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Synopsis

This work proposes a biologically inspired collective behaviour for a team of co-
operating robots. Collective behaviour is achieved by controlling the local interactions
among a set of identical mobile robots, each robot performing a set of simple behaviours
in order to realise group goals. A modification of the subsumption architecture is
proposed for implementing control of individual robots. This architecture is adopted
because it is computationally inexpensive and potentially suitable for low-level reactive

and reflexive behaviours.

In this scenario, the individual behaviours of the robots have different aims, which may
cause conflict. To address this issue, a fuzzy logic-based approach for multiple behaviour

coordination within each robot is proposed.

The work also focuses on the development of intelligent multi-agent robot teams capable
of acting autonomously and of collaborating in a dynamic environment to achieve team
objectives. A knowledge-based software architecture is proposed that enables these
robots to select co-operative behaviours and to adapt their performance during the
specified time of the mission. These abilities are important because of uncertainties in the
environmental conditions and because of possible functional failures in some team
members. Improvement in team performance is achieved by updating the control of the
robots based on knowledge acquired on-line. This architecture is implemented in a

simulated team of mobile robots performing a proof-of-concept collaborative task. The



results show a significant improvement in overall group performance and the robot team
is able to achieve adaptive cooperative control despite dynamic changes in the
environment and variation in the capabilities of the team members. Finally, a task
involving real mobile robots is undertaken to demonstrate a practical, though simplified,

implementation of the proposed collective behaviour.
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Chapter 1

Introduction

1.1. Preliminaries

The increasing current interest in mobile robots and in particular, mobile robot teams,
is due to their applicability to a wide range of tasks. Example tasks suitable for
mobile robots include nuclear and hazardous waste cleanup, mining - including
material removal, search and rescue operations, mine sweeping for both military and
humanitarian purposes, space missions, lifting and carrying of materials, surveillance

and sentry, as well as underwater excavation.

A multi-robot system or team consists of a group of robots that can take specific roles
within that organisation. The team may be composed of individual robots that either
differ or are similar in structure and capability, i.e., either heterogeneous or
homogeneous. Furthermore, it might have co-operative individuals working together
towards a mutual goal, or it could be composed of rivals competing for some limited

resources.

Biological agents, for example social insects, have been manifestly successful in
exploiting the natural environment in order to survive and reproduce. Scientists are
interested in understanding the strategies and tactics adopted by such natural agents to
improve the design and functionality of computer-based artificial agents (robots).

They observe how these social insects locally interact and co-operate to achieve



common goals. It seems that these creatures are programmed in such a way that the
required global behaviour is likely to emerge even though some individuals may fail

to carry out their tasks.

In this work, a biologically inspired collective behaviour for a team of co-operating
mobile robots is proposed. This behaviour emerges by controlling the local
interactions between a number of identical mobile robots performing a set of simple
behaviours. A modification of the subsumption architecture is proposed for
implementing the control of the individual robots. The context of tracking a dynamic

target is used to illustrate the proposed approach.

Since the control in behaviour-based systems is distributed among a set of specialised
behaviours, the behaviours of the robots have different aims, which may cause
conflict. Therefore, it is necessary to obtain an appropriate trade-off between the

objectives of the robots that can potentially conflict.

To address this issue, a fuzzy logic-based approach for behaviour coordination is
proposed. Fuzzy logic is robust in the presence of system and external perturbations.

It is straightforward to design and implement and efficient at representing knowledge
for systems that deal with continuous variables. The fuzzy rule format makes it easy
to write simple and effective behaviours for a variety of tasks without having to use
complex mathematical models. It is possible to adopt a weighted combination of
behaviours, which gives smoother control. The local nature of fuzzy rules allows one
to identify the fired rules immediately and makes it possible to modify specific

behaviours quickly.



The focus of development in co-operative robotic systems is to construct teams of
robots able to accomplish missions that cannot easily be achieved, if at all, using
single robots. The potential advantages of co-operative systems over single robot
solutions include increased fault tolerance, simpler robot design, widened application
domains, and greater solution efficiency. However, the use of multiple robots
introduces additional issues of robot control that are not present in single robot
solutions. Foremost among these is the question of how to achieve globally coherent
and efficient behaviours from the interaction of robots lacking complete global

information.

The robots need to be responsive to continual changes in the capabilities of robot team
members and to changes in the state of the environment and mission. They should be
aware of the actions of their team mates and have the ability to adapt to these dynamic
changes. To address this issue, a knowledge-based software architecture is proposed
that enables these robots to perform co-operative behaviours and adapt their
performance during the specified time of the mission. This improvement in team
performance is achieved by updating the control of the robots based on knowledge

acquired on-line.

1.2. Research Objectives

The overall aim of this research was to develop intelligent multi-agent robot teams
capable of acting autonomously and collaborating in a dynamic environment to

achieve team goals.




To reach the aim of the research, the following objectives were set:

1- To use the collective behaviour of simple creatures to enable a team of robots to
accomplish a complex task, such as a dynamic target tracking task, and to modify

the subsumption architecture to be suitable for controlling the robots.

2- To find a new technique for solving conflicts between the contradictory

behaviours of each robot.

3- To generate a knowledge-based software architecture for a team of robots to
enable them to select appropriate actions and adapt the mission performance to
deal with uncertainties in the environment or changes in the capabilities of team

members.

4- To construct a team of mobile robots for real experiments to investigate the

proposed techniques.

1.3. Organisation of the Thesis

The remainder of the thesis is organised as follows. Chapter 2 reviews the
background literature relevant to the work presented in this thesis. This includes
literature on co-operating mobile robots, the collective behaviour of simple creatures
such as social insect colonies, the action selection problem (ASP), behaviour

coordination, robot awareness and the basic components of fuzzy logic systems.



Chapter 3 describes the modification of the subsumption architecture and examines
the collective behaviour of social insects as applied to co-operating mobile robots in

the context of dynamic target tracking.

Chapter 4 proposes a fuzzy logic approach for behaviour coordination in multi-robot

systems.

Chapter 5 discuses the development of a knowledge-based system for multi-agent
robot teams and proposes a software architecture to enable multiple robots to perform
co-operative behaviours and adapt their performance during the specified time of the

mission.

Chapter 6 focuses on the design of a team of mobile robots and real experiments to

illustrate an implementation of some of the proposed ideas.

Chapter 7 concludes the thesis and suggests areas for further investigation.



Chapter 2

Background

2.1. Preliminaries

During the last few decades, major research efforts have been directed towards
improving the performance of individual mobile robots through the use of advanced
sensors and actuators and the application of intelligent control algorithms. This was
mainly driven by the need to perform increasingly complex real time tasks. As a
result, individual mobile robots have become very sophisticated. More recently, an
alternative approach to achieving complex tasks using multiple co-operative
autonomous mobile robots has been investigated (Hu and Gan, 2005; Melhuish et al.,
1998; Alami et al., 1998; Hu et al., 1998; Arkin, 1990; Mataric, 1998, 1996). Groups
of mobile robots have been constructed, with the aim of studying such issues as group

architecture, resource conflict, mobile robots co-operation and learning.

Collaboration increases the performance of a robot team without requiring significant
modifications to individual robot capacities. Collaboration may be obtained using
communication schemes, implicit communication via the environment or simple
explicit communication schemes. By these means, the task accomplished by the team
can be more complex and its performance enhanced without losing the autonomy or
increasing the complexity of individual robots. In some cases (Ghanea-Hercock and

Barnes, 1996; Boehringer et al., 1995; Mataric et al., 1995; Martinoli, 1999a, 1999b),



the task may require collaboration for it to be successfully performed at all, where a
single robot is not able to carry out the task alone. Such tasks can be defined to be

“strictly collaborative”.

2.2. Co-operative Mobile Robotics Classification

Research in the field of co-operative mobile robotics has increased substantially in
recent years. Most of this research has concentrated on how to obtain the desired
interaction dynamics between agents (robots) to increase the overall team
performance. This field can be broadly categorised into two groups: “collective”

(swarm type) co-operation and “intentional” co-operation.

Collective robotics is usually behaviour-based and characterised by distributed control
of homogeneous robot teams. The desired collective behaviour is obtained as an
emergent property of the interaction mechanism designed into each robot. The
approaches developed and the problems addressed are for homogeneous robot teams
only, in which each robot has the same capabilities and control algorithm.
Additionally, issues of efficiency are largely ignored. The types of tasks implemented

take inspiration from social insect societies, such as ants and bees.

A number of researchers have investigated ‘swarm’ robotics. Steels (1990) presented
simulation studies of several dynamic systems to achieve emergent functionality with
application to the collection of rock samples on a distant planet. Drogoul and Ferber
(1992) undertook simulations of foraging and chain-forming robots. Arkin et al.

(1993) implemented research concerned with sensing and communication for tasks



such as foraging. Mataric (1992) described the implementation of group behaviours
for physical robots such as dispersion, aggregation and flocking. Kube and Zhang
(1992) detailed an emergent control strategy applied to a group of physical robots

performing the task of locating and pushing a brightly-lit box.

“Intentional” robotics achieves co-operation among a limited number of typically
heterogeneous robots performing several distinct tasks. Such systems normally

employ either central control or a mix of central and distributed control.

In an intentional co-operative system, the robots often have to deal with some kind of
efficiency constraint that requires a more directed type of co-operation than is found
in collective co-operative systems. Furthermore, the robots are usually required to
perform several distinct tasks. These missions thus usually require a smaller number
of robots involved in more purposeful co-operation, although the individual robots
involved are typically able to perform useful tasks on their own. Such systems require
a robust allocation of subtasks to robots, to maximise the efficiency of the team, and
proper coordination among team members, to allow them to complete their mission
successfully. Most existing work on heterogeneous physical robots uses a traditional
artificial intelligence approach, whereby the robot controller is divided into modules
for sensing, world modelling, planning, and acting. This is the so-called sense-model-
plan-act paradigm, in contrast to the functional decomposition method used in

behaviour-based approaches.



Many researchers have investigated these intentional co-operative systems. Noreils
(1993) addressed one such sense-model-plan-act control architecture, which includes
three layers of control. The planner level manages coordinated protocols, decomposes
tasks into smaller sub-units, and assigns the sub-tasks to a network of robots. The
control level organises and executes the tasks of the robots. The functional level
provides controlled reactivity. This architecture was applied to two mobile robots

performing box pushing.

Caloud et al. (1990) presented another sense-model-plan-act architecture, which
includes a task planner, a task allocator, a motion planner and an execution monitor.
Each robot had goals to achieve, either based on its own current situation or via a

request by another team member.

Asama et al. (1992) described a robot system called ACTRESS, which addressed the
issues of communication, task assignment and path planning among heterogeneous
robotic agents. Their approach revolves primarily around a negotiation framework,
which allows robots to recruit help when needed. They demonstrated their

architecture on mobile robots performing a box-pushing task.

In general, co-operative (both swarm and intentional) approaches to robotics should
include mechanisms within the control software of each robot that allows team
members to recover from dynamic changes in their environment or in the robot team.
Researchers have recognised that a more promising approach for the development of

co-operative control mechanisms is by the inclusion of learning algorithms (Hu and



Gu, (2005, 2004); Cragg and Hu, 2005; Acosta and Hu, 2003a; 2003b). Much work in
particular has been carried out in the field of multi-agent learning (Minguez and
Montano, 2005; Elfwing, 2004; Weiss et al., 1996; Mataric et al, 1995). Applications
include predator/prey scenarios (Korf, 1992; Tan, 1993; Gasser et al., 1989; Levy and
Rosenschein, 1992; Stephens and Merx, 1990), multi-robot soccer teams (Duhaut et
al., 1998), and box-pushing tasks (Stilwell and Bay, 1993; Kube and Zhang, 1992;

Sen et al., 1994).

2.3. Collective Behaviour of Social Insects

Collective behaviour is demonstrated in any type of system where patterns are
determined not by some centralised body, but instead by the interactions of a group of
decentralised bodies (Fong et al., 2003; Kristina and Aram, 2002). There is no need
for centralised authority at all, nor for explicit communication between interacting

bodies.

Collective behaviour demonstrates also a fundamentally important principle that has
been beneficial to nature and humans alike, namely that some objectives are easier to
accomplish in a group rather than by an individual. This interaction does not
necessarily require a high level of intelligence, or even communication between the
participating bodies, yet objectives may be accomplished that are outside the scope of
an individual. Many examples of collective behaviour can be found in nature, e.g.
flocking of birds, termites building enormous mounds, and ants collectively carrying a

large grasshopper back to the nest to be used as food. A flock of birds manoeuvring

10



through the air is quite impressive. There is no a leader bird telling the other birds
which way to move. Each bird simply has an instinctive behaviour to react to the
other birds around it, and when they all fly together the result is a collective behaviour
called flocking. Another example is ants, which have minimal forms of
communication and are considered to have very low intelligence, yet army ants are
able to move large objects thousands of times heavier than themselves back to their
nest (Franks, 1989). One ant could not direct the all other surrounding ants to return
that object, and could not move the object itself. It is also the case that an ant could
not determine the weight of the entire object by simply tugging on it. However, the
collective behaviour that results in successful completion of the ants’ objective is due
to a genetic trait possessed by the ants. As shown by these examples, collective
behaviour provides a means for very simple creatures to accomplish complicated

objectives.

Social insects can process many sensor inputs, modulate their behaviour according to
many stimuli, including interactions with nest-mates, and take decisions on the basis
of a large amount of information. The success of social insects lies mainly in their
self-organising behaviour (SO), where complex behaviour emerges from the
interactions of individuals that exhibit simple behaviour by themselves (Parker et al.,
2005; Tarasewich and McMullen, 2002). They can also solve problems in a changing
environment (flexibility) and give the highest level of performance even though some
individuals fail to perform their tasks (robustness). More and more researchers are
interested in this exciting way of achieving a form of artificial intelligence - swarm
intelligence — in which it is attempted to link the functioning principles of insect

colonies to the design principles of artificial systems. For example, Bay and Unsal

11



(1994) described the design and development of a class of small mobile robots
intended to be simple, inexpensive and physically identical, thus constituting a
homogeneous team of robots. They derive their usefulness from their group actions,
performing physical tasks and making co-operative decisions as a coordinated team.
Because of their behavioural resemblance to their insect counterparts, they have been

named “army-ant” robots.

Bonabeau et al. (1999) and Kube and Bonabeau (2000) stated that social insects such
as bees, ants and termites all function collectively as groups, and efficiently

accomplish a range of tasks in order to maintain their societies.

Kube and Zhang (1992, 1994) examined the problem of controlling multiple
autonomous robots based on observations made from the study of social insects. They
proposed mechanisms that allowed populations of behaviour-based robots to perform

tasks without centralised control or use of explicit communication.

Chantemargne and Hirsbrunner (1999) presented a collective robotics application
whereby a pool of autonomous robots regroup objects that are distributed in their
environment. There is no supervisor in the system, the global task is not encoded
explicitly within the robots, the environment is not represented within the robots, and
there is no explicit co-operation protocol between the robots. Instead, the global task

is achieved by virtue of emergence and self-organisation.

Martinoli and Mondada, (1995; 1998), Martinoli et al., (1997a; 1997b; 1999a; 1999b)

and Martinoli (1999) focused on the hardware tools needed to monitor team
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performances as well as those needed to achieve collective adaptive behaviours. They
presented a simple bio-inspired collective experiment, namely the gathering and
clustering of randomly distributed passive seeds. Vaughan et al. (2001a; 2001b)
showed a team of real mobile robots that co-operated based on the ant-trail-following
behaviour and the dance behaviour of bees to robustly transport resources between

two locations in an unknown environment.

Ant-inspired solutions to various search problems have been demonstrated (Dorigo et
al., 1996; Deneubourg et al., 1990, 1991; Beckers et al., 1994), as has chemical trail

laying and following in robots (Sharpe and Webb, 1998; Russell, 1999).

Wagner et al. (1998) and Wagner and Bruckstein (1995) described an ant-inspired
method for exploring a continuous unknown planar region. Such a method might
employ robots with limited sensing capabilities but with the ability to leave marks on
the ground to cover a closed region for the purposes of cleaning a floor, painting a
wall, or demining a mine field. A mark and cover (MAC) rule of motion is proposed
using temporary markers (“pheromones”) as a means of navigation and indirect

communication.

Ijspeert et al. (2001) investigated collaboration in a group of simple reactive robots
through the exploitation of local interactions. A test-bed experiment is proposed in
which the task of the robots is to pull sticks out of the ground — an action that requires
the collaboration of two robots to be successful. The experiment is implemented in a
physical set-up composed of a group of mobile robots, and in Webots, a three

dimensional simulator of mobile robots, (Michel, 1998).
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As mentioned above, through the use of collective behaviour inspired by social
insects, simple tasks that require a small number of mobile robots working in
uncluttered environments can be accomplished. The question of interest is whether
this collective behaviour approach can help accomplish complex tasks, such as
dynamic target tracking, which require more collaboration, interaction, coordination
and awareness among a large number of robots working together in a highly cluttered

and dynamic environment.

2.4. Behaviour Coordination

In behaviour-based robotics, the control of a robot is shared between a set of
purposive perception-action units, called behaviours (Murrieta-Cid, 2003; Parker,
2002; Schultz and Parker, 2003; Arkin, 1999; Pirjanian and Christensen, 1997). Based
on selective sensor information, each behaviour produces immediate reactions to
control the robot with respect to a particular objective, i.e., a narrow aspect of the
overall task of the robot such as obstacle avoidance or wall following. Behaviours
with different and possibly incommensurate objectives may produce conflicting
actions that are seemingly irreconcilable. Thus, a major issue in the design of
behaviour-based control systems is the formulation of effective mechanisms for
coordination of the behaviours in a robot. This is known as the action selection or

behaviour coordination problem (Pirjanian, 1998).

Behaviour coordination is generally recognised as one of the major open issues in
behaviour-based approaches to robotics. It can be split into two conceptually different

problems: (1) how to decide which behaviour(s) should be activated at each moment;
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and (2) how to combine the results from different behaviours into one command to be
sent to the effectors of the robot. These are called the behaviour arbitration and the

command fusion problems, respectively.

Numerous action selection mechanisms (ASMs) have been proposed over the last
decade and these can be classified into a number of logical groups. Mackenzie et al.
(1997) classified them into state-based and continuous mechanisms. With a state-
based ASM, in a given state, only a relevant subset of the behaviour repertoire of the
robot needs to be activated. With a continuous ASM, there are no discrete states and

the whole behaviour repertoire is available for activation.

Saffiotti (1997) divided ASMs into arbitration and command fusion mechanisms,
corresponding respectively to the state-based and continuous approaches of
Mackenzie et al. Arbitration is concerned with “how to decide which behaviour to
activate at each moment” and command fusion is concerned with “how to combine
the results of different behaviours into one command to be sent to the effectors of the

robot”.

Based on these classifications, it seems that ASMs can be best classified according to
one main characteristic, namely whether the ASM can handle only one or multiple

behaviours simultaneously.
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2.4.1. Arbitration ASMs

Arbitration mechanisms select one behaviour from a group of competing behaviours,
and give it ultimate control of the system (the robot) until the next selection cycle.
This approach is suitable for arbitrating between the set of active behaviours in
accordance with the changing objectives and requirements of the system under
varying environmental conditions. Arbitration mechanisms for action selection can be
classified as priority-based, state-based and winner-takes-all. In priority-based
mechanisms, an action is selected based on priorities assigned in advance. Thus,
behaviours with higher priorities are allowed to take control of the robot. State-based
mechanisms select a set of behaviours that is competent to handle the situation
corresponding to the given state. Finally, in winner-takes-all mechanisms, action
selection results from the interaction of a set of distributed behaviours that compete

until one behaviour wins and takes control of the robot.

2.4.2. Command Fusion ASMs

Command fusion combines recommendations from multiple behaviours to form a
control action that represents their consensus. This approach allows all the behaviours
to contribute simultaneously to the control of the system in a co-operative rather than
a competitive manner. Command fusion mechanisms can be divided into voting
techniques, superposition techniques and multiple objective behaviour coordination

techniques.
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Voting techniques interpret the output of each behaviour as votes, and then select the
action that receives the largest number of votes. Superposition techniques combine
behaviour recommendations using linear combinations. Finally, multiple objective
behaviour coordination techniques provide a formal theoretic approach to making

decisions based on multiple objective decision theory.

2.4.3. Priority-Based Arbitration (Subsumption Architecture)

The subsumption architecture (Brooks, 1986) represents a priority-based arbitration
mechanism, where behaviours with higher priorities are allowed to subsume the
output of behaviours with lower priorities. This architecture is covered in more detail

in chapter three.

2.4.4. State-Based Arbitration

2.4.4.1. Discrete Event Systems (DES)

Behaviour selection is accomplished using state-transition (Kosecka, 1993) where,
upon detection of a certain event, a shift is made to a new state and thus to a new
behaviour. Using this formalism, systems are modelled in terms of finite-state
automata (FSA), where states correspond to the execution of actions or behaviours
and where events, which correspond to observations, cause transitions between these

states.
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2.4.4.2. Temporal Sequencing

The temporal sequencing approach is also known as perceptual sequencing (Arkin
and Mackenzie, 1994) and is very similar to the discrete-event systems approach. A
finite-state automaton is used to sequence between a series of behaviours based on
perceptual triggers. At each state, a distinct behaviour is activated and perceptual

triggers cause transitions from one state to another. See the example in figure 2.1.

2.4.4.3. Bayesian Decision Analysis

The approach of sensor planning with Bayesian Decision Analysis (Kristensen, 1996)
is used to address the problem of sensor selection, i.e., which sensors to use for which
purpose. Sensor selection can be considered a special case of action selection, where
the actions are certain sensor operations. It operates according to the purposive
paradigm, where the system consists of a set of purposive modules similar to

behaviours.

For example, the problem in figure 2.2 is to decide which sensors to allocate to which
purposive modules in order to accomplish a given task, declared by the mission

planning-module.
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Figure 2.1: An example FSA encoding a door traversal operation (Pirjanian, (1999)
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2.4.4.4. Reinforcement Learning Approaches to Action Selection

A fundamentally different approach to action selection is to learn the action selection
mechanism (Humphrys, 1997; Lin and Lu, 1996). Of the several learning approaches
proposed, the most promising is reinforcement learning. Reinforcement learning in
this context operates to induce, based on trial and error, a perception-to-action

mapping that maximises some reward.

The robot learns the perception-action mapping, known as a policy, by exploring
actions that lead to some reward. The reward function is designed so as to encourage
desired behaviours and suppress unwanted ones. Thus, the robot will select actions

that maximise the expected reward.

2.4.5. Winner-takes-All: Activation Networks

With this approach, the system consists of a set of behaviours or competence modules
which are connected to form a network. In this network, each behaviour is described
by the preconditions under which it is executable, the effects after successful
execution in the form of add-lists and delete-lists and the activation level, which is a
measure of applicability of the behaviour (Maes, 1989). When the activation level of
an executable behaviour exceeds a specified threshold, it is selected to furnish its

action.
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2.4.6. Voting-Based Command Fusion

To manage the ongoing tasks of an agent so that action conflict is minimised and
desired levels of compliance with overall goals are achieved, each behaviour votes for
one action, which is suitable from its point of view. The votes received from all
behaviours are summed for each action and the action with the largest number of
votes is then selected. For example, DAMN is a distributed architecture for mobile
robot navigation (Rosenblatt, 1997; Rosenblatt and Thorpe, 1995). It consists of a set
of behaviours (figure 2.3) that pursue the system goals, based on the current state of
the environment. Each behaviour votes for or against each action within the current
possible set of actions. The action with the maximum weighted sum of received votes
is then selected, where each behaviour is assigned a weight, which reflects the relative

importance or priority of the behaviour in a given context.

2.4.7. Multiple Objective Behaviour Coordination

With this approach, multiple behaviours are blended into a single more complex
behaviour that seeks to select the action that simultaneously satisfies all behavioural
objectives as far as possible. In (Pirjanian and Christensen, 1997; Pirjanian and
Mataric, 2000) mobile robot navigation and co-operative target acquisition examples
are given, in which the principles of multiple objective decision-making (MODM) are
demonstrated. Simulated as well as real-world experiments show that a smooth
blending of behaviours according to the principles of MODM enables coherent robot

behaviour.
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Figure 2.3: A distributed architecture for mobile robot navigation
(Rosenblatt, 1995)
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2.4.8. Superposition-Based Command Fusion (Potential Field)

The potential-field approach, introduced in ( Khatib, 1986), is an approach to motion
planning where the robot, represented as a point in configuration space, moves under
the influence of an artificial potential field produced by an attractive force at the goal
configuration position and repulsive forces at the obstacles. Action selection in this
case corresponds to a move, at each configuration, in the direction indicated by the
negative gradient of the total potential U. The potential function U is constructed as

the sum of two potential functions:

U = Uait+Urep @.1)

where Upyy is the attractive potential associated with the goal and Upep is the

repulsive potential associated with the obstacles.

Much work has been carried out in behaviour coordination and action selection that

does not directly relate to the above.

Saffiotti et al. (2000) espoused desirability functions as an effective way to express
and implement complex behaviour coordination strategies within a single robot. The
desirability function approach was extended to deal with the behaviours of teams of
robots. The authors showed that desirability functions offer a convenient tool to

incorporate and blend individual objectives and team objectives.
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Yamada and Saito (1999) described an action selection method for multiple mobile
robots performing box pushing in a dynamic environment. The robots are designed to
need no explicit communication, and to be adaptive to dynamic environments by
changing their active set of behaviours. The researchers proposed a mechanism that

changed the active behaviour set depending on the situation.

Hu et al. (1998) presented a feasible solution for a team of autonomous mobile robots
to function in a co-operative manner. To realise coordination, a multi-channel infrared
communication system was developed to exchange messages among mobile robots.
Two examples of flocking and shared experience learning were given to demonstrate

the performance of the system.

Due to their co-operative nature, command fusion mechanisms promise improved
performance over arbitration-based mechanisms. However, there are drawbacks that
should be highlighted. Where a linear combination mechanism is employed, the
obtained solution might be far from the required one. Command fusion systems are
also costly both in computation time and hardware, and unnecessarily so if system
accuracy is not critical. Furthermore, in multi-objective mechanisms, it is difficult to

control the robots even heuristically to meet all objectives.

Fuzzy logic is suitable for a coordination scheme that allows all behaviours to
contribute simultaneously to the control of the system in a co-operative rather than a
competitive manner. This is therefore the solution proposed in this research for

behaviour coordination in the context of dynamic target tracking.
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When the output of a behaviour is represented by a fuzzy set, the problem of
command fusion can be seen as an instance of the problem of combining individual
preferences. Fuzzy operators can be used to combine the preferences of different
behaviours into a collective preference, and finally to choose a command based on
this collective preference. According to this view, command fusion is decomposed
into two steps: (1) preference combination and (2) decision. Fuzzy logic offers many
different operators to perform a combination and many defuzzification functions to
select a decision. It is important to note that the decision taken from the collective
preference can be different from the result of combining the decisions taken from the
individual preferences. Figure 2.4 graphically illustrates this point in the case of two
behaviours Bl and B2 both controlling the steering angle of a mobile robot. This
explains why fuzzy command fusion is fundamentally different from vector

summation.

Several proposals that use fuzzy logic to perform command fusion have appeared in
the literature. Curiously enough, the first such proposal was made, in a naive form, by
two roboticists who were unaware of fuzzy logic but were frustrated by the pitfalls of
existing on-off arbitration schemas (Rosenblatt and Payton, 1989). Their suggestion
was later restated in terms of fuzzy logic by Yen and Pfluger (1995). Other authors
have proposed simplified forms of fuzzy command fusion. For instance, Goodridge
and Luo (1994) used weighted singletons as fuzzy outputs and the centre of gravity
(COG) method for defuzzification and Pin and Watanabe (1994) used symmetric

rectangles and COG.
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Even though there is not much work on behaviour coordination based on fuzzy logic,
fuzzy logic is widely used in the controlling and learning mechanisms of mobile
robots (Hu and Gu, 2005; Larsson, 2005; Lin and Mon, 2004; Abdessemed et al.,
2004; Lin and Mon, 2004; Demirli and Molhim, 2004; Saffiotti and Wasik, 2003,
Wasik and Saffiotti, 2002; Coradeschi et al., 2001; Buschka et al., 2000; Sossai, 2000;

Hoffmann and Pfister, 1997; Surman et al., 1995; Pan, et al., 1995).

2.5 Awareness Effect on Mobile Robot Co-operation

Much existing work in the area of robot awareness addresses the problem of global
coherence and efficiency by designing robotic teams that use sensor information to
glean implicit information on the activities of other robot team members and/or the
current state of the world (Deneubourg et al., 1990; Kube and Zhang, 1992). With
these approaches, no explicit communication among robots is utilised. A more
difficult approach requires the robots to use passive action recognition to observe the
actions of their team-mates and modify their own actions accordingly (Huber and
Durfee, 1993). A third, quite common, approach involves explicit co-operation among
team members by employing direct communication between robots to relay
information on robot goals and/or actions to other team members (Asama et al., 1992;
Parker, 1994; 1995; 1996; 1999). These three approaches define a continuum in the
degree of awareness of a robot of the actions or goals of its team-mates, from implicit
awareness through the effect of a team-mate on the world, to passive observation of
its actions or goals, to explicit communication of actions and/or goals. These
approaches raise interesting questions concerning the impact of the awareness of the

robot team members of the actions and/or goals of its team-mates.
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For implicit co-operative systems and those using passive action recognition, the
question is: What is the impact of a limited ability to sense the effect of robot actions
on the world? For explicit communication systems, the question is: ‘What is the
impact of communication failure, which leads to the lack of awareness of team
member actions/goals?’ or, conversely: ‘What benefits can be gained by using explicit
communication to increase robot awareness of team member actions/goals?’ Previous
research concerning the effect of robot awareness, or recognition, of team member
actions was usually described in terms of the effect of communication in co-operative
robot teams (Balch and Arkin, 1994). However, Parker (2000) has used the phrase
“robot awareness, or recognition, of team member actions” to describe precisely the
issue of interest (awareness of team-mate actions), rather than the accessing of
information that could possibly be communicated between team members. For
example, the bid of a robot for an activity in a negotiation system may depend on the
current local state of the environment near a given robot, or the sensed location of an
intruder, etc. This shows that a robot may become aware of the actions of a team

member without the use of explicit communication.

MacLennan (1991) investigated the evolution of communication in simulated worlds
and concludes that the communication of local robot information can result in
significant performance improvements. Balch and Arkin (1994) examined the
importance of communication in robotic societies performing forage, consumption,
and grazing tasks. They found that some communication could significantly improve
performance for tasks, and that communication of the current robot state was almost
as effective as communication of robot goals. Their research was performed

primarily on real robots, rather than simulated robots.
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Developing teams of robots that are able to perform their tasks over long periods
requires the robots to be aware of and responsive to continual changes in the
capabilities of the robot team members and to changes in the state of the environment
and mission. Parker (1997; 2000; 2001; 2002) described the L-ALLIANCE
architecture, which enables teams of robots dynamically to adapt their actions over
time. This architecture, which is an extension of earlier work on ALLIANCE (Parker,
1994), is a distributed, behaviour-based architecture aimed at applications consisting
of a collection of independent tasks. The key issue addressed in L-ALLIANCE is the
determination of which task robots should select to perform during their mission, even
where there are multiple robots with heterogeneous, continually changing capabilities
present on the team. The L-ALLIANCE architecture is implemented on a team of

heterogeneous real robots performing proof-of-concept box pushing experiments.

Due to the unreliability of the sensors and actuators employed and uncertainties in the
environment, the approach of Parker of using a predefined time for each behaviour
resulted in inconsistency, even if the behaviours are repeated and the values are
averaged. This is because there is no guarantee that each robot will repeat the same
behaviour at the same time. In this respect, it may be preferable to propose an
architecture which does not rely on explicit communication or passive recognition and
generate automatically the required time for a particular behaviour by accessing an
on-line knowledge-base, updated by the use of neuro-fuzzy techniques, as will be

discussed later.
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2.6. Fuzzy Logic Systems (FLSs) Basic Structure and Design

Elements

The basic structure of a FLS comprises four basic components (Lee, 1990a). They are
the fuzzification interface, knowledge base, decision-making logic and defuzzification
interface. Each component is responsible for a certain function in a FLS. In the
following sections, the function and design parameters of each of these components

are presented.

2.6.1. Fuzzification interface

Fuzzification is related to the vagueness and imprecision in natural languages. It is a
mapping that transforms measurements into a subjective value, and hence it could be
defined as a mapping from an observed measurement space into a subjective feature
space. In fuzzy control applications, the observed data is usually crisp. Since the
processed data in FLSs are based on fuzzy set theory, fuzzification is necessary during
the early stages to transform the observed crisp data into fuzzy sets. A commonly used
fuzzification approach is to transform this crisp data into fuzzy singletons within a
certain universe of discourse. The transformation process begins with the
normalisation or scaling of the crisp measurements to certain bounded range say

[— 1,+1] using suitable scaling factors. The purpose of the normalisation process is to

map the crisp input data into a universe of discourse with a finite range. Subsequently,
the fuzzification interface transforms the normalised crisp input X, into a fuzzy set A

in universe X with the membership function pa (x) equal to zero for all xe X except at
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the point X,, at which pa(x,) equals one. In general, the role of the fuzzification

interface can be summarised as follows (Keller et al., 1992):

a) It observes the crisp input values to a FLS.

b) It performs a scale transformation (normalisation) from the measurement
space into the corresponding universe of discourse.

c) It performs the fuzzification function that converts the scaled input data into

fuzzy sets.

2.6.2. Knowledge base

The knowledge base (Lee, 1990a) comprises knowledge concerning the application
domain and the desired control objectives. It consists of a data base and a linguistic
(fuzzy) control rule base. The data base provides necessary definitions, which are
employed to define linguistic control rules and fuzzy data manipulation in FLSs. The
rule base characterises the control objectives and the control policy of domain experts

by means of a set of linguistic control rules.

2.6.2.1. Data base

The definitions associated with the data base are employed to characterise fuzzy
control rules and fuzzy data manipulation in FLSs. These definitions are subjective in
nature, which reflects engineering experience and judgement. These definitions
comprise the normalisation of a fuzzy universe of discourse, the partition of a fuzzy

universe of discourse and the definition of membership functions associated with
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fuzzy sets. In what follows, important definitions relating to the construction of the

data base in FLSs are discussed.

A. Normalisation of a fuzzy universe of discourse

The normalisation of a universe of discourse involves a priori knowledge of the input-
output universe of measurements. The normalisation process is a scale transformation
of the input-output universe of measurements into a normalised closed interval
universe. For example, if the measured input data ranges from -7.0 to +3.5, the
universe of the input measurements can be normalised by a scale transformation into a

normalised closed interval universe [-1, +1].

B. Fuzzy partition of the input-output universe

A linguistic variable in the antecedent or consequent of a fuzzy rule forms a fuzzy
input or output feature space respectively. The input or the output feature space of
each input or output linguistic variable is defined over a certain universe of discourse.
Each feature space is internally partitioned into a number of clusters or fuzzy sets that
define the term set of the input or output linguistic variables. Each fuzzy set is defined
by a certain linguistic term, and usually has a meaning such as negative big (NB),
negative small (NS), positive big (PB), etc. The number of partitions of the input and
output feature spaces determines the maximum number of fuzzy rules that can be
generated. Therefore the selection of the number of partitions influences the generated
number of rules of FLSs. In most applications of FLSs, experience and engineering

judgement are employed to choose the number of partitions of the fuzzy feature space.
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C. Definition of the membership functions of fuzzy sets

There are two commonly used methods which define the membership functions of
fuzzy sets depending on whether the universe of discourse is discrete or continuous
(Lee, 1990b). The first method is a numerical definition where the grade of
membership in a fuzzy set is represented as a vector of numbers. In this case, the

membership function of each fuzzy set can be written as follows:

paA(X) = Ha(Xo)/ Xo+ HA (X)) / X1F cevvinninnn. + pa (Xn) / Xn ] 2.2)

where n is the number of supports of the discrete universe of discourse, x, is the n"
support of the discrete universe of discourse, and pa (X5) is the membership grade of
the n™ support in fuzzy set A. The second method is a functional definition, which
expresses the membership function of a fuzzy set in a functional form, typically a
bell-shaped, triangle-shaped, trapezoid-shaped function, etc. For example the
functional definition of the bell-shaped membership function can be written as

follows:

Ha(Xo) = exp[-(Xo - u)’ / 67 ] (2.3)

where u and o are respectively, the centre (or mean) and the width (or variance) of the

bell-shaped function.
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2.6.2.2. Rule base

A FLS is characterised by a set of linguistic statements based on expert knowledge.
The expert knowledge is usually in the form of IF - THEN rules, which are easily
implemented by fuzzy conventional statements in fuzzy logic. The collection of fuzzy
rules that are expressed as fuzzy conditional statements forms the rule set or the rule
base of a FLS. In this section, the following factors which influence the design and the
implementation of a fuzzy rule base are discussed: the choice of the FLS input-output
variables, the approaches employed to generate fuzzy rules, and the functional

implementation of fuzzy rules.

A. Choice of the FLS input-output variables

It is important to choose suitable input and output variables for FLSs, because they
influence the number of rules and the performance of FLSs. In several applications of
FLSs, the selection of input-output variables relies on experience and control
engineering judgement (Sugeno and Nishida, 1985). In some other applications, the

selection is based on a deterministic method (Sugeno and Yasukawa, 1993).

B. Derivation of fuzzy rules

In general there are two common approaches to deriving fuzzy rules. These two

approaches are not mutually exclusive, and it seems likely that a combination of them

would be necessary to construct an effective method of deriving fuzzy rules. The first

approach is to generate fuzzy rules based on expert experience and control
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engineering knowledge. This approach is mainly suitable for generating fuzzy rules
for diagnosis systems including fault diagnosis and medical diagnosis systems. This
approach is a heuristic approach, in which the fuzzy rules are obtained mainly from
human experience. A human expert has to interpret his experience as linguistic
relations between the input and output variables of the FLS. This approach can be
successful if the human expert can perform this interpretation. However, if the human
expert cannot express his experience linguistically, then the second approach which is
based on the observed input-output data can be employed. This approach can be used
to generate fuzzy rules for FLCs and for fuzzy process models. In the case of FLCs,
the fuzzy rules can be generated based on observations of the human expert's control
actions in terms of input-output data. In the case of fuzzy process models, the fuzzy
rules are generated based on the process input-output data (Sugeno and Nishida, 1985;

Takagi and Sugeno, 1983, 1985; Wang and Mendel, 1992).

C. Functional implementation of fuzzy rules

A rule base of a FLS consists of a set of fuzzy rules. For example, consider the

following rules:

R;: IF xis Ayand yis B THEN zis C;

also Ry: IF xis Ayand yis B, THEN zis C,

..............

also Ry IF xis A, and y is B,THEN z is C,
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where X, y and z are linguistic variables and A;, B; and C; are linguistic terms (fuzzy
sets) of the linguistic variables X, y and z in the universes of discourse U, V and W
respectively, with i = 1, 2,...., n. The it fuzzy rule is implemented by a fuzzy
implication (fuzzy relation) R;. This fuzzy relation is a fuzzy setin U x V x W and is

defined forallu e U,v € V and w € W as follows;

Ri= {(u, v, W), uRi(u, v,w)) l(u, v,w)e (UxVxW)} 2.4)

and its membership function is given by:

Hri (U, vV, W) = W (AianaBi - ci) (U, v, W) = [Hai(u) and ppi(v)] — nci(w) — (2.5)

where “A; and B,” is a fuzzy set in the Cartesian product space U x V which can be
defined based on the interpretation of the sentence connective "and" and, R; = (A; and
Bi) = Ci is a fuzzy implication (relation) in the Cartesian product space U x Vx W
which can be defined based on the interpretation of the sentence connective "and" and

the definition of the fuzzy implication function —.
The implication functions can be classified into two commonly used categories

(Keller et al., 1992). The first category is the fuzzy conjunction that is defined for all

uec Uandv eV as follows:

A->B= [u, W) *u (V/(u,v) (2.6)
UXxv
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where A and B are fuzzy sets in the universes of discourse U and V respectively,
A — B is a fuzzy implication in the Cartesian product space U x V and * is an
operator that represents a triangular norm. The second category is the fuzzy

disjunction that is defined forall u € U and v € V as follows:

A->B= [, @+p,(M/(u,v) 2.7)
UXV

where A and B are fuzzy sets in the universes of discourse U and V respectively,
A — B is a fuzzy implication in the Cartesian product space U x V and + is an
operator that represents a triangular co-norm. In general, using the fuzzy conjunction
along with the intersection and algebraic product triangular norms, the two commonly

used fuzzy implication functions can be written as follows:

A—>B= juA(u)AuB(v)/(u,v) 2.8)
UXV

where W, (u) Apg(v) = minfu, (u),ug(v)] is the intersection triangular norm.

A—>B= juA(u).uB(v) /(u, V) 2.9)
Uxv

where p, (u)-p (V) = AW pg(v) is the algebraic product triangular norm.

In most existing FLSs, the sentence connective "and" is usually implemented as a

fuzzy conjunction in a Cartesian product space (Lee, 1990b). As an illustration, for

38



two fuzzy sets A and B in the universes of discourse U and V respectively, “A and B”
is defined by a fuzzy set A x B in the Cartesian product space U x V. If the sentence
connective "and" is interpreted using the intersection triangular norm, the membership

function of this fuzzy set is expressed as follows:

M axp (uxv) = minfu, (u),pg (V)] (2.10)

Alternatively, if the sentence connective "and" is interpreted using the algebraic
product triangular norm, the membership function of this fuzzy set is expressed as

follows:

Baxg(WXV) = p (1) pg(v) 2.11)

On the other hand, the interpretation of the sentence connective "also" is based on the
fact that different orders of fuzzy rules in the rule base should not influence the
overall behaviour of a FLS. This requires that the sentence connective "also" should
have the properties of commutativity and associativity. It has been reported in (Lee,
1990b) that the operators in triangular norms and co-norms (intersection, algebraic
product, union, algebraic sum, etc) possess these properties and thus qualify as
candidates for the interpretation of the connective "also". However, several
investigations have been reported in (Lee, 1990b). These investigations studied FLS
characteristics using different interpretations of triangular norms and co-norms. Based
on these investigations, it has been concluded that the common interpretation of the
connective "also" as the union operator U yielded the best results. The union operator

U 1is a triangular co-norm defined using the max function (Lee, 1990b). Subsequently,
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considering the rule base of Subsection 2.1.2.2, the overall fuzzy relation R is defined

asafuzzysetin UxVx Wforallue U, ve Vandw e W as follows:

R= {((u, v, W), g (u,v, w)) |(u, v,W)e (UxVxW)} (2.12)

and its membership function is given by:

g (U, v, W) = max pig (0, v, w) (2.13)

i=1

where U, V, and W are universes of discourse, R; is the i fuzzy relation of the i rule

in the rule base and Hy. (u, \A w) is as defined in Equation (2.4).

2.6.3. Decision making logic

FLSs may be regarded as a means of emulating a skilled human operator through an
inference engine. More generally, the FLS inference engine may be viewed as another
step towards modelling the human decision making process within the conceptual
framework of fuzzy logic and approximate reasoning. The function of the FLS
inference engine is to infer recommended solutions from fuzzy rules relevant to given
inputs based on the employed inference strategy. Generally, there are two important
inference strategies in approximate reasoning (Lee, 1990b). They are generalised
modus ponens (GMP) and generalised modus tollens (GMT). Specifically, consider
the following rule:

IFxis ATHENyis B
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where x and y are linguistic variables and A and B are linguistic terms of the
linguistic variables x and y in the universes of discourse U and V respectively. The
GMP strategy can be defined as "given x is A' and the fuzzy relation R of the fuzzy
rule then infer y = B' ". This inference strategy is a data-driven or forward chaining
strategy, which is particularly useful in FLCs. On the other hand the GMT strategy is
defined as "given y is B' and the fuzzy relation R of the fuzzy rule then infer x = A' "
This inference strategy is a goal-driven or backward chaining strategy, which is

commonly used in expert fault diagnosis systems.
2.6.4. Defuzzification strategies

Most practical control applications require crisp control actions to drive the controlled
process. Moreover, the output of most modelling and prediction systems has to be
crisp. Defuzzification is the mapping from the linguistic fuzzy output defined over an
output universe into a crisp output space. There are three commonly used
defuzzification strategies (Shankir, 2001). The first strategy is the maximum criterion.
The max criterion produces the point w, in the output universe W that has the

maximum degree of membership in the output fuzzy set maxp(w)=pu(w,). A
weW

problem arises with this method when more than one element of W possesses this
maximal value and thus w, is not uniquely determined. The second strategy is the
Mean Of Maxima (MOM). If there is more than one element in W possessing the
maximal membership value, then MOM produces the average value of the maxima.

More specifically, let Z denote a set of w; for which an output fuzzy set in a universe

W attains maximum membership values that is Z = {wi: max W(wj = u(wi)}, and
j=1,2,....
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assume that the cardinality equals r; that is card(Z) =r. Then the defuzzified output

W, 1s written as follows:

Wo= Y i (2.14)
w,‘EW r

However, MOM does not take account of rules fired below the maximum level
(Saade, 1996). The third and the most commonly used strategy is the Centre Of Area
(COA) strategy. COA attempts to correct the drawback of MOM by considering rules
that can be fired below the maximum level. COA generates the centre of gravity w, of

the possibility distribution of a control action as follows:

n
Z(wj)-wj

(2.15)

=

lll(w j)

J

where n is the number of quantisation levels of a universe W and w; is the point in the
jlh quantisation level in a universe W at which p(w) achieves its maximum value

(wj).
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2.7. Summary

This chapter reviewed background literature relevant to the work presented in this
thesis. The literature on co-operating mobile robots was examined from different
perspectives. First, it was surveyed with a focus on the classification of co-operating
mobile robots. Second, the focus shifted to the collective behaviour of social insects
and the connection of the functioning principles of social insect colonies with the
design principles of artificial systems. Third, the literature related to the action
selection problem (ASP) and behaviour coordination was reviewed. Fourth, previous
work on robot awareness and its effect on the performance of co-operating mobile
robots was examined. Fifth, a brief review for the basic components of the fuzzy logic

system was given.
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Chapter 3

Biologically Inspired Collective Behaviour and Co-operating

Mobile Robots

3.1. Preliminaries

Social insects such as ants and bees co-operate to achieve common goals with
remarkable success. However, individually these insects are very simple creatures.
For example, a bee is unlikely to have a global understanding of the collective task
being performed. Instead, complex behaviours can emerge from a swarm of bees to
provide solutions through the interactions of individual bees sensing and acting
locally on the basis of simple rules. Collective tasks can thus be performed by the
swarm even though some individuals might fail or the environment they operate in

might change.

Studying this phenomenon might enable biologists to understand how living
organisms work and engineers to develop new robust and adaptive technologies for

dealing with complex problems that have defied conventional solution means.

This chapter focuses on the development of intelligent multi-agent robot teams that
are capable of acting autonomously and of collaborating in a dynamic environment to

achieve team objectives. It proposes a biologically-inspired collective behaviour for a
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team of co-operating mobile robots. This behaviour is achieved by controlling the
local interactions among a set of identical robots with simple behaviours with the aim
of tracking a dynamic target. The subsumption architecture is taken as the starting
point for implementing the control of individual robots. With this architecture,
behaviours are arranged in order of priority. When different behaviours are applicable
simultaneously, the behaviour with the highest priority is activated. This so-called
“competitive” architecture is adopted because it is computationally inexpensive and

potentially suitable for low-level reactive and reflexive behaviours.

The remainder of the chapter is organised as follows. Collective dynamic target
tracking is discussed in section 2. Section 3 describes a modified subsumption
architecture. The simulation tool developed to test the proposed architecture is
presented in section 4. Section 5 describes the experiments conducted using the tool

and the results obtained.

3.2 Collective Dynamic Target Tracking

An important issue that arises in the automation of many security, surveillance and
reconnaissance tasks is that of monitoring and tracking the movements of targets

navigating in a bounded area of interest.

The collective dynamic target tracking task investigated here is based on the
emergence of collective strategy in prey-predator behaviour, where the predators co-
operate to catch the prey or the prey co-operate to defend themselves. The term

collective is used in the sense of the collective motion of defence or attack. The
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dynamics of predator-prey interactions where the predators surround the prey to catch
it using local sensor-based interactions among them have been implemented in the
task of dynamic target tracking. The prey-capture task is a special case of pursuit-
evasion problems, which consist of an environment with one or more prey and one or
more predators. Pursuit - evasion tasks are interesting because they are ubiquitous in
the natural world, and offer a clear objective that requires complex coordination with
respect to the environment, and with respect to other agents with the same goal. They
are therefore challenging for even the best learning systems, requiring accurate

success measurement and good analysis and visualisation of the strategies that evolve.

Dynamic target tracking involves the following and capturing, by a group of mobile
robots, of a moving object within a cluttered workspace, while avoiding collision with

obstacles and with each other.

The target is unpredictable; i.e., its trajectory is not known in advance. It is however
assumed to move with a bounded velocity that is comparable with the velocity of the

tracking robots.

The research objective was to identify how these robots co-operate to search for,
pursue, surround, and finally capture the target even though some individuals may fail
to carry out their tasks. Another aim was to demonstrate how individual members of
the collective team can perform the task in a distributed fashion so that the collective

team as a whole meets its goal.
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From the perspective of an individual robot, the task consists of searching for the
target, broadcasting messages to other robots, receiving messages from other robots
and approaching and capturing the target, as depicted in the state diagram of figure
3.1(a). In order to decide the direction from which it should approach the target, the

robot is required to be aware of the actions of its partners.

The target-tracking task of the robot team, from a group perspective, can be described,
at a high level, by the state diagram of figure 3.1(b). The accomplishment of this task

is a function of the effective co-operation between the robots.

3.3. Modified Subsumption Architecture

Early strategies for controlling robots involved building a representation of their
environment, and then planning their actions accordingly. Those strategies are
expensive and cannot react well to changes in a dynamic environment. In the
subsumption architecture (figure 3.2) there is no world model. Instead, a robot
responds directly to information it receives through its sensors; the robot acts ‘by
reflex’ and in this way the control software can be very simple. The architecture
implements several independent 'behaviours' that react to sensory inputs, and provide
control signals to the actuators (motors) of the robot. These ‘behaviours’ have
different priorities, such that only one behaviour is allowed to command the motors at

any one time.
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Figure 3.1(b): State diagram from the perspective of the group
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The subsumption architecture comprises a hierarchy of controller layers where each
layer is capable of instantly overriding all lower layers and taking control of the robot
for as long as it wishes. It then relinquishes control to whatever lower layer was
previously in command of the robot. The architecture control system is determined by
the structure of the behaviours and their interconnections. The layer that subsumes
control of the robot at any point needs no knowledge of what is currently controlling
the robot at that point, and similarly the usurped module does not require any

information about the subsumer.

As previously mentioned, one of the problems associated with subsumption is that
only a single behaviour, one behaviour per layer, is active at any time. While this is
satisfactory in many situations, there are times when a combination of more than one
behaviour is required. In practice, it has also been found that this very loose coupling
between layers is not sustainable (Pirjanian, 1998). Layers often need to pass
information back and forth. Take, for example, the task of moving towards a target
and avoiding obstacles. Each of these sub-tasks could be implemented as a single
behaviour. So long as no obstacles are detected, the robot will gracefully head
towards its target. If an obstacle is detected, however, the obstacle avoidance
behaviour becomes active and steers the robot away from the obstacle. The problem
with this is that the obstacle avoidance behaviour has no knowledge about the target,
and therefore will not necessarily steer in a direction that takes the robot closer to its

desired path.
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In this work, the subsumption architecture is modified to comprise more than one
behaviour module within one layer (figure 3.3). Those modules run in parallel and
have the same priority. Based on information from the sensors, the activated

behaviour module subsumes the others.

The design of the target-tracking controller begins by specifying the sensing
requirements for the task. Collision free movement will require an obstacle sensor; to
follow other robots needs a robot sensor; tracking the target will require a target or

goal sensor.

To accomplish the task of tracking a dynamic target, each robot was given four main
behaviours. The lowest priority default behaviours are the “search” and “listen for
messages” behaviours. “Search” directs the robot to advance along its current path.
Simultaneously, “listen for messages” makes the robot receptive to messages sent by

other mobiles. No sensors are required to activate these behaviours.

The above default behaviours can be suppressed by the “follow message sender”
behaviour if a message has been received from another robot (by means of the robot
sensor on the current robot). “Follow message sender” causes the robot to move to its
nearest sensed neighbour. The “send message” and “approach goal” behaviours are
activated by the goal sensor. “Send a message” makes the robot issue a “target
intercepted” message to the other mobiles and “approach goal” directs them towards
the target. “Approach goal” causes the robots to turn a number of degrees towards the
target while the goal sensor is active. The task is accomplished once several robots

collectively have captured the target.
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The “search”, “follow message sender” and “approach goal” behaviours can create
motion resulting in collisions. To prevent them, the “avoid” behaviour is added. This
highest priority behaviour becomes active and remains active as long as the obstacle
sensor has detected an obstacle. Turning the robot a fixed number of degrees away

from the sensed obstacles at each simulation time step prevents collisions.

3.4 Simulation

The objective of the developed simulation tool is to test the proposed architecture
based on the context of the co-operative task of dynamic target tracking. For this, a
simulated environment has been designed to model a large population of robots (a few

thousand), different obstacles (e.g. in shape and size), and multiple dynamic targets.

Accomplishing tasks using a decentralised system of autonomous robots requires the
control algorithms of each robot to make use of local information. This information is
acquired by the on-board robot sensors and must be sufficient to ensure that the entire

system of robots converges towards the desired goal.

Two kinds of sensors were simulated: obstacle detection sensors and target detection

SENsSors.

The purpose of the obstacle detection sensors was to provide obstacle distance
information to the robot. Three ultrasonic sensors were modelled to provide
information on obstacles to the left and the right, and in front of the robot. The same

models were used for the ultrasonic sensors fitted to the moving target.
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Target detection was simplified by using an infrared source at the centre of the target
and infrared target sensors mounted on the robots. The signal received by the sensors
depended on the distance and the orientation between the robot and the target: the
closer the distance the stronger the signal; similarly, the more directly the source and

sensor were aligned, the more powerful the signal.

Two actuators were modelled, one for each motor (left and right). Steering of the

robot was achieved by differentially turning the motors.

The behaviours mapped inputs from sensors to outputs to actuators to define a
stimulus-response relationship. Sensors provided information to the behaviour

modules, which then processed the data to provide commands to actuators.

During a simulation time step, each behaviour module read its related sensors and
calculated an appropriate response, with the resulting command sent to a behaviour

arbitration module, which decided the overall response.

3.5. Experiments and Discussion

Many factors determine the effectiveness of a co-operative multi-tobot system for
dynamic target tracking. Experiments were run with different numbers of robots and
different obstacle densities. Each experiment on a collection of robots was performed
thirty times and the results were averaged. Several sets of experiments were
conducted to analyse the effects of various factors on performance. The first

experiment analysed how varying the number of robots affected the time required to
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track (capture) the target. This experiment took place in a limited arena containing
one small target (requiring at least two robots to track and capture it) and no obstacles.
The average tracking time (measured as the number of steps by which the target has
moved before being captured) versus the number of robots was examined. The second
experiment differed from the first only by the addition of obstacles in the arena.
Again, performance was analysed relative to the number of robots performing the
task. Figure 3.4(a) shows one of the simulated environments before the experiment
started. This contained fifteen robots (eleven in one corner and four in another
corner), one target in the opposite corner, and different kinds of obstacles randomly
distributed. Figure 3.4(b) depicts an intermediate stage of target tracking. The
developed technique enabled the robots to complete their missions successfully even
though in some trials some of them failed (became stuck for a long time to avoid an
obstacle) to carry out their tasks as shown in figure 3.4(c). Figure 3.4(d) shows the
final stage where the robots have captured the target. Figure 3.5(a-c) shows that
increasing the number of robots reduced the time required to track the target.
However, robot collision and interference tended to degrade the performance. Adding
more robots did therefore produce a proportional increase in performance. Adding a
very large number of robots causes the environment to be full of robots. Then, the

target cannot move very far and tracking time does not change.

The third experiment was conducted by changing the environment complexity
(obstacle density) with different target sizes (a small target that requires at least two
robots to capture it, a medium-sized target needing at least four robots and a large
target necessitating at least six robots). Figure 3.6 shows the results obtained. Adding

obstacles in the environment increased the time required for capturing the target.
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Furthermore, the robots took longer to capture the larger target because more robots

were required for this.

Experiment four concemns multiple targets distributed in the environment. Again,
performance was analysed relative to the number of robots performing the task in
environments with different obstacle densities. Figure 3.7 shows that the robots co-
operated to track the targets even in a cluttered environment. Compared with the
results for tracking one target only, there is no significant difference in performance,
except that the number of time steps is reduced as shown in figure 3.8. This is because
moving more than one target in the environment reduces the tracking area available to
the robots and hence increases the chance for successful capturing. However, in
several trials the robots could not track all the targets as shown in figure 3.9. This is
because there is no coordination among the behaviours within one robot and between
the robots themselves. Also, there is no task allocation or task assignment techniques

to allocate a suitable number of robots for each target.
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3.6. Summary

This chapter has proposed an approach to controlling multiple robots that involves the
use of collective behaviour resulting from the sensor-based behaviours of individual
robots. The approach was inspired by the study of simple creatures that exhibit
collective task achieving behaviours in the way they collaborate and interact with one

another.

The control of each robot in the collective team is based on a modified subsumption
architecture. The modularity of the subsumption architecture makes the control of the

robot readily adaptable to another task.

The simulation results obtained showed that the robots successfully managed to track

and capture the target under different environmental conditions.

The influence of environmental factors (e.g., number of obstacles and target size) and
the number of robots on the performance of the group in a dynamic target-tracking
task has been analysed. As expected, increasing the number of robots reduced the
time required to track the target. However, robot collision and interference tended to
degrade the performance. Continually adding more robots produced a proportional

increase in performance.

For multiple targets, increasing the number of robots reduced the tracking time

because the search space was reduced. However, the lack of coordination and task

allocation algorithms caused some targets to escape.
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Chapter 4

Fuzzy-Logic-Based Behaviour Coordination in MultiRobot

Systems

4.1 Preliminaries

Behaviour-based systems have proved to be useful in enabling robots to copwith the
dynamics of real-world environments. The behaviour repertoire defineste skills
available to a robot to enable it to react to situations encountered in its envimment. A
robot can exhibit multiple behaviours. Each behaviour is responsible for aditving or
maintaining a particular objective. However, the objective of one behaviounight be
in conflict with those of other behaviours and it is necessary to reach a carpromise
between conflicting objectives. This highlights the solution of actions to aticve the
required trade-off as a major issue in the design of systems for contrdad co-
ordination of multiple behaviours in a robot. For this purpose, a fuzzy logickhnique
for behaviour coordination is proposed. Fuzzy logic has been adopted as titbasis of
the technique because of its ability easily to combine the different ndividual

behaviours in a robot with a modified subsumption-based control architectur.

The remainder of this chapter is organised as follows. Section 2 outlineste fuzzy
logic technique for coordinating behaviours in each robot including commu! fusion
and dynamic target tracking. The results obtained are presented and digsssed in

Section 3.
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4.2 Fuzzy Behaviour Coordination

4.2.1 Command Fusion

The desired outcome can be achieved by integrating the outputs of the applicable
behaviours, a process referred to as command fusion. For example, the outputs from
the target following behaviour and the obstacle avoidance behaviour are combined to
produce a heading that takes the robot towards its target whilst avoiding obstacles. An
approach based on fuzzy sets operations is proposed here that takes into account the
recommendations of all applicable behaviour modules. Behaviour coordination is
achieved by weighted decision-making and rule-based (behaviour) selection. The
weights used for weighted decision-making are the degrees of confidence placed on
the different behaviours. They are empirical measures of applicability of particular

behaviours.

To illustrate the process of behaviour coordination, assume there are just two
behaviours B1 and B2 as shown in figure 4.1. The degrees of confidence for B1 and

B2 are o) = 0.25 and ap = 0.75 respectively. The contribution of individual

behaviours, each represented by a fuzzy set, is weighted by the corresponding degree

of confidence. Thus, Bl and B2 are activated to degrees o] and o) respectively.

Behaviour activation is accomplished via scalar multiplication of the output fuzzy sets

by the appropriate degrees of confidence o] and a) in this example).

Multiplication of an output fuzzy set by a scalar a is equivalent to the conjunction of
a set of uniform membership degree a; with that output fuzzy set. The resulting fuzzy

sets are then aggregated using an appropriate t-conorm operator (such as the ‘Max’
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operator), and defuzzified to yield a crisp output u* that is representative of the

intended behaviour.

In this procedure, the scalar o represents the weight of a behaviour in the aggregated
control decision and multiplication by o expresses the applicability of the behaviour
to the current situation. It is not necessary that the sum of the o;’s is equal to 1. This

hypothetical example, illustrated in figure 4.1, reveals that the output of the system is
influenced more by its dominant behaviour B2 as intended. Control recommendations
from each applicable behaviour module are considered in the final decision. In
general, the resultant control action can be thought of as a consensus of

recommendations offered by multiple experts.

In some instances, it may be evident from current sensory data that only one particular

behaviour is fully applicable (a; associated with that behaviour is equal to 1). In this

case, coordination simply reduces to behaviour selection, a process also referred to as

switching coordination since behaviours are alternately switched on and off.
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4.2.2. Fuzzy-Logic-Based Dynamic Target Tracking Behavioural

Architecture

As with other behavioural approaches, the fuzzy-logic-based architecture for mobile
robots, in the context of a dynamic target tracking system, consists of several
behaviours, such as target following and obstacle avoidance. Each behaviour relates
sensor data and robot status to control recommendations, as shown in figure 4.2, and
has two components: a set of fuzzy rules and a fuzzy inference module. The fuzzy
rules of a behaviour explicitly represent its control strategy in the form of linguistic
statements. As illustrated in figure 4.2, multiple behaviours could share a common
fuzzy inference module. Fuzzy control recommendations generated by all behaviours

are fused and defuzzified to generate a final crisp control command.

The basic algorithm executed in every control cycle by the architecture consists of the
following four steps: (1) the target following behaviour determines the desired turning
direction; (2) the obstacle avoidance behaviour determines the disallowed turning
directions; (3) the command fusion module combines the desired and disallowed
directions and (4) the combined fuzzy command is converted into a crisp command
through a defuzzification process. The desired and disallowed directions are
maintained in fuzzy set form to reduce possible loss of information during command
fusion. Figure 4.3 shows an example of a situation in which the target following
behaviour suggests that the robot should turn left, but the robot must continue straight
on a little longer to avoid the obstacle on the left (i.e., obstacle A). This example is
used in the following subsections to describe and demonstrate each step of the

algorithm.
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4.2.2.1. Target Following Behaviour

The target following behaviour generates a desired turning direction based on the
current location of the target and its current bearing. The target following behaviour
determines the desired steering direction in three steps. First, it senses the target.
Second, the behaviour computes the target angle, which is the angle between the
current direction of the robot and a vector from its current location to the target. For
the example given, with the robot heading North, the target angle 6 is —30 degrees.
Third, the behaviour uses a set of fuzzy rules to change the specific target angle into a
general desired direction, which gives the robot more flexibility in avoiding obstacles
while still following the target. Figure 4.4 shows the two fuzzy rules R1 and R2
employed in the example by the target following behaviour. The fuzzy inference
module of the target following behaviour combines the desired directions
recommended by all target following behaviour fuzzy rules using weighted decision-
making as explained previously. The process is illustrated in figure 4.5 for a target
angle of —30 degrees using R1 and R2 from figure 4.4. The antecedent membership
functions (i.e., “around 0 degrees” and “around — 45 degrees”) are designed to overlap

such that the sum of their membership values in that region is 1.0.
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Figure 4.4: Fuzzy rules for target following
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4.2.2.2. Obstacle Avoidance Behaviour

The obstacle avoidance behaviour uses ultrasonic data to generate a fuzzy set that
represents the disallowed directions of travel (i.e., directions that lead, in the short
term, to or near an obstacle). The behaviour operates by first comparing the distance
of the closest obstacle detected by each direction sensor to a fuzzy set, “Near”,
associated with the sensor. Based on the result of the comparison, the behaviour
determines the degree to which the general direction of each sensor is considered
disallowed. Examples of fuzzy rules used by the obstacle avoidance behaviour are
shown in figure 4.6. The membership functions of disallowed turning directions
associated with a sensor have been designed such that: (1) they partially overlap those
of neighbouring sensors and (2) they have a major influence on the direction of the

Sensor.

Once all the fuzzy rules associated with the obstacle avoidance behaviour have been
fired, their fuzzy conclusions are combined using the Max operator. Figure 4.7 shows
an example of this combination with sensor inputs (three ultrasonic sensors) based on
the situation in figure 4.3. Here, the fuzzy inference module of the behaviour uses the
Max operator instead of other t-conorm operators (such as the arithmetic sum)
because it is consistent with the intuitive idea that the degree to which a direction is
disallowed should be determined by the sensor source that has the strongest opinion

about it.
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Figure 4.6: Fuzzy rules used for obstacle avoidance
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4.2.2.3. Fuzzy Command Fusion

The third component of the mobile robot controller combines the fuzzy conclusions
about the desired direction and the disallowed direction into a single fuzzy control
command. Since the final robot direction should be both desired from the target
following viewpoint and not disallowed by obstacle avoidance considerations, the
command fusion module uses the Min operator in fuzzy logic to form a conjunction of

the output of the two behaviours as follows:
HT urning-Direction(x) = MDesired(x) AND Not Disallowed(x)
= min{p Desired (x)’ H Not Disallowed (x)}

=min{p pegired(x) * Allowed(x)!

For convenience, the negated Disallowed Direction will be referred to as the Allowed

Direction of travel.

With reference to the example in figure 4.3, figure 4.8 illustrates the command fusion

and defuzzification steps under consideration.

4.2.2.4. Defuzzification

For the case shown in figures 4.3 and 4.8, by using the centre of area (COA) strategy,
the crisp turning direction is found to be — 20 degrees. This angle combines the
recommendations of both the target following and obstacle avoidance behaviours (see
figure 4.4 and 4.7b) and enables the robots to approach the target without colliding

with obstacles.
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(d) Defuzzification by using centre of area
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4.3. Experiments and Discussion

The experiments reported in chapter three, concerning tracking a dynamic target in a
limited arena with a different number of robots and different obstacles, were repeated
to demonstrate the fuzzy logic technique for behaviour coordination. In addition,
situations in which the robots face conflicting behaviours, such as obstacle avoidance
and target tracking, have been illustrated, to prove the reliability of the technique.
Without coordination (as in chapter three), when the robots face obstacles while
tracking a target, as shown in Figures 4.9a - 4.11a, obstacle avoidance has the highest
priority. Even though the robots subsequently lose the target, the robots avoid the
obstacles and one another as shown in Figures 4.9b - 4.11b. Subsequently, the robots
start searching again, wasting much time. However, with behaviour coordination (the
resolution of conflicts between contradictory behaviours), obstacle avoidance and
target tracking are achieved by selecting an action that represents the consensus

among the behaviours and that best satisfies the decision objectives that they encode.

As shown in Figures 4.9¢ - 4.11c the robots avoid the obstacles and moved directly
towards the target to follow it. After these specific instances showed improvement in
the system performance, the experiments described in chapter three were repeated and
evidence of the successful application of fuzzy logic for behaviour coordination is
shown in figure 4.12. Where conflict among contradictory behaviours is correctly
managed by behaviour coordination, the tracking time reduces with increasing

numbers of robots.
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4.4. Summary

This chapter has demonstrated how a fuzzy logic technique enables the resolution of
conflicts between contradictory robot behaviours by selecting an action that represents
the consensus among the behaviours and that best satisfies the decision objectives that
they encode. The results show an improvement in the global performance of a

multiple robot system.

96



Chapter 5

Knowledge-Based Software Architecture for Adaptive

Co-operative Mobile Robots

5.1 Preliminaries

Multi-robot teams can increase the reliability, flexibility, robustness and efficiency of
automated solutions by taking advantage of the redundancy and parallelism of
multiple team members. Before multi-robot teams can become widely used in
practise, it is necessary to develop automated techniques that enable robot team

members automatically to adapt their actions over time in response to changes in their

environment or in the robot team itself.

Achieving adaptive co-operative robot behaviour is more challenging. Many issues
must be addressed in order to develop a working co-operative team; these include
action selection, task allocation, coherence, communication, resource conflict
resolution, and awareness. Awareness of other members of the robot team is a

necessary component of co-operation; however this causes an increase in the search

space dimension (Touzet, 2000).

A knowledge-based software architecture is proposed to enable robot agents to
accomplish collective behaviours and adapt their performance during the specified

time of the mission. The improvement in team performance is achieved by updating

the control of the robots based on knowledge acquired on-line.
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The remainder of the chapter is organised as follows. Section 2 outlines the proposed
adaptive co-operative action selection architecture. Section 3 explains the
performance evaluation and monitoring modules of the architecture. The control
strategy, comprising off-line and on-line learning phases, is described in Section 4.
The feed-forward neuro-fuzzy technique and parameter leaming algorithms are
described in Section 5 and Section 6. Section 7 presents simulation results for a box

pushing exercise using existing simulation software.

5.2 Adaptive Co-operative Action Selection Architecture

The major design goal in the development of this architecture is to address the real-
world issues of behaviour coordination, fault tolerance and adaptivity when using
teams of fallible robots equipped with noisy sensors and effectors. The architecture
must also allow the building of robot teams able to cope with failures and uncertainty
in action selection and action execution, and with changes in a dynamic environment.
Furthermore, in order to maintain a purely distributed co-operative control scheme
which affords an increased degree of robustness, individual agents must always be
fully autonomous, with the ability to perform useful actions even amidst the failure of

the other robots.

The architecture is developed to be fully distributed, and giving all robots the
capability to determine their own actions based upon their current situation, the
activities of other robots and the current environmental conditions. No centralised
control is utilised, so that it is possible to investigate the power of a fully distributed

robotic system to accomplish group goals.
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The components of this architecture (Figure 5.1) will be explained in this chapter,
with the exception of the fuzzy-logic-based action selection arbiter which was

explained in Chapter 4.

5.2.1. Assumptions

In this architecture, it is not required that a robot be able to determine the actions of its
team-mates through passive observation, which can be difficult to achieve. Instead,
robots are enabled to learn about the actions of their team-mates through an explicit
communication mechanism, whereby the robots broadcast information concerning

their current activities to the rest of the team.

Furthermore, it is assumed that the robots are built to work as a team, and are neither
in direct competition with one another, nor attempting to subvert the actions of their
team-mates, although conflict may arise at a low level due to, for example,
the sharing of compatible goals, (Note, however, that some multi-robot team
applications, such as robot soccer and military battles, may require the ability to deal

with adversarial teams).

It is further assumed in the architecture that robots do not have access to some
centralised store of knowledge, and that no centralised agent is available that can
monitor the state of the entire robot environment and make control decisions based

upon this information.
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Figure 5.1: Adaptive co-operative action selection architecture
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5.2.2. Architecture Mechanism

At all times during the mission, the motivation for each robot to activate a certain
behaviour set is based on receiving sensory input and inter-robot communication.

When these inputs are valid, the behaviour set becomes active.

Intuitively, the motivation of robot rj to activate any given behaviour set is initialised

to 0. Over time, the motivation increases quickly as long as the task corresponding to

that behaviour set is not being accomplished, as determined from sensory feedback.

However, robots also have to be responsive to the actions of other robots, adapting

their task selection to the activities of team members. Thus, if robot rj is aware that
another robot ry is working on a certain task T1, then r; should be satisfied for some

time (based on knowledge learned on-line) that the task will be accomplished even
without its own participation, and thus go on to some other applicable actions. Its
motivation to activate the behaviour set (addressed by another robot) still increases,
but at a slower rate. This characteristic prevents any robot from replicating the actions
of the others and wasting energy. Of course, detecting and interpreting the actions of
the other robots (sometimes called action recognition) is not a trivial problem, and
often requires perceptual abilities that are not yet possible with current sensing
technology. Thus, to enhance the perceptual abilities of the robots, the architecture
utilises a simple form of broadcast communication to allow robots to inform other
team members of their current activities, rather than relying totally on sensory

capabilities. At a pre-specified rate, each robot rj broadcasts a statement of its current
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action, which other robots may listen to or ignore as they wish. Two-way

communication is not employed in this architecture.

Each robot is designed to be somewhat impatient, in that a robot rj is only willing for

a certain amount of time to allow the messages from another robot to affect its own
motivation to activate a given behaviour. Continued sensory feedback indicating that
a task is not accomplished thus overrides the statements of another robot performing
that task. This characteristic allows robots to adapt to failures of other robots, causing

them to ignore a robot that is not successfully completing its task.

A complementary characteristic in these robots is acquiescence (compliance). Just as
the impatience characteristic of a robot reflects the recognition that other robots may
fail, the acquiescence characteristic recognises that the robot itself may fail. This

feature operates as follows. As a robot rj performs a task, its willingness to give up

that task increases over time provided that the sensory feedback indicates that the task

has not been accomplished. As soon as some other robot ry signals it has begun that
same task and rj feels that it (r;) has attempted the task for an adequate length of time,
the unsuccessful robot rj gives up its task in an attempt to find an action at which it is
more productive. Additionally, even if another robot rk has not taken over the task,
robot rj may give up its task anyway if it is not completed within a time limit. This
allows rj the possibility of working on another task that may prove to be more fruitful

rather than attempting in vain to perform the original task forever. With this
acquiescence characteristic, therefore, a robot is able to adapt its actions to its own

failure.
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As a simple illustrative example, consider a team of two robots A and B unloading
boxes from a truck and placing them on one of two conveyor belts, depending upon
the labelling on the box. Both robots have the ability to unload boxes from the truck
to a temporary storage location, and the ability to move them from the temporary
storage location to the appropriate conveyor belt, (it is assumed that, due to the way
the loading dock is designed, the robots cannot move boxes immediately from the
truck to the conveyor belt). At the beginning of the mission, say robot A elects to
unload the boxes from the truck. Robot B is then satisfied that the boxes will be
unloaded, and proceeds to move the boxes from the temporary location to the correct
conveyor belt. As the mission progresses, it is assumed that the mechanism of robot A
for unloading the truck fails. Since no more boxes are arriving at the temporary
location, robot B becomes increasingly impatient to take over the task of unloading
boxes, even though robot A is still attempting to accomplish that task - unaware that
its sensor is returning faulty readings. Following a predetermined number of
unsuccessful attempts at unloading boxes and receipt of a signal from robot B that it
has begun the unloading task, being complicit, robot A abandons that task and turns

its attention to the task of loading the conveyors instead.

5.3. Monitoring and Performance Evaluation

One item of central importance to the learning mechanism used is the requirement for

robots to monitor and evaluate the performance of team members in executing tasks.

Without this ability, a robot must rely on human-supplied measurements of the

performance of robot team members that are unlikely to be responsive to changes

103



occurring over time. In either case, once these performance measurements are
obtained, the robot team members have a basis for determining the preferential
activation of one behaviour over another, either for the sake of efficiency and long-

term adaptation, or to determine when a robot failure has occurred.

The monitor function, implemented within each robot, is responsible for observing
and evaluating the performance of any robot team member (including itself) whenever
it performs a behaviour. Thus each robot monitors the performance of other robots for
tasks that it itself is able to accomplish, recording information on the time of task
completion. Robots do not monitor all tasks by all robots — only tasks that they

themselves have the ability to perform.

During a live mission, each robot chooses the most suitable action to execute based on
sensory feedback and the current system situation. It then broadcasts that action to its
team mates to avoid duplication. The monitor function will observe its progress. If
there is no progress during the expected time, the robot must either leave this task, or
request help from the other robots. At the same time, its team mates also monitor its
performance when they receive its broadcast message. If there seems to be no
progress in task performance, they start to negotiate with that robot to help it or to

take over the task. This procedure is repeated until the task is completed.

5.4. Architecture Control Strategy

The degree to which robot team members can actively pursue knowledge conceming

team member abilities depends on the type of mission in which they are engaged. If
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they are on a training mission, whose sole purpose is to allow robots to become
familiar with themselves and with their team mates, then the robots have more
freedom to explore their capabilities without concern for possibly not completing the
mission. On the other hand, if the robots are on a live mission that may continue for a
long time, then the team has to ensure that the mission is completed as efficiently as
possible, while continuing to adapt their performance over time as the capabilities of
their team mates change. During training missions, the robots will be in an off-line

learning mode whereas during live missions, they will be in an on-line learning mode.

5.4.1 Off-line Learning Phase

The best way that the robots can independently learn about their own abilities and
those of their team mates is by activating as many of their behaviours as possible
during a mission, and monitoring their own progress and the progress of team
members during task execution. On any given mission, not all of the available
behaviour sets may be appropriate, so it is usually not possible to learn complete

information about the capabilities of the robots from just one mission scenario.

However, this learning phase allows the team to obtain as much information as
possible to allow each robot to select its next action properly. This action is one of
the actions that is currently incomplete, as determined from the sensory feedback, and
not being executed by another robot, as determined from the broadcast
communication messages. All this information is used as a common knowledge base
from which fuzzy rules are generated. These rules are then fine-tuned using a feed-

forward neuro-fuzzy technique explained later in this chapter.
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5.4.2. On-line Learning Phase

When a robot team is on a mission, it cannot afford to allow members to attempt to

accomplish tasks for long periods with little or no demonstrable progress.

The team members have to make a concerted effort to accomplish the mission with
whatever knowledge is available about team member abilities, and must not tolerate
long episodes of robot actions that do not contribute to the task execution. However,
each robot continues to observe robot performance during this phase, and to update
the common knowledge base (built during the off-line phase) if required. For
example, due to the unreliability of the sensors and actuators and uncertainties in the
environment, there might be a small, but acceptable, variation in the time required for
robots to implement the same behaviour. Accordingly, the knowledge base has to be
updated. Furthermore, if a new situation occurs, a suitable action will be executed,

monitored, evaluated and, if appropriate, added to the knowledge base.

5.5. Feed-Forward Neuro-fuzzy Technique

One major disadvantage of fuzzy approaches is that there are no clear guidelines as to
how to fine-tune the fuzzy membership functions. However, learning techniques are

being developed that can help in this process.

Updating the knowledge-base affects the current rules and hence the system outputs.
Therefore, a neuro-fuzzy technique has been proposed to fine-tune these rules and

minimise the total error between the desired output and the fuzzy controller output.
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Mamdani-model-based fuzzy neural networks (FNNs) represent more transparent
neurofuzzy systems compared with Takagi Sugeno-model-based FNNs (Shankir,
2001). The reason is that the rule base of the Mamdani-model is more understandable
to human users. Also, it is more general in terms of how its rule base is created,
because the latter can be constructed using human experience and numerical data.
However, a disadvantage of this model is that it does not allow easy mathematical
analysis due to the logical nature of its inference functions, e.g., the logic min/max
functions. Also, it does not allow the simple application of BP as one of the most
powerful leaming algorithms, due to the non-differentiable min/max functions

employed.

In this chapter, a Mamdani-model-based FNN with Differentiable Activation
functions (DA-FNN) is described. A differentiable alternative to the logic min and
logic max functions termed softmin and softimax (Shankir, 2001) are presented. These
two differentiable functions (softmin and soffmax) are employed instead of the two
non-differentiable functions (logic min and logic max) to implement the decision-
making mechanism of DA-FNN. Using these differentiable functions allows the
effective application of Back propagation (BP) for the parameter learning of DA-

FNN.

Figure 5.2(a) presents the structure of the proposed neuro-fuzzy system. The structure
is a six-layer feed-forward connectionist representation of a Mamdani-model-based
fuzzy logic system (FLS) (Mamdani, 1974). In general, a node in any layer has some
finite "fan-in" of connections represented by weight values from other nodes and a

"fan-out" of connections to other nodes (see Figure 5.2(b)). Associated with the fan-in
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of a node is an aggregation function, f, that serves to combine information,
activation, or evidence from other nodes. Using the same notations as in (Lin and Lee,

1992), the function that provides the net input to such a node is written as follows:

net input:fk(u}‘,uk, .......... ,ul;;w}(,wi(, .......... ,wlp‘) G.D

where p is the number of fan-ins of the node, w is the link weight associated with each
fan-in, u is an output of a node in the preceding layer associated with the fan-in and
the superscript indicates the layer number. A second action of each node is to output

an activation value as a function of its net input,

output = ok = ak(fk) (6.2

where a% denotes the activation function in layer k. The functions of the nodes in

each of the six layers of the proposed structure are described next.
Layer 1: Nodes in Layer 1 are input nodes that represent input linguistic variables.

Layer one contains N nodes, each of which receives a crisp input

vectorX = (x [seeees XN)~ The nodes in this layer simply transmit input valuesto the next

layer directly. That is,
fi=ul=x;j and al=7f] (5.3)

The link weights in Layer 1 are fixed at unity.
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Figure 5.2(b): Basic structure of a node in the network
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Layer 2: Nodes in Layer 2 are input term nodes which act as membership functions.
An input linguistic variable x in a universe of discourse U is characterised by
T(x) = {TL,Ti,...,TL“} and M(x)= {ML,Mi,...,Mf}, where T(x) is the term set of x;
that is the set of names, e.g., (small, medium, large), of the linguistic values of x and
M(x) is the membership function, e.g., (triangular, trapezoidal, bell-shaped), defined
on a universe U. The bell-shaped function is chosen because it is differentiable
function. The function of each node j in a term set i is to calculate the degree of
membership of input x; with respect to the membership function MJ)'( . j=12,....,Nj,
associated with the term set T(x;) according to the following bell-shaped function:
2
(wf*a] )—miJ

| o
/=M, (mij.oij) = ; and a>=e /) (5.4)
Gij

where mjj and jj are, respectively, the centre (or mean) and the width (or variance) of

the bell-shaped function of the " term of the i'"™ input linguistic variable x;.

Layer 3: The nodes in Layer 3 are rule nodes, where each node associates one term
node from each term set to form a condition part of one fuzzy rule. In this structure,
the softmin function (Berenji and Khedkar, 1992) and its complement softmax

function (Shankir, 2001) are used.

softmin (a;,i=12,.,n)= 2— (5.5)
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i=1

n _k'—-
Qe A (5.6)

softmax (aj,i =1,2,...,n) = softmin(a_i,i =1,2,.,n)=|1-

where aj=p , aj =1~a; and the parameter k controls the “hardness” of the softmin

function.

Therefore, the function of the ' rule node using softmin can be written as follows:
3 .
fi= softmm(uf‘,u%, ...... ,u%\l) and af = ff 5.7

where r=1,..., R, and R is the number of rules or rule nodes in layer three. However,
in this layer, there are no link weights to be adjusted because all the link weights are

fixed at unity.

Layer 4: The nodes in this layer are output term nodes which act as membership
functions to represent the output terms of the respective L linguistic output variables.
The nodes in Layer 4 should integrate the fired rules that have the same consequent.
The softmax function is used to perform the integration. Therefore, the function of

each term node j in the output term set i can be written as follows:

fi= N (5.8)
Y f;}zsoftmax(agn ,mzl,...,pj and a;}:fg

where p is the number of rules sharing the same consequent (the same output term

node). Hence, the link weights in Layer 4 are fixed at unity.
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Layer §: The number of nodes in layer 5 is 2L, where L is the number of output
variables, i.e. there are two nodes for each output variable. The function of these two
nodes is to calculate the denominator and the numerator of a quasi Centre Of Area
(COA) defuzzification value for each output variable. The functions of the two nodes

of the i™ output variable are:

5
Soi=ZTajrmijtoij and aj;=fl; (5.9)
J

fgi=Taj*oij and aj=f3 (5.10)
J

where f il ; and f fn are, respectively, the node functions of the numerator and the

denominator nodes of the i output variable.

Layer 6: The nodes in layer 6 are defuzzification nodes. The number of nodes in this
layer equals the number of output linguistic variables. The function of the i node
corresponding to the i output variable can be written as follows:

6. 445

. % .

£5= Wni™ 2ni
! 5

. and 8= f% and y,=af (5.11)
Wdi*agi

i

where Wg ; and W?ii are layer 6 link weights associated with each output variable

node.

In order to build a neuro-fuzzy system based on the above description, three main
steps have to be considered. The first step is to specify the input and output variables
of the network. The second step is to divide the input-output universes into a suitable

number of partitions (fuzzy sets) and to specify a membership function for each
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partition. A linguistic term has to be assigned to each membership function and the
parameters of the membership function (centre and width) have to be specified
initially. The third step is to generate fuzzy rules to perform the input-output mapping
of the FLS. After the construction of the network, a parameter learning phase has to

be conducted. The algorithm for that phase is explained next.
5.5.1. Parameter Learning Algorithm

Following the construction phase, the network then enters the parameter learning
phase to adjust its free parameters. The adjustable free parameters were selected to be

the centres (mijs) and widths (OUS) of the term nodes in layer 4 as well as the link

weights in layers 2 and 6. A supervised learning technique is employed along with the
back propagation (BP) learning algorithm (Berenji and Khedkar, 1992) to tune these
parameters. The problem can be stated as: ‘Given n input patterns xi(t), i = 1,...., n, m
desired output patterns yi(t), i = 1,....., m, the fuzzy partitions, and the fuzzy rule base,
adjust the free parameters of the network optimally’. In the parameter learning phase,

the goal is to minimise the following error function:
1
E =00 ypet O (5.12)

where y(t) is the desired output, and y..(t) is the current network output. For

each training data set, starting at the input nodes, a forward pass is made to compute
the activity levels of all the nodes in the network. Then, starting at the output nodes, a
backward pass is followed to compute the rate of change of the error function with

respect to the adjustable free parameters for all the hidden nodes. Assuming that w is
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an adjustable free parameter in a node, then the general learning rule can be written as

follows:

OE
Aw =n (—a—w—) (5.13)
w(t+1)= w(t)+Aw (5.14)

where 1 is the learning rate. Using the chain rule, the partial derivative can be defined

thus:
OE _ OE O(net—input) _OE of _ OE Oa of (5.15)
ow  d(net —input) ow of ow 0a of ow '

The calculation of the back-propagated errors as well as the updating of the free

parameters can be described starting at the output nodes as follows.

Layer 6: Using Equation (5.15) and Equation (5.11), the adaptive rule for the Layer 6

weights is derived below:

6 56 5
OE _ O 0aj Of] :—(y(t)—y)(t))*—flm— (5.162)
Owpj 5a? fo-’ Owni net Wdia?ﬁ
OE
Wni(t'*'l):Wni(t)'*"n()(_a J (5.16b)
nit
026 0Of° .5
Bk O, ] = —(y(t) — o ()~ i (5.17a)
Owai 0af 8% Owai (waiPal
OE
Wdi(t+1)=Wdi(t)+rl6(" o J (5.17b)
di
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where 7 is the leamning rate of the link weights in layer 6. The propagated errors from

Layer 6 to the numerator and the denominator nodes in layer 5 are derived as follows:

oE oE 0ab of° .
R i e e =—(y(t)—ym(t))*—WLl5 (5.18a)
Oay; Oay Of; Odapy wdiag
cE OE Oal af() wnia:
=t = b)) — (5.18b)
Oay Oaj 0f; OCay wiladf

Layer 5: An adjustment is required for the link weights ngj which represent the

centres m;; of the output membership functions. Also, an adjustment is required for the
free parameter oj; that represents the width of the output membership functions.
Consequently, using Equation (5.9) and Equation (5.15), the adaptive rule to tune the
free parameters in Layer 5 is derived. First, the adaptive rule to tune the centres of the

output membership functions can be obtained as follows:

5 5
OE __0E ,%ani OTni_ 6. . vyt (5.192)
om 3 5 5 £5 om ni 91 alJ .
ij Cap; 0/
OE
mU

Second, the adaptive rule to tune the widths of the output membership functions is
given by:

dad; 0f3.
oE oE _ “apni, J i :Sgi*mij*a"} (5.20a)

Ocij dad; os3. Ocij Y
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O
aij(t+1)=oij(t)+ ns(- acijj (5.20b)

where 75 is the learning rate of the adjustable parameters o and mj; in layer 5. The

propagated error from layer 5 to the j'™ node in the i term set in layer 4 is:

8a2. o813, dad. of3.
8 = CE * am* fm + oE * ad'* fd' =156, % ik g )+ 156, % 5::)(5.21)
AP s 8.4 545 s oAl Opi * mij* oij) * B g; * oij
/ani 6fm aij adl afdl aij

Layer 4: No adjustment is required for the link weights of layer 4. Only the error

signals &' are required to be calculated and propagated to a rule node r in layer 3.

. . . . 4
Each one of these error signals is a summation of L propagated error signals §;, one

error signal from a specific node j of each term set i, where i =1,...., L and L is the

number of output variables (or term sets). Using Equation (5.15), the error signal &

is then:
aai4j affj
i i aflj aar

From Equations (5.8) and (5.5)

dat

U _ (5.23)
0 f;‘j

and
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affi- e kar|:(]‘kaf e k{uijm/"*‘kzu;me—k[ugm]}

, (5.24)

if the j" term node at the i™ term set in layer 4 is connected to the '™ rule node in

Layer 3. Otherwise,

ofs
J_, (5.25)

~ 3

Ca,
where p is the number of rules sharing the same j™ output term node, and ﬁgm is the

complement of the m™ input to the j"™ output term node at the i" term set in Layer 4.

Layer 3: As with layer 4, no adjustment is required for link weights in layer 3. Only
the error signals 5i3j are required to be calculated and propagated from the " rule node
in layer 3 to the j" term node at the i" term set in layer 2. Each one of these error
signals is a summation of p propagated error signals &}, from layer 3, where
m=1,..,p, and p is the number of rules which share the same j™ term node at the
same i" input term set in layer 2. Using Equation (5.15), the error signal & can be

calculated as follows:

3 873
5= Z8m = 2| dm* Oan *—f—;“ (5.26)
oo oyl Oaj

From Equations (5.7) and (5.6)

3
Oap =1 (5.27)

af;
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= =l , (5.28)

if the ] term node at the i™ input term set in layer 2 is connected to the rule node m in

layer 3; otherwise,

Of m _

— =0 (5.29)
Oaij

where N is the number of input term sets and u:r;ni is the i™ input to the rule node m in

Layer 3.

Layer 2: Using Equation (5.13) and Equation (5.4), the adaptive rule to tune the

weights in layer 2 is given by:

dal of> , —2allalwi-m,
6k _ 5E2 R al(alvj’ ) (5.30a)
Owj aaij afij Wi Gij
oE
wi(t+1)= wﬁ(t)ﬂh[’ awz} 6200
1

where 7, is the learning rate of the link weights in layer 2. The propagated error from

Layer 2 to the i" input node in layer 1 is derived as:
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i j|0aj af; Oal

-2W2(31W2_m..)
= 3.* 2 % U 1 Y Y
) Z 81] fJ 2
ij J Oij

\

Following the construction phase and the learning phase, an optimally tuned FLS is
developed to perform a specific mapping function. This mapping function may

represent a function of a dynamic system or a control function.
5.5.2. Pattern and Batch Modes of Training

In the practical application of the back propagation algorithm to the multi-layer
perceptron, learning results are obtained from many presentations of a prescribed set
of training examples to the network. One complete presentation of the entire training
set during the learning process is called an epoch. The learning process is maintained
on an epoch-by-epoch basis until the synaptic weights and threshold levels of the
network stabilise and the average squared error over the entire training set converges
to some minimum value. It is good practice to randomise the order of presentation of
training examples from one epoch to the next. For a given training set, back-

propagation learning may proceed in one of two basic ways, pattern or batch mode.

In the pattern mode of back propagation learning, weight updating is performed after
the presentation of each training example. Each example in the epoch is presented to
the network, and a sequence of forward and backward computations is performed

resulting in certain adjustments to the synaptic weights and threshold levels of the

network.
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In batch mode, weight updating is performed after the presentation of all training

examples that constitute an epoch.

The pattern mode was adopted in this work because it is simpler to implement and it

can still give trained networks producing outputs very close to the desired outputs.

5.6. Experiments and Discussion

This architecture has been applied to a simulated team of mobile robots performing a
proof-of-concept co-operative box pushing task. That task was chosen because it
enabled the features of the proposed architecture to be demonstrated. The objective of
the co-operative box-pushing task is to find a box, randomly placed in the
environment of the robots, and push it across the ‘room’. The box is heavy and long
and one robot alone cannot (continuously) push the box to move it across the room. It
is necessary to synchronise the pushing of the box by robots at the two ends, so that
the task is defined in terms of two recurring subtasks. These subtasks are: push the left
end a little and push the right end a little — neither of which can be activated (except
for the first time) unless the opposite side has just been pushed.

The Webots simulation shell (Michel, 1998) was used to implement this task. This is a
three-dimensional simulation tool with a good graphical interface to display the
simulation results. Using Webots, robots equipped with actuators and sensors for
detecting the box and obstacles and a set of behaviour modules that map sensor inputs

to actuator outputs at an environment containing a long box and obstacles have been

modelled.
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The two experiments performed in (Parker, 2001) were repeated in this investigation
for comparison. In the first experiment, two robots co-operate to find a box and push
it across the room with no obstacles in the environment. The second experiment
differs by adding an obstacle, located at one of the comers, that obstructs one of the
robots to study how the other robot dynamically reselects its actions in response to

changes in the mission situation.

At the start, the robots are situated randomly in the environment (figure 5.3(a)) and
they begin to locate the box. After both of them have reached the box (figure 5.3(b)),
it is assumed that the robot at the left starts to push first (figure 5.3(c)). The box then
needs to be pushed from the right side, so the robot on the right starts to push and
broadcasts that action to the robot on the left. During the expected time for that action,
the robot on the left monitors the performance of its team mate. The procedure then
repeats itself. Finally, the robots complete the task (figure 5.3(d)). In the second
experiment, one of the robots is stuck behind an obstacle added to the environment
while the other reaches the box (figure 5.3(e)). Because there is no contribution from
the other robot (sensors readings are unchanged and no messages are received), the
robot that reached the box starts to push it at one end (figure 5.3(f)). It then moves to
the other end to push (figure 5.3(g)). It continues its back and forth movements (figure
5.3(h)), executing the tasks of pushing the left end of the box and pushing the right
end of the box for as long as it fails to hear that another robot is performing the

pushing task at the other end of the box.
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Figure 5.3(a): Initial environment (two robots randomly situated in an
environment with a long box)
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Figure 5.3(b): The robots reach the box
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Figure 5.3(c): The left robot starts to push the box
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Figure 5.3(d): Both robots successfully complete their mission
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Figure 5.3(e): Only one robot reached the box because ofthe
obstacle
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Figure 5.3(f): The robot starts to push from the left side
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Figure 5.3(g): The robot moves to the other end to push



Figure 5.3(h): The robot continues the back and forth movement
at the left-right alternating pushing



5.7. Summary

The knowledge-based architecture presented in this chapter was used to create a robot
team that can perform missions over long periods, even when the environment or the
robot team itself changes. An important component of these robotic systems is a
control strategy that enables the robots to adapt their actions throughout the mission

without human intervention.

Since the robot team members are continually monitoring the performance of their
team mates and updating the performance measurements accordingly, the response to
improved or degraded capabilities is automatic regardless of the mission length. The
results of simulation experiments show that the robot team is able to achieve adaptive
co-operative control despite dynamic changes in the environment and variation in the

capabilities of the team members.
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Chapter 6

Mobile Robot Hardware and Experiments

6.1 Preliminaries

The original objective was to develop a research platform, including both software
and hardware components, for the evaluation of control algorithms for multi robot
systems. The developed software should enable users to develop their own control
algorithms. These algorithms could then be tested both in simulation environments
and also on real mobile robots. The developed hardware should enable the creation of

multiple autonomous mobile robots with the following requirements:

e Extendibility — the robot hardware must allow future expansion.
e Compatibility — the robot design must be based on commercially available

standard components.

The remainder of the chapter is organised as follows. The construction of a team of
mobile robots is covered in Section 2. Experiments are discussed in section 3. The
experiments were devised to demonstrate practical implementations of some of the

ideas proposed in previous chapters.
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6.2 Construction of a team of mobile robots

Small radio-controlled toy cars and a small radio-controlled toy tank were adapted to
provide the mechanical structures for the mobile robots and moving target,
respectively (see Figure 6.1). The toy cars and the tank were driven by small dc
motors and were capable of a maximum speed of 3 m/s and 2 m/s respectively. Both
types of toys are inexpensive (costing under £10 each) and readily available. This

contributes to achieving the compatibility and cost requirements.

The control system for the robots and target was purpose designed for this application
as the existing radio-operated controllers in the toy cars and toy tank were not
suitable. The control system for the robots comprises a main board and sensor board.
The heart of the main board is a Priority Interrupt Controller (PIC) of type 18F252,
used to control the robot/target actuators and process the sensor signals. A circuit
diagram for the sensor board is shown in Figure 6.2. The sensor board contains
circuitry to enable the robots to detect the target and other obstacles. An emitter and
four sensors were designed to be incorporated in the sensor board (Figure 6.3).
However, due to the size of the robots, the dimensions of the control system (and thus
the main and sensor board) are very limited. This does not permit the fitting of many
sensors. Hence, the rear facing sensor which was not considered essential was
omitted. Also, there was no room to fit a system for the robots to detect or
communicate with one another and that was why only the dynamic target tracking
task could be implemented (Figure 6.3). However, as the emitter of a robot is front

facing, it cannot differentiate between another robot and an obstacle in front of it.
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Figure 6.1 (a): The mobile robots
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Figure 6.1 (b): The target
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Figure 6.2: Robot sensors board
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Figure 6.3: Schematic diagram for the sensors board




However, a robot can detect another robot approaching it from either side of it
because one of the side sensors of the first robot will be activated by the signal
emitted by the approaching robot. A robot can also distinguish between a target and
another robot located on either side of it because of the different signals they emit.
This help the robots to coordinate their movements based on the direction of motion

of their team mates and that of the target.

Two factors restricted the choice of the infrared receivers and transmitting LEDs: the
size of the robots and the current consumption. Both the transmitting LED and
receivers operate at the same frequency signal chosen at 38 kHz. For obstacle
detection, the robot uses the transmitter to send a signal which would be reflected and
detected by one of the receivers if there is an obstacle near by. Obstacles can be
detected as far as 30 cm and the angle of the detection is approximately 45 degrees.

The target could be sensed from a distance of Im.

To differentiate between target and obstacle, two different codes are used in the
emitted signal one for target detection and the other for obstacle detection. Figure
6.4(a) shows the signal emitted by the target. A square wave at 38 kHz is emitted for a
duration of 0.8 ms and then stopped for 8 ms. Figure 6.4(b) shows the signal emitted
by the robot for obstacle detection. This is also a square wave signal at 38 kHz, but
emitted for a duration of 1.4 ms and then stopped for 18 ms. These values were

determined experimentally. To find the range for obstacle and target detection,
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Figure 6.4: The emitted signal (a) for the target (b) for the obstacles
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experiments were conducted under different conditions and the output of the PIC
controller measured. The detection ranges were used by the control programs to

enable the robots to move safely and perform their tasks successfully.

6.3 Experiments and Discussion

Experiments were run with two or three robots, different obstacles and one target.
Each experiment was performed six times and the results are averaged. The first set of
experiments analysed how varying the number of robots affected the time required for
tracking the target. This experiment took place in a limited arena containing one target
and no obstacle. The average tracking time versus the number of robots was noted.
The second set of experiments differed from the first set only by the addition of
obstacles in the arena. Again, performance was analysed relative to the number of

robots performing the task.

Figures 6.5(a) shows one of the environments before the experiment started. This
contained two robots in one corner, and one target in the opposite corner. Figure
6.5(b) depicts an intermediate stage of target tracking. Figure 6.5(c) shows the final
stage when the robots have cooperated and captured the target. Figures 6.6(a), 6.6(b)
and 6.6(c) demonstrate the same scenario for three robots. Figures 6.7 (a), 6.7(b) and

6.7(c) show the same scenario with the addition of obstacles.

Even though the performance of the robots in some trials was not as expected (the
robots spent too long to track and capture the target), this might be due to the narrow

beam angle of the emitters, so that it was difficult for the robots to find the target.
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However, the robots managed in some trials to track and capture the target even in
cluttered environments. It was found that the time required to track and capture the
target using three robots was approximately 2 minutes. With only two robots, the
required time was about 4 minutes. In the case where obstacles were included, the
time was 7 minutes. The tracking time can be reduced by increasing the number of
robots or the speed of the robots. However the speed of the robots was kept slow

(0.5 m/s) to give them time to respond to the signal emitted from the infrared emitters.
Due to the limited capabilities of the robots as previously mentioned in addition to the

robots are light and does not have enough force, the box pushing task could not be

implemented in real.
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Figure 6.5(a): Initial environment (one target and two robots)
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Figure 6.5(b): Intermediate stage with robots tracking the target
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Figure 6.5(c): Final stage with the robots having captured the target
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Figure 6.6(a): Initial environment (one target and three robots)



Figure 6.6(b): Intermediate stage with robots tracking the target
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Fieure 6.6Tc": Final staee with the robots havine cantured the tareet
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Figure 6.7(a): Initial environment (one target, different obstacles,
and three robots)
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Figure 6.7(b): Intermediate stage with robots tracking the target



Figure 6.7(c): Final stage with the robots having captured the target



6.3 Summary

This chapter has focused on the design and construction of a team of mobile robots

for tracking and capturing a dynamic target.

Electronic control and sensing circuits for driving three small radio-controlled cars
and a toy tank were adapted to act as three mobile robots and a moving target,
respectively. Electronic circuitry was fitted to these vehicles to enable them to detect
obstacles, signal their presence (in the case of the target and robots approaching the

sides of another robot) and detect the target (in the case of the robots).

Experiments showed that the robots successfully managed to track and capture the
target. However, due to the limited number of emitters installed, the performance of
the robots in some trials was not satisfactory. As expected, the more robots that

tracked a dynamic target, the shorter was the time required to capture it.
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Chapter 7

Conclusions and Further Work

This chapter summarises the main contributions made and the conclusions reached in

this work and proposes topics for further investigation.

7.1. Contributions

1-

t9
'

A modification to the subsumption robot control architecture has been proposed to
enable the control of multiple robots using the collective behaviour resulting from

individual sensor-based behaviours.

A fuzzy logic technique has been developed to enable the resolution of conflicts
between contradictory behaviours by proposing an action that represents the

consensus among the behaviours and that best satisfies the decision objectives that

they encode.

A knowledge-based software architecture has been implemented for cooperating

mobile robots to update their behaviours based on knowledge acquired on-line.

A group of low cost miniature mobile robots has been developed to enable some

of the proposed ideas to be demonstrated.
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7.2. Conclusions

1.

This work has proposed an approach to controlling multiple robots that involves
the use of collective behaviour resulting from several sensor-based behaviours.
The influence of environmental factors and the number of robots on the
performance of the group in a dynamic target-tracking task has been analysed. As
would be expected, increasing the number of robots reduced the time required to
track the target. However, robot collision and interference tended to degrade the
performance. Continually adding more robots therefore did not produce a

proportional increase in performance.

The use of fuzzy logic enabled the resolution of conflicts between contradictory
behaviours by selecting an action that represents the consensus among the

behaviours and that best satisfies the decision objectives encoded in them.

The proposed co-operative robot architecture has been shown to allow robot teams
to perform real-world missions over long periods, even while the environment or
the robotic team itself changes. An important component is the control strategy
that enables the robots to adapt their actions throughout a live mission without
human intervention. The improvement in team performance was achieved by
updating the control of the robots based on knowledge acquired on-line. Since the
robot team members continually monitor the performance of their team-mates and
update the performance measures accordingly, the response to improved or
degraded capabilities is automatic, regardless of mission length. The results show

that the robot team is able to achieve adaptive co-operative control despite
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dynamic changes in the environment and variation in the capabilities of the team

members.

7.3. Further Work

1-

The output of the fuzzy logic rules is not optimal because the rules and
membership functions are developed heuristically. The rules and membership
functions could be optimised by learning based on some advanced search methods

such as genetic algorithms.

The developed robot team is only able to track one target at a time. For multiple
targets tracking, a task allocation algorithm is required to direct an appropriate

number of robots to track each target.

The idea of having robots to learn how to accomplish a task, rather than being told
explicitly is an appealing one. It seems easier and much more intuitive for the
programmer to specify what the robot should do, and then let it learn the fine
details of how to do it. A technique such as reinforcement learning is required for

optimising the interaction with an environment or control of a system.

The robots developed in this work are few in number and very simple due to cost
constraints. If a larger budget is available, larger teams of more advanced robots

could be built to enable more complex tasks to be attempted.
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