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ABSTRACT

This thesis comprises two parts. The first part deals with single carrier and multiple-carrier
based frequency estimation. The second part is concerned with the application of ultrasound
using the proposed estimators and introduces a novel efficient implementation of a subspace
tracking technique.

In the first part, the problem of single frequency estimation is initially examined, and a
hybrid single tone estimator is proposed, comprising both coarse and refined estimates. The
coarse estimate of the unknown frequency is obtained using the unweighted lincar prediction
mcthod, and is used to remove the frequency dependence of the signal-to-noise ratio (SNR)
threshold. The SNR threshold is then further reduced via a combination of using an aver-
aging filter and an outlier removal scheme. Finally, a refined frequency estimate is formed
using a weighted phase average technique. The hybrid estimator outperforms other recently
developed estimators and is found to be independent of the underlying frequency.

A second topic considered in the first part of this thesis is multiple-carrier based fre-
quency estimation. Based on this idea, three novel velocity estimators are proposed by
exploiting the velocity dependence of the backscattered carriers; using synthetic data, all
three proposed estimators are found to exhibit the capability of mitigating the poor high
velocity performance of the conventional correlation based techniques and thereby provide

usable performance beyond the conventional Nyquist velocity limit. To cvaluate these meth-

iii



Abstract iv

ods statistically, the Cramér-Rao lower bound for the velocity cstimation is derived.

In the sccond part, the fundamentals of ultrasound arc bricfly reviewed. An cfficient
subspace tracking technique is introduced as a way to implement clutter cigenfilters, greatly
reducing the computation complexity as compared to conventional eigenfilters which are
basced on the cvaluation of the block singular value decomposition technique. Finally, the
hybrid estimator and the multiple-carricr based velocity cstimators proposed in the first part
of the thesis are examined with realistic radio frequency data, illustrating the uscfulness of

these methods in solving practical problems.
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Chapter 1

INTRODUCTION

“I hear, I forget;
I see, I remember;

I do, I understand.”

A Chinese Saying.

The work comprising this Ph.D. study is primarily concerned with single and multiple
frequency cstimation, together with efficient implementation of subspace tracking. Several
approaches to these problems are proposed in this thesis. To cxamine performance, the
mcthods arc evaluated using both synthetic data and realistic medical ultrasound data. The

present chapter serves as an introduction and an overview of the main topics covered in this

thesis.

1.1 Motivation and Overview

Parameter cstimation has been a classical problem for more than 200 years [Pro95] and is still
an important rescarch topic with a wide range of practical applications such as in biomedi-

cine, communications, radar and speech (sce, c.g., [Pr089,Edd93,Jcn96a,KP95,EMOO,SM05]
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and the references thercin). More specifically, in biomedicine, estimation of various signal
characteristics from a paticnt, such as ultrasound-based radio frequency (RF) data, can, for
instance, provide information about Doppler shift which can be useful in colour flow imag-
ing (CFI) for blood velocity estimation [Jen96a, EM00]. In communications, one problem
of current interest is the neced to track the time-varying parameters in a cellular radio sys-
tem [Pro89]. In radar and sonar systems, an accurate estimate can provide information on
the location and motion of targets situated in the field of view [Edd93,SMO05]. In speech,
parameter estimation of audio signals can be useful in better understanding the speech
production process as well as for speech synthesis, coding and recognition [KP95]. A vast
number of other applications can easily be found.

An cstimate can be formed using either a parametric or a nonparametric approach. Most
modern estimation approaches in signal processing are modcl-based in the sensc that they
rely on certain assumptions made on the observed data. In particular, the topic of sinusoidal
parameter estimation has reccived a huge interest in recent decades, with numerous books
written on the topic (sce, c.g., [Mar87,Kay88, QH01,SM05], and the references therein). One
reason for this is due to the wide applicability of such problems. A typical sinusoidal model
can be written as a sum of complex-valued sinusoid(s) corrupted by a Gaussian noise process
typically not known, e.g,

d

vs(t) = za(t) +e(t) 5 zo(t) =D ag(t)elrtten) (1.1.1)

where z,(t) denotes the (complex-valued) noise-free sinusoidal signal; {a(t)}, {wi} and {ps}
are its time-varying amplitudes (power), angular frequencies and initial phases, respectively;
and e(t) is an additive observation noise which is often assumed to be zero mean complex-
valued circular white with Gaussian distribution. Often, one is only interested in one or some
of the parameters in (1.1.1), depending on the specific application. Typically, estimation of

the frequencies is often the crucial step in the problem because they are nonlinear functions
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in the reccived data sequence. In addition, in many applications, it is the frequency contents
of a signal that carry the information about some desired property, c.g., Doppler shift and the
resulting blood velocity in CFI. Once the frequencies have been determined, the remaining
parameters, namely amplitudes and phascs, can then be computed straightforwardly [SM05].
It is noteworthy that for exponentially damped sinusoids, onc also needs to determine the
cxtra parameters of damping factors, which can be estimated jointly with the frequencics
[ZH97], or separately using least-squares or forward-backward linear prediction (sce, c.g.,
[St093,ZH97, VSH*00, KK01], and the references therein). In general, many algorithms are
tested on the basis of limited length synthetic sinusoidal data samples, which is feasible if
the sinusoidal data model closely matches the practical data. However, in the real world,
many signals arc non-stationary, have a frequency spread (broadband) and/or exhibit a non-
sinusoidal property with power damping, corrupting the data model commonly causing the
cstimation procedurc to fail. An example of an arca where such problems are encountered
is in medical ultrasound where one trics to extract information from a backscattered RF
signal, which will be discussed in later chapters. Given the great interest in good methods
for frequency estimation, vast numbers of approaches have been proposed over the years,
each with their own pros and cons. In this thesis, several frequency estimators are proposed
based on a simplified version of (1.1.1) as discussed later. Herein, the proposed methods are
motivated and associated with the application of ultrasound-based blood velocity estimation.
However, it is worth emphasizing that these estimators can be easily extended/applied to
related problems in radar and sonar and other possible applications.

Another topic this thesis deals with is subspace estimation and tracking in associa-
tion with the application of clutter rejection in CFI. Subspace-based signal analysis consists
of splitting the observations into a set of desired and a set of uninteresting components
which can be viewed in terms of signal and noise subspaces. In CFI, the obscrved radio

frequency (RF) ultrasound data normally contains a disturbing clutter component which is
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u3

u2

\/

Clutter Subspace

ul

Figure 1.1. Projection of a signal space (spanned by basis vectors uy, up and uz) into a

clutter subspace (spanned by basis vectors u; and uy).

much stronger than the cchoes from blood scatters [Jen96a, EM00]. To estimate accurately
blood velocities, the clutter component must be first suppressed; this step is termed clutter
rejection. Clutter rejection can be performed in many different ways, which will be further
discussed in Chapter 5. One of the promising methods is the recently developed eigenfilter
technique which is based on estimating the clutter subspace using the eigenvaluc decom-
position (EVD) technique, or alternatively, using the singular value decomposition (SVD)
technique (see, e.g., [BHR95, LBH97, EM00, BTK02], and the references therein). Once the

clutter subspace is formed, the clutter component can be removed by projecting the observed
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RF signal onto the space orthogonal to the clutter subspace, as depicted in Figure 1.1, where
the clutter subspace is spanned by basis vectors u; and u;. However, the computational cost
of evaluating the required SVD, or alternatively the estimation of the correlation matrix of
the examined RF signal and the computation of its EVD is often prohibitive, limiting the
practical applicability of the eigenfilter in CFI. Therefore, there is a real need for the com-
putationally efficient implementation of this approach. In this thesis, we exploit the fact
that the clutter signal has a slowly time-varying nature both in the temporal and spatial
direction, enabling an efficient evaluation of the consecutive SVDs using a subspace track-
ing technique refining the sliding window adaptive SVD (SWASVD) algorithm proposed by
Badeau et al. [BRD04].

1.2 Thesis Outline and Contributions

This thesis consists of two parts, estimation using a single carrier or multiple carriers and
a focus ap[;lication: ultrasound. This section presents the outline and contributions of this

thesis.

1.2.1 Estimation Using a Single Carrier Or Multiple Carriers

This part of the thesis includes Chapter 2 and Chapter 3 which deal with general single
tone estimation as well as multiple-carrier based velocity estimation. As some of this part of
the thesis is associated with Part II, which mainly concerns with the application of medical
ultrasound, readers can also refer to Chapter 4 in Part II to obtain some fundamentals of

ultrasound.
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Chapter 2

This chapter discusses single frequency estimation, particularly with phase-based techniques.
The topic of computationally efficient frequency estimation of a single complex sinusoid cor-
rupted by additive white Gaussian noise has received significant attention over the last
decades due to the wide applicability of such estimators in a variety of fields (see, c.g.,
[RB74, Kay89, CKQ94, H95, KNC96, FJ99, QHO1, Fow02, Mac04, Kle05], and the references
therein). In this chapter, a computationally fast and statistically improved hybrid single
tone estimator is proposed. The proposed approach outperforms other recently proposed

methods, lowering the signal-to-noise ratio at which the Cramér-Rao lower bound is reached.

The work of this chapter has been published in part as:

e 7. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Hybrid Phase-based Sin-
gle Frequency Estimator, IEEE Signal Processing Letters, 12(9):657-660, Sept. 2005.

e 7. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Computationally Ef-
ficient Estimation of a Single Tone, In IEEE 13th Workshop on Statistical Signal
Processing, Bordeaux, France, July 2005.

e 7. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Statistically and Com-
putationally Efficient Frequency Estimation of a Single Tone, Tech. Rep. EE-2005-02,
Dept. of Electrical Engineering, Karlstad Univ., Karlstad, Sweden, February 2005.

Chapter 3

Typically, velocity estimators based on the estimation of the Doppler shift will suffer from a
limited unambiguous velocity range. In this chapter, three novel multiple-carrier based ve-

locity estimators extending the velocity range above the Nyquist velocity limit are proposed.



Section 1.2.  Thesis Outline and Contributions 7

Numerical simulations indicate that the proposed estimators offer improved estimation per-

formance as compared to other existing techniques.

The work of this chapter has been published in part as:

e Z. Zhang, A. Jakobsson, S. Nikolov, and J. A. Chambers. FEztending the Unam-
biguous Velocity Range Using Multiple Carrier Frequencies, IEE Electronics Letters,
41(22):1206-1208, Oct. 2005.

e Z. Zhang, A. Jakobsson, and J. A. Chambers, On Multicarrier-based Velocity Esti-
mation, Tech. Rep. EE-2005-04, Dept. of Electrical Engineering, Karlstad Univ.,
Karlstad, Sweden, May 2005.

1.2.2 Application: Ultrasound

Following the first part of the thesis, the second part consists of Chapter 4, Chapter 5 and
Chapter 6, which are mainly concerned with the application of ultrasound. The hybrid single
tone estimator and multiple-carrier based estimators proposed in Part I will be examined in
this part with realistic RF data simulated with the Field II toolbox. The details on how to
simulate RF data with the Field II toolbox can be found in [Jen01, Jen96b].

Chapter 4

Before examining the proposed methods in the context of ultrasound, it is preferable to
introduce some general theory of ultrasound. In this chapter, some basic theory of acoustics

and the fundamentals of medical ultrasound are introduced.
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Chapter 5

In colour flow imaging, efficient clutter rejection is a key preprocessing step prior to blood
velocity estimation. In this chapter, an efficient implementation of clutter eigenfilters using

a recent developed subspace tracking technique is introduced.

The work of this chapter has been published in part as:

e 7. Zhang, A. Jakobsson, J. A. Jensen, and J. A. Chambers, On the Efficient Imple-
mentation of Adaptive Clutter Filters for Ultrasound Color Flow Imaging, In Sixth
IMA International Conference on Mathematics in Signal Processing, pages 227-230,

Cirencester, UK, 2004.

Chapter 6

This chapter is concerned with blood velocity estimation using the hybrid single tone esti-

mator and the multiple-carrier based estimators proposed in Part I.

The work of this chapter has been published in part as:

e 7. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, On the Efficient Esti-
mation of Blood Velocities, In Proceedings of the 2005 IEEE Engineering in Medicine
and Biology 27th Annual Conference, Shanghai, China, Sept. 2005.

e 7. Zhang, A. Jakobsson, S. Nikolov, and J. A. Chambers, Novel Velocity Estimator
Using Multiple Frequency Carriers, In Medical Imaging 2004: Ultrasonic Imaging and
Signal Processing, volume 5373, pages 281-289, San Diego, USA, Feb. 2004.
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Chapter 7

This chapter will summarize the work involved in this thesis and will suggest some related

topics for future work.



Part 1

Estimation Using a Single Carrier Or

Multiple Carriers

10




Chapter 2

EFFICIENT ESTIMATION OF A
SINGLE TONE

The frequency estimation of a single tone corrupted by additive white Gaussian noise has
received significant attention over the last decades due to its wide applicability in signal
processing. In this chapter, a computationally fast and statistically improved hybrid single
tone estimator is proposed, which outperforms other recently proposed approaches. Nu-
merical simulations indicate that, in contrast to many other techniques, the performance
of the hybrid estimator is essentially independent of the underlying frequency component.
Furthermore, it has also been examined for how power damping and frequency spread affect

the performance of the estimator.

2.1 Introduction

Frequency estimation is a topic widely occurring in signal processing and can be roughly

classified into two main parameter estimation problems:

e Single tone estimation: where the signal is a single, constant-frequency sinusoid, cor-

rupted by some noise.

e Multi-carrier frequency estimation: where there are several carriers of harmonically

11
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related or unrelated frequencies present as in the multiple-carrier based estimators to

be discussed in Chapter 3.

In this chapter, discussion will be confined to single tone estimation. The problem of es-
timating the frequency of a sinusoid in noise has received much attention in the literature
as the problem arises in many areas of applied signal processing, such as biomedicine, com-
munications and radar [Edd93, Wai02, Jen96a). One often encounters a need to find a low
computational complexity estimate of the frequency component of data which are assumed to
consist of a single complex sinusoid corrupted by additive white Gaussian noise, and the topic
has, as a result, attracted significant interest over the last decades (see, e.g., [LRP73,RB74,
Tre85, Kay89, LM89, LW92, Cla92, CKQ94, H95, KNC96, FJ99, Qui00, Fow02, Mac04, K1e05),
and the references therein). The problem can be briefly stated as follows; consider the data
sequence

y(t) = B’ L n(t), (2.1.1)
where f € R, w and # € [—m, ) denote the deterministic but unknown amplitude, fre-
quency, and initial phase, respectively, of a complex sinusoid. Further, n(t) is circular zero
mean complex Gaussian white noise with variance o2. Then, given the sequence y(t), for
t=20,...,N —1, the problem is simply to estimate accurately w with the lowest possible
computational complexity. In [RB74], Rife and Boorstyn derived the maximum likelihood
(ML) estimator of w and proposed a statistically efficient approximate ML approach in-
volving both a combined coarse and fine search using the fast Fourier transform (FFT)
algorithm. However, zeropadding is often required to obtain sufficient resolution, requiring
O(N'log, N') operations, where N’ is the size of the desired frequency grid, with typically
N> N. Furthermore, an iterative linear prediction (ILP) approach requiring O(N log, N)
operations was suggested in [BW02] showing similar performance to that of the ML estima-
tor. A variety of phase-based methods requiring only O(/N) operations have been developed.

In [Tre85], for example, Tretter proposed a phase-based approach simplifying the problem
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to a linear regression on the phase. The method is based on a phase unwrapping algorithm,

requiring a very high signal-to-noise ratio (SNR) (SNR > 1), here defined as

,82

to work well. Later, Kay proposed a modified version of Tretter’s algorithm avoiding the use
of the phase unwrapping algorithm [Kay89]. The method, here termed Kay’s weighted phase
average (KWPA) estimator, was claimed to be unbiased and its variance attains the Cramér-
Rao lower bound (CRLB) for sufficiently high SNR (a higher threshold than the ML method).
Later, analysis showed that the KWPA method is in general biased, and the SNR for which
the CRLB is achieved depends on the underlying frequency [CKQ94,LW92,Qui00]. For much
of the frequency range, the KWPA method can not handle the circular nature (rotation) of
frequency correctly. As a result, the focus of recent contributions has mainly been aimed at
reducing the SNR threshold [KNC96], the frequency dependency of the threshold [Cla92], or
both [FFJ99, Mac04].

In this chapter, we propose a hybrid method combining the ideas in [KNC96, FJ99,
Mac04] to show performance close to that of ML or ILP, but only requiring O(NN) operations.
The hybrid estimate is based on an initial coarse estimate of the unknown frequency using
the unweighted linear prediction (UWLP) method [LRP73,Kay89]; this estimate is used
to remove the frequency dependence of the SNR threshold. This SNR threshold is then
further reduced via a combination of using an averaging filter, as suggested in [KNC96], and
an outlier removal scheme as proposed in [Mac04]. Finally, a refined frequency estimate is
formed along the lines proposed in [KNC96,FJ99]. In Section 2.2, several basic estimators
are discussed, including the ML estimator in Section 2.2.1, the UWLP in Section 2.2.2, the
KWPA in Section 2.2.3; then the proposed hybrid estimator is given in Section 2.2.4. Section

2.4 contains numerical examples, with a conclusion in Section 2.5.



Section 2.2. Single Tone Estimators 14

2.2 Single Tone Estimators

In this section, an overview of recent single frequency estimators is presented as well as the
proposed hybrid estimator. In this section, all the results have been obtained using 10°

Monte Carlo simulations.

2.2.1 Maximum Likeltihood Estimator

If the additive noise, n(t), in (2.1.1) is a zero mean white Gaussian process, the ML estimator
of the frequency w in (2.1.1) is the maximizer of the likelihood function (also called the joint

probability density function) of the sequence {y(¢)}, given as

Oumrp = argmax f(y; ), (2.2.1)
where @y g is the ML estimate, with the likelihood function defined as
1 1= 2
. _ _ t) — i(wt+0) 2.

where y = [y(0),---,y(N —1)]7, 02 = the noise variance and £ = [8,w,6]", with [
denoting the transpose operation. Maximizing (2.2.1) is equivalent to minimizing

N-1
uee = argmin Y (y(t) — Be+?)°, (2.2.3)

t=0
which can be seen to be the nonlinear least squares (NLS) estimation problem. It can readily
be shown that the NLS estimate of the frequency of a single sine wave buried in white noise
is given by the peak of the periodogram of the data sequence [SM05], i.e.,
Wpmre = argmax P(w), (2.24)
w
with
2
, (2.2.5)

z

P(w) = ~

— N y(t)e—‘iwt

t

il
=]
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where |z| denotes the modulus of the scalar z.

Rife & Boorstyn [RB74] proposed a numerical method similar to the ML estimator,
which involves a coarse and a fine search. The coarse estimate is obtained by choosing the
frequency having the greatest magnitude in the periodogram, as discussed above. A finer
estimate is obtained using a method such as the secant method. Generally, zeropadding is
required to obtain sufficient resolution when using the FFT, requiring O(N'log, N’) opera-
tions, where N’ is the size of the desired frequency grid, with typically N’ > N. Thus, the
estimator is not computationally efficient. However, it is statistically efficient with the low-
est SNR threshold among the variously proposed estimators, exhibiting estimation variance
identical to the corresponding CRLB given by [RB74]

6
N(VZ—1)SNE |

where @ denotes the estimated frequency and the CRLB, is the lowest variance which a

CRLB; = rad/sample)?, (2.2.6)

statistically unbiased estimator may exhibit for a given SNR and N. Over the last decades,
the ML estimator’s high computation cost has led to a search for alternative methods that

approach its statistical performance, but with less computation.

2.2.2 Unweighted Linear Predictor
As suggested in [Tre85], the data model in (2.1.1) can be written as
y(t) = [1 + v(t))Be" 9, (2.2.7)

where
v(t) = B in(t)e W0 (2.2.8)

is a complex white sequence. Let v,(t) and v;(t) denote the real and the imaginary parts of

v(t), respectively. Then, for high SNR,

1+ ’U(t) ~ eiarctanvi(t) ~ ez‘vi(t)’ (229)
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Figure 2.1. The MSE of the UWLP estimator as a function of the SNR, N = 24.

allowing the approximation

rs

where

W) = ut + 0+ Vi) (2.2.11)

Thus, the additive noise has been converted into an equivalent phase noise Vi(?) with variance
[Kay89] n
varMt))=& = _L _

Most of the recent phase-based approaches exploit this approximation, allowing the phase

to be approximately estimated from the difference of the adjacent phase values suggested by
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Kay [Kay89], i.e.,
Ad(t) B arg [y* (y(t + 1)] ~ w + vt + 1) — v (t), (2.2.13)

where (-)* denotes the complex conjugate, suggesting the so-called unweighted linear predic-

tor (UWLP) [LRP73, Kay89)]
1 N-2
e = arg | —— Sy . 2.2.14
& = arg N_lgy(t)y(ﬂr ) (2.2.14)

The UWLP method is also termed the autocorrelation estimator in ultrasound blood velocity
estimation [KNKO85], as discussed in the later chapters. It is straightforward to show that

the UWLP estimator is unbiased, but statistically inefficient with variance [Kay89, CKQ94]
1

’U(J;T'(L:JC) = m (2215)
giving the ratio
var(w, N
C’RLB)~ =% (2.2.16)

Figure 2.1 shows the mean square error (MSE) of the UWLP estimator as a function of SNR,
with different frequencies denoted by different plots therein. As is clear from the figure, the
UWLP method is statistically inefficient for all examined frequencies across the whole SNR
range, unable to reach the CRLB. However, given the fact that the UWLP is very simple
with very low computational cost, it can be adequate as a coarse estimator, as will be used

in our proposed hybrid estimator discussed later.

2.2.3 Kay's Weighted Phase Averager

Another basic computationally efficient estimator discussed here is Kay’s weighted phase
average (KWPA) method [Kay89]. Recall A¢(t) in (2.2.13), the KWPA method is expressed

as

z

-2

o~
1
o
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where Wxw pa denotes the KWPA estimate, and the parabolic window

o S+ DN = (t+1))
wit) = ——NmnroD

(2.2.18)

The approximation in (2.2.13) will hold for a very high SNR (SNR > 1) following the
approximation in (2.2.9) and (2.2.10). For this condition Wxwpa can be shown to be an
unbiased estimator following the derivation below

N-2

E{oxwra} = > w(t)E{A¢(1)}

= > wt)E{Ad(1)}

Q
(]
g

) E{w+v(t+1) —v(t)}

=w (2.2.19)

where the last equality follows from

w(t) = 1. (2.2.20)

-
Il
=}

Similarly, as in (2.2.19), the KWPA estimator, for high SNR, can be shown to have the

following variance [Kay89]

6
N(N2—1)SNR

var(Wxkwpa) = (2.2.21)

which is identical to the CRLB in (2.2.6). As discussed earlier, the KWPA method is
in general biased and (2.2.21) will only hold true for high SNR and very low frequency
range [CKQ94, LW92, Qui00].
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It has been shown that one of the drawbacks of the KWPA method is the unavoidable
wrapping errors when the phase w approaches —m/+m, making the SNR threshold dependent
on underlying frequency [FJ99]. This is because the cumulative errors from noise component
v;(t) will sometimes make the estimate lower than w and sometimes higher than w. If
A¢p(t) exceeds —m/ + 7, then it gets wrapped over the —7/ + 7 boundary and thus aliasing
occurs resulting in higher variance as shown in Figure 2.2. Another drawback of the KWPA
method is that its performance highly depends on SNR [Kay89]. When the SNR drops below
a certain threshold as shown in Figure 2.2, the performance of the KWPA method falls off
rapidly, exhibiting threshold behavior at a higher SNR which is also confirmed in Figure
2.2. Also, unlike the ML method, as the data length N increases, the SNR threshold of the
KWPA method slowly increases [LM89], which is illustrated in Figure 2.3. As Kay pointed
out [Kay89], the coefficients of the parabolic window are responsible for Wgwpa attaining
the CRLB. If we let

w(t) = —— (2.2.22)

then (2.2.17) becomes

Wywpa = N_1 Z A¢(t)

1

= Nv_1 [¢(N — 1) — ¢(0)]

:w+

1
(N —1) -y, 2.2:
7 (N = 1) =, (0)] (2223)
which is termed the unweighted phase average (UWPA) estimator and is unbiased, but again
becomes inefficient statistically as shown in Figure 2.4. This is because the UWPA estimator
in (2.2.23) discards useful information by allowing common information in adjacent terms

of the sum to cancel. This is the direct result of ignoring the colouring in the noise term

vi(t+ 1) — v;(¢) in (2.2.13).
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Figure 2.2. The MSE of the examined KWPA estimator as a function of the SNR, N = 24.

2.2.4 The Proposed Hybrid Estimator

Given the limitations of the KWPA estimator discussed above, various improved and ex-
tended methods have been proposed for reducing the SNR threshold and the frequency
dependency of the threshold (see, e.g., [KNC96, Cla92, FJ99, BWO02, Mac04], and the refer-
ences therein). In this section, the proposed hybrid method combines the ideas in [KNC96,
FJ99,Mac04] to obtain the performance close to that of ML or ILP, but only requiring 0 (N )
operations.

As suggested in [Cla92,BW02,Mac04], the UWLP estimate is used to form a downshifted
signal, yd(t), to remove the frequency dependence of the SNR threshold, i.e.,

(2.224)
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Figure 2.3. The MSE of the examined KWPA estimator as a function of the SNR, u —
0.75%r.

In [KNCO96], Kim et al proposed using a simple K-tap moving average filter to smooth
irregularities and random variations prior to the frequency estimation as a way to reduce
the SNR threshold. Such an averaging can be shown to lower the SNR threshold up to
10 loglOK dB. However, as such an averaging will severely restrict the allowed frequency
range down to (—Ir/K,ir/K\, the method in [KNC96] is limited to signals with frequencies
near zero. This is because the finite impulse response (FIR) averaging filter is essentially
a low pass filter. Herein, it is noted that the frequency content of the downshifted signal,

yd(t), will satisfy such a restriction, and it is therefore proposed to instead form an averaged
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Figure 2.4. The MSE of the examined UWPA estimator as a function of the SNR, N = 24.

signal as

1
» M -5f5 X * + %), (2.2.25)

Similar to (2.2.13), the adjacent phase difference of (2.2.25) can be formed as

A (1) = arg [y ()yf (t+ D] = uf + uc(t), (2.2.26)

where uc(t) is given by (2.A.9) for a general K (see Appendix 2.A for further details). It is

worth noting that the noise process uc(?) will now be coloured due to the average filtering.
As shown in [LM89], the SNR threshold behavior of the phase-based frequency esti-

mators is affected by cumulative +£27r phase errors resulting from the effect of the additive

noise. This effect can be countered by introducing an outlier detection scheme. Recently, an
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Step 1: Coarse estimate using "UWLP'

A

~ 1 & .

@, =arg[—zy (l)y(1+1)}
N-1 1=0

Step 2: Frequency downshift

\ /
y,(0)=y(t)e™

Step 3: Improve SNR using FIR

y

yf<z)=%zyd(r+k>

Step 4: Form the phase difference v

Ag, (1) =arg| y; 1)y, (t+1) ]

Step 5: Outlier removal

A, (1) —sign(p)2r
Ag, (1)

A, ()= {

Step 6: Fine estimate

4

N-K/K

B,= Y, 4,08, (K-m)

Step 7: Final frequency estimate {'
W, =0+,

Figure 2.5. Summary of the proposed hybrid estimator.
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effective scheme was proposed in [Mac04], where £27 outliers are detected if |G;] > |Btp|

and
18] > A (2.2.27)
with
P
b= Y Ads(t-p) (22.28)
p=—P,p#0

where By = A¢s(k) =0, for k € [-P,1] and k € [N — K, N — K + P —1]. Thus, the outliers

can be removed as follows

A¢ps(t) — sign(B;)2m  if outlier detected

(2.2.29)
Agys(t) otherwise

Agy(t) =
fort=0,...,N— K — 1. Here, X\ and P are user parameters, as discussed below. After the
SNR threshold reduction using (2.2.25) and (2.2.29), further improvement can be achieved by
taking into account the colouration of the noise term in (2.2.26). This can be achieved using
the suggested Four Channel Forward Backward (FCFB) method in [FJ99, Fow02], whereby

the frequency correction term, wy, can be found as

(N-K)/K K-1
Gp= Y qt)> Ags(tK —m), (2.2.30)
t=1 m=1
where
_ 6tK(N —tK)
q(t) = NI _NEZ (2.2.31)

with ¢ = 1,2,...,(N — K)/K. As mentioned in [Fow02], it is possible to develop a closed
form in (2.2.30) for any value of N, but they consider only the case when N is an integer
multiple of K because it leads to an efficient structure for the processing. Combined with

the coarse estimate, the hybrid frequency estimate is found as

G = e + Gy (2.2.32)
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It is worth noting that the FCFB applies a different set of weights than those used in the
KWPA approach.

In summary, the proposed hybrid estimator is found by first forming the downshifted
signal in (2.2.24) using the UWLP estimate in (2.2.14). Then, the phase difference of the
filtered signal is formed using (2.2.26), followed by the outlier removal scheme in (2.2.29).
Finally, the refined frequency estimate is formed as (2.2.32), using (2.2.30). The hybrid
estimator is summarized in Figure 2.5. It is worth stressing that the hybrid method differs
from previously suggested approaches in that it combines all the above steps; the FCFB
method does not include the outlier removal scheme in (2.2.29). Similarly, the method
proposed in [Mac04], hereafter termed the outlier removal estimator (ORE), does not include
the filtering in (2.2.25). In this chapter and Chapter 6, K = 6, P = 1 and A = 4 will be
used in the simulations for the hybrid estimator, which is based on the numerical analysis

of the estimator given in Section 2.4.

2.3 Other Issues

The estimators discussed in the previous section deal with one pure sinusoid corrupted by
noise as in (2.1.1), without taking into account power damping and frequency spread over
time. In this thesis, application to ultrasonics is a major focus and the sinusoidal-type signals
encountered typically have non-zero bandwidth making it interesting to examine how robust
the proposed estimator is to frequency spread and power damping, both of which are ways
to approximate the non-zero bandwidth of tones. In this section, discussion is given on how
the proposed hybrid estimator will be affected by these factors. All the corresponding results

displayed in this section have been obtained using 10* Monte Carlo simulations.
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Figure 2.6. The MSE of the Hybrid estimator as a function of SNR with varying damping
factor a, for N = 24 and u = 0.757r.

2.3.1 Power Damping

Similar to (2.1.1), the observations are modelled as
zd(t) = 0(ty< “t+V +n(t), (2.3.1)

whilst allowing for a decaying amplitude component
Piy) =(2.3.2)

where zd{t) denotes the observation sample for t = 0,..., N —1, and a the damping factor

assumed to be positive, with other definitions as in (2.1.1). To examine the impact on the
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performance of the estimator, the damping factor is allowed to vary as shown in Figure
2.6 where the MSE results are obtained with the hybrid estimator. As is clear from the
figure, the damping factor does seriously affect the performance of the estimator. More
performance degradation occurs as more damping exists. As the hybrid estimator and other
estimators discussed in Section 2.2 are based on the data model in (2.1.1), it is expected that
other estimators will also suffer similar performance degradation. It is worth noting that the
unknown damping could also be estimated by, e.g., using least-squares or forward-backward

linear prediction (see, e.g., [St093, VSH*00, KK01], and the references therein).

2.3.2 Frequency Spread

Another issue involved in the topic of frequency estimation is frequency spread, which implies
that the carrier frequency in (2.1.1) is not perfectly narrowband. As a result, (2.3.1) can be

further modified as

2as(t) = (1) Y e 4n(t), (2:33)

k=0
where z4,(t) denotes the observation sample taking into account damping factor denoted
by B(t) and frequency spread denoted by d;. Both factors are assumed to be positive. To
examine the impact on the performance of the hybrid estimator as an example, we assume
both damping factor and frequency spread existing in the data samples as in (2.3.3) and the
corresponding MSE results are shown in Figure 2.7. As is clear from the figure (clockwise
from the top left), the MSE of the estimator becomes larger when the damping factor, o,
increases; and the performance of the estimator will get worse as the damping factor rises
to some level, say o = 0.1 as shown in the sub-figure on the bottom left, no matter if the
frequency spread exists or not. On the other hand, for any examined power damping factor,
the MSE of the estimator will change when the frequency spread changes. It is interesting to

note from the figure that the MSEs corresponding to the frequency spreads denoted by d,;
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Figure 2.7. The MSE of the proposed hybrid estimator as a function of the SNR, with
varying 6 in each sub-figure, for u — 0.75n. Sn0 means no spread exists; Sni means spread
exists with Si = le-3; Sn2 means spread exists with = le-3 and S2 = le-2; Sn3 means

spread exists with = le-3, 52 = le-2 and 8= 0.1.
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and 6,2, respectively, are lower than the one without frequency spread (denoted by 6,9). The
rcason is not clear. As the current CRLB is derived based on the pure single sinusoid data
model in (2.1.1), one must bear in mind that the CRLB in (2.2.6) (represented by the dotted
line in Figure 2.7) can not be used to judge the estimator’s performance when damping
or frequency spread exists. This is because either of the factors will make the real data
deviate from the assumed pure sinusoid data model and the CRLB needs to be re-derived
based on a modified data model which closely matches the observed data. This will also
be discussed further in Chapter 5 when the hybrid estimator is applied to ultrasound radio
frequency (RF) data. Based on the results above, if the RF data have large frequency spread
or power damping, one should expect that, without further improvement of the estimator,

the estimator will not work very well.

2.4 Numerical Examples

In this section, the proposed estimator is first examined with synthetic data. Initially, it
is studied on how the performance of the hybrid estimator is affected by the length of the
averaging filter, K in (2.2.25), and the outlier removal threshold, X in (2.2.27). Figure 2.8
illustrates the estimated mean square error (MSE) of the hybrid method as compared to
the corresponding CRLB, given in (2.2.6), for varying K. Here, and below unless otherwise
stated, the signal consists of N = 24 data samples containing a single complex sinusoid with
frequency w = 0.75m. As can be seen from the figure, the estimator improves to a point
with increasing K, showing its best performance for K = 6, for all the examined values of
A. Here P =1 is chosen as in [Mac04]. Next, we examined the MSE of the hybrid estimator
for varying P. Figure 2.9 demonstrates the performance as compared to the corresponding
CRLB. The results imply that the hybrid estimator shows its best performance for P = 1.
Furthermore, Figure 2.10 shows the MSE for varying A, for K = 6 and P = 1. As can be
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Figure 2.8. The MSE of the proposed hybrid estimator as a function of the SNR, with

varying K , for u = 0.757r.
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Figure 2.9. The MSE of the proposed hybrid estimator as a function of the SNR, with

varying P, for tj = 0.757r.
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seen from the figure, the method achieves similar performance as soon as A> 3. Based on

these results, herecafter K = 6, P = 1 and A= 4 will be used.

K=6P=1

-30

-40
SNR (dB)

Figure 2.10. The MSE of the proposed hybrid estimator as a function of the SNR, with
varying A, for u = 0.757r.

Next, the proposed estimator will be examined and compared to other recently proposed
algorithms. Figure 2.11 illustrates the MSE for the proposed hybrid estimator, as compared
to the UWLP approach [LRP73], the FCFB approach following [FJ99], the ORE approach
[Mac04], the ILP approach using three iterations [BWO02] and the corresponding CRLB
as given in [RB74]. As is clear from the figure, the performance of the proposed hybrid
estimator is statistically improved, closely following the CRLB at a lower SNR threshold

(about 2 dB herein) than the other examined methods. It is noteworthy that the hybrid
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Figure 2.11. The MSE of the examined estimators as a function of the SNR.

estimator shows similar but slightly better performance than the ILP estimator (similar
conclusion holds in Figure 2.12 and Figure 2.13); however, the latter requires G(Nlog2N)
operations, whereas the former only requires 0{N) operations. The hybrid method also
uniformly yields a lower MSE than the other methods. It is worth noting that the hybrid
estimator suffers some performance degradation due to the introduced averaging in (2.2.25),
as pointed out in [KNC96]. This explains why the MSE of the proposed hybrid estimator
can not fully reach the CRLB as shown in Figure 2.11 and other figures.

As is well known, the performance of single frequency estimators is often affected by
the underlying frequency. Figures 2.12 and 2.13 illustrate how the MSE varies as a function

of the frequency of the sinusoid, cj, for SNR = 6 dB and SNR = 4 dB, respectively. As
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seen in the figures, the hybrid estimator is uniformly achieving a lower MSE than the other

approaches, and has performance essentially independent of the true frequency. Furthermore,

it is clear that the FCFB approach is significantly affected by the frequency, whereas the

ORE approach is showing a similar robustness as the hybrid approach, although with a

somewhat worse performance. Here, all the simulation results have been obtained using 103

Monte Carlo simulations.
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Figure 2.12. The MSE ofthe examined estimators as a function of the underlying frequency,

for SNR = 6 dB.
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Figure 2.13. The MSE ofthe examined estimators as a function of the underlying frequency,

for SNR = 4 dB.

2.5 Conclusion

In this chapter, an overview of some recently proposed single tone estimators was given first.
A low computational complexity hybrid phase-based single frequency estimator combin-
ing previously proposed SNR threshold reduction approaches with a recent outlier removal
scheme was then proposed. Also, the related issues such as power damping and frequency
spread were briefly discussed. Numerical simulations in Section 2.4 indicate that the pro-
posed hybrid estimator achieves a lower mean square error than other available techniques,
closely approaching the CRLB at a lower SNR threshold. Furthermore, in contrast to many

other techniques, the performance of the hybrid estimator is found to be essentially inde-
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pendent of the true frequency.
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Appendix

2.A Derivation of the Noise Process in (2.2.26)

In this appendix an expression for the noise process u.(t), given in (2.2.26), is derived for a

general K. Let wy = w — &, then, using (2.2.7), ys(t) can be expressed as

=

ys(t) = gefw% 1+ v(t + k)] erk, (2.A.1)
k=0
fort=0,...,N — K. Introduce
K-1
Wy & 57 ek -us/k (2.A.2)
k=0
and
K-1
OK(t) £ S u(t + k) kK -Der/K (2.A.3)
k=0
Then,
_ B iwpt+ib+ivs /K K
u(t) = e 2k + 2 (1)
_ Al KK ehorttiorior /K 1] 4+ U oK (1)] (2.A.4)

Thus, the argument of y;(¢) can be expressed as

arg [ys(t)] = arg[¥g] +wpt + 0 + wy/K
+arg [1+ U 0K (1)],

implying that the phase difference from adjacent samples, A¢y(t), can be expressed as

Ay (t) = wy + ug(t), (2.A.5)



Section 2.A. Derivation of the Noise Process in (2.2.26) 38

where, fort =0,..., N — K — 1,

uc(t) = arg [1 + U @ (t +1)]
—arg [1+ U X (1)] (2.A.6)

Then, using the approximation in (2.2.9), (2.A.6) can for high SNR be approximated as
uc(t) ~ Im (W5 [@X(t + 1) - ®X(1)]}, (2.A.7)

where Im {z} denotes the imaginary part of z. We note that, using a first-order Taylor

expansion,
K—1

(1)~ Y vt +k), (2.A.8)

k=0

as wy is small due to the downshifting, implying that
uc(t) = Im{U' [v(t + K) — v(t)]} . (2.A.9)

We note that for K = 2, (2.A.9) yields the expression given in [KNC96], i.e.,

u -~ Ul(t+2) —’U,L(t)
o(t) ~ 2 cos(wy/2)

(2.A.10)



Chapter 3

VELOCITY ESTIMATION USING
MULTIPLE CARRIERS

Velocity estimation of a moving reflector is an important topic in a wide variety of fields.
Typically, this is achieved by estimating the Doppler frequency shift, or equivalent, in the
measured signal. Due to aliasing, the resulting velocity estimate will suffer from a limited
unambiguous velocity range, which, depending on application, might limit the usability of
the estimator. In this chapter, three novel multiple-carrier based velocity estimators are
proposed designed such that the velocity range is extended above the Nyquist velocity limit.
Furthermore, the CRLB for the velocity estimation is derived to evaluate the performances
of the proposed methods. Extensive numerical simulations clearly indicate the extended un-

ambiguous velocity range and the performance gain as compared to other existing methods.

3.1 Introduction

Estimating the velocity of a moving reflector is an important topic in a wide variety of
fields such as, for example, blood flow dynamics, radar and sonar. Typically, the velocity is
determined by examining the Doppler frequency shift, or equivalent, in the measured signal

[Edd93, Wai02, Jen96a]. Such an approach will inherently offer only a limited unambiguous

39
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velocity range due to aliasing, which, depending on the application, might pose a restrictive
limitation. Herein, the discussion will mainly focus on the estimation of blood velocities
in ultrasound systems, where the unambiguous velocity range will limit the usability of the
system; but the developed techniques are general and can easily be applied to other fields.
The great majority of commercially available pulsed-wave (PW) medical ultrasound systems
use a narrow-band autocorrelation-based velocity estimation technique developed by Kasai
et al. [KNKO85|. This technique, hereafter termed Kasai’s autocorrelation technique (KAT),
which is also termed the UWLP estimator [LRP73,Kay89] as discussed in Chapter 2, is both
numerically robust and computationally simple [Wel94, AP03], but suffers from a limited
unambiguous velocity range. Also, as analyzed in Chapter 2, it is not statistically efficient.
The maximum detectable axial velocity using KAT, also called the Nyquist velocity limit
here denoted, vpnyq, can be expressed as

Clpr
UNyg = I;f, (3.1.1)

where ¢ denotes the speed of the wave propagation in the tissue, f. the carrier frequency,

and f,-; the pulse repetition frequency [Jen96a]. As the maximum depth into the body that

can be examined, dpqz, is determined as [Jen96a)

Cc

dma,z = 37 3.1.2
2fmf ( )

it is very difficult to estimate larger velocities in deep vessels, such as in the heart, where
the blood velocity can be as high as 10 m/s [BFMT93]. Due to the importance of such
estimations, numerous techniques to extend the unambiguous velocity range for ultrasound
systems have been proposed in the recent literature [BP86, Tor89, Jen93a, SDM93, Eva93,
Wel94, NRB+95, YK99]; with several of these applicable to other fields as well. In principle,
the aliasing effect is correctable as the aliasing can be distinguished from the true flow by

the absence of any indication of even the briefest period of zero flow [Wel94]. However,
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in practice, such an approach typically fails if there are flows in opposite directions simul-
tancously within the sample volume, as in turbulent flow and an eddy!. Another way to
overcome the aliasing problem is to use a wideband technique such as the cross-correlation
technique presented in [BP86]. Here, the maximum unambiguous velocity is determined by
the number of available time lags. However, the width of the blood vessel cross section,
the computing capability, or both, eventually limits the number of lags and the maximum
measurable velocity [YK99]. Furthermore, high velocities are difficult to obtain unless the
cross-correlation search is limited to the main lobe of the correlation function [Jen93a]. Nar-
rowband periodogram-based techniques have also attracted many investigations both in CFI
and spectral Doppler over the last decades. The temporal tracking FFT methods have been
investigated to detect when the velocity estimates cross the aliasing boundary, then the ve-
locity estimates are corrected accordingly [Tor89]. For CFI, the velocity changes between
two successive frames can be large, making temporal tracking impractical [YK99]. Instead,
spatial tracking along a scan line (i.e., across a vessel’s velocity profile) has been shown to
perform well, while it has limitations for laminar flow [SDM93]. If there exists turbulent flow,
the bidirectional flow and, as a result, the changeable sign of Doppler shift will mislead the
frequency correction mechanism which assumes the frequency rotation is due to frequency
beyond the Nyquist limit. Later, a conceptually novel system was proposed in [NRB195]
(hereafter termed NAT), where Nitzpon et al. proposed an integrated parallel PW system
with two different carrier frequencies (f; and f5) to extend the maximum detectable velocity

by a factor of
fi

fo=f’
This technique has been applied to both spectral Doppler and to CFI (the so-called Quasar

F =

(3.1.3)

technique [DGS92]). However, the achieved measurable Doppler signal bandwidth is less

'Eddy: in turbulent fluid motion, a blob of the fluid that has some definitive character and moves in

sotne way differently from the main flow.
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than f,,; and it will not be sufficient to analyze broadband turbulent flow [NRB*95]. In this
chapter, three multi-carrier estimation techniques are proposed, extending and refining the
idea in [NRB195] and exploiting the velocity dependence of the backscattered carriers, to
yield a subspace-based velocity estimator (SVE), a data adaptive velocity estimator (DAVE)
and an NLS estimator. A conventional method developed from an individual carrier will suf-
fer from aliasing and will hence have limited application range. However, as the frequency
of each backscattered carrier is determined by the velocity of the reflecting target, the fre-
quency separation between the reflected carriers will uniquely determine the blood velocity
without suffering aliasing, and therefore schemes based on multiple carriers potentially have
increased operational range.

The remainder of this chapter is organized as follows: in the next section, the signal
model is introduced and the SVE, the DAVE and the NLS methods are presented. In Sec-
tion 3.3, extensive numerical simulations clearly illustrate the performance of the proposed

estimators. Finally, Section 3.4 contains the conclusions.

3.2 Estimation Using Multiple Carriers

3.2.1 Signal Model

Consider a transmitted signal, consisting of d complex sinusoidal carriers, which is backscat-

tered from multiple moving reflectors. The received signal can then be well modelled as

y(t) = z(t) + w(?), (3.2.1)
with J
z(t) = Bre (3.2.2)
k=1
and

B = e’ (3.2.3)
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fort=0,...,N — 1, where S denotes the received complex amplitude of the kth sinusoid,
¢ the initial phase which can be well modelled as independent random variable uniformly
distributed on [—m, 7], and wi(v) is the frequency shift of the kth sinusoidal component due
to the (axial) velocity, v, of the reflecting scatterer. Furthermore, w(t) is additive white
Gaussian noise with w(t) ~ N(0,0?), which is due to reflections from other scatterers as well
as thermal and measurement noises. In the following, the frequency shifting function, wy(v),
is assumed known, whereas the received sinusoidal amplitudes, Gx, as well as the velocity
of the reflecting scatterer, v, are unknown. Depending on application, different frequency
distorting functions can be considered. The multiple carrier frequency-based estimators pro-
posed here are targetted at the application of blood velocity estimation, but it is noteworthy
that these estimators can be easily applied to related problems in radar and sonar. In the
estimation of blood velocities using ultrasound the angular frequency distorting function can

be written as [Jen96a]

i (v) = zwgfci%-, (3.2.4)

where f., is the kth carrier frequency in emission.
3.2.2 The Subspace-based Velocity Estimator
In this section, the proposed subspace-based velocity estimator is outlined. Let
A T
v = [y(t) ... yt+L-1)]
= AL(v)®,(t)B + wi(t), (3.2.5)

fort=0,...,M = N — L with L > d, where (-)” denotes the transpose operation, wy(t) is
defined similar to y(t), and

Ar() = [ ama() ... ag) ], (3.2.6)

T
ara(v) = [ 1 et . e | (3.2.7)
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with
eitwl(v) 0
B,(t) = - , (3.2.8)

0 ez’twd(v)

B = [51 5d]T. (3.2.9)

The length of the filters, L < N/2, is a user parameter affecting the resolution and variance
of the resulting estimator; a large L will yield high resolution estimates with high variance,
whereas a small L will yield low resolution estimates with low variance. As the subspace-
based velocity estimator proposed here is based on the fact that the eigen-structure of the
covariance matrix of the data contains complete information on the frequencies {wg(v)}

[SMO05], the data covariance matrix is formed as
R, £ E{y.(t)y." (1)} = AL(v)PAL (v) + 7L, (3.2.10)

where E {-} denotes statistical expectation, (-)7 the conjugate transpose (Hermitian) oper-

ation and I the L x L identity matrix. As B; = axe'¥*, P can be simplified as

P = EB{8,()88" 81 (1)} = diag { [ a? ... a3 ]}, (3.2.11)

where diag {x} denotes the diagonal matrix whose non-zero elements are the elements of the
vector x. The derivation of (3.2.11) is given in Appendix 3.A.
As R, is typically unknown, a consistent sample estimate R£ should be used in place

of R,. Such an estimate can be obtained as

R! = 7\12 S yu i), (3.2.12)

Furthermore, it is often preferable to use forward-backward averaging to eliminate sensitivity

to initial phase to obtain such an estimate [SMO05], forming the estimated correlation matrix
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as
R 1 /.. R
Ry =3 (R;’ + JR;:TJ) , (3.2.13)

where J is the L x L exchange matrix

0 1
J= . (3.2.14)
1 0
Note that Ry can be decomposed as
R, = UAUY, (3.2.15)

where U contains the eigenvectors and Aisa diagonal matrix with the corresponding eigen-
values nonincreasingly lying along the diagonal. As a result, the underlying velocity can be
obtained as

0 = arg rrbin |AE ()&% (3.2.16)
where || - | denotes the Frobenius norm and G the noise subspace of R, spanned by
the last L — d columns of U. The proof of (3.2.16) is given in Appendix 3.B. Thus, by
evaluating (3.2.16) for a range of velocities of interest, v € [Umin,Umaz), the velocity of
the reflecting scatterer can be estimated as the velocity minimizing ||Ap(v)? G||%, which
is termed the subspace-based velocity estimator (SVE). As the columns of Ay(v) and G
span the signal subspace and the noise subspace, implying A# (v)f} = 0 as in (3.B.6), thus
trace{A¥ (v)GGH AL (v)} can be seen as a good approximation of || A (v)G|[2. As a result,
alternatively, a good approximation of ¢ in (3.2.16) can be written as the location of the

peak of the following function

. 1
0 = arg max (3.2.17)

v trace{AH(W)GGHAL(v)}

where trace{X} denotes the trace of matrix X.
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Figure 3.1. The filter bank approach to velocity spectrum estimation.

3.2.3 The Data Adaptive Velocity Estimator

In this section, a non-parametric filterbank velocity estimator is formulated allowing the ad-
ditive noise process, w(?), to be modelled as an unknown zero mean colored noise process. By
constructing a set of L-tap data adaptive bandpass FIR filters, each centered at a particular
velocity v, one may estimate the so-called velocity spectrum, pl(v), creating a representa-
tion of how well a particular velocity is represented in the data set. Herein, a set of L-tap
data adaptive finite impulse response (FIR) filters is designed, hfdi;), for £k = 1,..., d each

centered at a given common velocity v designed such that

hf(*) = arg min h f (v)Ryh&(t;) subject to hf(v)AL(v) = uj (3.2.18)
hk(v)
for k=1,...,d
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where uy, is the signature vector with a one at position k, and zeros elsewhere, i.e.,

we=[0..010 .. o]T. (3.2.19)

Thus, the filter in (3.2.18) will suppress power from all frequencies resulting from the eval-
uated velocities, except the velocity constrained by h¥ (v)AL(v) = uf to be passed undis-
torted, as illustrated in Figure 3.1. The bandpass filter in this figure, which sweeps through
the velocity interval of interest, can be viewed as a bank of bandpass filters. As a result, the

total power of the filtered signal g(¢) at the filter output,

PA(v) 2 > hf (v)Ryhy(v) (3.2.20)

k=1
will mainly be from the d sinusoidal components resulting from the underlying velocity v. By
examining the velocity spectrum pg(v), then the peak of the spectrum will correspond to the
underlying velocity as illustrated in Figure 3.1. It is noteworthy that the filter minimizing
(3.2.18), is obtained as (please refer to Appendix 3.C for the proof; also see, e.g., [SM05])

-1

hi(v) = R;'AL(v) (AF (v)R;TAL(v) T uy (3.2.21)

Substituting (3.2.21) into (3.2.20), and using (3.2.13) to replace R,;, then we have

-1

d
P) =3 ul (A}f (U)R;lAL(v)) s, (3.2.22)
k=1
leading to the velocity estimation as
0 = arg max pa(v) (3.2.23)

which is termed as the data adaptive velocity estimator (DAVE). It is worth highlighting
that the inversion of matrix A¥(v)R;'AL(v) in (3.2.22) may be poorly conditioned for
some specific v due to the resulting closely spaced frequency components. To alleviate this

problem, a low rank approximation technique is employed as outlined in Appendix 3.D.
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3.2.4 The Nonlinear Least Squares Estimator

Next, (3.2.1) is written as

YN =X+ Wy, (3.2.24)
with
x=Ayxw)B = [z(0), - ,z(N — 1)]T , (3.2.25)
where
YN = [y(o) o y(N=1) ]T. (3.2.26)

Here, Ay (v) and wy are respectively defined similar to Ap(v) and yy. The NLS estimate

of v is obtained as
0 =argmin|| yy — An(v)8 [ (3.2.27)

Let f = |lyy — Axn(v)8|% and ¥(v) = AH(v)An(v), and note that f can be written
as [SMO05]

f=[8- ¥ AL @yN]" @) [6 - T AT YN +
YNYN — YN AN (V)T (0) AR (v)y N (3.2.28)
This yields the least-squares estimate of 3 as
B = (AL)AND) " AR @)Y, (3.2.29)
which inserted into (3.2.27) yields the minimization
0 = argmin | %, ) YN 1% (3.2.30)

with

>

I—1IIa, @)
= I- An(v) (AE(0)AN(v)) " AZ(v). (3.2.31)

iR
I3 v )
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Minimizing (3.2.27) for the general case of d unknown frequencies results in a d-dimensional
scarch. By noting that each frequency component will be distorted by a common known
frequency distorting function as given in (3.2.4), the minimization with respect to v can be

obtained by a simple one-dimensional search. Equivalently, one can estimate v as
. -1
0 = argmax [|An(v) (AN (1)An(v))  AR(@)YN |- (3.2.32)

Again, it reminds us that the inversion of matrix (A (v)A N(v))—1 in (3.2.31) may be poorly
conditioned for some specific v due to the resulting closely spaced frequency components.
To alleviate this problem, a low rank approximation technique is employed similar to the

one outlined in Appendix 3.D.

3.3 Numerical examples

To examine the performances and the abilities of extending the unambiguous velocity range,
the performance of the proposed estimators is examined in a simplified scenario. In the
following simulations, no clutter component is assumed in the simulated data and, as a
result, no clutter rejection operation is employed in the processing. Herein, a single reflecting
scatterer moving towards the transmitter with velocity v is assumed, and a carrier consisting
of d = 2 sinusoids with absolute frequencies, f; = 0.081 and f, = 0.1197, is considered. The
received signal is assumed to be corrupted by zero mean circular white Gaussian noise w(t).

Let the signal to noise ratio (SNR) be calculated as

g

%

SNR = 10log,, (3.3.1)

27

Q

with 02 = E{x"x} and o2 the variance of w(t).
Initially, the details of the velocity spectra of the proposed estimators with data samples
N = 20 are studied. The velocity spectra of the SVE, the DAVE and the NLS method are
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defined in (3.2.17), (3.2.23) and (3.2.32), respectively. Figure 3.2 shows the velocity spectra
of the proposed methods with varying SNR for true velocity v = 2vp,,. For very low SNR,
all the methods have difficulty in locating the true velocity as shown in Figure 3.2 (a), which
is not surprising. As the SNR increases, the side lobes of the spectra decrease and all the
proposed methods exhibit their ability to find the true velocity which corresponds to the
main peak in the corresponding plot in the figure. It is worth noting that, even for high
SNR, a comparable peak to the main peak in the spectrum occurs at location where v =
—2Unyq, likely resulting in some outliers in estimation. To further explore this, the proposed
estimators are examined for varying velocity with SNR = 10 dB. The corresponding velocity
spectra are shown in Figure 3.3. As can be seen, for velocity unequal to integer multiples of
the Nyquist velocity vny,, the spectrum of each proposed method only contains one distinct
peak which correctly locates the underlying true velocity, as for the cases in Figure 3.3 (b)
and (d) where the true velocity v = 1.5vn,, and v = 2.5upny,, respectively. On the other
hand, for velocity equal to integer multiples of vy,, as in Figure 3.3 (a) and (c), a similar
conclusion holds as in Figure 3.2 in terms of the second peak likely misleading the estimation.
Based on the finding above, in the later simulations, a third order median filter is employed
to suppress the possible outliers.

In the rest of this section, the proposed methods are examined statistically and their
performances are compared to the existing methods, NAT and KAT. Figure 3.4 shows the
mean square errors (MSE) of the proposed three estimators and the NAT method as a
function of SNR. To allow for the best possible performance of the NAT method, ideal (not
realizable) filters have been assumed to separate the carriers, f; and f,. If non-ideal filters are
used, the performance of the NAT method will be significantly worse. It is noteworthy that no
details of the used filters are given in [NRB*95]. In the figure, the performance is compared
to the corresponding CRLB derived in Appendix 3.E. Here, v = 2vyyq, vny = 0.385 m/s
and N = 20. It is clear from the figure that all the proposed methods exhibit low MSE
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Figure 3.2. The velocity spectra using the proposed methods, with underlying true velocity,
v = 2vNyg, obtained from (a) SNR = -5 dB; (b) SNR = 0 dB; (¢) SNR = 10 dB; (d)

SNR = 20 dB.
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Figure 3.4. The MSE ofthe discussed estimators, NAT, SVE, DAVE and NLS, as a function
of the SNR, compared to the CRLB.

very close to the CRLB. In contrast, the NAT approach is statistically inefficient leading to
the significant gap existing between its MSE and the CRLB. Moreover, as compared to the
other proposed methods, the NLS estimator shows slightly lower SNR threshold at which
the method exhibits MSE nearly matching the CRLB. Figure 3.5 illustrates the estimated
MSE as a function of the velocity ratio v/v*yq, at SNR = 10 dB. Here, to enable the
comparison, the KAT estimate is obtained from the backscattering of a single frequency
carrier at /3= 0.1. As seen from the figure, the KAT estimator suffers from the well-known
Nyquist velocity limit, beyond which it breaks down. The NAT shows similar performance

to that using KAT for velocities below VNyg. As is clear from the figure, the proposed SVE,
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Figure 3.5. The MSE of the discussed estimators, KAT, NAT, SVE, DAVE and NLS, as a

function of the velocity.

DAVE and NLS estimators uniformly exhibit lower MSE than the NAT over the whole
examined velocity range. Furthermore, the NLS method shows preferable performance as
compared to the proposed SVD and DAVE methods. The results shown in Figure 3.4 and

Figure 3.5 are obtained from 103 Monte Carlo simulations.

3.4 Conclusions

In this chapter, three novel velocity estimators using multiple frequency carriers have been
developed. Furthermore, the CRLB for the velocity estimation is derived to evaluate the

performance of the proposed methods. Analysis shows that these new estimators are able
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to mitigate the poor high velocity performance of conventional correlation based techniques
and thereby to provide usable performance beyond the conventional Nyquist velocity limit.
It is worth noting that the proposed estimators have high computational complexity. As
a result, further research is needed on how these methods can be implemented with lower

computational load. This is a topic of ongoing research.
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Appendix

3.A Derivation of (3.2.11)

Following [SM05], the derivation of (3.2.16) is given as follows. The initial phase terms {¢x}

arc modeled as independent random variables uniformly distributed on [—m, 7). Recalling

(3.2.11), P can be written as
P = B{®,(1)88"®! (1)}
= ®,(t)E{BB "}, (1).
Recalling 3 defined in (3.2.3), E{B8"} can be further simplified as
[E{ﬂﬁH}]k,, = akazE{ewke—m}
where [X], ; denotes the element of X at its k** row and I** column. For k =1,
E{e¥ke™™1} =1,
and for k # [, this becomes
E{c*¥re™1} = E{e*}E{e™%}
el e
= 0.
Thus,
B{BB"} = dig{| a2 ... o3 ]},
and as a result,
P — &,(1)E{387 )8! 1)
= B{pB"},

where ®,(t) is a diagonal matrix defined in (3.2.9).

(3.A.1)

(3.A.2)

(3.A.3)

(3.A.4)

(3.A.5)

(3.A.6)
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3.B Proof of (3.2.16)

Following [SMO05], the proof of (3.2.16) is given as follows. Recalling the covariance matrix

R, in (3.2.10), let \; > Ay > --- > A, denote the eigenvalues of R,, and let
S = [Sl;"' asd]Lxd (3B1)

in which the orthonormal eigenvectors {sx} associated with {A;,---,Aq} span the signal

subspace R(S), and the noise subspace N'(G) is spanned by the columns of

G = [gh te ’gL—d]Lx(L—d) (3B2)
in which the orthonormal eigenvectors {g;} are corresponding to {Ag+1, -, AL}, and it can
be shown that [SMO05]

Adp1 =+ = A = 0? (3.B.3)

when white noise w(t) is assumed in (3.2.1). From (3.2.10) and (3.B.3), it follows that

Ads1 0
R,G =G =0°G = AL (v)PA¥ (v)G + 0%G. (3.B.4)
0 AL
As a result,
AL (v)PAH()G =0 (3.B.5)

which further implies that
Af(v)G =0 (3.B.6)

as A (v)P has full column rank. Therefore, the true frequencies and thus the corresponding

underlying true velocity can be estimated by minimizing the following equation [SM05]

v = argmvin |AH (v)G2. (3.B.7)
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3.C  Proof of (3.2.21)

Following [SM05], the proof of (3.2.21) is given as follow. As R, is a Hermitian positive
matrix and matrix Ay (v) has full column rank equal to d, it can be proven that the unique

solution to the minimization problem
hy(v) = argllln(in) h (v)Ryhi(v) subj. to hy(v)AL(v) = uf (3.C.1)
(v

is given by
he(v) = R;'AL(v) (A¥(0)R; T AL(v)) T ws (3.C.2)

which satisfies
h(v)AL(v) = ul. (3.C.3)

Proof: Let hi(v) = he(v) + A where A € CE*! with A¥A(v) = 0 so that hy(v) also
satisfies hf (v)AL(v) = 0. Then

hf (v)R,hi(v) = h (v)R b (v) + hE (v)R,A + AR by (v) + ATR,A (3.C.4)
where the two middle terms are equal to each other
{(hf (v)R, A} = AHR h(v) (3.C.5)
as R} = R,. Recalling (3.C.2), it can be shown that
AFR By(v) = ATR,R;TAL(v) (A (0)R;IAL(v)
= ATAL(v) (AR ()R AL (v) ™
=0 (3.C.6)
where AP Ap(v) = 0. As a result, (3.C.4) can be rewritten as
b/ (v)Ryhy (v) — by (v)Ryhe(v) = AR, A > 0 (3.C.7)

where R, is positive definite. Therefore, it follows from (3.C.7) that the minimizing hy(v)

is identical to hf (v) given in (3.C.2).
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3.D Low Rank Approximation

To alleviate the rank deficiency problem in (3.2.22) in Section 3.2.3, a low rank approximation
technique is employed, noting that a least-squares solution can be found using the singular

value decomposition. Let
Q=UxVv# (3.D.1)

where X is a diagonal matrix containing the d singular values of Q on the diagonal, and
where U and V are unitary matrices. Further, let o, denote the /th singular value of Q, and
note that the solution minimizing ||Qry — ul|,, where || - |2 denotes the 2-norm and wy is

defined in (3.2.19), can be found as [GV96]
d

o= o7 UfwV, (3.D.2)
1=1

where U; and V; denote the Ith column of U and V, respectively, and where d is the rank of
Q, or alternatively the selected low-rank approximation of Q. Using (3.D.2), then (3.2.22)

can be expressed as

d
pa(v) =D ulty (3.D.3)
k=1
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3.E Cramér-Row Lower Bound

Recalling (3.2.24) and (3.2.25), the unknown parameter vector @ € R?¢*1 is defined as
6 = [R(B),9(8), o, (3E1)

where R[3] and (3] are the real and the imaginary parts of the complex amplitude 8 =
[B1,...,B4)T, respectively.
It holds that yn has the complex Gaussian PDF

1 HE-1
- 0) = ~(yn=p(6))" Cy (yn—n(8)) E2
p(yn; 6) T der G, N ; (3.E.2)

where Cy,, = 0?1 and det(-) the determinant operation, with

As a result, according to [Kay93], the Fisher information matrix (FIM) of @ can be written

as

FIM(0) = 2072R [wa”—(m (3.E.4)

06 96" } (@d41)x(2dt1)
Note that
optl(9)
OR(B)
8;1,H(9) _ ot (8)
00 93(B)
I C))
ov (2d+1)x N

(3.E.5)

and it can be shown that
ou™(6)
oOR(B)
ou () _
93(B)
ou' ()

5 A

= A (),

_ZA{V](U))
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where A = —i4% [(f © B")AH (v)] ©t, with © denoting the Schur-Hadamard (element-wise)

product, f7 = [f.,..., f.,]7 and tT = [0,..., N — 1]T. Similarly,

on(0) :< ou(6)  Ou(6)  0u(e) )
MR(PB)T  9¥(B)T v Nx(2d+1)

26T
with )
ou(@
=A
an(gy ~ A0
o) .
89(ﬂ)T ’LAN(’U))
op(6) H
o A
Thus, the FIM can be rewritten as
¥ (v) iw(v) AR@w)AH

U(v) —iAEw)AH

FIM(0) =207°R | —i®(v)
A2

AAN() iAAN(®D)

where ¥ (v) = AR (v)An(v) as in (3.2.28).
Thus, the CRLB for the velocity v can be obtained as

var(v) > [FIM—I(B)](2d+1),(2d+1)'

(3.E.6)

(3.E.7)

(3.E.8)
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Chapter 4

FUNDAMENTALS OF MEDICAL
ULTRASOUND

Ultrasound has found wide application in medicine and currently more than one fourth
of medical imaging is produced via ultrasonic systems [Wel94]. An example of a modern
portable ultrasound scanner is shown in Figure 4.1. Before examining the proposed meth-
ods with realistic ultrasound RF data, it is preferable to introduce some general theory of
ultrasound. In this chapter, some basic physics encountered in the use of ultrasonic tech-
niques will be discussed. First of all, wave propagation and wave interaction with human
tissue will be reviewed, followed by the issues of transducer, beamforming and resolution.
Then, the discussion will be focused on pulsed wave (PW) systems. More in-depth study
of the physics of ultrasound can be found in [Jen96a, EM00, Hil86, LSE*86,Mai78], and the

references therein.

4.1 Wave Propagation and Interaction

Waves can be classified into mechanical waves and non-mechanical waves, depending on
whether they need a medium for propagation or not. A mechanical wave needs a medium

to propagate while a non-mechanical wave does not, for example, ultrasound waves are
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Figure 4.1. SonoSite portable ultrasound scanner (model: SonoSite 180plus). The total

weight of this device is 2.6 kg. (Courtesy of SonoSite: www.sonosite.com).

mechanical since they need a medium (tissue) to propagate. Light is a non-mechanical wave
since it can propagate in vacuum. From the point of view of the wave propagation direction,
waves can also be defined as a longitudinal wave or transverse wave. If the vibration is
parallel to the direction of propagation then the wave is a longitudinal wave, on the other
hand if the vibration is perpendicular to the direction of propagation, then the wave is called
a transverse wave. Further, from the point of view of identifying a wave pressure at a specific
spatial point, waves can be regarded as scalar and vector waves, respectively. For a scalar
wave, only the distance from the source origin (say transducer) is needed to identify the
wave at each point in the medium, this is the case for a longitudinal wave. However, for a
vector wave, not only a value of distance but also one of direction is needed; this is the case
for a transverse wave. Ultrasonic waves are mechanical scalar waves [Hil86j. Other types of

waves such as transverse waves are rarely applied in medical ultrasonics due to the strong
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attenuation in soft tissue [EMO00]. The general sound wave equation in three-dimensions can

be expressed as [Mai78]

PPz, y,z,t) 4 (0%P(x,y,2,t)  O*P(z,y,2t)  PY(z,y,21t)
ot? - Or? + y? + 022 (4.1.1)

where ¥(z,v, 2,t) is the wave amplitude (acoustic pressure) at point (x,y, z) at time ¢. The

parameter c is the propagation speed in the medium, which depends on the medium, and is
given by

= (4.12)

VpK

where p is the mean density (kg/m?®) and K the compressibility (m?/N), assuming no net
transfer of energy from the wave to the medium. The speed values for soft tissue within the
human body are closely clustered around 1540 m/s, which for this reason is normally chosen
as the standard sound speed in medical ultrasound [EMO00]. It is virtually independent
of frequency of the transmitted sound and depends on the density and compressibility of
the medium as shown in (4.1.2). Furthermore, the sound speed, ¢, is equal to the carrier

frequency f. of the transmitted sound times the wavelength A stated mathematically as
c= fcA (4.1.3)

By definition, a sound having a carrier frequency above 20 kHz is called wltrasound. For
medical purposes, carrier frequencies between 2 — 10 MHz are used [EMO00], which corre-
sponds to the wavelength range of 0.77 — 0.154 mm (provided that the ultrasound velocity c
is 1540 m/s). As ultrasound waves propagate into tissue, due to the changes of the acoustic
properties of the media, they will encounter certain phenomena - scattering, reflection, re-

fraction and attenuation.

Scattering

Scattering occurs when a sound wave travelling through a medium encounters a discontinu-

ity of dimensions similar to or less than the wavelength of the wave. Some of the energy
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of the wave is scattered in all directions. This phenomenon will definitely exist in medical
ultrasound when investigating the blood flow in the human body and it enables the use of
ultrasound for estimating blood velocities. This is because the estimation of blood veloc-
ity will rely on the scattering of the wave as it interacts with the blood. In the human
body there exist many structures (cells, fibers, and connective tissues). which are much
smaller than the wavelength of the emitted ultrasound. The emitted wave will interact with
these numerous small structures, termed scatterers, during the propagation. Scattering from
objects which are less than 10 times smaller than the wavelength is usually referred to as
Rayleigh scattering [Jen96a]. The scattered strength is proportional to the fourth power of
frequency [EMO00]. The strength of a backscattered signal can be described either by the
backscattering coefficient or the backscattering cross-section [Jen96a]. The measurement of
backscattering cross-section is difficult to obtain in practice [EM00]. For different struc-
tures, the backscattering coefficients are different and so too is the backscattering strength.
Analysis shows the clutter is 20 - 60 dB stronger than the backscattered signals from the
blood scatterers [HvdVD*91, Jen93b, EM00]. Given the vast number of scattering ensem-
bles, it is often appropriate to characterize the scattered waves in statistical terms. As the
contributions from scatterers can be assumed independent, the central limit theorem states
that the amplitude distribution of the scattered waves follows a zero mean Gaussian distrib-
ution [WSSL83, Jen96a]. Also, the amplitudes follow a complex Gaussian distribution with
zero mean when the amplitudes are complex. It is worth noting that the backscattered signal
is deterministic; the same signal will result as if a stationary structure is probed. However,
for a slight movement in position, the successively received echoes are not equal, although
still correlated. This correlation makes it possible to estimate blood velocities with ultra-
sound. As there is a strong correlation for small movements, it is possible to detect shifts in

position by correlating the successive measurements of the moving blood ensembles.
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Incident wave Reflected wave

Medium A

Medium B

Refracted wave

Figure 4.2. Reflection and refraction of a sound wave.

Reflection

Reflection is a special case of scattering which occurs at smooth surfaces on which the
irregularities are very much smaller than a wavelength. As a wavefront encounters a smooth
surface with an incident angle 0% it will be reflected at an equal angle as shown in Figure

4.2. The amplitude of the reflected wave can be calculated by [EMOO]

( p2QCOs0;i - piCiCOs 6t | (
a*\p:GceosQi + p\CicosOt)

where ar and a* are the reflected amplitude and the incident amplitude, respectively; 0% and
9t denote the wave incident angle and the angle of refraction, respectively, as shown in Figure
4.2; further, pi and p2 denote the density of medium A and medium B, respectively; and C
and c2 are the corresponding speeds in these media. The amplitude of the reflected waves will
be much stronger than that from scattering since the energy in the latter case is scattered

in all directions. In diagnostic ultrasound, a combination of reflections and backscattered
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cchoes is picked up by the receiver.

Refraction

The term refraction describes the deviation of a sound beam when it crosses a boundary
between two media in which the speeds of sound are different. The resultant angle of prop-
agation is determined by Snell’s Law:

%z: - Z—; (4.1.5)
The phenomenon of refraction existing in the human body makes medical ultrasound capable
to map the boundaries like vessel walls, diaphragm and some other organ boundaries [Jen96a,

EMO00,Sch01]. Together with scattering and reflection, these effects make colour flow imaging

possible.

Attenuation

Ultrasound propagation in tissue will be attenuated due to scattering and absorption, which
is referred to as attenuation. Scattering will spread part of the energy in all directions
while absorption will convert the acoustic energy into thermal energy due to viscous loss,
heat conduction and the molecular exchanges of energy. The majority of the lost acoustic
energy comes from absorption which can be up to 95% [Jen96a]. The attenuation is strongly
dependent on frequency. Higher frequency will result in larger attenuation, which means
that the backscattered echoes from deep-lying interfaces will be too weak to be detected
and limits the effective probed depth. Thus there is a trade-off between the penetration
depth, resolution and level of transmitted power. Attenuation limits the typical ultrasound
system to depths of 10 — 30 cm when frequencies between 2 — 10 MHz are employed. Higher
frequencies, such as 50 MHz, are limited to a 1-cm depth, but they offer the advantage of

improved resolution, which could be useful for applications related to the eye, skin, and
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(a) (b)

Figure 4.3. (a) A linear array transducer used to scan a medium, (b) The steering process

in a phased linear array transducer.

intravascular imaging [LTCF96].

4.2 Transducer, Beamforming and Resolution

Transducer

An ultrasonic transmitter-receiver, termed transducer, is the part of an ultrasound system
that generates an ultrasonic beam and detects backscattered echoes. These are made from
materials that contain piezoelectric (PZT) crystals. A PZT crystal will vibrate when excited
by an alternating current (AC) electric signal of the right frequency (transmit mode). Con-
versely, it can generate a small electric signal when forced to vibrate (receive mode). A trans-
ducer is used to convert electronic signals to ultrasound waves and vice versa [Jen96a,EMO00].
Typically, there are two kinds of transducers used in an ultrasound system, single element

transducers and array transducers. For a single element transducer, it must be steered me-
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chanically over the region of interest (ROI) whereas array transducers can steer the beam
electronically. For this reason, an array transducer is usually used in blood flow imaging in
modern ultrasound systems, and thus no moving parts are required to sweep the ultrasound

beam direction, as shown in Figure 4.3.

T
Focal point 4 Adder
(scatter#)
Array elements Delay lines Apodization coefficients

Figure 4.4. Beamforming for reception in a phased array transducer, reproduced from

Beamforming

For a phased array transducer, the transmitted and received signals can also be individually
delayed in time, hence the term phased array. Through time delays a beam can be steered in
a given direction and focused at a given axial distance both in transmit and receive, this is
called beamforming. A detailed description of beamforming for reception in a phased array
transducer is shown in Figure 4.4. Using simple geometric relations a transducer can be

focused at any point [NikOlI].
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Figure 4.5. Comparison of a short pulse and a long pulse (top), together with their spectra

(bottom), the true normalized carrier frequency is 0.1.

Resolution

The ability to distinguish echoes from adjacent reflectors in tissue is termed resolution, which
is determined both by how close the reflectors are positioned to each other and the ability
of the system’s beamforming. Resolution comprises two features, axial resolution and lateral
resolution. Axial resolution is the ability of a system to separate structures lying closely
along wave propagation direction. It is determined by the length of the ultrasound pulse
generated by the transducer. A long pulse will interact with a range of scatterers which move
with different velocities, the recorded RF data will therefore contain a range of velocities
due to the velocity spread. As a result, the averaged estimate of velocity will have a higher

variance for an increasing velocity spread. Figure 4.5 shows the difference for a short pulse
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echo (reflection from scatterer) with oscillation number N, = 2 and a long pulse echo with
N, = 10. As the figure shows, a long pulse results in a narrowband spectrum and a short
pulse gives a wideband frequency spectrum. Hence, a good axial resolution can be achieved
by firing short bursts; to achieve better axial resolution, only one cycle instead of several
cycles should be used. In practice, the number of oscillation of a pulse is restricted by the
bandlimited character of a transducer, the lowest number being around 2. Typically, from
6 to 32 wavelengths are chosen to achieve the desired resolution [Jen96a, EMO00]. Lateral
resolution is the ability of a system to separate structures in a plane perpendicular to the
beam direction, which depends on the focusing of the ultrasound beam produced by the
transducer. The narrower the beam, the higher the lateral resolution, since a narrow beam
enables small objects to become distinguishable. All systems should be designed to produce
narrow beams, since this is usually the major limitation on lateral resolution. Also, a beam
with uniform intensity is preferred. In practice, a nonuniform intense beam exists in the near
field and a uniform beam is present in the far field (area of diverging beam in which lateral
resolution is poor). It is possible to smooth the near field intensity pattern so as to yield
a narrow beam with almost uniform intensity. Thus, a broadband pulse will produce many
frequencies rather than just a single frequency. The presence of multiple frequencies tends to
make the near field more uniform. Each frequency has an independent interference pattern,
and when these patterns are superimposed on one another, the result is a smoothing of the
overall intensity pattern. This reasoning also motivates the use of multi-frequency carriers

in the transmission.

4.3 Pulsed Wave System

With respect to blood flow velocity estimation, two kinds of modes can be distinguished,

continuous wave (CW) mode and pulsed wave (PW) mode as shown in Figure 4.6. In CW



Section 4.3. Pulsed Wave System 73

Blood Vessel Ultrasound
sbeam

(b)

Figure 4.6. (a) Continuous wave (CW) system, Tx is the transmitter and R xis the receiver,
they use separated transducers; (b) Pulsed wave (PW) system, 7x and Rx use the same

transducer.

mode, ultrasound is transmitted and received continuously by means of two transducers.
The continuous signal is obtained from the sample volume where the transmitted beam
overlaps the sensitivity region of the receiving transducer. With a continuous wave system,
reflections will be obtained from all the blood motion along the beam, i.e., it is not possible
to know the range from which the measurement was obtained if the two transducers are
close to each other [Jen96a]. Instead, in the PW mode, short bursts of ultrasound are
emitted with a given pulse repetition frequency. Between transmissions, the transducer
is switched to reception mode to catch signals backscattered from blood as well as the
surrounding tissue. The position of insonified regions can be localized since as the depth
of the region of interest increases, the time before receiving the echo lengthens. Another
advantage of a PW system over a CW system is that it only needs one transducer for

both transmission and receiving, as shown in Figure 4.6 (b). Therefore, the transducer will
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Figure 4.7. Block diagram of a PW ultrasound measurement system, reproduced from

[Jen96a]. The wall filter in the figure is termed clutter filter in this thesis.

need to be switched between an emitting state and a receiving state, which makes diagnosis
more convenient. For these reasons, PW mode is widely employed in CFI and herein the
discussion will be confined to the PW system. Figure 4.7 briefly illustrates the block diagram
of a typical PW ultrasound measurement system for CFI. The transducer emits a pulse and
then switches to reception mode and acquires echoes from scatters before firing the next
RF line (transmission). After amplifying and digitalizing the echo, the signal is represented
in a complex form by a quadrature demodulation [Jen96a|, normally performed via Hilbert
transform as later illustrated in (4.3.3). Figure 4.8 depicts the scan-mode acquisition for
CFI (left) and an RF data matrix is given (right) with dimension M x rN, where M is the
number of depth samples along the fast time (depth-wise) direction and r the number of
line of sight (LOS). In each LOS, N ultrasound pulses are emitted, and slow-time samples
can be defined as the N samples of signals resulting from a fixed depth with pulse repetition
frequency f,s. Each LOS corresponds to one specific Doppler angle and it is assumed that
the flow characteristic changes very small for very limited time duration within each LOS.
After firing N pulses in one direction, the pulse beam will sweep to the next LOS and another
set of N pulses will be fired with a new Doppler angle. Typically, r is between 50 — 100, N
around 4 — 20, and the imaging across the field of view may be around 15 cm [Jen96a, EMO00].
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Transducer Slow time
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Figure 4.8. Diagram of a CFI measurement system (left) with output of a 2-D RF data
matrix (right), reproduced from [KHTIO3].

A sensitive technique for velocity estimation must be used since only a few echoes can enter
the estimator in order to have a high frame rate. Using more echoes (slow time data samples)
for the estimate leads to better estimate accuracy but at the cost of higher computational
load which in return results in slower frame rate in CFI. As a result, a compromise between
frame rate (estimation time) and accuracy must be found, making both clutter rejection and
blood velocity estimation more challenging.

Figure 4.9 illustrates the basic principle of velocity estimation in each LOS, in which
a simplified situation is assumed that a single scatterer moves away from the transducer
with a velocity of v. Initially, the depth of a scatterer is d0 and the echo is recorded by

the transducer at time instance 10 = 2d(0/c from the pulse transmission. Between every two
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o Slow time

Tx/Rx

Line Number

Figure 4.9. Basic principle of the velocity estimation in PW ultrasonic system.

emissions the scatterer moves a distance 4d along the ultrasound beam, which is proportional
to the projected velocity along beam/axial direction, v. The time-shift ¢s in the arrival time

of the signal from pulse-to-pulse is given by

f.=— = — Tpr/ (4.3.1)
c c

where Tprf = [/fprf is the pulse repetition period. These shifted signals are illustrated in
Figure 4.9. In order to estimate the velocity at a given depth, a new signal is generated
as marked by the horizontal line. The new signal, which is shown on the right-hand side
of Figure 4.9, has a sampling frequency of fprf. The signal from a single scatterer and a

narrow-band emitted pulse is approximated as [Jen96a]
2v
x{n) « a(n)cos27t— fenTprf —<p (4.3.2)
c

where a{n) istheenvelope amplitude, fc the carrier frequency, n the nth RF line and ¥ a

phase accounting for thepropagation time from the transducer to thedepth of interest and
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back. The spectrum of the new signal is a replica of the emitted spectrum with the frequency
axis scaled by 2v/c [Jen96a]. Thus the frequency of the received signal is proportional to
the blood velocity. Taking real valued signals for the estimation process yields symmetric
Doppler power spectra from which it is not possible to get information about flow direction.
Normally, an ideal blood velocity profile or CFI should cover both flow strength as well as
flow directional information. To estimate the directional information, complex valued data
are needed. These can be obtained by computing the discrete-time analytical signal of the

measured signal in (4.3.2) [Mar99],
zo(n) = z(n) + jH{z(n)} = a(n)e’®™ < feTrms=¥) (4.3.3)

where z,(n) denotes the corresponding analytical signal of z(n), and H{-} the Hilbert trans-
form operation. Alternatively, the complex data can be generated using Quadrature demod-
ulation [Jen96a].

Since the time between subsequent emitted pulses is determined by the depth of the
point of interest, the f, ¢ is determined by the depth of that point: emission of the next
burst is only allowed if the returned signal of the previous burst has been received, otherwise
aliasing in depth will occur. The largest depth d,,,q, into the body that can be investigated is
a function of ¢ and f,f, defined in (3.1.2). When the Doppler frequency shift exceeds a limit
defined by the Nyquist theorem (which equals f,,r/2), distortion of the signal takes place
whereby the signal wraps itself up and appears to artificially change direction. Similarly,
velocities higher than those related to Nyquist limit reappear as other, incorrect, velocities
on the display. This phenomenon is known as velocity aliasing. The peak velocity that can
be correctly resolved by the PW system is limited by the f,,; and therefore by the depth of
the point of interest, the greater depth, the lower the f,.s. As discussed in Chapter 3, for
the autocorrelation estimator (also termed KAT or UWLP methods as in Chapter 2), there

cxists a relationship between the maximum detectable axial velocity vy in (3.1.1) and the
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maximum observable depth in (3.1.2),
2

= 4.3.4
/Umaz Sdmazfc ( 3 )

4.4 Conclusion

This chapter presents a short overview of the theoretical background of ultrasound wave
propagation and wave interaction with human tissues. After explaining the basic principles
of transducer, beamforming and resolution, then, the discussion is focused on pulsed wave

systems which are widely employed in CFI.



Chapter 5

EFFICIENT IMPLEMENTATION OF
CLUTTER EIGENFILTERS

In this chapter, one of the classical challenges involved in CFI will be discussed, namely
clutter rejection. First of all, a brief introduction about clutter and clutter rejection is given,
followed by the literature review of existing clutter filters. Then, an efficient implementation
of the recently developed eigenfilters using a fast subspace tracking technique is introduced,
without degrading the performance as compared to employing conventional block EVD/SVD

based eigenfilters.

5.1 Clutter Rejection

In ultrasound Doppler blood flow measurements, the backscattered signals from the moving
blood scatterers are corrupted by interference signals, termed clutter, originating from the
stationary or slowly-moving tissue such as vessel walls, and from stationary reverberations.
{Jen96a, EM00, EFPF97,Sch01]. The measured ultrasonic signal resulting from the n** pulse
at depth k, denoted r(k,n), can thus be well modelled as consisting of three statistically
independent components [BTKO02], i.e.,

z(k,n) = c(k,n) + b(k,n) + w(k,n), (6.1.1)

79



Section 5.1. Clutter Rejection 80

. Filter frequency response
Filter frequency response

Clutter Clutter
Blood Blood
Frequency shift
(@) (b)

Figure 5.1. The frequency spectra of clutter, blood and noise contained in demodulated
complex RF data, assuming the Doppler shift is positive for motion towards probe. The
dotted line represents an ideal high-pass filter, (a) with stationary tissue; (b) with slow-

moving tissue.

where c¢(k, n), b(k,n) and w(k, n) denote the clutter, the blood and the additive noise compo-
nents, respectively. Typically, the clutter signals are 20 - 60 dB stronger than the backscat-
tered signals from the blood scatters [HvdVD”Ol, Jen93b, EM00]. On the other hand, the
echoes scattered from rapidly moving blood cells have larger frequency shifts than the echoes
scattered from slowly moving tissue. Figure 5.1 depicts the frequency spectra of the three
components with or without moving tissue. For clutter which originates from the stationary
tissue, shown in Figure 5.1 (a), the clutter component will remain identical in each RF line

within each LOS. As a result, the stationary clutter signals can be filtered out by using a
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simple difference filter (also called stationary echo cancelling) [Jen93b], i.c.,
yr(n) = a"x(n) (5.1.2)

where a = [ 1 -1 ]T and xx(n) = [ z(k,n) z(k,n—1) ]T. However, the clutter com-
ponent will not be strictly identical in each RF line due to tissue motion induced by the
pulsating vessels. This leads to spectra overlap between blood and clutter in a common fre-
quency band as shown in Figure 5.1 (b). This situation occurs quite commonly in blood flow
measurement, especially in strain-flow imaging which is a new technique for investigating the
vascular dynamics and tumor biology [KHTI03]. As in tumor imaging, the blood and clutter
echoes often share the same frequency bands under low flow velocity conditions, making the
separation of blood and clutter very challenging. The adverse influence of clutter can be
reduced by minimizing the size of the echo sample volume, but even if the entire sample
volume is inside a blood vessel, the unavoidable clutter from reverberations and transducer
side lobes will affect the signal [KHTIO03]. Furthermore, blood velocities are commonly esti-
mated by using the autocorrelation method [KNKO85]. To obtain unbiased blood velocity
cstimates, the clutter signals need to be attenuated down to the thermal noise level and
an cfficient clutter filter must be applied before the estimation. Since clutter filters operate
along the slow time axis, only 4 — 20 echo samples are available for high pass filtering to
maintain acceptable frame rate [EMO00].

Thus, an ideal clutter filter should exhibit the following properties:
¢ Narrow transition band;
e Being adaptive to non-stationary clutter;
e Not reducing the limited available data samples;

e Not removing blood component.
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Figure 5.2. Classification of clutter filters.

The above facts and requirements make the design of an efficient clutter filter very challeng-
ing and as a result the problem has received significant attention over the last decades. In
general, these filters can be classified into static clutter filters [HvdVD*91, Jen93b, PAB%4,
TH94, KL95] and adaptive clutter filters [BHR95, LBH97, Tor97, BT'97, BTK02, KHTI03,
KF02, YMKO03, Kad02, GT02, GNT03, TWF*04], As summarized in Figure 5.2, the static

clutter filters mainly comprise FIR, infinite impulse response (IIR) and polynomial regres-
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sion filters; and the adaptive clutter filters mainly include independent component analysis
(ICA)-based filters, eigenvector regression filters (ERF), which sometimes are also termed
principal component analysis (PCA)-based filters [GT02, GNT03], as well as a down-mixing
method [BTKO02]. Of these methods, the static polynomial regression filters, the ERF filters
and the ICA-based filters are also classified as regression filters, which will be discussed later.
The PCA and ICA are two common methods of the blind source separation (BSS) family.
More details about BSS can be found in ( [Car98,Sto02], and the references therein).

Static clutter filters

As discussed above, various static clutter filters, such as FIR, IIR and polynomial regression
filters, have been proposed to suppress the clutter from the backscattered signals (e.g.,
sce [HHR91,PAB94,KL95,BTK02], and the references therein). To get a narrower transition
band, both the FIR and IIR filters require higher order, which will further reduce the valid
echo samples by a factor of the order of the filters. Moreover, the FIR filters need a higher
order than the IIR filters to achieve an equivalent narrow transition band [OSB99]. It is
worth noting that the most commonly used estimator in CFI, the autocorrelation estimator,
will suffer higher variance when fewer valid data samples are used and the variance of it is
inversely proportional to the number of valid outputs of the employed filter, as implied in
(2.2.15) (the autocorrelation estimator is also termed UWLP in Chapter 2). Furthermore,
the conventional FIR or IIR high pass filters will undiscriminatingly remove low frequency
components. The obvious drawback is that the filters also filter out the signal from the low
velocity (low Doppler shift) blood flow near vessel walls which is a region of great interest
for detecting flow anomalies leading to atheroma formation [TMLIO04].

Later, in [HvdVD*91,KL95], Hoeks and Kadi et al. developed regression filters different
from FIR or IIR filters being based on the assumption that signals are a superposition

of sinusoids. Regression filters operate on the assumption that the slowly varying clutter
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component in the Doppler signal can be approximated by a polynomial of a given order, which
in turn can be determined by performing least-squares regression analysis. The resulting
filters are thus termed polynomial regression filters. Once approximated, this component
can then be subtracted from the Doppler signal so that the contribution from blood-flow can
be retrieved and analyzed. But this filter is still static, being independent of the input data
sequence as shown in the following derivation. Mathematically, at depth k&, the filtered data

sample can be written as

P
c(k,n) = Zapn”
p=0

yk(n) = z(k,n) —c(k,n), n=12,--- N (5.1.3)

where ¢(k,n) is the approximated clutter component, {a,} the set of regression model coef-
ficients, P the regression order and N the number of data samples. Fitting a polynomial of
degree P to a set of data points {z(k,n)}, n = 1,2,--- , N involves finding a set of coeffi-
cients a,, p=0,1,---, P, such that the sum of the squared differences between the actual
data and the model

N P 2

€ = Z (m(lc,n) - Z apnp) (5.1.4)
n=1 p=0

is minimized, which is equivalent to

Oe?

8G,i - O

62 2

8;2 0, i=0,--,P, (5.1.5)

leading to the following set of linear equations

N

> (x(k,n) - Za,,n”) nt=0, i=0,---,P (5.1.6)

n=1
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which can be rearranged as

P N N
ZZn nPa, = Znix(k,n). (5.1.7)
p=0 n=1 n=1

Furthermore, by introducing the matrix and vector notations

° 1t ... 1F ag z(k,t)
20 2l ... 2P a z(k,t+1)

r= o , , a=| . Xp = . (5.1.8)
N® N' ... NP ap z(k,t+ N —1)

at discrete time ¢, (5.1.7) can be rewritten as
(I'T)a=TI"x (5.1.9)

or
a= (I7T) "' ITx,. (5.1.10)

For given N and P, substituting (5.1.10) into (5.1.3) will make yx(n) available. As can be
seen, the polynomial regression filters do not shorten the length of valid data sequences, and
are in this sense different from FIR or IIR filters. In [KL95], Kadi et al. further confirmed
in their work that regression filters could offer significantly better performance than step-
initialized IIR filters under heavy clutter conditions. It should be noted the evaluation of
the matrix (I‘Tl")—1 I'T is computationally demanding. However, it is totally independent
of the input sequence x; and its elements are only determined by P and N. Because the
clutter characteristics in RF signal vary, also due to the nonstationary tissue motions from
cardiac activities and/or respiration and the transducer/patient movement [TH94], a static

filter cannot remove the clutter effectively.
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Figure 5.3. Down-mixing methods, where ¢.(k, n) is the estimated clutter frequency.

Adaptive clutter filters

In contrast to static clutter filters discussed above, the filtering operation depends on the
characteristics of the clutter signal, and the resulting filters are termed adaptive clutter filters.
The down-mixing methods, the ERF and the PCA/ICA methods are thus designed to filter
the clutter adaptively.

The down-mixing methods were developed to shift adaptively clutter to be centered
around zero frequency after estimating the clutter frequency at each location before apply-
ing a high pass filter [TH94, BHR95|, as depicted in Figure 5.3. The down-mixing methods
can suppress the clutter well when the clutter is of a) relatively high amplitude; b) narrow
bandwidth and c¢) low mean frequency [BHR95]. However, this method cannot provide suffi-
cient clutter rejection when several tissue velocities exist in the backscattered signals, owing
to acceleration or deceleration of tissues. To compensate for this, a down-mixing method
with varying phase increments computed from a clutter correlation matrix was recently pro-

posed [BTK(2], showing an improved performance in dealing with accelerated tissue motion.
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However, its performance highly depends on how reliably the clutter correlation matrix can
be estimated. It should also be noted that the computational complexity is particularly high.
In [LBH97], Ledoux et al. proposed a clutter rejection filter for multiline Doppler
modalities based on the SVD. This method was further developed using a stochastic signal
model [BT97, BTKO02], termed eigenvector regression filter, in which the orthonormal basis
functions for the regression filter are computed with the SVD or the discrete Karhunen-
Loéve transform (DKLT)! corresponding to the clutter statistics. In the case of uniform
tissue motion induced by probe movement over an entire region of interest (ROI), Bjaerum et
al. [BTKO02] successfully demonstrated that the ERF outperformed the polynomial regression
filter. Later, Kruse et al. [KF02] extended the ERF to deal with high blood-to-clutter ratios
(BCR) by training the correlation matrix based on signal correlation. Recently, the ERF
was also applied for strain-flow imaging [KHTI03, TMLIO4]. Theoretically, the ERF can
provide maximum clutter suppression with a given filter order because of its best mean-
square approximation of the clutter. Clearly, it can still potentially remove the flow signal
close to the clutter velocity. Furthermore, the application of ERF in a practical system is
currently limited because of its high computational complexity [LBH97, BT97, BTK02].
Recently, two BSS-based approaches to the problem of adaptive clutter filtering were
proposed, the PCA and the ICA techniques [Kad02, GT02, GNT03, TWF*04]. As pointed
out earlier, the PCA method is essentially identical to the ERF in the sense that both
methods are based on the decomposition of a second-order ensemble data vector as the sum
of its projections onto the principal axis of its covariance matrix. Basically, the ERF/PCA

methods decompose the input data sequence into a set of orthogonal basis functions. Because

1This transform is also commonly referred to as principal component analysis (PCA) or the Hotelling-
transform. Hotelling was the first to derive the transformation of discrete variables into uncorrelated co-
cfficients. He referred to it as the method of principal components. The analogous transformation for

transforming continuous data was discovered by Karhunen and Loéve [GW02]
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orthogonality indicates that the basis functions are uncorrelated but does not imply that they
are statistically independent unless the functions are also Gaussian or otherwise distributed
random variables for which the third and higher order moments are zero [Chi97]. If an
orthogonal decomposition is performed, the resulting basis functions may be orthogonal but
not mutually independent. As a result, multiple independent source signals may project
onto the same orthogonal basis vector, leading to incomplete source signal separation that
makes clutter filtering via projection operations difficult. The ICA method is different from
the ERF/PCA in the sense that it assumes that source signals are not only uncorrelated
but also mutually independent [Car98, Sto02]. The ICA basis functions are extracted by
maximizing the entropy in the joint probability density functions (PDF) of the basis vectors.
If a set of signals has a maximum entropy PDF, it is implied that the signals are mutually
independent. Of the existing ICA algorithms, the Jade algorithm [Car98] is perhaps the
most common one. The method first determines the input data ensemble’s DKLT. The
decomposition is then whitened, meaning that each basis function is magnitude normalized.
The eigenpairs of the fourth order cumulants of the whitened basis functions are calculated,
and the eigenpairs are diagonalized with a unitary matrix. Finally, the matrix that separates
the independent source signals from the data ensemble is determined from the whitened and
unitary matrices. However, it should be noted that in a comparison study of the PCA and
ICA methods, Gallippi et al. [GT02] showed that the first-order PCA method outperformed
the ICA method. This could happen if the clutter and blood components are not independent
with each other, then the ICA may find it difficult to separate the signals and the PCA may
turn out to be a better choice. As a result, it is really difficult to choose between the ICA
and the PCA methods for a given scenario.

In view of the literature review above, there obviously exists more work to be done to
obtain a better understanding of an optimal solution for clutter rejection. As the review

shows, currently, the ERF/PCA and possibly the ICA methods seem more promising than
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other discussed methods for clutter rejection. In terms of the implementation of these meth-
ods, the conventional evaluation of block SVD involved in the ERF/PCA, and the first stage
of ICA, is computationally complex, and renders real-time CFI impractical. As a result,
next, efforts will be focused on the efficient evaluation of the SVD in association with the

implementation of the ERF.

5.1.1 Eigenvector Regression Filter

Recalling (5.1.1), the (2K + 1) x N matrix X centered at depth k is introduced, formed as

H
Xk:[xk_K xm{] , (5.1.11)

with

X = [m(k,t) woo z(k,t+ N —=1) ]H , (5.1.12)

where (-) denotes conjugate transpose (Hermitian), and N the number of available temporal
slow-time samples at discrete time ¢. Define the N x N correlation matrix of the measured

signal assumed wide-sense stationary, for the k** depth, as
Ry = E{xixi'} , (5.1.13)

where E{-} denotes statistical expectation. As the correlation matrix is typically unknown
and only limited samples are available, an estimate of the correlation matrix can be formed
using the reflected signal from +K depths offset from the k** depth,

k+K

s 1
Re=7 ) xx{, (5.1.14)

I=k—K
where L = 2K + 1 denotes the number of depths considered, with typically L > N. Fur-

thermore, Ry can be decomposed as

R; = U, AU | (5.1.15)
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where A is a diagonal matrix, containing the eigenvalues, A,, for n = 0,--- ,N — 1, non-
increasingly lying along the diagonal, and Uy is a unitary matrix formed from the corre-
sponding N eigenvectors. As the eigenvectors corresponding to the r largest eigenvalues
can be viewed as spanning the clutter subspace, the eigenfilters optimally attenuating the
influence of the clutter can be formed as the projection onto the space orthogonal to the one
spanned by the clutter eigenvectors (see, e.g., [LBH97, BTK02, KHTI03, KF02, YMKO03}), as
illustrated in Figure 1.1. Let

A = [uo e w ] (5.1.16)

where

w; = [u;(0), -, u; (N —1)]" (5.1.17)

denotes the eigenvector corresponding to the i** eigenvalue. Alternatively, A, can also be
obtained by evaluating the SVD of X. Then, the linear eigenfiltering operation is defined
by ’

M, =1-AA7, (5.1.18)

where I denotes the identity matrix with proper dimension, and the filtered signal is formed
as

yi =TIz %, . (5.1.19)

The frequency response of the linear filtering operation in (5.1.19) becomes [Tor97]

N-1 2

Z u;(n)e™ 7™

n=0

r—1

HAk(w)zl__]t?Z

=0

(5.1.20)

A typical example of the resulting filters is illustrated in Figure 5.4, where C N R denotes the
clutter to noise ratio and feuser the simulated frequency of the dominant clutter component.
As is clear from the figure, the ERF shows steeper cut-off slopes as compared to the FIR

filters. Furthermore, the longer the data vector length, N, the steeper the transition band.
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[
é,
B

(a) (b)

Figure 5.4. Frequency responses with variable parameters: (a) A first-order ERF with

variable ensemble data length A, /cutter = 0, CNR = 40 dB; (b) ERF with variable order.

fclutter = [o 0.05], N = 16, CNR = 40 dB.

In Figure 5.4 (b), we simulate clutter with frequencies fdutter = [0 0.05]. As we can see, a
first-order ERF will only remove the clutter with zero frequency, while a second-order ERF
can provide satisfactory suppression for the clutter presented at both frequency locations.
It is worth noting that the choice of L in (5.1.14) reflects the size of the stationary data
segment and should be selected as the range of depths over which the statistical properties
of the clutter signal can be assumed to be approximately constant [BTKO02]. If the statistics
change as a function of spatial coordinates, the filter obtained from an LOS with varying
statistics will not provide sufficient performance. As the clutter statistics vary over depth
in many physiological cases, the correlation matrix should be properly formed to model
the signal statistics within a stationary data segment. An illustration of this fact is shown
in Figure 5.5. Typically, the size of the stationary data segmentdepends on factors such

as the pulse bandwidth, sampling frequency, SNR,as well as the region sizeof flow and
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Segment 1
Segment 2

Segment P

Figure 5.5. Cross section of a blood vessel buried in tissue. Each data segment should be

selected with constant statistical properties of the clutter signal.

clutter. However, computing the sample correlation matrix and the corresponding EVD,
or alternatively computing the SVD of stationary data segment X f¢, is often computationally
prohibited in clinical diagnosis. To alleviate this problem, we proceed to introduce an efficient
subspace tracking technique as an efficient way to form the eigenfilters.

Subspace tracking algorithms play an important role for many subspace-based high-
resolution methods, and the literature on the topic is substantial (see, e.g., [CG90,Yan95,
Str97,BRD04,MH98] and the references therein). Typically, subspace algorithms are applied

to temporally slow-varying signals, formed into time-dependent data blocks

[ xt v x* L+ T, (5.1.21)
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where x; is a column vector. These algorithms exploit the fact that typically only a few dom-
inant singular vectors, say 2-4, are needed to span the noise or signal subspace. Similarly, we
exploit the fact that the clutter signal has a slowly time-varying nature both in the temporal
and spatial domain. Thus, the clutter statistics between two consecutive depth positions will
not change significantly, thereby enabling an efficient evaluation of the consecutive SVDs us-
ing a subspace tracking technique. Herein, we propose to recursively track the 7. < %N
dominant eigenvectors, where 7. is an upper bound on the size of the clutter filter, and
then only using the r < r,.x most dominant eigenvectors to construct the projection matrix
in (5.1.18). Then, given the filtered signal in (5.1.19), the blood velocity for each depth of
interest is generally estimated using a correlation-based method [Jen96a]. It is worth noting
that the choice of r, the number of clutter eigenvectors actually used, is both difficult and
critical. If selected as r = ry + 1, where g is the optimal choice, the filter will suppress a
large part of the blood signal. However, if r = rg — 1, a strong clutter component will remain
in the data, severely distorting the resulting velocity estimate. Additionally, to take the
spatially varying clutter statistics into account, the choice of r should typically be allowed
to vary over depth; we note that the proposed technique allows for such local variations as

long as only r < ry.x eigenvectors are required.

5.1.2 An Efficient Clutter Filter Implementation via Subspace Tracking

Given the SVD factorization
X =V, ZU? | (5.1.22)
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where Vi € CEXN and Uy, € CV*N are unitary matrices and ¥ € RV*V is a non-negative

diagonal matrix,
do
¥y = . (5.1.23)

On-1
with o> 6;> ---> dy_1> 0. Thus, the 7 dominant singular vales are {dg, 61, ,0,-1}, and
the associated » dominant left singular vectors and the » dominant right singular vectors are
the r first columns of the matrix V;, and the 7 first columns of the matrix Uy, respectively.
As discussed in the previous section, to enable the use of locally computed eigenfilters, the
SVD of stationary data segment X; needs to be evaluated for a number of depths. Each such
evaluation using the SVD? requires 4LN? + 8 N® operations [GV96], preventing the method
from currently being practically applicable. To avoid the full computation of the SVD, one
can use the classical sequential bi-iteration SVD algorithm, as summarized in Table 5.1, to
track recursively the dominant clutter subspace [Str97]. As the clutter component will vary
slowly over depth, one can view the data matrix X, in (5.1.11) centered at depth k as a
depthwise update from X,_, at depth k — 1, allowing the SVD of X, to be approximated
and updated just by replacing the iteration depth index k as shown in Table 5.1. Here, I, _,,
denotes an 7,45 X Tmer identity matrix. This algorithm generates two auxiliary matrices
Qua(k) € CN*rma= and Qp(k) € CEXmmes, It has been shown that the columns of Q,4(k)
and Qg(k) will converge to the 7,,,, dominant right and left singular vectors, respectively.
Furthermore, both R4 (k) and Rpg(k) will converge to a diagonal matrix containing the rp,q
largest singular values. Therefore, the r first columns of Q4 (k) can be used to approximate
Ay in (5.1.16). As we discussed previously, the choice of r is important and critical, and

is in itself an interesting topic. A detailed description of the sequential bi-iteration SVD

“Computing the correlation matrix estimate in (5.1.14) together with the EVD requires approximately

the same number of operations.
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Table 5.1. Sequential bi-iteration SVD algorithm

| P
Initialize: Q4(0) =
0
For each depth step Do:
First iteration: Complexity
B = Xk Qalk — 1) matrix product SN L7 nax
B, = Qp(k)Rp(k) skinny QR factorization — 19Lr,,4.°

Second iteration:

A, = Xﬁ’ Qs(k) matrix product SN L1

A, = Qak)R4(k) skinny QR factorization — 19N7,,,,2

algorithm can be found in [Str97]. This method is very robust, but the main drawback is the
high complexity with the dominant cost of 16 N Lr,,,., where 7,4, < %N & L in practice.
Fortunately, this algorithm has been further developed (see, e.g., [CG90, Yan95, Str97,
BRD04, MH98] and the references therein). Recently, Badeau et al. [BRDO04] derived a fast
tracking approach termed the sliding window adaptive SVD (SWASVD) algorithm which
showed excellent performance in the context of frequency estimation, having computational
complexity with dominant cost of 23(L + N)r2,,, which is less than 16 NLr,,,,. A num-
ber of other, yet more efficient methods, also exist, having complexity O(N7,q;) (see,
e.g., [BRD04]). However, the choice of method should be done with some care depending
on the acceptable level of accuracy and error propagation. Herein, the SWASVD method

is revised and will be applied to the clutter subspace tracking problem. As pointed out
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previously, the clutter subspace tracking problem arises in a spatial domain, different from
conventional subspace tracking which is normally applied in a temporal domain. As a result,
this method is accordingly revised to fit the spatial subspace tracking problem, the resulting
method is termed the R-SWASVD algorithm. It is noteworthy that the R-SWASVD is es-
sentially identical to the SWASVD algorithm [BRD04], except the opposite way of updating
the RF data matrix in (5.1.24) at each depth step in the spatial domain resulting in the dif-
ference between the derivations of the R-SWASVD algorithm and the SWASVD algorithm.
The derivation of the R-SWASVD algorithm is presented next. More details including the
complete derivation of the SWASVD algorithm can be found in {BRDO04].

Consider the compressed data vector, given the depthwise update structure of the data
matrix X defined in (5.1.11) and the vector x; at depth k defined in (5.1.12), and notice
that

............ Qak—1)=| .coivee | Qu(k=1) (5.1.24)

............ = , (5.1.25)

where the symbol x denotes uninteresting elements, and

hk+K = Qi{(k’ — 1) Xk+K - (5126)
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Next, use the low-rank approximation of X as

= (Qs(k)Q5 (k) X
= Qs(k)Q5 (k)Qs(k)A™ (k)
Qs (k)A" (k)
= Qp(k)RY(k)QJ (k) (5.1.27)

which corresponds to the projection of the columns of X onto the subspace spanned by the

columns of Qp(k). As a result,
Xi-1Qa(k — 1) = Qp(k - )RE (k- 1) . (5.1.28)

Then, use X4_; to replace X;_; in (5.1.25) yields

X Qa(k — DRA (k- 1)
............ ~ ) (5.1.29)
By hlﬂk’
Similarly, notice that
0---0 0 0
[Xk s XH] ............ - [XkH—l Xk+K] ............ . (5.1.30)
Qs(k) Qs(k)

the left hand side of which is identical to Ay according to the definition in Table 5.1. Thus,
(5.1.30) becomes

A = [XkH_l L ek ] ............ , (5.1.31)
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Moreover, multiply Q (k — 1) on both sides of (5.1.31) leading to

Rp (k) = [ Hk—1)XH | hyx ] ............ , (5.1.32)

where, according to the sequential bi-iteration SVD algorithm, summarized in Table 5.1,
RE (k) satisfies
RE (k) = BE(k)Qa(k)
= Qi (k- 1)X{Qs(k)
= Q(k-1A,. (5.1.33)

Then, define vector

Xirx = Xkrx — Qalk — 1)QH (k — Dxpix

= Xg4+K — QA(]C - 1)hk+K N (5]34)

which is orthogonal to the subspace spanned by the columns of Q4(k — 1), thus x;, x can

be seen as the sum of two orthogonal vectors
Xk+K = QA(/C — 1)hk+K + X,’i’_‘_K . (5135)
Replacing Xj_; with X;_; in (5.1.31) and (5.1.32), respectively, yields

Ra(k —1)QE(k~1) | heyg

Akﬁ’[QA(k—l) : le€+1<] ............
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Table 5.2. Revised Sliding Window Adaptive SVD algorithm (R-SWASVD)

Inax I'I'm.ua:
[nitialize: Qa(0) = | .. Q) =1 .. [ Ra(0)=1L.,,, :
0 0
For each depth step Do:
First iteration: Complexity
hk+K - Q/I:l{(k)xk-%]\' 8]\/'7‘",(,@
X X ij(k ''''' - 1)R{{(k‘ - 1)
............ ~ 4erax'z
By hly+k
Bk = QB("‘)RBU‘) 19L/"ma:1:2
Second iteration:
XJJ{*_[( = Xk+K QA(k - l)hk~1\' 8N Tmaz
A = Qalk — DRE(k) + xit, palfy (k + K) ANT nos?
Ak = Q4<k)R4 (k) 19-*"’\;'7"771(&.11:2
and
0---0
RE (k) ~ [ Ra(k—1)QE(k—1) | hgx ] ------------ : (5.1.37)
Qs(k)

Let gqp;(k + K) be the column vector obtained by conjugate transposing the last row of
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Qsz(k), thus (5.1.36) and (5.1.37) finally yield

RE (k)
Ay = [QA(k—l) : th] ............
qgl(k + K)
= Qa(k — DRE (k) + Xy g (k + K) (5.1.38)
which can be factorized as
A; = Qa(k)Ral(k) . (5.1.39)

As discussed in [BRDO04], the exact computation of Ay and By, requires 16N L1, Operations
as shown in Table 5.1, whereas the approximated matrices (5.1.29) and (5.1.38) can be
computed in 4L7,,,,2 and 4N7,,,.% operations. Therefore, introducing these approximations
in the sequential bi-iteration SVD algorithm leads to the lower complexity algorithm herein

termed revised SWASVD (R-SWASVD) as compared to the SWASVD proposed in [BRD04],

summarized in Table 5.2.

5.1.3 Simulation Results

In this section, the computational gain and the performance of the R-SWASVD algorithm
are examined. Figures 5.6 and 5.7 illustrate the computational gain of using the R-SWASVD
algorithm to track the r = r,,,, = 2 most dominant eigenvectors of ﬁk as compared to the
use of an ordinary block based SVD algorithm and the sequential bi-iteration SVD algorithm,
respectively. As is clear from the figures, the computational gain of using the R-SWASVD
algorithm is significant, especially as compared to the block SVD method. Furthermore, the
gain of using the R-SWASVD algorithm will strongly depend on the number of pulses used
in each data vector, NV, as well as the size of the block used to form the sample correlation
matrix, L. To verify the clutter subspace tracking performance of the R-SWASVD algorithm

in a realistic situation, RF data are generated to simulate the flow in the carotid artery,



Section 5.1. Clutter Rejection 101

N=20
«
0
fl
101 121 141 161 181

Block size, L

Figure 5.6. The computational gain of using the R-SWASVD algorithm as compared to
the ordinary block-based SVD algorithm.

taking into account the tissue motion due to the breathing and pulsation, by using the Field
Il program3 [Jen96b], with the main parameters outlined in Appendix 5.A. The upper plot
in Figure 5.8 shows one of the examined RF lines, where the vertical dashed lines represent
vessel walls and vessel centre. As is clear from the figure, the dominant peaks on both sides
ofthe plot depict the strong clutter effects due to tissue motion. In this investigation, a set of
N = 20 successive RF lines with L = 80 (equal to the pulse length) are used, which implies
the computational gain as compared to the block-based SVD algorithm is a factor of 20, as
seen in Figure 5.6. The lower part of Figure 5.8 shows the estimated velocity profiles, using

the autocorrelation estimator [KNKO085], for the second-order clutter filters obtained from a

3Data available at: http://www.oersted.dtu.dk/31655/7ultrasound_data/sim_car_wall.htnil
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Figure 5.7. The computational gain of using the R-SWASVD algorithm as compared to

the sequential bi-iteration SVD algorithm.

block-based SVD and the R-SWASVD algorithm. As seen from the figure, the R-SWASVD
algorithm closely tracks the block-based SVD. It is worth noting that the center of the profile
is not accurately estimated. This is likely an effect of the fixed order clutter filter; in the
center of the vessel, » should typically be lower than at the vessel walls. Such variations
can easily be accommodated for with the suggested approach, although further research is
needed on how the filter order should be selected appropriately. This is a challenging topic

for future research.
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Figure 5.8. Estimated velocity profile with clutter filtering using the block-based SVD
method and the R-SWASVD algorithm. The dotted curve represents the true parabolic

velocity profile.

5.2 Conclusion

The clutter rejection problem is stated in this chapter, followed by the literature review of
existing clutter filters which are classified into static clutter filters and adaptive clutter filters.
The analysis of existing filters implies that the ERF/PCA and ICA methods are likely to be
promising. In terms of the implementation of these methods, the conventional evaluation of
block SVD involved in ERF/PCA, and the first stage of ICA, is computationally complex,
and renders real-time CFI impractical. As a result, the rest of the chapter is focused on

how to implement efficiently the ERF. Then, an efficient approach to form recursively the
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clutter filters using a recent recursive subspace tracking technique is introduced. As discussed
in Section 5.1.2, given an L x N data matrix X with r,,,, dominant singular values, the
introduced R-SWASVD method significantly reduces the required computational cost down
to dominant cost of 23(L + N)rZ,,., in contrast to 4LN? + 8N* using block SVD. The R-
SWASVD method is successfully examined with realistic carotid flow which is simulated with
the Field II toolbox.
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Appendix

5.A Parameters for Simulating Blood Flow for Clutter Rejection

Transducer convex, elevation focused array probe with 58 elerents
Centre (single carrier) frequency, f. | 3.75 MHz

Sampling frequency, f, 15 MHz

Pulse repetition frequency, f,f 3.5 kHz

Sound speed (¢) 1540 m/s

Pulse oscillation (M) 8

Doppler angle (DOA) 45°

RF lines (N) 20

Center of vessel 32 mm from transducer surface

Vessel radius 4 mm




Chapter 6

EXAMINING PROPOSED
ESTIMATORS WITH REALISTIC DATA

In this chapter, the proposed hybrid estimator discussed in Chapter 2 and the multiple-
carrier based DAVE and NLS estimators proposed in Chapter 3 are applied to blood velocity
estimation. All the simulations in this chapter are performed using realistic ultrasound RF

data simulated with the Field II toolbox [Jen96b].

6.1 Blood Velocity Estimation with Single Carrier

6.1.1 Examined with the Hybrid Estimator

To examine the performance of the hybrid estimator proposed in Chapter 2, initially, a single
fibre-like flow which comprises 1000 blood particles lying along the vessel center and moving
towards the transducer along the beam direction (pure axial velocity) with constant velocity
v = 0.5 X vnyq is simulated. The details of the parameters for simulating the RF data are
listed in Appendix 6.A. Figure 6.1 shows the MSE of the examined estimators as a function
of the SNR at the transmission focus which is 35 mm away from the transducer surface.
As is seen from the figure, the hybrid estimator uniformly exhibits better performance than

the autocorrelation estimator (termed Auto in the figure) over the whole range of examined

106
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Figure 6.1. The MSE of the examined estimators as a function of the SNR, for v =
0.5 x vygi with fibre RF data.

SNRs. Furthermore, a case with simulated laminar blood flow (consisting of 3 X 105 scatters)

with parabolic profile is considered, i.e.,
v{r) = (1 - r2)v0, (6.1.1)

where r G [0, ]j is the relative radius, and v0 the peak velocity at the vessel center, Jo =
0.8 x VNygq, with the same parameters given in Appendix 6.A. Figure 6.2 shows the MSE of
the examined estimators as a function of the SNR at the depth where the examined velocity
v = 0.5 x VNyg. As seen in the figure, the hybrid estimator shows preferable performance
also for this case. As the data generation is somewhat time-consuming, the simulations for

both the fibre and parabolic flow is limited to only 100 Monte Carlo simulations.
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Figure 6.2. The MSE of the examined estimators as a function of the SNR, for v =

0.5 x vyg: with parabolic flow RF data.

Finally, to verify the performance of the hybrid estimator in a somewhat more realistic
situation, RF data simulating the flow in the carotid artery are examined, with the para-
meters used identical to those outlined in Appendix 5.A, except that N = 18 successive
RF lines are used herein (recall that the hybrid estimator considers only the case when N
is an integer multiple of K [Fow02], see also Section 2.2.4.). The upper plot in Figure 6.3
shows one of the RF lines. The dominant peaks on both sides of the plot depict the strong
clutter effects due to the existence of vessel walls (represented by the dashed vertical lines)
and the tissue motion. To enable high quality blood velocity estimation, efficient clutter

filtering must be applied prior to the velocity estimation. In this work, a second order block
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Figure 6.3. The estimated velocity profile using RF data from simulated carotid artery.

SVD-based eigenvector regression filter is used (termed Eigen in the figure). The lower plot
in the figure illustrates the estimated velocity profile crossing the whole vessel using the
autocorrelation method and the proposed hybrid estimator, respectively. As seen from the
figure, both the autocorrelation method and the hybrid estimator accurately estimate the
velocities close to the vessel walls. However, close to the vessel center, the hybrid estimator
clearly outperforms the autocorrelation method. It is again worth noting that the center
of the profile is not accurately estimated due to the fixed filter order employed therein. As

already mentioned, the filter order should typically be allowed to vary over depth.
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6.2 Blood Velocity Estimation with Multiple Carriers

In this section, the DAVE and the NLS methods proposed in Chapter 3 are extended for
blood velocity estimation. It is worth noting that the SVE method proposed in Section
3.2.2 is derived based on the assumption that the additive noise is white. As a result, the
performance of the SVE method will be dramatically degraded for coloured noise caused by
the clutter filtering operation as discussed next. For this reason, the SVE method will not
be further discussed herein.

Recall that the multiple-carrier based estimators proposed in Chapter 3 are based on
the noisy sinusoidal data model in (3.2.1). In colour flow imaging, (3.2.1) is assumed to
contain three statistically independent components as shown in (5.1.1) in which the clutter
component is seen to be tens to hundreds of times stronger than the blood signal, and
will completely corrupt the estimation unless cancelled [Jen96a]. To do so, one can apply
a clutter filter to the measured signal. This filter can be designed in various ways, and
is in itself an interesting topic of research; typically, a low order finite impulse response
(FIR), infinite impulse response (IIR), or a subspace-based projection filter can be employed
as discussed earlier. Such filters will strongly affect the assumed sinusoidal data model in

(3.2.1). Recalling (3.2.1), let
d

2(t) = hilyp =Y 1 (v)Be " +0(2), (6.2.1)
k=1

where hp is a Pth order FIR filter, and

A T

ye®E[y) .. ye-P+1) ] (6.2.2)

Further, v (v) is a velocity dependent function originating from the filtering and w(t) is the
coloured version of the additive noise w(t) in (3.2.1) due to the clutter filtering introduced

in (6.2.1). Very commonly, the clutter filter used is a simple difference filter [Jen96b], i.e.,

hp = [ 1 -1 ]T, (6.2.3)
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yielding 7x(v) = e“*® — 1. As the data model in (3.2.1) is now changed as compared
to (6.2.1), due to the filtering operation, the proposed methods in Chapter 4 need to be
modified accordingly.

6.2.1 The Modified Data Adaptive Velocity Estimator

Similar to the DAVE derivation in Section 3.2.3, the modified data adaptive velocity esti-
mator (M-DAVE) can be derived as follows. Let

zr(t) = [ z2(t) ... z(t+L-1) ]T
= AL(v)®,(t)8 + WL(t), (6.2.4)

)
fort=0,..., M=N—(P—1)—=(L—1), wr(t) is defined from w(t) similar to z;(t), and
(

P, (1) = v(v)®.(2) (6.2.5)
Y1(v) 0
y(v) = (6.2.6)
0 ~4(v)

with other notations defined in Section 3.2.2. Then, design a set of L-tap data adaptive FIR
filters, hi(v), for £ = 1,...,d, each centered at a given velocity v designed on the basis of
solving the following constrained optimization
}rlngn) h#(v)R,hx(v) subject to hf(v)AL(v) = uf (6.2.7)
x(v
for k=1,...,d
where
R, = E{z.(t)z(t)" } (6.2.8)
which can be estimated as for f{y in (3.2.13). As derived in Section 3.2.3, the filter minimizing

(6.2.7), is obtained as (see, e.g., [SMO05])
hf(v) = uf [AZ()RTAL(v)] T AZ ()RS, (6.2.9)
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suggesting that the velocity spectrum is formed as

¢=(v) hi! (v)R.hy(v)

>
Fead

- I~
3

Il

of [AF ()R AL )] o, (6.2.10)

k=1
where R, has also been used for the filter design in (6.2.9), which will thus mainly contain
the d sinusoidal components resulting from the velocity v. Thus, by evaluating ¢,(v) for
a range of velocities of interest, v € [Umin, Umaz|, the velocity of the reflecting scatterer can
be estimated as the velocity maximizing ¢,(v). Similar to the DAVE algorithm, it is worth
noting that the matrix A¥(v)R;'AL(v) may be poorly conditioned for small v due to the
resulting closely spaced frequency components. To alleviate this problem, one can employ a

low rank approximation technique as performed in Appendix 3.D.

6.2.2 The Modified Nonlinear Least Squares Estimator

The modified nonlinear least squares (M-NLS) estimator, extending the NLS estimator de-

rived in Section 3.2.4, is derived in this section. Note that (6.2.1) can be written as

2n-(p-1)(0) = An—(p-1)(¥)B + Wy_(p-1)(0) , (6.2.11)

where
zy—p-1)(0) = [ z(0) -+ 2(N—(P-1)-1) ]T, (6.2.12)
An_p-1y(v) = An_(p-1y(v)@,(0) , (6.2.13)

with Wy _(p—-1)(0) defined similar to zy_(p_1)(0). Therefore, the M-NLS estimate of v can

be obtained as

U = arg %111}1 I zn—(p-1)(0) — An—(p-1yB II% (6.2.14)
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where the least-squares estimate of 3 can be found as [SMO05]

~ . - -1
B=| Aoy An_py®) | Axpn(©)zn_p1(0) . (6.2.15)
Inserting (6.2.15) into (6.2.14) yields the maximization
b = argmax | Tg 2y p_1)(0) I3 (6.2.16)

where

Al (popy() [ An_p-1)(v)An_(p-1)(v) ]_1 An-p-1(v) . (6.2.17)

>

5

Parallelling the low-rank discussion above, one can use a low-rank approximation to alleviate
a possibly poor conditioning of the AN_(P_I)(U)AN_(P_l)(U) matrix for small v; again, this

can be done using the technique in Appendix 3.D.

6.2.3 Simulation Results

In this section, the M-DAVE and M-NLS methods will be examined with two different
scenarios, fibre flow and parabolic flow. For simplicity, a second order FIR clutter filter is

employed herein.

Fibre Flow

To examine the performance of the M-DAVE and M-NLS methods, initially, single fibre-
like flow is simulated, which comprises 1000 blood particles lying along the vessel center
and moving towards the transducer along the beam direction (pure axial velocity). The
parameters for simulating RF data are listed in Appendix 6.B.

Figure 6.4 shows the velocity spectra using M-DAVE with RF data acquired from the
transmission focus which is 35 mm away from the transducer surface as illustrated in Ap-

pendix 6.B. The underlying velocity of the fibre flow varies from 0.5 X vy, to 2 X vy, as
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Figure 6.4. The velocity spectra using the M-DAVE method with RF data obtained from
simulated fibre flow with SNR = 10 dB, for (a) v = 0.5 x v*yq/ (b) v = 1 x v ygs (c)
v =15 x vNyq; (d) v = 2 x vNyg.
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Figure 6.5. The velocity spectra using the M-NLS method with RF data obtained from
= 10 dB, for (a) v = 0.5 x vyg~ (b) v = 1 x VNygi (c)

simulated fibre flow with SN R

v =15x vNyqg; (d) v = 2 x VNygm
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Figure 6.6. The MSE of the examined estimators as a function of the SNR, for v =

1.5 X vNyq, with fibre flow.

shown clockwise from the top left in the figure, where the dash line represents the underlying
velocity. It is clear from the figure that M-DAVE can accurately estimate the underlying
velocity when it is not equal to integer multiples of the Nyquist velocity, VNyg, as for the cases
in Figure 6.4 (a) and Figure 6.4 (c¢). In Figure 6.4 (b) and Figure 6.4 (d) where v = [ x VMg
and v = 2xv N ygq, respectively, it becomes challenging for M-DAVE to estimate correctly the
underlying velocity. These results are consistent with those in Section 3.3. Similar results
and conclusions also hold for the evaluation of the M-NLS as shown in Figure 6.5. In Figure
6.5 (d), the M-NLS method clearly fails to estimate the underlying velocity, being 2 x vNyq.
To further examine the performance of M-DAVE and M-NLS statistically, the MSE of
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Figure 6.7. The parabolic velocity profile.

the estimates as a function of the SNR from the transmission focus point are calculated and
shown in Figure 6.6, where the underlying velocity v = 1.5 x VNyg* As is clear from the
figure, both the methods show similar performance when the SNR is less than 0 dB. As SNR

increases, the M-DAVE method is seen to outperform the M-NLS approach.

Parabolic Flow

Consider a realistic case where pure blood flow (consisting of 3 x 105 scatters) with parabolic
profile as defined in (6.1.1) is simulated with maximum velocity v0 = 1.8 x vNygq at the vessel
center. The corresponding parameters are given in Appendix 6.B. The true axial velocity

profile is depicted in Figure 6.7. As the flow is purely blood flow without taking into account
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Figure 6.8. The estimated velocity profile of parabolic flow, with (a) SNR 10 dB; (b)

SNR = 30 dB.

vessel walls and clutter effects, additive white Gaussian noise is added with different SNR
defined based on the RF data from vessel centre position. Figure 6.8 shows the estimated
velocity profile of parabolic flow with SNR = 10 dB and SNR = 30 dB, respectively. It
is clear from the figure that the proposed methods actually failed to estimate the parabolic
flow. To further investigate this, Figure 6.9 illustrates the power spectra of excitation (the
sinusoidal signal transmitted by transducer) and one RF echo, for fibre flow and parabolic
flow, respectively. It is clear from Figure 6.9 (a) that the transmitted power in the fibre flow
is not seriously damped and the spectrum ofthe RF echo well matches the one obtained from
the excitation. In the parabolic flow scenario, the transmitted power is damped seriously
and more side lobes exist as shown in Figure 6.9 (b), implying that there exists a mismatch

between the RF echo and the sinusoidal data model in (3.2.1). This may well explain why
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Figure 6.9. The spectra of excitation and RF echo for (a) fibre flow; (b) parabolic flow.

the M-DAVE and M-NLS methods failed for the realistic parabolic flow. Further research
will be needed on how to improve both the data model in (3.2.1) and the simulation model

used for RF generation. This is a topic of ongoing research.

6.3 Conclusion

This chapter discusses the blood velocity estimation using the proposed estimators in Part
I of this thesis. Realistic RF data generated with the Field II toolbox are used. Section
6.1 examines the hybrid estimator proposed in Chapter 2. The MSE results obtained from
examining with fibre flow RF data show that the hybrid estimator statistically outperforms
the conventional autocorrelation estimator. To further confirm this, both the methods are

examined with realistic carotid flow and the hybrid estimator again shows better performance
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than the autocorrelation estimator. It is worth noting that, as discussed in Chapter 2, the
performance of the hybrid estimator will be worse if there exists serious power damping or
frequency spread in RF data.

In Section 6.2, the DAVE and the NLS methods proposed in Chapter 3 are modified
to take into account the applied FIR clutter filtering. The modified estimators are then
examined using RF data obtained from simulated fibre flow as well as parabolic flow. The
results indicate that the M-DAVE and M-NLS methods work well with fibre flow, but fail
with parabolic flow. The most likely reason for this failure is due to the mismatch between
the multiple-carrier based sinusoidal data model in (3.2.1) and the actual RF data obtained
from parabolic flow. The failure of the estimators also implies that the estimators are very
sensitive to the data examined and will perform worse if there is a mismatch between the

examined data and the ideal data model from which the estimators are derived.
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Appendix

6.A Parameters for Simulating Blood Flow with Single Carrier

Centre (single carrier) frequency, f. | 10 MHz Transducer type Phased array
Sampling frequency, f, 100 MHz | Transducer elements 64
Pulse repetition frequency, fof 104 Hz Transducer element pitch 0.077 mm

Velocity in fibre, v

0.5 x UNyq

Transducer element kerf

0.00385 mm

Peak velocity in parabolic low, v,

0.8 X Unyq

Transducer element width

0.732 mm

Sound speed, ¢

1540 m/s

Transducer element height

H mm

RF lines per estimate, N

18

Focus in transmission

35 mm

Pulse oscillation (M) 10 Focus in reception 35 mm
DOA in fibre 0° Elevation focus 25 mm
DOA in parabolic flow case 45° Apodization in transmission | Hanning
Bandwidth 0.6 Apodization in reception Hanning
Center of vessel 35 mm Vessel radius 5 mm
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6.B Parameters for Simulating Blood Flow with Multiple Carriers

Multiple carriers

[8.1, 11.97) MHz

Transducer type

Phased array

Sampling frequency, [

100 MHz

Transducer clements

64

Pulse repetition frequency, f,,; | 10* Hz Transducer element pitch 0.077 mm
Sound speed, ¢ 1540 m/s Transducer element kerf 0.00385 mm
RF lines per estimate, N 20 Transducer clement width 0.732 mn
Pulse oscillation (M) 10 Transducer element height | 5 mm

DOA in fibre 0° Focus in transmission 35 mm
DOA in parabolic flow case 45° Focus in reception 35 mm
Bandwidth 0.6 Elevation focus 25 mm
Center of vessel 35 mm Apodization in transmission | Hanning
Vessel radius 5 mimn Apodization in reception Hanning




Chapter 7

CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

In this chapter, the conclusions are drawn for the work involved in this thesis and possible

topics are suggested for future research.

7.1 Conclusions

In this work, a variety of problems are examined:

i. The problem of estimating the frequency of a sinusoid in noise is stated in Chapter 2.
A hybrid phase-based single frequency estimator with low computational complexity
is proposed, combining previously proposed SNR threshold reduction approaches with
a recent outlier removal scheme. The proposed estimator achieves a lower mean square
error than other available techniques, lowering the SNR threshold at which the CRLB
is closely followed. Furthermore, in contrast to many other techniques, the performance
of the hybrid estimator is found to be essentially independent of the true frequency.

Related issues such as power damping and frequency spread are also briefly discussed;

ii. Doppler shift estimation or the resulting velocity estimation of a moving target is an

important topic in a wide variety of fields. In Chapter 3, three novel velocity estimators

123
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using multiple frequency carriers have been developed. Evaluation using synthetic
data indicates that these new estimators have the capability to mitigate the poor high
velocity performance of conventional correlation based techniques and thereby provide
usable performance beyond the conventional Nyquist velocity limit. Furthermore, the
CRLB for the velocity estimation is derived to evaluate the performance of the proposed

methods.

iii. To enable high quality ultrasound color flow images, efficient attenuation of the clutter
signal is one of the critical factors. The analysis of existing filters implies that the recent
introduction of the ERF/PCA and possibly the ICA methods seem very promising
for this purpose. An efficient approach to recursively form the clutter filters using a
recent recursive subspace tracking technique is introduced in Chapter 5. The proposed
method is successfully examined with realistic carotid flow which is simulated with the

Field II toolbox [Jen96b].

iv. Commonly, narrow-band PW systems estimate the blood velocity using an autocorrelation-
based estimator. In Chapter 6, the hybrid frequency estimator proposed in Chapter
2 is examined with realistic RF data which shows the achievable performance gain of

this method as compared to the traditional approach.

v. As the multiple-carrier based velocity estimators proposed in Chapter 3 are motivated
in association with the application of blood velocity estimation, in Chapter 6 the
DAVE and the NLS estimators are modified (accordingly termed M-DAVE and M-NLS,
respectively) due to the introduced clutter filtering and applied to realistic RF data
for blood velocity estimation. The M-DAVE and M-NLS methods were found to work
well with fibre flow, but fail with parabolic flow. The most likely reason for this failure
is due to the mismatch between the multiple-carrier based sinusoidal data model and

the actual RF data obtained from parabolic flow.
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All of the above conclusions illustrate the usefulness of parameter estimation in solving
practical problems arising in a variety of applications. It also exposes the problems existing
in current research. Therefore, it is believed that the following suggestions provide a pathway

for future research.

7.2 Suggestions for Future Research

Based on the work and analysis in this thesis, four possible topics for future research projects

are proposed.

Frequency Estimation of a General Sinusoidal Data Model

The problem of a single tone estimation has been well studied in this thesis. However,
this study is confined to the pure sinusoidal data model only, which somewhat restricts the
generality of this hybrid estimator. As a result, it is natural to extend the hybrid estimator
to be valid for a more general sinusoidal data model allowing power damping and frequency

spread.

Estimation of 2-Dimensional Frequencies

In Chapter 2, the hybrid estimator has been shown to outperform the examined single tone
estimators, exhibiting lower MSE and SNR threshold as compared to other estimators. It
is believed that there is more to be done in this topic. One thing to examine would be to

extend the single tone estimator to the estimation of 2-dimensional frequencies.

Order Estimation of Subspace-based Clutter Filters

In this thesis, the clutter rejection problem is studied and an efficient implementation of

clutter subspace tracking technique for the subspace-based clutter filters is successfully in-
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troduced. However, the order estimation problem involved in the clutter filters has not been
investigated yet in this work. As pointed out in the previous chapters, further research is
needed on how the filter order should be selected appropriately. Thus, to better implement
the introduced efficient subspace tracking technique in clutter rejection, a critical problem

is the corresponding order estimation.

Improving the Multiple-carrier Based Estimators

The failure of the M-DAVE and the M-NLS estimators with realistic parabolic flow investi-
gated in Chapter 6 implies that the estimators are very sensitive to the data examined and
their performance will degrade if there is a mismatch between the examined data and the
ideal data model from which the estimators are derived. Further research will be needed on
how to improve the data model in (3.2.1) and the resulting estimators so that they can be
successfully implemented in practice.

In addition, it is worth noting that the proposed multiple-carrier based estimators in
Chapter 3 have high computational complexity. As a result, it would be interesting to look

into how these methods can be implemented with lower computational load.
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