) are used.

X a i e - k a i
softm in  (a j , i = 1,2,..., n ) =   (5.5)

Z e " k a i
i - \
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J]aie ^ai
softm ax  ( a i ,i  = l,2 ,...,n )  = so ftm in (a j,i  = l , .2 ,..,n )  = 1 -

Z e ka i (5.6)
1 = 1  _  V  '

w here a i = p  , aj = 1 -  aj and the pa ram ete r k controls the “hardness” o f  the softmin  

function.

w here r = 1 R, and R  is the  n u m b er o f  ru les o r rule nodes in layer three. H ow ever, 

in th is layer, there are no link  w eigh ts  to be ad justed  because all the link w eights are 

fixed at unity.

Layer 4: The nodes in th is layer are o u tpu t term  nodes w hich act as m em bership 

functions to represent the ou tpu t term s o f  the  respective L linguistic ou tput variables. 

The nodes in Layer 4 should  in tegrate  the fired ru les that have the sam e consequent. 

The softm ax  function is used to perfo rm  the  in tegration. Therefore, the function o f  

each term  node j in the ou tpu t te rm  set i can  be w ritten  as follows:

w here p is the num ber o f  ru les sharing  the sam e consequent (the sam e output term  

node). H ence, the  link w eigh ts in L ayer 4 are fixed at unity.

Therefore, the function o f  the  rth ru le  node u sing  softm in  can  be w ritten  as follows:

f \  = so ftm in(\i\ , ,....... , u !N) and  a] = f ] (5.7)

f* j = so ftm a x ( , m  = l,...,p j and a \  = f  (5.8)
m
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Layer 5: The num ber o f  nodes in layer 5 is 2L , w here L is the num ber o f  output 

variables, i.e. there are tw o nodes for each  ou tpu t variable. The function o f  these two 

nodes is to calculate the denom ina to r and the num erato r o f  a quasi Centre O f Area 

(CO A ) defuzzification value for each  o u tpu t variable. The functions o f  the  two nodes 

o f  the ith ou tput variable are :

/ ^ i = Z a fJ * m i j* o ij and a 5nj = / ^  (5.9)

/d i  = ZaU*0ij and a d i ^ d i  (5-10>

w here / ^ .  and / are,  respec tive ly , the  node functions o f  the num erato r and the 

denom inator nodes o f  the ith o u tp u t variab le .

Layer 6: The nodes in layer 6 are defuzz ifica tion  nodes. The num ber o f  nodes in this

th
layer equals the num ber o f  o u tpu t lingu istic  variables. The function o f  the i node

|L

corresponding to the i ou tpu t variab le  can  be w ritten  as follow s:

r t  31111 a i = / ^ and  *  = a ? ( 5 1 1 )
w d i * a di

w here w ^- and are layer 6 link  w eights associated  w ith each output variable 

node.

In order to build a neuro-fuzzy  system  based  on the above descrip tion, three m ain 

steps have to be considered. T he first step is to specify the input and output variables 

o f  the netw ork. The second step is to d iv ide the input-output universes into a suitable 

num ber o f  partitions (fuzzy sets) and  to specify a m em bership  function for each
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partition. A linguistic  term  has to be assigned  to each m em bership function and the 

param eters o f  the m em bership  function  (centre and w idth) have to be specified 

initially. The third step is to generate fuzzy ru les to perform  the input-output m apping 

o f  the FLS. A fter the construction  o f  the netw ork, a param eter learning phase has to 

be conducted. The algorithm  for tha t phase is explained next.

5.5.1. Parameter Learning A lgorithm

Follow ing the construction phase, the netw ork  then enters the param eter learning 

phase to adjust its free param eters. T he ad justab le  free param eters w ere selected to be 

the centres (rm s) and w idths (ct̂ s) o f  the  term  nodes in layer 4 as w ell as the link

w eights in layers 2 and 6. A  superv ised  learn ing  technique is em ployed along w ith the 

back propagation (BP) learning a lgo rithm  (B erenji and K hedkar, 1992) to tune these 

param eters. The problem  can  be stated  as: ‘G iven  n input patterns Xi(t), i =  1,...., n, m

desired output patterns y;(t), i =  1,..... , m , the  fuzzy partitions, and the fuzzy rule base,

adjust the free param eters o f  the ne tw ork  o p tim ally ’. In the param eter learning phase, 

the goal is to m inim ise the fo llow ing  e rro r function:

w here y ( t )  is the desired ou tpu t, and y n e t ( t )  ls the current netw ork output. For

each training data  set, starting  at the input nodes, a  forw ard pass is m ade to com pute 

the activity levels o f  all the nodes in the netw ork. Then, starting at the output nodes, a 

backw ard pass is follow ed to com pute the rate o f  change o f  the error function with 

respect to the adjustable free param eters  for all the h idden nodes. A ssum ing that w  is

(5.12)
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an adjustable free param eter in a  node, th en  the general learning rule can be w ritten as 

follows:

Aw = r| -
aE

&w

w (t + l ) =  w (t) + A w

(5.13)

(5.14)

w here rj is the learning rate. U sing  the chain  rule, the partial derivative can be defined 

thus:

dE dE  d (net -  input) dE d f  dE da d f

dw  d ( n e t -  input) dw  d f  dw  da d f  dw
(5.15)

The calculation o f  the b ack -p ropagated  erro rs as w ell as the updating  o f  the  free 

param eters can be described  starting  at the  ou tpu t nodes as follows.

Layer 6: U sing Equation (5 .15) and  E quation  (5.11), the  adaptive rule for the Layer 6 

w eights is derived below :

d w n i da*j d f d w n i  na

5
ni

w di  a di

W ni ( t  + l ) =  W n i ( t )  +  Tl6
\  5 W niy

(5.16a)

(5.16b)

^ w di a a f d f $  ^ w di (w di)2a^ j

w di(t + l ) =  w d i ( t )  +  r |6
k 5 w di J

(5.17a)

(5.17b)
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w here rjt is the learning rate o f  the  link  w eigh ts in layer 6. T he propagated errors from  

Layer 6 to the num erato r and  the den o m in a to r nodes in layer 5 are derived  as follows:

(5.18a)

(5.18b)

Layer 5: An adjustm ent is requ ired  for the  link w eights w „y w hich represent the

centres my o f  the output m em bersh ip  functions. A lso , an ad justm ent is required  for the 

free param eter oy that rep resen ts  the  w id th  o f  the output m em bership  functions. 

C onsequently , using E quation  (5 .9) and  E quation  (5.15), the adaptive rule to tune the 

free param eters in Layer 5 is derived . F irst, the  adaptive rule to tune the centres o f  the 

output m em bership functions can  be ob tained  as follow s:

8E 8E d&5ni .  g / „ j
(5 .19a)

5 m ij d f sn ■ d m i]

(5 .19b)

Second, the adaptive rule to tune the w id ths o f  the  output m em bership  functions is



U
dE

0 G ijy
(5.20b)

w here r/5 is the learn ing  rate o f  the  ad justab le  param eters Gij and  mjj in layer 5. The 

propagated error from  layer 5 to  the  j th node in the ith term  set in layer 4 is:

da*5- d f 5 .+ m  + J ni
d r 4d f 5 . ni J ni

+
d E 8 a 5di d f *.di

di
-  (s6ni * mij * o ij)+  (s^i * o ij)(5 -21)

Layer 4: No ad justm ent is requ ired  for the  link w eights o f  layer 4. O nly the error 

signals 54 are required  to be ca lcu la ted  and  propagated  to a ru le node r in layer 3. 

Each one o f  these erro r signals is a  sum m ation  o f  L p ropagated  error signals 54j , one 

error signal from  a specific  node j o f  each  term  set i, w here i = 1 ,.. . . ,  L and L is the 

num ber o f  output variab les (o r term  sets). U sing  E quation  (5.15), the error signal 5? 

is then:

8? = Z5?i = I
d a $  8 /5 . 

S5 * _ y * _ y
'J 5 /5 . 3 a?

(5.22)

From  Equations (5.8) and  (5 .5)

<7a-
y 

5 / 5
■ ij

=  1 (5.23)

and

1 1 6



£ Z-4 e ^ a r
^ ij

3
Car

,l _ k a ? ) Z e  k ( u u-l +  k I u ^ e  k
m = l in =1

—4 
U ijm

P

Z e
V'n = l 

:th

r _ .  ^  
u

(5.24)

- k ! _4
Mjm

J

i f  the j term  node at the i term  se t in layer 4 is connected  to the rl rule node in 

L ayer 3. O therw ise,

8  f t  
J ‘J

^ 3
Car

= 0 (5.25)

w here p is the num ber o f  ru les sha ring  the sam e j m ou tpu t term  node, and u j*m is the

com plem ent o f  the rnm input to  the j th o u tp u t term  node at the iin term  set in L ayer 4th

L a y e r  3: As w ith layer 4, no  ad ju stm en t is requ ired  for link  w eights in layer 3. O nly

the error signals are requ ired  to be ca lcu la ted  and propagated  from  the rl ru le node

in layer 3 to the j th term  node at the  ith te rm  set in layer 2. Each one o f  these  error 

signals is a sum m ation  o f  p p ro p ag a ted  erro r signals §fjm from  layer 3, w here 

m = l , . . . ,p,  and p is the n u m b er o f  ru les w hich  share the sam e j th term  node at the 

sam e ith input term  set in layer 2. U sing  E quation  (5.15), the error signal 5? can be 

calculated  as follow s:

8 j  = I 8 i im = S
m m

■3
m

m i a 2
d  f 3 d a i\V J m •' J

(5 .26)

From  Equations (5.7) and  (5 .6)

da

d f
=  1 (5.27)
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and

O f
3 e  k a ij
m

l - k a s f E e  kumi +  k 2 u ^ e “ k “mi
i=l i = l

P 2<?a„
(5.28)

2 e - k “mi
M

i f  the j th term  node at the i,h in p u t term  set in layer 2 is connected  to the rule node m in 

layer 3; otherw ise,

a / 3J m
^ 2 
tfa.i

=  0 (5 .29)

w here N is the num ber o f  inpu t term  sets and u^i *s the ith input to the rule node m  in

Layer 3.

L a y e r  2: U sing  E quation  (5 .13 ) and  E quation  (5.4), the  adaptive ru le to tune the 

w eights in layer 2 is g iven  by:

d E  d E  d a ij d f \ _  3 f 2 - 2 a { ( a j w , j - m i j )

dw,] d a ?; d f l  
y J y

* - — y  = 5?j * e^j *

wj-( t +  l ) =  wjj ( t )  +  ri2

f  ^
d E

d  w ?

(5 .30a)

(5 .30b)

w here 772 is the learn ing  rate o f  the  link  w eigh ts  in layer 2. The p ropagated  erro r from  

L ayer 2 to the ith inpu t node in layer 1 is derived  as:
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5^ = ZS?: = Z
j j

dE dajj

5 / «

d / z
j

g ? .  *  *
ij y i J

Wy(a}w y - m ij)
(5.31)

ay

Follow ing the construction  phase and the learn ing  phase, an op tim ally  tuned  FLS is 

developed to perform  a specific  m app ing  function. T his m apping  function m ay 

represent a function o f  a dynam ic  sy stem  o r a  con tro l function.

5.5.2. Pattern and Batch M odes o f  T raining

In the practical application  o f  the  back  p ropagation  a lgorithm  to the m ulti-layer 

perceptron , learning resu lts are o b ta ined  from  m any presen tations o f  a p rescribed  set 

o f  tra in ing  exam ples to the netw ork . O ne  com plete  presen tation  o f  the  entire  training 

set during the learning p rocess is ca lled  an epoch. T he learning process is m aintained 

on an epoch-by-epoch  basis un til the  synaptic  w eigh ts and threshold  levels o f  the 

netw ork stabilise and the average  squared  e rro r over the entire tra in ing  set converges 

to som e m inim um  value. It is good  p rac tice  to random ise the o rder o f  p resen tation  o f  

train ing  exam ples from  one epoch  to the next. F o r a given tra in ing  set, back- 

propagation learning m ay p ro ceed  in one  o f  tw o basic w ays, pa ttern  o r ba tch  m ode.

In the pattern  m ode o f  back  p ro p ag a tio n  learn ing , w eigh t updating  is perfo rm ed  after 

the presentation o f  each  tra in ing  exam ple. Each exam ple in the epoch is presented  to 

the netw ork, and a sequence o f  fo rw ard  and backw ard com putations is perform ed 

resulting in certain  ad justm en ts  to the synaptic  w eights and threshold  levels o f  the 

netw ork.
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In batch  m ode, w eigh t u p da ting  is p e rfo rm ed  after the p resentation  o f  all training 

exam ples that constitu te  an epoch .

The pattern  m ode w as adop ted  in th is  w ork  because  it is sim pler to im plem ent and it 

can still give tra ined  ne tw orks p ro d u c in g  o u tpu ts  very  c lose to the desired  outputs.

5.6. Experim ents and Discussion

T his arch itecture  has been  app lied  to a  sim u la ted  team  o f  m obile  robots perform ing  a 

p roof-o f-concep t co -opera tive  b o x  p u sh in g  task . T hat task  w as chosen  because it 

enabled the features o f  the  p ro p o se d  a rch itec tu re  to be dem onstrated . T he objective o f  

the co-operative box -p u sh in g  task  is to find a box, random ly  p laced  in the 

environm ent o f  the robots, and  pu sh  it ac ro ss the ‘ro o m ’. The box  is heavy and  long 

and one robot alone canno t (co n tin u o u sly ) p u sh  the box  to m ove it across the room . It 

is necessary  to synchron ise  the  p u sh in g  o f  the  box by  robots at the tw o ends, so that 

the task  is defined  in term s o f  tw o  recu rrin g  subtasks. T hese subtasks are: push  the left 

end a little and push  the righ t end  a little  -  ne ither o f  w h ich  can be activated  (except 

for the first tim e) un less the  o p p o site  side has ju s t  been  pushed.

The W ebots s im ulation  shell (M iche l, 1998) w as used  to im plem ent th is task. T his is a 

th ree-d im ensional s im ulation  too l w ith  a  good  g raph ical interface to d isplay  the 

sim ulation results. U sing  W ebo ts, robo ts  equ ipped  w ith  actuators and sensors for 

detecting the box and o b stac les  and a set o f  behav io u r m odules that m ap sensor inputs 

to actuator ou tpu ts at an e n v iro n m en t con ta in ing  a long box  and obstacles have been 

m odelled.
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The tw o experim en ts  pe rfo rm ed  in (P arker, 2001) w ere repeated in th is investigation 

for com parison . In the first ex p e rim en t, tw o robots co-operate to find a box  and push 

it across the room  w ith  no o b s tac les  in the environm ent. The second experim ent 

differs by add ing  an obstac le , loca ted  at one o f  the  com ers, that obstructs one o f  the 

robots to study how  the o th e r robo t d y nam ically  reselects its actions in response to 

changes in the m ission  situa tion .

At the start, the robots are s itu a ted  random ly  in the env ironm ent (figure 5.3(a)) and 

they begin  to locate the box . A fte r b o th  o f  th em  have reached the box  (figure 5.3(b)), 

it is assum ed that the robo t at the  left s tarts  to push  first (figure 5.3(c)). T he box  then 

needs to be pushed  from  the  rig h t s ide , so the robo t on the righ t starts to push  and 

broadcasts that action to the  ro b o t o n  the left. D uring  the expected  tim e for that action, 

the robot on the left m o n ito rs  the  pe rfo rm an ce  o f  its team  m ate. T he p rocedure then 

repeats itself. F inally , the  robo ts  co m p le te  the task  (figure 5.3(d)). In the second 

experim ent, one o f  the  ro b o ts  is s tu ck  b eh ind  an obstacle  added to the environm ent 

w hile the o ther reaches the b o x  (figu re  5 .3(e)). B ecause  there is no con tribu tion  from  

the o ther robo t (sensors read in g s are  u nchanged  and no m essages are received), the 

robot that reached  the box  s ta rts  to  p u sh  it a t one end (figure 5.3(f)). It th en  m oves to 

the o ther end to push  (figure  5 .3(g)). It co n tin u es  its back  and forth m ovem ents (figure 

5.3(h)), execu ting  the task s  o f  p u sh in g  the  left end  o f  the  box  and push ing  the right 

end o f  the box for as long  as it fails to  h ear that ano ther robo t is perform ing  the 

pushing task at the o ther end  o f  the  box .
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Figure 5.3(a): Initial env ironm ent (two robots random ly situated in an 
environm ent w ith a long box)
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Figure 5.3(b): T he robots reach the box
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Figure 5.3(c): T he left robot starts to push the box
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Figure 5.3(d): B oth  robots successfully com plete their m ission
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Figure 5.3(e): O nly one robot reached the box because o f  the
obstacle
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Figure 5.3(f): T he robot starts to push from the left side
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Figure 5.3(g): T he robot m oves to the other end to push

12 8



Figure 5.3(h): The robot continues the back and forth m ovem ent 
at the left-right alternating pushing
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5.7. Summary

The know ledge-based  arch itec tu re  p resen ted  in th is chapter w as used to create a robot 

team  that can  perform  m issions o v e r long  periods, even w hen the env ironm ent or the 

robot team  itse lf  changes. A n im p o rtan t com ponent o f  these robotic system s is a 

control strategy that enab les the robo ts  to adapt their actions throughout the m ission 

w ithout hum an in tervention .

Since the robot team  m em bers are con tinually  m onitoring  the perform ance o f  their 

team  m ates and updating  the perfo rm an ce  m easurem ents accordingly, the response to 

im proved o r degraded capab ilities  is au tom atic  regard less o f  the  m ission  length. The 

results o f  sim ulation  experim en ts  sh o w  that the robot team  is able to achieve adaptive 

co-operative control desp ite  dynam ic  changes in the env ironm ent and variation in the 

capabilities o f  the  team  m em bers.
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Chapter 6

Mobile Robot Hardware and Experiments 

6.1 Preliminaries

The original objective w as to develop  a research  platform , including both  softw are 

and hardw are com ponents, for the eva lua tion  o f  control algorithm s for m ulti robot 

system s. The developed softw are shou ld  enable users to  develop their ow n control 

algorithm s. These algorithm s cou ld  th en  be tested  both  in sim ulation environm ents 

and also on real m obile robots. T he deve loped  hardw are should enable the creation  o f  

m ultiple autonom ous m obile robo ts  w ith  the fo llow ing requirem ents:

•  Extendibility -  the robot hardw are  m ust a llow  future expansion.

•  C om patibility  -  the robo t design  m ust be based on com m ercially  available 

standard com ponents.

The rem ainder o f  the chap ter is o rgan ised  as follow s. The construction o f  a team  o f  

m obile robots is covered  in S ection  2. E xperim ents are discussed in section 3. The 

experim ents w ere devised  to  dem onstra te  practical im plem entations o f  som e o f  the 

ideas proposed in prev ious chapters.
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6.2 Construction of a team of mobile robots

Sm all radio-controlled  toy  cars and a sm all rad io-contro lled  toy  tank w ere adapted to 

provide the m echanical struc tu res for the m obile robots and m oving target, 

respectively (see F igure 6.1). T he toy  cars and the tank  w ere driven by sm all dc 

m otors and w ere capable o f  a  m axim um  speed  o f  3 m /s and 2 m /s respectively. B oth 

types o f  toys are inexpensive (costing  under £10 each) and readily  available. This 

contributes to achieving the com patib ility  and cost requirem ents.

The control system  for the robo ts  and  ta rg e t w as purpose  designed for th is application 

as the existing rad io-operated  con tro llers  in the  toy cars and toy  tank w ere not 

suitable. The control system  for the  ro b o ts  com prises a  m ain  board and sensor board. 

The heart o f  the m ain board  is a  P rio rity  In terrup t C ontroller (PIC) o f  type 18F252, 

used to  control the robo t/ta rget ac tua to rs  and p rocess the sensor signals. A  circuit 

diagram  for the sensor board  is show n  in F igure  6.2. The sensor board  contains 

circuitry  to enable the robo ts  to  de tec t the  targe t and other obstacles. A n em itter and 

four sensors w ere designed to  be inco rporated  in the sensor board (F igure 6.3). 

H ow ever, due to the size o f  the robo ts, the  d im ensions o f  the control system  (and thus 

the main and sensor board) are very  lim ited. This does not perm it the fitting o f  m any 

sensors. Hence, the rear facing senso r w hich  w as not considered essential w as 

om itted. Also, there w as no room  to  fit a system  for the robots to detect or 

com m unicate w ith one ano ther and tha t w as w hy only the dynam ic target tracking 

task could be im plem ented (F igure  6 .3). H ow ever, as the em itter o f  a robot is front 

facing, it cannot d ifferen tiate  be tw een  ano ther robot and an obstacle in front o f  it.
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Figure 6.1 (a): The mobile robots
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Figure 6.1 (b): The target
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F igure  6 .2 : R obo t sensors board
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H ow ever, a robo t can  d e tec t an o th e r ro b o t approaching  it from  either side o f  it 

because one o f  the side sen so rs  o f  the  first robo t will be activated  by the signal 

em itted  by the approach ing  robo t. A  robo t can  also  d istinguish  betw een a target and 

ano ther robot located on  e ither side o f  it because  o f  the d ifferen t signals they em it. 

This help the robots to co o rd in a te  th e ir  m o v em en ts  based on  the d irec tion  o f  m otion 

o f  their team  m ates and that o f  the  targe t.

Tw o factors restricted  the ch o ice  o f  th e  in frared  rece ivers  and transm itting  LED s: the 

size o f  the robots and the  cu rren t con su m p tio n . B oth  the transm itting  LED  and 

receivers operate  at the sam e freq u en cy  signal chosen  at 38 kHz. For obstacle 

detection, the robot uses the  tra n sm itte r  to  send a signal w hich  w ould be reflected  and 

detected  by one o f  the rece iv e rs  i f  th e re  is an  obstacle  near by. O bstacles can be 

detected  as far as 30 cm  and  the  an g le  o f  the  de tec tion  is approxim ately  45 degrees. 

The target could be sensed  from  a d istan ce  o f  lm .

To d ifferen tia te  be tw een  ta rg e t and  ob stac le , tw o  d ifferen t codes are used in the 

em itted  signal one for ta rg e t d e te c tio n  and  the o ther for obstacle detection. F igure 

6.4(a) show s the signal e m itted  by  the  ta rg e t. A  square  w ave at 38 kH z is em itted  for a 

duration  o f  0.8 m s and th en  s to p p e d  fo r 8 m s. F igu re  6 .4(b) show s the signal em itted  

by the robot for obstac le  d e tec tio n . T h is  is a lso  a square w ave signal at 38 kH z, but 

em itted  for a du ration  o f  1.4 m s and  th en  stopped  for 18 ms. These values w ere 

determ ined  experim en tally . T o  find the  range for obstacle  and target detection,
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F igure 6.4: T he em itted  signal (a) fo r the target (b) for the obstacles
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experim ents w ere conducted  under d iffe ren t conditions and the output o f  the PIC 

con tro ller m easured. The d e tec tion  ranges w ere used by the control program s to 

enable the robo ts to m ove safely  and  p e rfo rm  their tasks successfully.

6.3 Experiments and Discussion

E xperim ents w ere run w ith  tw o  o r th ree  robo ts, d ifferent obstacles and one target. 

Each experim en t w as perfo rm ed  six  tim es  and the resu lts are averaged. The first set o f  

experim en ts analysed how  vary ing  the  n u m b er o f  robo ts  affected  the tim e required  for 

track ing  the target. This experim en t to o k  p lace in a  lim ited arena containing one target 

and no obstacle. T he average track in g  tim e versus the num ber o f  robots w as noted. 

T he second set o f  experim en ts  d iffe red  from  the first set only by the addition  o f  

obstacles in the  arena. A gain , p e rfo rm an ce  w as analysed  relative to  the num ber o f  

robo ts perform ing  the task.

F igures 6 .5(a) show s one o f  the  e n v iro n m en ts  before  the experim ent started. This 

con tained  tw o robots in one co rner, and  one target in the opposite  corner. Figure 

6 .5(b) dep icts an in term ediate  stage  o f  ta rg e t tracking. Figure 6.5(c) show s the final 

stage w hen the robo ts have co o p e ra ted  and cap tured  the target. F igures 6 .6(a), 6.6(b) 

and 6.6(c) dem onstra te  the sam e scenario  for three robots. Figures 6.7 (a), 6 .7(b) and 

6 .7(c) show  the sam e scenario  w ith  the  add ition  o f  obstacles.

Even though  the perfo rm ance  o f  the  ro b o ts  in som e trials w as not as expected (the 

robo ts spent too  long to  track  and cap tu re  the target), this m ight be due to the narrow  

beam  angle o f  the  em itters , so that it w as difficult for the robots to find the target.
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H ow ever, the robo ts  m anaged in som e tria ls  to  track  and capture the target even in 

c lu ttered  env ironm ents. It w as found th a t the  tim e required  to  track  and capture the 

target using th ree robots w as app ro x im ate ly  2 m inutes. W ith only tw o robots, the 

required  tim e w as abou t 4 m inutes. In  the  case w here obstacles w ere included, the 

tim e w as 7 m inutes. The track ing  tim e  can  be reduced  by increasing the num ber o f  

robo ts  o r the speed o f  the robo ts. H o w ev er the  speed o f  the robo ts  w as kept slow  

(0.5 m /s) to give them  tim e to  respond  to  the  signal em itted  from  the infrared em itters.

D ue to the lim ited capab ilities  o f  the  ro b o ts  as p rev iously  m entioned  in addition  to  the 

robo ts  are light and does not have en o u g h  fo rce, the  box push ing  task  could not be 

im plem ented  in real.
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Figure 6.5(a): Initial environm ent (one target and two robots)
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Figure 6.5(b): In term ediate stage w ith robots tracking the target
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Figure 6.5(c): Final stage w ith  the robots having captured the target
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Figure 6.6(a): Initial env ironm en t (one target and three robots)
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Figure 6.6(b): In term ediate  stage w ith  robo ts tracking the target
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m

Fieure 6.6Tc^: Final staee  w ith  the robots havine cantured the tareet
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1 . fc—■ .1 *'.

Figure 6.7(a): Initial environm ent (one target, different obstacles,
and three robots)
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Figure 6.7(b): Interm ediate stage with robots tracking the target
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Figure 6.7(c): Final stage  w ith  the robo ts having cap tured  the target
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6.3 Summary

This chap ter has focused on the  d es ig n  and  construc tion  o f  a team  o f  m obile robots 

for tracking  and cap tu ring  a d ynam ic  targe t.

E lectronic contro l and sensing  c ircu its  for d riv ing  th ree  sm all rad io -con tro lled  cars 

and a toy  tank w ere adap ted  to  act as th ree  m obile  robo ts  and a m oving target, 

respectively . E lectronic  c ircu itry  w as fitted  to  these  veh ic les to  enable them  to detect 

obstacles, signal their p resence  (in  the  ca se  o f  the  targe t and robo ts  approach ing  the 

sides o f  ano ther robot) and d e tec t the  ta rg e t (in  the  case o f  the robots).

E xperim ents show ed  that the  ro b o ts  su ccessfu lly  m anaged  to  track  and cap tu re  the 

target. H ow ever, due to the lim ited  n u m b er o f  em itte rs  installed , the perfo rm ance o f  

the robots in som e trials w as no t sa tisfac to ry . A s expected , the m ore robo ts that 

tracked  a dynam ic target, the  sh o rte r  w as the  tim e requ ired  to  cap ture  it.
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Chapter 7

Conclusions and Further Work

T his chap ter sum m arises the m ain  c o n trib u tio n s  m ade and the conc lu sions reached  in

this w ork and proposes top ics for fu rth e r investiga tion .

7.1. Contributions

1 - A m od ifica tion  to the su b su m p tio n  robo t con tro l a rch itec tu re  has been  p roposed  to 

enab le  the control o f  m u ltip le  ro b o ts  u sin g  the co llective  behav io u r resu lting  from  

indiv idual sensor-based  b eh av io u rs .

2- A fuzzy logic techn ique has been  d ev e lo p ed  to enab le  the reso lu tion  o f  conflic ts 

betw een  con trad ic to ry  b e h a v io u rs  by  p ro p o sin g  an  ac tion  that represen ts the 

consensus am ong the b eh av io u rs  and  th a t best sa tisfies the  decision  ob jec tives that 

they  encode.

3- A know ledge-based  so ftw are  a rc h itec tu re  has  been  im plem ented  for coopera ting  

m obile robots to update  th e ir  b e h a v io u rs  based  on know ledge acqu ired  on-line.

4- A group o f  low  cost m in ia tu re  m ob ile  robo ts has been developed  to enab le  som e 

o f  the p roposed  ideas to  be d em o n stra ted .
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7.2. Conclusions

1. T his w ork has p roposed  an ap p ro ach  to con tro lling  m ultip le  robots tha t involves 

the use o f  co llective b eh av io u r resu ltin g  from  several sensor-based  behaviours. 

The influence o f  en v ironm en ta l factors and  the nu m b er o f  robo ts on the 

perfo rm ance o f  the group in a d y n am ic  targe t-track ing  task  has been  analysed . As 

w ould  be expected , increasing  the n u m b er o f  robots reduced  the tim e requ ired  to 

track the target. H ow ever, ro b o t co llis io n  and  in terference tended  to deg rade  the 

perfo rm ance. C ontinually  ad d in g  m ore  robo ts  therefore  d id  n o t p roduce a 

p roportional increase in p e rfo rm an ce .

2. The use o f  fuzzy logic enab led  the reso lu tion  o f  conflic ts  be tw een  con trad icto ry  

behav iours by se lec ting  an ac tion  th a t rep resen ts  the  consensus am ong the 

behav iours and that best sa tisfies  the  d ec is io n  ob jec tives encoded  in them .

3. The p roposed  co-operative robo t a rch itec tu re  has been  show n to a llow  robot team s 

to perform  real-w orld  m issio n s o v e r  long  periods, even  w hile the env ironm en t o r 

the robotic team  itse lf  chan g es. A n im portan t com ponen t is the con tro l strategy 

that enab les the robots to ad ap t th e ir  ac tions th roughou t a  live m ission  w ithout 

hum an in tervention. T he im p ro v em en t in team  perfo rm ance w as achieved  by 

updating  the con tro l o f  the  robo ts  based  on know ledge acquired  on-line. Since the 

robo t team  m em bers con tin u a lly  m o n ito r the perfo rm ance o f  the ir team -m ates and 

update the perfo rm ance m easu res  accord ing ly , the response to im proved  o r 

degraded  capab ilities  is au tom atic , regard less o f  m ission  length. The resu lts show  

that the robot team  is ab le  to ach ieve  adaptive co-operative contro l despite
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dynam ic  ch an g es  in the e n v iro n m en t and variation  in the capab ilities o f  the team  

m em bers.

7.3. Further W ork

1- T he o u tpu t o f  the  fuzzy  log ic ru les is no t optim al because the rules and 

m em bersh ip  functions are d ev e lo p ed  heuristically . T he rules and m em bership  

functions cou ld  be o p tim ised  by  lea rn ing  based  on som e advanced search m ethods 

such  as genetic  a lgo rithm s.

2- T he deve loped  robo t team  is o n ly  ab le  to track  one target at a tim e. For m ultiple 

targe ts  track ing , a task  a llo ca tio n  a lgo rithm  is required  to d irect an appropriate  

num ber o f  robo ts  to track  each  targe t.

3- T he idea o f  hav in g  robo ts  to learn  h o w  to accom plish  a task , ra ther than  being  told 

exp lic itly  is an ap pealing  one. It seem s easie r and m uch m ore intu itive for the 

p rog ram m er to specify  w h a t the  ro b o t shou ld  do, and then  let it leam  the fine 

details  o f  h o w  to do it. A  tec h n iq u e  such  as rein forcem ent learning is required  for 

op tim ising  the in te rac tion  w ith  an  e n v iro n m en t o r contro l o f  a system .

4- The robots deve loped  in th is  w ork  are few  in num ber and very sim ple due to cost 

constra in ts . I f  a la rg e r b u d g e t is ava ilab le , larger team s o f  m ore advanced  robots 

cou ld  be b u ilt to enab le  m ore  co m p lex  tasks to be attem pted.
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