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ABSTRACT

This thesis comprises two parts. The first part deals with single carrier and multiplc-carrier 

based frequency estimation. The second part is concerned with the application of ultrasound 

using the proposed estim ators and introduces a novel efficient im plem entation of a subspace 

tracking technique.

In the first part, the problem of single frequency estimation is initially examined, and a 

hybrid single tone estim ator is proposed, comprising both coarse and refined estimates. The 

coarse estim ate of the unknown frequency is obtained using the unweighted linear prediction 

method, and is used to remove the frequency dependence of the signal-to-noise ratio (SNR) 

threshold. The SNR threshold is then further reduced via a combination of using an aver­

aging filter and an outlier removal scheme. Finally, a refined frequency estim ate is formed 

using a weighted phase average technique. The hybrid estim ator outperform s other recently 

developed estim ators and is found to be independent of the underlying frequency.

A second topic considered in the first part of this thesis is multiple-carrier based fre­

quency estimation. Based on this idea, three novel velocity estim ators are proposed by 

exploiting the velocity dependence of the backscattered carriers; using synthetic data, all 

three proposed estim ators are found to exhibit the capability of m itigating the poor high 

velocity performance of the conventional correlation based techniques and thereby provide 

usable performance beyond the conventional Nyquist velocity limit. To evaluate these meth­
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ods statistically, the Cramer-Rao lower bound for the velocity estim ation is derived.

In the second part, the fundamentals of ultrasound are briefly reviewed. An efficient 

subspace tracking technique is introduced as a way to implement clutter cigenfilters, greatly 

reducing the com putation complexity as compared to conventional eigenffiters which are 

based on the evaluation of the block singular value decomposition technique. Finally, the 

hybrid estimator and the multiple-carrier based velocity estim ators proposed in the first part 

of the thesis are examined with realistic radio frequency data, illustrating the usefulness of 

these methods in solving practical problems.
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Chapter 1

INTRODUCTION

“I  hear, I  forget; 

I  see, I  remember; 

I  do, I  understand. ”

A Chinese Saying.

The work comprising this Ph.D. study is primarily concerned with single and multiple 

frequency estimation, together with efficient implementation of subspace tracking. Several 

approaches to these problems are proposed in this thesis. To examine performance, the 

methods are evaluated using both synthetic data  and realistic medical ultrasound data. The 

present chapter serves as an introduction and an overview of the main topics covered in this 

thesis.

1.1 Motivation and Overview

Param eter estimation has been a classical problem for more than 200 years [Pro95] and is still 

an im portant research topic with a wide range of practical applications such as in biomedi­

cine, communications, radar and speech (see, e.g., [Pro89,Edd93, Jen96a,KP95,EM00,SM05]

1
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and the references therein). More specifically, in biomedicine, estimation of various signal 

characteristics from a patient, such as ultrasound-based radio frequency (RF) data, can, for 

instance, provide information about Doppler shift which can be useful in colour flow imag­

ing (CFI) for blood velocity estimation [Jen96a, EMOO]. In communications, one problem 

of current interest is the need to track the time-varying param eters in a cellular radio sys­

tem [Pro89]. In radar and sonar systems, an accurate estimate can provide information on 

the location and motion of targets situated in the field of view [Edd93, SM05]. In speech, 

param eter estimation of audio signals can be useful in better understanding the speech 

production process as well as for speech synthesis, coding and recognition [KP95]. A vast 

number of other applications can easily be found.

An estimate can be formed using either a parametric or a nonparam etric approach. Most 

modern estimation approaches in signal processing are model-based in the sense that they 

rely on certain assumptions made on the observed data. In particular, the topic of sinusoidal 

param eter estimation has received a huge interest in recent decades, w ith numerous books 

written on the topic (see, e.g., [Mar87,Kay88,QH01,SM05], and the references therein). One 

reason for this is due to the wide applicability of such problems. A typical sinusoidal model 

can be w ritten as a sum of complex-valued sinusoid(s) corrupted by a Gaussian noise process 

typically not known, e.g,

d
ys(t) = x s(t) +  e(t) ; x s(t) =  ^  a k(t)el{uJkt+ipk) , (1-1.1)

/c=l

where x s(t) denotes the (complex-valued) noise-free sinusoidal signal; { a fc(t)}, {u;fc} and {tpk} 

are its time-varying am plitudes (power), angular frequencies and initial phases, respectively; 

and e(t) is an additive observation noise which is often assumed to be zero mean complex­

valued circular white with Gaussian distribution. Often, one is only interested in one or some 

of the param eters in (1.1.1), depending on the specific application. Typically, estimation of 

the frequencies is often the crucial step in the problem because they are nonlinear functions
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in the received da ta  sequence. In addition, in many applications, it is the frequency contents 

of a signal th a t carry the information about some desired property, e.g., Doppler shift and the 

resulting blood velocity in CFI. Once the frequencies have been determined, the remaining 

parameters, namely am plitudes and phases, can then be computed straightforwardly [SM05]. 

It is noteworthy th a t for exponentially damped sinusoids, one also needs to determine the 

extra param eters of dam ping factors, which can be estim ated jointly with the frequencies 

[ZH97], or separately using least-squares or forward-backward linear prediction (sec, e.g., 

[Sto93,ZH97, VSH+00,KK01], and the references therein). In general, many algorithms are 

tested on the basis of lim ited length synthetic sinusoidal da ta  samples, which is feasible if 

the sinusoidal data  model closely matches the practical data. However, in the real world, 

many signals are non-stationary, have a frequency spread (broadband) and /or exhibit a non- 

sinusoidal property with power damping, corrupting the data  model commonly causing the 

estimation procedure to fail. An example of an area where such problems are encountered 

is in medical ultrasound where one tries to extract information from a backscattered RF 

signal, which will be discussed in later chapters. Given the great interest in good methods 

for frequency estimation, vast numbers of approaches have been proposed over the years, 

each with their own pros and cons. In this thesis, several frequency estim ators are proposed 

based on a simplified version of (1.1.1) as discussed later. Herein, the proposed methods are 

motivated and associated with the application of ultrasound-based blood velocity estimation. 

However, it is worth emphasizing tha t these estimators can be easily extended/applied to 

related problems in radar and sonar and other possible applications.

Another topic this thesis deals with is subspace estim ation and tracking in associa­

tion with the application of clutter rejection in CFI. Subspace-based signal analysis consists 

of splitting the observations into a set of desired and a set of uninteresting components 

which can be viewed in term s of signal and noise subspaces. In CFI, the observed radio 

frequency (RF) ultrasound data  normally contains a disturbing clutter component which is
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Clutter Subspace

F ig u re  1.1. Projection of a signal space (spanned by basis vectors u 1} u 2 and u 3) into a 

clutter subspace (spanned by basis vectors Uj and u 2).

much stronger than  the echoes from blood scatters [Jen96a, EMOO]. To estim ate accurately 

blood velocities, the clu tter component must be first suppressed; this step is termed clutter 

rejection. C lutter rejection can be performed in many different ways, which will be further 

discussed in C hapter 5. One of the promising methods is the recently developed eigenfilter 

technique which is based on estim ating the clutter subspace using the eigenvalue decom­

position (EVD) technique, or alternatively, using the singular value decomposition (SVD) 

technique (see, e.g., [BHR95,LBH97,EMOO,BTK02], and the references therein). Once the 

clutter subspace is formed, the clutter component can be removed by projecting the observed
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RF signal onto the space orthogonal to the clutter subspace, as depicted in Figure 1.1, where 

the clutter subspace is spanned by basis vectors Ui and u2. However, the com putational cost 

of evaluating the required SVD, or alternatively the estimation of the correlation matrix of 

the examined RF signal and the computation of its EVD is often prohibitive, limiting the 

practical applicability of the eigenfilter in CFI. Therefore, there is a real need for the com­

putationally efficient implementation of this approach. In this thesis, we exploit the fact 

tha t the clutter signal has a slowly time-varying nature both in the temporal and spatial 

direction, enabling an efficient evaluation of the consecutive SVDs using a subspace track­

ing technique refining the sliding window adaptive SVD (SWASVD) algorithm proposed by 

Badeau et al. [BRD04].

1.2 Thesis Outline and Contributions

This thesis consists of two parts, estimation using a single carrier or multiple carriers and 

a focus application: ultrasound. This section presents the outline and contributions of this 

thesis.

1.2.1 Estimation Using a Single Carrier Or Multiple Carriers

This part of the thesis includes Chapter 2 and Chapter 3 which deal w ith general single 

tone estimation as well as multiple-carrier based velocity estimation. As some of this part of 

the thesis is associated with P art II, which mainly concerns with the application of medical 

ultrasound, readers can also refer to Chapter 4 in Part II to obtain some fundamentals of 

ultrasound.
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Chapter 2

This chapter discusses single frequency estimation, particularly with phase-based techniques. 

The topic of com putationally efficient frequency estimation of a single complex sinusoid cor­

rupted by additive white Gaussian noise has received significant attention over the last 

decades due to the wide applicability of such estimators in a variety of fields (see, e.g., 

[RB74, Kay89, CKQ94, H95, KNC96, FJ99, QH01, Fow02, Mac04, Kle05], and the references 

therein). In this chapter, a computationally fast and statistically improved hybrid single 

tone estimator is proposed. The proposed approach outperforms other recently proposed 

methods, lowering the signal-to-noise ratio at which the Cramer-Rao lower bound is reached.

The work of this chapter has been published in part as:

• Z. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Hybrid Phase-based Sin­

gle Frequency Estimator , IEEE Signal Processing Letters, 12(9) :657-660, Sept. 2005.

• Z. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Computationally Ef­

ficient Estimation of a Single Tone, In IEEE 13th Workshop on Statistical Signal 

Processing, Bordeaux, France, July 2005.

• Z. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, Statistically and Com­

putationally Efficient Frequency Estimation of a Single Tone, Tech. Rep. EE-2005-02, 

Dept, of Electrical Engineering, Karlstad Univ., Karlstad, Sweden, February 2005.

Chapter 3

Typically, velocity estim ators based on the estimation of the Doppler shift will suffer from a 

limited unambiguous velocity range. In this chapter, three novel multiple-carrier based ve­

locity estimators extending the velocity range above the Nyquist velocity limit are proposed.
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Numerical simulations indicate th a t the proposed estimators offer improved estimation per­

formance as compared to  other existing techniques.

The work of this chapter has been published in part as:

• Z. Zhang, A. Jakobsson, S. Nikolov, and J. A. Chambers. Extending the Unam­

biguous Velocity Range Using Multiple Carrier Frequencies, IEE Electronics Letters, 

41 (22): 1206-1208, Oct. 2005.

• Z. Zhang, A. Jakobsson, and J. A. Chambers, On Multicarrier-based Velocity Esti­

mation , Tech. Rep. EE-2005-04, Dept, of Electrical Engineering, Karlstad Univ., 

Karlstad, Sweden, May 2005.

1.2.2 Application: Ultrasound

Following the first part of the thesis, the second part consists of C hapter 4, Chapter 5 and 

Chapter 6, which are mainly concerned with the application of ultrasound. The hybrid single 

tone estimator and multiple-carrier based estimators proposed in P art I will be examined in 

this part with realistic RF data  simulated with the Field II toolbox. The details on how to

simulate RF data  with the Field II toolbox can be found in [JenOl, Jen96b].

Chapter 4

Before examining the proposed methods in the context of ultrasound, it is preferable to 

introduce some general theory of ultrasound. In this chapter, some basic theory of acoustics 

and the fundamentals of medical ultrasound are introduced.
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Chapter 5

In colour flow imaging, efficient clutter rejection is a key preprocessing step prior to blood 

velocity estimation. In this chapter, an efficient implementation of clutter eigenfilters using 

a recent developed subspace tracking technique is introduced.

The work of this chapter has been published in part as:

• Z. Zhang, A. Jakobsson, J. A. Jensen, and J. A. Chambers, On the Efficient Imple­

mentation of Adaptive Clutter Filters for Ultrasound Color Flow Imaging, In Sixth 

IMA International Conference on M athematics in Signal Processing, pages 227-230, 

Cirencester, UK, 2004.

Chapter 6

This chapter is concerned with blood velocity estimation using the hybrid single tone esti­

mator and the multiple-carrier based estimators proposed in P art I.

The work of this chapter has been published in part as:

•  Z. Zhang, A. Jakobsson, M. D. Macleod, and J. A. Chambers, On the Efficient Esti­

mation of Blood Velocities, In Proceedings of the 2005 IEEE Engineering in Medicine 

and Biology 27th Annual Conference, Shanghai, China, Sept. 2005.

• Z. Zhang, A. Jakobsson, S. Nikolov, and J. A. Chambers, Novel Velocity Estimator 

Using Multiple Frequency Carriers, In Medical Imaging 2004: Ultrasonic Imaging and 

Signal Processing, volume 5373, pages 281-289, San Diego, USA, Feb. 2004.
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Chapter 7

This chapter will summarize the work involved in this thesis and will suggest some related 

topics for future work.



Part I

Estim ation Using a Single Carrier Or

M ultiple Carriers

10



Chapter 2

EFFICIENT ESTIMATION OF A 

SINGLE TONE

The frequency estimation of a single tone corrupted by additive white Gaussian noise has 

received significant attention over the last decades due to its wide applicability in signal 

processing. In this chapter, a computationally fast and statistically improved hybrid single 

tone estimator is proposed, which outperforms other recently proposed approaches. Nu­

merical simulations indicate tha t, in contrast to many other techniques, the performance 

of the hybrid estim ator is essentially independent of the underlying frequency component. 

Furthermore, it has also been examined for how power damping and frequency spread affect 

the performance of the estimator.

2.1 Introduction

Frequency estimation is a topic widely occurring in signal processing and can be roughly 

classified into two main param eter estimation problems:

• Single tone estimation: where the signal is a single, constant-frequency sinusoid, cor­

rupted by some noise.

• Multi-carrier frequency estimation: where there are several carriers of harmonically

11
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related or unrelated frequencies present as in the multiple-carrier based estimators to 

be discussed in Chapter 3.

In this chapter, discussion will be confined to single tone estimation. The problem of es­

tim ating the frequency of a sinusoid in noise has received much attention in the literature 

as the problem arises in many areas of applied signal processing, such as biomedicine, com­

munications and radar [Edd93, Wai02, Jen96a]. One often encounters a need to find a low 

computational complexity estim ate of the frequency component of data  which are assumed to 

consist of a single complex sinusoid corrupted by additive white Gaussian noise, and the topic 

has, as a result, a ttrac ted  significant interest over the last decades (see, e.g., [LRP73,RB74, 

Tre85, Kay89, LM89, LW92, Cla92, CKQ94, H95, KNC96, FJ99, QuiOO, Fow02, Mac04, Kle05], 

and the references therein). The problem can be briefly stated  as follows; consider the data 

sequence

y(t) = Pel^ t+es> -I- n(t), (2.1.1)

where (3 E R, u  and 6 E [—7r, n) denote the deterministic but unknown amplitude, fre­

quency, and initial phase, respectively, of a complex sinusoid. Further, n(t)  is circular zero 

mean complex Gaussian white noise with variance g\ .  Then, given the sequence y(t), for 

t = 0 , . . . , iV — 1, the problem is simply to estimate accurately u  w ith the lowest possible 

com putational complexity. In [RB74], Rife and Boorstyn derived the maximum likelihood 

(ML) estim ator of lj and proposed a statistically efficient approxim ate ML approach in­

volving both a combined coarse and fine search using the fast Fourier transform (FFT) 

algorithm. However, zeropadding is often required to obtain sufficient resolution, requiring 

0 (N ' \o g 2 N ')  operations, where N '  is the size of the desired frequency grid, with typically 

N ' N .  Furthermore, an iterative linear prediction (ILP) approach requiring G (N  log2 N)  

operations was suggested in [BW02] showing similar performance to th a t of the ML estima­

tor. A variety of phase-based methods requiring only O (N )  operations have been developed. 

In [Tre85], for example, T retter proposed a phase-based approach simplifying the problem
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to a linear regression on the phase. The method is based on a phase unwrapping algorithm, 

requiring a very high signal-to-noise ratio (SNR) (S N R  1), here defined as

R2
S N R  =  tL ,  (2.1.2)

to work well. Later, Kay proposed a modified version of T retter’s algorithm avoiding the use 

of the phase unwrapping algorithm [Kay89]. The method, here termed Kay’s weighted phase 

average (KWPA) estim ator, was claimed to be unbiased and its variance attains the Cramer- 

Rao lower bound (CRLB) for sufficiently high SNR (a higher threshold than  the ML method). 

Later, analysis showed th a t the KWPA method is in general biased, and the SNR for which 

the CRLB is achieved depends on the underlying frequency [CKQ94,LW92,Qui00]. For much 

of the frequency range, the KWPA method can not handle the circular nature (rotation) of 

frequency correctly. As a result, the focus of recent contributions has mainly been aimed at 

reducing the SNR threshold [KNC96], the frequency dependency of the threshold [Cla92], or 

both [FJ99,Mac04].

In this chapter, we propose a hybrid method combining the ideas in [KNC96, FJ99, 

Mac04] to show performance close to tha t of ML or ILP, but only requiring O (N )  operations. 

The hybrid estim ate is based on an initial coarse estimate of the unknown frequency using 

the unweighted linear prediction (UWLP) method [LRP73, Kay89]; this estimate is used 

to remove the frequency dependence of the SNR threshold. This SNR threshold is then 

further reduced via a combination of using an averaging filter, as suggested in [KNC96], and 

an outlier removal scheme as proposed in [Mac04]. Finally, a refined frequency estimate is 

formed along the lines proposed in [KNC96, FJ99]. In Section 2.2, several basic estimators 

are discussed, including the ML estim ator in Section 2.2.1, the UWLP in Section 2.2.2, the 

KWPA in Section 2.2.3; then the proposed hybrid estimator is given in Section 2.2.4. Section 

2.4 contains numerical examples, with a conclusion in Section 2.5.
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2.2 Single Tone Estimators

In this section, an overview of recent single frequency estimators is presented as well as the 

proposed hybrid estimator. In this section, all the results have been obtained using 103 

Monte Carlo simulations.

2.2.1 Maximum Likelihood Estimator

If the additive noise, n(t),  in (2.1.1) is a zero mean white Gaussian process, the ML estimator 

of the frequency u> in (2.1.1) is the maximizer of the likelihood function (also called the joint 

probability density function) of the sequence {?/(£)}, given as

& M L E  =  arg m a x /(y;£), (2-2-1)U)

where ujmle is the ML estimate, with the likelihood function defined as

f te ’® = J ^ n exp (-̂ 2 Y ,  (»(*) -  /?ei<"‘+<’))2)  . (2.2.2)

where y =  [2/(0), • - - , y ( N  — 1)]T, o 2n = the noise variance and £ =  [/?,<*;, 0]r , with [-]T 

denoting the transpose operation. Maximizing (2.2.1) is equivalent to minimizing

N - 1

u m le  =  arginin (y(t) -  j3el{uJt+e)) 2 , (2.2.3)
t=o

which can be seen to be the nonlinear least squares (NLS) estim ation problem. It can readily 

be shown th a t the NLS estim ate of the frequency of a single sine wave buried in white noise 

is given by the peak of the periodogram of the data  sequence [SM05], i.e.,

Um le  =  arg max P (uj), (2.2.4)U)
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where |x| denotes the modulus of the scalar x.

Rife &; Boorstyn [RB74] proposed a numerical method similar to the ML estimator, 

which involves a coarse and a fine search. The coarse estim ate is obtained by choosing the 

frequency having the greatest magnitude in the periodogram, as discussed above. A finer 

estimate is obtained using a method such as the secant method. Generally, zeropadding is 

required to  obtain sufficient resolution when using the FFT, requiring 0 ( N '  log2 iV7) opera­

tions, where N '  is the size of the desired frequency grid, with typically N ' N .  Thus, the 

estimator is not com putationally efficient. However, it is statistically efficient with the low­

est SNR threshold among the variously proposed estimators, exhibiting estimation variance 

identical to the corresponding CRLB given by [RB74]

6
CRLB&  =  jV(jV2 _ 1) g j Vfl {rad/sample)2, (2.2.6)

where u  denotes the estim ated frequency and the C R L B & is the lowest variance which a 

statistically unbiased estim ator may exhibit for a given SNR and N . Over the last decades, 

the ML estim ator’s high com putation cost has led to a search for alternative methods that 

approach its statistical performance, but with less com putation.

2.2.2 Unweighted Linear Predictor

As suggested in [Tre85], the data  model in (2.1.1) can be w ritten as

j/(t) =  [1 +  v(t)]/3eil-ult+e\  (2.2.7)

where

v(t) =  (2 .2 .8 )

is a complex white sequence. Let vr(t) and Vi(t) denote the real and the imaginary parts of 

v(t), respectively. Then, for high SNR,

1 +  v(t) «  eiarctanUiW «  eiVi{t\  (2.2.9)
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F igure 2 .1 . The MSE of the UW LP estim ator as a function of the SNR, N  =  24. 

allowing the approxim ation

y(t) rs (2.2.10)

where

(j){t) =  u t  +  0 + Vi(t). (2.2.11)

Thus, the additive noise has been converted into an equivalent phase noise Vi(t) w ith variance 

[Kay89] ^

v a r M t ) )  =  &  =  _ L _ .  (2.2 .12)

Most of the recent phase-based approaches exploit this approxim ation, allowing the phase 

to be approxim ately estim ated from the difference of the adjacent phase values suggested by
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Kay [Kay89], i.e.,

A <f>(t) = arg [y*(t)y(t +  1)] «  u  +  Vi(t +  1) -  u*(t), (2.2.13)

where (•)* denotes the complex conjugate, suggesting the so-called unweighted linear predic­

tor (UWLP) [LRP73,Kay89]

ujc — arg
t=0

The UWLP method is also term ed the autocorrelation estim ator in ultrasound blood velocity 

estimation [KNK085], as discussed in the later chapters. It is straightforward to show that 

the UWLP estim ator is unbiased, but statistically inefficient w ith variance [Kay89, CKQ94]

var(* ' ) = ( N - i y S N R  ( 2 2 1 5 )

giving the ratio
variujr) N
 = — . (2.2.16)
C R L B qj 6 V j

Figure 2.1 shows the mean square error (MSE) of the UWLP estim ator as a function of SNR,

with different frequencies denoted by different plots therein. As is clear from the figure, the

UWLP method is statistically inefficient for all examined frequencies across the whole SNR 

range, unable to reach the CRLB. However, given the fact th a t the UWLP is very simple 

with very low com putational cost, it can be adequate as a coarse estimator, as will be used 

in our proposed hybrid estim ator discussed later.

(2.2.14)

2.2.3 Kay’s W eighted Phase Averager

Another basic com putationally efficient estimator discussed here is K ay’s weighted phase 

average (KWPA) m ethod [Kay89]. Recall A i n  (2.2.13), the KWPA method is expressed 

as
N - 2

& K W P A  ~  E w(t)A4>(t), (2.2.17)
t = 0
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where C j k w p a  denotes the KWPA estimate, and the parabolic window

<“ is»
The approximation in (2.2.13) will hold for a very high SNR (S N R  1) following the 

approximation in (2.2.9) and (2.2.10). For this condition C j k w p a  can be shown to be an 

unbiased estim ator following the derivation below

N - 2

E { ljK w p a }  =  ^>2 w (t)E{A(f) ( t ) }
t=o 

N - 2

t=o 
N - 2

~  ^ 2  w (i )E{uj +  Vi(t +  1) -  Vi(t)} 
=o
N - 2

t = 0 
N - 2

U 
t = 0

—  UJ (2.2.19)

where the last equality follows from

N - 2

J 2 w (t ) = 1- (2.2.20)
t = 0

Similarly, as in (2.2.19), the KWPA estimator, for high SNR, can be shown to have the 

following variance [Kay89]

var(u,KIVPA) = n (n 2 _61 ) s n r  (2.2.21)

which is identical to  the CRLB in (2.2.6). As discussed earlier, the KWPA method is 

in general biased and (2.2.21) will only hold true for high SNR and very low frequency 

range [CKQ94, LW92, QuiOO].
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It has been shown th a t one of the drawbacks of the KWPA m ethod is the unavoidable 

wrapping errors when the phase uj approaches —7r / + 7T, making the SNR threshold dependent 

on underlying frequency [FJ99]. This is because the cumulative errors from noise component 

Vi(t) will sometimes make the estimate lower than u  and sometimes higher than ui. If 

A (f){t) exceeds —7r/ +  7r, then it gets wrapped over the —7r/ +  n  boundary and thus aliasing 

occurs resulting in higher variance as shown in Figure 2.2. Another drawback of the KWPA 

method is th a t its performance highly depends on SNR [Kay89]. W hen the SNR drops below 

a certain threshold as shown in Figure 2.2, the performance of the KWPA method falls off 

rapidly, exhibiting threshold behavior at a higher SNR which is also confirmed in Figure 

2.2. Also, unlike the ML method, as the data  length N  increases, the SNR threshold of the 

KWPA method slowly increases [LM89], which is illustrated in Figure 2.3. As Kay pointed 

out [Kay89], the coefficients of the parabolic window are responsible for ujkwpa attaining 

the CRLB. If we let

w(t) = (2.2.22)

then (2.2.17) becomes

^ N - 2

uuw pa  =
t=0

=  W w  - 1) -  * (0)]

=  [v,(N -  1) -  ^ ( 0)] (2.2.23)

which is termed the unweighted phase average (UWPA) estim ator and is unbiased, but again 

becomes inefficient statistically as shown in Figure 2.4. This is because the UWPA estimator 

in (2.2.23) discards useful information by allowing common information in adjacent terms 

of the sum to cancel. This is the direct result of ignoring the colouring in the noise term 

Vi(t +  1) -  Vi(t) in (2.2.13).
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F igure 2 .2 . The MSE of the examined KW PA estim ator as a function of the SNR, N  = 24. 

2.2.4 The Proposed Hybrid Estimator

Given the lim itations of the KW PA estim ator discussed above, various improved and ex­

tended m ethods have been proposed for reducing the SNR threshold and the frequency 

dependency of the threshold (see, e.g., [KNC96, Cla92, FJ99, BW02, Mac04], and the refer­

ences therein). In this section, the proposed hybrid m ethod combines the ideas in [KNC96, 

FJ99,Mac04] to  obtain  the perform ance close to  th a t of ML or ILP, bu t only requiring 0 ( N ) 

operations.

As suggested in [Cla92,BW02,Mac04], the UW LP estim ate is used to  form a downshifted 

signal, yd(t), to  remove the frequency dependence of the SNR threshold, i.e.,

(2 .2 .24)
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Figure 2.3 . The MSE of the examined KW PA estim ator as a function of the SNR, u  — 

0.75?r.

In [KNC96], Kim et a l  proposed using a simple K -tap  moving average filter to  smooth 

irregularities and random  variations prior to  the frequency estim ation as a way to reduce 

the SNR threshold. Such an averaging can be shown to  lower the SNR threshold up to 

10 log10 K  dB. However, as such an averaging will severely restric t the allowed frequency 

range down to (—Tr/K ,ir /K \,  the m ethod in [KNC96] is lim ited to  signals w ith frequencies 

near zero. This is because the finite impulse response (FIR) averaging filter is essentially 

a low pass filter. Herein, it is noted th a t the frequency content of the downshifted signal, 

yd(t), will satisfy such a restriction, and it is therefore proposed to  instead form an averaged
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F igure 2 .4 . The MSE of the examined UWPA estim ator as a function of the SNR, N  = 24. 

signal as
1 K~l

» M - 5f 5 X *  +  *). (2.2.25)
fc=0

Similar to  (2.2.13), the adjacent phase difference of (2.2.25) can be formed as

A </)f (t) =  arg [y}(t)yf (t +  1)] =  u f  +  uc(t), (2.2.26)

where uc(t) is given by (2.A.9) for a general K  (see A ppendix 2.A for further details). It is 

worth noting th a t the noise process uc(t) will now be coloured due to  the average filtering.

As shown in [LM89], the SNR threshold behavior of the phase-based frequency esti­

m ators is affected by cumulative ±27r phase errors resulting from the effect of the additive 

noise. This effect can be countered by introducing an outlier detection scheme. Recently, an
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F igure 2.5. Summary of the proposed hybrid estimator.
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effective scheme was proposed in [Mac04], where ± 2-7t outliers are detected if \(3t \ > \(3t±p\ 

and

IAI > A (2.2.27)

with p
0t = A  M t ~ P )  (2.2.28)

P— — P,Pt£0

where (3k = A4>f(k) — 0, for k 6 [—P, 1] and k E [N — K, N  — K  + P  — 1]. Thus, the outliers 

can be removed as follows

A4>f(t) — sign(/?t )27T if outlier detected
f 2.2.29)

A 4>f{t) otherwise

for t = 0 , . . . ,  N  — K  — 1. Here, A and P  are user parameters, as discussed below. After the 

SNR threshold reduction using (2.2.25) and (2.2.29), further improvement can be achieved by- 

taking into account the colouration of the noise term  in (2.2.26). This can be achieved using 

the suggested Four Channel Forward Backward (FCFB) method in [FJ99, Fow02], whereby 

the frequency correction term, a)/, can be found as

( N  — K ) / K  K - 1

ujf = (2.2.30)
t=  1 m = 1

where

with t = 1, 2 , . . . ,  ( N  — K ) / K .  As mentioned in [Fow02], it is possible to develop a closed 

form in (2.2.30) for any value of N,  but they consider only the case when N  is an integer 

multiple of K  because it leads to  an efficient structure for the processing. Combined with 

the coarse estimate, the hybrid frequency estimate is found as

UJh — U)c +  (l)f. (2.2.32)
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It is worth noting th a t the FCFB applies a different set of weights than  those used in the 

KWPA approach.

In summary, the proposed hybrid estimator is found by first forming the downshifted 

signal in (2.2.24) using the UWLP estimate in (2.2.14). Then, the phase difference of the 

filtered signal is formed using (2.2.26), followed by the outlier removal scheme in (2.2.29). 

Finally, the refined frequency estim ate is formed as (2.2.32), using (2.2.30). The hybrid 

estimator is summarized in Figure 2.5. It is worth stressing th a t the hybrid method differs 

from previously suggested approaches in th a t it combines all the above steps; the FCFB 

method does not include the outlier removal scheme in (2.2.29). Similarly, the method 

proposed in [Mac04], hereafter term ed the outlier removal estim ator (ORE), does not include 

the filtering in (2.2.25). In this chapter and Chapter 6, K  =  6 , P  = 1 and A =  4 will be 

used in the simulations for the hybrid estimator, which is based on the numerical analysis 

of the estim ator given in Section 2.4.

2.3 O ther Issues

The estimators discussed in the previous section deal with one pure sinusoid corrupted by 

noise as in (2.1.1), w ithout taking into account power damping and frequency spread over 

time. In this thesis, application to ultrasonics is a major focus and the sinusoidal-type signals 

encountered typically have non-zero bandwidth making it interesting to examine how robust 

the proposed estim ator is to  frequency spread and power damping, both of which are ways 

to approximate the non-zero bandw idth of tones. In this section, discussion is given on how 

the proposed hybrid estim ator will be affected by these factors. All the corresponding results 

displayed in this section have been obtained using 103 Monte Carlo simulations.
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Figure 2 .6 . The MSE of the Hybrid estim ator as a function of SNR with varying damping 

factor a, for N  =  24 and uj =  0.757r.

2.3.1 Power Damping

Similar to  (2.1.1), the observations are modelled as

zd(t) =  0 ( ty < “t+V + n ( t ) ,  (2.3.1)

whilst allowing for a decaying am plitude component

Pit) =  (2.3.2)

where zd{t) denotes the observation sample for t  =  0 , . . . ,  N  — 1, and a  the damping factor 

assumed to  be positive, w ith other definitions as in (2.1.1). To examine the impact on the
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performance of the estimator, the damping factor is allowed to vary as shown in Figure 

2.6 where the MSE results are obtained with the hybrid estimator. As is clear from the 

figure, the damping factor does seriously affect the performance of the estimator. More 

performance degradation occurs as more damping exists. As the hybrid estimator and other 

estimators discussed in Section 2.2 are based on the data  model in (2.1.1), it is expected tha t 

other estimators will also suffer similar performance degradation. It is worth noting tha t the 

unknown damping could also be estimated by, e.g., using least-squares or forward-backward 

linear prediction (see, e.g., [Sto93, VSH+00,KK01], and the references therein).

2.3.2 Frequency Spread

Another issue involved in the topic of frequency estimation is frequency spread, which implies 

that the carrier frequency in (2.1.1) is not perfectly narrowband. As a result, (2.3.1) can be 

further modified as
K

Zd,(t) = m  Y i  ei(" i+'M) + n(t), (2.3.3)
k=0

where Zds(t) denotes the observation sample taking into account damping factor denoted 

by P(t) and frequency spread denoted by 5k. Both factors are assumed to be positive. To 

examine the im pact on the performance of the hybrid estim ator as an example, we assume 

both damping factor and frequency spread existing in the data  samples as in (2.3.3) and the 

corresponding MSE results are shown in Figure 2.7. As is clear from the figure (clockwise 

from the top left), the MSE of the estimator becomes larger when the damping factor, a , 

increases; and the performance of the estimator will get worse as the damping factor rises 

to some level, say a  =  0.1 as shown in the sub-figure on the bottom  left, no m atter if the 

frequency spread exists or not. On the other hand, for any examined power damping factor, 

the MSE of the estim ator will change when the frequency spread changes. It is interesting to 

note from the figure th a t the MSEs corresponding to the frequency spreads denoted by 5ni
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F igure 2 .7 . The MSE of the proposed hybrid estim ator as a function of the SNR, w ith 

varying 6 in each sub-figure, for u  — 0.75n. Sn0 means no spread exists; Sni means spread 

exists w ith Si = l e -3 ; Sn2 means spread exists w ith =  le -3 and S2 = l e -2 ; Sn3 means 

spread exists w ith =  le -3 , S2 =  l e -2 and <53 =  0.1.
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and Sn2, respectively, are lower than the one without frequency spread (denoted by <Jn0). The 

reason is not clear. As the current CRLB is derived based on the pure single sinusoid data 

model in (2.1.1), one must bear in mind tha t the CRLB in (2.2.6) (represented by the dotted 

line in Figure 2.7) can not be used to judge the estim ator’s performance when damping 

or frequency spread exists. This is because either of the factors will make the real data 

deviate from the assumed pure sinusoid data model and the CRLB needs to be re-derived 

based on a modified da ta  model which closely matches the observed data. This will also 

be discussed further in C hapter 5 when the hybrid estim ator is applied to ultrasound radio 

frequency (RF) data. Based on the results above, if the RF data  have large frequency spread 

or power damping, one should expect that, without further improvement of the estimator, 

the estimator will not work very well.

2.4 Numerical Examples

In this section, the proposed estim ator is first examined with synthetic data. Initially, it 

is studied on how the performance of the hybrid estimator is affected by the length of the 

averaging filter, K  in (2.2.25), and the outlier removal threshold, A in (2.2.27). Figure 2.8 

illustrates the estim ated mean square error (MSE) of the hybrid m ethod as compared to 

the corresponding CRLB, given in (2.2.6), for varying K .  Here, and below unless otherwise 

stated, the signal consists of N  — 24 data  samples containing a single complex sinusoid with 

frequency u  =  0.757T. As can be seen from the figure, the estim ator improves to a point 

with increasing K : showing its best performance for K  = 6, for all the examined values of 

A. Here P  = 1 is chosen as in [Mac04]. Next, we examined the MSE of the hybrid estimator 

for varying P. Figure 2.9 dem onstrates the performance as compared to the corresponding 

CRLB. The results imply th a t the hybrid estimator shows its best performance for P  =  1. 

Furthermore, Figure 2.10 shows the MSE for varying A, for K  = 6 and P  =  1. As can be
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F igure 2 .8 . The MSE of the proposed hybrid estim ator as a function of the SNR, with 

varying K , for u  = 0 .757r.



MS
E 

(d
B)

 
MS

E 
(d

B
)

S e c tio n  2 .4 . N u m erica l E x a m p les 31

K = 6, X =3 K = 6,X =3.5
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Figure 2 .9 . The MSE of the proposed hybrid estim ator as a function of the SNR, with 

varying P, for tj  = 0 .757r.
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seen from the figure, the method achieves similar performance as soon as A >  3. Based on 

these results, hereafter K  =  6, P  = 1 and A =  4 will be used.

K = 6, P = 1

  Jt = 3
1 = 3.5

-30

CDT3
UJ
CO5

-35

-40

SNR (dB)

Figure 2.10. The MSE of the proposed hybrid estim ator as a function of the SNR, with 

varying A, for u  = 0 .757r.

Next, the proposed estim ator will be examined and compared to  other recently proposed 

algorithms. Figure 2.11 illustrates the MSE for the proposed hybrid estim ator, as compared 

to the UW LP approach [LRP73], the FCFB approach following [FJ99], the ORE approach 

[Mac04], the ILP approach using three iterations [BW02] and the corresponding CRLB 

as given in [RB74]. As is clear from the figure, the performance of the proposed hybrid 

estim ator is statistically improved, closely following the CRLB at a lower SNR threshold 

(about 2 dB herein) than  the other examined methods. It is noteworthy th a t the hybrid
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Figure 2.11. T he MSE of the examined estim ators as a function of the SNR.

estim ator shows similar bu t slightly better performance than  the ILP estim ator (similar 

conclusion holds in Figure 2.12 and Figure 2.13); however, the la tte r requires G ( N \o g 2N )  

operations, whereas the former only requires 0 { N )  operations. The hybrid method also 

uniformly yields a lower MSE than  the other methods. It is worth noting th a t the hybrid 

estim ator suffers some performance degradation due to  the introduced averaging in (2.2.25), 

as pointed out in [KNC96]. This explains why the MSE of the proposed hybrid estim ator 

can not fully reach the CRLB as shown in Figure 2.11 and other figures.

As is well known, the performance of single frequency estim ators is often affected by 

the underlying frequency. Figures 2.12 and 2.13 illustrate how the MSE varies as a function 

of the frequency of the sinusoid, cj, for S N R  =  6 dB and S N R  =  4 dB, respectively. As
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seen in the figures, the hybrid estim ator is uniformly achieving a lower MSE than  the other 

approaches, and has performance essentially independent of the true frequency. Furthermore, 

it is clear th a t the FCFB approach is significantly affected by the frequency, whereas the 

ORE approach is showing a similar robustness as the hybrid approach, although w ith a 

somewhat worse performance. Here, all the simulation results have been obtained using 103 

Monte Carlo simulations.

-20
—  UWLP 
-»<- FCFB 
- -  ORE 
—i— ILP
- e -  Hybrid method 
  CRLB

-25

-30
m
XI

LU
CO2

-35

-40

-450 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2.12. The MSE of the examined estim ators as a function of the underlying frequency, 

for SNR =  6 dB.
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on/n

F ig u re  2 .13 . The MSE of the examined estim ators as a function of the underlying frequency, 

for SNR =  4 dB.

2.5 Conclusion

In this chapter, an overview of some recently proposed single tone estim ators was given first. 

A low com putational complexity hybrid phase-based single frequency estim ator combin­

ing previously proposed SNR threshold reduction approaches w ith a recent outlier removal 

scheme was then proposed. Also, the related issues such as power dam ping and frequency 

spread were briefly discussed. Numerical sim ulations in Section 2.4 indicate th a t the pro­

posed hybrid estim ator achieves a lower mean square error than  other available techniques, 

closely approaching the CRLB at a lower SNR threshold. Furtherm ore, in contrast to many 

other techniques, the performance of the hybrid estim ator is found to  be essentially inde-
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pendent of the true frequency.
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Appendix

2.A Derivation of the  Noise Process in (2.2.26)

In this appendix an expression for the noise process uc(t), given in (2.2.26), is derived for a 

general K.  Let cuf — uj — cuc, then, using (2.2.7), yj(t)  can be expressed as

K - i

y f (t) =  A e-/< + "  x ;  [1 +  « (i +  *0] (2.A.1)
k= 0

for t = 0 , . . . ,  N  — K . Introduce

y K £  Y ^ eHkK- ^ > ' K , (2.A.2)
fc=0

and

K - 1
A$ * ( t)  =  Y ^ v ( t  + k)e^kK- 1)u,>IK . (2.A.3)

k= 0

Then,

K
0 V K e i u , , t + i t > + i u , / K  j-j +  4r-i$^(<)] (2.A.4)

K

Thus, the argument of y/{t) can be expressed as

arg [yf (t)] = arg [tf*] +  u f t +  6 +  cuf / K  

+  arg [ l +  $*(*)] ,

implying tha t the phase difference from adjacent samples, A 0/( t) , can be expressed as

A<j>f (t) =  Uf +  uc(t), (2.A.5)
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where, for t =  0 , . . . ,  N  — K  — 1,

uc(t) = arg [l +  f  (t +  !)]

-  arg [ l +  * * '$ ? (< )]  (2.A.6)

Then, using the approximation in (2.2.9), (2.A.6) can for high SNR be approximated as

uc(t) «  Im [$ * (i +  1) -  $?(<)] } , (2.A.7)

where Im{:r} denotes the imaginary part of x. We note tha t, using a first-order Taylor

expansion,
K - 1

+ (2.A.8)
fc=0

as W/ is small due to the downshifting, implying tha t

uc(t) ^  Im [i>(£ +  K )  — u(t)]} . (2.A.9)

We note tha t for K  = 2, (2.A.9) yields the expression given in [KNC96], i.e.,



Chapter 3

VELOCITY ESTIMATION USING 

MULTIPLE CARRIERS

Velocity estimation of a moving reflector is an im portant topic in a wide variety of fields. 

Typically, this is achieved by estimating the Doppler frequency shift, or equivalent, in the 

measured signal. Due to aliasing, the resulting velocity estim ate will suffer from a limited 

unambiguous velocity range, which, depending on application, might limit the usability of 

the estimator. In this chapter, three novel multiple-carrier based velocity estimators are 

proposed designed such th a t the velocity range is extended above the Nyquist velocity limit. 

Furthermore, the CRLB for the velocity estimation is derived to  evaluate the performances 

of the proposed methods. Extensive numerical simulations clearly indicate the extended un­

ambiguous velocity range and the performance gain as compared to  other existing methods.

3.1 Introduction

Estimating the velocity of a moving reflector is an im portant topic in a wide variety of 

fields such as, for example, blood flow dynamics, radar and sonar. Typically, the velocity is 

determined by examining the Doppler frequency shift, or equivalent, in the measured signal 

[Edd93, Wai02, Jen96a]. Such an approach will inherently offer only a limited unambiguous

39
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velocity range due to aliasing, which, depending on the application, might pose a restrictive 

limitation. Herein, the discussion will mainly focus on the estimation of blood velocities 

in ultrasound systems, where the unambiguous velocity range will limit the usability of the 

system; but the developed techniques are general and can easily be applied to other fields. 

The great majority of commercially available pulsed-wave (PW ) medical ultrasound systems 

use a narrow-band autocorrelation-based velocity estimation technique developed by Kasai 

et al. [KNK085]. This technique, hereafter termed Kasai’s autocorrelation technique (KAT), 

which is also termed the UWLP estimator [LRP73,Kay89] as discussed in Chapter 2, is both 

numerically robust and computationally simple [Wel94, AP03], but suffers from a limited 

unambiguous velocity range. Also, as analyzed in Chapter 2 , it is not statistically efficient. 

The maximum detectable axial velocity using KAT, also called the Nyquist velocity limit 

here denoted, v ^ yq, can be expressed as

(3.1.1)

where c denotes the speed of the wave propagation in the tissue, f c the carrier frequency, 

and fprf the pulse repetition frequency [Jen96a]. As the maximum depth into the body that 

can be examined, dmax, is determined as [Jen96a]

j  C  / o  i  o Ndmax > (3.1.2)
J p r f

it is very difficult to estimate larger velocities in deep vessels, such as in the heart, where 

the blood velocity can be as high as 10 m /s [BFMT93]. Due to  the importance of such 

estimations, numerous techniques to extend the unambiguous velocity range for ultrasound 

systems have been proposed in the recent literature [BP86, Tor89, Jen93a, SDM93, Eva93, 

Wel94,NRB+95, YK99]; with several of these applicable to  other fields as well. In principle, 

the aliasing effect is correctable as the aliasing can be distinguished from the true flow by 

the absence of any indication of even the briefest period of zero flow [Wel94]. However,
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in practice, such an approach typically fails if there are flows in opposite directions simul­

taneously within the sample volume, as in turbulent flow and an eddy1. Another way to 

overcome the aliasing problem is to use a wideband technique such as the cross-correlation 

technique presented in [BP86]. Here, the maximum unambiguous velocity is determined by 

the number of available time lags. However, the width of the blood vessel cross section, 

the computing capability, or both, eventually limits the number of lags and the maximum 

measurable velocity [YK99]. Furthermore, high velocities are difficult to obtain unless the 

cross-correlation search is limited to the main lobe of the correlation function [Jen93a]. Nar­

rowband periodogram-based techniques have also attracted  many investigations both in CFI 

and spectral Doppler over the last decades. The tem poral tracking F F T  methods have been 

investigated to detect when the velocity estimates cross the aliasing boundary, then the ve­

locity estimates are corrected accordingly [Tor89]. For CFI, the velocity changes between 

two successive frames can be large, making temporal tracking im practical [YK99]. Instead, 

spatial tracking along a scan line (i.e., across a vessel’s velocity profile) has been shown to 

perform well, while it has limitations for laminar flow [SDM93]. If there exists turbulent flow, 

the bidirectional flow and, as a result, the changeable sign of Doppler shift will mislead the 

frequency correction mechanism which assumes the frequency rotation is due to frequency 

beyond the Nyquist limit. Later, a conceptually novel system was proposed in [NRB+95] 

(hereafter termed NAT), where Nitzpon et al. proposed an integrated parallel PW  system 

with two different carrier frequencies ( /i and / 2) to extend the maximum detectable velocity 

by a factor of

F = J ^ Z J l - (3-1-3)

This technique has been applied to both spectral Doppler and to CFI (the so-called Quasar 

technique [DGS92]). However, the achieved measurable Doppler signal bandwidth is less

lEddy: in turbulent fluid motion, a blob of the fluid that has some definitive character and moves in 

soxne way differently from the main flow.



S ection  3 .2 . E stim a tio n  U sin g  M u ltip le Carriers 42

than fprf  and it will not be sufficient to analyze broadband turbulent flow [NRB+95]. In this 

chapter, three multi-carrier estimation techniques are proposed, extending and refining the 

idea in [NRB+95] and exploiting the velocity dependence of the backscattered carriers, to 

yield a subspace-based velocity estimator (SVE), a data  adaptive velocity estimator (DAVE) 

and an NLS estimator. A conventional method developed from an individual carrier will suf­

fer from aliasing and will hence have limited application range. However, as the frequency 

of each backscattered carrier is determined by the velocity of the reflecting target, the fre­

quency separation between the reflected carriers will uniquely determine the blood velocity 

without suffering aliasing, and therefore schemes based on multiple carriers potentially have 

increased operational range.

The remainder of this chapter is organized as follows: in the next section, the signal 

model is introduced and the SVE, the DAVE and the NLS m ethods are presented. In Sec­

tion 3.3, extensive numerical simulations clearly illustrate the performance of the proposed 

estimators. Finally, Section 3.4 contains the conclusions.

3.2 Estimation Using Multiple Carriers

3.2.1 Signal Model

Consider a transm itted signal, consisting of d complex sinusoidal carriers, which is backscat­

tered from multiple moving reflectors. The received signal can then be well modelled as

y(t) = x(t)  +  w(t) (3.2.1)

with
d

(3.2.2)

and

(3k = a ketlpk (3.2.3)
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for t =  0 , . . . ,  N  — 1, where (3k denotes the received complex amplitude of the kth  sinusoid, 

(pk the initial phase which can be well modelled as independent random variable uniformly

to the (axial) velocity, v , of the reflecting scatterer. Furthermore, w(t) is additive white 

Gaussian noise with w(t) ~  N ( 0, a 2), which is due to reflections from other scatterers as well 

as thermal and measurement noises. In the following, the frequency shifting function, u)k{v), 

is assumed known, whereas the received sinusoidal amplitudes, (3k, as well as the velocity 

of the reflecting scatterer, v, are unknown. Depending on application, different frequency 

distorting functions can be considered. The multiple carrier frequency-based estimators pro­

posed here are targetted at the application of blood velocity estimation, but it is noteworthy 

that these estimators can be easily applied to related problems in radar and sonar. In the 

estimation of blood velocities using ultrasound the angular frequency distorting function can 

be written as [Jen96a]

for t =  0 , . . . ,  M  — N  — L  with L > d, where (*)T denotes the transpose operation, w i{t)  is 

defined similar to yl(£), and

distributed on [—7r,7r], and Ukiy) is the frequency shift of the kth. sinusoidal component due

(3.2.4)

where f Ck is the kth  carrier frequency in emission.

3.2.2 The Subspace-based Velocity Estimator

In this section, the proposed subspace-based velocity estim ator is outlined. Let

y L(t)  =  y(t) . . .  y(t + L — 1) 

=  A L(v)&v(t)(3 + w L(t), (3.2.5)

A L(v) =  SLLti(v)  . . .  a  L,d(v) ,

a L , k { v )  —  1 e i u k iv ) _ _ _ e i ( L - l ) u k {y) (3.2.7)

(3.2.6)
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with

-,itu i  ( v )

* v ( t )  =

(3 = A fa

i twd (v)

(3.2.8)

(3.2.9)

The length of the filters, L < N/2,  is a user param eter affecting the resolution and variance 

of the resulting estimator; a large L will yield high resolution estimates with high variance, 

whereas a small L  will yield low resolution estimates with low variance. As the subspace- 

based velocity estim ator proposed here is based on the fact th a t the eigen-structure of the 

covariance m atrix of the data  contains complete information on the frequencies {cjfc(u)} 

[SM05], the data covariance m atrix is formed as

R y = E { y L(t)yLH(t)} = A l (v)PA*Z(v) +  a % (3.2.10)

where E  {•} denotes statistical expectation, (-)H the conjugate transpose (Hermitian) oper­

ation and I the L  x L  identity matrix. As (3k = ctkelifk, P can be simplified as

P  =  .E {*„(t)/3 /3"*"(t)}  =  d iag{ OL% a : }. (3.2.11)

where diag {x} denotes the diagonal m atrix whose non-zero elements are the elements of the 

vector x. The derivation of (3.2.11) is given in Appendix 3.A.

As Ry is typically unknown, a consistent sample estim ate should be used in place

of Ry. Such an estimate can be obtained as

(3.2.12)

Furthermore, it is often preferable to use forward-backward averaging to eliminate sensitivity 

to initial phase to obtain such an estimate [SM05], forming the estim ated correlation matrix
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as

Ry = l  ( r '  + J R f  j )

where J  is the L  x L  exchange matrix

0 1

J  =

(3.2.13)

(3.2.14)

Note th a t R y can be decomposed as

R y =  U A U ^, (3.2.15)

where U contains the eigenvectors and A is a diagonal m atrix w ith the corresponding eigen­

values nonincreasingly lying along the diagonal. As a result, the underlying velocity can be 

obtained as

v = argm in ||A |f(u )G ||^  (3.2.16)
V

where || • ||^ denotes the Frobenius norm and G the noise subspace of R y, spanned by 

the last L — d columns of U. The proof of (3.2.16) is given in Appendix 3.B. Thus, by 

evaluating (3.2.16) for a range of velocities of interest, v G [umin, umax], the velocity of 

the reflecting scatterer can be estimated as the velocity minimizing ||A L(u)i /G ||^ , which 

is termed the sub space-based velocity estimator (SVE). As the columns of A l (v) and G 

span the signal subspace and the noise subspace, implying A |f(u )G  =  0 as in (3.B.6), thus 

trace{A%(v)GGHA l (v) }  can be seen as a good approximation of || A |f (u)G ||^. As a result, 

alternatively, a good approximation of v in (3.2.16) can be w ritten as the location of the 

peak of the following function

1
v — arg max

t r a c e { A f { y ) G G H A l {v ) }  

where trace{X.} denotes the trace of m atrix X.

(3 .2.17)
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F ig u re  3.1. The filter bank approach to velocity spectrum estimation.

3.2.3 The Data Adaptive Velocity Estimator

In this section, a non-parametric filterbank velocity estimator is formulated allowing the ad­

ditive noise process, w(t), to be modelled as an unknown zero mean colored noise process. By 

constructing a set of L -tap data  adaptive bandpass FIR filters, each centered at a particular 

velocity v, one may estim ate the so-called velocity spectrum, pl(v),  creating a representa­

tion of how well a particular velocity is represented in the data  set. Herein, a set of L-tap 

data adaptive finite impulse response (FIR) filters is designed, h fc(i;), for k = 1 , . . . ,  d, each 

centered at a given common velocity v designed such that

h fc(^) =  arg min h f  (v)R yh&(t;) subject to h f  ( v )A L(v) = u j  (3.2.18)
h  k(v)

for k = 1 , . . .  ,d
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where u k is the signature vector with a one at position /c, and zeros elsewhere, i.e.,
T

u  k = 0 . . .  0 1 0 . . .  0 (3.2.19)

Thus, the filter in (3.2.18) will suppress power from all frequencies resulting from the eval­

uated velocities, except the velocity constrained by h f  ( v )A L(v) =  to be passed undis­

torted, as illustrated in Figure 3.1. The bandpass filter in this figure, which sweeps through 

the velocity interval of interest, can be viewed as a bank of bandpass filters. As a result, the 

total power of the filtered signal y{t) a t the filter output,

p I M  =  (3.2.20)
A  

fc=l

will mainly be from the d sinusoidal components resulting from the underlying velocity v. By 

examining the velocity spectrum  p^(u), then the peak of the spectrum  will correspond to the 

underlying velocity as illustrated in Figure 3.1. It is noteworthy th a t the filter minimizing 

(3.2.18), is obtained as (please refer to Appendix 3.C for the proof; also see, e.g., [SM05])

h k(v) = R ~ 1A l (v) ( A f  ( v ) R y 1 A ^ v ) ) ^  uk (3.2.21)

Substituting (3.2.21) into (3.2.20), and using (3.2.13) to replace R y, then we have

d - l
pU v ) = J 2 n k ( A ? M & y lA L(u)) 11*, (3.2.22)

k= 1

leading to the velocity estimation as

v = argm axp?(u) (3.2.23)
v y

which is termed as the data adaptive velocity estimator (DAVE). It is worth highlighting 

that the inversion of m atrix A f  (u)R~1A L(u) in (3.2.22) may be poorly conditioned for 

some specific v due to the resulting closely spaced frequency components. To alleviate this

problem, a low rank approximation technique is employed as outlined in Appendix 3.D.
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3.2.4 The Nonlinear Least Squares Estimator

Next, (3.2.1) is w ritten as

Y n  =  x  +  wyv, (3.2.24)

with

x =  A JV(u)/3 =  [z(0)>. . .  , x ( N  — 1)]T , (3.2.25)

where

Y n y(0) • • • y ( N  -  1)
T

(3.2.26)

Here, A N(v) and w N are respectively defined similar to A L(v) and y T h e  NLS estimate 

of v is obtained as

v = argm in || y N -  A N (v)/3 \\%. (3.2.27)
/3, v

Let /  =  \\yN -  A n ( v ) (3 \\2f  and «f(v) = A#(u ) A n ( v ), and note th a t /  can be written 

as [SM05]

/  =  [(3 -  ^ ( ^ A j j M y j v ] ^  V(v)  [(3 -  ^ _1(v )A ^(i;)y7v] +

Y n Y n  ~  y ^ A ^ ( v ) ^ _1(r;)A ^(v)yN. (3.2.28)

This yields the least-squares estimate of (3 as

/3 =  ( A ^ ^ A j v ^ ) ) -1 A % (v)yN , (3.2.29)

which inserted into (3.2.27) yields the minimization

v = argm in || I l i „ (v) Y n  IIf (3.2.30)

with

n iwM 1 1 -  nA„w
=  I -  A n ( v ) ( A % ( v ) A n ( v ) )  ‘ a J ( » ) ,  (3.2.31)
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Minimizing (3.2.27) for the general case of d unknown frequencies results in a d-dimensional 

search. By noting tha t each frequency component will be distorted by a common known 

frequency distorting function as given in (3.2.4), the minimization with respect to v  can be 

obtained by a simple one-dimensional search. Equivalently, one can estimate v as

v = arg max ||A^(v) ( A%( v) A n (v)) 1 A % ( v ) y N \\2F. (3.2.32)
V

Again, it reminds us th a t the inversion of matrix ( A %( v) A n (v )) in (3.2.31) may be poorly 

conditioned for some specific v due to the resulting closely spaced frequency components. 

To alleviate this problem, a low rank approximation technique is employed similar to the 

one outlined in Appendix 3.D.

3.3 Numerical examples

To examine the performances and the abilities of extending the unambiguous velocity range, 

the performance of the proposed estimators is examined in a simplified scenario. In the 

following simulations, no clutter component is assumed in the simulated data  and, as a 

result, no clutter rejection operation is employed in the processing. Herein, a single reflecting 

scatterer moving towards the transm itter with velocity v is assumed, and a carrier consisting 

of d = 2 sinusoids with absolute frequencies, f i  = 0.081 and f 2 = 0.1197, is considered. The 

received signal is assumed to be corrupted by zero mean circular white Gaussian noise w(t). 

Let the signal to noise ratio  (SNR) be calculated as

2

S N R  = 101og10 ^ | ,  (3.3.1)

with a 2 — E { x Hx.} and a 2 the variance of w(t).

Initially, the details of the velocity spectra of the proposed estimators with data samples 

N  = 20 are studied. The velocity spectra of the SVE, the DAVE and the NLS method are
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defined in (3.2.17), (3.2.23) and (3.2.32), respectively. Figure 3.2 shows the velocity spectra 

of the proposed methods with varying SNR for true velocity v — 2vNyq. For very low SNR, 

all the methods have difficulty in locating the true velocity as shown in Figure 3.2 (a), which 

is not surprising. As the SNR increases, the side lobes of the spectra decrease and all the 

proposed methods exhibit their ability to find the true velocity which corresponds to the 

main peak in the corresponding plot in the figure. It is worth noting tha t, even for high 

SNR, a comparable peak to the main peak in the spectrum occurs at location where v = 

—2vNyq, likely resulting in some outliers in estimation. To further explore this, the proposed 

estimators are examined for varying velocity with S N R  — 10 dB. The corresponding velocity 

spectra are shown in Figure 3.3. As can be seen, for velocity unequal to integer multiples of 

the Nyquist velocity VNyq, the spectrum of each proposed method only contains one distinct 

peak which correctly locates the underlying true velocity, as for the cases in Figure 3.3 (b) 

and (d) where the true velocity v =  1.5v^yq and v = 2.5VNyq, respectively. On the other 

hand, for velocity equal to integer multiples of vNyq as in Figure 3.3 (a) and (c), a similar 

conclusion holds as in Figure 3.2 in terms of the second peak likely misleading the estimation. 

Based on the finding above, in the later simulations, a third order median filter is employed 

to suppress the possible outliers.

In the rest of this section, the proposed methods are examined statistically and their 

performances are compared to the existing methods, NAT and KAT. Figure 3.4 shows the 

mean square errors (MSE) of the proposed three estimators and the NAT method as a 

function of SNR. To allow for the best possible performance of the NAT method, ideal (not 

realizable) filters have been assumed to separate the carriers, f i  and / 2. If non-ideal filters are 

used, the performance of the NAT method will be significantly worse. It is noteworthy that no 

details of the used filters are given in [NRB+95]. In the figure, the performance is compared 

to the corresponding CRLB derived in Appendix 3.E. Here, v =  2v Nyq, vNyq =  0.385 m /s 

and N  — 20. It is clear from the figure th a t all the proposed methods exhibit low MSE



S ec tio n  3 .3 . N um erica l e x a m p le s 51

0.5

—  SVE

1.6

1

—  DAVE

T T

0.5

J w M
1.6 2

—  NLS

v/v.
Nyq

(a)

0.5

—  SVE

- 2.4 -2  - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2

1

?0.5
N
76

| —  DAVE

- 2.4 -2  - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2

1|-----------1-----------      1-----------1-----------1-----------  1-----------r

0.5

—  NLS

- 2.4 -2  - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2
v/v.,

Ail

0.5

—  SVE

© . S 1 T T T

—  DAVE

1

0.5

—  NLS

v/v,

(b)

—  DAVE

—  NLS

- 2.4 -2  - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2
v/v,

Nyq

(c) (d)

F ig u re  3.2. The velocity spectra using the proposed methods, w ith underlying true velocity, 

v = 2vNyq, obtained from (a) S N R  =  - 5  dB; (b) S N R  = 0 dB; (c) S N R  =  10 dB; (d) 

S N R  =  20 dB.
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F ig u re  3 .4 . The MSE of the discussed estimators, NAT, SVE, DAVE and NLS, as a function 

of the SNR, compared to  the CRLB.

very close to  the CRLB. In contrast, the NAT approach is statistically inefficient leading to 

the significant gap existing between its MSE and the CRLB. Moreover, as compared to  the 

other proposed methods, the NLS estim ator shows slightly lower SNR threshold at which 

the m ethod exhibits MSE nearly m atching the CRLB. Figure 3.5 illustrates the estim ated 

MSE as a function of the velocity ratio v /v^yq , a t S N R  =  10 dB. Here, to  enable the 

comparison, the KAT estim ate is obtained from the backscattering of a single frequency 

carrier a t / 3 =  0.1. As seen from the figure, the KAT estim ator suffers from the well-known 

Nyquist velocity limit, beyond which it breaks down. The NAT shows similar performance 

to th a t using KAT for velocities below VNyq. As is clear from the figure, the proposed SVE,
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F ig u re  3.5 . The MSE of the discussed estim ators, KAT, NAT, SVE, DAVE and NLS, as a 

function of the velocity.

DAVE and NLS estim ators uniformly exhibit lower MSE than  the NAT over the whole 

examined velocity range. Furthermore, the NLS m ethod shows preferable performance as 

compared to  the proposed SVD and DAVE m ethods. The results shown in Figure 3.4 and 

Figure 3.5 are obtained from 103 M onte Carlo simulations.

3.4 Conclusions

In this chapter, three novel velocity estim ators using multiple frequency carriers have been 

developed. Furthermore, the CRLB for the velocity estim ation is derived to  evaluate the 

performance of the proposed methods. Analysis shows th a t these new estim ators are able
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to mitigate the poor high velocity performance of conventional correlation based techniques 

and thereby to provide usable performance beyond the conventional Nyquist velocity limit. 

It is worth noting tha t the proposed estimators have high computational complexity. As 

a result, further research is needed on how these methods can be implemented with lower 

computational load. This is a topic of ongoing research.
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Appendix

3.A Derivation of (3.2.11)

Following [SM05], the derivation of (3.2.16) is given as follows. The initial phase terms {tpk} 

are modeled as independent random variables uniformly distributed on [—7r ,7r). Recalling 

(3.2.11), P  can be written as

P  =  E { * v(t)f3pH* “ (t)}

=  * v(t)£ { /3 /3 "} # "(t). (3.A.1)

Recalling (3k defined in (3.2.3), E{f3(3H} can be further simplified as

[E{(3(3H} \ kJ = a ka lE{e iipke~iipi} (3.A.2)

where [X]fc { denotes the element of X  at its kth row and Ith column. For k = I,

E { e itpke~i(pi} = 1, (3.A.3)

and for k ^  I, this becomes

E { e iipke - iipi} = E { e itpk}E{e~ i{pl}
1

^ L / Vdip.
= 0 .

Thus,

and as a result,

E{f3 /3 " } = d ia g { a t  • • • OLr ]}.

= E{/3/3h },

where &v(t) is a diagonal m atrix defined in (3.2.9).

(3.A.4)

(3.A.5)

(3.A.6)
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3.B Proof of (3.2.16)

Following [SM05], the proof of (3.2.16) is given as follows. Recalling the covariance matrix 

R y in (3.2.10), let Ai >  A2 > • • • >  AL denote the eigenvalues of R y, and let

S =  [si, • - * , s rf]L x d

in which the orthonormal eigenvectors (s/-} associated with {Ai, • * • , A^} span the signal 

subspace 7Z(S), and the noise subspace Af(G)  is spanned by the columns of

G  — [g l>  ’ • ' j g L - d h x ^ i - d ) (3.B.2)

in which the orthonormal eigenvectors {g*,} are corresponding to  (Ad+i, • • • , AL}, and it can 

be shown tha t [SM05]

Ad+i =  • • • =  Al  =  a 2 (3.B.3)

when white noise w(t) is assumed in (3.2.1). From (3.2.10) and (3.B.3), it follows that

Ad+i 0

R yG =  G

0 Aj

=  a 1 G  =  A l (v)P A ? (v)G  +  a 1 G. (3.B.4)

As a result,

which further implies tha t

Ai»PA"(tOG = 0 (3.B.5)

A f O ) G  =  0 (3.B.6)

as A i(w )P has full column rank. Therefore, the true frequencies and thus the corresponding 

underlying true velocity can be estimated by minimizing the following equation [SM05]

v = argm in ||A f  (u)G||J.. (3.B.7)
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3.C Proof of (3.2.21)

Following [SM05], the proof of (3.2.21) is given as follow. As R y is a Hermitian positive 

matrix and m atrix A i (v )  has full column rank equal to d , it can be proven th a t the unique 

solution to the minimization problem

hfc(^) =  arg min h f  (i^R yh^u) sub j. to h k(v )A L(v) = u f  (3.C.1)
hfc(u)

is given by

h k(v) = R ~ 1A l (v) (A f(v )R ^ '1A L(v))~1u fc (3.C.2)

which satisfies

M ^ A lW  =  u f . (3.C.3)

P roof: Let hfc(v) =  hfc(u) +  A where A  G CLxl with A H A l ( v )  =  0 s o  th a t hfc(u) also

satisfies h k (v )A L(v) = 0. Then

h f  (^Ryhfcfu) =  h f  ( v)Ryh k(v) +  h f  (v)RyA + A HR yh k(v) +  A HR yA (3.C.4)

where the two middle term s are equal to each other

{ h f  (u)R yA }/f =  A HR yh k{v) (3.C.5)

as R ^  = R y. Recalling (3.C.2), it can be shown that

A HR yh k(v) =  A HR yR ~ 1A L(v) ( A f W R f A f t i ) ) '1 u*

-  A HA L(v) (A f  ( t^ R ^ A ^ i ; ) ) -1 u k 

= 0 (3.C.6)

where A HA l (v ) =  0. As a result, (3.C.4) can be rewritten as

h f  (t^ R ^h ^ v ) -  hk (v)Ryhk(v) =  A ^R ^ A  > 0 (3.C.7)

where R y is positive definite. Therefore, it follows from (3.C.7) tha t the minimizing h*(u)

is identical to h f  (i>) given in (3.C.2).
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3.D Low Rank Approximation

To alleviate the rank deficiency problem in (3.2.22) in Section 3.2.3, a low rank approximation 

technique is employed, noting tha t a least-squares solution can be found using the singular 

value decomposition. Let

Q =  U E V *  (3.D.1)

where S  is a diagonal m atrix containing the d singular values of Q on the diagonal, and 

where U and V are unitary matrices. Further, let ai denote the Zth singular value of Q, and 

note tha t the solution minimizing ||Qr* — Ufc||2, where || • ||2 denotes the 2-norm and U/j is 

defined in (3.2.19), can be found as [GV96]

d

rk =  ^ 2  o-z_1U f  u fcVi (3.D.2)
i=i

where U) and V/ denote the Ith column of U and V, respectively, and where d is the rank of 

Q, or alternatively the selected low-rank approximation of Q. Using (3.D.2), then (3.2.22) 

can be expressed as

P2y(v ) = J 2 u I*k (3.D.3)
k =  1
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3.E Cramer-Row Lower Bound

Recalling (3.2.24) and (3.2.25), the unknown parameter vector 6 G K2d+1 is defined as

0 =  [K (/3),9(/?),t>f> (3.E.1)

where 3ft[/3] and £r[/3] are the real and the imaginary parts of the complex amplitude j3 = 

[Pi,.. .,Pd]T, respectively.

It holds tha t yN has the complex Gaussian PDF

1
p { y  n ; 0 )  =

ttn  det C
,-(yN-M(fl)rCy£(yN-/x(0))

where C yN =  <r2I and det(-) the determinant operation, with

M(0) =  [a:(0), — , x ( N  -  1)]T .

(3.E.2)

(3.E.3)

As a result, according to [Kay93], the Fisher information m atrix (FIM) of 0  can be written

as

FIM (0) =  2cr_23ft

Note tha t

dfj,H{6)
oe

and it can be shown th a t

d 0  d 0 T (2 d + l) x (2 d + l)

/  9^(0) \
03*03) 
df*H(0) 
dQ(/3) 

df iH (0)
d v  *  ( 2 d + l ) x N/

dt*HW  . h
d U ( 0 )

d n H(0)  
SS>(/3)

dfj,H(0)
d v

=  A n ( v ),

(3.E.4)

(3.E.5)
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where A  =  — [(f © /3H)A ^(v)]  © t, with © denoting the Schur-Hadamard (element-wise)

product, f T = [/Cl, . . . ,  f Cd]T and t T =  [0 ,. . . ,  N  -  1]T. Similarly,

. (  d n (0 )  dfj.(6) d n{ 9)
q q T  \  dn((3)T d ,zs(p)T dv N x ( 2 d + 1 )

with

d$t((3)T

d$(/3)T

9^ (0 )
dv

= A  N(v), 

= i A N (v), 

=  A H.

Thus, the FIM can be rewritten as

F IM (0 ) =  2a~ dt

)P(v) i&(v)

- i& (v )  &(v)

A A n (v) iA A n (v)

A% (v) A h

- i A % ( v ) A H

IIAII2

where \P(u) =  A j(» )A » (r )  as in (3.2.28).

Thus, the CRLB for the velocity v can be obtained as

(3.E.6)

(3.E.7)

var(v) > (3.E.8)



Part II 

Application: U ltrasound



Chapter 4

FUNDAMENTALS OF MEDICAL 

ULTRASOUND

Ultrasound has found wide application in medicine and currently more than one fourth 

of medical imaging is produced via ultrasonic systems [Wel94]. An example of a modern 

portable ultrasound scanner is shown in Figure 4.1. Before examining the proposed meth­

ods with realistic ultrasound RF data, it is preferable to  introduce some general theory of 

ultrasound. In this chapter, some basic physics encountered in the use of ultrasonic tech­

niques will be discussed. First of all, wave propagation and wave interaction with human 

tissue will be reviewed, followed by the issues of transducer, beamforming and resolution. 

Then, the discussion will be focused on pulsed wave (PW ) systems. More in-depth study 

of the physics of ultrasound can be found in [Jen96a, EMOO, Hil86, LSE+86, Mai78], and the 

references therein.

4.1 Wave Propagation and Interaction

Waves can be classified into mechanical waves and non-mechanical waves, depending on 

whether they need a medium for propagation or not. A mechanical wave needs a medium 

to propagate while a non-mechanical wave does not, for example, ultrasound waves are

63
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Figure 4 .1 . SonoSite portable ultrasound scanner (model: SonoSite 180plus). The to tal 

weight of this device is 2.6 kg. (Courtesy of SonoSite: www.sonosite.com).

mechanical since they need a medium (tissue) to  propagate. Light is a non-mechanical wave 

since it can propagate in vacuum. From the point of view of the wave propagation direction, 

waves can also be defined as a longitudinal wave or transverse wave. If the vibration is 

parallel to  the direction of propagation then the wave is a longitudinal wave, on the other 

hand if the vibration is perpendicular to  the direction of propagation, then the wave is called 

a transverse wave. Further, from the point of view of identifying a wave pressure at a specific 

spatial point, waves can be regarded as scalar and vector waves, respectively. For a scalar 

wave, only the distance from the source origin (say transducer) is needed to identify the 

wave at each point in the medium, this is the case for a longitudinal wave. However, for a 

vector wave, not only a value of distance but also one of direction is needed; this is the case 

for a transverse wave. Ultrasonic waves are mechanical scalar waves [Hil86j. O ther types of 

waves such as transverse waves are rarely applied in medical ultrasonics due to the strong

http://www.sonosite.com
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attenuation in soft tissue [EMOO]. The general sound wave equation in three-dimensions can 

be expressed as [Mai78]

d2jj(x, y, z, t) _  2 /  d2j ) {x, y , z , t )  d2j){x, y, z, t) d2jj(x, y, z, t ) \  .
dt2 \  dx2 dy2 dz 2 J

where f j (x, y , z , t )  is the wave amplitude (acoustic pressure) at point (x, y , z )  at time t. The 

parameter c is the propagation speed in the medium, which depends on the medium, and is 

given by

C = 7 W  ( 4 1 ' 2 )

where p is the mean density (k g /m 3) and K  the compressibility (m 2/ N ), assuming no net 

transfer of energy from the wave to the medium. The speed values for soft tissue within the 

human body are closely clustered around 1540 m /s ,  which for this reason is normally chosen 

as the standard sound speed in medical ultrasound [EMOO]. It is virtually independent 

of frequency of the transm itted sound and depends on the density and compressibility of 

the medium as shown in (4.1.2). Furthermore, the sound speed, c, is equal to the carrier 

frequency f c of the transm itted sound times the wavelength A stated  mathematically as

c =  / c A (4.1.3)

By definition, a sound having a carrier frequency above 20 kHz is called ultrasound. For 

medical purposes, carrier frequencies between 2 — 10 MHz are used [EMOO], which corre­

sponds to the wavelength range of 0.77 — 0.154 m m  (provided th a t the ultrasound velocity c 

is 1540 m /s) .  As ultrasound waves propagate into tissue, due to the changes of the acoustic 

properties of the media, they will encounter certain phenomena - scattering, reflection, re­

fraction and attenuation.

Scattering

Scattering occurs when a sound wave travelling through a medium encounters a discontinu­

ity of dimensions similar to or less than  the wavelength of the wave. Some of the energy
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of the wave is scattered in all directions. This phenomenon will definitely exist in medical 

ultrasound when investigating the blood flow in the human body and it enables the use of 

ultrasound for estimating blood velocities. This is because the estimation of blood veloc­

ity will rely on the scattering of the wave as it interacts with the blood. In the human 

body there exist many structures (cells, fibers, and connective tissues), which are much 

smaller than the wavelength of the em itted ultrasound. The em itted wave will interact with 

these numerous small structures, termed scatterers, during the propagation. Scattering from 

objects which are less than 10 times smaller than the wavelength is usually referred to as 

Rayleigh scattering [Jen96a]. The scattered strength is proportional to the fourth power of 

frequency [EMOO]. The strength of a backscattered signal can be described either by the 

backscattering coefficient or the backscattering cross-section [Jen96a]. The measurement of 

backscattering cross-section is difficult to  obtain in practice [EMOO]. For different struc­

tures, the backscattering coefficients are different and so too is the backscattering strength. 

Analysis shows the clutter is 20 - 60 dB stronger than the backscattered signals from the 

blood scatterers [HvdVD+91, Jen93b, EMOO]. Given the vast number of scattering ensem­

bles, it is often appropriate to characterize the scattered waves in statistical terms. As the 

contributions from scatterers can be assumed independent, the central limit theorem states 

that the amplitude distribution of the scattered waves follows a zero mean Gaussian distrib­

ution [WSSL83, Jen96a]. Also, the amplitudes follow a complex Gaussian distribution with 

zero mean when the amplitudes are complex. It is worth noting th a t the backscattered signal 

is deterministic; the same signal will result as if a stationary structure is probed. However, 

for a slight movement in position, the successively received echoes are not equal, although 

still correlated. This correlation makes it possible to estim ate blood velocities with ultra­

sound. As there is a strong correlation for small movements, it is possible to detect shifts in 

position by correlating the successive measurements of the moving blood ensembles.
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Reflected waveIncident wave

Medium A

Medium B

Refracted wave

F ig u re  4.2. Reflection and refraction of a sound wave.

Reflection

Reflection is a special case of scattering which occurs a t smooth surfaces on which the 

irregularities are very much smaller than a wavelength. As a wavefront encounters a smooth 

surface with an incident angle 0*, it will be reflected at an equal angle as shown in Figure 

4.2. The amplitude of the reflected wave can be calculated by [EMOO]

_ ( p2C2COs0i -  piCiC0s 6t \  (
a* \ p 2 C2 cosQi +  p \CicosOt )  

where ar and a* are the reflected amplitude and the incident amplitude, respectively; 0* and 

9t denote the wave incident angle and the angle of refraction, respectively, as shown in Figure 

4.2; further, pi and p2 denote the density of medium A and medium B, respectively; and C\ 

and c2 are the corresponding speeds in these media. The am plitude of the reflected waves will 

be much stronger than th a t from scattering since the energy in the la tter case is scattered 

in all directions. In diagnostic ultrasound, a combination of reflections and backscattered
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echoes is picked up by the receiver.

Refraction

The term refraction describes the deviation of a sound beam when it crosses a boundary 

between two media in which the speeds of sound are different. The resultant angle of prop­

agation is determined by Snell’s Law:

sinB1 = c1  
sin6t c2

The phenomenon of refraction existing in the human body makes medical ultrasound capable 

to map the boundaries like vessel walls, diaphragm and some other organ boundaries [Jen96a, 

EM00,Sch01]. Together with scattering and reflection, these effects make colour flow imaging 

possible.

Attenuation

Ultrasound propagation in tissue will be attenuated due to scattering and absorption, which 

is referred to as attenuation. Scattering will spread part of the energy in all directions 

while absorption will convert the acoustic energy into therm al energy due to viscous loss, 

heat conduction and the molecular exchanges of energy. The m ajority of the lost acoustic 

energy comes from absorption which can be up to 95% [Jen96a]. The attenuation is strongly 

dependent on frequency. Higher frequency will result in larger attenuation, which means 

that the backscattered echoes from deep-lying interfaces will be too weak to be detected 

and limits the effective probed depth. Thus there is a trade-off between the penetration 

depth, resolution and level of transm itted power. A ttenuation limits the typical ultrasound 

system to depths of 10 — 30 cm when frequencies between 2 — 10 MHz are employed. Higher 

frequencies, such as 50 MHz, are limited to a 1-cm depth, but they offer the advantage of 

improved resolution, which could be useful for applications related to the eye, skin, and
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(a) (b)

F ig u re  4.3. (a) A linear array transducer used to scan a medium, (b) The steering process 

in a phased linear array transducer.

intravascular imaging [LTCF96].

4.2 Transducer, Beamforming and Resolution

Transducer

An ultrasonic transmitter-receiver, termed transducer, is the part of an ultrasound system 

that generates an ultrasonic beam and detects backscattered echoes. These are made from 

materials tha t contain piezoelectric (PZT) crystals. A PZT crystal will vibrate when excited 

by an alternating current (AC) electric signal of the right frequency (transm it mode). Con­

versely, it can generate a small electric signal when forced to vibrate (receive mode). A trans­

ducer is used to convert electronic signals to ultrasound waves and vice versa [Jen96a,EM00]. 

Typically, there are two kinds of transducers used in an ultrasound system, single element 

transducers and array transducers. For a single element transducer, it must be steered me­
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chanically over the region of interest (ROI) whereas array transducers can steer the beam 

electronically. For this reason, an array transducer is usually used in blood flow imaging in 

modern ultrasound systems, and thus no moving parts are required to sweep the ultrasound 

beam direction, as shown in Figure 4.3.

T

4Focal point 
(scatter#)

Adder

Array elements Delay lines Apodization coefficients

F ig u re  4.4. Beamforming for reception in a phased array transducer, reproduced from

Beamforming

For a phased array transducer, the transm itted  and received signals can also be individually 

delayed in time, hence the term  phased array. Through time delays a beam can be steered in 

a given direction and focused a t a given axial distance both in transm it and receive, this is 

called beamforming. A detailed description of beamforming for reception in a phased array 

transducer is shown in Figure 4.4. Using simple geometric relations a transducer can be 

focused at any point [NikOl].



S ec tio n  4 .2 . T ran sd u cer , B ea m fo rm in g  an d  R eso lu tio n 71

Short pulse echo (N = 2) Long pulse echo (N = 10)

£-0.2

Samples.

-0.3 -0.1 0.1 0.3
Normailized freq.

~n
3 0.6
Q.
I  0.2

1-0-2m
1 - 0.6
z

-1
1

T

JJL
26 51 76 101 126

Samples.

-0 .5  -0.3 -0.1 0.1 0.3
Normailized freq.

F ig u re  4.5. Comparison of a short pulse and a long pulse (top), together w ith their spectra 

(bottom ), the true normalized carrier frequency is 0.1.

Resolution

The ability to  distinguish echoes from adjacent reflectors in tissue is term ed resolution, which 

is determined both  by how close the reflectors are positioned to  each other and the ability 

of the system ’s beamforming. Resolution comprises two features, axial resolution and lateral 

resolution. Axial resolution is the ability of a system  to separate structures lying closely 

along wave propagation direction. It is determ ined by the length of the ultrasound pulse 

generated by the transducer. A long pulse will in teract w ith a range of scatterers which move 

with different velocities, the recorded RF d a ta  will therefore contain a range of velocities 

due to  the velocity spread. As a result, the averaged estim ate of velocity will have a higher 

variance for an increasing velocity spread. Figure 4.5 shows the difference for a short pulse
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echo (reflection from scatterer) with oscillation number N a = 2 and a long pulse echo with 

N 0 =  10. As the figure shows, a long pulse results in a narrowband spectrum and a short 

pulse gives a wideband frequency spectrum. Hence, a good axial resolution can be achieved 

by firing short bursts; to achieve better axial resolution, only one cycle instead of several 

cycles should be used. In practice, the number of oscillation of a pulse is restricted by the 

bandlimited character of a transducer, the lowest number being around 2. Typically, from 

6 to 32 wavelengths are chosen to achieve the desired resolution [Jen96a, EMOO]. Lateral 

resolution is the ability of a system to separate structures in a plane perpendicular to the 

beam direction, which depends on the focusing of the ultrasound beam produced by the 

transducer. The narrower the beam, the higher the lateral resolution, since a narrow beam 

enables small objects to become distinguishable. All systems should be designed to produce 

narrow beams, since this is usually the major lim itation on lateral resolution. Also, a beam 

with uniform intensity is preferred. In practice, a nonuniform intense beam exists in the near 

field and a uniform beam is present in the far field (area of diverging beam in which lateral 

resolution is poor). It is possible to smooth the near field intensity pattern  so as to yield 

a narrow beam with almost uniform intensity. Thus, a broadband pulse will produce many 

frequencies rather than just a single frequency. The presence of multiple frequencies tends to 

make the near field more uniform. Each frequency has an independent interference pattern, 

and when these patterns are superimposed on one another, the result is a smoothing of the 

overall intensity pattern. This reasoning also motivates the use of multi-frequency carriers 

in the transmission.

4.3 Pulsed Wave System

With respect to blood flow velocity estimation, two kinds of modes can be distinguished, 

continuous wave (CW) mode and pulsed wave (PW ) mode as shown in Figure 4.6. In CW
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(b)

o

Blood Vessel Ultrasound
•beam

F ig u re  4 .6 . (a) Continuous wave (CW ) system, Tx is the transm itter and R x is the receiver, 

they use separated transducers; (b) Pulsed wave (PW ) system, Tx  and R x  use the same 

transducer.

mode, ultrasound is transm itted  and received continuously by means of two transducers. 

The continuous signal is obtained from the sample volume where the transm itted  beam 

overlaps the sensitivity region of the receiving transducer. W ith  a continuous wave system, 

reflections will be obtained from all the blood m otion along the beam, i.e., it is not possible 

to know the range from which the m easurem ent was obtained if the two transducers are 

close to  each o ther [Jen96a]. Instead, in the PW  mode, short bursts of ultrasound are 

em itted w ith a given pulse repetition  frequency. Between transmissions, the transducer 

is switched to reception mode to  catch signals backscattered from blood as well as the 

surrounding tissue. The position of insonified regions can be localized since as the depth 

of the region of interest increases, the tim e before receiving the echo lengthens. Another 

advantage of a PW  system  over a  CW  system  is th a t it only needs one transducer for 

both  transm ission and receiving, as shown in Figure 4.6 (b). Therefore, the transducer will
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F ig u re  4.7. Block diagram of a PW  ultrasound measurement system, reproduced from 

[Jen96a]. The wall filter in the figure is termed clutter filter in this thesis.

need to be switched between an em itting state and a receiving state, which makes diagnosis 

more convenient. For these reasons, PW  mode is widely employed in CFI and herein the 

discussion will be confined to the PW  system. Figure 4.7 briefly illustrates the block diagram 

of a typical PW  ultrasound measurement system for CFI. The transducer emits a pulse and 

then switches to reception mode and acquires echoes from scatters before firing the next 

RF line (transmission). After amplifying and digitalizing the echo, the signal is represented 

in a complex form by a quadrature demodulation [Jen96a], normally performed via Hilbert 

transform as later illustrated in (4.3.3). Figure 4.8 depicts the scan-mode acquisition for 

CFI (left) and an RF data  m atrix  is given (right) with dimension M  x rN ,  where M  is the 

number of depth samples along the fast time (depth-wise) direction and r  the number of 

line of sight (LOS). In each LOS, N ultrasound pulses are emitted, and slow-time samples 

can be defined as the N  samples of signals resulting from a fixed depth with pulse repetition 

frequency f prj.  Each LOS corresponds to one specific Doppler angle and it is assumed that 

the flow characteristic changes very small for very limited time duration within each LOS. 

After firing N pulses in one direction, the pulse beam will sweep to the next LOS and another 

set of N pulses will be fired with a new Doppler angle. Typically, r  is between 50 — 100, N  

around 4 — 20, and the imaging across the field of view may be around 15 cm [Jen96a,EM00].
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F ig u re  4.8. Diagram of a CFI measurement system (left) with output of a 2-D RF data 

m atrix (right), reproduced from [KHTI03].

A sensitive technique for velocity estimation must be used since only a few echoes can enter 

the estimator in order to have a high frame rate. Using more echoes (slow time data samples) 

for the estimate leads to better estimate accuracy but at the cost of higher computational 

load which in return  results in slower frame rate in CFI. As a result, a compromise between 

frame rate (estimation time) and accuracy must be found, making both clutter rejection and 

blood velocity estimation more challenging.

Figure 4.9 illustrates the basic principle of velocity estimation in each LOS, in which 

a simplified situation is assumed th a t a single scatterer moves away from the transducer 

with a velocity of v. Initially, the depth of a scatterer is d0 and the echo is recorded by 

the transducer at time instance t 0 = 2d0/c  from the pulse transmission. Between every two
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F ig u re  4.9. Basic principle of the velocity estim ation in PW  ultrasonic system.

emissions the scatterer moves a distance A d  along the ultrasound beam, which is proportional 

to the projected velocity along beam /axial direction, v. The time-shift t s in the arrival time 

of the signal from pulse-to-pulse is given by

f. =  — =  — Tpr/ (4.3.1)
c c

where Tprf = l / f prf  is the pulse repetition period. These shifted signals are illustrated in 

Figure 4.9. In order to  estim ate the velocity a t a given depth, a new signal is generated 

as marked by the horizontal line. The new signal, which is shown on the right-hand side 

of Figure 4.9, has a sampling frequency of f prf .  The signal from a single scatterer and a 

narrow-band em itted pulse is approxim ated as [Jen96a]

2v
x{n)  «  a(n) c o s ( 27t — f cnTprf  — <p) (4.3.2)

c

where a{n) is the envelope am plitude, f c the carrier frequency, n  the n th RF line and </? a

phase accounting for the propagation tim e from the transducer to  the depth of interest and
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back. The spectrum  of the new signal is a replica of the emitted spectrum with the frequency 

axis scaled by 2v /c  [Jen96a]. Thus the frequency of the received signal is proportional to 

the blood velocity. Taking real valued signals for the estimation process yields symmetric 

Doppler power spectra from which it is not possible to get information about flow direction. 

Normally, an ideal blood velocity profile or CFI should cover both flow strength as well as 

flow directional information. To estimate the directional information, complex valued data 

are needed. These can be obtained by computing the discrete-time analytical signal of the 

measured signal in (4.3.2) [Mar99],

^a(n ) =  x{ri) + jH{x(n)}  — a(n)el 2̂‘n~ ^cTprf~(f  ̂ (4.3.3)

where x a(n ) denotes the corresponding analytical signal of x(n),  and H{*} the Hilbert trans­

form  operation. Alternatively, the complex data  can be generated using Quadrature demod­

ulation [Jen96a].

Since the time between subsequent em itted pulses is determined by the depth of the 

point of interest, the f prf  is determined by the depth of th a t point: emission of the next 

burst is only allowed if the returned signal of the previous burst has been received, otherwise 

aliasing in depth will occur. The largest depth dmax into the body th a t can be investigated is 

a function of c and / pr/ ,  defined in (3.1.2). W hen the Doppler frequency shift exceeds a limit 

defined by the Nyquist theorem (which equals / pr/ / 2), distortion of the signal takes place 

whereby the signal wraps itself up and appears to artificially change direction. Similarly, 

velocities higher than those related to Nyquist limit reappear as other, incorrect, velocities 

on the display. This phenomenon is known as velocity aliasing. The peak velocity that can 

be correctly resolved by the PW  system is limited by the f w f  and therefore by the depth of 

the point of interest, the greater depth, the lower the / pr/. As discussed in Chapter 3, for 

the autocorrelation estim ator (also term ed KAT or UWLP methods as in Chapter 2), there 

exists a relationship between the maximum detectable axial velocity v ^ yq in (3.1.1) and the
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maximum observable depth in (3.1.2),

c2
vmax =  771 7~ • (4.3.4)

O U 'm ax J c

4.4 Conclusion

This chapter presents a short overview of the theoretical background of ultrasound wave 

propagation and wave interaction with human tissues. After explaining the basic principles 

of transducer, beamforming and resolution, then, the discussion is focused on pulsed wave 

systems which are widely employed in CFI.



Chapter 5

EFFICIENT IMPLEMENTATION OF 

CLUTTER EIGENFILTERS

In this chapter, one of the classical challenges involved in CFI will be discussed, namely 

clutter rejection. First of all, a brief introduction about clu tter and clutter rejection is given, 

followed by the literature review of existing clutter filters. Then, an efficient implementation 

of the recently developed eigenfilters using a fast subspace tracking technique is introduced, 

without degrading the performance as compared to employing conventional block EVD/SVD 

based eigenfilters.

5.1 Clutter Rejection

In ultrasound Doppler blood flow measurements, the backscattered signals from the moving 

blood scatterers are corrupted by interference signals, term ed clutter, originating from the 

stationary or slowly-moving tissue such as vessel walls, and from stationary reverberations. 

[Jen96a,EM00,EFPF97, SchOl]. The measured ultrasonic signal resulting from the n th pulse 

at depth k, denoted r(/c,n), can thus be well modelled as consisting of three statistically 

independent components [BTK02], i.e.,

x(k,  n ) =  c(k, n) +  b(k, n) +  w(k,  n),  (5.1.1)

79
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F ig u re  5.1. The frequency spectra  of c lu tter, blood and  noise contained in dem odulated 

complex RF data, assum ing the  D oppler shift is positive for m otion tow ards probe. The 

dotted  line represents an ideal high-pass filter, (a) w ith  s ta tionary  tissue; (b) w ith slow- 

moving tissue.

where c(k,  n), b(k , n ) and w(k,  n)  denote the c lu tte r, the  blood and the additive noise compo­

nents, respectively. Typically, the  c lu tte r  signals are 20 - 60 dB stronger than  the backscat- 

tered signals from the blood sca tte rs  [HvdVD^Ol, Jen93b, EM00]. On the other hand, the 

echoes scattered from rapidly moving blood cells have larger frequency shifts than  the echoes 

scattered from slowly moving tissue. F igure 5.1 depicts the frequency spectra  of the three 

com ponents w ith or w ithout moving tissue. For c lu tte r which originates from the  stationary  

tissue, shown in Figure 5.1 (a), the  c lu tte r  com ponent will rem ain identical in each RF line 

within each LOS. As a result, th e  s ta tio n ary  c lu tte r signals can be filtered out by using a
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simple difference filter (also called stationary echo cancelling) [Jen93b], i.e.,

yk(n) =  a Tx fc(n) (5.1.2)

where a  = ■1
T

. However, the clutter com-and Xjt(n) =  x ( k , n )  x ( k , n  — 1) 

ponent will not be strictly identical in each RF line due to tissue motion induced by the 

pulsating vessels. This leads to  spectra overlap between blood and clutter in a common fre­

quency band as shown in Figure 5.1 (b). This situation occurs quite commonly in blood flow 

measurement, especially in strain-flow imaging which is a new technique for investigating the 

vascular dynamics and tum or biology [KHTI03]. As in tum or imaging, the blood and clutter 

echoes often share the same frequency bands under low flow velocity conditions, making the 

separation of blood and clu tter very challenging. The adverse influence of clutter can be 

reduced by minimizing the size of the echo sample volume, but even if the entire sample 

volume is inside a blood vessel, the unavoidable clutter from reverberations and transducer 

side lobes will affect the signal [KHTI03]. Furthermore, blood velocities are commonly esti­

mated by using the autocorrelation m ethod [KNK085]. To obtain unbiased blood velocity 

estimates, the clutter signals need to be attenuated down to the therm al noise level and 

an efficient clutter filter must be applied before the estimation. Since clutter filters operate 

along the slow time axis, only 4 — 20 echo samples are available for high pass filtering to 

maintain acceptable frame rate [EM00].

Thus, an ideal clutter filter should exhibit the following properties:

• Narrow transition band;

• Being adaptive to non-stationary clutter;

• Not reducing the limited available data  samples;

• Not removing blood component.
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F ig u re  5.2. Classification of clutter filters.

The above facts and requirements make the design of an efficient clutter filter very challeng­

ing and as a result the problem has received significant attention over the last decades. In 

general, these filters can be classified into static clutter filters [HvdVD+91, Jen93b, PAB94, 

TH94, KL95] and adaptive clutter filters [BHR95, LBH97, Tor97, BT97, BTK02, KHTI03, 

KF02, YMK03, Kad02, GT02, GNT03, T W F +04], As summarized in Figure 5.2, the static 

clutter filters mainly comprise FIR, infinite impulse response (HR) and polynomial regres­
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sion filters; and the adaptive clutter filters mainly include independent component analysis 

(ICA)-based filters, eigenvector regression filters (ERF), which sometimes are also termed 

principal component analysis (PCA)-based filters [GT02,GNT03], as well as a down-mixing 

method [BTK02]. Of these methods, the static polynomial regression filters, the ERF filters 

and the ICA-based filters are also classified as regression filters, which will be discussed later. 

The PCA and ICA are two common methods of the blind source separation (BSS) family. 

More details about BSS can be found in ( [Car98,Sto02], and the references therein).

Static clutter filters

As discussed above, various static clutter filters, such as FIR, HR and polynomial regression 

filters, have been proposed to suppress the clutter from the backscattered signals (e.g., 

see [HHR91,PAB94,KL95,BTK02], and the references therein). To get a narrower transition 

band, both the FIR and HR filters require higher order, which will further reduce the valid 

echo samples by a factor of the order of the filters. Moreover, the FIR  filters need a higher 

order than the HR filters to achieve an equivalent narrow transition band [OSB99]. It is 

worth noting tha t the most commonly used estim ator in CFI, the autocorrelation estimator, 

will suffer higher variance when fewer valid da ta  samples are used and the variance of it is 

inversely proportional to the number of valid outputs of the employed filter, as implied in 

(2.2.15) (the autocorrelation estim ator is also term ed UWLP in Chapter 2). Furthermore, 

the conventional FIR  or HR high pass filters will undiscriminatingly remove low frequency 

components. The obvious drawback is th a t the filters also filter out the signal from the low 

velocity (low Doppler shift) blood flow near vessel walls which is a region of great interest 

for detecting flow anomalies leading to atherom a formation [TMLI04].

Later, in [HvdVD+91,KL95], Hoeks and Kadi et al. developed regression filters different 

from FIR or HR filters being based on the assumption th a t signals are a superposition 

of sinusoids. Regression filters operate on the assumption th a t the slowly varying clutter
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component in the Doppler signal can be approximated by a polynomial of a given order, which 

in turn can be determined by performing least-squares regression analysis. The resulting 

filters are thus termed polynomial regression filters. Once approximated, this component 

can then be subtracted from the Doppler signal so th a t the contribution from blood-flow can 

be retrieved and analyzed. But this filter is still static, being independent of the input data 

sequence as shown in the following derivation. Mathematically, at depth /c, the filtered data 

sample can be w ritten as

p
c(k , n) =  apnp

p —o

yk{n) = x (k ,n )  — c(k,n) ,  n — 1,2, • • • , TV (5.1.3)

where c(k ,n ) is the approximated clutter component, {ap} the set of regression model coef­

ficients, P  the regression order and N  the number of da ta  samples. F itting a polynomial of 

degree P  to a set of data points {x(fc, n)}, n = 1, 2, • • • , N  involves finding a set of coeffi­

cients ap, p = 0, 1, • • • , P , such th a t the sum of the squared differences between the actual 

data and the model
N  /  P

€2 — ( x (k, n ) — aPnP
n = l  \  p — 0

is minimized, which is equivalent to

de2 
da{

>  °> i = = °,  , p , (5.1.5)

leading to the following set of linear equations

n  /  p
I x (k ,n )  ~ Y ^ aPnP

n = 1 \  p — 0

J  vl =  0, i =  0, • • • , P  (5.1.6)

(5.1.4)
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which can be rearranged as

p N N
nlnpap =  n lx(k, n).

p = 0  n = l

(5.1.7)
n = l

Furthermore, by introducing the m atrix and vector notations

( 1° l 1 

2°  2 1

l p

2P

\ (  a ^do

di
a  =

(

\  N°  N 1 • ■ ■ N p j  \  dP j

at discrete time (5.1.7) can be rewritten as

( r Tr )  a  =  r Tx fe

x ( k , t ) 

x(k,  t +  1)

 ̂ x ( k , t  +  N  -  1) y

(5.1.8)

(5.1.9)

or

a  =  ( r Tr )  1 r Tx/j. (5.1.10)

For given N  and P , substituting (5.1.10) into (5.1.3) will make yk{n) available. As can be 

seen, the polynomial regression filters do not shorten the length of valid data  sequences, and 

are in this sense different from FIR  or IIR filters. In [KL95], Kadi et al. further confirmed 

in their work th a t regression filters could offer significantly better performance than step- 

initialized IIR  filters under heavy clutter conditions. It should be noted the evaluation of 

the m atrix ( r Tr )  1 TT is computationally demanding. However, it is totally independent 

of the input sequence x& and its elements are only determined by P  and N.  Because the 

clutter characteristics in RF signal vary, also due to the nonstationary tissue motions from 

cardiac activities and /o r respiration and the transducer/patient movement [TH94], a static 

filter cannot remove the clutter effectively.
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F ig u re  5.3. Down-mixing methods, where (bc{k, n ) is the estim ated clutter frequency. 

Adaptive clutter filters

In contrast to static clutter filters discussed above, the filtering operation depends on the 

characteristics of the clutter signal, and the resulting filters are term ed adaptive clutter filters. 

The down-mixing methods, the ERF and the PC A /IC A  methods are thus designed to filter 

the clutter adaptively.

The down-mixing methods were developed to shift adaptively clutter to be centered 

around zero frequency after estim ating the clutter frequency at each location before apply­

ing a high pass filter [TH94, BHR95], as depicted in Figure 5.3. The down-mixing methods 

can suppress the clutter well when the clutter is of a) relatively high amplitude; b) narrow 

bandwidth and c) low mean frequency [BHR95]. However, this method cannot provide suffi­

cient clutter rejection when several tissue velocities exist in the backscattered signals, owing 

to acceleration or deceleration of tissues. To compensate for this, a down-mixing method 

with varying phase increments computed from a clutter correlation m atrix was recently pro­

posed [BTKQ2], showing an improved performance in dealing with accelerated tissue motion.
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However, its performance highly depends on how reliably the clutter correlation matrix can 

be estimated. It should also be noted th a t the computational complexity is particularly high.

In [LBH97], Ledoux et al. proposed a clutter rejection filter for multiline Doppler 

modalities based on the SVD. This method was further developed using a stochastic signal 

model [BT97, BTK02], termed eigenvector regression filter, in which the orthonormal basis 

functions for the regression filter are computed with the SVD or the discrete Karhunen- 

Loeve transform (DKLT)1 corresponding to the clutter statistics. In the case of uniform 

tissue motion induced by probe movement over an entire region of interest (ROI), Bjaerum et 

al. [BTK02] successfully dem onstrated th a t the ERF outperformed the polynomial regression 

filter. Later, Kruse et al. [KF02] extended the ERF to deal with high blood-to-clutter ratios 

(BCR) by training the correlation m atrix based on signal correlation. Recently, the ERF 

was also applied for strain-flow imaging [KHTI03, TMLI04]. Theoretically, the ERF can 

provide maximum clutter suppression with a given filter order because of its best mean- 

square approximation of the clutter. Clearly, it can still potentially remove the flow signal 

close to the clutter velocity. Furthermore, the application of ERF in a practical system is 

currently limited because of its high com putational complexity [LBH97, BT97, BTK02].

Recently, two BSS-based approaches to the problem of adaptive clutter filtering were 

proposed, the PCA and the ICA techniques [Kad02, GT02, GNT03, T W F+04]. As pointed 

out earlier, the PCA method is essentially identical to  the ERF in the sense that both 

methods are based on the decomposition of a second-order ensemble data  vector as the sum 

of its projections onto the principal axis of its covariance matrix. Basically, the ERF/PCA  

methods decompose the input data  sequence into a set of orthogonal basis functions. Because

1This transform is also commonly referred to  as p r in c ip a l co m pon en t a n a lys is  (PCA) or the Hotelling- 

transform. Hotelling was the first to derive the transform ation of discrete variables into uncorrelatcd co­

efficients. He referred to it as the m ethod, o f  p r in c ip a l com pon en ts . The analogous transformation for 

transforming continuous data was discovered by K a rh u n e n  and L oeve [GW02]
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orthogonality indicates tha t the basis functions are uncorrelated but does not imply that they 

are statistically independent unless the functions are also Gaussian or otherwise distributed 

random variables for which the third and higher order moments are zero [Chi97]. If an 

orthogonal decomposition is performed, the resulting basis functions may be orthogonal but 

not mutually independent. As a result, multiple independent source signals may project 

onto the same orthogonal basis vector, leading to incomplete source signal separation that 

makes clutter filtering via projection operations difficult. The ICA method is different from 

the ER F/PC A  in the sense th a t it assumes th a t source signals are not only uncorrelated 

but also mutually independent [Car98, Sto02]. The ICA basis functions are extracted by 

maximizing the entropy in the joint probability density functions (PDF) of the basis vectors. 

If a set of signals has a maximum entropy PDF, it is implied th a t the signals are mutually 

independent. Of the existing ICA algorithms, the Jade algorithm [Car98] is perhaps the 

most common one. The method first determines the input da ta  ensemble’s DKLT. The 

decomposition is then whitened, meaning th a t each basis function is magnitude normalized. 

The eigenpairs of the fourth order cumulants of the whitened basis functions are calculated, 

and the eigenpairs are diagonalized with a unitary matrix. Finally, the m atrix tha t separates 

the independent source signals from the data  ensemble is determined from the whitened and 

unitary matrices. However, it should be noted th a t in a comparison study of the PCA and 

ICA methods, Gallippi et al. [GT02] showed th a t the first-order PCA method outperformed 

the ICA method. This could happen if the clutter and blood components are not independent 

with each other, then the ICA may find it difficult to  separate the signals and the PCA may 

turn out to be a better choice. As a result, it is really difficult to choose between the ICA 

and the PCA methods for a given scenario.

In view of the literature review above, there obviously exists more work to be done to 

obtain a better understanding of an optimal solution for clutter rejection. As the review 

shows, currently, the E R F /P C A  and possibly the ICA methods seem more promising than
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other discussed methods for clutter rejection. In terms of the implementation of these meth­

ods, the conventional evaluation of block SVD involved in the ER F/PC A , and the first stage 

of ICA, is computationally complex, and renders real-time CFI impractical. As a result, 

next, efforts will be focused on the efficient evaluation of the SVD in association with the 

implementation of the ERF.

5.1.1 Eigenvector Regression Filter

Recalling (5.1.1), the (2K  +  l ) x i V  m atrix  X*, centered at depth k is introduced, formed as

H

with

x fc =

X - k - K  ' • - X - k + K (5.1.11)

H
x ( k , t ) ••• x ( k , t  + N  — 1) , (5.1.12)

where (•)H denotes conjugate transpose (Hermitian), and N  the number of available temporal 

slow-time samples at discrete time t. Define the N  x N  correlation m atrix of the measured 

signal assumed wide-sense stationary, for the k th depth, as

R fc =  .E {x * x f}  , (5.1.13)

where E{-}  denotes statistical expectation. As the correlation m atrix is typically unknown 

and only limited samples are available, an estim ate of the correlation m atrix can be formed 

using the reflected signal from ± K  depths offset from the k th depth,

^ k + K

R* =  £  X/X^  ’ (5.1.14)
l = k - K

where L =  2K  -1- 1 denotes the number of depths considered, with typically L N.  Fur­

thermore, Rfc can be decomposed as

R k =  U fcA U f  , (5.1.15)
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where A is a diagonal m atrix, containing the eigenvalues, An, for n = 0, • • • , N  — 1, non- 

increasingly lying along the diagonal, and XJk is a unitary m atrix formed from the corre­

sponding N  eigenvectors. As the eigenvectors corresponding to the r  largest eigenvalues 

can be viewed as spanning the clutter subspace, the eigenfilters optimally attenuating the 

influence of the clutter can be formed as the projection onto the space orthogonal to the one 

spanned by the clutter eigenvectors (see, e.g., [LBH97,BTK02,KHTI03,KF02,YMK03]), as 

illustrated in Figure 1.1. Let

At. — u 0 ur_i (5.1.16)

where

Ui =  [tij(0), ■ • ■ , Ui(N — 1)]T (5.1.17)

denotes the eigenvector corresponding to the i th eigenvalue. Alternatively, A k can also be 

obtained by evaluating the SVD of X^. Then, the linear eigenfiltering operation is defined 

by

rr I -  At. A H  
k ^ k  > (5.1.18)

where I denotes the identity m atrix  with proper dimension, and the filtered signal is formed

as

yk =  n AfcX/.

The frequency response of the linear filtering operation in (5.1.19) becomes [Tor97]

(5.1.19)

* a »  =  1-A£
i=0

N - 1
, - j n u

n = 0

(5.1.20)

A typical example of the resulting filters is illustrated in Figure 5.4, where C N R  denotes the 

clutter to noise ratio and fdutter the simulated frequency of the dominant clutter component. 

As is clear from the figure, the ERF shows steeper cut-off slopes as compared to the FIR 

filters. Furthermore, the longer the data  vector length, N,  the steeper the transition band.
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F ig u re  5.4. Frequency responses with variable parameters: (a) A first-order ERF with 

variable ensemble da ta  length A, / clutter =  0, C N R  = 40 dB; (b) ERF with variable order.

fclutter = [o 0.05], N  =  16, C N R  =  40 dB.

In Figure 5.4 (b), we simulate clu tter with frequencies f d u t t e r  =  [0 0.05]. As we can see, a 

first-order ERF will only remove the clutter with zero frequency, while a second-order ERF 

can provide satisfactory suppression for the clu tter presented a t both frequency locations.

It is worth noting th a t the choice of L  in (5.1.14) reflects the size of the stationary data 

segment and should be selected as the range of depths over which the statistical properties 

of the clutter signal can be assumed to be approximately constant [BTK02]. If the statistics 

change as a function of spatial coordinates, the filter obtained from an LOS with varying 

statistics will not provide sufficient performance. As the clutter statistics vary over depth 

in many physiological cases, the correlation m atrix  should be properly formed to model 

the signal statistics within a stationary  da ta  segment. An illustration of this fact is shown 

in Figure 5.5. Typically, the size of the stationary data  segment depends on factors such

as the pulse bandwidth, sampling frequency, SNR, as well as the region size of flow and
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Segment 1 

Segment 2

Segment P

F ig u re  5.5. Cross section of a blood vessel buried in tissue. Each da ta  segment should be 

selected with constant statistical properties of the clu tter signal.

clutter. However, computing the sample correlation m atrix and the corresponding EVD, 

or alternatively computing the SVD of sta tionary  d a ta  segment X fc, is often computationally 

prohibited in clinical diagnosis. To alleviate this problem, we proceed to  introduce an efficient 

subspace tracking technique as an efficient way to  form the eigenfilters.

Subspace tracking algorithms play an im portant role for many subspace-based high- 

resolution methods, and the literature on the topic is substantial (see, e.g., [CG90,Yan95, 

Str97,BRD04,MH98] and the references therein). Typically, subspace algorithms are applied 

to temporally slow-varying signals, formed into time-dependent da ta  blocks

=  [  xt • • •  x*_L+i J  , (5.1.21)
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where xt is a column vector. These algorithms exploit the fact tha t typically only a few dom­

inant singular vectors, say 2-4, are needed to span the noise or signal subspace. Similarly, we 

exploit the fact th a t the clutter signal has a slowly time-varying nature both in the temporal 

and spatial domain. Thus, the clutter statistics between two consecutive depth positions will 

not change significantly, thereby enabling an efficient evaluation of the consecutive SVDs us­

ing a subspace tracking technique. Herein, we propose to recursively track the r max < |iV 

dominant eigenvectors, where r max is an upper bound on the size of the clutter filter, and 

then only using the r  <  r max most dominant eigenvectors to construct the projection matrix 

in (5.1.18). Then, given the filtered signal in (5.1.19), the blood velocity for each depth of 

interest is generally estim ated using a correlation-based method [Jen96a]. It is worth noting 

that the choice of r , the num ber of clutter eigenvectors actually used, is both difficult and 

critical. If selected as r  =  r 0 +  1, where r 0 is the optimal choice, the filter will suppress a 

large part of the blood signal. However, if r — r0 — 1, a strong clutter component will remain 

in the data, severely distorting the resulting velocity estimate. Additionally, to take the 

spatially varying clu tter statistics into account, the choice of r should typically be allowed 

to vary over depth; we note th a t the proposed technique allows for such local variations as 

long as only r  <  r max eigenvectors are required.

5.1.2 An Efficient C lu tter Filter Implementation via Subspace Tracking

Given the SVD factorization

X* =  V * E U ? ,  (5.1.22)
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where V*, € CLxN and \Jk £ C NxN are unitary matrices and E G 'RNxN is a non-negative 

diagonal matrix,

E  - (5.1.23)

5n - i

with <50> 8i> • • •> 8n - i > 0. Thus, the r  dominant singular vales are {<5o, , • • • , ^r-i}, and

the associated r  dominant left singular vectors and the r dominant right singular vectors are 

the r first columns of the m atrix \ k and the r first columns of the m atrix U*, respectively. 

As discussed in the previous section, to enable the use of locally computed eigenfilters, the 

SVD of stationary data  segment X* needs to be evaluated for a number of depths. Each such 

evaluation using the SVD2 requires 4L N 2 -f- 8N 3 operations [GV96], preventing the method 

from currently being practically applicable. To avoid the full com putation of the SVD, one 

can use the classical sequential bi-iteration SVD algorithm, as summarized in Table 5.1, to 

track recursively the dominant clutter subspace [Str97]. As the clutter component will vary 

slowly over depth, one can view the da ta  m atrix X*, in (5.1.11) centered at depth k as a 

depthwise update from Xfc_i at depth k — 1, allowing the SVD of X*, to be approximated 

and updated just by replacing the iteration depth index k  as shown in Table 5.1. Here, l rmax 

denotes an rmax x rmax identity matrix. This algorithm generates two auxiliary matrices 

QA(k) £ CNxrmax and Q b(^) £ CLxrmax. It has been shown th a t the columns of Q^(fc) 

and Qjb(&) will converge to the rmax dominant right and left singular vectors, respectively. 

Furthermore, both Ra(&) and Rb(&) will converge to a diagonal m atrix containing the rmax 

largest singular values. Therefore, the r  first columns of Qa(&) can be used to approximate 

A k in (5.1.16). As we discussed previously, the choice of r is im portant and critical, and 

is in itself an interesting topic. A detailed description of the sequential bi-iteration SVD

2Computing the correlation m atrix estimate in (5.1.14) together with the EVD requires approximately

the same number of'operations.
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T ab le  5.1. Sequential bi-iteration SVD algorithm

Initialize: Q.4(0) =
max

0

For each depth step Do:

First iteration: Complexity

B* -  X , Q A(k -  1) m atrix product 8 N L r max

B k -  Q B(k )R B(k) skinny QR factorization 19 Ll m ax

Second iteration:

A k -  X " Q B(k) m atrix product 8 A Lr rnax

A*: =  Q A{k)B.A{k) skinny QR factorization IQ N r  2x u i \  i m a x

algorithm can be found in [Str97]. This method is very robust, but the main drawback is the 

high complexity with the dominant cost of 16N L r max, where rmax <  <C L in practice.

Fortunately, this algorithm has been further developed (see, e.g., [CG90, Yan95,Str97, 

BRD04,MH98] and the references therein). Recently, Badeau et al. [BRD04] derived a fast 

tracking approach termed the sliding window adaptive SVD (SWASVD) algorithm which 

showed excellent performance in the context of frequency estimation, having computational 

complexity with dominant cost of 23(L +  V ) r^ ax which is less than 16 N L r max. A num­

ber of other, yet more efficient methods, also exist, having complexity 0 ( N r max) (see, 

e.g., [BRD04]). However, the choice of method should be done with some care depending 

on the acceptable level of accuracy and error propagation. Herein, the SWASVD method 

is revised and will be applied to  the clutter subspace tracking problem. As pointed out
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previously, the clutter subspace tracking problem arises in a spatial domain, different from 

conventional subspace tracking which is normally applied in a temporal domain. As a result, 

this method is accordingly revised to fit the spatial subspace tracking problem, the resulting 

method is term ed the R-SWASVD algorithm. It is noteworthy th a t the R-SWASVD is es­

sentially identical to  the SWASVD algorithm [BRD04], except the opposite way of updating 

the RF data m atrix in (5.1.24) at each depth step in the spatial domain resulting in the dif­

ference between the derivations of the R-SWASVD algorithm and the SWASVD algorithm. 

The derivation of the R-SWASVD algorithm is presented next. More details including the 

complete derivation of the SWASVD algorithm can be found in [BRD04].

Consider the compressed da ta  vector, given the depthwise update structure of the data 

matrix X/j defined in (5.1.11) and the vector x*, at depth k defined in (5.1.12), and notice 

that

X k - K - l Xfc_ !

Q * ( * - l )  =

X k + K

Q A( k - l ) (5.1.24)

which can be further simplified as

X  • • • X Xfc-lQA(& —  1)

B k hHk + K

(5.1.25)

where the symbol x denotes uninteresting elements, and

hfc+x — Q%{k — 1) ŷ k+K (5.1.26)
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Next, use the low-rank approximation of X*, as

X*  =  (Q B( k ) Q " ( k ) ) X t

=  Q B(k)Q%(k)QB( k ) A H(k) 

= Q B( k ) A H(k)

=  Qb«R"MQ"(*0 (5.1.27)

which corresponds to the projection of the columns of X*, onto the subspace spanned by the 

columns of Qs(k ) .  As a result,

X t _1Q /1( f c - l )  =  Q B( f c - l ) R j ( f c - l )  .

Then, use Xfc_i to replace X ^-i in (5.1.25) yields

(5.1.28)

Similarly, notice tha t

X k - K - l  '■
H

X • • • X " Q B( k - l ) R % ( k - 1) '

h-k+K -

0  ••• 0

X f_j : x-k+K
Q B(k)

(5.1.29)

0 ••• 0

Q B(k)

(5.1.30)

the left hand side of which is identical to A*, according to the definition in Table 5.1. Thus, 

(5.1.30) becomes

0 ••• 0

X f_ x : 'x.k+K

Q B(k)

(5.1.31)
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Moreover, multiply (k — 1) on both sides of (5.1.31) leading to

~  l)Xfc_i : hfe+*

0 ••• 0

(5.1.32)

where, according to the sequential bi-iteration SVD algorithm, summarized in Table 5.1, 

Rjj(fc) satisfies

Rf(fc) = B"(ft)QB(fc)

= Q " (fc -l)X " Q B(fc)

= Q 1(k -  X)A* • (5.1.33)

Then, define vector

'k+K =  X k + K  -  Q A ( k  -  1)Q% ( k  ~  l ) x k + K  

=  ' X k + K  — Q A ( k  — l)hk + K  , (5.1.34)

which is orthogonal to the subspace spanned by the columns of Q^(A; — 1), thus x.k+K can 

be seen as the sum of two orthogonal vectors

x k+K =  Q A(k ~  l ) h fc+̂  +  .

Replacing X *.! with X^_i in (5.1.31) and (5.1.32), respectively, yields

Q A(k ~  1 )  : xi+ K

(5.1.35)

h k + K

1 o o 1

0 ••• 0

Q B( k )

(5.1.36)
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T able 5.2. Revised Sliding Window Adaptive SVD algorithm (R-SWASVD)

Initialize: Q a (0)

For each depth step Do:

Ir'  T r i a s

; Q b (0) =

0 0

; R,i(0) — I r,

First iteration: 

hk+i< — Q a (&)x fc+/C

Complexity

SNrrnn-

1

X X

1

' Q B( k ....1 ) R ? ( *  -  1 )  ’

h " * A -

4 Lrr

19 Lr 2x u x j i  m a x

Second iteration:

X-k+K =  * * + *  ~  Qa(A: -  l)hjfc+A'

Afc -  Q A(k -  l)R g(fc) +  +  K )

A k =  QA(k)B.A(k)

8N rr

4.Nr.

1 9  V  t 2x u *  v i m a x

and

R HB (k)  ~ -  l ) Q f  (k -  1) : hfc+K _  ̂
Q  s (k )

Let qsi(fc +  A') be the column vector obtained by conjugate transposing the last row of

0 ••• 0

(5.1.37)
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Q s{k),  thus (5.1.36) and (5.1.37) finally yield

At. — Q^(/c 1) : x-k+K

R  g(fc)

qfi (k + K)
=  Q A(k -  l ) R f  (k) +  x ^ q g 1(/c + A ) (5.1.38)

which can be factorized as

A , =  Q ^fcJR^A ;) . (5.1.39)

As discussed in [BRD04], the exact com putation of A*, and B& requires 16NLrmax operations 

as shown in Table 5.1, whereas the approximated matrices (5.1.29) and (5.1.38) can be 

computed in 4Lrmax2 and 47Vrmax2 operations. Therefore, introducing these approximations 

in the sequential bi-iteration SVD algorithm leads to the lower complexity algorithm herein 

termed revised SWASVD (R-SWASVD) as compared to the SWASVD proposed in [BRD04], 

summarized in Table 5.2.

5.1.3 Simulation Results

In this section, the com putational gain and the performance of the R-SWASVD algorithm 

are examined. Figures 5.6 and 5.7 illustrate the computational gain of using the R-SWASVD 

algorithm to track the r = rmax =  2 most dominant eigenvectors of R* as compared to the 

use of an ordinary block based SVD algorithm and the sequential bi-iteration SVD algorithm, 

respectively. As is clear from the figures, the computational gain of using the R-SWASVD 

algorithm is significant, especially as compared to the block SVD method. Furthermore, the 

gain of using the R-SWASVD algorithm will strongly depend on the number of pulses used 

in each data vector, V , as well as the size of the block used to form the sample correlation 

matrix, L. To verify the clu tter subspace tracking performance of the R-SWASVD algorithm 

in a realistic situation, RF d a ta  are generated to simulate the flow in the carotid artery,
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F ig u re  5.6. The com putational gain of using the R-SWASVD algorithm  as com pared to 

the ordinary block-based SVD algorithm .

taking into account the tissue m otion due to  the breathing and pulsation, by using the Field 

II program3 [Jen96b], w ith  the  m ain param eters outlined in A ppendix 5.A. The upper plot 

in Figure 5.8 shows one of the exam ined RF lines, where the vertical dashed lines represent 

vessel walls and vessel centre. As is clear from the figure, the dom inant peaks on both  sides 

of the plot depict the strong  c lu tte r effects due to  tissue motion. In this investigation, a set of 

N  = 20 successive RF lines w ith  L  =  80 (equal to  the pulse length) are used, which implies 

the com putational gain as com pared to  the block-based SVD algorithm  is a factor of 20, as 

seen in Figure 5.6. T he lower p a rt of Figure 5.8 shows the  estim ated velocity profiles, using 

the autocorrelation estim ator [KNK085], for the  second-order c lu tter filters obtained from a

3Data available at: h ttp ://w w w .oersted .d tu .d k /31655 /7u ltrasou n d _d ata /sim _car_w all.h tn il

http://www.oersted.dtu.dk/31655/7ultrasound_data/sim_car_wall.htnil
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F ig u re  5.7. The com putational gain of using the  R-SWASVD algorithm  as compared to 

the sequential b i-iteration  SVD algorithm .

block-based SVD and the  R-SWASVD algorithm . As seen from the figure, the R-SWASVD 

algorithm closely tracks the  block-based SVD. It is w orth noting th a t the center of the profile 

is not accurately estim ated. This is likely an effect of the fixed order clu tter filter; in the 

center of the vessel, r  should typically be lower th an  at the vessel walls. Such variations 

can easily be accom m odated for w ith the suggested approach, although further research is 

needed on how the filter order should be selected appropriately. This is a challenging topic 

for future research.
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F ig u re  5.8. E stim ated  velocity profile w ith  clu tter filtering using the block-based SVD 

m ethod and the R-SW ASVD algorithm . The do tted  curve represents the true parabolic 

velocity profile.

5.2 Conclusion

The clu tter rejection problem  is s ta ted  in th is chapter, followed by the literature review of 

existing clu tter filters which are classified into static clutter filters and adaptive clutter filters. 

The analysis of existing filters implies th a t the E R F /P C A  and ICA m ethods are likely to be 

promising. In term s of th e  im plem entation of these m ethods, the conventional evaluation of 

block SVD involved in E R F /P C A , and the first stage of ICA, is com putationally complex, 

and renders real-tim e C FI im practical. As a result, the rest of the chapter is focused on 

how to  im plem ent efficiently the  ERF. Then, an  efficient approach to form recursively the
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clutter filters using a recent recursive subspace tracking technique is introduced. As discussed 

in Section 5.1.2, given an L  x N  data  m atrix X  with rmax dominant singular values, the 

introduced R-SWASVD m ethod significantly reduces the required computational cost down 

to dominant cost of 23(L  -I- N ) r ^ ax, in contrast to 4L N 2 +  8N 3 using block SVD. The R- 

SWASVD method is successfully examined with realistic carotid flow which is simulated with 

the Field II toolbox.
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Appendix

5.A Param eters for Sim ulating Blood Flow for Clutter Rejection

Transducer convex, elevation focused array probe with 58 elements

Centre (single carrier) frequency, f c 3.75 MHz

Sampling frequency, f s 15 MHz

Pulse repetition frequency, f pr f 3.5 kHz

Sound speed (c) 1540 m /s

Pulse oscillation (M) 8

Doppler angle (DOA) 45°

RF lines (N) 20

Center of vessel 32 mm from transducer surface

Vessel radius 4 mm



Chapter 6

EXAMINING PROPOSED 

ESTIMATORS WITH REALISTIC DATA

In this chapter, the proposed hybrid estim ator discussed in Chapter 2 and the multiple- 

carrier based DAVE and NLS estim ators proposed in Chapter 3 are applied to blood velocity 

estimation. All the simulations in this chapter are performed using realistic ultrasound RF 

data simulated with the Field II toolbox [Jen96b].

6.1 Blood Velocity Estim ation with Single Carrier

6.1.1 Examined with the  Hybrid Estim ator

To examine the performance of the hybrid estim ator proposed in Chapter 2, initially, a single 

fibre-like flow which comprises 1000 blood particles lying along the vessel center and moving 

towards the transducer along the  beam direction (pure axial velocity) with constant velocity 

v = 0.5 x VNyq is simulated. The details of the param eters for simulating the RF data are 

listed in Appendix 6.A. Figure 6.1 shows the MSE of the examined estimators as a function 

of the SNR at the transm ission focus which is 35 mm away from the transducer surface. 

As is seen from the figure, the hybrid estim ator uniformly exhibits better performance than 

the autocorrelation estim ator (term ed Auto  in the figure) over the whole range of examined

106
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F ig u re  6.1. The MSE of the exam ined estim ators as a function of the SNR, for v =  

0.5 x v^yqi with fibre RF data.

SNRs. Furthermore, a case w ith sim ulated lam inar blood flow (consisting of 3 x 105 scatters) 

with parabolic profile is considered, i.e.,

v{r) =  (1 -  r 2)v0, (6.1.1)

where r G [0, lj is the relative radius, and v0 the peak velocity a t the vessel center, Vo = 

0.8 x VNyq, with the same param eters given in Appendix 6 .A. Figure 6.2 shows the MSE of 

the examined estim ators as a function of the SNR a t the depth where the examined velocity 

v = 0.5 x VNyq. As seen in the figure, the hybrid estim ator shows preferable performance 

also for this case. As the d a ta  generation is somewhat time-consuming, the simulations for 

both the fibre and parabolic flow is lim ited to  only 100 Monte Carlo simulations.
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F ig u re  6.2. The MSE of the exam ined estim ators as a function of the SNR, for v  =  

0.5 x v^yq: w ith parabolic flow R F data.

Finally, to  verify the perform ance of the hybrid estim ator in a somewhat more realistic 

situation, RF da ta  sim ulating the flow in the carotid artery  are examined, with the para­

meters used identical to  those outlined in Appendix 5.A, except th a t N  = 18 successive 

RF lines are used herein (recall th a t the hybrid estim ator considers only the case when N  

is an integer m ultiple of K  [Fow02], see also Section 2.2.4.). The upper plot in Figure 6.3 

shows one of the R F lines. T he dom inant peaks on b o th  sides of the plot depict the strong 

clutter effects due to  the existence of vessel walls (represented by the dashed vertical lines) 

and the tissue motion. To enable high quality blood velocity estimation, efficient clutter 

filtering must be applied prior to  the velocity estim ation. In this work, a second order block
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F ig u re  6.3. The estim ated velocity profile using R F d a ta  from sim ulated carotid artery.

SVD-based eigenvector regression filter is used (term ed Eigen in the figure). The lower plot 

in the figure illustrates the estim ated  velocity profile crossing the whole vessel using the 

autocorrelation m ethod and the  proposed hybrid estim ator, respectively. As seen from the 

figure, both the autocorrelation m ethod and the hybrid estim ator accurately estim ate the 

velocities close to the vessel walls. However, close to the vessel center, the hybrid estim ator 

clearly outperforms the au tocorrelation  m ethod. It is again w orth noting th a t the center 

of the profile is not accurately estim ated  due to  the fixed filter order employed therein. As 

already mentioned, the filter order should typically be allowed to  vary over depth.
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6.2 Blood Velocity Estimation with Multiple Carriers

In this section, the DAVE and the NLS m ethods proposed in C hapter 3 are extended for 

blood velocity estimation. It is worth noting th a t the SVE m ethod proposed in Section

3.2.2 is derived based on the assum ption th a t the additive noise is white. As a result, the 

performance of the SVE m ethod will be dram atically degraded for coloured noise caused by 

the clutter filtering operation as discussed next. For this reason, the SVE method will not 

be further discussed herein.

Recall tha t the m ultiple-carrier based estim ators proposed in C hapter 3 are based on 

the noisy sinusoidal da ta  model in (3.2.1). In colour flow imaging, (3.2.1) is assumed to 

contain three statistically independent components as shown in (5.1.1) in which the clutter 

component is seen to be tens to  hundreds of times stronger than  the blood signal, and 

will completely corrupt the estim ation unless cancelled [Jen96a]. To do so, one can apply

a clutter filter to the measured signal. This filter can be designed in various ways, and

is in itself an interesting topic of research; typically, a low order finite impulse response 

(FIR), infinite impulse response (HR), or a subspace-based projection filter can be employed 

as discussed earlier. Such filters will strongly affect the assumed sinusoidal data  model in 

(3.2.1). Recalling (3.2.1), let
d

z(t) = h p y p  =  ^ 2  7k(v)/3keluJkiv)t +  ™{t), (6.2.1)
A :=l

where hp is a P th  order FIR  filter, and

y p ( t ) = [ y ( t )  . . .  y(t — P  + 1 )  ] T • (6.2.2)

Further, 7k{y) is a velocity dependent function originating from the filtering and w(t) is the 

coloured version of the additive noise w{t) in (3.2.1) due to the clutter filtering introduced 

in (6.2.1). Very commonly, the clu tter filter used is a simple difference filter [Jen96b], i.e.,

h p  =  1 - 1  , (6.2.3)
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yielding 7k{v) = elu>k̂  — 1. As the da ta  model in (3.2.1) is now changed as compared 

to (6.2.1), due to the filtering operation, the proposed methods in Chapter 4 need to be 

modified accordingly.

6.2.1 The Modified D ata Adaptive Velocity Estim ator

Similar to the DAVE derivation in Section 3.2.3, the modified da ta  adaptive velocity esti­

mator (M-DAVE) can be derived as follows. Let
r  t  T

z lW  =  z{t) . . .  z ( t  + L  — 1)

=  A L(v)& v(t)(3 +  w L(t), (6.2.4)

for t =  0 , . . . ,  M  =  N  — (P  — 1) — (L  — 1), w L{t) is defined from w (t) similar to zL(t), and

®v(t) = 7  (v)& v(t) (6.2.5)

7i(u) 0

7 ( u ) (6 .2 .6)

0 7d(v)

with other notations defined in Section 3.2.2. Then, design a set of L -tap da ta  adaptive FIR 

filters, hjfc(u), for k — 1, . . .  ,d,  each centered at a given velocity v designed on the basis of 

solving the following constrained optim ization

min h ^ (u )R zhfc(u) subject to (v )A L(v) = (6.2.7)
h f c ( v )

for k =  1, . . . ,  d

where

R z = E  { z L{t)zL(t)H} (6.2.8)

which can be estim ated as for in (3.2.13). As derived in Section 3.2.3, the filter minimizing

(6.2.7), is obtained as (see, e.g., [SM05])

=  u l  [ a l  M R ^ A l M ] " 1 A ? ( u ) R j \  (6.2.9)
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suggesting tha t the velocity spectrum is formed as

d

v) =
k=l

 ̂ r  ̂ -i-l
= ^2uk a l W ^ " 1 a iW  uk, (6.2.10)

fc=i

where R z has also been used for the filter design in (6.2.9), which will thus mainly contain

the d sinusoidal components resulting from the velocity v. Thus, by evaluating (f>z(v) for

a range of velocities of interest, v € [vmin-,vmax\-> the velocity of the reflecting scatterer can 

be estimated as the velocity maximizing (f>z{v). Similar to the DAVE algorithm, it is worth 

noting tha t the m atrix A f^(u)R~1A l ( v)  may be poorly conditioned for small v due to the 

resulting closely spaced frequency components. To alleviate this problem, one can employ a 

low rank approximation technique as performed in Appendix 3.D.

6.2.2 The Modified Nonlinear Least Squares Estimator

The modified nonlinear least squares (M-NLS) estimator, extending the NLS estimator de­

rived in Section 3.2.4, is derived in this section. Note tha t (6.2.1) can be written as

z./v-(p-i)(0) = A^_(p_!)(u)/3 + wjv-(p- i)(0) , (6.2.11)

where

zjv-fp-DfO) =  [ ^(0) ••• z{N  — (P  — 1) — 1) j T , (6.2.12)

Aw_(p_i)(v) =  Ajv-(p-i)(u)4>t;(0) 5 (6.2.13)

with w ;v-(p-i)(0) defined similar to z j v - ( p - i ) (0). Therefore, the M-NLS estimate of v can 

be obtained as

v = argm in || z ^ p . j ^ O )  -  A ^ _ (P_1)/3 \\% (6.2.14)
p , v
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where the least-squares estim ate of (3 can be found as [SM05]

P =  A ^ _ ( p _ 1)( u ) A Ar _ ( p _ i ) ( n )  A j v - ( p - i ) ( i > ) z j v _ ( p _ i ) ( 0 )  .
- l

(6.2.15)

Inserting (6.2.15) into (6.2.14) yields the maximization

v — a rgm ax || n A zN_(P_i)(0) ||| (6.2.16)

where

Parallelling the low-rank discussion above, one can use a low-rank approxim ation to alleviate

can be done using the technique in Appendix 3.D.

6.2.3 Simulation Results

In this section, the M-DAVE and M-NLS methods will be examined with two different 

scenarios, fibre flow  and parabolic flow. For simplicity, a second order FIR  clutter filter is 

employed herein.

Fibre Flow

To examine the performance of the M-DAVE and M-NLS methods, initially, single fibre­

like flow is simulated, which comprises 1000 blood particles lying along the vessel center 

and moving towards the transducer along the beam direction (pure axial velocity). The 

parameters for simulating RF d a ta  are listed in Appendix 6.B.

Figure 6.4 shows the velocity spectra using M-DAVE with RF data  acquired from the 

transmission focus which is 35 mm away from the transducer surface as illustrated in Ap­

pendix 6.B. The underlying velocity of the fibre flow varies from 0.5 x v ^ yq to 2 x VMyq as

a possibly poor conditioning of the K n - ( p - i){v)A.n - (p -\){ v ) m atrix  for small v\ again, this
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Figure 6.4. The velocity spectra using the M-DAVE method w ith RF da ta  obtained from 

simulated fibre flow w ith S N R  =  10 dB, for (a) v =  0.5 x v ^ yq] (b) v =  1 x v ^ yq-, (c) 

v =  1.5 x vNyq; (d) v =  2 x vNyq.
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F ig u re  6 .5 . The velocity spec tra  using th e  M-NLS m ethod w ith RF d a ta  obtained from 

simulated fibre flow w ith  S N R  =  10 dB, for (a) v  =  0.5 x v^yq'-, (b) v =  1 x VNyqi (c) 

v = 1.5 x vNyq; (d) v =  2 x VNyg■
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F ig u re  6 .6 . The MSE of the exam ined estim ato rs as a  function of the SNR, for v =

1.5 x V N y q , w ith fibre flow.

shown clockwise from the top left in the  figure, where the  dash line represents the underlying 

velocity. It is clear from the  figure th a t  M-DAVE can accurately  estim ate the underlying 

velocity when it is not equal to  integer m ultiples of the  N yquist velocity, VNyg, as for the cases 

in Figure 6.4 (a) and Figure 6.4 (c). In F igure 6.4 (b) and Figure 6.4 (d) where v = 1 x  VNyg 

and v = 2 x v N yq, respectively, it becom es challenging for M-DAVE to  estim ate correctly the 

underlying velocity. These results are consistent w ith  those in Section 3.3. Similar results 

and conclusions also hold for th e  evaluation of th e  M-NLS as shown in Figure 6.5. In Figure

6.5 (d), the M-NLS m ethod clearly fails to  estim ate the  underlying velocity, being 2 x vNyq.

To further exam ine the  perform ance of M-DAVE and M-NLS statistically, the MSE of
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F ig u re  6 .7 . T he parabolic velocity profile.

the estim ates as a function of the SNR from  th e  transm ission focus point are calculated and 

shown in Figure 6 .6, where the underlying velocity v =  1.5 x VNyq• As is clear from the 

figure, bo th  the m ethods show sim ilar perform ance when the  SNR is less than  0 dB. As SNR 

increases, the M-DAVE m ethod is seen to  ou tperform  the  M-NLS approach.

Parabolic Flow

Consider a realistic case where pure blood flow (consisting of 3 x 105 scatters) w ith parabolic 

profile as defined in (6.1.1) is sim ulated w ith  m axim um  velocity v0 =  1.8 x vNyq at the vessel 

center. The corresponding param eters are given in A ppendix 6 .B. The true  axial velocity 

profile is depicted in Figure 6.7. As th e  flow is purely blood flow w ithout taking into account
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F ig u re  6 .8 . The estim ated velocity profile of parabolic flow, w ith  (a) S N R  =  10 dB; (b) 

S N R  =  30 dB.

vessel walls and clu tter effects, additive w hite G aussian noise is added w ith different SNR 

defined based on the RF d a ta  from vessel centre position. F igure 6.8 shows the estim ated 

velocity profile of parabolic flow w ith  S N R  =  10 dB and S N R  =  30 dB, respectively. It 

is clear from the figure th a t the  proposed m ethods actually  failed to  estim ate the parabolic 

flow. To further investigate this, F igure 6.9 illu stra tes  th e  power spectra  of excitation (the 

sinusoidal signal transm itted  by transducer) and  one R F echo, for fibre flow and parabolic 

flow, respectively. It is clear from F igure 6.9 (a) th a t the  tran sm itted  power in the fibre flow 

is not seriously dam ped and the  spec trum  of th e  R F echo well m atches the  one obtained from 

the excitation. In the parabolic flow scenario, the  tran sm itted  power is dam ped seriously 

and more side lobes exist as shown in F igure 6.9 (b), im plying th a t there exists a m ism atch 

between the RF echo and the  sinusoidal d a ta  model in (3.2.1). This may well explain why
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F ig u re  6.9. The spectra of excitation  and  R F  echo for (a) fibre flow; (b) parabolic flow.

the M-DAVE and M-NLS m ethods failed for th e  realistic parabolic flow. Further research 

will be needed on how to  improve b o th  the  d a ta  m odel in (3.2.1) and  the  sim ulation model 

used for RF generation. This is a topic of ongoing research.

6.3 Conclusion

This chapter discusses the  blood velocity estim ation  using th e  proposed estim ators in P art 

I of this thesis. Realistic R F d a ta  genera ted  w ith  the  Field II toolbox are used. Section

6.1 examines the hybrid estim ator proposed in  C hap te r 2. T he MSE results obtained from 

examining w ith fibre flow RF d a ta  show th a t  th e  hybrid  es tim ato r sta tistically  outperform s 

the conventional au tocorrelation  estim ator. To fu rther confirm  this, bo th  the m ethods are 

examined w ith realistic caro tid  flow and th e  hybrid  estim ator again shows be tte r performance
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than the autocorrelation estim ator. It is worth noting tha t, as discussed in Chapter 2, the 

performance of the hybrid estim ator will be worse if there exists serious power damping or 

frequency spread in R F data.

In Section 6.2 , the  DAVE and the NLS methods proposed in Chapter 3 are modified 

to take into account the  applied FIR  clutter filtering. The modified estimators are then 

examined using R F d a ta  obtained from simulated fibre flow as well as parabolic flow. The 

results indicate th a t the M-DAVE and M-NLS methods work well with fibre flow, but fail 

with parabolic flow. The m ost likely reason for this failure is due to the mismatch between 

the multiple-carrier based sinusoidal d a ta  model in (3.2.1) and the actual RF data  obtained 

from parabolic flow. T he failure of the estim ators also implies th a t the estim ators are very 

sensitive to the d a ta  exam ined and will perform worse if there is a mismatch between the 

examined da ta  and the  ideal d a ta  model from which the estim ators are derived.
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Appendix

6.A Param eters for Sim ulating Blood Flow with Single Carrier

Centre (single carrier) frequency, f c 10 MHz Transducer type Phased array

Sampling frequency, f s 100 MHz Transducer elements 64

Pulse repetition frequency, f prj 104 Hz Transducer element pitch 0.077 mm

Velocity in fibre, v 0.5 x vNyq Transducer element kerf 0.00385 mm

Peak velocity in parabolic flow, v0 0.8 X Vj\jyq Transducer element width 0.732 mm

Sound speed, c 1540 m /s Transducer element height 5 mm

RF lines per estim ate, N 18 Focus in transmission 35 mm

Pulse oscillation (M) 10 Focus in reception 35 rnrn

DO A in fibre 0° Elevation focus 25 mm

DOA in parabolic flow case 45° Apodization in transmission Harming

Bandwidth 0.6 Apodization in reception Harming

Center of vessel 35 mm Vessel radius 5 mm
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6.B Param eters for Sim ulating Blood Flow with Multiple Carriers

Multiple carriers [8.1, 11.97] MHz Transducer type Phased array

Sampling frequency, / s 100 MHz Transducer elements 64

Pulse repetition frequency, f prf 104 Hz Transducer element pitch 0.077 mm

Sound speed, c 1540 m /s Transducer element kerf 0.00385 mm

RF lines per estim ate, N 20 Transducer element width 0.732 mm

Pulse oscillation (M) 10 Transducer element height 5 mm

DO A in fibre 0° Focus in transmission 35 mm

DOA in parabolic flow case 45° Focus in reception 35 mm

Bandwidth 0.6 Elevation focus 25 mm

Center of vessel 35 mm Apodization in transmission Hanning

Vessel radius 5 mm Apodization in reception Hanning



Chapter 7

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE RESEARCH

In this chapter, the conclusions are drawn for the work involved in this thesis and possible

topics are suggested for fu ture research.

7.1 Conclusions

In this work, a variety of problem s are examined:

i. The problem of estim ating the frequency of a sinusoid in noise is stated  in Chapter 2. 

A hybrid phase-based single frequency estim ator with low com putational complexity 

is proposed, com bining previously proposed SNR threshold reduction approaches with 

a recent outlier removal scheme. The proposed estim ator achieves a lower mean square 

error than  other available techniques, lowering the SNR threshold a t which the CRLB 

is closely followed. Furtherm ore, in contrast to  many other techniques, the performance 

of the hybrid estim ator is found to be essentially independent of the true frequency. 

Related issues such as power damping and frequency spread are also briefly discussed;

ii. Doppler shift estim ation or the resulting velocity estim ation of a moving target is an 

im portant topic in a wide variety of fields. In Chapter 3, three novel velocity estimators

123
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using m ultiple frequency carriers have been developed. Evaluation using synthetic 

data  indicates th a t these new estim ators have the capability to  mitigate the poor high 

velocity perform ance of conventional correlation based techniques and thereby provide 

usable perform ance beyond the conventional Nyquist velocity limit. Furthermore, the 

CRLB for the velocity estim ation is derived to evaluate the performance of the proposed 

methods.

iii. To enable high quality  u ltrasound color flow images, efficient attenuation of the clutter 

signal is one of the critical factors. The analysis of existing filters implies th a t the recent 

introduction of the  E R F /P C  A and possibly the ICA methods seem very promising 

for this purpose. An efficient approach to  recursively form the clutter filters using a 

recent recursive subspace tracking technique is introduced in C hapter 5. The proposed 

method is successfully exam ined w ith realistic carotid flow which is simulated with the 

Field II toolbox [Jen96b].

iv. Commonly, narrow -band PW  systems estim ate the blood velocity using an autocorrelation- 

based estim ator. In C hapter 6, the hybrid frequency estim ator proposed in Chapter

2 is examined w ith realistic RF d a ta  which shows the achievable performance gain of 

this m ethod as com pared to  the traditional approach.

v. As the m ultiple-carrier based velocity estim ators proposed in C hapter 3 are motivated 

in association w ith  the  application of blood velocity estimation, in Chapter 6 the 

DAVE and the NLS estim ators are modified (accordingly term ed M-DAVE and M-NLS, 

respectively) due to  the  introduced clutter filtering and applied to realistic RF data 

for blood velocity estim ation. The M-DAVE and M-NLS m ethods were found to work 

well w ith fibre flow, bu t fail w ith parabolic flow. The most likely reason for this failure 

is due to  the m ism atch between the multiple-carrier based sinusoidal data  model and 

the actual R F d a ta  obtained from parabolic flow.
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All of the above conclusions illustrate the usefulness of param eter estim ation in solving 

practical problems arising in a variety of applications. It also exposes the problems existing 

in current research. Therefore, it is believed th a t the following suggestions provide a pathway 

for future research.

7.2 Suggestions for Future Research

Based on the work and analysis in this thesis, four possible topics for future research projects 

are proposed.

Frequency Estim ation o f  a General Sinusoidal Data M odel

The problem of a single tone estim ation has been well studied in this thesis. However, 

this study is confined to  the  pure sinusoidal da ta  model only, which somewhat restricts the 

generality of this hybrid estim ator. As a result, it is natural to  extend the hybrid estimator 

to be valid for a more general sinusoidal da ta  model allowing power damping and frequency 

spread.

Estimation o f 2-D im ensional Frequencies

In Chapter 2, the  hybrid estim ator has been shown to outperform  the examined single tone 

estimators, exhibiting lower MSE and SNR threshold as compared to other estimators. It 

is believed th a t there  is more to  be done in this topic. One thing to examine would be to 

extend the single tone estim ator to  the estim ation of 2-dimensional frequencies.

Order Estim ation o f  S u b sp ace-b ased  C lutter Filters

In this thesis, the c lu tte r rejection problem is studied and an efficient implementation of 

clutter subspace tracking technique for the subspace-based clutter filters is successfully in­
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troduced. However, the order estim ation problem involved in the clutter filters has not been 

investigated yet in th is work. As pointed out in the previous chapters, further research is 

needed on how the  filter order should be selected appropriately. Thus, to better implement 

the introduced efficient subspace tracking technique in clutter rejection, a critical problem 

is the corresponding order estim ation.

Improving the M ultiple-carrier B ased  Estim ators

The failure of the M-DAVE and the M-NLS estim ators with realistic parabolic flow investi­

gated in C hapter 6 implies th a t the estim ators are very sensitive to  the da ta  examined and 

their performance will degrade if there is a mismatch between the examined data  and the 

ideal data  model from which the estim ators are derived. Further research will be needed on 

how to improve the d a ta  model in (3.2.1) and the resulting estim ators so th a t they can be 

successfully im plem ented in practice.

In addition, it is w orth noting th a t the proposed multiple-carrier based estimators in 

Chapter 3 have high com putational complexity. As a result, it would be interesting to look 

into how these m ethods can be im plem ented with lower com putational load.
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