
CARDIFF
UN1VF■ RSITY

I’ Rl  F Y S G O L

CAtRDV|9
BINDING SERVICES 

Tel+44 (0)29 2087 4949 
F ax+44 (0)29 20371921 

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk




Inflorescence Development in 
Allium ampeloprasum var. babingtonii 

(Babington’s Leek)

By Sam Harding

A thesis submitted to the University of Wales in accordance with the 
requirements of the Doctor of Philosophy in the Faculty of Science

School of Bioscience September, 2004
Cardiff University
University of Wales
Park Place
Cardiff



UMI Number: U584777

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584777
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Inflorescence of Allium ampeloprasum var. babingtonii (Babington’s Leek) taken at
Worcester, Summer 2004

“Mine eyes smell onions: I  shall weep anon.’’’’ 
A l l ’s Wel l  tha t  E n d s  Well ,

William Shakespeare.
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Abstract

Within the horticultural industry, clonal propagation is desirable allowing for the maintenance of 

true lines, with more uniform cropping and flowering characteristics. Clonal propagation through 

tissue culture can be expensive, requiring equipment and facilities not always available to the 

breeder, whilst more traditional methods of clonal propagation may be slow, producing limited 

numbers.

Many Alliums produce bulbils or have the ability to produce bulbils if appropriate conditions 

prevail. Allium ampeloprasum var. babingtonii always produces both sterile florets and bulbils 

in the inflorescence as well as daughter bulbs and bulblets. The ability to manipulate the 

inflorescence towards the production of bulbils may lead to improved methods of clonal 

propagation. Literature suggests that bulbil production may involve reversion or partial reversion 

of floral primordia at critical stages in inflorescence development.

Wax embedding, sectioning and staining techniques have been used to examine bulb physiology, 

and allowed the construction of a developmental timetable. A protocol was developed for the 

maintenance of apices in tissue culture to monitor floral determination of the apex. The sampled 

population of Allium ampeloprasum L. var. babingtonii (Borrer) Syme was found to have both a 

vernalization requirement and a maturity requirement for floral competence. Vernalization for 

six weeks at 7° C produced 100 % flowering in plants with a minimum size of 3 cm diameter or 

approximately 13 g mass at the beginning of the growth season, producing ten or eleven leaves 

prior to expression of the floral state. Determination occurred during February; the meristem 

widened followed by elongation of the scape and development of the spathe. Cymes develop in a



regular pattern over the inflorescence, florets forming initially with bulbils developing at the base 

of the pedicels.

Gene expression in Allium species has been not recorded in detail, but comparisons with 

Arabidopsis and other monocotyledons such as rice (Oryza sativa) have provided a working 

model. Degenerate primers were constructed based on the rice RLF (Rice LEAFY homologue) 

gene. This was used to establish the presence of a putative homologue in Allium ampeloprasum 

var. babingtonii (ABLFY), this being expressed in floral meristems but not vegetative meristems.
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2-iP N6-(2-isopentenyl) adenine
A Adenine
B5 Gamborg’s culture medium
BA benzyl adenine, a cytokinin
BAP 6-benzylaminopurine
BDS Gamborg’s culture medium modified by Dunstan and Short (1977a)
BCIP 5-bromo-4-chloro-3-indolyl phosphate
BDS Gamborg’s B5 medium modified by Dunstan and Short
2 C DNA content of a normal somatic cell in G1 phase of the cell cycle
C Cytosine
Chloramine B N-chlorobenzenesulfanamide sodium salt
COPS Controller(s) of phase switching factors
d.f. degrees of freedom
DNA Deoxyribonucleic acid
DP Degree of polymerization
DEPC diethyl pyrocarbonate
DTT dithiothreitol
EDTA disodium ethylene diamine tetra acetate
Fichlor Sodium dichloro isocyanurate
FLIP Floral initiation process
G Guanine
GA Gibberellins
g a 3 Gibberellic acid
IAA Indoleacetic acid
IBA indole-3-butyric acid
KAH Kaurenoic acid hydrolylase
KIN Kinetin
LAR’s Leaf area ratios
LD Long day
LDP Long day plant
LFY LEAFY gene
LS Longitudinal section
MS Murashige and Skoog culture medium
Mt Metric tonne
NAA 1-naphthaleneacetic acid, an auxin
NBT nitroblue tetrazolium chloride
PBA 6-benzyl-9-tetrahydropyrane adenine
PBS phosphate buffered saline solution
Picloram 4-amino-3, 5, 6-trichloropicolinic acid
PFD Photon flux density
PVP polyvinylpyrrolidone
RAPD Randomly amplified polymorphic DNA
RNA Ribonucleic acid
SD Short day
SDP Short day plant



SDW Sterile distilled water
SEM Scanning electron microscope
Sp. Species
Spp. Species (pi.)
T Thymine
TS Transverse section
UCW University College Worcester



Summary of botanical nomenclature used in this thesis 

Bract a modified leaf subtending a flower or inflorescence

Bracteole a small bract above the bract but below the calyx

Bulb

Bulbil

Bulblet

Cyme

Daughter bulb

Exserted

Floret

Inflorescence

Pedicel

Peduncle

Rhizome

Scape

Sympodial

Tepal

underground organ of perennation and vegetative reproduction containing 
stored assimilates

small bulb formed aboveground in the inflorescence

small bulb formed belowground on rhizomes attached to the parent bulb

a sympodial inflorescence growing by means of lateral branches each with a 
flower at its apex

produced by the parent bulb from two axillary vegetative buds during floral 
development

protruding (e.g. anthers beyond corolla) 

a flower in a large or composite inflorescence 

a shoot bearing one to many flowers and no leaves 

the stalk of a single flower in an inflorescence 

the stalk of a whole inflorescence (see also scape) 

underground stem producing shoots

flower stalk growing from ground level (as in herbaceous plants)

growth where the main axis is not formed by continuous growth from the 
apex but by the growth of lateral buds near the apex

perianth with little or no difference between the calyx (sepals) and corolla 
(petals)

In this thesis, this nomenclature is applied to: -

Var. babingtonii - producing both florets and bulbils, reproductively sterile (i.e. no seeds) 
reproducing clonally through production of bulbils, bulblets and daughter bulbs

Var. ampeloprasum -  producing fertile florets leading to seed production

Var. bulbiferum  -  producing both florets and bulbils, as with var. babingtonii, but with smaller 
bulbils

xv



Inflorescence development in 

Allium ampeloprasum var. babingtonii (Borrer) Syme

(Babington’s Leek)

1.0 Introduction to important members of the Genus Allium, 
their physiology, phenology, and flowering processes

In this thesis, various parameters of the floral response in the wild leek Allium 

ampeloprasum var. babingtonii are presented in a series of “experimental” chapters. 

In Chapter One, flowering behaviour of this species and closely related species is 

presented under nine sub-headings -  taxonomy, horticultural importance, 

reproductive strategy, habitat and phenology are presented in the first five sections. 

Vegetative and floral development is presented in the next two sections and the 

Introduction ends with a section on floral genes in higher plants, followed by the 

aims of the work.

Allium ampeloprasum var. babingtonii is a wild leek largely found on roadside 

hedges, coastal cliffs, scrub, streamsides, waste ground and dune grassland in 

Cornwall (French et al., 1999). It is also grown in a small number of commercial 

nurseries in Great Britain (Appendix 1), largely as a vegetable curiosity (Ross, 2000 

personal communication).

Although it produces an inflorescence, it has not been recorded as producing seed. 

Instead, it reproduces clonally (Treu 1999) by the production of bulblets on rhizomes

1



from the parent bulb, by division o f the parent bulb into two daughter bulbs 

following flowering, and by the production o f bulbils in the inflorescence (Figure 1).

Parent bulb (divides 
during flowering into 
two daughter bulbs)

Bulblet
 ►

Secondary
inflorescence

Spathe intact

Tricuspidate
inner
filaments

Inflorescence

Bulbil

Floret

Figure 1: Allium ampeloprasum L. var. babingtonii (Borrer) Syme del. H. Reynolds (based on the 
illustration in English Botany, Suppl. 4: t. 2906 (1847) (Adapted from the Botanical Society of the 
British Isles, 1987).
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Var. babingtonii has strong associations with cultivation practices and may have 

been cultivated at one time itself. Steam (1987) suggested that as bulbils provide the 

advantage of food storage, but the disadvantage of limited dispersal, this favours 

colonisation of man-made environments. Agricultural and maintenance practices, 

such as flail mowing of verges, are likely to encourage dispersion o f the bulbils 

(Hocking, 2000, personal communication). Certainly, there has been an increase in 

populations recorded by the Botanical Society of the British Isles (BSBI) over recent 

years (Hocking, 2000, personal communication). Formerly Red Data Book listed, A. 

ampeloprasum var. babingtonii was recorded in just eleven 1 km squares in the 

1970’s, increasing to 54 in the 1980’s and 80 in the 1990’s (Wiggington, 1999).

W; idebrii tge •

PI ymoulh

Key:
•  After 1979 
O Before 1980

6 7 9 04 5 8 1 2 3 4

Figure 2: Map of Cornwall showing location of populations of Allium ampeloprasum var. babingtonii 
(Borrer) Syme (adapted from French et al., 1999).
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The Cornish populations are discrete (Figure 2), usually small (numbered in tens of 

plants), though some populations number hundreds or thousands of plants, and 

comprise the majority of known populations. However, populations have also been 

recorded in most of the main islands of Scilly, W. Ireland and the Is. of Aran 

(Wiggington, 1999; Treu, 1999). Its large size, vigorous spring growth and prolific 

reproduction via bulbils make it well able to compete with rank wayside and ruderal 

species (Wiggington, 1999). Allium ampeloprasum spp. (wild leeks) are robust 

perennials, found in western and southern Europe, including the Mediterranean 

Islands, from Iberia and the Balearic Islands to Turkey, Iraq and the Caucasus, 

typically flowering in July and August, reproducing vegetatively and by the 

production of seed (Wiggington, 1999).

Table 1: Some varieties of Allium ampeloprasum (Brewster, 1994'; Wiggington, 19992; Heukels, 
20003; Fritsch and Friesen, 20024)

Variety Characteristics Location
A. ampeloprasum var. 
ampeloprasum2

A. ampeloprasum var. 
bulbiliferum2 3

A. ampeloprasum var. 
kurrat; A. Kurrat 
Schweinf ex Krause 
(kurrat)1 4

A. ampeloprasum var. 
holmense (Mill.) Aschers. 
Et Graebn. (great headed 
garlic),' 4

A. ampeloprasum var. 
porrum (L.) Gay (leek)1 4

A. ampeloprasum var. 
sectivum Lued. (Pearl 
onion)1 4___________

Abundant in 1625, but declining 
rapidly, with only hundreds of plants 
being recorded recently; compact 
umbels with no bulbils; seed producing Bristol Channel and near

South Stack, Anglesey

A very few sites on the coasts 
of England and Wales, Steep 
Holm and Flat Holm in the

Dense globose umbels with small 
bulbils (6-8mm)

Does not normally produce bulbs; 
flowers Spring-early Summer; may 
have bulbils; fertile seed; can be 
crossed with leek

No bulbils usually, cloves of 2 sizes; 
flowers in Spring but seeds are sterile

Bulbs normally absent; flowers 
Spring-early Summer; sometimes 
bulbils are produced

Little pseudostem; bulbs, fertile seed; 
large numbers of daughter bulbs

Channel Islands and Northern 
France

Grown in Egypt and adjacent 
areas

Cultivated through Greece and 
Egypt, through southwest Asia 
to India, California

Important crop plant 
throughout Europe, north 
America

Atlantic and temperate Europe
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Three morphologically distinct varieties are recognised in Britain; Var. babingtonii 

(bulbils 8 -  15mm length); var. ampeloprasum, a seed producing variant considered 

to be very rare (Wade et al., 1994) growing on rocky sea cliffs in Wales and 

Anglesey (Roberts and Day, 1987) as well as in Cornwall (Mathew, 1996); and var. 

bulbiferum (Syme) (syn. var. bulbilliferum Lloyd), a bulbil producing form endemic 

in the Channel Islands and lie d'Yeu, N. France (Mathew, 1996), and also found in 

W. France (Heukels, 2000; Wiggington, 1999), producing bulbils that are noticeably 

smaller than those of var. babingtonii (6 -  8mm) (Heukels, 2000) (Table 1). 

Cultivated varieties include the leek (A. ampeloprasum var. porrum L. Gay), widely 

grown as a crop throughout Europe, the kurrat, great-headed garlic and the pearl 

onion (Brewster, 1994) (Table 1).

Opinions differ on the status of A. ampeloprasum, some treating it as a probable 

ancient introduction, possibly in association with early culinary practices, whilst 

others treat all varieties as being native (Wiggington, 1999). Clapham et al. (1987) 

point out that all British Alliums apart from A. schoenoprasum and A. ursinum 

appear to have been introduced by man. However, it is widely accepted that A. 

ampeloprasum var. porrum (leek) and A. ampeloprasum var. kurrat (kurrat) are 

derived from the wild A. ampeloprasum, although they could also have arisen as a 

result o f selection from one of the closely related species (Mathew, 1996).

1.1 Taxonomic classification of A. ampeloprasum var. babingtonii

Classification in Alliums can be difficult as morphological differentiation may be 

weak, while other disciplines provide only limited information (Mathew, 1996).
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Early taxonomists placed Alliums in the Liliaceae, reflecting the superior ovary that 

is a characteristic of this family, the Amaryllidaceae being reserved for petaloid 

monocotyledons (Liliales) with inferior ovaries. John Hutchinson (1884-1972), 

suggesting that the important of ovary position had been overstressed, remodelled 

the genera in 1934, and included Alliums in the Amaryllidaceae, reflecting the 

umbellate inflorescence characteristic of that family (Hanelt, 1990; Heywood, 1978; 

Steam, 1978). Since the Alliums have characteristics of both Liliaceae and 

Amaryllidaceae, the families have been united by some authorities (e.g. Cronquist, 

1968; Thome, 1968) or separated further creating the Alliaceae, for example, 

Takhtajan (1959). Steam (1978) also prefers to emphasise the differences of Alliums 

from the Amaryllidaceae and Liliaceae, and places them in the Alliaceae. This has 

subsequently been adopted by a number of authorities (e.g. Hanelt, 1990; Fritsch and 

Friesen, 2002).

Allium is a wide-ranging genus, with more than 750 species and approximately 60 

groups at subgenera section and subsection level. There are a further 650 

synonymous species names (Steam 1992; Gregory et al. 1998) reflecting the 

complexities of precise classification.

Eduard von Regel (1815 - 1895), an early monographer of Allium, grouped the 

species into six sections (Alliorum adhuc cognitorum Monographia, 1875), 

reflecting the informal groups established by George Don {Monograph o f  the Genus 

Allium , 1827). More recently, Hanelt et al. (1992) proposed 6 subgenera, with 57 

sections and subsections. Mathew, (1996) reviewed section Allium listing 115 

species, and suggesting that it was impossible with the current state of knowledge, to
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produce a meaningful infra-sectional classification. He suggested six informal 

groupings based on character correlations;

• Ampeloprasum group
• Rotundum Group
• Spaerocephalon Group
• Guttatum Group
• Scabriflorum Group
• Filidens Group

Early classifications of Alliums separated the bulbilliferous and non-bulbilliferous 

species (e.g. Linnaeus, 1753, Species Plantarum; Don 1827, Monograph o f  the 

Genus Allium). However, some species have flowers that are partly or wholly 

replaced by bulbils and, therefore cannot be defined by this characteristic and are 

usually regarded as conspecific. Indeed many species have the potential to produce 

bulbilliferous individuals, and variants have received very different taxonomic 

treatment, which is reflected in the names they have been given (Steam, 1978). 

Steam solves this dilemma by considering that when the bulbilliferous variant has a 

range that is not coincident with that of the non-bulbilliferous free-seeding one and 

extends outside that range, then it should be considered as a subspecies.

Allium ampeloprasum var. babingtonii was recorded as A. halleri (after Albrecht von 

Haller 1708 - 1777, 18th century Swiss biologist) by Charles Babington (1808 -  

1895). William Borrer described it as a new species in 1847 in English Botany using 

the name Allium babingtonii, to commemorate Charles Babington. Later it was 

referred to os Allium ampeloprasum var. babingtonii (Syme) (1869), reflecting its 

physiological similarities with Allium ampeloprasum war. porrum (Table 2).

Though other synonyms have been used historically, this classification is now 

largely adopted into common usage (e.g. Stace, 1991; Mathew, 1996, Treu, 1999).
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Kingdom Plantae
Subkingdom Embryobionta
Division {Phylum) Tracheophyta
Subdivision Spermatophytina
Class Angiospermopsida; Liliopsida, (Takhtajan, 1997) 

Monocotyledones (Hanelt, 1990; Brewster, 1994)
Subclass Monocotyledonae

Liliidae (Stace, 1991; Takhtajan, 1997)
Superorder Liliiflorae (Hanelt, 1990; Brewster, 1994;). Liliianae 

(Takhtajan, 1997)
Order Liliales (Stace, 1991/ Amaryllidales (Takhtajan, 1997) 

Asparagales (Hanelt, 1990; Brewster, 1994)
Family Liliaceae {Sta.ce, 1991)

Alliacaea (Hanelt, 1990, Brewster, 1994, Takhtajan, 
1997)

Subfamily Allioideae (Stace, 1991, Takhtajan, 1997)
Tribe Allieae (Stace, 1991, Brewster, 1994, Takhtajan, 1997)
Genus Allium (Stace, 1989, Takhtajan, 1997)
Subgenus Allium (Hanelt, 1990)
Section Allium (Mathew, 1996)
Subsection Scordoprasum (Hermann, 1939)
Species ampeloprasum
Variety babingtonii (flowers and bulbils) (Stace, 1991); 

ampeloprasum (no bulbils) (Stace, 1991); 
bulbiferum (bulbils and flowers) (Syme, 1869) (Stace, 
1991);

Principal ranks are shown in bold. All ranks are taken from Stace (1989) unless shown otherwise.

Treu (1999), investigated biosystematic, cytological and molecular perspectives 

concluding that var. babingtonii, should remain conspecific with A. ampeloprasum, 

both on morphological grounds, and on the basis of random amplified polymorphic 

DNA (RAPD) analysis.

1.2 The horticultural importance of genus Allium

The genus Allium includes many important crop plants (Brewster, 1994), with high 

levels of economic and dietary significance (Hanelt, 1990) (Appendix 2). Important 

species include A. sativum (garlic -  Subgenus Allium, Section Allium), A. cepa 

(onion -  Subgenus Rhizirideum, Section Cepa), and the closest commercially 

important relative o f A. ampeloprasum var. babingtonii, the leek, A. ampeloprasum
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var. porrum  L. (Gay) (Brewster, 1994). A. cepa (onion) is the world’s second 

largest vegetable crop (measured by weight) (Brewster, 1994) and figures are 

steadily increasing (Table 3).

Table 3: World production of dry onion bulbs and garlic (FAOSTAT data 2004)
Year World production 

onions dry tonnes
World production garlic 
tonnes

1991 30,074,271 7,067,506
1992 31,382,512 7,323,642
1993 32,766,633 7,425,707
1994 34,374,825 7,645,957
1995 37,839,592 8,405,369
1996 39,443,552 8,868,102
1997 39,327,411 8,857,640
1998 43,756,889 9,044,556
1999 46,370,939 9,421,363
2000 46,529,044 10,067,396
2001 46,750,117 10,121,008
2002 52,381,254 12,182,291
2003 52,068,053 12,407,368

A. .ampeloprasum var. porrum has been cultivated from very early times, being 

popular in the ancient Near East around 2500 BC. It was important for both Greeks 

and Romans and later its use spread throughout Europe (De Clercq and Van 

Bockstaele, 2002).The EU production of leeks is about 25% of the annual production 

for bulb onion over the same area. However, because the price per unit weight of 

leeks is higher, the monetary value of the crop approaches that of onions (Brewster, 

1994). It is cultivated on about 30,000 ha in Europe (Table 4) and is becoming 

increasingly popular in the USA and elsewhere (De Clercq and Van Bockstaele, 

2002)

Table 4: Leek production in EU countries (Eurostat, 1999)

Country Area (ha) Country Area (ha)
Belgium 5700 Ireland <100
Denmark 400 Italy 1000
Finland <100 Netherlands 3700
France 8300 Spain 2400
Germany 2400 Sweden <100
Greece 1800 UK 2600
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There is increasing commercial interest in the production of Alliums as ornamental 

plants mid cut flowers (Davies, 1992; Cottrell, 1999; Kamenetsky and Fritsch, 2002). 

These included, giganteum, A. sphaerocephalon, and A. moly, with sales figures 

increasing significantly over recent years (Cottrell, 1999). For example, the 

Netherlands is the world’s largest producer of ornamental Allium bulbs, increasing 

by 33%from 1995/6 to 1998/9, including 40 species and cultivars and using 113 ha 

of land (Kamenetsky and Fritsch, 2002). Kamenetsky and Fritsch (2002) list 

approximately 100 ornamental Alliums as popular species, from approximately 300 

species presented in horticultural catalogues and books, identifying 19 species as 

being o f economic importance.

Additionally, a number o f health benefits have been reported for some Alliums, many 

having been used in traditional and folk medicine since ancient times (Keugsen, 

2002). Increasing interest in putative medicinal properties have been intensively 

investigated, for example, antibiotic, anti-fungal and anti-yeast effects, the 

cardiovascular effects o f garlic and onion, and one of the most thoroughly 

investigated effects of onion, its anti-asthmatic properties (Keugsen, 2002). Alliums 

have also been implicated in treatment of metabolic diseases, showing anti-diabetic 

activity, anti-cancer activities and immune effects. The benefits o f other Allium 

species are not yet clear and more studies are urgently needed (Keusgen, 2002).

Allium spp. contribute significantly to the world economy, as crops, ornamentals and 

medicines, and if  recently observed trends continue, they will continue to increase in 

importance and production in the near future.
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13 Apomixis and Sexual Reproduction

Production of any crop, whether edible, ornamental or medicinal, requires the 

marketing o f plants and plant products when demanded by the proposed markets.

The ability to manipulate breeding and propagation to improve the product to meet 

the requirements o f that market is a valuable tool necessary to meet the often 

stringent demands o f  the market place.

Improving the understanding of clonal reproduction is useful to plant breeders as it 

provides a potential mechanism for the production of desirable lines (Kamenetsky 

and Rabinowitch, 2002). Hartmann et al. (1997), lists the major trade benefits of 

clonal propagation as:

•  Fixing superior genotype
• Uniformity of populations
• Facilitating propagation
• Reduced time to maturity
•  Combining genotypes in a single plant
• Controlling developmental phases.

Apomixis, (the habitual reproduction by non-sexual means), may be vegetative 

apomixis, which replaces sexual reproduction with vegetative, as in the case of A. 

dmpeloprasum var. babingtonii, or agamospermy where seeds are formed by 

pseudosexual means (Stace, 1989) e.g. some Taraxacum spp. (Grime et al., 1990).

The majority o f Allium species are sexual, out-breeding, non-hybridising species 

(Stace, 1989). Outcrossing is encouraged by protandry (Currah and Ockenden,

1978) and natural cytoplasmic sterility (Jones and Clarke, 1943) with self-pollination 

estimated at only 5-25% in cultivated Alliums (Beminger and Buret, 1967). Onion, 

leek and chives (A. cepa, A. ampeloprasum var. porrum, and A. schoenprasum
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respectively), all reproduce sexually from seed, though A. ampeloprasum var. 

porrum may produce bulbils if  early flowers are removed (Brewster, 1994). Whilst 

the seed may be plentiful in some species, the product is genetically variable, and 

may take several years to produce a bulb mature enough to flower, particularly in 

some of the larger plants such as many of the ornamental AUiums (Brickell, 1992; 

Fritsdi andFriesen, 2002).

Some Allium species are unable to produce viable seed, relying entirely on 

vegetative apomixis, e.g. most .4. sativum, (Brewster, 1994), whilst others such as A. 

vineale, combine the two reproductive methods in varying proportions.

Kamenetsky (1993) listed five types o f vegetative reproduction in the genus Allium:

•  Vegetative replacement or renewal, where two bulbs are produced after flowering, of which the 
largest is the renewal bulb, which continues the parent plant;
• Vegetative increase, where bulblets are formed from buds in the axils of the foliage leaves;
•  Bulblets can be produced via stolons arising from the parent bulb; Galil (1965) reported A. 
ampeloprasum producing up to 35 bulblets per season;
• Vegetative reproduction in rhizomatous species, which leads to independent plantlets as the 
connecting rhizome decays;
• Bulbil production, with or without the production of florets in the inflorescence.

A. ampeloprasum var. babingtonii reproduces using three o f these types, vegetative 

replacement, bulblets, and the most important in terms o f numbers produced, bulbils. 

It has never been observed to set seed being both male- and female- sterile (Treu, 

1999).

Bulbil production is generally important within the genus Allium, with Flora 

Europaea (Tutin et al. 1993) listing twenty species/varieties/subspecies, which 

produce bulbils. These sprout and develop similarly to bulbs, and this is reflected in 

their similar morphology (Mann, 1960).



Some Alliums will produce florets even though the species is an obligate apomict for 

example, A. sativum (garlic) where all cultivated forms are believed to be sterile 

relying entirely on vegetative reproduction (Etoh and Simon, 2002). Allium 

ampeloprasum var. babingtonii produces both florets and bulbils in the inflorescence 

in widely varying numbers with a moderate positive correlation between the number 

of bulbils and flower number and a weak but significant correlation between flower 

number and total bulbil weight (Treu, 1999). The main bulb divides into two sister 

bulbs after flowering. If flowering does not occur, the bulb remains as a 'round' 

(Treu, 1999). The bulblets are produced in small numbers, often having a tough 

sclerified layer and sometimes an inner layer as well. They are helmet shaped with a 

short, tapered (acuminate) apex, a double protective layer, and are produced in 

variable numbers by rhizomes emerging from the bulb basal plate (Treu, 1999).

1.3.1 Sexuality -  costs and benefits

Chariesworth (1993a, 1993b) modelled the evolutionary advantages of sex and 

genetic recombination. He found that in the case of a steadily moving optimum 

environment, a large shift from sexual to asexual reproduction may result in a large 

reduction in mean fitness. However, conditions with a cyclical or randomly varying 

environment are much more stringent, therefore less favourable for the evolution of 

increased recombination. Conditions favourable for asexual reproduction are more 

likely to be those with a constant environment. This is to be expected, since the 

traditional view of sexual reproduction is that it allows for adaptation through 

variation.
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Manning and Dickson (1986) showed that re-establishment of equilibrium following 

environmental change is usifally faster in a sexual population, suggesting that 

asexual populations may experience a greater long-term disadvantage during 

changes in fitness through harmful mutations. Earlier, Manning (1976) suggested 

that as sex minimises the mutational load, this may be the mechanism that normally 

maintains sex within a population.

The suggestion that the advantage o f sex is the accumulation of rare beneficial 

mutations by allowing simultaneous allele replacements at many loci, depends on 

the restrictive assumption that the fitness of a genotype is determined by fitness 

potential, a single intermediate variable to which all loci contribute additively, 

allowing alleles to accumulate in any order (Kondrashov and Kondrashov (2001). 

They suggest that individual-based simulations o f sexual and asexual populations 

show that sex may in fact retard adaptive evolution, under generic selection. When 

new alleles are beneficial only if  they accumulate in a particular order, the sexual 

population may evolve two or three times slower than the asexual population, 

because asexual reproduction permits some overlap of successive allele replacements 

(Kondrashov and Kondrashov, 2001). The cost o f sexuality also depends on the 

relative resource allocation to male and female gametes (Hoekstra and van Loo, 

1986).

When Bengtsson and Ceplitis (2000) studied the balance between sexual and asexual 

propagation in an evolutionary model where the processes are genetically 

determined, they concluded that a mixed reproductive system can evolve, if  the 

difference in fitness of the propagules varies over the years. When the propagules
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are very similar to each other, evolution will tend towards a state dominated by the 

one or the other reproductive system.

Peck et a l  (1999) presented a model in which a sexual population produced an 

asexual mutant They concluded that asexual takeover is likely in an unstructured 

environment, but less likely if  the environment is subdivided into demes that are 

connected by migratory paths, being more unlikely with a greater number o f demes 

and with less migration.

A number o f mechanisms have been implicated in sterility in Alliums. For example, 

current commercial clones o f garlic (A. sativum) are sterile (Etoh and Simon, 2002). 

Suggested reasons include competition for nutrients between generative and 

vegetative buds (Koul and Gohil, 1970b), premature degeneration o f the tapetum 

(Novak, 1972), or infection with degenerative-like diseases (Konvicka, 1973,1984). 

Etoh (1985) suggests that garlic is actually transitional from sexual to asexual 

reproduction, this process being accelerated by generations o f agricultural selection.

Steam (1987) suggested that the production of bulbils in Allium species allows the 

establishment o f plants without some o f the hazards that endanger germinating seeds, 

though the weight o f bulbils may deprive them of the wide dispersal experienced by 

seeds in the wild. However, with modem agricultural practices providing the 

dispersal mechanism for the bulbils, this possible disadvantage over the seed bearing 

variants is overcome.
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Allium ampeloprasum spp. show diverse reproduction methodology. Var. 

babingtonii only reproduces asexually through bulbils, bulblets and daughter bulbs, 

whilst var. ampeloprasum reproduces largely through seed (also bulblets and 

daughter bulbs but in relatively small numbers). The two varieties exist in discrete 

populations, the former largely in Cornwall, and the latter in S. Wales. 

Physiologically similar, they occupy similar scrubby, sandy habitats, with var. 

babingtonii increasing rapidly, and var. ampeloprasum decreasing and Red Book 

protected (Wiggington, 1999), suggesting differences in fitness linked to 

reproduction. Treu (1999) concluded that while the high ploidy level of var. 

babingtonii is unlikely to be a factor in sterility, the observed cytological instability 

might prevent normal meiotic segregation. He suggests that either a chromosome 

mutation could have led to meiotic failure or another factor such as level and/or 

duration o f summer temperature may prevent seed set, as for example in the case of 

Allium trioccum (Nault and Gagnon, 1993). This spring ephemeral consists of 

sexual and asexual ramets, both producing large numbers o f inflorescences. Most of 

these fail to mature, and most reproduction is vegetative, daughter bulbs being 

produced during the reduction in apical dominance when the inflorescence is 

initiated. However, during years when environmental conditions prolong the 

growing season, seed production increases significantly and this is thought to be 

related to the accumulation o f resources (Nault and Gagnon, 1993).

Single clones that are geographically widespread are highly unusual, with exceptions 

having very restricted ecological ranges (Ellestrand and Roose, 1987). Treu (1999) 

considered that var. babingtonii has a wide ecological niche, successfully occupying 

varied habitats, the disadvantages o f asexuality such as the accumulation of
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deleterious mutations possibly buffered by the multiple alleles present in polyploids. 

He suggests that within a sexual population, an asexual mutant could occur, 

spreading rapidly due to short-term benefits (such as maintenance of favourable 

combinations o f genes), until a point is reached where it is unable to adapt to a 

change in environmental conditions or is unable to deal with deleterious mutations. 

Many weeds are commonly asexual or self-fertilizing, and Halliday (1993) suggested 

that an environment with cleared areas of ground, limiting competition, favours the 

production o f large numbers o f genetically uniform progeny. Bierzychudek (1989) 

further suggested that obligate asexuals may have a more general-purpose genotype, 

with the often polyploid nature o f asexuals providing increased ecological tolerance.

1.4 Habitat

A. ampeloprasum var. babingtonii is found in a wide range o f habitats including 

streamsides, sea cliffs, open woodlands, peaty heath and roadsides (Treu et al.

2001), path and field borders and banks (personal observation). These range from 

wet (streamsides) to dry (cliff sites) and exposed sunny positions to lightly shaded 

(open woodland). Soil may be high in organic matter (peaty heath), or sandy 

(coastal scrub) (personal observation). The common features o f these habitats are 

that any evergreen species are low growing (e.g. grasses), the size o f potential 

competitors is limited and many plants are winter dormant.

These sites may also be poor in nutrient levels, either because the soil is shallow, 

where sandy soil allows leaching o f nutrients, or where construction practices leave 

poor quality, ofrefi stony soil (for example, road and path sides), and this will tend to 

inhibit the growth o f larger species in these sites. Further, agricultural practices such
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as spraying, ploughing, mowing etc., limit the size o f competitive plants, as does the 

disturbance caused by pedestrian and road traffic. Most o f  these sites could 

generally be described as scrub or wasteland, usually free draining, with limited 

competitive species. Where plants experience more severe competition they are 

often smaller or when lightly shaded they become paler and etiolated (personal 

observation).

The majority o f  Alliums grow in open, dry, sunny, arid and moderately humid 

climates and are often found in rocky, limestone formations (Fritsch and Friesen, 

2002). De Clercq and Van Bockstaele (2002) note that close relatives the leeks (A. 

ampeloprasum var. porrum) will grow in any open-textured (well-drained) soil.

Most species o f  Allium grow in regions o f  autumn-spring precipitation, with summer 

drought, i.e., Mediterranean and Irano-Turanian phytogeographical regions (central 

Turkey, south to Israel and Saudi Arabia, East to Central Asia) (Figure 3).

Main region of 
sfaegies jliversity

Figure 3: World distribution of wild species o f the genus Allium L. The numbers on the map indicate 
the number of species found in each region (adapted from Fritsch and Friesen, 2002).
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The main region of high species diversity is from the Mediterranean basin to Central 

Asia and Pakistan, with a second smaller centre in western North America (Fritsch 

and Friesen, 2002; Mathew, 1996). The Royal Botanic Gardens, Kew hold 

approximately 1000 accessions, comprising at least 250 species out of 750 known in 

the genus (Mathew, 1996).

Figure 4: Distribution of Allium species; Allium section Allium in black (adapted from Mathew, 1996)

Section Allium has some 115 species, extending from Portugal eastwards to Central 

Asia (Figure 4) with thirty recorded in Europe (Mathew, 1996). Many species in 

Section Allium are in areas that are difficult to access, so that they are known from 

preserved material or type specimens, which may no longer exist. The Royal 

Botanic Gardens, Kew, houses a collection of living specimens representing over 

half these species (Mathew, 1996).

Allium spp. occur from sea level up to an altitude of 3050m above sea level, some 

species having a wide range within these general limits. For example, A.

Var. babingtonii is at fatAvestem 
distribution of sectiont£4///um
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ampeloprasum, A. rotundum, A. guttatum and A. vineale can be found from sea level 

to 2000m (Mathew, 1996). A. ampeloprasum is found from Portugal in the west 

through to the Mediterranean countries to western Iran in the east and is often 

associated with cultivated or abandoned fields, together with A. vineale, and A. 

scorodoprasum. These all increase rapidly by vegetative means, such as bulblets and 

bulbils (Mathew, 1996). They are poor competitors, requiring vigorous weed control 

in cultivation (Bosch Serrah and Currah, 2002). It is not surprising therefore, that 

var. babingtonii will flourish in areas where abiotic factors limit competition. As 

var. babingtonii produces leaves throughout the winter months, this ensures that its 

canopy is always exposed to receive maximum photosynthetic benefit, dying down 

in early summer when other species are becoming more light-competitive, and then 

using its stored resources in the bulb to maintain subsequent growth.

1.5 Phenology

Treu (1999) recorded that A. ampeloprasum var. babingtonii (Cornish populations) 

showed visible above ground sprouting in October. There was limited growth 

between November and February, followed by rapid growth in March and April.

The inflorescence (if produced) emerged in late spring/early summer, maturing in 

mid-late summer. The foliage died down in mid-summer, the plant becoming 

dormant for a short period before growth recommenced with root development in 

late September, followed by above ground growth once again in October (Treu,

1999). A. ampeloprasum var. babingtonii is believed to flower in its third year, the 

inflorescence becoming visible above the leaves during late spring and maturing in 

late summer (July -  August) (J. Shipton, pers. comm. 2000)
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Similarly, A. ampeloprasum var. porrum (leek) is a biennial (perennial) species 

needing vernalization in order to flower. It blooms when days are long in 

midsummer (approximately 10 June to 20 July in Europe) though premature bolting 

(flower development) can be a problem with early planting (De Clercq and Van 

Bockstaele, 2002).

This is in many ways typical A. ampeloprasum phenology, reflecting its 

Mediterranean origins in relatively dry areas (Figure 5). However, the time of 

flowering is a little later than that generally found in other A. ampeloprasum spp. 

originating in semi-desert or Mediterranean conditions (‘e’ Figure 5), and perhaps 

more consistent with Alliums from cooler regions (‘a’ and ‘b’, Figure 5).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

A. ampeloprasum 
\^r. babingtonii

Growth of leaves Flowering

Leaf growth under snow Seed maturation

Intrabulb development

Figure 5: Annual life cycles of some Allium species, (a) A. nutans (mountains, Siberia); (b) A. 
pskemense (mountains, Kazakhstan); (c) A. caeruleum (steppe, Russia); (d) A. karataviense (semi- 
desert, Kazakjstan); (e) A. ampeloprasum (semi-desert, Mediterranean); (f) A. rothii (desert, Israel) 
showing approximate relationship of A. ampeloprasum var. babingtonii relative to these species 
(adapted from Kamenetsky, 1996b).
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1.6 Vegetative Development

Patterns of organ formation and development vary within Allium species. This may 

depend on the environmental conditions under which it has grown, as well as on the 

species (DeMason, 1990). Some commercially important varieties (see 1.2) have 

been extensively researched, e.g. A. cepa, (onion) and much of the development of 

leeks {Allium ampeloprasum var. porrum) is similar to this (Brewster, 1994). 

Therefore, these species will be used as a model for var. babingtonii. Mathew 

(1996) summarised the diagnostic characters of section Allium:

• Bulb ovoid to globose, often with bulblets
• Leaves sheathing stem for 1/4 to 2/3
• Leaf lamina either solid and flat to channelled in cross-section, or hollow and semi-terete to 

terete
• Spathe valve 1, long-beaked and caducous, or valves 2-4 persistent
• Perianth campanulate to ovoid, never stellate
• Outer 3 filaments usually simple, triangular-subulate
• Inner 3 filaments 3(5-7)-cuspidate, the median anther-bearing cusp usually longer than the

lateral sterile cusps
• Ovary with distinct nectariferous pores

He further defined the characteristics of the ampeloprasum Group:

• Bulb tunics membranous
• Bulblets yellow-brown to brown, often small, numerous and helmet shaped
• Leaves solid, flat/canaliculated
• Spathe 1-valved with a long beak, caducous 
'• Anthers exserted

1.6.1 Bulb

1.6.1.1 Structure

Var. babingtonii forms a bulb (Treu 1999), unlike var. porrum (Brewster, 1994), but 

similar to most wild A. ampeloprasum. Jones and Mann (1963) record that these 

have well developed bulbs, usually consisting of two thick, bladeless storage leaves, 

surrounded by the thin bases of the foliage leaves, possibly with many cloves.
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Bothmer (1974) describes the Aegean members of the Ampeloprasum complex in 

some detail, as possessing one fleshy, colourless modified leaf for storage (storage 

cataphyll), forming the bulk of the bulb. This nourishes the sprout in the early 

stages, before declining. It is surrounded by a bladeless sclerified protective leaf 

(Bothmer, 1974). Inside the storage leaf, a bladeless sprout leaf grows out and forms 

the basal sheath of the plant, with the normal foliage leaves formed inside this 

(Figure 6). The basal bulb plate is a modified stem, which regenerates every 

vegetative period, unlike the cultivated A. Ampeloprasum var. porrum or A. kurrat, 

both of which are biennial. The old bulb plate (basal plate) remains attached to the 

new bulb plate (basal plate) (Bothmer, 1974).

bulb plate

Figure 6: Allium ampeloprasum complex. Schematic drawing of renewal bulb structure half-way 
through the vegetative period (adapted from Bothmer, 1974)

Bulblets are vegetative axillary buds forming on rhizomes from the true stem, whilst 

bulbils are vegetative buds developing in the inflorescence. Conversely, leeks (A. 

ampeloprasum var. porrum) do not form a significant bulb under most temperate 

conditions, though under long day conditions and between temperatures of 12°C and

new s torage  leaf

fol iage leave  

""'-sprout leaf  

stora ge  leaf

bulblet primordia
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18°C, some food reserves can accumulate in the leaf sheath bases (Rubatzky and 

Yamaguchi, 1997).

The vegetative onion (A. cepa) axis is a rosette shoot with a short, squat stem (basal 

plate), lacking intemodal elongation. The stem is heart-shaped, when dissected 

longitudinally (De Mason, 1990).

Figure 7: Diagrammatic longitudinal section through an onion (A. cepa) or garlic (A. sativum) stem 
(baseplate) showing the main tissues, leaf bases, root origination and regions of cell division (left 
side); and how the vessels of the stem, root and leaves interconnect (right side) (adapted from 
Brewster, 1994).

Since A. ampeloprasum war. porrum is similar to A. cepa (Brewster, 1994), it is 

likely that var. babingtonii has a structure closely related to those described for these 

two species and the wild A. ampeloprasum spp. described by Bothmer (1974). 

However, A. ampeloprasum is a polymorphic species, (Bothmer, 1974) and there is

Internal arrows indicating 
direction ot growth expansion

Youngest leaf bases 
near shoot apex Apical meristem -  leaves initiate

Primary thickening meristem - 
PTM.
Cells are produced which 

.widen stem and push older 
/  leaves away from shoot apex

Young root 
pushes through 
cortex

connect to vessel 
network in stem and 
root endodermis 
connects to stem 
endodermal layer

Vessels from leaves pass 
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considerable variation in bulb form in the Allium genus as a whole. The bulbs may 

be protected by membranous, fibrous or coriaceous tunics (Hanelt, 1990, Fritsch and 

Friesen, 2002). Underground storage may be bulbs, rhizomes or swollen roots.

They may be true bulbs (one or two thickened prophylls) or false bulbs (thickened 

basal sheath plus prophylls) (Fritsch and Friesen, 2002). Suggestions for structure in 

var. babingtonii can only be tentative until experimental data has been reviewed.

1.6.1.2 Storage compounds

Fructans are the primary reserve carbohydrate (non-structural carbohydrate) in 12 -  

15% of higher plants, its accumulation mechanism being distinct from that of natural 

starch-accumulators. The fructans are synthesised directly from sucrose, and are 

accumulated in the vacuoles of both photosynthetic and storage cells (Caims, 2003).

In Allium spp. the simple carbohydrates and the smaller fructans are usually present 

in the largest proportions (Gubb and MacTavish, 2002). The non-structural 

carbohydrate composition of A. cepa is believed to be largely (but not entirely) 

dependant on genetic factors, with fructose showing most sensitivity to 

environmental factors (Kahane et al., 2001). The fructans in A. cepa are 

accumulated at the onset of bulbing (Darbyshire and Henry, 1978, 1979), the degree 

of polymerisation (DP) varying considerably between Allium spp. with up to DP50 

in garlic and between 3 and 15DP in A. cepa (Kahane et al., 2001). In A. cepa these 

non-structural carbohydrates comprise 65 -  80% of the dry matter (Darbyshire and 

Henry, 1978), the bulb also containing 8 0 -9 3 %  water according to cultivar (Gubb 

and MacTavish, 2002). This contrasts with the majority of bulbs which have a dry 

matter content of about 30% (Le Nard and De Hertog, 1993). Kahane et al., (2001)
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suggest that the sucrose and small fructans (DP3) are transient in the production of 

the larger fructans. Throughout storage (during the dormant period), the fructans are 

gradually hydrolysed to fructose. Subsequently, during sprouting, sucrose is 

synthesised (Gubb and MacTavish, 2002).

Some authorities suggest that fructans confer stress resistance to drought and cold on 

plant tissues (e.g. Hendry, 1992; Vijn and Smeekens, 1999), though this is 

controversial (Cairns, 2003). As a species originating in Mediterranean regions, it 

might be expected that A . ampeloprasum spp. are less adapted to the winter cold of 

the British Isles. However, var. babingtonii is believed to survive temperatures as 

low as -15°C (Shipton, personal communication, 2000) and is grown commercially 

as far north as Scotland (Royal Horticultural Society Plant Finder, 2003). The 

presence of fructans in Allium spp. may be one mechanism by which this genus is 

able to survive low temperatures.

1.6.2 Roots

Var. babingtonii commences root development in late September, before visible 

above ground growth in October (Treu, 1999 J. Shipton, personal communication,

2000) but little detail is known of the root growth and development in this species.

Allium roots may be annual or perennial (Fritsch and Friesen, 2002). A. cepa (onion) 

roots are homorhizic, i.e. the primary root of the seedling is short lived, and 

subsequent roots are produced from the stem (adventitious), without any secondary 

growth (De Mason, 1990). Roots are produced in rings in the true stem, with 

successively produced rings of roots with more primordia produced above the level
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of older ones as the stem diameter gets larger (De Mason, 1990). Roots increase 

little in diameter once formed, they have sparse branching if  any, and usually lack 

root hairs (Jones and Mann, 1963).

A. cepa have one of the most limited root systems among the vegetable crops (Jones 

and Mann, 1963). For example, Bosch Serra et al. (1997) found that root growth 

was concentrated in the top 40cm of soil with maximum average root density in the 

top 20cm. Growth was promoted by frequent irrigation. Jones and Mann (1963) 

suggested that new roots will not grow into dry soil. Therefore, if  water does not 

reach the bulb base during the growing season, above ground growth will be limited. 

This is consistent with the view of Brewster (1994) that when deprived of water, 

growth will cease, and can be difficult to restart again. Bosch Serra and Currah, 

(2002) suggest that root growth may be most rapid during the period immediately 

before bulbing.

A. ampeloprasum var. porrum  (leek) also have shallow root systems, forming 

extensive mats of interlocking roots (Smith, personal communication, 1999;

Rubatzky and Yamaguchi, 1997). It is interesting to note, that though var. 

babingtonii almost always grows in well-drained soil, it is frequently fairly damp, for 

example, following the banks of a stream or ditch, suggesting sensitivity to moisture 

levels as for other Alliums.

The presence of contractile roots has been reported in some Allium spp. for example 

they are present in A. sativum and A. ampeloprasum var. porrum but not in A. cepa. 

These are common in plants with bulbs or corms, contracting so that the outer root
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cortex is thrown into large folds, literally pulling the bulb down into the soil 

(DeMason, 1990).

1.6.3 Foliage

Leaf growth in^4. ampeloprasum var. babingtonii, is visible above ground in late 

October, with limited growth until February, followed by rapid growth until April 

(Treu, 1999). Treu (1999) also recorded some vegetative characters (n = 40), 

collecting data in early May 1996 when growth was well advanced (Table 5). All 

plants were taken from population 1 (Appendix 3).The data shows considerable 

variation in plant size in this population, with a mean leaf length of 636mm and 

width of 32.5mm.

Table 5: Some vegetative characters of 40 plants of Allium ampeloprasum var. babingtonii. Data 
collected early May 1996 (Treu 1999).__________________________________________________
Character Range Mean ± SE

Total height (mm) (maximum achieved by any leaf) 315 - 1110 636 ± 26

Leaf breadth (mm) (maximum breadth of basal leaf) 6 -39  32.5 ±1.1

Stem (pseudostem) diameter (mm) (diameter at level of basal leaf) 4 - 2 2  13.6 ± 0.6

As with bulb and root characteristics (above), leaf development in Alliums has many 

features in common. In the much-studied A. cepa, new leaves are formed from the 

ring-like meristem, inside the earlier leaf sheath, producing the leaf as a tube-like 

structure, which is then modified to become a linear leaf blade. Foliage leaves 

comprise the tubular ensheathing leaf base leaf sheath, which projects up from the 

true stem, and the unifacial leaf blade. Collectively, these leaf sheaths are sometimes 

referred to as the pseudostem (Rubatzky and Yamaguchi, 1997; De Mason, 1990) 

(Figure 7).
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The leaves have a distichous phyllotaxy (leaves aligned in two vertical ranks), being 

initiated at the apical meristem with a 180° divergence angle (De Mason, 1990) 

(Figure 8). The bases of successive leaves become larger in diameter, resulting in 

the earlier-formed leaves being tom open and shed (DeMason, 1990).

Leof Blode

Leaf Sheaths Folse
StemShoot

Apex

Root.
Initial True

Stem

Leaf S cars
Adventitious

RootsS tem  of
The primary root (true Seed ling
root) is not present in ____— --------
var. babingtonii

Primary
Root

Figure 8: A diagrammatic picture of the development of the stem, leaves, and roots, in a young plant 
of the common onion (A. cepa). Each new leaf arises at the stem or shoot apex, leaf 1 being the 
youngest and leaf 4 the oldest of the four leaves shown. Each leaf arises as a ring of tissue which 
grows upwards as a tubular sheath. The leaf-blade elongates from one side of the sheath’s top. As 
the stem grows upwards, it also broadens, as is shown by the divergent arrows in the diagram. New 
roots continually arise in the younger (upper) part of the stem. In this figure, the space between 
adjacent leaf-sheaths is much exaggerated (adapted from Jones and Mann, 1963).

Gregory (1996) placed Allium ampeloprasum spp. in Group II of section Allium 

(subsection Scordoprason of F. Hermann, 1939). She defined the leaf 

characteristics of this group (Figure 9) as:

• Leaves almost flat to shallowly or distinctly V-shaped in T.S., often with abaxial keel
• Vascular bundles in two rows
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• Abaxial row of large and small bundles with xylem facing adaxial surface
• Adaxial row of small inversely orientated bundles.

Leaf V-shaped in TS with abaxial keel
Epidermal 
cells with 
numerous 
stomata

-■ i
••

Vascular bundles in 
single row at leaf 
margin

;

■

Figure 9: Group II. A, A. ampeloprasum leaf surface view x 150; b, c, A. rotundum leaf T. S., b x 25, 
c, margin x 150. L = laticifer (after Gregory, 1996)

Further characteristics o f this group are:

• Leaf pseudo-dorsiventral
• Hairs (when present) short simple unicellular
• Cuticle bearing a central longitudinal striation
• Epidermal cells in regular files longitudinally elongated
• Stomata numerous, anomocytic (lacking morphologically differentiated subsidiary cells), in 

most files of cells except over ribs
• Epidermal cells and stomata may be similar on both surfaces or abaxial epidermal cells 

slightly smaller
• Stomata +/- equally numerous on both surfaces, sunken
• Outer walls plus cuticle usually moderately thick
• Inner walls thin to slightly thickened, radial walls thin
• Palisade tissue in one layer adaxially and abaxially (except sometimes over midrib
• Spongy mesophyll circular to lobed, fairly large intercellular space, tending to break down

between vascular bundles, forming small air canals in some species
• Laticifers, 2-3 layers below epidermis of both surfaces, mostly at inner boundary of palisade 

tissue, numerous
• Vascular bundles in two rows, (except sometimes near margins), abaxial row -  large and 

small bundles with xylem facing adaxial surface (except marginal bundles); adaxial row, 
small bundles, inversely orientated
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• Bundle sheaths parenchymatous, cells of same size as or larger than surrounding cells 
(Gregory, 1996)

Foliage leaves will have a colourless or white ligule, approximately 0.5 -  4mm in 

length, and may be spirally twisted in the upper regions (Bothmer, 1974). Optimum 

temperatures for vegetative growth in leeks (A. ampeloprasum var. porrum) are 

between 20 and 25°C (Rubatzky and Yamaguchi, 1997; De Clercq and Van 

Bockstaele, 2002), though Brewster (1979) estimated relative growth rate (Rw) and 

leaf area ratios (LARs) to be highest at 27°C in both onions and leeks (A. cepa and 

A. ampeloprasum var. porrum, decreasing above this temperature). In the 

Ampeloprasum complex, leaves usually wither after the scape has developed before 

floral development is complete (Bothmer, 1974).

Juvenile Allium plants are monopodial, becoming sympodial after formation of the 

first generative meristem. They subsequently produce renewal bulbs and flower 

every year (Kamenetsky and Rabinowitch, 2002).

1.7 Floral Development

McDaniel, Singer and Smith (1992) examined floral initiation, emphasising 

developmental fates rather than physiological processes (Figure 10). A 

developmental signal is sent to the meristem cells, usually from the leaves. This 

inductive activity may be continually expressed or may be latent, for example in 

plants where the photoperiod is the external stimulus. If the meristem is competent 

to respond to this signal, it will be evoked into the florally determined state. Under 

permissive conditions, this florally determined state is then expressed as the 

initiation of floral morphogenesis (McDaniel et al., 1992).
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Competence requirement unpublished for var. babingtonii 
Induction signals unpublished for var. babingtonii

LORAL DEVELOPMENT

(COM PETENT DETERMINED ) 

N

INDUCTION SIGNAL(?)

N
EXPRESSED

N

VEGETATIVE FLOWERS

Figure 10: A diagrammatic illustration of some of the possible processes and conditions that may be 
associated with floral morphogenesis. Arrows indicate the normal direction of events but do not 
imply irreversibility. Competent cells/tissues are those that have the ability to respond to a 
developmental signal in a specific way. Cells and tissues can acquire different competences via either 
endogenous or exogenous means. Induction occurs when a developmental signal acts on competent 
cells/tissues to determine them for a particular developmental fate. The determined state is 
subsequently expressed. The ‘N’ indicates that the bracketed sequence may be iterated. These 
processes and conditions can occur throughout the plant (e.g., in roots, in leaves, in shoot apical 
meristems, and what happens in one part of the plant may influence processes and conditions in other 
parts of the plant (adapted from McDaniel et al., 1992).

The processes involved in flowering are likely to be controlled by many factors both 

inductive and autonomous (Chaylakhyan, 1977). Bernier et al, (1993) suggests that 

the majority of plants use environmental cues such as photoperiod, temperature and 

water availability to regulate the transition to flowering, whilst autonomous- 

flowering plants (those that do not require a particular temperature or photoperiod to 

flower) are usually sensitive to irradiance (Bernier et al., 1993). It is likely that 

plants rely on chemical and biophysical systems working in conjunction (Lyndon, 

1994) with different families of plants responding to differing stimuli (Lyndon,

1998). These may be positive, for example, gibberellins in long-day rosette plants 

and conifers, auxins, auxin analogues or ethylene in bromeliads such as pineapple, or 

negative, for example, removal of inhibitors such as gibberellins or cytokinins 

(Lyndon, 1998).

Different factors may be perceived by different parts of the plant. For example, 

Bernier et al., (1993) suggests that all plant parts perceive temperature. However, 

low temperature is generally perceived by the shoot apex, whilst water availability is
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perceived by the root system. These factors interact strongly, and each factor can 

change the threshold value for the effectiveness of the others (Bernier et al., 1993).

The developmental programs that operate in the meristem direct a number of 

processes, for example the rate of primordia initiation, the phyllotaxy of the 

emerging primordia, the development of intemode length as well as the determined 

or indeterminate state of these primordia (Huala and Sussex, 1993; Coen and 

Carpenter, 1993). Groups of cells on the periphery of the meristem are partitioned 

off to form either organ primordia or secondary meristems. The pattern of 

partitioning gives rise to the phyllotaxy of the developing tissues (Coen and 

Carpenter, 1993) i.e. it is the position of the cells rather than the identity of the cells 

that determines the development of the cells (Bossinger and Smyth, 1996).

Following induction, two new meristem types are usually produced (Figure 11); the 

inflorescence meristem, and the floral meristems which often arise as small bulges 

on the periphery o f the inflorescence meristem (Coen and Carpenter, 1993).

^egetativ^  
meristem ''V

Secondary 1 M----------- ►
vegetativeJ  
meristem

Figure 11: The change from the vegetative to flowering state based on Coen and Carpenter (1993).

Arabidopsis thaliana, a small member of the Brassicaceae, has been used as a model 

for plant development. Here the flower primordia usually arise from a group of four 

cells on the inflorescence flank, the radial axes of the mature flower being apparently

Inflorescence
meristem

Floral
meristei
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set by these cells (Bossinger and Smyth, 1996). Primordia respond quantitatively to 

floral induction signals, and their fate can be modified after primordia initiation 

(Hempel et al., 1998).

1.7.1 Floral determination

A shoot apical meristem is florally determined if  it forms a flower in conditions 

where vegetative growth would be predicted (McDaniel et al., 1992; McDaniel, 

1996). A classic way to test for floral determination is to expose a plant to an 

inductive treatment, excise the shoot apical meristem and culture it in non-inductive 

conditions. Floral formation in these conditions confirms the florally determined 

state, (see for example, Durdan, 1998).

No work has previously been carried out on floral determination oiA . ampeloprasum 

var. babingtonii, though some has been carried out on its close relative A. 

ampeloprasum var. porrum (leek), (see for example Weibe, 1994, Wurr 1997 and 

Wurr etal., 1999).

However, A. cepa (onion) has been extensively researched, providing a model for 

other members of the family. A. cepa plants are biennial, that is, they normally 

flower in the second season of their development, although under favourable 

conditions, they will flower (bolt) in the first season (Rabinowitch, 1990).

Flowering will occur, provided that the plants have passed their juvenile phase, and 

are then exposed to several environmental factors which will induce and mediate 

inflorescence development. Vernalization, the exposure to low temperatures, is 

likely to be of most importance of these environmental factors (Rabinowitch, 1990).
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1.7.1.1 Maturity

Kamenetsky and Rabinowitch (2002), suggest that all Allium plants need to reach a 

certain physiological age (maturity) in order to be florally competent. This may be 

months or years depending on species, the length of the juvenile phase depending on 

environmental conditions as well as on genetic make up (Kamenetsky and 

Rabinowitch, 2002).

The precise physiological nature of this requirement is not clear. Bulb size is the

major and most easily measured factor used to determine the capacity to flower in

many bulbous genera, and this may relate to the size of the apical meristem (for

example, in Triteleia laxa syn. Brodiaea laxa; Tecophilaeaceae) or to the quantity of

reserves accumulated (for example Tulipa) (Halevy, 1990; Le Nard and De Hertogh,

1993). Brewster, (1985) measured carbohydrate levels in onions (A. cepa) finding

that a low reserve carbohydrate content required a higher minimum leaf number for

inflorescence initiation. Cv. Rijnsburger was grown at 17°C with photon flux density

(PFD) of 600pmol m 'V 1 producing high carbohydrate levels (23.1% dry mass) in

0  1the bulb, and at 25°C with PFD 200pmol m' s' producing low carbohydrate levels 

(13.6% dry mass) in the bulb. This produced an estimated leaf number for 50% 

inflorescence initiation of 6.88 and 8.19 respectively. Those plants with low 

carbohydrate content produced fewer inflorescences, if  the light levels were very low

“7  1during vernalization (50pmol m' s' PFD). It is interesting that figures for cv. 

Senshyu showed more variation within the sample and more variation in 

vernalization requirements, therefore changes in carbohydrate levels could not be 

directly compared with those of cv. Rijnsburger (Brewster, 1985).
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Where bulb size has been used to predict maturity in Allium spp., there has been 

great variation between species. Minimum circumference varies from 3 - 5  cms for 

A. caeruleum, A. neapolitanum and A. unifolium, 1 2 - 1 4  cms for A  aflatuense, A. 

cristophii, and 20 -  22 cms for A. giganteum. Plants with larger bulbs may take 3 -  

5 years of growth before they become florally competent (De Hertogh and Zimmer, 

1993).

Maturity in Allium spp. has also been measured by bulb mass, for example, 

minimum bulb mass for floral initiation in sets o f ‘Ailsa Craig' (A. cepa) was found 

to be 4 - 7 g fresh weight (Rabinowitch, 1990), and for A  ampeloprasum var. 

porrum, it has been measured at approximately 2g (Weibe, 1994).

Leaf number has been frequently used as a marker for assessing maturity in Alliums, 

(see Rabinowitch, 1990). In subgenus Allium, o f which var. babingtonii is a 

member, inflorescence initiation has been found to occur only in growing plants, 

following the development of 7 -  9 leaves (Kamenetsky, 1996a). Studies with 

seedlings of A. cepa have shown that a minimum of 10 - 14 leaves is necessary 

before flowering can be initiated (Rabinowitch, 1990). Weibe (1994) confirmed the 

requirement for maturity in A  ampeloprasum var. porrum before competence is 

reached, this being at a minimum size of approximately 5 visible leaves in the three 

cultivars studied. Others have reported it to be capable of floral initiation after 

formation of 6 -  7 true leaves/leaf primordia (De Clercq and Van Bockstaele, 2002; 

Kamenetsky and Rabinowitch, 2002). Wurr et al., (1999) confirmed the requirement 

for completion of the juvenile phase in cv. Prelina, estimating that minimum leaf
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number for floral competence was probably less than the 5-true-leaves-visible stage 

recorded by Weibe (1994). However, as the minimum leaf number for floral 

competence varies with carbohydrate levels in A. cepa (Brewster, 1985, above), leaf 

count as a predictor of maturity may also be variable in other Allium spp. and 

environmental conditions.

The interplay between photoperiod, fluence rate and temperatures is complex. For 

example, in A. cepa a low fluence rate (200 pmol m' s' ) combined with high 

temperatures (25°C) required longer to initiate inflorescences than plants raised at 

higher fluence rate of 600 pmol m'2 s '1 and the lower temperature of 17°C 

(Brewster, 1985). Initiation time for yf. cepa at 9°C was accelerated by long 

photoperiods; initiation was as rapid at 12°C as at 9°C but was slower at 6°C 

(Rabinowitch, 1990). Also in A. cepa, levels of nitrogen fertiliser may influence 

floral development (Rabinowitch, 1990). A reduction in the nitrate concentration 

accelerates inflorescence initiation, particularly in photoperiods and temperatures not 

normally conducive to rapid initiation, but with different cultivars showed differing 

degrees of response (Brewster, 1983). Some Allium crops, e.g. Chinese chives (A. 

tuberosum) require long photoperiods for inflorescence initiation and further 

differentiation (Saito, 1990; Van der Meer and Hanelt, 1990; De Clercq and Van 

Bockstaele, 2002).

1.7.1.2 Vernalization

Vernalization is defined as a cold treatment given to seeds or plants, which induces 

flowering when the plant is exposed to more favourable conditions (e.g. long days
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and 20°C). It is slow and quantitative, most plant species requiring 1 - 3  months of 

low temperatures (1-7°C), and with vernalization becoming more effective with 

increased duration (Dennis et al., 1996). Flowering may be induced in Alliums by 

low temperatures provided bulbs are beyond their juvenile stage of development 

(Kamenetsky and Rabinowitch, 2002). Many reports have shown that temperatures 

between 5 - 15°C are likely to stimulate inflorescence development in Alliums, 

whilst lower or higher temperatures are likely to inhibit it (Rabinowitch, 1985). 

Brewster (1987) developed a mathematical model for the prediction of the response
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Figure 12: Relative rate of vernalization vs. temperature of Japanese and European onion cvs. 
(Adapted from Brewster, 1987).

Data from a number of experiments were combined and scored relative to the fastest 

flowering rate (Figure 12). This model was used to predict flowering in the field with 

a high degree of accuracy. This predicts maximum flowering between
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approximately 6 - 12°C, with percentage flowering reduced at higher or lower 

temperatures (Brewster, 1987).

Vernalization is effective, when the low temperature treatment includes the shoot 

apex. However, Wellensiek (1964), working with Lunaria biennis, proposed that all 

actively dividing cells may be capable of responding to vernalization. More recent 

work into vernalization in Thlaspi arvense and Arabidopsis thaliana, supports this 

view (Metzger, 1988; Bum et al, 1993).

A. cepa can be vernalized during dormancy as well as during active growth, for 

example cv. Ailsa Craig (Rabinowitch, 1990; Kamenetsky and Rabinowitch, 2002). 

Bertaud (1988) examined vernalization in three A. cepa cultivars. Those chilled 

before sprouting largely failed to respond, with higher rates of flowering being 

obtained if  they were sprouted for eight weeks before chilling. Mature bulbs with 

green leaves failed to produce flowers when grown on at lower temperatures. Whilst 

mature plants initiated inflorescences more readily than unsprouted bulbs, both were 

slower than sprouted plants. The apex may have become dormant in the mature 

plants following the growing season, suggesting that dormant apices are less 

responsive to vernalization than active apices (Bertaud, 1988). Brewster, (1994) 

found that the minimum dry weight required by dry bulbs (A. cepa) to initiate 

flowering during storage was much higher than in growing plants, also suggesting 

changes in the level of response to vernalization of dormant and active apices. This 

is consistent with the view that in dormant bulbs, internal processes may continue in 

preparation for rooting and sprouting, with mitosis declining, but not ceasing (Gubb 

and McTavish, 2002).
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Older plants (A. cepa) require less chilling (Rabinowitch, 1990; Kamenetsky and 

Rabinowitch, 2002). Most studies have shown that the time for initiation was 

minimal when temperatures were in the range of 5 - 12°C. However, it is highly 

variable depending not only on maturity, but also on genotype, and may even be 

variable within the same cultivar from different sources (Rabinowitch, 1990).

Weibe (1994) investigated the temperature effects on flowering in A. ampeloprasum 

var. porrum suggesting that it probably has an obligatory vernalization requirement 

with optimum temperature of approximately 5°C, more plants bolting with 6 weeks 

vernalization than with 3 weeks. The inductive temperature ranged from 0 - 1 8°C, 

with long days during vernalization delaying induction, whilst temperatures higher 

than 18°C caused devemalization. Wurr (1997) suggested that 7°C was optimum for 

this variety, with a range of 2 - 25°C. Further study by Wurr et al., (1999) confirmed 

that cv. Prelina needed a vernalization stimulus. The optimum temperature for 

vernalization was 7°C, though not all plants became floral suggesting some 

genotypic variation, with variation in expression from year to year (Wurr et al.,

1999).

There is widespread variation in the temperatures that induce vernalization in A. 

ampeloprasum var. porrum cultivars. Van Doome et al. (1988) induced A. 

ampeloprasum var. porrum to flower in the same year of planting by vernalizing for 

6 weeks at 4°C. Rubatzky and Yamaguchi (1997) suggest that many A. 

ampeloprasum var. porrum cultivars will bolt when grown continuously at or less 

than 15°C, with some bolting even at 21°C. However, in others, temperatures above
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18°C may cause devemalization (Rubatzky and Yamaguchi, 1997). To my 

knowledge, vernalization requirements in var. babingtonii have not been published. 

This has been addressed in this thesis.

Starch mobilization is an essential process in the control of the flowering transition 

in some plants, for example, A. thaliana and Sinapis alba (both facultative long day 

plants, and facultative cold requiring) (Bernier et al., 1993). Arabidopsis thaliana is 

a useful genetic model for floral induction because it has many well-characterized 

metabolic mutants, as well as numerous flowering mutants. Sucrose, the major sugar 

in leaf and apical exudates in A. thaliana, increases rapidly in induced plants, 

preceding the activation of energy-consuming processes such as mitosis. However, 

the promotive effect of vernalization on flowering is, in fact, unrelated to starch 

metabolism (Bernier et al., 1993). Dennis et al., (1996) suggest that the 

vernalization-dependent pathway is normally blocked by methylation of the 

promoter of a gene or genes necessary for floral induction. They propose that 

vernalization reduces the methylation status of the gene(s), resulting in expression of 

kaurenoic acid hydroxylase (KAH), a key enzyme in the gibberellic acid biosynthetic 

pathway necessary for the promotion of flowering. Ronemus et al., (1996) suggest 

that DNA methylation is an essential component in the process o f phase transitions 

and meristem determinacy, and speculate that a methylation gradient might be 

established during meristem growth, that directs meristem determinacy. It is 

suggested that flowering is normally actively repressed beginning from embryonic 

development, but the genetic basis for the perception and response to vernalization 

has not been fully explored in any plant species (Dean et al., 1999).
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1.7.1.3 Gibberellins (GAs)

Exogenous GAs can induce or promote flowering in many species, particularly long 

day (LD) plants (Evans, 1969; Evans et al., 1990) and have been extensively used to 

promote flowering in Lilidae. For example, GA has been successfully used with 

Zantedeschia (Funnell et al. 1992; Corr & Widmer, 1991), Gladiolus (Misra,

Tripathi and Chaturvedi, 1993), and Spathyphyllum (Ogawa et al. 1994; Shibata & 

Endo, 1990; Eltorky, 1993). GAs are implicated in the autonomous pathway (see 

Section 1.7 Floral development) and, it is suggested, promote flowering in 

Arabidopsis thaliana by functioning in combination with sucrose to activate the 

promoter of the meristem identity gene, LEAFY, (Blasquez et al., 1998).

Hanks (1979) reported the use of gibberellins to advance flowering in Tulipa spp. in 

combination with vernalization, suggesting that the cold treatment has two 

components;

• An absolute requirement, unaffected by gibberellin, allowing for extension of intemodes,
• And a secondary requirement, for optimum forcing for which gibberellin can substitute.

More recent studies with Lolium temulentum ‘Ceres’ have demonstrated that 

photoperiodic induction results from two signals (McDaniel and Hartnett, 1996):

• The first, of an unknown nature (possibly sucrose, Levy and Dean 1998b), switched the 
developmental fate of the shoot meristem from commitment to produce leaves to commitment to 
produce flowers;

• The second signal, gibberellin (GA), triggered expression of this florally determined state.

When gibberellin was applied to the leaves, it did not act directly on the apex to 

cause floral determination and initiation; rather, it appeared to stimulate the 

production of a signal in the leaves which led to floral induction (McDaniel and 

Hartnett, 1996). Application of GAs may bypass vernalization completely since they
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act during processes such as floral evocation which occur well after the cold 

treatment (Levy and Dean, 1998b). Vernalization may increase the sensitivity of 

plants to GAs, although the GAs themselves may play no part on the vernalization 

process itself (Chouard, 1960; Levy and Dean 1998b). Levy and Dean (1998b), 

suggest that application of GAs is not sufficient to overcome a requirement for 

vernalization in the majority of species studied to date, and this includes most cereals 

and non-rosette plants. However, Brewster and Butler (1989) used gibberellic acid 

(GA3) on A. cepa prior to chilling, increasing the flowering of some of the genotypes 

studied. The effects of GAs on Alliums are varied; for example, they have been 

applied to A. cepa, to improve cropping (bulb diameter and weight), (Sobeth and 

Wright 1988), and to increase seed production by approximately 30% (g/m2 

(Naamni, et al., 1980). GAs also inhibit flowering in some short-day (SD) plants 

(Evans, 1969; Evans etal., 1990).

Rates of application vary widely, as do methods of application, which include 

spraying (Naamni, et al., 1980), immersion, surface application (Evans, et al., 1990) 

and injections directly into the bulb (Brewster and Butler, 1989). The method of 

application will necessarily affect the amount of GA absorbed into the plant tissues 

and the effectiveness of the treatment. Different gibberellins will induce different 

responses. For example, Evans et al., (1990) found variation of over 1000-fold in 

the effective dose of different GAs needed to initiate flowering in L. temulentum, 

while different doses of the same gibberellin may produce different responses in the 

same species. Working with Lolium temulentum (LD plant), Evans et al., (1990) 

found the minimum dose for inflorescence initiation was 3pg applied in lOpl of 95% 

ethanol: water (v/v) near the base of the uppermost expanded leaf blade, as a single
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application. Smaller doses produced stem elongation, with different GAs often 

affecting either inflorescence initiation or stem elongation, or both.

1.7.2 Inflorescence development

The morphology of the inflorescence in Allium ampeloprasum L. var. babingtonii 

was recorded in 1847 (English Botany, Suppl. 4: t. 2906) (Figure 1) and confirmed 

by Treu, (1999). However, little is known of the development of the scape and the 

early stages of the inflorescence, an issue which has been addressed in this thesis, 

with A. cepa and other Allium species being used as a model.

1.7.2.1 Environmental influences
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Figure 13: Stages in the life cycle of onion (A. cepa) plants with particular reference to flowering. 
Unusual or reversionary developmental processes are shown by dotted lines (Brewster, 1994).

Scape elongation and flowering in Allium species is largely mediated by interactions

between storage and growth temperatures as well as light conditions (Brewster,
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1982; Kamenetsky and Rabinowitch, 2002). Rabinowitch (1990) defines three 

temperature phases necessary for inflorescence production in A. cepa (Figure 13):

• The 'thermo-phase' where exposure to low temperature is essential for floral initiation 
(vernalization)

• The 'competition-phase' where growth and development of the inflorescence can be suppressed 
by conditions favourable to bulbing (e.g. long days and high temperatures).

• Higher temperatures and longer days favour inflorescence development.

Changes in temperature can both enhance and suppress scape development, being 

implicated both in devemalization, and in the formation of bulbils (Figure 13).

The effects of temperature are highly dependent on genotype as well as maturity 

(Rabinowitch, 1990). Temperature may be:

• Optimal - inflorescences are induced and developed
• Supraoptimal - high temperatures, in which little or no floral initiation takes place, with any that 

are initiated being damaged or destroyed
• Suboptimal - low temperatures at which a longer time is required for initiation, and where floral 

development may be suppressed or delayed (Rabinowitch, 1990).

Cool temperatures o f approximately 10 - 17°C enhance scape elongation in A. cepa 

(Holdsworth and Heath, 1950; Krontal et al. 2000), while high temperatures of 

approximately 25 - 30°C suppress emergence of already initiated inflorescences 

(Heath and Mathur, 1944; Holdsworth and Heath, 1950; Rabinowitch, 1985; Krontal 

et al. 2000). They may abort completely when conditions are unfavourable 

(Bertaud, 1988; Kampen, 1970; Roberts and Struckmeyer, 1951). In long days, 

abortion of inflorescences occurs most often before emergence (where the 

inflorescence is still small at the time of transfer from chilling conditions), whereas 

in cool short days, abortion tends to occur after emergence (Bertaud, 1988). In 

contrast, Both Brewster (1994) and De Clercq and Van Bockstaele (2002) reported 

that there is no specific photoperiod requirement for inflorescence development in
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A. ampeloprasum var. porrum, a characteristic which facilitates the growth o f the 

same genotype over a wide range o f  latitudes. To my knowledge environmental 

effects on floral development var. babingtonii have not been published.

1.7.2.2 The scape

During the transition to flowering in A. cepa, rib meristematic activity increases, the 

flattened vegetative apical meristem becomes rounded and dome shaped as rapid 

longitudinal growth commences (Figure 14).

Apical dome 
swells upwards 
producing 
inflorescence 
primordium

Vegetative 
lateral bud

Figure 14: Scanning electron micrographs of successive stages of inflorescence differentiation at the 
onion (A. cepa) shoot apex. 1, non-floral; 2, early floral; 3, spathe begins to overgrow the apical 
dome; 4, the ridged spathe surrounds the apical dome and a definite stalk (scape is visible. A 
vegetative lateral bud is present adjacent to the scape, which can sometimes compete with the young 
inflorescence (adapted from photographs courtesy o f Horticultural Research International, the 
copyright holder).
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The scape arises from the vegetative shoot apical meristem and is therefore terminal, 

and represents one intemode, this being the only one to elongate (Brewster, 1994; De 

Mason, 1990). Cell division is confined to the more basal regions of the scape, with 

elongation occurring predominantly in the lower parts of the scape, between the last 

formed leaf and the spathe (Brewster, 1994; De Mason, 1990). At the base of the 

inflorescence, the cells are small and little tissue differentiation occurs. At the top of 

the inflorescence axis, the cells are larger and the greatest amount of differentiation 

occurs (De Mason, 1990). The scape continues to develop until flowering begins 

and the spathe splits (Rabinowitch, 1990).

The spathe forms in the apex, and quickly elongates, enveloping the meristem. Leaf 

initiation ceases and the apical meristem divides into (usually four) centres, 

separated by bracts (Rabinowitch, 1990). Jones and Emsweller (1936) noted that the 

bracts were numerous and membranous, developing over the broad surface of the 

stem tip. Each kidney shaped region of dividing cells beneath the bracts 

(Rabinowitch, 1990) gives rise to a number of flower clusters (cymes) (Kamenetsky 

and Rabinowitch, 2002). The buds in each cyme are arranged helically and comprise 

5 - 1 0  flowers each (De Mason, 1990; Kamenetsky and Rabinowitch, 2002).

1.7.2.3 Floret development

Treu (1999) examined floret development in var. babingtonii. The tepals were pink, 

maturing to purple, and the florets do not fully open at any stage o f inflorescence 

development. This may possibly be associated with the very poor development of 

the anthers, which were not always exserted (protruding beyond the perianth). The
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number of pollen grains per anther and the percentage pollen stainability (using 

aceto-carmine for absolute counts, and cotton blue for pollen viability estimation) 

was extremely low or zero. Ovaries showed considerable abnormalities with only 36 

out of a possible 240 ovules being present (four individuals), and those that were 

present were small or malformed (Treu, 1999). He suggested that there may be a 

total meiotic or pre-meiotic breakdown. The spathe splits longitudinally into two 

persistent valves, in contrast with other A  ampeloprasum spp. where it separates as a 

whole from the inflorescence by a horizontal split all round its base and is then cast 

off intact (Borrer, 1847; Steam, 1987).

Mathew (1996) describes the inflorescence in A  ampeloprasum spp.:

• "Spathe 1-valved, ovate at base, abruptly narrowed to a long beak up to about 10(-13) cm long, 
caducous.

• Umbel normally with flowers only, but rarely with flowers and bulbils mixed, spherical, (3-) 5 -8  
(- 9) cm diameter, dense.

• Pedicels unequal, up to 4.5 cm long, smooth; bracteoles present, silvery-white, laciniate at the 
apex.

• Perianth broadly campanulate or subspherical; segments white, pink or deeper reddish-pink, 
sometimes with a darker green or purple median vein, (3.5 -) 4 - 5.5 mm long, with large sparse 
papillae on the outer surface, especially on the keel, the outer ones oblong-lanceolate, elliptic or 
elliptic-obovate, subacute, shortly mucronate, the inner ones ovate, spathulate or elliptic, obtuse, 
rounded or rarely truncate, equalling or shorter than the outer.

•, Stamens with anthers shortly exserted or sometimes equalling the segments; filaments white or 
purplish, strongly arching outwards, usually ciliate at the base, the outer ones simply and 
narrowly triangular or with an oblong base narrowed to a triangular apex, rarely with minute 
lateral cusps, the inner one with the anther-bearing cusp a third to half as long as the very widely 
expanded undivided basal part and about half as long as the lateral cusps; lateral cusps much 
exceeding the segments; anthers yellow or purplish-red.

• Style usually exserted. Capsule ovoid or subglobose"

Floret development in A  cepa has been recorded in detail, (see, for example,

Rabinowitch, 1990; Brewster, 1994). The flowers do not open in a regular pattern,

so that buds and flowers at all stages of development can be present all over the

head, in varying proportions in different regions of the umbel (Rabinowitch, 1990).

However, within a cyme, the flowers open in a definite sequence, and there is a
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tendency for flowering to start at the top centre of the umbel, and proceed 

downwards (Rabinowitch, 1990) (Figure 15).

From outside to inside, the floret develops three members in five whorls, outer and 

inner perianth, outer and inner stamens and then carpels, developing as globose 

projections (Brewster, 1994). Jones and Emsweller, (1936) reported that each 

perianth lobe with its subtended stamen arose simultaneously from a single 

primordium the first whorl comprising outer tepals and stamens, the second whorl 

comprising inner tepals and stamens. This pattern is also reported in A. sativum 

(Kamenetsky and Rabinowitch 2001). However, De Mason (1990) reports that the 

whorls arise outermost first, the outer tepals followed by the inner tepals, then the 

outer stamens followed by the inner stamens. The carpels develop as three U-shaped 

swellings on the surface, which grow towards the centre, where their intumed edges 

meet and fold to form the ovules (two in each carpel). The style arises at the apex of 

the fused carpels and is still elongating when the floret opens (Brewster, 1994). The 

ovaries include nectaries on the outer walls, (Fritsch, 1992) opening to the surface 

through a pore (Kamenetsky and Rabinowitch, 2002). Comparable floral 

characterisation is lacking in var. babingtonii, an issue which has been addressed in 

this thesis.
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Note that apical florets 
develop ahead of other 
florets

Florets are well 
developed, but bulbils 
are not yet visible
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Figure 15: Scanning electron photomicrographs of Allium spp. Floral development. Bar = 0.1 mm. 
A. Flower primordia (FP) in shallot inflorescence. Four centres of differentiation are separated by 
the bracts (BR). Spathe and peripheral and central bracts removed. B. Early stages of garlic floral 
development. Floral differentiation is visible in older flower primordia (FP), while younger flowers 
still appear as meristematic domes. Leaflike bracts (BR) form at the periphery of the inflorescence. 
Spathe removed. C. the inflorescence of garlic becomes hemispherical and consists of numerous 
floral primordia (FP). Differentiation of FP is uneven: floral parts occur in the oldest floral 
primordia, while younger ones still appear as undifferentiated meristematic domes. Spathe removed. 
D. Floral pedicels and leaf-like bracts elongate. In individual garlic flower clusters (arrows), which 
are separated by leaf-like bracts, floral primordia develop unevenly in a helical order. New flower 
primordia continue to appear at the base of the inflorescence. E. Magnification of the basal part of 
garlic inflorescence. Newly developed meristems appear and rapidly differentiate to form small 
inflorescence bulbs (referred to as topsets - TO). In the florets, tepals (t) and anthers (a) are visible. 
F. Topsets (TO) in garlic inflorescence (adapted from Kamenetsky and Rabinowitch, 2002).

1.7.2.4 Bulbil development

Treu (1999) recorded the numbers o f bulbils compared with the number o f  florets 

produced in var. babingtonii (Table 6). There was a weak positive statistical 

correlation between the number o f florets and the number o f bulbils.
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Table 6: Summary statistics of bulbil number/weight and flower number for 3 populations of Allium 
ampeloprasum var. babingtonii. Population 1, n = 70; population 38, n = 10; population 39, n = 10 
(Treu, 1999).

Range Means ± SE

Population number 1 38 39 1 38 39

Number o f bulbils 24 - 110 2 4 -7 9 4 9 -7 6 49.5 ± 2.0 45.1 ± 4 .8 60.6 ± 3.3
Total bulbil weight (g) 
inflorescence'1

3.5 - 29.5 2 .7 - 18 10- 23.9 11.7 ± 0 .7 9.7 ± 1.5 17.3 ±2.3

Mean weight (g) 
bulbil'1 inflorescence'1

0.07 - 0.77 0.08 - 0.43 0.17-0.45 0.24 ±0.01 0.22 ± 0.03 0.28 ± 0.03

Number of flowers 12-275 51 -210 105-204 110.1 ± 6 .6 124.2 ± 16 147 ± 10.4

Secondary inflorescences were sometimes produced arising from between the bulbils 

(range 0 - 1 9 ,  mean 5.9 + 0.6) and these also produced bulbils (Treu, 1999). Bulbils 

may sprout whilst still attached to the inflorescence (Steam, 1987, Treu, 1999).

Cottrell (1999) examined bulbil development in A. carinatum subsp. carinatum, A. 

vineale and A. paradoxum using a low vacuum scanning electron microscope and 

light microscopy. Bulbils in these species arose as domes on the inflorescence 

meristem. They developed as a central dome, surrounded by an incomplete ring. 

During the early stages, the dome was taller than the ring, and developed into the 

apical meristem. The ring enlarged and grew up to cover the dome, enclosing it 

completely and forming the storage tissue (Cottrell, 1999). Early inflorescence 

bulbil primordia were indistinguishable from floret primordia, becoming 

distinguishable when approximately 0.4mm in diameter and 0.38mm in height 

(Cottrell, 1999). The shape of developing bulbils was also influenced by the 

development of adjacent structures (Cottrell, 1999), similar to the process described 

by Treu (1999) for var. babingtonii, where the pressures created by the close 

proximity of adjacent tissues caused malformations and distortions in development.
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A. sativum L. (garlic) produces an inflorescence with sterile florets and bulbils 

(Kamenetsky and Rabinowitch, 2001). Although not part of the Ampeloprasum 

complex, this species has been much studied and may provide a useful comparative 

model for bulbil development in A. ampeloprasum var. babingtonii. Flower-stalk 

elongation precedes the swelling of the inflorescence meristem, the floral initials 

differentiating after the scape has reached 5 - 7  mm with an apex diameter of > 

0.5mm (Kamenetsky and Rabinowitch, 2001). The apex subdivides into several 

centres of floral development, each of which gives rise to several floret primordia. 

Bracts develop at the periphery and in the centre of the inflorescence dividing the 

umbel into distinct floral clusters. Within these clusters, primordia develop unevenly 

in a helical pattern, florets appearing before topsets (bulbils). New flower primordia 

continue to arise as older ones develop (Figure 15). New undifferentiated domes 

form at the base of the inflorescence, which then develop into bulbils. Their size, 

rate of development and number show great variability and are determined by 

genotype. Once the spathe opens, the florets are visible to the naked eye, but the 

rapidly growing bulbils appear to stifle them and they quickly degenerate 

(Kamenetsky and Rabinowitch, 2002). In some clones, removal of the bulbils can 

result in normal flowering, pollination and seed production (Koul and Gohil, 1970b; 

Etoh and Simon, 2002). Each bulbil is able to grow into a new clonal plant (Koul 

and Gohil, 1972).

Sterility in A. sativum has been assumed to result variously from degeneration of the 

tapetum, degenerative-like diseases induced by organisms and/or viruses, 

chromosomal deletions or competition for nutrients between floral and vegetative 

buds (Kamenetsky and Rabinowitch, 2001). Fertility can be restored in some clones
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by continuous removal of developing topsets (bulbils) (Kamenetsky and 

Rabinowitch, 2002).

1.7.2.5 Manipulation of bulbil production

Treu (1999) suggested that the bulbils in var. babingtonii may have a constricting 

effect on the pedicels of the florets, causing early withering. However, removal of 

bulbils from the inflorescence only caused florets to persist approximately 10 days 

longer than intact inflorescences, and seed was not produced. If the development of 

bulbils caused destruction of the developing florets either directly through 

mechanical pressures, or indirectly via diverted nutrients from florets, there should 

be a negative correlation between bulbil number and floret number. Treu (1999) did 

not find such a correlation, and suggested that the production of bulbils may be a 

back-up mechanism within Allium following loss of flowers or seed production.

Florets have been removed from several Allium species to promote bulbil formation. 

For example, Andrew (1951) concluded that clipping caused bulbil development in 

A. cepa. Cottrell (1999) studying A. carinatum subsp. carinatum, A. vineale and A. 

paradoxum, made the same conclusion, though results were highly variable. Allium 

ampeloprasum var. porrum may form bulbils (Schweisguth 1970, 1972; Rubatzky 

and Yamaguchi, 1997; De Clercq and Van Bockstaele, 2002), and has traditionally 

been treated by growers in this way to propagate desirable lines (Brewster, 1994). 

Koul and Gohil (1970a & b; 1972) examined the relationship between developing 

bulbils and flowers in A. sativum. They also suggested that floret sterility may be 

linked with diversion of nutrients into bulbils, the bulbil initials being accelerated 

when the sexual cycle breaks down at microsporogenesis. When bulbils were
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removed from developing inflorescences, the life of the flowers was prolonged, but 

male gamete development proceeded no further than the production of microspore 

tetrads followed by microspore degeneration while still within the common wall, the 

same stage as when bulbils remained on the inflorescence. Female gamete 

development was prolonged, but again fertility was not restored. Koul, Gohil and 

Langer (1979) also note that in different clones of A. sativum, sexuality is thwarted at 

different states of organogeny, sporogenesis and gametogenesis.

Bulbil production in Alliums has been linked with both temperature and day length. 

Short days are implicated in some Alliums, when combined with high or low 

temperatures, whilst high temperatures alone may be sufficient in other Allium spp. 

For example, Brewster (1994) suggested that bulbil production was affected by 

temperature, with high storage temperatures causing reversion of floral parts to a 

vegetative state, if  the inflorescence has reached a certain state of development. 

Yamada (1961), working with A  cepa var. multiplicans, found that higher 

temperatures increased the number of bulbils in mixed inflorescences. Aura (1963) 

found that bulbils were induced in A. cepa, when they were stored for 6 weeks at 28 

-  31°C, following coldstorage at 3 -  13°C for 5 -  6 months. Bulbs stored at 21°C 

after coldstorage did not produce bulbils. Aura (1963) proposed that high 

temperatures caused a reversion of the inflorescence, returning to a vegetative state, 

therefore forming bulbils. It was also suggested that a more complete reversion 

would be obtained, if  the bulbs were treated sooner with the high temperature 

regime, following coldstorage. Indeed, some treated onions produced an 

inflorescence consisting of only one large bulbil. If the treatment was delayed, the 

inflorescence was more likely to consist of mixed bulbils and florets. A more



advanced state of floral development requires longer treatment to cause reversion 

(Kamenetsky and Rabinowitch, 2002).

Roberts and Struckmeyer (1951) suggested the production of bulbils (A. cepa 

‘Rochester Bronze’) could be attributed to a combination of short days and high 

temperatures (9 hours, 20°C minimum) during scape development. In contrast, 

Bertaud (1988) found that at 15°C in 8h days, many of the inflorescences (A. cepa) 

contained bulbils or malformed florets, and suggests that low floret numbers and 

malformations observed in cool short days are a physiological response to 

temperatures too low for adequate floral development.

The influence of plant growth regulators on bulbil production in Alliums has been 

studied. For example, Andrew (1951) suggested that some Alliums have the 

potential for bulbil production even if  it was not always expressed. He sprayed 

clipped inflorescences o f A. cepa with various auxins, but no increase in bulbil 

production was observed. However, inflorescences were treated when the spathe 

was almost ready to open, which may have been too late to divert development from 

floret to bulbil. Thomas, (1972) used benzyladenine (a cytokinin) at 10mg/l to 

increase the number of bulbils on some onion cultivars. Vest, Subramanya and 

Jackson (1977) induced bulbils in onion inflorescences by treating bulbs with PBA 

(6-benzyl-9-tetrahydropyrane adenine) in methyl Cellosolve® before planting. 

Interestingly, Wang, Tan and Ji (1988) found that A. sativum bulbils produced 

abscissic acid (ABA) which was translocated to the scape, and this may be a factor in
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the prolonged life of the florets observed by Koul and Gohil (1972) (A. sativum) and 

Treu (1999) (A. ampeloprasum var. babingtonii).

1.8 Genetic pathways in floral determination and development

1.8.1 Initiation of flowering

Plants have complex pathways controlling the transition to floral development (see 

section 1.7.1). These pathways are of two general types:

• Pathways designed to sense environmental cues, e.g. changes in daylength, temperature or soil 
moisture;

• Autonomous pathways that involve the state of development, e.g. many species must pass 
through a juvenile phase before acquiring floral competence (Aukerman and Amasino, 1998).

The examination of mutants of Arabidopsis thaliana that are defective or abnormal 

in their floral response, and the corresponding wild-type genes that complement 

these mutant phenotypes, have identified three different functions (Weigel and 

Meyerowitz, 1994):

•  Meristem identity genes, responsible for the positive initial induction of the genes that 
specify organ identity;

•  Cadastral genes, which are spatial regulators of the genes controlling organ identity;

•  Organ identity genes with direct control of organ identity, presumably by activating 
downstream genes (Weigel and Meyerowitz, 1994).

Lyndon (1994) separates the meristem identity genes into two further groups, giving 

four different groups of homeotic genes that are involved in floral determination and 

development:

• Those allowing or accelerating the change to floral growth;

• Those causing the floral identity in inflorescence side shoots.

• Those that establish the boundaries for the action of the floral growth and identity (spatial 

regulators)

• Those that specify particular organs (organ identity genes);
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Genes controlling flowering have been well documented in the model plant 

Arabidopsis thaliana and show complex interactions between pathways (Figure 16).

Vegetative meristem
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promotion

Repression
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Figure 16: Some of the physiological pathways and genes controlling flowering in Arabidopsis 
thaliana. Physiological studies have identified different pathways that either promote (+) or repress 
(-) the transition of the apical meristem from vegetative to inflorescence/floral development. The 
circadian clock is implicated in the measurement of photoperiod via the perception of light. 
Arabidopsis thaliana strains in which flowering is promoted by vernalization also show strong 
acceleration of flowering by far red-enriched light, so vernalization and perception of light quality 
appear to be closely related processes. The inputs from the different pathways are somehow 
integrated (symbolised by a ?) and eventually lead to activation of inflorescence/floral meristem 
identity genes (adapted from Levy and Dean, 1998a).

Levy and Dean (1998b) suggest there are at least four pathways in Arabidopsis 

thaliana; two appear to monitor the endogenous developmental state o f  the plant. 

Firstly there is a floral repression pathway that may prevent flowering until the plant 

has reached a certain age or size, secondly an autonomous promotion pathway that is 

believed to increasingly antagonise this repression as the plant develops. The other 

two pathways mediate signals from the environment, and include the photoperiodic 

promotion pathway, and the vernalization promotion pathway.
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Not all interactions have been tested directly and little is known about how the floral 

repressors interact with the various promotive pathways; neither is it known whether 

floral commitment is generally controlled by the leaves or by the shoot meristem 

(Levy and Dean, 1998b). The vernalization-dependent and autonomous flowering 

pathways appear to be integrated by the MADS1 box gene FLOWERING LOCUS F  

(FLF) which encodes a repressor of flowering (Levy and Dean, 1998a). The level of 

FZF mRNA is downregulated both by vernalization and by a decrease in genomic 

DNA methylation. This suggests that vernalization acts to induce flowering through 

changes in gene activity that are mediated through a reduction in DNA methylation, 

and the FLF gene product may block the promotion of flowering by GAs (Sheldon et 

al., 1999). Soppe et a l, (1999) suggested that vernalization promotes flowering 

through EARLY FLOWERING IN  SHORT DAYS, (EFS) an inhibitor of flowering, 

specifically involved in the autonomous promotion pathway.

FRIGIDA (FRI) is another gene that represses flowering in Arabidopsis thaliana, and 

whose action is antagonised by vernalization. It confers a dominant requirement for 

vernalization and is the major determinant for flowering time variation (Dean et al.,

1999). Repression of flowering by FRI requires dominant alleles at the 

FLOWERING LOCUS C (FLC) locus, which may act antagonistically to FCA, FPA 

and FVE (Sanda and Amasino, 1996).

1 MADS box genes were so-called because a consensus sequence was shared by homeotic genes of 
totally unrelated species (M = minichromosome maintenance factor in humans, A = agamous in 
Arabidopsis thaliana, D = deficiens in Antirrhinum, S = serum mating factor in yeast).

58



FLC is the best characterised of the genes required for the late flowering conferred 

by FRI. It encodes a MADS-box gene and is therefore likely to function as a 

transcriptional regulator (Michaels and Amasino, 1999; Sheldon et al., 1999).

FCA interacts with meristem identity genes in multiple pathways, one leading to 

activation of LEAFY (LFY) and APISTILLATA1 {API), and another one acting in 

parallel with LFY  and API (Dean et al, 1999). CONSTANS {CO) triggers flowering 

irrespective of daylength, and when expressed, it initiates rapid transcription of both 

LFY and TERMINAL FLOWERING in long days {TFL) (Simon et al, 1996). LFY, 

API, AG (AGAMOUS) and TFL1 are all important in the transition to the floral state.

1.8.2 The Floral Initiation Process (FLIP)

The floral homeotic genes encode transcriptional regulators, all of which (with the 

exception of APT), contain a MADS box (a conserved DNA-binding domain) 

(Jurgens, 1997). Once LFY  expression has been initiated by the flowering time 

genes (above), its continued expression is necessary for further development of the 

floral initiation process (Figure 17). It is implicated in formation of new flower 

primordia, suppression o f leaf formation and intemode elongation, and enhances 

expression of other genes such as API and CAUFLOWER (CAL) for continuing 

development (Pidkowich etal., 1999).

Activation of the FLIP genes is coordinated, independent of one another and 

becomes progressively stronger as floral development proceeds, with the rate of 

FLIP activation dependent on TFL1 activity and daylength.
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Figure 17: Functional relationship between LFY, API CAL and AG. LFY is expressed before other 
FLIP genes. Early in floral meristem identification, other FLIP genes are activated independent of 
LFY, but their expression is relatively weak. One role of LFY  is to enhance the activation of API,
CAL and AG at this stage of development. In turn, API and CAL enhance expression of LFY. Once 
expressed the FLIP genes are required to direct different aspects of floral development. For example, 
LFY is required for petal and stamen development and plays a role in the activation oL4G, while API 
is required for sepal and petal development and indirectly for stamen and carpel development by 
activating the organ identity gene AG. AG maintains meristem identity in the centre of the floral 
primordium as well as promoting stamen and carpel development. (IM -  inflorescence meristem; 
UFO - UNUSUAL FLORAL ORGANS) (adapted from Pidkowich et al., 1999).

Schultz and Haughn (1993) stated that Arabidopsis thaliana must have a mechanism 

that monitors developmental time, activating morphological programs associated 

with phase transition (inflorescence to floral states), as has been suggested for other 

species. This mechanism must be responsive to the environment, with the activity 

level o f the factor(s) changing with the number o f nodes produced. As critical levels 

are reached, morphological programs are activated. Controller(s) o f  Phase Switching 

factors (COPS), co-ordinately activates the FLIP genes, resulting in the
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morphological changes associated with inflorescence phase change (Schultz and 

Haughn, 1993).

1.8.3 Floral organ identity

The initial specification of flowers in Arabidopsis thaliana is largely controlled by 

the floral meristem identity genes, LEAFY (LFY) and API and CAL with TFL1 

preventing the expression of floral meristem identity genes in the shoot and 

inflorescence meristems (Bradley et al. 1997; Bowman et a l 1993; Weigel et al, 

1992; Mandel et al, 1992; Weigel and Nilsson, 1995; Mandel and Yanofsky, 1995a 

and b; Gustafson-Brown et al, 1994)

The ABC model for the control of floral organ identity (Coen and Meyerowitz,

1991) suggests that three classes of genes with overlapping fields of expression 

control whorl identity. Class A genes act in whorls one and two; Class B act in 

whorls two and three; Class C genes act in whorls three and four. Class A and those 

of Class C are mutually exclusive, genes from each restricting the expression of the 

other. However, Class A appears to influence Class B expression (Schultz and 

Haughn, 1993; Jurgens, 1997) (Figure 18).

Alvarez and Smyth (1997) suggested a further class of whorl genes designated ‘class 

D genes’ that would include those found to act only on carpel development, for 

example, CRABS CLAW(CRQ  and SPATULA (SPT).
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Figure 18: Simplified, preliminary depiction of the genetic hierarchy that controls flower 
development in the eudicot model plant Arabidopsis (thaliana). Examples of the different types of 
genes within each level of the hierarchy are shown. ‘Gibberellic acid’, ‘vernalization’, ‘autonomous’ 
and ‘photoperiod’ refer to the different promotion pathways of floral induction. ‘Intermediate genes’ 
summarizes a functionally diverse class of genes including ‘cadastral genes’. MADS-box genes are 
shown as squares, non-MADS-box genes as circles and genes whose sequences have not been 
reported as octagons. Some regulatory interactions between the genes are symbolized by arrows 
(activation), double arrows (synergistic interaction) or barred lines (inhibition, antagonistic 
interaction). Not all the known genes and interactions involved in flower development are shown. In 
the case of the downstream genes, just one symbol is shown for each type of floral organ, although 
whole cascades of many direct target genes and further downstream genes are probably activated in 
each organ of the flower. At the bottom of the figure, a generic flower diagram is shown with the 
classic ‘ABC model’ of floral organ identity. According to this model, floral organ identity is 
specified by three classes o f ‘floral organ identity genes’ providing ‘homeotic functions’ A, B and C, 
each of which is active in two adjacent whorls. A alone specifies sepals in whorl 1; the combined 
activities of A and B specify petals in whorl 2; B and C specify stamens in whorl 3; and C alone 
specifies carpels in whorl 4. The activities of A and C are mutually antagonistic, as indicated by 
barred lines: A prevents the activity of C in whorls 1 and 2, and C prevents the activity of A in 
whorls 3 and 4. Abbreviations: AG, AGAMOUS; AGL, AGAMOUS-like gene; AP, APETALA; 
ASK,1 ARABIDOPSIS SKP-like 1; CAL, CAULIFLOWER; CO, CONSTANS; FLC, FLOWERING 
LOCUS C; FRI, FRIGID A; FUL, FRUITFULL; GI, GIGANTEA; LD, LUMINIDEPENDENS; LFY, 
LEAFY; LUG, LEUNIG; NAP, NAC-like, activated by AP3/PI, PISTILLATA; SEP, SEPALLATA; 
SHP, SHATTERPROOF; SOC1, SUPPRESSOR OF OVEREXPRESSION OF COl; SVP, SHORT 
VEGETATIVE PHASE; UFO, UNUSUAL FLORAL ORGANS; TFL1 TERMINAL FLOWER 1 
(adapted from Soltis et al., 2002)
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Recent research with A. thaliana has uncovered parallels between the spatiotemporal 

expression patterns of genes determining the identity and arrangement of floral 

organs, and those active in shoot apical meristems (SAM’s) (Albert, 1999). The 

position of a cell rather than its lineage determines its fate (Evans and Barton, 1997). 

It is suggested that the SAM pre-patterns the distinct ABC realms of expression 

through a similar pattern of expression of its own (Scheres, 1998). RNA expression 

analyses show that LFY  induces API directly, AG through an as yet unknown co­

factor and AP3 through the combined activity of the UFO gene product and it is 

suggested that the SAM/flower patterning link may rest in these regulatory 

relationships (Albert, 1999).

This suppression of inflorescence program and activation of floral program involves 

gene products from LFY, API m dAP2  (Schultz and Haughn, 1993), CAL and UFO, 

but CAL is functionally redundant to API (Pidkowich et al., 1999). Single mutant 

phenotypes suggest that while all FLIP genes are necessary to suppress the 

coflorescence and activate the program in meristems; their roles are not equivalent. 

Activation is co-ordinate, independent of each other and progressively stronger as 

inflorescence development proceeds.

Both LFY  and API are expressed in response to environmental conditions such as 

day length, and presumably also in response to the action of genes that affect the 

time of flowering (Schultz and Haughn, 1993). Simon et al., (1996) further propose 

that CO acts within one genetic pathway to activate LFY  and TFL, but that an 

additional pathway is required for rapid activation of API.
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In Arabidopsis, therefore, LFY is a ‘master transducer’ of environmental signals to 

the floral developmental program. LFY  controls the switch between vegetative and 

floral growth responding to both gibberellin and light stimuli, and directs or co- 

directs the transcription of key components of the ABC system for flower organ 

determination (Albert et al., 2002).

In most diploid angiosperms studied to date, the LFY  sequence exists as a single 

orthologous nuclear locus, though in most gymnosperms two divergent LFY paralogs 

are found, with sex-specific expression in conifers (Albert et al., 2002).

Table 7: Some patterns of LFY expression
Gene Expression Reference
ALF; Actinidia deliciosa First order axillary buds (later to become Walton et al. (2001)
(kiwi) floral) floral meristems
FLO; Antirrhinum majus Floral meristems and bracts Carpenter and Coen 

(1990);Coen et al. (1990)
LEAFY; Arabidopsis Floral meristems and organs (but also Schultz and Haughn

expressed at low levels in leaf primordia) (1991); Huala and Sussex
(1992); Weigel et al., 
(1992); Blasquez et al., 
1997)

BOFH; (Brassica Curd initiation to petal formation (not in Anthony, R. G. et al.,
oleracea var. botrytis vegetative meristems) (1996); Anthony et al.
(cauliflower) (1993)
ELF I; Eucalyptus Developing floral organs, leaf primordia, }Southerton et al., (1998)
globulus young leaves
ELF2; Eucalyptus Pseudo-gene }
globulus
RFL; Oryza sativa Young panicles and epidermal cells of 

young leaves during vegetative phase
Kyozuka et al., 1998

FALS1FLORA Floral and vegetative meristems, leaf Molinero-Rosales et al.
Lycopersicon (tomato) primordia and leaves, all floral organs (1999)
AFL1; Malus Floral buds } Wada et al., (2002)
AFL2; Malus Vegetative apices, floral buds and organs }
NFL I; Nicotiana Vegetative and floral meristem Kelly etal., (1995);Aheam
tabacum et al. (2001)
NEEDLY; Pinus radiata Vegetative buds, male cone primordia Mouradov et al. (1998); 

Mellerowicz et al., (1998)
PRFLL; Pinus radiata Vegetative buds, male cone primordia Mellerowicz et al., (1998)
PTLF; Populus Developing inflorescences, leaf primordia, Rottmann et al. (2000)
trichocarpa young leaves, esp. in apical vegetative 

buds near inflorescences; seedlings
The link with LFY (or its homologues) and floral expression is clear in many plants,

though this pattern of expression is not repeated in all plants investigated to date
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(Table 7). L F Y homologues have also been found in Citrus spp. (Darning et al., 

2001), Lolium temulentum (Gocal et al., 2001) and Zea mays (com) (Andrews et al., 

2000).

In spite of considerable work on the flowering and breeding of geophytes, little is 

known of the basic chain of processes involved in normal flowering, including gene 

and protein expression (Kamenetsky and Rabinowitch, 2002). Molecular markers 

for developmental phases are highly necessary for further work (Le Nard and De 

Hertogh, 2000). The importance of LEAFY in the change from the vegetative to the 

floral in a number of angiosperms, combined with the wealth of information 

regarding the structure and function of this gene, makes it a suitable candidate for 

study in this species. Nothing is known about the floral genes in Allium 

ampeloprasum var. babingtonii, and one aim of my work was to identify the 

presence of the homologue of LFY and to clone it, examining its expression in 

vegetative and floral tissues.

1.9 Aims

This literature review has focussed on floral morphogenesis in bulbs of Allium spp. 

alongside model species such as Arabidopsis thaliana. The commercial significance 

of Alliums has been highlighted together with a specialised review of available 

literature on A. ampeloprasum var. babingtonii using more fully studied Alliums 

such as A. ampeloprasum var. porrum, A. cepa and A. sativum to provide insights 

into possible mechanisms. Clearly, the ability of A. ampeloprasum var. babingtonii 

to exhibit flowers and bulbils means that shoot apical meristems of this species can 

exhibit different fates. It therefore emerges as a very useful model to study cell fate
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during floral morphogenesis. Hence, a clear aim of the work reported in this thesis 

was to resolve the mechanisms by which shoot apical meristems can switch floral 

fate. However, in order for this species to serve as a model for understanding the 

switch to flower or bulbil production, various standardisation experiments were 

necessary, including the establishment of precise tissue culture conditions that 

enabled the integration of both morphological and molecular changes into a precise 

developmental timetable. Moreover, the development of an appropriate protocol for 

fixing and staining material for histological examination was a necessary technique 

to underpin this study.

The aims of the work presented in this thesis were:

1 To establish a population of Allium ampeloprasum var. babingtonii as a source 

of material of known age

2 To develop a protocol for the maintenance of Allium ampeloprasum var. 

babingtonii in culture

3 To establish a histological protocol for use with Allium ampeloprasum var. 

babingtonii

4 To construct a developmental timetable for Allium ampeloprasum var. 

babingtonii for vegetative and floral growth in vivo

5 To identify the nature and timing of floral determination in Allium 

ampeloprasum var. babingtonii

6 To identify and clone a homologue to the meristem identity gene LEAFY in 

Allium ampeloprasum var. babingtonii and examine its expression in the floral 

transition.
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2.0 Sources of Allium ampeloprasum var. babingtonii and Allium 
ampeloprasum var. ampeloprasum plant material

2.1 Cornish populations

Treu (1999) recorded a number of populations in Cornwall, of which the largest 

(Population 1, Appendix 3) was near Newquay (SW 784567-771584), with 

approximately 5000 individuals of Allium ampeloprasum var. babingtonii. This 

population was mainly linear in dispersion, growing in intermittent single rows along the 

side of a public footpath.

The Botanical Society of the British Isles (BSBI) confirmed that a licence would not be 

needed to collect the plants, as it is not a scheduled species and not considered to be 

threatened (Treu, 2000). The Cornish Wildlife Trust further confirmed that numbers 

were increasingly rapidly (Hocking 2000, personal communication) and that no harm 

would be done to the population if samples were taken. Part of the footpath is owned by 

Holywell Bay Holiday Park, who gave permission for small numbers of samples to be 

taken. Ownership was unclear for other parts of the population, therefore they were not 

sampled. Sampling of inflorescences was accomplished in August when the 

inflorescence was likely to be fully developed, but not yet dehiscing (Treu, 1999).

2.1.1 August 1999 (SH99)

Mature plants were not taken, as digging was felt to damage the amenity landscape of 

the Holiday Park. Samples were taken as entire inflorescences from plants selected from 

the population, ensuring that some bulbils were taken from each site within this
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population (Appendix 5). Randomization was ensured as far as possible within these 

limitations, by taking every 10th visible inflorescence from this largely linear population.

The scapes were brown and dry, many florets had been lost, and those that remained 

were withered. Some bulbils were still green, but most had formed brown, papery outer 

layers. There was no foliage on the plants. Each inflorescence was removed with part 

of the scape still attached, and labelled with sample number and location (Appendix 5). 

Each head was placed in a pollen bag, to contain the bulbils as they dehisced, whilst 

allowing reasonable air movement to deter fungal rots.

Smith (1999) recommended storage of the bulbils at a temperature as close to 0°C as 

possible, but avoiding freezing. They were stored in a cooled incubator, initially at 1°C, 

but as this produced occasional sub-zero temperatures, in response to environmental 

changes, this was raised to 3°C. Others were grown on in outdoor beds to provide plants 

of known age for developmental data. Three hundred bulbils sampled at random (SH99) 

were grown at University College Worcester (UCW). They were planted in 13 cm pots 

of John Innes No. 2 compost (Treu, 1999) during September 1999 and grown on in cold 

frames for protection against environmental extremes and predation. A further 500 were 

planted similarly during January 2000, as the sprouting rates from the September 

planting were poor. By May 2000, only 4% of the September planting had sprouted 

compared with 62% of the January planting. Non-sprouting bulbils were examined, and 

found to be necrotic. Contributing factors were likely to be inadequate drainage and 

ventilation. This could be particularly pertinent to the earlier planting, as the bulbils
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were suffering poor drainage during wet and cold winter periods. Smith {personal 

communication, 2000) suggested that Alliums would be unlikely to thrive in conditions 

with restricted root growth (this was later confirmed by personal observation of Allium 

ampeloprasum var. babingtonii grown in containers at UCW since 1995 for other 

projects). Therefore, all surviving plants from the cold frames were transplanted to 

outdoor beds. The site had light, sandy, well-drained soil, resembling the soil from the 

Holywell Bay site, was sheltered, and faced southwest. Irrigation was supplied as 

required.

2.1.2 August 2000 (SHOO)

Permission was obtained to sample a small number of mature plants that could be grown 

on at UCW. They were located by their scapes, and were sampled from a number of 

points within the site as previously. The whole plants were potted into John Innes No. 2 

compost at the site to reduce disturbance and breakage to the plants. They were planted 

at UCW, on a site facing south-west, with sandy, well-drained soil in October, 2000 

(Appendix 6). They had developing roots and shoots and they were planted with root 

ball intact as far as possible. The plants were spaced approximately 45 cm apart, and 

watered to assist in re-establishment. The inflorescences were contained in pollen bags, 

remaining on the plant until dehiscence.

It became apparent that the population continued extensively further West, into the 

Holiday Park itself. This site was mown regularly from making it difficult to estimate 

numbers, but was likely to be several thousand. Plants could only be located from
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November to March, when foliar growth was allowed to proceed. Permission was 

obtained to sample these plants the following year.

2.1.3 March 2001 (SH3/01)

Growing plants were collected from within the holiday park, and grown on in beds at 

UCW as above (Appendix 7). Samples were not obtained from the footpath as this was 

closed as a result of the Foot and Mouth epidemic. Sampling was dictated by 

accessibility together with the need to avoid causing damage to the maintained 

landscape. As far as possible, they were taken from varied locations within the Holiday 

Park. Bulb size (maximum width and height as previously) was recorded where still 

present, together with maximum leaf length and the number of visible leaves.

2.1.4 November 2001 (SH 11/01)

Intact inflorescences were collected from the footpath as available, many of the 

inflorescences having already dehisced. Sprouting mature bulbs were taken from the 

campsite where accessible, as previously. These were selected for a minimum bulb 

diameter of 3 cm for examination of floral development. Bulbs were measured across 

the largest part of the diameter, many of the bulbs being asymmetrical (Appendix 8).

2.1.5 March 2002 (SH 0302)

Mature plants were selected, so that floral development in vivo could be examined. 

Plants with a bulb diameter of at least 3 cm were required, to fulfil the maturity 

requirement established by this time. However, bulbs were necrotic and disintegrating,
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therefore estimation of size was largely subjective. Plants were sampled from a number 

of sites from both footpath and within the campsite, as previously from as many 

different locations as possible, this being limited by accessibility and the need to 

preserve the landscape, as before. Plants were actively growing therefore they were 

sampled with root balls intact as far as possible, and packed in John Innes No. 1 compost 

for transport. Maximum leaf length was recorded in 10 intact plants but many outer 

leaves were showing signs of necrosis, or damage, probably from mechanical effects, 

pests and diseases (Appendix 9).

2.2 Nursery suppliers

Allium ampeloprasum var. babingtonii is also marketed by a small number of nurseries 

(Appendix 1) (Royal Horticultural Society, 2000). John Shipton Nurseries (Camarthen) 

had the largest population (20) and confirmed that his stock plants had Cornish origins. 

Parent plants were inspected during flowering (September 2000) to confirm identity, and 

20 dormant bulbs were purchased. These were two year old bulbs, expected to flower in 

2001 (Shipton, 2000, per s. comm.). Also purchased were 20 Allium ampeloprasum, var. 

ampeloprasum, for developmental comparison. This variety has been recorded in only 

three sites in the past twenty years, and numbers are declining (Wiggington, 1999). It 

has been Red Data Book Listed to protect remaining populations (French et al., 1999). 

Therefore, sampling from the wild was not an option, and John Shipton Nurseries was 

the only source material for this species. Maximum bulb width, height and weight were 

recorded before planting (Appendix 10). Sources and types of material obtained are 

summarised in Table 8.
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Table 8: Summary of sources of Allium ampeloprasum var. babingtonii and Allium ampeloprasum var. 
ampeloprasum

Date Material Method Ref.
Var. babingtonii August

1999
Bulbils from footpath Stored at 3°C/grown on SH99

August
2000

Bulbils from footpath Stored at 3°C SHOO

August
2000

Whole plants from footpath Grown on SHOOp

Sept.
2000

Dormant bulbs from John 
Shipton Nurseries

Grown on JS00

March
2001

Whole plants from holiday 
park

Grown on SH03/01

Nov.
2001

Whole plants from holiday 
park and footpath

Grown on SHI 1/01

Nov.
2001

Bulbils from holiday park 
and footpath

Stored at 3°C SHI 1/01

Mar.
2002

Whole plants from holiday 
park and footpath

Grown on SH03/02

Var.
ampeloprasum

Sept.
2000

Dormant bulbs from John 
Shipton nurseries

Grown on JSOOamp
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3.0 Development of protocol for wax embedding, sectioning and 
staining of Allium ampeloprasum var. babingtonii samples for 
histological examination

Examination of changes from the vegetative to the floral phases in var. babingtonii, 

required monitoring of meristem development over a period of time representing 

vegetative growth, floral determination and the production of inflorescence 

meristems and floral meristems, as well as morphogenesis of the inflorescence itself. 

The activity of the terminal meristem involves cellular processes; therefore, with few 

exceptions, study of meristems involves the preparation of stained sections from 

fixed material (Steeves and Sussex, 1989).

Tissue is fixed as rapidly as possible to prevent distortion and decay as far as 

possible (Peacock, 1966). There are many fixatives, embedding materials and stains 

appropriate for different tissues. Clarke’s Fluid is widely used for fixing plant 

material, acts rapidly and causes little shrinkage of tissues, fixing cytoplasm and 

nuclei (Peacock, 1966). Tissue may be embedded in blocks such as paraffin wax for 

sectioning, enabling sections of as little as 2pm thickness to be prepared. This also 

preserves the morphology and the wax is easily removed for further processing 

(Schwarzacher and Heslop-Harrison, 2000). Herbert (1991) fixed, wax embedded 

and stained sections of Pharbitis nil, and this protocol was modified for use with 

Allium spp. by Cottrell (1999). However, she noted difficulties with penetration of 

wax and brittle tissues. A protocol was developed based on Herbert (1991) and 

Cottrell (1999) for fixing, wax embedding and staining, suitable for A  

ampeloprasum var. babingtonii. This permitted the examination o f vegetative and 

floral material for recording developmental changes over a period of time.
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Meristem development in some Alliums has been studied extensively, (e.g. A. cepa 

Brewster, 1994). Here the apical meristem is in the centre of the upper bulb surface 

where the leaves initiate, whilst another meristem -  the primary thickening 

meristem- is separate from this and doughnut shaped around the apical meristem. 

This gives rise to roots and thickening of the basal plate (see section 1.6.1.1, Figure 

7) with many Alliums (for example, A. ampeloprasum var. porrum, A. sativum) 

sharing similar developmental characteristics (Brewster, 1994). A comparable 

developmental pattern might therefore be expected in var. babingtonii.

Angiosperms generally share similar patterns of cell development in the meristem. 

The outermost layers (tunica) show largely anticlinally oriented cell divisions, and 

generally consist of one to five layers, with the majority of species having two layers 

(Steeves and Sussex, 1989). The number of layers may vary in the same plant in 

some species, or may fluctuate seasonally or in relation to primordia initiation.

Below this is the corpus where planes of cell division are less regularly oriented 

(Steeves and Sussex (1989). The cells of the apex above the youngest leaf primordia 

may be small, nearly isodiametric, thin-walled, with a high nucleocytoplasmic ratio 

and inconspicuous vacuolation (Steeves and Sussex, 1989).

In a number of species, a group of cells at the summit of the apex, including both 

tunica and corpus have been recognized as being somewhat larger and are designated 

tunica and corpus initials. This central zone is likely to stain less densely with 

histological stains, both nuclear and cytoplasmic. Here cells divide infrequently, and 

are surrounded by a peripheral region composed of small, densely staining cells in 

which divisions appear to be more frequent. The Feulgen reaction (Appendix 11)

75



specifically identifies DNA, and this lighter staining correlates with larger, albeit 

thinly stained nuclei; the DNA content is the same as in other cells (Steeves and 

Sussex, 1989). Fainter cytoplasmic staining may be related to the highly vacuolated 

state of these cells, this typically being large numbers of small vacuoles giving a 

frothy appearance, rather than the small numbers of large vacuoles in mature or 

maturing cells (Steeves and Sussex, 1989).

Development of a satisfactory protocol for use with var. babingtonii would allow the 

meristem to be compared with the patterns in other angiosperms, as well as recording 

development from the vegetative to floral phases.

3.1 Materials and methods

3.1.1 Wax embedding

Bulbils were selected at random from SH99 (see 2.2 Table 8) as this material was 

readily available in large quantities, and would also provide much of the source 

material for later tissue culture work. All samples for treatments were selected using 

random numbers.

Explants were dissected out from the bulbils, taking the centre ’post', from the base to 

the apex. This was approximately 1-2 mm wide, 1-2 mm in depth, and the height of 

the bulbil. The top portion was then removed, leaving a post approximately 3-4 mm 

in height (Figure 19).
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Lines of 
incision

Figure 19: Excision of centre post of tissue. This section included the apical shoot, part of the basal 
plate, root initials and point of attachment.

The protocol for wax embedding was modified from Herbert (1991) (Pharbitis nil), 

and Cottrell (1999) (Allium spp.) (Table 9).

Table 9: Fixing and wax embedding protocol (Herbert, 1991; Cottrell, 1999)
Treatment

Herbert 1991
Time

Cottrell 1999
Fixing in Clarke’s Fluid Overnight 2 + d

100% ethanol 2 x 1 5  min. rinses 1 -  3 d
Ethanol: Histo-Clear 1:1 (v/v) 2 x 1 5  min. rinses 1 d
100% Histo-Clear 2 x  1 h 1 - 3  + d
Histo-Clear:paraffin oil (1:1 v/v) 2 h 1 d
100% paraffin oil 2 h at 60°C 7 + d
Paraffin oil:paraffin wax at 60°C Overnight 2 d
Paraffin wax at 60°C 6 h 2 d
Blocks were cooled at -20°C - Yes

Cottrell (1999) noted difficulties with this method, and similar difficulties were 

initially experienced with var. babingtonii. Wax penetration into the tissues was 

poor, samples were brittle and the wax blocks were frequently fractured. Clarke’s 

Fluid (3:1 v/v 100% ethanol :glacial ethanoic acid) is suggested for general work, 

fixing cytoplasm and nuclei without causing hardening o f tissues, though glacial 

ethanoic acid may soften tissue, rendering samples unsuitable for embedding

'oint of 
ittachment

Roof
initials
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(Peacock, 1966). Conversely, ethanol may cause hardening of tissues (Peacock, 

1966). He also noted that fixing should be rapid in small samples (for example 30 

min. immersion is suggested though size is not specified in this instance) with a 

sample no bigger than 1 cm x 1 cm x 0.5 cm treated for about 18 h, with time 

proportionately reduced for smaller samples (Peacock, 1966). This suggests that 

central posts from var. babingtonii should be fixed in a few hours, and that extended 

immersion could be damaging to the tissues. Fixing in Clarke’s Fluid was compared 

with a dehydration sequence in ethanol to investigate the relative effects on tissue 

destruction or hardening.

Samples were allocated at random to the treatments (Table 11). The tissue was 

either fixed in Clarke’s Fluid, (Appendix 11) for three days at room temperature in 

histology cassettes (Tissue-Tek) then rinsed twice in 100% ethanol, or subject to a 

dehydration series of 5 min. each in 30 % ethanol, 50 % ethanol, 70 % ethanol, 90 % 

ethanol, 100 % ethanol, then immersed for a further 60 min. in 100 % ethanol.

All samples were subsequently placed in 1:1 (v/v) 100 % ethanol:Histo-Clear 

(National Diagnostics HS-200), for approximately 24 h, followed by immersion in 

100 % Histo-Clear for a further 24 h. Wax infiltration was initiated by placing the 

cassette into 1:1 (v/v) Histo-Cleariparaffin oil (Paraffin liquid BDH 294375J) for 

approximately 24 h, then into 100% paraffin oil for approximately 24 h, then paraffin 

oilrparaffin wax (Paramat BDH Gurr 36133 4C) at 60°C for 24 h, and finally, into 

paraffin wax at 60°C for 24 h.
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Table 10:Comparison of samples fixed in Clarke’s Fluid and samples dehydrated in ethanol
Fixing Ethanol :Histo- 

clear

A) 5 min. each in 30%, 50%, 70%, 90% 100% ethanol, 
then 60 min. in fresh ethanol

24 hours Embedding as 
above

B) 3 days in Clarke’s Fluid Embedding as 
above

The tissue was embedded in freshly melted wax. Some samples were positioned for 

transverse sectioning (TS) and some for longitudinal sectioning (LS). They were 

cooled rapidly to -20°C (Cottrell, 1999) then stored at 4°C.

3.1.2 Sectioning

The wax blocks were sectioned using a Spencer Microtome set at 5 pm. The ribbons 

of sections were floated on the surface of a water bath at 42°C containing 4 ml/1 

subbing solution (Appendix 11). Slides were previously ethanol washed (70 % aq.), 

and air-dried at room temperature. Samples were positioned on the slides and air- 

dried horizontally at room temperature.

3.1.3 Staining

After drying for approximately 24 h, the slides were placed in slide racks and 

immersed in Histo-Clear for 20 min. to remove the wax (Table 12). This was 

followed by a hydration series with 5 min. immersion each of 100%, 70%, 50%, and 

30% ethanol (aq.). They were then rinsed in distilled water.

Sections were hydrolysed by immersion in 1M HC1 for 8 min. at 60°C, and then 

transferred to Schiff s Reagent for 1 h to stain nuclear material. This was followed
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by immersion in 45 % Ethanoic Acid for 1 min., then two rinses in SO2 water 

(Appendix 11) to halt the reaction and remove excess colouration.

The slides were then put through a dehydration series from 30 %, 50 %, 70 % and 

100 % (aq.) ethanol in preparation for Light Green Stain (Appendix 11). Slides were 

immersed in Light Green Stain for 20 s, and then rinsed twice for 5 min. in 100 % 

ethanol. Finally, the slides were rinsed twice in Histo-Clear and allowed to air dry. 

Table 11: Staining procedure for Allium apical sections (modified from Herbert 1991; Cottrell 1999)
Treatment Time (min.)
Histo-Clear 20
100% ethanol 5
70% ethanol 5
50% ethanol 5
30% ethanol 5
Distilled water 5
1M Hydrochloric acid at 60°C 8
Schiffs Reagent 60
45% Ethanoic acid 1
Sulphur dioxide water 1
Sulphur dioxide water 1
30%ethanol 5
50% ethanol 5
70% ethanol 5
100% ethanol 5
Light green stain 20 seconds
100% ethanol 1
100% ethanol 1
Histo-Clear 1
Histo-Clear 1

Samples deteriorated during the staining process, with tissue missing, either partially 

or completely. This was most noticeable following the hydrolysis and immersion in 

SchifP s Reagent. The effect of hydrolysis in hydrochloric acid was assessed using 

differing immersion periods from 5 to 10 min.

Prepared slides were selected at random, and then assigned to a time period randomly. 

They were processed as above, but with different immersion times in hydrochloric 

acid.
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Randomly selected slides were mounted as above, using pre-subbed slides. These had 

been immersed in subbing solution (1 % gelatine, 1 % potassium dichromate w/v aq.) 

and allowed to air dry (approximately 48 h at room temperature) before use.

3.2 Results

3.2.1 Wax embedding

Samples that were fixed without immersion in Clarke’s Fluid, had inadequate 

penetration, and complete samples were not produced. Approximately 80 % of slides 

were missing or incomplete. Therefore, this method was discontinued. Assessment of 

the quality of the slides is largely subjective, therefore data are not presented.

Some of the inner layers of tissue detached from the wax during sectioning. This was 

thought to be due to traces of moisture forming a barrier between the wax and the 

tissues. Therefore, a dehydration series was added to the protocol, after the Clarke’s 

Fluid. Samples were immersed for 5 min. each in 80 %, 90 % and 100 % ethanol 

(Clarke’s Fluid being 75 % ethanol). Initially this made no discernible difference, and 

was therefore incrementally increased to 1 d at each concentration, and samples 

improved. Increasing the times of immersion of later stages to 2 or 3 d also increased 

the quality of the samples, with tissue more likely to remain intact when sectioned, 

and to have complete penetration of the wax to the centre o f the apex. The wax was 

clearer, suggesting improved removal of water from the tissues. Further adjustments 

to the protocols were made at intervals after examination of the previous results; 

assessment of quality is largely subjective, the aim of the protocol being to reliably
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produce slides with complete penetration of wax and intact tissues. Therefore, data 

are not presented. Modification was continued until intact slides could be reliably 

reproduced. The protocol was considered satisfactory when in excess of 80 % slides 

remained intact with complete penetration of wax.

Some of the blocks showed fracturing (approximately 70 %), leading to breakage 

during sectioning. Therefore, randomly selected blocks were allowed to cool at room 

temperature. These showed no fracturing of the wax, therefore rapid cooling was 

discontinued. Larger samples generally had less effective wax penetration.

Satisfactory results were achieved when the size of the sample was <2mm width and 

depth, 4-7mm height following the revised protocol. However, samples needed to be 

large enough to allow for correct orientation during the embedding process.

3.2.2 Sectioning

Once wax penetration was complete, sectioning could proceed at 5 pm. Particular 

tissues in later work were prone to brittleness, and these were very young bulblets, 

root tips and florets. All these tissues are notable for the lack of depth of tissue and 

the recent morphogenesis of the tissue. It seems likely that a protocol rigorous enough 

to soften the cell walls and allow complete penetration of substantial tissues such as 

the inflorescence receptacle, basal plate, storage layers, and enfolding layers of leaves 

in the apex, is also likely to weaken the structure through the action of the ethanoic 

acid and cause hardness of fragile tissues leading to the brittleness and crumbling 

experienced. Whilst it is possible to reduce immersion times of fixing and 

dehydration sequences, when tissues of known fragility are to be examined, most
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samples involved tissues of various types, for example, the developing inflorescence 

or the vegetative apex and basal plate. Any methodology must necessarily be a 

compromise between thorough penetration and the preservation of the tissues intact.

3.2.3 Staining

Varying the times of hydrolysis in HC1 had little effect on the quality of sections 

(Table 12). There was a high rate of survival on all slides treated for 8 min. and one 

slide treated for 5 min. though other slides treated for 5 min. lost all the sections, 

suggesting that hydrolysis times are not a factor in sample loss. Losses were 100% at 

6, 7 and 10 min.

Table 12: Effects of hydrolysis times on sections___________________________________
Slide no. Hydrolysis time (min.) No. of sections No. of complete sections
1 10 13 0
2 5 9 0
3 10 9 0
4 8 8 8
5 5 8 0
6 7 9 0
7 8 9 9
8 7 8 0
9 6 8 0
10 5 8 7
11 6 9 0
12 10 8 0
13 7 9 0
14 8 11 10
15 6 9 0

The effectiveness of the subbing solution in adhering samples to the slides was also 

examined. It was increased in strength x 2, x 4, x 10 in the water bath during flotation 

of the tissue samples. Prepared slides were selected at random, allocated to subbing 

solution strength and then processed as previously. Increasing the strength of the 

subbing solution in the water bath had no observable effect on the survival of samples
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(data not presented). However, using pre-subbed slides completely eliminated losses 

during the staining process. Subbing solution (Appendix 11) was warmed to 

approximately 30°C to ensure that it was thoroughly melted. Slides that had been 

washed in 70 % ethanol and air dried, were dipped in subbing solution and air dried 

again at room temperature. Slides were placed flat for drying to encourage even 

distribution of subbing solution. These slides were used in conjunction with subbing 

solution in the water bath at the original concentration (Appendix 11), consistently 

producing slides that remained 100 % intact during the staining process.

3.3 Final technique

Fixing times were increased up to 5 days depending on the tissue. Large sections 

including basal plate material (Figures 20-23) or inflorescences (Figure 24-25) 

required longer, whilst small samples especially those known to be fragile required 

shorter times (Figures 26-27). The dehydration sequence was included for all 

samples, and the wax infiltration process was increased to two days for each 

immersion, with three days for the final immersion in 100% wax. Blocks were 

allowed to cool at room temperature without chilling. Blocks were sectioned at 5 pm 

thickness. Ribbons of sections were floated on the surface of a water bath at 42°C 

containing 4 ml/1 subbing solution (Appendix 11) then positioned on pre-subbed slides 

(Appendix 11) and allowed to dry at room temperature for at least 24 h. The staining 

protocol was used as for Table 11 (3.1.3). Slides were made permanent by dipping 

them in xylene twice for 1 min. each (Hopkin & Williams Ltd GPR Grade A) in a 

fume cupboard, then placing a drop of DPX mountant (Fluka 44581) over the samples
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before pressing down the cover slip for a few seconds. They were kept level and 

allowed to dry for 48 hours in a fume cupboard, before examination.

The adjustments made to this protocol ensured that a high proportion o f samples could 

be successfully embedded, sectioned and stained for examination. Complete wax 

penetration could be reliably reproduced. No slides were lost during staining. 

Although a small number o f  slides still produced brittle material that tended to 

crumble during sectioning, the adjustments made to this protocol produced large 

numbers o f high quality slides for histological examination (Fig. 20 -  27).
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Figure 20 (height 1200fim): Apical dome 
and basal plate (SH99 1 year 24 weeks) LS
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Figure 21 (height 1200pm): Storage tissue 
(SH99 1 y 4 weeks) LS
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Figure 23 (height 1200pm): Old storage
Figure 22 (height 1200pm): LS root formation tissue showing breakdown of walls and loss
within storage tissue (SHOO ) 32 weeks) of nuclear material (SH0301 D14)

. •. - *, * *- 0.
-v *• *.* '

Figure 24 (height 1200pm): Apical floret 
with first tepal primordia (SH0301 D6)
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Figure 25 (height 1200pm): Bulbil forming 
with bract (SH0301 D8)

Figure 26 (height 1200pm): Bulblet 
(JSOOe 16 weeks)

Figure 27 (height 1200pm): Formation of 
daughter bulb (ST0301 Dl l )
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3.3.1 Conclusions (Table 13)

• Smaller samples generally had improved penetration, but were variable with 
the tissue type

• Wax penetration of vegetative and floral apices was improved by fixing in 
Clarke’s Fluid for 3 -5 days and following this with a dehydration sequence in 
increasing concentrations of ethanol (aq.)

• Wax penetration was further improved by increasing the times of immersion 
during wax infiltration to two days each, with three days in the last two stages

• Rapid chilling at -20°C caused fracturing of the wax block, therefore was 
discontinued

• The use of pre-subbed slides eliminated losses during the staining procedure
• The staining and section procedures (Herbert, 1991) were unaltered (Table 11)

Table 13: Revised timetable for fixing and wax embedding

Treatment Time (days)
Fixing in Clarke’s Fluid 3-5
80% ethanol 1
90% ethanol 1
100% ethanol 1
Ethanol: Histo-Clear 1:1 (v/v) 2
100% Histo-Clear 2
Histo-Clearparaffin oil (1:1 v/v) 2
100% paraffin oil 2
Paraffin oil:paraffin wax at 60°C 3
Paraffin wax at 60°C
Freshly melted wax for embedding

3
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4.0 Development of protocol for the maintenance of Allium 
ampeloprasum var. babinglonii apices in tissue culture

Tissue culture enables plant responses to be investigated in isolation, both from the 

environment, by providing a controlled sterile environment free of pathogens and 

biotic influences, and from the rest of the plant, permitting investigation into 

particular tissues or organs (Dodds and Roberts, 1995). It has been used to establish 

the timing of floral determination of the apical shoot (see sections 1.7.1, 1.8). 

Determination is the condition where the tissue forms a flower in conditions where 

vegetative growth would be predicted (McDaniel et al., 1992; McDaniel, 1996). 

Species that flower in response to endogenous signals can be tested for 

determination, by separating the buds from the mature plant, which could otherwise 

be a source of signals to flower or to remain vegetative (Bernier et al., 1993). Tissue 

culture is used to assay floral determination, as apices can be grown in a neutral 

environment, e.g. Durdan (1998) used apical shoot tips to investigate the timing of 

floral determination in Pharbitis nil. However, one limitation of this method is that 

some leaf primordia are likely to be included. Also, Huala and Sussex (1993) 

suggest that determination occurs not only in the meristem but also in other tissues of 

the plant.

The development of a protocol for the tissue culture of A. ampeloprasum var. 

babingtonii would enable the timing of floral determination to be investigated, 

establishing a foundation for the construction of a floral developmental timetable for 

this species.
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Much work has been carried out looking at the behaviour of Allium spp. in tissue 

culture (Appendix 4). Most of this has been directed towards developing protocols 

that allow for the regeneration of plantlets from desirable gene lines, and to provide a 

rapid and efficient method of propagating those that do not easily produce viable 

seed. Further research has been directed at the culture of callus, the undifferentiated 

tissue being genetically unstable (Brewster, 1994) producing new lines for further 

study and development, for example, the examination of ploidy and the changes 

associated with changes in ploidy levels (Novak, 1990). It is also used to produce 

virus free stocks, and for the preservation of vegetatively propagated forms (Keller 

and Lesemann, 1997, Novak, 1990), and meristem culture is particularly useful for 

this as it maintains high genetic stability, making it suitable for in vitro germplasm 

conservation (Novak, 1990). Material used frequently includes parts of the basal 

plates, and the meristematic parts of young inflorescences (Appendix 4).

Allium spp. have been cultured as apical shoot explants (e.g. Bhojwani et al., 1982/3; 

Dunstan and Short, 1977a and b; Rodrigues et al. 1997) and as entire bulbils (e.g. 

Havel and Novak, 1988; Novak, Havel and Dolezel, 1986), as well as other tissues 

such as flower heads (Havel and Novak, 1988), embryos (Novak, et al., 1986), 

individual flowers (Baumunk-Wende, 1989; Rauber and Grunewaldt, 1988) and 

anthers (Baumunk-Wende 1989). However, whilst the culture of entire bulbs or 

bulbils would avoid tissue damage and eliminate any wounding responses, it would 

only provide information about the developmental state of the whole plant. 

Alternatively, culture of the apical shoot would provide information about the 

developmental state of the apex in isolation.
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Novak (1990) suggested that most Allium tissues can be cultured on MS medium 

(Murashige and Skoog, 1962), and others have also used this medium (e.g. Seo and 

Kim, 1988, Ziv et al., 1983), sometimes at half strength, whilst other researchers 

(e.g. Bhojwani et al, 1982/3) have used Gamborg’s B5 (Gamborg et a l, 1968). 

Dunstan and Short (1977a, b) developed a new medium (BDS). This was based on 

Gamborg B5 but with increased levels of phosphate and nitrogen, agar was 8.0 g/1, 

pH 5.5, giving improved growth rates. The study was designed to increase the 

growth of onion tissue cultures and improve the regenerative capacity of the tissue. 

Other media used for Allium tissue culture include White (1963) and Nitsch and 

Nitsch (1969) (Novak, 1990).

Novak (1990) suggests that Allium cultures will grow well within a wide range of 

photoperiods and light intensities, and fluorescent lights at approximately 1500 lux 

for a 16 hr photoperiod is likely to be satisfactory, though quality and regime are also 

important. Baumenke-Wende (1989), Dunstan and Short (1977a and b) and Keller 

and Lesemann (1997) grew on at 25°; Lu et a l  (1989) at 25±5°C; Ziv et a l  (1983) at 

25+l°C. Seo and Kim (1988) grew callus at 26°C and 60+5% relative humidity, 

while Hussey and Falavigna (1980) grew explants taken from basal plate tissue, at 

20°C. These figures accord with Rubatzky and Yamaguchi (1997) who suggest that 

the optimum temperature for vegetative growth in leeks is between 20°C and 25°C.

Summary of aims:

• To compare bulbil and explant development in vitro determining the most 

appropriate tissue for maintenance in culture

• To optimise surface sterilisation methodology



• To identify a medium that supports active growth, (e.g. examining carbon 

source, carbon source concentration, and standard macro/micro nutrient 

preparations)

• To identify photoperiod and light intensity that supports active growth 

without promoting dormancy or bulbing.

Bulbils were used, as they were readily available in large numbers, whilst numbers of 

bulbs and bulblets were limited. Surface sterilisation methods were investigated 

using both explants from bulbils, and whole bulbils. Standard tissue culture media 

were compared, as were carbon sources and concentrations. Allium spp. have a wide 

range of responses to environmental cues; flowering, bulbing and dormancy may all 

be influenced (Brewster, 1994). Therefore, light levels and photoperiods were also 

examined, to determine appropriate conditions for the development of shoots in 

culture.

4.1 Materials and methods

4.1.1 Preparation of plant material

Inflorescences collected from Holywell Bay Holiday Park, Cornwall (SW 784567- 

771584), were selected using random numbers; the bulbils were removed and pooled. 

Individual bulbils were then selected at random. Although the variety reproduces 

clonally, there is some genetic mutation occurring (Treu, 1999). Therefore, it was 

felt important to randomise selection of the inflorescence, as well as randomising 

selection within the inflorescence. Inflorescences collected in 1999 (SHI999, see 

Chapter 2) were used during the following season, later work was with 

inflorescences collected in 2000 (SH2000, see Chapter 2), and similarly randomized.
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apparent tunic layers; others

(tunic), whilst others had no

was variable; some formed

brown coriaceous layers

The appearance of bulbils

formed partial coriaceous Figure 28: Bulbils from a single inflorescence, showing 
variability of tunic development (scale in mm).

coverings (Figure 28). This

layer might restrict nutrient supply and gaseous exchange, and reduce effectiveness 

o f surface sterilisation methods. Therefore, it was removed from all bulbils prior to 

surface sterilisation, whether for use as explants or growth as whole bulbils in 

culture. Removal involved no damage to the bulbil, as the tunic was apparently 

necrotic and easily shed. Those with partially formed coriaceous layers were 

discarded, as they were continuous with living tissue and removal would damage the

Where explants were required, the central core containing the shoot, together with 

subjacent basal plate material and the supeijacent storage material was excised 

(Figure 29).

bulbil.

3oint of 
attachment

Root
initials Base

Lines of 
incision

Figure 29: Excision of explant for culture
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The upper surface was cut at an angle to identify orientation for correct placement in 

culture. Explants were placed in sterile distilled water (SDW) prior to culturing, to 

prevent dehydration. Where whole bulbils were used for culture, they were rinsed in 

SDW to reduce numbers o f  pathogen propagules.

Bulbil 
selected at 
random; 
tunic 
removed

Explants
dissected as 
Fig. 29;

Two rinses 
in SDW

Rinse in 
SDW, then . 
immersion in 
sterilizing 
agent

> Or whole 
bulbils used

Cultured 
in growth 
cabinets

Placed on 
growth media 
in aseptic 
conditions

Development evaluated; 
methodology adjusted 
and repeated as 
appropriate

Figure 30: Flow chart depicting tissue culture methodology

4.1.2 Surface sterilisation

Dodds & Roberts (1995) proposed that hypochlorite (OCl~) in the form o f domestic 

bleach is appropriate for most surface sterilisation methods. The effectiveness o f  

immersion in hypochlorite o f  bulbils and explants was investigated. Others have 

used sterilants such as sodium dichloroisocyanurate with Narcissus spp., (Puddephat, 

pers. com. 2000), or Chloramine B (N-chlorobenzenesulfanamide sodium salt) with 

Allium spp. (Dolozel and Novak, 1984; Havel and Novak, 1988). The three surface 

sterilisation reagents were evaluated for their effectiveness at reducing contamination 

(Appendix 12).
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4.1.2.1 Immersion period and concentrations of hypochlorite

A number of different surface sterilisation immersion periods from 1 -  180 min were 

investigated (Appendix 12). Domestos® was diluted to 5 % or 10 % (v/v) with 

SDW with detergent as a wetting agent (Appendix 12).

4.1.2.2 Sterilising methods

Increasing the immersion times and concentration of hypochlorite to reduce 

contamination (above) failed to produce satisfactory results (Appendix 12) although 

there seemed to be a trend for improved sterilisation with increased time of 

immersion. Therefore, different techniques for applying the sterilant were evaluated. 

Novak (1990), investigated techniques for reducing the number of propagules present 

by pre-washing the bulbils (Allium spp.), and improving penetration of the sterilant, 

by a short immersion of the tissue in 70 % ethanol for 8 -  10 min. Seo and Kim 

(1988) also used ethanol to clean Allium cepa (shallot) bulbs. Holmes (pers. com. 

2000) suggested mechanical agitation to improve penetration of the sterilising fluid. 

TTiese techniques were compared with hypochlorite immersion alone (5 % and 10 %) 

for 120 min (Appendix 12).

4.1.2.3 Comparison of sodium dichloroisocyanurate and Chloramine B as surface 

sterilising treatments

Dolozel and Novak (1984) and Havel and Novak, (1988) used Chloramine B (N- 

Chlorobenzenesulfonamide sodium salt) at 5 % (v/v) (Sigma C2279) for 30 and 20 

minutes respectively. Puddephat (pers. com. 2000) recommended immersion of 

plant tissues for 5 min. in sodium dichloroisocyanurate (Sigma D2536), 0.5g in 30 ml
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SDW with Igepal CA-630 (Sigma 1-3021) as wetting agent. Puddephat (pers. com. 

2000) also suggested incubating the bulbils in a warm water bath, to allow spores to 

germinate, before treating them with sterilising agents. This would enable the agent 

to be applied when the propagules were more vulnerable than the resting stages. The 

effectiveness o f Chloramine B and sodium dichloroisocyanurate both with and 

without the incubation period were compared (Appendix 12).

4.1.2.4 Minimal sterilisation o f  explants

Initial work showed lower contamination rates for explants than for bulbils 

(Appendix 12), suggesting that the contamination was present on surface tissues 

rather than internally. This was investigated, by producing explants with all surface 

tissue removed (Figure 31).

Root
initials

Point of 
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Figure 31: Excision of explants, removing all external tissues.
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The point of attachment comprised desiccated material that intruded into the storage 

tissues of the bulbil. Penetration of sterilising fluid into these tissues was likely to be 

imperfect; therefore, this was completely trimmed away.

As many explants failed to thrive even when not contaminated, it was decided to also 

examine the possibility that surface sterilising agent had detrimental effects; for 

example, the high salt content of ‘Domestos®’ could have osmotic effects on such 

small pieces of tissue with a large cut surface area (Puddephat, pers. com. 2000). 

Alliums are known to be sensitive to saline in vivo (Brewster, 1994), however, 

LeverFaberge declined to comment on the salt content o f ‘Domestos®’ (personal 

communication, 2004). Explants prepared without exposure to hypochlorite or any 

other surface sterilising agent were compared with those with those immersed in 

hypochlorite for one, three or five minutes (Appendix 12).

4.1.3 Nutrition and light requirements

4.1.3.1 Media and light intensity

Alliums have been successfully cultured on a wide range of media (see 1.8). BDS 

medium was developed with a high nitrogen content, to give increased growth rates 

and improve the regenerative capacity of Allium tissues in culture (Dunstan and 

Short, 1977a, b). However, Brewster (1994) commented that high nitrogen levels in 

vivo may lead to an extended juvenile phase before Alliums can be florally 

determined, imposing more stringent requirements for the acquisition of floral 

competence (i.e. larger minimum bulb size, increased minimum leaf number). 

Therefore, B5 (Gamborg et al., 1968) as previously used, White’s (1963) and M & S 

(Murashige and Skoog, 1962) media were compared (Appendix 12).
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Allium species grow well at a variety of light intensities and photoperiods (Novak

1990). For example, Baumunke-Wende (1989) used 16 hr photoperiods at 1500 lux;

Hussey and Falavigna (1980) used 8 and 16 hr photoperiods at 8000 lux. Therefore,

low and high light intensities were compared, in relationship with the different media

(Appendix 12). For comparison with earlier work, light levels were measured in lux

(TES-1334 Digital Illuminance Meter) as well as pM m'2 s '1. Explants were cultured

at a fluence rate of 95.2 pM m'2 s '1, mean 4500 lux (Sanyo Growth Cabinet) or 19.5 

0 1pM m' s' , mean 750 lux (Gallenkamp Cooled Incubator).

4.1.3.2 Sucrose concentration

The available carbon source (sucrose) will affect not only growth rates, but may also 

affect contamination rate (Dodds & Roberts, 1995). Therefore, a number of different 

concentrations were compared (Table 14), assessing survival and quality of growth, 

looking at colour and length of shoots, after 30 days.

Table 14: Summary of sucrose treatments in vitro
Sucrose concentration (w/v) Molarity
1% 0.029M
2% 0.058M
3% 0.088M
4% 0.117M
6% 0.175M
8% 0.230M

Explants were prepared as in Figure31; surface sterilisation was a rinse in sterile 

distilled water. The medium was Gamborg’s B5 basal salts, with 0.8 % (w/v) agar. 

Cultures were maintained in a Gallenkamp Cooled Incubator in a continuous low 

fluence rate (19.5 pM m'2 s'1) at 25°C.

97



4.1.3.3 Carbon source and photoperiod

Starch is not formed in Alliums, instead a series of oligofructans comprise the reserve 

carbohydrate (Fritsch & Friesen, 2002). Fructans are formed from a glucose 

molecule, together with 2 to 260 fructose units (Salisbury and Ross, 1992). 

Throughout storage periods, the fructans are gradually hydrolysed to produce 

fructose, and then during sprouting, sucrose is synthesised (Gubb & MacTavish, 

2002). The complex interactions between the sugars suggest considerable variation 

in concentration and ratio, both spatially and temporally, reflecting changes in 

metabolism and growth patterns. Since fructose and glucose are implicated in Allium 

metabolism as well as sucrose, the effects of these sugars as carbon sources were 

investigated and compared with sucrose. Some of the explants grown earlier on 

sucrose, developed abnormal shoots, instead of the single straight shoot associated 

with normal healthy growth in vivo in A. ampeloprasum var. babingtonii. Therefore, 

growth quality as well as shoot length was examined.

Concentration of sugars was also examined. Durdan (1998) working with Pharbitis 

nil, found that higher concentrations of sucrose shortened the time for floral 

development, particularly for carpels. In Alliums, accumulation of assimilates may 

reflect aspects of maturity necessary for floral competence (Kamenetsky and 

Rabinowitch, 2002). This suggests that higher concentrations may promote 

flowering, or be necessary to support floral material in vitro. Therefore, shoot 

development under two concentrations of each sugar were investigated, comparing 3 

% (w/v) which is similar to levels in the majority of plants in vivo (Dodds & Roberts
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1995) with 6 % (w/v) (Table 17), the level at which Durdan (1999) found significant 

changes in carpel determination time.

Many explants in culture developed new storage tissue and became dormant. 

Alliums such as A. cepa, (onion) A. cepa, Aggregatum group, (shallots) A. sativum 

(garlic) and A. chinense (rakkyo), bulb in response to long photoperiods and high 

temperatures and may be easily switched on and off by manipulation of the 

photoperiod (Brewster, 1994). Allium ampeloprasum var. porrum (leek) does not 

form a fully developed bulb (Brewster, 1994), but some ‘bulbiness’ can be induced 

with 24 h photoperiods, although with wide variation between plants. Low soil 

temperatures may also favour ‘bulbiness’ (Dragland, 1972).

Therefore, the relationship between photoperiod and bulbing was also examined by 

culturing explants under 24 or 14 h photoperiods (Table 15) in combination with the 

different sugars at different concentrations.

Table 15: Treatments given to assess the effects of carbon source and photoperiod on development in

Carbon source Cone. Molarity Photoperiod (h) Treatment no.
Sucrose 3% 0.088 24 1

6% 0.175 24 2

3% 0.088 14 3

6% 0.175 14 4

Fructose 3% 0.167 24 5

6% 0.333 24 6

3% 0.167 14 7

6% 0.333 14 8

Glucose 3% 0.166 24 9

6% 0.333 24 10

3% 0.166 14 11

6% 0.333 14 12
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4.1.3.4 Nutritional restriction

Leaves were rarely longer than 10 cm in vitro even when cultured for a period of 6 

months. In vivo for  a similar period (October to March) leaves were up to 100 cm in 

length. Whilst not desirable per se, it was necessary for the plants to be 

metabolically active in order to develop inflorescences for examination. Since the 

leaves of var. babingtonii rarely reach more than 3 cm in width compared with 

100cm in length in vivo (pers. obs.), the measurement of leaf length would provide a 

non-invasive and non-destructive indicator of development in culture.

Generally, Alliums are sensitive to nutritional and water shortages. Once growth has 

slowed or ceased it is difficult if  not impossible to restart, even if nutritional and 

water levels are adjusted (Brewster 1994). Subculturing was carried out on a 

monthly basis, before any visible shrinking o f the growth medium. Comparing 

elongation patterns in 50 ml medium as previously, with that in 100ml medium but 

still subculturing at monthly intervals would indicate the extent of sensitivity to 

nutritional and water deprivations under these conditions (Appendix 12). Gamborg’s 

B5 basal salt mixture did not contain any added vitamins (Appendix 11), therefore 

the effect of additional vitamins (Gamborg’s vitamin Solution, Sigma G1019) 

(Appendix 11) on growth was also evaluated (Appendix 12).

4.1.4 Dormancy and sprouting

4.1.4.1 Light effects on sprouting

Many seeds are dependent on light or its absence to break dormancy and allow 

germination to proceed (Hartmann et al. 1997). Possibly light may have a similar
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effect on bulbil sprouting, leading to low sprouting rates in culture. This was tested 

by selecting 20 bulbils using random numbers (SHI 1/01) and sprouting half in total 

darkness and half in continuous light (Appendix 12).

4.1.4.2 Effect o f storage period on dormancy

The effects of storage on viability and dormancy were not known, and hence were 

investigated by comparing sprouting in bulbils that had been stored for 3 months 

(SHI 1/01) with those that had been stored for 15 months (SHOO).

4.1.4.3 Culturing effects on dormancy

Twenty bulbils were selected using random numbers from SHI 1/01 (chapter 2.0), 

and randomly divided into two groups o f 10. Half were excised as previously 

(Figure 29) and cultured as previously. The other half were planted in compost and 

grown in the same growth cabinet (Appendix 12). This would allow a comparison of 

dormancy numbers in explants with dormancy numbers in whole plants grown in 

identical conditions. This data would indicate if  the culturing processes (such as 

wounding, nutritional supplies, sub-culturing etc.,) were implicated in the dormancy 

response.

4.1.4.4 Photoperiod and dormancy

The effect of photoperiod was further investigated in A. ampeloprasum var. 

babingtonii, using plants that had been grown from explants in vitro for 6 months in 

conditions as above and sub-cultured at monthly intervals.
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Plants were separated into those that were dormant (but still apparently viable) (n =

19), and those that were sprouting (n = 16). The dormant plants had developed 

storage tissue, and were chlorophyllous and turgid, resembling a normally developed 

bulbil with the leaves having died back, whilst the sprouting plants had green leaves 

as well as storage tissue. Half of each (selected using random numbers) was placed 

in a 14 h photoperiod, the others in a 24 h photoperiod. They were sub-cultured at 

monthly intervals, and assessed after 4 months (Appendix 12). The numbers 

sprouting and dormant in each photoperiod were recorded and compared with the 

numbers sprouting and dormant before being placed in the two photoperiods.

4.2 Results

4.2.1 Surface sterilization

Increasing the time of immersion in hypochlorite increased the proportion of clean 

cultures for both bulbils and explants (Appendix 12). Increasing the strength of the 

hypochlorite to 10 % produced cleaner cultures than using 5 %, but this was offset by 

the increased number of bulbils becoming necrotic (10 % in each treatment, 

compared with 0% becoming necrotic at 5 %). The culture of explants rather than 

bulbils produced the highest proportions of clean cultures (Appendix 12).

None of the techniques examined for improving penetration o f the surface sterilising 

agent such a mechanical agitation or a preliminary rinse in ethanol, showed any 

significant difference in contamination levels when tested using x2 at p = 0.05 

(Appendix 12) when compared with immersion in hypochlorite alone. Chloramine B 

and sodium dichloroisocyanurate also failed to show any significant difference when 

tested similarly using x2 at p = 0.05. Contamination levels with or without a
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preliminary incubation period (Appendix 12) varied between 10 and 50 %; therefore, 

use of these sterilants was discontinued.

When the effect of hypochlorite for 1-5 min was compared with a rinse in SDW 

(using x2 at p = 0.05), the number of clean explants was not significantly different 

between the treatments (Appendix 12). A rinse in SDW was as effective as 

immersion in 5% hypochlorite for up to 5 minutes, provided that all external tissues 

were removed, providing 90% clean explants. When the proportions of sprouting 

explants were compared in each of these treatments (x2 at p = 0.05), there was a 

significant difference (Appendix 12), with the largest proportion sprouting following 

treatment A (rinse in SDW). This suggested that hypochlorite is detrimental to 

sprouting, and its use was discontinued. However, of those explants that sprouted, 

there was no significant difference in the length of the shoot (x2 at p = 0.05), 

suggesting that hypochlorite acts to prevent sprouting, but that once initiated, 

sprouting continues normally. The surface sterilization method adopted for future 

work was treatment A, removal of all external tissues from the explant (Figure 31), 

followed by a rinse in SDW.

4.2.2 Nutrition and light levels

4.2.2.1 Media and fluence level

Analysis of contamination showed a very significant difference (x2 at p = 0.05) 

between the treatments, with Treatment 1 (White’s Medium, high light levels) having 

the highest number of contaminated samples (Table 16) and also the least number of 

viable cultures. There was no significant difference (x2 at p = 0.05) in numbers 

sprouting or shoot lengths between these treatments (Appendix 12).
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Table 16: Contamination and survival numbers for explants cultured on different media and with 
different light levels. Assessed at 30 days; mean length is per surviving and developing explant. 
Viable is assessed as surviving, clean, and developing.

High fluence levels_______________Low fluence levels

Treatment
White’s M & S B5 White’s M & S B5

number 1 2 3 4 5 6
N = 10 8 10 10 9 10

No. clean 1 8 6 7 7 8
No. viable 0 3 4 5 5 5

Mean shoot 
length (mm)

- 3.0 10.4 4.8 6.6 10.8

Chlorosis - Present None Present None None
Shoot lengths were also ranked and examined using Two-Way Non-parametric

ANOVA, confirming that there was no significant difference (p = 0.05) in the shoot 

lengths as a result of the light level, though there was a difference in the shoot length 

as a result of the different media. This result was fairly close to the critical value, 

suggesting that there may be a small difference, which could be confirmed by more 

stringent testing.

4.2.2.2 Sucrose concentrations

Sucrose concentration may affect growth rates and contamination rates (Dodds & 

Roberts, 1995), and this was reflected in the results of the treatments (Appendix 12). 

There was more contamination at sucrose levels above 4 %, though the overall 

percentage of contaminations was 13.3 % confirming that excision of all external 

tissue with a rinse of SDW before culture produces repeatable levels of clean cultures 

(Figure 32). Sucrose levels below 3 % resulted in the least shoot elongation, the 

longest shoots being on medium containing 3 % sucrose. The largest number of 

viable explants was on 1% sucrose, but these were also the smallest shoots.
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Figure 32: Comparison of contamination and shoot elongation of explants cultured on media 
containing differing sucrose concentrations (although n = 10 for each treatment, numbers producing 
shoots were often very small range, 0 - 6 ,  therefore error bars may be missing or extremely large). 
See Appendix 12-7 for raw data).

4.2.2.3 Carbon source/photoperiod
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Figure 33: Summary of contamination numbers (n = 10 for each treatment), bulbing numbers, number 
of viable explants and mean shoot length per treatment. S = sucrose, F = fructose, G = glucose;
3%/6% = concentration of sugar used in growth media (w/v); 14h/24h = photoperiod. (For complete 
data see Appendix 12.8, Tables 12-6, 12-7, 12-8).
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In considering the carbohydrate/photoperiod treatments, 14 or 24 h photoperiods and 

a medium supplemented with 3% glucose were the optimal treatments with lower 

percentages bulbing, less abnormal growth and marginally longer shoot elongation 

(Figures 33 and 34).

However, analysis of the ratios of contaminations in the 12 treatments using X2 (p = 

0.05), showed no significant difference (Appendix 12). When the figures for 3% and 

6% are summed and analysed using Kruskal-Wallis to rank the number of 

contaminations per carbon source, then the result was significant. This is only valid 

if  the interactions between the sugars and the photoperiods are similar, but might 

suggest some small difference in the numbers of contaminations that could be 

identified by more stringent testing.

When the numbers bulbing under each of the 12 treatments was analysed using x2 (p 

= 0.05), there was no significant difference, though the value for x2 was quite close 

to the critical value (Appendix 12). When the numbers for 3% and 6% were 

combined and analysed using x2 (p = 0.05), then the difference was significant. 

Similarly, if  the combined numbers were ranked and analysed using Kruskal-Wallis, 

then the result was significant (p = 0.05). As with contamination and bulbing, these 

results could indicate small differences that could be identified with more stringent 

testing.

The numbers of viable explants per treatment was also examined using x2 (P = 0.05). 

Viable was judged to be alive, not contaminated, and producing active, normal 

growth. Therefore, all those that were bulbing (becoming dormant) were discounted,
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as were those that produced abnormal shoots. It was necessary to develop a protocol 

that supported active growth in the explants, so that floral determination and 

development could subsequently be examined in vitro. However, there was no 

significant difference in the proportions o f viable explants given these treatments.

The mean shoot length was analysed using the Kruskal-Wallis test to compare 

medians (p = 0.05). Shoot length was used as an indication that the culture 

conditions were appropriate for active growth. This would be necessary for 

investigations into inflorescence development in this species. There was a significant 

difference between the medians, with treatment 1 and 2 (3% glucose at 14 and 24h 

photoperiods) contributing most to the significance (Appendix 12).

30

25

(A

c 20 
_  a
2
•S 15w0)n
I ’0

■ Glucose
■ Sucrose 
□ Fructose

25

20

10 2

Contamination Bulbing Viable Mean shoot length

Figure 34: Summary of shoot development of summed data (3% + 6%) for each medium for explants 
grown with different carbon sources (Appendix 12).

The difference in shoot length was also examined using Non-parametric Two-way 

ANOVA (Barnard et al., 2001), a version o f ANOVA (ANalysis O f Variance, shoot 

length/carbon source) adapted for use with non-parametric data, allowing the 

comparison o f the means o f different populations, with the data for 3% and 6%
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summed. This also showed a significant difference in shoot length as a result o f 

different carbon sources, though not as a result o f daylength. There was also a 

significant difference between the shoot length as a result o f  the interaction between 

photoperiod and carbon source (p = 0.05)

4.2.2A Nutritional restriction

The proportions o f contaminated explants were compared using X2 (p = 0.05), but 

there was no significant difference between the treatments. The proportions o f viable 

explants were similarly compared, but again there was no significant difference 

between the treatments. When the mean shoot lengths were assessed using Kruskal- 

Wallis (p = 0.05), again there was no significant difference.

□ Mean lengths 
H Contaminated 
■ Viable

Treatments

Figure 35: The effect of different media volumes and supplementary vitamins on development. 
Treatments: 1 = 50 ml excluding vitamins; 2 = 100ml excluding vitamins; 3 = 50ml including 
vitamins; 4 = 100ml including vitamins. No explants were visibly bulbing after 3 months.
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Mean shoot length was longer in treatments 2 and 4 (100 ml medium) (Figure 35); 

There were most viable explants in treatment 2 (100 ml excluding vitamins) with 

least contamination in media without vitamins though none of these treatments are 

statistically significant (Appendix 12). Bulbing developed after 4 months in culture, 

with highest proportions on the media without vitamins (67 % compared with 31 % 

on media with vitamins) (Appendix 12) which suggested that nutritional factors may 

be a stimulus in the bulbing process. However, when the proportions of explants 

bulbing were compared using X2 (p = 0.05), there was no significant difference 

between the treatments.

4.2.3 Dormancy

4.2.3.1 Light effects on sprouting

Sprouting was assessed after two weeks and again after four weeks (Appendix 12). 

Initial figures suggested that numbers sprouting in dark conditions were higher than 

in light, but by four weeks, the figures were very similar (90 % in light conditions, 80 

% in dark conditions) ( n = 10 per treatment). After four weeks, no more bulbils 

sprouted.

4.2.3.2 Period of storage and dormancy

These data (Appendix 12) show that numbers of explants sprouting after 3 months 

storage was greater than with bulbils that have been stored for 15 months. In the first 

19 days, 6 of the newer bulbils sprout, whilst only one of the older bulbils sprouted. 

The mean shoot length was 9.7 cm for newer bulbils, with only 1 cm mean sprout 

length produced by older bulbils. However, by 94 days, seven new bulbils have 

sprouted, compared with four of the older bulbils, reducing the difference.
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The newer bulbils produced one dormant bulbil by 94 days, whilst five out o f the six 

older bulbils became dormant by this time. These data are too few for meaningful 

analysis, but it would be likely that some deterioration o f  plant tissues would occur 

over prolonged storage periods. Since more uniform sprouting may be useful in the 

manipulation and examination o f plant growth, newer bulbils were used wherever 

possible.

4.2.3.3 Culturing effects on dormancy

There was little difference in numbers sprouting in vivo and in vitro, there being six 

in vivo and five in vitro after 19 days, but six each from 36 days and subsequently. 

However, the shoots in vivo were much larger and less chlorotic (Figure 36).
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Figure 36: The relationship between mean shoot length (cm) and time in vivo and in vitro (n = 10 for 
each treatment. (NB error bars for growth in vitro too small for display, 0.34, 0.35 and 0 for 19 days, 
36 days and 94 days respectively).
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The difference in shoot lengths was examined using the Mann-Whitney test for 

differences in medians (p = 0.005). The difference was shown to be very highly 

significant (Appendix 12), with the mean shoot length in vivo increasing to 21.7 cm, 

whilst the mean shoot length in vitro reached a maximum of 2.4 cm.

Numbers bulbing in the two treatments were different; those cultured in vitro had all 

bulbed after 94 days, whilst none of those grown in vivo had bulbed.

4.2.3.4 Photoperiod and dormancy

Under the original growth conditions of CL, 19 plants out of a total of 35 became 

dormant after 6 months. None of the dormant plants re-sprouted in response to the 

change in photoperiod. However, of the sprouting plants in 14h photoperiod, 1 of 9 

became dormant, whilst in the 24h photoperiod, 6 o f 7 became dormant. This 

strongly suggests that CL is a factor in the development of dormancy (Appendix 12). 

Therefore, a 14 h photoperiod was adopted for future cultures.

4.3 Summary of optimal culture conditions

A protocol was developed for the culture of A. ampeloprasum var. babingtonii (Table 

17). There were wide variations in the contamination experienced, the highest 

numbers being with the culture of whole bulbils rather than explants. The culture of 

whole bulbils was discontinued as numbers of clean cultures were not improved 

either by immersion in hypochlorite or by the use of sodium dichloroisocyanurate or 

Chloramine B, nor by attempts to improve penetration of the waxy cuticle and point 

of attachment using mechanical agitation or ethanol immersion (Appendix 12). 

Additionally, bulbils did not sprout during culture over a 3 month period, producing
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roots but no leaves, compared with 62 % of bulbils sprouting in vivo over a similar 

period.

Table 17: Summary of tissue culture conditions adopted for assessment of floral determination of A.

Condition

Tissue Explants with all external tissue removed

Surface sterilization None, immersion in SDW to protect against 
dehydration and propagules transferred 
during excision

Media Gamborg’s B5 
No added vitamins 
100ml volume

Carbon source Glucose 
3 % (0.088 M)

Photoperiod 14h

Temperature 25°C

Explants were consistently cleaner than whole bulbils, and when the excision 

procedure was adjusted to remove all external tissues, notably the region around the 

point of attachment (see Figure 29), clean cultures were consistently produced with 

very low numbers of contaminations. The use of hypochlorite was discontinued as 

this had an inhibitory effect on sprouting numbers. Explants were rinsed in SDW to 

prevent dehydration and remove pathogens transferred during excision.

Exposure to light (CL) in culture was not a factor in the sprouting numbers of bulbils, 

though photoperiod did affect the numbers becoming dormant after sprouting. A 

photoperiod of 14 h reduced the numbers of explants bulbing as did the use of newer 

bulbils rather than those that had been stored for prolonged periods. The shorter 

photoperiod also reduced the numbers of abnormal growth patterns observed. These
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were fleshy and twisted, and may relate to the production of storage tissue, even 

though dormancy was not fully established. Bulbing was also increased when the 

media did not contain added vitamins, suggesting that it may also be related to 

nutritional supply. Comparing this with the growth patterns in vivo, dormancy is 

during summer when the daylength is at its greatest, and nutritional supply may be 

reduced through the lack of water available. However, dormant explants failed to re­

sprout when the photoperiod was shortened. Shoots in vivo are much larger than in 

vitro, with those grown in vitro bulbing much sooner than those in vivo, suggesting 

dormancy as a response to physical trauma.

The media adopted for future use was Gamborg’s B5, with no added vitamins (less 

contamination) 100ml in Magenta vessels. Shoot lengths were greater when the 

explants were cultured in 100 ml medium than in 50 ml medium, indicating 

sensitivity to nutritional shortages, even though culturing was at monthly intervals 

before any visible shrinkage of the medium. Although the tests failed to find 

significance in media, light levels or concentration of sucrose, the chance of a Type 

II error (accepting the null hypothesis when it is false) always exists, particularly 

when sample sizes are small. Although sample sizes were usually based on 10 or 12 

explants, the reduction in useful data as a result of lack of sprouting, contamination, 

and bulbing, often resulted in small numbers of explants for assessment.

Explants cultured on media containing glucose (3 % w/v 0.088 M) developed longer 

shoots and fewer malformations than explants cultured on media containing sucrose 

or fructose. The difference in mean shoot length between the lower and higher 

concentrations of glucose, suggest inhibitory effects at the higher concentration.
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Sucrose showed a similar effect (mean 21.5mm compared with 7.4mm for 14h, and 

18.0mm compared with 12.2mm for 24h). This effect was not seen in fructose where 

the mean shoot lengths were similar (9.6mm and 9.2mm for 14h, 9.33mm and 7.0mm 

for 24h). These differences are likely to be related to the breakdown products of 

sucrose, which are glucose and fructose. Since fructose was not producing this effect 

at higher concentrations and glucose and sucrose are, it was probable that the glucose 

produced by the breakdown of sucrose was an active factor inhibiting shoot growth 

under these conditions. Glucose at 3% was used in all further work.

The initial temperature chosen was 25° C as being optimal for growth (Brewster, 

1994), and this was not varied as higher temperatures as well as lower temperatures 

may cause changes to inflorescence development in susceptible members of the 

Alliaceae.
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5.0 Vegetative development in A. ampeloprasum var. babingtonii 
from bulbil formation to floral competence

Although much is known of vegetative characteristics in commercially important 

Alliums such as A. cepa, A. sativum and A. ampeloprasum var. porrum , details of the 

physiology and development of Allium ampeloprasum var. babingtonii, have not 

been similarly investigated. However, much can be conjectured by comparison with 

similar species. For example, Kamenetsky & Rabinowitch, (2002), noted that all 

Alliums need to reach a certain physiological age (or critical mass) in order to flower 

when grown from seed. Therefore, it is likely that Allium ampeloprasum var. 

babingtonii, also has a maturity requirement for floral competence, and must pass 

through an initial juvenile (vegetative) phase. Generally, Alliums with large bulbs 

take longer to reach maturity and achieve the amount of reserves (critical mass of the 

bulb) necessary for floral competence (Kamenetsky and Rabinowitch, 2002). Allium 

ampeloprasum var. porrum can be florally determined after the production of seven 

true leaves, including primordia (De Clercq and Van Bockstaele, 2002), often bolting 

in its first year (Brewster, 1994). Since Allium ampeloprasum var. babingtonii is a 

large plant, with leaves reaching up to 1 metre in length, and a scape of up to 2 

metres in height, it is likely to have an extended juvenile period, whilst the 

appropriate critical mass is attained. Observation suggests that Allium 

ampeloprasum var. babingtonii is likely to flower in its third year from planting as 

bulbils (Shipton, 2000).

The phenology of Allium ampeloprasum var. babingtonii, has been outlined on a 

number of occasions, (e.g. Steam, 1978, 1987; Stace, 1991; Treu, 1999). In order to 

identify characteristics associated with floral development, vegetative development
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must first be characterised. In the work described in this chapter, bulbils (vegetative 

growth produced in the inflorescence) were examined, planted and monitored 

through three growth seasons (a growth season for this species is considered to be 

from sprouting in autumn to dormancy the following summer), and characteristics 

such as leaf number and size, bulb size and bulblet (vegetative growth produced on 

rhizomes underground generated by the parent bulb) numbers were recorded to 

establish a developmental timetable for the vegetative phase. In particular, 

characteristics that would indicate floral competence were looked for. The 

importance of vernalization as a requirement was also investigated. Gibberellic Acid 

(GA3) was applied to immature explants in culture to investigate its effects in 

promoting floral determination in var. babingtonii.

5.1 Bulbil physiology

5.1.1 Materials and methods

Mann (1960) stated that bulbil morphology in Alliums is similar to that of bulbs. 

Bulbil morphology was recorded for comparison with mature bulbs. Bulbils were 

harvested as part of whole inflorescences during August 1999 from Cornwall (SH99, 

see 2.0) and examined by dissection microscope (x 40). However, though storage 

tissue was well developed, the basal plate could not be seen, nor could any leaf 

scales. An apical shoot was apparent in some bulbils, but was not visible in most 

bulbils examined. This appeared to be unrelated to bulbil size (data not presented). 

The following year, morphological examination of bulbils was completed using 

material from the inflorescences of whole plants that were collected from the same 

population in Cornwall, which were replanted in outdoor beds in Worcester (SHOOp). 

The bulbils were matured on the inflorescence until dehiscence (mid-October) and
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examined using a dissection microscope (x 40). Bulbils were selected using random 

numbers, and then dissected; the stages o f  dissection were recorded using a Sony 

digital camera MVC FD85. The numbers o f bulbils per inflorescence were noted. 

Six fresh bulbils chosen at random were dissected to the apex and recorded using a 

JEOL 520LV scanning electron microscopy (SEM).

5.1.2 Results

Figure 37: All the bulbils from one inflorescence (two year old grown from bulbil at Worcester, 
maturing in July 2001) (SH99) Scale in mm. This inflorescence has no secondary inflorescences, and 
is fairly small with just 17 bulbils. The remains of the floret pedicels are attached to some of the 
bulbils. Three have fully developed coriaceous tunics, five have partially developed tunics, nine 
remain green.

C = bulbil with coriaceous tunic 
B = bulbil lacking coriaceous tunic 
P = partially developed coriaceous tunic 
Pe = pedicel of floret
S = stalk or point of attachment to receptacle

Bulbils develop in a wide range o f  sizes and shapes, spherical-to-ovoid, usually 6 -  

15 mm length (Fig. 37). Some develop with hard, brown, outer tunics whilst others 

remain green, even when left to further mature on the plant until dehiscence, or 

during further storage in cool conditions (approximately 3°C, for up to a year). The 

tunics were frequently incomplete. Papery layers were also often present, probably

117



the remains o f the bracteole subtending the cyme. The bulbils are largely sessile, 

unlike the florets, though occasionally a very short pedicel o f  up to l mm length may 

be present (Fig. 37). Bulbils from secondary inflorescences tend to be smaller ( 3 - 5  

mm), and usually more spherical than ovoid (Fig. 38)

Figure 38. Entire secondary inflorescence, with three 
bulbils and the remains of one floret. The scape is 
thickened and twisted, and the remains of the bracteole 
are visible.

S = secondary scape 
F = floret 
B = bulbil 
Br = bracteole

(Scale bar 10 mm)

Figure 39: Bulbil bisected 
longitudinally. The venation is well 
developed in the storage tissue. The 
basal plate is close to the point of 
attachment to the inflorescence. The 
apical shoot has 3 layers of leaves, 
and is developing through the fissure. 
Root initials are developing but not 
yet emerging from the bulbil. Scale 
bar 10 mm

S = storage layer
V = venation
F =fissure
A = apical shoot
R -  root
B = basal plate
P -  point of attachment

Figure 40: Median LT section through bulbil 9 x 9mm. 
Shoot is clearly defined, (approx 3mm length) with the 
central fissure extending above it. There are at least 3 
leaf primordia within the shoot. The basal plate shows 
as darker tissue beneath the shoot with the root initial 
arising on the perimeter. Scale bar approx. 3mm.

B = basal plate 
S = shoot 
F = fissure 
R = root initial



Above the basal plate, the storage tissue is a single layer, a modified scale leaf, with 

a central fissure through which the shoot develops. Several leaf layers are apparent 

within the shoot, surrounding the apical dome. The venation in the storage tissue o f 

both bulbils and leaves is typical o f  most members o f  the superorder Liliidae, with 

parallel veins running the length o f  the tissue, similar to the model proposed by 

Brewster (1994).

The storage tissue surrounds the developing shoot, a narrow fissure being formed at 

the centre o f  the storage tissue, allowing the shoot to develop (Fig. 41).

Figure 41: Bulbil 
bisected transversely.
The vascular bundles 
are developing around 
the perimeter, and the 
central fissure is clearly 
visible. The fissure is 
longer than wide, 
reflecting the shape of 
the shoot (Scale bar 
approx. 12mm).

V -  vascular bundle; F 
= fissure. Scale in mm.

The point o f  attachment to the inflorescence is typically to one side o f  the base o f  the 

bulbil, with the first root primordia developing on the opposite side (Fig. 40A and B). 

It comprises desiccated, woody material which partially penetrates into the bulbil. 

Within the lower surface o f  the basal plate, root initials are visible, but not usually 

emerging at this stage (Fig. 39, 40 and 41).
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Figure 42: Internal structures.
A: Shoot with storage tissue removed, scale bar 5mm.
B: Section through basal plate, showing lignified point of attachment intruding into basal plate tissue, 
with three root initials arising to one side, scale bar approx. 3.5mm.
C: Section through storage layer showing oval shape of shoot and enfolding layers of leaves, scale bar 
approx 2mm.

B = basal plate 
P = point of attachment 
R = root primordia 
S = shoot;

In the majority o f  bulbils examined, the fissure was sealed at the apex, but in a small 

number, this closure was incomplete (Fig. 43). A number o f  bulbils showed the 

fissure extending to the outer tissues, from apex to basal plate. Occasionally, two 

bulbils developed together as ‘tw ins’ sharing the same point o f  attachment, often in 

association with floret pedicels. Bulbils are also frequently misshapen as a result o f 

mechanical pressures (Fig. 44).
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Figure 43: Bulbils with incomplete closure. A: Closure is largely incomplete, leaving the apparently 
normal apical shoot fully exposed. B: Closure is almost complete, the shoot being fully enclosed. 
However, the fissure is open to the outside of the bulbil and runs the full length of the bulbil. The 
point of attachment is visible as the dessicated, lignified material on the right, and the root primordia 
are apparent on the left. C: Apical view, showing the top of the same bulbil. The fissure is seen as a 
spiral shape, probably reflecting the morphogenesis of the bulbil. Bulbils approximately 7mm 
diameter.

Figure 44: A: ‘Twin’ bulbils sharing the same point of attachment each with their own apical shoot 
internally. Also visible is the pedicel for an attached floret. B: Bulbil showing deformation as a 
result of pressure exerted by adjacent bulbil (Scale in mm).

The number o f  bulbils per inflorescence was widely variable (range 19 -  90) with a 

mean o f 45.67 ± 1.95, (Fig. 45).
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Figure 45: Mean number of bulbils per mature inflorescence (SH99). Floret numbers were not 
recorded as they had partially dehisced (n = 49).

Scanning electron micrographs (SEMs) o f  the bulbils showed each primordium 

developing within the previous primordium (Fig. 46). As the leaves developed, they 

enclosed the newer primordia, each leaf developing at 180° to the previous leaf in a 

distichous phyllotaxis.

Figure 46: Scanning electron micrograph 
(SEM) of bulbil (SHOO) dissected to 
show apex. Newest primordium is 
approximately 100pm x 60pm (PI).
This is almost completely enfolded by 
previous leaf, approximately 720pm x 
500pm (P2). Two further leaves (L) 
were removed.

5.2 First season development

122



The growing season is approximately October to August, the bulb becoming dormant 

in late summer. Shoots re-emerge in Autumn, growing slowly throughout Winter, 

then growing rapidly in the Spring and early Summer (Treu 1999). Growth was 

monitored to establish the vegetative pattern o f growth, and to look for changes that 

might indicate progression to a floral state.

5.2.1 Materials and methods

Three hundred bulbils were sampled at random (SH99) during Autumn 1999 and 

sprouted at University College Worcester. A further five hundred bulbils (also 

SH99) were planted in January 2000, as sprouting rates were poor from the first 

planting. Initially planted in John Innes Compost No. 2 in 13 cm pots and grown in 

cold frames, these were transferred to outdoor beds at University College Worcester, 

in May 2000 (see 2.0). Growth was examined in May, June, July and August.

5.2.2 Results

Each sprouting bulbil produced 1 - 3  above-ground leaves approximately 15 -  20 

c.in length, by mid-M ay (Fig. 47) with no further sprouting after this date. The 

asymmetrical root development noted in sprouting bulbils continues throughout the 

growth period, with roots arising largely, but not exclusively to one side o f  the 

original point o f attachment.

Figure 47: Allium 
beds, May 2000.

Development may 
have been slower 
than expected in the 
wild, due to adverse 
growing conditions 
initially (poor 
drainage) and 
transplantation 
trauma.
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Figure 48: Axillary 
bud developing from 
basal plate (A. 
ampeloprasum var. 
babingtonii). Scale 
bar approx 3mm.

Bulblet shows 
developing venation 
and chlorophyll 
(green colouration at 
tip).

LB -  leaf base 
BP -  basal plate 
R -  rhizome

Each plant also produced 0 - 2  single bulblets from below-ground axillary buds (Fig. 

48). As the parent bulb increased in girth, and the outer leaves senesced, the bulblet 

became externalised. However, bulblets did not sprout in situ. Observations may 

be influenced by loss o f  bulblets due to predation, for example, by beetle larvae, or 

necrosis, for example due to wet conditions or fungal rots. In either case, numbers

observed would be lower than the number actually produced by the plant.

Figure 49: Developing bulblet. A: Bulblet sprouting, with roots developing. B; Bulblet with outer 
covering showing flat side (F) that developed adjacent to parent bulb. Scale in mm. C. Same bulblet
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with outer covering removed. Bulblet is still flat sided but without hard comers typical o f the bulblet 
helmet-shape. D: Dissected through the centre. Remains of rhizome (Rh) are visible, with root 
development (R) to one side of this.

Bulblets removed and planted separately sprouted similarly to bulbils, in both 

morphology and timing (Fig. 49). The bulblet continues to develop at the tip o f  the 

rhizome until it is approximately 10mm length. A hard outer covering (tunica) is 

formed. It is thicker and more robust than that developed on bulbils and is always 

present on the mature bulblet. The bulblet is helmet-shaped, the flat side always 

adjacent to the parent bulb. Ultimately, the rhizome withers. The outermost bulblet 

is the largest. The shoot develops through the centre fissure from the basal plate, as 

with bulbils and there is a single layer o f storage tissue as with bulbils.

The divergence angle o f the leaves is 180° from emergence to maturity, each leaf

Figure 50: Shoot 
(approximately 10 
cm) showing 180° 
angle of divergence 
(see also Figure 17c 
for transverse section)

By June, most o f the leaves showed some chlorosis, dying back during July, and 

becoming desiccated by early August. All plants remained vegetative.

Table 18: Summary of first season development
Date Age
19 10 99 0 All bulbils dormant, first planting into pots
13 1 00 12 weeks Second planting of dormant bulbs (stored at 3°C)
26 5 00 30 weeks Sprouting is 4% for first planting, 62% for second planting. No

further sprouting is observed after this date
Typically 0 - 2  bulblets produced per plant
Leaves typically 15 -  20 cm length, 1 -  3 in number
Roots produced largely to one side -  but not exclusively -  o f
the basal plate

17 6 00 34 Some chlorosis apparent in leaf tips

being enfolded by the previous leaf (Fig. 50).

125



IB 7 00 38 weeks Leaf dieback begins from tips of leaves, moving downwards
5 8 00 40 weeks Aboveground growth ceases, all leaves necrotic

In the first season, (Table 18), typically, only one -  three leaves were produced, these 

reaching up to 20 cm in length, before senescing in the summer. Small numbers of 

bulblets were produced, usually one or two, but these did not sprout during this 

growth season. Morphology of the bulb showed little change, root growth was 

asymmetrical at sprouting, and tended to remain so during growth. Flowering was 

not observed, neither were any changes that might be indicative of a change to the 

floral state. The phenology was confirmed as that recorded by Treu (1999), with 

growth from Autumn to Summer, followed by a period of dormancy. Sensitivity to 

water-logging leading to necrosis of bulbils planted in pots was noted, and all further 

planting was carried out direct into the plot at UCW.

5.3 Second season development

5.3.1 Materials and methods

Plants are likely to flower in their third year (John Shipton pers. comm.). Floral 

competence is likely to be related to maturity, which is usefully quantified by leaf 

number or bulb size rather than time (1.7.1.1). Therefore, plants in their second 

season were monitored closely, to complete the vegetative developmental timetable, 

and to identify developmental patterns that could be used to indicate floral 

competence. Plants from the first season (SH99) were grown on in the same plot, 

and were sampled at random at monthly intervals, commencing in October 2000.

The apices were excised, wax embedded, sectioned and stained (3.1). One was 

photographed during April when growth was likely to be fairly advanced but before 

the dormancy period, using the JEOL 15 V scanning electron microscope (SEM).
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5.3.2 Results

Leaves emerged during October (Figure 51), but their elongation was slow, reaching 

just 25 cm by March.

Figure 51: One year old plant sampled in October, at the beginning of the second growth season 
(scale in mm). Rooting continued to be asymmetrical.

Leaf elongation was rapid from March to June, reaching 60 cm before beginning to 

die back in June/July, a similar phenology to the previous season. The storage tissue 

became necrotic in March, and was non-existent in samples taken in April (Table

20). In June, the development o f  a new storage layer was visible, whilst outer leaves 

became papery, forming a protective layer. Root development continued in the 

asymmetrical pattern established during the first season’s growth.

None o f the apices dissected for examination showed any signs o f  floral development 

(Fig. 52).

Figure 52: SEM of vegetative apex sampled 9 4 01 (SH99).
The youngest primordium is approximately 350pm width at 
widest point (PI) with the second and third primordia clearly 
visible (P2 and P3). The 180° angle of divergence of the leaves 
is also clearly visible, each leaf developing to enfold the 
younger primordia.

However, from the whole population o f  SH99 grown 

in this year (approximately 300 plants), two produced
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inflorescences. These were both small containing less than 20 bulbils. In each of 

these plants, the parent bulb divided into two daughter bulbs with their own storage 

tissue, before the basal plate disintegrated beneath the new structures.

Bulblets were also produced in late winter/spring, typically three or four, on all 

plants whether floral or vegetative. However, none of these sprouted (Table 20). 

This compares with the first season’s growth where one or two bulblets were 

produced (all plants remained vegetative), and none sprouted (Table 18).

Table 19: Summary of development of 2nd season plants (SH99). Leaf number includes primordia. 
Leaves were removed during dissection, primordia recorded from slides where possible. Number is 
shown relative to the storage tissue (st) i.e. number of leaves is shown, then the presence of storage 
tissue is indicated, then the leaf primordia within this. All were evaluated by dissection and
production of slides, except where shown as SEM (scanning electron micrograph).
Date of 
sampling

Age of 
plant 
(years; 
weeks)

Storage
tissue

Total no. of 
leaves (including 
primordia)

No. of 
bulblets

Leaf length 
(longest) cm

10.10.00 i y Firm St + - 0.8
17.1.01 ly 12w Firm St + - 1.3
12.2.01 ly 16w Firm St+ 10 2.6
13.3.01
9.4.01

ly 20w 
ly 24w

Shrinking St+ 11 4 25

a)wax None 11 4 38
embed None 10 3 43
b) SEM

4.6.01 ly 32w New 5 + st + 1 3 60 chlorotic
28.6.01 ly 34w New

0.34cm
diameter

5 + st + - 3 Dying back, 
outermost 
completely 
dessicated

The phenology for the second season is similar to that of the first season, the plants

sprouting and dying back in Autumn and late Summer respectively (Table 19). The 

storage tissue was observed to decay in Spring, and a new storage layer was 

developed in Summer. However, the second season plants produced more and longer 

leaves, and more bulblets, none of which sprouted in either season. Root 

development continued to be asymmetrical. A small number of plants produced 

inflorescences, but these were small compared with those recorded by Treu (1999).
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5.4 Third season development

The very small numbers of plants flowering in the first two season’s growth, shows 

that time per se is not a controlling factor in maturity requirements for floral 

competence. Therefore, floral competence could not easily or accurately be 

identified by age, but size measured by leaf number or bulb size was more likely to 

provide useful data. Mature plants were purchased from John Shipton Nurseries (see 

2.2). These were supplied as having completed two seasons growth, at time of 

purchase and planting in October 2000. Twenty Allium ampeloprasum var. 

babingtonii and twenty Allium ampeloprasum var. ampeloprasum were obtained, for 

physiological comparison (JS00 and JS00 amp). Allium ampeloprasum var. 

ampeloprasum is extremely similar in its phenology and physiology, but produces 

fertile florets rather than bulbils (see 1.0, Table 1). Examination of these two species 

in the probably year of inflorescence development could provide insights into bulbil 

production in var. babingtonii.

5.4.1 Materials and methods

The plants were dormant at the time of purchase, and initial height, width and weight 

were recorded. At monthly intervals, two var. babingtonii and two var. 

ampeloprasum plants were sampled using random numbers throughout the growth 

season from October, to July when any inflorescence would be well developed (Treu 

1999). They were examined by eye and recorded photographically (Sony MVC85 

digital camera). One of each variety was dissected, wax-embedded, sectioned and 

stained (3.3.1). The other was placed into tissue culture (see 4.3, Table 18) for 

evaluation of floral determination of the apex. This was grown for one month and 

then wax embedded and sectioned (3.3.1). Additionally, in weeks 22, 26 and 28
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from planting, apices were photographed using SEM. This period is likely to include 

early floral development as vernalization is likely to be a requirement o f floral 

competence in line with other Alliums, and full inflorescence development occurs in 

Summer probably in the third season (Shipton, 2000 personal communication). Leaf 

number, bulblet number and maximum leaf length were recorded.

5.4.2 Results

The plants followed a similar pattern to previous years, sprouting during late 

Autumn, growing slowly during the winter, and then growing rapidly during Spring 

and Summer. Leaf length reached a maximum of 54 cm in early June (Fig. 53).

Cms
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I I 

18
12 01 02 03 03 04 04 05 06 06
00 01 01 01 01 01 01 01 01 01

Date

Figure 53: Maximum leaf length achieved during third season (cm) (JS00). NB n = 1 for each sample.

Bulblet and leaf number may have been affected by losses due to predation and 

necrosis (Fig. 54). Therefore, these figures represent a minimum extent o f
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elongation. Leaves may also have been affected by mechanical damage, predation or 

disease, so leaf length also represents a minimum level o f elongation o f  this organ.

12  —  P 1

10 a  Bulblet No. I

8 □  Leaf No.

6 I

o I I ll I  l l ll ll I ll ■
11 16 12 13 27 09 23 09 04 18
12 01 02 03 03 04 04 05 06 06 Date
00 01 01 01 01 01 01 01 01 01

Figure 54: Bulblet and leaf number (JS00 3rd season growth)

Bulblet numbers rise throughout the growth season, reaching a maximum in March, 

then fall again. These develop singly in the leaf axils o f  the parent plant on rhizomes.

It is not clear why the numbers fall, whether the bulblets are lost in the soil during

sampling after the rhizome has decayed, or whether they suffer predation (e.g. from 

cutworms) or if  they become necrotic as a result o f conditions that are not favourable 

for sprouting. The two largest counts for bulblets were nine and ten, sampled 9 4 01 

and 23 4 01 respectively. Both these plants were floral, so there may be some 

relationship between bulblet number and the floral state, possibly relating to the 

critical mass o f the bulb and the requirements for floral competence.

Overall, three o f 17 A. ampeloprasum var. babingtonii showed floral development 

(Fig. 55, Table 20), whilst only one o f 16 A. ampeloprasum var. ampeloprasum

B  Bulblet No. 

■  Leaf No.

11 16 12
12 01 02
00 01 01

13 27 09 23 09 04 18
03 03 04 04 05 06 06
01 01 01 01 01 01 01

131



sampled showed floral development (Table 20). However, none of the samples 

excised and maintained in tissue culture showed floral development, therefore it was 

not possible to identify the timing of floral determination in this experiment.

Table 20a: Summary of floral status of 3rd season plants (JS00 var. babingtonii)
Age (weeks from Date Plant Floral Method
sprouting in vivo) no. status
4 13 11 00 J - Tissue culture
8 13 12 00 D Veg. Tissue culture

H Veg. Wax embedding
1 2 16 1 0 1 B Veg. Tissue culture

Q Veg. Wax embedding
16 1 2  2  0 1 I - Tissue culture

E Veg. Wax embedding
2 0 13 3 01 G Veg. Tissue culture

P Veg. Wax embedding
2 2 27 3 01 C Veg. SEM
24 9 4 01 L Veg. Tissue culture

A Floral Wax embedding
26 23 4 01 F Floral SEM
28 9 5 01 K Floral SEM and wax embedding (half each)
30 21 5 01 R Veg. Tissue culture
32 4 6  01 O Veg. Wax embedding
34 18601 N Veg. Wax embedding
36 3 7 01 Sampling discontinued as dormancy 

was well advanced

Table 20b: Summary of floral status of 3rd season plants (JSOO var. ampeloprasum)
Age (weeks from Date Plant Floral Method
sprouting in vivo) no. status
4 13 11 00 O Veg. Tissue culture

L Veg. Wax embedding
8 1 1  1 2  0 0 R - Tissue culture

A Veg. Wax embedding
1 2 16 1 0 1 F Veg. Tissue culture

P Veg. Wax embedding
16 1 2  2  0 1 J - Tissue culture

M Veg. Wax embedding
2 0 13 3 01 S Veg. Tissue culture

G Veg. Wax embedding
24 9 4 01 I Veg. Tissue culture

Q Wax embedding
28 9 5 01 B Veg. Wax embedding
30 21 5 01 D Floral Wax embedding
32 4 6  01 H Veg. Wax embedding
34 18601 C Veg. Wax embedding
36 Sampling discontinued as dormancy

 _______  was well advanced
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Figure 55: Floral development (JSOOF -  26 weeks into 3rd season of growth). A) Apical dome of 
daughter bulb forming in apex of last formed leaf. B) Apical dome of inflorescence (approximately 
600 pm diameter) beginning to develop areas that correspond to cymes.

Figure 56: Floral development (JS00K -  28 weeks into 3rd season of growth)

Cymes have developed into well-defined outswellings, 
with primordia arising. Inflorescence is approximately 
1500pm diameter at base, and approximately 1000pm 
in height. Apical florets are beginning to form. The 
bract has been removed.

C = cyme 
A = apical floret 
S = scape
B = line of removed bract

It is apparent from second and third season development, that flowering is not simply 

a function o f time o f growth, but that any maturity requirement must be related to 

other factors, which may be interacting with time. This would be consistent with 

other work with Alliums, which have shown a minimum size requirement, measured 

as minimum bulb size (critical mass) or leaf number.
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5.5 Floral competence

Floral competence is the ability of the plant to respond to the floral stimulus. 

‘Maturity’ and duration of vernalization are considered as likely facts that interact to 

impose floral competence in this species (1.7.1). The hypothesis that a minimum 

size (critical mass) of the bulb is necessary for a floral response was tested by 

growing bulbs of known size in vivo, and examining for a correlation between bulb 

size and the production of an inflorescence. The hypothesis that vernalization is 

necessary for floral competence was tested in two ways; firstly, by subjecting 

unsprouted bulbils to a potentially vernalizing treatment and comparing the 

proportion that became floral, with the proportion that became floral in a control 

population. Secondly, by subjecting larger bulbs to a potentially vernalizing 

treatment, and comparing the proportion that became floral, with the proportion that 

became floral in a control population. This enabled me to test whether a 

vernalization requirement must interact with a requirement for maturity.

Gibberellins, particularly Gibberellic acid (GA3), have been used to induce flowering 

in a number of monocots (1.7.1.3.). Therefore, the hypothesis that GA3 would induce 

floral development was tested by application of GA3 at various concentrations to 

apices in tissue culture and the resulting development examined for the induction of 

flowering in Allium ampeloprasum var. babingtonii.

5.5.1 Materials and methods

5.5.1.1 Vernalization

All bulbils collected from population 1 were stored at 3°C (see 2.0); none of them 

had subsequently flowered either in vivo or in vitro. This temperature is thought to 

be sub-optimal for vernalization (Smith, 2000) and maintains the unsprouted state,
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and so was used as the control non-vernalizing treatment for unsprouted bulbils. 

Unsprouted bulbils (N = 160) were selected at random (SH99, stored for eight 

months), of which half (selected at random) were treated to a potentially vernalizing 

treatment of 6 weeks at 7°C (Smith 1999), whilst the other half remained at 3°C for 

the same period (Fig. 57). These had not sprouted since harvesting from the 

inflorescences, so the vernalization response could be examined in isolation from any 

putative maturity requirement for floral competence. Apices were excised from all 

bulbils in both treatments, and were cultured on 3% sucrose, 0.8% Agar Technical 

No. 3 (Oxoid), B5 salts, 25°C, 24h photoperiod. Explants were selected at random, 

(10 vernalized and 10 non-vernalized) dissected, wax-embedded, sectioned and 

stained (see 3.3.1) each month following for 6 months (Fig. 57).

Unsprouted 
bulbils 
(April 2000)

Control - 6  

weeks at 3°C

Vernalizing 
treatment -  6  

weeks at 7°C

Cultured -  
then 1 0  from 
each treatment 
examined per 
month for 6  

months

Figure 57: Treatment given to unsprouted bulbils to examine the effect of a vernalization on 
vegetative bulbils (control temperature of 3°C having been used for storage of unsprouted bulbils and 
demonstrated not to promote flowering; 7°C having been used successfully for vernalization in A. 
ampeloprasum var. porrum - leek).

Larger plants were also examined; eight sprouting, mature bulbs of unknown age 

(SHI 1/01) were selected at random from those of size 3 cm diameter and above. 

These had been sampled during November, 2001, so were unlikely to have been 

subjected to low temperatures sufficient to constitute a vernalization treatment. 

These were planted in pots with free draining compost, comprising 10 parts of 

proprietary brand multipurpose compost, with 1 part grit and 1 part sand. Half were
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selected at random and were given a vernalizing treatment of 7°C for 6 weeks (as for 

the unsprouted bulbils), the other half grown at a constant temperature of 18° to 

maintain active growth. Both treatments had 8h photoperiods, with a light intensity 

of 19.5 pM m'V1, (LI-COR LI 118B light meter), approximately 750 lux (mean of 3 

readings), (TES-1334 Digital Illuminance Meter).

Sprouting 
bulbs > 3cm 
diameter 
(Nov.)

Control - 6  

weeks at 18°C

Vernalizing 
treatment -  6  

weeks at 7°C

Room
temperature -  
apices
dissected after 
4 weeks (Feb.)

Figure 58: Treatment given to sprouting bulbs to examine the effects of vernalization on vegetative 
plants (control temperature maintained active growth, vernalizing treatment adopted from work with 
A. ampeloprasum var. porrum -  leek).

After the 6-week treatments, the plants were all transferred to room temperature at 

ambient light levels. Temperature was monitored to ensure that no vernalizing 

conditions could develop during this period. After a further 4 weeks, they were 

dissected and examined for signs of floral development.

5.5.1.2 Gibberellic acid

The possibility of simulating the maturity/vernalization requirement with the use of 

Gibberellic acid (GA3) was investigated. Since GA3 molecules are known to be 

thermolabile at > 60°C (Sigma, pers. comm., 2000) particularly at concentrations of 

over 100 ppm, two alternative methods were used to add GA3 to the growth 

medium/explant. For concentrations up to (and including) lOOppm, the GA3 was 

added to the medium before autoclaving. For a larger range of concentrations, 0 -

136



750 ppm (Table 21), the GA3 was dissolved in absolute ethanol, and then applied to 

the surface of the medium in aseptic conditions after autoclaving. The ethanol 

evaporated, leaving the GA3 on the surface on which the explant was placed. This 

method was chosen as being the closest analogy to the more common method of 

applying GA3 in absolute ethanol to the surface of the plant. As the explants are 

small, with large amounts of surface area, it was felt the ethanol could significantly 

damage the tissue if  added direct to the explant. Source material was unsprouted 

bulbils collected in August 2000 (SHOO), with 10 explants per treatment. The 

medium was 3% sucrose, 0.8% Agar Technical No. 3, with Gamborg’s B5 salts. 

Explants were cultured for 6 months then dissected and examined by dissection 

microscope (x 40).

Table 21: Concentrations of GA3  tested to induce flowering in vitro

GA3  concentration____________________
50ppm 0.000145M 
lOOppm 0.000289M 
350ppm, 0.00101M 
500ppm, 0.00145M
750ppm, 0.00217M____________________

5.5.1.3 Maturity

In season two and season three, only small numbers of plants produced 

inflorescences, although all the plants were of the same age in each season. This 

showed that maturity to flower is not a direct function of age, though it may be an 

indirect function for example, level of assimilates accumulated, size of apex. This 

has been measured in Alliums as bulb size and leaf number (1.7.1.1). Therefore, 

plants from two sources were monitored to provide data on bulb weight and size, and
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leaf number with respect to floral determination. Whole plants collected from the 

wild in March 2001 (SH0301, Appendix F) comprised plants of known size, whilst 

JS00 plants, sourced from a supplier comprised plants of known age. Using these 

two sources could establish suitable characteristics that could be usefully used to 

characterise floral competence in this species. Additionally, when whole plants were 

originally sampled from Holywell Bay (SHOO, Chapter 2) and grown on, it was noted 

that none flowered the following year. These had not been in any way selected for 

size, but were located for sampling by the scape, as there was no foliage at this time 

(August 2000). Therefore, all of these plants comprised daughter bulbs of varying 

sizes. This may indicate that daughter bulbs will not flower the following season, 

irrespective of size. Known daughter bulbs were also examined, for correlation 

between bulb size and floral competence.

SH0301 (2.0) was collected as growing plants in Spring, therefore, there was no 

information on bulb age or weight at the beginning of the season’s growth as was 

done with other samples. Bulb height and width were recorded, in those plants that 

were still intact at the time of sampling. However, as the bulb decays during spring, 

in some cases the bulb was shrinking, necrotic or completely missing. Since growth 

is slow during the winter months, the size of the bulb at the beginning of the growth 

season (Autumn) and in early Spring before necrosis is likely to be comparable. 

Therefore, 21 plants from SH0301 of over 2 cm width were planted in an outdoor 

bed at UCW as previously, and randomly sampled at monthly intervals. These were 

dissected, photographed and wax embedded, sectioned and stained (see Table 13; 

3.3.1) for assessment of the developmental state. The developmental state was 

examined for correlation with bulb size. Number of bulblets, number of leaves and
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leaf length were also recorded to examine for other indicators that could be used to 

predict floral competence.

JSOO plants were weighed and measured (height and width of bulb) before planting, 

at the beginning of the growth season in October. This was compared with those 

found to be floral, and examined for a correlation between weight and floral 

determination, and age and floral determination. Two plants were sampled each 

month from November onwards; one was cultured (see Table 18; 4.3) for 6 months 

so that any inflorescence development would be visible, the other was wax 

embedded, stained and sectioned for examination under a light microscope (see 

Table 13; 3.3.1). Additionally in March and April, one plant was selected at random 

for dissection and the fresh apex observed by SEM

The response of daughter bulbs with respect to size and floral competence was also 

examined. Twenty-five daughter bulbs (SH0301, sampled in March) over 3cm width 

were also planted, and grown till the following summer. The number of plants that 

became floral was recorded.

5.5.2 Results

5.5.2.1 Vernalization

None of the vernalized or unvemalized explants (from bulbils) showed any 

development associated with floral determination. They remained vegetative, no 

scape was produced, but many developed new storage tissue. However, mature 

plants grown on after vernalizing treatments grew normally, the vernalized plants 

having slightly shorter leaves than the non-vemalized plants (Fig. 59), possibly as a
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result o f having been exposed to lower temperatures. Vernalized plants exhibited 

100% flowering, whilst all non-vemalized plants remained vegetative.
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Figure 59: Mean length (cm) of the longest leaf of each plant of vernalized and non-vemalized plants 
(SHI 1/01)

The vernalized (floral plants) all had 13 leaves, 12 produced outside the first 

daughter bulb, then another leaf, then the second daughter bulb and the scape (Fig. 

60-62).

Inflorescence

E  Vernalised 

■ Non-vemalised

a t
Dec Jan

Time of year

Feb

12th leaf base
13th leaf base

Second
daughter
bulb
primordia

First
daughter
bulb
primordia

Figure 60: Schematic of scape and daughter bulb formation relative to leaf bases.
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Figure 61: 7 bulblets developing in 
vernalized mature plant (floral)
SHI l/01no. 66. (Scale in mms). 
Outermost side shoot -  innermost side 
shoot is shown left -  right.

Figure 62a: Daughter bulbs, 
outermost to innermost left to 
right, and scape with spathe 
intact (SHI 1/01 no. 66). (Scale 
in mms). Scape is 
approximately 6mm, spathe is 
approximately 7mm tall.

Figure 62b: Developing 
inflorescence (SH11/01 no 66) 
shown intact above. Spathe has 
been removed, inflorescence is 
approximately 1.5mm tall, 1mm 
width.

Figure 63: Non-vemalized plant 
(SHI 1/01 no. 9) showing 
necrotic bulb tissue and 
desiccation of outer leaf. Scale 
shows cms. Bulb is 
approximately 3 cms height x 
2cms width. Maximum leaf 
length on this plant is 94cms.
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The non-vemalized (non-floral) plants had more leaves, 2 developing 16 and 2 

developing 17 leaves including primordia.

There was little variation in the number of bulblets visible. The mean number for the 

floral plants was 5.75 (standard deviation 0.96), whilst the mean for the non-floral 

plants was 5 (standard deviation 1.41).

In all the plants sampled, the bulb was necrotic and shrivelled. The outer leaf was 

desiccated and disintegrating (Fig. 63).

5.5.2.2 Gibberellic Acid

None of the explants showed any development associated with floral determination. 

They remained vegetative at all concentrations, and under both application methods.

5.5.2.3 Maturity

Plants sampled in April were all floral (Table 22). Those sampled at the beginning of 

May were 50% floral (n = 6), whilst 60% (n = 5) of those sampled at the end of May 

were floral. In June, 50% were floral. In all these plants, the inflorescence was 

clearly visible to the naked eye, and development was well advanced. Bulblets were 

present in the axils of the leaves. However, in samples examined during the later 

part of the season, i.e. mid-May onwards, most of the bulblets were external to the
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parent plant, with only small numbers beneath the outer leaves. This suggests that 

bulblet production ceases during the latter part of the growth season.

Table 22: Summary of floral status of bulbs of known size, sampled in March and grown in an

Date of Width at Developmental No. of Leaf Leaf
sampling & planting state Bulblets length number
Plant number (cm) (cm)
23 4 01
51 4.4 Floral 84 1 1

28 3.1 Floral 2 81 1 1

46 3.1 Floral 4 94 1 1

2 0 3.2 Floral 5 81 1 1

7 5 01
34 Floral 7 92 1 0

49 Vegetative 4 7 + st +2
15 3.4 Floral 4 92 9
48 1.9 Vegetative 69 6  + st
2 4 Floral 6 85 1 0

6 2 . 8 Vegetative 2 7+st + 2
22 5 01
38 2 . 8 Vegetative 3e+ 1 56 6  + st + 4
37 Vegetative 2 e+  1 57 5 + st + 4
13 Floral 2 e + 2 75 1 1

19 3.4 Floral 3e 72 1 1

27 4.1 Floral le 62d 1 1

4 6 01
2 2 4 Floral 2 e 75d 1 1

59 3.6 Floral 5e 71d 8

16 Vegetative 0 57d 6  + st + 5
55 Vegetative 0 74d 8  + st
41 Vegetative 0 51d 5 + st + 4
59 3.6 Floral
e = bulblets are external to the parent bulb, rather than internal in leaf axils 
d = dieback of the leaf is visible
st = storage tissue; figures indicate number of leaves external to the storage tissue, then the number of 
primordia developing inside the storage tissue

Leaf length diminishes from mid-May onwards, with chlorosis and dieback 

becoming visible from the end of May. In all plants where floral development is not 

observed, a storage layer develops within the leaves, enclosing the sprout leaves for 

next season’s growth.
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All bulbs of which the size was known at the time of planting in March, showed a

clear divide between the size of the non-flowering and the size of those flowering, 

i.e. those 3cms and above were floral, those below this size were vegetative (Table 

23).

Table 23: Comparison of bulb width with the developmental state (SH0301)
Bulb width (cm) _______ Developmental state_________
1.9 Vegetative
2 . 8 Vegetative
2 . 8 Vegetative
3.1 Floral
3.1 Floral
3.2 Floral
3.4 Floral
3.4 Floral
3.6 Floral
3.6 Floral
4.0 Floral
4.0 Floral
4.0 Floral
4.1 Floral
4.4 Floral

It was also noted that none of the small bulbs under 2cm width (SH0301) planted (n 

= 25) to provide stocks for future work flowered the following season, confirming 

that smaller bulbs are not florally competent. However, these data indicate that bulb 

size can be a useful diagnostic criterion for floral competence.
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Figure 64: Mean bulblet numbers (± SE) in floral and vegetative material, obtained in March, 2001, 
and planted at UCW, then sampled from April to June (SH0301; N = 18)

Over the period o f  sampling, the mean bulblet number for floral plants (n = 11) was 

3.09, standard deviation 1.81; mean bulblet number for vegetative plants (n = 7) was 

1.85, standard deviation 1.85. However, there is no trend observable that would 

make bulblet numbers a useful indicator o f  floral or vegetative states. Vegetative 

plants were not selected in the April sampling, so data were lacking for this month 

(Fig. 64). In early M ay there were m ore bulblets in floral than vegetative material, 

by late May there were more bulblets in vegetative material. In June, the floral 

material showed a mean o f  3.5 bulblets per plant, but there were none in the 

vegetative samples

B Floral 
■  vegetative

23 4 01 7 5 01 22 5 01 4 6 01
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Figure 65: Mean leaf length (cm) (± SE) of plants obtained in March, 2001, planted at UCW, then 
sampled from April to June to determine floral or vegetative status (SH0301; N = 18)

The leaves in floral material are consistently longer than in vegetative material (Fig. 

65). However, in the sample considered as a whole, the mean o f 73.77 ± 3.12 cm 

suggested that this characteristic could not be used to identify floral material as the 

variation is too high and the difference in length between vegetative and floral plants 

too small. It would be expected that floral plants would be larger than vegetative 

plants, if  it is considered that bulb size (over 3 cm) can be used to indicate floral 

competence (see 5.5.2.3). Peak leaf length appears to be reached in early May, the 

leaves becoming shorter before necrosis is visible at the end o f  May.

If  the number o f  leaves is counted as only those external to the storage layer, then the 

number o f  leaves is consistently smaller in vegetative plants than in floral plants (Fig. 

64) with all the floral plants having 11 leaves, whilst vegetative plants had fewer (5 -  

8) (Table 23).
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Figure 66: Mean leaf number (± SE) excluding storage layer and sprout leaves, of plants obtained in 
March, 2001, planted at UCW, then sampled from April to June to determine floral or vegetative 
status (SH0301; n = 18)

However, if  the storage layer is included as a modified leaf, and also the sprout 

leaves, then there is little difference between the floral and vegetative plants (Fig. 

67).

E Floral
Vegetative

■2 w 10
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Figure 67: Mean leaf number (±SE) including the storage layer and sprout leaves,
of plants obtained in March, 2001, planted at UCW, then sampled from April to June to determine
floral or vegetative status (SH0301; n = 18)

These data from plants o f  known size at time o f  sampling (March) indicated that 

plants large enough to be florally com petent (over 3 cm) and having produced 11 

leaves (including primordia), were then able to respond to the floral stimulus, 

producing an inflorescence, with the m ain bulb dividing into two daughter bulbs. The 

daughter bulbs developed one in each o f  the leaf axils o f  the 10th and 11th leaves. No 

more leaves developed at this time, and those leaves (including primordia) continued

147



to grow normally until senescence in early Summer. Those plants smaller than this, 

were unable to respond to the floral stimulus, and instead developed a new storage 

layer within which sprout leaves developed without emerging, presumably until the 

next season.

The bulbs of known age (JSOO) provided little floral material (Table 24) just three of 

the ten plants sampled having inflorescences.

Table 24: Summary of development of 3rd season plants (JSOO), obtained in dormant state, planted in 
October and grown in outdoor beds, then sampled at intervals
Date Bulblet No. Leaf No. Leaf length (cms) Floral status
11 12 00 4 Veg.
1601 01 6 1.3 Veg.
12 02 01 2 7 Veg.
13 03 01 2 28.5 Veg.
27 03 01 4 7 25.5 Veg.
09 04 01 3 9 37.5 Floral
23 04 01 2 10 49.5 Floral
09 05 01 3 45.0 Floral
04 06 01 2 9 54.0 Veg.
18 06 01 1 Veg.

Comparing leaf length and bulblet number in vegetative and floral samples showed 

no correlation between any of these data and floral competence (Appendix 13). Leaf 

number indicated that there were more leaves on floral plants than on vegetative 

plants, but these data were too few for meaningful analysis. It was noted that the leaf 

number of floral plants was less than that recorded for the assessment of plants of 

known size (SH0301) above. However, this was thought to be due to losses from the 

seasonal senescence.

The large daughter bulbs (SH0301) o f unknown age but larger than 3 cm width (n = 

25) failed to produce any floral material. This apparent contradiction to the work
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above where this size was indicated as a marker of floral competence is unexpected. 

However, as discussed earlier, indications of size in relationship to floral competence 

are not straightforward, and may reflect other factors of greater importance, such as 

assimilate levels, or apex size. It is therefore apparent, that first generation daughter 

bulbs require further investigation before using to produce predictable floral material, 

or else should be discarded or grown on.

5.5.3 Summary

The work described in this chapter was carried out in search of identifiable features 

of the floral response for Allium ampeloprasum var. babingtonii.

Chronological and developmental age were considered separately and the mean 

length and number of leaves that formed were compared in vegetative and floral 

plants. Bulb size and bulblet number were also compared.

The key findings of the work reported here were: -

•  The vegetative phase of this species has been documented to provide the 

foundation for a developmental timetable;

• Competence to flower can be usefully assessed by the bulb width -  over 3 cm 

(the critical mass for this species) indicated that the plant has completed 

juvenile growth, passing into the mature phase, and is therefore competent to 

flower;

• Vernalization treatments of 6 weeks at 7° C led to flowering, provided that 

bulbs had passed through the juvenile phase and reached critical mass;

• Application of GA3 did not stimulate flowering in this species
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• Floral material usually has 11 leaves (including primordia), but these cannot 

be accurately counted until floral development is well advanced, or by 

dissection;

• Floral plants generally had longer leaves but this did not give an accurate 

indicator of the floral/vegetative state. Neither could bulblet number be 

accurately linked with flowering.

The physiology o f A. ampeloprasum var. babingtonii was similar to those described 

by Bothmer (1974) in the Aegean members of the Ampeloprasum complex. It had 

one fleshy, colourless modified leaf for storage (storage cataphyll), forming the bulk 

of the bulb. This probably similarly nourishes the sprout in the early stages through 

Winter, before declining in Spring. It was surrounded by a bladeless sclerified 

protective leaf. This structure was apparent in the bulbil, and this pattern was 

maintained throughout the vegetative life of the plant. This was dissimilar to the 

pattern described by Jones and Mann (1963) for wild A. ampeloprasum species, 

which they described as having two storage leaves, and often with multiple cloves. 

The basal bulb plate was a modified stem, which regenerated every vegetative 

period, unlike the cultivated A. Ampeloprasum var. porrum or A. kurrat, both of 

which are biennial. The old bulb plate (basal plate) remained attached to the new 

bulb plate (basal plate) eventually disintegrating during the following season, as 

described by Bothmer, (1974) for Aegean members of the Ampeloprasum complex.

During the first season, up to four leaves were likely to be produced with a small 

proportion of plants achieving critical mass by the end of the season, and therefore 

flowering following vernalization during the winter growth of the second season.
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During the second season, the inflorescence (if the plant is florally determined) 

developed in the Spring, reaching maturity during the Summer. If the plant is 

vegetative, approximately eight leaves were produced, and critical mass was reached 

in many plants. Although many o f the bulbs obtained commercially, were sold as 

being two years old, subsequent experience growing this plant, suggests that 

developing daughter bulbs may cause some difficulty in ascertaining age in mixed 

groups, and that age can only be precisely ascertained if  plants are lifted, separated 

and recorded each year. Most plants will reach critical mass in the second season, 

flowering in the third season, following vernalization.

Failure to induce flowering by application of GA3 meant that future work was 

dependent on obtaining populations of plants of critical mass (3 cm) or above, these 

also being identified later in the season by having 11 leaves. Identification of a 

vernalizing treatment meant that mature plants could be treated to reliably produce 

100% flowering when required.
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6.0 Floral Development in Allium ampeloprasum var. babingtonii

Vegetative characteristics were identified in Chapter 5, together with the requirement 

for a minimum size of bulb (>3 cm width) combined with a vernalizing treatment (6 

weeks at 7°C to induce floral development in Allium ampeloprasum var. babingtonii. 

In Chapter 6, this was used to identify plants of known floral status. These were 

used to examine the timing of floral determination, and the development of the 

inflorescence. The floral developmental timetable was identified using tissue culture 

(see 4.4, Table 17) to establish the timing of floral determination, allied with light 

and electron microscopy to record the developmental progress of the inflorescence 

(Section 3.2.1, Table 13).

6.1 Floral score

A developmental scoring system was developed for describing the progress of 

inflorescence development. This was based on the sequence of floral organ initiation 

in Allium spp. noted by Brewster (1994), and the observed sequence in this study as 

inflorescence development proceeded. The florets of a single inflorescence were in 

many stages of development at any one time, with those on the summit developing 

ahead of those on the flanks (Cottrell, 1999; Treu, 1999). A single floret on the 

centre of the inflorescence summit appears before the others and continues to 

develop ahead of the others (Section 5.4.2, Fig. 56; Section 5.5.2, Fig. 62b). 

Therefore, the development of this apical floret was used as a marker for 

developmental progress (Table 25). Anthesis (flower opening) was not included, as 

the florets do not fully open and are not shed (Treu 1999), but remain attached to the 

inflorescence until significant tissue degeneration causes loss of the floral tissues in 

Autumn/Winter, depending on weather conditions.
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Table 25: Developmental Scoring system for Allium ampeloprasum var. babingtonii and var. 
ampeloprasum
Floral Score Physiological development
l 1st daughter bulb
2 2nd daughter bulb -  adjacent to scape
3 Spathe primordia -  arises as a ring around a central dome
4 Cyme apparent as irregular region and the bracts are also developing
5 Outer tepals visible on apical floret
6 Inner tepals visible on apical floret
7 Outer stamens visible on apical floret
8 Inner stamens with tricuspidate filaments visible on apical floret
9 Carpels arise as ‘U’ shaped primordia
10 Carpels are fused with style developing
11 Tepals develop pigment

6.2 Methods and materials

Plant material from a number of sources (Table 26) was used to identify the timing of 

floral determination and the development of the inflorescence. Initial source material 

was purchased comprising twenty A. ampeloprasum var babingtonii and twenty A. 

ampeloprasum var. ampeloprasum (2 years old at time of planting in October 2000; 

JSOOp bab and JSOOp amp; see 2.0). This was supplemented by whole plants (var. 

babingtonii) collected during March 2001 (SH0301) (located by the presence of the 

leaves, but without any size criteria) and whole plants (var. babingtonii) collected 

during November 2001 (large bulbs greater than 3 cm diameter, located by the 

leaves, not having flowered the previous season (see 2 .0), all these being from the 

Comish Population 1 (Treu, 1999). Further data were obtained from plants collected 

from the same population during February 2002 (SH0202).

Plants sampled during August 2000 (SHOO) failed to produce any floral plants and 

are not included here. These had flowered the previous season, and it was surmised 

that newly formed daughter bulbs were not subject to the same maturity requirement
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for floral competence, otherwise measured by a bulb diameter greater than 3 cm (see 

5.5.2.3).

Table 26: Summary of plants used to establish timing of floral determination and development of the 
inflorescence of Allium ampeloprasum var. babingtonii, with A. ampeloprasum var. ampeloprasum 
for comparison
Plants Acquisition Details
SHOO var. babingtonii August 1999 Bulbils from Cornish population, grown on at 

UCW to provide bulbs of known age

JSOOp var. babingtonii September 2000 Known 2 year old bulbs

JSOOp var. ampeloprasum September 2000 Known 2 year old bulbs

SH0301 var. babingtonii March 2001 Plants located by leaf from Cornish population, 
unknown history or age

SHI 101 var. babingtonii November 2001 Plants located by leaf and having a minimum 
diameter of 3cm at the widest point

SH0302 var. babingtonii March 2002 Plants located by leaf and having a minimum 
diameter of 3cm at the widest point but 
excluding daughter bulbs

6.2.1 Floral determination

Plants of known age (3rd season plants JSOOp var. babingtonii) were planted in 

October, 2000. At monthly intervals from November, 2000, one plant was selected 

at random. This was cultured for approximately one month (see 4.4; Table 17) then 

assessed for floral development by dissection under stereo microscope (up to x 40); 

sampling was continued until May 2001 (see also 5.5.2.3; Table 24). Var. 

ampeloprasum was cultured similarly and also assessed for floral development in the 

same way.

In addition, plants from SH99 (bulbils collected from Cornwall in August, 1999, then 

grown on at UCW) were sampled from July 2001 (the end of the second season’s 

growth) until March, 2002 (the latter part of the third season’s growth). Ten were
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selected at random each month, and cultured for one month (see 4.4; Table 17) then 

assessed for floral development by dissection. These were of unknown size at the 

time of selection; therefore the samples would be likely to contain both vegetative 

and floral plants.

6 2.2 Inflorescence development

Data were gathered from a number of samples as available, comprising plants of 

known age (JSOO var. babingtonii and var. ampeloprasum, SH99) (see also 6.2.1), 

and plants of unknown age sampled from the Cornish population during March 2001 

(SH0301 -  no selection for size), November 2001 (SHI 101 -  over 3 cm) and March 

2002 (SH0302 -  over 3 cm, no daughter bulbs). These were transplanted to outdoor 

beds at UCW and grown on then sampled as required (Table 26).

JSOO var. babingtonii and var. ampeloprasum were sampled at random at monthly 

intervals, wax embedded, sectioned and stained (see 3.3; Table 13), then assessed for 

floral development. Additionally, two plants were recorded using a low vacuum 

scanning electron microscope (SEM), (JEOL 5200LV at 3% vacuum) one during 

March and one during April.

SH0301 were sampled at random, 16 being dissected in March to give a firm 

indication of floral status, of which two were photographed through SEM., then 

further plants were examined during April, May and early June 2001 (see also 

5.5.2.3, Table 22). SHI 101 were sampled at monthly intervals, wax embedded, 

sectioned and stained from December 2001 until April 2002, in order to provide data 

on the earlier stages of development.
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SH0302 were also sampled monthly, 6 being dissected during March to give a mean 

floral score for the population at that tim e (these were recorded using SEM), then 

five in April and May and three in June, to record developmental progress. These 

were all wax embedded, sectioned and stained.

6.3 Results

6.3.1 Floral determination

O f the 17 JSOO plants sampled during this period, only three were floral (5.4.2; Table 

20a). These were sampled from 9 4 0 1  to 9 5 0 1 ,  and all were in the early stages o f 

floral development, scoring 2 (second daughter bulb developing), 2, and 4 (cyme and 

bract developing) respectively (see also Appendix 13). It was difficult to draw any 

firm conclusions about the tim ing o f  floral determination from these limited data. 

However, it m ay be suggested that floral determination is likely to occur in the early 

part o f  the year, (Figure 68) though any firm conclusions must await further data.
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Figure 68: Floral scores of 3rd season plants (JSOO) with suggested full development shown at 25 7 
01. indicates approximate suggested period o f floral determination
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This was compatible with the need for vernalization (6 weeks at 7°C being shown to 

produce 100% flowering in bulbs over 3cm in diameter; see 5.5.2.1). This was likely 

to occur during the months o f  N ovem ber -  March when mean temperatures are 4 -  5 

°C with a maximum o f 6 -  8 °C and a minimum o f 0.6 -  1.5 °C 

(www.metoffice.com. accessed June 2004), following which temperatures began to 

rise (Figure 69).
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Figure 69: Mean monthly maximum and minimum temperatures (°C) for the UK, 1971 -  2000 
(www.metoffice.com accessed June, 2004).

Plants sampled from the Cornish population (SHOO) were placed in culture as for 

JSOO, but floral material was not produced. Subsequently, the reason was identified 

as the immaturity o f  the bulbs -  they were all under 3 cm diameter, and had been 

located by the scape. Therefore, all were daughter bulbs, and unlikely to flower (see 

5.5).

The SH99 plants provided only one plant that was clearly identifiable as floral 

(Appendix 14). This was sampled on 10 1 02, and assayed on 7 02 02. It was well 

developed, (floral score 7), spathe 0.9 cm height, the apical floret clearly developed
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and raised above the other primordia. All samples in the following months showed 

clearly developing storage tissue as a single bulb and showing no division into 

daughter bulbs, therefore were considered to be vegetative. This, combined with the 

data from JSOO, suggested that determination may occur early in the year, during 

January or early February. However, there were no data to identify the timing 

between determination and floral development, so conclusions must be tentative. It 

was interesting to compare the very early development in this sample, with the much 

later development shown in the sampling from JSOO where a much earlier stage of 

development was not reached until much later in the season (scoring 2, 2 and 4 in 

April and May) (see also Appendix 13). It was also interesting to speculate how 

much variation in developmental timing may be experienced as a result of previous 

seasons’ growth patterns in different environments. Whilst it was to be expected that 

plants from the warmer climate of Cornwall might develop more rapidly than at 

UCW, plants from Wales (JSOO) might be expected to have experienced similar 

temperatures to UCW, resulting in a similar phenology. These data are small in 

number, and no firm conclusions may be drawn, but it was apparent that there was 

wide variation in the timing of developmental patterns. None of the var. 

ampeloprasum sampled during the early part of the year showed any signs of floral 

development, therefore it was impossible to draw firm conclusions about timing of 

floral determination in this species.

6.3.2 Inflorescence development

SH99 provided little data, only one plant being floral (floral score 7, mid-January, 

see 6.3.1). JSOO produced only 3 floral plants (see Figure 68 and Appendix 13),
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these being at a much earlier stage o f development in April and May than the one 

from SH99.

SH0301 had seven plants (of 16 sampled) that showed floral development, with a 

mean floral score of 6.8 at the time o f sampling in March, 2001 (Appendix 15). The 

floral score was highly variable throughout the monthly samples (Appendix 15) 

following this, for example, ranging from 5 to 9 in April (total number of floral 

plants = 14). By June, all floral plants had reached a floral score of 11, the 

inflorescence being fully developed with all organs present, anthers exserted, and the 

tepals fully coloured.

SHI 101 provided few plants that were flowering. Four plants were floral in March, 

but none before that. This was surprising as all plants were selected for critical mass 

and should have been florally competent. It can only be speculated that plants were 

set back by transplanting during a vulnerable stage of growth, perhaps failing to 

reach the minimum number of leaves at the time that temperatures were appropriate 

for vernalization. This would imply that the apex was not mature enough to respond 

to the vernalization signal at this time.

SH0302, also selected for minimum size and excluding daughter bulbs, failed to 

produce floral material. Many o f these were dissected subsequently, and it was 

apparent that abortion of the inflorescence had occurred, at least in some of the 

plants. A withered inflorescence was apparent in some, whilst others did not show 

any trace of inflorescence, but had produced two daughter bulbs, presumably 

aborting at an earlier stage of floral development. Others did not show show any

158



development associated with the floral state, and it was not possible to ascertain 

whether the floral state had not developed, or whether abortion had occurred at such 

an early stage o f development as to leave no physically apparent trace. Floral plants 

sampled in March 2002 (SH0302) produced 6 plants with a mean floral score o f 4.2. 

However, if  all the floral scores from these samples are shown together, a picture of 

the variation in floral development can be constructed (Figure 70).

■ JSOO
□ SH0301
□ SH1101
■ SH0302 
D SH99

0 4 8 12 16 20 22 24 26 28 32 34 36

Week number

Figure 70: Summary of mean floral scores from plants sampled at different times from the Cornish 
population. Week 0 is the first week in October.

This illustrates clearly that there is considerable variation in the timing o f floral 

development in this species. Moreover, the plants are clearly affected by climate 

differences and by transplant trauma, even though all due care was taken to avoid 

damage. Generally, those plants sampled from Cornwall in March, are more 

advanced than those plants grown on and sampled at UCW, although SH99 presents 

an anomaly. However, this is one plant, and may represent atypical results. If this is 

discounted, it could be surmised that determination probably occurs in Cornish 

populations during January, and in February for populations grown at UCW. 

Development o f floral organs is rapid, with most floral organs being formed fairly
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quickly (tepals forming during February/March) followed by maturation of the floral 

organs and elongation of the scape. Full inflorescence development (floral score 11) 

then occurs during week 36 (end o f June) for Cornish populations, and a little later 

for populations at UCW. Var. ampeloprasum produced only one floral plant from 

this sample, (JSOO D amp.), therefore no attempt is made to draw conclusions about 

the timing of inflorescence development.

Further work with var. babingtonii should be based around the development of a 

large enough florally competent population to allow for all sampling to be done as 

required from the same population, without the need for transplanting to other sites, 

climate conditions, or environments. This would minimise variation in floral 

development, and allow data to be gathered from a population subject to relatively 

uniform conditions.

The floral var. babingtonii plant produces the first daughter bulb from an axillary 

bud, followed by another leaf. The second daughter bulb is then produced in the next 

axil, followed by the spathe. In contrast, although A. ampelopralsum var. 

ampeloprasum generally follows a similar growth pattern, the daughter bulbs 

produced in the axils are multiple, two or three being produced in each axil.

However, a sample o f one plant cannot be assumed to be typical, therefore, 

conclusions must be extremely tenuous. However, as all the vegetative plants of this 

species sampled also produced multiple bulblets on rhizomes rather than the single 

bulblet produced by var. babingtonii, this plant may invest more heavily in clonal 

offspring through bulblet production, than var. babingtonii does, perhaps as 

compensation for not producing bulbils in the inflorescence.
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Var. babingtonii develops as might be predicted from comparison with other 

members o f the Alliaceae, such as A. sativum (garlic) and A. cepa (1.7). The height 

o f the spathe increases rapidly initially as the florets develop. The spathe is 

approximately 3.5 cm height by April, when the tepals are being formed, with the 

scape just 9.4 cm rising rapidly to approximately 65 cm in just two weeks (Figure 

71).
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Figure 71: Inflorescence size in SH0301 plants sampled from Cornish population, March 2001, week 
zero is early October, 2000, for comparison with samples taken at other times from this population. 
From week 28, the spathe size diminishes as it splits, desiccates and dehisces.
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6.3.3 Photographic summary o f  developm ent o f inflorescence from the vegetative 
state (floral score 0) to full floral developm ent (floral score 11) in A. ampeloprasum 
var. babingtonii

Figure 72: Floral score 0: SEM of bulb of unknown age, 2 
months into the growth season (December), vegetative apex 
(SHOO 4). The apical dome was clearly visible measuring 
approximately 250 x 350 pm. This was a mature daughter bulb, 
selected from the Cornish population by location of the scape, the 
parent bulb dividing into two daughter bulbs following the 
development o f the scape and inflorescence. The emerging shoot 
was narrow and wide, the angle of divergence of the leaves was 
180°, each leaf enfolding the next younger leaf; six leaves have 
been removed (see also Figure 52, Chapter 5).

A -  apical dome
PI -  first primordium
P2 -  second primordium (excised)

Figure 73: Floral score 0: Vegetative apex from 
two year old plant JSOO E sampled 16 weeks into 
the growth season (mid-February). This median LS 
showed the apical dome surrounded by leaf 
primordia. Three (four in some places) layers of 
cells were visible, the area beneath was less 
organised, probably the meristematic cells. Beneath 
this, the basal plate showed large cells with low 
levels o f nuclear activity. Scale bar approximately 
300 pm

A -  dome
P -  leaf primordia, rib end 
P I -  same leaf primordia, gap end 
M -  meristem 
B -  basal plate

Figure 74: Floral score 0: Vegetative plant of unknown age, 
16 weeks into the growth season (February). SH0015A SEM 
of bulblet developing on side shoot beneath 2nd leaf. The 
apical dome was surrounded by a protective layer (the first 
‘leaf) which becomes the storage layer. Most side shoots 
were produced during the winter and spring. They developed 
on rhizomes from the basal plate, the tip thickening as the 
bulblet develops. Ultimately, the rhizome withered separating 
the bulblet from the parent plant. However, no bulblets were 
observed to sprout during the course o f these experiments, 
except when the parent plant was developing an inflorescence.

R -  rhizome 
B -  bulblet
P -  protective layer fully enclosed the apical dome
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Figure 75: Floral Score 2; JSOO F, floral plant two years old at 
time o f planting, sampled in week 26 (April) of growth season 
following. The apical dome was swelling and irregular in outline 
measuring approximately 900 x 800 pm. Daughter bulbs were 
developing (Figure 74). The spathe was not apparent, neither were 
any cymes or recognisable primordia. However, the cell divisions 
on the apex suggested at least two centres of activity, and possibly 
a third.

A -  apical dome
1 -  focus o f cell division
2 - smaller focus o f cell division
3 -  possibly another focus of cell division

Figure 76: Floral score 2, (JSOO F as above); the 
daughter bulb forming in the apex of the 11th leaf 
adjacent to the developing scape. The central dome 
was arising surrounded by a ring of storage tissue 
similar to that found in bulbil formation.

L -  11th leaf base 
D -  apical dome 
S -  storage tissue

Figure 77: Floral score 2; TS of two year old 
plant, sampled in the 24th week (early April) of 
the growth season (JSOO A) showing daughter 
bulb (approximately 600 x 300 pm) developing 
adjacent to the eleventh leaf.

L -  11th leaf base 
D -  daughter bulb 
S - scape

Scale bar approx 500 pm

Figure 78: Floral score 2; plant of unknown age, 
selected from Cornish population in March 2002, and 
then dissected SH0302 7. The incomplete spathe was 
removed, revealing the apex as an uneven dome, without 
defined primordia, measuring approximately 1000 x 
1000 pm. This was larger than Figure 73 and had an 
identifiable spathe, not present in that photograph, 
suggesting that scape elongation and apical dome 
enlargement may precede development of the spathe.

S -  spathe base
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Figure 79: Floral score 2; TS of two-year-old plant 
sampled in 24th week of the growth season (early 
April) JSOO A through the developing scape; the 
final leaf was encircling the scape, with the 
developing daughter bulb on the opposite side. The 
scape is approximately 300 pm to base of 
inflorescence. Scale bar approximately 1000 pm 
S -  scape 
L -  leaf
D -  daughter bulb

Figure 80: Floral score 2; TS of JSOO A (as above) 
spathe separating from inflorescence, 
approximately 140 pm from inflorescence base; 
spathe edges meet at right hand side, not quite 
opposite the point where the leaf edges meet 
(bottom left). Inflorescence width is approximately 
1000 pm at this point. Scale bar approximately 
1000 pm.
Sp -  spathe where edges meet 
S -  scape
L -  leaf where edges meet

Figure 81: Floral score 2; TS of JSOO A (as 
above) showing the apex of the developing 
inflorescence; the spathe is not complete, only 
partially enclosing the dome at this point, 
measuring approximately 265 pm from the point 
o f separation from the inflorescence.
Inflorescence measures approximately 375 pm in 
height. Scale bar approximately 1000 pm.

Sp -  spathe 
D - dome

Figure 82: Floral score 3; Plant of unknown age 
sampled from Cornwall March 2002, and 
dissected immediately (SH0302 8). The 
incomplete spathe was removed and the 
symmetrical nature of the inflorescence could be 
seen (dashed line shows developmental axis and 
indicates the location of the daughter bulbs). It 
also seemed that the inflorescence developed in 
two parts; the upper half - slightly larger - 
following a slightly different pattern to the lower 
half (above and below dotted line) with a seam 
where the two areas meet. The inflorescence was 
approximately 1800 pm width. The developing 
domes may represent cymes -  particularly the 
larger ones which have smaller domes arising, 
whilst the smaller ones, for example the centre 
dome in the bottom half, may represent a floret 

primordium. The flat pointed primordium in the right hand side was a bract.

C -  cyme S -  seam B - bract
F -  floret A -  developmental axis
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Figure 83: Floral score 3; Plant of unknown age 
sampled March 2002 from Cornish population and 
dissected immediately (.SH0302 19). The spathe 
(removed) fully enclosed the developing inflorescence, 
but the cymes were not readily recognisable. There were 
several centres of development, and it was apparent that 
the head developed in two parts, a smaller part and a 
larger part, with a ‘seam' between the two parts. The 
arising centres were more or less symmetrical about the 
centre line and these were probably a combination of 
floret primordia -  more likely on the apex -  and cymes -  
more likely on the flanks (the arrows indicate the 
location of the daughter bulbs). It was also possibly that 
these centres of development further subdivide before 
becoming cymes. The inflorescence diameter was 
approximately 1300 pm.
S — spathe
LP -  large primordium 
SP -  small primordium

Figure 84: Floral score 4; Plant of unknown age 
selected from Cornwall, March 2002, and dissected 
immediately (SH0302 11). The central outswelling was 
developing as a bract, the seam between the two sections 
was still visible, whilst the cyme primordia now have 
many smaller primordia developing which are still 
dividing into smaller centres. The inflorescence was 
approximately 2000 pm diameter.

B -  bract
P -  primordium dividing into two centres

Figure 85: Floral score 4; Plant of unknown age, 
sampled from Cornwall March, 2001 and dissected 
immediately (SH0302 D2). The primordia were slightly 
more defined than in Figure 82. The two largest 
primordia were developing either side of the central bract 
noted in Figure 82. The seam was still partially visible. 
The inflorescence diameter was approximately 1100 pm.

B -  bract
F -  floret primordia

Figure 86: Floral score 4; Two year old plant sampled 
during week 28 of the growth season, early May (JSOO 
K.) spathe removed. Although apical primordia were 
well defined, the flanks showed irregular developmental 
areas that probably corresponded to cymes. The 
inflorescence diameter was approximately 1000 pm.

C -  cyme
S -  spathe (removed)

5  9  Q I* w
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Figure 87: Floral score 5; Plant of unknown age sampled 
from Cornwall, March 2002 (SH0302 16) and dissected 
immediately. The seam was still apparent dividing the 
two halves of the developing inflorescence, and the two 
apical florets, one on each half, were showing tepal 
primordia for both whorls. The outer stamens were also 
present as small outswellings. Inflorescence diameter 
approximately 2300 pm

Figure 88: Floral score 5; SH0301 28, an inflorescence 
from a plant of unknown age, sampled during week 26 
(late April) with the spathe removed. Individual florets 
were not yet apparent on the lower sides of this 
inflorescence. Cymes were developing and they were 
subtended by bracts around the base of the inflorescence, 
though the cymes themselves showed little recognisable 
features.

C -  cyme 
B - bract

Figure 89: Floral score 5; SH0301 28 as above, SEM 
showing the other side of the same inflorescence. Here 
the bracts (or bracteoles) are well-defined, protecting 
groups of floret primordia. It was unclear whether these 
were the bracts subtending the inflorescence, or bracteoles 
subtending cymes. Inflorescence width was 
approximately 1300 pm

S -  spathe (removed)
B -  bract/bracteole 
F -  floret
A -  floret near apex with tepal primordia developing

Figure 90: Floral score 7/8; Plant of unknown age 
sampled from Cornwall in March 2002, and dissected 
immediately (SH0302 23). Both whorls of tepals were 
visible as were both whorls of stamens. However, the 
tricuspidate filaments were not developed, neither were 
the carpels. The inflorescence measured approximately 
2500pm in diameter. The seam separating the larger and 
small parts of the inflorescence was still visible. 
Development continued to be more or less symmetrical 
about the developmental axis 
T -  tepals 
S - stamen
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Figure 91: Floral score 7/8; SH0301 34 plant of 
unknown age sampled from Cornish population in 
March 2001 and dissected in week 28 (early May). 
This SEM showed the relationship between bracteole, 
floret and bulbil; the floret arises on a stem from the 
inflorescence receptacle, with the bulbil developing at 
the base, the whole structure being protected by a 
bract. The relatively small size of the bulbil (200 pm 
diameter) suggested that it did not develop until after 
the floret (approximately 1400 pm including pedicel) 
was well developed, and may reflect the 
developmental pattern of the cyme, with each later 
floret arising in the axil of the first floret, later 
primordia arising in this way being diverted to 

vegetative reproduction and forming bulbils.
B -  bracteole 
P -  pedicel 
T - tepals

Figure 92: Floral score 7/8; SEM of half of the 
apical floret SH0301 34, plant of unknown age 
examined in week 28 (early May) of the growth 
season. The two whorls of stamens had developed 
with the anthers swelling and the locules visible, but 
the filaments had not yet developed in either whorl 
o f stamens. There was some swelling of tissue 
where the carpels will arise, but no recognisable 
organs.

T -  tepal 
S -  stamen 
C -  carpel primordia

Figure 93: Floral score 9; plant of unknown age 
sampled from Cornwall in March 2001, dissected in 
week 26 of growth season (late April) SH0301 46. 
Although apical florets were well developed showing 
tepals and stamens, with carpels arising, the flanking 
primordia were still relatively unformed, with floret 
primordia showing little definition. Bracteole 
primordia were apparent around some of the floral 
primordia.

F -  floret 
B - bracteole
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Figure 94: Floral score 9; Plant of 
unknown age sampled from Cornwall in 
March 2001, and dissected immediately 
(SH0301 D5). This LS showed the 
development of bulbil and floret 
primordia. The shape was clearly 
different, with the floret primordia 
broadening at the top for the 
development o f the tepals, whilst the 
stem narrows and elongates. The bulbil 
was rounded, wider in the middle than 
the top, with layers beginning to define 
indicating the formation of layers. The 
apical shoot of the bulbil was enclosed 
within this storage tissue. The bulbil 
appeared to be developing in the axil of 

the floret. To the left was another floret developing, whilst to the right is the subtending bracteole. 
Scale bar approximately 1000 pm.
F -  floret 
B -  bulbil
R -  receptacle of inflorescence

Figure 95 : Floral score 10, plant sampled from 
Cornwall in March 2001, and dissected in week 30 
(late May). This SEM (SH0301 13 flanking floret) 
shows a floret with outer tepals, but no further floral 
organs developed. However, it was part of an 
inflorescence where the apical floret showed all the 
floral organs including carpels (score 10). This 
illustrated the range o f development in the 
inflorescence, with the apical floret being 
consistently considerably more advanced than the 
flanking florets. Scale bar approximately 500 pm

Figure 96: Floral score 10; mature 
apical floret SH0301 13 sampled week 
30 (end May); anthers were well 
developed, but the filaments had not 
yet elongated. The carpels had 
developed into bilocular ovaries and 
the style was beginning to elongate.

O -  ovaries 
S -  style 
A - anthers
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Figure 97: Floral score 10; SH0301 59, adaxial and abaxial surfaces of tepal. Note that the adaxial 
surface is smooth, featureless, whilst the abaxial surface is papillate, this being a defining 
characteristic of the ampeloprasum species, the larger papillae forming ‘ribs’ running the lengthwise 
along the tepal, It was later noted (floral score 11) that the colour of the tepals initially developed in 
these papillae.

Figure 98: Floral score 10; 
Plant of unknown age sampled 
in Cornwall in March 2001, and 
dissected in week 32 (early 
June) (SH0301 59). The 
tricuspidate filaments (inner 
whorl) were folly developed, 
shown against the subtending 
tepal. The dorsifixed anthers 
were borne on the middle 
shorter filament, whilst the outer 
filaments were extremely 
elongated but did not develop 
anthers. Stamens in the outer 
whorl were borne singly without 
the extra filaments, but were 
otherwise similar in size and 
morphology.

A -  anther
F -  extended filament 
T - tepal
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Figure 99: Views o f carpel development (floral score 10/11).

A: Plant o f unknown age sampled from Cornwall in March 2001 and dissected in week 28 of growth 
season (early May) (SH0301 2). Both whorls o f anthers were formed and distinct from each other, but 
the filaments had not yet elongated in either whorl. There was no gynoecium apparent. Scale bar 
approx. 2 mm

B: Plant of unknown age sampled from Cornwall in March 2001 and dissected in week 30 of growth 
season (late May) (SH0301 19). The carpels arose as three distinct primordia curved in towards a 
central fourth primordia -  the developing style. This morphology was reminiscent of the formation 
of bulbils and bulblets as well as the vegetative apex. Scale bar approx. 2 mm

C: Plant of unknown age sampled from Cornwall in March 2001 and dissected in week 30 of the 
growth season (late May) (SH0301 13). It was no longer possible to differentiate between the outer 
and inner stamens, the anthers being similar in size and development, and the filaments not yet 
elongated. The carpels had become con-joined into one almost spherical gynoecium with the style 
primordium (as observed in ‘B’) fully enclosed within the gynoecium. Scale bar approx. 2 mm

D: Plant of unknown age sampled from Cornwall in March 2001 and dissected in week 32 (early 
June) (SH0301 59).The bi-locular nature o f the carpels was reflected in the outward morphology, with 
the three carpels each contributing to the gynoecium. The terete style was protruding. By this stage 
the carpel was approximately 1000 pm in diameter. The tepals were not yet coloured in this floret, 
therefore the floral score was still 10, despite the apparent maturity of the floral organs.
(A -  C digital camera through dissecting microscope, D SEM)
OS -  outer stamens 
IS -  inner stamens 
C -  carpels 
S - style
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Figure 100: Floral score 10; Plant of unknown age sampled from Cornwall in March 2001, and 
dissected in week 30 (late May) (SH0301 27).

View of inflorescence from the apex and the lateral (scale bar 10 mm) view plus view into the apical 
floret (approximately length 4 mm) showing the development of the terete style, and the floret 
bisected laterally showing the extended filaments of the inner stamens (scale bar 2 mm).

Figure 101: Plant as above, showing outer tepals and inner tepals of apical floret. The green central 
vein is noticeable, but the pigment has not yet developed in the tepals. Outer tepals were 
obovate/truncate whilst the inner tepals were oblanceolate.
OT -  outer tepals 
IT -  inner tepals
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Florets were observed to develop without bulbils, but bulbils did not to develop without 

florets, supporting the hypothesis that bulbils develop as the lower part o f the cyme which 

has reverted to the vegetative state. There may be one or more florets, and one or more 

bulbils within each bracteole. No attempt was made to quantify the numbers o f florets and 

bulbils within each bracteole, as it was not possible to ascertain that bulbil development 

had ceased until the inflorescence was fully developed, at which time the bracteoles were 

difficult to identify due to desiccation and decay (Figure 102).

Figure 102: Floral score 10; A: Bract with one floret and one bulbil Scale bar approx. 2mm. B: floral score 
9 (SH0301 19) Bract with two florets and an immature bulbil. This shows the storage tissue arising around 
the inner shoot before closure. Scale bar approx. 1 mm. C floral score 10 (SH0301 13) 2 bulbils and 2 florets 
within one bract, the storage tissue is still not fully closed around the shoot on the largest bulbil. Scale bar 
approx. 0.5mm. D: (SH0301 34) Bulbil developing within bract. Scale bar approx. 0.5 mm 
F ~ floret B = bulbil,
Br = bract S = shoot.
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Figure 103: Floral score 11; all floral 
organs were developed and tepals were 
coloured SH0301 53. The inflorescence 
was approximately 14.4 cm height x 7.5 
cm wide including secondary 
inflorescences. Secondary inflorescences 
were well developed on sturdy scapes, 
and the spathe was desiccated but still 
attached. Bulbils were green and well 
developed, the apical dome being fully 
enclosed (compare with floral score 10 
where neither florets nor bulbils are fully 
coloured). Traces of bracts were still 
apparent as papery layers around bulbils. 
Anthers and style were exserted in all 
mature florets, though the tepals remain 
unopened.

Secondary inflorescences had small 
numbers of bulbils and/or florets, smaller 
than those on the main inflorescence, and 
developing a little later. In this figure, the 
anthers were not exserted in the 
secondary inflorescences, while those of 
the main inflorescence were exserted.

HHHHI

Figure 104: Floral score 11; A -  inner 
tricuspidate stamen attached to inner 
tepal. The central filament carried the 
anther, whilst the outer two grow 
approximately two-three times longer, 
but remain crumpled. Their function 
may include protection of the 
developing organs, either mechanically 
or by contributing to the humidity. B - 
the fully developed carpels and 
extended plain style, all tepals and 
stamens removed.

Scale bar approximately 4mm.
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6.3.4 Inflorescence development in A. ampeloprasum var. ampeloprasum 

Only one o f  the plants sampled was floral, JSOO D amp., sampled in week 30 (21 5 

01) floral score 9. This had ten leaves prior to spathe development, with three 

daughter bulbs forming from the previous two lateral buds (Figure 105).

Figure 105; Floral score 9 var. ampeloprasum. This 
species produces three daughter bulbs form each previous 
lateral axillary bud. Apart from this and the multiple 
bulblets produced on rhizomes from axillary buds, the bulb 
is indistinguishable from var. babingtonii. The largest 
daughter bulb in this figure is approximately 10 mm from 
base to apex. (Scale shows cm and mm)

Figure 106; the spathe was 
indistinguishable from those of var. 
babingtonii. (Scale in mm)

Figure 107; the inflorescence was similar to that 
of var. babingtonii, with florets developing all 
over the inflorescence, the apical florets 
developing ahead of the lateral. There were no 
bulbils and few bracteoles could be seen. (Scale 
in mm)

Figure 108; the apical floret resembles that of var. 
babingtonii. The stamens were in two whorls 
aligned with the two whorls o f tepals. The carpels 
were developing at this point, though the filaments 
had not yet extended. Scale bar approx. 2 mm
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6.3.5 Bulbil/floret numbers

The number o f  bulbils on each inflorescence was highly variable (Figure 109).

0 -1 0  11 -20  21 -30  31 -40  41 -50 51 -60  61 -70 71 -80 81 -90 91 -
100

Range

Figure 109: Numbers of bulbils on inflorescences collected from Cornwall (SH99). Mean 45.5 ±
1.95; median 44, n = 49

Treu (1999) recorded means o f  49.5+ 2.0 (population l,n  = 70), 45.1+4.8 (population 

38, n = 10) and 60.6+3.3 (population 39, n = 10). When these means were compared 

with those calculated for SHI 101 (three sub-populations from Population 1), and the 

regression co-efficient calculated, there was a weak positive correlation (R = 0.57) 

(Appendix 16). This probably reflected the larger inflorescence size, but factors such 

as the timing o f the signals to produce bulbils as an alternative to florets must be
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considered in future work. These could relate to environmental influences such as 

temperature, light exposure, nutritional availability etc.

The relationship between the number of bulbils and florets produced in 1999 and 

2001 was also examined, using non-parametric ANOVA (Barnard et al., 2001) but 

there was no significant difference (Appendix 16) (p = 0.05). Similarly the 

relationship between the numbers of bulbils produced in the three sub-populations of 

Population 1 in 2001, were examined, but no significant difference was found 

(Appendix 16). Therefore, there was no difference in the numbers of bulbils from 

plants grown in three different environments, suggesting that environmental 

differences make little or no difference to bulbil numbers. When the mean weight of 

the bulbils in these three sites was tested for significance, again there were no 

significant differences.

6.4 Discussion

Plants must be exposed to sufficient low temperatures for sufficient time to have 

been vernalized, and this is unlikely to have happened before January. Because 

Inflorescence development is well advanced by March, February, (as predicted in 

Figure 68), is likely to be when floral determination occurs.

Generally, the first daughter bulb was enfolded in the leaf axil and was 

morphologically visible after the tenth true leaf that, in turn, was produced after the 

initial bladeless sprout leaf. This was followed by the eleventh leaf, which arose at 

180° angle of divergence from the previous leaf, with the second daughter bulb
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arising in the axil of this leaf. The spathe was produced adjacent to the second 

daughter bulb, arising in a horseshoe shaped primordium similar to that formed by 

developing leaves, which rose up and enclosed the developing inflorescence.

Floret primordia emerged first on the summit of the inflorescence, simultaneously 

with the cymes that arose on the flanks as irregular shaped outswellings. Bracts 

arose just above the spathe around the circumference. Bracteoles developed on the 

inflorescence, enclosing both florets and bulbils. However, bulbils were not 

recorded outside bracteoles, although florets frequently arose independently of 

bracteoles. The number of bulbils and florets within a bracteole varied with up to 

four florets and up to two bulbils. No attempt was made to quantify this relationship, 

as it was not apparent whether production of bulbil/floret primordia had ceased in 

early inflorescences. Conversely, waiting for full maturity to develop led to 

unreliable data, as bracteoles had desiccated and in some cases had been shed. This 

made identification of individual cymes difficult to ascertain with any accuracy.

Floral organs developed outer whorls first. The inner stamens are tricuspidate, the 

anthers attached to the central shorter filaments. The outer cusps were crumpled 

within the floret, possibly being unable to emerge as the florets never fully opened. 

These cusps frequently reached several millimetres in length. Carpels begun to 

develop before the cusps were fully developed. They had three ‘U’ shaped 

primordia, which bent around to form two ovules in each carpel. When they were 

joined, the plain, terete stigma developed, protruding with the anthers beyond the 

tepals.
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Var. ampeloprasum developed similarly, but without the bulbils. Leaf number was 

similar, as was the physiology o f the inflorescence as far as could be ascertained 

from one inflorescence.

Floret and bulbil number in var. babingtonii was highly variable, probably depending 

at least partly on the size of the inflorescence, which may be related to the size of the 

bulb and the accumulation of assimilates. No factors were identified as contributing 

to bulbil numbers per inflorescence, or mean bulbil weight, or the bulbil/floret ratio.
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7.0 Expression of a putative homologue to the Arabidopsis meristem 
gene, LEAFY

The LEAFY gene and its homologues are central to the flowering processes in a number 

of plants, although its precise role varies with genus and species (see 1.8.3). 

Examination of expression of this gene in A. ampeloprasum var. babingtonii could 

improve understanding of flowering processes in general in this species, and in 

particular, strengthen the suggestion that bulbil production in Allium species may be 

indicative of a reversion to the vegetative state (Aura, 1963; Brewster, 1994; 

Kamenetsky and Rabinowitch, 2002).

DNA was extracted from A. ampeloprasum var. babingtonii, purified and stored at - 

80°C. No LEAFY primers for Alliums were available; therefore already available 

primers designed from a highly conserved area of RFL (Rice LFY/FLO homologue) 

(Kyozuka et aL, 1998) were used to isolate a partial putative LFY homologue, using the 

Polymerase Chain Reaction (PCR). These were chosen, as rice (Oryza sativa) is closer 

to Allium spp. being also a monocot, than other species for which LFY homologues have 

been isolated. Examination of expression of RFL in rice using these primers (Kyozuka 

et al., 1998) showed that it was expressed predominantly in very young panicles, but not 

in mature florets, mature leaves or roots. It was also expressed in epidermal cells in 

young leaves at vegetative growth stages and was thought to be involved in panicle 

branching. Transgenic Arabidopsis plants constitutively expressing RFL were used to 

test function. In most 35S-RFL Arabidopsis plants, the inflorescence meristem was not 

transformed to floral meristem. Instead, cotyledon, rosette leaf, petal and stamen
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development were severely affected, showing that whilst its function was distinctly 

different from that of LFY in Arabidopsis, where it was first characterised, its role in 

floral development was still significant (Kyozuka et al, 1998).

PCR products from amplification of A. ampeloprasum var. babingtonii DNA using these 

primers were checked by gel electrophoresis, then eluted, and ligated into the pGEM® 

Vector and transformed into E. coli. Resulting colonies containing the ligated plasmids 

were screened by PCR amplification with M l3 F and R primers, and the products 

checked by gel electrophoresis. Those with appropriate sized fragments were 

sequenced, and checked for homology with known LEAFY sequences.

A specific primer pair was then designed, and used to examine expression of the putative 

LEAFY homologue in vegetative and floral apices, and leaf material of A  ampeloprasum 

var. babingtonii by RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction).

7.1 Methods and materials

7.1.1 Degenerate primers used to locate a putative LEAFY homologue

Kyozuka et al. (1998) designed primers {RFL), to amplify rice FLO/LFY-like genes in 

rice (Oryza sativa) basing them on highly conserved sequences found in FLO/LFY 

(Figure 110A and B).
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R F L  M D PN D -A FSA  AHPFRW DLGP P A P A P V P P P P  P P P P P P P P A N  V -P R E L  E ELVAGYGVRM 5 5
LFY * * * E G F T S G L  FRW NPTRALV Q * * p * * * * * L  Q Q Q *V T*Q TA  AFGM R*GGL* G * F G P * * I * F  6 0
FL O  * * * DAFLFKW D *R T A L P Q P N  R L L D A * A *  * * * * * * Q A * S Y S  MR* * * *G G L* * * F Q A * * I* Y  6 0

R FL  S T V A R IS E L G  FT A ST L L A M T  ERELDDMM AA LAGLFRW DLL LG ERFG LRA A  LRAERGRLM S 1 1 5
LFY  Y * A * K * A * * *  » * * * * * V G * K  D E * * E E * * N S  * S H I * * * E * *  v * * * Y * I K * *  V * * * * R * * Q E  1 2 0

FLO  Y *A *K *A * * * * * V N * * * D M R  D E * * * E * * N S  * C Q X F * * * * *  V * * * Y * I K * *  V * * * * R * I D E  1 2 0

R FL  LGG---------- RH HGHQ SG STV D  G A SQ — E V L S  DEHDMAGSGG MGDDDNGRRM VTGKKQAKKG 1 6 8
LFY  E E E E E S S R * R  *L L L *A A G D S  * T H H A L D A ** Q *D *W T *L S E  EPVQQQDQTD AA*NNGGGGS 1 8 0
FLO  E E  V R *R  * L L L  G D - -T T H A L D A *  * Q E  * L S E  E P V Q Q E --K E  AM*SGGGGV* 1 6 5

R FL  S  AARKG KKARRKKVDD LRLDM QEDEM  DCCDEDGGGG S E S T E S S A G G  GGGERQREHP 2 2 4
LFY  GYWDAGQGKM * * QQQQRRRK K PM L T SV E T D  EDVNEGEDDD GMDNGNGGS* L * T * * * * * * *  2 4 0
FLO GVWEMMGAG* R * * PQRRRKN YKGRSRMASM E E - DDDDDDD ETEGAEDDEN I V S * * * * * * *  2 2 5

R FL  F W T E P G E V A  RAKKNGLDYL F H L Y E Q C R L F  LLQVQSMAKL HGHKSPTKVT NQVFRYAKKV 2 8 4
LFY  * G * * * * * * * *  * * * * * * * * D *  * *  * * * T I * * D  R * E * C * * * * *  ■ * ■ * * * * * s  3 0 0
FLO  * G * * * * * * * *  * * * * * * * * D *  * I * * * T I * * E  R * E * C * * * *  * *  * ■ * > * * * - *  * * a  2 8 5

R F L  G A SYINKPKM  RHYVHCYALH C L D E E A SD A L  RRAYKARGEN VGAWRQACYA PL V D ISA R H G  3 4 4
LFY  * * * * * * * * * *  * * * * * * * * * *  * * * * * * * j j * *  * * * p * £ * * * *  * * g * * * * * * E  * * * j j *Aq * * *  3 6 0
FL O  * * n * * * * * * *  * * * * * * * * * *  * * * * A * * N * *  * * * F * E * * * *  * * * * * * * * * K * * * a *a » * q *  3 4 5

RFL FDIDAVFAAH PRLAXWYVPT RLRQLCHQAR SSHAAAAAAL PPPLF------   389
LFY  * * * s * * * * * *  K * * * * * * L E *  NNAV* * * * * * V G G IS C T G S S  TSGRGGCGGD D LR F 4 2 4
FLO  W * * * T I * N * *  * * * S * *  * * * *  JR_* * * * * *a e * * * A * V * * T S S  I T G   G G -P A D  H L P F  3 9 6

Figure 110A: Comparison of amino acid sequences encoded by RFL, FLO, and LFY. Asterisks show 
conserved amino acids. Blue areas show regions that RFL primer sequences were derived from. Adapted 
from Kyozuka et a l 1998).

RFL F 5 ’ -T AC/T AT A/C AAC/T AAA/GCC A/G/C/T AAA/GAT G-3 ’

RFL R 5 ’-AGCC/TTG/TGTG/TGGG/C/AACA/GTACCA-3 ’

Figure 110B: RFL primers used to amplify rice gene RFL and for amplification of the putative LFY 
homologue from A. ampeloprasum var. babingtonii. (ABLFY Allium ampeloprasum var. babingtonii LFY)

The primers were obtained from Sigma-Genosys.

7.1.2 Extraction o f A. ampeloprasum var. babingtonii genomic DNA 

The CTAB method o f extraction used was initially based on Saghai-Maroof et al. (1984) 

and used by Treu (1999) with var. babingtonii (Appendix 17). However, initial work to 

locate a LFY homologue produced inconsistent results. Additionally, the DNA degraded
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during storage at 4°C, -20°C and -70°C. The specificity of the primers was varied, by 

altering both annealing temperature and concentration of MgCb (data not presented). 

However, results were still inconsistent. Inhibitory products may have been present in 

the extraction; therefore, the DNA was cleaned with Sepharose CL6B (Appendix 17). 

Test reactions were carried out using tubulin primers (Tub pos 63 F: 5’ ATG AGY GGY 

GTS ACS TGC T and Tub neg 2 R: 5’ GTA GGA NGA GTT CTT GTT CTG, data not 

presented), and including tobacco DNA (Nicotiana) in combination with Allium DNA as 

well as each sample of DNA alone, to assess the quality of the extracted DNA. The 

products were examined by gel electrophoresis and viewed under UV (ultraviolet light). 

Tobacco DNA alone produced clear banding, but in combination with Allium showed 

much fainter PCR products, confirming the presence of contaminants in the var. 

babingtonii DNA that inhibited the reactions. Therefore, a new extraction of DNA from 

var. babingtonii was further purified using equilibrium centrifugation in Caesium 

chloride/Ethidium bromide (Appendix 17). A vegetative plant was selected at random 

from stock grown at UCW (SHOO 9B), and 3 g of young leaf was excised over ice to 

prevent degradation. Young leaf was chosen, as it was less likely to have suffered 

damage or contamination by other microorganisms, being protected within enfolding 

older leaves. This yielded approximately 150 ng/pl genomic DNA as judged by gel 

electrophoresis. When checked using gel electrophoresis, the band was clear with no 

visible degradation. Therefore, this DNA was used for further PCR amplifications.
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7.1.3 Identification of a putative LEAFY homologue

7.1.3.1 PCR amplification reactions

The Polymerase Chain Reaction (PCR) allows a given nucleotide sequence to be 

selectively and rapidly replicated in large amounts from any DNA that contains it 

(Alberts et al., 1998). Short primer oligonucleotides are designed to provide a primer on 

each strand of the original double stranded DNA and they are hybridized to the DNA 

template at the beginning and end of the desired DNA sequence. DNA polymerase is 

then used to copy DNA template in repeated rounds of replication (Appendix 17).

Genomic DNA (150ng/pl) extracted as described above was added to a PCR mix 

containing 1 pi RLF F and R (lOOng/pl in SDW) and 45 pi Reddymix™ PCR Master 

Mix (Abgene® AB0575/LD). Reactions containing different amounts of template DNA 

and appropriate controls were set up:

• DNA (150 ng/pl) x 2 pi + 1 pi each RFL F and R
• DNA (150 ng/pl) x 3 pi + 1 pi RFL F and R
• DNA (150 ng/pl) x 2 pi + 1 pi each Tub pos 63 and Neg2
• No DNA + 1 pi each RFL F and R
• Arabidopsis DNA x 2 pi + 1 pi each Tub pos 63 and Neg2
• Where required this reaction volume was made up to 50 pi with SDW.

The mixture was amplified using a Peltier Thermal Cycler PTC-200 MJ Research (as 

follows:

Programme for amplification of A. ampeloprasum var. babingtonii genomic DNA or cDNA with 
ABLFY degenerate or specific primers

■ Denaturing at 94°C for 4 min
■ Denaturing at 94 for 0.30 s }
■ Annealing at 50°C for 0.45 s }
■ Extending at 72°C for 1 min 20 s } these 3 steps x 34
■ 72°C for 7 min
■ mixture held at 4°C

(Programme courtesy of Dr. D. Sorrell, University of Wales)
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Tubulin primers Pos 63 F and Neg 2 R were used as positive control with known 

Arabidopsis DNA and SDW as a negative control. The products were checked using gel 

electrophoresis, and viewed under UV.

7.1.3.2 Elution

The products were cut out of the gel under aseptic conditions, and the DNA extracted 

using the QIAquick Gel Extraction Kit following the manufacturer’s protocol (Appendix 

17). The same size products from both DNA concentrations were combined.

7.1.3.3 Ligation

Fragments were ligated into the pGEM®-T Vector System 1 (Promega, A3600), using 

the supplied protocol (Appendix 17). These vectors had been prepared by cutting with 

EcoKV and adding a 3’ terminal thymidine to both ends. The single 3’-T overhangs at 

the insertion site improving the efficiency of ligation of the PCR product, by preventing 

re-circularization of the vector and providing a compatible overhang for the single 3’-A 

overhangs of the PCR product.

7.1.3.4 Transformation

Competent XL-1 Blue sub-cloning grade cells (Stratagene) were defrosted on ice and 50 

pi was placed in each of two 14 ml polypropylene Falcon tubes. Competent cells have 

been soaked in ice-cold salt solution (e.g. 50 mM CaCL), which improves binding of 

plasmids to cell walls. Two micro litres of ligated plasmid was added to each tube, one 

containing the large fragment, one containing the small fragment. These were incubated
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for 20 min on ice, and then heat shocked for 45 s at 42 °C. This stimulates the transport 

of the plasmids into the cell. After incubating for a further 2 min on ice, 0.9 ml SOC 

(Appendix 17) was added and the mixture placed in a shaking incubator at 225-250 rpm, 

37°C, for 30 min. The resulting cultures were plated (200 jxl) onto LB plates (+ 

Ampicillin + Xgal + IPTG) prepared as Appendix 17. Two plates were prepared for 

each size fragment. These were incubated for 17 h at 37°C. The plasmids possess a 

gene conferring antibiotic (ampicillin) resistance; therefore, any cells not containing the 

plasmid are destroyed by the ampicillin in the medium. The E. coli cells used have a 

mutation resulting in the inability to synthesise the a subunit of P-galactosidase. The 

plasmids also possess the gene for this subunit, but it is cleaved when the plasmid is 

opened for ligation. Therefore, cells that have not ligated the supplied insert, can 

synthesise P-galactosidase, whilst those that have been transformed without the insert 

cannot. X-gal (5-bromo-4-chloro-3-indoyl-P-Dgalactopyranoside) is an analogue of 

galactose, which is also metabolised by p-galactosidase. It is incorporated into the 

substrate, where it is metabolised by able colonies to give a blue colour. Therefore, 

white colonies possess the plasmid with the desired insert, and blue colonies do not.

7.1.3.5 PCR to amplify the fragments

For each white colony, plus one positive and one negative (blue) control, the reaction 

mixtures containing M13F and R primers (Genosys lOpM) were prepared (Appendix 

17). Five colonies with the large insert and five with the small insert were selected.

Each colony was touched with a sterile pipette tip, which was then stirred into the 

reaction mixture, then the remainder used for liquid cell culture to maintain the cells.
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The products were amplified by PCR using M l3 F: 5’ GTAAAACGACGGCCAGT and 

M13 R: 5’AACAGCTATGACCATG which bind to the vector sequences, then checked 

on a gel.

7.1.3.6 Sequencing

The QIAprep Spin Plasmid Kit (Quiagen 27106) was used to extract plasmids from the 

transformed cells, in preparation for sequencing following the manufacturers’ protocol 

(Appendix 17). The cultures were centrifuged, then the pellets resuspended in buffer P2. 

Buffer P2 (NaOH/SDS) solubilizes and denatures unwanted cell components, then is 

neutralized with a high salt buffer (N3) to precipitate further unwanted components.

The product is centrifuged, and then applied to a silica-gel membrane that selectively 

adsorbs the plasmid DNA in high salt buffer. The membrane is washed twice to remove 

salts etc, by centrifugation, then the product eluted in a low salt buffer: Buffer EB 

(Appendix 17). The product was checked on a gel to confirm the presence of the 

plasmid (3-4 kbp), and the remainder sequenced using 3100 Genetic Analyser (Applied 

Biosystems).

Initial sequences were confused, suggesting mixed colonies. Therefore, SI was re­

plated, grown on as before for 17 h at 37°C, and single colonies re-selected, amplified 

by PCR (samples 1 -  10) as 7.1.3.5, plasmids extracted and sequenced as 7.1.3.6. The 

resultant sequences were aligned using the Seqman module of Lasergene (DNAStar). 

Similar sequences were compared with those of known LEAFY (and LEAFY homologue) 

sequences using BLAST (Basic Local Alignment Search Tool, National Centre for
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Biotechnology Information http; www.ncbi.nlm.nih.gov/blast. This gave information 

about the homology of the putative LFY homologue and its relationship with known 

sequences.

7.2 Results

7.2.1 Extraction of PCR-clean DNA from A. ampeloprasum var. babingtonii

High molecular weight DNA was successfully extracted from the A. ampeloprasum var. 

babingtonii material. The size of the fragment was greater than 12 kb and was estimated 

to be at a concentration o f 150 ng/pl. The band was precise, with no smearing, 

demonstrating no degradation of the DNA (Figure 111).

Figure 111: Extraction of DNA from A. ampeloprasum var. babingtonii 
using Caesium chloride purification (Appendix 17). Lane 1, 1 kb ladder; lane 
2 1 pi genomic DNA; lane 3 1 pi made up to 1/10 dilution with SDW 
genomic DNA

7.2.2 PCR amplification of putative LFY  homologue from A. ampeloprasum var. 
babingtonii

Two PCR products were obtained from amplification o f the A. ampeloprasum var. 

babingtonii genomic DNA (Figure 112) of approximately 250 bp and 300 bp. Both 

products were larger than the fragment obtained by Kyozuka et al., (1998) in rice (235 

bp), which may reflect sequence divergence. Since var. babingtonii is hexaploid, (Treu, 

1999) it was possible that the TFT homologue may be present as more than one allele, 

which could be reflected in the two different sizes of PCR products. Increased product
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yield was obtained with higher levels o f template (3pl compared with 2pl, lanes 3 and 2 

respectively), indicating no inhibition o f PCR at this concentration. There was no 

contamination as indicated by the SDW control, and good product yield with the tubulin 

primers. These produced very bright bands, probably as a result of multiple genes of the 

(3-tubulin family in the genome.

Figure 112; DNA extracted from A. ampeloprasum var. 
babingtonii, and amplified with ABLFY F and R. 
Bands viewed under UV. Lanes numbered left to right; 
Lane 1 - 1 kb ladder
Lane 2 - genomic DNA 2 pi + ABLFY F & R 
Lane 3 -  genomic DNA 3 pi + ABLFY F & R 
Lane 4 -  genomic DNA 2 pi + Tub pos 63 and neg 2 
(+ve control)
Lane 5 -  no DNA = ABLFY F & R (-ve control)
Lane 6 -  Arabidopsis DNA + Tub pos 63 and neg 2 
(+ve control)
Var. babingtonii DNA with ABLFY F and R shows 

two bands at both concentrations, at approximately 245kbp and 298 kbp.

7.2.3 Successful amplification of putative LFY  homologue clones by colony PCR

The two PCR product sizes above (7.2.2) were cloned separately and colony PCR used 

to identify positive colonies. Products would necessarily be larger than the inserts, 

because these primers hybridise to M13 sites outside the ends o f the insert (insert + 251 

bp). This PCR successfully amplified ten inserts, 5 each o f the large and small 

fragments (Figure 113).

I 3 4_ 5 -ve .Ll 2 3 4 5 Figure 113: Gel electrophoresis of PCR products following
amplification of inserted sequence with M13F and R primers. 
Reading left to right, small fragment SI -  5, -ve controls with 

i  blue colony and water, large fragment LI-5. Lower bands were 
primer dimers.
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There was clearly a size difference in some inserts, both in the small and the large 

fragment clones. The SDW -ve control showed that there was no contamination, but the 

blue colony should have produced a band of approximately 250 bp.

7.2.4 Sequencing of putative LFY homologue clones

Initial sequencing of clones from large and small fragments gave mixed results 

suggesting contamination of the colonies. Therefore, SI was re-cultured, and 10 

colonies selected. These were amplified as previously, and six of them (clones 1, 4, 5, 8, 

9 and 10) were sequenced. M l3 F and R primers were used to sequence the clones in 

both directions (Appendix 18) and the clones were found to align closely with each other 

(Figure 114).

5 0  1 0 0  1 5 0  2 0 0  2 5 0
■1....  — .... - I ..,. — , -L. .1 - J _

f  1 V.O A  a \  1

'—

F T v r T F n -  1 q p n f i s ? ' n i  I..

e u x  u e v t n  • d c q  ( x ^  x  * j  ...........
—c u x .  w x i  i x .  ^ v q   ̂ x / b O  » ) ■ "

E D I T E D - 2 . S E Q ( 1 > 2 3 7 )  ^ -------------

■ ''•w
* 2 *

Figure 114; Seqman programme aligning sequences from clones 1,45 89 and 10 (F and R) (small 
fragments). Note that 10 F and R is shown as EDITED 1 and 2. For full sequences see Appendix 18. All 
forward and reverse sequences for each clone were checked and found to be identical. All sequences 
produced unambiguous traces, leaving little room for doubt as to sequences. Each fragment was checked 
for completeness by identifying the plasmid sequence at each end of the insert.

Forward and reverse sequences were checked and found to be identical. All the DNA 

sequences produced strong, unambiguous traces, however the sequences were not 

identical to each other, and homology ranged between 69% and 94 % (Figure 116).

189



Since var. babingtonii is hexaploid, it was possible that these clones may represent 

different alleles. The sample comprised DNA from one plant only, (SHOO 9B) (Figure 

115), so this suggested that either the plant contained six different alleles of the putative 

LFY gene or that the genetic variation noted by Treu (1999) was the product of high 

levels of genetic instability. It is also possible that the situation in this species is more 

complex, and that there is more than one LFY homologue. A further alternative would 

be PCR error. This is possible since high fidelity Taq polymerase was not used for the 

amplification step.

DNA 
extracted 
from one 
plant

PCR with 
degenerate primer 
sRFL producing 2 
product sizes, large 
and small

Elution, ligation, 
transformation of the 
two products 
separately

One small fragment 
colony recultured 
and sequenced

Sequencing of 
clones from large 
and small 
fragments

PCR amplification 
of cloned inserts

Six fragments 
identified

Variation 
Genes 
Alleles 
Clones 
PCR error
9

Figure 115: Summary of experimental methods for the extraction of DNA and sequencing of the putative 
LFY homologue
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All six fragments showed high levels of consensus (Figure 116).
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The fragments showed high levels of similarity with known sequences for LFY and LFY 

homologues/orthologues. For example, clone 1 was 96% identical to a LFY gene 

fragment in Silene coeli-rosa, 83% similar to Arabidopsis thaliana LFY gene fragment, 

and scored over 108 hits, all of which were LFY (homologue/orthologue) fragments or 

proteins (BLAST database). It therefore seemed likely that the fragments located with 

the ABLFY degenerate primers were part of larger LFY homologues, with more than one 

LFY gene, or up to six alleles of a single gene represented.

The 236 bp fragments were translated for comparison with other LFY homologues. 

However the ORF was interrupted in three of the clones (clones 5, 8 and 9) suggesting 

that some of the divergence in these clones was due to PCR error. The amino acid 

sequence of the remaining clones was identical, again indicating multiple genes or 

multiple alleles of a single gene.

The 78 amino acid translated sequence was aligned with the rice RFL sequence (Figure 

117). As expected, the A  ampeloprasum var. babingtonii sequence aligns with amino 

acids 288 to 365 of the RFL sequence.
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Figure 117: Alignment of the partial A. ampeloprasum var. babingtonii putative LFY translated sequence 
with the full rice RFL sequence, using Clustal W.

The translated sequence was further compared to six other LFY homologues over the 

same region of the protein. The genes showed high levels o f homology ranging from 

77% to 96 % (Fig. 118) with the consensus showing 57 amino acids homologous to all 

(Fig. 119).
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Figure 118: Percent similarity of amino acid sequence for ABLFY fragment, compared with the 
homologous fragment from other known sequences. (Petunia inflata AF030171, Souer et al., 1998; 
Arabidopsis thaliana NM 124479 Weigel et al., 1992; Eucalyptus grandis AY640314 Southerton et al., 
1998; Brassica oleracea Z 18362, Anthony et al., 1993, Oryza sativa Kyozuka et al., 1998, Antirrhinum 
majus M55525, Coen et al., 1990.)
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Figure 119: Amino acid sequence for ABLFY fragment aligned with six other sequences of LFY 
homologues over the same region of the protein, using ClustalW (see legend to Fig. 118 for sequence 
details).

A phylogenetic tree was used to compare the translated sequence from the ABLFY 

fragment with amino acid sequences from the same region of a selection of known LFY
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homologues (Figure 120). This showed the fragment to be most similar to a sequence 

from Petunia inflata (AF030171, Souer et al., 1998) and much more distant from the 

corresponding sequence in Oryza sativa (Kyozuka et al, 1998). This was surprising, as 

monocots might be expected to be more similar to each other than to dicots. However, 

as the fragments were all derived from the highly conserved region of the gene, firm 

conclusions about the relationships must await sequencing of the whole gene.

---------------  Allium

— Petunia

Antirrhinum

Eucalyptus

R

r — Arabidopsis

0.1 Brassica

Figure 120: Phylogenetic tree using the Clustal method with Weighted residue weight table. This 
compared the cloned sequence from Allium ampeloprasum var. babingtonii with other LFY homologues 
over the same region (see legend to Fig. 118 for sequence details).

7.3 Expression of the putative LEAFY  homologue in var. babingtonii

Specific primers were designed from these sequences (above) for ABLFY Allium 

ampeloprasum var. babingtonii LFY). using the sequences from the six clones
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(Appendix 18). It was not possible to find sequences that were completely homologous, 

but comparison of the sequences resulted in design of a primer with only one wobble in 

the forward primer. Expression of ABLFY was compared in vegetative and floral apices, 

and leaf material. Leaf material was included as some species (e.g. Oryza sativa, rice - 

Kyozuka et al., 1998), have shown LFY homologue expression in young leaves, as well 

as the more commonly investigated expression in floral processes. RNA was extracted 

from fresh var. babingtonii plants, grown at UCW. Apices were checked during 

dissection for inflorescence development, or the development of storage tissue 

(indicating vegetative state). RNA was extracted, cleaned, then cDNA was synthesised 

with reverse transcriptase. This first strand was amplified using PCR with specific 

ABLFY primers derived from the identified LFY homologue, and the product checked by 

gel electrophoresis. The bands obtained in vegetative, floral and leaf material were 

compared.

7.3.1, Methods and materials

7.3.1.1 RNA extraction

RNA was extracted from three sources; known floral material (SH0302, 8 plants 

selected at random) was dissected over ice as rapidly as possible. Known vegetative 

plants (smaller than 3 cm diameter) were also dissected (16 plants selected at random), 

and fresh young leaf material from the same plants was also excised over ice. All 

samples were then flash frozen in liquid nitrogen and stored at -70°C. TRI-Reagent 

(Sigma T-9424) was used to extract RNA following the manufacturers’ protocol 

(Appendix 17). The product was checked by gel electrophoresis, showing intense bands
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at approximately 1000Kb. Concentrations were checked on the Genequant (Pharmacia 

RNA/DNA Calculator). Leaf RNA = 574 pg/ml; Floral RNA = 1408 pg/ml; Vegetative 

RNA = 1124 pg/ml. The remainder was stored at -70°C. Traces of DNA were removed 

by treating the samples with a DNase inhibitor; RQ1 DNase was incubated with the RNA 

for 30 min, and then halted with RQ1 DNase Stop Solution to terminate the reaction.

The DNase was inactivated by incubation according to the manufacturers’ protocol 

(Appendix 17). The products were again checked by gel electrophoresis to confirm that 

the RNA was present and not degraded.

7.3.2 Complementary DNA synthesis

First strand cDNA was synthesised from the isolated RNA using M-MLV Reverse 

Transcriptase (Promega M530A) (Appendix 17) and stored at -70°C.

7.3.3 PCR

The cDNA was amplified using the specific primers (Sigma-Genosys) designed from the

six sequences described in section 7.2. These primers were largely based on the original

degenerate primers, with all but one o f the wobbles removed:

ABLFY F 5’ ATCAATAAGCCBAAGATGAG 3’
MW 6161, Tm 52.6°C

ABLFY R 5’ TAGCTTGGTGGGGACGTA 3’
MW 5611 Tm 61.7°C

The first strand cDNA was amplified as double stranded DNA using HotStar Taq DNA 

Polymerase (QUIAGEN), which was provided in an inactive state with no polymerase 

activity at ambient temperatures. This reduced the formation o f misprimed products and
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primer-dimers at low temperatures. It was activated by a 15 min. incubation step at the 

beginning o f the PCR programme. The programme was the same as that previously 

used to amplify LFY fragments from genomic DNA with degenerate primers (see 

7.1.3.1). SDW was used as a -v e  control, +ve control was tubulin (Pos63 Neg 2) 

primers (Appendix 17), and the results were checked by gel electrophoresis.

7.4 Results

Complementary DNA extracted from floral apices clearly showed a band when 

amplified with ABLFY F and R, indicating that the LFY homologue was expressing in 

these tissues (Lane 5 Figure 121). ABLFY was not expressed in the vegetative apices or 

the young leaf material (Lanes 3 and 4 Figure 121).

Figure 121: Expression of ABLFY in young leaves, vegetative apices, 
and floral apices; Lanes from left to right; 1 - 1 kb ladder; 2 - SDW -ve 
control; 3 -leaf cDNA; 4 - vegetative cDNA; 5 - floral cDNA; 6 - leaf 
cDNA with tubulin +ve control.

This result was reproducible, therefore, it can be considered that ABLFY 
was expressed in floral apices, but not vegetative apices or in young 
leaves.

This result was reproducible; therefore, it suggests that ABLFY may be involved with the 

development o f floral apices in this species. The tubulin primers produced a band of the 

expected size in Lane 6 (Figure 122), confirming that the leaf cDNA was present and of 

PCR quality. The negative control confirmed that contamination had not occurred.

1 2 3 4 5 6
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7.5 Summary

Work presented in this chapter has demonstrated the presence of a LFY homologue in A. 

ampeloprasum var. babingtonii. It seemed to be present in more than one form, six 

being amplified; though three of these definitely contained PCR errors. The other three 

translated to identical protein sequences, suggesting that any errors in PCR had not 

affected the encoding of the amino acid sequences. Early results showed the probable 

presence of at least two sizes of LFY homologue, however, the larger size was not 

investigated. As A. ampeloprasum var. babingtonii is hexaploid, there may be more 

than one allele of the gene present. However, beyond the fact that there is genetic 

variation in this clonally reproducing population (Treu, 1999), there is little information, 

about the genome of this species. The fragment size was much as expected, being 

similar to that located in Oryza sativa by the same degenerate primers.

1NTRQN 1 | j INTRQN2

STOP

<--------> <— > o  o
ABLFY

Proline rich Leucine Basic Acidic
region repeats domain domain

N terminus Carboxy-terminus

Figure 122: Generalised structure of the LFY gene, showing the two conserved regions (black), variable 
regions (VI, V2 and V3), intron positions, and regions of putative transcriptional activation function 
(double headed arrows), with approximate position of ABLFY. Adapted from Allnutt, 2000.

LFY genes encode proteins of between 359 and 415 amino acids (ELF1, Southerton et 

al., 1998 to BOFH, Anthony et al., 1993). There are two highly conserved regions with 

three smaller variable regions (Mouradov et al., 1998) (Figure 122), this conservation 

being apparent across a wide range of species, including a gymnosperm (Pinus), and a
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monocot {Oryza) (Mouradov et al., 1998). The ABLFY fragment was located in the 

second conserved region, very close to the third variable region (Figure 123). LFY and 

its homologues show no significant similarities to other sequenced genes in the 

databases, although they do have domains recognised as transcription factors (Mermod 

etal., 1989; Struhl, 1989; Latchman, 1990; Hahn, 1993).

Further, it has been demonstrated that this gene may be involved in floral processes, as 

for so many of the published LFY homologues. Many of these have shown expression in 

vegetative material, (e.g. Hempel et al, 1997; Blasquez et al., 1997; Bradley et al., 1996; 

Anthony et al., 1996; Franco-Zorilla et al., 1998; Bradley et al., 1997) but only in pea 

(Pisum) (Hofer et al., 1997) has it been shown to have a role in vegetative development. 

Moreover, the role of LFY homologues in the floral transition has been demonstrated in 

mutant phenotypes. Blasquez et al., (1997) suggested that differences in the expression 

of LFY in SD and LD grown Arabidopsis, indicated that a threshold level may have to be 

reached in this species to confer floral fate on meristems. However, it is not possible to 

draw any firm conclusions, regarding the ABLFY function in possible floral reversion 

and the development of bulbils. This must await further work, such as in situ 

hybridization, and comparison with A. ampeloprasum var. ampeloprasum. Additionally, 

this fragment of ABLFY probably represents only a small part of the whole gene; further 

sequencing to obtain the whole gene would also provide further information regarding 

the function and role of this important gene.
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8.0 General Discussion

The aims of the work presented in this thesis were:

1 To establish a population of Allium ampeloprasum var. babingtonii as a source of

material of known age

2 To develop a protocol for the maintenance of Allium ampeloprasum var. babingtonii in 

culture

3 To establish a histological protocol for use with Allium ampeloprasum var. babingtonii

4 To construct a developmental timetable for Allium ampeloprasum var. babingtonii for

vegetative and floral growth in vivo

5 To identify the nature and timing of floral determination in Allium ampeloprasum var. 

babingtonii

6 To identify and clone a homologue to the meristem identity gene LEAFY in Allium 

ampeloprasum var. babingtonii and examine its expression in the floral transition.

8.1 Establishment of a population of A. ampeloprasum var. babingtonii

Much of the work in this thesis has been restricted by the numbers of mature plants available 

for examination of the floral state. Although large numbers of plants, (approximately 800 as 

newly harvested bulbils, SH99) were planted in the first year, this was reduced by poor 

sprouting rates, probably influenced by poor drainage. Moreover, as it became apparent that 

plants were unlikely to reach floral maturity until their third year, their use was limited to the 

examination of vegetative development, the remainder being used to examine flowering in 

2002 and reported on in Chapter 7 of this thesis.
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Further supplies of plants were available in small numbers as whole plants from the Cornish 

site (Population 1), and those purchased from John Shipton Nurseries. The Cornish plants 

were always of unknown age, the first being obtained in August 2000. Since these were 

located by their scape, they had all flowered in 2000, and none of them flowered the following 

year. Populations obtained in 2001 yielded only small numbers of flowering plants, many of 

them appearing to abort developing inflorescences. Nevertheless, it has been possible to gain 

much data from these samples.

8.2. Tissue culture

A protocol for growth in vitro has been established. Many factors were examined, including 

surface sterilization, nutrition, fluence levels and photoperiod. Initial numbers of 

contaminations were high, and this may always be a factor in field-grown sources. 

Surprisingly, the use of hypochlorite and other chemical sterilants seemed to make little 

difference. This may relate to the structure of the bulbils and bulbs. Both have hard necrotic 

tissue that is continuous with the living tissue, in the case of the bulbils, this was the point of 

attachment to the inflorescence, in the case of older bulbs, this was the remains of previous 

basal plate tissue from earlier seasons’ growth. The best method found to produce clean 

cultures was to remove all external tissues from the bulbil or bulb, rinsing only in sterile 

distilled water, which provided approximately 90 % clean samples. Hypochlorite supplied as 

domestic bleach appeared to be detrimental to sprouting in vitro, and this may be linked to salt 

content. Whole bulbils in vitro rooted but did not at any point sprout leaves. This curious 

phenomenon may be related to the seasonality of the plant, where root growth precedes leaf
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growth, although some cultures were continued for up to three months, without showing 

sprouting. It was also possible that some environmental cue was necessary to induce leaf 

sprouting, and that this mechanism is compromised during excision of explants, most of which 

(but not all) sprouted in culture. It was unlikely to be linked with nutrition, since explants 

sprouted on the same media. However, growth in culture was always much less than in vivo, 

and this must call into question the validity of any deductions regarding development in vivo, 

when extrapolated from growth in vitro. Shoot elongation was used as an estimate of growth, 

as it was easy to monitor without compromising the culture, and non-destructive.

Comparisons of different media and carbon sources often made little difference to shoot 

elongation. Hence these findings are dissimilar from other work, notably, by Parfitt et al, 

2004 in press) on Pharbitis nil, that show differential effects of carbon supply on 

development. Decisions regarding culture conditions were often made based on data that was 

not statistically significant, but simply better when examined by eye. Since many of the 

samples were small, there being losses due to contamination, failure to sprout, or production 

of abnormal growth, it was possible that the tests failed to identify genuine differences in 

shoot elongation under different conditions. Nevertheless, the protocol developed allowed for 

the maintenance of cultures, apparently healthy and normal, with developing shoots.

A further difficulty encountered in culture, was the development of a new bulb, followed by 

dieback of the leaves, and the establishment of dormancy. This appeared to be stimulated by 

longer daylengths, although shortening the daylength did not reverse the process in plants that 

had become dormant. This was likely to be related to the phenology of the plant, where
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dormancy naturally occurs in summer, unlike model short and long day plants that depend on 

critical night or day length (see Vince-Prue et al., 1984).

8.3 Establishment of a histological protocol

Satisfactory protocols have been established for wax embedding, and staining. This has been 

used to establish in some detail the physiology of the plant, both in vegetative and floral states. 

It was initially difficult to achieve adequate penetration of the tissues, probably related to the 

physiology of the plant, where the modified stem structure (basal plate) means that many 

different tissues are in close proximity to each other, and that any sample of the shoot apex 

includes not only leaf tissue, but stem, root and storage tissue as well. A further complication 

could be the enfolding nature of the leaves, which restricts penetration of the fluids into the 

centre of the sample. This was largely solved by increasing the times of immersion in the 

fixing and wax-penetration processes, though this did sometimes lead to destruction of more 

fragile tissues, such as developing bulblets, and florets. Once this was achieved, the 

sectioning process was straightforward, but considerable losses were experienced during the 

staining processes. This was solved, by pre-subbing the slides, to provide greater adhesion 

during processing. This protocol was tested on different tissues of different ages, reliably 

providing high quality slides for examination.

8.4 Developmental timetable in vivo

The bulb structure comprised one cataphyll, as for the Aegean members of the Ampeloprasum 

complex (Bothmer, 1974), which senesced in early spring. This was protected by a bladeless
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sclerified protective leaf. Within the cataphyll, the first leaf was a bladeless sprout leaf which 

formed the basal sheath of the plant, the subsequent bladed leaves arising within this. The 

basal plate was a modified stem, which regenerated in each season, the old basal plate 

remaining attached to the base of the plant, again similar to those of the Aegean members of 

the Ampeloprasum complex, and possible reflecting the origins of the species. The short, 

heart-shaped (LS) stem was similar to that of A. cepa. The bulbil structure was similar to that 

of the bulb, with a single modified leaf scale forming the storage tissue, and enclosing the 

emerging shoot that developed through a fissure in the storage tissue. Formation of this layer 

was sometimes incomplete, leaving the shoot partially exposed. Bulbils were generally sessile 

or with a very short stem, but also arising occasionally on longer stems and secondary 

inflorescences with florets. The shoot may have several leaf layers within the bulbil prior to 

planting. Formation of the shoot within the bulbil was not visible until about October, when 

bulbils tend to dehisce.

Interestingly, the root primordia were asymmetrical, being present largely to one side of the 

point of attachment to the inflorescence. Sprouting commenced in Autumn, following initial 

root growth.

During the first year of development the plant produced up to3 leaves and 2 bulblets arising 

from axillary buds beneath the leaves, which reached approximately up to 20cms in length by 

May, beginning dieback in June/July, becoming dormant in August. During subsequent years, 

the bulb continues to increase in girth and leaf number following the same pattern of
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winter/spring growth and late summer dormancy. The single storage layer (present in the 

bulbil, and developed each year in bulbs) was probably used to support winter survival and 

growth. The remainder of the bulb is then discarded in spring, becoming necrotic, and the 

bulb (if not florally determined) then produces new storage tissue. This phenology was typical 

of poor competitors, utilising resources such as light and nutrition at times of the year when 

most competitors are dormant or slow growing. Up to eight leaves are likely to be produced 

and four bulblets in the second year, but these are subject to loss during sampling, and a more 

accurate figure could well be higher. Leaves die back from spring onwards, and may be lost 

due to pests, diseases or mechanical damage. Maximum leaf length is reached in May, when 

the leaves begin to dieback more noticeably.

A very small number of bulbs reached critical mass (<1%), under these growing conditions, 

and produced an inflorescence during the second season. The majority developed an 

inflorescence during the third season. In floral plants, no storage tissue was produced in the 

parent bulb, rather two daughter bulbs develop from axillary buds and these develop storage 

tissue forming daughter bulbs that sprout the following season.

Bulblet production apparently slows around the time of inflorescence development, most 

bulblets being external, with none visible in the axils of inner leaves. It was likely that 

resources were channelled into inflorescence or daughter bulb production at this time. Within 

the storage tissue, leaf primordia were formed for the following season’s growth, and up to 5 

primordia were observed.
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None of the bulblets produced sprouted during the time of this work, except in a small number 

of cases, when the plant was floral. This may relate to suppression of apical dominance 

mechanisms at this time, avoiding competition from close plants, but allowing for temporal 

distribution.

Floral plants develop 11 leaves, first daughter bulb, one more leaf, second daughter bulb and 

then the scape. Plants that are not florally determined develop a new storage layer, visible in 

March/April, and this can be used as an indicator of the vegetative state. Daughter bulb 

formation can also be used as evidence of early floral determination. Other plants growing in 

nearby beds as ornamentals in clay soil (likely to have a high nutrient content) were observed 

to all flower after 14 leaves (data not presented). This is consistent with Brewer’s suggestion 

(1994) that the leaf number reflecting critical mass may increase in situations of high nitrogen 

availability.

The bulbils appeared to develop at the base of the cymes, enfolded by a bracteole. This would 

support the hypothesis that they reflect some kind of floral reversion, towards the end of 

inflorescence development, but conclusions must await further investigations.

8.5 The timing of floral determination

Only small amounts of data were obtained for this, so conclusions must be tentative.

However, it seems likely that determination occurs in late winter/spring following
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vernalization. This could be established more precisely if a large population of known size 

was established, and cultured in vitro in sufficient numbers, say from December to March. It 

was apparent that floral development proceeds at different rates in different plants in the same 

plot, so determination timing may be similarly variable.

8.6 Location and cloning of a LF Y  homologue and examination of its expression in 

floral and vegetative tissues

The use of primers based on highly conserved sequences in the rice LFY homologue, RFL 

(Kyozuka, 1998) yielded two PCR fragments as possible LFY homologues. The presence of 

two products might indicate that Allium has two divergent LFY genes as has been found in 

some other species. Homologues to LFY have been identified in a range of higher plants 

including: Petunia (Souer et al, 1998), Cucumis sativa (Liu et al., 1998), Oryza sativa 

(Kyozuka et al., 1998), Populus balsamifera (Rottmann et al., 2000), Welwitschia mirabilis 

(Frohlich. and Parker, 2000), Nicotiana tabacum (Kelly et al., 1995), Pisum sativum (Hofer et 

al., 1997), Brassica oleracea (Anthony et al., 1993) and, Lycopersicon esculentum (Molinero- 

Rosales et al., 1999). Species as diverse as Pinus radiata (Mellerowicz et al., 1998; 

Mouradov et al., 1998;). Eucaluptus globulus (Southerton et al., 1998) and Malus (Wada et 

al., 2002) have been shown to have two LFY  homologues, (see also section 1.8.3, Table 7), 

with Albert, et al., (2002) suggesting that in most gymnosperms investigated to date, two 

divergent LFY paralogs are found, with sex-specific expression in conifers and that the 

predominantly male-expressed gymnosperm copy identifies with the single LFY  gene in 

flowering plants. Frohlich and Parker (2000) theorize that the evolutionary lineage leading to
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flowering plants originally had two copies of this gene, but that one copy was lost, 

developmental control of flower organization deriving more from systems active in the male 

reproductive structures of the gymnosperm ancestor rather than from the female, with ovules 

being ectopic in the original flower. It would be interesting to pursue these evolutionary 

relationships in var. babingtonii as further data become available. However as only one of the 

products was analysed further it is also possible that the larger fragment was a non-specific 

PCR product. When the smaller fragment was sequenced, it yielded six versions of the 

fragment, with varying degrees of homology to each other. Three of these are suspected to be 

at least in part due to PCR error. However, it seems likely that the others represent genuine 

variants. As discussed above, these could represent different LFY genes. Alternatively as A. 

ampeloprasum var. babingtonii is hexaploid, they could represent alleles of the same gene. 

Comparison of the Allium LFY to the databases revealed high level of homology to other LFY 

genes from other species and it is proposed that ABLFY is also a LFY homologue. Although 

the partial cDNA was most closely homologous to the Petunia LFY gene (Souer et al., 1998), 

this small fragment represents only part of one highly conserved region, therefore, conclusions 

regarding genuine phylogenetic relationships must await extension of the sequence. This 

needs to be confirmed by sequencing the whole gene. To establish further whether it is indeed 

a functional homologue, it could be transformed into Arabidopsis to investigate the effects of 

over-expression. This type of functional analysis has been used to establish a functional 

homology for several of the LFY homologues in other species, including FLO from 

Antirrhinum (Carpenter and Coen, 1990; Coen et al., 1990), ELF in Eucalyptus (Southerton et 

al., 1998) and RFL in Oryza sativa (Kyozuka, et al., 1998). Interestingly, when 35S-RFL
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expression was compared with 35S-LFY Arabidopsis plants, development of cotyledons, 

rosette leaves, petals and stamens was severely affected, rather than the expected conversion 

of inflorescence meristems to floral meristems, demonstrating that RFL function is distinct 

from that of LFY. Further work (Chujo et al., 2003) showed that RFL, when introduced into 

Arabidopsis Ify mutants, partially rescued the mutation, suggesting that the functions overlap. 

However, again there were abnormal patterns of development such as leaf curling, bushy 

appearance and the transformation of ovules into carpels.

The expression of ABLFY was examined, proving positive in floral apices, but not in 

vegetative apices or in leaf material (Figure 124). It might be suggested that the lack of 

expression in leaf material reflects the fact that it is not expressed in response to photoperiod, 

which is largely detected in the leaves by the phytochrome group. However, FLO in 

Antirrhinum is also expressed in a similar way to ABLFY in var. babingtonii, i.e. the gene 

product is usually only detected in floral apices apart from occasionally in older vegetative 

meristems. This is in contrast to most plants examined to date where there are low levels of 

expression in vegetative tissues, followed by rapid increases in expression as part of the 

conversion to the floral meristem. In spite of this apparent similarity in pattern, Antirrhinum 

flowers in response to photoperiod rather than to maturity followed by vernalization. FLO is 

expressed in young bracts subtending the floral meristem, in the early floral meristem itself, 

and continues in all cell layers and meristematic regions during the early stages of floral organ 

initiation, apart from the stamens (Coen et al., 1990; Huijser et al., 1992). This is in contrast 

to LFY expression in Arabidopsis, where it is expressed in the floral meristem, and the floral
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organ primordia, apart from carpels, as well as in leaf primordia. The LFY homologue BOFH 

in Brassica oleracea var. botrytis (cauliflower) also shows strong links with floral growth, 

with no expression detected in vegetative material, and expression throughout all stages of 

curd development (Anthony et al, 1993, Anthony et al., 1996). Interestingly, BOFH is 

switched off at high temperatures, causing a reversion to the vegetative state, reminiscent of 

the suggestion that floral reversion can be triggered in Alliums by exposure to high 

temperatures (e.g. Brewster, 1994). This species also flowers in response to vernalization 

following a period of juvenility (Atherton et al., 1987; Aditya and Fordham, 1995), 

representing another similarity with var. babingtonii. Aditya and Fordham (1995) also 

attempted to bypass these requirements by the application of gibberellic acid, finding that 

although flowering was advanced by 3-5 days in one cultivar, another cultivar failed to 

respond at all. Since vernalization is largely detected in the apex of plants (but also may be 

detected in any actively dividing region of cells) (see 1.7.1.2), it might be expected that some 

of the responses might also be detected most easily in these tissues. Malus (apple) has two 

LFY homologues, of which one ALF1, is only expressed in floral buds, whilst the other, ALF2 

is expressed in both vegetative and floral meristems, as well as in floral organs (Wada et al, 

2002). Over-expression of ALF1 and ALF2 in transgenic Arabidopsis showed accelerated 

flowering, though the effect of ALF1 was much weaker than ALF2, and it was concluded that 

both had a role to play in floral differentiation in Malus (Wada et al., 2002). Interestingly, 

this is another species that requires vernalization in order to flower, and only flowers on wood 

that is at least two years old (Brickell, 1992). Should the larger fragment prove to be another 

LFY homologue, comparison of expression of the two genes, could elucidate the potentially
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differing roles, as has been examined in Malus. In situ hybridization would be a useful 

method to further examine expression of this important gene and its possible 

alleles/homologues, and allow examination of its role, not only in the floral meristem, but also 

in floral organ development.

Thus, the work to date on var. babingtonii presented in this thesis allows the development of a 

tentative model for the regulation of flowering in this species (Fig. 123).
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Figure 123: Putative function of ABLFY in the developmental timetable of Allium ampeloprasum var. 
babingtonii
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Once the bulb has reached the minimum size for competence, it is exposed to vernalization, 

with floral determination probably occurring in February. ABLFY is not active in the 

vegetative tissues examined (young leaves and vegetative primordia), therefore it is suggested 

that its activity commences with development of meristem identity in the inflorescence. As 

the inflorescence develops, ABLFY may be involved with the development of floral organs, as 

for Arabidopsis or Antirrhinum but this must await further investigation. The cymes are in 

many stages of development at the same time, with a tendency for those on the summit to be 

in advance of those on the flanks. Cymes develop from the top downward. Therefore, if 

ABLFY activity ceases in the inflorescence, it will effect changes at the bases of cymes that are 

themselves at different stages of development to each other. Apparent vegetative reversion 

could, therefore, have different effects on different cymes, depending on the stage of 

development of that cyme. This could be reflected in the variable numbers of bulbils 

developing at the bases of the cymes, and also in the development of secondary inflorescences, 

with a number of developments such as twin bulbils with a pedicel, showing intermediate 

development between inflorescence, secondary inflorescence, and apparently vegetative 

production (sessile bulbils).

This could be examined initially by looking for correlation between developmental fate and 

the position on the inflorescence, as it could be expected that cymes lower down, being less 

developed, would develop differently to those more developed on the summit and near summit 

regions, when the influence of ABLFY is removed. In situ hybridisation would give more
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detailed information that could be linked with the apparently vegetative state expressed in the 

production of bulbils.

8.7 Future directions

8.7.1 Stock population

Further work should be based on the development of a large population, where the size of the 

bulb is monitored, and so can be selected as being florally competent and given uniform 

vernalizing treatments. Selection for uniformity of size would also probably lead to more 

uniform development, making manipulation and study of growth patterns easier. The plants 

can be grown in John Innes No. 1 compost in pots, but will cease growth quite quickly, unless 

transplanted to larger containers, and preferably into Outdoor beds. They are poor competitors, 

requiring efficient weed suppression, prone to rotting off in badly drained conditions, but also 

requiring liberal supplies of water in well-drained conditions.

8.7.2 Floral competence

It was apparent that bulbs began laying down storage in spring, close to the time when floral 

development is initiated, requiring high levels of assimilates. This was likely to be why a 

critical mass of 3 cm diameter was needed before competence to flower was achieved. 

Daughter bulbs over this size failed to flower the following season, apparently requiring 

further development before competence. It was observed that some daughter bulbs grown as 

ornamentals (data not presented) did flower in the following season, and these were generally 

very large bulbs (approximately 4 or 5 cm diameter), but no records were kept on these plants.
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If the critical size of 3 cm width was reached then vernalization was necessary to induce 

flowering. Vernalization at 7° C for 6 weeks induced 100% flowering in bulbs (not daughter 

bulbs) over 3 cm, but this was the only treatment tested, and this could be further examined. 

Development of a simpler and preferably shorter treatment would make manipulation of this 

species easier.

8.7.3 The expression and role of ABLFY

This thesis has gone some way to identifying a putative LFY homologue and examining its 

role in floral development in this species. However, many conclusions are tentative and must 

await further work to clarify and confirm these suggestions. The larger fragment 

(approximately 298 kb) has yet to be investigated, and if found to be a second divergent LFY 

gene would greatly increase the complexity of LFY  regulation of flowering. As a hexaploid, 

var. babingtonii might be expected to have up to six alleles of the LFY gene, depending on the 

origins of this sterile clonal species, and the out-crossing or otherwise of the ancestral species. 

The majority of Allium species are sexual, out-breeding, non-hybridising species (Stace,

1989), with outcrossing encouraged by protandry (Currah and Ockenden, 1978) and natural 

cytoplasmic sterility (Jones and Clarke, 1943). Self-pollination is estimated at only 5-25% in 

cultivated Alliums (Beminger and Buret, 1967). The small fragment produced six sequences, 

of which three could be alleles, the other three being less likely as they did not code for amino 

acids without gaps, whilst questions as to the identity of the large fragment remain 

unanswered. Alliums are known to have evolved as a result of genome duplications and
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rearrangements; therefore, it is possible that some of the fragments could be the result of 

duplications.

While most Alliums are diploid, polyploidy occurs among botanical varieties of the cultivated 

forms of A. ampeloprasum, A. schoenoprasum, A. chinense and A. tuberosum as well as in 

wild species such A. ampeloprasum var. babingtonii and A. oreoprasum. Counts for A. 

ampeloprasum vary from 2n = 16 to 2n = 56 (Mathew, 1996). Whilst domestication itself 

would not account for changes in ploidy, it is likely that A. ampeloprasum spp. arose from 

ancestors of different ploidy levels (Fritsch & Friesen, 2002). All commercial leek cultivars 

are probably tetraploid, though opinions differ as to whether it is alio- or autotetraploid (De 

Clercq & Van Bockstaele, 2002). Burke et al. (2000) comment that natural hybridization is 

most prevalent in plant genera which comprise outcrossing perennials with some mechanism 

for clonal reproduction; this description would certainly apply to many A. ampeloprasum spp. 

As a hexaploid, A. ampeloprasum var. babingtonii could be allopolyploid, autopolyploid, or a 

combination of the two events. Treu (1999) was unable to identify six clear groupings of 

homologous chromosomes, therefore it was not possible to comment on the origins of the 

ploidy level. Identification and sequencing of all alleles present in this species would allow 

inferences to be made regarding the auto- or alio- ploid nature of this plant, and therefore 

inferences can be made as to its ancestry, provided the genetic variation noted by Treu (1999) 

is not so great as to interfere with identification of recognisable sequences for comparison. 

Comparison of the sequences with those of similar A  ampeloprasum varieties, may also 

indicate the parent plant or plants. Location of a LFY homologue in A. ampeloprasum var.
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ampeloprasum, sequencing and data on expression, a variety that is very similar in many ways 

to var. babingtonii being most different in the sexual method of reproduction, could also 

provide data that might clarify the progress of the inflorescence development in var. 

babingtonii.

Klass and Friesen (2002) studied molecular markers concluding that Allium spp. are of ancient 

origin. However, A. ampeloprasum var. babingtonii does not appear to have been recorded 

before early 19th century (1.1), suggesting that it might be of relatively recent origin. The 

history of A. ampeloprasum, both as a wild species and as various domesticates has been well 

documented, e.g. De Clercq and Van Bockstaele, (2002) (1.2). Schon & Martens, (2000), 

suggest that ancient asexuals should either have genetically silenced transposable elements or 

be free of them. Comparison of the neutral sequence divergence between alleles of A. 

ampeloprasum var. babingtonii and similar close relatives such as A. ampeloprasum var. 

ampeloprasum, and analysis of transposon content whilst beyond the scope of this work, 

could provide information about the history of var. babingtonii and the length of time since it 

diverged from the ancestral lines.

In situ hybridisation could be used to confirm and clarify the role of ABLFY in flowering and 

the development of the floral organs in this species. Real time PCR would allow the levels of 

expression of ABLFY to be quantified. Both these techniques may also elucidate its role in the 

production of bulbils. It would be interesting, and potentially useful in understanding the 

production of bulbils in this species, to attempt to manipulate bulbil production by variation in
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environmental parameters such as temperature, and examine ABLFY expression in these 

manipulated inflorescences.

Further work could involve the use of RACE (random amplification of cDNA ends) to extend 

the fragment, and therefore sequence the whole gene for more comprehensive comparisons. 

The genetic variation noted by Treu (1999) might lead to location of ABLFY mutants, 

providing a further tool for investigation into the function of this important gene.

Transposons may significantly affect genome structure as their copy numbers increase through 

self-replication and provide a source of mutations, by their insertion in or near genes, (Kumar 

and Bennetzen, 1999; Charlesworth & Wright, 2001). Furthermore, Soltis and Soltis (1999) 

suggest that the process of polyploidization can facilitate the production of new gene 

complexes, leading to rapid evolution, these changes being mediated by the presence of 

transposons. These are considered to be junk DNA or genomic parasites, needing meiotic 

recombination for invasion and multiplication in the host (Schon & Martens, 2000). In their 

review (1999), Kumar and Bennetzen suggest that as retrotransposons play a major role in 

determining the size of plant genomes, those plants with large genomes might be the result of 

successful colonization and amplification of retrotransposons. The adaptation to a wide range 

of habitats could therefore be explained in terms of the recent evolution of var. babingtonii, 

with the process of polyploidization mediating the production of new gene complexes 

facilitated by large numbers of active transposons that also contribute to the genome size. 

Certainly, Treu (1999) noted that there was variation in the karyotypes, especially between
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nucleolar organising regions (NOR’s) in both number and morphology, many of which did not 

conform to the types normally found within section Allium. He further contrasts this apparent 

instability with the remarkable degree of NOR uniformity and stability with other studies 

within section Allium, but notes that in this respect var. babingtonii is consistent with other 

species known to be sterile. Investigations into the genetic variation thus outlined, may lead to 

insights into the genome size and identification of transposon activity all of which may 

contribute to the individual nature of this species.
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Appendix 1

N urseries  supp ly ing  A lliu m  a m peloprasum  var. bab in g to n ii

Edulis
Contact: Paul Barney

Address: 1 Flowers Piece

Ashampstead 

RG88SG 

United Kingdom 

Telephone No: (01635) 578113

Fax: (01635)578113

Email: edulis.2000@virgin.net

www.edulis.co.uk
Website:

Lodge Lane Nursery & Gardens
Contact: Rod or Diane Casey

Address: Lodge Lane,Dutton

Nr Warrington 

WA4 4HP 

United Kingdom 

Telephone No: (01928) 713718

Fax: (01928)713718

Email: rod@lodgelanenursery.co.uk

Website: www.lodgelanenursery.co.uk

Lisdoonan Herbs
Contact: Barbara Pilcher

Address: 98 Belfast Road

Saintfield 

BT24 7HF 

United Kingdom 

Telephone No: (028) 9081 3624
b.pilcher@pop.dial.pipex.com

Email:

mailto:edulis.2000@virgin.net
http://www.edulis.co.uk
mailto:rod@lodgelanenursery.co.uk
http://www.lodgelanenursery.co.uk
mailto:b.pilcher@pop.dial.pipex.com


Poyntzfield Herb Nursery
Contact: Duncan Ross

Address: Nr Balblair, Black Isle,Dingwall

Ross & Cromarty 

IV7 8LX

United Kingdom 

Telephone No: (01381) 610352*

Fax: (01381)610352

Email: info@poyntzfieldherbs.co.uk

Website: www.poyntzfieldherbs.co.uk

Arne Herbs
Contact:

Address:

Telephone No:

Fax:

Email:

Website:

Natural Selection
Contact: Martin Cragg-Barber

Address: 1 Station Cottages,Hullavington

Chippenham 

SN14 6ET 

United Kingdom 

Telephone No: (01666) 837369
Email: martin@worldmutation.demon.co.uk

Website: www.worldmutation.demon.co.uk

The Herb Garden & Historical Plant Nursery
Contact: Corinne & David Tremaine-Stevenson

Address: Pentre Berw.Gaerwen

Anglesey 

LL60 6LF 

United Kingdom 

Telephone No: (01248) 422208ymobile 07751 583958

A Lyman-Dixon & Jenny Thomas

Limebum Nurseries,Limebum Hill, Chew Magna

Bristol

BS40 8QW

United Kingdom

(01275)333399

(01275)333399
lyman@lyman-dixon.freeserve.co.uk

www.arneherbs.co.uk

mailto:info@poyntzfieldherbs.co.uk
http://www.poyntzfieldherbs.co.uk
mailto:martin@worldmutation.demon.co.uk
http://www.worldmutation.demon.co.uk
mailto:lyman@lyman-dixon.freeserve.co.uk
http://www.arneherbs.co.uk


Email: The_Herb-Garden@hotmail.

Website: www.HistoricalPlants.co.uk

http://www.HistoricalPlants.co.uk


John Shipton (Bulbs)
Contact: John Shipton & Alison Foot

Address: Y Felin.Henllan Amgoed

Whitland 

SA34 OSL 

United Kingdom 

Telephone No: (01994) 240125

Fax: (01994)241180

Email: bluebell@zoo.co.uk

Website: www.bluebellbulbs.co.uk

(The Royal Horticultural Society, 2003)

mailto:bluebell@zoo.co.uk
http://www.bluebellbulbs.co.uk


Appendix 2

Cultivated (edible) Allium species and their areas o f cultivation (Fritsch & Friesen, 
2002).

Botanical names of the 
 crop groups_____

Other names used in 
the literature

Area of 
cultivation

English names

A. altaicum Pall. A. microbulbum Prokh. South Siberia Altai onion

A. ampeloprasum L. 

Leek group

Kurrat group

Great-headed- 
garlic group

Pearl-onion group

Tar6 e group 

A. cahadense L.

A. porrum L 
A. ampeloprasum L. 
var. porrum (L.) J. Gay

A. kurrat Schweinf. Ex 
Krause

A. ampeloprasum L. 
var. holmense (Mill.) 
Aschers. Et Graebn

A. ampeloprasum var. 
sectivum Lued.

Mainly 
Europe, North 
America

Egypt and 
adjacent areas

Eastern
Mediterranean,
California

Atlantic and
temperate
Europe

Iran

Cuba

Leek

Kurrat, salad leek 

Great-headed garlic

Pearl onion

Tar6 e irani 

Canada onion

A. cepa L.

Common onion group

Ever ready onions 

Aggregatum group

A. cepa ssp. cepal var. 
cepa, A. cepa ssp. 
australe Kazakova

A. cepa var. perutile 
Steam

A. ascalonicum auct. 
hort., A. cepa var. 
aggregatum G. Don, 
var. ascalonicum 
Backer, ssp. orientalis 
Kazakova

Worldwide Onion.Common 
Onion

Great Britain Ever-ready onion

Nearly Shallot, potato onion,
worldwide multiplier onion

A. consanguineum Kunth North East 
India



A. x  comutum  Clem. Ex 
vis.

A. cepa var. viviparum 
auct.

Locally in 
South Asia, 
Europe, 
Canada, 
Antilles

A. chinense G. Don A. bakeri Rgl. China, Korea, 
Japan, South- 
East Asia

Rakkyo, Japanese 
scallions

A. fistulosum  L. East Asia, 
temperate 
Europe and 
America

Japanese Bunching 
onion, Welsh onion

A. hookeri Thw. Bhutan,
Yunnan,
North-West
Thailand

A. kunthii G. Don A. longifolium (Kunth) 
Humb.

Mexico

A. macrostemon Bunge A. uratense Franch., A. 
grayi Regel

China, Korea, 
Japan

Chinese garlic, 
Japanese garlic

A. neapolitanum  Cyr. 

A. nutans L.

A. cowanii Lindl. Central 
Mexico 
West and 
South Siberia, 
Russia, 
Ukraine

Naples garlic

A. obliquum West Siberia, 
East Europe

Oblique onion

A. oschaninii O. Fedtsch. France, Italy French shallot

A,x proliferum  (Moench)
Schrader
East Asian group

Eurasian group

A. aobanum Araki, A. 
wakegi Araki

A. cepa var. viviparum 
(Metzg.) Alef. A. cepa 
var. proliferum  
(Moench) Alef.

China, Japan,
South-East
Asia
North
America,
Europe, North-
East Asia

Wakegi onion

Top onion, tree 
onion, Egyptian 
onion, Catawissa 
onion

A. pskemense B. Fedtsch. Uzbekistan,
Kyrgystan,
Kazakhstan

A. ramosum  L. A. odorum L., A. 
tuberosum Rottle. Ex 
Sprengel

China and 
Japan, world­
wide now

Chinese chive, 
Chinese leek



A. rotundum

A. sativum L. 
Common garlic group

Longicuspis group

Ophioscorodon group

A. schoenoprasum L. 

A. ursinum L.

A. victorialis L.

A. wallichii Kunth

A. scorodoprasum ssp. Turkey 
rotundum (L.) Steam

A. sativum, var. 
sativum, A. sativum var. 
typicum Rgl.

A. longicuspis Regel

Mediterranean 
area, also 
world-wide

Central to 
South and East 
Asia

A. sativum var. 
ophioscorodon (Link) 
DO 11

Europe, also 
world-wide

A. sibiricum L.

A. microdictyon Prokh., 
A. ochotense Prokh.

A. platyphyllum 
Diels, A. lancifolium 
Steam

World-wide in
temperate
areas
Central and 
North Europe

Caucasus, 
Japan, Korea, 
Europe

East Tibet

Garlic

Chive

Ransoms

Long-rooted onion, 
long-rooted garlic



Appendix 3

The location and habitat characteristics for the populations o f Allium 
ampeloprasum var. babingtonii sampled by Treu (1999).

Population
number

Location Habitat and estimated 
population numbers

1 SW 784567-771584 Perranporth -  
Mount Cubert Road. Footpath 
from Mount to Holywell

Mainly lightly wooded, often damp, 
streamsides, also field margins and 
grassy verges. Sandy soil especially 
further north. Est. 5000 +

4 SW 784486. B3284 Road, 2 km 
NW of Shortlandsend from A30

Grassy roadside verge. No soil record. 
Est. 50 +

5 SW 72249 on B3277, 1 km SE of 
St. Agnes

Grassy roadside verge. No soil record. 
Est. 40 +

6 SW 836580 Trewerry Mill Grassy with bramble 
roadside/streambank. Light stony soil. 
Est. 100 +

1 1 SW 936796 New Polzeath Dense bramble undergrowth. Light 
stony soil. Est. 200 +

14 SW 877736 opposite village hall 
on B3276, St. Merryn

Grassy roadside and damp ditch. High 
organic matter soil. Est. 60

16 SW 644240 Loe Bar Limited grassy vegetation on beach c. 
80m from shore. Soil almost completely 
sand. Est. 70 +

17 SW 658210 -  656216 Church 
Cove

Grassy/scrubby roadside. Light stony 
soil. Est. 200 +

2 0 SX 408514 Tregonhawke Nr. 
Millbrook

Scrubby vegetation including Gorse. 
Very peaty soil. Est. 150 +

2 1 SW 731249 entrance to Tremyne 
Woods

Mature woodland margin. Rich stony 
soil. Est. 100 +

24 SX 144966 Crackington Haven Grassy roadsides/streamsides. One area 
(estimated 2 0 m2, is exclusively this 
species) Light stony soil. Est. 1000 +

25 SW 440253 Treewoofe Open woodland/roadside. Light stony 
soil. Est. 50

29 SX 152545 Trevelyan Grassy roadside/hedge. Light stony soil. 
Est. 200

30 SW 756229 Tregidden Grassy roadside/hedge. No soil or 
number record.

32 SW 923435 S. of Tregony nr. Hay 
Barton Farm

Grassy roadside/hedge. No soil record. 
Est. 55

33 SW 867369 turn 2 km NW of St. 
Just in Roselands (A3078) toward 
Lanhay

Grassy roadside/hedge. No soil or 
number record

38 SW 878358 Porthcumick beach, 
Porthscathon

Sea cliff and sea wall. Clay soil. Est. 
250 +

39 SW 837638 Newquay -  Padstow 
road

Grassy roadside. Light stony soil. Est. 
2 0 0  +

43 SW 987712 Treneague Grassy roadside. No soil record. 100 +

Adapted from Treu (1999).



Appendix 4
Examples of tissue culture in Allium species

Allium
species

Media PGRs Environmental
conditions

Tissue Reference

A. carinatum BDS None,
10pM Kinetin, 
lOmM IAA
5 pM 2,4-D, 40pM BAP, 5 pM NAA

25°C dark Bulbils, 
roots, shoots,

Havel and Novak, 1988

A. cepa B5; 0.06% 
CaCl2 .H20;
0 .8 % glutamine; 
8 % sucrose 
BDS

None
0.1 mg/12,4-D & NAA, lmg/1 2,4-D & 0.1mg/l 
NAA,0.1mg/l 2,4-D & NAA & lmg/1 BAP, lmg/1 
NAA & BAP, lmg/1 NAA & O.lmg.l 
BAP,0.1mg/l NAA & lmg/1 BAP

25°C; 16h 
photoperiod

Ovules/whole 
flower buds

Godwin et a l, (undated)

A. fistulosum x 
cepa

B5, BDS, 0.2% 
Gelrite; 0.75g/l 
MgCl2

0.75 mg/1 picloram, 2.0 mg/1 BA, 2.5g/l proline, 
0.7 mg/12,4-D, 2.0 mg/1 BA

12h photoperiod; CD; 
25°C

Inflorescence; 
basal plate

Lu et al., 1989

A.
ampeloprasum 
var. porrum

MS, 0.6% agar, 
2% sucrose, B5

1 ppm NAA, 8 ppm 2-iP,2ppm IAA 16 h photoperiod, 
25°C

Inflorescence, 
basal disk

Baumunke-Wende, 1989

A. sativum MS 0.5 mg/1 benzyladenine 8  h photoperiod Segments of 
basal plants, 
leaves, 
meristem, 
flower buds, 
opened
flowers, anther

Bhojwani et al, 1983

A. wakegi 15% coconut 
milk, 0.7% agar;

2 mg/12,4-D, 2 mg/1 NAA, 2 mg/1 kinetin CD, 26°C Internal bulb 
tissues

Seo & Kim, 1988

A.
ampeloprasum 
A. sativum, A. 
schoenoprasu

LS-basic, 
2 mmol/l 
NH4NO3 , 
3% sucrose,

0.011 mmol/1 NAA, 0.008 mmol/1 BAP 1 2 h photoperiod, 
26°C

Leaf discs, 
flower buds

Rauber & Grunewaldt, 
1988



m
A. sativum

A. sativum 

A.
ampeloprasum 
var. porrum

A. sativum 
A. fistulosum, 
A. fistulosum x 
cepa
A. cepa, A. 
sativum A. 
ampeloprasum 
var porrum

A. cepa

0 .8 % agar
MS, B5, 1 mg/1 NAA, 2 mg.l IBA
3% sucrose,

0.95% agar
BDS, 8 g/l agar, 2,4-D, KIN, IAA 
30g./ sucrose
MS, 5% sucrose Benzyladenine, NAA

MS 2 mg/1 kinetin, 2 mg/1 IAA, 1 mg/12,4-D
B5 4.5 jliM 2,4-D, 4.6pM kinetin

BDS, B5 1 pM NAA, 0.1 pM NAA, 5pM NAA, 1 pM BA,
5pMBA, 40pM BA, 0.1 pM KIN, lOpM KIN, 
50pM KIN, lOpM IAA, 5pM 2,4-D,

MS , half BAP, NAA, IBA
strength salts,
0.7% agar, 
pH 5.9, lOOmg.; 
myo-inositol,
0.5 mg/1 
thiamine-HCl,
1 . 0  mg.l
pyridoxine-HCl,
5.0 mg/1 
nicotinic acid,
30g/l sucrose

Stem tips Nagasawa & Finer, 1988

CD 25°C

24h photoperiod, 
25°C

CD, 28°C

CD for 7 days, then 
16h photoperiod, 
25°C

8  h photoperiod, 16h 
photoperiod. 20°C

Leaf

Shoot tip, 
basal plate, 
bulblet, 
inflorescence 
Shoot tips 
Seeds

Meristem, 
embryos, 
flower heads, 
basal plates, 
cloves, bulbils, 
Scales, shoots 
produced in 
vitro

Dolozel and Novak, 1984 

Zi vetal, 1983

Novak, 1981 
Shahin & Kaneko, 1986

Novak et al., 1986

Hussey and Falavigna, 
1980



A ppendix 5
Location of Allium ampeloprasum  var. babingtonii Population 1 (Treu, 1999)
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Small numbers o f  plants were located along the SE part o f  the path, but the vast 
majority o f  plants were located at the NW  end o f  the path, where it emerges 
from the Holywell Bay Holiday Park, and this is where sampling was done.

Location Sample numbers Total
A 1 -  10 10
B 11 -  12 2
C 1 3 - 1 5 3
D 1 6 - 1 8 3
E 19 1
F 2 0 - 2 6 7
G 2 7 - 3 6 10
H 3 7 - 4 3 7
I 4 4 - 4 8 5
J 4 9 - 8 2 34



Beginning at the most southerly end of this part of the population, each clump 
was labelled A, B, C., etc, and plants were sampled at every 10th inflorescence.

Al 49 bulbils G27
A4 48 bulbils G30
A5 90 bulbils G32
A6 53 bulbils G34
A8 43 bulbils G35
A9 25 bulbils H40
A10 70 bulbils H41
B12 66 bulbils H43
C15 52 bulbils 144
D16 38 bulbils 146
D17 40 bulbils 148
F20 46 bulbils J47
F21 40 bulbils J51
F22 59 bulbils J53
F23 49 bulbils J54
F24 31 bulbils J56
F26 19 bulbils J59

bulbils J60 32 bulbils
bulbils J61 48 bulbils
bulbils J62 59 bulbils
bulbils J63 44 bulbils
bulbils J64 39 bulbils
bulbils J65 36 bulbils
bulbils 361 28 bulbils
bulbils 369 36 bulbils
bulbils 370 30 bulbils
bulbils 312 65 bulbils
bulbils 313 45 bulbils
bulbils 315 45 bulbils
bulbils 311 44 bulbils
bulbils 319 48 bulbil
bulbils J82 65 bulbils
bulbils
bulbils

36
51
41
41
41
42
52
38
47
33
25
36
62
61
66
50
34



Appendix 6
Sampling of A. ampeloprasum var. babingtonii August 2000

Plant number
1 
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18 
19

Those plants with only 1 bulb may have lost the second daughter bulb 
as a result of disease, damage or predation. Those apparently having 
three daughter bulbs may be so close to adjacent plants that 
deformation of bulb shape occurred, making identification of the true 
daughter bulbs uncertain. The plants were located by the scapes, and 
therefore all had flowered during the previous season. As roots were 
in active growth even though there was no active above-ground 
growth, care was taken to retain as much soil as possible during 
collection. Plants roots were packed in damp John Innes No. 1 
compost, for transport, and then planted into outdoor beds at 
University College Worcester. The inflorescences remained attached 
to the plants, and were later removed (October 2000) and stored at 
3°C.

Number of bulbs
2
2
1
3
3
2
2
1
2
2
1
2
2
2
1
2
2
2
2



Appendix 7
Whole plants selected from Holywell Bay Holiday Park, March 2001

Plant No. Maximum 
leaf length 
(cms)

No of leaves 
visible

Maximum 
bulb width 
(cms)

Maximum 
bulb height 
(cms)

1 103 7 3.0 3.8
2 1 0 0 9 4.0 3.5
3 91 8 3.1 3.3
4 116 8 3.1 3.5
5 83 7 2.7 3.2
6 1 0 1 7 2 . 8 3.6
7 82 6 2.9 3.8
8 75 6 2.4 2.3
9 76 6 - -

1 0 70 6 - -

1 1 59 5 - -

1 2 77 5 2.5 2.4
13 92 9 - -

14 99 7 - -

15 1 0 1 8 3.4 3.0
16 96 6 - -

17 1 0 2 9 - -

18 75 4 2 . 6 3.0
19 95 8 3.4 4.0
2 0 1 0 0 8 3.4 3.8
2 1 97 8 3.2 3.1
2 2 99 9 4.0 4.0
23 76 4 2 . 1 2.7
24 77 7 2 . 8 3.0
25 89 6 2 . 6 3.6
26 77 6 2 . 2 3.5
27 99 9 4.1 4.2
28 94 7 3.1 4.4
29 92 6 2.4 2.5
30 117 8 3.7 3.9
31 91 4 2 . 2 2 . 0

32 96 5 2 . 6 3.1
33 74 5 1 . 8 2 . 8

34 93 8 - -

35 85 6 - -



36 1 1 2 9 3.5 3.4
37 63 5 - -

38 77 5 2 . 8 3.2
39 81 7 - -

40 77 6 1 . 8 3.4
41 72 5 - -

42 71 7 2.3 1.5
43 85 8 - -

44 85 8 - -

45 87 6 2 . 6 1 . 6

46 103 8 3.1 4.1
47 91 6 2 . 2 3.5
48 90 6 1.9 3.1
49 73 5 - -

50 76 6 2.7 3.4
51 73 1 0 4.4 2 . 6

52 99 7 - -

53 8 8 8 3.2 2 . 6

54 95 7 3.1 3.6
55 1 0 1 7 - -

56 93 7 2 . 8 3.7
57 6 8 2 2.4 2 . 0

58 91 5 - -

59 99 7 3.6 3.9
60 91 5 - -

61 91 6 2 . 6 3.2
62 83 4 - -

63 75 4 - -

64 76 4 - -
• Leaf length is measured from the base of the bulb (as bulb height is variable 

around the plant, the upper edge being quite ragged). It is only measured to the 
nearest cm, as leaf tips themselves were often quite ragged at the tips, as a result 
of mechanical or predator damage.

• Number of leaves is recorded as those that can be observed without causing 
damage to the apex.

• Bulb height is at the highest point from the point where the roots emerge, to the 
upper edge, which may be uneven

• Bulb width is at the widest point, the bulbs being noticeably asymmetrical.
• The storage tissue of many bulbs was necrotic and/or shrivelled; therefore, 

measurements of bulb dimensions may not reflect other aspects of plant size 
such as leaf number and length.



Appendix 8

Sampling o f A. ampeloprasum var. babingtonii November 2001

Whole plants
Plant No. Bulb width (cms) Plant No. Bulb width (cms) Plant No. Bulb width (cms) Plant I*
1 4.5 31 3.6 61 3.0 91
2 3.1 32 3.2 62 3.1 92
3 5.3 33 3.6 63 3.2 93
4 4.0 34 3.7 64 3.7 94
5 4.2 35 3.9 65 3.7 95
6 4.0 36 4.0 6 6 4.1 96
7 3.4 37 3.7 67 3.5 97
8 4.5 38 3.3 6 8 3.0 98
9 4.0 39 3.9 69 3.3 99
1 0 3.3 40 4.0 70 3.2 1 0 0

1 1 3.4 41 4.2 71 4.5 1 0 1

1 2 3.6 42 4.2 72 4.1 1 0 2

13 4.6 43 3.4 73 3.2 103
14 4.3 44 3.7 74 3.2 104
15 3.2 45 4.4 75 4.1 105
16 3.6 46 3.1 76 3.2 106
17 3.9 47 4.1 77 3.3 107
18 3.3 48 3.8 78 3.0 108
19 5.0 49 5.0 79 4.7 109
2 0 4.8 50 3.3 80 5.6 1 1 0

2 1 4.2 51 4.0 81 4.2 1 1 1

2 2 4.6 52 3.4 82 3.1 1 1 2

23 4.4 53 3.1 83 3.4 113
24 5.2 54 3.1 84 4.9 114
25 4.6 55 4.0 85 4.4
26 4.3 56 3.6 8 6 3.2
27 3.4 57 4.4 87 3.6
28 3.1 58 4.3 8 8 3.5
29 3.0 59 3.3 89 3.8
30 4.2 60 4.4 90 3.1

•  Selection was dictated by accessibility and the need to protect the 
amenity landscape

•  Bulb width is measured at the widest point as previously



Inflorescences
Inflorescence
No.

No. of 
bulbils

Total weight 
of bulbils (g)

Mean 
weight of 
bulbil (g)

No. of 
florets

Bulbil/floret
ratio

li 39 14.33 0.37 105 0.37
lii 48 16.76 0.35 149 0.32
liii 49 15.26 0.31 176 0.28
liv 30 10.31 0.34 92 0.33
lv 58 17.76 0.31 154 0.38
Mean 45 135 033
Samples 1 i-v taken from streamside
2i 35 12.37 0.35 125 0.28
2ii 84 15.48 0.18 185 0.45
2iii 49 10.72 0.22 155 0.32
2iv 58 9.98 0.17 145 0.40
Mean 57 153 0 3 7
Samples 2 i-v taken from field side
3i 47 122 0.39
3ii 37 7.33 0.20 127 03 9
3iii 45 9.92 0.22 n o 0.41
3iv 44 10.18 0.23 120 0.37
3v 44 7.66 0.17 27 1.63
Mean 43 101 0.43
Samples 3 i-v taken from far end o f  field
Means for total samples
Bulbils Florets Bulb/floret ratio
48 128 0 3 8

Bulbil/ floret ratio for samples takenl>y Treu (1999)
Population 1 0.45
Population 38 0.36
Population 39 0.41



Appendix 9
Sampling of A. ampeloprasum var. babingtonii, March, 2002

Plant Number Maximum leaf 
length(cm$

64 65
7 76

24 58
47 72
65 53
59 62
14 63
44 77
1 51

41 52

Plants were selected by accessibility and the need to preserve the amenity
landscape, selecting over as wide an area as possible
Bulbs were desiccating and necrotic, therefore no record was taken of bulb
size
Without bulb size data, assessment of plant size in relation to maturity was 
entirely subjective
Outer leaves were showing signs o f necrosis or other physical damage, 
therefore maximum leaf length was recorded in only 10 sample plants



Appendix 10

Two year old bulbs o f Allium ampeloprasum var. babingtonii obtained from John 
Shipton Nurseries in September 2000 (JSOObab)

Bulb Width (cms) Height (cms) Weight (g)
A 3.9 2.4 19.27
B 3.6 2.9 16.08
C 3.0 2.2 14.13
D 3.6 2.6 14.09
E 3.0 2.2 12.78
F 3.0 2.2 13.46
G 2.5 2.0 10.47
H 2.7 2.1 9.72
I 2.4 2.0 7.08
J 2.2 1.8 6.75
K 2.2 2.2 4.26
L 2.4 2.0 5.53
M 2.2 1.8 5.95
N 2.2 1.8 4.93
O 2.2 1.7 4.58
P 1.8 1.6 3.85
Q 1.8 1.7 335
R 2.0 1.8 4.61
S 2.1 1.6 4.73

Mean bulb width: 2.57 ± 0.51 cms 
Mean bulb height: 2.03 ±  0.27 cms 
Mean bulb weight: 8.72 ± 4.24 g

Two year old bulbs o f Allium ampeloprasum var. ampeloprasum obtained from John 
Shipton Nurseries in September 2000 (JSOOamp)

Bulb Width (cms) Height (cms) Weight (g)
A 4.0 3.2 29.7
B 3.7 3.2 19.84
C 3.5 2.7 18.14
D 3.8 3.0 18.09
E 3.6 2.7 16.47
F 3.2 3.0 16.22
G 3.5 2.8 14.68
H 3.2 2.7 14.42
I 3.4 2.9 13.54
J 3.0 2.5 11.87
K 2.3 2.2 5.94
L 3.0 2.6 11.01
M 2.7 2.5 9.93
N 2.6 2.6 9.05
O 2.7 2.5 9.11
P 2.6 2.8 9.07
Q 2.6 2.5 7.98
R 3.0 2.0 7.74
S 2.5 2.0 6.85
T 3.5 2.8 14.97



Mean bulb width: 3.12 ± 0.42 cms 
Mean bulb height: 2.66 ±  0.25 cms 
Mean bulb weight: 13.23 ± 4.38 g

Note: some o f  the bulbs clearly had flat sides, indicating recent division into daughter 
bulbs. W hilst both species were sold as 2 year old plants, this could not be 
independently verified.

It was noted that bulbs o f A. ampeloprasum var. babingtonii were slightly smaller 
than bulbs o f  A. ampeloprasum var. ampeloprasum.

C m s/g  14
12
10 

8 
6 
4 
2 
0

Width Height Weight

■  Babingtonii

■  Ampeloprasum

Comparison o f  A. ampeloprasum var. babingtonii and A. ampeloprasum var. 
ampeloprasum.



Appendix 11

Laboratory recipes

Gamborg’s B5 Basal Salts;

Macro elements (mg/1):

CaCl2 113.23
K N 03 2500.0
M gS04 121.56
NaH2P 0 4 130.44
(NH4)S 04 134.00

Micro elements (mg/1):

CoC12.6H20  0.025
CuS04.5H20  0.025
H3BO3 3.00
KI 0.75
M nS04.H20  10.00
NA2M o04.2H20  0.25
ZnS04.7H20  2.00

FeNaEDTA 36.70

Gamborg’s vitamin Solution (lOOOx)
Myo-inositol 100.0 mg/ml
Nicotinic acid 1.0 mg/ml
Pyridoxine hydrochloride 1.0 mg/ml
Thiamine hydrochloride 10.0 mg/ml

Feulgen Stain

4g o f Basic fuchsin (pararosalanine) was dissolved in 800ml o f boiling distilled 
water. This solution was allowed to cool to 50°C and then filtered. 120ml of 
1M HC1 and 12g of potassium metabisulphite were added to the filtrate and left 
overnight in the dark. 2g o f de-colourising charcoal was added, and the 
mixture filtered. The stain was stored in the dark at 4°C

Sulphur dioxide water



50ml o f 1M HC1 was added to 11 of distilled water. 5g of potassium 
metabisulphite was dissolved in this, the solution being made up fresh each 
time.

Subbing solution

A 1:1 mixture of 1 % potassium dichromate and 1 % gelatine (w/v) was made 
up. The solution was used without dilution for pre-subbing slides. 4 ml were 
added per litre to the water bath subbing solution.

Light green stain

A 0.2% w/v solution was made of Light green stain, in 98% ethanol.

Clarke’s Fixative

3:1 (v/v) mixture of absolute ethanol and glacial ethanoic acid.

LB Broth (Luria-Bertani medium, Sambrook, J., Fritsch, E. F., Maniatis, 
T .10989)

Add
• 950ml deionised water
• 1 Og bacto-tryptone
• 5g bacto-yeast extract
• lOgNaCl

Shake till dissolved. Adjust pH to 7.0 with 5N NaOH, adjust volume to 1 litre. 
Sterilise for 20minutes at 151b/sq. in (1.034 bar).

M13 Forward and Reverse Primers (Genosys)

F: GTAAAACGAGGGCCAGT 
R: GG AAAC AGCT AT G ACC AT G

s o c

Add
• 950ml deionised water
•  20g bacto-tryptone
• 5g bacto-yeast extract
• 0.5g NaCl 

Shake till dissolved



Add 10ml 250mM KC1
Adjust pH to 7.0 with 5N NaOH
Adjust volume to 1 litre
Autoclave to sterilise, then cool to 60°C
Add 20ml sterile 1M solution glucose



Appendix 12

Tissue culture of Allium ampeloprasum var. babingtonii

1. Contamination in culture
2. Sterilising times and concentrations of hypochlorite
3. Techniques to improve surface sterilization
4. Chloramine B and sodium dichloroisocyanurate as surface sterilization agents
5. Minimal sterilisation
6. Media and fluence level
7. Sucrose concentrations
8. Carbon source and photoperiod
9. Nutritional restriction
10. Photoperiod and dormancy
11. Light effects on sprouting numbers o f bulbils
12. Effect o f storage period on dormancy
13. Culturing effects on dormancy
14. Photoperiod and dormancy

1. Contamination in culture

The bulbils (SH99, Chapter 2.0) were harvested during warm, humid weather, with 

light rain and no vegetative growth; therefore contamination was likely to be high (Lu 

et al., 1989). Preliminary investigations with both whole bulbils and explants from 

bulbils in culture, showed a high degree of contamination. This was largely fungal 

with Penicillium and Fusarium predominant, and with some yeasts, frequently 

Rhodotorula, a widespread plant-borne yeast (James, per s. com. 1999). Both 

Fusarium and Penicillium are among the most common soil moulds, along with 

Aspergillus and Mucor (Brady, 1990).

Vigorous sterilisation techniques have been described in a number o f reports on tissue 

culture of Alliums, e.g. Bhojwani et al., 1982/3; Novak et al., 1986; Novak, 1990;

I



Rodrigues et al., 1997, though few record contamination rates nor the nature of the 

contamination. Lu et a l, (1989) noted that contamination was associated with field 

conditions, season and plant development, with less contamination occurring when 

harvested dry and least when vegetative growth was vigorous.

2. Sterilising times and concentrations of hypochlorite (as household bleach)

• Detergent (‘Fairy®’) was added to the hypochlorite as a wetting agent, (three 

drops per litre).

•  After surface sterilisation, the plant material was placed into aseptic conditions in 

a laminar flow cabinet.

• Both explants and bulbils were then dipped in 70 % ethanol for 1 minute, and 

rinsed three times in SDW (1 minute each rinse).

• Culture vessels were 60ml powder jars with screw top lids, containing 20ml 

media, autoclaved at 121 °C for 12 min. at 1.5 bar.

•  The medium comprised Gamborg’s B5 salts (Sigma, G5768) (Appendix 11), with 

0.8% Agar Technical No. 3 (Oxoid L I3), and 4 % sucrose w/v (Sigma S9031). 

Sucrose was used, as it usually gives optimum growth rates (Dodds and Roberts, 

1995).

The temperatures at which Alliums have been cultured do not vary widely. High 

temperatures may cause abortion o f the inflorescence (Brewster, 1994; Smith, 2000), 

whilst lower temperatures may encourage bulbing (Dragland, 1972; Brewster, 1994). 

Optimum temperatures for vegetative growth in Allium ampeloprasum var. porrum  are 

between 20°C and 25°C (Rubatzky and Yamaguchi, 1997).
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•  Temperature was 25°C (Gallenkamp cooled incubator)

• Fluence was 19.5 pM m 2 s'1, (LI-COR LI 118B light meter), continuous light 

(CL).

• For comparison with earlier work, light levels were also measured in lux (TES- 

1334 Digital Illuminance Meter) mean 750 lux (3 readings).

•  Culture vessels were rotated daily at random within the cabinet, to reduce any 

effects o f  environmental gradients within the cabinet.

</>
2
3H 6 3O
c(0
® 4o 
**- o
<D-Q 2
E
3

E Explants - 5% 

■ Bulbils - 5%

□ Bulbils -10%

1 Ld 1
1 1+1 5 10 I 15 20 30 45 60 90 120 150 180

Time of immersion (minutes)

Figure 12-1: Percentage o f uncontaminated cultures following surface sterilising treatments with 
immersion times of 1 -  180 min and 5-10% bleach, assessed after 21 days (n = 10 for each treatment).

There was a trend towards improved surface sterilisation with increasing times o f 

immersion in the sterilising fluid, and at the higher concentration o f 10%, but these 

also incurred 10% higher losses through necrosis offsetting any gain in viable cultures 

(Table 12-1).
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Table 12-1: Summary of cultures o f bulbils and explants developing roots or shoots

Bulbils Explants
Minimum Maximum Mean Minimum Maximum Mean

Percentage
contaminations

50 1 0 0 80 0 80 56

Percentage 
developing shoots 
(clean cultures)

0 0 0 40 50 47

Percentage 0 1 0 0 57 0 2 0 9
developing roots
(clean cultures)_____________________________________________________________________

None o f the bulbils cultured developed shoots though some developed roots, whilst 

explants were more likely to develop shoots than roots (Table 12-2). Use of whole 

bulbils for culture was discontinued.

3. Techniques to improve surface sterilization

Bulbils were selected (SH99, chapter 2.0) using random numbers. Culturing was as 

previously.

Table 12-2: Surface sterilisation techniques - Number of contaminated and clean bulbils, assessed after 
21 days (A = 5% Domestos®; B = 10% Domestos®, immersion for 120 min.).____________________
Experi
ment

Treatment Number
contaminated

Number
clean

Total Percentage
contaminated

Al Control -  hypochlorite immersion 
only

5 5 1 0 50

A2 5 minutes in 70% ethanol before 
sterilisation

5 4 9 55

A3 10 minutes in 70% ethanol before 
sterilisation

5 5 1 0 50

A4 Magnetic stirrer used during 
sterilisation

3 7 1 0 30

A5 Wash under running tap water for 
5 minutes before sterilisation

7 3 1 0 70

B1 Control -  hypochlorite immersion 
only

7 2 9 77

B2 5 minutes in 70% ethanol before 
sterilisation

5 4 9 55

B3 10 minutes in 70% ethanol before 
sterilisation

5 4 9 55

B4 Magnetic stirrer used during 
sterilisation

6 3 9 6 6

B5 Wash under running tap water for 
5 minutes before sterilisation

5 5 1 0 50

Totals 53 42 95
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Significance was tested using %2, a non-parametric test comparing the proportions of 

explants contaminated. The null hypothesis (Ho) stated that there was no difference in 

the proportion of contaminated and clean cultures in each treatment. At a probability 

of p = 0.05, d.f. = 9, x2 crit = 16.9. The calculated value o f %2 = 8.38. Therefore, the 

null hypothesis was accepted. The use o f 70% ethanol for 5 or 10 minutes, 

mechanical agitation, or pre-washing, did not improve surface sterilisation. Adding 

together figures for A and B for each treatment to give larger sample sizes: x2 =

1.994. The critical value = 9.95 for 4 d.f., therefore there was no difference in 

proportions o f contaminated and clean samples between the treatments. Similarly, 

adding together all treatments for 5% and 10% bleach, x2 = 0.90. The critical value is 

3.84 (1 d.f.), therefore there was no difference in the proportions of contaminated and 

clean samples between the concentrations o f bleach. Use o f these methods was 

discontinued.

4. Chloram ine B and sodium dichloroisocyanurate as surface sterilization 

agents

• One g sodium dichloroisocyanurate was dissolved in SDW to give a final volume 

o f 58 ml. Two ml o f Igepal solution (1:49 IgepaliSDW v/v) were added, giving 

1.7 % w/v sodium dichloroisocyanurate.

• Chloramine B was dissolved in SDW to give 5 % (w/v).

•  Fifty bulbils were selected at random. Twenty bulbils were incubated in sterile 

distilled water, in a warm water bath at 40° C for 1 h (Puddephat, pers. com. 2000). 

The remainder were sterilised without this incubation step.
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• Ten un-incubated bulbils selected at random were added to the sodium 

dichloroisocyanurate solution for 5 min, and then rinsed in SDW.

•  Ten incubated bulbils were treated similarly (Table 12-3).

•  Ten un-incubated bulbils selected at random were added to Chloramine B for 20 

min then rinsed in SDW in a Schott bottle, which was then sealed, cleaned with 

70% ethanol, and transferred to the laminar flow cabinet. Ten incubated bulbils 

selected at random were added to Chloramine B similarly.

•  Ten un-incubated bulbils were rinsed only in SWD, before being placed in culture.

•  The bulbils were rinsed twice more in SDW, and cultured on 20 ml sterile medium 

comprising Gamborg’s B5 salts, with 0.8% (w/v) Agar Technical No. 3, and 4%

(w/v) sucrose. The bulbils were cultured as above.

Table 12-3: Bulbils surface sterilised with sodium dichloroisocyanurate and Chloramine B, assessed 
after 21 days (n = 10 for each treatment)______________________________________________

Treatment Percentage
contaminated

Percentage
clean

Sodium dichloroisocyanurate 1.7% w/v 80 20
Chloramine 5% w/v 90 10
Incubation (60mins.) + Sodium dichloroisocyanurate w/v -

Incubation (60 mins.) +Chloramine 5% w/v 50 50
Control -

These data were tested for significance using % as above. H0 states that there is no 

difference in the proportion o f contaminated and clean explants, using these different 

sterilants. At 2 d.f, p = 0.5, the critical value o f %2 = 5.99. The observed value of %2 

= 4.553. Therefore, the difference in these results was not significant, and the H0 is 

accepted. Although there was no control data for comparison, the numbers of clean 

explants following these treatments was so low that use of these sterilants was 

discontinued.
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5. Minimal sterilisation

• Bulbils were selected at random  and prepared by removal o f  all surface tissue

• They were cultured as above

Table 12-4: Explants with all surface tissue removed and given minimal surface sterilisation by rinse in
SDW or immersion in hypochlorite, assessed after 34 days (n = 10 for each treatment)
Treatment Percentage Percentage Percentage Mean shoot

clean contaminated sprouting length

A. Rinse in sterile distilled water only 90 10 90 13.0mm
B. 1 minute in sterilant, then 3 rinses in 80 20 50 11.8mm
sterile distilled water
C. 3 minutes in sterilant, then 3 rinses in 90 10 10 14.0mm
sterile distilled water
D. 5 minutes in sterilant, then 3 rinses in 100 0 60 4.2 mm
sterile distilled water

Testing for significance in the proportions o f  clean explants compared with 

contam inated explants, using x  gave an observed value o f  x  = 2.222. The critical 

value was 7.81, p = 0.05, 3 d.f.; therefore there was not a significant difference in the 

num ber o f  clean explants using these sterilisation methods (Table 12-4).

o> II No. cleanC
z . ■ No. sprouting 

□ Mean shoot length

SDW 1 min 3 min 5 min

Figure 12-2: Comparison between numbers o f clean and sprouting explants, following different 
immersion times in hypochlorite
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Testing for significance in the number o f explants sprouting compared with the 

number o f explants not sprouting, using x2, gave an observed value of 13.132 

compared with a critical value o f 11.34 for 3 d.f. at p = 0.01. There was a very 

significant difference in the number o f explants sprouting, using these different 

sterilising methods. The highest proportion o f sprouting explants (90%) was in the 

treatment involving no hypochlorite immersion, just a rinse in SDW (Figure 12-2).

Analysis o f the length o f the shoots (Figure 12-2) using the Kruskal-Wallis Test (non- 

parametric test comparing the median o f each sample group) gave K = 6.37. The 

critical value was 7.81 at p = 0.05, therefore there was no difference in the medians of 

each sample. Although the use o f hypochlorite did not significantly affect the 

numbers o f clean explants, it did significantly reduce the numbers o f explants 

sprouting. Therefore, rinsing in SDW was adopted for all future work.

6. Media and fluence level

Where plants and explants survived in culture, growth was often poor or non-existent. 

Some explants appeared to survive, but remain dormant, others developed shoots and 

new storage tissue; the shoots then died back leaving a dormant but apparently viable 

bulb. A. cepa is sensitive to nutritional and environmental conditions. If these are less 

than optimum, growth can cease, being difficult to restart even when conditions 

improve (Brewster, 1994). Where conditions in vivo are inadequate for growth, 

abortion o f the inflorescence can occur (Brewster 1994).

•  The higher light levels (Sanyo Growth Cabinet) were 95.2 pM m '2 s '1, mean 4500 

lux (minimum 3400 lux, maximum 5500 lux).
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• The lower light levels (Gallenkamp Cooled Incubator) werel9.5 pM m'2 s’1, mean 

750 lux (minimum 550 lux, and maximum1390 lux).

• All samples were cultured under continuous light (CL) at 25°C.

Cultures were assessed after 30 days, when both contamination and chlorosis were 

recorded. Analysis of contamination in each of the six different conditions, using %2, 

gave a value o f 19.435. The critical value was 15.09 (p = 0.01, d.f. = 5). Therefore, 

the result was very significant. If data relating to sample 1 (White’s medium, high 

light levels) was removed from the test, then the observed value of x2 = 6.208, the 

critical value is 9.49 at p = 0.05, and there was no significance in the remaining 

samples. Therefore, this sample contributed most to the significance level. The 

numbers o f explants sprouting under these conditions was analysed similarly. The 

observed value o f %2 = 8.49. The critical value = 11.07 when d.f. = 5 and p = 0.05. 

Therefore, there was no significant difference in the numbers of explants sprouting 

under these conditions. The medians of the shoot length were compared using the 

Kruskal-Wallis test. The observed value of K = 7.47. At 4 d.f., the critical value = 

9.49, therefore there was no significant difference in the shoot lengths. Examination 

of the ranks o f the shoot lengths using the non-parametric ANOVA (Barnard, et al., 

2001) also showed no significance in the variation o f shoot length as a result o f the 

light level (Kobs = 0.089, Kent= 3.86, p = 0.05). However examination of the effect of 

the medium on shoot length was significant (Kobs= 4.2235, Kent= 3.86, p = 0.05), 

whilst the interaction between these factors was also not significant (p = 0.05, K crit=
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5.99, K obs= 2.70). Therefore, the media and fluence levels examined did not 

significantly affect shoot length.

7. Sucrose concentrations

• Explants were prepared as previously (Figure 29) (n = 10 for each treatment)

•  Medium was Gamborg’s B5 basal salts, with 0.8 % agar

• All samples were cultured under continuous light (CL) at a fluence of 19.5 fiM m*2 

s 1 at 25°C.

Table 12-5: Contamination and survival numbers for explants cultivated in media supplemented with 
different sucrose concentrations. Assessed at 30 days; mean length is per surviving and developing

Sucrose 1 % 2 % 3% 4% 6 % 8 %
Number clean 1 0 1 0 1 0 1 0 4 8

Number viable 7 5 5 4 2 4
Mean shoot 
length

4.7mm 5.8mm 1 2 .8 mm 11.75mm 11.5mm 8 mm

Chlorosis None None None None None None
The overall percentage o f contaminations was 13.3%. Analysis o f the number of 

contaminated and clean explants under different sucrose concentrations, using % gave 

an observed value o f %2 = 9.34. At 5 d.f.., p = 0.05, the critical value o f %2 = 11.07. 

Therefore, there was no significant difference between the number of contaminated 

and clean explants under the different treatments. Analysis o f the number of viable 

explants using x2, gave a value o f 5.466. At p = 0.05 and 5 d.f., the critical value was 

11.07, therefore the observed differences were not significant. The Kruskal-Wallis 

test comparing differences in medians for non-parametric data was used to evaluate 

differences in shoot length, giving K = 6.116. The critical value at 5 % was 10.75. 

Therefore, there was no significant difference between the medians o f the shoot length 

of the populations cultured at different sucrose levels. Spearman’s Rank correlation
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(non-parametric test for association) was used to examine the relationship between 

sucrose concentrations and contaminations. R = 0.8. The 2 tailed test at p = 0.05, 

gives a critical value of R= 0.886. Therefore, there was no correlation between 

sucrose concentrations and number o f contaminations. Similarly, there was no 

correlation between sucrose concentrations and the number o f viable explants (Robserved 

= 0.828, p = 0.05, Rcnticai 2-tailed = 0.886). However, these values are close to the 

critical values, so more rigorous testing may identify a correlation.

8. Carbon source and photoperiod

•  Explants were all prepared as previously (Figure 29)

•  They were sterilised by rinsing with SDW and cultured in Magenta vessels with 50 

ml media (Gamborg’s B5 basal salts, 0.8 % w/v agar)

• fluence was 19.5 pM m'2 s '1, 750 lux at 25°C)

•  All contaminated samples were discarded.

•  Those that exhibited bulbing and dormancy were not included in shoot length 

measurements, as it was not possible to obtain accurate measurements. Shoots that 

failed to elongate, or became abnormal were discarded.

Table 12-6; Explants cultured on a medium supplemented with glucose at 3% or 6%, assessed after 3 
months ( 1 2  explants per treatment)

3% 6 %
14 h 24 h 14 h 24 h

Treatment number 1 2 3 4
Number contaminated 3 4 2 3
Number bulbing 1 1 1 1

Number with distorted growth 1 1 2 2

Number viable 7 6 7 6

Mean shoot length (mm) 24.2 2 0 . 2 11.67 11.80

Table 12-7 ;Explants cultured on medium supplemented with sucrose at 3% or 6%, assessed after 3 
months ( 1 2  explants per treatment)

3 % 6 %
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14 h 24 h 14 h 24 h
Treatment number 5 6 7 8

Number contaminated 1 2 1 1

Number bulbing 4 3 4 4
Number with distorted growth 3 5 2 2

Number viable 4 2 5 5
Mean shoot length (mm) 21.5 18.0 7.4 1 2 . 2

Table 12-8: Explants cultured in medium supplemented with fructose, after 3 months (12 explants
treatment)

3% 6 %
14h 24h 14h 24h

Treatment number 9 1 0 1 1 1 2

Number contaminated 2 2 3 2

Number bulbing 5 2 1 3
Number with distorted growth 2 2 2 2

Number viable 3 6 6 5
Mean shoot length 9.6 9.33 9.2 7.0

These data suggested that contamination was lowest on sucrose (Table 12-6) and

highest on glucose (Table 12-5), whilst bulbing is lowest on glucose and highest on 

sucrose. However, analysis using x2 to examine the difference in the ratios of 

contaminated and clean explants, between the 12 treatments showed no significant 

difference. The observed value of x2 = 5.225, the critical value for 11 d.f. at p = 0.05, 

was 19.68. Therefore, there was no significant difference in the proportions of 

contaminated and clean explants in these treatments. When the summed data was 

analysed using Kruskal-Wallis test to rank the number o f contaminations per carbon 

source, then the observed value o f K = 8.355. The critical value is 5.99 (d.f. = 2, p =

0.05). Therefore, the difference in the medians o f the ranks between the different 

sugars is significant, and the number o f contaminations is significantly different 

between these sugars.

Analysing the numbers bulbing under each o f the 12 treatments, the observed value of 

X2  = 16.726. The critical value (d.f. = 11 p = 0.05) of x2 = 19.68. Therefore, the 

differences in proportions of bulbing and non-bulbing explants, was not significant.
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However, this was quite close to the critical value. When the results for each sugar 

were summed, then the observed value of x2 = 7.165. The critical value was 5.99 

(2.d.f. p = 0.05). Therefore, the difference in proportions o f explants bulbing under 

different sugars was significant. Again, when the numbers were analysed using the 

Kruskal-Wallis test, using summed data for each sugar, then the observed value for K 

= 7.038. The critical value o f K = 5.99 (d.f. =2, p = 0.5). This result was significant. 

These apparently contradictory results may suggest that there is some significant 

difference in the numbers of explants bulbing between the treatments, but that more 

stringent testing would be necessary to confirm this.

The highest number o f viable explants was observed in the medium supplemented 

with glucose (26 compared with 16 on sucrose and 20 on fructose, out of a 48 explants 

grown on each sugar). The low viable numbers indicated not only losses due to 

contamination and bulbing, but also the production o f distorted growth, this being 

particularly reflected in sucrose, where 25% of the explants are affected. When the 

number o f viable explants in each of the 12 treatments was examined, the observed 

value o f x2 = 6.519. The observed value of x2 = 19.68 (d.f. = 11, p = 0.05).

Therefore, the difference in the proportions o f viable and non-viable explants was not 

significant in these conditions. As the observed value was not close to the critical 

value, no further tests were done.

Mean shoot length was also higher on glucose. The lengths of the shoots o f viable 

explants were examined, using the Kruskal-Wallis test to compare medians under each 

treatment. The observed value o f K = 21.82. The critical value o f K = 19.68 (d.f. 11, p
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= 0.05). Therefore, the difference in medians between the treatments was significant, 

with treatment 1 and 2 (3% glucose at 14 and 24 h photoperiods) contributing most to 

the significance.

9. Nutritional restriction

•  Explants were prepared as previously

•  These were grown on with 3% sucrose, Gamborg’s B5 basal salts, 0.8% agar

•  Fluence was 19.5pM m‘2 s'1 at 25° C

•  Gamborg’s Vitamin Solution was included in the medium at a concentration of 

lm l I'1 in accordance with the manufacturer’s recommendations

• Contamination, shoot growth and viability were compared after 3 months

Table 12-9: Shoot lengths assessed after approximately 3 months (0 growth indicates that the explant

Treatment 50ml exc. 
Vitamins

1 0 0 ml exc. 
vitamins

50ml inc. 
vitamins

1 0 0 ml inc. 
vitamins

0 23mm Cont 4mm
8 8 mm 50mm 82mm 48mm
0 0 1 0 mm 0

0 118mm Cont 0

56mm 49mm 9mm Cont
0 64mm cont 43mm
Cont. 74mm 135mm 193mm
43mm 152mm 4mm 67mm
0 0 190mm Cont
7mm 34mm Cont 70mm
0 0 4mm Cont
0 Cont 0 0

Number contaminated 1 1 4 3
Number viable 4 8 7 6

X? was used to evaluate the number o f contaminated explants (Table 12-8). The 

observed value of = 3.65. The critical value (d.f. = 3, p = 0.05) o f x2 = 7.81. 

Therefore, there was no significant difference in the proportions o f clean and
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contaminated explants between these treatments. However, the least contamination 

was in treatments 1 and 2 which did not have added vitamins.

X2 was used to evaluate the number o f viable explants in each o f the 4 treatments 

(Table 12-8). The observed value o f x2 = 2.92. The critical value (d.f. = 3, p = 0.05) 

o f x2 =7.81. Therefore, there was no significant difference in the proportions of 

viable and non-viable explants in these treatments. However, the largest number of 

viable explants was in treatment 2 (100ml ex. vitamins).

Mean shoot length was longer in explants cultured on 100 ml of medium compared 

with 50 ml medium (Table 12-8). The Kruskall-Wallis test was used to evaluate the 

lengths o f the shoots in each o f the treatments (Table 32). The observed value of K = 

3.82. The critical value (d.f. = 3, p = 0.05) o f K = 7.81. Therefore, the difference in 

length was not significant. This was also analysed using non-parametric two-way 

ANOVA, but again the results were not significant.

Although there was no bulbing apparent at this time, after a further 4 weeks, bulbing 

became well developed (Table 12-10).

Table 12-10: Bulbing numbers after 4 months in culture
50ml exc. 1 0 0 ml exc. 50ml inc. 1 0 0 ml inc.
Vitamins vitamins vitamins vitamins

Number bulbing 
(total) percentage

2 (4) 50% 6  (8 ) 75% 2 (7) 28% 2 (6 ) 33%

This was tested using x2. The observed value of x2 = 3.912. The critical value = 7.81 

(d.f. = 3, p = 0.05). Therefore, there was no significant difference in the proportions
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o f  explants bulbing under these treatments. However, 67 % o f those explants grown 

without vitamins showed bulbing after 4 months, whilst only 31 % o f  those cultured 

with vitam ins showed bulbing after 4 months.

10. Photoperiod and dormancy

Table 12-11: Effects of photoperiod on dormancy
24 h photoperiod 14 h

photoperiod
No. of dormant plants 9 8

No. of sprouting plants 7 9

11. Light effects on sprouting numbers of bulbils

Twenty bulbils were chosen at random; half were placed on damp filter paper in a 

Petri dish in total darkness; the other half was placed on damp filter paper in a Petri 

dish in continuous light.

Both were grown at 20°C (Sanyo Growth Cabinet 95.2 pM  m-2 s-1, mean 4500 lux) 

and sprouting num bers were compared after two and four weeks (Figure 12-3).

10

2 weeks 4 weeks

Figure 12-3: Effects of light on sprouting numbers of bulbils
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After two weeks, five bulbils had sprouted in CL compared w ith eight in continuous 

dark. However, by  four weeks, there was little difference w ith nine sprouting in CL 

and 8 in continuous dark.

12. Effect of storage period on dormancy

• Bulbils were selected at random, excised as previously (Figure 29), and rinsed in 

SDW

• They were cultured at 25°C, 14 h photoperiod.

•  M edium was B5, w ith 3 % w/v glucose, 0.8 %  w/v agar

_ O 1
•  Fluence was 95.2 pM  m ' s' , mean 4500 lux (Sanyo Growth Cabinet)

■ Number sprouted 

□ Number bulbing

■ Mean shoot length 
(cms)

Figure 12-4: Comparison o f development between explants from new bulbils (3 months), and bulbils 
stored for 15 months

New er bulbils sprouted more rapidly; they produced 6 shoots within 19 days, whereas 

the older bulbils produced 4 shoots by  36 days. The mean shoot length increased 

rapidly initially in the fresh bulbils, rising to 9.7 cm compared to 1.0 cm for the older 

bulbils. However, after this point, dorm ancy and shoot dieback reduce the mean shoot 

length, to 4.4 cm for fresh bulbils. The figure o f  6.3 cm for the older bulbils reflects

New Old 

19 days

New Old 

36 days

New Old 

94 days
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growth o f one shoot only, the rest having become dormant by this time. Bulbing also 

proceeded faster on older bulbils than fresh. Fresh bulbils produced only one explant 

bulbing by 94 days, whilst older bulbils produced one bulbing explant by 36 days, 

rising to 4 by 94 days.

13. Culturing effects on dormancy

• Bulbils and explants were grown at 25°C, 14h photoperiod

• The medium for explants was B5, with 3 % (w/v) glucose, 0.8 % (w/v) agar.

•  The whole bulbils were placed approximately 2 cm deep in compost (‘Homebase’ 

multipurpose, with approximatelylO % v/v added horticultural grit) in 9 cm pots 

and grown in the same growth cabinet.

•  Positions were rotated as previously to minimise environmental gradients within 

the cabinet.

•  Fluence rate was 95.2 pM m'2 s '1, mean 4500 lux (Sanyo Growth Cabinet).

Table 12-12: Growth o f bulbils in vivo and explants from bulbils in vitro (Number sprouting including 
those exhibiting dormancy; mean shoot length includes all those with visible shoots, including those 
that have begun to bulb but still have visible shoots) There were no losses due to contamination.

After 19 days_______After 36 days_________After 94 days
In vivo In vitro In vivo In vitro In vivo In vitro

Number
sprouted

6 5 6 6 6 6

Mean shoot 1 0 . 2 2.4 19.7 2 . 2 21.7 0
length (cm) (n = 6 ) (n = 5) (n= 6 ) (n = 2 ) ( n = 6 ) (n -  0 )

Number
exhibiting
dormancy

0 0 0 4
(67%)

0

(0 %)
6

( 1 0 0 %)

These data suggested that there is no difference in numbers sprouting, between those 

grown in vivo and those grown in vitro (Table 12-9). However, the difference in the 

shoot lengths was readily apparent, the mean o f those grown in vivo being larger by a
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factor o f 4.25 atl9  days rising to 8.9 after 36 days, reflecting both the growth in the 

whole plants, and the dieback o f the shoot as bulbing develops. Additionally the 

explant shoot was chlorotic compared with whole plant growth. The Mann-Whitney 

test for differences in medians (1-tailed) was used to examine the significance of the 

difference in shoot lengths, between 19 days and 36 days. After 94 days, mean shoot 

length shows little increase from 36 days for those grown in vivo, whilst those in vitro 

have all bulbed and no longer have shoots. The observed value o f T = 36; the critical 

value for T = 33 (p = 0.005); therefore, this difference is very highly significant, and 

the median o f the sprouting lengths is very highly significantly larger in vivo than in 

vitro.

Bulbing occurred in 4 out o f 6 explants in vitro within 36 days, with none of the whole 

plants in vivo (out o f 6 sprouting) showing signs o f bulbing within this period. After 

94 days, all o f those in vivo were still sprouting, whilst none o f those in vitro were in 

active growth, but had bulbed and become dormant.

14. Photoperiod and dormancy

Bulbils from SH99 (Chapter 2.0) were selected at random, excised as Figure 29 to 

remove all external tissue, and grown in culture on 20 ml B5 medium with 3% 

sucrose, 0.8% agar at 25°C, CL at a fluence of 19.5 pM m '2 s '1.

After 6 months in culture, approximately half were dormant (Table 12-10). These 

were allocated at random to CL and 14 h photoperiods and maintained in culture on 20 

ml B5 medium with 3% sucrose, 0.8% agar at 25°C, at a fluence of 19.5 pM m '2 s 1
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Sub-culturing was continued at monthly intervals. Effects of the change in 

photoperiod on dormancy were assessed after 4 months

Table 12-13: The effects of change of photoperiod on sprouting and dormancy of explants after four 
months in vitro

Explants initially dormant Explants initially

14 h photoperiod Plant Shoot length (mm) Plant Shoot length
no. no. (mm)

63 Dormant 13 3
37 Dormant 73 2 2

31 Dormant 25 8

36 Dormant 57 23
6 8 Dormant 38 13
50 Dormant 48 6

27 Dormant 8 8

29 Dormant 17 5
65 Dormant

24 h photoperiod
53 Dormant 39 Dormant
44 Dormant 24 Dormant
32 Dormant 1 2 13
33 Dormant 43 Dormant
52 Dormant 64 Dormant
71 Dormant 19 Dormant
51 Dormant 56 Dormant
69 Dormant
16 -

42 -

47 -

Total of dormant plants 0/19 Total of initially sprouting 7/16
sprouting after 4 months plants dormant after 4

months

When tested for significance using x2 adjusted by Yates correction factor (d.f. = 1) 

then the observed value o f x2 = 6.2115 at p = 0.05. Therefore, this result was 

significant and there was a difference in the numbers o f explants sprouting or 

becoming dormant under the 14h photoperiod and CL treatments.

xx
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Development of third season plants (JSOO)

Table of raw data here

All 3 floral plants were sampled in the period from 9 4 01 to 9 5 01 (Fig. 66)

■ Vegetative 
Floral

13 27  09  23 09  
03 03 04 04 05  
01 01 01 01 01

04 18 
06 06 Date
01 01

Figure 66: Maximum leaf length in 3rd season plants (JSOO), planted in October following dormancy, grown in 
outdoor beds, and sampled at intervals and examined for floral development.
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Figure 40: Bulblet number in 3rd season 
plants (JSOO)
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Figure 41: Number of leaves in 3rd 
season development (JSOO)
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Third season plants (SH99) sampled m onthly, cultured for approxim ately 4 weeks, then 
dissected to assay for floral development. Contaminated cultures were not included.

Date Bulb Width at 
sampling (cm)

Length of shoot 
at assay (cm)

Total no. of leaves 
(removed for culture plus 

removed at assay)

Floral
Score

6  1 1  0 1 3.5 3.5 13 0

3.0 3.1 14 0

2.4 6 . 1 1 2 0

3 12 01
3.2 4.1 13 0

4.2 5.6 14 0

2 . 0 4.9 13 0

1.7 2 . 0 9 0

3.0 4.5 1 1 0

1.7 2.7 1 0 0

9 1 02 2 . 1 1.9 1 0 0

1.4 6 . 1 8 0

1.5 - - -

3.0 0 . 1 1 0 0

3.2 1.7 1 1 0

2.3 3.6 1 2 0

2 . 6 7.5 1 2 0

2 . 8 4.6 1 1 0

2.9 4.5 12 7
2.4 2 . 2 9 0

1 2  2  0 2 1 . 2 _ _

1 . 6 1 2 0

2.7 13 0

2.3 1 2 0

1.5 1 2 0

1 . 6 1 2 0

2 . 2 - -

1.5 1 1 0

1 . 1 - -

1.7 1 2 0

SHI 101 -

14 3 02 2 . 2 -

2.4 1.4 14 0

2.5 - -

2 . 2 0.4 1 1 0

2 . 6 1 . 0 1 2 0

2.5 - -

3.4 1 . 0 1 0 0

2.9 0.7 13 0

3.0 - - -
3.5 - - -

It would have been expected that some o f  the larger bulbs (highlighted) would have been 
floral. These data appear to be inconsistent w ith the suggestion that critical mass is 
approxim ately 3 cm width. However, floral developm ent appears to proceed at different rates 
in different plants, so this is inconclusive (see results for JSOO, 6.3.1, Figure 66)



Appendix 15

Floral development of Allium ampeloprasum var. babingtonii (SH0301) sampled from the 
Cornish population in March, 2001 as growing plants of unknown history

Date Plant
no.

Floral
Score

Method Scape
length
(cm)

Spathe
height
(cm)

Inflorescence 
height (cm)

Inflorescence 
width (cm)

Immediate
dissection:

24 3 01 1 0 Wax embedding
2 4 SEM } 0.5 0 . 2 0.25
3 0 SEM
4 6 Wax embedding 4.8 0.4 0.35
5 9 Wax embedding 0.3 0.3
6 5 Wax embedding 2 . 0 0 . 2 0 . 2

7 0 Wax embedding
8 8 Wax embedding
9 0 Wax embedding
1 0 0 Wax embedding
1 1 9 Wax embedding 1.5 1 . 8 0.3 0.3
13 0 Wax embedding
15 0 Wax embedding
16 0 Wax embedding

Two
weekly
sampling
10 4 01 30 0 SEM

54 0 SEM
23 4 01 28 5 SEM 2.5 1 . 6 0 . 8 0.4

46 5 SEM 5.7 2.5
51 9 Wax embedding 25.2 7.1 0.7 0 . 6

2 0 5 Wax embedding 4.2 2.5 0.3 0.3
9 5 01 34 8 SEM 72.0 7.8 1 . 1 1 . 0

15 9 Wax embedding 48.0 6 . 0 1 . 1 0.7
49 0 Wax embedding
2 1 0 Wax embedding 76.0 5.7 1.4 1.3
48 0 Wax embedding
6 0 Wax embedding

21 5 01 19 9 Wax embedding 66.5 5.7 1 . 8 1 . 0

13 1 0 Wax embedding 76.5 5.1 1 . 8 1.3
38 0 SEM
37 0 SEM
27 1 0 Wax embedding 87.0 4.2 3.3 2.9

4 6  01 59 1 0 Wax embedding 96.5 4.7 1.7 1 . 8

16 0 Wax embedding
55 0 Wax embedding
41 0 Wax embedding

18601 50 1 1 Dissection Desiccated 2.4
4 7 01 53 1 1 Dissection 87.5 Desiccated 4.4

All floral plants examined during the two weekly sampling had bulbils in the inflorescence



Appendix 16
Bulbil/floret numbers

1. Number of bulbils on each inflorescence (SH99) collected from population 1 in 
August 1999:

A1 49 bulbils A4 48 bulbils A5 90 bulbils
A6 53 bulbils A8 43 bulbils A9 25 bulbil
A10 70 bulbils B12 66 bulbils C15 52 bulbils
D16 38 bulbils D17 40 bulbils F20 46 bulbils
F21 40 bulbils F22 59 bulbils F23 49 bulbils
F24 31 bulbils F26 19 bulbils G27 36 bulbils
G30 51 bulbils G32 41 bulbils G34 41 bulbils
G35 41 bulbils H40 42 bulbils H43 38 bulbils
144 47 bulbils 146 33 bulbils 148 25 bulbils
J47 36 bulbils J51 62 bulbils J53 61 bulbils
J54 66 bulbils J56 50 bulbils J59 34 bulbils
J60 32 bulbils J61 48 bulbils J62 59 bulbils
J63 44 bulbils J64 39 bulbils J65 36 bulbils
J67 28 bulbils J69 36 bulbils J70 30 bulbils
J72 65 bulbils J73 45 bulbils J75 45 bulbils
J77 44 bulbils J79 48 bulbils J82 65 bulbils
Mean bulbil number, 45.5 ± 1.95 ; standard deviation 35.5 ; median 44.

2. Bulbils and florets on each inflorescence (SHI 101) collected from population 1, 
November, 2001

Inflorescence No. of bulbils Total weight of Mean weight of No. of florets Bulbil/floret
No. bulbils (g) bulbil (g) ratio
li 39 14.33 0.37 105 0.37
lii 48 16.76 0.35 149 0.32
liii 49 15.26 0.31 176 0.28
liv 30 10.31 0.34 92 0.33
lv 58 17.76 0.31 154 0.38
Mean 45 0336 135 0.33

2i 35 12.37 0.35 125 0.28
2ii 84 15.48 0.18 185 0.45
2iii 49 10.72 0.22 155 0.32
2iv 58 9.98 0.17 145 0.40
Mean 57 0.23 153 037

3i 47 122 0.39
3ii 37 7.33 0.2 127 0.29
3iii 45 9.92 0.22 110 0.41
3iv 44 10.18 0.23 120 0.37
3v 44 7.66 0.17 27 1.63
Mean 43 0.205 101 0.43
Standard 42 0.09
deviation
Mean for 48 128 0.38
'whole
population
Samples 1 i -  v were taken from damp, shady ground on a streamside
Samples 2 i -  iv were taken from sunny dry ground with little competition on a field edge
Samples 3 i -  v were taken from sunny dry ground with much competition on a path edge



3. Samples taken by Treu (1999)

Population number Mean bulbil no. Mean bulbil 
weight (g)

Mean floret 
number

Bulbil/floret ratio

1 (n = 70 49.5±2.0 0.24±0.01 110.1±6.6 0.45
38 (n = 10) 45.1±4.8 0.22±0.03 124.2±16 0.36
39 (n = 10) 60.6±3.3 0.28±0.03 147±10.4 0.41

4. Analysis

There was apparently much variation in both bulbil and floret numbers. If varying bulbil 

numbers were a reflection o f varying inflorescence size, there should be a relationship 

between the bulbil number and the floret number, with a correlation between bulbil number 

and the bulbil/floret ratio. However, when the data from SHI 101 was combined with the data 

from Treu (1999), the coefficient o f  linear regression was only 0.5721, showing only a weak 

positive correlation between bulbil and floret numbers.

120
110 R = 0.57

160
150

Mean 1 4 0  
num ber of 
florets per 
inflorescen 

ce per 
population

40 45 50 55 60 65

Mean number o f bulbils per inflorescence per 
population

Figure: Data for bulbil number/floret number from Treu 1999, (Table above) and mean 
bulbil/floret numbers from SHI 101 (above).

Some correlation between the bulbil numbers and floret numbers was to be expected since a 

larger inflorescence could be expected to have more o f  each. This result suggested that the 

relationship was more complex, and could perhaps be linked with the development o f the



cyme, and the timing of the response to the signal that produced the bulbils as an alternative 

to florets.

The variation in bulbil numbers between SH99 and the three sub-populations in SHI 101 was 

tested using non-parametric Anova (Barnard, 2001). At 3 d.f. (p = 0.05) the critical value was 

7.81. The observed value was K = 1.384. Therefore, there was no significant difference in 

the mean numbers of bulbils in each of these samples. This was further tested by comparing 

SH99 with SHI 101 (treated as one population) to examine the relationship bulbil numbers 

from one year to another, also using non-parametric Anova. At 1 d .f (p = 0.05) the observed 

value o f K was 0.22, compared with a critical value o f 3.84. Therefore, there was no 

significant difference in the variation in bulbil numbers between the samples taken from 

Population 1 in 1999 and 2001. Similarly, the relationship between the bulbil numbers from 

the three subpopulations o f Population 1, were examined to see if  the different growing 

environments affected the numbers o f bulbils. The observed value o f K = 1.986. The critical 

value for 2 d.f. (p = 0.05) was 5.99. Therefore, there was no significant difference in the 

numbers o f bulbils produced in these three environments. The mean weight of the bulbils was 

examined using the same test. K = 2.935 (p = 0.05) 2 d.f., the critical value was 5.99. 

Therefore again, there was no significance in the difference in the mean weight of the bulbils 

from these populations.

Similarly, the variation in floret numbers in SHI 101 (3 sub-populations from Population 1) 

was examined using non-parametric Anova for 2 d.f., (p = 0.05. The critical value was 5.99, 

the observed value was K = 4.1657. Therefore, there was no significant difference in the 

mean numbers o f florets in each of these samples, and the variations in the environments were 

not shown to have any effect on the floret numbers.



Appendix 17
Protocols for extraction, amplification and sequencing of DNA and RNA from

Allium ampeloprasum var. babingtonii

1. Extraction and cleaning o f genomic DNA
2 . Sepharose CL6B cleaning o f genomic DNA
3. Purification of genomic DNA by equilibrium centrifugation in Caesium 

chloride/ethidium bromide (CsCl/EtBr) gradient
4. Summary of QIAQUICK Gel Extraction Kit Protocol
5. The Polymerase Chain Reaction (PCR)
6. Summary of protocol for ligation using pGEM®-T Vector System 1
7. Preparation of LB plates
8. SOC growth medium
9. PCR to extract insert from E. coli colonies
10. Mixture for liquid culture o f transformed cells
11. Summary o f extraction of high-copy plasmid DNA from overnight cultures
12. Summary o f extraction o f RNA using TRI-Reagent
13. Summary o f method for cleaning RNA
14. cDNA synthesis
15. PCR of cDNA

Extraction and cleaning of genomic DNA from Allium ampeloprasum
var. babingtonii (adapted from Saghai-Maroof et al. 1984).

•  50 ml o f 2 x CTAB isolation buffer was made up comprising 100 mM Tris-HCl 
pH 8.0, 1.4 M NaCl, 20 mM EDTA, 2% w/v CTAB 
(hexadecyltrimethylammonium bromide) with SDW

• 2 x 25 ml was preheated in sterile 50 ml Coming tubes to 65°C
• Young leaves were removed from Allium ampeloprasum var. babingtonii plants, 

cooled in liquid nitrogen and stored at -  70°C.
• Two pieces approximately 3 g were removed and ground in a pre-chilled pestle 

and mortar (-20°C) with liquid nitrogen
• Half was added to each tube o f 2 x CTAB isolation buffer and then incubated at 

65°C for 20 minutes.
•  The mixture was placed into four round bottom centrifuge tubes and 12.5 ml 

SEVAG (24:ldichloromethane:isoamyl alcohol) was added to each in a fume 
cupboard and mixed gently, releasing pressure as necessary

• Lids were sealed with Nesco film, and mixture was rocked to mix for 30 min. 
(Denley Suprarocker)

•  The tubes were centrifuged for 20 min. at 8000 rpm, using a Sorvall SS34 Rotor 
in a RC5C Sorvall Centrifuge (DuPont)

•  The top (aqueous) layer was transferred to sterile 50 ml centrifuge tubes, yielding 
approximately 10 ml in each tube

• Approximately 2.5 x volume o f 100% ethanol was added to each tube at -20°C 
and stored overnight at this temperature to precipitate the DNA

• Tubes were centrifuged at 3000 rpm for 10 min. at 4°C (Beckman GS-GR), and 
the supernatant removed

1



• The pelleted DNA was washed with 70% ethanol, then centrifuged at 3000 rpm 
for 15 minutes as above

• The supernatant was discarded and the samples were dried at room temperature 
for 5 min

•  Pellets were resuspended in 400 pi TrisiomM EDTAo.imM buffer and stored at 4°C.

2. Sepharose CL6B cleaning of genomic DNA

• Sepharose CL6B was washed 2 x in TE and autoclaved in 0.5 vols of TE prior to 
use

• A hole was made in the base o f a 0.5ml Eppendorf, which was then placed inside 
a 2ml Eppendorf.

•  Glass beads, washed, autoclaved and in TE were pipetted into the inner tube.
•  Sepharose CL6B was shaken, then 500pl pipetted over the top o f the glass beads. 

This was microfuged at 3000 rpm for 3 minutes.
•  The outer tube was replaced with a clean tube. DNA was added (50 pi), then 

microfuged for 3 min. at 3000 rpm. The resultant liquid was stored at 4°C.

3. Purification of genomic DNA by equilibrium centrifugation in Caesium
chloride/ethidium bromide (CsCl/EtBr) gradient

• 10 ml CsCl/EtBr solution was made comprising
■ 0.5 ml 1 M Tris-HCl pH 8.0
■ 0.2 ml 0.5 M EDTA pH 8.0
■ 0.1 ml 10 mg/ml ethidium bromide
■ 7.53 g CsCl
■ and SDW to 10 ml

• Density was adjusted to 1.55 g/ml
• 0.75ml CsCl/EtBr solution was added to each (2) DNA pellet prepared as 

described in section 17.2, and warmed for 20 minutes at 65 °C and gently rocked 
till resuspended

• The two samples were combined, and a further 2 ml CsCl/EtBr was added
•  Samples were transferred to polycarbonate centrifuge tubes and filled with 

CsCl/EtBr solution. Caps were sealed onto the tubes with a crimper (DuPont) 
and placed into a Sorvall TV-865 rotor

• Samples were centrifuged in an OTD65B Sorvall Ultracentrifuge (DuPont) at 
40,000 rpm 25°C, for 21 h

• The DNA band was removed under UV illumination and placed in a sterile tube
• One volume butan-l-ol (Analar BDH) saturated with Tris/EDTA (added as equal 

volume Tris 10 mM EDTA 1 mM pH 8.0, shaken, allowed to stand and then 
pipetted off as top layer) was shaken with the DNA then allowed to settle

• The EtBr was removed as an upper pink layer. Butan-l-ol saturated with 
Tris/EDTA was added three more times and removed as before, removing all 
EtBr

•  The DNA solution was transferred to sterile dialysis tubing (Sigma D0405, 
boiled for 10 min in 200 ml 50 mM EDTA), placed in 1 1 dialysis buffer (10 mM 
Tris/1 mM EDTA pH 8.0) and placed on a magnetic stirrer for 12 h. The dialysis 
buffer was changed and then dialysis resumed for another 12 h.
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• The remaining solution was removed from the tubing and stored at 4°C in sterile 
tubes

The presence o f DNA was checked, using Gel Electrophoresis. 1 pi DNA was added 
to 20 pi SDW and 2 pi loading buffer. The gel comprised 50 ml TAE buffer with
1.5 % agarose, stained with 5 pi ethidium bromide (10 pg/ml).

50 x TAE - 242 g Tris base, 57.1 ml glacial acetic cid, 100 ml
0.5 M EDTA pH 8, made up to 1 litre with SDW 

10 x DNA loading buffer - 20 mM EDTA, 50% (v/v) Glycerol, 0.05% (w/v)
bromophenol blue, stored at minus 20°C or 4°C when 
diluted

The gel was run for 40 min. at 60V, with 10 pi 1 kilobase DNA ladder (50ng/pl 
Gibco BRL), then photographed under UV light.

The DNA amounts o f the samples were quantified using a Genequant (Pharmacia 
RNA/DNA Calculator) and then standardised to 100 pg/pl with SDW.

4. Summary of QIAQUICK Gel Extraction Kit Protocol as used for A. 
ampeloprasum  var. babingtonii

• Add 3 volumes Buffer QG to 1 volume o f gel
• Incubate at 50 °C for 10 min vortexing every 2-3 min
• Confirm that colour is yellow
• Add 1 volume o f isopropanol
•  Apply the sample to the QLAquick column place in collection tube and centrifuge 

for 1 min at 10,000 g (13,000 rpm)
•  Discard flow through
• Wash with 0.75 ml o f buffer PE to QIAquick column, stand for 5 min. then 

centrifuge for 1 min. at 10,000 g. Repeat, and stand for 5 min
• Centrifuge the column again for 1 min, then place column in clean microfuge 

tube
•  Add 30 pi Buffer EB warmed to approximately 50 °C (lOmM Tris-Cl, pH 8.5) to 

the centre o f the membrane, stand for 5 min, and then centrifuge for 1 min.

5. The Polymerase Chain Reaction (PCR)
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Figure 17-1; Amplification of DNA using the PCR technique: knowledge o f the DNA sequence to be 
amplified is used to design two synthetic DNA oligonucleotides, each complementary to the sequence 
on one strand o f the DNA double helix at opposite ends o f the region to be amplified. These 
oligonucleotides serve as primers for in vitro DNA synthesis, which is carried out by a DNA 
polymerase, and they determine the segment of the DNA that is amplified.
(A) PCR starts with double-stranded DNA, and each cycle o f the reaction begins with a brief heat 
treatment to separate the two strands (step 1). After strand separation, cooling of the DNA in the 
presence o f a large excess o f the two primer DNA oligonucleotides allows these primers to hybridize 
to complementary sequences in the two DNA strands (step 2) This mixture is then incubated with 
DNA polymerase and the four deoxyribonucleoside triphosphates so that DNA is synthesised, starting 
from the two primers (step 3). The cycle is then begun again by a heat treatment to separate the newly 
synthesized DNA strands. The technique depends on the use of DNA polymerase isolated from a 
thermophilic bacterium (Thennus aquaticus)\ this polymerase is stable at much higher temperatures 
than eukaryotic DNA polymerases, so it is not denatured by the heat treatment shown in step 1. It 
therefore does not have to be added again after each cycle of reaction.
(B) As the procedure is carried out over and over again, the newly synthesized fragments serve as 
templates in their turn, and within a few cycles, the predominant DNA is identical to the sequence 
bracketed by and including the two primers in the original template. In practice, 20-30 cycles are 
required for useful DNA amplification. Each cycle doubles the amount of DNA synthesized in the 
previous cycle. A single cycle takes only about 5 minutes and automation o f the whole procedure 
now enables cell-free cloning of a DNA fragment in a few hours, compared with several days required 
for standard cloning procedures. O f the DNA put into the original reaction, only the sequence 
bracketed by the two primers is amplified because there are no primers attached anywhere else.
In the example illustrated, three cycles o f reaction produce 16 DNA chains, 8 o f which (boxed in 
yellow) are the same length as and correspond exactly to one or the other strand of the original 
bracketed sequence shown at the far left; the other strands contain extra DNA downstream of the 
original sequence, which is replicated in the first few cycles. After three more cycles, 240 of the 256 
chains will correspond exactly to the original sequence, and after several more cycles, essentially all 
o f the DNA strands will have this unique length (Adapted from Alberts et al., 1998).
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6. Summary of protocol for ligation using pGEM®-T Vector System 1

•  The ligation mix was made up as follows
■ 5.0 pi 2 x Rapid Ligation Buffer
■ 3.5 pi PCR product
■ 0.5 pi pGem®-T Vector (50 ng)
■ 1 pi T4 DNA Ligase (3 Weiss units/pl)

•  The mixture was kept at 4°C overnight to promote the maximum number of 
transformants

7. Preparation of LB plates

• LB broth base was prepared using 100 g bacto-typtone, 50 g bacto-yeast extract 
and 100 gNaCl

• LB agar was prepared using 25 g LB broth base, with 15 g bacto-agar in 11 
distilled water

• The mixture was autoclaved to sterilise, and 1 ml o f 50 mg/ml ampicillin was 
added

• This was poured into sterile Petri dishes in aseptic conditions, and dried at 37°C 
for 30 min

• 50 pi Xgal (20mg/ml in dimethyl formamide, Sigma) and 50 pi IPTG (lOOmM 
aq., Sigma)were added to each plate and spread with a sterile glass spreader until 
dry

• plates were incubated at 37°C for at least an hour to allow evaporation of the 
demethyl formamide

8. SOC growth medium

• 20 g bacto-tryptone
• 5 g bacto-yeast extract
•  0.5 gN aCl
• 20mM glucose
• made up to 1 1 with SD W , autoclaved and stored at -20°C

9. PCR to amplify insert from E. coli colonies

• 18 pi Reddymix™ PCR Master Mix (Abgene® AB0575/LD).
• 1 pi each M l3 F and R (Genosys lOpM)

PCR was carried out with the following conditions:
• 95 °C for 15 min
• 50 °C for 1 min
• 72 °C for 1 min

• 95 °C fo r i  min }
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• 50 °C for 1 min }
• 72 °C for 1 min } 33 cycles

• 95 °C for 1 min
• 50 °C for 1 min
• 72 °C for 1 min
• products stored at 4 °C

10. Mixture for liquid culture of transformed cells

•  2 pi ampicillin 1 pl/ml of 50mg/ml stock (Sigma A9518)
• 2 ml LB broth
• prepared in aseptic conditions
• 1 OOpl for each culture
• incubate at 37°C, 250 rpm, 5-6 h (Gallenkamp Orbital Incubator)

Then
• Add 100 pi of liquid culture
• 3 ml LB broth
• 3 pi ampicillin
• incubate at 37°C, 250 rpm, overnight

11. Summary of extraction of high-copy plasmid DNA from overnight 
cultures of E. coli in LB (Luria-Bertani) medium with 50 pg/ml ampicillin, using 
QIAprep Spin Plasmid Kit

• 1.25 ml o f each culture was placed into each o f two 1.5 ml Eppendorf tubes
• cultures were microcentrifuged at 8000 rpm for 3 min
• supernatant was removed and one sample of pelleted bacteria resuspended by 

pipetting in 250 pi Buffer PI, then added to second sample and used to resuspend 
second pellet

• 250 pi of Buffer P2 was added and the tube gently inverted 4-6 times
• Within 5 min, 350 pi Buffer N3 was added to neutralize P2 and provide high salt 

content to precipitate unwanted components, tube was gently inverted to mix
• Tube was microcentrifuged for 20 min. at 13000 rpm
• QIAprep columns were placed into 2 ml collection tubes and supernatants 

pipetted onto columns
• Columns were centrifuge at 13000 for 1 min, then flow-through discarded
• 0.75 ml Buffer PE was added to the column, allowed to stand for 5 min, and then 

centrifuged at 13000 rpm for 1 min
• flow through was discarded and a further 0.75 ml Buffer PE was added to the 

column, allowed to stand for 5 min then centrifuged at 13000 rpm for 1 min
• Flow-through was discarded and the tube centrifuged again at 13000 rpm for 1 

min
• The columns were placed into clean 1.5 ml Eppendorfs and 50 pi Buffer EB (at 

60°C) was added to the centre o f the column
• After 5 min, the column was centrifuged at 13000 for 1 min
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•  Concentrations were estimated using the GeneQuant (Pharmacia RNA/DNA 
Calculator)

• Product was stored at -80°C until sequencing on 3100 Genetic Analyser (Applied 
Biosystems)

• The product was run on a gel to check for the presence of the plasmid , using 2 pi 
product, with 8 pi SDW and 2 pi loading buffer.

•  Bands should be present at approximately 3 kb

12. Summary of extraction of RNA using TRI-Reagent

•  All equipment was RNA dedicated and sterilised, work areas cleaned with 
RNaseZap (Ambion 9780)

• 200 mg o f plant material was excised, placed in foil and flash frozen in liquid 
nitrogen

• Pestles and mortars were sterilized by autoclaving, then stored at - 20°C till 
required

• Plant material was ground to fine powder then 2ml TRI-Reagent added to each 
sample and reground

• The paste was divided equally into two Eppendorf tubes, vortexed and allowed to 
stand at room temperature for 5 min

• The tubes were microcentrifuged at 12000 rpm at 4°C for 10 min
• The supernatants were transferred to clean Eppendorf tubes, 0.2 ml of chloroform

was added to each tube, and they were vortexed for 15s
• After standing at room temperature for 5 min, the mixture was microcentrifuged 

at 12000 rpm for 15 min. at 4°C
• The aqueous (top) layer was transferred to clean Eppendorf tubes
•  0.5 ml isopropanol was added to each tube and allowed to stand at room 

temperature for 10 min
• The tubes were microcentrifuged at 12000 rpm for 10 min. at 4°C, then the 

supernatant removed
• The pellets were washed in 75% ethanol, vortexing for 15 s
• The tubes were microcentrifuged at 12000 rpm for 10 min. at 4°C
• The supernatant was removed and the pellet allowed to air dry
• The pellets were resuspended in 50 pi SDW and the tubes combined
10 pi was checked by gel electrophoresis, the remainder stored at - 70°C. (Note, the
electrophoresis tank and comb were cleaned with 0.1 M NaOH (4 g/1) to protect
against RNase contamination). The gel comprised 1% agarose, in 50ml TAE buffer
with 2 pi ethidium bromide.

13. Summary of method for cleaning RNA

The DNase digestion reaction was set up as follows:

•  2 pg RNA
• 2 pi RQ1 DNase 10 x buffer (Promega M l98A)
• 2 pi RQ1 DNase (Promega, M610A) 1000 U/ml
• made up to 20 pi with SDW
• the mix was incubated at 37°C for 30 min

7



• 2 pi RQ1 DNase Stop was added (Promega, M l99!)
• mix was incubated at 65°C for 10 min
• 10 pi product was checked on an electrophoresis gel, as for RNA extraction 

above
• 10 pi were used for first strand cDNA synthesis

14. cDNA synthesis

• 10 pi o f DNAse treated RNA (as above) were placed in a 0.5 ml Eppendorf tube
• 1 pi Oligo (dt) 15 (500 pg/ml) (Deoxy poly T primer which anneals to poly A tail 

o f RNA was added
• the mix was incubated at 70°C for 10 min, then cooled on ice for 10 min
• 6 pi 5 x 1st strand buffer (GibcoBrL Y00146) was added
• 2 pi of 0.1 M DTT (dithiothreitol) was added as stabilizer (Gibco BrL Y00147)
• 1 pi lOmM dNTPs was added
• the mix was incubated at 42°C for 2 min
• 1 pi reverse transcriptase was added (M-MLV Reverse Transcriptase, Promega 

M530A)
•  the mix was incubated at 42° for 50 min
• the mix was then inactivated by incubating at 70°C for 15 min
• this produced single strand cDNA which was stored at -70°C

15. PC R ofcD N A

The reaction mix was as follows:
• 47 pi Reddymix
• 1 pi ABLFY F (lp /p l in SDW)
• 1 pi ABLFY R (lp /p l in SDW)
• 1 pi cDNA
• -ve control used SDW instead of cDNA
• +ve control used Tub Pos 63 and Neg 2 instead o f ABLFY F and R

16. Tubulin primers

POS63 = TGA GYG GYG TSA CST GCT

TUB 2 = GTA GGA NGA GTT CTT GTT CTG 
Allnutt (2000)
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A p p en d ix  18

Forward and reverse sequences for six putative LFY alleles extracted from Allium var. 
ampeloprasum var. babingtonii, identified by com parison with BLAST (Basic Local 
Alignment Search Tool, National Centre for Biotechnology Information 
http;www.ncbi.nlm .nih.gov/blast.database

C lo n e  i f
ATCAATAAGCCCAAGATGAGACACTACGTACACTGCTACGCCCTCCACTGCCTAGAAGAGGACACATCAAACGCC
CTCCGAAGAGCCTTCAAGGAGCGTGGCGAGAATGTAGGCGCGTGGAGGCAAGCTTGTTACAAACCCCTTGTTGCC
ATTGCTGGTCGTCAAGGTTGGGATATTGACTCCATTTTTAACTCTCATCCTCGTCTTTCTATTTGGTACGTCCCC
ACCAAGCTA
C lo n e  l r
TAGCTTGGTGGGGACGTACCAAATAGAAAGACGAGGATGAGAGTTAAAAATGGAGTCAATATCCCAACCTTGACG
ACCAGCAATGGCAACAAGGGGTTTGTAACAAGCTTGCCTCCACGCGCCTACATTCTCGCCACGCTCCTTGAAGGC
TCTTCGGAGGGCGTTTGATGTGTCCTCTTCTAGGCAGTGGAGGGCGTAGCAGTGTACGTAGTGTCTCATCTTGGG
CTTATTGATATA

C lo n e  4 f
ATCAACAAGCCTAAGATGAGACACTACGTACACTGCTACGCCCTCCACTGCCTAGAAGAGGACACATCAAACGCC
CTCCGAAGAGCCTTCAAGGAGCGTGGCGAGAATGTAGGCGCGTGGAGGCAAGCTTGTTACAAACCCCTTGTTGCC
ATTGCTGGTCGTCAAGGTTGGGATATTGACTCCATTTTTAACTCTCATCCCCGTCTTTCTATTTGGTACGTCCCC
ACCAAGCTA
C lo n e  4 r
TAGCTTGGTGGGGACGTACCAAATAGAAAGACGGGGATGAGAGTTAAAAATGGAGTCAATATCCCAACCTTGACG
ACCAGCAATGGCAACAAGGGGTTTGTAACAAGCTTGCCTCCACGCGCCTACATTCTCGCCACGCTCCTTGAAGGC
TCTTCGGAGGGCGTTTGATGTGTCCTCTTCTAGGCAGTGGAGGGCGTAGCAGTGTACGTAGTGTCTCATCTTAGG
CTTGTTGATATA

C lo n e  5 f
ATCAATAAGCCGAAGATGAGGCATTATGTCCATTGCTAAGCTTTGCATTGCCTCGATGAAGAAACATCATATGCA
CTCCGTCGATACTAAAAGCATCGAGGAGAAAATGTGGGAGCATGGAGACTAACGTGCTATCCGCATATAGTGGTG
ATTTCGGCGCAACACAATTGGGATGTAAACGTCGTTTACAATGCACATCTGAGGCTGTCGATTTGGTACGTCCCC
ACCAAGCTA
C lo n e  5R
TAGCTTGGTGGGGACGTACCAAATCGACAGCCTCAGATGTGCATTGTAAACGACGTTTACATCCCAATTGTGTTG
CGCCGAAATCACCACTATATGCGGATAGCACGTTAGTCTCCATGCTCCCACATTTTCTCCTCGATGCTTTTAGTA
TCGACGGAGTGCATATGATGTTTCTTCATCGAGGCAATGCAAAGCTTAGCAATGGACATAATGCCTCATCTTCGG
CTTATTGATATAAAT

C lo n e  8 f
ATCAATAAGCCGAAGATGAGGCATTATGTCCATTGCTACGCTTTGCATTGACTGGATGAAGAAACGTCATAAGCA
CTCCGTTGATACTACGAGCAACGAGGAGAAAATGTGGGAGCTTGGAGACAAGCGTGCTATCAGCATATAGTAGTG
ATTTCGGAGCAGCACAATTGGGATGTGGATGCCGTTTTCAATTCACATCTGAGGATGTCGATTTGGTACGTCCCC
ACCAAGCTA 
C lo n e  8 r
TAGCTTGGTGGGGACGTACCAAATCGACATCCTCAGATGTGAATTGAAAACGGCATCCACATCCCAATTGTGCTG
CTCCGAAATCACTACTATATGCTGATAGCACGCTTGTCTCCAAGCTCCCACATTTTCTCCTCGTTGCTCGTAGTA
TCAACGGAGTGCTTATGACGTTTCTTCATCCAGTCAATGCAAAGCGTAGCAATGGACATAATGCCTCATCTTCGG
Ct t a t TGATATA

http://www.ncbi.nlm.nih.gov/blast.database


C lon e 9 f
ATCAATAAGCCGAAGATGAGGCATTATGTCCATTGCTACGCTTTGCATTGCCTGGATGAAGAAACATCATAAGCA
CTCTATTGATACTACGAGCAACGAGGAGAAAATGTGGGAGAATGGAGACAAGCGTGCTATCAGCATATAGTGGTG
ATTTCGGCGCAGCACAATAGGGATGTGGATGCCGTTTTCAATTCACATCCGAGGTTTTCGATTTGGTACGTCCCC
ACCAAGCTA
C lo n e  9 r
TAGCTTGGTGGGGACGTACCAAATCGAAAACCTCGGATGTGAATTGAAAACGGCATCCACATCCCTATTGTGCTG
CGCCGAAATCACCACTATATGCTGATAGCACGCTTGTCTCCATTCTCCCACATTTTCTCCTCGTTGCTCGTAGTA
TCAATAGAGTGCTTATGATGTTTCTTCATCCAGGCAATGCAAAGCGTAGCAATGGACATAATGCCTCATCTTCGG
CTTATTGATGTA

C lo n e  1 0 f
ATCAATAAGCCCAAGATGAGACACTACGTACACTGCTACGCCCTCCACTGCCTAGAAGAGGACACATCAAACGCC
CTCCGAAGAGCCTTCAAGGAGCGTGGCGAGAATGTAGGCGCGTGGAGGCAAGCTTGTTACAAACCCCTTGTTGCC
ATTGCTGGTCGTCAAGGTTGGGATATTGACTCCATTTTTAACTCTCATCCTCGTCTTTCTATTTGGTACGTCCCC
ACAAAGCTA
C lonelO R
TAGCTTTGTGGGGACGTACCAAATAGAAAGACGAGGATGAGAGTTAAAAATGGAGTCAATATCCCAACCTTGACG
ACCAGCAATGGCAACAAGGGGTTTGTAACAAGCTTGCCTCCACGCGCCTACATTCTCGCCACGCTCCTTGAAGGC
TCTTCGGAGGGCGTTTGATGTGTCCTCTTCTAGGCAGTGGAGGGCGTAGCAGTGTACGTAGTGTCTCATCTTGGG
Ct t a t TGATGTA

NB
• Blue type indicates the prim er sequence
• Forward and reverse sequences w ere identical for all bacterial clones
• All sequences produced strong traces w ithout am biguity
• Red type indicates plasm id remnant



Specific ABLFY primers

/e d i t e d 9 £  
' e d i t e d S f  
e d i t e d S f  

E d i t e d - l  
e d i t e d 5 r . 
e d i t e d l r . 

/ e d i t e d 4 f . 
e d i t e d 4 r . 
e d i t e d 8 r .  
E D I T E D -2 . 

' e d i t e d l f .  
e d i t e d 9 r .

s e q ( 1 > 2 4 6 )  
s e q ( 1 > 2 4  4 ) 
s e q ( 1 > 2  4 4 )  
S E Q { 1 > 2  4 3 )  
s e q ( 1 > 2  4 0 )  
s e q ( 1 > 2 3 7 )  
s e q ( 1 > 2 3 7 )  
s e q ( 1 > 2 3 7 ) 
s e q ( 1 > 2 3 7 ) 
S E Q ( 1 > 2 3 7 )  
s e q ( 1 > 2 3 7 )  
s e q ( 1 > 2 3 7 )

e d i t e d 9 f  
e d i t e d S f  
e d i t e d S f  
E D IT E D -1 
e d i t e d 5 r  
e d i t e d l r  
e d i t e d 4 f  
e d i t e d 4 r  
e d i t e d 8 r  
E D IT E D -2  
e d i t e d l f  
e d i t e d 9 r

. s e q ( 1 > 2 4  6 ) 

. s e q ( 1 > 2 4 4 ) 

. s e q ( 1 > 2  4 4 )  

. S E Q ( 1 > 2  4  3 )  

. s e q ( 1 > 2  4 0 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 ) 

. s e q  <1 > 2 3 7 )  

. S E Q { 1 > 2 3 7 ) 

. s e q ( 1 > 2 3 7 ) 

. s e q ( 1 > 2 3 7 )

e d i t e d 9 f  
e d i t e d S f  
e d i t e d S f  
E D IT E D -1  
e d i t e d S r  
e d i t e d l r  
e d i t e d 4 f  
e d i t e d 4 r  
e d i t e d S r  
E D IT E D -2  
e d i t e d l f  
e d i t e d 9 r

. s e q ( 1 > 2 4 6 )  

. s e q ( 1 > 2  4 4 )  

. s e q ( 1 > 2  4 4 )  

. S E Q ( 1 > 2  4 3 )  

. s e q ( 1 > 2 4 0 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  

. S E Q ( 1 > 2 3  7 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )

ABLFY F

T C  CCGGATTTA ATCAATAAGCC AAGATGAG CA
g n — c c — a t t t a w a t c a a t a a g c c I a a g a t g  kg  CA

TA GT rG C T A C C J C  'ta an
G TCC — A T T TA IA T C A A T A A G C C S A A G A T G nG  CA

TC C ATTTA ATCAATAAGCC AAGATGAG
A T TT A  ATCAATAAGCC AAGATGJVGfCA TA  GT 

TA ATCAATAAGCC AAGATGAg ACA  
TA ATCAACAAGCC AAGA  
TA ATCAACAAGCC AAGA  
TA ATCAATAAGCCfeAAGA  
TA ATCAATAAGCC JAAGA 
TA  ATCAATAAGCCCAAGA  
TA fA TC A A TA A G C  

K C g tC C --A T fT A fA T C A A T X A G C
n n  . . . r.

TGCTACGC 
TGCTAAGC 
TGCTACGC 
TGCTACGC 
TGCTACGC 
TGCTACGC 
TGCTACGC 
TGCTACGC

CA ITGC 
T§CA 'TGCC

c a •race
Cf  ITGCC 
CA ITGCC 
CA 'TGAC 
CA ITGC 
CA

TA GT 
TA GT E S S S  

ES S5SS
i l l

GAAAATG T(>CT
TGC TAT'CAGCAT  
T 0 C T A T C C G C * lT  
T f  '1 7 CA.AACCC 
TG C T7 TCCGCjW  
TO  T7 CA A A CpC 
TG TTACAA ACCC

GAGTtATGTAGGCGCGTGGAG CAAGC TOTTACAA ACGC

T G G A G  C A A G C

TGGAC c t a a c
g a g a a t g t a g g c g c s g t g g a c j g c a a g c

GC CTCC C  G A G  g a g  a a  a a t  g  
c g t g g  g a g t v a t g
CQgGG&GAfcAATG

TGGAC CTAAC 
TGGAQ<SCAAGC 
TGGAC CAAGC

CAAGC. T r  AC ,  C A T
G7W SAATGTAGdCGCGTGGAGGC7tAGCTTC}«rTAC»AAC8^
GAGAATGTAGC CGCGTGGAG&CTtAGCTTCJTT/CTCC 

G C»CTCT  
CTCC

1AAA
ATA'.-T

r i  W G t  R c a E a a T G T  • f . f M G c -  > t r . G A T  A / 7 .  T .

TTTT
TTTT

e d i t e d 9 f  
e d i t e d S f  
e d i t e d 5 f  
E D I T E D -1 
e d i t e d 5 r  
e d i t e d l r  
e d i t e d 4 f  
e d i t e d 4 r  
e d i t e d S r  
E D IT E D -2  
e d i t e d l f  
e d i t e d 9 r

. s e q ( 1 > 2 4 6 )  

. s e q ( 1 > 2 4 4 )  

. s  e q { 1 > 2  4 4 )  

. S E Q ( 1 > 2  4 3 )  

. s e q ( 1 > 2 4 0 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 ) 

. s e q ( 1 > 2 3 7 ) 

. S E Q ( 1 > 2 3 7 )  

. s e q ( 1 > 2 3 7 )  
, s e q ( 1 > 2 3 7 )

- >  CCAAGCTA  
- >  CCAAGCTA  
- >  CCAAGCTA  
- >  CAAAGCTA  
< -  CCAAGCTA  
< -  CCAAGCTA  
- >  CCAAGCTA  
< -  CCAAGCTA  
< -  CCAAGCTA  
< -  CAAAGCTA  
- >  CCAAGCTA  
< -  CCAAGCTA

lATTTGGTACGTCCCr'A 
.TTTGGTACGTCCCCA 

ATTTGGTACGTCCCCA 
ATTTGGTACGTCCCCA 

•TC®ATTTGK3TACGTCCCCA 
ATTTGGTACGTCCCCA  
ATTTGGTACGTCCCCA 
ATTTGGTACGTCCCCA  

TTTGGTACGTCCCCA 
ATTTGGTACGTCCCCA 
ATTTGOTACWTCeCGA 
ATTTGGTACGTCCCCA

ABLFY R


